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Abstract

The work presented in this thesis utilises the HIRAC chamber for the development and

characterisation of instrumentation for measurements of OH and HO2 radicals, and OH

reactivity. This instrumentation is implemented, alongside other standard measurements,

following oxidation of processes of butanol, a potential biofuel, focussing on OH

reactivity and ozone formation. Results from further development of calibration methods

for determining the sensitivity of a FAGE instrument are presented. Monte Carlo error

propagations were used to assess sources of error associated with the N2O actinometry

method for the determination of F184.9 nm, where the variation in the measured [NO] was

shown to have the most significant influence (46.1 – 99.1%) on the determined value of

F184.9 nm. An alternative calibration method, utilising the HIRAC chamber, for

determining the sensitivity of the HO2 cell, CHO2, of a FAGE instrument as a function of

temperature is reported to be ∆CHO2(HIRAC) = (0.34 ± 0.19)% K-1, in good agreement with

previous reported HO2 cell sensitivity following the conventional “wand” calibration

method. Development and characterisation of a LFP-LIF instrument OH reactivity

measurements (k’
OH) is described, with improved measurements for values of k’

OH up to

~150 s-1. The first measurements sampling from the HIRAC chamber are shown to be

successful, demonstrated by excellent agreement of kn-butanol + OH ((8.21 ± 0.37) × 10-12

cm3 molecule-1 s-1) with the IUPAC recommended value. Anonymised results from an

OH reactivity instrument intercomparison at the SAPHIR chamber, are presented. The

Leeds LFP-LIF instrument showed good agreement with calculated OH reactivity, where

a correlation of 1.032 was observed. Relative rate studies into the temperature dependent

rate coefficients of n-butanol and iso-butanol with Cl atoms are presented, Arrhenius

expressions describing the temperature dependencies being kCl + n-butanol = 1.01 × 10-10

exp((235 ± 34) / T) cm3 molecule-1 s-1 over 266 – 343 K and kCl + iso-butanol = 5.53 × 10-10

exp((367 ± 76) / T) cm3 molecule-1 s-1 over 296 – 344 K. Studies following the OH radical

and Cl atom initiated oxidation processes of iso-butanol and iso-butane are presented;

ozone formation is observed to be considerably greater for Cl atom initiated processes

and greater for iso-butane as compared to iso-butanol. The first OH reactivity

measurements following relatively complex reaction systems are presented, with time

profiles showing good agreement between measured and calculated OH reactivities.
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Introduction

1.1 Tropospheric Chemistry

The study of atmospheric chemistry is vital for our understanding of the chemical

processes occurring in the troposphere. A comprehensive review of all aspects of

atmospheric chemistry is far beyond the scope of this work. With the need for renewable

energy sources becoming more apparent as energy usage increases and fossil fuel

resources are rapidly declining; this thesis focusses on the development of

instrumentation for atmospheric measurements and their implementation for studying the

atmospheric oxidation of potential biofuels. This chapter will give an introduction to the

relevant tropospheric chemistry of such compounds; a detailed review is given into the

current literature on the tropospheric kinetics and oxidation processes of the isomers of

butanol (as potential biofuel compounds). A review of the methods for two major types

of atmospheric measurements used in this thesis is given, with a comparison of the

advantages and disadvantages of both.

Chemical reactions of volatile organic compounds (VOCs) in the troposphere can result

in the formation of particles and ozone, both of which are air pollutants that are toxic to

human health and can affect the climate (Ellingsen et al. 2008). Ambient air pollution

was shown to be the cause of three million premature deaths in 2012 (WHO 2016). The

study of atmospheric chemistry is typically split into three main areas: laboratory studies,

field measurements and computer modelling. Laboratory studies include small scale

kinetic measurements to determine rate coefficients of tropospherically relevant reactions

as well as more complex studies carried out in atmospheric simulation chambers to

investigate the detailed chemical mechanisms of individual reaction schemes.

Information determined through kinetic studies is used in the modelling and analysis of

both field based and chamber based measurements. Comparisons between modelling

studies and field or chamber measurements allow for our current understanding of

chemical mechanisms to be probed; where our understanding is lacking, further

laboratory studies can be implemented.

The atmosphere is made up of four layers defined by their vertical variations in

temperature and pressure; the troposphere, stratosphere, mesosphere and thermosphere.
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The troposphere is the lowest layer of the atmosphere, the first ~10 km of the atmosphere

and the boundary layer is the lower most ~1 km of the troposphere. The majority of the

mass of the atmosphere is found in the troposphere (~90%) and hence most of the reactive

trace species, which play a vital role in atmospheric chemistry. Ozone is an important

constituent of the atmosphere for a number of reasons; the ozone layer in the stratosphere

absorbs UV light (λ < 290 nm) from the sun, protecting us from its adverse effects. In the 

troposphere, ozone is toxic to humans, wildlife and crops (Felzer et al. 2007, Ellingsen et

al. 2008, Monks 2009). Tropospheric ozone formation is highly dependent on the

presence of nitrogen oxides (NOx = NO and NO2) and VOCs. Work in this thesis looks

at ozone formation following the oxidation of a potential biofuel (iso-butanol) under

varying tropospherically relevant NOx conditions. The hydroxyl radical (OH) is the most

abundant oxidising agent in the troposphere, with an average day time concentration of

~106 molecule cm-3 (Stone et al. 2012). In the troposphere, the chemistry of OH radicals

is closely related to that of the hydroperoxy radicals (HO2), collectively referred to as

HOx (= OH + HO2). Section 1.2 will discuss in detail the tropospheric oxidation of VOCs,

focusing on the importance of NOx concentrations and ozone formation. Measurements

of OH reactivity (the pseudo first order loss rate of OH, k’
OH) allow for better insights into

the oxidation capacity of the troposphere. The potential for the removal of VOCs in the

troposphere is vitally important for our understanding of chemical mechanisms and to

allow for predictions of climate to be made. High concentrations of NOx in urban

environments are typically mirrored by high concentrations of ozone.

Chlorine atom chemistry can also have an important influence on the chemical reactions

occurring in the troposphere and has been seen to have a particular impact on the

formation of tropospheric ozone (Simpson et al. 2015). The importance of chlorine atom

chemistry will be outlined in Section 1.4, and its close connections with tropospheric HOx

and NOx chemistry.

Details of the development of a laser induced fluorescence (LIF) instrument for the

measurement of HOx within the Highly Instrumented Reactor for Atmospheric Chemistry

(HIRAC) chamber are given in Chapter 3, focusing on the development of calibration

techniques. Development and characterisation of a laser flash photolysis coupled with

laser induced fluorescence (LFP-LIF) instrument for measurement of OH reactivity from

the HIRAC chamber are discussed in Chapter 4. This instrument was deployed for an

instrument intercomparison at the Simulation of Atmospheric Photochemistry In a large

Reaction (SAPHIR) chamber in October 2015, and some of the results from this study
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are described in Chapter 5. A kinetic study of the temperature dependent rate coefficients

with Cl atoms of two potential biofuels (iso-butanol and n-butanol) is given in Chapter 6.

A detailed product study, of the oxidation of iso-butanol under varying NOx conditions is

given in Chapter 7, including comparisons on the formation of ozone with the analogous

alkane, iso-butane. The first measurements of OH reactivity from the HIRAC chamber

following the relatively complex oxidation processes of iso-butanol and iso-butane are

discussed in Chapter 8, with comparisons being made between measured and calculated

OH reactivity.

1.2 Tropospheric VOC Oxidation

The chemistry of OH and HO2 radicals are closely coupled; Figure 1-1 shows a simplified

schematic of the HOx radical related chemical reactions occurring in the troposphere. The

very short lifetimes of OH and HO2 radicals (~1 s and ~100 s, respectively), due to their

high reactivity towards VOCs, lead to them having low concentrations in the troposphere

(Heard and Pilling 2003). Such low concentrations require the use of extremely sensitive

and selective detection techniques (Heard and Pilling 2003). Three main techniques have

been developed for the measurement of OH and HO2 radical concentrations; differential

optical absorption spectroscopy (DOAS), chemical ionisation mass spectrometry (CIMS)

and laser induced fluorescence (LIF), and will be discussed in Section 1.7.
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Figure 1-1: Simplified diagram of the HOx cycle.

OH radicals react with VOCs in the troposphere, which can follow a number of pathways

to termination or radical recycling. The majority of OH radicals are formed in the

troposphere through the photolysis of O3 to produce O(1D), which subsequently reacts

with water vapour present in the air to produce two OH radicals (R 1-1 and R 1-2).

Collisional quenching of O(1D) can also occur with O2 or N2 to the ground state, O(3P),

(R 1-3) which, in the presence of O2 will regenerate O3 (R 1-4), as shown in Figure 1-1.

O3 + hν(<340 nm)  →  O(1D) + O2 R 1-1

O(1D) + H2O  →  2OH R 1-2

O(1D)  +  M  →  O(3P) + M R 1-3

O(3P) + O2  →  O3 R 1-4

Many reactions can occur with OH radicals, including the reaction with VOCs (RH in

Figure 1-1) to produce RO2 radicals in the presence of O2, reaction with CO or O3 to

produce HO2 radicals, reaction with NO to produce HONO and the reaction with NO2 to

produce HNO3 (R 1-5 to R 1-9).
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OH + RH + O2  →  RO2 + H2O R 1-5

OH + O3  →  HO2 + O2 R 1-6

OH + CO + O2  →  HO2 + CO2 R 1-7

OH  +  NO  →  HONO R 1-8

OH + NO2  →  HNO3 R 1-9

Under environments with high NOx concentrations, such as urban areas where

[NO] = 1 - 100 ppbv, RO2 radicals react with NO to produce RO radicals and NO2

(R 1-10). RO radicals subsequently form HO2 and RCHO in the presence of O2 in the

troposphere. The HO2 radicals formed through R 1-11 can also react with NO present in

high NOx environments to regenerate OH radicals (R 1-12).

RO2  +  NO  →  RO  +  NO2 R 1-10

RO + O2  →  HO2 + RCHO R 1-11

HO2  +  NO  →  OH  +  NO2 R 1-12

The NO2 formed through R 1-10 and R 1-12 is photolysed (λ > 398 nm) to produce O(3P)

which can subsequently react with O2 to form ozone; this is the only known pathway for

the formation of O3 in the troposphere (R 1-13 and R 1-14).

NO2 + hν(λ > 398 nm)  →  O(3P) + NO R 1-13

O(3P) + O2  →  O3 R 1-14

Under environments with low NOx concentrations ([NO] < 1 ppbv), such as remote

forested areas, RO2 radicals are lost through reaction with other RO2 radicals or HO2

radicals. The HO2 radicals formed under low NOx environments by R 1-11 react in the

self-reaction, R 1-17, to produce H2O2.

RO2 + RO2  →  2RO  +  O2 R 1-15

RO2 + HO2  →  ROOH  +  O2 R 1-16

HO2 + HO2  →  H2O2 + O2 R 1-17

OH radicals can also be formed in the troposphere via a number of reactions other than

that described by R 1-1 and R 1-2. The photolysis of HONO, H2O2, ROOH and HOX

(X = Cl, Br, I) all produce OH radicals, R 1-18 to R 1-21 in the troposphere. The

importance of chlorine atom chemistry in the troposphere will be discussed in more detail

in Section 1.3.
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HONO + hν(190 nm < λ < 400 nm)  →  OH  +  NO R 1-18

H2O2 + hν  →  2OH R 1-19

ROOH + hν  →  OH  +  RO R 1-20

HOX + hν  →  OH  +  X  R 1-21

Figure 1-2 shows the formation of ozone in the troposphere through the reactions of NOx

with peroxy radicals. As mentioned previously, the reaction of O(3P) with O2 is the only

known pathway for the formation of ozone in the troposphere. It is therefore crucial to

fully understand the oxidation mechanisms of VOCs in the troposphere under

tropospherically relevant NOx conditions.

Figure 1-2: Production of ozone through the reaction of NOx with peroxy radicals, as occurs in
the troposphere.

The relationship between [NOx], [VOC] and ozone production is typically illustrated with

an ozone isopleth, an example of which is shown in Figure 1-3, where the coloured

contour lines represent the peak ozone concentration. A NOx limited regime refers to an

environment with relatively low NOx concentration. A small increase in [NOx] would

lead to increased peak ozone formation, however, an increase in [VOC] would only move

along the same peak ozone concentration isopleth contour. A VOC limited regime refers

to an environment where an increase in [VOC] would lead to an increase in peak ozone

concentration, but an increase in [NOx] would not result in any change.
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Figure 1-3: Ozone isopleth, adapted from Edwards et al. (2014).

Identifying the type of a regime in a specific environment using ozone isopleths, such as

that in Figure 1-3 assists in determining the best protocols for controlling ozone; whether

it is most appropriate to reduce NOx concentrations of VOC concentrations.

1.3 Photochemical Ozone Creation Potentials

The reactivity of organic compounds and their production of ozone have been

characterised by the use of atmospheric simulation chambers, as well as in estimations

with the use of computer models (Carter and Atkinson 1987, Carter and Atkinson 1989).

Photochemical ozone creation potentials (POCPs) are used as an indication of the quantity

of ozone produced for a specific hydrocarbon, relative to that of ethene (= 100%).

Derwent et al. (1996) defined the equation Eq. 1-1 for the calculation of POCP values.

POCPi =
ozone increment with the ith hydrocarbon

ozone increment with ethene
× 100 Eq. 1-1

It has been demonstrated that the method of calculation and the chemical environment in

which the measurements are taken have an important effect on the relative values of

POCPs (Carter and Atkinson 1989, Andersson-Sköld et al. 1992). Despite this, a general

agreement in the ranking of VOCs by their POCP values is observed across the different

calculation methods described in the literature. Hundreds of organic compounds are

emitted into the atmosphere from a variety of both anthropogenic and biogenic sources.

POCP values of a number of different emission sources show that values obtained from

road transport exhaust emissions give some of the largest values; Derwent et al. (2007)
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found road transport exhaust emissions and petrol evaporation emissions to have the

highest POCP values (69 and 50, respectively) from a total of 248 different source

categories investigated.

The Maximum Incremental Reactivity (MIR) scale was developed for use in urban areas

with high NOx emissions (Carter 1994). The time scale of up to one day is useful for

values in such environments, however, in Europe, longer term exposure is of greater

interest and importance due to increased influence on climate from long range

transportation of emissions. The UK POCP scale, initially developed by Derwent and

co-workers, ranks the ability of VOCs to form ozone over longer time scales, typically

up to ~5 days (Derwent and Jenkin 1991, Derwent et al. 1998).

To better calculate POCP values and predict the effects of alternative fuels on the

atmosphere, further research is required to produce better inventories characterising

emissions covering a wide range of fuels and engine types. As POCPs are trajectory

calculations, calculated for an air mass over a specified timescale (typically about five

days), in depth knowledge of weather conditions, atmospheric components and reactions,

and biological and anthropogenic emissions is vital. POCP values determined by Derwent

et al. (1998) are compared to MIR values in Table 1-1 for selected VOCs relevant to the

work in this thesis.

A number of comparison studies (Derwent et al. 1998, Derwent et al. 2001) have been

conducted in the literature into the different methods for determining the ozone formation

potentials using different methods for a range of environments (POCP and MIR values),

in some cases showing a non-linear relationship between the values determined by

different methods. Figure 1-4 and Figure 1-5 show the comparisons between MIR and

POCP values determined under European and North American conditions, respectively.
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Compound POCP MIR Compound POCP MIR

Methane 0.6 0.014 n-butanol 61.2 2.76

Ethane* 12.3 0.26 iso-butanol 37.5 2.41

Propane* 17.6 0.46 sec-butanol 40.0 1.30

n-butane* 35.2 1.08 tert-butanol 12.3 0.39

iso-butane* 30.7 1.34 3-pentanol 42.2 1.56

n-pentane* 39.5 1.23 Acetylene* 8.5 0.93

iso-pentane* 40.5 1.36 1,3-butadiene* 85.1 12.21

n-octane* 45.3 0.82 Pent-1-ene* 97.7 6.97

Ethene* 100.0 8.76 Trans-2-pentene* 111.7 10.25

Propene* 112.3 11.37 Isoprene 109.2 10.28

But-1-ene 107.9 9.42 n-hexane* 48.2 1.15

cis-but-2-ene* 114.6 13.89 2-methylpentane* 42.0 1.14

trans-but-2-ene* 113.2 14.79 n-heptane* 49.4 0.99

Formaldehyde* 51.9 9.24 Benzene* 21.8 0.69

Acetaldehyde 64.1 6.34 Toluene* 63.7 3.88

Propanal 79.8 6.83 Ethylbenzene 73.0 2.93

Butyraldehyde 79.5 5.75 m-xylene* 110.8 9.52

iso-butyraldehyde 51.4 5.05 p-xylene* 101.0 5.69

Pentanal 76.5 4.89 o-xylene* 105.3 7.44

Acetone 9.4 0.35 1,2,4-trimethylbenzene 127.8 8.64

Methanol 13.1 0.65 1,2,3-trimethylbenzene 126.7 11.66

Ethanol 38.6 1.45 1,3,5-trimethlybenzene 138.1 11.44

n-propanol 54.3 2.38 2,2,4-trimethylpentane - 1.20

iso-propanol 14.0 0.59

Table 1-1: Summary of POCP and MIR values for some key VOCs as reported by Derwent et al.
(1998) and Carter (2009), respectively. *ozone precursor compounds recommended for
measurement by EU environmental law (European Parliament and Council of the European
Union 2008).
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Figure 1-4: Comparison between MIR values determined for North American conditions and
POCP values determined for European conditions, reproduced from Derwent et al. (1998).

The comparison shown in Figure 1-4 clearly shows a non-linear relationship between the

MIR and POCP values, whereas that shown in Figure 1-5 gives a linear relationship

between the two sets of values. For both scenarios, the comparisons show that for both

MIR and POCP values, alkanes result in relatively low ozone production, with alkanes

and aromatics showing increased ozone formation. The distinct non-linear relationship

between the MIR and POCP values shown in Figure 1-4 is indicative of the differences

in the conditions employed in the determination of ozone formation by each method; the

detemination of the POCP values are more depeendent on long range transport than the

determination of MIR values. Derwent et al. (2001) observed differences in rankings of

MIR and POCP values dependent on the conditions used in their determination; noting

stark differences in the values for formaldehyde. These differences are attributed to the

fate of formaldehyde being highly dependent on the competition between photolysis and

oxidation by OH radicals. The comparisons shown in Figure 1-4 and Figure 1-5

demonstrate the importance of the inclusion of relevant environmental factors when

determining the potential for ozone production.
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Figure 1-5: Comparison between MIR and POCP values determined for North American
conditions, reproduced from Derwent et al. (2001).

Tropospheric ozone formation is closely related to the concentrations of VOCs and NO

in the troposphere. Ozone formation can be calculated, using:

ܲ(Oଷ) = ୌ݇మା
[HOଶ][NO] +  ݇[ROଶ]୧[NO]



Eq. 1-2

where P(O3) is the ozone production rate, kHO2 + NO can be taken from the literature and

[HO2] and [NO] are measured.

An instrument for the measurement of ozone production in the atmosphere has been

developed by Cazorla and Brune (2010); the measurement of ozone production sensor

(MOPS). A schematic diagram of the instrument developed by Cazorla and Brune (2010)

is shown in Figure 1-6.
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Figure 1-6: Schematic diagram of the MOPS instrument for the measurement of ozone production
in the atmosphere, reproduced from Cazorla and Brune (2010).

In the MOPS instrument, ambient air is drawn in to two chambers (11.3 l volume each).

The sample chamber is exposed to sunlight allowing for any species present in the air to

be processed as they would be in the atmosphere. The reference chamber is covered by a

film to prevent its contents from being exposed to UV radiation (λ < 400 nm) from the 

sun which would lead to the formation of ozone; still allowing for dark processing of the

contents of the chamber to occur. The aim is to measure the difference in the sum of NO2

and O3 between the sample chamber and the reference chamber; this is done through the

measurement of ozone following the conversion of any NO2 present in the air sample

leaving the two chambers into O3. The production of ozone is described by:

ܲ(Oଷ) = ∆Oଷ ߬⁄ Eq. 1-3

where P(O3) is the ozone production rate, ∆O3 is the difference in the sum of NO2 and

O3, as measured by the ozone detector following the conversion of NO2 to O3, between

the two chambers, and τ is the exposure time in the chambers. Cazorla and Brune (2010)

have described characterisation of the instrument with respect to the exposure time,

radical concentrations and photolysis frequencies within the chambers, and the

conversion efficiency of NO2 to O3. Preliminary measurements taken at the Pennsylvania

State University, US are also reported, indicating that the MOPS instrument for the

measurement of ozone production rates in the atmosphere works well. Two studies have

since been carried out using MOPS instruments; one measuring the ozone production in

Houston in 2009 with the original MOPS instrument, and a second, also measuring in

Houston in 2013, with a second version of the MOPS instrument (Cazorla et al. 2012,

Baier et al. 2015). Measurements from 2013 showed good agreement with both
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measurements and calculations of ozone production rates from two previous

measurement field campaigns (Chen et al. 2010, Cazorla et al. 2012). A bias due to the

production of HONO and its subsequent photolysis in the sample chamber was observed

for both versions of the MOPS instrument, and further characterisation of the instrument

is required in order to reduce this bias (Baier et al. 2015).

1.4 Chlorine Chemistry

While the OH radical is the most abundant oxidising agent in the troposphere, chlorine

has been shown to play an important role in the oxidation of VOCs, with significant

impact on tropospheric ozone formation under certain conditions (Simpson et al. 2015).

The role of chlorine in the troposphere has shown increased interest over the last few

decades, with many reviews detailing laboratory based studies and field measurements of

chlorine containing species (Monks 2005, Saiz-Lopez and von Glasow 2012, Simpson et

al. 2015).

There are a number of sources of reactive chlorine species in the troposphere; primarily

originating from the marine boundary layer (MBL) (Lawler et al. 2009, Lawler et al.

2011). Reactive chlorine species are known to be produced in a wide range of

environments; open ocean sources, coastal regions, emissions from volcanoes, salt lakes

and lake beds and heterogeneous chemistry. As the work in this thesis investigates the

oxidation processes of biofuels and related compounds, the presence of reactive chlorine

species in polluted environments (i.e. high NOx environments) will be discussed.

A review by Simpson et al. (2015) discusses the cycling and activation of halogens in

polluted environments; focussing on the oxidation of VOCs and tropospheric ozone

production. Activation of reactive chlorine species leads to the formation of chlorine

atoms, which subsequently react with VOCs in the atmosphere. One such route leading

to the production of Cl atoms, particularly of importance in NOx environments, is via the

night time formation of ClNO2 (Simpson et al. 2015).
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NO + O3  →  NO2 + O2 R 1-22

NO2 + O3  →  NO3 + O2 R 1-23

NO3 + NO2  ↔  N2O5 R 1-24

N2O5 + Cl-
(het)  →  ClNO2 + NO3

-
(het) R 1-25

ClNO2 + hν  →  Cl  +  NO2 R 1-26

The formation of ClNO2 described by R 1-22 to R 1-26 is now considered to be the major

source of reactive chlorine in polluted environments. There are no known night time sinks

of ClNO2, and thus it can be transported long distances (Saiz-Lopez and von Glasow

2012). ClNO2 will be photolysed by the morning sunlight (R 1-26) to produce Cl atoms,

which can subsequently oxidise VOCs present in the troposphere. In the presence of NOx,

the peroxy radicals formed in the oxidation of VOCs go on to produce ozone. The

understanding of NOy cycling from ClNO2 in the troposphere is crucial, particularly in

high NOx polluted environments, for establishing protocols to reduce the production of

ozone in the troposphere.

ClNO2 has been measured in a number of different regions across the globe;

measurements at a mountain top in Hong Kong showed that ClNO2 could potentially

enhance ozone production by 5 – 16% at the peak ozone (Wang et al. 2016).

Measurements of ClNO2 have been reported by Bannan et al. (2015) during the ClearfLo

field campaign in London in 2012. The authors reported, from modelling studies, that

when the Cl atom concentration was at its highest, Cl atoms were the dominant oxidising

agent for alkanes. Modelling studies by Riedel (2014) and Sarwar et al. (2014) both

showed an enhancement in ozone formation when ClNO2 was included as a source of Cl

atoms, with Sarwar et al. (2014) reporting more significant enhancement in winter ozone

production than summer ozone production. All of these studies highlight the importance

of the inclusion of Cl atom chemistry in assessing the oxidation capacity of the

troposphere and its influence on the tropospheric production of ozone.

1.5 Biofuels

A number of recent reviews discuss the current level of research into biofuel production,

combustion and the atmospheric implications of the use of such fuels in vehicle engines

(Kohse-Höinghaus et al. 2010, Naik et al. 2010, Westbrook 2013). Two main types of

combustion engine exist; spark ignition (SI) petrol engines and compression ignition

diesel engines. The work in this thesis is based on the chemistry of butanol in the
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troposphere, which has shown potential for its use as an alternative fuel to petrol in SI

vehicle engines. Details of the different types of combustion engines will not be given as

this is not specifically relevant to the work in this thesis. A brief discussion is given here

on the main types of biofuels currently used in vehicle engines, with a more detailed

discussion focussing on the production and use of alcohols.

Research has shown that, in most cases, the combustion of biofuels, such as ethanol and

methanol, in vehicle engines results in a reduced amount of regulated pollutants being

emitted into the atmosphere (Kohse-Höinghaus et al. 2010, Wen et al. 2010). It is,

however, known that biofuels can also lead to an increase in unregulated emissions such

as carbonyl compounds (Cardone et al. 2002, Fontaras et al. 2009, He et al. 2009, Lin et

al. 2009, Chai et al. 2013). Despite this, Chai et al. (2013), and references therein, note

discrepancies between results into research of biodiesel from a number of sources; some

studies showing an increase while others showing a decrease in carbonyl emissions. Due

to the low number of investigations reported to date, it was concluded that these

differences reported in the results most likely arise from the variety of operating

conditions employed for the studies.

Biofuels are of great importance for the replacement of traditional fossil fuels. Methanol

and ethanol are the most widely used alcohol based fuels, with much interest recently

being seen in the potential use of higher alcohols of butanol and propanol (Ratcliff et al.

2013, Sarathy et al. 2014, Rajesh Kumar and Saravanan 2016). Single component

alcohols fuels such as these have fewer problems associated with the characterisation and

quantification of their combustion products as compared to the complex mixture of

compounds that make up traditional fossil fuels. Typically alcohols replace petrol based

vehicle fuels and fatty acid esters replace diesel based vehicle fuels.

Legislation states that by 2020, for all member states of the European Union transport

fuels must be made up of at least 10% from renewable sources (European Union 2009).

An amendment to the legislation states that only 7% of the total 10% can come from

biofuels produced from food crops, i.e. first generation biofuels (European Union 2015).

The production of biofuels can be classed as first or second generation (third generation

biofuels have also recently been reported); where first generation biofuels refers to those

fuels which are derived from food crops and second generation biofuels are those that are

not derived directly from food crops. Second generation biofuels may be produced from

food crops, where the crop has already been used as a food source and only waste material
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is used in the generation of the biofuel, and from lignocellulosic biomass (Antizar-

Ladislao and Turrion-Gomez 2008).

A review of the methods of production for biodiesel has been given by Basha et al. (2009).

