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Summary

Automatic matching of features in Synthetic Aperture Radar data to
digital map data

Ronald George Caves

The large amounts of Synthetic Aperture Radar (SAR) data now being gen-
erated demand automatic tools for image interpretation. Where available, map
data provides a valuable aid for visual interpretation and it should aid automatic
interpretation. Automatic map based interpretation will be heavily dependent
on methods for matching image and map features, both for defining the initial
registration and for comparing image and map. This thesis investigates methods
for carrying out this matching.

Before beginning to develop image map matching methods, a full under-
standing of the nature of SAR data is first required. The general theory of SAR
imaging, the effects of speckle and texture on image statistics, multi-look im-
age statistics, and parameter estimation, are all discussed before addressing the
main subject matter.

Initially the feasibility of directly matching map features to SAR image
features is investigated. Simulations based on a simple image model produce
promising results. However, the results of matching features in real images
are disappointing. This is due to the limitations of the image model on which
matching is based. Possible extensions to include texture and correlation are
considered to be computationally too expensive. Rather, it is concluded that
pre-processing is needed to structure the image prior to matching.

Structuring using edge detection and segmentation are investigated. Among
operators for detecting edges in SAR an operator based on intensity ratios is
identified as the most suitable. Its performance is fully analysed. Segmenta-
tion using an iterative edge detection/segment growing algorithm developed at
the Royal Signals and Radar Establishment is investigated and various improve-
ments are suggested. The output of segmentation is structured to a higher level
than the output of edge detection. Thus the former is the more suitable can-

didate for map matching. Approaches to matching segmentations to map data
are discussed.



Contents

Acknowledgement 5
1 Introduction 6
1.1 Outline . . ... .. i i i ittt e i e e e e 7
1.2 Synthetic apertureradardata . . .. ... ... .......... 8

2 SAR theory -10
2.1 Antemnnatheory .. ... ... ... ... ... ... . .. 11
2.2 Azimuthresolution .. ... ..... ... .. ... ... ... 14
2.3 Rangeresolution ... ...... ... e, 17
24 SUMMATY . . . v v it o et e et e e e e e e e e e e e e 20

3 Image statistics 21
3.1 Imagingmodel ............ ... ... 22
3.2 Statistics of the phase and complex components . . . . .. ... . 23
3.3 Statistics of the detected intensity . ... ... .......... 25
331 Generalcase . ... v vviiiit e 25

3.3.1.1 The exponential distribution .. ......... 29

3.3.1.2 The multiplicative imaging model . ... .. .. 29

3.3.2 Exponentially distributed intensity . .. ... ....... 30

3.3.3 K-distributed intensity . . . . ... ... ... ... .... 32

3.3.3.1 Gamma distributed imaged SCS .. ... . ... 34

3.3.3.2 Justification for a gamma distributed imaged SCS 37

3.3.3.3 K-distributed field statistics . .......... 40

3.4 Statistics of the amplitude of the detected field ... ... .. .. 43
3.4.1 The Rayleigh distribution .. ................ 43

3.4.2 Constant imaged SCS . ... ... ... ... ....... 44

3.43 Gamma distributed SCS . . . ... ... ... ....... 45

3.4.3.1 Square root gamma distribution . ........ 45

3.43.2 K-distributed amplitude . . . . ... ... .... 46

3.5 Transforming speckle to being additive . . . . . .. .. ... ... 47
3.5.1 Constant imaged SCS .. ... ............... 49

3.5.2 Gamma distributed SCS . . . ... ... ... . ... ... 49

3.5.2.1 K-distributed density . . ... ... ... .... 50

3.6 Second order intensity statistics . . . ... ... .. .00 .. 53
3.7 SUMMATY . . v v e e e e e e e e 55



CONTENTS

Parameter Estimation and Multi-looking 57
4.1 Averagesofpixel values . . ... .. ... ... ... 58
4.1.1 Exponential intensity . ... ....... ... ... 60
4.1.2 Rayleigh distributed amplitude ... ... ... ... ... 61
4.1.3 K-distributed intensity . . . . ... ... . L 000 62
4.14 Effect of correlation on averaging . . . . ... ....... 63
4.14.1 Correlatedspeckle . . . ... ........... 64
4.1.4.2 Correlated imaged SCS ... ........... 66
4,2 Textureestimation .. ... ... .. 67
4.2.1 ML estimation of the mean and order parameter of K-
distributed intensity . . ... ... ... .. 000 67
4.2.2 Non-optimal estimation of the order parameter of K-distributed
WEEOSIEY « ¢t vttt ettt e ettt 68
4.2.2.1 Second normalised intensity moment . . . . . . . 68
4.2.2.2 Mean normalised density ... .......... 70
4.3 SUIMMATY & o v v vt i e e e et e ettt e ettt e 72
Template matching 75
5.1 Correlation measures . . . . .« v v v v v vttt et e 76
51.1 Cross-correlation . . .........c00iie... 76
5.1.2 The Kolmogorov-Smirnov correlation measure. . . . . . . 80
5.2 Comparison of correlation measures . .. ... ... ... 80
5.2.1 Behaviour of the measures atamatch . .......... 81
5.2.2 Behaviour as a template moves away from a match . . . . 81
5.3 Performancetests. .. ... ... ... i 83
5.3.1 Simulateddata ... ......... ... .00 83
532 RealData ............c.. ... 84
54 Discussion . . . . . v v vt i it e e e e e e e e e e 87
5.5 SUMMATY . . v v v v v vt e e ettt e e e e e e 90
Statistics along edges 92
6.1 Detected field alonganedge . . . . . . ... ... ... ... ... 93
6.1.1 Terraineffects ............. .. .. ... ..., 94
6.1.1.1 Changes in surfaceslope ... .......... 95
6.1.1.2 Layover . . . v v v v i et e e e e e e e e 95
6.1.1.3 Radarshadow ................... 97
6.2 Intensity statistics alongedges . .................. 98
6.2.1 Characteristic function of the intensity . . . . . ... ... 98
6.2.2 Intensitymoments . ... ..........0 .00, 99
6.2.3 The effect of systemnoise . . . ............... 100
6.2.4 Statistics of the imaged SCS .. . ... ... . ... ... 101
6.3 Measurement of intensity statistics along edges . ... ... ... 102
6.3.1 Measurements along linear targets . ............ 105

6.4 Summary

6.3.2 Comparison to measurements over extended targets ... 106



CONTENTS 3

7 Edge detection 108
7.1 The local operator approach to edge detection. . . . ... .. .. 109
7.2 Operators for detecting edges in SAR images . ... ....... 110

7.2.1 Disparity measures . . . . . . v v v v v u e .o e 110
7.2.1.1 ML estimates of the ratio and difference of mean

values . . ... i 111

7.2.1.2 Distribution of the normalised ratio . ... ... 113

7.2.1.3 Distribution of the absolute difference . . .. .. 116

7.2.2 Heterogeneity measures . . . ... ... oo ot v s oo 120

7.2.2.1 Coefficient of variation based operators . .. .. 120

7.2.2.2 The Marr Hildreth operator . .......... 122

7.3 Performance of the normalised ratio operator . . ... ... ... 124

7.3.1 Conditions for a constant false alarmrate . ... ... .. 125

7.3.2 Threshold selection and edge detectability . . .. ... .. 126

7.3.3 Correlated and K-distributed intensity . . .. ... .. .. 128

7.3.4 Measured False Alarm Rates ... ............. 130

7.4 [Edge scale size and detectability .. ................ 139

7.4.1 Edgethickening. .. ... .. ... .. . ... ... 139

7.4.2 Multiple edges occurring within the window . . . . .. .. 140

7.5 SUmMmary . . .. i v it e e e e e e e e e e e e e e e e 142

8 Point target detection 144

8.1 Statisticsof specklepeaks . ... .. o oo oo o. 144
8.1.1 Distributions of maximum and minimum values . . . . . . 145
8.1.2 Maximum and min{mum {ntensity . . . ..o v 45
8.1.3 Distribution of maximum and minimum ratios ... ... 146
8.1.4 Intensity fluctuations. . ... ... ... ... ........ 148

8.2 Approaches to point feature detection . .............. 150
8.2.1 Point feature detection based on the magnitude of inten-

sity fluctuations .. ... ... . L o000 o oo, 152

8.3 Results of point target detection . . ................ 152

84 Summary . . . . . i i it e e e e e e e e e e 154

9 Segmentation 158

9.1 Segmentation algorithm .. ... .................. 159
9.1.1 Segmentation accuracy and halting . . . ... ... .. .. 159
9.12 EdgeDetection . . ... .. ... i 160

9.1.2.1 The normalised gradient operator ... ..... 160
9.1.2.2 Edge thresholding . ... ............. 163
9.1.2.3 Point target detection . . . ... ..o 163
9.1.2.4 Alternative edge detectors . . .......... 164
9.1.2.5 Comparison of segmentations . . . .. ...... 166
9.1.2.6 Intensity segmentation . ............. 166
9.1.3 Segment growing and merging . . ............. 169
9.1.3.1 Segmentgrowing . . ... ... .. ...cc.... 169

9.1.3.2 Merging based on moments . . .. ........ 170



9.1.3.3 Merging based on edge strength

9.2 Segmentation of ERS-1data. ...........
9.2.1 The ERS-1dataset . . ...........
9.2.2 Segmentation of SLC data. . .......
9.2.3 Segmentation of PRIdata . . ... . ...

9.3 SUmMMATY . . v v v vt it e e

10 Conclusion and future work

10.1 Background theory .. ... .. ... ... ....
10.2 Direct matching. . .. ... ... ... oL,
10.3 Edgedetection . ............ ... ..
10.4 Segmentation .. ... ... ...t
10.5 Image map matching . . . ... ... .......
106 Futurework . . . . . . . ... o oo

PDF’s of binary operators

Rayleigh characteristic function

Pdf of the sum of I random variables
Moments of circularly symmetric RV’s

Selection of map data

M 5 O Q W »

Glossary

Bibliography

CONTENTS

205
207
209
211
213

224



Acknowledgement

The research described in this thesis could not have been carried out without
the help and guidance of a number of people all of whom I am grateful to. Most
of all I wish to thank my supervisors Dr Shaun Quegan and Dr Peter Harley,
first for offering the opportunity to carry out the research, and second for being
very generous both with their time and knowledge when discussing progress and
when answering queries. I also wish to thank research colleagues for helpful
discussion; Dr David Blacknell, Dr Luciano Dutra and Kevin Grover, all of
whom have shared an office with me at one stage, and Dr Ian Rhodes. Professor
Chris Oliver and Dr Richard White from the SAR group at DRA Malvern have
been very helpful in supplying data and segmentation software, but even more so
in their critical appraisal of my results presented at half yearly meetings. These
meetings have always generated tangential but highly beneficial discussion of
fundamentals, usually with myself as a bystander to Shaun, Chris and Richard
as the main protagonists. This, along with never being allowed to get beyond the
opening statement of a presentation without being queried, has inspired me to
gain a fuller understanding of many topics. Both the Jet Propulsion Laboratory
and the European Space Agency also need to be thanked for supplying data.
I am also grateful to SERC for funding me as a research assistant on grants
GR/F14505 and GR/H90636 over the time this thesis was written. Finally, I
wish to thank family and friends for general encouragement, particularly when
the light at the end of the tunnel was still far off.



Chapter 1

Introduction

Synthetic Aperture Radar (SAR) is a high-resolution, active microwave imaging
device which has advantages over passive optical imaging in that it can image
through cloud and at night. This, along with the sensitivity of radar wavelengths
to surface roughness and moisture content [59], means that SAR is potentially
an ideal remote sensing tool for distinguishing land cover types and for detecting
temporal change, e.g., in agriculture or forestry.

Prior to 1991 SAR images were only readily available from the short lived
Seasat mission in 1978, brief Space Shuttle missions in 1981 and 1984 and various
airborne SAR missions which at most gave only regional coverage [10, 27]. With
this sparse spatial and temporal coverage the scope for change detection using
SAR was limited and there was no urgent requirement for automatic methods
for interpreting images, nor for detecting changes between successive images of
the same scene. However, in July 1991 the ERS-1 satellite was launched by the
European Space Agency (ESA). ERS-1 carries a SAR as part of its payload and
is the first in a series of missions which will supply SAR images on a regular
basis (the Japanese JERS-1, ERS-2, the Canadian Radarsat, and the ESA polar
platform POEM-1).

To utilize the large number of SAR images now being generated, automatic
tools for carrying out interpretation and change detection are urgently required.
When these tasks are carried out manually, map data of the area covered by an
image is invaluable both as an interpretative aid and as a framework for change
detection between successive images. Automatic methods may benefit from an
analogous use of map data [27, 51]. However, before map data can be used in
an automatic manner for interpretation or change detection, the SAR and map
data have to be registered. This is carried out by identifying matching image
and map features from which a geometric mapping function [23] between SAR
and map data can be defined. This matching process is fundamental to the
whole automatic interpretation scheme as methods for automatically matching
image and map features are also required for identifying change once registration
has taken place. This thesis addresses how to carry out this central task. The
problem can be broken into a number of sub-questions:

e Can map features be matched directly to SAR image features ?
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e If not, what kind of pre-processing is needed prior to matching ?

e What algorithms are available to carry out this pre-processing and how do
they perform ?

¢ How does matching proceed after pre-processing ?

These questions comprise the main aspects of the image map matching problem
addressed in following chapters. As rough topography introduces additional
problems, for the moment we will only consider the problem of matching over
regions of flat topography.

In the remainder of this introductory chapter an outline plan of the thesis is

presented and a brief description is given of the SAR data that will be used in
later chapters.

1.1 Outline

Prior to being able to address any of the above questions, a full understanding
of the nature of SAR data is needed, i.e., what information it represents and
what its noise limitations are. This is a general prerequisite for developing
tools for interpreting any type of data. Hence Chapters 2 to 4 deal with the
background theory needed for interpreting SAR images. Few of the results
in these chapters are new; rather, their intended contribution is to combine
results from a large number of sources into a coherent discussion of models for
SAR image statistics. These models will supply the theoretical basis for image
analysis in later chapters. It is especially hoped that the discussion of first order
image statistics is as complete as possible.

In Chapter 2 the general theory of SAR imaging is discussed; in particular
image resolution and the response of the imaging system to a point target. This
information will be required in later chapters to model spatial correlation in
images. Because SAR is a coherent imaging system, images are corrupted by
speckle noise. Due to the nature of speckle SAR images cannot be interpreted on
a per pixel basis. Rather, interpretation has to be based on parameters estimated
over regions of the image. Obvious questions arise as to what parameters to
estimate, what the optimal estimates of these parameters are, and what error
is present in the estimates. To answer these questions models for the first and
second order statistics of a homogeneous region in a full resolution SAR image are
discussed in Chapter 3. Estimation of the parameters describing these models
are then discussed in Chapter 4. This includes a discussion of the statistics of
multi-look, i.e., incoherently averaged, SAR images.

In Chapters 5 to 9 we go on to address the different aspects of the image
map matching problem covered by the questions highlighted above. The first
two are addressed in Chapter 5 where an attempt is made to directly match
templates representing map features to corresponding features in SAR images.
Although promising results are produced using simulated data, the methods
do not perform successfully on real data. This failure is partially due to the
matching process being based on too simple an image model but is more generally
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due to the SAR image and map template being mismatched data types. Some
structuring of the SAR image into objects that can be more easily matched to
map features, i.e., edges or homogeneous segments, is needed prior to matching
taking place. Before these topics are discussed in Chapters 7 to 9 (in answer to
the third question above), the statistics of pixel value along the types of linear
feature suitable for matching are investigated in more detail in Chapter 6 to see
how they differ from the statistics over homogeneous regions already discussed
in Chapter 3.

Methods of detecting edges in SAR images are discussed in Chapter 7. Edge
detection using a local operator to measure the intensity ratio between adjacent
regions is concentrated upon. The performance of this operator under the image
models described in earlier chapters, is determined. A discussion of the problems
involved in detecting edges at different scales leads on to a discussion of the
need for point features to be detected prior to edges. Various approaches to
point feature detection are described in Chapter 8. Segmentation is discussed in
Chapter 9, primarily in terms of a segmentation algorithm originally developed
at the Royal Signals and Radar Establishment (RSRE; now DRA Malvern).
The operation of this algorithm and various modifications and weaknesses are
described. The algorithm is used to investigate agricultural change detection in
a series of ERS-1 images taken during the growing season of 1992.

Chapter 10 contains conclusions on the state of the image map matching
problem given the results in Chapters 5 to 9, including pointers as to how an
edge map or segmentation is to be matched to map data (in answer to the fourth
and final question above).

A number of appendices are included. Appendix A lists the output distri-
butions of basic binary operators in terms of the distributions of their inputs;
these results are required at various stages in the main body of the thesis. The
next three appendices (B-D) contain extended proofs of results referred to in the
main body of the thesis. The selection of digital map data suitable for matching
features in SAR images is discussed in Appendix E. Appendix F is a glossary
which briefly defines various mathematical functions and relationships referred
to in the main body of the thesis. For ease of reference topics listed in the
glossary are printed in bold in the main body of the thesis wherever the reader
may require further explication of the topic (e.g., where it is first introduced).

1.2 Synthetic aperture radar data

The results presented in this thesis are based on a number of datasets from both
airborne and spaceborne SAR’s:

1. Single-look complex data taken by the RSRE X-band airborne system near
Amesbury, Wiltshire, England.

2. Quad-polarised single-look complex data taken by the Jet Propulsion Lab-
oratory P, L and C band airborne system (AIRSAR) over the Goldstone
calibration site in California, USA.
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Band Allocation
Frequency GHz Wavelength cm
P 0.428-0.448 70.1-67.0
L 1.215-1.3 24.7-23.1
S 3.1-3.3 9.68-9.09
C 5.25-5.35 5.71-5.62
X 9.50-9.80 3.16-3.06

Table 1.1: Frequency band allocations for radar remote sensing [58].
Amongst past spaceborne SAR's NASA’s Seasat (1978) and Shuttle imag-
ing radar missions (SIR-A 1981, SIR-B 1984) operated at L-band while the
Russian Almaz-1 (1992) operated at S-band. The current JERS-1 SAR op-
erates at L-band. The SIR-C mission planned for 1994 will carry L and C
band SAR’s as well as a German X-band SAR. The SAR’s on both Radarsat
(1995) and POEM-1 (1998) will operate at C-band.

3. Quad-polarised single-look complex data taken by AIRSAR over the Feltwell
agricultural test site in Norfolk, England.

4. Three-look intensity fast delivery (FDP) data taken by the C-band SAR
on ERS-1 over Flevoland, Netherlands.

5. Single-look complex (SLC) and 3-look intensity precision image (PRI) data
taken by ERS-1 over the Feltwell agricultural test site in Norfolk, England.

Seven-look amplitude data taken by the Canadian Centre for Remote Sensing
(CCRS) airborne system from over Feltwell was also available, but unfortunately
the data was heavily saturated due to it only having an 8-bit dynamic range and
little use was made of it.

The frequency allocations corresponding to the radar frequency bands re-
ferred to above are listed in Table 1.1. Other relevant imaging parameters will
be listed when the need arises.



Chapter 2

SAR theory

In this chapter the theory of how a side looking radar, flown on an airborne
or spaceborne platform, uses a synthetic aperture and pulse compression to
generate high resolution imagery is described. The resolution is derived in terms
of the system response to a point target. This information will be required in
later chapters for determining the degree of spatial correlation in a SAR image.

Before the properties of a radar antenna with a synthetic aperture can be
discussed, the far-field pattern and resolution of the real aperture of a one-
dimensional antenna needs to be determined; this is dealt with in Section 2.1.
This information is then used in Section 2.2 to derive the resolution and system
response in azimuth when a synthetic aperture is formed. It is shown that when a
synthetic aperture is fully focused the azimuth resolution is given by half the real
aperture length, and that the system response is described by a sinc function.
The range resolution of a side looking radar is discussed in Section 2.3. The
range resolution is inversely proportional to the bandwidth of the radar pulse.
Frequency modulation is used to achieve the large bandwidth required for high
range resolution. When linear modulation (i.e., a chirp pulse) is used the system
response in range, like the system response in azimuth of a fully focused synthetic
aperfure, is described by a sinc function. In this chapter azimuth resolution is
dealt with prior to range resolution because a discussion of the former follows
on from the properties of real apertures discussed in Section 2.1. However,
in practice range compression is applied to a received pulse prior to azimuth
processing.

The imaging geometry will assume a flat Earth model and an imaging plat-
form with a straight flight path. This is valid for considering the general theory
of SAR and when dealing with airborne SAR’s operating over narrow swath
widths. However, for spaceborne SAR the imaging geometry must take into
account the Earth’s curvature and rotation, and the satellite’s orbit [15, 54].
Because these factors affect the details of both azimuth and range processing,
rather than the general theory, they are not considered further. The effects of
range curvature [59] will also be ignored.

10
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2.1 Antenna theory

By treating an antenna as an array of infinitesimal point sources, which are
in phase, the field at a point target due to illumination by a one-dimensional
antenna with real aperture D may be expressed

D

E=«k /i a(z)e**dy (2.1)

2

where « is a proportionality factor, a(z) is the weighting of the field across
the antenna, k = 27 /) is the wavenumber of the illuminating wavelength ),
and ¢ (z) is the path length from position z along the antenna to the target!.
The proportionality factor k must take into account the transmit power of the
antenna and losses in power due to propagation; it is determined using the radar
equation [34].

If the target is in the far-field of the antenna, i.e., the range R to the target
satisfies the far-field condition R > 2D?/) [58], rays converging on the target
from different points along the antenna can be considered to be parallel at the
antenna. The only difference in the length of the path different rays have to
travel to the target will be due to the orientation of the antenna relative to the
target. This is illustrated in Figure 2.1. When the target is oriented at an angle
6 relative to being broadside of the antenna, the path length at position z along
the antenna is given by

¢(z)=zsin6+ R (2.2)

where R is the path length from the centre of the antenna to the target, i.e., the
range to the target. The far-field at orientation 6 is then given by

D
E(6) =« /_’D a(c)e=eintgy (2.3)
2
Thus the far-field is proportional to the Fourier transform A (w) of the antenna
illumination at w = ksin# [7, 15]; this corresponds to Fraunhofer diffraction [5,
58].

Because the target is in the far-field of the antenna, when the field scattered
back from the target reaches the antenna it can be considered to be a plane
wavefront oriented at an angle @ relative to the antenna, and the path differences
across the antenna will be the same as those when transmitting. Thus (2.3) also
describes the field received by the antenna due to scattering from a point target
in the far-field. The proportionality factor must now take into account losses
in power due to two-way propagation and the radar cross-section of the point
target.

When the weighting across the antenna is uniform (a(z) = 1), the far-field
pattern is given by

Dsine) (2.4)

D
E (0) — K_/_zb ekasin de = Ksinc ( by

2
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Point target at range R in the
far-field of the antenna.

Path difference
X sin©

Antenna of length D

Figure 2.1: Geometry of the illumination of a point target in the far-field of
a one-dimensional antenna.

where .
sinc (z) = sin (7z)

— (2.5)

The field pattern is shown in Figure 2.2(a). The zeros indicate where interference
has completely cancelled the field. The first zeros occur at § = sin=? (A/D).
Assuming A < D the width of the main beam between nulls 6, = 2A/D. Of
more interest in terms of detection is the half-power beamwidth 6, defined by

@/ = 3 1EQ)P (26)

Solving this numerically 6, = 0.88)/D. The field pattern has sidelobes which

decrease in size moving away from the main beam. The peaks of the sidelobes
occur where E’(6) = 0, i.e., where

wDsin @ wDsin €
tan( X ) = X (2~7)

The first and largest sidelobe peaks occur where § = +1.43\/D, at -13.26dB
below peak power.

The effects of triangular and cosine squared weightings on the far-field pat-
tern are shown in Figures 2.2(b)-(c), and Table 2.1 compares the characteristics
of the different weightings in terms of a reference angle defined by the ratio of the
wavelength and aperture, fp = A/D. It can be seen that triangular and cosine
squared weightings produce successively wider beams than uniform weighting,
but lead to a corresponding reduction in the level of sidelobes.
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1.0
0.q]
~ 0.
s 7 ~ ~
= & 8
S 0.4 e s
[ ] [ ] [ 2]
02
ANMUAA A .
-6\/-4\/-2 \7 V \/ <6 -4 -2 2 4 -6 -4 3 2>
-8.27 -0.2] -0.2]
@) () ©

Figure 2.2: Far-field patterns resulting from different antenna weightings,
(a) uniform, (b) triangular and (c) cosine squared. The x-axis is calibrated
in units of sin /68y, where 8 is the orientation relative to broadside of the
antenna, and 6y = A/D. The proportionality factor has been set to one.

Beamwidth 1st sidelobes
a(z) E(6) /E (0) E@©) 6, 6, level (dB) position
1 sinc (S22) D 26, 0886 -6.63  +1.436
2(1-2)  sinc? (582) D 46, 1280, -13.3  +2.866
-;-sinc (%—Q + 1) +
2cos? () sinc(f28) + D 46, 1456, -157  +2.366
%sinc %‘L—o - 1)

Table 2.1: Characteristics.of the far-field pattern of an antenna with uniform,
triangular and cosine squared weighting. It is assumed that the aperture D is
much greater than the illuminating wavelength A. Antenna characteristics
are given in terms of the ratio, §o = A/D. The table lists; the antenna
weighting a (z), the far-field pattern as a function of target orientation 6,
the beamwidth between the first nulls 4,,, the half-power beamwidth 65, and
the level and position of the first sidelobe peaks. The proportionality factor
has been set to one. :



14 _ CHAPTER 2. SAR THEORY

In the following sections 6o = A/D will be used as an approximate value for
the beamwidth of the antenna. The ground track at a range R illuminated by

such a beam will have length \
R
ROy = 553 (2.8)

This will be used as our working definition of the ground resolution of the an-
tenna at range R.

2.2 Azimuth resolution

The azimuth resolution of a side-looking radar flown on an airborne or space-
borne platform can be improved by summing returns at different positions along
the line of flight to form a synthetic aperture longer than the real aperture. The
geometry of the illumination of a point target along a straight synthetic aperture
of length L is shown in Figure 2.3. The phase of the detected field at each point
along the synthetic aperture, relative to the phase at transmit, is a function of
the two-way range to the target and any phase change ¢ induced by scattering

% (6) = 2kR (6) + 2(6) (2.9)

Assuming that the phase change induced by scattering is constant over the
narrow range of values taken by 8, the phase difference 61 (#) between when the
target is at an orientation § and when it is broadside of the antenna is given by

§9(8) = ¥ (6) — ¥ (0) = 2k (R(6) - R(0)) (2.10)

The range R (6) to the target can be expressed in terms of its range when it is
broadside to the radar platform Ro = R(0), and its azimuth lag z = Rotan¥,
along the ground track of the radar beam away from being broadside

R(z) = \/R} + z? (2.11)

The phase difference is then given by

51 (2) = 2k (, [R2 + 2% - Ro) (2.12)

Normally £ € Ry when the target lies in the main lobe of the real beam.
Therefore to a good approximation the phase difference is related to the azimuth

lag by , \
69 (z) = 2kRg ((1 + ;ﬁ) - 1) = % (2.13)

The returns may be summed without any focusing when this quadratic phase
difference term is less than a fraction of a cycle (a nominal value of 7/4 is
usually chosen [10, 15, 45, 59]). This is just the far-field condition applied to
the synthetic aperture [58]. This requires that at the extremes of the synthetic

aperture where z = £L1/2

kz?
2 < .
7o S/ (2.14)
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Target at range R in the near-field
of the synthetic aperture.

*
‘ Phase difference depends
o on the two-way path.
R,
\ Path difference
— \ I x2/2R0
‘L2 0 X w2

Synthetic aperture of length L

Figure 2.3: Geometry of the illumination of a point target across a synthetic
aperture of length L.

Hence the optimum synthetic aperture that can be formed without any focusing

is given by
L= \/'\—50- (2.15)

The maximum available synthetic aperture is determined by the distance over
which the target remains within the main beam of the antenna, i.e., the ground
resolution of the main beam in the direction of flight. Thus from (2.8) the
maximum synthetic aperture in terms of the beamwidth is given by

ARo
D.

where D, is the length of the antenna aperture in the direction of flight.

The field pattern of the synthetic aperture can be determined in the same
way as that of the real aperture except that phase differences must be measured
in terms of the two-way as opposed to the one-way path to the target. This
results in the synthetic aperture having a beamwidth

L = Rofo = (2.16)

A -
90 = -2? (21()
and corresponding ground resolution
ARg
do = 2L (2.18)

With the optimum unfocused synthetic aperture (2.15) the ground resolution in

azimuth is
d, = \/% (2.19)
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Note that the ground resolution then equals the length of the synthetic aper-
ture [59], i.e., (2.15) gives the maximum synthetic aperture length over which
the synthetic apertures corresponding to adjacent azimuth resolution cells do
not overlap.

Focusing over the maximum available aperture (2.16) the ground resolution
in azimuth is .

D,

dy = =5 (2.20)
This means that whilst the azimuth resolution of the optimum unfocused SAR
increases with range and illuminating wavelength, the azimuth resolution of
a fully focused SAR is determined solely by the azimuthal length of the real
aperture. The reason why the latter is independent of range is that when the
range is increased the length of the synthetic aperture is increased by the same
factor. This does not mean that the azimuthal length of the real aperture can
be reduced indefinitely to improve resolution because, (a) this would also reduce
the power of the antenna and thus its detection performance, and (b) the limits
put on the pulse repetition frequency (PRF) by azimuth sampling (the Nyquist
criterion demands that the PRF be greater than twice the maximum Doppler
shift) and range ambiguity (the inverse of the PRF must be greater than the
time delay between returns from near and far range) constrain the minimum
dimensions of the real aperture [15, 59]. This second constraint is particularly
severe for spaceborne SAR systems [59].

To focus on a target, the field detected from it along the synthetic aperture
must be phase corrected. Let E (6) be the field detected by a radar antenna
from a point target at range R in the far-field of its real aperture, and oriented
at an angle § away from broadside of the antenna. At each point z along
a synthetic aperture of length L the range to the target is given by (2.11).
Thus, the field F(z) detected at z from the target is given by E (6), where
6 = tan~! z/ Ry, times a term accounting for the phase difference 6 (6) due to
the targets increased range (2.13). This may be written

PLE
Fy={ E(tn &)™ Ll <% (2.21)
le| >

Because the variation in the target’s range across the synthetic aperture will be
small relative to the range itself, variations in the magnitude of the detected field
across the synthetic aperture due to additional propagation losses are ignored
in (2.21).

Phase correction involves convolving the detected field along the synthetic
aperture with the matched filter of the phase difference term. The output,
i.e., the azimuth response to a point target, is given by

L/2—-|z|
ho (z) = F(z) % e *¥(=2) = /_le F(|z] 4 y) e8¢0 dy (2.22)

for |z| < L otherwise it is zero!. Here we have used the fact that both the phase
difference and the detected field are even functions and that they are defined

1When the symbol * is used as a unary operator as in z*, it represents the complex conjugate
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only over the interval —L/2 > z > L/2. Assuming E () is a constant equalling
Eo over the same interval, when |z| < L the azimuth response is given by a
distorted sinc function

L/2—|z}] jk(lz]4y)® —jky?
ho(z) = Eo/ e A—f eH dy

-L/2

= El (1 - %) sinc (% (1 - 'f_/-')) (2.23)

otherwise it is zero. The first nulls in the azimuth response occur where

2 _ ARo _
2( -T) ——E—da (224)

The distorted nature of the sinc function giving the azimuth response arises
from the detected field, and thus the matched filter of the phase difference, only
being defined over a finite aperture. In some references [45, 59] the matched
filter of the phase difference is defined beyond this aperture. This results in the
azimuth response being given by an undistorted sinc function but with an addi-
tional phase term. In fact within certain limits the distorted sinc response given
by (2.23) can be approximated by an undistorted sinc function. As the target
is in the far field of the real antenna 2D2 < ARy, thus from (2.16) and (2.18),
d,/L < 1/4. Therefore for (z{ < d, (2.23) can be approximated by an undis-
torted sinc function with a width between its main lobe and first null equal to
the azimuth resolution

) 2Lz . z
hq (z) = EgLsinc (m) = EgLsinc (Z) (2.25)
In fact for many focused SAR systems, particularly spaceborne ones, d,/L <
1/4, and the approximation given by (2.25) may be used over a wide range of
values of the azimuth lag z.

2.3 Range resolution

Two components are required to form any two-dimensional array or image.
When forming an image using a side looking radar the azimuth component of a
target is generated by flying past it. The other component is given by the time
it takes a radar pulse to return from the target when it is broadside; this gives
its slant range. The range geometry of side looking radar imaging is shown in
Figure 2.4.

As the length D, of the antenna aperture determines the beamwidth in
the direction of flight, the width D, of the antenna aperture determines the
beamwidth perpendicular to the direction of flight, i.e., in range. The width
of the ground segment covered by the beam perpendicular to the direction of
flight defines the maximum attainable ‘swath’ width of the image in the range

of z, whilst when it is used as a binary operator as in z * y, it represents the convolution of
z and y.
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Antenna of width D, flown at a height h
DY/ and looking d
4 & and looking down atanangle 7.

Figure 2.4: The range geometry of side looking radar imaging.

direction. The beam of a side looking radar flying at a height h and looking
down at an angle 7 will cover a maximum swath width of [15]

(+4)-wm(o-2))

2h sin 00 hgo
= = 2.2
cosfy + cos2n cos?y (2.26)

S

where 8y = A/D, now defines the beamwidth perpendicular to the direction of
flight; it is assumed that A € D,.

Using a pulse of bandwidth B, returns spaced 1/B or more in time apart
may be resolved. In terms of the two-way path difference to targets this means
that targets at slant ranges R; and R, may be resolved if

o4
o < |Ri - Byl (2.27)

where ¢ is the speed of electromagnetic propagation through the atmosphere
(c = 3 x 10® m/s). Thus the slant range resolution of the radar is given by

c
Transforming to ground range, the resolution is given by
d,,
dgr = pec, (2.29)

where 9 is the local incidence angle of the beam with the surface. Assuming
a flat surface this angle lies between n — 65/2 in the near range and 7 + 6o/2
in the far range. This increase in incidence angle going across the swath from
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near range to far range, causes a corresponding decrease in the ground range
resolution.

To achieve a slant range resolution on the order of 15 m requires a 10MHz
bandwidth (with a look angle of 30 degrees and a beamwidth of 6 degrees, the
corresponding ground range resolution would vary between 33 m in near range
and 27.5 m in far range). If a simple sinusoidal pulse were used it would have
to be very short, T = 1/B = 0.1 ps in length. Generating a detectable pulse
of this length would require a transmitter with a very large peak power. Thus
longer frequency modulated pulses are used to achieve the required bandwidth.
This results in the system response in range being a sinc function [34, 45, 59].

Given a linear modulated pulse (i.e., a chirp) of bandwidth B and length
T' > 1/B, where the frequency f(t) at time ¢ is given by

S+ B <E
t) = s 2.30

the pulse received from a point target at range R will be proportional to

2n(f(t=7)+fe)(t=) /
s(t) = { ¢ ‘ 11 <T'/2 (2.31)

0 [t| >T'/2

where 7 = 2R/c is the time delay to and from the target and f; is the Doppler
shift of the target due to its velocity relative to the imaging platform [45]. The
received pulse has the same length T as the transmitted pulse. To meet the
desired temporal resolution of T' = 1/ B the received pulse has to be compressed.
This is achieved by convolving it with the matched filter of the transmitted
pulse [45]. The output is given by

m.in(%:.%:—t)

h, (t) = s(t) % &2/ (-t = / s(r+1t)e 2 f(rgy (2.32)

when |t — 7| < T otherwise it is zero. This gives the system response in range
to a point target. Integrating we find that like the system response in azimuth,
the system response in range is described by a distorted sinc function

fd _r

he(t) =T (1 _l ;I"I) sinc ((23 (t—7)+ f.T') (1 _l ;f')) e’“(’”?) (=)

(2.33)

For |t — 7| < T’ the system response in range given by (2.33) may be ap-

proximated by an undistorted sinc function centred at t = 7 — f,7'/2B with a
width between the main lobe and first null of 1/2B = T/2

fo+-f§) (t-7)

ke (t) = T'sinc (2B (t — 7) + f4T") e’z“( (2.34)

In terms of distance the system response in range is then given by

1 =2
hy (2) = T'sinc (’” ; 2k | de') e’z"(""*‘z‘)(Tﬂ) (2.35)

T
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When imaging a stationary scene in the far-field of the real aperture the maxi-
mum expected Doppler shift is v/D, where v is the speed of the imaging plat-
form. For a typical airborne SAR flying at a speed of 720 kph, with a real
aperture of length 2 m and using a pulse length of 10 us, the centre of the sys-
tem response in range will be offset at most a distance d,, X 10~ away from
z = 2R [45]. Thus for most practical purposes the offset due to the Doppler
shift may be ignored.

2.4 Summary

In this chapter:

¢ The theory of how a side looking radar flown on an airborne or spaceborne
platform uses a synthetic aperture and pulse compression, to generate high
resolution imagery, was described.

o The properties of the radar beam generated by one-dimensional antenna
were discussed. In particular, how the beamwidth can be approximated by
the ratio of the illuminating wavelength and the length of the real aperture,
and how this can be used to give a measure of resolution.

¢ The formation of a synthetic aperture to improve azimuth resolution was
described, and the resulting resolution when the synthetic aperture is fo-
cused and unfocused.

e The system response in azimuth and range to a point target were both
shown to be given by sinc functions when the synthetic aperture is fully
focused and a chirp pulse is used to achieve high range resolution.



Chapter 3

Image statistics

Any image generated by a coherent imaging system such as a SAR, is affected
by coherent interference between scatterers [22]. Over many types of extended
targets (e.g., agricultural fields) this interference causes the detected intensity
to fluctuate from resolution cell to resolution cell. This effect is termed speckle
as it gives the image an overall speckled appearance (see Figure 3.1). Due to
the nature of speckle SAR images cannot be analysed on a single pixel basis,
rather analysis needs to be based on statistics estimated over regions of the
image [27, 51); this averages out the effect of speckle.

For designing optimal feature detection and matching algorithms for SAR
a full understanding of image statistics is first required; in particular knowl-
edge of the effect of speckle on image statistics. This information is needed to
define the most suitable parameters upon which to base image analysis deci-
sions, to determine how best to estimate these parameters from data, and to
derive the sampling distributions of the resulting estimates for purposes of set-
ting decision thresholds. Models for the first and second order statistics of pixel
values over extended targets in full resolution (i.e., single-look) SAR imagery
are described in this chapter. Parameter estimation and the effect of averaging
(i.e., multi-looking) on image statistics are dealt with separately in Chapter 4.
These statistical models will supply the theoretical basis for the image analysis
algorithms discussed in later chapters.

To make this overview of SAR image statistics as complete as possible,
whenever a new statistical distribution is introduced (where they are known)
its probability density function (pdf), cumulative distribution function
(cdf), characteristic function, moments, normalised moments, mean,
variance and coeflicient of variation, are listed.