Biodiesel is produced through the transesterification of the fatty acids present in oils, to

produce fatty acid methyl esters (FAMEs), shown in Figure 1-7. The long chain methyl

esters are similar to the hydrocarbons found in conventional diesel fuel, and so the use of

biodiesel in diesel engines is well suited.

Figure 1-7: The production of biodiesel from oil, reproduced from Alcantara et al. (2000).

Biodiesel can be used in diesel engines without the need for any modifications, and can

be used neat or blended with diesel. More recent research into the production of biodiesel

using microalgae (Schenk et al. 2008) shows promising results for its production as a

second generation biofuel. A review by Kumar et al. (2013) discusses combustion

emissions from biodiesel relating to the origin of the fuel itself, highlighting differences

in emissions from the combustion of biodiesels dependent on the origin of the biodiesel.

The authors conclude that better understanding of emissions dependent of the biodiesel

feedstock is required, and that different engine types may also have a significant influence

on the combustion emissions.

Butanol has long been produced from biomass, with its production from the fermentation

of sugars first being reported by Louis Pasteur in 1861 (Jones and Woods 1986). The four

isomers of butanol all have different methods of production; tert-butanol is the only

isomer that can only be produced via petrochemical methods, n-butanol is commonly

produced by fermentation of sugars, sec-butanol is produced through bacterial

fermentation to produce an intermediate product which is subsequently chemically

converted to the final butanol product (Nigam and Singh 2011), and iso-butanol has more

recently seen interest in its production as a biofuel, from the fermentation of the

microorganism, Corynebacterium crenatum (Su et al. 2015).



Chapter 1 17 Introduction

Alcohols have long been of interest for use as biofuels in replacing petrol in SI engines;

ethanol is currently the most widely used biofuel (Balat et al. 2008, Kohse-Höinghaus et

al. 2010). A chemical kinetic mechanism has been described by Saxena and Williams

(2007), shown in Figure 1-8, containing the major reaction sequences of the combustion

of ethanol. Acetaldehyde (CH3CHO) is one of the main combustion emissions of ethanol.

Figure 1-8: Chemical kinetic mechanism for the combustion of ethanol, reproduced from Saxena
and Williams (2007).

As the carbon chain of alcohols is increased, the energy density of the alcohols is seen to

increase; methanol, ethanol and propanol all have relatively low energy densities whereas

the energy density of butanol is more comparable to that of petrol fuel. Because of the

higher energy density as compared to smaller chain alcohols, butanols have seen

increased research into the suitability as potential biofuels for the replacement of petrol

fuel in SI vehicle engines (Grana et al. 2010, Kumar and Gayen 2011). Table 1-2

compares the lower heating values (LHVs); it is a measure of the energy content of the

fuels, where the LHVs for the isomers of butanol are much closer to that of petrol.
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Fuel Lower Heating Value (LHV) / MJ L-1

Petrol 30-33

Diesel 35.66

Methanol 15.8

Ethanol 21.4

n-butanol 26.9

sec-butanol 26.7

iso-butanol 26.6

tert-butanol 25.7

Table 1-2: Comparison of properties for a selection of alcohol fuels and conventional fuels, values
taken from Sarathy et al. (2014).

The use of higher alcohols as biofuels offer a number of advantages over the currently

used ethanol and methanol. Fugitive emissions of fuels are those that are released directly

as a vapour or gas of the fuel into the atmosphere. In 2014, 550 kt of non-methane volatile

organic compound (NMVOCs) were estimated to be emitted in England, with 13% of

those coming from fugitive emissions (Bailey et al. 2016). The volatility of fuels is

important in determining their potential to be released into the atmosphere as fugitive

emissions; with the majority of fugitive emissions coming from spillages during the

filling of vehicles at petrol stations. The atmospheric oxidation of alcohols for their

potential use as biofuels is therefore extremely important to understand in order to

determine their impact on the atmosphere. As the OH radical is the most abundant

oxidising species present in the troposphere, the OH initiated atmospheric oxidation of

potential alcohol based fuels is discussed.

The work in this thesis focusses on the atmospheric chemistry of butanols; their

combustion properties will not be discussed in detail. A review of the current literature

on the atmospheric oxidation of the isomers of butanol is detailed in Section 1.5.1, where

gaps in the current research are highlighted.

The atmospheric oxidation of ethanol has been investigated by a number of groups, with

its rate coefficient for the reaction with OH radicals being well defined (Wallington and

Kurylo 1987, Hess and Tully 1988, Jiménez et al. 2003, Dillon et al. 2005). The IUPAC
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recommended rate coefficient for the reaction of ethanol with OH radicals at 298 K is

determined from these literature values to be (3.20 ± 0.44) × 10-12 cm3 molecule-1 s-1

(Atkinson et al. 2004). The branching ratios of the OH radical initiated oxidation of

ethanol have been studied by Carr et al. (2011) and Meier et al. (1985), and are both in

good agreement that the oxidation occurs predominantly via α-hydrogen abstraction. Carr

et al. (2011) reported 92 ± 8% α-hydrogen abstraction at 298 K and Meier et al. (1985)

75 ± 15% at 298 K. The three possible pathways for the OH radical initiated oxidation of

ethanol are represented by reactions R 1-27 to R 1-29, with R 1-28 being the most

dominant pathway. These branching ratios were studied over the temperature range

298 - 523 K by Carr et al. (2011). The subsequent reaction of the radical produced

following the α-hydrogen abstraction is given by R 1-30, leading to the formation of 

acetaldehyde.

CH3CH2OH  +  OH → CH2CH2OH + H2O R 1-27

 → CH3CHOH + H2O R 1-28

 → CH3CH2O + H2O R 1-29

CH3CHOH + O2 → CH3CHO + HO2 R 1-30

The secondary chemistry occurring from the initial oxidation products of ethanol also

plays a significant role in the troposphere as further, photolchemically active, carbonyl

compounds may be formed. The ß-hydrogen abstraction pathway (R 1-27) leads to the

formation of formaldehyde following R 1-31 to R 1-33. The formation of compounds

following such secondary chemistry may lead to small molar yields. However, their

tropospheric reactivities are typically greater than that of the primary products and

therefore can play an important role in subsequent reactions leading to the formation of

tropospheric ozone.

CH2CH2OH + O2  →  H2C(OO)CH2OH R 1-31

H2C(OO)CH2OH  +  NO  →  H2C(O)CH2OH R 1-32

H2C(O)CH2OH + O2  →  2CH2O R 1-33

1.5.1 Butanols

A number of studies have been reported in the literature on the kinetics and mechanisms

of the tropospheric oxidation of small alcohols such as methanol and ethanol. Far fewer

studies are reported on the mechanisms, kinetics and products of the tropospheric

chemistry of higher alcohols such as the four isomers of butanol. Butanol has seen
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increased interest into its production as a potential biofuel, and research into its

combustion kinetics and oxidation processes (Kohse-Höinghaus et al. 2010, Kumar and

Gayen 2011, Oßwald et al. 2011, Sarathy et al. 2012, Ratcliff et al. 2013).

Higher alcohols such as the isomers of butanol lead to more complex tropospheric

oxidation mechanisms for their removal via reaction with OH radicals. As for both

methanol and ethanol, the OH initiated oxidation predominantly proceeds via hydrogen

atom abstraction from the α-carbon position, ultimately resulting in the formation of a 

carbonyl compound and HO2. Butanol has four isomeric structures, illustrated in

Figure 1-9, where α-hydrogen abstraction is only possible from the n-, sec- and iso-

isomers.

n-butanol sec-butanol iso-butanol tert-butanol

Figure 1-9: The four isomers of butanol.

A number of studies have been reported on the reaction of the isomers of butanol with

OH radicals. These include chamber based investigations into the oxidation mechanisms

and products of butanols in the presence of NOx, temperature dependent studies of the

rate coefficients with the OH radical and temperature dependent branching ratio studies

(Yujing and Mellouki 2001, Cavalli et al. 2002, Hurley et al. 2009, McGillen et al. 2013).

As discussed in Section 1.3, chlorine atoms can also play a significant role in the

atmospheric oxidation processes of VOCs in the troposphere. The chemical mechanisms

and kinetics of butanols for their reaction with Cl atoms have also been studied (Nelson

et al. 1990, Wu et al. 2003). In the following sections, the OH radical and Cl atom initiated

tropospheric oxidation and kinetics of the isomers of butanol will be reviewed, with

comparisons being drawn between the OH radical and Cl atom oxidation processes.

Tert-butanol is not to be discussed; it is a solid at room temperature, with a melting point

~25°C, and so is unlikely to be used as a single component biofuel in the future, it is also

the only butanol isomer yet to be produced as a biofuel and is currently only a

petrochemical product.



Chapter 1 21 Introduction

1.5.1.1 n-butanol

The reaction of n-butanol with OH radicals has been studied by a number of groups,

investigating the mechanisms, kinetics and products of the reaction. Rate coefficients in

the literature for the reaction of n-butanol with OH radicals are summarised in Table 1-3.

The room temperature rate coefficients, determined by the relative rate method, reported

by Nelson et al. (1990), Campbell et al. (1976), Cavalli et al. (2002), Hurley et al. (2009)

and Wu et al. (2003) are all in good agreement. The value reported by Oh and Andino

(2001) is higher than the other relative rate studies, however, it does fall within the IUPAC

recommended value of (8.5 ± 3.0) × 10-12 cm3 molecule-1 s-1 (Atkinson et al. 2006).

Absolute rate coefficient values at room temperature are all in good agreement. Absolute

methods for the determination of OH rate coefficients are prone to influence from OH

regeneration within the instruments, and so are likely to under predict the actual rate

coefficient values using this method. The study by McGillen et al. (2013) also

investigated the rate coefficient for the reaction of 18OH radicals with n-butanol in order

to determine whether OH regeneration was influencing their results. The authors

concluded that OH regeneration was ~10% at 296 K for the reaction of OH radicals with

n-butanol. The numerous OH radical sources employed in the study by McGillen et al.

(2013), and the absence of OH regeneration for the other isomers of butanol investigated,

validate the method used for the determination of the rate coefficients. The authors

suggested a number of mechanisms which may lead to the regeneration of OH radicals,

however, the exact pathway is unknown.

All the literature rate coefficients given in Table 1-3 are in reasonable agreement within

their stated error limits. Two temperature dependent studies have been carried out; those

of Yujing and Mellouki (2001) and McGillen et al. (2013), which are in good agreement.

Both studies, however, have used absolute methods for the determination of the rate

coefficient. The relative rate method for the determination of rate coefficients is not

influenced by OH regeneration, and so temperature dependent relative rate studies for the

determination of the rate coefficient of n-butanol with OH radicals would assist in

validating those determined by absolute methods.
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kOH + n-butanol /

cm3 molecule-1 s-1

Temperature /

K
Method Reference

(8.31 ± 0.63) × 10-12 296 FP-RF
Wallington and

Kurylo (1987)

(7.80 ± 0.20) × 10-12 298 ± 2 PR-RA Nelson et al. (1990)

5.30 × 10-12 exp[(146 ± 92) / T] 263 – 372 PLP-LIF
Yujing and Mellouki

(2001)

(8.65 ± 2.71) × 10-12 298 PLP-LIF
Yujing and Mellouki

(2001)

(9.68 ± 0.75) × 10-12 296 PLP-LIF
McGillen et al.

(2013)*

(6.8 ± 1.3) × 10-12 292 RR
Campbell et al.

(1976)

(7.97 ± 0.66) × 10-12 298 ± 2 RR Nelson et al. (1990)

(1.03 ± 0.05) × 10-11 298 ± 2 RR
Oh and Andino

(2001)

(7.67 ± 0.14) × 10-12 298 ± 2 RR Cavalli et al. (2002)

(8.86 ± 0.85) × 10-12 296 ± 2 RR Hurley et al. (2009)

(8.58 ± 0.66) × 10-12 295 ± 2 RR Wu et al. (2003)

(8.5 ± 3.0) × 10-12 298 Evaluation†
Atkinson et al.

(2006)

Table 1-3: Summary of experimentally determined rate coefficients for the reaction of n-butanol
with OH radicals in the literature. FP-RF = flash photolysis – resonance fluorescence,
PR-RA = pulsed radiolysis coupled with resonance absorption, PLP-LIF = pulsed laser
photolysis coupled with laser induced fluorescence, RR = relative rate. *Measurements
were carried out over the temperature range 220 – 380 K, where non-Arrhenius behaviour
was observed. †IUPAC recommended value, determined from the absolute temperature
dependent study of Yujing and Mellouki (2001).
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Fewer studies have been conducted on the mechanisms and products of the OH initiated

oxidation of n-butanol. Cavalli et al. (2002) and Hurley et al. (2009) have both reported

on the products of the OH radical initiated oxidation of n-butanol in the presence of NOx.

The former study being carried out in the EUPHORE chamber (195 m3 volume, outdoor,

FEP) and the latter in a 0.14 m3, indoor Pyrex chamber. Molar yields obtained from both

of these studies are shown in Table 1-4.

Product Hurley et al. (2009) Cavalli et al. (2002)

Butyraldehyde 44 ± 4% 51.8 ± 7.1%

Propanal 19 ± 2% 23.4 ± 3.5%

Acetaldehyde 12 ± 3% 12.7 ± 2.2%

Formaldehyde - 43.4 ± 2.4%

Table 1-4: Summary of molar yields determined from the OH radical initiated oxidation of
n-butanol in the presence of NOx.

Good agreement between the two studies is observed for the OH radical initiated

oxidation of n-butanol in the presence of NOx. Two different OH radical sources were

used in the studies; Cavalli et al. (2002) used the photolysis of HONO (R 1-37) by UV

radiation from the sun, and Hurley et al. (2009) used the photolysis of methyl nitrite

(CH3ONO). Both of these OH radical precursors results in relatively high concentrations

of NOx being present in the respective atmospheric simulation chambers. The production

of OH radicals from the photolysis of CH3ONO is described by R 1-34, R 1-35 and

R 1-36. Additional NO was added to the initial reaction mixture for the photolysis of

CH3ONO in order to promote the conversion of HO2 radicals to OH radicals through

R 1-36.

CH3ONO + hν(λ ≥ 290 nm)  →  CH3O + NO R 1-34

CH3O + O2  →  CH2O + HO2 R 1-35

HO2  +  NO  →  OH  +  NO2 R 1-36

The method by which HONO is produced for the studies of Cavalli et al. (2002) also

results in high levels of NOx being present in the reaction mixture. The authors reported

initial concentrations of NO and NO2 to be (1.8 – 2.3) × 1012 molecule cm-3 (72 - 92 ppbv);

similar to that expected in a high NOx environment. Hurley et al. (2009) used
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concentrations of NO up to 8.9 × 1014 molecule cm-3 (35.6 ppmv) in their studies; far

greater than which is typically observed in high NOx environments.

HONO + hν(λ ≤ 400 nm)  →  OH  +  NO R 1-37

Despite the considerable differences in initial NOx concentrations between the two

studies, as seen in Table 1-3, molar yields are in very good agreement. This indicates that

the concentration of NOx present does not have an influence on the products of the OH

radical initiated oxidation. Studies under varying NOx conditions would help to elucidate

any dependence on NOx concentrations. As governments worldwide are enforcing stricter

regulations on emissions of NOx, with emissions in England having declined by ~70%

since 1990 (Bailey et al. 2016), understanding the potential impact of tropospheric

oxidation processes on the environment under varying NOx conditions is vital.

The OH radical initiated oxidation of n-butanol in the absence of NOx has not been

reported in the literature. The use of peroxide photolysis, such as hydrogen peroxide

(H2O2), would be an ideal low NOx OH radical source (R 1-38) for such studies.

H2O2 + hν(λ > 230 nm)  →  2OH R 1-38

The major disadvantage of the use of peroxides as an OH radical source is that they

require shorter wavelengths for their photolysis, at which many of the expected carbonyl

products may also be photolysed. Photolysis rates of such carbonyl product compounds

can, however, be measured and thus experimental data can be corrected for any photolysis

reactions occurring and influencing the product yields.

The kinetics of n-butanol with Cl atoms have not been studied as extensively as the

reaction with OH radicals. Details of the rate coefficients in the literature for the reaction

of n-butanol with Cl atoms are summarised in Table 1-5.
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k(Cl + n-butanol) /

cm3 molecule-1 s-1

Temperature /

K
Method Reference

(1.96 ± 0.19) × 10-10 298 PLP-RF Garzón et al. (2006)

3.12 × 10-11exp[(548±65)/T] 266 – 382 PLP-RF Garzón et al. (2006)

(2.14 ± 0.11) × 10-10 298 ± 2 RR Nelson et al. (1990)

(2.25 ± 0.11) × 10-10 295 RR Wu et al. (2003)

(2.37 ± 0.11) × 10-10 295 RR Wu et al. (2003)

(2.21 ± 0.38) × 10-10 296 ± 2 RR Hurley et al. (2009)

(2.2 ± 0.4) × 10-10 298 Evaluation* Atkinson et al. (2006)

Table 1-5: Summary of experimental literature rate coefficients for the reaction of n-butanol with
Cl atoms. PLP-RF = pulsed laser fluorescence – resonance fluorescence, RR = relative rate.
*IUPAC recommended value, determined from the studies by Garzón et al. (2006), Nelson
et al. (1990) and Wu et al. (2003).

All rate coefficients determined by the relative rate method at room temperature are in

good agreement. Wu et al. (2003) reported two values for the rate coefficient using two

different reference compounds; (2.25 ± 0.11) × 10-10 cm3 molecule-1 s-1 was determined

using propane as a reference compound and (2.37 ± 0.11) × 10-10 cm3 molecule-1 s-1 using

cyclohexane. The rate coefficient reported by Hurley et al. (2009) was determined from

combining individually determined rate coefficients with three different reference

compounds; acetylene, ethane and propene. Cyclohexane was also used as the reference

compound in the study by Nelson et al. (1990) giving a rate coefficient of

(2.14 ± 0.11) × 10-10 cm3 molecule-1 s-1, which is in good agreement with that determined

by Wu et al. (2003) using the same reference compound. Garzón et al. (2006) have

reported the only measurements of the rate coefficient for n-butanol with Cl atoms using

an absolute method, it is also the only temperature dependent study reported in the

literature. The room temperature value reported of kCl + n-butanol = (1.96 ± 0.19) × 10-10 cm3

molecule-1 s-1 is in good agreement with the values determined using the relative rate

method, however, it is slightly lower. As with the measurement of rate coefficients of

compounds with OH radicals by absolute methods, the measurement of Cl atom rate

coefficients are also prone to Cl regeneration, influencing the observed rate coefficients,
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which result in an underestimation of the rate coefficients, likely to be the cause of the

lower value reported by Garzón et al. (2006).

As only one temperature dependent study for the determination of the rate coefficient for

the reaction of Cl atoms with n-butanol has been carried out, by an absolute method which

is prone to interferences from Cl atom regeneration, it is concluded that the temperature

dependence observed may also be influenced by Cl atom regeneration. McGillen et al.

(2013) reported that the OH regeneration in their study of the rate coefficient for the

reaction of n-butanol with OH radicals decreased as temperature increased. Correctly

accounting for any interferences from the regeneration of OH radical or Cl atoms in

absolute methods for rate coefficient determinations is therefore critical. Non-Arrhenius

behaviour was observed for the kinetics of n-butanol with OH radicals (McGillen et al.

2013). Extending the temperature range and studying the temperature dependence of the

rate coefficient for the reaction of n-butanol with Cl atoms using the relative rate

technique would assist in verifying the temperature dependence observed by Garzón et

al. (2006) and determining whether, n-butanol shows non-Arrhenius behaviour for its

reaction with Cl atoms. The relative rate technique is not expected to be influenced by

any Cl atom regeneration.

Hurley et al. (2009) have presented the only study currently in the literature on the

products and mechanism of the Cl atom initiated oxidation of n-butanol in the presence

and absence of NOx. The molar yields determined from their study are summarised in

Table 1-6.

Product Molar Yield (with NO) Molar Yield (without NO)

Butyraldehyde 38 ± 2% 38 ± 2%

Propanal 23 ± 3% -

Acetaldehyde 12 ± 4% -

Formaldehyde 33 ± 3% -

Table 1-6: Molar yields for the Cl atom initiated oxidation of n-butanol in the presence and
absence of NO as reported by Hurley et al. (2009).

The photolysis of Cl2 was used to produced Cl atoms in the presence and absence of NOx;

studies in the presence of NOx used initial [NO] = (1.8 – 3.6) × 1015 molecule cm-3

(72 - 140 ppmv), again considerably higher concentrations to what would be expected in

high NOx environments. It was concluded that the difference in yields of propanal,
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acetaldehyde and formaldehyde in the presence of NOx is due to the importance of

chemical activation in the tropospheric oxidation of n-butanol. A review by Orlando et

al. (2003) discusses the atmospheric chemistry of alkoxy radicals, detailing the

importance of chemical activation on the decomposition of alkoxy radicals in oxidation

processes in the presence of NOx. The decomposition of alkoxy radicals in the presence

of NOx can be described by R 1-39 to R 1-45, where the peroxy radical decomposes via

a short lived vibrationally excited peroxy nitrite (R 1-39), which is an exothermic

reaction. Much of the exothermicity from the reaction of the peroxy radical with NO is

transferred to the alkoxy radical, which subsequently decomposes on a short timescale

(<10-9 s).

RO2
∙  +  NO  →  ROONO* R 1-39

ROONO*  →  RO∙* + NO2 R 1-40

ROONO*  +  M  →  ROONO  +  M   R 1-41

ROONO  →  RO∙ + NO2 R 1-42

RO∙*  →  decomposition of isomerisation R 1-43

RO∙*  +  M  →  RO∙ + M R 1-44

RO∙  →  decomposition, isomerisation or reaction with O2 R 1-45

None of the yields reported by Hurley et al. (2009) following the Cl atom or OH radical

initiated oxidation of n-butanol in the presence or absence of NOx were corrected for

secondary formation through the oxidation or subsequent reactions of the higher

aldehydes, and so are reported as upper limits on the yields. It was determined that the Cl

atom initiated oxidation proceeds 38 ± 2% via α-hydrogen abstraction, and the OH radical 

initiated oxidation proceeds 44 ± 4% via α-hydrogen abstraction for the reaction with 

n-butanol. These percentages reflect the relative kinetics for the Cl atom and OH radical

reaction with n-butanol and the increased selectivity for the α-hydrogen attack by OH 

radicals.

1.5.1.2 sec-butanol

The kinetics of sec-butanol have not been studied as extensively as n-butanol under

atmospherically relevant conditions. Table 1-7 summarises the rate coefficients in the

literature for the reaction of OH radicals with sec-butanol. Production of the isomers of

butanol for the use as potential biofuels is typically carried out by fermentation processes.

However, the production of sec-butanol by this method can be expensive as it has a lower
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boiling point than water, making it difficult to recover in the fermentation process (Chen

et al. 2015).

k(OH + sec-butanol) /

cm3 molecule-1 s-1

Temperature

/ K

Method Reference

(8.58 ± 0.49) × 10-12 296 ± 2 RR
Chew and Atkinson

(1996)

(8.80 ± 0.14) × 10-12 297 ± 3 RR
Baxley and Wells

(1998)

(7.57 ± 0.44) × 10-12 297 ± 3 RR
Baxley and Wells

(1998)

(8.88 ± 0.69) × 10-12 296 PLP-LIF McGillen et al. (2013)

(9.01 ± 1.00) × 10-12 298 PLP-LIF Jiménez et al. (2005)

2.76 × 10-12exp[(328±124)/T] 263 – 354 PLP-LIF Jiménez et al. (2005)

(8.7 ± 3.1) × 10-12 298 Evaluation* Atkinson et al. (2006)

Table 1-7: Summary of experimentally determined rate coefficients for the reaction of Cl atoms
with sec-butanol. RR = relative rate, PLP-LIF = pulsed laser photolysis – laser induced
fluorescence. *IUPAC rate coefficient evaluation determined using measurements made by
Chew and Atkinson (1996) and Baxley and Wells (1998).

All of the room temperature rate coefficients for the reaction of OH radicals with

sec-butanol are in good agreement. The value reported by Jiménez et al. (2005) using an

absolute method is slightly higher than those determined using the relative rate method;

they also determined a slight temperature dependence over the temperature range

263 - 354 K, however, they do note that their obtained results show considerable scatter.

Further temperature dependent studies on the kinetics of OH radicals with sec-butanol are

required to reduce this scatter. Chew and Atkinson (1996) and Baxley and Wells (1998)

have reported on the products from the OH radical initiated oxidation of sec-butanol, the

results from these studies are summarised in Table 1-8.
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Product Chew and Atkinson (1996) Baxley and Wells (1998)

2-butanone 69.5 ± 0.73% 60 ± 2%

Acetaldehyde - 29 ± 4%

Table 1-8: Summary of experimentally determined yields for the OH initiated oxidation of
sec-butanol in the presence of NOx.

The product yields of 2-butanone from Baxley and Wells (1998) and Chew and Atkinson

(1996) are in good agreement, Baxley and Wells (1998) also reported an acetaldehyde

yield of 29 ± 4%. Only one study has been reported in the literature on the kinetics of

sec-butanol with Cl atoms (summarised in Table 1-9), by Ballesteros et al. (2007), where

a negative temperature dependence was reported over the range 267 – 384 K. The authors

also reported the observation of 2-butanone as a major product in the oxidation reaction.

No other product studies are available in the literature for the Cl atom initiated oxidation

of sec-butanol.

k(Cl + sec-butanol) /

cm3 molecule-1 s-1

Temperature /

K
Method Reference

(1.32 ± 0.14) × 10-10 298 ± 2 RR Ballesteros et al. (2007)

6.16 × 10-11exp[(174±58)/T] 267 – 384 PLP-RF Ballesteros et al. (2007)

(1.10 ± 0.22) × 10-10 298 PLP-RF Ballesteros et al. (2007)

Table 1-9: Summary of experimentally determined rate coefficients for the reaction of sec-butanol
with Cl atoms. RR = relative rate, PLP-RF = puled laser photolysis – resonance
fluorescence.

1.5.1.3 iso-butanol

The kinetics, mechanisms and products relating to the atmospheric fate of iso-butanol has

seen increased interest due to its potential use as a biofuel (Su et al. 2015). A summary

of the current literature values for the rate coefficient of iso-butanol with OH radicals is

given in Table 1-10.
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k(OH + iso-butanol) /

cm3 molecule-1 s-1

Temperature /

K
Method Reference

3.1 × 10-12 exp[(352±82)/T] 241 – 370 PLP-LIF Mellouki et al. (2004)

(9.2 ± 0.4) × 10-12 298 PLP-LIF Mellouki et al. (2004)

(8.8 ± 0.3) × 10-12 295 ± 2 RR Wu et al. (2003)

(9.2 ± 0.4) × 10-12 295 ± 2 RR Wu et al. (2003)

(8.5 ± 0.1) × 10-12 298 ± 2 RR Mellouki et al. (2004)

(8.8 ± 0.3) × 10-12 298 ± 2 RR Mellouki et al. (2004)

(9.72 ± 0.72) × 10-12 296 PLP-LIF *McGillen et al. (2013)

(1.14 ± 0.17) × 10-11 296 ± 2 RR Andersen et al. (2010)

(8.9 ± 1.7) × 10-12 298 †Evaluation Atkinson et al. (2006)

Table 1-10: Summary of experimentally determined rate coefficients for the reaction of
iso-butanol with OH radicals as described in the literature. PLP-LIF = pulsed lased
photolysis – laser induced fluorescence. RR = relative rate. *Temperature dependent studies
were also carried out – see text below. †IUPAC evaluated rate coefficient determined from
the values reported by Mellouki et al. (2004) and Wu et al. (2003).