As far as possible the statistics of pixel values in a full resolution SAR im-
age will be discussed in terms of a general model for the electromagnetic field
detected by the imaging system; this model is presented in Section 3.1. Be-
cause most ‘information’ is contained in the intensity as opposed to the phase
of the detected field, the statistics of the phase and complex components of the
detected field are briefly described in Sections 3.2, prior to a more extensive
discussion of the statistics of the intensity (and amplitude) of the detected field
in Section 3.3. Assuming there are a large number of scattering centres within

21
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Figure 3.1: A RSRE X-band single-look SAR image of an agricultural area
shown in intensity. The area contains several extended natural targets; fields
which appear as dark regions, and woodland which appears as bright re-
gions. Intensity fluctuations are clearly apparent within each extended tar-
get. These are mostly induced by speckle but are also due to fluctuations in

the radar cross-section of the surface being detected by the imaging system,
particularly over the woodland.

a resolution cell, it is shown how the correlation length of scatterers relative to
the resolution of the imaging system influences the distribution of the detected
intensity. The statistics of the amplitude of the detected field are then discussed
in Section 3.4. The result of taking the log of SAR intensity data to transform
multiplicative speckle to being additive is described in Section 3.5. Finally in
this chapter, the second order statistics of the detected intensity are derived in
Section 3.6.

3.1 Imaging model

The total electromagnetic field detected by a monochromatic, single polarised
imaging system at a point T = (z4,Z,), where z, and z, are azimuth and slant
range coordinates, can be represented as a sum of contributions from discrete
elementary scatterers [22, 31, 43, 46]

Z(@= i ake’e*h(f,fk) ' (3.1)

k=—c0

where ai, 0x and Tj are the amplitude, phase and position of the k’th scatterer,
and h(Z,Tj) is the system response at T to a target at . Although this dis-
crete model does not represent the physical scattering mechanism in the exact
formulation of Maxwell’s equations [58, 59], it offers a representation which al-

lows the imaging process to be analysed in a manner which agrees with observed
phenomena [31, 43).
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So long as a target is rough relative to the illuminating wavelength and
incidence angle, or the depth of the resolution cell is much greater than the
wavelength, the phase of scatterers within the resolution cell will be randomly
distributed over many cycles. This situation is referred to as fully developed
speckle. The phase of each scatterer will then be uniformly distributed over the
interval —7 to w and will be statistically independent of its amplitude [22].
Thus in fully developed speckle an elementary scatterer z can be modelled as a

circularly symmetric complex random variable whose amplitude and phase
have a joint pdf

fa(a)
27

where f, (a) is the marginal pdf of the amplitude of the scatterer. It will be
assumed that when speckle is fully developed each of the elementary scatterers
in (3.1) are independent in phase though not necessarily in amplitude. This
involves the assumption that scatterers decorrelate in phase faster than in am-
plitude.

Speckle will not be fully developed when a target is smooth relative to the
illuminating wavelength and incidence angle, and the resolution cell is anly a lew
wavelengths in depth. At X and C-band (3 and 6 cm wavelengths) this is likely
to occur with man made targets but not with natural targets. However, at P-
band (68 cm wavelength), and to a lesser extent at L-band (24 cm wavelength),
many natural targets will appear smooth, and at resolutions of a few metres the
detected field may be the result of scattering from only a few targets. It is also
possible that speckle will not be fully developed when a smooth target which
produces strong backscatter, e.g., a corner reflector, is immersed in a resolution
cell which otherwise generates fully developed speckle. The field detected from
such a resolution cell can be modelled as the sum of contributions from scatterers
which on their own generate fully developed speckle, and a single constant phasor
which represents the contribution of the smooth target [17, 22]. The resulting
Rician statistics will depart significantly from those of fully developed speckle
when the amplitude of the contribution from the smooth target is much greater
than that from all the other contributing scatterers.

Because we are primarily interested in natural targets and because we will
mainly work on C and X-band data, it will be assumed that speckle is fully
developed, unless stated otherwise. A full analysis of the effect of speckle not
being fully developed is still needed but is beyond the scope of this thesis.

g:(a,0) = (3.2)

3.2 Statistics of the phase and complex components
of the detected field

The detected field (3.1) can be viewed as arising from a n-step random walk in
the complex plane [22)

Z (%) = Xn: by, €O (3.3)
=1
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where the k’th step length b, is the product of the amplitudes of the k’th
scatterer and the system response to it

b = ax |h (T, Zi)| (3.4)

the k’th step orientation Oy, is the sum of the phases of the k’th scatterer and
the system response to it

Ok = 0k + vk (3.5)

where! ¢ = Lh(Z,Zi), and n is the number of scatterer positions ky,...,ky
yielding a non-zero system response.

When speckle is fully developed the amplitude and phase of scatterers will
be independent of each other and the system response. Therefore the step ori-
entation will be uniformly distributed and independent of the step length and
other step orientations. The phase of the detected field will then be uniformly
distributed and it will be independent of the amplitude of the detected field [29],
i.e., the detected field will also be a circularly symmetric complex random vari-
able.

In itself the phase of the detected field contains no information when it is
uniformly distributed. However, information is contained in phase differences
between different polarised images [52], and pairs of images taken from slightly
offset flight paths for use in interferometry [65]. Because polarimetry and inter-
ferometry are beyond our present scope the phase relationships between images
will not be dealt with here.

When the phase of the detected field is uniformly distributed, the real and
imaginary components of the detected field given by

Zx(T) = E by cos Ok (3.6)
k=—oc0

A ('f) = Z bi sin O (3,7)
k=—00

will both have mean zero?

(Za(2) = k_ff (bi) (cos O%) = 0 (3:5)
(Zs(z)) = _i (bk) (sin Ok) = 0 (3.9)

equal variance, which depends only on the step length

(22

z Z (bibi) (cos ©; cos O) = 1
{=~00 k=—00 2
1
2

<Z3(’i’)2> = Z Z (bibx) (sin ©;sin O) =

{=—00 k=—o00

(bi) (3.10)

jZ () (3.11)

1/ denotes the argument of a complex variable.
2The operator (-) indicates ensemble averaging.
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and they will be uncorrelated [22]. This is because

(Zx (T) 25 (T)) = Z E (bibi) (cos O;sin O ) = 0 = (Zx (7)) (Z3 (T))
1=—00 k=—oc0
(3.12)
Equations (3.8) to (3.12) rely on the fact that when O is an independent random
variable uniformly distributed on the interval (-, ]

(cosOk) = (sinO) =0 (3.13)
. . 3 ifi=k
(cos ©; cos Ok ) = (sin ©; sin Ox) = { 8 i : £k (3.14)
and
(cos O;sin Ox) =0 (3.15)
for all < and k.

Figure 3.2 shows the phase and complex components of the SAR image whose
intensity is shown in Figure 3.1. Structural features present in the intensity im-
age are barely discernible in the complex components. No structure is apparent
in the phase image. '

3.3 Statistics of the detected intensity

In this section the statistics of the detected intensity are discussed; first in
Section 3.3.1 in terms of the general imaging model. It is shown that when a
resolution cell contains a large number of scatterers the detected intensity may
be modelled as the product of a unit mean exponential speckle process and the
result of positive imaging of the surface cross-section. The exponential and K-
distributed intensity statistics which arise from this model are then described in
Sections 3.3.2 and 3.3.3 respectively.

3.3.1 General case
The intensity of the detected field defined by
I(z) = |1Z2(z)] = Z»(2) + Za (z)°

S Y aare®h (z,7;) b (7, ) (3.16)

t1=—00 k=—o00

has mean, from (3.4), (3.10) and (3.11)

=@ = Y (@) @z (3.17)

t=—00

The mean intensity depends only on the surface cross-section (SCS) of the ele-
mentary scatterers defined as p; = a? [31], and not on their phase [43]'. If the

1The symbol p is used for the surface cross-section rather than the more normal ¢ so as not
to confuse o’s indicating the surface cross-section with those indicating variances.
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SCS is spatially stationary the mean intensity is given by the product of its
mean value, and the total power of the system response

) f: b (z, %) (3.18)

t=—00

The moments of the intensity are given by

I@™) = i f: i i (@i, @k, -+ @ipy Gkp) X (3.19)

i1=—00 ky=-—00 im=—00 kjm=—00

<e-’(9'1 Ok +ontim -ﬂkm)) h(Z,%:,) k* (Z:%k,) - -k (3, Firn) b° (%, B,

The ensemble average of the phase terms is unity when they all cancel, otherwise
it is zero. Considering all possible ways in which cancellation can occur gives

1 o0 oo

I )™ = _——'m. Y oo "Yk

( (-T) ) ’ng‘ym 71! B -'7m! ,'1__.2_00 '-kg_:w (pq p'k) X
"k#"ll'"o':k—l

Ih(z, 7)™ ... IR (Z, 7)™ (3.20)

where the first summation in (3.20) represents summation over all possible se-
quences of m non-negative integers 7;, which decrease monotonically and whose
sum equals m. In each sequence < is the last non-zero exponent; i.e., for each
sequence 7; > Yi+1 2 0,11 + ...+ Tm = m and 7>k = 0. As with the mean
intensity the higher moments depend only on the SCS of the elementary scat-
terers and not on their phase. Thus the distribution of the intensity will only
depend on the SCS and the system response [43]. The second, third and fourth
moments are given by

(1@z) = (3.21)
2 3 P tour) @ RETIE+ Y (R REEE

f1=—00 t2=—00 13=—00

12#1)

(1 (5)3) = (3.22)
6 2 E Z (piy PirPis) |h (T, 7,)|? |h (2, %:,) 12 R (3, %3, )

11=-00 {3=—00 i3=—00
12714 l3¢l1 42

Y 3 (P20} Ih (2, 7)1 10 (2 70) " + > () @z

u——oo 12=—00 u——oo

12#11

(1)) = (3.23)
%Y T TS (pupuaria) REE AP

11==00 f3=~c0 i3=—00 {4=—00
!2#11 tg#ll 12 '4#'1 12,\3
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o0 o0 o0
+12 Y Y Y (ehpers) IREZ R EEL) I (E TP
§1==00 {3=—00 i3=—00
1278101 i3Fi1,02

+4 i i <,0?1p;2>Ih(f,'a_:;l)lslh('a_:,fizﬂz

f1=—0c0 12=~—00

iz#ﬁ
(o o]
463 > (he) @z ) @z + 3 (oh) IR (7))
11——00 12‘2_¢—’:o 11 =—00

Rearranging terms so as to replace the diagonal term in each of the inner sum-
mations gives

(1)) = (3.24)

2 3 3 (pura) h@ TR E T - Y (PRYIa(E T

13 ==00 fg==00 i1=—00

(1) = (3.25)

Ms

6 i i (pipizpis) |8 (B, Fiy )P 1 (2,25, ) | (7, 22,
- 15 E E (Phpia) I (2,2 1R (7,75 + 10 }: (P Ih (=, 7:)I°
(1()*) = (3.26)

24 Z Z Z Z: (pf1piz:oiapf4) |h (-f’ft'l )l2 KX lh (z, ’fic)l2

$1==—00 12 =—00 13 ==~—00 14 =—00

—132 3 Y Y (hears) hE T R (E )1 R (E T

$1=—00 {2=—00 {3=—00

118 Y S (Ben) h@ 5 b (73,

11 =—00 f2=—00

+90 3 3 (RRA) @z hE T 120 30 (p) h(E T

f1=—00 t2=—00 1 ==-00

The first term in each of (3.24) to (3.26) dominates when the system response
is non-zero for a large number of scattering elements, i.e., when each resolution
cell contains a large number of scatterers with independent phase. This result
can be generalised to all moments to give

I@") = m! Z Z (piy + - -Pim) R (7, z,1)| "-Ih(f’fim)lz

f1=—00 tm=—00

= m!<(.i Pi‘h(fyfi)lz) > (3.27)
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The m’th moment of the detected intensity given by (3.27) is the product
of the m’th moment of the result of imaging the surface cross-section with a
system response |k (Z,%;)|? (note this is always real and positive), and m! which
is the m’th moment of a unit mean exponential random variable. Thus the m’th
moment of the detected intensity may be expressed by

(I(@)™) = @™ E@™) (3.28)

where £ is an exponential unit mean random variable and T is the imaged SCS
defined as

Y@= Y pilh(nT)P (3.29)

i=—00

3.3.1.1 The exponential distribution

An exponentially distributed random variable z with mean y, has pdf

1 -
fe(z) = —ew= (3.30)
Bz
cumulative distribution function
ps(z)=1-eb (3.31)
characteristic function
&, (w) = (1 - gwpg)™? (3.32)
moments?
(z™Y=T(m+1)pul (3.33)
variance
0% = p3 (3.34)
normalised moments
2™ =T(m+1)=m! (3.35)
and coefficient of variation
vi=1 (3.36)

3.3.1.2 The multiplicative imaging model

Because (3.28) applies for all moments we may assume that the detected inten-
sity is given by the product of the imaged SCS and an independent unit mean
exponentially distributed random variable

I(z)=¢£()Y(2) (3.37)

The exponential random variable £ in (3.28) and (3.37) is the result of cancella-
tion of phase terms, or rather coherent interference, and it causes the detected
intensity to fluctuate, i.e., it is the process which causes speckle.

2I'(2) is the gamma function.
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The representation of the detected intensity as the product of the imaged
SCS and an independent exponential unit mean speckle process is often referred
to as the multiplicative model for radar imaging [19, 60]. The imaged SCS is
itself a random variable, being the product of the mean imaged SCS and a unit
mean random process which is due to fluctuations (textures) in the SCS being
detected by the imaging system. Fluctuations in intensity are thus the result
of both speckle and imaged surface texture and their combined effect is referred
to as clutter. So defined clutter contains both surface texture information and
speckle noise. Thus, the multiplicative model given by (3.37) can be written
more fully as

1) =£@)x (@) px (7) (3.38)

where x is the unit mean imaged surface texture and gy is the mean imaged
SCS which equals the mean intensity uy. The clutter A is then given by the
intensity normalised by its mean

NOEEREHONG (3.39)

Following from (3.39) the moments of the clutter (the normalised intensity
moments) are given by

(A@™) = €@ XET) =¢ (f)""il‘ ()™
m!<(f: pi Ih(f,ff)lz) >/ (_Z (pi) |h(f,f,-)|2)(3.40)

and are dependent on the moments of the imaged surface texture (normalised
moments of the imaged SCS), which in turn are dependent on the correlation
properties of the SCS. When the SCS is stationary the moments of the imaged
surface texture are given by

x@™ = TE™=1+ Y . i (M_l)x

f1=—00

Ih(5:5i1)|2"'lh(fifim)lz/( z Ih(f’fi)lz) (3.41)

1=—00

3.3.2 Exponentially distributed intensity

When the correlation length of the SCS is much less than the width of the sys-
tem response (resolution of the imaging system), the SCS of a large number of
scatterers with non-zero system response will be independent. As the number
of independent scatterers with non-zero system response tends to infinity the
second term in (3.41) will tend to zero. Thus, over stationary surfaces with
a correlation length much less than the resolution of the imaging system the
imaged SCS will be constant, i.e., the imaging system detects no surface tex-
ture. All clutter will then be purely due to speckle, and the intensity will be
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exponentially distributed with mean gy and normalised moments given by

I™ = m! (3.42)

Because the contrast (v/coefficient of variation) within a homogeneous region
of exponentially distributed intensity equals one (3.36), the standard deviation
of the intensity will equal its mean value. This means that the intensity will
on average fluctuate away from its mean value by an amount equal to its mean
value. This is often interpreted as a signal to noise ratio of one.

The result that the detected intensity is exponentially distributed when the
number of independent scatterers with non-zero system response tends to infin-
ity, may also be reached by applying the central limit theorem to the complex
components of the detected field [22]. It follows from the results given in Sec-
tion 3.2, that as the number of independent scatterers with non-zero system
response tends to infinity the complex components will become Gaussian dis-
tributed with zero mean and the same variance. In addition as they are already
uncorrelated the complex components will now be independent®. Thus, they
will have a joint pdf

1 - z;+z7g
Nt (3.43)

fz(2Z%,2Z3) = 570l

where 0% is the variance of both the real and imaginary components (3.10,3.11).
Transforming to polar coordinates the joint pdf of the intensity and phase of the
detected field is given by

-1

ez (3.44)

fz(1,6) = fz (\/Tcosa,\/fsinG) |J| =

2
dmoy

where J = 1/2 is the Jacobian of the transform. Integrating over the phase the
marginal distribution of the intensity is exponentially distributed as expected

=" f201,0)d0 = Le¥i (3.45)
- 3¢

where uy = 20%. In addition it can be confirmed that the marginal distribution
of the phase is uniformly distributed by integrating over the intensity

1

21

f06)= [~ f2,0)e1 = (3.40)

and that the intensity and phase are independent as the product of their marginal
distributions gives their joint distribution

fz(1,6) = fr(I) fo (6) (3.47)

As illustration of these results Figure 3.3 shows histograms of the intensity,
the phase, and the complex component, of pixel values from a homogeneous

3The complex components of a circularly symmetric complex random variable can only be
independent if they are Gaussian [48].
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region in a SAR image (the agricultural field in the top right hand corner of
the image in Figure 3.1). The expected distributions of the data values are
represented by solid curves. In each case there is good fit between histogram
and expected distribution. This implies that speckle is fully developed in the
region and that all clutter is purely due to it with no surface texture contribution.

3.3.3 K-distributed intensity

At the opposite extreme of there being a large number of independent scatterers
within a resolution cell, when the correlation length of the surface cross-section
is much greater than the system resolution, i.e., when

(Piy+ - Pim) = (P™) (3.48)

whenever

h(Z, T, )% ... }h (T, )P 2 0 (3.49)
the system response terms in (3.41) cancel and the normalised moments of the
imaged SCS equal those of the SCS. In this case all surface textures are fully
detected by the imaging system and the intensity is proportional to the SCS
multiplied by speckle, and has normalised moments

It = mlpm) (3.50)

In between the extremes described by (3.42) and (3.50) surface textures will
be partially detected by the imaging system and the normalised moments of the
imaged SCS will lie in the interval

1< 1M < plm) (3.51)

Observation has shown that when surface textures are detected (partially or
fully), the detected intensity fits the two parameter K-distribution better than
the exponential distribution [31, 43]; i.e., clutter is K-distributed with unit mean.
Figure 3.4 shows how the intensity in a region of woodland is better fitted by a
K-distribution of order 10 than an exponential distribution.

The intensity K-distribution is defined by its mean g and order parameter

v, and has pdf*
v—1
2 I I
1) = 55,75 (\/_) Kooy (2\/;) (3.52)

where 8 = p1/v, cumulative distribution function [31] (from (F.4))

p,(n:l_%(\/g) K, (2\/5) (3.53)

moments (from (F.5)) I (m+v)
m =T (v)

‘K, (z) is the »’th-order modified Bessel function of the second kind.

(I™) = ml———=—=p" (3.54)
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Figure 3.3: Histograms showing the distribution of the (a) intensity, (b)
phase, (c) real component and (d) imaginary component, of pixel values from
a homogeneous region (80 x 80 pixels) in the image shown in Figure 3.1. The
curves represent expected distributions fitted to the data, (a) exponential,
(b) uniform, and (c) and (d) zero mean Gaussian.
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normalised moments

Ir'(m+v) ( 1) ( m-—1
m) = 122 =T 7 — ! ... i
I m T () om m 1+u 14 ” ) (3.55)
variance 9
o=yl (1 + ;) (3.56)

and coefficient of variation 9
vi=1+ > (3.57)

Figure 3.5 shows how the shape of a K-distribution changes with order param-

eter. The mode of a K-distribution occurs at zero and is given by f1(0) =
(1 (1 - 1/v))"?; the mode is infinite when v = 1. It has already been pointed
out that when 1nten51ty is exponentially distributed it will on average fluctuate
away from its mean value by an amount equal to its mean value. From (3.57) it
is evident that the intensity will on average fluctuate away from its mean value
by an amount significantly greater than its mean value when it is K-distributed
with a small order parameter, i.e., image contrast increases as the amount of
imaged surface texture increases.

3.3.3.1 Gamma distributed imaged SCS

It is clear from the multiplicative model (3.37) and the moments of the K-
distribution (3.54), that the detected intensity will be K-distributed with mean
p1 and order parameter ¥ when the imaged SCS has m’th moment

I'(m+v)
I'(v)

where 8 = pr/v. This is the m’th moment of a gamma distributed random
variable with the same mean and order parameter as the K-distribution. Thus,
the detected intensity will be K-distributed when the imaged surface texture
and thus the imaged SCS is gamma distributed.

A gamma distributed random variable £ with mean p; and order parameter
v has pdf

(I7) = —F——=p" (3.58)

fz(z) A 3.59
2 (2) = w7~ .
I‘ (V) ﬂu ( )
where § = p; /v, cumulative distribution function
k
v-1 .
B
pe(z)=1-€7 )y, (k? (3.60)
k=0
characteristic function
&, (w) = (1—wB)™ (3.61)
moments T (m + u)

(z™) = (V) —=—A" (3.62)
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Figure 3.4: Histogram of the distribution of the intensity in a homogeneous
region of woodland (bottom left of the image shown in Figure 3.1) fitted
to (a) an exponential distribution, and (b) a K-distribution of order 10.
The K-distribution gives the better fit even though there is only a small
difference between the two fitted distributions. Both distributions have the
same mean as the data but the variance of the K-distribution is 1.2 times
greater than that of the exponential distribution. The goodness of fit was
confirmed using the Kolmogorov-Smirnov test which gave values of 0.36
for the exponential distribution and 0.84 for the K-distribution.
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Figure 3.5: Pdf’s of K-distributions with unit mean and order parameters
v =1, 2, 4 and 100 (i.e., variances 3, 2, 1.5 and 1.02 respectively). On this
linear scale a K-distribution with order 100 or higher is virtually indistin-
guishable from an exponential distribution with the same mean value.
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Figure 3.6: Pdf’s of gamma distributions for the imaged SCS corresponding
to the K-distributions for the intensity shown in Figure 3.5.

normalised moments

m("ﬂ _ I‘(nz-+-v)

= W (3.63)
variance
o= Ca (3.64)
v
and coefficient of variation )
vi= = (3.65)

When v = 1 the gamma distribution reduces to the exponential distribution.
Thus the product of two exponential random variables gives a K-distributed
random variable of order one. As the order parameter tends to infinity the
gamma distribution tends to a Gaussian distribution with mean g, and zero
variance. Therefore a K-distribution is equivalent to an exponential distribution
when its order parameter is large. This accords with saying that the detected
intensity is exponential when the imaged SCS is constant (gamma distributed
with large order parameter). Figure 3.6 shows the gamma distributions for the
imaged SCS corresponding to the K-distributions for the intensity shown in
Figure 3.5.

Most proofs that the product of an exponentially distributed random variable
z1 with unit mean, and an independent gamma distributed random variable z,
with mean g and order parameter v, is K-distributed with the same mean and
order parameter as z;, are based on comparing moments [29, 31, 44]. It is
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possible to prove this directly using pdf’s. Substituting the pdf’s of z; and z;
given by (3.30) and (3.59) into (A.5) their product y has pdf

— .
© _yefzV 1

fu(y) = , €° W;dz (3.66)

where f = u/v. Letting 2 = In —&

Vb

2 v-1 0o
fily) = T8 (\/%_) /0 e~ 2VER osh (v-1)2)d= (3.67)
which by (F.2) gives

fy (y) =

o5 /5 = (/%) (3.68)

the required pdf.

3.3.3.2 Justification for a gamma distributed imaged SCS

To determine why the imaged SCS should be gamma distributed we need to
examine how such distributions arise. Gamma distributions have been shown to
arise as limiting cases of two random walk mechanisms [29, 30]

1. A one dimensional random walk with a fluctuating number of steps.
2. A multi-dimensional random walk with a constant number of steps.

The conditions under which these random walks generate gamma distributed
outputs will be described before going on to show how they may be used to
justify treating the imaged SCS as being gamma distributed.

The output of the one dimensional random walk

X=) = (3.69)
k=1

will be gamma distributed with order parameter ¥ when the contributions z are
statistically identical and independent, and the number of steps n has a negative
binomial distribution given by

[ n+tv-1 (&=)"
fo= ( y ) T o7 (3.70)

where g, the mean number of steps is large. Such a distribution for n will arise
when the number of steps is a Markov process controlled by the birth-death-
immigration equation [3, 29]

CZ_: =D(n+1)far1 —(B+D)n+I) fun+(B(n-1)+I)fa-1  (3.71)
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where B is the birth rate, D is the death rate and Z is the spontaneous immigra-
tion rate. An equilibrium solution to (3.71) exist when the death rate is greater
than the birth rate, in which case f, tends to a negative binomial distribution
with mean p, = I/ (D — B) and order parameter v = I/B as t — oo. The
number of steps will then have variance

1 1
0,21 = ,ui (-’2: + ;) (3.72)

Thus when the mean number of steps is large (i.e., T » D — B) the order
parameter v is inversely proportional to the variance in the number of steps and
the variance tends to zero as v — oo (i.e., Z > B).

It follows from the convolution theorem that the output of the one-
dimensional random walk defined by (3.69) has characteristic function

dx (w) =8, (w)" (3.73)

where &, (w) = (e%) is the characteristic function of the contributions zj.
When n has a negative binomial distribution with mean p, and order parameter
v (3.70), on average the characteristic function of the output is given by

v

By (w) = [1 e (e"‘”))]—u (3.74)

since for arbitrary u

(u") = i U fp = [1 + #7"(1 - u)] -~ (3.75)

n=0

Normalising z by pin and substituting the series expansion for e2+# (F.7)into (3.74)

gives _
oo kok (kN7
By (w) = [1— 1 {z) —E} ( >] (3.76)

k-1
v iy Vin k!

As the mean number of steps p, tends to infinity the characteristic function
tends to

Bx (b) — [1 - ﬂy"—)]—y (3.77)

This is the characteristic function of a gamma distributed random variable with
mean (z) and order parameter v (3.61).

The negative binomial distribution is in fact the discrete analogue of the
gamma distribution, and it has been shown that the output of a continuous
birth-death-immigration process, with a death rate greater than the birth rate,
tends to being gamma distributed as t — oo [30]. The mean and order parameter
of the gamma distribution are then defined in the same way as the mean and
order parameter of the negative binomial distribution in the discrete case.

We now turn to the second random walk mechanism. Let 23,...,2, be 2v
dimensional vectors each with statistically identical but uncorrelated zero mean
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components. The inner product Y = W - W of the output of the random walk
in 2v dimensions

W=> 2 (3.78)
k=1

will be gamma distributed with order parameter » when = is large but not
fluctuating. It follows from the central limit theorem that the output W of
the random walk will have a joint-Gaussian distribution when n is constantly
large relative to the number of correlated contributions in each dimension. Each
of the Gaussian components will then be independent with zero mean and the
same variance. The inner product Y is given by the sum of the squares of these
components. The square of a Gaussian distributed random variable with zero
mean and variance ¢ is gamma distributed with mean o2 and order parameter
one half (3.59), and has a characteristic function given by (3.61). Therefore, from
the convolution theorem the characteristic function of Y, the sum of 2v such
variables, is also gamma distributed but with mean 2v0? and order parameter
V.

The higher order statistics of the two gamma distributed outputs X and Y
will be the same if their autocorrelation functions (ACF’s) are equal (30].
The underlying random walk mechanisms will then be indistinguishable in terms
of the statistics of X and Y. When the number of steps contributing to the one-
dimensional random walk is controlled by the birth-death-immigration process
defined by (3.71) its output X will have a Lorentzian spectrum and correspond-
ing ACF given by [29]

(X)X 1) _,, B _0-8)u-t
Tl—_er (D-B)l—tal

(3.79)
The correlation length of the output may then be defined as 1/ (D — B) and
the correlation coefficient will tend to zero when |t; — t2| > 1/ (D — B) or when
> B(ie,v— ).

Both of the above random walk mechanisms have been used to justify treat-
ing the imaged SCS as being gamma distributed. Approximating the system
response |k (Z,Z,)|? to the SCS by a rectangular function in both azimuth and
range, the imaged SCS (3.29) can be represented as a sum of n statistically
identical and independent SCS contributions. This rectangular function may be
taken as representing the main lobe of the system response. When the num-
ber of contributions is controlled by the birth-death-immigration process (3.71),
the imaged SCS over an extended target will be gamma distributed. It is also
possible using the same approach to prove that the intensity resulting from n
elementary scatterers is K-distributed without having to represent the inten-
sity as the product of an exponential speckle process and the imaged SCS [29].
This involves expressing the characteristic function of the sum of the circularly
symmetric scatterer contributions in terms of the Hankel transform.

Alternatively, each scattering contributions can be viewed as the result of
a random walk in 2v real dimensions (v complex dimensions) [43]. The SCS
will then be gamma distributed and the imaged (i.e., integrated) SCS will be
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constant or gamma distributed according to whether the correlation length of the
SCS is much less than or on a par with the width of the system response [30, 43].

It should be noted that the above random walk mechanisms provide a purely
phenomenalogical justification for a gamma distributed imaged SCS. The mech-
anisms still have to be related to the physical world. This is particularly prob-
lematic when the correlations between multi-channel datasets are considered, as
all the physics is pushed onto the single elementary scatterers [64).

3.3.3.3 K-distributed field statistics

We have not yet considered the distribution of the complex components of the
detected field when the intensity is K-distributed. The complex components are
of course zero mean Gaussian distributed when the intensity is exponentially
distributed (see Section 3.3.2). If the field Z is a circularly symmetric complex
random variable which is K-distributed in intensity with mean g and order
parameter v, the joint pdf of the field in terms of the intensity and phase, which
are independent (see Section 3.2), is given by

fz(1,6)= fr(I)fs(6) = -ﬁfl—‘m (\/—"{:) Kyy (2\/9 (3.80)

where § = p/v. Transforming to Cartesian coordinates, in terms of its real and
imaginary components Zg and Zg the joint pdf of the field is given by

2 2 v-1 2
fz(Zse,Zs)=7rﬂ1?(V) (\/Z*;ZS) K, (2\/%@) (3.81)

Integrating over the imaginary component the marginal pdf of the real compo-
nent is given by?®

oo 9 |Zg|\“" % 2| Zx|
font)= [ tsm 2023 = s () ()
(3.82)
This pdf is plotted for various values of v in Figure 3.7. The pdf is symmetric
about zero and becomes sharper as the order parameter decreases. The marginal
pdf of the imaginary component given by integrating the joint pdf over the real
component, is identical.

Figure 3.8 shows how the real and imaginary components in the region of
woodland whose intensity distribution was better fitted by a K-distribution than
an exponential distribution in Figure 3.4, is fitted by a zero mean Gaussian dis-
tribution and the distribution given by (3.82). Whilst the K-distribution clearly
gave the better fit to the intensity distribution it is unclear whether (3.82) gives a
better fit to the complex components than the zero mean Gaussian distribution.
Using the Kolmogorov-Smirnov test the real and imaginary components gave
respective fits of 0.16 and 0.46 to (3.82) whilst they gave respective fits of 0.15

SThis integral was initially solved using the symbolic computation program Mathematica.
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Figure 3.7: Pdf’s of the real or imaginary component of a circularly symmet-
ric complex random variable which is K-distributed in intensity, as shown in
Figure 3.5, with unit mean and order parameter v = 1, 2,4, 100.

and 0.32 to the zero mean Gaussian distribution. This implies that the complex
components are better fitted by (3.82) but only slightly so. However, a full series
of measurements is needed to properly check the validity of (3.82) as the pdf of
the real and imaginary components of data whose intensity distribution fits a
K-distribution.

Note that for integer order parameters the pdf (3.82) is most easily calculated
using the series expansion for K n-1 (z) given by (F.6) where n is an integer. The
pdf is then given by

2elil Ttk 1 (|Za|)”“"‘ (3.83)

1
fZa (ZR)= \/B—F(u)e k=01‘(u—k)1‘(k+1):1T —

VB

Written in this form it can be seen that the pdf is exponential when v =1

1 =2lz»

fz5 (2Z8) = 7 (3.84)

and it can also be seen that the mode of the pdf which occurs at zero equals

1 T(v-1)
VAT (v)*4v-1

When the pdf of the real component is given by (3.82) its moments may be

fzx (0) = (3.85)
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Figure 3.8: Histograms showing the distribution of the real and imaginary
components of pixel values in a homogeneous region of woodland (the same
as that in Figure 3.4) fitted to (2) and (b) a zero mean Gaussian distribution,
and (c) and (d) the distribution given by (3.82) with order parameter v = 10.
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calculated using (F.5) and are given by

(22 \yr(z24v) m
(z§) = { _(Tﬁl 7 meven (3.86)

m odd

These are the moments of the product of a Gaussian distributed random variable
with zero mean and variance one half (F.9), and the square root of an indepen-
dent gamma distributed random variable with order parameter v (3.100). Sub-
stituting the pdf’s of these random variables given by (F.8) and (3.98) into (A.5)
and using (F.2) it may be shown that (3.82) defines the pdf of such a product.
From this we can infer that when the intensity is K-distributed the detected
field is the product of a jointly Gaussian speckle process and the square root of
the gamma distributed imaged SCS. As we would expect from Section 3.3.2 the
moments of the real and imaginary components tend to those of a zero mean
Gaussian distribution with variance p/2 as the imaged SCS tends to a constant
(v = ).

The real and imaginary components of the detected field are uncorrelated
(3.12). However, they will only be independent if the imaged SCS is constant.
This can be seen from the higher joint moments given by

r + +v
(ZpZn) = { _(_(172_%_(5.2 ﬁ m and n both even (3.87)

otherwise

For independence (Zg' Z3) must equal (Zg') (Zg). This will only occur when the
order parameter tends to infinity.

3.4 Statistics of the amplitude of the detected field

SAR image analysis is often performed on amplitude (square root intensity) data
rather than intensity data. When the intensity of the detected field accords with
the multiplicative model (3.38), it follows that the amplitude of the detected field
is given by the product of the square root of a unit mean exponential speckle
process and the square root of the imaged SCS

A=VI= VT = VE/XVET (3.88)

As the intensity speckle process £ is exponentially distributed with unit mean,
the amplitude speckle process /€ will be Rayleigh distributed with mean /7 /4.

3.4.1 The Rayleigh distribution
If z has pdf f; () its square root y = 4/ has pdf

fo@) = f= (v ):; (3.89)
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Thus the square root y of an exponentially distributed random variable z with
mean gz has pdf

-2
2ye Bz
fy (y) = Lz

This is the Rayleigh distribution. When y is Rayleigh distributed it has cumu-
lative distribution function

(3.90)

2

py(y)=1-e€ws (3.91)

characteristic function (see Appendix B for proof)

p— —? w2
B, (w) = 1 4 gV bz =gen _ W zegks / e, (3.92)
2 2 0
moments
m m
(y")=T (—2- + 1) u (3.93)
meanl
_ Tl 0
by = /5= = 0.886 (3.94)
variance
T
o = (1 — Z) pz ~ 0.2150, (3.95)

normalised moments

4 = __rr("é:;,j) (3.96)
2

and coefficient of variation

4

v = ——1~0273 (3.97)

3.4.2 Constant imaged SCS: Rayleigh distributed amplitude

When the imaged SCS is constant, from (3.88) the amplitude of the detected field
will be Rayleigh distributed with mean \/7pur/4. An amplitude image and the
histogram of pixel amplitude values in a homogeneous area, along with expected
Rayleigh distribution, are shown in Figure 3.9. The histogram and distribution
give a good fit to each other.

The coefficient of variation of a Rayleigh distributed random variable (3.97),
is approximately four times smaller than that of an exponential random vari-
able (3.36). Thus the contrast of SAR amplitude data will be approximately
half that of the corresponding intensity data. This is why amplitude data is
often preferred to intensity data for display purposes as the former will have a
smaller dynamic range. This can be seen in the images displayed in Figures 3.1
and 3.9. Also, comparing the plots of the intensity and amplitude distribution
in Figures 3.3 and 3.9, it can be seen that unlike the exponential distribution,

T =V




3.4. STATISTICS OF THE AMPLITUDE OF THE DETECTED FIELD 45

0.05] H

Frequency

50 100 150 200 250
Amplitude

®)

Figure 3.9: (a) the amplitude of the SAR image whose intensity is shown in
Figure 3.1, and (b) the histogram of pixel amplitude values in a homogeneous
area (the same as that in Figure 3.3) with expected Rayleigh distribution
shown as a solid curve.

the amplitude distribution is bell shaped, although asymmetrically so. Thus
image analysis tools which assume data to have a symmetric bell shaped distri-
bution, e.g., a Gaussian distribution, often give better, though not necessarily
acceptable results, when applied to amplitude as compared to intensity data.

3.4.3 Gamma distributed SCS

If the imaged SCS is gamma distributed the amplitude will be given by the
product of a Rayleigh distributed speckle process and the square root of the
gamma distributed imaged SCS.

3.4.3.1 Square root gamma distribution

The pdf of the square root y of a gamma distributed random variable z with
mean i, and order parameter v, is given by substituting its pdf given by (3.59)
into the transform for the pdf of the square root of a random variable (3.89). y
then has pdf

e:;i 2v-1
fily)= 2Tv§lﬂ"— (3.98)

where 8 = pz /v, cumulative distribution function

)

T (3.99)

_,2 v=1
p(W)=1-e¥ Y
k=0
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moments

Trv+%) m
(y™) = (r ) )ﬂ (3.100)
mean
2
pT (v +3
py = _f_(__i (3.101)
T+ DI ()
variance ( )2
T(v+3
2 _ -———
oy =4z |1 YCESN0) (3.102)
normalised moments r »
r me=—
ym 2 L+ 3) (") (3.103)
and coefficient of variation
v = M(V_) 1 (3.104)

r(v+1)°

As setting ¥ = 1 in a gamma distribution gives the exponential distribu-
tion, setting ¥ = 1 in the square root gamma distribution gives the Rayleigh
distribution.

3.4.3.2 K-distributed amplitude

The distribution of the amplitude of data which has a gamma distributed im-
aged SCS, may be determined by substituting the pdf of its K-distributed in-
tensity (3.52) into (3.89), or by substituting the pdf’s of the Rayleigh speckle
process (3.90) and the square root of the gamma distributed imaged SCS (3.98)
into the integral for the pdf of the product of two random variables (A.5) and
solving. Either way, data which is K-distributed in intensity with mean uy and
order parameter v has amplitude pdf

4 AN\ 2A
fa(4) = O (\/_ﬂ) Ky, (\/_ﬂ> (3.105)
where 8 = p1/v, cumulative distribution function
2 A\ 24
moments
(A™) = ra+3 r)(llz)(y+ %) g2 (3.107)
mean
. Ry
PRI GS) (3.108)

L Tw+1)I(v)



3.5. TRANSFORMING SPECKLE TO BEING ADDITIVE 47

variance

1 2

normalised moments

Fr(1+Z2)T(v+2)T(v)"!

(m) =
A = r(%)mr (V+ %)m (3.110)

and coefficient of variation

ENON
o+

4
vi = - 1 (3.111)

Figure 3.10 shows how the amplitude in the region of woodland whose in-
tensity distribution was better fitted by a K-distribution than an exponential
distribution in Figure 3.4, is better fitted by an amplitude K-distribution than
a Rayleigh distribution. Examples of amplitude K-distributions with different
order parameters are shown in Figure 3.11. The asymmetry of the pdf increases
as the order parameter decreases.

3.5 Transforming multiplicative speckle to being ad-
ditive :

As already mentioned the speckle found in SAR intensity and amplitude im-
ages is a multiplicative process (3.38,3.88). However, many image processing
operations assume that any noise in an image is additive and perform poorly
otherwise, e.g., edge detection using the Sobel operator (see Chapter 7). The
problems this entails for analysing SAR intensity and amplitude images contain-
ing multiplicative speckle, can be circumvented by taking the log of the image
prior to applying other operations, this transforms the speckle to being additive.
Taking the log of the intensity described by (3.38) gives

log]I =logé +1logT =logé + log x + log uy (3.112)

where £ is a unit mean exponential speckle process, T is the imaged SCS and x
is the imaged surface texture.