Good agreement is observed between the reported rate coefficients for the reaction of

iso-butanol with OH radicals. Temperature dependent studies have been carried out by

Mellouki et al. (2004) and McGillen et al. (2013); the former reporting an Arrhenius

expression describing the temperature dependence of 3.1 × 10-12 exp[(352 ± 82) / T] cm3

molecule-1 s-1. The room temperature rate coefficients determined by Mellouki et al.

(2004) by both the relative rate method and an absolute method are in excellent

agreement, indicating no significant influence from OH regeneration in the absolute

determination of kOH + iso-butanol. This is in agreement with observations made by McGillen

et al. (2013) who also reported no OH regeneration. McGillen et al. (2013) extended the

temperature range to 221 – 381 K, and observed clear non-Arrhenius behaviour. Further

temperature dependent studies on the kinetics of iso-butanol with OH radicals would

assist in verifying the temperature dependence of this reaction.

Only one previous product study of the OH radical initiated oxidation of iso-butanol has

been reported in the literature by Andersen et al. (2010), where the authors reported a
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61 ± 4% molar yield of acetone in the presence of NOx. It would be expected that the OH

radical initiated oxidation would predominantly proceed via the α-hydrogen abstraction 

leading to the formation of iso-butyraldehyde. Strong absorptions in the IR by CH3ONO

obscured any evidence of iso-butyraldehyde formation in these experiments. Considering

the OH radical attack is expected to proceed predominantly via the α-hydrogen, this 

reported acetone yield of 61 ± 4% is relatively high; the yield however, has not been

corrected for any secondary formation of acetone through photolysis or subsequent

reaction with OH radicals of iso-butyraldehyde, and so should be taken as an upper limit.

Similar to the product study of n-butanol with OH radicals in the presence of NOx (Hurley

et al. 2009), relatively high concentrations of NO were present in the reaction mixture as

compared to what would be expected in high NOx environments. Again it is suggested

that the use of a different OH radical precursor, such as H2O2, would allow for the

products of the reaction with iso-butanol to be investigated under more tropospherically

relevant concentrations of NOx, and also allowing for iso-butyraldehyde to be observed

in the IR.

Only two studies are reported in the literature for the determination of the rate coefficient

for the reaction of iso-butanol with Cl atoms, their results are summarised in Table 1-11.

No temperature dependent studies have been carried out, and both of the room

temperature studies have been carried out using the relative rate method.

k(Cl + iso-butanol) /

cm3 molecule-1 s-1

Temperature / K Method Reference

(1.82 ± 0.04) × 10-10 295 ± 2 RR* Wu et al. (2003)

(1.96 ± 0.11) × 10-10 295 ± 2 RR† Wu et al. (2003)

(2.02 ± 0.23) × 10-10 296 ± 2 RR† Andersen et al. (2010)

(2.10 ± 0.33) × 10-10 296 ± 2 RR‡ Andersen et al. (2010)

Table 1-11: Summary of experimentally determined rate coefficients for the reaction of
iso-butanol with Cl atoms as reported in the literature. RR = relative rate. *reference
compound = propane, †reference compound = cyclohexane, ‡reference compound = ethane.

Both studies employed two different reference compounds; cyclohexane and propane

were used by Wu et al. (2003), with their results being in very close agreement. Andersen

et al. (2010) used cyclohexane and ethane as reference compounds, again with excellent

agreement between the rate coefficients obtained. The results of the two studies are in
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very good agreement, particularly for those where cyclohexane was used as the reference

compound. Ambient temperatures vary greatly worldwide, and so it is essential for

temperature dependent studies to be carried out for such compounds as iso-butanol, in

order to fully assess their potential impacts in the troposphere if used as future biofuels.

Studies carried out using absolute methods for the measurement of the kinetics for the

reaction of iso-butanol with Cl atoms would also be greatly beneficial in validating those

determined using the relative rate method.

One product study of the Cl atom initiated oxidation of iso-butanol in the presence and

absence of NOx is presented in the literature by Andersen et al. (2010); the results of

which are summarised in Table 1-12.

Product Yield (with NO) Yield (without NO)

Iso-butyraldehyde 46 ± 3% 48 ± 3%

Acetone 35 ± 3% -

Formaldehyde 49 ± 3% -

Table 1-12: Summary of the molar yields determined by Andersen et al. (2010) for the Cl atom
initiated oxidation of iso-butanol in the presence and absence of NOx.

Similar to the Cl atom initiated oxidation of n-butanol in the absence of NOx, only the

α-hydrogen abstraction product, iso-butyraldehyde, was observed as a primary product in

the Cl atom initiated oxidation of iso-butanol. For small consumptions (<20%) of

iso-butanol, very small yields (<5%) were observed for acetone and formaldehyde, with

considerable formation of these two compounds being observed as secondary products.

This is mirrored by a turnover in the production of iso-butyraldehyde which, following

its production, is subsequently lost due to photolysis and reaction with Cl atoms.

Substantial primary yields of acetone and formaldehyde were reported for the Cl atom

initiated oxidation in the presence of NOx; 35 ± 3% and 49 ± 3%, respectively. These

yields, however, are likely to be an overestimation as the loss of iso-butyraldehyde by

OH radicals in the system was assumed to be negligible. Further studies into the OH

radical and Cl atom oxidation of iso-butanol in the presence of varying, tropospherically

relevant NOx concentrations would assist in developing the understanding of the fate of

iso-butanol in the troposphere.

Hurley et al. (2009) have reported on the kinetics, mechanisms and products of the

oxidation of n-butanol with Cl atom initiated oxidation in the presence and absence of
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NOx, and OH radical initiated oxidation in the presence of NOx. This study was carried

out in a 140 L Pyrex atmospheric simulation chamber, with the primary carbonyl products

from the oxidation processes being presented. The major oxidation product in all cases

was seen to be butyraldehyde, following the α-hydrogen abstraction by either Cl atoms 

or OH radicals. For the Cl atom initiated oxidation in the absence of NOx, only

butyraldehyde was observed as a primary product, however, in the presence of NOx

propanal, acetaldehyde and formaldehyde were also observed as major oxidation products

(38%, 23%, 12% and 33% molar yields, respectively). Propanal, acetaldehyde and

formaldehyde were also observed for the OH radical initiated oxidation of n-butanol in

the presence of NOx, and it was concluded that chemical activation is important in the

atmospheric chemistry of the alkoxy radicals formed during the oxidation process.

As the alcohol series is ascended, the tropospheric reactivity of higher alcohols tends

towards that of their comparable alkanes. The OH initiated oxidation of the four isomers

of butanol has been reported by McGillen et al. (2013), with the end product branching

ratios discussed.

Product k(OH + HC) / cm3 molecule-1 s-1 k(Cl + HC) / cm3 molecule-1 s-1

n-butanol *8.5 × 10-12 *2.2 × 10-10

sec-butanol *8.7 × 10-12 †1.32 × 10-10

iso-butanol *8.9 × 10-12 ‡2.06 × 10-10

tert-butanol *1.1 × 10-12 §3.15 × 10-11

Table 1-13: Comparison of rate coefficients for the reaction of OH radicals and Cl atoms with the
four isomers of butanol. *IUPAC recommended rate coefficients taken from Atkinson et al.
(2006). †taken from Ballesteros et al. (2007). ‡taken from Andersen et al. (2010). §taken
from Wu et al. (2003).

As discussed in Section 1.3 the oxidation of VOCs initiated by Cl atoms also plays an

important role in tropospheric chemical mechanisms. OH radicals are more abundant in

the troposphere, however, VOCs typically have rates of reactions with Cl atoms

considerably faster than with OH radicals. Cl atom chemistry has shown increased

interest in its importance for VOC oxidation processes particularly in high NOx polluted

environments. Table 1-13 compares the rate coefficients for the reaction of Cl atoms and

OH radicals with the four isomers of butanol, showing the difference in reactivity of the

isomers of butanol towards OH radicals compared to Cl atoms.
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1.5.1.4 Atmospheric Fate of Aldehydes

As has been described in Sections 1.5.1.1, 1.5.1.2 and 1.5.1.3, aldehydes are some of the

major products formed during the tropospheric oxidation of alcohols. They are

photochemically active, absorbing light in the wavelength range 240 – 360 nm (Wenger

2006). The main fate of aldehydes in the troposphere is their loss through photolysis and

reaction with OH radicals. Although alcohols themselves as fuels may have lower

atmospheric reactivity as compared to traditional fossil fuels, their major oxidation

products (and combustion emissions), aldehydes, typically have much higher reactivity,

leading to higher ozone forming potentials (as has been discussed in Section 1.3). It is

therefore extremely important to fully understand the mechanisms for both the production

and destruction of aldehydes within the troposphere in order to investigate the potential

impact on the atmosphere from the use of alcohols as biofuels in vehicle engines. The

importance of NOx chemistry has been described in Section 1.2; the presence of NOx in

the troposphere during the oxidation of VOCs leads to the formation of tropospheric

ozone. The studies described above in Sections 1.5.1.1, 1.5.1.2 and 1.5.1.3, into the OH

radical and Cl atom initiated oxidation of butanols have all been carried out at extremely

high NOx concentrations. Urban areas typically have high concentrations of NOx

(>100 ppbv) and remote areas such as forested regions typically have low levels of NOx.

In 2014 road transport emissions accounted for 45.1% of total NOx emissions (Bailey et

al. 2016).

1.6 Atmospheric Simulation Chambers

Atmospheric simulation chambers are extremely useful in their ability to study many

variants in the atmosphere. The Highly Instrumented Reactor for Atmospheric Chemistry

(HIRAC) is one such chamber, developed at the University of Leeds (Glowacki et al.

2007). There are many atmospheric simulation chambers worldwide, ranging in

construction materials, size and available analytical instrumentation. A comprehensive

comparison of all of these is far beyond the scope of this work, and so only relevant

chambers for comparison with HIRAC will be discussed here. Table 1-14 details a

number of atmospheric simulation chambers and their key features.

There are a number of advantages and disadvantages arising from the choice of

construction material used in building atmospheric simulation chambers. The use of

stainless steel, such as the HIRAC chamber and the CESAM chamber (Wang et al. 2011),

allows for studies to be conducted under a range of temperatures and pressures. Both of

these chambers are constructed to allow either heated or cooled fluid to circulate around
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the outside of the chamber, with HIRAC being able to maintain temperatures over the

range 253 – 343 K, and CESAM over the range 253 – 323 K. The use of stainless steel as

a construction material, however, limits the size achievable for atmospheric simulation

chambers.

Fluorinated ethylene propylene (FEP) Teflon chambers, such as SAPHIR, EUPHORE,

ACOM and ILMARI (see Table 1-14 for references) can only be operated at ambient

temperatures and are typically operated at pressures slightly above ambient (SAPHIR is

operated ~80 Pa above ambient pressure and EUPHORE is operated 100 – 200 Pa above

ambient). The majority of FEP chambers are large outdoor chambers, such as SAPHIR

and EUPHORE, and are able to utilise the UV radiation directly from the sun to initiate

chemical reactions. The advantage of this is that the full emission spectrum of the sun is

used, and so reactions can be directly linked to those in the atmosphere. Cloud cover,

however, can limit the amount of the sun’s UV radiation reaching the contents of the

chamber. Smaller indoor FEP chambers such as ACOM and ILMARI are often

surrounded by UV lamps which can be illuminated to initiate photochemical reactions.

Smaller indoor atmospheric simulation chambers have greater volume to surface area,

making wall reactions important to correctly characterise. Such reactions are typically

dependent on the construction material. FEP chambers suffer from high background

levels of NOx, and large outdoor FEP chambers such as SAPHIR often utilise the HONO

emitted from the chamber walls as a source of OH radicals (Rohrer et al. 2005). Details

of the HIRAC chamber and its instrumentation will be given in Chapter 2.
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1.7 HOx Measurement Techniques

As has been discussed in Section 1.2, HOx (= OH + HO2) plays a vital role in the removal

of trace gases and pollutants in the troposphere. The low tropospheric concentrations of

OH (~106 molecule cm-3) require the use of extremely sensitive detection methods. Three

main techniques have been developed for the measurement of HOx in the troposphere;

differential optical absorption spectroscopy (DOAS), chemical ionisation mass

spectrometry (CIMS) and laser induced fluorescence (LIF). A brief outline of each of

these methods for the measurement of OH and HO2 radicals in the troposphere is given,

with discussion on their main advantages and disadvantages.

1.7.1 Differential Optical Absorption Spectroscopy

Differential optical absorption spectroscopy (DOAS) measures concentrations of species

of interest from their absorption at specific wavelengths of light using the Beer-Lambert

law:

A  =  εcl Eq. 1-4

where A is the absorption, ε is the cross section of the species of interest at the chosen 

wavelength, and l is the path length. One of the major draw backs of DOAS instruments

is its poor sensitivity, meaning a long path length is needed in order to achieve the signal

to noise ratio required to measure low tropospheric concentrations. A DOAS instrument

for the measurement of OH radicals is in operation at the SAPHIR chamber in Jülich,

Germany, as illustrated in Figure 1-10 (Schlosser et al. 2007). Laser light at ~308 nm is

used as the light source for the long path for the measurement of OH radicals; in the

DOAS set up at the SAPHIR chamber, the 308 nm laser light makes 112 passes, resulting

in a total absorption path length of 2240 m.



Chapter 1 38 Introduction

Figure 1-10: Schematic diagram showing positioning of instrumentation for the measurement of
HOx radicals at the SAPHIR chamber at the Jülich Forschungszentrum, Germany.
1 = positioning of LIF FAGE instrument, 2 = DOAS instrument. Reproduced from
Schlosser et al. (2007).

The method by which OH radical concentrations are measured with DOAS

instrumentation means that calibration is not required; but is achieved using data for

absorption cross sections that are predetermined in the laboratory using R 1-6. The

absorption of other species at the wavelengths used for OH measurements (such as SO2

and HCHO) need to be subtracted from spectra before the OH absorption spectrum is

fitted in order to determine OH concentrations.

1.7.2 Chemical Ionisation Mass Spectrometry

Chemical ionisation mass spectrometry (CIMS) is an indirect method for the

measurement of OH radicals. OH radicals are converted into isotopically labelled

sulphuric acid (R 1-46 to R 1-48), which does not naturally occur in the troposphere, and

so reduces any background interferences. The sulphuric acid can then be measured by

quadrupole mass spectrometry of the highly stable anion, following atom abstraction by

the nitrate ion, R 1-49 (Berresheim et al. 2000).

OH + 34SO2  +  M  →  H34SO3 + O2 R 1-46

H34SO3 + O2  →  34SO3 + HO2 R 1-47

34SO3 + H2O  +  M  →  H2
34SO4 + M R 1-48

H2
34SO4 + NO3

-∙HNO3  →  H34SO4
-∙HNO3 + HNO3 R 1-49

CIMS is not an absolute method for OH radical measurements, and so requires

calibration in order to convert signal into OH concentrations. CIMS instrumentation can



Chapter 1 39 Introduction

also be used for the detection of HO2 radicals, through its conversion to OH from the

reaction with NO:

HO2  +  NO  →  OH  +  NO2 R 1-50

1.7.3 Fluorescence Assay by Gas Expansion

Fluorescence assay by gas expansion (FAGE) was first reported by Hard et al. (1979) for

the in situ measurements of OH radicals in the atmosphere. Since then, a number of

modifications to the technique have been made, and a number of FAGE instruments are

in use globally for ground based, aircraft and chamber based studies of HOx radicals.

Details of the FAGE instrument used in the HIRAC laboratory are given in Chapter 3,

including a description of the instrument itself and development of calibration

techniques.

In the FAGE method for measuring HOx radicals, the sampled air is expanded through a

pinhole (typically ~1 mm) into a low pressure detection chamber (~3.8 mbar for the

HIRAC FAGE instrument). Laser light with a wavelength of ~308 nm is used for both

the excitation and detection of fluorescence from OH radicals; this is known as

on-resonance detection. HO2 radicals are converted into OH radicals through their

reaction with NO (R 1-50). The OH radicals are then excited and their fluorescence is

detected in the same manner.

1.7.4 Overview and Comparison of HOx Instrumentation

Formal comparisons of the DOAS, CIMS and LIF methods for the measurement of HOx

have been carried out by Schlosser et al. (2009) and Fuchs et al. (2010). Atmospheric

simulation chambers such as SAPHIR and EUPHORE are ideally suited for instrument

intercomparison measurements; their large size allows for multiple instruments to sample

air of the same chemical composition from within the chamber. One such

intercomparison of HOx instrumentation is the HOx campaign which was carried out in

2005 at the SAPHIR chamber in Jülich, Germany (Schlosser et al. 2009, Fuchs et al.

2010). During these measurements, comparisons between LIF, CIMS and DOAS

instruments were made for both ambient air samples and air sampled from the SAPHIR

chamber. Three LIF instruments and one CIMS instrument were compared for ambient

measurements of OH radicals, and three LIF instruments and one DOAS instrument were

compared for chamber measurements of OH radicals. Good agreement between the

instruments was shown for ambient measurements of OH and excellent agreement was

observed for measurements from the SAPHIR chamber. Three LIF instruments were
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compared for measurements of HO2 radicals for both ambient and SAPHIR

measurements; with the three instruments showing good agreement with each other. It

was, however, observed that the three LIF instruments were influenced by a previously

unknown consideration relating to the water vapour concentration within SAPHIR, and

it was suggested that this could have also affected ambient measurements where

instruments were all sampling from slightly different locations at the site. A number of

instrument comparisons have been carried out for ambient measurements of OH radicals,

including aircraft based OH radical measurement comparison (Hofzumahaus et al. 1998,

Schlosser et al. 2007, Ren et al. 2012).

Measurements of HOx are typically compared to model simulations; using chemical

mechanisms which have been developed through laboratory experiments. The Master

Chemical Mechanism (MCM) is a chemical mechanism developed at the University of

Leeds for the gas phase chemical reactions occurring in the troposphere; the latest version

of the MCM contains the degradation processes of 143 VOCs (MCM 2016). The use of

such models, constrained to measurements of VOCs allows for detailed comparisons

with measured HOx concentrations to be made; good agreement, however, does not

necessarily mean that all mechanisms within the chemical model are correctly

represented. Incorrect estimations for both sources and sinks of HOx may coincidentally

balance with each other. Many comparisons of measurements and modelled HOx

concentrations have been reported in the literature; where modelled OH concentrations

often under predict the observed OH concentrations.

A comparison of measured and modelled average diurnal OH concentrations is shown in

Figure 1-11 for measurements taken in the Pearl River Delta, China (Hofzumahaus et al.

2009). Good agreement between the measured and modelled OH concentrations was

observed in the mornings, with the measured OH concentrations being considerably

greater than the modelled [OH] and measured HO2 concentrations being slightly greater

than the modelled [HO2] in the second half of the day. It was concluded that OH sources

in the chemical model were not sufficient to match the observed HOx concentrations at

later times in the day.
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Figure 1-11: Comparison of average diurnal measured and modelled OH and HO2 concentrations
from field measurements take in the Pearl River Delta, China. Solid red lines represent
measured concentrations, solid blue lines represent Regional Atmospheric Chemistry
Mechanism (RACM) base case modelled concentrations, dashed blue lines represent
extended RACM modelled concentrations. Reproduced from Hofzumahaus et al. (2009).

1.8 OH Reactivity Measurement Techniques

Three different types of instrument have been developed and are widely used for

measuring total OH reactivity; the total OH loss rate measurement (TOHLM), the

comparative reactivity method (CRM) and laser flash photolysis coupled with laser

induced fluorescence (LFP-LIF). A description of each of the three methods will be given

here (a detailed description of the Leeds LFP-LIF instrument is given in Chapter 4).

1.8.1 Comparative Reactivity Method

The comparative reactivity method for the measurement of OH reactivity was first

described by Sinha et al. (2008) and has since been developed by a number of groups

(Table 1-15). CRM instruments consist of a glass reaction cell, as illustrated in

Figure 1-12, in which a sequence of flows are introduced, coupled to a detector (PTR-MS

or GC-PID) in order to measure the total OH loss rate. The CRM relies on the

measurement of a reactive species, typically pyrrole, during a three step measurement
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procedure, described by Figure 1-13. The concentration of pyrrole is highest in the first

step (C1 in Figure 1-13). In this step, pyrrole is introduced into the reaction cell with dry

zero air, and should only be lost to any reaction with impurities present in the dry zero

air, loss to the walls of the reaction cell or photolysis of pyrrole by the mercury pen ray

lamp (λ = 184.9 nm). The pyrrole concentration decreases in the second step (C2 in 

Figure 1-13), where OH radicals are generated in the reaction cell, following R 1-51, as

humidified zero air is introduced into the reaction cell. The decrease in pyrrole

concentration in the second step is due to the reaction of pyrrole with the OH radicals

present in the reaction cell.

In the third step (C3 in Figure 1-13) an increase in pyrrole concentration from the C2

step is observed. Ambient air is drawn into the reaction cell through “Arm A” as shown

in Figure 1-12. OH radicals are also generated following R 1-51 from an addition of

humidified air into the reaction cell. The increase in pyrrole concertation in this step is

due to the OH reactive species present in the sampled ambient air competing with the

pyrrole for the reaction with OH radicals present in the reaction cell. From these three

steps, the OH reactivity (k’
OH) can be calculated following Eq. 1-5:

kOH
' =

(C3-C2)

(C1-C3)
kOH+pyrroleC1 Eq. 1-5

where kOH + pyrrole is the rate constant for the reaction of pyrrole with OH radicals, taken

as 1.28 × 10-10 cm3 molecule-1 s-1 from Dillon et al. (2012). Several criteria have been

described by Sinha et al. (2008) for choosing an appropriate reference compound, most

importantly the compound must not be present in ambient air and must have a

well-defined rate coefficient for its reaction with OH radicals. The authors also noted

that the method could employ other suitable reference species, such as labelled isotopes

of isoprene, where suitable compounds with a lower rate coefficient with OH than that

of pyrrole would improve the sensitivity at lower values of OH reactivity.

H2O + hν(λ = 184.9 nm)  →  H  +  OH R 1-51

H + O2  + M  →  HO2 + M R 1-52
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Figure 1-12: Schematic of the glass reaction cell used in CRM instruments for the measurement
of OH reactivity, reproduced from Sinha et al. (2008).

Figure 1-13: Schematic of the three step measurement procedure used in the measurement of OH
reactivity with CRM instruments, where [x] is pyrrole. Reproduced from Sinha et al.
(2008).

During all three steps in the measurement procedure, a mercury pen ray lamp is switched

on (placed in “Arm B”, as illustrated in Figure 1-13), in order to produce OH radicals in

the presence of humidified air, following R 1-51. Characterisation of a number of CRM

instruments has been reported by several groups (Sinha et al. 2008, Hansen et al. 2015,

Michoud et al. 2015). Full details on the of the characterisation of CRM instruments is

beyond the scope of this work, however, it should be noted that numerous correction

factors are required during the data analysis procedure, including corrections for changes

in relative humidity within the reactor during the three step measurement procedure,

corrections for NO and NO2 which leads to increased formation of OH by reaction of

NO with HO2 (HO2 is produced within the reaction cell by R 1-52), and correction for

deviations from pseudo first order conditions.

Since the CRM technique was first described in the literature, a number of groups have

also developed instruments based on the original glass reaction cell design, with many
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of them using glass reaction cells built by the Max-Planck-Institut für Chemie (Mainz,

Germany). Table 1-15 gives details of a number of CRM instruments that have been

developed to date. Sinha et al. (2008) first described the CRM instrument for OH

reactivity measurements, with Nölscher et al. (2012) describing an alternative method

for monitoring the pyrrole concentration by GC-PID. The use of GC-PID as a detector

for pyrrole in CRM instruments provides a number of advantages over the PTR-MS,

mainly its reduced cost, reduced running costs and that it is considerably smaller than the

PTR-MS systems, making it easier to transport for field measurements. A summary of

the use of the CRM-GC-PID system is given by Nölscher et al. (2012), where

measurements were compared to, and shown to be in good agreement with, a

CRM-PTR-MS instrument system. This comparison of the two detector systems included

laboratory, plant chamber and boreal forest measurements. A CRM-GC-PID system is

also in development at the Finnish Meteorological Institute (FMI), Finland.

Group
Instrument

Detector

Limit of detection

/ s-1
References

MPI, Mainz, Germany GC-PID 3 (Nölscher et al. 2012)

MPI, Mainz, Germany PTR-MS 3 (3σ) Williams et al. (2016)

NCAR, Boulder CO,

USA
PTR-MS 15 (3σ) (Kim et al. 2011)

FMI, Finland GC-PID Not Available Not Available

Mines Douai, France PTR-MS 3 (3σ) Michoud et al. (2015)

LSCE, France PTR-MS 3 (3σ) Zannoni et al. (2016)

IISER, India PTR-MR 4.5 Kumar and Sinha (2014)

Table 1-15: Comparison of CRM instruments for the measurements of OH reactivity.
GC-PID = Gas Chromatography photoionisation detector, PTR-MS = proton transfer mass
spectrometry.

1.8.2 Total OH Loss rate Measurement

The total OH loss rate measurement (TOHLM) for measuring OH reactivity was first

described by Kovacs and Brune (2001). A schematic of a TOHLM instrument is shown

in Figure 1-14. In this method, OH radicals are generated in the flow tube of the

instrument via the photolysis of water vapour by a mercury pen ray lamp (R 1-51 and
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R 1-52), housed within a moveable injector. Reactive species sampled from ambient air

react with the OH radicals within the flow tube, with the OH radicals being detected by

LIF.

Figure 1-14: Schematic of a TOHLM instrument for the measurement of OH reactivity,
reproduced from Hansen et al. (2014).

The injector is moved forwards and backwards within the flow tube in order to alter the

time for the reaction of the OH radicals with OH reactive species present in the sampled

gas. The OH radical signal is measured continuously over the forwards and backwards

movement of the injector in order to build up a decay.

Figure 1-15: Example of data recorded by the Indiana University TOHLM instrument for the
measurement of OH reactivity, reproduced from Hansen et al. (2014). Red crosses show
data from the injector moving in the forwards direction and red circles show data from the
injector moving in the backwards direction.

An example of data recorded from a TOHLM instrument is given in Figure 1-15. A linear

fit to the natural logarithm of the data yields and OH reactivity value, in this case a value

of 16.4 s-1 was obtained (Hansen et al. 2014). The reaction time (x-axis) correlates to the
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injector position within the instrument. The first set of data points in this plot are not used

in the analysis as the OH in the flow tube is not completely mixed at these short reaction

times (<50 – 60 ms).

Group
OH Detection

Method

Limit of

Detection / s-1

k'
OH(physical)

/ s-1

References

Pennsylvania State

University, USA
LIF 0.3 (2σ) 2.0 ± 0.3 

Mao et al.

(2009)

Indiana University,

Bloomington IN,

USA

LIF 0.7 (1σ) 3.6 ± 0.2 
Hansen et

al. (2014)

University of Leeds,

UK*
LIF 2 1.6 ± 0.4

Ingham et

al. (2009)

German Weather

Service
CIMS Not Available

Not

Available

Not

Available

Table 1-16: Comparison of a number of TOHLM instruments for the measurement of OH
reactivity. *Instrument no longer in use.

1.8.3 Laser Flash Photolysis coupled with Laser Induced Fluorescence

The laser flash photolysis coupled with laser induced fluorescence (LFP-LIF) method for

measuring OH reactivity was first described by Sadanaga et al. (2004). In this method,

OH radicals are produced in a flow tube via ozone photolysis (R 1-53). O(1D), produced

in R 1-53, and subsequently reacts with water vapour present in the sampled gas flow to

give two OH radicals, R 1-54.

O3 + hν(λ = 266 nm)  →  O2 + O(1D) R 1-53

O(1D) + H2O  →  2OH R 1-54

The OH radicals produced in the flow tube of the instrument react with any OH reactive

species present in the sampled gas flow; the OH decay signal is detected by LIF and

recorded in real time. A more detailed description of the LFP-LIF method for the

measurements of OH reactivity, and specific details on the Leeds LFP-LIF instrument

will be given in Chapter 4.
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Group
Limit of

Detection / s-1

Instrument

zero / s-1
References

Tokyo Metropolitan

University, Japan
Not reported 2.8

Sadanaga et al.

(2004)

University of Lille, France 0.9 – 3.6 (3σ) 6.6 ± 1.2  Hansen et al. (2015)

University of Leeds, UK 0.4 – 1.0 (1σ) 2.25 ± 0.21 

Stone et al. (2016)

Cryer (2016)

Jülich Forschungszentrum,

Germany*
0.9 (3σ) 1.4 ± 0.3 Lou et al. (2010)

Jülich Forschungszentrum,

Germany†
0.3 (1σ) 3.1 Fuchs et al. (2017)

Table 1-17: Comparison of LFP-LIF OH reactivity instruments. *Mobile instrument developed
for field measurements. †Instrument developed for measurements sampling from the
SAPHIR chamber.

1.8.4 Overview and Comparison of OH Reactivity Instruments

A brief description has been given here of the three techniques that have been developed

for the measurement of OH reactivity. Further details of the LFP-LIF instrument

developed at Leeds are given in Chapter 4. Each of the three techniques have distinct

advantages and disadvantages. Both the LFP-LIF and TOHLM instruments use 308 nm

laser light to detect OH radicals by LIF. These instruments have been developed by

groups who already have existing laser set ups for the measurement of OH and HO2

radicals by LIF at 308 nm. CRM instruments have typically been developed by groups

already using PTR-MS instruments for the measurements of VOCs.

The main advantage of the LFP-LIF technique over the TOHLM is that it is the only

instrument able to measure OH reactivity in real time. This is especially advantageous

for measurements in places where concentrations of OH reactive species present in the

sampled air are changing on a relatively short time scale, such as in urban environments.

The averaging time of the LFP-LIF is mainly dependent on the initial signal observed (as

described in Chapter 4), whereas the averaging time of the TOHLM instruments is

dependent on the time required to move the injector backwards and forwards to build up

an OH decay, typically being ~200s.
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The major disadvantage of the LFP-LIF instruments is that the instrument requires the

use of two lasers; one at 266 nm for the generation of OH radicals in the photolysis flow

tube, and one at 308 nm for the excitation and detection of fluorescence of OH radicals

in the FAGE cell, which incurs high costs. LFP-LIF instruments have high time

resolution, typically 30 – 120 s.

CRM instruments have a much lower time resolution, typically taking one OH reactivity

measurement every 10 minutes, due the three step procedure required for the

measurements. The GC-PID instrument described by Nölscher et al. (2012) offers a low

cost alternative for the measurements of OH reactivity. A major disadvantage of the

CRM instruments is that they require a large number of corrections in the data analysis

procedures in order to determine the value of k’
OH, which can lead to greater uncertainties.

Extensive characterisation is required in order to apply appropriate correction factors to

the raw data (Michoud et al. 2015).

A number of instrument comparisons have recently been described in the literature for

the measurement of OH reactivity using the different instrument techniques. Zannoni et

al. (2015) described a comparison of two CRM OH reactivity instruments; one from

LSCE, France and one from Mines Douai, France. In results from an intercomparison in

the Mediterranean basin of these two instruments, good agreement between the two

instruments was observed for measurements of OH reactivity in a low NOx, terpene rich

environment (Zannoni et al. 2015). A correlation plot of the raw OH reactivity

measurements for values up to 50 s-1 gave a gradient of 0.74 ± 0.07 and R2 = 0.667. When

all correction factors had been applied to OH reactivity measurements from the two

instruments, the correlation of the final values increased to give a gradient of 0.96 ± 0.12,

however, the scatter was also significantly increased, with R2 = 0.543. Measurements of

OH reactivity made with TOHLM and CRM instruments require corrections to be made

to the raw data to account for any reaction of HO2 (produced simultaneously in the

instruments from the method of OH radical production) with NO present in the sampled

gas.

Similar to measurements of OH and HO2 radical concentrations, OH reactivity

measurements are often compared to modelled and calculated OH reactivity, using

measurements of VOC concentrations. One such example is a detailed modelling study

carried out by Whalley et al. (2016), where numerous model scenarios were compared

with measurements of OH reactivity from the ClearfLo field campaign in London 2012,
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as illustrated by Figure 1-16. A recent review by Yang et al. (2016) discusses a wide

range of both experimental and modelling studies of OH reactivity, which the reader is

referred to for further details.

Figure 1-16: Comparison of modelled and measured OH reactivity for two different model
scenarios. Left: model constrained to a standard set of measured VOC concentrations
including C2 – C8 hydrocarbons and a small number of OVOCs Right: model constrained
to an extended set of measured VOC concentrations including species up to C12

hydrocarbons. Reproduced from Whalley et al. (2016).

The inclusion of modelled intermediate species and an extended set of VOC

concentration measurements for modelling the OH reactivity significantly reduces the

gap between measured and modelled OH reactivity for measurements from the ClearfLo

campaign. These results clearly show the importance of comprehensive VOC

measurements in order to improve our understanding of chemical mechanisms and

processes occurring in the troposphere. An extensive OH reactivity instrument

comparison was carried out at the SAPHIR chamber in Jülich, Germany in October 2015.

Results from some of the experiments carried out during this intercomparison are

discussed in Chapter 5.

1.9 Summary

This chapter has given an introduction to the tropospheric chemistry relevant to the work

presented in this thesis, highlighting the importance of atmospheric simulation chamber

studies. A review of current literature into the atmospheric chemistry of the isomers of

butanol has been given, focussing on those of importance for their potential use as

biofuels. The different measurement techniques for the measurements of HOx

concentrations and OH reactivity have been compared. Details of an instrument for the

measurement of HOx concentrations will be given in Chapter 3, focussing on the

development of calibration techniques. The development of an OH reactivity instrument
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for measurements with the HIRAC chamber is given in Chapter 4, and results from an

instrument intercomparison are given in Chapter 5. Results from temperature dependent

relative rate studies for the reaction of n-butanol and iso-butanol with Cl atoms are given

in Chapter 6. Results from the Cl atom and OH radical initiated oxidation processes of

iso-butanol in the presence of varying initial NO concentrations are given Chapter 7, with

a comparison of the products given for the different scenarios, including measurements

of HOx. Chapter 8 presents the first measurements of OH reactivity from the HIRAC

chamber, following the relatively complex systems of the Cl atom and OH radical

initiated oxidation of iso-butanol in the presence of varying initial NO concentrations,

with comparisons being made to OH reactivity calculated from the measured species

within HIRAC.

1.10 Project Aims

Atmospheric simulation chambers are an extremely important tool in the investigation of

tropospheric chemistry, where specific chemical reactions can be studied in isolation.

They are also extremely useful as they can provide a controlled environment in which

analytical instrumentation can be developed and characterised. A major aim of this thesis

was to further develop a FAGE instrument for the measurement of OH and HO2 radicals

and a LFP-LIF instrument for the measurement of OH reactivity, utilising the HIRAC

chamber. Development of calibration methods, including the determination of the FAGE

HO2 cell sensitivity as a function of temperature, studied using the HIRAC chamber, and

investigation into the errors associated with the N2O actinometry experiment, are

presented in Chapter 3.

Measurements of OH reactivity give valuable information relating to the oxidation

capacity of an environment. Ambient measurements are typically compared to OH

reactivity calculated from co-measured OH sinks; where the OH reactivity measurements

are often greater than the calculations. These discrepancies are commonly attributed to

unmeasured OH sinks and intermediate species. Measurements of OH reactivity

following chamber studies enables measurements to be taken under a controlled

environment, where known concentrations of reactants are present, and products of

chemical reactions can be monitored. Comparison between calculated and measured OH

reactivity following chamber studies is extremely useful as it can assist in highlighting

areas in our understanding of specific chemical reactions that may be less well

understood. The development of a LFP-LIF instrument to allow measurements from the
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HIRAC chamber was another aim of this work. Chapter 4 details results from the

development of this instrument and characterisation experiments whilst sampling from

the HIRAC chamber. Results from an OH reactivity instrument intercomparison which

was carried out at the SAPHIR chamber in Jülich, Germany, are presented in Chapter 5.

These results assist in the validation of the measurement technique, with comparisons to

two other instrument types and calculated OH reactivity.

Finally the work in this thesis aimed to bring together the development and improvement

of both the FAGE instrument for OH and HO2 radical measurements and the LFP-LIF

instrument for OH reactivity measurements from the HRIAC chamber. There is

increasing demand for research into potential biofuels as a renewable energy source. The

isomers of butanol have shown potential as biofuels, with most studies having been

presented on the production of n-butanol and iso-butanol. Chapter 7 and Chapter 8

present results following the oxidation of iso-butanol; with Chapter 8 reporting the first

OH reactivity measurements from the HIRAC chamber following relatively complex

oxidation processes. The aim of studying the oxidation processes of iso-butanol was to

investigate the ozone formation under tropospherically relevant NOx conditions and

follow the changes in OH reactivity throughout the oxidation processes.
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Chapter 2. Highly Instrumented
Reactor for Atmospheric Chemistry

2.1 Introduction

An introduction to tropospheric chemistry relevant to the work in this thesis has been

given in Chapter 1. Atmospheric simulation chambers play a pivotal role in the study of

chemical reactions occurring in the troposphere. A comparison of a number of different

chambers has been given in Chapter 1; here a description of the Highly Instrumented

Reactor for Atmospheric Chemistry (HIRAC) is given, detailing the commercial

instruments coupled to the chamber for measurements, including Fourier Transform

Infrared spectroscopy (FTIR), gas chromatography (GC), ozone and NOx analysers. The

custom built FAGE instrument for the measurement of HOx radicals will be described in

Chapter 3 and a LFP-LIF instrument for OH reactivity measurements will be described

in Chapter 4.

HIRAC has been developed in order to carry out a wide range of atmospheric

measurements and investigations Glowacki et al. (2007a). It is a 2.25 m3 cylindrical

atmospheric simulation chamber constructed from 304 grade stainless steel, allowing for

both pressure and temperature dependent studies to be carried out. The internal surface

area of the chamber is ~13 m2, including all internal instrumental surfaces. The stainless

steel construction of HIRAC allows experiments to be carried out over a range of

pressure (15 – 1000 mbar).

Stainless steel tubes welded to the outside of the chamber enable the circulation of heated

or cooled fluid in order to carry out experiments over the temperature range 253 – 343 K.

The stainless steel tubing is connected to a temperature control unit (Huber thermostat

Model 690W), filled with thermo fluid (DW-Therm). The temperature control unit

circulates the thermo fluid through the stainless steel tubing, allowing for even

temperature regulation of the chamber. Temperature gradients across the chamber have

been measured previously, showing very small gradients, within 1 K, with small

deviations of ± 4 K observed close to the flanges of the chamber where no thermo fluid

is circulated (Farrugia 2013).
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HIRAC has many flanges through which numerous analytical instrumentation can be

connected. Two large flanges on one side of the chamber, which could potentially

support several instrument inlet ports. Two smaller flanges on the other side of the

chamber allow for more analytical instruments to be coupled; one of which is

permanently dedicated for sampling by the FAGE instrument (as described in Chapter 3).

A cutaway diagram of the HIRAC chamber is shown in Figure 2-1, where the FAGE

instrument can be seen through one of the smaller flanges on one side of the chamber.

Figure 2-1: Schematic cutaway diagram of the HIRAC chamber showing the
arrangement of the quartz tubes inside the chamber in which photolysis lamps are
housed. One of the mixing fans is visible. The supports for the FTIR multipass
mirrors at one end of the chamber are visible. The FAGE instrument can also be
seen. Adapted from Glowacki et al. (2007a).

Eight quartz tubes spanning the full length of the chamber are designed to house

photolysis lamps which initiate chemical reactions within the chamber. Three types of

lamps are available to be mounted within the quartz tubes, with different maximum

output wavelengths; Philips TL-K 40W/05 (λmax = 360 nm), GE G55T8 / OH 7G UVC

(λmax = 254 nm) and Philips TL 40W/12 RS SLV (λmax = 300 nm). The photolysis lamps

have an optimum operating temperature of ~35 - 39°C, and so the quartz tubes are

continually flushed with a flow of laboratory nitrogen in order to maintain the

temperature. The flush of nitrogen also ensures no water vapour is present in the air

surrounding the photolysis lamps which would freeze at low temperatures. A

thermocouple is placed approximately half way along each lamp to allow the temperature

of the lamps within the quartz tubes to be monitored, and the nitrogen flush can be
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adjusted accordingly. Figure 2-2 shows the output of the three sets of photolysis lamps

available for use within HIRAC.

Figure 2-2: Emission spectra of the three different photolysis lamps available for use
within HIRAC. Reproduced from Winiberg (2014).

Between experiments, HIRAC is evacuated to <1 mbar in ~60 minutes using a rotary

pump backed roots blower (Leybold Trivac D40B with Leybold Ruvac WAU251). This

ensures maximum removal of trace species from the chamber. The internal pressure of

HIRAC is monitored with a pressure transducer (Lybold Ceravac, 0 – 1000 Torr).

For general operation of HIRAC, the chamber is filled to the desired pressure with 80%

UHP N2 (BOC, 99.998% purity) and 20% O2 (BOC, 99.999% purity). Known

concentrations of the VOCs of interest are added to the chamber; either via a vacuum

line as a gas or by direct injection as a liquid, over a flow of N2. Experiments are typically

initiated through the photolysis of a precursor (to generate OH radicals or Cl atoms), or

by the ozonolysis of an alkene. Concentrations of compounds of interest are then

monitored via a range of analytical instruments, which will be described in more detail

in the following sections.

Four mixing fans (two at either end inside the chamber) ensure good mixing of

compounds within the chamber. Mixing times within HIRAC have been investigated by

Glowacki et al. (2007a), where it was shown that with all four mixing fans running at
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1500 rpm and 30000 rpm, the mixing times were ~70 s and ~60 s, respectively. For

routine operation of HIRAC, all four mixing fans are set to 1500 rpm.

In house written LabVIEW software monitors and records temperatures (six

thermocouples inside the chamber and one thermocouple connected to each photolysis

lamp), chamber pressure, [O3] and [NOx]. Due to the large potential sampling output

from HIRAC from the numerous analytical instruments available for measurements, a

counter flow system has been set up in order to maintain the desired total pressure. The

internal chamber pressure is monitored using LabVIEW software, and controls

adjustment of flow settings of two MFCs (one for N2 and one for O2) in order to maintain

the desired pressure.

2.2 HIRAC Instrumentation

Numerous analytical instrumentation can be coupled to the HIRAC chamber for

measurements of a wide range of species. These include two GC instruments for the

detection of a range of VOCs, an FTIR multipass set up for the measurement of VOCs

and commercial O3 and NOx analysers; all of which will be described in the following

sections. A LIF FAGE instrument is also available for the measurement of OH and HO2

radicals from the HIRAC chamber, which will be described in Chapter 3, with results

from development of calibration techniques being presented. A LFP-LIF instrument for

the measurement of OH reactivity has been modified for measurements from HIRAC,

the development and characterisation of this instrument with HIRAC will be given in

Chapter 4.

2.2.1 Fourier Transform Infrared Spectroscopy

Fourier transform infrared (FTIR) spectroscopy is widely used in atmospheric simulation

chambers for the detection of a range of species. FTIR measurements are made through

the absorption of IR radiation by IR active species present in a sample. A significant

advantage of FTIR measurements over other analytical techniques, such as GC

measurements, is that is an in situ detection method. A sample is not required to be taken

from the chamber, and so the exact composition of species present in the chamber are

monitored; there are no sampling lines or detectors for the sample to pass through, and

so eliminating any interferences that may arise from processing of compounds within

such sampling lines. An interferometer allows for the simultaneous measurement of all

IR frequencies.
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The Beer-Lambert law (Eq. 2-1) can be used to calculate the concentration of the

absorbing species from their absorption cross sections:

I I0= e-σcl⁄ Eq. 2-1

where I is the measured intensity at a specific wavelength, I0 is the initial intensity, c is

the concentration of the absorbing species, l is the total path length and σ is the absorption 

cross section of the absorbing species. The sensitivity can be increased through the use

of a long path length, achievable with the use of a multipass system. The optimum

number of passes for the HIRAC FTIR set up has been described by Glowacki et al.

(2007b).

HIRAC is coupled to a Bruker IFS/66 FTIR spectrometer. A modified Chernin type

multipass matrix system has been developed for measurements within the HIRAC

chamber, and is described in detail by Glowacki et al. (2007b). A diagram of the

multipass set up of the light from the FTIR to the detector, as set up for measurements

from the HIRAC chamber, is illustrated in Figure 2-3.

Figure 2-3: Schematic showing the multipass of the light from the FTIR to the detection
optics. F1 and F2 are the field mirrors, mounted at one end inside the chamber. O1,
O2 and O3 are the objective mirrors mounted at the other end inside the chamber.
P1, P2 and S1 are transfer optics housed within a box external to HIRAC.
Reproduced from Glowacki et al. (2007a).

The multipass set up consists of the FTIR spectrometer, the transfer optics, the field and

objective mirrors mounted to either end of the inside of the chamber, and an external

detector. Light from the FTIR spectrometer enters and exits the chamber through wedged

KBr windows (75 + 0/-0.2 mm diameter, (5.0 ± 0.1) mm (min) width, with 0.5° wedge).

The field mirrors, objective mirrors and transfer optics make up the modified Chernin

type multipass matrix system. The transfer optics (P1, P2 and S1) are housed within a

box external to the chamber, which is constantly purged with a flow of nitrogen in order
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to ensure minimal interference from compounds, such as water, present within the

external pass of the light from the FTIR.

The field and objective mirrors (F1 and F2, and O1, O2 and O3, respectively), making

up the multipass set up within the chamber, are illustrated in Figure 2-4. This set up

allows for 72 passes through HIRAC of the light from the FTIR spectrometer, resulting

in a total path length of 128.5 m. A significant advantage of the modified Chernin cell is

that it allows for ease of alignment through careful adjustment of the screws on each of

the three objective mirrors, which can be easily accessed through the removal of the large

flange at the end of the chamber.

Figure 2-4: Schematic showing the modified Chernin type multipass matrix system
designed for use within the HIRAC chamber. F1 and F2 are the field mirrors and
O1, O2 and O3 are the objective mirrors. The set up shown allows for 72 passes of
the light through the HIRAC chamber, giving a total path length of 128.5 m.
Reproduced from Glowacki et al. (2007b).

FTIR spectra are used for the identification and quantification of compounds present in

the HIRAC chamber throughout the course of experiments. Prior to any compounds

being added to the chamber, with only N2 (80%) and O2 (20%) present in the chamber,

an FTIR background spectrum is recorded. The background spectrum is subtracted from

subsequent spectra in order to remove any absorptions from impurities such as CO and

H2O present in the bath gas. Reference spectra of the compounds of interest are recorded,
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for known concentrations of those compounds. These reference spectra can then be fitted

to the experimental spectra in order to determine concentrations.

2.2.2 Gas Chromatography

Gas chromatography (GC) is an analytical technique used for the separation and

characterisation of VOCs. It is used to separate compounds in a sample to enable both

qualitative and quantitative analysis. All commercial GC instruments consist of the same

basic components; an injector port for sample introduction, a column which is fixed

inside an oven, and a detector. A sample is injected onto a column; the different

compounds present in the sample travel through the column at different rates. The rate at

which each compound passes through the column is primarily dependent on the physical

properties of the compounds. Compound separation can be optimised through altering a

range of operating parameters, including the column and oven temperature. As each

compound exits (elutes) the column, it passes through a detector. The signal produced as

the compounds reach the detector is recorded as a peak on a chromatogram,

representative of the time spent on the column and the total concentration of each

compound. Identification of compounds within a sample is determined by their retention

time, dependent on the specific operating conditions for the GC.

Two GC instruments (GC-FID, Agilent Technologies, 6890N) are connected to the

HIRAC chamber for the detection and quantification of a wide range of VOCs. Online

sampling is used to monitor the concentration of compounds throughout experiments.

This is achieved with the use of a series of valves in order to draw a sample from the

chamber and inject it onto the GC column typically every 1 – 5 minutes, dependent on

the separation of compounds in the GC. A schematic of the online sampling set up for

the two GCs is illustrated in Figure 2-5. A gas sample is drawn from the chamber into

two sample loops (5 ml volume). The sample is then injected onto the columns via a

6-way valve, as the carrier gas (Helium, He) is flushed through the sample loops.
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Figure 2-5: Schematic diagram illustrating the valve set up for the online sampling of
two GC instruments from the HIRAC chamber.

Once the sample has been injected onto the columns, the 6-way valve is then switched

so that the sample loop and the sample line up to the chamber valve are evacuated by a

pump (Leybold 4B). Figure 2-6 illustrates the timings for the online sapling of the GCs

from HIRAC.

Figure 2-6: Schematic showing the relative timings of the online sampling of the two
GCs from the HIRAC chamber. Adapted from Glowacki et al. (2007a).

The two HIRAC GC instruments use flame ionisation detectors (FIDs) for the detection

of compounds as they are eluted from the column. The sample burns as it passes through

GC1

GC2

Pump
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Chamber Valve

Pump Valve
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6-way Valve

Sample Loop
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the flame, creating ions, of which their signal is recorded as a peak in the chromatogram.

Calibration is required as the sizes of the peaks are dependent on the functionality of the

individual compounds. GC calibration is achieved through the sampling of known

concentrations of compounds from the HIRAC chamber. A range of concentrations are

sampled, produced either through multiple additions of the compound into the chamber,

or by the dilution of the chamber (the chamber is evacuated to a known pressure and

refilled to 1000 mbar with air). This allows for a calibration plot to be produced, an

example of which is shown in Figure 2-7, for the GC calibration of iso-butanol sampled

from HIRAC at 298 K and 1000 mbar.

Figure 2-7: GC calibration plot for iso-butanol. Calibration produced by sampling from
the HIRAC chamber at 298 K and 1000 mbar.

It is also important to carry out both temperature and pressure dependent calibration for

compounds for such experiments as the total amount of each compound collected in the

sample loop and injected onto the GC column will vary with both of these parameters.

GC columns vary in a number of ways including their length, column diameter,

stationary phase and film thickness. There are two main types of GC columns; packed

columns and capillary columns. Capillary columns are the most commonly used type of

GC columns. For the work in this thesis, two different GC columns were used; a CP-Sil

5CB column (50 m length, 0.32 mm i.d., 5 μm film thickness) and a DB-WAX column 
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(15 m length, 0.32 mm i.d., 0.25 μm film thickness). The CP-Sil 5CB column is a low 

polarity column, suitable for the separation and detection of C2 – C6 hydrocarbons as

compounds are separated primarily by their boiling points. The DB-WAX column is a

polar column suitable for the separation and detection of highly polar compounds.

Figure 2-8 shows an example of compound separation in a GC, using the CP-Sil 5CB

column to separate iso-butanol, iso-butyraldehyde and acetone.

Figure 2-8: Example GC chromatogram showing the peak separation of iso-butanol,
iso-butyraldehyde and acetone. Separation achieved for the CP-Sil 5 CB column,
sampling from the HIRAC chamber filled to ~1000 mbar with 80% UHP N2 and
20% O2.

2.2.3 Commercial Gas Analysers

Commercial analysers for the measurement of ozone and NOx (= NO + NO2) are also

connected to HIRAC; a UV photometric O3 analyser (Thermo Electron Corporation,

Model 49C, LOD = 1.0 ppbv) and a chemiluminescence NO-NO2-NOx analyser (Thermo

Environmental Instruments Inc., Model 42C, LOD = 50 pptv at 120 s averaging time).

NOx concentrations are measured by chemiluminescence, with a ~1 l min-1 sample being

taken from the chamber. NO in the sampled gas reacts with O3 to produce electronically

excited NO2
* (R 2-1). The light emitted as the NO2

* relaxes to the ground state NO2 is

measured; it is proportional to the concentration of NO present in the sample. NO2

concentrations can also be measured; the NO2 is first converted to NO using a

molybdenum NO2 to NO converter, before reacting with O3 to produce NO2
*.
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NO + O3  →  NO2
* + O2 R 2-1

NO2
*  →  NO2 + hν R 2-2

As the NO produced from the conversion of NO2 in the sampled air cannot be

distinguished from the NO present in the sampled air, the sum of NO2 and NO (NOx) is

recorded, with the NO2 concentration being determined by subtracting the [NO] from the

total NOx concentration.

It is known that measurements of NO2 concentrations using chemiluminescence NOx

analysers are prone to interferences; Villena et al. (2012) have reported on the

observation of strong interferences from chemiluminescence NOx measurements in an

urban environment, a road traffic tunnel and in measurements from an atmospheric

simulation chamber. The authors reported strongly positive interferences in

measurements from an urban environment, and strongly negative interferences in

measurements from a road traffic tunnel. It was determined, through chamber studies,

that the observed negative interferences arose from the photolysis of VOCs within the

photolytic converter and the subsequent reaction of the peroxy radicals produced with

NO present in the sampled air. It was concluded that the positive interferences were due

to the presence of NOy species (e.g. PAN and HONO). A number of studies in the

literature have reported on the interference from organic nitrates in the measurement of

NO2 concentrations; the molybdenum NO2 to NO converter used in chemiluminescence

NOx analysers is not specific to the conversion of NO2, with organic nitrates also being

converted to NO, and hence included in the total measurement (Demerjian 2000, Dunlea

et al. 2007, Steinbacher et al. 2007). With the interferences described, measurements of

[NO2] and [NOx] should be considered with caution as to avoid misinterpretation of

results.

Chemiluminescence NOx boxes are used for the measurement of [NO] whilst sampling

from HIRAC and in the N2O actinometry procedure (described in Chapter 3). Calibration

of the chemiluminescence NOx analyser for the measurement of NO concentrations and

its response to N2O in the sampled gas flow is detailed in Chapter 3.

Ozone concentrations within HIRAC are measured with a UV photometric O3 analyser

(Thermo Electron Corporation, Model 49C, LOD = 1.0 ppbv). The O3 analyser is

connected to HIRAC with ¼” Teflon tubing, sampling through a flange at the top of the

chamber. Whilst sampling from the chamber, the O3 analyser draws a sample of

~1 l min-1. The ozone analyser measures ozone concentrations through its absorption of
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UV light at 254 nm, using the Beer-Lambert law (Eq. 2-1). Calibration of the UV O3

analyser should not be required. The instrument splits the intake flow of sampled gas into

two; one flow is passed through an ozone scrubber to act as a reference (I0 in R 2-1) and

then to a detector, the second gas flow is passed straight to a detector. The ozone

concentration is determined through the difference in UV absorption between the two

gas flows.