The natural log of the intensity of the detected field D =In I, is sometimes
referred to as the density of the detected field [2]. Because speckle density is
additive the shape of the density distribution is the same regardless of its mean
value, i.e., the central moments of the distribution are independent of the mean.
The only effect of the mean on the distribution is to shift the mode by a factor
equal to the mean.
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Figure 3.10: Histogram of the distribution of the amplitude in a homoge-
neous region of woodland (the same as that in Figure 3.4) fitted to (a) a
Rayleigh distribution, and (b) an amplitude K-distribution of order 10.
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Figure 3.11: Amplitude pdf’s corresponding to the K-distributed intensity
pdf’s shown in Figure 3.5.
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3.5.1 Constant imaged SCS: Fischer-Tippett distributed den-
sity

If a random variable z has pdf f;(z) its natural log y = In z will have pdf
Sy W) = fz(e¥) € (3.113)

Therefore, when the intensity is exponentially distributed (3.30) with mean p;
its density will have a pdf

fp(D) = e=e" " P-Imu (3.114)

This is the Fischer-Tippett distribution [1, 2]. The density then has cumulative

distribution function
D =louyr

pp(D)=1-¢" (3.115)
characteristic function
dp (w)=T(w+1)p} (3.116)
mean!
pp=Ilnyr—1Ee (3.117)
variance
2
and coefficient of variation
2
2 T
vph = {3.119)
6 (In u1 — 1)

The distribution of the density speckle process In § is given by setting Inu; =0
in (3.114). A density image and the histogram of pixel density values in a
homogeneous area, along with expected Fischer-Tippett distribution are shown
in Figure 3.12.

3.5.2 Gamma distributed SCS

When the SCS is gamma distributed (3.59) with mean gy = py and order
parameter v, from (3.113) its natural log will have pdf 2]

—-e*=2 (z—a)v
r'(v)

where @ = In 8 and 8 = p1/v, cumulative distribution function (from (3.60))

fo(z)=E (3.120)

_cl—a v-1 ek(z-a)
p:(2)=1-¢ E T (3.121)
k=0
characteristic function I (0 + )
_ 2TV o 3.122
2. () = —pryf (3.122)

lyg =0.57722... is Euler’s constant.
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Figure 3.12: (a) the density (log) of the SAR image shown in Figure 3.1, and
(b) the histogram of pixel density values in a homogeneous area (the same as
that in Figure 3.3) with expected Fischer-Tippett distribution (3.114) shown
as a solid curve.

mean
pr=lnpr-—lnv+¢(v) (3.123)
variance
o = ' (v) (3.124)
and coefficient of variation

o? = Y (v)

 (lnpr—lnv+$v))?
(3.120) reduces to the Fisher-Tippett distribution when v = 1.

(3.125)

3.5.2.1 K-distributed density

When the intensity of the detected field is K-distributed with mean y; and order
parameter v, from (3.52) and (3.113) its density D will have pdf

2 —aHv -
fo(D) = =g, (2eu)2 (3.126)
T'(v)
cumulative distribution function
2 - )V -—
and characteristic function '
T
op(w)= LI WD) oy, (3.128)

L'(v)

24 (z) is the Digamma function.
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Also, from (3.112) the mean density will be given by the mean of the speckle
density —vg plus the mean of the natural log of the imaged SCS (3.123)

pp=lnpr—vg-lv+¢{¥) (3.129)

and its variance will be given by the variance of the speckle density (3.118) plus
the variance of the natural log of the imaged SCS (3.123)

2
od = -’;— + 9 (v) (3.130)

The coefficient of variation will then be given by

Z 4y (v)
(nps — e —lnv + ¥ ()

Note that while the coefficient of variation of the K-distributed intensity (3.57) is
independent of the mean intensity the coefficient of variation of its density does
depend on it (3.131); linearly scaling the intensity does not alter the coefficient
of variation of the intensity but it does alter the coefficient of variation of the
density. This arises from the standard deviation of the density not being pro-
portional to its mean value; as is the case with the intensity. The coefficients of
variation of the natural log of exponential (3.119) and gamma distributed (3.125)
random variables are also dependent on their mean values. This implies that the
coefficient of variation is not a well defined measure of contrast (i.e., the relative
width of distributions) in images degraded by additive noise; as it is in images
degraded by multiplicative noise. More suitable measures of ‘contrast’ are given
by the density variance on its own, and the expected bias of the density away
from the natural log of the mean intensity. Both of these measures consist of a
constant part due to speckle and a part dependent solely on the order parameter
which increases as the order parameter decreases but which tends to zero as the
order parameter tends to infinity. The expected bias of the density away from
the natural log of the mean intensity equals the mean of the natural log of the

intensity after it has been normalised to have unit mean, i.e., the expected value
of

v} =

(3.131)

1
(I)

For the case of the K-distributed intensity the mean normalised density is given
by

Di=lnI-In{I)=1In (3.132)

(D1))=%(@¥)-lnv-1g (3.133)

This is the sum of the expected values of the natural logs of the unit mean ex-
ponential speckle and the unit mean gamma distributed imaged surface texture.

Figure 3.13 shows how the density in the region of woodland whose intensity
distribution was better fitted by a K-distribution than an exponential distribu-
tion in Figure 3.4, is better fitted by a density K-distribution than a Fischer-
Tippett distribution. Examples of density K-distributions with different order
parameters are shown in Figure 3.14. The figure clearly illustrates both the
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Figure 3.13: Histogram of the distribution of the density in a homogeneous
region of woodland (the same as that in Figure 3.4) fitted to (a) a Fischer-
Tippett distribution, and (b) a density K-distribution of order 10.
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Figure 3.14: Density pdf’s corresponding to the K-distributed intensity pdf’s
shown in Figure 3.5.
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increase in the bias of the mean density away from the natural log of the mean
intensity (zero in this case), and the increase in the density variance as the order
parameter decreases.

Speckle can also be transformed to being additive by taking the log of the
amplitude of the detected field (or any power of the intensity for that matter).
The statistics of the natural log amplitude L4 of the detected field are easily
derived from those of its density D using the relation

InI D

LA=111A=111\/_=T=§- (3134)
For example, the log amplitude has pdf
fLa(La)=2fp(2L4) (3.135)
mean .
KLy = —2' (3~1361
and variance
2 ob
of,=-2 (3.137)

3.6 Second order intensity statistics

In this section the second order statistics of the detected intensity are derived.
In particular the results given in Chapter 2 regarding the response of a SAR

system to a point target are used to derive the autocorrelation function of the
detected intensity.

Assuming the SCS is stationary, from (3.16) the normalised autocorrelation
function of the detected intensity is given by

U@I@) _
@)

oo oo oo o
Z z Z Z (ai, ak, ai,ax,) (eJ(O.l —6k, +6,, -0x2)> o

11=—00 kj=—00 12=—00 ky=—00

h(Z, %) b (2,2 ) R (3, u)h'(ﬂ,sz)/((p

(3.138)

1j=—00

2
| (Z, fil)lz)

Cancelling phase terms in the same way as was used to derive the moments of
the detected intensity in Section (3.3.1)

I@I@) _
uww

E E ( [|h(1r o) 1R (7,7, +

f1=—00 f2=—-00

h(z, Z;, ) h* (y,:z:u)h(y,:l:,z)h 3, 5t:)]/(

2
Ih(f,fﬁ)f) -

t1=—00
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g )

2
“__w (p)? “oF M@ )R |k (7,7 /( |h(f,§;1)|2) (3.139)

= =-00

/( > lh(z,f,-,)lz)2+

H=—oo

u=§—:oo tzg—:oo ((pup12 ) [Ih (f,’f‘-])P lh(y’ Tt'z)lz +
2
Ih(f,fu)lz) -

h(ﬂ:,zu)h (y’ ‘,)h(y,a:,,)h (z,x,,)]/(
) 2
z <(Z;2> lh(i,fu)lz |h(ya u)l /( lh(:l) z.l)|) (3140)

u-—oo
i1=—00

\\

DRSNS

11"—00

The first component in (3.140) is the uncorrelated background term, the sec-
ond component is caused by coherent interference between scatterers within the
resolution cell (speckle), and the third and fourth components relate to the nor-
malised ACF of the surface cross-section [46]. The fourth term disappears when
the resolution cell contains a large number of scattering centres; as was the case
with terms in the moments of the detected intensity (3.27). The third term will
then also disappear if the correlation length of the SCS is much less than the
system resolution, i.e., when the imaged SCS is constant.

From Chapter 2, for a fully focused SAR using a chirp pulse the system
response to a point target is stationary and is separable into azimuth and slant

range components which are both described by sinc functions (2.25,2.35). Thus
the system response is given by

h(Z,7) = khqe (22) by (21) (3.141)

where k is a proportionality factor expressing the peak power received according
to the radar equation [34], z, and z, represent the vector Z = T — 7 in azimuth
and slant range coordinates, and

he(2s) = sinc (s-) (3.142)
he(z) = sinc (Z_) (3.143)

where d, and d, are the system resolution in azimuth and slant range.

The second term in (3.140) is just the square of the magnitude of the nor-
malised ACF of the system response. Thus when the third and fourth terms
in (3.140) are zero the autocovariance of the intensity is just given by the
square of the autocovariance of the system response. This corresponds to the
Siegert relation which says that the intensity autocovariance of a jointly Gaus-
sian zero mean field with independent real and imaginary components is given
by the square of the field autocovariance [30]. When the system response is
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described by (3.141), its Fourier transform is given by

kdgd x x
H(u,v)={ 167 lul < & and ol < & (3.144)
! 0 otherwise

and its power spectrum is given by

kdgd, \?2 27 2
H o=l (5a¥) lvl<¥and pl<¥ (3.145)
0 otherwise

As the power spectrum is just the Fourier transform of the ACF of the system
response and as (3.145) is the Fourier transform of a sinc function, the ACF of
the system response will itself be a sinc function. Therefore when the imaged
SCS is constant the normalised ACF of the detected intensity is described by a
sinc? function with a width between its peak and first null equal to the resolution
of the imaging system

LD () (3) o

In addition, assuming the multiplicative model applies, the detected field is then
given by the product of a jointly Gaussian speckle process with independent
real and imaginary components each with variance one half, and the square root
of the gamma distributed imaged SCS (see Section 3.3.3), this results in the
intensity ACF equalling

UPULD TP () () 20

This equates to (3.146) when the imaged SCS is constant. Alternatively, when
the imaged SCS is 100% correlated the intensity ACF is given by

1 2) oo () (2) o

Figure 3.15 shows an example of the intensity autocovariance in a homogeneous
region normalised by the square of the mean intensity. The sinc? shape of the
autocovariance is clearly apparent. Pixel intensity values are uncorrelated in
azimuth but there is significant correlation in range.

3.7 Summary
In this chapter:

o It has been described how the field detected from a resolution cell may be
represented as a sum of contributions from discrete elementary scatterers.

o The conditions for speckle being fully developed were discussed.



56

CHAPTER 3. IMAGE STATISTICS

P [
1.0 1.0
)
20.8 S 0.8
<} [ =]
S =3
four]
9 "
o ©
! 2
v 0.6 8 0.6
Q
5 5
= ©
3 3
- 0.4 =09
— ~—
£ E
& 3
2 2
h 10 1
Azimuth lag Range lag
@ ®)

Figure 3.15: Normalised intensity autocovariance in the homogeneous region
shown in Figure 3.3.

The statistics of the phase and complex components of the detected field
resulting from fully developed speckle were derived

It was shown how the intensity of the detected field may be modelled as
the product of an exponential speckle process and positive imaging of the
surface cross-section.

It was shown how the correlation length of the surface cross-section relative

to the system resolution determines whether the intensity is (a) exponen-
tially distributed, or (b) K-distributed.

Assuming the intensity is exponentially or K-distributed, the statistics of
the amplitude of the detected field were described.

It was shown how speckle can be transformed to being additive by taking
its log and the resulting distributions assuming the intensity is exponen-
tially or K-distributed were derived.

The autocorrelation function of the intensity was derived for the cases of
constant and 100% correlated imaged SCS.



Chapter 4

Parameter Estimation and
Multi-looking

A large proportion of image analysis involves estimating parameters within dif-
ferent regions of an image. These parameters supply the basis for local decision
making. This is particularly the case with SAR where the presence of speckie
precludes image analysis being carried out on a per pixel basis. For whichever
application they are used, e.g., speckle reduction, feature detection or image
classification, the sampling distributions of estimates need to be known for de-
termining detection and false alarms rates.

The parameters required for image analysis are estimated by applying simple
operations (e.g., averaging) to sets of neighbouring pixels. To determine the
distribution of an estimate output by an operator the distribution of the variables
input to it, and the relationship between these distributions and the distribution
of the random variable output, need to be known. The general form of the
relationship between the input and output distributions of basic binary operators
used in this and other chapters are listed in Appendix A.

The parameter most commonly required for image analysis is the local mean.
For example, estimates of the local mean are required by the edge detection and
segmentation algorithms discussed in Chapters 7 and 9. A simple estimate of
the local mean is the arithmetic average of pixel values. The result of averag-
ing, including multi-looking, on image statistics is discussed in Section 4.1; the
effects of correlation, K-distributed speckle and heterogeneous populations are
all considered.

The distribution of pixel values over an extended target is fully described by
the mean intensity whenever the imaged SCS is constant. However, when surface
textures are imaged additional parameters are needed to define the intensity
distribution. Texture estimation is addressed in Section 4.2. Assuming the
imaged surface texture is gamma distributed with unit mean and unknown order
parameter, methods of estimating the order parameter from the K-distributed
intensity are derived and compared.

57
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4.1 Averages of pixel values

Arithmetic averaging is used to estimate mean values because given samples from
a stationary random process their average value gives an unbiased estimate of
their mean, and so long as the autocovariance of the process is finite the estimate
will be consistent.

The importance of knowing the statistics of averages which are used as es-
timates of local mean values in image analysis, has already been alluded to.
Knowledge of the effect of averaging on image statistics is also needed when
the whole of an image is incoherently averaged; so as to be able to determine
the statistics of the resultant image. Incoherent averaging (or multi-looking) is
used to reduce speckle noise and/or resolution. When n independent samples,
or looks, in azimuth (or range) are averaged image contrast is reduced by a
factor 4/7, and the azimuth (range) resolution of the image is reduced by a fac-
tor n. Multi-looking is performed by either spatially averaging discrete blocks
of n pixels in the full resolution image, or during initial processing of the raw
data, by splitting the image bandwidth into n sections and processing each sec-
tion to produce n lower resolution images of the same scene, which are then
averaged [59].

The average intensity is of particular importance because over a homoge-
neous region where the imaged SCS is constant (i.e., exponentially distributed
intensity), it gives the maximum likelihood (ML) estimate of the mean inten-
sity, and via (3.94) the ML estimate of the mean amplitude. Given n statistically
identical independent exponentially distributed intensity values I,...,I, with
unknown mean, the likelihood F' that the intensity values have mean y is given
by

L R
Fup) =T —e* 4.1
(11) gme 1 (4.1)

and the log-likelihood L = In F is given by

n -~
L =-nlhyr——I 4.2
(k1) 2l (4.2)
where T is the average intensity defined by

I=

S|~

I (43)
=1

Because In is a monotonically increasing function the maximum log-likelihood
will occur at the same position as the maximum likelihood. Hence the ML
estimate of the mean may be found by solving where the first derivative of the
log-likelihood with respect to py given by

dL n~ n n /=
= - — == (I- 44
dur — p3 " pr u'f( ur) (44)

equals zero. This will occur when the mean is estimated by the average intensity.
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Likewise, given n statistically identical independent Rayleigh distributed am-
plitude values Ay,..., A, with unknown mean, from (3.90) the likelihood F that
the amplitude values have mean p4 is given by

2
n A -t A
F(pa)=T] 2”_25 “y (4.5)
i=1 “HA

and the first derivative of the log-likelihood with respect to p4 is given by
dL _ 2n (rA? 2
= () “o

This will equal zero when the mean amplitude is estimated by V/ TA? /2. Since
Alis just the average intensity, the ML estimate of the mean amplitude is given
by calculating the average intensity, rather than the average amplitude, and then
relating it to the mean amplitude using (3.94). Therefore in terms of estimating
mean values over regions where the imaged SCS is constant, averaging is best
carried out on intensity as opposed to amplitude data. It should also be noted
that as the exponential distribution is fully defined by its mean value, the mean
intensity is the only parameter that needs to be estimated to determine the
distribution of data in such regions.

The effect of averaging pixel values with a variety of distributions are con-
sidered below. In Section 4.1.1 it is shown that the average of n exponential
pixel values from a homogeneous region is gamma distributed with order n. The
effect of heterogeneous populations on the distribution of the average are then
discussed. As knowledge of the statistics of the average amplitude may some-
times be need, this is considered in Section 4.1.2, for instance when multi-looking
has been applied to amplitude as opposed to intensity (e.g., CCRS airborne SAR
data [24]). It will be seen that the statistics are analytically more tractable in
the case of intensity. This, along with the fact that the average intensity gives
the ML estimate of the mean intensity when the imaged SCS is constant, means
that we will often prefer to work on intensity as opposed to amplitude data. In
Section 4.1.3 the average of K-distributed intensity is examined. This together
with correlation which is considered in Section 4.1.4, have the effect of increasing
the variance of the resulting average.

Normally the distribution of averages of random variables with known dis-
tributions are most easily determined using characteristic functions. The char-
acteristic function of the average T of n independent random variables z; with
characteristic functions &, (w) is given by

80 = 18 (2) (47)

=1 n

This comes from the convolution theorem and the fact that the characteristic
function of z/n is related to the characteristic function of z by

o: () = 2. (2) (4.8)
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4.1.1 Exponential intensity

From (3.32) and (4.7) the characteristic function of the average I of n indepen-
dent exponentially distributed intensity values with means y;,...,u, is given

by
n -1
Jwpi
%) =]] (1 - T) (4.9)
1=
When the intensity values are statistically identical with mean u the character-
istic function is given by

&-(w) = ( - i‘-‘;ﬁ)-" (4.10)

This is the characteristic function of a gamma distributed random variable with
mean g and order parameter n (3.61). Thus it is normally assumed that when
the imaged SCS is constant, multi-look intensity data and averages of inten-
sity values are gamma distributed [22]. When this is true, it can also be seen
that the average of m statistically identical independent n-look intensity values
(i.e., the average of mn statistically identical independent single-look intensity
values), will be gamma distributed with order mn, by substituting the charac-
teristic function of the gamma distributed intensity values given by (3.61) into
the characteristic function of their average (4.7). As in the single-look case, such
an average gives the ML estimate of the mean intensity.

Over a heterogeneous area where pixel intensity values are sampled from
exponential populations with different mean values, in general, the distribution
of the average cannot be determined analytically from its characteristic function.
In the case of n values being sampled from M different populations such that
n; values have mean p; (i =1,..., M), the average has mean

M
pF= D Dibk (4.11)

=1

where p; = n;/n and ny + ...+ npy = n, and has the same distribution as
the sum of M gamma distributed random variables with means p;u; and order
parameters n;. The characteristic function of the average is then given by

M
&:(w) = [[ (1 - wB)™ (4.12)

=1

where ; = p;p;/n;. The pdf of the average has been determined for the case of
M =2, and is given by

~ 1 [ 8 14k | Tk ()t
~]) = ——_{ePiag™ 2 [ St
fz() B Bp? {e‘a g( k ) T (n; - k)

5 a1k ) Femiokab
2 (g 1 M7 7%a” 4.13
te? (o) g) ( k ) T(r2 = F) (4.13)
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where 1/a = 1/, — 1/f,. See Appendix C for the proof.

For M > 2 it has not been possible to obtain an analytic expression for the
pdf of the average from its characteristic function given by (4.12). However, the
moments of the average may be generated by differentiating its characteristic
function. Normalising these by the mean of the average intensity gives

=14+ %qz (4.14)
3 2
B =14+g+ 50 (4.15)
n n
6 3 8 6
9 =14+ —q+ ;;q% + =0+ % (4.16)

etc, where
M i k
1
gk = E D (_A) (4‘17)
=1 #I

These normalised moments lie between those of gamma distributed random vari-
ables with order parameters n and ngs/fmazs this is because

k-1
1<q< B "“”) (4.18)
by

where fimoz = max(g;). The normalised moments of the average will tend
to those of a gamma distribution with order parameter n as the u;’s tend to
being equal, and they will tend to those of a gamma distribution with order
parameter n; when the ’th term in gx dominates all the other terms. This
will occur when either most of the pixels are sampled from the ¢’th population
or when its mean value is much greater than the mean value of all the other
populations (u; > pjzi). The coefficient of variation of the average intensity
is given by g2/n and will always be greater than that over a homogeneous area
given by 1/n (3.65).

After multi-looking is carried out on intensity its square root is often taken to
further reduce image contrast (e.g., ERS-1 multi-look SAR image products [16]).
Assuming average intensity is gamma distributed its square root (or amplitude)
is distributed according to (3.98). Also, its natural log (or density) is distributed
according to (3.120).

4.1.2 Rayleigh distributed amplitude

The distribution of the average A of n statistically identical independent Rayleigh
distributed amplitude values Ay,..., A, with mean intensity us, cannot be de-
termined in as straightforward a manner as the average intensity can. Obviously
from (3.94) the average amplitude has mean

/W#I
HZ=RA= N\ (4.19)
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and from (3.95) and (3.97) it is easily shown that the average has variance

2 1
ai\ =J4_ 2 (1 - E) KI (4.20)

and coefficient of variation

2
&_”_A_l(i_)
vi=A=-(--1 (4.21)

The coefficient of variation of the average of independent Rayleigh amplitude
values given by (4.21) is greater than that of the square root of the average of
the corresponding exponential intensity values (3.104). This accords with the
reasons given previously for averaging in intensity rather than amplitude.

The characteristic function of the average can be defined in terms of the
characteristic function of the Rayleigh distribution (3.92) but it has not been
possible to deduce the analytical form of its pdf from this. For generating the
moments of the average by differentiating its characteristic function, it is better
to express the characteristic function in terms of the moments of the Rayleigh
distributed amplitude values (3.93)

&, (w) =94 (%)n B (g%ﬁ@ﬁ)ﬂ = (g%r ( + 1) (u) )

(4.22)
The normalised moments are then given by
A® = <1 - l) + 2 (4.23)
n nw
19 = (121 (-2 2 (Y, 2t
n n nw n n’w
o - (-6 (D -
n n n nx n n
48 1 T 32
+n27r2 (1 - ;) (1 + 5) + n372 (4.25)

etc.

4.1.3 K-distributed intensity

The average of n statistically identical independent K-distributed intensity val-
ues with mean py and order parameter » has mean gy and it is easily shown
from (3.56) and (3.57) that the average has variance

2
ok =*tL (1 + 3) (4.26)

and coefficient of variation

1 2
2 — e —
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Thus, the average intensity over a homogeneous region will have greater vari-
ance when the intensity values are K-distributed than if they were exponentially
distributed with the same mean value.

As with the average Rayleigh distributed amplitude over a homogeneous
region the characteristic function of the average K-distributed intensity over a
homogeneous region can be expressed in terms of the moments of the averaged

values (3.54)
_[<=T(¥+¥k) (me)* "
$r(w) = (kgo T0) — (4.28)
from which the normalised moments can be generated
o - (1 _ l) +2 (1 + l) (4.29)
n n v
P - D)) 62 (o)
n n n n v
6 1 2
tor (1 + ;) (1 + ;) (4.30)

= (-0 0-3) (-2 0-D - 03)
5 00) () 2 (43) ()

+% (1 + %) (1 + %) (1 + %) (4.31)

etc. The normalised moments tend to those of a gamma distribution as v — oc.

4.1.4 Effect of correlation on averaging

So far it has been assumed the pixel values being averaged are statistically
independent, in practice this will generally not be the case. The average intensity
I over an area of size n, pixels in azimuth by n, pixels in slant range, is given

by

1 na=1ne-1

I(zayz,) = — Z E I(zq + wo,z, + w,) (4.32)

27T we=0 w,=0

Assuming the autocovariance of the intensity is separable into azimuth and range
components it may be expressed

Cr@)={I@IE+2)-IE)I(FT+72)=Ca(2)Cr(2)  (433)

the average intensity will then have autocovariance

Ci(zmz) = (I@I@+2) - (I@)(T+@E+2))

- nalnr {Ca () + "i’ (Ca (7a + wa) + Ca (20 — wa)) (1 _ 1:_) } y

wq=1

nr—l
{Cr (2,.) + 2: (CT (zr + wr) + Cs (2, - w")) (1 - %) } (4'34)

wr=1 T
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and the variance of the average intensity will be given by

AL e (-2}

wae=1

{1 +23 e (wr) (1 _ —r) } (4.35)

wr=1

a% = C3(0,0)

where ¢g (w,) = %%1 and ¢, (w,) = %’%‘% Thus the autocovariance of the
average intensity is separable into azimuth and range components if the intensity
autocovariance is likewise separable.

As pixel intensity values are the product of a speckle component and an im-
aged SCS component correlation may arise from either one of these components
or both being correlated. As the combined effect of these two sources of cor-

relation is somewhat complex their effect on averaging will only be dealt with
separately.

4.1.4.1 Correlated speckle

All correlation will be purely due to speckle when the imaged SCS is constant.
The intensity autocovariance will then just be determined by the system re-
sponse to a point target. For a fully focused SAR using a chirp pulse the az-
imuth and slant range components of the intensity autocovariance are both sinc?
functions (3.146). Figure 4.1 shows plots of the azimuth component of the au-
tocovariance of the average intensity for different azimuth resolutions d, when
ne = 4, and the azimuth component of the intensity autocovariance is given by

¢a (24) = sinc? (Z—‘:) (4.36)

The slant range component of the autocovariance of the average intensity will
have a similar form. The variance and correlation length of the average intensity
both increase as d, increases.

Figure 4.2 shows the plot corresponding Figure 4.1 when the intensity au-
tocovariance in azimuth is approximated by a rectangular function of width d,

given by
ca(2a) = { Lzl < fia (4.37)

0 otherwise

This may be taken to represent the main lobe of a sinc? function. The variance
and correlation length of the average are both greater than those in Figure 4.1.
Thus when the imaged SCS is constant the variance of the average intensity
approximated from a rectangular intensity autocovariance may be used as a
conservative estimate of the actual variance of the average. When the intensity
autocovariance is given by (4.37) the variance of the average is given by

o= n‘:i {Qda—l da (da 1)}{ 4 & (dn, 1)} (4.38)

n
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Figure 4.1: Azimuth component of the autocovariance of the average inten-
sity for different azimuth resolutions when the intensity has unit variance,

ne = 4, and the azimuth component of the intensity autocovariance is given
by sinc?(z,/d,)-
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Figure 4.2: Azimuth component of the autocovariance of the average inten-
sity when the intensity has unit variance, ns = 4 and the azimuth component
of the intensity autocovariance is approximated by a rectangular function of
width d, and unit height.
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when d, < n, and d, < n,, otherwise it is given by

o} = o} (4.39)

This corresponds to the intensity being 100% correlated over the averaging win-
dow. When the intensity is uncorrelated (d, < 1 and d, < 1) the variance is
given by the variance of the intensity divided by the number of values averaged

2

o
ok = n.,fz - (4.40)
When dg; € n, and d, < n, the variance may be approximated by
oin O {2d, - 1} {2d, - 1} (4.41)
I ngn,

4.1.4.2 Correlated imaged SCS: the multi-look K-distribution

When intensity values which have independent speckle components but 100%
correlated imaged SCS components are averaged, the averaging only affects the
speckle. This situation will arise when either multi-looking is carried out by
splitting the bandwidth or when spatial averaging is carried out over a region
where the imaged SCS has a correlation length much greater than the pixel
sampling rates in range and azimuth. The average of n such intensity values will
be the product of the imaged cross section and a unit mean gamma distribution
of order n (n-look speckle). If the imaged SCS is gamma distributed with mean
p and order parameter v the average intensity T will be given by the product of
two independent gamma distributed random variables one with unit mean and
order parameter n, and one with mean x and order parameter v. The average

intensity will obviously have mean g and from (3.63) it will have normalised
moments
Tim) = F'(n+m)T(v+m)

= Tm)em To)m (442)

and coefficient of variation

1 n+1
R 4,
v n(l+ ” ) (4.43)

Because only the speckle and not the intensity fluctuations are averaged, the
normalised moments and coefficient of variation are greater than those of the
sum of n independent K-distributed random variables with mean g and order
parameter v (see Section 4.1.3).

The pdf of the average intensity may be derived by substituting the pdf’s
of the gamma distributed speckle and imaged SCS (3.59) into the integral for

the pdf of the product of two independent random variables (A.5) and solving
using (F.2). This gives

-\ n+v-2
R 2 T
(1) = OO (\/;) Kyn (20 (4.44)

|~



4.2. TEXTURE ESTIMATION 67

where 8 = pu/nv. This distribution has been termed the multi-
look K-distribution [36], and has strong similarities to the single-look K-
distribution (3.52). When » = 1 the n-look K-distribution has the same form
as the single-look K-distribution with order parameter n. As n or v tends to
infinity the multi-look K-distribution tends to a gamma distribution.

4.2 Texture estimation

The intensity distribution over an extended target is described by the speckle,
the mean imaged SCS (the mean intensity) and the distribution of the imaged
surface texture. Estimation of the mean intensity using the average intensity
has already been discussed in Section 4.1. In this section we consider how best
to estimate the parameters describing the texture distribution, i.e., the non-
speckle part of the clutter distribution. Assuming imaged surface texture is
gamma distributed with unit mean and order parameter v, the intensity will
be K-distributed with the same order parameter (see Section 3.3.3). Thus the
distribution of the texture may be determined by estimating the order parameter
of the K-distributed intensity. Several possible estimates of the order parameter
are considered. First the ML estimate of both the mean and order parameter
of n statistically identical independent K-distributed intensity values is derived
but is found to be somewhat impracticable. Therefore non-optimal methods
have to be used to estimate the order parameter [47]. Two statistics, each one
of which the order parameter can be estimated from, are then discussed, namely
the second normalised intensity moment I(?) and the mean normalised density

(InI) —1In (I). The latter is shown to give the more reliable estimate of the order
parameter.

4.2.1 ML estimation of the mean and order parameter of K-
distributed intensity

Given n statistically identical independent K-distributed intensity values

I,...,I, with unknown mean and order parameter, the log-likelihood that they
have mean p and order parameter v is given by

Lp,v) = nln2+M(lnu—lnp)—nlnI‘(u)

Iwv
2 ,_1( ” m ' (4.45)

The ML estimates of the mean and order parameter of the K-distributed in-
tensity are given by the values of g and v which maximize the log-likelihood.
Solving for where the derivatives of the log-likelihood with respect to the mean
and order parameter both equal zero and using (F.3) gives [47]

[ (v+1)= ( \/—) 2211’/:_2”52\/—) (4.46)
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and

n n 8Ky_ 2,/.1.1;1)
1n¢(u)+ln\/g=%21n\/l—k+%zm 1( = (4.47)
’ k=1

= Koo (222

The values of 4 and v which satisfy these two equations cannot be found ana-
lytically and finding them numerically is an expensive operation. This forces us
into using non-optimal methods to estimate the order parameter.

4.2.2 Non-optimal estimation of the order parameter of K-
distributed intensity

Statistics from which the order parameter of K-distributed intensity may be
determined include the second normalised intensity moment and the mean nor-
malised density {47]. Non-optimal estimates of these statistics are described in
this section and their performance in terms of estimating the order parameter

compared.
4.2.2.1 Second normalised intensity moment

Let the mth moment of n statistically identical independent K-distributed in-
tensity values with unknown order parameter v be estimated by

1 n
Im==3 I (4.48)

This gives an unbiased estimate of the mth moment of the intensity. As the order

parameter completely defines the second normalised moment of the intensity
values given by (3.55)

I =2 (1 + %) (4.49)

the order parameter may be determined from an estimate of the second nor-
malised moment given by

10 =T/ (4.50)

The bias and variance of a function of estimated parameters may be ap-
proximated by expanding the function around the expected values of the esti-

mates [48] (7.20,7.21). Expanding I(2) around I(?) jts bias may be approximated
by [44]
@) - 1@ ~ 11 ) 25(_31 (4.51)
< >" ~ % ~1+31@) - 275

and its variance may be approximated by

(4)
1@ ) L 52
(7@ - 1)") = 2 (1) (—1 I (1<2>)2> (452
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Figure 4.3: The second normalised moment I (2) and the approximated bias
in its estimate I(2) for different sample sizes.
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Figure 4.4: Approximated standard deviation in the estimate I(2) of the
second normalised moment I2) divided by I(?). Above the solid curve given
by 1/ (v + 1), the standard deviation is greater than the difference in the
second normalised moment between when the order parameter equals v and
when it is infinite.
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Figure 4.3 shows the second normalised intensity moment and the approx-
imated bias in its estimate for different sample sizes and Figure 4.4 shows the
approximated standard deviation of the estimate divided by the second nor-
malised moment. The estimate is significantly biased when the sample size is
small (n = 16). This bias causes there to be little difference between estimates
of the second normalised moment of intensity values which are K-distributed
with different order parameters. Except when the sample size is large and the
order parameter is small, the standard deviation is greater than the difference
in the second normalised moment between when the order parameter equals v
and when it is infinite, i.e., the estimate fluctuates over a range greater than the
range of the second normalised moment. From these results it is clear that very
large sample sizes are needed to determine the order parameter from such an
estimate of the second normalised intensity moment.

Note, for the order parameter to be positive the estimate of the second
normalised moment must be greater than two while in practice it only has to
be greater than one. When the estimate is less than two the order parameter
should be interpreted as being infinite because the second normalised moment
is then smaller than its expected value when no texture is present.

4.2.2.2 Mean normalised density

When intensity is K-distributed the mean value of the normalised density D,
(see Section 3.5) is determined solely by the order parameter v of the intensity
distribution (3.133)

(D1) =¥ () +¥(1)-lnv (4.53)

Thus the order parameter can also be determined from an estimate D, = In7-
In T of the normalised density. In fact this estimate gives the ML estimate of
the unspeckled gamma distributed ISCS [47). Thus it may be expected to give
a better estimate of the order parameter of the speckled K-distributed intensity
than the second normalised moment. Expanding the estimate Dj around (D1)
its bias may be approximated by

(E) — (D) = 2—1n- (1(2) - 1) = % (% + 1) (4.54)

v

and its variance may be approximated by
((Bi-(00)") = 2 ((@D?) - (1= 1) = 2 (? +9() - 1) (4:55)

Here we have used the relation

1@ =2 ((I(l}‘)f ) _ (In I)) (4.56)

Figure 4.5 shows the mean normalised density and the approximated bias in
its estimate for different sample sizes and Figure 4.6 shows the approximated
standard deviation of the estimate divided by the mean normalised density.
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Figure 4.5: The mean normalised density (D:) and the approximated bias
in its estimate D, for different sample sizes.
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Figure 4.6: Approximated standard deviation in the estimate D of the mean
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The bias in the estimate varies between 3/2n when v = 1 and 1/2n when
v — o0, and is much less significant than the bias in the estimate of the second
normalised intensity moment. The standard deviation in the estimate is also less
significant particularly when the order parameter is small. These results suggest
that the estimate of the mean normalised density is the more reliable method of
estimating the order parameter. To check this the estimates were applied to two
homogeneous regions, (a) the region whose intensity histogram was shown to
fit an exponential distribution in Figure 3.3, and (b) the region whose intensity
histogram was shown to fit a K-distribution of order parameter 10 in Figure 3.4.
Both estimates were used to determine the order parameter in nine discrete
16 X 16 pixel sub-regions. The results are plotted in Figure 4.7. Note, the
algorithm for estimating the order parameter using the mean normalised density
generates a maximum value of 1000.

In both region (a) and (b) using either estimate there is a large variability in
the order parameter estimated in different sub-regions. However, in each region
the range of variability is larger estimating the moment from the second nor-
malised intensity moment than estimating it from the mean normalised density.
In region (a) whose histogram fits an exponential distribution, the estimate was
greater than 100 only 4 out of 9 times using the second normalised intensity
moment whilst it was greater than 100 6 out of 9 times using the mean nor-
malised density. In region (b) whose histogram fits a K-distribution with order
parameter 10 the estimate fell between 5 and 20 only 3 out of 9 times using the
second normalised intensity moment whilst it fell between 5 and 20 6 out of 9
times using the mean normalised density. There appears to be a small degree
of correlation between the two estimates. These results appear to confirm that
the mean normalised density is the more reliable method of estimating the order
parameter.

Note that setting m = n = 2 in the expression (3.87) for the joint moments
of the real and imaginary components of the complex field gives

(;’Z;?z)) 1 + (4.57)

Thus the order parameter may also be estimated from the real and imaginary
components of the field; (Z3Z3), (Z%) and (Z2) may be estimated from Z32,
Z% and ZZZZ respectively. This estimate is obviously related to the second
normalised intensity moment but its performance has yet to be assessed.

4.3 Summary
In this chapter:

o Methods of estimating the mean intensity and texture in a homogeneous
region of a SAR image were discussed.

o The effect of arithmetic averaging on intensity and amplitude statistics
was analysed. The arithmetic average of a set of statistically identical
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Figure 4.7: Result of estimating the order parameter in two homogeneous
regions using the second normalised intensity moment and the mean nor-
malised density. In each region the order parameter is estimated in nine
discrete sub-regions each 16 x 16 pixels in size.



74

CHAPTER 4. PARAMETER ESTIMATION AND MULTI-LOOKING

random variables gives an unbiased and consistent estimate of their mean.
The effects of averaging also need to be known to determine the statistics

of multi-look SAR data.

The effects of correlation, texture and heterogeneous regions on the statis-

tics of the average intensity were determined. All of these effects increased
the coefficient of variation of the average.

It was shown that when the imaged SCS is constant the average intensity
is gamma distributed and that it gives the ML estimate of the mean inten-
sity. The ML estimate of the mean amplitude is derived from the average
intensity using (3.94).

The ML estimates of the mean intensity and order parameter of K-

distributed intensity were also derived but were found to be too complex
to use in practice.

Other methods of estimating the order parameter of K-distributed inten-
sity, i.e., texture, were analysed. An estimate based on the mean nor-
malised density was shown to be less biased and to be more stable than
an estimate based on the second normalised intensity moment.



Chapter 5

Template matching

Template matching is an established way to detect a known feature in an im-
age [14]. In this chapter the feasibility of matching templates representing map
features to features in SAR images is investigated (see Appendix E for a discus-
sion of the selection of digital map data suitable for matching features in SAR
images). Normally no detailed radiometric information can be deduced from
a given map feature about a feature in a SAR image matching it, only shape
information. This precludes adopting a full matched filter approach. We can,
however, often predict that certain types of linear target will be brighter (hedges,
leading edges of woodland) or darker (roads and rivers) than their surroundings.
By a linear target we mean a feature which appears in an image as a very thin
segment bounded by parallel edges spaced on the order of a resolution cell apart.
Features made up of intersections of such linear targets are suitable candidates
for matching [27]. The shape of such a feature can be completely represented by
a binary (i.e., 1-0) template. When the template is correlated with the image the
position of the feature is established where the maximum correlation measure
occurs. Ideally the probability of the maximum occurring at the ‘true’ match
should be greater than the probability of it occurring at any partial matches.
Feature shape determines what partial matches can occur, these in turn affect
the shape of peaks in the template matched image. The exact manner in which
partial matches affect feature detectability depends on the correlation measure
being used.

Two correlation measures for matching templates representing map features
to SAR image features are introduced in Section 5.1; standard cross-correlation
which has no knowledge of speckle, and a correlation measure based on the
Kolmogorov-Smirnov test of fit, which does take speckle into consideration.
The behaviour of the two correlation measures at a match and as they move
away from a match are analysed in Section 5.2. The analysis predicts that
the Kolmogorov-Smirnov measure will perform better than cross-correlation at
matching bright features but that the reverse is true when dark features are
matched. In Section 5.3 the performance of the measures at matching bright
features in simulated and real SAR data are compared. The reasons for restrict-
ing this performance analysis to bright features only are, that they are often
much more distinctive than dark features in a SAR image and are thus the
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Figure 5.1: Simulated single-look SAR intensity images containing features
suitable for matching.

more obvious candidates for matching, and that we particularly wished to check
the predicted improvement in performance afforded by the Kolmogorov-Smirnov
measure. This prediction is confirmed when both measures are used to match
features in simulated images. However, neither measure performs well on real
data. Reasons for this are considered and alternative methods for matching map
features to SAR images are suggested in Section 5.4.

Only the matching of templates to single-look SAR intensity images will be
considered. Initially it will be assumed that pixel values are spatially indepen-
dent and that the imaged SCS is constant over extended targets, i.e., all clutter is
purely due to speckle and pixel intensity is exponentially distributed. This shall
be referred to as the simple image model. Examples are shown in Figure 5.1 of
simulated SAR images generated according to this model; feature-a which con-
sists of a ‘T junction’ intersect of two linear targets, and feature-b which consists
of a ‘Y junction’ intersect of three linear targets. In each simulated image, the
values of pixels making up features and the values of pixels making up their
background are sampled from exponentially distributed populations with means
is and py respectively where py : py = 4 : 1. Figure 5.2 shows templates to be
used for matching features in these simulated images.

5.1 Correlation measures

5.1.1 Cross-correlation

The cross-correlation X () between a template ¢ (7) and an image I () is given
by
ng—1n,-1

X(ya, yr) = ;ll‘ 2 E t(wa, wr)I(wa + Yo, yr + wr) (5-1)

wa=0 wy=0
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C)

Figure 5.3: Images produced when the templates in Figure 5.2 are matched
to the images in Figures 5.1 using cross-correlation.

where the template is defined over a window n, X n, pixels in size. We have
chosen to divide by n, the number of non-zero pixels in the binary template
which is given by

na—1 ne-1

n= E 2 t (wa, wy) (5.2)

wa=0 wr=0

If the template selects pixels from a single population the value output by cross-
correlation is an unbiased and consistent estimate of the mean of that population,
and if the population is exponentially or gamma distributed the output gives
the ML estimate of the mean of the population (see Chapter 4).

Figure 5.3 shows the images produced by matching the templates in Fig-
ure 5.2 to the images in Figure 5.1 using cross-correlation. If a feature is brighter
than the background (s > p3), on average its position will be indicated by the
global maximum in the template matched image. Likewise the position of the
feature will be indicated by the global minimum when it is darker than the back-
ground. In both Figures 5.3 (a) and 5.3 (b) the maximum correctly identifies
the position of the feature at the centre of the image. However, the peak is more
clearly defined in (b).

We are interested in the probability that the maximum cross-correlation
value occurs at the match. Let py(X) be the probability distribution of the
pixel value at position ¥ in the template matched image. Ignoring the corre-
lation between values in the template matched image, the probability that the
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maximum occurs at position ¥ is given by [42]

1) X
prob(go = maz) = /0 Py, (X) (1'[ /0 23, (W) dW) dX  (5.3)
1#£0
where 7; represents all points in the image other than ¥,. In practice there will
be a large degree of correlation between values in the template matched image
and this should be taken into account when interpreting results.

When the template selects pixels wholly from the feature or its background,
the pixels contributing to the correlation measure may be considered to be sam-
pled from a single population, whilst at partial matches the pixels may be con-
sidered to be sampled from two populations. Assuming the simple image model
applies, when n pixels are sampled from a single population with mean p the
value output by cross-correlation will be gamma distributed (3.59) with order
parameter n and mean p (see Section 4.1.1). Whilst when p pixels with mean
py are selected from the feature and n — p pixels with mean y; are selected from
the background, the value output by cross-correlation will have the same distri-
bution as the sum of two gamma distributed random variables with respective
mean values £u¢ and (1 — £) p;, and order parameters p and n — p. The pdf of
such a distribution is given by (C.1).

Figure 5.4 shows the results of applying this analysis to the features in Fig-
ure 5.1. For both features the probability that the maximum occurs at the match
increases as the ratio of the mean intensity of the feature to its background in-
creases. However, the probability that the maximum occurs at the match is
about twice as great for feature-b as it is for feature-a. For feature-a there is
never more than a 50% probability that the maximum occurs at the match. For
feature-b, where the ratio of the mean intensity of the feature to its background
is large, the probability that the maximum occurs at the match is greater than
90%.

This difference in detectability is due to the partial matches that can occur.
With feature-a as the template moves away from the match, up to two-thirds
of the pixels can still be selected from the feature. With feature-b only a third
of pixels can still be selected from the feature. This can be seen in Figure 5.5
which shows the ACF’s of the templates used for matching feature-a and feature-
b. At each point the height of the ACF represents the number of matching
pixels, the central peak represents the match and the ridges partial matches.
The partial matches are much stronger in the case of feature-a as compared to
feature-b. Using cross-correlation the probability that the maximum will occur
at any partial match in the template matched image increases as the number of
pixels selected from the feature at that partial match increases. Thus there is a
greater probability that wrong detections will occur when feature-a as compared
to feature-b, is matched. These results agree with the peak in Figure 5.3 (b)
being more clearly defined than that in Figure 5.3 (a). It is clear that the partial

matches that occur between a template and the feature it is used to match should

be kept to a minimum, i.e., ideally the ACF of the template should resemble a
delta function.
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Figure 5.4: Probability of the maximum occurring at the match versus fea-

ture to background ratio.

Figure 5.5: ACF’s of templates used for matching feature-a and feature-b.
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) ®)

Figure 5.6: Images produced when the templates in Figure 5.2 are matched
to the images in Figures 5.1 using the Kolmogorov-Smirnov measure.

Where the simple image model does not apply, i.e., where pixel intensity
is K-distributed or correlated, the output of cross-correlation will have greater
variance. This will increase the probability of the maximum occurring at partial
matches.

5.1.2 The Kolmogorov-Smirnov correlation measure

Cross-correlation has no knowledge of the underlying populations in a single-
look SAR intensity image. The Kolmogorov-Smirnov test of fit can be
used to develop a correlation measure similar to cross-correlation in that it
generates an estimate of the local mean over homogeneous areas, but which
takes distributional information into account.

Assuming the simple image model applies a population of pixel intensity
values is characterised by a single parameter; the mean value of an exponential
distribution. At each position in the image the Kolmogorov-Smirnov test is used
to find the mean value of the exponential distribution which best fits the pixel
values selected by the template at that position. The Kolmogorov-Smirnov test
of fit is preferred to the x? test of fit [33, 49, 56] as the latter is not reliable with
small sample sizes.

The position of bright (dark) features matching the template should again be
indicated by the global maximum (minimum) in the template matched image.
Figure 5.6 shows the template matched images produced by matching the tem-
plates in Figure 5.2 to the images in Figure 5.1 using the ‘Kolmogorov-Smirnov’
correlation measure; in both cases the match is correctly indicated by a central
peak. Note that these are sharper than those produced using cross-correlation
and that once again feature-b generates a more clearly defined peak than feature-
a (see Figure 5.3).

5.2 Comparison of correlation measures

The Cross-correlation (CC) and Kolmogorov-Smirnov (KS) measures were com-
pared by examining how the peaks in the template matched image produced by
each measure differed. This was achieved by examining the behaviour of the
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3.2 CC: mean 1.000 var. 0.025

————-KS: mean 1.012 var. 0.036

Frequency

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Mean intensity

Figure 5.7: Probability distribution of the estimate of the mean intensity
of a homogeneous feature with unit mean, produced by the CC and KS
correlation measures, when a template, n = 40 in size, matches the feature.

measures at a match and as a template moves away from a match.

5.2.1 Behaviour of the measures at a match

At a match the value produced by both measures is an estimate of the mean in-
tensity of the feature they are matching. For a template of size n = 40 matching
a feature with unit mean intensity, the probability distributions of the estimates
of the mean intensity produced by each measure were generated from 1,000,000
simulations with different realisations of exponential speckle. Figure 5.7 shows
the distribution of the estimated values. The results for the CC measure were
in agreement with theory, which predicts that it should be gamma distributed
with degree 40 and unit mean. The probability distribution for the KS measure
had a similar shape but a slightly larger variance and a small positive bias.

5.2.2 Behaviour of the correlation measures as a template moves
away from a match

A test was carried out to determine the expected values output by the two
measures over a range of partial matches. Suppose a template selects p pixels
with mean p, and n — p pixels with mean py. Assuming the simple image model
applies the samples will be distributed according to
1 -z 1 =
fr(I) = %#—e"‘? + (1 - 3) —e"y (5.4)

x
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Expected correlation measure

CC measure
————-KS measure
5 10 15 20 25 30 35 40
P = no. pixels with mean 4.0 (n-p = no. with mean 1.0)

Figure 5.8: Expected cross-correlation and Kolmogorov-Smirnov measures

generated by a template matching p pixels with mean p, = 4.0 and n —p
pixels with mean g, = 1.0 (n = 40).

The expected CC measure is given by

P
Hp = He + (1 - %) Hy (5.5)

The expected KS measure was calculated numerically by finding the mean of
the exponential distribution which best fitted the distribution defined by (5.4).

Figure 5.8 shows a plot of the expected values for p = 0,...,n, when u, =
4.0, py, = 1.0 and n = 40. The expected value of the CC measure varies linearly
from p, to p. as p increases. The expected value of the KS measure varies non-
linearly; for small values of p the KS measure increases at a slower rate than
the CC measure but as p gets larger the KS measure increases more quickly,
eventually approaching p, at a faster rate than the CC measure. Thus when the
feature being matched is brighter than its background (zy > up) the expected
KS measure will decrease more rapidly than the expected CC measure as we
move away from the match. The reverse is the case whenever the feature being
matched is darker than its background (uy > py). As the ratio of the mean
intensity between a feature and its background py : p increases, the difference
between the two measures increases.

The results indicate that when a template is matched to a bright feature in
a dark background the KS measure will produce a sharper but slightly more
variable maximum than the CC measure and that when a template is matched
to a dark feature in a bright background the CC measure will produce a sharper
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but slightly less variable minimum than the KS measure. Thus when the simple
image model applies we would expect the KS measure to be better than the CC
measure at matching bright features but to be worse at matching dark features.

5.3 Performance tests

To check the predicted improvement in performance afforded by the
Kolmogorov-Smirnov measure the performance of both measures at detecting
a variety of bright features in simulated and real data was compared.

5.3.1 Simulated data

Both measures were used to match templates to simulated images containing
different types of bright features in a range of speckle realisations. Four types
of image feature were considered:

1. Thin (single pixel wide) features with uniform background.
2. Thick (three pixel wide) features with a uniform background.
3. Thin features with a non-uniform background.

4. Thick features with a non-uniform background.

Examples of type 1 are shown in Figure 5.1. Each feature split its background
into three areas; for uniform backgrounds the ratio of the mean intensity of the
feature to the mean intensity of the three areas was 4:1:1:1, for non-uniform
backgrounds the ratio of the mean intensity of the feature to that of the three
areas was 8:3:2:1. This ratio was chosen so that the overall ratio of the energy in
the background to that in the feature would be approximately the same as with
a uniform background. For each type of feature, 1000 images containing such a
feature but with different speckle realisations were generated. To see how the
measures performed over homogeneous areas a similar series of images of pure
speckle were also generated.

Measurements were carried out on each template matched image to deter-
mine how sharp the maximum peak was and how much it deviated from its
expected position at the match. The measurements comprised of

1. Comparing the height of the maximum peak to the next highest peak and
the highest col surrounding it to determine how distinct the maximum
peak was.

2. Measuring the minimum gradient falling away from the maximum peak
and the gradient to the highest surrounding col to determine how sharp
the maximum peak was.

3. Calculating the standard deviation of the maximum from the match and
counting the total number of times deviations occurred to determine how
reliable the correlation measures were.
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A summary of the results for the features shown in Figure 5.1 is given in Ta-
ble. 5.1.

The KS measure performs consistently better than the CC measure; peaks
were sharper (steeper gradients), as predicted in Section 5.2.2, and better sep-
arated (greater ratios), and the maximum deviated less from its expected posi-
tion at the match. Features in uniform backgrounds were only slightly better
matched than features in non-uniform backgrounds. With thick features there
exists more than one position where the template matches the feature. Thus
we would expect thick features to be matched more often, but less accurately,
than thin features. This is the case with feature-a but not with feature-b. With
feature-b the proportion of pixels that can be selected from the feature at a
partial match is a third for thin features but two-thirds for thick features; this
increases the wrong detection rate. With feature-a this proportion only increases
slightly from thin features to thick features.

In agreement with the results given in Section 5.1.1, feature-b was matched
better than feature-a, though feature-a was matched correctly more often than
predicted (79% as compared to 36% in Figure 5.4). Correlation between pixels
in the template matched image reduces the effect partial matches have on the
detectability. Global maxima in homogeneous images were not as distinct nor
as sharp as global maxima in images containing matching features, they were

also uniformly distributed over the image. The results of matching other feature
shapes were similar.

5.3.2 Real Data

Three sub-images (a) to (c), each containing a feature that was thought to be
detectable using template matching, were extracted from a RSRE X-band SAR
image (see Figure 5.9). Each feature is a ‘T junction’ intersect of two linear tar-
gets. Even though such features were shown in Section 5.2 to be more susceptible
to partial matches than ‘Y junction’ intersects of three linear targets, the for-
mer were chosen for matching as they were the most prevalent type of intersect
found in the image. Templates for matching these features were extracted from
1:10,000 scale map data, raster scanned and transformed to the same frame of
reference as the SAR data (see Figure 5.10), and by visual inspection, from the
image itself (see Figure 5.11). This was to ensure there existed a template which
perfectly matched the image feature.

The results of matching using both correlation measures and both sets of
templates are shown in Figures 5.12 and 5.13. Using the templates extracted
from the map, only feature (b) is matched correctly using the KS method and no
features are matched correctly using the CC method. Using templates extracted
from the image feature (b) is correctly matched using both methods, feature (a)
is only correctly matched using the KS method whilst neither method manages
to match feature (c) correctly. The poorer performance of the map templates
may be due to them being thicker than those extracted from the image. A
morphological thinning algorithm [32] was applied to the map templates to pro-
duce single pixel wide templates. The only improvement after thinning was
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MATCHING USING CROSS-CORRELATION

Width Bkgd Ratiol Ratio2 Gradl Grad2 SDev WDet
feature-a
Unif 0.877 0.761 0.808 0.723 3.738 20.8
NUnif 0.884 0.770 0.765 0.698 3.763 25.0
Unif  0.902 0.798 0.367 0.631 3.027 123
3 NUnif 0.905 0.800 0.373 0.625 3.219 143
Homogeneous  0.959 0.822 0.158 0.205 - -
feature-b
1 Unif  0.747 0.613 1.094 1.084 1.568 3.1
1 NUnif 0.770 0.633 1.045 1.034 1.628 3.8
3 Unif  0.868 0.762 0.373 0.585 2.162 18.2
3 NUnif 0.875 0.766 0.373 0.581 2.155 19.2
Homogeneous  0.956 0.799 0.166 0.203 - -

W =

MATCHING USING THE KOLMOGOROV-SMIRNOV MEASURE

Width Bkgd Ratiol Ratio2 Gradl Grad2 SDev WDet
feature-a
1 Unif  0.829 0.647 1.222  1.092 3.078 15.5
1 NUnif 0.850 0.670 1.082 0.986 3.267 24.1
3 Unif  0.857 0.722 0.505 0.926 1.872 3.6
3 NUnif 0.870 0.729 0.525 0910 2.388 8.6
Homogeneous  0.949 0.763 0.235 0.308 - -
feature-b
1 Unif 0.631 0.492 1.548 1.511 0.812 1.2
1 NUnif 0.697 0.536 1.473 1.370 1.202 34
3 Unif  0.792 0.676 0.488 0.800 1.336 8.3
3 NUnif 0.815 0.691 0.508 0.777 1.600 123
Homogeneous  0.946 0.746 0.248 0.287 - -

Table 5.1: Averaged results of performance tests on 1000 simulated images.
Width - width of matching feature in the image; 1 or 3 pixels. Bkgd - type
of background; uniform or non-uniform. Ratiol - value of 2nd highest peak
: value of maximum peak. Ratio2 - value of highest col surrounding the
maximum peak : value of maximum peak. Gradl - least gradient dropping
away from maximum peak. Grad2 - gradient from the maximum peak to its
highest surrounding col. SDev - standard deviation of the maximum peak
from the match (pixels). WDet - percentage of wrong detections.
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Figure 5.9: Features extracted from a RSRE X-band SAR image (100 x
100 pixel subimages), which were thought to be detectable using template

matching,
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Figure 5.10: Templates (shown in square boxes) derived from map data for
matching the features shown in Figure 5.9.

N
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Figure 5.11: Templates (shown in square boxes) derived from the image itself
for matching the features shown in Figure 5.9.
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that feature (b) was correctly matched using the CC method as well as the KS
method.

From this small number of tests it appears that neither measure performs
as well on real data as on simulated data. Even though the SAR features being
looked at are much brighter relative to their background (ps : pp = 10 : 1)
than the features in the simulated images were (pys : gy = 4 : 1), a much larger
number of wrong detections appear to be occurring.

To investigate why this is the case the statistics of pixel values sampled along
the above features were analysed. As each feature consists of a ‘T junction’
intersect of two linear targets, separate measurements were carried out on the
linear targets making up the long and short arms of the feature. Figure 5.14
shows profiles of how sampled values, a 21 pixel moving average of these values
(an estimate of mean intensity) and a Kolmogorov-Smirnov fit of the distribution
of these 21 pixels to an exponential distribution, varies along the linear targets.
For each feature the point at which the two linear targets making it up intersect
is in the middle of the longer profile shown on the left, and is at the left hand
end of the shorter profile shown on the right.

The average intensity can be seen to vary along all three profiles. The vari-
ability in the exponential fit shows that this variance cannot be explained by
the simple image model alone. There is a correlation between where the profiles
are brightest and where detections occurred. With features (a) and (c) partial
matches with bright parts of the features led to wrong detections. Feature (b)
was only matched correctly because it is at its brightest close to the intersec-
tion. These observations show that the simple image model and the CC and KS
measures are insufficient for template matching features in SAR images.

5.4 Discussion

The fact that map and SAR image data are mismatched data types places con-
straints on the use of simple matching techniques. While shape is common to
both data types, without a priori knowledge, radiometric information is only
available in the sense that certain types of feature are likely to be brighter or
darker than their surroundings. When the simple image model applies, distri-
butional information can be used to improve methods of locating the correct
match. However, an important outcome of this chapter is that types of linear
targets useful for matching tend not to fit the simple image model. They are
made up of heterogeneous populations and/or a fluctuating imaged SCS. This
has implications for any image analysis method based on using simple image
models.

Because a constant imaged SCS cannot be assumed along linear targets and
because cross-correlation is not a reliable means of detecting matches between
map and image data, more powerful methods are required. The simplest such
extension is to use an image model which allows for fluctuations in the imaged
SCS along linear targets. The evidence in Figure 5.14 suggests that such an ex-
tension is needed to model the intensity along the types of linear targets (hedges
and lines of trees?) picked out from the images shown in Figure 5.9. This is in-
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Figure 5.12: Result of matching the templates derived from the map data
and shown in Figure 5.10, to the sub-images shown in Figure 5.9 using the
CC method (top) and the KS method (bottom).

Figure 5.13: Result of matching the templates derived from the image itself
and shown in Figure 5.11, to the sub-images shown in Figure 5.9 using the
CC method (top) and the KS method (bottom).
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vestigated in the next chapter (Chapter 6) where the K-distributed model for the
intensity over extended targets discussed in Chapter 3, is extended to describe
the intensity along edges and linear targets. The fit of pixels intensity along
edges and linear targets to both exponential and K-distributions is also more
fully tested. Even if it is assumed that intensity is K-distributed along linear tar-
gets, using the Kolmogorov-Smirnov test, fitting a two parameter K-distribution
is much slower than fitting a single parameter exponential distribution, which in
itself is several orders of magnitude slower than cross-correlation. If a correlated
K-distribution is required four parameters would be necessary [44]. The ensuing
high processing overheads do not make this an attractive option.

The problem of mismatched data types can be removed by structuring the
image by applying edge and line detectors prior to matching. The correlation
process is then better defined, but new questions are raised about the representa-
tion of the SAR image. These questions concern the reliability of the detectors,
their ability to cope with speckle, edge thickening and positional accuracy, and
the generation of excessive edge/line detections in textured regions. Nonetheless,
this seems to offer real hope because of the development of effective edge detec-
tors and segmentation algorithms. These methods are investigated in Chapters 7
to 9.

A third approach which relies less critically on the geometrical accuracy
needed for correlation methods is to use topological concepts. This still requires
the SAR image to be represented in binary form. Graph theory, fuzzy logic or
matching using regions then provide possible methods for matching the global
structure of the map and data representations. Such methods have been used
in the optical bands {41, 12] and for SAR [53], but must currently be regarded
as tentative rather than proven.

5.5 Summary
In this chapter:

¢ Correlation measures for matching map templates to features in single-
look SAR intensity images, in particular features consisting of intersections
of linear targets which are brighter than their surroundings, have been
investigated

o It was shown that feature shape determines the kind of partial matches
that can occur and that in turn this affected feature detectability.

¢ When a simple image model was assumed, analysis predicted that a corre-
lation measure based on the Kolmogorov-Smirnov test of fit would perform
better than cross-correlation at matching bright features in simulated SAR
images, but that the reverse would be true for dark features.

¢ The first part of this prediction was confirmed when the performance of
the correlation measures at matching bright features in simulated SAR
images generated according to the simple image model was compared.
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¢ However, neither measure performed well at detecting bright features in
real SAR data. Reasons for this were considered.

¢ The simple image model was found to be inadequate for modelling inten-
sity along linear targets. Although more general image models are avail-
able (K-distributions), due to the extra parameters involved in defining
them, a modified version of the Kolmogorov-Smirnov measure would be
appreciably slower.

o Alternative methods for matching map features to SAR images using edge
detection, segmentation and graph theory were suggested.



Chapter 6

Statistics along edges

In Chapter 3 it was generally assumed that the surfaces being imaged were
stationary, i.e., the elementary scatterers within a resolution cell were from a
single population. This assumption is valid for modelling the intensity statistics
over extended targets. However, these models do not describe the intensity
statistics over the whole of the image. For instance, although they describe the
statistics to either side of an edge they do not describe the intensity statistics
along the actual edge, whether it is abrupt or gradual.

By an edge we mean a boundary in an image across which a transition in
mean intensity or texture occurs as opposed to a physical transition in the un-
derlying scene. Certainly there is always a correspondence between edges in
an image and physical transitions. However, this is not always a one to one
mapping. A single physical transition may be characterised by several edges
in an image, e.g., a region of radar shadow is characterised by two edges. For
purposes of image analysis edges initially need to be characterised as image fea-
tures rather than as physical features as this is how they are first encountered,
and understood, by any low-level image interpretation scheme. It is only when
higher order knowledge is applied that edges may be interpreted in terms of the
physical transitions they represent.

Whilst a model for intensity statistics over extended targets is sufficient for
optimally detecting a large number of features, e.g., detecting edges bounding
extended targets (see Chapter 7), as seen in the last chapter a model for the
intensity statistics along edges is needed to optimally detect linear targets. Edge
detectors perform poorly at linear target detection, especially when the linear
targets separate regions of the same intensity and texture. In addition as linear
targets can confuse edge detection and segmentation algorithms they need to be
detected and suitably flagged prior to carrying out these operations (see Chap-
ter 8). To detect linear targets, measurements comparing pixel values along
the feature itself to pixel values on either side of it are needed. Methods that
have been investigated other than template matching include the Hough trans-
form [26] and dynamic programming [55]. Whichever method is used, models for

the statistics along linear features, as well as over extended targets, are required
to set decision thresholds.

In this chapter the K-distribution model described in Chapter 3 for the in-

92
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tensity over extended targets in SAR images is further developed to cover the
intensity along edges. By analysing the mechanisms which give rise to edges
in SAR images, models for the detected field along an edge are derived in Sec-
tion 6.1. It is shown that the most general model is given by a sum of scattering
components from M different populations plus components describing specular
and secondary scattering, and system noise. This may be written

M n;
Z= Zzzi, +Zsp+zsc+zan (61)
=1 j=1
where there are n; independent scattering contributions z;; from the i’th popu-
lation, z,, and z,. represent the specular and secondary scattering components
and z,n, the system noise term. The statistics of the intensity along edges de-
scribed by (6.1) are derived in Section 6.2. In Section 6.3 measurements of
intensity statistics along edges and bright linear targets are compared to predic-
tions made by the model.

6.1 Detected field along an edge

In this section we examine how to represent the detected field along an edge
arising from a change in surface type or cover. We then go on to consider how
to represent the detected field along edges generated by changes in terrain. For
simplicity the system response h (Z,%;) in (3.1) will be approximated by a two
dimensional rectangular function which may be taken as representing the main
lobe of a more realistic sinc shaped system response (3.141).

Edges are the result of changes in the underlying scattering population al-
tering the statistics of the detected field. Thus by definition, along an edge the
detected field will be the result of scattering from two or more populations. For
the case of M such populations the detected field may be expressed

M ni
Z = Ezzi, + 240 (62)

=1 j3=1

where each n; is a random variable representing the number of independent
and statistically identical complex scatterer contributions z2;,,.. os Zig, from the
i’th population within the resolution cell. The mean proportion of scatterers
from the #’th population is given by p; = gn,/tin, Where n; has mean y,; and
Kn = pPn, + ...+ finy; obviously py + ...+ par = 1. We have chosen to add an
additional term z,, to take account of system noise.

The most obvious form of edge arises from a spatial change in the surface
type or cover (e.g., a transition from bare soil to grass). Assuming pixel values
over the homogeneous regions to either side of an edge may be modelled as the
result of scattering from single populations, pixel values along the edge may be

modelled as the result of scattering from just two populations. This may be
written

ni na
Z = EZIJ + Z z3, + Zen (6.3)
i=1 i=1
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As natural edges are never perfectly straight the mixture of the two populations
p1 ¢ p2, will vary from pixel to pixel along the edge. In fact even if the edge
is perfectly straight the mixture of the two populations will vary from pixel to
pixel unless the edge lies parallel to or at 45 degrees diagonal to the sampling
grid on which the image is defined.

The detected field from a resolution cell containing a linear target (e.g., a
river or road) of width less than the resolution will be the result of scattering
from three populations; the linear target and the extended targets to either side.
This can be expressed

ny n2 na
Z=3 2+ 2+ 23+ 2Zm (6.4)

j=1 j=1 j=1

When the extended targets to either side have the same scattering properties the
detected field is just given by (6.3). Of course if the resolution is much greater
than the width of the linear target it will have no significant effect. The linear
target will then appear as a simple edge (6.3) or will not be apparent at all if
the extended targets to either side have the same scattering properties.

6.1.1 Terrain effects

Changes in surface slope affect the incidence angle of the radar beam with the
surface and thus both the imaging geometry and the behaviour of scatterers.
Within our definition of changes in surface slope we include not just topographic
effects but also changes in vegetation height, land/water boundaries and man
made features. Here we will consider changes in surface slope in the range
direction only. This is not because changes in surface slope in the azimuth
direction do not generate edge features, but rather because the most marked
effects are due to changes in surface slope in the range direction (i.e., layover
and shadowing).

If ¥p is the incidence angle of the radar beam with a horizontal surface, the
incidence angle of the beam with a surface inclined at an angle ¥, in the range
direction is given by ¥ = Yo — 9,; here ¥, is positive when the surface is inclined
towards the SAR platform and is negative when it is inclined away from it. If
the SAR has slant range resolution d,, the ground range resolution (2.29) is
given by dyr = d,./sin ¥ and the illuminated length normal to the radar beam
is given by dyj = d,-/tan? = dycos¥. Both of these quantities decrease as
the incidence angle increases. The decrease in the ground resolution reduces the
number of scatterers per resolution cell, while the decrease in the illuminated
length normal to the radar beam reduces the power incident on each resolution
cell. Thus even if isotropic scattering is assumed, the total power received from
a resolution cell will decrease as the incidence angle increases. In the majority
of cases this effect is magnified by the fact that backscatter per unit area from
most rough surfaces decreases with incidence angle [59).

At small incidence angles additional effects come into play. When the inci-
dence angle is greater than 30 degrees most backscatter is due to surface rough-
ness. However, at smaller incidence angles specular scattering will occur [15, 59).
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As the incidence angle approaches zero, specular scattering will produce very
large backscatter values. Added to the fact that both d,, and d;; are very large
in such cases, this will often cause saturation of the SAR receiver.

6.1.1.1 Changes in surface slope

The decrease in received power with incidence angle causes rapid changes in
surface slope to produce rapid changes in the detected field, i.e., edges. Along
the transition between regions with incidence angles ¥; and ¥, (9, < ¥J2) the
ground resolution will lie in the interval

dar dur
Gad > G (®9)

and the illuminated length normal to the beam will lie in the interval

d,, d
d' > T
tan Y, > i tan 9,

(6.6)

Thus we would expect the received power along the edge to lie between the values
of the received power in the regions to either side. With the change in surface
slope across the edge the effective density of scatterers will change, along with
the behaviour of single scatterers if scattering is non-isotropic. Thus the detected
field along an edge produced by a change in surface slope may be modelled as
the sum of scattering from two populations with different densities (6.3) plus
an additional contribution z,, to describe any specular scattering from either
surface.

ni n2
Z= Ezl,' + E 22, + 2sp + Zsn (67)

=1 j=1
The above discussion assumes the incidence angles ¥; and ¥; are both pos-
itive and are less than 7 /2. When the incidence angle goes below zero, layover
results, whilst when it is greater than 7 /2, radar shadowing occurs. The amount
of layover and shadow in an image depends on the look angle. At small look
angles there will be more layover and less shadow while at large look angles there

will be more shadow and less layover.

6.1.1.2 Layover

Figure 6.1 shows how different regions of the surface contribute to range gates
in a region of layover [10, 37]. Within the region of layover, range gates 2-5 in
Figure 6.1, the total backscatter will be the result of scattering from the slope
causing the layover (Surface 2) and the slopes in front of and behind it (Surfaces
1 and 3 respectively). This results in dj, the illuminated length normal to the
beam per resolution cell, being greater over the region of layover than to either
side of it.

Let dyi, = der/tan¥y, dii, = dsr/ tand; and dij, = d,r/tanvs. Within the
region of layover (range gates 3 and 4) dy = di, + dii, + dqi,, whilst in front of
and behind it (range gates 1 and 6) dy = di, and dii, respectively, and in the
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Illumination N0y

Figure 6.1: Example of imaging geometry resulting in layover. The regions
on the surface contributing to each range gate are indicated by shading.

transition regions entering and leaving the region of layover (range gates 2 and 5)
diy will lie in the ranges dii, < di < dq, +di, +dii, and dgy, < dy < dig, +di, +di,
respectively. This increase in illuminated length, coupled with the fact that
specular scattering will occur if ¥, is small, causes the received power from
regions of layover to be much greater than that in adjacent areas in an image.
Thus layover is indicated by large changes in intensity. As layover is the result
of scattering from three regions, pixel values along edges of regions of layover
need to be modelled as the result of scattering from three populations.

The large changes in gradient associated with layover effects may also al-
low strong secondary scattering (double bounce) to occur; these effects will be
strongest when the surface facets producing the secondary scattering lie at right
angles to each other. However, due to the additional range delay secondary scat-
tering induces, such effects will only appear after the region of layover (range
gates 5 and 6). Thus these effects only need to be included in our model for
pixel values along the trailing edge of the region of layover.

Combining all the above effects the detected field along the leading edge of
a region of layover is given by

n n2 na
Z=Zzlj+zz2)+233j+zsp+zsn (68)
=1 j=1 i=1

where z,, represents specular scattering. Likewise the detected field along the
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trailing edge of a region of layover is given by

ni n2 n3
Z=221’-+222,+223j+Zap+zac+za'n (69)
J=1 j=1 i=1

where z,. represents secondary scattering.

6.1.1.3 Radar shadow

Where the incidence angle is greater than 7 /2 the radar beam does not intercept
the surface. This continues to be the case until the surface once again comes into
line of sight of the beam. Over this period several range gates may have been
passed without any backscatter return; this produces a region of radar shadow
where all that is detected is the system noise. Thus along an edge bounding a
region of radar shadow the detected field is given by

ny ’
Z = Z Zi, + zsn (6.10)
J=1

Often the leading edge of a region of radar shadow will correspond with the
trailing edge of a region of layover. The detected field along such an edge may
be described by (6.9) except with the sum in 23, removed

ny ny
Z= E 2, + Z 22, + Zsp + 25c + 24 (6-11)
j=1 J=1

In this case secondary scattering may appear in the region of radar shadow.
Where the leading edge of a region of layover corresponds with the trailing edge
of a region of radar shadow the sum in z;, in (6.8) disappears and the detected
field is given by

n2 ns
Z = Z z2, + Z z3; + 2sp + Zsn (6.12)
1=1 J=1

When the surface in front of the region causing layover is in shadow no secondary
scattering will occur. Over mountainous terrain an image may consist entirely
of regions of layover and radar shadow. The detected field along edges is then
described by

ny
Z = E 29, + Zep + Zsn (6.13)

=1

All of the above expressions for the detected field along an edge can be seen
to be special cases of the general expression given at the beginning of the chapter
for the detected field along an edge (6.1), with M at most equalling three. The
statistics of the intensity arising from (6.1) are analysed in the next section.
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6.2 Intensity statistics along edges

6.2.1 Characteristic function of the intensity

When speckle is fully developed in each population contributing to the detected
field along an edge, each independent scattering contribution can be treated as a
circularly symmetric complex random variable. Assuming that the specular and
secondary scattering contributions and the system noise term are also circularly
symmetric random variables with respective amplitudes a,c, a,p and a,n, using
the Hankel transform the detected field expressed by (6.1) will then have
characteristic function

M
87 (w) = [ (o (VAN™ (o (a)) (Jo (@se)) (Jo (am))  (6.14)
=1
where p; = |2|® represents the SCS of scatterers in the i’th population and

Jo (z) is the zeroth-order Bessel function of the first kind.

The birth-death-immigration process adopted in Chapter 3 and [29] to model
fluctuations in the number of independent contributions from a single popula-
tion, can also be used to model the number of independent contributions n;
from each of M populations. It will be assumed that each n; in (6.14) is con-
trolled by an independent birth-death-immigration process which results in it
having a negative binomial distribution (3.70) with mean pu,; and order param-
eter v;. Averaging over the n;’s and normalising the SCS contributions p; by
Pn, from (3.75) the expected value of the characteristic function is given by

87) =] 1+ 22 (1= (n( ZN] ™ 90 @us) (o ()} 0 (auns)

=1 Vi Hn
(6.15)
Substituting the series expansion for Jo(z) defined by (F.1) into (6.15) and
assuming the total mean number of scatterers is large, i.e., u, — oo, the char-
acteristic function of the detected field tends to

M pi {piyw?] ™"
&z (w) — H 1+ —a (Jo (aspw)) (Jo (ascw)) (Jo (asnw))  (6.16)

The characteristic function of a circular symmetric complex random variable
z whose intensity |z|? is K-distributed with mean g and order parameter v is
given by [29)

e
3, (w) = [1 + W] (6.17)

Therefore from (6.16) it can be seen that the contribution from the i’th popu-
lation to the detected field is K-distributed in intensity with mean p; (pi) and
order parameter v;.
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6.2.2 Intensity moments

The pdf of the intensity of the detected field may be derived from the charac-
teristic function (6.16) using the inverse Hankel transform (F.11)

s =3 [ #2(0)d0 (wVT) wis (6.18)

Solutions to this integral for the case M = 1 and a,, = a,. equalling a con-
stant are discussed in [17, 29]; i.e., specular and/or secondary scattering of the
same constant amplitude with a homogeneous K-distributed background. This
equates to the situation along an edge between a region of layover and a region
of radar shadow (6.13).

Although it has not been possible to derive an analytic solution to (6.18) in
the general case the intensity will have mean

B =Bl + (afp> + <03c> + (af,,> (6.19)
where
M
e, = Y pilpi) (6.20)
i

is the mean intensity of the field Zy due to scattering from the M populations but
excluding the specular and secondary scattering contributions and the system
noise. In addition, the intensity moments can be generated using the results in
Appendix D, or by repeatedly differentiating the characteristic function of the
detected field (6.16) and using (F.12).

By substituting the intensity moments of each of the M populations given
by (3.54) into (D.1) the intensity Io of the field due to scattering from the M
populations will have moments

m ky ka—2 m‘

m — [} °
Iy = m! hz::O k,z_-:omkg,;o CY Ty S X (6.21)
T(m—ki+0n)BT (k1 —ky+1)B? T(km-1+vm_1)Byl
T (1) T (v?) T (vpm)

where B; = p; (p:) /vi. These are the moments of the product of a unit mean
exponentially distributed random variable and the weighted sum of M indepen-
dent gamma distributed random variables where the ¢’th random variable has
mean (p;) order parameter v; and weighting p;. Thus, in accordance with the
multiplicative model (3.37), the intensity Io is given by the product of a unit
mean exponential speckle process and the imaged SCS due to scattering from
the M populations given by

M
Yo=)_ pipi (6.22)
1=0
and which has characteristic function
M

w) = _Ipi(pi)w] ™
or, (@) =1 [1- 2R ] (6.23)
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The multiplicative model for the intensity still applies because speckle is fully
developed in each population and the total number of scattering contributions
{n is large. The fact that scatterers are from heterogeneous populations has no
effect on this result.

Assuming that only the phases of the specular and secondary scattering
contributions are random, from (D.1) the field given by Z; plus the specular
and secondary scattering contributions has normalised intensity moments given
by

(m) _ Z m 5 2y
d T (14 7e + Tsc) E_:o 2o (m = k1)l (ky — k2)lka! (m — ky)! (k1 ka)! ™ °
(6.24)
where r,, = a2,/u1, and r,e = al./p1,. When py, is much greater than the
intensity of both the specular and secondary scattering contributions, they will
both have negligible effect on the total intensity I whose distribution will equal
that of Jo. When pj, is much less than the intensity of either the specular
or the secondary scattering contribution but is much greater than the other,
the norma]ised intensity moments tend to unity and the intensity to a constant
equalling a or a?, depending on which is dominant. When pj, is much less

than the intensxty of both the specular and secondary scattering contributions
the normalised intensity moments will tend to

! m rm_kl rkl
I = - i R 6.25
(1+rap+rac)m k12=0( kl (m—kl)'kl‘ ( )
which equals
m 2 2m - 1)(2m - 3)...3.1
1m) = 2m( TZt):( )(m! ) (6.26)

when the specular and secondary scattering contributions have equal amplitude.