2.2.4 Other Instrumentation

The relatively large size of HIRAC and number of available inlet ports allows for the

coupling of numerous instruments to the chamber for measuring a range of species. A

number of permanently couple instruments have been described here; the dedicated

FAGE instrument is discussed in Chapter 3, and a newly interfaced LFP-LIF OH

reactivity instrument is discussed in Chapter 4. A cavity ring down spectroscopy (CRDS)

set up has been previously used for the detection of NO3 (Malkin 2010), and a new

version is currently under construction for the measurement of peroxy radicals.
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Chapter 3. Fluorescence Assay by Gas
Expansion – Instrument Development
and Characterisation

3.1 Introduction

Measurements of OH and HO2 radicals have been discussed in Chapter 1, with

comparison of the different measurement techniques used. The fluorescence assay by gas

expansion (FAGE) method has seen considerable development since it was first reported

as a technique for the detection of OH and HO2 radicals by Hard et al. (1979). There are

many FAGE instruments used globally for the detection of HOx radicals for ground

based, aircraft, and chamber studies (Kanaya et al. 2001, Dusanter et al. 2009, Amedro

et al. 2012). The HIRAC FAGE instrument, which is the focus of this chapter, has been

described in detail elsewhere (Glowacki et al. 2007, Winiberg et al. 2015).

Here a description of the HIRAC FAGE instrument is given, focussing in particular on

the calibration procedure. As FAGE is not an absolute method for measuring OH and

HO2 radical concentrations, calibration is required in order to convert the experimental

measurement signal into concentrations. Low concentrations and the short lifetime of

HOx in the troposphere require sensitive and selective detection techniques. A detailed

description of the conventional calibration method for FAGE instrumentation is given,

with discussion on the sources of error associated with it. The major source of error in

the conventional FAGE instrumentation calibration method arises from the N2O

actinometry procedure required for determining the output flux, F184.9 nm, of a mercury

pen ray lamp. In order to gain a better understanding of the error associated with the

determination of F184.9 nm, an in depth study into the N2O actinometry experimental

procedure and the apparatus used is given. Comparisons are given on a range of

experimental apparatus available for measurements.

Total uncertainty, as discussed in Section 3.4.3, can be determined from the sum in

quadrature of the accuracy and precision of the measurements. This total uncertainty

typically does not represent the systematic error associated with the measurements in the
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function used in calculating F184.9 nm. To gain further insight into the breakdown of errors

associated with all parameters required in the determination of F184.9 nm, Monte Carlo

error propagation is discussed in Section 3.4.3, with examples given from experimental

data.

HIRAC is ideally suited for carrying out alternative methods for FAGE instrumentation

calibration. The HIRAC chamber has previously been utilised for pressure dependent

calibration of both the OH and HO2 cells of the HIRAC FAGE instrument (Winiberg et

al. 2015). Section 3.5 details further use of the HIRAC chamber to determine the

sensitivity of the HIRAC FAGE instrument as a function of temperature. Comparison is

made between the conventional and alternative calibration methods, with discussion of

the errors associated with each method. The alternative HIRAC calibration methods

provide validation for the conventional FAGE instrumentation calibration method.

3.2 Instrumentation

A cross sectional schematic of the HIRAC FAGE instrument is shown in Figure 3-1. The

instrument is constructed from black anodised aluminium with an internal diameter of

50 mm for the sampling flow tube.

Figure 3-1: Side view cross sectional schematic of the FAGE instrument, reproduced from
Winiberg (2014).

A sample is expanded through a pinhole of 1.0 mm diameter at the end of the inlet. The

instrument uses an inlet length of 280 mm to ensure sampling from within HIRAC is far

enough away from the chamber walls and out of the region where radical gradients are

observed, as has been described by Malkin (2010), where a small radical gradient was
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observed from the chamber walls to 200 mm within HIRAC. A Baratron (MKS, 10 Torr)

is positioned between the OH and HO2 detection cells in order to measure the internal

pressure of the instrument during experiments. The internal pressure of the HIRAC

FAGE instrument is typically ~2.7 Torr during routine operation, maintained by a

rotary-backed roots blower (Leybold, trivac D40B and ruvac WAU251). The low

pressure within FAGE instruments is used in order to extend the fluorescence lifetime of

OH radicals allowing temporal isolation of the scattered light at 308 nm from the

resonant fluorescence light at the same wavelength. The NO injection port is also situated

between the OH and HO2 detection cells. HO2 radicals are titrated by NO:

HO2  +  NO  →  OH  +  NO2 R 3-1

and the resulting OH radicals are detected to enable measurement of HO2 radicals.

~0.005 l min-1 of NO (BOC, high purity, N2.5 nitric oxide) was introduced prior to the

HO2 detection cell, via 1/8” stainless steel tubing by a MFC. RO2 radicals may also be

measured through conversion to OH radicals following their reaction with NO within the

FAGE instrument:

RO2  +  NO  →  RO  +  NO2 R 3-2

RO + O2  →  HO2 + RCHO R 3-3

HO2  +  NO  →  OH  +  NO2 R 3-4

Whalley et al. (2013) reported on an enhancement of HO2 signal in the presence of RO2

radicals. The interference reported by the authors was determined to be dependent on the

design of the FAGE cell and the operating conditions. Studies by Whalley et al. (2013)

reported on enhancement of HO2 signal from RO2 radicals derived from isoprene,

alkenes and aromatics. Careful characterisation of the concentration of NO used in FAGE

instrumentation is required; lower NO concentrations are more selective towards the

conversion of HO2 to OH (rather than RO2 to OH), but are less sensitive.

A scavenger injection system has been installed, allowing for a scavenger species (e.g.

iso-butane) to be injected into the inlet in order to quantify any OH generated by the laser

light, as described by Winiberg et al. (2015). The authors observed OH interferences

during the hydrocarbon decay method of OH calibration, which were characterised

through the injection of iso-butane into the FAGE instrument during the experiments.

The scavenger injection system will not be discussed further as it was not used for this

work.
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In the measurements described throughout this work, the detector refers to either a

Channel Photo-Multiplier (CPM, Perkin Elmer, C943P) detector or a Multi-Channel

Photomultiplier detector (MCP, Photek PMT 325) for the detection of OH fluorescence.

The gating and data acquisition described here refers specifically to the CPM detector,

however, it should be noted that gating and data acquisition are very similar, with the

major advantage of using the new MCP detectors over the CPM detectors being the

improved sensitivity (sensitivity was observed to be increased by approximately an order

of magnitude for both the OH and HO2 FAGE cells).

The fluorescence collection optics are lenses used to focus the OH fluorescence through

the narrow bandpass filter, which only allows light at wavelengths of ~308 nm to pass

through (Barr Associates, 308.75 mm, 5.0 mm bandwidth, 50% transmission). The

concave retro-reflectors at the bottom of the detection cells are used to roughly double

the sensitivity of the instrument by reflecting the fluorescence light back up the cell

towards the detector.

A 5 kHz laser system (JDSU Nd:YAG pumped Sirah Credo-dye-N dye laser ) was used

to generate the 308 nm laser light required for the excitation and detection of OH radicals.

The 308 nm laser light was introduced into the detection cells via optical fibres; with the

laser power entering the OH cell typically 6 – 10 mW and 2 – 3 mW in the HO2 detection

cell. Two photodiodes (UDT-555UV, Laser Components, UK) were used to measure

variation in the laser power through each detection cell during experiments, positioned

at the exit of each of the detection cells.

3.2.1 Data Acquisition

The use of on-resonance fluorescence detection requires the use of a gating system in

order to distinguish between the OH fluorescence and the laser light, both at ~308 nm.

Figure 3-2 shows the gate timings used in the detection cells of the FAGE instrument

when using the CPM detectors. The start time of the gating system is indicated by t0,

which is given by a trigger, in the form of an electrical pulse, from the JDSU laser to the

gating box. At t0 + 100 ns the laser pulse is generated; at this time both the photon

counting card (Becker and Hickl PMS-400A) and the CPM detector are switched off.

The photon counting card is then triggered after the laser pulse, followed by the CPM

detector after ~100 ns. This 100 ns wait is to allow for the photon counting card warm

up time. The A bin of 1 μs is when the photons are collected and counted from the OH 

fluorescence, followed by a 9 μs wait bin to ensure that the fluorescence is complete, and 

finally the B bin of 20 μs measures any background dark counts. 
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Figure 3-2: Gating system used for HIRAC FAGE instrument, reproduced from Winiberg
(2014).

3.2.2 Reference Cell

A reference cell is required in order to aid tuning of the wavelength of the laser for the

excitation of OH radicals, and to ensure it remains at 308 nm. The reference cell design

used for the HIRAC FAGE instrument is based on that described by Wennberg et al.

(1994), where OH radicals are formed continuously by flowing water saturated air over

a hot wire filament. Ambient air is drawn through a water bubbler, for humidification,

and into the reference cell. The humidified air passes over a hot wire filament in order to

produce OH radicals, which are excited by passing <1 mW of the 308 nm laser power

through the cell. Fluorescence of the OH radicals is then detected perpendicular to the

laser beam by an un-gated CPM detector.
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3.3 Conventional “wand” Calibrations

The conventional FAGE instrument calibration method employs the use of a flow tube

calibration source, known as the “wand”, for producing a known concentration of OH

and HO2 radicals, through R 3-5 and R 3-6:

H2O + hν(λ = 184.9 nm)  →  OH  +  H R 3-5

H + O2  +  M  →  HO2 + M R 3-6

Alternative methods are also possible for calibration of FAGE instrumentation, which

can be used to determine the accuracy of the “wand” calibration method. Alternative

FAGE calibration methods will be discussed in more detail in Section 3.5.

A schematic of the “wand” calibration set up for the conventional calibration of FAGE

instrumentation is shown in Figure 3-3. Water photolysis is commonly used for the

calibration of FAGE instruments for the measurements of OH and HO2 radical

concentrations, and has been described by a number of groups (Faloona et al. 2004,

Commane et al. 2010). It is possible to use the “wand” calibration method to determine

the sensitivity of the FAGE instrument as a function of both temperature and pressure.

The use of different sized pinholes on the inlet of the FAGE instrument alters the pressure

within the FAGE cells. Temperature dependent “wand” calibrations can be performed

by heating or cooling both the instrument inlet and calibration source.
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Figure 3-3: “Wand” calibration set up for conventional FAGE calibration, taken from Winiberg
et al. (2015).

During the “wand” calibration experiments, air (40 l min-1, BTCA) is passed through a

water bubbler, in order to humidify it, and into the calibration source. A small portion of

the humidified air is sampled by a hygrometer (Buck Research Instruments CR-4 Chilled

Mirror Hygrometer) to measure the water concentration in order to determine the

concentration of OH and HO2 radicals being formed within the “wand”. The water

vapour present in the air is photolysed by light from a mercury pen ray lamp

(λ = 184.9 nm), collimated into the end of the main flow tube of the “wand”. The 

concentration of OH and HO2 radicals can be determined following Eq. 3-1:

[OH] = [HO2] = [H2O]vap σH2O ϕOH F184.9 nm ∆t Eq. 3-1

where ϕOH is the quantum yield for the photolysis of OH, F184.9 nm is the actinic flux of

the output from the mercury pen ray lamp, σH2O is the absorption cross section for water

vapour at 184.9 nm and ∆t is the irradiation time. The value of σH2O is taken as

(7.22 ± 0.22) × 10-20 molecule-1 cm2 from the literature (Cantrell et al. 1997) and ϕOH is

generally taken to be unity (= ϕHO2 = 1) (Fuchs et al. 2011). The lamp flux, F184.9 nm, can

be determined by actinometrical methods (N2O or O2), which will be discussed in

Section 3.4. The output of the mercury pen ray lamp is dependent on the power supplied
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to it, and hence, it is possible to alter the concentration of OH and HO2 radicals produced

during the “wand” calibration by altering the power of the lamp. A calibration factor,

COH or CHO2, can be determined following Eq. 3-2 or Eq. 3-3:

COH = SOH / [OH] Eq. 3-2

CHO2 = SHO2 / [HO2] Eq. 3-3

where SOH and SHO2 are the OH and HO2 signals, respectively.

Figure 3-4 and Figure 3-5 show example calibration plots for the OH and HO2 HIRAC

FAGE cells, respectively.

Figure 3-4: Calibration plot of the HIRAC FAGE OH cell using the “wand” calibration method.
Error bars represent the 1σ standard deviation to the 60 second data. Measurements 
carried out with MCP detectors. COH = (4.78 ± 1.11) × 10-8 counts cm3 molecule-1 s-1

mW-1, where the error is determined from the sum in quadrature of the error in the
gradient and the uncertainty in the measurements. Cell pressure = 2.71 Torr, laser
power = 5.7 mW through the OH cell and [H2O]vap = 2770 ppmv.
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Figure 3-5: Calibration plot of the HIRAC FAGE HO2 cell using the “wand” calibration method.
Error bars represent the 1σ standard deviation to the 60 second data. Measurements 
carried out with MCP detectors. CHO2 = (3.12 ± 0.85) × 10-8 counts cm3 molecule-1 s-1

mW-1, where the error is determined from the sum in quadrature of the error in the
gradient and the uncertainty in the measurements. Cell pressure = 2.71 Torr, laser
power = 2.8 mW through the HO2 cell and [H2O]vap = 2770 ppmv.

Pressure dependant calibrations are achieved with the use of different sized pinholes

(0.5 - 1.0 mm) on the inlet in order to create a range of pressures (1.38 – 3.25 Torr) within

the FAGE instrument inlet. A major disadvantage to using this method to produce

different pressures within the instrument is that the flow rate within the instrument is

dictated by the size of the pinhole, and hence, flow dynamics may be also altered by

altering the pinhole size. The sensitivity of the HIRAC FAGE instrument has been

determined previously, as a function of instrument cell pressure by Winiberg (2014),

shown in Figure 3-6. A slight positive dependence was observed with an increase in

internal cell pressure for the sensitivity of the HIRAC FAGE instrument towards both

OH and HO2, whilst the sharper increase in sensitivity observed in the HO2 cell was

attributed to a decrease in reaction time and mixing of the NO at the lower pressures.
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Figure 3-6: HIRAC FAGE “wand” calibration as a function of internal cell pressure, taken from
Winiberg (2014).

The observed pressure dependence of the sensitivity of the FAGE instrument towards

both OH and HO2 radicals shows the importance of maintaining and recording a constant

pressure within the instrument. Accurately characterising FAGE instrumentation

sensitivity as a function of pressure and temperature is essential for accurately measuring

[OH] and [HO2] across different areas of the globe where temperatures vary

considerably, and for aircraft measurements where the ambient pressure outside the

aircraft varies with altitude. It is also vital for correctly determining HOx concentrations

in HIRAC for experiments carried out over a range of temperatures and pressures.

3.3.1 Error Analysis

Uncertainty in the conventional “wand” calibration method is determined from the sum

in quadrature of the accuracy and precision in the calibration procedure. Parameters

contributing to the total overall uncertainty in the “wand” calibration are listed in

Table 3-1; the largest uncertainty coming from the N2O actinometry procedure for the

determination of F184.9 nm.
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Parameter Typical Uncertainty

F184.9 nm 20%

[H2O] 1%

σH2O 3%

ϕOH negligible

t 2%

OH power 3%

HO2 power 8%

Online position 4%

Table 3-1: Summary of uncertainties contributing to the total overall uncertainty in the
conventional “wand” calibration.

The uncertainty in [H2O] is taken from the hygrometer accuracy, the uncertainty in σH2O

is taken from the literature (Cantrell et al. 1997), uncertainty in t comes from the

uncertainties in the MFCs used. Uncertainty in OH and HO2 power is taken from the

laser power meter uncertainties. The uncertainty in the online position comes from the

method for finding the online wavelength positions, where the laser wavelength is

scanned until it reaches 98% of the maximum signal. The total uncertainty associated

with the “wand” calibration method was estimated to be 21%.

As is shown here, the largest uncertainty in the “wand” calibration procedure arises from

the determination of F184.9 nm by N2O actinometry. The following section (3.4) discusses

the N2O actinometry procedure, with focus on the breakdown of errors and their

percentage contribution to the total overall variation in the determination of F184.9 nm.

3.4 N2O Actinometry

The water vapour photolysis “wand” calibration method relies on accurate knowledge of

the flux, F184.9 nm, of the pen ray lamp used in the calibration procedure. N2O actinometry

is used to determine the lamp flux, F184.9 nm, for the mercury pen ray lamp. This has been

described numerous times (Faloona et al. 2004, Whalley et al. 2007, Dusanter et al.

2008). There are many known errors associated with N2O actinometry. The work

presented in this section aims to better understand the main sources of error when
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determining F184.9 nm using N2O actinometry. The availability of three separate FAGE

instruments; one ground based (Whalley et al. 2010), one aircraft based (Commane et al.

2010) and one chamber based (Winiberg et al. 2015), at Leeds, allowed for detailed

comparison to be made between their calibration apparatus to gain further insight into

the sources of error. With a better understanding of the error in measuring F184.9 nm,

improvement in the calibration procedure can be made. Reducing the error in calibrating

FAGE instrumentation will allow for more accurate HOx measurements.

The use of O2 actinometry may also be used for the determination F184.9 nm, and has been

previously described Commane (2009). Winiberg (2014) described a comparison of O2

and N2O actinometry for the determination of F184.9 nm, showing good agreement between

the two methods. There are a number of disadvantages associated with the O2

actinometry method as compared to the N2O actinometry method for F184.9 nm

determination; greater uncertainties (~20%, 1σ compared to ~16%, 1σ for N2O

actinometry), much lower flow rates and the necessity to measure the O2 cross section

which is dependent on the mercury pen ray lamp emission spectrum. The lower flow

rates used in the O2 actinometry method, 30 l min-1, mean that the flow conditions are

not comparable to those used in the “wand” calibration. Due to the larger uncertainties,

differing operating conditions and the requirement to measure the O2 cross section, O2

actinometry is not routinely used in the calibration procedure for the HIRAC FAGE

instrument, and so only the method of N2O actinometry for the determination of F184.9 nm

will be discussed further from herein.

3.4.1 Experimental

The apparatus used for the determination of F184.9 nm by N2O actinometry is shown in

Figure 3-7, taken from Winiberg (2014), where the calibration source is the same “wand”

as is used for the conventional FAGE calibration, and the trace gas analyser is a

chemiluminescence NOx analyser (Thermo Electron Corporation Model 42C,

LOD = 50 pptv at 120 s averaging time). A total flow of 40 l min-1 was flowed through

the “wand” using a range of N2O (BOC, medical grade) percentages of up to 10% in high

purity air (BOC, BTCA-178). The flows from the three mass flow controllers (MFCs)

were set and monitored with the use of in house written LabVIEW software. The lamp

power and [NO] are also read and logged by this same software. The N2O gas is flowed

through a Sofnofil Trap, as shown in Figure 3-7, in order to oxidise any NOx/y impurities

present in the N2O gas cylinder. Sofnofil is used as a chemical absorbent, with the active
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ingredient of aluminium oxide. It has, however, been shown that the use of the Sofnofil

Trap has little influence on the determination of F184.9 nm (Figure 3-10).

Figure 3-7: Schematic of the N2O actinometry set up for determining the lamp flux, F184.9 nm, of
a mercury pen ray lamp used in the conventional FAGE “wand” calibration. For F184.9 nm

determination by the N2O actinometry method, a mixture of N2O in air (40 l min-1 total
flow) is flowed through the “wand” and the trace gas analyser used is a
chemiluminescence NOx analyser. Taken from (Winiberg 2014).

Reactions R 3-7 to R 3-13 describe the reactions involved in the N2O actinometry

experiment. A known concentration of N2O is photolysed by the mercury pen ray lamp

(R 3-7), producing O(1D), which in turn reacts with a further molecule of N2O to give

NO (R 3-12). The NO produced following these reactions is then measured by the

chemiluminescence NOx analyser. It is also possible for the O(1D) produced via R 3-7 to

be removed by a number of other reactions, described by R 3-8 to R 3-13.
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N2O + hν
kR 3-7
ሱ⎯⎯ሮ N2 + O(1D) R 3-7

O(1D) + O2

kR 3-8
ሱ⎯⎯ሮ O(3P) + O2 R 3-8

O(1D) + N2

kR 3-9
ሱ⎯⎯ሮ O(3P) + N2 R 3-9

O(1D) + N2O
kR 3-10
ሱ⎯⎯ሮ O(3P) + N2O R 3-10

O(3P) + O2 + M
kR 3-11
ሱ⎯⎯ሮ O3 + M R 3-11

O(1D) + N2O
kR 3-12
ሱ⎯⎯ሮ 2NO R 3-12

O(1D) + N2O
kR 3-13
ሱ⎯⎯ሮ N2 + O2 R 3-13

Following the reactions described above, F184.9 nm can be determined following Eq. 3-4:

F184.9 nm∆t=
(kR 3-8[O2]+ kR 3-9[N2]+ (kR 3-13+ kR 3-12)[N2O])[NO]

2൫kR 3-12σN2OΦO(1D)[N2O]2൯
Eq. 3-4

where ∆t is the irradiation time which can be calculated from the known dimensions of

the “wand” as a function of the total flow rate of gas through the “wand”, ϕO(1D) is the

quantum yield for the photodissociation O(1D) (~1) and σN2O is the absorption cross

section of N2O at 184.9 nm. σN2O is taken from the literature as (1.43 ± 0.02) × 10-19 cm2

molecule-1 (Creasey et al. 2000). All the concentrations of species in Eq. 3-4 are in

molecule cm-3.

The rate coefficients, kR 3-8, kR 3-9, kR 3-13 and kR 3-12 used in Eq. 3-4 are given in Table 3-2,

where the values taken from Sander et al. (2011) are those which have been used here

for determination of F184.9 nm following Eq. 3-4. A comparison of rate coefficients taken

from Sander et al. (2011) is given to those from Atkinson et al. (2004). It should be noted

that these rate coefficients are evaluations from values in the literature, carried out by

NASA/JPL and IUPAC, respectively. Slight differences in reported values are evident,

indicating that the choice of values for rate coefficients to be used may have an influence

on the final determination of F184.9 nm from the N2O actinometry procedure.

Both sets of rate coefficients are given in Table 3-2, based on evaluations of studies

which have been reported in the literature. Evaluations by IUPAC were last updated in

2001 for kR 3-8, 2009 for kR 3-9 and 2007 for kR 3-13 and kR 3-12, whereas all evaluations

reported by JPL were most recently updated in June 2011.
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The errors associated with the recommended IUPAC rate coefficients are decided upon

by the evaluators themselves, based on the knowledge of the measurement techniques

used in the literature values used in determining the recommended values (Atkinson et

al. 2004). Eq. 3-5 represents the error determination for JPL recommended rate

coefficients (Sander et al. 2011) and Eq. 3-6 represents the error determination for

IUPAC recommended rate coefficients (Atkinson et al. 2004). Errors associated with the

JPL recommended rate coefficients are also determined by the evaluators to best

represent the errors in the individual measurements used in the evaluation (Sander et al.

2011).

f(T)=f(298 K)expฬg൬
1

T
−

1

298
൰ฬ Eq. 3-5

Δlogk(T)= Δlogk(298 K)+0.4343 ൜Δ E R⁄ ൬
1

T
−

1

298
൰ൠ Eq. 3-6
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During an actinometry experiment the mercury pen ray lamp current was varied between

~0.8 mA and ~4.0 mA, this is the same procedure used for producing a range of HOx

concentrations in the conventional FAGE “wand” calibration method. Two main

calibration racks were used for this comparison study; one routinely used for the

calibration of the HIRAC FAGE instrument, and another routinely used for the calibration

of a FAGE instrument employed on the FAAM BAe-146-301 aircraft. Both calibration

racks include a MFC for the main air flow and another for the flow of N2O into the wand

(a third MFC is used to control a flow of N2 past the mercury pen ray lamp in order to

remove any impurities surrounding it and to maintain a constant temperature), a

chemiluminescence NOx analyser, a lamp power supply and in-house written software for

controlling, monitoring and recording flows, temperatures, lamp power and [NO]. A third

chemiluminescence NOx analyser was also available for comparison, usually employed

for field measurements within the ground based FAGE shipping container. Herein, the

different apparatus employed will be referred to as HIRAC-, aircraft- and container-. A

full calibration of all apparatus has been carried out, including calibration of all

chemiluminescence NOx analysers and all MFCs with appropriate gases.

3.4.1.1 NOx Analyser Calibration

In the chemiluminescence NOx analysers, the NO is titrated to NO2 with ozone, which

produces the electronically excited NO2
* molecule. This electronically excited NO2

*

molecule can then relax to the ground state either via collisional quenching or radiative

decay, emitting infrared light where the intensity of this light, is proportional to the

concentration of NO. The excited state NO2
* may be relaxed to the ground state following

collisional quenching; N2O is a more efficient quencher of NO2
* than air, and so it is

necessary to take this into account by carrying out the calibration of the NOx analyser

over a range of N2O concentrations similar to that used for the N2O actinometry

procedure. An excess flow of air is passed across the sampling inlet of the NOx analyser,

where the NOx analyser draws in a sample of ~1 l min-1 and the remaining air flow goes

through an exhaust line and into a fume cupboard. A flow of NO (BOC, 450 ppbv in N2)

is added to the air flow in order to produce a range of NO concentrations; a zero

measurement is taken where no flow of NO is added in order to correct for any offset of

the NOx analyser.
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NO + O3  →  NO2
* + O2 R 3-14

NO2
*  →  NO2 + hν R 3-15

Figure 3-8 and Figure 3-9 show the calibration plot of the HIRAC chemiluminescence

NOx analyser and its response to N2O, respectively. The gradient of the linear least

squares fit from the plot of measured [NO] against calculated [NO] gives a calibration

factor, CNO. The procedure is repeated for a range of N2O percentages up to ~10%, and

the resultant CNO values are plotted against the N2O percentage (Figure 3-9). The gradient

from the linear least squares fit to the plot of CNO against N2O% gives the NOx analyser

response to N2O; the sensitivity of the NOx analyser decreases as the N2O percentage is

increased.

Figure 3-8: NOx box calibration plot for HIRAC chemiluminescence NOx analyser (zero [N2O]).
Error bars are total errors in measured and calculated [NO] to 1σ. Errors in the intercept 
and gradient are the standard error in the fitting procedure.
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Figure 3-9: NOx box response to N2O for HIRAC chemiluminescence NOx analyser. Error bars
are total errors to 1σ. Errors in the intercept and gradient are the standard error in the 
fitting procedure.

A comparison of NOx analyser calibration factors and response to N2O is given in

Table 3-3 for the three chemiluminescence NOx analysers used in this study. The HIRAC

and the aircraft NOx analysers are in excellent agreement for the calibration factors and

response to N2O; the FAGE container NOx analyser has a lower calibration factor

(gradient 0.575 ± 0.012 compared to 0.677 ± 0.014 for the HIRAC NOx analyser and

0.672 ± 0.014 for the aircraft NOx analyser). It is not surprising that the sensitivity of the

container NOx analyser is lower than both the HIRAC and aircraft NOx analysers

considering its extended usage in a wide range of environments, often in urban areas

where NOx and aerosol concentration are high, which can lead to reduced sensitivity from

fittings and tubing becoming dirty.
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NOx Analyser NO Calibration N2O Response

Gradient Intercept Gradient Intercept

HIRAC 0.677 ± 0.014 -0.049 ± 0.120 -0.005 ± 0.001 0.680 ± 0.008

Aircraft 0.672 ± 0.013 -0.026 ± 0.135 -0.005 ± 0.001 0.666 ± 0.005

Container 0.575 ± 0.012 -0.234 ± 0.106 -0.005 ± 0.001 0.578 ± 0.004

Table 3-3: Comparison of chemiluminescence NOx analyser calibrations and NOx box response
to N2O for three NOx analysers. Errors are standard error from linear least squares fitting
procedure.

3.4.2 Reproducibility of Results

A number of comparisons were carried out between the apparatus available from the two

different calibration racks and the additional NOx analyser. A comparison of various

apparatus is given here, with discussion on major sources of error in the determined lamp

flux, F184.9 nm. A summary of values determined from linear regression analysis, weighted

to both the x and y error bars, is given in Table 3-4. The gradient obtained from the linear

regression analysis represents the change in lamp flux, F184.9 nm, as a function of lamp

current, and is used in the FAGE HOx calibration data analysis process.

All data were corrected for the relevant MFC and NOx box calibrations, and it was

observed that all measurements for the determination of F184.9 nm produced plots of

F184.9 nm against lamp current where values of the gradient agree to within their stated

errors.
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A comparison of F184.9 nm determination carried out with and without the N2O gas flow

passing through a Sofnofil trap is shown in Figure 3-10. Excellent agreement was

observed between the two sets of data, where the gradients obtained from the linear least

squares fitting to x and y errors agree perfectly. A difference in the data sets was observed

in the intercept obtained, however, they are within error of each other. A larger intercept

was observed for the data set following N2O actinometry where the N2O gas flow was not

passed through a Sofnofil trap, indicating that some impurities within the N2O may be

influencing the determination of F184.9 nm, however, the excellent agreement of the

gradients would imply that these impurities do not have a significant influence on the

results.

Figure 3-10: Hg lamp flux, F184.9 nm, as a function of lamp current, determined by N2O
actinometry. Comparison of results taken with (Run 1) and without (Run 2) the N2O
flow passing through a Sofnofil Trap. Measurements taken with and without the Sofnofil
trap were at a flow of 5.7% N2O in air through the HIRAC calibration “wand”. Errors
in the x-axis represent the standard deviation in the lamp current measurement to 1σ, 
and errors in the y-axis represent the total error propagated from the errors associated
with other measurements required for the determination of F184.9 nm. Solid lines represent
linear least squares fit to the data weighted to errors in the x and y axis. Errors in the
gradients and intercepts are the standard error in the fitting procedure.

Figure 3-11 shows a comparison of N2O actinometry plots for measurements carried out

using two different lamp power supplies. Both power supplies are (Oriel Model 6060),

and so should come with the same error associated with them. Very good agreement is

observed between the two sets of data, with the gradient obtained using the HIRAC lamp
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power supply, Run 5, being (1.0 ± 0.1) × 1011 photon cm-2 s-1 mA-1

and (9.9 ± 0.7) × 1011 photon cm-2 s-1 mA-1 for measurements carried out with the aircraft

lamp power supply, Run 4. The larger error in the gradient obtained from Run 4 is likely

associated with the measurement of the lamp current, as seen by the error bars in

Figure 3-11. Although the two lamp power supplies are technically identical, many other

factors may influence the errors associated with them, including age and usage.

Figure 3-11: Hg lamp flux, F184.9 nm, as a function of lamp current, determined by N2O
actinometry. Comparison of results taken with two different lamp power supply units.
Run 4 was carried out with the aircraft lamp power supply and Run 5 was carried out
with the HIRAC lamp power supply. Measurements with the two lamp power supplies
were at a flow of 6.98% N2O in air through the HIRAC calibration “wand”. Errors in
the x-axis represent the standard deviation in the lamp current measurement to 1σ, and 
errors in the y-axis represent the total error propagated from the errors associated with
other measurements required for the determination of F184.9 nm. Solid lines represent the
linear least squares fit to the data, weighted to errors in the x and y axis. Errors in the
gradients and intercepts are the standard error in the fitting procedure.

A comparison of N2O actinometry results carried out with measurements being recorded

on two different software systems is given in Figure 3-12. The measurements, again, are

in excellent agreement, with the gradient for measurements carried out using the HIRAC

software, Run 7, being (1.1 ± 0.1) × 1011 photon cm-2 s-1 mA-1 and

(1.0 ± 0.1) × 1011 photon cm-2 s-1 mA-1. Although the N2O software has been written

in-house in two different programs (the HIRAC software being written in LabVIEW and

the aircraft software being written in Delphi), both sets of software are written to set and

record all of the same experimental parameters.
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Figure 3-12: Hg lamp flux, F184.9 nm, as a function of lamp current, determined by N2O
actinometry. Comparison of results recorded with software from two different
calibration racks. Run 7 was recorded using the software from the aircraft calibration
rack, obtained using a total flow of 6.98% N2O in air, and Run 8 was recorded using the
software from the HIRAC calibration rack, obtained using a total flow of 6.81% N2O in
air. Errors in the x-axis represent the standard deviation in the lamp current measurement
to 1σ, and errors in the y-axis represent the total error propagated from the errors
associated with other measurements required for the determination of F184.9 nm. Solid
lines represent the linear least squares fit to the data, weighted to errors in both the x and
y axis. Errors in the gradients and intercepts are the standard error in the fitting
procedure.

The comparisons described here show little variation in the determination of F184.9 nm

following N2O actinometry experiments carried out using numerous apparatus. It is

interesting to observe that the errors in the lamp current vary considerably. It should be

noted, however, that the error in the determined F184.9 nm is independent of the error in the

lamp current.

3.4.3 Error Analysis

3.4.3.1 Summary of Errors

The errors shown in Figure 3-10, Figure 3-11 and Figure 3-12 are derived from the

standard deviation in the measured lamp current to 1σ in the x-axis, and the y-axis errors

are calculated from the propagation of the errors associated with each of the values used

in the calculation of F184.9 nm (Eq. 3-4). Errors in the flow rates are typically ~1%,

calculated following Eq. 3-7:
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σflow = (0.007 × flow rate) + (0.002 × full scale) Eq. 3-7

Errors in rate coefficients are taken from the literature (Sander et al. 2011), and are given

in Table 3-2. Error in temperature is taken from the standard deviation of the

measurements.

Parameter Typical Uncertainty

Flow Rate 1%

Temperature 1%

Pressure 1%

kR 3-8
* 9%

kR 3-9
* 8%

kR 3-13
* 10%

kR 3-12
* 10%

F184.9 nm 20%

Table 3-5: Typical uncertainties from parameters used in the determination of F184.9 nm.
*uncertainties for JPL (Sander et al. 2011) evaluated rate coefficients at 293 K.
Uncertainty in F184.9 nm is taken as the sum in quadrature of the overall accuracy and
precision.

Accurate determination of F184.9 nm is essential in order to accurately calibrate the HIRAC

FAGE instrument using the traditional “wand” calibration method. The results described

above on the reproducibility of results when using numerous different apparatus for the

determination of F184.9 nm show no discernible differences between the different apparatus

used. The value of F184.9 nm, determined through N2O actinometry, is the largest source of

error in the FAGE “wand” calibration procedure. Total uncertainty in F184.9 nm can be

propagated from the given uncertainties in the individual values used in the calculation,

as has been carried out for the results described thus far. This uncertainty does not

represent systematic errors well; errors arising from unrepresentative samples or errors

arising from the function used in the determination of the final value. To gain a better

insight into the sources of this error from the N2O actinometry, the method of Monte

Carlo error propagation was used in order to more accurately determine an error in the

value of F184.9 nm. The Monte Carlo method was first described by Metropolis and Ulam
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(1949) and has since been widely used and reported for the propagation of random error

arising from input parameters of which their variance is known. This method is typically

used when the determination of a value comes from numerous parameters, all with errors

associated with them.

3.4.3.2 Monte Carlo

In the Monte Carlo error propagation method, large sets of random numbers are generated

with similar statistical properties to the real data, such as the spread of the data and its

distribution. Therefore, it is important to know the spread and distribution of the

individual raw data measurements in order to generate appropriate randomly generated

number sets. Normality tests were carried out on the raw data, and it was determined that

all measurements were well represented by a normal distribution.

A simulation was set up in order to investigate the random error associated with the

determination of the value of F184.9 nm from N2O actinometry. As described for the N2O

actinometry method for the determination of F184.9 nm, the current of the mercury pen ray

lamp is altered in order to achieve a range of different values of F184.9 nm, over a range of

N2O percentages, in order to ensure that the N2O quenching effect in the

chemiluminescence NOx analyser is correctly accounted for. For experimental

measurements, each measurement point (each set lamp current) was recorded for 120 s.

Initial values inputted to the simulation were taken as the averages for each raw data

value, and the spread was taken as the standard deviation.

Once F184.9 nm has been determined for each lamp current over a range of N2O percentages,

the gradient of the straight line fit to the plot of F184.9 nm vs. lamp current was used for the

HOx calibration procedure. The error in the x-axis is only dependent on the error in the

lamp current; determined from the 1σ standard deviation of the measurement. As this 

work is investigating the error of F184.9 nm, the error in the lamp current is excluded from

the following discussion.

The standard deviation for measurements of gas flows, temperatures and NO

concentration were determined for each measurement point at a different lamp current.

These standard deviations were then used to generate large sets of numbers for each

parameter, over a normal distribution, from the average values. For each set of random

numbers generated, the lamp flux, F184.9 nm, was calculated. Figure 3-13 shows a plot of

F184.9 nm against the lamp current for 10000 samples generated for each parameter at each

lamp current, taken from a normal distribution from the average and standard deviation

of each parameter; this figure shows the plot where the lamp current is also varied.
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Figure 3-13: Example N2O actinometry plot generated from 10000 random samples over error
input range for each parameter included in the calculation of F184.9 nm.

As discussed, the variation in lamp current, at a given setting, does not influence the

determination of F184.9 nm; Figure 3-14 and Figure 3-15 show plots of F184.9 nm against

lamp current where only the parameters used for the determination of F184.9 nm were

generated from the average and standard deviation of each parameter from a normal

distribution for 10000 samples. As discussed in Section 3.4.1, the choice of rate

coefficients used in the determination of F184.9 nm may influence the final value of F184.9 nm.

Figure 3-14 was generated using recommended rate coefficients and their errors from JPL

(Sander et al. 2011), and Figure 3-15 was generated using the IUPAC recommended rate

coefficients (Atkinson et al. 2004). The gradients obtained from the linear least squares

fitting to the data (solid red line in Figure 3-14 and Figure 3-15) agree well;

(1.35 ± 0.03) × 1013 photon cm-1 s-1 mA-1 from Figure 3-14 and (1.39 ± 0.04) × 1013

photon cm-1 s-1 mA-1 from Figure 3-15, where the error is the standard error from the

fitting procedure. The error in the gradient from data produced using the IUPAC rate

coefficient values is slightly greater (2.88%) than from using the JPL rate coefficient

values (2.22%), which can be attributed to the larger errors associated with the IUPAC

rate coefficient values (Table 3-2).
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Figure 3-14: Plot of F184.9 nm against lamp current where all parameters used in the determination
of F184.9 nm are varied from their average between the standard deviation, taken from a
normal distribution for 10000 samples. k values used are those from JPL evaluation
(Sander et al. 2011). The lamp current was kept constant, using the average value
determined for each lamp current. Error in the intercept and gradient is the standard error
from the fitting procedure.
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Figure 3-15: Plot of F184.9 nm against lamp current where all parameters used in the determination
of F184.9 nm are varied from their average between the standard deviation, taken from a
normal distribution for 10000 samples. k values used are those from IUPAC evaluation
(Atkinson et al. 2004). The lamp current was kept constant, using the average value
determined for each lamp current. Error in the intercept and gradient is the standard error
from the fitting procedure.

In order to investigate the influence of individual parameters on the determined F184.9 nm,

correlation plots for F184.9 nm against each parameter were produced. Correlation plots of

F184.9 nm against all parameters required in the determination of F184.9 nm are shown in

Figure 3-16 and Figure 3-17 for JPL (Sander et al. 2011) rate coefficient values and

IUPAC (Atkinson et al. 2004) rate coefficient values, respectively, where the value for

the lamp current was kept constant at 1.65 mA in both cases. From the correlation plots,

it is clear that the value of [NO] has the most significant influence on the determined

F184.9 nm for determinations carried out using both the JPL evaluated rate coefficients

(Sander et al. 2011) and the IUPAC evaluated rate coefficients (Atkinson et al. 2004).
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Figure 3-16: Correlation plots for F184.9 nm against all parameters used for the determination of
F184.9 nm. Lamp current was kept constant at 1.65 mA. F184.9 nm was determined using JPL
evaluated rate coefficients (Sander et al. 2011). Experimental measurements were
carried out at 3.7% N2O. Solid red lines represent linear least squares fit to the data.
R2(N2O) = 0.001, R2(Air) = 0.000, R2(NO) = 0.930, R2(Gas Temperature) = 0.000,
R2(kR 3-8) = 0.002, R2(kR 3-9) = 0.013, R2(kR 3-12) = 0.000, R2(kR 3-13) = 0.043.
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Figure 3-17: Correlation plots for F184.9 nm against all parameters used for the determination of
F184.9 nm. Lamp current was kept constant at 1.65 mA, F184.9 nm was determined using
IUPAC evaluated rate coefficients (Atkinson et al. 2004). Experimental measurements
were carried out at 3.7% N2O. Solid red lines represent linear least squares fit to the
data. R2(N2O) = 0.000, R2(Air) = 0.000, R2(NO) = 0.859, R2(Gas Temperature) = 0.000,
R2(kR 3-8) = 0.006, R2(kR 3-9) = 0.040, R2(kR 3-12) = 0.000, R2(kR 3-13) = 0.081.
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The R2 values obtained from linear least squares fitting to the data gives an estimate to

the contribution of each parameter to the variation in F184.9 nm, where an R2 value of 0.843

would indicate that the variation in that specific parameter contributes roughly 84.3% to

the variation in the determined value of F184.9 nm. A comparison of all R2 values over a

full range of lamp current values for F184.9 nm determined with both JPL evaluated rate

coefficients (Sander et al. 2011) and IUPAC evaluated rate coefficients (Atkinson et al.

2004) is given in Table 3-6, where measurements were carried out at a total of 3.7% N2O

in air. In all cases, the correlation between the NO and F184.9 nm was greatest,

R2 = 0.461 - 0.991. For values of F184.9 nm determined using the IUPAC evaluated rate

coefficients (Atkinson et al. 2004) the correlation between F184.9 nm and NO is typically

lower as compared to those determined using the JPL evaluated rate coefficients (Sander

et al. 2011); with the correlation between the four rate coefficients used in the

determination of F184.9 nm observed to be greater for the IUPAC values than the

JPL values. The greatest correlation between F184.9 nm and the rate coefficients is seen for

kR 3-12, for both IUPAC and JPL evaluated rate coefficients, this is unsurprising

considering the error in kR 3-12 is greatest for both the JPL and IUPAC values (~12% error

in kR 3-12 for IUPAC recommended value at 293 K and ~10% error in kR 3-12 for JPL

recommended value at 293 K).

The contribution to the variation in F184.9 nm from NO, kR 3-8, kR 3-9 and kR 3-12 was seen to

increase to a maximum at a lamp current of 2.62 mA and then decrease slightly at the

maximum lamp current. This indicates that at the maximum lamp current here, the error

in F184.9 nm is becoming influenced more significantly by some other factor or factors. It

is known that at lamp currents greater than ~3 mA, that the lamp flux no longer follows

a linear trend.
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The Monte Carlo method of error propagation has demonstrated its potential in the

investigation into the sources of error associated with the N2O actinometry method for

the determination of F184.9 nm. The variation in the measurement of [NO] has been shown

to have the most significant influence on the variation of the determined value of F184.9 nm.

The error in the measurement of [NO] in the N2O actinometry method for the

determination of F184.9 nm is dependent on the calibration of the chemiluminescence NOx

analyser employed. Three chemiluminescence NOx analysers have been used here in the

determination of F184.9 nm (Section 3.4.2), showing no discernible difference in the

gradient of the linear least squares fit to the determined F184.9 nm against the measured

lamp current. Differences in the calibration factors for the three NOx analysers were

observed, with the container NOx analyser having a lower CNO than the HIRAC and

aircraft NOx analysers (Table 3-3). Further Monte Carlo simulations, with random

number sets generated from the averages and standard deviations taken from

measurements using the three different chemiluminescence NOx analysers would give

further insight into the influence of variance from the measured [NO] on the variation in

the determination of F184.9 nm.

The Monte Carlo error simulations described here are generated from only one set of

averaged experimental parameters and their standard deviations. In order to fully

determine whether the variation in the determined value of F184.9 nm is most significantly

influenced by the variation in measured [NO] across a range of N2O percentages, further

simulations would be required, with correlations being made between F184.9 nm and all the

parameters used in its determination.

3.5 Alternative HIRAC Calibrations

The HIRAC chamber is ideally suited for carrying out alternative methods for the

calibration of FAGE instrumentation; allowing for both pressure and temperature

dependent calibrations to be investigated. Pressure dependent calibrations of the HIRAC

FAGE instrument have been previously reported (Winiberg et al. 2015), where an

increase in sensitivity in both the OH and HO2 cells of the instrument was observed;

∆COH = (17 ± 11)% and ∆CHO2 = (31.6 ± 4.4)% increase per mbar air pressure over an

external pressure range of 440 – 1000 mbar, giving an internal cell pressure of

1.42 - 3.8 mbar. This pressure dependence of the HIRAC FAGE instrument was also

compared to a pressure dependent “wand” calibration, where the internal pressure of the

instrument was altered with the use of different sized pinholes on the inlet. As mentioned

previously, changing the pinhole size may alter the flow dynamics within the flow tube
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of the instrument, and hence influence the sensitivity of the instrument for the detection

of OH and HO2 radicals. Good agreement was observed between the calibrations for the

FAGE instrument sensitivity as a function of pressure;

COH(“wand”)/COH(HIRAC) = 1.19 ± 0.26 and CHO2(“wand”) / CHO2(HIRAC) = 0.96 ± 0.18, implying

that the flow within the instrument was not significantly influenced by the size of the

pinhole (Winiberg et al. 2015). Within the HIRAC chamber, OH calibrations were carried

out using the hydrocarbon decay method as previously described (Hard et al. 1995, Bloss

et al. 2004, Dusanter et al. 2008), following the decay of cyclohexane, n-pentane and

iso-butene from their reaction with OH radicals. A comparison of the pressure

dependence for the OH cell calibration of the HIRAC FAGE instrument is given in

Figure 3-18.

Figure 3-18: Comparison of internal cell pressure dependence of conventional “wand”
calibration with HIRAC hydrocarbon decay calibration for the OH cell of the HIRAC
FAGE instrument, taken from Winiberg et al. (2015).

Calibration of the FAGE HO2 cell within HIRAC can be achieved using the well-defined

self-reaction of HO2. HCHO is photolysed to produce HO2 radicals in a steady state, once

the photolysis lamps are switched off, the HO2 recombination reaction can be followed

from the loss of HO2 within the chamber. Comparison of the pressure dependence for the

HO2 cell calibration of the HIRAC FAGE instrument between the conventional “wand”

calibration method and the HCHO photolysis method is given in Figure 3-19.
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Figure 3-19: Comparison of internal cell pressure dependence of conventional “wand”
calibration with HIRAC HCHO photolysis calibration method for the HO2 cell of the
HIRAC FAGE instrument, taken from Winiberg et al. (2015).

Good agreement between the HIRAC calibration methods and the conventional “wand”

method for calibrating the HIRAC FAGE instrument gives further validation to the

suitability of the conventional “wand” calibration method. In the following section

(3.5.1), results from temperature dependent calibrations of the HIRAC FAGE HO2 cell

are described following the HO2 self-reaction utilising the HIRAC chamber. These results

are compared with those previously reported by Winiberg (2014) for the sensitivity of the

HO2 cell as a function of temperature as determined with the conventional “wand”

calibrations.

3.5.1 HO2 Temperature Dependent Calibration

The temperature dependence of the sensitivity of the HO2 cell was investigated following

the HCHO photolysis method for the HIRAC FAGE calibration. The sensitivity of the

HO2 cell as a function of temperature has been reported previously by Winiberg (2014)

using the conventional “wand” method, where an increase of ∆CHO2 = (0.29 ± 0.42)% per

Kelvin was observed, shown in Figure 3-20.
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Figure 3-20: Sensitivity of the HIRAC FAGE OH cell as a function of temperature following
the conventional “wand” calibration method, at a constant internal cell pressure of
3.81 ± 0.02 mbar and [H2O]vap of 2000 ± 300 ppmv, adapted from Winiberg (2014).
Internal cell temperature was determined through temperature profile experiments
within the HO2 cell prior to the calibrations.

HIRAC was set to the desired temperature using the Huber temperature control system as

described in Chapter 2 and the temperature range 273 – 343 K was studied. For each

experiment, HIRAC was filled with 800 mbar N2 (BOC, 99.998% purity) and 200 mbar

O2 (BOC, 99.999% purity). HCHO, (1.10 – 2.20) × 1013 molecule cm-3, was introduced

into the chamber by the heating of paraformaldehyde powder (Sigma Aldrich, 99%

purity). Photolysis lamps (Philips, TL40W/12 RS) with a maximum output at ~300 nm

were repeatedly switched on and off in order to record several HO2 decay profiles for one

fill of chamber. Upon irradiation of the chamber, HO2 was rapidly formed; once a stable

concentration was reached, the photolysis lamps were switched off and the resultant decay

of HO2 radicals was monitored using the HIRAC FAGE instrument for approximately

three minutes until near background levels of HO2 signal were observed. This process

was repeated three times with the mixing fans switched on and three times with the mixing

fans switched off for each fill of the chamber; allowing for CHO2 to be determined six

times for each chamber fill.

Reactions R 3-16 to R 3-22 describe the processes occurring in the HCHO photolysis for

the HO2 calibration of FAGE within the HIRAC chamber. Photolysis of HCHO produces

H and HCO (R 3-16) and H2 and CO (R 3-17) in approximately 60:40 ratio (Carbajo et

al. 2008). In the presence of O2, H subsequently reacts with O2 to produce HO2 radicals

(R 3-19). Once the photolysis lamps have been switched off, the HO2 radicals can be lost

via their self-reaction (R 3-20 and R 3-21), or by loss to the walls of the chamber and

dilution of HIRAC (R 3-22).
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HCHO + hν  →  H  +  HCO R 3-16

HCHO + hν  →  H2 + CO R 3-17

HCO + O2  →  HO2 + CO R 3-18

H + O2  +  M  →  HO2 + M R 3-19

HO2 + HO2  →  H2O2 + O2 R 3-20

HO2 + HO2  +  M  →  H2O2 + O2 + M R 3-21

HO2  →  Loss R 3-22

The rate of loss of HO2 radicals can be described by Eq. 3-8:

d[HO2]

dt
= -൫kloss[HO2]+ 2kHO2+HO2

[HO2]2൯ Eq. 3-8

where kHO2+HO2 is the sum of the pressure dependent (R 3-21) and pressure independent

(R 3-20) rate coefficients for the HO2 recombination reaction, as defined by Atkinson et

al. (2004). kloss is the combined dilution and wall loss rate of HO2 from HIRAC.

Integrating Eq. 3-8 with respect to time, t, gives Eq. 3-9:

1

[HO2]t
= ቆ

1

[HO2]௧బ
+

2kHO2+HO2

kloss
ቇe(klosst)- ቆ

2kHO2+HO2

kloss
ቇ Eq. 3-9

As described previously by Eq. 3-3, the [HO2] is related to the normalised HO2 signal,

SHO2, measured with the FAGE instrument, and the HO2 sensitivity, CHO2. It is not

necessary to know [HO2] as Eq. 3-3 can be substituted into Eq. 3-9:

൫SHO2
൯

t
= ቐቌ

1

൫SHO2
൯
௧బ

+
2kHO2+HO2

klossCHO2

ቍ e(klosst)- ቆ
2kHO2+HO2

klossCHO2

ቇቑ

-1

Eq. 3-10

where (SHO2)t is the HO2 signal at time t and (SHO2)t0 is the HO2 signal at t0; Eq. 3-10 can

be fitted to the normalised HO2 signal measured by the FAGE instrument in order to

determine a value of CHO2 and of kloss. The value of kloss is dependent on the daily

conditions of the chamber walls and temperature of the chamber, and so is determined by

the fitting process. The value of kloss can be constrained by the use of global fitting for

each different temperature measurement where the HO2 decay profiles were fitted using

a global fitting routine in order for kloss to be kept constant for all fits to Eq. 3-10. With

the mixing fans off, the decay of HO2 can be described by a linear fit, Eq. 3-11:
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൫SHO2
൯

t
=

1

൫SHO2
൯

t0

+ ቆ
2kHO2+HO2

t

CHO2

ቇ

-1

Eq. 3-11

The measurements described here for the HO2 recombination are from experiments

carried out with the chamber mixing fans switched on as this is representative of typical

experimental chamber conditions.

Figure 3-21: Normalised SHO2 decay following the HO2 recombination reaction at 1000 mbar
total chamber pressure and ~293K. Data were fitted using Eq. 3-10 to determine CHO2,
where A = (SHO2)t0, kb = kHO2+HO2, c = CHO2, ka = kloss and z = offset, with uncertainties
given to ±1σ. Parameters with no errors were fixed in the fitting procedure. 

It was not possible to carry out the HIRAC FAGE HO2 temperature dependent

calibrations at the same time as the HO2 “wand” temperature dependent calibrations were

carried out, and so, for comparison, calibration factors have been scaled so that CHO2

determined at 293 K from both methods are in agreement. “Wand” calibrations carried

out immediately following the HO2 HIRAC FAGE temperature dependent studies were

seen to be in excellent agreement with the HCHO photolysis method for determining

CHO2, CHO2(“wand”) = (3.38 ± 1.18) × 10-8 counts cm3 molecule-1 mW-1 s-1 at 293 K as

compared to CHO2(HIRAC) = (3.69 ± 1.50) × 10-8 counts cm3 molecule-1 mW-1 s-1 at 293 K.

The corresponding internal HO2 cell temperatures to the HIRAC temperatures,

determined from temperature profiles determined previously during the study of the
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“wand” calibration as a function of temperature, are shown on the bottom x-axis, and the

HIRAC temperatures are shown on the top x-axis.

Figure 3-22: Comparison of HO2 cell sensitivity as a function of temperature. Green triangles
represent HO2 sensitivity as a function of temperature as determined following the HO2

recombination reaction, where error bars represent the total uncertainty to 1σ. The black 
line represents the linear least squares fit to the data, where the gradient is
(3.37 ± 1.89) × 10-2 K-1 for HO2 cell temperature and (5.76 ± 3.23) × 10-3 K-1 for HIRAC
temperature. The red line represents the HO2 cell sensitivity as a function of temperature
as determined from the “wand” calibration method, reported by Winiberg (2014).