6.2.3 The effect of system noise

The effect of system noise on the detected intensity has not yet been considered.
It is normally assumed that the real and imaginary components of the system
noise are independent and Gaussian distributed with the same variance o2,
and zero mean. The system noise is then exponentially distributed in intensity
and is most easily represented as a constant noise term (a2,) = 202, added
to the imaged SCS. This means that system noise is indistinguishable from a
contribution from a scatterer population which has a constant imaged SCS of
the same magnitude, and is the reason why an image appears speckled with
constant imaged SCS when no signal is detected in regions of radar shadow. For
an airborne SAR, but not for a spaceborne SAR, we would expect the mean
backscatter to system noise ratio to be large and the effect of the latter can be
ignored except over regions of low backscatter and radar shadow.
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6.2.4 Statistics of the imaged SCS

In the remainder of this section the statistics of the imaged SCS due to scatter-
ing from M populations will be analysed to determine how much it differs from
the imaged SCS due to scattering from a single population. The characteristic
function of the imaged SCS given by (6.23) has the same form as the char-
acteristic function of the average of intensity values sampled from exponential
populations with different mean values discussed in Section 4.1.1. When M = 2
and 1, and v, are integers, the pdf of the imaged SCS is given by (C.1). More
generally, the normalised moments of the imaged SCS given by differentiating
the characteristic function are

W =1+¢ (6.27)
T =143g42¢s (6.28)
T = 1+ 6¢, + 3¢2 + 8¢ + 6q4 (6.29)
etc, where
¥ (pi)*
% = E i JF=T (6.30)
=1 #Io

The normalised moments lie between those of gamma distributed random vari-
ables with order parameters MU and vmin, where ¥ = (v; +vm)/M and
Vmin = min (v;). This is because

1
T S S 43 (6.31)
(MV)k ! Vmiri

The normalised moments tend to one, i.e., constant imaged SCS, when there are
no underlying fluctuations (1; — o), as we would expect.

The normalised moments will tend to those of a gamma distributed random
variable with order parameter M7 when the contributions to gx from different
population are equal. This will occur under a number of conditions

1. When there is an equal mean proportion of scatterers from each population
and the mean SCS of scatterers from a population given by (p;) is inversely
proportional to the variance in their density given by 1/u;, i.e., when p;
and {p;) /v; are constant. ¥/py, will then equal v;/ (p;).

2. Along an edge where there is a change in texture but none in intensity and
the mean proportion of scatterers from a population is inversely propor-
tional to the variance in their density, i.e., when pr, = (p;) and p;/v; is
constant. MV will then equal v;/p;.

3. Along an edge where there is a change in intensity but none in texture and
the mean proportion of scatterers from a population is inversely propor-
tional to its mean SCS, i.e., when # = v; and p; (p;) is constant.
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When the contribution to the gx’s from the i’th population is much greater
than that from all the others, i.e., when

Eiank ok (on\E
LA 4] ffi’l) (6.32)
Ve VJ'

for all j # ¢, the normalised moments will tend to those of a gamma distributed

random variable with order parameter v;. This will occur from a combination
of

1. The majority of scattering coming from the ¢’th population (p; 3> p;), i.e.,
there being no edge present.

2. The mean SCS of scatterers from the i’th population being much greater
than the mean SCS of scatterers from other populations ({p;) > (p;)).

3. The variance in the density of scatterers from the ¢’th population being
much greater than the variance in the density of scatterers from other
populations (v; € v;).

6.3 Measurement of intensity statistics along edges

The above analysis indicates that along many types of edge in SAR images the
imaged SCS will have moments similar to if not exactly the same as that of
a gamma distribution. However, due to speckle this can only be checked by
indirect measurement of the statistics of the intensity which we would expect to
be K-distributed if the imaged SCS is gamma distributed. Measuring intensity
statistics along edges involves locating their exact position, and taking samples
along them. Locating the exact position of edges in speckle is not always simple.
In addition, due to the one dimensional nature of edges, only small samples can
be taken and sampling errors will be large. Thus rather than using sample
moments to check statistics, the Kolmogorov-Smirnov test was used to test the
degree of fit of edges to K and exponential distributions. Measurements were
carried out along twelve 100 pixel long edges selected from a RSRE X-band
airborne SAR image (single-look intensity). All of the edges consist of a simple
transition in intensity and are shown in Figure 6.2. They are all due to changes
in vegetation cover except the last two, which show the boundary between a
runway and vegetation (grass).

For each edge its exact position was located as best as possible and pixel val-
ues were sampled along it. The Kolmogorov-Smirnov test was then used to find
the K-distribution which best fitted the samples. Table 6.1 lists the mean and
order parameter of the K distribution which best fitted the samples, the mean
of the exponential distribution which best fitted the samples and the degrees of
fit. For comparison with the parameters of the best fit K-distribution, the mean
and order parameter were also estimated directly from the data (see Chapter 4).
Only K-distributions up to order 99 were fitted; for high order parameters the
K-distribution is indistinguishable from the exponential distribution.
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Figure 6.2: Edge features from a RSRE X-band SAR image (100 x 100 pixel
subimages).
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Profile = K-distribution Exp. dist. Estimates
m v it 7 fit Y v
556.4 18 0.996 536.8 0.993 597.5 9
1020 95 0.990 1012 0.990 1036 1000
775.5 2 1.000 656.2 0.587 727.1 3
626.8 8 0.682 572.6 0.608 558.5 38
9845 4 0.985 899.6 0.735 9754 4
1310 2 0.999 981.6 0.766 1142 4
775.1 93 0.995 770.8 0.996 740.7 35
822.2 99 0.515 818.8 0.530 746.0 1000
986.5 9 0.957 905.4 0.935 1435 2
909.1 4 0.981 810.7 0.720 889.2 8
305.0 16 0.964 299.7 0.904 315.7 10
498.4 99 0.524 495.6 0.534 435.9 1000

DL ©0o-10 otk Wi+

Table 6.1: Best fit of samples from profiles along edges, to K and exponential
distributions using the Kolmogorov-Smirnov test. For each profile the table
lists: the mean and order parameter of the K-distribution which best fitted
the samples and the degree of fit, the mean of the exponential distribution
which best fitted the samples and the degree of fit, and the mean and order

parameter estimated from the average intensity and mean normalised density
respectively.
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All profiles gave a good degree of fit (> 0.5); for all but three (4,8,12) the
fit was very good (> 0.95). Four profiles (2,7,8,12) fitted exponential distribu-
tions better than K-distributions. As expected, profiles which best fitted K-
distributions with high order parameters (> 10) gave a comparable degree of fit
to an exponential distribution, while profiles which best fitted a K-distribution
with low order parameter did not give as good a fit to an exponential distribu-
tion.

Except for profile 9 the mean of the best fit distribution never varied from
the mean calculated from the sample moments by more than 16%. For profile 9
there was a large difference due to there being a point target 15dB brighter
than the mean intensity lying along the edge. However as this only involved
a few pixel values it had little effect on the overall fit of the profile; using the
Kolmogorov-Smirnov test with a sample size of 100 a maximum deviation of 0.05
(5 pixels) from the fitted cumulative distribution function represents a degree of
fit of 0.95, while a maximum deviation of 0.15 (15 pixels) represents a degree of
fit of 0.05. For most profiles the estimated mean was smaller than the mean of
the best fit distribution.

6.3.1 Measurements along linear targets

Knowledge of intensity statistics along edges is primarily required for detecting
linear targets. To determine whether such features can be described by K-
distributions the above measurements carried out along simple edges were also
carried out along the six linear targets making up the three features used for
template matching in the last chapter (see Figure 5.9).

For each of the features A to C the longer linear target making up the ‘T
junction’ intersect will be referred to using the subscript one, i.e., A.1, B.1 and
C.1, while the shorter one will be referred to using the subscript two,i.e., A.2, B.2
and C.2. Each of the linear targets is much brighter than the extended targets
to either side; radar shadow is also apparent along the trailing edge of targets
A.l and C.2 (near range is towards the top of the images shown). All three
features represent some form of boundary between fields. In the region where
the image is taken (Wiltshire, England), fields boundaries are most often hedges
or lines of trees; though they could be walls or fences in this case. As the RSRE
X-band SAR has a very large look angle it is likely that specular scattering, but
not layover, is significantly adding to the brightness of vertical features [4]. As
these bright features are more distinctive than simple edges they are more easily
located and we can be more certain that the profiles are correctly sampled along
them rather than over the extended targets to either side. As already noted
in the last section, to a good approximation we expect the imaged SCS to be
gamma distributed, and thus the intensity to be K-distributed, when scattering
results from several populations one of which (the hedge ?) is radiometrically
much brighter than the others. Here we are ignoring any specular scattering
component.

The results of measurements are listed in Table 6.2. Apart from profile
C.2 a very good fit was found (> 0.9). One profile best fitted an exponential



106 CHAPTER 6. STATISTICS ALONG EDGES

Profile = K-distribution Exp. dist. Estimates
7 v fit 7 fit L v

Al 6648 79 0.998 6656 0.997 6619 1000

A2 3409 95 0.912 3394 0.918 3031 1000
B.1 3081 3 0.993 2650 0.658 2838 4
B.2 4887 35 0.998 4828 0.997 4643 6
Cl1l 12390 3 0.991 10910 0.543 12200 3
C.2 4571 96 0.171 4540 0.173 4884 4

Table 6.2: Best fit of samples from profiles along thin linear targets, to K
and exponential distributions. The parameters listed for each profile are the
same as those in Table 6.1.

Profile = K-distribution Exp. dist. Estimates
K v it © fit I v
al 4055 99 0.959 404.9 0.964 359.8 1000
a2 665.7 93 0.936 659.6 0.937 630.1 1000
b.l 501.2 7 0.981 457.1 0.963 441.7 6
b.2 1058 99 0.783 1051 0.788 918.2 1000
cl 5253 4 0.958 437.1 0.885 4434 7
c.2 4853 95 0.711 481.4 0.713 441.4 1000

Table 6.3: Best fit of samples from profiles parallel to linear targets over
extended targets, to K and exponential distributions. The parameters listed
for each profile are the same as those in Table 6.1.

distribution (A.2), whilst the others best fitted K-distributions. The mean of
the best fit distribution never varied from the mean calculated from the sample
moments by more than 12.5%. In general the estimated mean was smaller
than the mean of the best fit distribution. Profile C.2 which did not fit any
distribution was found to contain two point targets. Unlike profile 9 in Table 6.1
the number of pixels involved was sufficient to affect the fit.

6.3.2 Comparison to measurements over extended targets

As a control test on the method used to sample pixel values along edges and
linear targets, the same methods were used to sample pixel values from the
extended targets to either side of the linear targets shown in Figure 5.9, along
profiles parallel to but displaced about ten pixels from the targets. The fit of
the profiles to K and exponential distributions was then tested. Table 6.3 gives
the results.
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All the profiles gave a good fit (> 0.7) to either an exponential distribution
or a K-distribution. However, no near perfect fits (> 0.99) were found while
half the profiles along edges or linear features fell into this category. This is
surprising and indicates that the regions to either side of the linear targets are
not as homogeneous as we thought. Though the analysis in Section 6.2 indicated
that the statistics along edges will often be like those of a K-distribution, we did
not expect them to be closer to the statistics of a K-distribution than statistics
measured over extended targets.

6.4 Summary

In this chapter:

¢ The model for intensity statistics over extended targets described in Chap-
ter 3 has been extended to the case of intensity statistics along edges and
thin linear targets.

e The physical mechanisms generating edge features were analysed in terms
of how they effected the detected field. The mechanisms include changes in
surface type and cover, and terrain effects occurring in the range direction;
azimuth effects were not considered.

e Assuming a rectangular system response, the detected field along an edge
was shown to be expressible in terms of sums of random contributions from
different scatterer populations plus contributions representing specular and
secondary scattering, and system noise (6.1).

e The statistics of the intensity resulting from (6.1) were derived. Assuming
the number of scatterers from each population is controlled by a birth-
death-immigration process, the imaged SCS along an edge is given by a
weighted sum of gamma distributed random variables, each one of which
represents scattering from a single population.

¢ The moments of the imaged SCS resulting from it being a weighted sum of
gamma distributed random variables were generated. Under certain con-
ditions the moments were similar to those of a single gamma distribution.

e Measurements carried out on intensity values sampled along edges and lin-
ear targets, and over extended targets in a RSRE X-band SAR image gave
empirical confirmation of some of the results. Measurements along edges
bounding regions of layover and radar shadow have yet to be undertaken.

o Using the Kolmogorov-Smirnov test, edges and linear targets were found
to fit K-distributions with a range of order parameters. In some cases the
fit was better than that over extended targets. This has not been fully
explained.



Chapter 7

Edge detection

Edge detection is a key process in the analysis of SAR images. Prior detection
of the edge structure of an image is crucial for a number of image analysis
tasks, e.g., segmentation, classification and image map matching [51, 62]. In this
chapter the detection of edges in SAR images using the local operator approach
is investigated. As in Chapter 6 we define an edge as a boundary in an image
across which a transition in mean intensity or texture occurs. The detection of
intensity edges will be concentrated upon. We shall once again initially limit
ourselves to the simple image model already introduced in Chapter 5 before
considering the effects of correlated and K-distributed data in latter sections of
the chapter.

In Section 7.1 the local operator approach to edge detection is described
and an outline is given of the general procedure for identifying the most suit-
able operator for detecting edges in a image with specific noise properties (e.g.,
speckle). An overview of available operators for detecting edges in SAR images
is then given in light of this in Section 7.2. Intensity edges may be detected by
measuring the ratio or the difference of the mean intensities in adjacent regions
of an image. The ML estimates of these measures under the simple image model
are derived in Section 7.2.1.1, and are found to be respectively given by the
ratio and difference of the average intensities in the two regions; both of these
estimates correspond to operators previously used for edge detection in SAR
images [57]. The distributions of the values output by these operators under
the simple image model are analysed in Sections 7.2.1.2 and 7.2.1.3. Only the
ratio operator acts as a constant false alarm rate (CFAR) edge detector; the
false alarm rate of the difference operator increases with image brightness. This
dependence can be removed by normalising the difference in average intensity
between two adjacent regions by the sum of the mean intensities over the two
regions. This normalisation factor must be estimated. The ML estimate of
the sum of the mean intensities is given by the sum of the average intensities
previously used to estimate the difference in mean intensity. However, it turns
out that the operator given by the difference in two average intensities divided
by their sum is equivalent to the ratio operator. Thus further analysis only
needs to concentrate on one of these operators. The ratio operator is the obvi-
ous choice as its output distribution under the simple image model is already

108
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known. Before looking at the ratio operator in more detail a variety of operators
that have previously been proposed for edge detection in SAR and which are
based on measuring image heterogeneity are described in Section 7.2.2, along
with reasons why they are considered to be unsuitable.

By extending the analysis given in [57] the performance and limitations of
the ratio operator are more fully determined in Section 7.3 including (a) the
general conditions under which the operator performs as a CFAR edge detector;
(b) the detectability of edges as a function of scale under the simple image
model; and (c) the performance of the operator when the simple image model
does not apply. In Section 7.4 various problems encountered in interpreting
edges detected at different scales are discussed. The analysis is confirmed by
measurements carried out on real and simulated data.

7.1 The local operator approach to edge detection

The local operator approach to edge detection involves applying an operator over
aregion in an image to estimate whether a transition in mean intensity or texture
occurs within it. An edge image is generated by moving a window defining a
region of interest over an image; at each position the operator is applied over
the window. The output of the operator is assigned to the pixel in the edge
image which spatially corresponds to the pixel in the original image the window
is centred over. Finally, in most cases, the edge image is thresholded to produce
an edge map; this is not the case with the Marr Hildreth operator discussed in
Section 7.2.2.2 where the edge map is defined in terms of zero crossings. Pixels
whose values pass the threshold are referred to as edge pixels. When interpreting
the edge map it must be borne in mind that the representation it gives does not
necessarily imply that an edge actually passes through any given edge pixel,
only that an edge has been detected within a window centred on it. Because the
edge may lie anywhere in the window, edges in the edge map can be as thick as
the window used to detect them.

Identifying the most suitable operator for detecting edges in an image with
specific noise properties involves several stages; (a) determining how an edge
is manifested in terms of the parameters describing the underlying image, (b)
determining what measures involving these parameters may be used to detect the
edge, (c) determining the optimal operators for estimating these measures from
image data, and (d) analysing and comparing the performance of the resulting
operators to determine which is the most suitable edge detector. This last stage
involves checking that the operator meets certain general edge detection criteria,
namely:

1. There needs to be a well defined test (e.g., threshold) for checking whether
the value output by the operator indicates an edge.

2. This test should lead to a high probability of detecting true edges and a
low probability of false alarm (PFA).
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3. To allow the same degree of credibility to be attached to each edge detected
the PFA should be constant over the image (the CFAR criterion).

4. There must be a means for combining edges detected at different scales
into a single well defined edge map, i.e., one with thin connected edges.

The first three criteria concern how edges are detected, whilst the last concerns
how detected edges are interpreted.

Operators for detecting edges within a window fall into two distinct classes

1. Those which involve splitting the window into two equal halves along an
axis and testing for the presence of an edge oriented along the axis by

measuring the disparity between the two halves in terms of the underlying
image parameters.

2. Those which involve measuring the heterogeneity of the whole region
within the window. By their very nature edges correspond to hetero-
geneous as opposed to homogeneous areas.

Operators from the latter class which we shall term ‘heterogeneity’ measures,
are independent of edge orientation, whilst those from the former class which
we shall term ‘disparity’ measures, are dependent on edge orientation. Unless
edge orientation is known a priori, to detect all possible edges within a region
operators from the former class have to be applied over several windows each
split at a different orientation. The values output at each orientation are then
combined to give an overall measure of the presence of an edge. The range of
orientations needed to do this depends on the shape of the window. Using a
square window horizontal, vertical and two diagonal orientations are normally
needed [57], whilst a thin rectangular window split along it longer side may only
need to be oriented horizontally and vertically to detect all edges [61].

Changes in mean intensity and texture may take place over a variety of
scales. A strong (high contrast/abrupt) edge may be detectable over a distance
of a few pixels, whilst a weak (low contrast/gradual) edge may only be detectable
over tens or even hundreds of pixels. Thus to detect all the edges in an image

operators need to be applied over a range of scales (i.e., different sized windows)
as well a range of orientations [18].

7.2 Operators for detecting edges in SAR images

We shall first concentrate on edge detection operators which are based on mea-
suring the disparity between two half windows.

7.2.1 Disparity measures

The estimate of disparity output by an operator should be optimal, i.e., the
maximum likelihood estimate, when the axis along which the window is split
lies directly over an abrupt edge separating two homogeneous regions. The pixel
values in each half window will then be sampled from a single region. When this
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is not the case pixel values in at least one of the halves will be sampled from
both regions.

Assuming intensity is K-distributed adjacent regions of an image may differ
in terms of their mean intensity or their order parameter which is a measure of
texture. The disparity between two mean intensities can be measured by either
taking their ratio or their difference. Due to the infinite range of values the
order parameter can take, the disparity between two order parameters is best
measured by taking their ratio or the difference in their logs.

As already seen in Chapter 4, ML estimates involving K-distributed random
variables are not easily derived. Therefore we shall once again limit ourselves
to the simple image model and determine the ML estimates for the ratio and
difference of the mean intensity of adjacent regions which confirm to the model.
Such an image contains no texture and we will not pursue texture based edge
detection any further in this chapter. However, the effect of texture on the
detection of intensity edges will be considered in Section 7.3.3.

7.2.1.1 ML estimates of the ratio and difference of mean values

Let z,,...,2,, and y,...,¥n, be two sets of pixel intensity values each sampled
from a homogeneous area with unknown mean in a single-look image. These
values may be taken to represent the pixels sampled from the image by two
halves of a window. Even though the number of pixels sampled by each half
window will be equal, for generality we shall initially assume that n, # n,.
When the simple image model applies the likelihood that the z;’s have mean p,
and that the y;’s have mean p, is given by

nz e% ny e‘-T:i
F(“z,'uy) = H (71)
=1 Kz =1 Hy

For any function g of p; and g, the estimate § of g which maximizes the like-
lihood, occurs where the first derivative of the log-likelihood L = In (F) with

respect to g given by
dL 0L Opr ., OL Op,

dg ~ Ops Og ' Ouy Og
equals zero. The partial derivative of L with respect to p. is given by

oL _ n- (—“- - 1) (7.3)
Opz Pz \Hz

(7.2)

where Z is the average intensity of the z;’s given by (4.3). As the simple im-
age model is already assumed this average intensity gives the ML estimate of
the mean intensity p; of the z;’s (see Chapter 4). The partial derivative of
L with respect to g, and ¥ are similarly defined. The first derivative of the
log-likelihood with respect to g will then equal zero when

ne (T Opr  ny [ ¥ ou
-— __1) it .___1 __y=0 7.4
Mz (uz 0g Ky <py ) dg (7.4)
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When g is defined as the ratio of the mean intensities pz/py, its partial
derivatives with respect to p, and p, are given by

dg 1
= — 7.5
Ops 1y (7.5)
and 5
g —Hz
5 = — 7.6
Oy l‘% (7.6)

Substituting (7.5) and (7.6) into (7.4) gives

2 7
n —-—1>=n — -1 7.7
”(u: ”(#y ) (.1

Setting the ML estimate of the ratio of the mean intensities g to equal g = p. /p,,
and rearranging terms gives

~ [ By ny(_#y))_
T4 A(1-ZE) ) == 7.8
g(y L2 Yy ( )

Assuming pu, and its ML estimate § are approximately equal, the ML estimate
of the ratio of the mean intensities is approximately given by the ratio of the
ML estimates of the mean intensities

)| 8)

~ .
g=

(7.9)

<@)] 8)

This becomes an ezact equality whenever the number of independent samples
in the two sets are equal (n; = n,). Hence under the simple image model
the optimal operator for measuring the ratio of the mean intensities in two
homogeneous regions is given by the ratio of the average intensities in the two
regions.

When g is defined as the difference of the mean intensities pz —py, its partial
derivatives with respect to . and p, are given by

0g _
and
99 _ 4 (7.11)
Oy )

Substituting (7.10) and (7.11) into (7.4) gives

Ne ( z ) n i}

—|—-1)]=2{=-1 12

Bz \Hz Ly (py ) (7.12)
Which can be rearranged to give

Nylz — Nglhy = ny#—’@?— nxﬂ—"EE (7.13)

y Uz
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Assuming the ratio of the mean intensities pz/p, and its estimate Z/4 are ap-
proximately equal gives

Nyl — Nzlly = NYT — Ny (7.14)

Thus when the number of independent samples in the two sets are equal, the
ML estimate of the difference of the mean intensities is approximately given by
the difference of the ML estimates of the mean intensities

~

§=pz—pyRZT-Y (7.15)

Thus under the simple image model the optimal operator for measuring the
difference of the mean intensities in two homogeneous regions is given by the
difference of the average intensities in the two regions.

As it is the size of the ratio of the mean intensities that is primarily of interest
for edge detection, rather than whether the ratio is greater than or less than one,
the ML estimate of the ratio is usually normalised to be less than one, i.e., the
normalised ratio r is defined

—min (BT
r = min (i]’ 5) (7.16)

Likewise, the absolute value of the ML estimate of the difference in the mean
intensities is usually taken as the absolute difference is primarily of interest,

rather than whether the difference is positive or negative, i.e., the absolute
difference d is defined

d= 1|z - 9| (7.17)
The operators resulting from these estimates correspond to operators previously
used for detecting edges in SAR images [6, 18, 21, 38, 57].

To analyse and compare the performance of the normalised ratio and ab-
solute difference operators defined by (7.16) and (7.17) we need to look at the
distributions of the values output by them; in particular the relation between
edge detection and false alarm rates. When Z is given by the average of n,
independent exponentially distributed intensity values with mean p, it will be
gamma distributed with mean g, and order parameter n,. Likewise when ¥
is given by the average of n, independent exponentially distributed intensity
values with mean p, it will be gamma distributed with mean p, and order pa-
rameter n,. Thus when the simple image model applies, the distribution of the
normalised ratio and absolute difference operators are given by the normalised
ratio and absolute difference of two independent gamma distributed average

intensities.
7.2.1.2 Distribution of the normalised ratio

Following from (A.7) the normalised ratio r of two independent gamma dis-
tributed average intensities with unknown means y, and p, and order parame-
ters n, and n,, has pdf

f'r (Tlurnuya Ny, ny) =
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where 8, = pz/nz and B, = py/n,. This distribution is related to the variance
ratio or F-distribution [1, 49]. Letting the ratio of the unknown mean intensities
pz/py = R (the ratio we are trying to estimate) the pdf of the normalised ratio
may be defined solely in terms of R and the number of independent samples n,
and n,

T (n +1ny) (g22)™ A (Rr-:f:-) " 1
I‘(nx)I‘(ny) (1+ ﬁ%‘)ﬂz‘*‘ﬂu (1 + RT#) nztny | p
’ ’ (7.19)

In terms of setting edge detection and false alarm thresholds the cdf of the
normalised ratio is of more importance, it is given by

fr (TIRa Nz, ny) =

pr (r|R, nzyny) =

Cnetmy) (| (RE)” . (BR)™ 11
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ny—-k-1 Nx
= .20
+kz—%( )( 1) ng+ny,—k—1 (7.20)

When the number of independent samples making up the two averages are
equal, as will normally be the case in edge detection, the pdf of the normalised
ratio is given by [57]

£, (B, m) = ) [ (&) +—@—]} (1)

CE)? L1+ F)™ 1+ R

and its cdf is given by

pe (r|Ryn) =
T (2n) nl ( n—1 ) _1yn—k-1 2-— (1 + %)"(2"“"“1) _ (1 + Rr)—(?n—k—l)
T (=1) rp—

(7.22)
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Figure 7.1: Pdf of the normalised ratio of two gamma distributed average
intensities with means g, and g, and order parameter n = 10, where the
edge ratio R = p./p, = 1,2,4,8.

where n; = n, = n. In addition, when no edge is present, i.e., u; = p, and
R =1, the normalised ratio has pdf

_ gz L@n) 2
fr(r|R=1,n) Ty as™ (7.23)
and cdf
_ _ 2I'(2n) Rfn-1 neko1 1 — (1 4 1) (Gn—5-1)
wetn=tn = TERE (75 o G
(7.24)

This defines the probability of false alarm for the normalised ratio under the
simple image model, i.e., the probability that the output of the operator will
be less than r when no edge is present. This PFA depends only on the size of
the window. Thus assuming the simple image model applies, the false alarm
rate will be constant over an edge map generated using a single window size.
Figure 7.1 shows the pdf of the normalised ratio when R =1,2,4,8 and n = 10
(e.g., a 5 x 5 window split into two equal halves by a single pixel wide line). As
the edge ratio R increases the distribution of the normalised ratio becomes more
separable from the distribution when no edge is present (R = 1).

Figure 7.2 shows the result of applying the normalised ratio operator to the
SAR image shown in Figure 3.1 using a 9 X 9 window.
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Figure 7.2: The result of applying the normalised ratio operator to the SAR
image shown in Figure 3.1 using a 9 X 9 window, (a) the minimum ratio over
horizontal, vertical and two diagonal orientations shown on a —log scale, (b)
after thresholding at min(r) = 0.5.

7.2.1.3 Distribution of the absolute difference

Following from (A.4) the absolute difference d of two gamma distributed average
intensities with unknown means p, and p, and order parameters n; and n, has

pdf
fa(d|pz, ,“y’nmny) =
~(d4z - - ~(d+=z
/°° 6_13:_2 (d+z)"="" ePv g1 + ePs gn="1 e—(75|r—'l (d+z)™!
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I'(nz)T (ny) Bz* By* ,‘?;"0 k (nz +ny ) a
—d ny—-1 n —1 d k
+eh g "o |T(netny—k-1) (5) (1.25)

where 8, = pz/nz, By = py/ny and 1/a = 1/B:+1/B,. The cdf of the absolute
difference is given by

Pd (| iz pyy Ny y) =

d an=tny—1 —q Pzl . —1 d\*
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When the number of independent samples making up each average is equal
the pdf of the absolute difference is given by [57]

a?n-1 =4 =\ n_1 d\*
=————(e? B —k- pud
(7.27)

and its cdf is given by
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where n; = n, = n. In addition when no edge is present, i.e., p = p, = p, the
absolute difference has pdf

¥ " n-1 2d\ *
fa(dlp,n) = F‘fr__’z—m ’; ( ' ) F(2n—-k-1) (?) (7.29)

and cdf
J
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where 8 = p/n.

The PFA of the absolute difference is defined by 1 — p4(t|u,n), i.e., the
probability that the absolute difference is greater than ¢ when no edge is present.
This probability depends on the mean intensity as well as the window size. Thus,
for any given window size the absolute difference operator does not act as a
constant false alarm rate edge detector. Figure 7.3 shows how the distribution of
the absolute difference over a homogeneous region is broadened as mean intensity
increases

When n; = ny, = n the moments of the absolute difference may be expressed

a;\la;—l (/‘z + Ily)m
I'(n)nm™

a1 L m+1 m+1
> T@n-k-1T(m+k+1) fof*T oy (7.31)
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Figure 7.3: Pdf of the absolute difference of two gamma distributed average

intensities with the same mean px and order parameter n = 10 when p =
1,2,4,8.

where a; = /f; = (Bz/By +1)"! and o, = o/B, = (B,/B8: + 1)"'. Because
Bz/By = R, apart from the yz + py term the moments depend only on the edge
ratio R and the number of independent samples n. The effect of the p; + gy
term is to make the m’th moment of the absolute difference proportional to the
mean intensity raised to the power m. The standard deviation of the false alarm
distribution will then be proportional to the mean intensity. Thus after an edge
image generated using the absolute difference operator is thresholded there will
be more false alarms in parts of the edge map which correspond to brighter parts
of the original SAR image than in parts which correspond to darker parts of the
original SAR image. This is the reason why all edge detectors which are based
on using difference operators to estimate image gradient perform poorly on SAR
images, e.g., the standard Sobel, Prewitt and Roberts operators [6, 21, 28, 57].
The rationale behind all of these operators assumes that image noise is additive
and is independent of the mean intensity. :

Figure 7.4 shows the result of applying the difference operator to the SAR
image shown in Figure 3.1 using a 9 X 9 window. There are more false alarms
in the more intense woodland (bottom left) than in the less intense agricultural
fields (top right).

The dependence of the false alarm rate on the mean intensity can be re-
moved by normalising the absolute difference by the sum of the mean intensities.
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@)

Figure 7.4: The result of applying the absolute difference operator to the
SAR image shown in Figure 3.1 using a 9 X 9 window, (a) the maximum
absolute difference over horizontal, vertical and two diagonal orientations,
(b) after thresholding at maz (d) = T/2 where T is the average intensity over
the whole of the image.

From (7.27) the pdf of the absolute difference divided by u: + py is given by

i lap! (-4 e
fd/(u:+uy)(dl#z,#w n) = W (€°* +e°') X
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k=0 =y

k
) (7.32)

Figure 7.5 shows plots of this distribution when n = 10 and R = 1,2,4,8.

In practice as the normalising factor given by the sum of the mean intensities
is unknown, it has to be estimated as well as the absolute difference of the mean
intensities. The ML estimate of the sum of the mean intensities u; + p, is given
by the sum of the average intensities. Thus the normalised absolute difference
may be estimated using

3

Z+y

Dividing the numerator and denominator of the RHS of (7.33) by whichever of Z
and ¥ is the greater, the normalised absolute difference dp may be reformulated
in terms of the normalised ratio r

=)

do = (7.33)

)

_l—r
T 14r

0 (7.34)
This defines a one-to-one mapping between the normalised absolute difference
and the normalised ratio. Thus in terms of edge detection and false alarm rates
the two operators will have identical performance. In fact if the function g
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Figure 7.5: Pdf of the normalised absolute difference of two gamma dis-

tributed average intensities with order parameter n = 10 and edge ratio
R =1,2,4,8.

in (7.4) is set to equal [pz — py|/ (ks + py) its ML estimate turns out to be
equal to the ML estimate of pu/py given by r. Thus further analysis only needs
to concentrate on one of these operators. The normalised ratio operator is the
obvious choice as its output distribution under the simple image model is already
known (7.21).

7.2.2 Heterogeneity measures

Before looking at the ratio operator in more detail we shall briefly examine
operators that have previously been proposed for edge detection in SAR which
belong to the other class of edge detection operator referred to at the start of
this section, i.e., those which are based on measuring image heterogeneity.

7.2.2.1 Coeflicient of variation based operators

Under the simple image model the coefficient of variation of the intensity over a
homogeneous area is given by the inverse of the number of looks and increases
in heterogeneous areas (i.e. close to edges). Thus edges may be detected using
an estimate of the coefficient of variation given by [57, 60)
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Figure 7.6: The result of applying the coefficient of variation operator to the
SAR image shown in Figure 3.1 using a 9 x 9 window, (a) the output image,
(b) after thresholding at 1.5.

This operator is effectively the same as that used to estimate texture from the
second normalised intensity moment in Chapter 4. Thus it will act as a CFAR
operator when the simple image model applies but the false alarm rate will be
particularly sensitive to texture. Likewise, when used to estimate texture it
will be strongly affected by the presence of edges. Even when the simple image
model is assumed, the theoretical distribution of values output by the estimate
of the coefficient of variation operator given by (7.35) is unknown. Thus, it
is not straightforward to attach a probability of an edge being present to a
given threshold. Figure 7.6 shows the result of using the coefficient of variation
operator to detect edges in the SAR image shown in Figure 3.1. The resulting
image is very ‘blocky’, this is because a single bright pixel will generate a strong
signature wherever it lies within the processing window.

A related but slightly more sophisticated method is to use a likelihood ratio to
test whether intensity values in a region are sampled from one garnma distributed
population with mean intensity g, or two gamma distributed populations with
mean intensities p; and pp [18], i.e., whether the region is homogeneous or
heterogeneous. The likelihood ratio is given by

e#]‘""l e:élI""l)

e 01""'1 .
P=Mtter /13 (r(m)ﬁl * T B (739

l—l

where m is the number of looks and ,B_, uj/m. In the heterogeneous case it is
assumed that the two populations are in equal proportion. The mean intensities
Mo, #1 and p, are derived from the first and second moments of the data using,

#0=I’
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(b)

Figure 7.7: The result of applying the likelihood ratio operator to the SAR
image shown in Figure 3.1 using a 9 x 9 window, (a) the likelihood ratio
image shown on a log scale, (b) after thresholding at 2.

and
=T 72_.M T

ﬂz—I— Im_-H—Iz (738)
The operator performs reasonably on multi-look data but various problems ex-
ist [38, 57]. The method for deriving p; and p; assumes that I2 /TZ lies in the
range 1 + 1/m to 2 + 2/m, but this does not always occur and the likelihood
ratio cannot be determined in such cases. When ﬁ/fz is less than 14+ 1/m it
is assumed the region is homogeneous whilst when it is greater than 2 + 2/m it
is assumed an edge is present. The theoretical distribution of values output by
the likelihood ratio is unknown and hence, as with the coefficient of variation,
thresholds are not easily set. Finally, this method is much slower than other edge
detection operators over comparable window sizes because of the large number
of operations involved in calculating the likelihood ratio. Figure 7.7 shows the
result of applying the likelihood ratio operator to the SAR image shown in Fig-
ure 3.1. The resulting edge map is sparser and less ‘blocky’, than that produced
using the coefficient of variation and shown in Figure 7.6 (b).

7.2.2.2 The Marr Hildreth operator
The absolute difference operator discussed in Section 7.2.1 basically detected

edges by treating the intensity image I as a surface and then estimating the
gradient of the surface given by its first derivative VI

oI oI
VI= (%, a_y) (7.39)
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where z and y define an orthonormal basis. In terms of edge detection we are
primarily interested in the magnitude of the gradient given by

VIP = (%)2 + (%)2 (7.40)

To estimate this magnitude the absolute difference operator has to be applied
in two orthogonal orientations. Alternatively, the magnitude may be estimated
by applying the absolute difference operator over a number of orientations and
taking the maximum. Edges are indicated by ridges in the resulting image.

Edges may also be detected by looking at the second derivative of an image
in particular the Laplacian defined as

o1 91

. - 2 — c—— —_—
V-VI=Vi= oot o

(7.41)
Whereas edges are indicated by maxima in the first derivative they are indicated
by zero-crossing points in the second derivative, i.e., where the rate of change
of the gradient goes from being positive to being negative or vice versa. The
Laplacian is independent of edge orientation and is estimated over the whole of
a window. Thus it may loosely be termed a heterogeneity measure. Using a
5 x 5 window the Laplacian may be estimated by convolving the image with the
mask

i 1 o0 1 1
i1 0 -2 0 1
0 -2 -4 -2 O
1 0 -2 0 1
i 1 o0 1 1

To reduce the effect of image noise on estimation the Laplacian operator is nor-
mally combined with a smoothing filter. When this smoothing filter is Gaussian
the well known Marr-Hildreth operator results [40].

The performance of the Marr-Hildreth operator on SAR images has been
investigated in [6, 20] and will only be discussed briefly here. The zero-crossing
method of identifying edges in the output edge image guarantees that the edge
map has the desirable property of consisting of single pixel wide closed bound-
aries. However, even with smoothing a large number of false alarms are gener-
ated by the Laplacian operator and further processing is needed to distinguish
between edges and false alarms. It has been demonstrated in [6] that for multi-
look SAR data (intensity is assumed to be correlated and Gaussian distributed)
the Marr-Hildreth operator is a CFAR edge detector, and that a ‘dead’ zone
exists to either side of true edges, isolating them from false alarms. It has also
been shown in [20], that when the same edge is detected at different scales, i.e.,
with smoothing filters of different width, the edges detected do not lie over each
other; as the width of the filter increases zero crossings are shifted towards the
darker side of the edge. Despite the large false alarm rate the Marr-Hildreth edge
detector may have some use for edge thinning and linking when combined with
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Figure 7.8: The result of applying the Marr-Hildreth operator using a Gaus-
sian smoothing filter of width three pixels to the SAR image shown in Fig-
ure 3.1, (a) output image, (b) zero crossings.

other edge detectors such as the normalised ratio discussed above. Figure 7.8
shows the result of applying the Marr-Hildreth edge detector to the SAR image
shown in Figure 3.1 . The large number of false alarms and the ‘dead’ zone to
either side of true edges are clearly apparent.

Even though the heterogeneity measures discussed in this Section benefit
from being independent of edge orientation this advantage is outweighed by the
problems caused by threshold selection and texture in the case of the coefficient
of variation and likelihood ratio operators, and by the excessive false alarm rate
in the case of the Marr-Hildreth operator. Further analysis will concentrate
solely on the normalised ratio operator.

7.3 Performance analysis of the normalised ratio
operator

The most promising edge detection operator identified in the previous section
was the normalised ratio operator. This operator has been proposed by several
authors [6, 38, 57] as a means of detecting edges in SAR. The fullest explication
of the operator is found in [57). In this section the performance and limitations
of the normalised ratio operator are more fully determined including, (a) the
general conditions under which the operator performs as a CFAR edge detector;
(b) the detectability of edges as a function of scale under the simple image model;
and (c) the performance of the operator when the simple image model does not

apply.
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7.3.1 Conditions for a constant false alarm rate

The third criterion listed in Section 7.1 requires the false alarm rate to be con-
stant over the image (i.e., the normalised ratio must have the same distribution
over all homogeneous regions). Assuming the multiplicative image model (3.38)
applies this will be the case if and only if both speckle and the imaged surface
texture are strict-sense stationary process over the whole image. The average of
n statistically identical intensity values with mean p is given by

-

T=ptx (7.42)

where § and x represent unit mean speckle and imaged texture respectively,
and £x the average of n samples of their product, i.e., clutter. Given two such
averages from adjacent areas in the same homogeneous region their normalised
ratio will be independent of 2 and will only depend on £ and x. Thus if £ and x
are strict-sense stationary over the whole image the normalised ratio estimated
using a given window size will have the same distribution over any homogeneous
area.