Good agreement between the “wand” and alternative methods for determining the

sensitivity of the HO2 cell as a function of temperature was observed;

∆CHO2(HIRAC) = (0.34 ± 0.19) % and ∆CHO2(“wand”) = (0.29 ± 0.42) % increase per Kelvin

for the internal HO2 cell temperature. It should be noted that the internal HO2 cell

temperature was determined from temperature profiles carried out at the time of the HO2

“wand” calibration temperature dependence experiments; temperature profiles of the HO2

cell should be measured whilst sampling from HIRAC at different temperatures in order

to determine whether the temperature profiles used here are appropriate. The agreement

between the two methods of calibration would indicate that the HO2 cell temperature

profile during HIRAC temperature dependent studies is similar to that determined for

“wand” calibrations.
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3.5.2 Error Analysis

Each data point in Figure 3-22 is an average of several CHO2 values determined through

global fitting of Eq. 3-10 to the data at each temperature. The error bars represent the

standard deviation of the averages, and the total uncertainty in the calibration. The factors

contributing to the total uncertainty of the calibration are given in Table 3-7.

Parameter Uncertainty

kHO2 + HO2(273 K) 31%

kHO2 + HO2(293 K) 27%

kHO2 + HO2(308 K) 24%

kHO2 + HO2(323 K) 21%

kHO2 + HO2(343 K) 19%

S(HO2)t0 30%

Laser power 8%

Online position 2%

Table 3-7: Summary of uncertainties contributing to the total overall uncertainty in the HCHO
photolysis method for HO2 calibrations using the HIRAC chamber.

The error in kHO2 + HO2 was taken from the IUPAC recommended temperature dependent

values (Atkinson et al. 2004), the error in S(HO2)t0 was determined, as described by

Winiberg (2014) from the standard deviation of the offline signal, uncertainty in laser

power and online position are taken as described in Section 3.3.1. The total uncertainty

in the HCHO photolysis calibration method was estimated to be 36 – 44%.

The HCHO calibration method is extremely useful in validating the conventional “wand”

calibration method for the temperature dependent calibration of FAGE instrumentation.

The experimental procedure is relatively quick to carry out, and the ability to measure

CHO2(HIRAC) several times in one experimental run is highly advantageous. Further

temperature dependence of the HO2 cell calibration, particularly at lower temperatures

would help to refine the sensitivity to HO2 as a function of temperature, still within a

tropospherically relevant range of temperatures.
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3.6 Conclusions and Future Work

A detailed study into the reproducibility and errors associated with the N2O actinometry

method for the determination of F184.9 nm, which is required in the conventional “wand”

calibration of FAGE instrumentation, has been given. No discernible difference was

observed between any of the apparatus used in the comparison study, giving increased

confidence in the experimental procedure for the determination of F184.9 nm. It has been

shown that the variation in the measured [NO] during the N2O actinometry experiment is

most significant in the variation of the final calculated value of F184.9 nm following Monte

Carlo simulation for the error propagation. Some trend is observed between the lamp

current and the influence on the variation of F184.9 nm from the error in kR3-9 and kR3-13

when using both the IUPAC and JPL recommended values of the rate coefficients; an

increase in the influence from the rate coefficient error on the variation in the determined

F184.9 nm was seen with increasing lamp current. Further Monte Carlo simulations taken

from a wider range of experimental measurements would assist in determining the

relationship between the errors in the rate coefficients and the variation in the determined

value of F184.9 nm. Increasing the percentage N2O in the total gas flow for the experimental

procedure typically shows no discernible difference to the determination of F184.9 nm;

Monte Carlo simulations of the errors over a range of N2O percentages would verify

whether the variation in N2O flow at different N2O percentages has any influence on the

variation in the determination of F184.9 nm.

As the variation in the measurement of [NO] is seen to have the most significant influence

on the variation in the determined F184.9 nm, alternative methods of measuring [NO] in

the N2O actinometry procedure may give rise to smaller errors in the determination of

F184.9 nm. The use of an instrument for the measurement of [NO] able to measure lower

concentrations with higher accuracy would reduce the influence of the variation from

[NO] measurements on the determination of F184.9 nm.

The N2O actinometry experimental procedure is routinely carried out at room temperature

(~298 K). Determination of F184.9 nm over a range of temperatures, similar to those studied

for the temperature dependent calibrations, would give further validation of the

temperature dependence observed for the sensitivity of the HIRAC FAGE instrument.

Similar error analysis to that done here for the N2O actinometry experimental procedure

would assist in determining which parameters have the most significant influence on the

variation in the determination of CHOx.
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The first temperature dependent calibration of a FAGE instrument for HO2 has been

carried out using an alternative calibration method, with excellent agreement between the

conventional “wand” calibration method and the alternative HIRAC HCHO photolysis

method. Work is ongoing into the temperature dependent OH calibration of the HIRAC

FAGE instrument for comparison between the alternative hydrocarbon decay method

with the conventional “wand” method for calibration. Very good agreement,

∆CHO2(HIRAC) = (0.34 ± 0.19) % and ∆CHO2(“wand”) = (0.29 ± 0.42) % increase per Kelvin,

was observed between the two methods for determining the sensitivity of the HO2 cell as

a function of temperature. The small temperature dependence observed following the

HCHO photolysis method of calibration is within the uncertainty of the conventional

“wand” calibration method, of 22% for the HO2 cell calibration, and can be considered to

be insignificant for the temperature range studied here (273 – 343 K). Temperature

profiles for both the OH and HO2 cells should be determined whilst sampling from the

HIRAC chamber over a similar range of temperatures as has been described here for the

HCHO photolysis calibration method, and for the previous “wand” calibration study. This

would provide validation of the temperature profiles used in this work, and further

validation of the HCHO method for determining the sensitivity of the HO2 FAGE cell as

a function of temperature. Work on the sensitivity of the OH FAGE cell as a function of

temperature, determined by alternative HIRAC calibration methods is ongoing.
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Chapter 4. OH Reactivity Instrument
Development

4.1 Introduction

The importance of OH reactivity measurements has been discussed in Chapter 1, with a

comparison of the different types of instrumentation used for such measurements. This

chapter is focussed on a detailed description of a laser flash photolysis coupled with laser

induced fluorescence (LFP-LIF) instrument for the measurement of OH reactivity (k’
OH).

Development of the LFP-LIF OH reactivity instrument is described in Section 4.3, where

considerable improvement on the measurement capability is observed. Characterisation

of instrument performance as a function of a range of parameters (photolysis flow tube

pressure, cell pressure, [O3] and flow rate) is given, showing no discernible dependence

on any of the parameters investigated under normal operating conditions.

Section 4.4 describes the development of the LFP-LIF OH reactivity instrument that was

necessary to couple the instrument to the HIRAC chamber. This is the first time an OH

reactivity instrument has been coupled to the HIRAC chamber for measurements of k’
OH.

Validation of measurements taken whilst sampling from the HIRAC chamber are

discussed through the measurement of the bimolecular rate coefficients of hydrocarbons

with well-defined rate coefficients in the literature. The first measurements following a

series of complex reactions within the HIRAC chamber are given in Chapter 8.

4.2 Instrumentation

4.2.1 Instrument Overview

A LFP-LIF instrument has been developed, based on the design first described by

Sadanaga et al. (2004), at the University of Leeds as a field instrument. Previously a total

OH loss rate method (TOHLM) instrument was used for the measurement of OH

reactivity, described by Ingham et al. (2009). Full details of the LFP-LIF instrument have

been given recently by Stone et al. (2016); a description of the instrument and

measurement technique will be given here, focussing on its development and

characterisation. A schematic of the LFP-LIF instrument is shown in Figure 4-1.
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Figure 4-1: Schematic of the Leeds LFP-LIF OH reactivity instrument. The detector used is a
channel photomultiplier (CPM). PT1 and PT2 are pressure transducers to measure the
photolysis flow tube pressure and the FAGE cell pressure, respectively. The Galilean beam
expander is a telescope used to expand the photolysis laser beam to ~1 cm diameter.

For field measurements, OH radicals are produced in the photolysis flow tube via the

photolysis of ambient O3 at 266 nm, which produces O(1D) in R 4-1. The O(1D)

subsequently reacts with water vapour present in the air to produce two OH radicals,

R 4-2. In laboratory experiments, O3 is added to the sample flow, produced by the

photolysis of O2 in air (R 4-3 and R 4-4).

O3 + hν(λ = 266 nm)  →  O2 + O(1D) R 4-1

O(1D) + H2O  →  2OH R 4-2

O2 + hν(λ = 184.9 nm)  →  2O(3P) R 4-3

O(3P) + O2  →  O3 R 4-4

The OH radicals then react with any OH reactive species present in the gas being sampled

by the instrument, and the decay of the OH radical signal is detected in real time by LIF

at 308 nm. The OH reactivity (k’
OH) can then be determined from the decay of the OH

LIF signal, as will be described in Section 4.3.

A photolysis laser (Big Sky Laser CFR 200, Quantel USA) is used to produce the 266 nm

laser light required to photolyse O3 (R 4-1). A Nd:YAG pumped Ti:Sapphire laser

(Photonics Industries), situated in the FAGE shipping container, was used to produce the

308 nm laser light used for the excitation of OH radicals and the subsequent detection of

their fluorescence at 308 nm. During laboratory experiments, the HIRAC FAGE laser

(Nd:YAG pumped dye laser at 308 nm) may also be used as the probe laser for the

detection of OH radicals with the OH reactivity instrument. For measurements carried out

in this work, the 308 nm laser light was taken from the ground based FAGE shipping

container, which is described here. The HIRAC FAGE laser has been described in
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Chapter 3. The 308 nm laser light (~20 mW) is directed through the FAGE detection cell

via an anti-reflective coated optical fibre (Oz Optics, QMMJ-55-UVVIS-200/240-3-30-

ARZ-SP).

The photolysis flow tube is constructed from stainless steel, with an internal diameter of

50 mm and length of 85 cm. Air sampled by the photolysis flow tube, enters via a ½”

Teflon line, perpendicular to the photolysis flow tube. The OH FAGE detection cell used

in the LFP-LIF OH reactivity instrument measures OH radicals by the on-resonance LIF

detection method, as described by Ingham et al. (2009) for the old TOHLM instrument.

The OH radicals produced, following reactions R 4-1 and R 4-2 react with species present

in the flow of air being sampled (typically ~16 – 20 l min-1 drawn through the air intake

port into the photolysis flow tube). A flow of ~16 l min-1 of air is drawn through the

photolysis flow tube, with ~3.6 l min-1 being sampled by the FAGE cell, which is held at

a low pressure of ~1 Torr by a roots blower backed rotary pump (Leybold Vacuum

SV200/WAU1001). The remaining ~12.4 l min-1 of the sampled gas flow is drawn out of

the photolysis flow tube by a scroll pump (Agilent Technologies, IDP3). Absolute laser

power, provided it does not fluctuate significantly during the time it takes to record a

single decay, is not required to be measured for OH reactivity measurements, as it is a

relative method based on the decay of OH radicals from the initial [OH] produced. The

308 nm laser light has not been observed to fluctuate significantly, and can be monitored

by a photodiode measuring the laser power through a reference cell in the FAGE shipping

container.

4.2.2 Data Acquisition

The LFP-LIF OH reactivity instrument requires the use of two delay generators in order

to control the timings of the laser pulse and the data acquisition. One delay generator

(SRS-DG535) is used to distinguish between the scattered probe laser light and the OH

fluorescence, which are both at the same wavelength of ~308 nm. A second delay

generator is required in order to control the timings of the 266 nm photolysis laser and

photon counting card for the generation of OH radicals in the photolysis flow tube.

The gating timings for the operation of the LFP-LIF OH reactivity instrument are given

in Figure 4-2. t0 is set by a third, external delay generator which triggers the 308 nm laser

inside the FAGE shipping container.
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Figure 4-2: Schematic of the gating timings used in the measurement of OH signal during routine
operation of the LFP-LIF instrument. Adapted from Stone et al. (2016). The blue shaded
region indicates the overlap between the OH fluorescence and the photon counting.

The gating timings of the second delay generator (BNC-555) for the control of the 266 nm

photolysis laser and photon counting card trigger are shown in Figure 4-3. A photon

counting card (Becker and Hickl, PMS200A) is triggered on at the beginning of every

measurement period, 0.1 s prior to the 266 nm photolysis laser being triggered, allowing

for background signal in the FAGE cell to be recorded. The timings sequence shown in

Figure 4-2 for the 308 nm probe laser is repeated every 200 μs for each photolysis pulse 

and the OH decay is constructed from each of these individual OH measurements.
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laser pulse

t0

Photon
counting card

PMT
voltage
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off

-3000 V

-2800 V

Low gain
state High gain state

Time
(not to scale)
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2 ms
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and photon counting card gates
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Figure 4-3: Schematic diagram showing the timings of the 266 nm photolysis laser, adapted from
Edwards (2011).

4.2.3 Determination of k’
OH(raw)

k'
OH(raw) refers to the loss rate of the decays recorded by the instrument, this value consists

of the true OH reactivity value (k’
OH) and k’

OH(physical), that arises from physical losses of

OH within the instrument. The value of k’
OH(physical) is required to be known in order to

determine a value of k’
OH from the k’

OH(raw) values. As discussed in Section 4.2.2, the

measurement timings for the LFP-LIF OH reactivity instrument are controlled by two

delay generators. Figure 4-4 shows a schematic diagram of the structure of the data

acquired by the photon counting card for one decay of OH following irradiation of the

gas sample with 266 nm light.
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Figure 4-4: Schematic of the photon counting used to collect data on the OH fluorescence during
the LPF-LIF OH reactivity instrument operation. Reproduced from Stone et al. (2016).

The 308 nm probe laser light had a pulse repetition frequency (PRF) of 5 kHz and so the

time between each pulse was 200 μs. Fluorescence is collected in 50 μs bins. The OH 

fluorescence lifetime is on the order of a few 100 ns and so only the first 50 μs bin, in 

each set of four, contain any OH fluorescence signal, with three empty fluorescence bins

between each. An analysis programme, written by D. R. Cryer in Python 2.7, was used to

extract a value of k’
OH(raw) from the measurement data through the fitting of an

exponentially decaying function. The non-fluorescence bins are removed, giving only

data from the OH fluorescence. The background signal recorded prior to the 266 nm

photolysis laser pulse is averaged and subtracted from each remaining data point.

Following this, every five data points are summed and assigned the time of the first data

point in each sum. The resulting decay is then fitted to yield a value of k’
OH(raw). Two

different fitting functions have been used to determine k’
OH(raw); a bi-exponential function

and a single exponential function. These will be discussed in Section 4.3 in relation to

development of the instrument.

4.2.4 Determination of k’
OH(physical)

In order to determine k’
OH(physical), measurements of k’

OH(zero) are carried out, where

15 l min-1 synthetic air (BOC, BTCA 178) is passed through a water bubbler and

combined with 1 l min-1 of synthetic air passed over a mercury pen ray lamp, in order to

produce O3. The total flow of 16 l min-1 is sampled by the instrument. The resultant

OH fluorescence signal

200 ms

50 ms 50 ms wide photon counting bins

OH fluorescence signal every 200 ms
(5 kHz probe laser)

Time
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k’
OH(raw) is equal to k’

OH(zero), which is the sum of k’
OH(physical) plus any contribution to the

measured OH reactivity by contaminants present in the air and water used. In order to

extract a value of k’
OH(physical) from the k’

OH(zero) value, the contributions from contaminants

present need to be quantified. Better still would be for the determination of k’
OH(physical)

with the use of extremely pure synthetic air, where contributions from any contaminants

are negligible, and well within the error of the measurements.

Details on the determination of k’
OH(physical) have been given by Cryer (2016), for both the

old and new inlet configurations, which are described in this chapter. For the new inlet

configuration determination of the value of k’
OH(physical) was carried out during the OH

reactivity instrument comparison at the SAPHIR chamber (Chapter 5), where access to a

supply of very clean synthetic air was available. It was assumed that this was the purest

air that has ever been available for the measurement of k’
OH(physical), and that the value of

k’
OH(raw) would be equal to that of k’

OH(physical). The synthetic air available for use at the

SAPHIR chamber was produced from the boil off of liquid nitrogen (80%) and liquid

oxygen (20%). The value of k’
OH(physical) determined through these experiments was

reported to be (2.25 ± 0.21) s-1 (1σ standard deviation), and this is the value that has been 

subtracted from all field measurements of k’
OH(raw) for the new inlet configuration. Cryer

(2016) also described the determination of k’
OH(physical) for the old inlet configuration,

determined to be (1.25 ± 0.42) s-1.

4.2.5 Effect of NO Recycling

The effects of NO recycling on the measurement of OH reactivity in LFP-LIF

instrumentation have been discussed in the literature (Sadanaga et al. 2004, Stone et al.

2016). Sadanaga et al. (2004) reported that the error arising, from the influence of

recycled OH from the reaction of HO2 with NO on the measured OH reactivity was <5%

at concentrations of NO up to 20 ppbv. Stone et al. (2016) also reported no significant

influence on the measurement of OH reactivity from the production of HO2 within the

photolysis flow tube of the instrument described here. A modelling study was conducted

by Stone et al. (2016) to investigate the potential interferences arising from both HO2 and

RO2 radicals generated within the photolysis flow tube; HO2 radicals can be generated

from the reaction of CO with OH radicals, and RO2 radicals can be generated through the

reaction of VOCs with NO within the photolysis flow tube. It was concluded that, over a

range of conditions investigated, recycled OH has no significant influence on the

measurement of OH reactivity using the LFP-LIF instrument described here.
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Interferences from OH recycling by a very high concentration of NO, arising from a very

specific VOC mixture (CO and CH4), sampled form the SAPHIR chamber will be

discussed in Chapter 5. This is, however, an unrepresentative mixture of VOCs that would

unlikely be sampled under ambient conditions or that have been measured in HIRAC for

this work.

4.3 Instrument Development and Characterisation

A new inlet and photolysis flow tube pump-out system was designed by Dr. Trevor

Ingham. Figure 4-5 and Figure 4-7 show the old and new instrument inlet configurations,

respectively. The old inlet is considerably longer than the new inlet (~110 mm compared

to ~12 mm). The new inlet has a conical pinhole (0.8 mm) whereas the old inlet has a flat

pinhole (0.8 mm), which is held in position by an o-ring and the suction from the vacuum

pumps connected to the FAGE cell.

Figure 4-5: Schematic of the old inlet and photolysis flow tube pump-out configuration. Inlet
length ~110 mm with side arm photolysis flow tube pump-out system.

With the previous instrument configuration (Figure 4-5), bi-exponential decay profiles

were observed, with data being fitted using Eq. 4-1:

( ைܵு)௧
( ைܵு)

= ܥ −൫ݔ݁ ை݇ு(௦௧)
ᇱ ൯+ (1 − (ܥ −൫ݔ݁ ை݇ு(௪ )

ᇱ ൯ Eq. 4-1

where (SOH)0 is the OH signal at time zero, (SOH)t is the OH signal at time t, k’
OH(fast) is the

fast component of the bi-exponential decay, C is a constant parameter relating to the

proportion of the decay accounted for by either k’
OH(fast) or k’

OH(raw). The Python 2.7

analysis programme outputs all of the parameters determined from the fit to Eq. 4-1 as

well as the standard error to 1σ for each parameter. A bi-exponential OH decay profile 
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measured with the old inlet configuration is shown in Figure 4-6, where the solid red line

represents the fit to Eq. 4-1, giving a value of k’
OH(raw) = (6.9 ± 0.3) s-1. The exact reasoning

for the observation of bi-exponential OH decay profiles observed in the measurements of

OH reactivity with LFP-LIF instrumentation is not known, however, it is suggested that

it likely arises due to the method of gas sampling from the photolysis flow tube and the

length of the FAGE cell inlet. Bi-exponential behaviour has also been reported by

Sadanaga et al. (2004). The authors also could not determine the exact cause of such

decay profiles.

Figure 4-6: Example of bi-exponential OH decay profile as measured using the old inlet
configuration. The red line represents the fit to Eq. 4-1, where k’

OH(fast) = 71.8 ± 6.5 s-1 and
k’

OH(raw) = 6.9 ± 0.3 s-1.
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Figure 4-7: Schematic of the new inlet and photolysis flow tube pump-out configuration. Inlet
length ~12 mm with radial photolysis flow tube pump-out system.

In combination with the new conical inlet, a new photolysis flow tube pump-out system

has been developed. As the pinhole and inlet sit within the photolysis flow tube, the

pump-out system has been developed in order to draw the sampled gas flow radially

around the FAGE cell inlet, as shown in Figure 4-8.

Figure 4-8: Scale diagram of the new sampling inlet and pinhole attached to the FAGE cell of the
LFP-LIF OH reactivity instrument. Provided by Dr. Trevor Ingham.

With the new inlet configuration and radial pump-out from the photolysis flow tube,

single exponential behaviour of the decays is observed, which can be fitted using Eq. 4-2

in order to return a value of k’
OH(raw):

(SOH)t

(SOH)0
= exp൫-kOH(raw)

' t൯ Eq. 4-2

Examples of single exponential OH decay profiles recorded using the new inlet

configuration are shown in Figure 4-9, where the solid red lines represents the fit to
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Eq. 4-2. For faster decays, such as that shown in Figure 4-9(b), where the OH signal

reaches background levels at earlier times, the fitting programme can be adjusted in order

to fit only to the data representative of the actual OH decay. Changing the fitting times in

this way ensures that the fit of Eq. 4-2 is representative of the OH decay; background

signal once the decay is over, particularly for faster decays such as Figure 4-9(b), is not

included in the fit.

(a) (b)

Figure 4-9: Examples of single exponential OH decay profile measured using the new inlet
configuration. The red line represents the fit to Eq. 4-2, (a) k’

OH(raw) = 8.82 ± 0.15 s-1 and
(b) k’

OH(raw) = 32.74 ± 1.07 s-1.

Characterisation of both the old and the new inlet configurations has been carried out for

a range of normal operating parameters; varying O3 concentration, photolysis flow tube

flow rate, photolysis flow tube pressure and FAGE cell pressure. Validation of

measurements have been carried out for both inlet configurations by the measurement of

bimolecular rate coefficients for hydrocarbons with well-defined rate coefficients in the

literature.

A comparison of the measured k’
OH(raw) as a function of the total flow rate through the

photolysis flow tube is shown in Figure 4-10. For flows of 15 – 16 l min-1, both the old

and the new instrument inlet configurations measured ~5.5 s-1. For the new inlet

configuration, a decrease of ~2 s-1 k’
OH(zero) was observed as the total flow rate was

increased from 17 l min-1 to 27 l min-1; this is attributed to lower wall losses in the

photolysis flow tube with shorter residence times at higher flow rates. The high value of

~9 s-1 at a total flow rate of 6 l min-1 with the old inlet configuration is attributed to the

larger residence time leading to the sampled air being irradiated multiple times by the

266 nm photolysis laser beam. Any minor impurities (listed in Table 4-1) within the

“zero” air sample may be photolysed, artificially increasing the [OH] within the

photolysis flow tube, leading to higher measurement of k’
OH(zero). These measurements of
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k’
OH(zero) show the importance of correctly characterising the instrument for the flow rate

during routine operation.

Impurity Concentration / ppmv

CO <1

CO2 <300

NOx <0.1

VOCs <0.1

Table 4-1: Impurities stated in synthetic air (BOC, BTCA 178).

Figure 4-10: Comparison of measured k’
OH(zero) as a function of total flow rate through the

photolysis flow tube for both the old and new inlet set ups. Error bars represent the 1σ 
standard error from the fitting procedures; bi-exponential fitting for the old inlet
measurements and single exponential fitting for the new inlet measurements.

A comparison of the measurement of k’
OH(zero) as a function of photolysis flow tube

pressure is shown in Figure 4-11 for both instrument inlet configurations. The solid

straight lines represent the linear fit to the data, where the gradient of the line fit to data

measured with the old inlet configuration is (-0.005 ± 0.001) s-1 Torr-1 and the gradient of

the line fit to data measured with the new inlet configuration is (-0.003 ± 0.001) s-1 Torr-1.

The measured value of k’
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inlet set ups shows no significant dependence on the photolysis flow tube pressure. As

measurements of OH reactivity are typically compared to modelled and calculated OH

reactivity (from measured sinks of OH), the instrument is routinely run at close to ambient

pressure, ~750 Torr. Many species contributing to the overall OH reactivity show a

pressure dependence for their reaction with OH radicals, and so it is vital to measure OH

reactivity at a photolysis flow tube pressure representative of that recorded for ambient

measurements. In order to draw a sample into the LFP-LIF OH reactivity instrument, the

instrument is required to run at sub-ambient pressure by ~10 Torr. This, however, would

only account for a change in k’
OH(zero) of <1%, which is well within the standard

uncertainty of the measurements.

The difference observed of ~2 s-1 between the measurements taken with the old and new

inlet configurations is due to a change in the source of the synthetic air used to make the

measurements. Values of k’
OH can vary; only upper limits of impurities are provided from

BOC (Table 4-1).

Figure 4-11: Comparison of measured k’
OH(zero) as a function of photolysis flow tube pressure for

both the old and new inlet set ups. Error bars represent the standard error from the fitting
procedures; bi-exponential fitting for the old inlet measurements and single exponential
fitting for the new inlet measurements. Linear fit to old inlet data gives a gradient of
(-0.005 ± 0.001) s-1 Torr-1 and to the new inlet data gives a gradient of
(-0.003 ± 0.001) s-1Torr-1, where the errors are the standard error in the linear least squares
fitting procedure.
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The measured k’
OH(zero) for the old inlet and new inlet configurations as a function of [O3]

in the sampled air flow is shown in Figure 4-12. No discernible dependency is observed

over the range of [O3] shown in Figure 4-12 on the measured values of k’
OH(zero); linear

fitting to the data gives a gradient of (-0.023 ± 0.017) s-1 ppbv-1 for the old inlet set up

and a gradient of (0.002 ± 0.004) s-1 ppbv-1 for the new inlet set up. The larger errors

associated with the measurement values from the old inlet configuration arise from larger

uncertainties from the bi-exponential fitting procedure compared to the single exponential

fitting procedure.

Figure 4-12: Comparison of measured k’
OH(zero) as a function of [O3] in the photolysis flow tube

for both the old and new inlet set ups. Error bars represent the standard error from the fitting
procedures; bi-exponential fitting for the old inlet measurements and single exponential
fitting for the new inlet measurements. Linear fit to old inlet data gives a gradient
of -0.023 ± 0.017 s-1 ppbv-1 and to the new inlet data gives a gradient of
0.002 ± 0.004 s-1 ppbv-1, where the errors are the standard error in the fitting procedure.

The measured first order decay rate, k’
OH against [CH4] is shown in Figure 4-13 and

Figure 4-14 for the old and new inlet configurations, respectively. For both

configurations, CH4 was introduced into the total flow of synthetic air sampled by the OH

reactivity instrument; a third MFC was used to control the flow of CH4 (BOC, CP grade,

99.5% purity)), varying the concentration between (0 – 26) × 1015 molecule cm-3. Much

higher values, up to ~150 s-1, of k’
OH were achieved with the new inlet configuration,

however, much greater scatter and error is observed as k’
OH reaches values >100 s-1. As
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the concentration of CH4 is increased for the measurements of k’
OH >100 s-1, the initial

OH signal is reduced and the OH decay is complete over shorter timescales, and hence

less data points are used in the fitting procedure, leading to increased error.