Obviously, the conditions for a CFAR are satisfied when the simple image
model applies because speckle is then assumed to be spatially independent and
the imaged SCS is constant (na texture). The conditions for a CFAR ave i
satisfied when speckle is correlated but only so long as the correlation structure
is the same over the whole image. Because the real and imaginary components
of speckle are Gaussian its correlation structure is completely described by its
ACF, which is determined solely by the system response to a point target. The
correlation width in range, in terms of pixels, is determined by the pixel sampling
rate in range relative to the slant range resolution, i.e., the width of the range
component of the ACF. Likewise, the correlation width in azimuth is determined
by the pixel sampling rate in azimuth relative to the azimuth resolution. The
false alarm rate will no longer be constant if either the shape of the system
response, or the pixel sampling rate in range or azimuth, change over the image.
For example, the correlation width in range will vary across an image which
has been corrected to ground range. The false alarm rate will also no longer be
constant when an image contains differently textured regions. Where the ACF
of speckle is known to vary across an image due to system effects it may be
possible to design an adaptive threshold to produce a CFAR. Compensating for
different textures would be much more difficult.

Because the normalised absolute difference given by (7.33) is equivalent to
the normalised ratio operator it will operate as a CFAR edge detector under
the same condition as the normalised ratio operator. The difference of two
average intensities £ and § has variance o2 + 05 which equals (0’3_. + 03) /n
where n is the number of independent samples making up each average. Thus
the standard deviation of the false alarm rate will be constant over differently
textured regions when the absolute difference is normalised by a measure based
on the local standard deviation given by (/02 + 03 as opposed to the local mean.

Edge detection using such an operator is discussed in Chapter 9.



126 CHAPTER 7. EDGE DETECTION

7.3.2 Threshold selection and edge detectability

The cumulative false alarm distribution of the normalised ratio given by (7.24)
can be used to select a threshold for a desired PFA with a given window size,
(7.22) can then be used to determine the detectability of an edge with given
edge ratio R using that threshold.

The alarm distribution given by (7.24) only refers to a normalised ratio
estimated at a single orientation. Given normalised ratios estimated at hori-
zontal, vertical and two diagonal orientations the minimum corresponds to the
most likely value for the edge ratio R. Thus the PFA for a single orientation
pr (r|R = 1,n) needs to be related to the PFA of the minimum of the normalised
ratios estimated at all four orientations pmin(r) (*|R = 1,n). If the normalised
ratios estimated at the four orientations were independent of each other, the
PFA for the minimum ratio would be given by

Pmin(r) (TlR =1, n) =1- (1 = Pr (TIR =1, n))4 (743)

In practice as the normalised ratios are estimated over the same area they are
correlated. In [57] it is suggested that to take this correlation into account the
PFA of the minimum should be derived using

Pmintr) (TIR=1,)=1- (1= p, (r|R = 1,n))? (7.44)

Simulated data was used to check this relationship.

The normalised ratio operator was applied at horizontal, vertical and two
diagonal orientations to 5 x 5 simulated homogeneous images each generated
according to the simple image model. The distributions of the four normalised
ratios output and the minimum ratio were built up from one million such sim-
ulations each with different speckle realisations. The cumulative distributions
of the normalised ratios and their theoretical cdf given by (7.24) are plotted in
Figure 7.9. As we would expect, for each separate orientation there is a near
perfect fit between the cumulative distribution of the normalised ratio and the
theoretical distribution. The cumulative distributions only diverge when the
number of samples is small at low probabilities. The cumulative distribution
of the minimum ratio and the theoretical cdf’s given by (7.43) and (7.44) are
plotted in Figure 7.10. The cumulative histogram of the minimum ratio closely
fitted both theoretical cdf’s. For large PFA’s (> 107!) the cumulative histogram
was closer to (7.44), but for small PFA’s (< 10~2) it was closer to (7.43). This
implies that (7.43) rather than (7.44) should be used to determine thresholds
for the minimum ratio when low PFA’s are required. Note that for low PFA’s
Pmin(r) = 4p;. This is because 1 — (1 — p;)? ~ p,g when p, < 1

If the proportion of edge pixels in an image is p., a PFA of p. would yield
one edge pixel for every false alarm. To produce a low noise edge map a PFA
of p. x 10~2 or even p, X 1073 is needed. The value of p, will vary from image
to image. Assuming it to lie in the range 10~ to 103, the PFA needs to be
somewhere in the range 10=3 to 10~.

The cumulative distribution (7.22) was used to compare the false alarm
rate against the detectability of different strength edges under the simple image
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model, for a variety of window sizes. Figure 7.11 shows a plot of edge detectabil-
ity versus false alarm rate when R = 2,4, 8, 16 (see key for window sizes used).
Only the larger windows (n > 11) have a high probability (> 0.5) of detecting
weak edges (R = 2) whilst retaining a low PFA (< 1073). As edge strength
increases, windows as small as 5 X § will detect edges with a high probability
whilst retaining the same low PFA. 3 X 3 windows appear to be unsuitable for
detecting edges with a high probability whilst retaining a low PFA. This implies
that 5 X 5 is the minimum window size that should be used for detecting edges
in a single-look image with the normalised ratio operator.

7.3.3 Correlated and K-distributed intensity

When intensity is correlated and/or K-distributed it is not possible to deter-
mine analytically the distribution of the output of the normalised ratio operator
analogous to (7.21). However, in (7.21) the only parameter affecting the false
alarm rate is n, the number of independent samples making up the average in-
tensities T and 3. The coefficient of variation of the averages is given by 1/n.
This value controls how broad the distribution of the normalised ratio is and
thus how many false alarms fall below any set threshold. This suggests that by
looking at how correlated and K-distributed intensity influence the coefficient of
variation of the averages, some idea of how they alter the false alarm rate may
be gained.

For some value a > 1 the average of n correlated and K-distributed intensity
values will have the same first and second moments as the average of n/a uncor-
related and gamma distributed intensity values, i.e., their coefficient of variation
is given by a/n. By reducing n in (7.21) by a the equivalent simple image model
gives an indication of how correlated and K-distributed intensity alters the false
alarm rate. As the higher order moments of the averages may differ, care is
needed in using this method to select thresholds. When determining the PFA
it is the tails of distributions that we are interested in, thus the central limit
theorem cannot be employed to argue that distributions are the same when large
numbers of pixels are averaged.

When the pixel intensity values being averaged are K-distributed with mean
i, order parameter v and covariance Cy(Z) defined by (4.33), from (3.57)
and (4.35) the coefficient of variation of the average of a n, X n, rectangular
region of statistically identical intensity values is given by

1+2 na—1
v% = 1+2Eca(wa)(l——:) X

r wa=1

frnE e (1-2)] (149

wr=1

Figure 7.12 shows the relative increase a in the coefficient of variation of an aver-
age due to speckle being correlated (it is assumed that correlation is isotropic and
that it does not include a texture component, i.e., ¢, (z) = ¢, (z) = sinc? (z/d)
where d is the resolution in pixels). Figure 7.13 shows the corresponding increase
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in the false alarm rate under the equivalent simple image model with thresholds
set for a given PFA assuming no correlation. Even small amounts of correlation
lead to a significant increase in the coefficient of variation of an average. This
increase causes the false alarm rate to be several orders of magnitude greater
than would be the case under the simple image model. The effect is greater
when larger windows and lower PFA’s are employed.

When intensity is K-distributed with order parameter v the coefficient of
variation of the average intensity is increased by a factor 1 + % as compared
to when the simple image model applies. Figure 7.14 shows the corresponding
increase in the false alarm rate. The increase in the coefficient of variation and
thus the false alarm rate is only significant when v is small (< 10); although
the effect is not as strong as that due to correlation it can still increase the false
alarm rate by several orders of magnitude. Once again this effect is greater when
lower PFA’s are employed; window size has little effect.

7.3.4 Measured False Alarm Rates

The effect of correlation on the false alarm rate (FAR) was confirmed by mea-
surement. The normalised ratio operator was applied at different scales to 50x 50
pixel homogeneous regions extracted from ERS-1, RSRE and AIRSAR images,
and to a homogeneous 50 x 50 pixel simulated image generated according to the
simple image model.

The RSRE and AIRSAR data is single-look whilst the ERS-1 image is a 3
look fast delivery product (FDP). Figure 7.15 shows histograms of the intensity
values within the homogeneous regions extracted from the ERS-1, RSRE and
AIRSAR images. As expected the intensity values extracted from the ERS-1
image fit a gamma distribution with order parameter 3, while the intensity values
extracted from the RSRE and AIRSAR images fit exponential distributions. The
intensity ACF’s within the extracted regions were also measured and are shown
in Figure 7.16. These revealed that the ERS-1 image was equally correlated
in both range and azimuth, the RSRE image was strongly correlated in range
and but was uncorrelated in azimuth, and the AIRSAR image was slightly less
correlated in azimuth than the ERS-1 image but was more correlated in range.

The resulting edge images were thresholded at values corresponding to a
range of PFA’s under the simple image model (1073 to 107%). In each edge
map, the actual FAR was determined by measuring the proportion of pixels set
as being edges. The results when n = 5,9,11,17 are shown in Table 7.1, Over
the 50 x 50 pixel areas tested the smallest measurable FAR is 4 x 10™%. Thus,
when the simple image model applies we would expect no false alarms to occur
below an expected PFA of 104,

In the ERS-1, RSRE and AIRSAR data, the measured FAR’s were several
orders of magnitude greater than the expected PFA assuming the simple image
model applied; this discrepancy tends to increase as the window size increases
and as the PFA decreases, in accordance with the results shown in Figure 7.13.
With simulated data the measured FAR’s and expected PFA’s agreed.

The normalised ratio operator was re-applied to the ERS-1, RSRE and AIR-
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Figure 7.12: Relative increase in the coefficient of variation of an average
over an m X n homogeneous area due to speckle being correlated (m = o1y,
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ERS-1
Expected PFA %ﬁﬁl—%ﬁ for different window sizes
5x5 9x9 13x13 17 x 17
103 148 272 38.4 42.4
104 36 92 164 184
105 80 240 720 960
10-6 0.0 800 2400 800
RSRE
Expected PFA %}%ﬁ% for different window sizes
5x5 9x9 13x13 17 x 17
10—3 6.8 128 42.8 58.4
10-4 4 20 156 268
10-5 00 40 440 960
10-6 0.0 0.0 400 1600
AIRSAR
Expected PFA %;;zgtrgg %%K for different window sizes
5x5 9x9 13x13 17 x 17
10-9 27.6 74.0 92.0 100.0
104 116 392 448 348
10-35 240 2120 2320 840
10-6 800 9200 11600 800
Simulated
Expected PFA %%g% for different window sizes
5x5 9x9 13x13 17 x 17
103 0.0 1.70 0.0 0.865
10—4 0.0 0.0 0.0 0.0
10-3 0.0 0.0 0.0 0.0
10-6 0.0 0.0 0.0 0.0

Table 7.1: Expected PFA’s under the simple image model, and measured
FAR’s when the normalised ratio operator is applied to homogeneous re-
gions in ERS-1, RSRE, AIRSAR and simulated images. Measurements were
carried out over 50 x 50 pixel regions, thus the minimum measurable FAR
is 4 X 10™4; smaller FAR’s are indicated by zeros.
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ERS-1

Expected PFA h‘é'l;a—sutlﬁdl‘%%‘% for different window sizes
pecte
5x5 9x9 13x13 17 x 17

10-° .19 ag ag [
10~ 0.0 0.0 0.0 0.0
RSRE

Expected PFA %;Szg‘f:g {3‘%’2 for different window sizes

5x5 9x9 13x13 17 x 17
10-° 582 0.0 0.0 0.0
10-4 8.96 0.0 0.0 0.0

AIRSAR

—

Measured FAR for different window sizes
Xpecte

Expected PFA

5x5 9x9 13x13 17 x 17
103 119 96 20.3 55.4
10—+ 357 0.0 0.0 138
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Table 7.2: Expected PFA’s under the simple image model, and measured
FAR’s when the normalised ratio operator is applied to homogeneous regions
in ERS-1, RSRE and AIRSAR images after they had been sub-sampled. In

each case no false alarms were detected below an expected PFA of 1074,
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ERS-1

Expected PFA Measured FAR for different window sizes
xpecte

5%x5 9x9 13x13 17 x 17
103 0.4 0.8 2.4 1.2
10-4 00 0.0 0.0 0.0

RSRE
Expected PFA E—TPFKM;;:gtr:d FAR for different window sizes

55 9x9 13x13 17 x 17
10-3 04 04 1.2 2.4
10-4 00 0.0 0.0 0.0

ATRSAR
Expected PFA %F%TPW%‘% for different window sizes
55 9x9 13x13 17 x 17
10~3 20 9.2 9.6 0.0
10—4 4 12 0.0 0.0

Table 7.3: Expected PFA’s under the simple image model, and measured
FAR’s when the normalised ratio operator is applied to homogeneous re-
gions in ERS-1, RSRE and AIRSAR images using thresholds corrected for
correlation. In each case no false alarms were detected below an expected
PFA of 10~4.
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Figure 7.14: Increase in the PFA due to intensity being K-distributed when
the normalised ratio operator is applied with thresholds set for different
PFA’s (see key) under the simple image model.

SAR images using two methods to compensate for the known system induced
correlation, (a) sub-sampling, and (b) thresholds corrected according to the
equivalent simple image model discussed in Section 7.3.3. The measured FAR’s
are shown in Tables 7.2 and 7.3 respectively. Both methods lead to large re-
ductions in FAR’s. In many cases no false alarms occurred, and none at all
below an expected PFA of 10~%. Where false alarms occur in the ERS-1 and
RSRE images the measured FAR is of the same order of magnitude as the ex-
pected PFA. However, with the AIRSAR data the measured FAR’s were still
significantly higher than the expected PFA’s, particularly when correlation was
compensated for by sub-sampling. This implies that the extracted region is not
as homogeneous as it appears. The measured FAR’s were generally closer to the
expected PFA’s when correlation was compensated for by correcting thresholds
as compared to sub-sampling.

Whilst both of the above methods enable the desired false alarm rate to be
met they both lead to a reduction in edge detectability. This is illustrated in
Figure 7.17 which shows the result of applying the normalised ratio operator to
the RSRE image shown in Figure 3.1 using 9 X 9 and 17 X 17 windows, with
thresholds initially set for an expected PFA of 10~* under the simple image
model, and (a) no compensation for correlation, (b) sub-sampling to remove
correlation, and (c) thresholds corrected for correlation. Sub-sampling also leads
to an overall loss of information. If a m X n sub-sampling is required to remove
correlation, the information loss can be minimised by sub-sampling to produce
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Figure 7.17: The result of applying the normalised ratio operator to the
RSRE image shown in Figure 3.1 using 9 x 9 (left) and 17 x 17 windows
(right), with thresholds initially set for an expected PFA of 10~* under
the simple image model, and (a) no compensation for correlation, (b) sub-
sampling to remove correlation, and (c) thresholds corrected for correlation.
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m x n different sub-sampled images, applying edge detection to each of them
separately and then recombining them to recover as much information as possible
(though not all). This has been carried out on the images shown in Figure 7.17
(b). The sub-sampling actually takes place within the windows used to calculate
averages.

In a 256 X 256 edge map such as shown in Figure 7.17 we would expect to see
seven false alarms when a PFA of 10~ is set. There are significantly more false
alarms than this in the edge maps shown in Figure 7.17 (a) but there appear
to be very few, if any, false alarms in the edge maps shown in Figures 7.17
(b) and (c). Whilst both methods of compensating for correlation appear to
be successful in this respect the remaining edges in the sub-sampled edge map
suffer from edge thickening, whilst those in the threshold corrected edge map are
thinned. Edges present in the uncorrected edge map are missing from the sub-
sampled and threshold corrected edge maps, e.g., the edge defining the boundary
of radar shadow in the bottom left of Figure 3.1 and the thin linear feature to
the top right of the woodland on the left of the image.

The above results confirm that system induced correlation between pixels
has a marked effect on the performance of the normalised ratio operator but can
be compensated for using measurements of the intensity ACF. Similar results
were produced when other homogeneous regions were tested. If the correlation
is non-isotropic, as in the case of the RSRE data, edges at different orientations
may not be equally detectable.

7.4 Edge scale size and detectability

The above analysis has shown that by going a long way towards satisfying the
first three edge detection criteria listed in Section 7.1, the normalised ratio op-
erator offers a powerful potential for detecting edges in SAR data. Performance
is degraded by system induced correlation and texture. No consideration has
yet been given to the fourth criterion concerning how edges detected at different
scales are to be combined into a single well defined edge map. Problems which
arise at this stage of edge detection using the normalised ratio operator are (a)
edge thickening, and (b) multiple edges occurring within the window. These
interrelated problems are particularly acute when large windows are employed
to detect weak edges. To be able to take full advantage of the potential of the
normalised ratio operator for edge detection these problems need to be resolved.

7.4.1 Edge thickening

This is a general problem with edge detection using the local operator approach
and is apparent in the edge maps shown in Figure 7.17. As mentioned at the
beginning of Section 7.1, detected edges in the edge map can be as thick as the
window used to detect them. Edge thickening occurs when too large a window
is used to detect a strong edge. This leads to edge structures on a scale smaller
than the window size being obscured, and difficulties in relating edges detected
at different scales as they have different thicknesses. Edges need to be thinned.
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Ideally we would like to be able to thin edges down to the most probable
location of the real edge. This does not always involve thinning the edge down
to a single pixel wide line. In cases where an edge is detected over a gradual in-
tensity gradient, the location of the real edge is in fact ill defined (this illustrates
the general error of assuming that images consist of ‘flat’ homogeneous segments
separated by abrupt edges). Also, as edge signatures are often asymmetrical,
just thinning the edge down to a central line of pixels will lead to misleading
results. Attempts to thin edges detected by the normalised ratio operator us-
ing the strength and orientation of edge pixels to determine the most probable
location of the real edge have so far failed to produce satisfactory results. The
primary problem is developing a method for thinning thick (strong) edges whilst
retaining thin (weak) edges. A morphological method is suggested in [57] but
it only produces a limited amount of thinning; edges are thinned down to the
thickness of the smallest window the normalised ratio operator was applied over
(minimum = 3). Also, the method leads to some loss of edge connectivity and
holes appear within some edges.

7.4.2 Multiple edges occurring within the window

The model upon which the normalised ratio operator is based is no longer valid
when more than one edge occurs within a window. The operator should only
be applied at a given scale where no edges are detectable at smaller scales; this
strategy will also minimise edge thickening. To do this edges must be detected
in order of increasing scale. The segmentation algorithm discussed in Chapter 9
uses such a strategy when detecting edges [62].

The smallest scale edges in the image are those defining point like features.
Such features have to be much brighter than surrounding speckle peaks, other-
wise they are indistinguishable from speckle. When edges are detected for using
a n X n window, a point like features consisting of a single very bright pixel will
generate a distinctive n x n signature in the resulting edge map. Where the point
like feature consists of several bright pixels more complex signatures are gener-
ated. Accurate detection of these features is crucial for subsequent detection of
larger features, otherwise their signatures seriously confuse the interpretation of
edge maps. This is particularly the case where point like features occur close
together (e.g., in urban areas). This topic is dealt with in the next chapter.

Figure 7.18 shows the edges detected when the normalised ratio operator was
applied over a range of scales (n = 5,7,9) to a 100 x 100 pixel region extracted
from an ERS-1 FDP image of Flevoland (Netherlands). Thresholds have been
corrected to take correlation into account so that the PFA equals 10~# (i.e., there
should be no false alarms in an image of this size). Whilst strong edges are well
defined it is evident that small scale detail is obscured due to edge thickening
and multiple edges, in particular point features.

2
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Figure 7.18: (a) ERS-1 FDP image and result of applying the normalised
ratio operator using (b) 5x 5, (¢) 7x 7 and (d) 9 x 9 windows with thresholds
set for a PFA of 10~4.
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Summary

In this chapter:

Edge detection in SAR images using the local operator approach was in-
vestigated in terms of general edge detection criteria.

Intensity edges may be detected by measuring the difference or ratio of
intensities between adjacent regions. The ML estimates of these measures
under the simple image model were determined and were found to be given
by the normalised ratio and absolute difference operators.

The false alarm distributions of both of these operators under the simple
image model has previously been analysed [57]. Only the normalised ra-
tio operator acts as a constant false alarm rate edge detector, the false

alarm rate of the absolute difference operator increases with mean image
intensity.

The difference operator acts as a constant false alarm rate edge detector
when it is normalised by the mean intensity. However, it is then equivalent
to the ratio operator.

The coefficient of variation, likelihood ratio and Marr-Hildreth edge de-
tection operators were also investigated but were found to suffer from
problems of threshold selection and excessive false alarms.

The performance of the normalised ratio operator was more fully investi-
gated.

The general conditions under which the operator acts as a constant false
alarm rate edge detector were determined. The operator acts as CFAR
detector when clutter is a stationary process, i.e., when there is no change
in correlation or texture over an image.

The theoretical performance of the operator under the simple image model
as a function of scale size and edge ratio was determined. The minimum
window size for detecting strong edges in a single-look image whilst main-
taining a low false alarm rate was found to be 5 x 5. Significantly larger
windows are needed to detect weak edges whilst maintaining a low false
alarm rate.

The effect of correlation and texture (in the form of K-distributed inten-
sity) on the false alarm rate was determined. Both increase the false alarm
rate by increasing the standard error of estimates of the local mean, corre-
lation having the more significant effect. This was confirmed by measured
false alarm rates.

Two methods of compensating for correlation were investigated, sub-
sampling and correcting threshold to take correlation into account. The
latter was found to have the more beneficial effect both in terms of edge
detection and false alarm rates.
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o When applied to real images the performance of the operator depends on
the scale size of the edges being detected. Edge thickening occurs when too
large a window is used to detect strong edges this leads to small scale edges
being obscured. In addition, point targets can confuse edge detection. It
is suggested that these problems may be overcome by only detecting edges
at larger scales when no edges have been detected at smaller scales; this
would involve an initial stage of point target detection.



Chapter 8

Point target detection

Radiometrically bright point targets appear as peaks (local maxima) in a SAR
image. However, a large number of peaks are also generated by speckle. Thus,
methods are required to distinguish peaks representing point targets (informa-
tion) from speckle peaks (noise). These methods are required even when we are
not interested in the point targets themselves; as happens in many applications.
This is because point target peaks which are much brighter than speckle peaks
will confuse edge detection operators which have no knowledge of such features
(see Chapter 7). Thus, point targets need to be identified and suitably flagged
prior to edge detectors being applied.

So as to be able to predict the magnitude of speckle peaks and thus be able
to determine how bright a point target peak has to be, to be distinguishable
from speckle, the statistics of speckle peaks under the simple image model are
analysed in Section 8.1. Different approaches to point feature detection are then
considered in the light of this analysis in Section 8.2. In Section 8.3 the results

of using these methods for detecting point-like targets in an ERS-1 FDP image
are presented.

8.1 Statistics of speckle peaks

To distinguish peaks caused by bright point targets from speckle peaks we are
interested in knowing

1. In a homogeneous region of a SAR image, how intense are the maximum
and minimum values relative to the mean intensity and size of the region?

2. What fluctuations in intensity occur between a pixel and its immediate
neighbours?

In the following analysis, which aims to answer these questions, we shall limit
ourselves to the simple image model already introduced in previous chapters,
i.e., we shall assume that image intensity within a homogeneous region of a n-
look image is gamma distributed with order parameter n and that pixel values
are spatially independent.

144
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8.1.1 Distributions of maximum and minimum values

Before being able to analyse the statistics of the maximum and minimum inten-
sity within a region we need to know the general distributions of the maximum
and minimum values of an arbitrary set of independent random variables each
with known distribution.

Let 24,...,Z,, be a set of independent, positive random variables where each
z; has pdf fz, (z) and cdf p;, (z). The probability that the maximum value of
the variables is less than z is given by the probability that they are all less than
z, and the probability that their minimum value is greater than z is given by the
probability that they are all greater than z. Thus the maximum and minimum
have cdf’s

poae(2) = []psi (@) (8.1)
1=1
puin(z) = 1= [[(1-ps,(2) (8.2)
and pdf’s

J m [ ™
fmax(z) = Epmax(z)=z ij(z)Hpt.'(x) (83)

=

17y

m [ m
fain@) = pon @)=Y [, @I[A-p |  (88)

AU

When the random variables are statistically identical with pdf fz (z) and cdf
pz(z), the cdf’s of the maximum and minimum are given by

Pmax(z) = pz(z)" (8.5)
Pmin(z) = 1-(1-pz(x))™ (8.6)
and the pdf’s are given by
fmax(z) = mfz(z)ps(z)"7 (8.7)
fuin(z) = mfz(z)(1-p=(z))™! (8.8)

8.1.2 Maximum and minimum intensity

Substituting the pdf (3.59) and cdf (3.60) of the n-look gamma distributed
intensity into (8.7) and (8.8), the maximum and minimum intensity of m pixels
sampled from a homogeneous region with mean g will have respective pdf’s

k\ m—1
fome(@) = a1 # S (2) (8.9)
max(T) = I‘(n)ﬂ" e 2 T .
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k m-—1
Famt (3 (3)

fmin(z) = m T |\ & & (8.10)
where f = p/n.
In the single-look case
Jmax(z) = %C:“i (l-ezf)m_l (8.11)
fain(z) = %e—’Tm (8.12)

and the expected values of the maximum and minimum intensity are given by

(max) = p(¢(m+1)+7E) (8.13)
(min) = % (8.14)

As Inm gives a good approximation to ¥ (m + 1) even for small values of m
(> 10) [1], the maximum intensity of pixels in a homogeneous region can be
considered to increase logarithmically with the regions size. The expected value
of the minimum intensity is inversely proportional to the size of the region. The
relation between the size of a homogeneous region and the expected maximum
and minimum intensity values, are plotted in Figure 8.1.

A measure of the dynamic range of data is given by the ratio of the maximum
and minimum values. The ratio of the expected maximum and minimum single-
look intensity is given by

(max)

i) =~ mm A1) +yE) mmlam+ 1) (8.15)

Because m >> Inm for large m, relative to the mean intensity, most of the
dynamic range arises from very small as opposed to very large intensities, i.e.,
relative to the mean intensity speckle troughs are much larger than speckle
peaks. Given the shape of the exponential distribution this is hardly surprising.

Note: the process of determining the maximum and minimum of a block of
pixels is equivalent to applying morphological dilation and erosion [39] respec-
tively, to that block of pixels.

8.1.3 Distribution of maximum and minimum ratios

We now turn to look at the magnitude of the intensity fluctuations occurring
between a pixel and its immediate neighbours. These can be analysed in terms of
the maximum and minimum intensity ratio between the pixel and its immediate
neighbours. ‘

If the positive random variables z; are independent and have cdf’s py; (2),
the probability that the ratio zo/z; (i # 0) is greater than r given zo is

Zo Zo Zo
—_ = b(— i) = Pz | — 8.16
prob(Z2 > 1) = prob( 22 > 2) = px, (%2 (816)
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Figure 8.1: Relation between the number of pixels contained in a homo-
geneous region with unit mean intensity in a single-look image, and the
expected values of the maximum and minimum intensity, (max) and (min).

Thus the probability ps(r), that amongst m random variables z,,...,z,, there
exists a z¢ such that the ratio zo/z; is less than r is given by :
(i) dz
r

fove) m
pg(‘l‘):l—p‘l‘Ob(%}T:iz1,°-'am)=1—'/0 fzo (@) ][ P,
(8.17)

=1
where fr, (z) is the pdf of zo. Likewise, the probability pv(r), that for each z;
the ratio zo/z; is less than r is given by

pv(r) = prob (i—?(r:i:l,...,m) =[)°°f,o(z)ﬁ(l—pz‘. (i)) dz

1=1 T

(8.18)

Both p3 () and py(r) define cdf’s (going from zero to infinity they monotonically

increase from zero to one). Their corresponding pdf’s f3(r) and fv(r), are given
by differentiation with respect to r.

The complement of p3(r), i.e., 1 — p3(r), gives the probability that for each

z; the ratio zo/z; is greater than r. Whilst the complement of py (7), gives the

probability that there exists a z; such that the ratio zo/z; is greater than r.

Setting r = 1in 1 —p3 (r) and pv (r) gives the respective probabilities that zg is

the maximum value of the m + 1 variables, and that it is the minimum value. If

the random variables are statistically identical both of these probabilities must

equal 1/ (m + 1). This is because there is then an equal likelihood that any one
variable is the maximum/minimum.
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Assuming that pixel values are spatially independent in an image, a value
of m = 4 is used to determine the distribution of ratios between a pixel and its
immediate horizontal and vertical neighbours (4-connected neighbourhood), and
a value of m = 8 is used to determine the distribution of ratios between a pixel
and its immediate horizontal, vertical and diagonal neighbours (8-connected
neighbourhood).

8.1.4 Intensity fluctuations

Under the simple image model the probability that the intensity ratio between
a pixel zp within a homogeneous region with mean intensity u, and at least one
of its m neighbours is less than r is given by substituting the pdf (3.59) and
cdf (3.60) of the gamma distributed intensity into (8.17)

Z an-1 n—l(‘)’c "
Bl = 1=, W 1-eF Y )
oo 2 n—1 (z\k A

(8.19)

where 8 = p/n. Likewise, substituting the pdf and cdf of the gamma distributed
intensity into (8.18) gives the probability that the ratio between a pixel z¢ and
each of its m neighbours is less than r

z\k\ ™
pv(r) = I‘(n)/ e=z(1+7) gn-1 (E %—-) dz (8.20)

k=0

As the value of the ratios are independent of the mean intensity, so the above
probabilities are also independent of the mean intensity. In the single-look case

& (m)
pa(r) = 1 g(A)H% (8.21)
1
w0) = T (8:22)

When m = 8 the complements of (8.21) and (8.22), (i.e., 1 — p3(r) and
1—py(r)) represent the respective probabilities that in a homogeneous area in a
single-look image the intensity ratio between a pixel and each of its 8-connected
neighbours is greater than r, and that the ratio between a pixel and at least one
of its 8-connected neighbours is greater than r. These probabilities are plotted
in Figure 8.2 with respect to the ratio r.

As we would expect 1—p3 (r) is always less than 1—py (r) . Both probabilities
are one at r = 0. As r increases the probability that a pixel is r times more
intense than at least one of its 8-connected neighbours decreases slowly. A much
faster decrease occurs with the probability that a pixel is  times more intense
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Figure 8.2: Probability that a pixel within a homogeneous region in a single-
look image is r times more intense than (i) one and (ii) all of its 8-connected
neighbours.

than all of its 8-connected neighbours. At r = 1, the probabilities 1 — p3(r) and
1 — py(r) are equivalent to the probability that the pixel is a local maximum
(1/9) and the probability that it is not a local minimum (8/9), respectively.
When 7 > 1, 1 — p3(r) gives a measure of the minimum fluctuation in intensity
existing between a speckle peak and it 8-connected neighbours and 1 — py(r)
gives a measure of the maximum fluctuation in intensity existing between a
speckle peak and it 8-connected neighbours.

The above only describes the intensity fluctuations occurring within a ho-
mogeneous region. The statistics of intensity fluctuations occurring across an
edge are also of interest. Along an edge separating regions of mean intensity p,
and py, the probability that the normalised ratio between a pixel z on one side
of the edge and a neighbouring pixel y on the other side, is less than r is

prob (mjn (%, %) < r) = p, (r|R,n) (8.23)

where p; (7| R, n) is the cdf of the normalised ratio of gamma distributed random
variables (7.22). This cdf depends on R = p/u,, the ratio of the mean intensi-
ties on either side of the edge, and n, the number of looks. The probability that
among m such pairs of pixels (i.e., along an edge m pixels long), there exists
a pair whose normalised ratio is less than r is given by 1 — (1 - p,(r|R,n))™.
Whilst the probability that the normalised ratio between each pair is less than
r is given by p, (r|R, n)™.
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Both probabilities are plotted in Figure 8.3 for the single-look case for dif-
ferent values of the ratio of the mean intensities on either side of the edge
(R = 2,4,8,16) with m = 10. As the normalised ratio is always less than or
equal to one both probabilities are one at r = 1. Both probabilities show similar
behaviour to those plotted in Figure 8.2. The probability that the normalised
ratio of at least one pair of pixels is less than r decreases slowly with r, whilst
the probability that the normalised ratio of each pair of pixels is less than r
decreases quickly with r. As the ratio of the mean intensity on either side of
the edge increases, both probabilities increase, the difference between them de-
creases and the probability that there exists a pair of pixels whose normalised
ratio is less than r tends to certainty.

8.2 Approaches to point feature detection

In this Section we consider a variety of approaches to point feature detection

based on the analysis given in the previous section and observations made in
Chapter 7.

1. Thresholding: The very brightest features in an image may be detected
by global thresholding. Global image statistics can be used to select thresh-
olds automatically (e.g., ten standard deviations above the mean). To
take into account variations in mean intensity over the image, an adap-
tive threshold can be employed. By estimating the mean intensity and
using (8.9) a thresholds can be set for a given PFA of a speckle peak being
detected over the region assuming it is homogeneous and the simple image
model applies. If a low false alarm rate is to be maintained thresholding
will only detect the very brightest parts of point features rather than the
full extent of the feature they represent.

2. Edge detection: As already mentioned in Chapter 7, point features gen-
erate distinctive signatures in edge maps. The signatures of point features
can be separated out from the signatures of true edges using the fact that
point features have no orientation, i.e., they consist of those pixels that
are detected as being edges at all orientations. Using the normalised ratio
operator this is equivalent to retaining the maximum as opposed to the
minimum of the normalised ratios estimated over different orientations.
Thresholds can be selected using similar methods to those used in edge
detection. Determining the true extent of point features from the ‘blocky’
signatures which result is not easy.

3. Coeflicient of variation: A simple measure of local heterogeneity in
SAR images is the coefficient of variation (see Chapter 7). Point features
generate extremely bright and easily identifiable signatures in the result-
ing coefficient of variation image (much brighter than those generated by
edges). As with the maximum normalised ratio, these signatures are very
‘blocky’ and interpreting them is not easy. Once again, as in edge detec-
tion, threshold selection is not straightforward. Thresholds certainly need



8.2. APPROACHES TO POINT FEATURE DETECTION

10° — 10° N
107 \\ 107 N\
10°%} \ 1072] AN
107" \ 107" \\
> 107} \ & 107] \
g 107" \ 3 107 \
2 107 \ 2 10 \
g 107 \ £ 10
107" \ 107}
107°] 107}
0~1°] 10°2°}
R R
3 10" 3 107
1/r 1/r
(a) (b)
10°TS~ 10T~
1011 \\ 10-11 \\
10771 \ 1072 AN
107} AN 107}
> 107"] \ > 107
3 107 3 107
iﬁ 10°¢] ',E 107}
& 107] & 107"}
10"°] 107
10~ 107}
1072°] 1072°]
w0 T
3 100 3 0%
1/r 1/x
© (@)

151

Figure 8.3: Probability that along an edge ten pixels long separating regions
of relative mean intensity R in a single-look image, that the normalised ratio
of (i) one and (ii) all pairs of pixels lying across the edge is less than r; (a)
R=2,(b) R=4,(c) R=8,and (d) R = 16.
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to be higher than those used for edge detection.

4. Morphological methods: Morphological opening using a n X n window
smooths all peaks in an image less than n pixels wide [39]. Therefore
dividing an image by its morphological opening enhances peaks whilst
normalising the rest of the image. However, it is unclear at what value to
threshold the resulting image at to distinguish between point features and
speckle peaks.

5. Magnitude of intensity fluctuations: To be apparent at all, point
features must be of much greater magnitude than peaks in surrounding
speckle. This implies that intensity fluctuations occurring around a point
feature must be greater than those occurring in speckle alone. It has been
investigated whether point features, unlike edges, can be detected just on
the basis of the magnitude of the intensity fluctuations occurring from
pixel to pixel.

8.2.1 Point feature detection based on the magnitude of inten-
sity fluctuations

While Figure 8.2 and 8.3 show that large intensity fluctuations exist between
neighbouring pairs of pixels in a single-look image, they also show that they
do not connect to form boundaries across which there is a large fluctuation in
intensity between all pairs of pixels lying across the boundary. This is the case
both within extended targets and across edges. However, by their very nature
we expect large intensity fluctuations to exist on all sides of point features.

An algorithm has been devised which uses this feature to detect small bright
segments. The ratio between all pairs of 8-connected pixels in an image is
calculated (this ratio is normalised to be greater than one). Neighbouring pixels
are defined as belonging to the same segment if their normalised ratio is less than
a given threshold. In the resulting segmentation the normalised ratio between
any two neighbouring pixels on either side of a segment boundary must be
greater than the threshold. The distribution given by (8.19) can be used to
set the threshold r such that the probability of a speckle peak being r times
brighter than all surrounding pixels is extremely low; as with the normalised
ratio operator used for edge detection, this false alarm rate will be constant

so long as speckle is a strict-sense stationary multiplicative noise process (see
Chapter 7).

8.3 Results of point target detection

Figures 8.5 to 8.10 show the results of applying the above methods to the ERS-
1 FDP image shown in Figure 8.4 (the same as that shown in Figure 7.18).
This image is taken over an agricultural region in Flevoland, Netherlands, but
contains a number of bright point-like targets which are most likely caused
by scattering from man-made features such as buildings. It must be stressed
that as visual inspection of the original image is the only available method for
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determining whether detected features represent point targets or false alarms
the comparison of these results is highly subjective.

In Figures 8.5 and 8.6 thresholds are set for a given number of standard de-
viations above the estimated mean intensity pg. This mean is estimated over the
whole image for global thresholding (Figure 8.5) and over a 16 x 16 pixel window
for adaptive thresholding (Figure 8.6). Since the ERS-1 FDP image is a 3-look
intensity image, assuming the simple image model applies the intensity standard
deviation over a homogeneous area is given by u//3 (see Chapter 4). Thus the
threshold for k standard deviation above the mean is given by u (1 + k/\/§)

The PFA’s were derived using (8.9) where m is the size of the window over which
the mean is estimated; we have assumed that pixel values are independent. The
features detected by both global and adaptive thresholding may be directly re-
lated to point-like targets in the original image. Global thresholding appears
to be more successful at detecting the brightest targets and less susceptible to
false alarms than adaptive thresholding. This might not be the case in an image
which contained larger variations in mean background intensity.

The blocky signatures resulting from using the maximum normalised ratio
and coeflicient of variation are clearly apparent in Figures 8.7 and 8.8 respec-
tively. The gaps in the signatures in Figure 8.7 occur when the window lies
directly over a point-like target. This is because the point-like target is then
split equally between the two half windows over which the normalised ratio is
estimated, whatever the orientation (see Chapter 7). The larger holes in the
signatures in Figure 8.8 occur when the point-like feature takes up most of the
window within which the coefficient of variation is estimated. While both of
these methods give a good indication of the presence of point-like targets, it is
difficult to directly relate the more complex signatures to the true location of
the point-like targets they result from.

Figure 8.9 shows the result of dividing the original image by its morphological
opening. More point-like features appear to be detected with a low false alarm
rate in Figure 8.9 (b) than using straight thresholding (Figures 8.5 and 8.6).
However, thresholds were selected using purely visual criteria. More objective
methods are needed for doing this.

The results of point target detection based on the magnitude of intensity
fluctuations are shown in Figure 8.10. Left: the segmentations generated by
merging adjacent pixels whose intensity ratio lies below a given threshold; also
any segment whose mean intensity lies below the mean intensity of the whole
image is merged with surrounding segments. Right: the result of thresholding
the mean intensity of segments just above the mean intensity of the whole image.
Most of the image is represented as a single segment with smaller segments
indicating brighter regions of the image. At a threshold of 2.0 and higher these
mainly correspond to point-like targets in the original image.

The results presented in Figures 8.5 to 8.10 are somewhat limited as they
only show the result of the different methods applied to a single 3-look image.
However, they help to illustrate many of the points made in Section 8.2. Simple
thresholding techniques are useful for detecting many point-like features. The
difficulties involved in interpreting the signatures produced using the maximum



154 CHAPTER 8. POINT TARGET DETECTION

normalised ratio and coefficient of variation do not make these methods an
attractive option. Point target detection based on morphological opening and
the magnitude of intensity fluctuations both produce promising results which
warrant further investigation of these methods.

8.4 Summary
In this chapter:

¢ The problem of distinguishing peaks representing bright point targets from
speckle peaks has been investigated.

o The statistics of speckle peaks under the simple image model were analysed
both in terms of the maximum and minimum intensity within an area of
given size, and in terms of the intensity fluctuations occurring between
neighbouring pixels.

¢ A number of approaches to point target detection were described including
methods based on: simple thresholding, edge detection operators, mor-
phological opening and the magnitude of intensity fluctuations between
adjacent pixels.

¢ The results of applying these methods to an ERS-1 FDP image were pre-
sented. The edge detection operators (normalised ratio and coefficient of
variation) produced the poorest results. The results using the morpholog-
ical and intensity fluctuation approaches are as good as, if not marginally
better than, those produced by simple thresholding. Further work is
needed to determine whether this is generally the case when the meth-
ods are applied to a variety of SAR images containing point-like targets.
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Figure 8.4: ERS-1 FDP image of Flevoland, Netherlands showing bright
point-like features.

(@) ®)
Figure 8.5: Point target detection using thresholding at (a) 7, and (b) 10,
standard deviations above the image mean assuming the image is homoge-
neous. This corresponds to a PFA of (a) 0.297, and (b) 3.40 x 10~3,

®)

Figure 8.6: Point target detection using thresholding at (a) 7, and (b) 10,
standard deviations above the local mean estimated over a 16 X 16 pixel area
assuming the image is locally homogeneous. This corresponds to a PFA of
(a) 0.898 x 102, and (b) 0.872 x 10~*.
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@ (®)
Figure 8.7: Point target detection using the maximum normalised ratio es-
timated over a 5 X 5 pixel window with thresholds set for a PFA of (a) 10~2
and (b) 10~4.

k]

@) (b)
Figure 8.8: Point target detection using the coefficient of variation estimated
over a x5 pixel window and thresholds at (a) 1.5, and (b) 3.

(b)

Figure 8.9: Point target detection using the original image divided by its
morphological opening calculated over a 5 x 5 pixel window and then thresh-
olded at (a) 10, and (b) 20.
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©

Figure 8.10: Point target detection based on the magnitude of intensity fluc-
tuations. Left: segmentation resulting from merging adjacent pixels whose
intensity ratio lies below (a) 1.5, (b) 2.0, and (c) 2.5; using (8.19) these
thresholds correspond to PFA’s of (a) 2.49 x 10~2, (b) 5.82 x 1073, arid (c)
1.46 x 10~3. Right: the result of thresholding the images shown on the left
just above the mean intensity of the original image.



Chapter 9

Segmentation

In order to fully exploit the near-global coverage and regular revisit time af-
forded by satellite-borne SAR, automatic interpretation methods are necessary.
For many applications, segmentation of the image into statistically homogeneous
regions is particularly important, since it provides a means of imposing struc-
ture on the image, which can then be utilised for matching and change detection
purposes. Two kinds of change are of interest. Firstly, structural changes may
occur between images, as will be normal, for example, in the dynamic envi-
ronments near ice edges. Secondly, the internal backscattering properties of
individual segments may vary, as will occur in agricultural regions because of
crop development. Segmentation is fundamental in detecting the first form of
change, but is equally important for the second form. This is because, after
segmentation, area-based measures can be used to derive the properties of ex-
tended targets. Such measures are necessary to combat the effects of speckle,
and by using known segments, the averaging involved can be carried out only
over pixels from the same region.

Segmentation may help to remove the effects of speckle, but speckle provides
a major obstacle to the provision of reliable and robust methods of segmenta-
tion. Nonetheless, powerful methods have been developed in recent years, driven
mainly by the properties of high resolution airborne data, but based on princi-
ples which should be more generally applicable. In this chapter we investigate
one such algorithm [61, 62]. The algorithm itself is described in Section 9.1 along
with various modifications and known weaknesses.

ERS-1 data provides an excellent dataset on which to test whether the seg-
mentation algorithm can provide information which can be used effectively in
applications, and to motivate further developments. Section 9.2 shows the appli-
cation of the algorithm to a set of ERS-1 images, gathered during 1992 over the
Feltwell area of East Anglia. The particular problem of interest in this section is
whether segmentation provides a useful tool for analysis of a sequence of ERS-1
images of agricultural areas. We can identify a range of subproblems within this
central question: '

e Does the segmentation find all the features located by eye?

¢ Does it locate features that the eye misses?

158
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o Does it find ‘too many’ features?
o Does it provide a means of comparing/matching images?

o Does it permit the identification of structure not present in map data (e.g.,
splitting or merging of fields)?

9.1 Segmentation algorithm

The algorithm makes use of the fact that edges and segments define each other.
It involves an iterative process of edge detection and segment growing. Detected
edges are used to limit segment growing, then the resulting segmentation is used
to generate an improved edge detection. The algorithm is robust in that there are
no scene dependent parameters to set. Thus no operator intervention is required
to obtain a full segmentation. Because the full segmentation may contain too
much ‘information’ for a given application, segment merging is often required
to degrade the segmentation down to the required level of information. This
involves the setting of a single parameter which has precise meaning in terms of
the probability of an edge being present.

In Section 9.1.1 we first describe how the algorithm uses a measure of seg-
mentation accuracy to determine when to halt, before looking at the edge de-
tection stage in Section 9.1.2, and the segment growing and merging stages in
Section 9.1.3.

9.1.1 Segmentation accuracy and halting

After each segment growing stage the accuracy of the segmentation (i.e.,
segment homogeneity) is measured in terms of the average contrast ¥ within
segments; this average is weighted by the size of segments and is defined as

5=y 2V (9.1)

where m is the number of segments, n; is the number of pixels making up the
i'th segment, n = n; + ...+ n,, is the total number of pixels in the image, and
f; and a'? are the estimated mean and variance of the pixel values z;,,...,z;,,
making up the i’th segment given by

= Z; (9.2)

and

-—— n- -
2 _ i ( 2 _ A,z) 9.3
of = Tif—- 1% .
t n; — 1 1 ' ( )
Here we have assumed that pixel values are uncorrelated. This measure of
segmentation accuracy provides a means of monitoring the segmentation process
and deciding when to halt. As segments become more homogeneous the contrast
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within each segment decreases tending to a constant which is dependent on the
type of data. Thus the accuracy measure should decrease as the segmentation
improves.

In the standard implementation of the algorithm, iteration halts when there
is an increase in the accuracy measure from one iteration to the next. The
segmentation generated by the previous iteration is then output, i.e., the seg-
mentation corresponding to the first minimum in the accuracy measure. Tests
have shown that when the algorithm is allowed to continue iterating until a sec-
ond or third minimum in the accuracy measure is reached, there is only a small
decrease in the value of the accuracy measure, if at all, and there is no overall
improvement in the segmentation.

Figure 9.1 shows the result of halting the segmentation algorithm at the first,
second and third minima in the accuracy measure when applied to a RSRE am-
plitude image of an agricultural scene, and Figure 9.2 plots how the accuracy
measure varied over different iterations. Although the three segmentations dif-
fer, visually no single segmentation appears to be better than any of the others
(see Section 9.1.2.5 below for a discussion of more objective methods of com-
paring segmentations). The accuracy drops steeply over the first two iterations
but then flattens out with only minor fluctuations. The first, second and third
minima occur at the 5th, 9th and 13th iterations with respective values 0.4925,
0.4899 and 0.4909. From (3.97) we would expect the contrast within a homoge-
neous region in a single-look amplitude image, and thus the accuracy measure
of a correct segmentation, to equal /4/7 — 1 =~ 0.5227. However, the minimum
values in Figure 9.2 are all slightly smaller. This is most likely due to corre-
lation being ignored when estimating the standard deviation within segments.
Correlation induces a negative bias in the estimate of the standard deviation
whilst the estimate of the mean remains unbiased; this has the overall effect of
inducing a negative bias in the contrast

9.1.2 Edge Detection

9.1.2.1 The normalised gradient operator

The algorithm detects edges using a normalised gradient operator. At each point
in an image the gradient d across a rectangular window centred at that point
is estimated by splitting the window into two equal halves along its longer side,
estimating the mean values y, and p; within each half by averaging the pixel
values within it, and then taking the difference of these two averages. This
estimated gradient which equals

-~
d — —

=ZIo—12p (9.4)

has mean value P3= Pa = Kb and standard deviation

op= \/ag/n,, + o/ (9.5)
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Figure 9.1: (2) A RSRE single-look amplitude X-band image of an agri-
cultural scene (the same as that shown in Figure 3.9) and the result of
segmentation when the algorithm is halted at the (b) first, (c) second and
(d) third minima in the accuracy measure. Pixels within each segment are

set to the average intensity within the segment, with ensuing suppression of
speckle.
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Figure 9.2: Variation in the accuracy measure over different iterations.

where 02 and of are the variances in the two half windows, and n, and nj are
the number of independent samples in each half window; normally n, = n; but
this is not always the case (see later). Thus the false alarm distribution will be
dependent on the local variance. To make the false alarm rate constant across
the image the gradient needs to be normalised by dividing it by an estimate of
its standard deviation o4 Finally, as it is the magnitude of the gradient that is
of interest rather than the direction of slope, the absolute value of the estimated
normalised gradient is usually taken. The greater the absolute value output
by this normalised gradient operator, the greater the likelihood that an edge is
present within the window.

The normalisation factor o is given by the square root of the sum over
both half windows of the estimated variance within each half window divided
by its size (9.5). Each of these estimated variances is given by the average of
the estimated variances of the segments generated by the previous iteration over
which the half window lies, weighted by the proportion of the half window each
segment occupies (the estimated variance within each segment given by (9.3)
will already be known from calculating the accuracy measure at the end of the
previous iteration). In this manner the previous segmentation is fed into the
next stage of edge detection. For the first iteration the whole image is treated
as a single segment; this generates a large normalisation factor and only the
strongest edges are detected. In the original algorithm standard deviations as
opposed to variances are averaged [61]. This results in the standard deviation
of the gradient o; being incorrectly given as

03 = 0ufy/Ma + /T (96)
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as opposed to (9.5). When it is assumed that pixel values in both segments are
statistically identical this leads to a correcting factor of v/2 having to be applied
to false alarm thresholds.

To detect different strength edges the algorithm uses rectangular windows
of dimensions 3 x 7, 5x 19, 7x 19, 7 x 27, 9 x 45 and 13 X 57 pixels. A 3 x 3
normalised Sobel operator [28] is used to detect the very smallest edges. In
order to reduce edge thickening the windows are applied in order of increasing
size. The larger windows are only used to detect low contrast edges where no
high contrast edges have been detected by smaller windows. Where an edge has
already been detected at a smaller scale the window is reduced in size so as to
exclude the edge. Values output by edge detection are ignored when either n, or
n, are reduced by more than 75%. To detect edges at different orientations each
window is applied horizontally and vertically; using long thin windows precludes
the need for applying windows at diagonal orientations.

9.1.2.2 Edge thresholding

The edge images produced are thresholded to produce an edge map. An edge
pixel is set when the estimated gradient d exceeds its estimated standard devi-
ation by a factor k. A value of 2.3 was chosen for k by comparing the perfor-
mance of the normalised gradient operator with that of visual identification of
edges [61). There are a number of practical and theoretical problems with this
approach to edge detection.

Setting thresholds empirically rather than using assumed clutter distribu-
tions does not explicitly involve attaching false alarm probabilities to detected
edges. However, for the purpose of analysing the accuracy of the edges input
to the segment growing stage, the false alarm rates implicit in these thresholds
need to be determined for the range of likely clutter distributions. Assuming
the gradient estimated over homogeneous regions is approximately Gaussian dis-
tributed, 2.3 standard deviations equates to a PFA of 2 x 1072, This is quite
high compared to the PFA’s suggested for edge detection in Chapter 7. Thus, we
can expect most edges to be detected along with a large number of false alarms.
Segment growing will then be limited by false alarms as well as true edges; later
the segment merging stage is used to remove edges which are due to false alarms.
The effect on segmentation of using a lower PFA (i.e., a larger value of k), or of
reducing the PFA over successive iterations, has yet to be investigated.

9.1.2.3 Point target detection

SAR images contain point-like features which the edge detection stage fails to
detect. To take account of this, an additional step tests for point-like features
after edge detection has taken place, using operators similar to the normalised
gradient operator over windows with dimensions 1 x 4 and 3 x 4 pixels. Rather
than representing distinct point features, many of the features detected by these
simple methods may arise purely from speckle. Such features, which hinder
interpretation, are clearly apparent in the segmentations shown in Figure 9.1.
It was shown in Chapter 8 that alternative methods of detecting such features
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based on morphological and ratio operations are available. However, the perfor-
mance of these alternative point feature detectors needs to be more fully assessed
before they are incorporated into the segmentation algorithm. As point features
constitute the smallest scale edges in the image, to minimise edge thickening
they should be detected prior to all other edges, and the results input to the
edge detection stage.

9.1.2.4 Alternative edge detectors

If the gradient is normalised by the sum of the average values within the two half
windows Z, + Tp, as opposed to its estimated standard deviation, the resulting
operator is equivalent to the normalised ratio operator discussed in Chapter 7.
When the simple image model is assumed this operator gives the ML estimate
of the ratio of the mean intensities in two homogeneous regions. However, in
textured regions it is less robust than the normalised gradient operator (e.g.,
when intensity is K-distributed), and it cannot benefit from information from
the previous segmentation as the normalised gradient operator can. The robust-
ness of the algorithm has been tested by using the ratio operator as the first
edge detection step, since in pure speckle this should give an improved initial
estimate of the true edges. It was found that this had little effect on the final
segmentation.

Figure 9.3 compares using the normalised gradient and normalised ratio op-
erators for the initial stage of edge detection when segmenting the RSRE image
shown in Figure 9.1 (a). Although there are more false alarms in the initial edge
detection using the normalised gradient operator as opposed to the normalised
ratio operator, there is little difference in the quality of the final segmentations.
In fact the normalised gradient operator generates a lower final accuracy mea-
sure, this implies that it is the better segmentation; this appears to be borne
out by the segmentations themselves. The normalised ratio operator does not
appear to offer an obvious advantage in this case.

The benefits of using the normalised ratio operator for the initial stage of
edge detection are more obvious when the image contains extremely bright point
targets. The total standard deviation of the image is then too high to allow
most edges to be detected on the first iteration and the majority of the image
is interpreted as a single segment.

Figure 9.4 shows a single-look SAR image taken with the AIRSAR airborne
system over an arid region. Various point targets (corner reflectors) have been
deployed over the scene for use in polarimetric calibration. Figure 9.5 compares
using the normalised gradient and normalised ratio operators for the initial stage
of edge detection when segmenting this image. The normalised gradient opera-
tor produces a poorer initial segmentation than the normalised ratio operator.
However, surprisingly the final segmentation produced from the latter appears
to be only slightly better than that produced from the former. The benefits of
using the normalised ratio operator for the initial stage of edge detection do not
seem to carry through to later iterations.



9.1. SEGMENTATION ALGORITHM 165

Figure 9.3: Comparison of using the normalised gradient and normalised
ratio operators for the initial stage of edge detection; (a) and (b) the edge
maps produced using the normalised gradient and normalised ratio opera-
tors, (c) and (d) initial segmentations, and (e) and (f) final segmentations
with accuracy measures 0.4925 and 0.4955.
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Figure 9.4: AIRSAR HH polarised C-band image containing bright point
targets.

9.1.2.5 Comparison of segmentations

The visual comparison of different segmentations afforded by, for instance Fig-
ure 9.3, is purely subjective and more quantitative measures are needed. A
global measure is of course given by the final accuracy measure. To test local
accuracy the statistics within segments and between adjacent segments need to
be analysed to check that segments are indeed homogeneous and that there are
real differences between adjacent segments. The edge removal algorithm dis-
cussed in Section 9.1.3 is one possible method of merging segments which do not
differ significantly. Segment homogeneity can be checked by dividing the origi-
nal image by the segmented image, if the segmentation is correct there should
be no structure in the resulting image.

Figure 9.6 shows the result of dividing the segmentations shown in Figures 9.3
(e) and (f) by the original amplitude image. Both images are dominated by
speckle and have no significant structure. In fact, there is slightly more small
scale structure in Figure 9.6 (b) than in Figure 9.6 (a), but this is lost in repro-
duction. It is possible to resegment these ratio images to extract any remaining
structure, the result of doing this is shown in Figure 9.7. Whilst some features
are detected there is little overall structure in the resegmentations which mainly
consist of a single segment.

9.1.2.6 Intensity segmentation

Although the empirical approach to threshold selection does not impose any
particular noise (i.e., clutter) model on the image, better results are produced
when distributions are less asymmetric, i.e., using amplitude (Rayleigh speckle)
or multi-look intensity (gamma distributed speckle) data as opposed to single-
look intensity (exponential speckle) data. The segmentations shown so far have
all used single-look amplitude as opposed to intensity data, Figure 9.8 shows the
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Figure 9.5: Comparison of using the normalised gradient and normalised
ratio operators for the initial stage of edge detection when segmenting the
image shown in Figure 9.4; (a) and (b) the edge maps produced using the nor-
malised gradient and normalised ratio operators, (c) and (d) initial segmen-
tations, and (e) and (f) final segmentations with accuracy measures 0.5765

and 0.5935.
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Figure 9.6: The result of dividing the segmentations shown in Figures 9.3
(e) and (f) by the original amplitude image.

Figure 9.7: The result of resegmenting the ratio images shown in Figure 9.6.
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Figure 9.8: The result of intensity segmentation of the images shown in (a)
Figure 9.1(a) and (b) Figure 9.4. The final accuracy measure of the former
segmentation is 0.9579 whilst that of the latter is 5.451.

result of segmenting the images shown in Figures 9.1 (a) and 9.4 in intensity as
opposed to amplitude. The results should be compared with those of amplitude
segmentation shown in Figures 9.1 (b) and 9.5 (e) respectively. A passable
segmentation is generated of the RSRE image, though linear features (hedges,
rows of trees ?) are not as well detected as in the amplitude segmentation.
With the AIRSAR image the segmentation algorithm only manages to detect the
brightest point targets; there is no improvement when the algorithm is allowed
to iterate beyond the first minimum.

9.1.3 Segment growing and merging
9.1.3.1 Segment growing

The edge map output by the edge detection stage is used to limit the growth
of segments representing homogeneous regions. Segments are grown by fitting
discs inside regions where no edges are present. Discs 64, 32, 16, 8,4, 2 and 1
pixel in diameter are fitted in order of decreasing size. All the discs of a given
size which overlap/abut are merged to form a single segment. Where a segment
defined in terms of discs all of the same size overlaps/abuts segments defined in
terms of larger discs, the segment is first reduced in size so that it is disjoint
with all the surrounding segments, before being merged with the segment with
the closest mean value. To aid this, look-up tables of the number and mean
value of pixels within each segment are kept.

The algorithm segments extended targets into homogeneous regions. How-
ever in some cases over-segmentation appears to occur. Extended targets (e.g.,
fields) that we would like to be detected as single segments for certain applica-
tions, and that appear visually to be so, are split into several segments. To solve



170 . CHAPTER 9. SEGMENTATION

this problem the algorithm has a final stage of segment merging. As the problem
of over-segmentation is more evident in the edge map of the segmentation than
in the mean image, segmentations displayed in this and following sections will
‘show the edges separating segments as well as the mean value within them. The
edges define the underlying structure of segmentations as compared to the purely
visual appearance provided by the mean values which is potentially misleading.
An alternative to carrying out merging after the last iteration is to apply it after
each iteration step, this approach will not be considered any further.

9.1.3.2 Merging based on moments

The original algorithm merged segments whose estimated first, second and third
moments differed by less than a given number k of standard errors. Where there
was more than one candidate for merging a given segment, the segment with
the closest mean value was chosen. A problem encountered with this approach
was determining the optimum value of k£ to use. When different images were
segmented with a range of values of k the best results were not obtained with
the same values of k. The optimum value of k appeared to relate to the average
number of independent samples per segment, which equals the average field size
divided by the system resolution; larger segments require more merging, i.e., a
larger value of k. It was only recently discovered that this problem was caused
by the estimated standard errors of moments not being correctly normalised by
the number of independent samples within a segment.

Figure 9.9 shows the result of using the corrected algorithm to segment one of
the ERS-1 SLC (16/04/92) images to be discussed in Section 9.2, with merging
being carried out after the last iteration only. The method is effective at merging
adjacent segments with similar statistics. From these initial results it is clear
that a full comparison with the methods described below is needed, along with
an analysis of the effect of carrying out merging after each iteration.

It should be noted that merging based on moments has been used as the basis
for an alternative SAR segmentation algorithm to the one described here [8]. The
SAR image is broken up into a grid of small segments (4 x4). Adjacent segments
with similar moments are then merged. Merging continues until the moments of
all adjacent segments differ by a given degree. The segmentation performance
of this algorithm has yet to be compared with the algorithm currently under
study.

9.1.3.3 Merging based on edge strength

Because of the problems encountered with segment merging based on moments
most work on segment merging has been carried out using an alternative ap-
proach. An edge strength is attached to each segment boundary in the final
segmentation; edges which fail to pass a given threshold are then deleted.
Given two adjacent segments ¢ and j, a strength can be attached to the
edges separating them by taking the normalised difference of their average values
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Figure 9.9: (a) ERS-1 image and its segmentation with (b) no merging,
merging with (c) k = 3.29, and (d) k = 4.42. If it is assumed that the
estimated moments are Gaussian distributed these thresholds correspond to

false alarm rates of 103 and 1075 respectively.
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defined by
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or the normalised ratio of their average values defined by
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However, such measures do not take into account the size of segments; large
segments are more easily distinguished than small segments with the same in-
tensity ratio or difference. Segment size can be accounted for by calculating the
probability of the edge strength arising purely from clutter, given the size of the
segments. Such a false alarm probability can be determined for the intensity
ratio following the approach used to set false alarm rates for the normalised
ratio operator in Chapter 7. It is assumed that each average intensity is gamma
distributed with order parameter equalling the number of independent samples;
assuming the simple image model applies this is given by the number of looks
times the size of the segment. Correlation induced by the imaging system can
be compensated for by reducing the order parameter.

Simply deleting all edges which lie below (above) a given threshold will lead
to some segment boundaries losing closure; the mean value within a segment
is then ill-defined. This problem is circumvented by carrying out thresholding
dynamically. First the strength of every edge in the image is calculated. The
weakest edge is then deleted if it lies below (above) the threshold, and the two
segments it separates are merged. As the statistics of this merged segment will
differ from those of the two segments it is comprised of, the strength of each
of the remaining edges which bound it have to be recalculated. When this is
complete the weakest edge is once again searched for and the whole process
is repeated. This continues until there are no edges falling below (above) the
threshold.

This dynamic thresholding process was implemented using two doubly linked
lists to represent the topology of the segmentation, one of which lists all the
segments and the other lists all the edges. Each element in the segment list
has records containing the statistics needed to calculate the edge strength (e.g.,
its size and mean value), and a list of pointers to the edges in the edge list
which bound it. Each element in the edge list contains a record of its strength
and pointers to the two segments in the segment list it separates. When the
weakest edge is found it is removed from the edge list. The records of one or
other of the segments it points to in the segment list are then updated so as
to represent the merged segment, and the other segment is deleted. Updating
involves recalculating the statistics of the merged segment from those of the two
segments it is comprised of and merging the edge lists of the two segments so that
the merged segment only shares one edge with each neighbouring segment; any
additional edges are deleted. In addition, to keep a tally of the new segmentation,
pixels in the underlying segmentation representing the deleted segment need to
be assigned to the merged segment. An extra record defining the bounding
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box of each segment reduces the processing needed to achieve this. Finally, the
strength of the edges bounding the merged segment are recalculated and the
weakest remaining edge searched for.

Figure 9.10 shows the result of applying the different approaches to edge
removal to the segmentation of the ERS-1 image shown in Figure 9.9 (b). The
result of dynamic thresholding using the edge ratio and difference measures are
very similar (a)-(d). Both methods remove weak edges irrespective of the size
of the segments they separate. Strong edges separate all remaining segments,
most of which are either very large or very small. A much better result is
produced when the size of segments is taken into account by equating the edge
ratio with a false alarm rate (e); the minimum strength of edges separating
segments is then inversely related to their size and most point-like features have
been deleted. It is clear from (f) that while global thresholding will identify the
most distinctive edges it is not of use for segment merging. Because of the more
even merging performance offered by equating the edge ratio with a PFA and
the fact that this allows us to attach a quantitative measure of edge credibility
to merged segments (assuming the simple image model applies), this measure
will be adopted for dynamic thresholding of edges in the next Section.

A problem related to that of segment merging is merging edge pixels into
segments. Presently the algorithm attaches edge pixels to the adjoining segment
with the closest mean value. This can produce unsatisfactory results when de-
tected edges are more than a single pixel wide. This problem would be removed
if edges were represented by boundaries between pixels, i.e., on a grid displaced
by half a pixel in both directions relative to the pixel grid.

Finally, it should be mentioned that the segmentation algorithm performs
poorly at detecting linear features as single entities; in fact it has no knowledge
of such features. Methods for detecting such features need to be incorporated
into the algorithm.

9.2 Segmentation of ERS-1 data

In this section the results of using the segmentation algorithm for agricultural
change detection in ERS-1 data is described. The test site is a 5km by 5km area
surrounding the village of Feltwell in East Anglia, UK. This area is topographi-
cally flat.

9.2.1 The ERS-1 dataset

Both slant range single-look complex (SLC) images, and precision ground range
(PRI) 3-look intensity images taken during the growing season of 1992 were
used. Because the pixel sampling rate in the SLC images was approximately 4.5
times greater in azimuth (3.9 m) than in ground range (17 m) blocks of 5 pixels
in azimuth were averaged in intensity to rectify the geometry of the image. The
pixel sampling rate is 12.5 m in both azimuth and ground range in the PRI
images. The sub-images covering the test site extracted from the SLC image
have dimensions 1280 pixels in azimuth by 256 pixels in slant range (256 x 256
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Figure 9.10: Different approaches to edge removal applied to the segmenta-
tion of the ERS-1 image shown in Figure 9.9 (b), (a) and (b) dynamically
thresholding the normalised intensity ratio above 0.8 and 0.6, (c) and (d)
dynamically thresholding the normalised intensity difference below 0.1 and
0.2, (e) dynamically thresholding the normalised intensity ratio above a false
alarm rate of 107%, and (f) globally thresholding the normalised intensity
ratio above a false alarm rate of 1075. In (f) the disconnected edges are
overlaid on the original segmentation.
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after averaging), whilst the PRI sub-images have dimension 400 pixels in both
azimuth and ground range.

Figure 9.11 shows an example SLC image of the test site taken on 16/04/92,
before and after averaging, and the corresponding PRI image. Figure 9.12 shows
histograms of pixel intensity values sampled from a single homogeneous field in
these three images. As we would expect, the intensity of the single-look SLC
data fits an exponential distribution and the intensity of the 3-look PRI data
fits a gamma distribution with order parameter 3. The intensity of the averaged
SLC data also fits a gamma distribution with order parameter 3, this is because
the 5 pixel average only covers 3 resolution cells in azimuth.

Figure 9.13 shows the intensity ACF’s measured within the homogeneous
field in the SLC, averaged SLC, and PRI images. Adjacent pixels in the SLC data
are highly correlated in azimuth (correlation coefficient 0.5) but only slightly
correlated in range (correlation coefficient 0.2); as averaging is carried out over
discrete blocks of five pixels in azimuth, the azimuth correlation is reduced but
the range correlation is unaffected. The measured resohution of SLC datais 93
m in slant range and 5.6 m in azimuth [35, 63]. Adjacent pixels in the PRI data
are highly correlated in both azimuth and range (correlation coefficient > 0.5).
This is to be expected given that the pixel sampling rate of 12.5 m in both range
and azimuth is much less than the measured resolution of PRI data (25 m in
ground range (mid-swath) and 22 m in azimuth [35]).

The series of six ERS-1 SLC and PRI images discussed in this Section are
shown in Figures 9.14 and 9.15. The SLC images shown on the left and right
hand sides of Figure 9.14 have different geometries, because the images shown
on the left are all taken on descending passes, whilst those on the right are
all taken on ascending passes. ERS-1 has a Sun-synchronous orbit with an
inclination angle of 98.5 degrees and it crosses the equator at 10:30 am local
time on a descending pass. Thus, on a descending pass over Feltwell which lies
at 52.5 degrees north, ERS-1 will be heading 13 degrees west of south at around
10:45 am local time, while on an ascending pass it will be heading 13 degrees
west of north at around 22:00 pm local time. It should also be noted that SLC
sub-images extracted from different parts of the swath will have different pixel
spacings in ground range. The images taken on descending passes are from
far-range while those taken on ascending passes are from near-range.

Due to problems in obtaining data, only four of the PRI images (16/04/92,
12/05/92, 09/06/92 and 18/08/92) correspond to the same pass as one of the
six SLC images. Two additional PRI images were also obtained, both taken
on ascending passes on 26/04/92 and 22/09/92. The images were processed by
the German, UK and central PAF’s where different gains were applied; images
processed at different PAF’s have to be scaled differently to have the same mean
value for display purposes.

The area around Feltwell is intensively farmed and the regular pattern of
agricultural fields is readily visible in the images, as is the man-made drainage
channel (running from north to south on the left of the image) and the vil-
lage of Feltwell itself (the collection of small bright points in the centre of the
image). We know from workers involved in ground data collection that major
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Figure 9.11: ERS-1 image of the Feltwell test site taken on 16/04/92, (a)
SLC image, (b) SLC image averaged by 5 pixels in azimuth, and (c) PRI
image. The images are shown in amplitude and are sized relative to their
actual dimensions in pixels.
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Figure 9.12: Histogram of intensity values within a homogeneous field in
the (a) SLC image, (b) averaged SLC image, and (c) PRI image. The solid
curves represent fitted theoretical distributions (a) exponential, and (b) and
(c) gamma with order parameter three.
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18/08/92 25/08/92

Figure 9.14: ERS-1 SLC images of Feltwell taken during the 1992 growing
season. The left hand images are taken on a descending pass (flight |,
illumination «), and the right hand images are taken on an ascending pass
(flight T, ilumination —). The tops of the images are approximately aligned
with the northerly direction.



180 CHAPTER 9. SEGMENTATION

18/08/92 22/09/92

Figure 9.15: ERS-1 PRI images of Feltwell taken during the 1992 growing

season.
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structural change did not occur on the ground between the dates of the images
(though some changes are to be expected; for example, a few fields may be split
or merged as a result of farming practices). Nonetheless, image structure shows
a remarkable amount of variation, as a result of the variations in the backscat-
tering from land units. For example, the well defined field structures to the
immediate north-west of the village seen in the images taken in June are almost
completely absent in the earlier and later images, and the bright fields at the
top left hand corner of the images taken on 16/04/92 and 09/06/92 are not
as distinctive on other dates. The only static feature throughout the series of
images is the drainage channel. If this were blocked out one could easily believe
that the images are of different scenes. We are not in a position to fully discuss
the physical causes of the differences observed in these images, as the ground
data has not yet been fully collated and made available. Rather than make
hypotheses, we will only discuss the segmentation results in what follows.

9.2.2 Segmentation of SLC data

Figure 9.16 shows the output from the segmentation process when applied to the
SLC data with no segment merging. Visually, and in the context of detecting
changes in field structures, the images are over-segmented. However, a large
amount of this over-segmentation occurs in regions of the image which are too
dark or too bright for the human eye to distinguish intensity differences and
may represent real differences withins fields. Close visual inspection has failed
to reveal any segments which do not correspond to homogeneous regions in the
original images.

Various weaknesses of the segmentation algorithm are apparent. It has failed
to recognise the drainage channel as a single feature; the detection of long thin
features is a generic problem in SAR segmentation, which requires attention.
The expected regular shapes of the boundaries of agricultural fields are not
accurately reproduced, since the segmentation faithfully follows the underlying
data in which the field edges are, on the whole, by no means regular. In the
context of an agricultural application, it may also be considered a weakness
that the segmentation preserves many of the point-like features from the original
images.

Some degree of segment merging is clearly required before field structures
can be compared. Figures 9.17 and 9.18 show the result of dynamically removing
all edges whose edge ratio corresponds to a PFA greater than 10~3 and 10~°
respectively. It has been assumed that pixels are independent when calculating
the PFA corresponding to each edge ratio.

After merging with thresholds corresponding to a PFA of 10~° the majority
of fields are recognizable as single segments, and most segments are identifiable
with distinct homogeneous regions in the original image. However, very bright
and very dark regions of the image are still broken up into several segments
even though the eye would tell us otherwise (intensity difference are in fact
apparent when these regions are scaled). Most of the small segments have been
removed, in particular those representing point-like features. Setting thresholds
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Figure 9.16: Segmentation of the SLC images shown in Figure 9.14.
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6/

Figure 9.17: Result of edge removal using a PFA of 103,
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o0

18/08/92 25/08/92

Figure 9.18: Result of edge removal using a PFA of 1075.
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Figure 9.19: Segmentation of the PRI image of Feltwell taken on 16/04/92
and shown in Figure 9.15.

for a PFA of 1073 still produces a significant amount of merging but a large
number of extraneous edges and small segments still remain.

After segmentation and merging, the structural differences between the dif-
ferent SLC images are even more apparent than in the original unsegmented
images. This is partially because the drainage channel, which gave a visual clue
linking all the original images, is not preserved in their segmentations. The
strongest similarities are seen between the segmentations of the images taken
only a week apart on 09/06/92 and 16/06/92, where a number of field struc-
tures can be matched, e.g., the rotated ‘J’ shaped field slightly left of centre.
Field structures in the 09/06/92 segmentation can also be matched to field struc-
tures in the 16/04/92 segmentation, e.g., the bright field top left. However, it is
difficult to find any matches with the 12/05/92 segmentation which lies between
the former dates. The segmentations of the 18/08/92 and 25/08/92 images re-
veal no clearly recognizable common structure even though the images were only
taken a week apart, nor do they compare with any of the other segmentations.

9.2.3 Segmentation of PRI data

When the segmentation algorithm was applied to the PRI images they were seg-
mented down to extremely small segments. Figure 9.19 shows the result using
the 16/04/92 image. In addition, segment merging failed to remove a large num-
ber of edges. It was realised that this behaviour was caused by the much larger
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degree of correlation between pixels in the PRI than in the SLC images (and
for that matter the RSRE, AIRSAR and ERS-1 FDP images used previously in
segmentation trials). Correlation reduces the number of independent samples
available for estimating mean values and in turn this increases the variance of
the estimated gradient. This results in edge detection thresholds being passed
more often than expected and the generation of excessive false alarms. These
false alarms limit the size, and increase the number, of segments that are pro-
duced in the segment growing stage. The images used previously were, of course,
spatially correlated but not to a large enough extent to draw attention to this
problem and the effect of correlation had generally been ignored. Correlation
also affected the segment merging stage by reducing the number of independent
samples within each segment. This broadened the false alarm distribution of the
edge ratio. Thus, fewer edges failed to pass the false alarm threshold.

To overcome this problem the PRI images were sub-sampled prior to seg-
mentation, the results of which are shown in Figure 9.20. The information loss
due to sub-sampling causes the segmentation to look less detailed than those
produced from the SLC data. As with the SLC data there are considerable
differences in image structure between images taken on different dates. In fact,
the six PRI images and their segmentations can be split into three distinct pairs
in terms of similarity, (a) 16/04/92 and 09/06/92, (b) 26/04/92 and 12/05/92
and (c) 18/08/92 and 22/09/92. It is interesting to note that the images in each
pair are either both taken in the morning on a descending pass or in the evening
on an ascending pass. This may be due to diurnal changes in surface moisture
content. It should also be noted that both images in pair (b) were taken between
those in pair (a). A surprising result of the high degree of correlation in the PRI
images is that the drainage channel which had not been preserved in the SLC
segmentation, is preserved in the segmentation of the correlated PRI image but
is no longer preserved after sub-sampling; this has yet to be fully explained.

The SLC and PRI images taken on the same pass are generated from the
same raw data and thus we would expect similar structural features to be found
in segmentations of both images. When the segmentations of the SLC and PRI
images taken on 16/04/92, 12/05/92, 09/06/92 and 18/08/92 are compared, it
is found that whilst the same general features are detected segment boundaries
do not match. Of course, some degree of dissimilarity is to be expected given
that different weighting functions have been used to process the raw data to
produce the SLC and PRI images.

Merging was applied to the segmentations of the PRI images shown in Fig-
ure 9.20 to see whether the dissimilarities between SLC and PRI segmentations
were reduced when weak edges were removed. Figures 9.21 and 9.22 show the
result of merging with thresholds corresponding to a PFA of 10~2 and 10-°
respectively. The process of matching segments is made easier by the merging
process. However, there still appear to be as many similarities as dissimilarities
between segmentations. Whilst many similarities can be found between the seg-
mentations of SLC and PRI images generated on 16/04/92 and 09/06/92, there
is little similarity between the segmentations of the SLC and PRI images gener-
ated on 12/05/92 and 18/08/92. These observation have severe implications for
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Figure 9.20: Segmentation of the SLC images shown in Figure 9.15 after
sub-sampling over a 2 x 2 window.
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Figure 9.21: Result of edge removal using a PFA of 103,
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18/08/92 25/08/92

Figure 9.22: Result of edge removal using a PFA of 10~°.
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the stability of the segmentation algorithm under different image realisations.
This was further borne out when different sub-samplings of a single PRI image
were segmented.

Because sub-sampling of the PRI images was carried out over a 2 X 2 window
four distinct sub-sampled images can be generated from a single image. Two
distinct sub-samplings of the 16/04/92 PRI image and the result of segmentation
with and without merging are shown in Figure 9.23. While there is little differ-
ence between the two sub-sampled images there are marked differences between
their segmentations, not all of which are removed by merging. Similar differ-
ences result when the other two sub-samplings are segmented. These results
show that the segmentation algorithm is sensitive to small differences between
SAR images of the same scene.

9.3 Summary
In this chapter:

¢ The segmentation of SAR images using an algorithm originally developed
for segmenting high resolution airborme imagery has been investigated.
The algorithm involves an iterative process of edge detection and segment
growing. Detected edges are used to limit segment growing, then the
resulting segmentation is used to generate an improved edge detection.

o The edge detection and segment growing stages were described along with
how a measure of the average contrast within segments is used to monitor
the segmentation process and to decide when to halt. Weaknesses iden-
tified in the original algorithm and a number of modifications made to it
during the course of writing this thesis, were also discussed.

— Normally, iteration halts when the first minimum in the average con-
trast is reached. Instead the algorithm was allowed to iterate until
the second and third minima; no overall improvement was noted in
the resulting segmentations.

— The normalised gradient operator used for edge detection relies on an
estimate of the standard deviation within segments in the previous
iteration. However, initially no previous segmentation is available
and the image is treated as a single segment; this results in poor
edge detection performance on the first iteration. The normalised
ratio operator, which relies only on estimates of the local intensity,
was substituted for the normalised gradient operator on the first it-
eration. Better initial segmentations were generated but surprisingly
this did not carry through to the final segmentations. There was little
difference between the final segmentations produced from the initial
segmentations.

— Segmentations produced by the algorithm contain many point-like
features. For many applications we are interested in detecting such
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Figure 9.23: (a) two distinct sub-samplings of the 16/04/92 PRI image shown
in Figure 9.15, (b) result of segmentation, and (c) result of subsequent seg-
ment merging with thresholds set for a PFA of 1075,
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features only in so far it helps the detection of other types of feature
(see Chapter 8). Whilst some point-like features represent distinct
features it is suspected that many of them arise purely from speckle.
More quantitative methods for distinguishing true point features from
those that should be incorporated into segments need to be included
in the algorithm, e.g., the methods described in Chapter 8. Ideally
this should be the first stage of the edge detection process.

— Linear features such as rivers and lines of communication supply im-
portant visual clues when interpreting a SAR image, especially when
it comes to matching. Currently the segmentation algorithm has no
knowledge of such features. Thus, it is crucial that linear feature
detectors be developed for incorporation into the algorithm.

— The thresholds presently used for edge detection correspond to a high
false alarm rate. The effect of setting a lower false alarm rate or

decreasing the false alarm rate over subsequent iterations has yet to
be investigated.

¢ The need for objective methods of measuring segmentation accuracy was
stressed. Homogeneity within segments can be checked by dividing the
original image by an image showing the mean value within segments. The
resulting ratio image should consist purely of clutter; this image can be
resegmented to reveal any remaining structure. Measures of statistical
difference may be used to check that adjacent segments differ significantly.

e The full segmentations produced by the algorithm are too complete for
many applications, i.e., they suffer from over-segmentation. This is more
evident when the edges of segments rather than the mean value within
them is displayed. Since detailed visual inspection suggests that no real
boundaries are omitted in the full segmentation, a well-founded way of
merging segments is required which allows the segmentation to be degraded
while preserving the desired level of ‘information’.

— The original algorithm carries out segment merging by comparing
their moments. This method was found to be highly dependent on
segment size. Unfortunately it was only recently discovered that this
was due to an error in how the standard error of moments was calcu-
lated. Thus most work on segment merging was carried out using an

alternative approach and a proper analysis of the corrected algorithm
still awaits.

— A strength was attached to each edge; the weakest edges, up to a
given threshold, were then removed and the segments they separated
merged. This had to be carried out dynamically as the strength

of the remaining edges bounding two merged segments had to be

recalculated prior to the next weakest edge being removed, otherwise
edges lost closure.

— Dynamic thresholding was carried out using edge strengths based on
both the ratio and difference of the average intensity within segments.
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However, neither of these measures take into account the size of seg-
ments. We wished to retain both small segments separated by strong
edges and large segments separated by weak edges.

— A more suitable measure is given by the false alarm probability cor-
responding to the edge strength given the size of the segments. Such
a probability can be calculated for the edge ratio assuming the simple
image model applies, and intrinsically weights both the strength of
the edge and the size of the segments it separates. Correlation needs
to be taken into account when calculating this measure.

o The segmentation algorithm was used to investigate agricultural change
detection in ERS-1 images over Feltwell, East Anglia.

— A set of six ERS-1 SLC and PRI images taken during the growing
season of 1992 was used. Large structural differences between images
taken at different dates were confirmed by segmentation.

— Initial segmentations of the SLC data were over-segmented in the con-
text of field structures. However, detailed visual inspection convinced
us that the algorithm reliably found the segment boundaries in the
image. It also found many boundaries that the eye did not recognise
until it is told where to look. The eye is less able to detect edges
in regions which are radiometrically very bright or very dark (rela-
tive to how the image is scaled), but the segmentation performance
is unaffected by variations in mean image intensity.

— Much of this over-segmentation was removed by merging. While the
remaining segments faithfully reproduced the structure of the origi-
nal images, there were large differences between segmentations taken
from different dates. In addition, as the segmentation had failed to
preserve a very prominent linear feature in the images, it was difficult
to find any match at all between certain dates.

— Previously unencountered problems arose when the segmentation al-
gorithm was applied to the highly correlated PRI data. The high
degree of correlation greatly increased the number of false alarms pro-
duced by edge detection and the resulting segmentation was heavily
over-segmented. These problems were circumvented by sub-sampling
the PRI images prior to segmentation. Ideally this problem should
be overcome by taking correlation into account when setting edge
detection and segment merging thresholds.

— As with the SLC segmentations the PRI segmentations confirmed the
large temporal differences in image structure.

— The segmentations of SLC and PRI images generated from the same
raw data were also compared. While the same general features were
apparent, segment boundaries did not always match indicating that
the algorithm is unstable. This was further borne out when segmen-
tations of different sub-sampling of the same PRI image were com-
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pared. These issues warrant further investigation if segmentation is
to be used as a quantitative change detection tool.



Chapter 10

Conclusion and future work

In this concluding chapter we shall examine to what extent the results presented
in previous chapters answer the four main questions set out in the introduction
regarding the image map matching problem. We shall also highlight topics which
have surfaced along the way and which warrant further investigation.

10.1 Background theory

Before addressing the image map matching problem the general background the-
ory needed for carrying out any SAR image analysis was described in Chapters 2
to 4. Chapter 2 looked at the general theory of SAR imaging. It was shown how
the system response to a point target of a fully focused SAR using a chirp pulse,
could be described by a sinc function in both azimuth and range. The width
between the main lobe and first null of this function defined the resolution.

The statistical models needed to describe the fluctuations in the detected
intensity caused by speckle and imaged surface texture were discussed in Chap-
ter 3. Starting from the assumption that the detected field is given by the sum
of contributions from a large number of discrete elementary scatterers, whose
phase components are uniformly distributed and independent (fully developed
speckle), it was shown that the detected field could be modelled as the product
of a Gaussian speckle process and the square root of a gamma distributed im-
aged surface cross section. The intensity is then K-distributed and the phase is
uniformly distributed. Reasons for treating the imaged surface cross section as
being gamma distributed were considered. It was shown that the order param-
eter of the distribution can be related to the degree of imaged surface texture.
When no texture is detected (infinite order parameter) the imaged surface cross
section is constant and the intensity is exponentially distributed. The second
order intensity statistics were also derived. The intensity ACF is dependent on
the ACF’s of both the imaged surface cross section and the speckle process; the
ACF of the latter is determined solely by the system response.

In Chapter 4 we went on to look at the estimation of the mean intensity and
the degree of imaged surface texture, i.e., the order parameter of K-distributed
intensity. It was shown that maximum likelihood estimates were only practical
in the case of constant imaged surface cross section. The mean intensity within

195
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a homogeneous region is then given by the average intensity and will be gamma
distributed when the averaged intensities are independent. Correlation and fluc-
tuations in the imaged surface cross section were shown to increase the variance
of the average intensity. The result of averaging in both intensity and ampli-
tude was also related to the statistics of multi-look SAR images. Non-optimal
methods of estimating the degree of imaged surface texture were compared. An
estimate based on the mean log-intensity was shown to be more reliable than an
estimate based on the second normalised moment.

10.2 Direct matching

The first question in the introduction asked can map features be matched di-
rectly to SAR image features. The results presented on template matching in
Chapter 5 gave a categoric no to this. A correlation measure which had knowl-
edge of speckle was shown to perform better than straight cross-correlation under
a simple image model (constant imaged surface cross section and independent
speckle), both theoretically, and when used to match features in simulated im-
ages generated according to the simple image model. However, neither measure
performed well when used to match features in real images. It was found that
the simple image model did not adequately predict how a given feature would
appear in a SAR image. Possible extensions to the model to allow for texture
and correlation were considered. However, the processing overheads involved in
fitting multi-parameter distributions to matched features did not make this an
attractive option. This lead on to the conclusion that the mis-match between
the two data types had to be reduced prior to matching. Possible approaches
include applying edge detection and segmentation algorithms to structure the
image. This answered the second question set out in the introduction.

Before going on to look at these methods, further analysis was carried out
in Chapter 6 of the statistics along edges including the types of linear features
selected for matching. The discrete scatterer model was extended to describe the
different scattering processes contributing to the detected field along an edge.
The intensity statistics arising from this model were then derived. In the ab-
sence of strong specular or secondary scattering, the intensity is given by the
product of an exponential speckle process and a weighted sum of gamma dis-
tributed imaged surface cross section contributions from the different scattering
populations making up the edge. The weighting is determined by the mean
number of scatterers from each population and the variance in their density. It
was shown that this sum would itself be gamma distributed when either a single
contribution dominated or when all the contributions have equal weighting; the
intensity will then be K-distributed. These results implied that we can expect
pixel intensity to be approximately K-distributed along many types of edge in
single-look images. This was checked by measurement. The statistics of inten-
sity values sampled along a number of edges and linear features were fitted to
K-distributions. In virtually all cases a good fit was achieved; the best fit K-
distributions had a range of order parameters. In fact, the intensity along edges
and linear features was found to give a better to K-distributions than intensity
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values sampled over extended homogeneous regions.

10.3 Edge detection

Edge detection was investigated in Chapter 7. Amongst a number of local
operators suggested for detecting edges in SAR the normalised ratio operator
was identified as the most promising in terms of general edge detection criteria.
When the simple image model applies this operator acts as a constant false
alarm rate edge detector and gives the maximum likelihood estimate of the
intensity ratio between homogeneous regions, in addition, the false alarm rate
corresponding to a given edge detection threshold can be quantified. This is
a major advantage of using this operator. Other operators suffered from a
combination of problems of threshold selection, false alarm rates being dependent
on image intensity, and excessive false alarms.

When the performance of the normalised ratio operator was analysed in more
detail a variety of problems were identified regarding the use of the operator.
These problems are listed below along with proven/suggested solutions.

1. When thresholds are selected so as to produce a desired false alarm rate
under the simple image model, system induced correlation and texture
(K-distributions) will cause the false alarm rate to be significantly greater
than expected. In most cases the effect of correlation will be much greater
than that due to texture. In a sense this is fortunate. System induced
correlation is predictable, often only requiring measurement of the inten-
sity ACF over a single homogeneous region, while texture which may vary
over the image, is difficult to parameterise (see the discussion of texture
estimation in Chapter 4). The measured intensity ACF may be used to
determine the degree of sub-sampling needed, or how to adapt thresh-
olds, to meet expected false alarm rates. Because of the information loss
and edge thickening produced by sub-sampling threshold adaption is to be
preferred.

2. To detect edges at different scales, i.e., strong edges separating small seg-
ments as well as weak edges separating large segments, the normalised ratio
operator has to be applied over a range of window sizes. Edge thickening
results when edge detection is carried out within too large a window. This
leads to small scale edges being obscured and problems in relating edges
detected at different scales. To reduce thickening edge detection windows
need to be applied in order of increasing size, with edges only being de-
tected with a given window size where no edges have been detected using
smaller windows [61].

3. Because the smallest scale edges in an image are those defining point-
like targets, point target detection needs to be carried out prior to edge
detection and the results fed into the edge detection process described in
the previous item. A number of point target detection techniques were
investigated in Chapter 8. Some of these produced promising results but
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further work is need to check the consistency of the techniques over a range
of images.

4. Edge thickening is the result of detected edges being represented as a
property of specific pixels (the central pixel within the window over which
the edge was detected). It may be possible to circumvent this problem
using an alternative representation, e.g., representing edges as boundaries
between pixels (such a representation is more in keeping with the aims of
segmentation). The feasibility and benefits, if any, of doing this need to
be investigated.

5. Detected edges are often disconnected. One possible method of carrying
out linking is to identify the closed boundaries detected by the Marr-
Hildreth operator which correspond to detected edges [6]; this also enables
edges to be thinned to a single pixel wide line. The usefulness of this
method has yet to be investigated.

10.4 Segmentation

Segmentation of SAR images using an algorithm developed at RSRE was inves-
tigated in Chapter 9. As a means of structuring an image this segmentation
algorithm has various advantages over edge detection using the normalised ratio
operator. Some of these are due to the normalised gradient operator used by the
algorithm to detect edges, while others are due to the iterative edge detection -
segment growing nature of the algorithm.

1. The segmentation algorithm detects edges using a gradient operator nor-
malised by the local standard deviation as opposed to the local mean,
Thus, the operator will approximately act as a constant false alarm rate
edge detector in regions which are K-distributed with different order pa-
rameters.

2. Edge thickening and attendant problems are reduced by only detecting
edges at any given scale where no edges have been detected at smaller
scales (see the second item in the previous section).

3. The segment growing stage provides a means of linking disconnected edges
(see the fifth item in the previous section).

4. The algorithm benefits from an iterative learning process by using previous
segmentations to generate an improved edge detection.

The segmentation algorithm was used to investigate change detection in a se
ries of ERS-1 image taken over the Feltwell agricultural test site. The results
demonstrated the usefulness of the algorithm as a tool for extracting image struc-
ture and highlighting the structural differences between multi-temporal images.
However, they also illustrated a number of its weaknesses.
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1. The algorithm suffers from having no knowledge of linear features which
are poorly detected by the edge detection stage. This is a serious problem
as linear features may supply important visual clues when interpreting
an image, particularly when matching a series of multi-temporal images.
Thus, an important aim of future work is to develop suitable linear feature
detectors for incorporation into the algorithm.

2. The algorithm detects an excessive number of small segments. While some
of these certainly represent true point-like targets, it is suspected that
many arise purely from speckle and these should be combined into sur-
rounding segments. Therefore the methods used to detect point targets
(small segments) need to be improved possibly using the methods described
in Chapter 8. Also due to the problems caused by point targets for edge
detection these methods need to be integrated more fully into the edge
detection stage.

3. The segmentations produced by the algorithm are too complete for many
applications, i.e., regions that we would expect to be detected as a single
homogeneous segment (e.g., an agricultural field) and that appear to be
so are split into several segments. In some cases this over-segmentation
may be due to intensity differences between very dark or very bright re-
gions which the eye cannot see unless the image is scaled. To degrade
the segmentation down to the desired level of ‘information’ requires a final
stage of segment merging. The original algorithm included a means of
doing this based on comparing the moments of segments. However, due
to an implementation error which was only very recently discovered, this
method did not work as intended. This lead to an alternative method of
merging being developed. A degree of credibility is attached to each edge
separating segments, the least credible edges up to a given threshold are
then removed and the segments they separate are merged. This needs to
be carried out dynamically to retain edge closure. This alternative method
of merging which works successfully, still needs to be compared with the
corrected version of the original method based on comparing moments.
The effect of carrying out merging after each iteration rather than at the
end also needs to be investigated.

4. It was found that segmentation and merging performance were strongly
affected by correlation which had previously not been taken into account
when selecting thresholds. This was discovered by chance when highly
correlated ERS-1 PRI images were segmented. The resulting segmenta-
tions were excessively over-segmented. Known system induced correlation
can be compensated for by sub-sampling prior to segmentation. How-
ever, unless data is 100% correlated this will lead to some information
loss. Therefore it is desirable to develop means of predicting how to adapt
thresholds to compensate for known correlation. The methods already
developed for doing this when detecting edges using the normalised ratio
operator may be of help. It is important that correlation is correctly taken
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into account not just to reduce over-segmentation, but also to enable the
differences between adjacent segments to be properly quantified and an
overall accuracy to be attached to the segmentation.

5. The comparison of segmentations of ERS-1 SLC and PRI images of the
same scene as well as different sub-samplings of the same image, indicate
that the algorithm is unstable. This has serious implications for the use
of segmentation for structural change detection. If insignificant differences
between images can lead to significantly different segmentations there is
little chance of quantifying larger differences. The source of this instability
needs to be identified and if possible methods of rectifying it developed.
It is suspected the instability may arise from false alarm edges influencing
the segment growing stage, thus algorithm stability may be improved by
using thresholds corresponding to a lower PFA. This needs investigation.
Another possibility is to reduce/increase edge detection thresholds over
subsequent iterations.

6. Most of the segmentations presented in Chapter 9 were compared using
purely subjective visual criteria. This is insufficient as a means of ob-
jectively comparing different segmentation methods and quantifying dif-
ferences between multi-temporal segmentations. Possible approaches to
checking the homogeneity within regions and the differences between ad-
jacent segments were outlined. These methods need to be more fully de-
veloped into clearly defined routines for measuring segmentation accuracy
in an objective manner. A difficulty with defining what is meant by a
‘good segmentation’ is that criteria will vary from application to applica-
tion. One possible solution is to simulate SAR images containing known
features corresponding to the objects of interest to a particular applica-
tion. The segmentation algorithm can then be run on these images to
objectively measure its ability to detect such features. An implementation
of such a test suite is described in [13].

10.5 Image map matching

Segmentation using the RSRE algorithm clearly offers a greater degree of image
structuring than edge detection based on the normalised ratio operator. The
former produces an edge map consisting of single pixel wide closed boundaries
separating segments which supposedly represent distinct homogeneous regions,
while the latter only produces a disconnected edge map with edges of varying
thickness; the thickness of an edge being related to its strength. Therefore the
segmentation algorithm would appear to be the more obvious choice of method
for structuring a SAR image prior to carrying out image map matching. How-
ever, for some applications there is a danger in the segmentation algorithm im-
posing too much structure on an image as is seen in the over-segmented images
shown in Chapter 9.

The segmentation algorithm is based on an image model which does not
allow for gradual changes in image intensity; the output segmentation con-
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sists of homogeneous regions (segments) separated by abrupt closed boundaries
(edges). Over structuring may occur when disconnected edges are linked into
closed boundaries by the segment growing stage. Over many types of terrain
such an image model is highly suitable, e.g., when segmenting an image show-
ing agricultural fields, but may not be so suitable in areas containing no hard
boundaries, e.g., regions covered by gradually varying natural vegetation. The
fact that segmentation imposes such an image model should always be remem-
bered when interpreting the results of the segmentation process. Although edge
detection is based on a similar image model it is less important to take it into
consideration when interpreting results; so long as no edge linking is applied.
Because apart from false alarms due to speckle, which may be controlled by
thresholding, no edges are detected where they do not exist.

The type of linear feature we were previously interested in matching in Chap-
ter 5 is presently poorly detected by the segmentation algorithm. Thus, image
map matching of this type can only proceed in line with improvements in lin-
ear feature detection. An alternative which is more suited to the output of
the present algorithm is region based matching. Segmentation combined with
a suitable degree of merging may be used to produce a representation of the
image which corresponds to a map showing land cover types. Matching may
then proceed on the basis of a number of possible criteria, namely the shape,
size, and topology of regions. Such an approach has been suggested previously
but does not appear to have been properly investigated [27]. This approach does
involve various assumptions concerning the land units shown in the map data,
that they have not significantly changed shape (merged/split) by the time the
image was taken, and that they are radiometrically distinguishable (we auto-
matically assume that the map has been transformed to the same geometry as
the image).

The results presented in Chapter 9 on the segmentation of ERS-1 images over
the Feltwell agricultural test site imply that this last assumption can not always
be taken for granted. While it is reasonable to assume that field boundaries will
not have significantly changed over the five months during which the images
were taken, radiometric changes within fields radically alter the perceived image
structure both by eye and machine. Because of this, given an accurate field map
of this test site, matching could not always be carried out using region based
methods alone. In terms of matching this series of images to map data a more
sensible feature for matching is the drainage channel, which as we have already
said first requires improved methods for detecting such features. Water features
such as this along with lines of communication are less prone to radiometric
change than agricultural and forested areas and are thus temporally more stable
features for matching (note, the appearance of such features can alter radically
when imaged from different directions [25]). Matching using such linear features
is particularly needed when the detection of radiometric change occurring within
land units is of primary interest, e.g., monitoring crops or changes in surface
moisture,
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10.6 Future work

While the RSRE segmentation appears to supply a suitable means of structur-
ing an image prior to matching, the above observations all the more emphasize
the need to be able to reliably detect prominent linear features and to be able
to match such features to map data. Only then can map data be used as an
independent reference for change detection. Future work should concentrate on
these two aspects of the image map problem, the first in particular as matching
can only proceed once reliable linear feature detectors are available. The devel-
opment of linear feature detectors will also significantly improve the usefulness of
segmentation as an image analysis tool. Secondly it is important that the prob-
lems of point target detection, algorithm instability, checking of segmentation
accuracy and correlation should all be addressed. Also, despite the problems
discussed above the feasibility of carrying out region based matching should be
investigated.

The advantages offered by segmentation over edge detection call into question
the need to further develop edge detection using the normalised ratio operator
as an image analysis tool in its own right. The suggested improvements in this
algorithm are either shared in common with, or are already implemented in
the segmentation algorithm. It may possibly be beneficial to implement these
improvements to make available an ‘optimal’ non-iterative edge detector. It
would also be interesting to investigate the problems involved in and benefits of
representing detected edges as boundaries between pixels rather than as ‘edge
pixels’.

In this thesis all segmentation has been carried out on single images. How-
ever, additional radiometric and structural information is contained in multi-
frequency and multi-polarimetric SAR datasets (e.g., AIRSAR quad-polarised
three frequency data). To make full use of this information requires the devel-
opment of multi-dimensional segmentation techniques. This would first involve
identifying the information content of the multi-dimensional data so that suit-
able segmentation parameters could be defined. Operators for carrying out
multi-dimensional edge detection based on these parameters would then need
to be developed. After edge detection segment growing could proceed as in the
single-dimensional case. The segmentation accuracy measure needed to control
iteration would need to take account of the multi-dimensionality of the dataset.

Hopefully the increased structural information contained in multi-
dimensional datasets, extracted via multi-dimensional segmentation, should
make image map matching more feasible. Though possibly also more complex.
However, the problems inherent in the single-dimensional segmentation algo-
rithm, especially those of stability, should be addressed prior to such advanced
methods being developed.



Appendix A

Relation between the input
and output distributions of
basic binary operators

Given two independent positive random variables z; and z, with pdf’s fz, (z)
and f,, (z) respectively, the pdf’s of their sum, difference, absolute difference,

product, ratio and normalised ratio are:

1. sum y = z; + 22

L@ = [ fo =2 fr (2)ds

which by the convolution theorem equals

1 oo
_— -z
=5 /0 ¢, (W) P, (w)e dw

where &, (w) and @, (w) are the characteristic functions of z; and z;.

2. difference y = z; — 72

)=

max{—y,

oo

I 49 e ()2
3. absolute difference y = |z, — |
L@ = [ Un 4 2) f2y () 4 frr (2) fa (0 4 2))
4. product y = 1z,
@)= [ fo (L) ()30
5. ratioy = &

@) = [ for (v2) S () 2z
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6. normalised ratio y = min (E.L’Ez)
T2’ T

@)= [ e 09) fra @)+ fir () oy ade (A



Appendix B

Characteristic function of a
Rayleigh distribution

The characteristic function of a Rayleigh distributed random variable y is given
by

—? —? w2 ]
&, () = 14, Ee™ 7 - "-’2ﬁe—c*/0 e db (B.1)

where u = (y?). The proof is as follows.
The characteristic function of y is defined from its pdf (3.90) by

o =
o, (w):/0 __2ye”" e“Vdy

This may be expressed in terms of the characteristic function of z = V2] ey

$, (w) = /:o ze;':ie""\/g‘dz =9, (w\/g) (B.2)

where

© _z2
Q,(w):/o zez e*dz

The characteristic function of y will be determined from that of z which may be
rewritten as

oo _z2 —w2 fOo —(Z-wa
P, (w) = / zez eM*dz =€z ze” z  dz
0 0
00—

—u? a2
= e2 (a+w)e2 da

—w
where a = z — jw.

Defining

X—- —a?
¢$ = / (a+w)ez da
-

- —a?
¢y = / (a4 jw)e™z da
0
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0 a2

b = [ (@+)eF da
X —a2

¢y = / (a4 jw)e™2 da
X—yw

¢1, 2, ¢3 and ¢4 constitute an integral round a closed path. By Cauchy’s
theorem their sum equals zero and

—a2 -
®.(w)=e7 lim ¢ = —eF Jim (¢2 + ¢3 + ¢4)

Thus we can determine &, (w) by finding the limit of ¢z, ¢3 and ¢4 as X — o,
Because ¢ is independent of X, letting ¢ = —3b its limit is given by

w 2 w 2
im 4= 6= | (w-beFdb=1-eT+w [ Tt (B3
X—o0 0 0

The limit of ¢3 equals

. T
Xhinm $3 = ~1 — 3 /Ew (B.4)
Letting @ = jw (b — 1) + X, ¢4 is given by

—x2 1 2(b=1)2
dq = Jwe_i(_ / (wb + X) e"‘%’le"ﬁ"(b-l)xdb
0
thus
-x2 M1 w2(b-1)2 —x2 2 [l
|64l < |w|eT/ wb + X] e db < lee—i‘_eT/ l7wb + X| db
0 0
as the RHS — 0 as X — oo, the limit of ¢4 equals zero
- Jim é4=0 (B.5)
Combining (B.3,B.4,B.5) z has characteristic function

. (w) = —e:‘;_z X]i_l’noo (¢2 + ¢3 + ¢4)

—w2 o? w2
= —e—z—(l—e7+w/ e%‘db—l—]‘/zw>
(i} 2

T —u? —2 W 2
1 +]\/;we'r —we 7 ez db
(i

Therefore from (B.2) y has characteristic function

/Tl —w? —w? w 2
¢, (w) = 1+J‘:’%eﬁ'ﬂ—%eﬁ’ﬂ/o et db

This completes the proof of (B.1).
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Pdf of the sum of two gamma
distributed random wvariables

The pdf of the sum y of two gamma distributed random variables z; and z;
with means gy and p2, and integer order parameters v; and v, is given by

1 = Ml oy —14k \yrE (—a)k
— va g \7")
fv (y) - i’lﬂ;z {e#a ;?:_(:) ( k I\(V1 — k)
-1 -1-k k
5 —1+k )y e
+e (—a)1 “ ) ——} C.1
can S () Fm) o
where 81 = p1/v1, B2 = p2/ve and 1/a = 1/, — 1/B;. This will be proven by

induction on 4.
When »; = 1, substituting the pdf’s of z; and z; given by (3.59) into (A 1),

their sum has pdf

=(y-3)
Ve P Bz 1

fy(y) = 0 b1 ,52 F(Vz)
va—1-kk
{ ot e® (- Q)E I‘("2—16)}

ﬂlﬂz

This proves (C.1) for v, = 1.

To complete the proof we will assume (C.1) to be true for »; = v and prove
it to be true for 14 = v + 1. As the order parameters are integers each z; is
the sum of v; exponential random variables with mean §;. Thus the sum of
two gamma distributed random variables with means (v + 1) 81 and v2/3;, and
order parameters v + 1 and s, is equal to the sum of two gamma distributed
random variables with means v; and v,8; and order parameters v and v;, plus
an exponential random variable with mean ;. Assuming (C.1)is true forv; = v
and once again using (A.1), the pdf of this sum is given by

v :(%:ﬁ 1 zv-1-k(_q)k
- € 7 2_1+k ( Q)
L) = ./o B BIBE {CT“ E( )_F(_——u—k)

207



208 APPENDIX C. PDF OF THE SUM OF T RANDOM VARIABLES

_ 21—k k
i oS (U ) e

re-arranging terms

_ a*? V2—1+k (—a) y—
w0 = graie® {an 2 ) s [f ik

v = - k ak V == -
) S (V e )r(w-k)/o ee e l_kd’}

k=0

and integrating, the pdf is given by

RS = —1+k ¥ ~* (—a)*
Hy) = ﬂ;+1ﬂ;zeh {awz( )F(u+1—k)

k=0
+ (—a)” oz"’u2 ( 1+k)
k=0
e (capan 3 (VT IHE)SETL (0]
=) g( k )f;,j!(Z)}(C'Q)

Substituting the identities

"il(u—1+k)_(t/2—l+u)
k=0 k v
and

SO )R- ) mm @

k] =0

into (C.2) gives
A = g {Fan T (R )
+e%¥av=( -1+ ”)(—a)
~e (-a)’ @ yi (i ) r=m (&)™)
) ﬂriﬂ"’{ “W?.:c,(w—uk)%%

v2—-1 va=1-k_k
ﬁf JEPRYZ 2! % v+k ¥y o
+e ( Cl) Ig k I‘(u2 _ k)

When v = v 4+ 1 this has the same form as (C.1). This completes the proof.
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Intensity moments of sums of
circularly symmetric complex
random variables

Given n independent circularly symmetric complex random variables 21,...,2z,
we wish to prove that their sum z = 2; + ...+ 2z, has intensity moments

R Sh 3>

2
k1=0 kz=0 k E ((m k1)t (k1 — k2)!. . (kn2 — kn—l)!kn—l!) %
() (). (1 o1

where I = |z|? and I = |z|?. The proof will be given by induction on =.
First we will prove (D.1) for n = 2. The intensity I of the sum z = 2y + 2

is given by

m!

I=z22"=L+4+a+a"+1,
where a = z;2;. The m’th moment of the intensity may then be expressed

{i+5)+@ta)™) =) ( ™ ) {(h+ LY (a4 o))

k=0
L m—k k —kmj i ki oy
- £E2(1) (757 (§) e

The ensemble average term in this summation is only non-zero when the phase of
o*=% and (a*)* cancel. This will only occur when k = 2i. Noting that aa*® = I; I
and rearranging factorial terms the m’th moment becomes

m-EE () () ()t

=0 j3=0

")

Letting j = k1 — ¢ and reversing the order of summation gives

=3 () () () )

kl =0 i=0
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which using the identity [1] (24.1.1)
m min(k;.m—kl) m— kl kl
(R)-"% (") (%)

m 2
=5 (%) @) ®

ky=0

equals

This proves (D.1) for n = 2.
Assuming (D.1) is true for n < p we will prove it is true for n = p+ 1. Let

2, = z) and 2 = z3 + ...+ 2p4) wWhere 21,...,2p41 are independent circularly
symmetric complex random variables. From (D.2) z=z, + 23, = z; +...+ Zon
has intensity moments

=3 (1) () ()

ky=0

Using (D.1) to express (I:‘) in terms of the moments of Iy, ...,Ip4; gives

m 2 k1 "n-l 2
) m\2 ) ke b
(rm = 3::0 ( ky ) (I >k§0 §° ((k1 k). (kpor — k,,)!k,!) X

(Tek) . (B ()

Cancelling factorial terms gives the desired expression for the moments

h 1Y k\ kn-\ ( m‘

2
Iy = 2 3 2\ mowy (kl—kz)!'.--(kp—x—kp)!k»’) "

k=0 k=0 kn=0

() ). (7 ()

This complete the inductive proof of (D.1).
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Selection of map data

In this appendix we discuss the selection of digital map data suitable for match-
ing to features in SAR images. Binary templates representing features to be
matched can be generated from digital map data in either vector or raster for-
mat. Generally it is easier to produce digital map data in raster as opposed to
vector format. Given that SAR data is intrinsically in raster format, matching
and collectively manipulating map and SAR data would be simpler if the map
data was in raster as opposed to vector format. However, this does not preclude
the use of vector data, as it can easily be scan-converted into raster data at any
resolution when required (the opposite process of raster to vector conversion is
not simple). The advantages and disadvantages of using vector data need to be
compared with those of using raster data.

Generally map data takes up less storage when it is in vector as opposed
to raster format; this depends on the scanning resolution. A certain degree of
‘intelligence’ can be added to vector data by labelling each vector with infor-
mation on what type of feature it represents. Vector data of this type can be
selectively scan-converted with only features of interest being converted, that is
map features which represent the actual shape of objects; lines of communica-
tion, water features and vegetation boundaries. Abstract and symbolic features
(text, symbols, grid lines and contours), may be vseful at a later stage for in-
terpretation but they would only confuse the registration process; it is best if
such features are not present in the map data to be used for registration. In
addition, it is possible to control how different types of features are represented
in the scan-converted raster map, for example, a road can be represented by a
single line or two paralle] lines of any desired thickness. Thus, using ‘intelligent’
vector data it is possible to produce raster data with smooth lines of desired
thickness and with only features of interest present. This is in contrast to di-
rectly scanning printed maps: all features on the printed map large enough to be
detected by scanning, including imperfections such as small artefacts and noisy
linework, will appear on the raster map. When using the latter the presence of
text, symbols, grids, contours, dashed lines and imperfections in the data needs
to be remembered.

To normalise and to clean up the linework on directly scanned raster data all
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lines may be thinned to being a single pixel wide!. Small artefacts, that is small
noise features present in the original map or caused by dust when scanning, may
be removed by deleting all strings of connected pixels made up of less than a set
number of pixels. A similar method could be used to remove text and symbols.
However, it is likely that interesting features represented by dashed lines would
also be removed (a technique for converting dashed lines into solid lines would be
useful). Given that the position of grid lines is well defined it should be possible
to remove them. As contours cannot be distinguished from lines representing
features of interest it is best to scan map data without contours.

Prior to matching, information about the projection and scale of the map
data and known distortions in the SAR data arising from the imaging geom-
etry, is used to transform the map data. Once transformed in this manner,
map templates can be matched to image features without having to take scale
and rotation into consideration. In addition this information can be used to
limit the area of the image over which a match is searched for. Known distor-
tions in spaceborne and airborne SAR are described in [9] and [45] respectively.
The registration process is used to correct any unknown distortions in the SAR
data. Distortions can arise from atmospheric and topographic effects and sensor
motion. By transforming the map data and not the image as in geocoding, dif-
ficulties arising from interpolation and sampling in SAR data [50] are avoided.
This rough initial registration provides a framework from which to start the
main task of registration.

It is desirable that the map data to be used for interpretation and change
detection be of large enough scale that the smallest detectable image features
could be accurately represented in the map. Within Britain, 1:10,000 Ordnance
Survey mapping scanned at 200dpi (ground resolution 1.25m per pixel), is more
than adequate. The digital map data referred to in Chapter 5 is of this type.

A thinning algorithm which ensures that connectedness is conserved and that the thinned
line lies along the middle of the original line should be used; a morphological algorithm meeting
these criteria is described in [32].
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Glossary

This glossary briefly defines various mathematical functions and relationship
referred to in the main body of the thesis. For further details on topics listed
see; [1] for mathematical functions, [7] for relationships involving the Fourier
transform, and [11, 48] for the statistics of random variables and processes. For
ease of reference topics listed in the glossary are printed in bold in the main
body of the thesis wherever the reader may require further explication of the
topic (e.g., where it is first introduced), and when they are mentioned in the
glossary under topic headings other than their own.

Autocorrelation and Autocovariance

The autocorrelation function (ACF) R (#1,12) of a random process z (t) at
t; and t; is defined by

R(t1,t2) = (z (1) z (t2))

and the autocovariance C (t1,2) of z (¢) at ¢, and ¢; is defined by
C (t1,t2) = (2 (L) z (£2)) — (2 (11)) (= (22))

The normalised autocorrelation function r (¢;,%;) at t; and ¢; is derived by
dividing the autocorrelation function at t; and ¢; by the expected values
of z(t) at £; and ¢

r(t1,t2) = R(t,t)  _ (z(t)z(t))
HT M) () (2 (0)) (= ()

The normalised autocovariance ¢ (t) is defined likewise

Cltt) _ (zt)z(t2)) _,
(z (@) (z(t2)) (= (t)) (e (t2))

The correlation coefficient is given by dividing the autocovariance by the
variance.

c(ti,t2) =
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When ¢; = t3 = tp the above functions generate the following first or-
der statistics of z (¢) at to. The autocorrelation function gives its second

moment
R (to,t) = (= (to)?)

the autocovariance gives its variance

Cltot0) = (2 (t0)*) — (z (to))* = 0%,

the normalised autocorrelation function gives its second normalised mo-

ment )
T to
GO) @
(z (to))
and the normalised autocovariance gives its coefficient of variation
(z (o)) - (z (t0))* y
(z () )

T(to,to) =

¢ (t01 tO) =
When the random process z () is stationary its autocorrelation function
only depends on 7 = t; — i3, i.e.
R(T) =R (tl,tz) =R (t3,t4)

where 7 = tl—tg =t3—t4.

Bessel functions

Bessel functions are solutions to the differential equations [1]
d*w dw
22 2 _ .2\, =
77 +zd +(az —v)w—O

where @ = £1. When a = 1 solutions include the Bessel function of the
first kind J, (2), and when a = —1 solutions include the modified Bessel
function of the second kind K, (z). Here we list the main properties of
Bessel functions used in preceding chapters.

When v = 0 the Bessel function of the first kind has an integral represen-
tation [1]-(9.1.21)

1 T Z COS
Jo(2)=2—7r_/_”ej ’d

and a series expansion [1]-(9.1.10)

Jo(2) = Z (4k(k.) (F.1)

The modified Bessel function of the second kind has an integral represen-
tation [1]-(9.6.24)

K,(z) = / % g-zcosht cosh (vt) dt (F.2)
0
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where |/z| < 7/2. The first derivative of K, (z) with respect to z is given
by [1]-(9.6.26)

K, K,
Ky (2) = - (KLl B () (k.3
Useful integrals involving K, (z) include [1]-(11.3.27)
/ #K, 1 (t)dt = —2"K, (2) + 2T (v) (F.4)
0

and [1]-(11.4.22)

[ K @dt=2mr (71 ”) r(Zors 2) (F.5)

When v = n — 1/2, where n is an integer, K, (z) has a series expansion
given by [1]-(10.2.15)

T el I'(n+k) _
Kn-i. (Z) = \/—2—:8 kz=;) I\(n _ k)I‘(k + 1) (22) g (F6)

Central limit theorem

The central limit theorem states that under certain conditions the sum
y=21+...+2z, of nindependent continuous random variables tends to
being Gaussian distributed with mean p, = y; +...+ p, and variance

o2 =0} +...+ 02 as n increases.

Sufficient conditions for the central limit theorem to apply are [48]:
1. The variance of the sum must tend to infinity as the number of vari-
ables tends to infinity.
2. For some number m > 2 the mth moment of all the variables must
be finite.
Characteristic function

The characteristic function @, (w) of a random variable z is given by the
Fourier transform of its probability density function f; (z)

&, (w) = /_ : fo (z) €%dz = (€™7)

and the inverse Fourier transform of the characteristic function gives the

pdf

oo

fe(w)= %/_w ®; (w)e ™™ dw

Substituting for e** by its series expansion given by [1]-(4.2.1)

e = 3 wa)t (F.7)
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the characteristic function of z is related to its moments by
(Jw)
8. (w) = (=)

Thus the mth moment of z can be generated from its characteristic func-
tion by taking the mth derivative of its characteristic function

d™d, (W) & gFoF k+
dw™ = Z ! <$ m)
and setting w = 0. The mth moment is then given by

m\ __ -mder(o)
(™) =13 Tdom

Circular symmetry

A bivariate function is termed to be circularly symmetric if its value only
depends on the radial distance from the origin [48], i.e. the function f (z,y)
is circularly symmetric if

f(z1,0) = f: (z2,%2)

whenever
2 2 _ .2 2
nntn=22t+y

A complex random variable is said to be circularly symmetric if its prob-
ability density function is circularly symmetric; this will be the case if
and only if the phase and amplitude are independent. The phase will
then be uniformly distributed over the interval (—x, 7). The real and imag-
inary components of a circularly symmetric random variable are uncorre-
lated but they can only be independent if and only if they are Gaussian,
i.e, if the amplitude is Rayleigh distributed.

Coefficient of variation

The coefficient of variation of a random variable z with mean y,; and
variance o2, is a measure of the width of its distribution relative to its
mean value. It is given by

o2
2 _ ‘=z
o
The square root of the coefficient of variation, i.e., standard devia-
tion/mean, is normally used to measure contrast in an image degraded

by multiplicative noise.

v

Convolution theorem

Given two functions f; (z) and f; (z) with Fourier transforms Fj (w) and
F; (w) respectively, the convolution theorem [48] states that their convo-

lution f(z) = f1(z) * f2 (z) defined by
1@= [ AWhG-nd
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has a Fourier transform F(w) equal to the product of the Fourier trans-
forms of the two functions

F(w)= F; (@) B )

It follows from the convolution theorem that the characteristic function
of the sum of two independent random variables will be given by the
product of their characteristic functions. This is because the proba-
bility density function of the sum of two independent random variables
is given by the convolution of their probability density functions (A.1),
and because the characteristic function of a random variable is just the
Fourier transform of its probability density function.

This result can be extended to the sum y of n independent random vari-
ables z;, with the c