Figure 4-13: Bimolecular plot for the measured k’
OH against [CH4]. Error bars are the standard

error in the bi-exponential fitting procedure. Measurements were carried out using the old
inlet configuration at a photolysis flow tube pressure of ~760 Torr and FAGE cell pressure
of ~2.00 Torr. The solid red line represents the linear least squares fit to the data, where the
gradient is equal to the rate coefficient of CH4 with OH radicals at 298 K, for measurements
of k’

OH up to 40 s-1. The dashed red line represents the linear least squares fit to the data for
all data points, upto k’

OH = 51 s-1.

The gradient obtained from the linear least squares fitting procedure for data in

Figure 4-13 and Figure 4-14 represents the rate coefficient for the reaction of CH4 with

OH radicals at 298 K. The solid red line shown in Figure 4-13 represents the linear fit to

data up to measurements of k’
OH = 40 s-1 (kOH+CH4 = (6.2 ± 1.2) × 10-15 cm3 molecule-1 s-1),

and the dashed red line represents the linear fit to all of the measurements of k’
OH

(kOH+CH4 = (8.81 ± 0.75) × 10-15 cm3 molecule-1 s-1). The linear least squares fit to the data

in Figure 4-14 gives a gradient of (6.41 ± 0.18) × 1015 cm3 molecule-1 s-1. All errors in

gradients are the standard error from the linear least squares fitting procedure. When

compared to the literature, the IUPAC recommended rate coefficient of CH4 with OH

radicals at 298 K is (6.4 ± 0.9) × 10-15 cm3 molecule-1 s-1 (Atkinson et al. 2006). Excellent

agreement was observed between the IUPAC recommended rate coefficient and that

determined from measurements with the new inlet configuration, validating the

measurement procedure for values of k’
OH up to ~150 s-1. Beyond k’

OH = 150 s-1,
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considerable scatter and larger errors were observed for measurements. Good agreement

was observed with the literature for measurements carried out with the old inlet

configuration for values of k’
OH up to ~40 s-1. The determined rate coefficient for the

reaction of CH4 with OH radicals at 298 K when measurements up to k’
OH = 51 s-1 were

included falls outside of the IUPAC recommended value, and it is concluded that only

measurements of k’
OH up to ~40 s-1 can be used with confidence for the old inlet

configuration.

Figure 4-14: Bimolecular plot for the measured k’
OH against [CH4]. Error bars are the standard

error in the single exponential fitting procedure. Measurements were carried out using the
new inlet configuration at a photolysis flow tube pressure of ~730 Torr and FAGE cell
pressure of ~1.95 Torr. The solid red line represents the linear least squares fit to the data,
where the gradient is equal to the rate coefficient of CH4 with OH radicals at 298 K.

Measurements of k’
OH(zero) as a function of the integration time, are shown in Figure 4-15.

Measurements were successfully carried out at an averaging time of 10 s; measurements

at integration times <30 s all show increased scatter as the integration time is reduced,

and increased error in the measurements. The ability to measure OH reactivities at short

integration times shows the potential for improved time resolution for measurements in

the future, allowing for more accurate measurements of rapid changes in OH reactivity,

such as may occur in field measurements.
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Figure 4-15: Measured k’
OH as a function of integration time, determined for the new inlet

configuration. Measurements were taken using 13 mW 308 nm probe laser power at a cell
pressure of ~1.95 Torr and a photolysis flow tube pressure of 725 Torr. 9 l min-1 of
humidified air was mixed with 6 l min-1 of synthetic air and 1 l min-1 of air passed over a
mercury pen ray lamp for the production of O3. Error bars represent the standard error in
the single exponential fitting procedure.

The development of a new inlet and photolysis flow tube pump-out system has been

shown to have no discernible dependencies observed for any of the parameters

investigated over the typical range of atmospherically relevant conditions (photolysis

flow tube pressure = 720 – 780 Torr and [O3] = 25 – 65 ppbv). Validation experiments

with both inlet configurations show the suitability of the LFP-LIF instrument for the

measurement of OH reactivities up to 40 s-1 with the old inlet configuration and up to

150 s-1 with the new inlet configuration.

4.4 Coupling to the HIRAC chamber

Few studies have been presented in the literature on OH reactivity measurements from

atmospheric simulation chambers (Nakashima et al. 2012, Fuchs et al. 2013, Nehr et al.

2014, Nölscher et al. 2014). The LFP-LIF OH reactivity instrument has recently been

modified in order to interface the instrument with the HIRAC chamber, as shown in

Figure 4-16. A number of considerations were required to be taken into account for the

set-up of the instrument with HIRAC, which are detailed here.
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Figure 4-16: Schematic showing the LFP-LIF OH reactivity instrument coupling with the HIRAC
chamber.

During field measurements of OH reactivity by LFP-LIF, OH radicals in the photolysis

flow tube are produced from O3 and water vapour present in the ambient air being

sampled. As HIRAC is potentially a very dry and clean atmospheric chamber, the addition

of O3 and water vapour is required in order to generate sufficient [OH] within the

photolysis flow tube of the instrument for an observable decay, described by reactions

R 4-1 to R 4-6. Photolysis of O2 from passing a flow of synthetic air over a mercury pen

ray lamp produces O3 (~60 ppbv for a lamp current of ~20 mA) following R 4-5 and

R 4-6. As in ambient OH reactivity measurements, the O3 is then photolysed following

R 4-1 to produce the electronically excited oxygen atom, O(1D), which then reacts with

water vapour to produce two OH radicals via R 4-2.

O2 + hν (λ = 184.9 nm) →  2O(3P) R 4-5

O(3P) + O2  →  O3 R 4-6

The OH reactivity instrument typically takes a flow rate of ~16 l min-1 for ambient

measurements; such a large flow taken entirely from HIRAC would lead to evacuation of

the chamber in ~2.3 hours. Sampling by numerous other analytical instruments (GCs, O3

analyser, NOx analyser, FAGE) simultaneously alongside OH reactivity measurements

would increase the total sample outflow from the chamber considerably. This large

sample outflow would require a large counter flow into the chamber in order to maintain

the required chamber pressure (~1000 mbar for OH reactivity studies in this work) which
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would rapidly dilute the contents of the chamber. A dilution of the OH reactivity sample

(BOC, BTCA 178) is used to overcome this, and avoids measurements of high OH

reactivities that would be present due to large concentrations of OH reactive species in

the chamber; taking 1 l min-1 sample from HIRAC, diluted to the total flow of 16 l min-1.

The dilution flow of air is set using mass flow controllers (MFCs), controlled via in-house

LabVIEW software written by D. R. Cryer.

Figure 4-17 shows a schematic of the flow set up for HIRAC OH measurements,

indicating the dilution flows, the HIRAC sample flow, the photolysis flow tube flow and

the FAGE cell and scroll pump flows. A portion of the dilution flow (typically 5 l min-1

at flow 2 in Figure 4-17) is added to the HIRAC sample flow (flow 1 in Figure 4-17)

directly as the sample exits the chamber, with a further 9 l min-1 passed through a water

bubbler (flow 3 in Figure 4-17) and 1 l min-1 passed over a mercury pen ray lamp to

generate O3 (flow 4 in Figure 4-17). All flows are combined to give a total flow of

~16 l min-1 which is sampled by the OH reactivity instrument. Space requirements in the

laboratory dictated that the sample line was required to be >5 m in length in order to

couple the OH reactivity instrument to the HIRAC chamber, and so introducing a portion

of the dilution flow directly to the sample as it is drawn from the chamber, reduces the

possible losses of reactive species on the sample line by reducing the residence time in

the sample line. For a 10 m, ½” (O.D) diameter Teflon sample line, the residence time

would be 12.7 s for a flow rate of 6 l min-1, and 1.3 min for a flow rate of 1 l min-1. Tests

with different length sample lines showed no discernible effect when measuring k’
OH of

known concentrations of iso-butanol.

These flows are all combined into a 1 m length of ½” (O.D) Teflon tubing which is

sampled by the instrument photolysis flow tube (flow 5 in Figure 4-17). The total sampled

flow rate from HIRAC is monitored and recorded in the instrument software by a mass

flow meter (MFM); careful adjustment of a butterfly valve connected to the scroll pump

allows for the flow rate to be finely tuned. The MFM can be coupled to the sample in a

number of positions; directly after the sample exits HIRAC (flow 1 in Figure 4-17),

connected to the entrance to the photolysis flow tube (flow 5 in Figure 4-17), or connected

to the exit from the photolysis flow tube (flow 8 in Figure 4-17), positioned before the

valve connected to the scroll pump line. Experiments carried out coupled to the HIRAC

chamber have been performed with the MFM coupled directly to the sample line as it

exits HIRAC in order to closely monitor the exact sample being taken from the chamber.

Connecting the MFM in line either directly measuring the HIRAC sample flow rate or to
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measure the total flow into the photolysis flow tube adds a restriction and the potential

for pressure build up as the flow goes from ½” (O.D) Teflon tubing to ¼” (O.D) through

the MFM, and back to ½” Teflon tubing again. Passing the sample through the MFM also

introduces additional stainless steel surfaces which could add to possible losses of

reactive species, and provide an additional surface for reactions to occur on. Positioning

the MFM to measure flow 8 in Figure 4-17 would allow for indirect measurement of the

sample taken from HIRAC as the flow would be calculated from the known flows 2, 3, 4

and 7 in Figure 4-17. The dilution of the sample from HIRAC can then be calculated from

these known flow rates in order to adjust the measured k’
OH(raw) to the true value of k’

OH

within HIRAC.

Figure 4-17: Schematic of flow set up for HIRAC OH reactivity measurements. HIRAC
sample = 1 l min-1, HIRAC dilution = 5 l min-1, H2O flow = 9 l min-1, O3 flow = 1 l min-1,
photolysis flow tube flow = 16 l min-1, FAGE cell flow = 3.6 l min-1, scroll pump
flow = 12.4 l min-1.

Initial studies with the recently coupled LFP-LIF OH reactivity instrument have been

carried out in order to determine optimum operating conditions, and are discussed here.

Validation of measurements taken whilst sampling from the HIRAC chamber were

carried out for n-butanol with the new inlet configuration, shown in Figure 4-18.

N-butanol was chosen for instrument validation experiments as the chemistry of butanols

was to be studied in the HIRAC chamber as part of this thesis (Chapter 6, Chapter 7 and

Chapter 8). The gradient obtained from the best fit line to a bimolecular plot is equal to

the rate coefficient for the reaction of n-butanol with OH radicals. Excellent agreement is

observed between the measured kOH + n-butanol = (8.24 ± 0.50) × 10-12 cm3 molecule-1 s-1,
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with the IUPAC recommended rate coefficient kOH + n-butanol = (8.5 ± 3.0) × 10-12 cm3

molecule-1 s-1 (Atkinson et al. 2006).

Figure 4-18: Bimolecular plot for the measured k’
OH against [n-butanol]. Each data point is the

average of several k’
OH measurements, where the measurements have been corrected for

dilution of the sample taken from HIRAC. Error bars are the standard deviation from the
average values. Measurements were carried out using the new inlet configuration whilst
sampling from the HIRAC chamber, at a photolysis flow tube pressure of ~740 Torr and
FAGE cell pressure of ~1.95 Torr. The solid red line represents the linear least squares fit
to the data, where the gradient is equal to the rate coefficient of n-butanol with OH radicals
at 298 K.

Measurements of k’
OH whilst sampling from the HIRAC chamber are corrected for the

dilution of the sample taken from the chamber. Typically, a dilution factor of 1:16 is used

to correct measured values of k’
OH for the dilution, giving a value of k’

OH(HIRAC) equal to

that of the OH reactive species present in the chamber, exact dilution factors are

determined from the recorded sample flow taken from HIRAC. The dilution flow avoids

measurement of high OH reactivities which are present in the HIRAC chamber due to the

large concentrations of compounds required for chamber experiments, and avoids

sampling a large volume from the chamber which would require a large counter flow in

order to maintain a constant chamber pressure.

The LFP-LIF OH reactivity instrument has been successfully coupled to the HIRAC

chamber, with validation of measurements carried out by the measurement of the
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bimolecular rate coefficient of n-butanol with OH radicals. Excellent agreement with the

literature was seen for the measurement of k’
OH + n-butanol.

4.5 Conclusions and Future Work

OH reactivity measurements provide valuable information on the HOx budget in a specific

environment where the measurements are being carried out. Coupling of OH reactivity

instrumentation to an atmospheric simulation chamber allows for specific reactions to be

assessed in isolation in order to obtain further information on chemical mechanisms and

rate coefficients.

A LFP-LIF OH reactivity instrument has successfully been coupled to the HIRAC

chamber. Validation of the instrument, where known concentrations of hydrocarbons

were sampled from HIRAC, showed good agreement with the literature for measured rate

coefficients for their reaction with OH radicals. Modifications of the LFP-LIF OH

reactivity instrument have shown improved measurements to higher values of k’
OH

through reducing the FAGE cell inlet length and a new radial pump-out system from the

photolysis flow tube, obtaining single exponential OH decay profiles. Comparisons of

both the old and new inlet configurations over a range of different operating parameters

has shown similar dependencies on the photolysis flow tube pressure, total photolysis

flow tube flow and [O3] concentration.

Measurements of k’
OH(zero) as a function of integration time shows the potential for future

measurements to be carried out at higher time resolution; the use of a FAGE cell detector

with improved sensitivity to that of the CPM, as described in this work, would help to

facilitate such measurements in the future.

A description of the LPF-LIF OH reactivity instrument coupled with the HIRAC chamber

has been given, in addition to a number of important parameters which required

characterisation in order to validate the measurement method for HIRAC experiments.

Validation of the measurement system was carried out, where the measured rate

coefficient values were in good agreement with literature values.

Validation of the measurements over a range of different types of VOCs would further

the knowledge of any potential interferences and losses whilst measuring from the

HIRAC chamber. The greatest source of such errors in measurements likely arises due to

laboratory space requirements dictating the need for a long sampling line connecting

HIRAC to the instrument. A reduction in this sample line would reduce the potential for

loss of any species sampled to the walls of the sampling line, and also reduce the potential
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for any further reactions to occur through the sample line before the sample reaches the

photolysis flow tube of the instrument. It is also suggested that alternative sampling lines

should be investigated whilst sampling a range of VOCs from the HIRAC chamber in

order to determine the most appropriate for minimising such effects.

Measurements of OH reactivity from an instrument intercomparison carried out at the

SAPHIR chamber in Jülich, Germany are given in Chapter 5, where comparisons are

made between measurements from three types of instrument, for a range of VOC mixtures

within the SAPHIR chamber. Measurements of k’
OH with the LFP-LIF instrument whilst

sampling from the HIRAC chamber through the course of complex reaction systems are

given in Chapter 6, where measurements are compared with OH reactivity calculated

from measured species within the chamber. Discussion is given where agreement and

discrepancies between the measured and calculated OH reactivity is observed with

suggestions given as to the sources of any discrepancies.
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Chapter 5. OH Reactivity Instrument
Intercomparison

5.1 Introduction to OH Reactivity Intercomparison

Three techniques are described in the literature for the measurement of OH reactivity;

laser flash photolysis coupled with laser induced fluorescence (LFP-LIF), total OH loss

rate measurement (TOHLM) and the comparative reactivity method (CRM), these have

been described in detail in Chapter 1 with a critical review of the three measurement

techniques. A number of comparisons have been reported in the literature for the

measurement of OH reactivity. One such is that presented by Zannoni et al. (2015) where

two CRM OH reactivity instruments were deployed for measurements in the

Mediterranean basin. Good agreement was observed between the two instruments in the

low NOx, terpene rich environment. Both of the CRM instruments deployed for this study

are based on that described by Sinha et al. (2008). Intercomparison of OH reactivity

measurements allow for the performance of different measurement methods to be

assessed. Intercomparisons of OH reactivity measurements have been reported by Hansen

et al. (2015) for measurements taken with one LFP-LIF instrument and one CRM

instrument in a NOx rich, urban environment, where the measurements of OH reactivity

from the CRM instrument typically lead to an underestimation of OH reactivity as

compared to those from the LFP-LIF instrument, due to the photolysis of OH reactive

species in the glass reactor of the CRM instrument. An underestimation of ~2 s-1 was also

observed for measurements carried out with the LFP-LIF instrument, which was

attributed to impurities present in the air used to measure the instrumental physical losses,

k’
OH(physical), highlighting the importance of correct characterisation of k’

OH(physical) for

LFP-LIF OH reactivity instrumentation. A more detailed review of OH reactivity

measurement comparisons has been given in Chapter 1. Instrument comparison studies

currently in the literature for OH reactivity measurements have only been carried out for

the measurements of ambient air; in these scenarios, it is difficult to ensure instruments

are all sampling air with the exact same composition. The use of atmospheric simulation

chambers for instrument intercomparisons ensures all instruments are sampling air with

the same chemical composition, and experiments can be carried out for a wide range of
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atmospherically relevant scenarios. The use of such chambers also allows for

measurements of OH reactivity where the absolute OH reactivity can be known from the

known concentrations of compounds added to the chamber. A number of different

instrument comparison studies have been carried out previously at the SAPHIR chamber

(e.g. Schlosser et al. (2007), Fuchs et al. (2010)).

An informal intercomparison of all OH reactivity measurement techniques was initially

proposed at the OH Reactivity Specialists Unity Meeting (ORSUM) in October 2014

(Williams and Brune 2015), where it was decided that the study would take place at the

Simulation of Atmospheric Photochemistry In a large Reaction (SAPHIR) chamber in

Jülich, Germany. The deployment of as many instruments as possible would allow for the

most comprehensive intercomparison of OH reactivity instrumentation to date.

Nine OH reactivity instruments were deployed for the intercomparison study, provided

and run by eight research institutions; one TOHLM instrument, four LFP-LIF instruments

and four CRM instruments, with the aim to compare all instruments over a range of

characterisation experiments and more complex systems sampling mixtures of VOCs,

characteristic to those measured in both biogenic and urban environments.

Results from five of these experiments that were the responsibility of the author, will be

summarised in this chapter: characterisation measurements for varying H2O and NO

concentrations within SAPHIR, and measurements of OH reactivity sampling mixtures

of VOCs typical of an urban environment, under varying NOx conditions. Results from

three other experiments carried out during the OH reactivity instrument intercomparison

campaign have been discussed by Cryer (2016), and results from all experiments will

form the basis of future publications. A brief overview of results discussed by Cryer

(2016) will be given in Section 5.4.

5.2 Introduction to the SAPHIR Chamber

SAPHIR is a 270 m3 outdoor FEP-Teflon atmospheric simulation chamber based at the

Jülich Forschungszentrum, Germany. The chamber is cylindrical in shape, constructed

from double-walled Teflon foil which allows for the transmission of sunlight through the

chamber walls in order to initiate photochemical reaction processes. The SAPHIR

chamber has been designed and constructed in order to allow for multiple shipping

containers, housing instrumentation, to be positioned beneath it; Figure 5-1 shows an

image of SAPHIR with several shipping containers positioned beneath it, the positioning
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of the Leeds FAGE shipping container during the OH reactivity intercomparison is

indicated.

Figure 5-1: The SAPHIR chamber at the Jülich Forschungszentrum, Germany. The positioning
of the Leeds FAGE shipping container during the OH reactivity instrument intercomparison
campaign is labelled.

A louvre roof system, which can be opened or closed within 60 seconds, allows the

contents of the chamber to be obscured from, or exposed to, sunlight, allowing for dark

reactions and photochemical reactions, initiated by the sunlight, to be investigated.

Figure 5-2 shows an image of SAPHIR with the roof shutters open, exposing the chamber

contents to sunlight.

FAGE Container
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Figure 5-2: Image showing the SAPHIR chamber with the roof open to expose the chamber to
sunlight for the initiation of oxidation reactions.

Five inlet port panels in the chamber floor allow for numerous analytical instruments to

be simultaneously coupled to SAPHIR. Many analytical instruments are housed within

shipping containers permanently positioned beneath the chamber. Ancillary

measurements made using such instrumentation, alongside OH reactivity measurements

during the intercomparison are listed in Table 5-1. Two mixing fans allow for a total

mixing time of 60 s within SAPHIR, (one fan is shown in Figure 5-3), and were in

operation continuously through all experiments of the intercomparison.
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Figure 5-3: Image showing the inside of SAPHIR chamber with the roof system open. One of the
two mixing fans and two of the five inlet port panels are labelled.

Mixing Fan

Inlet Port Panel
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Species Instrument

CO Picarro CRDS

NO Chemiluminescence

NO2 Chemiluminescence

VOCs PTR-TOF-MS

VOCs GC-FID

Isoprene GC-FID, PTR-TOF-MS

Toluene GC-FID, PTR-TOF-MS

HCHO Hantzsch

o-xylene GC-FID, PTR-TOF-MS

Acetaldehyde GC-FID, PTR-TOF-MS

MVK & MACR PTR-TOF-MS

MVK GC-FID

MACR GC-FID

H2O CRDS

O3 UV absorption

Table 5-1: List of instruments used for measurements of species used in the calculation of OH
reactivity during the intercomparison. Measurements of VOCs were taken as PTR-TOF-MS
data if available at the time when calculations were made. CO = carbon monoxide,
NO = nitric oxide, NO2 = nitrogen dioxide, VOCs = volatile organic compounds,
HCHO = formaldehyde, MVK = methyl vinyl ketone, MACR = methacrolein,
CRDS = cavity ring down spectroscopy, PTR-TOF-MS = proton transfer - time of
flight - mass spectrometer, GC-FID = gas chromatography with flame ionisation detector,
UV = ultra violet.

Full details of the construction and measurement techniques employed within SAPHIR

have been described previously (Karl et al. 2004, Bohn et al. 2005, Bohn and Zilken

2005, Rohrer et al. 2005). The Teflon construction material of SAPHIR allows it to only
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be operated at ambient temperatures, and the chamber is operated at ~50 Pa above

ambient pressure.

5.3 OH Reactivity Instrumentation

Nine instruments were used for the measurement of OH reactivity during the OH

reactivity intercomparison in October 2015. Details of these instruments are provided in

Table 5-2, with the type of measurement technique and relevant references for the specific

instrumentation.

Institution Instrument Reference

Le Laboratoire des Sciences du Climat et de

l’Environment (LSCE) (France)
CRM Zannoni et al. (2016)

University of Lille (France) LFP-LIF Hansen et al. (2015)

University of Leeds (UK) LFP-LIF Stone et al. (2016)

Max-Planck Institute for Chemistry (MPIC)

(Germany)
CRM Sinha et al. (2008)

Finnish Meteorological Institute (FMI)

(Finland)
CRM Not Available

Mines Douai National Graduate School of

Engineering (France)
CRM Michoud et al. (2015)

Jülich Forschingszentrum (FZJ) (Germany) LFP-LIF Lou et al. (2010)

Jülich Forschingszentrum (FZJ) (Germany) LFP-LIF Fuchs et al. (2017)

Pennsylvania State University (PSU) (USA) TOHLM Kovacs and Brune (2001)

Table 5-2: Details of the institutions involved in the OH reactivity intercomparison at the SAPHIR
chamber and the measurement technique used for the measurement of OH reactivity, with
relevant references on the specific instrumentation.

All nine OH reactivity instruments were housed within shipping containers beneath the

SAPHIR chamber, shown in Figure 5-4. The red shaded container space labelled “Leeds”

is where the Leeds FAGE shipping container was positioned throughout the course of this

study, housing the LFP-LIF OH reactivity instrument, used in the new inlet configuration

as described in Chapter 4. The Lille LFP-LIF instrument was housed in a permanent
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shipping container positioned directly opposite the Leeds FAGE shipping container, and

both instruments sampled from SAPHIR via the same inlet port in the roof of the chamber.

Three CRM OH reactivity instruments were housed in a shipping container to one side of

the Leeds FAGE shipping container, all sharing one inlet port. To the other side of the

Leeds FAGE shipping container was a temporary shipping container housing the

TOHLM OH reactivity instrument from PSU which shared an inlet port with the two

LFP-LIF instruments from FZJ, which were housed in a permanent shipping container

directly opposite. The LSCE CRM OH reactivity instrument was housed within a

permanent shipping container, also housing instrumentation for the measurement of NOx,

to one end of the chamber.

Figure 5-4: Schematic showing the positioning of shipping containers and the instrumentation
housed within them during the course of the OH reactivity intercomparison campaign
during October 2015. Containers shaded blue are permanently positioned at SAPHIR,
containers shaded red are positioned only for the purpose of this work. Provided by Dr.
Hendrik Fuchs.

Due to a number of technical problems during the intercomparison, FMI were not able to

obtain reliable data. Throughout the work discussed in this chapter, “LIF 4” refers to the

Leeds LFP-LIF OH reactivity instrument. All data from the remaining seven OH

reactivity instruments are anonymised in the following sections; the identity of the
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instruments responsible for each set of measurements will be revealed in future

publications.

5.4 Experimental Details

A total of ten experiments were carried out during the OH reactivity intercomparison at

the SAPHIR chamber in October 2015, a number of which have been discussed by Cryer

(2016), focussing on a comparison the Leeds LFP-LIF OH reactivity measurements with

measurements from other instrumentation involved in the measurement study, details of

which are given in Table 5-3. The following sections of this chapter will focus on five

experiments; 2, 3, 6, 7 and 9.

Experimental Details Reference

Experiment 1 Linearity test of CO Cryer (2016)

Experiment 2 Test of H2O with CO / CH4 This work

Experiment 3 Test of NO with CO / CH4 This work

Experiment 4 Monoterpene Mix Cryer (2016)

Experiment 5 Linearity test of CO / Isoprene Not Available*

Experiment 6 Urban mixture with NOx variations This work

Experiment 7 Urban mixture with NOx This work

Experiment 8 Plant chamber emissions Cryer (2016)

Experiment 9 CO with NOx This work

Experiment 10 Sesquiterpene (beta caryophyllene) and OVOCs Not Available*

Table 5-3: List of experiments carried out during the OH reactivity intercomparison at SAPHIR
in October 2015. Five of which are discussed in this work; test of H2O with CO/CH4, test
of NO with CO/CH4, urban mixture with NOx variations, urban mixture with NOx and CO
with NOx. Results from all experiments will be discussed in future publications with the
identity of each instrument being revealed. *Results from these experiments have yet to be
interpreted for comparison.

Between each experiment, SAPHIR was flushed with high purity synthetic air (total

~2200 m3 synthetic air used) in order to clean the chamber so that trace gases were below

their instrument detection limits. All LIF instruments require H2O in order to generate
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OH radicals, and so in all experiments, unless otherwise stated, SAPHIR was initially

flushed with humidified synthetic air to reach a relative humidity of ~75%. Following

this, a period of ~1 hour elapsed for instruments to measure a “chamber zero” before the

addition of any OH reactive species.

Results from experiment 1, reported by Cryer (2016), showed that all OH reactivity

instruments tracked the calculated OH reactivity from CO well, with more scatter being

observed, particularly for lower values of k’
OH, for measurements by CRM instruments,

which is attributed to the small changes in pyrrole concentration being observed for such

k’
OH values. Two more complex experiments (4 and 8) were also described by the author;

representative of VOC mixtures expected to be sampled in air highly influenced by

biogenic emissions. Again, all OH reactivity instruments tracked the calculated OH

reactivity well, with more scatter observed from CRM instrument measurements, with a

tendency to under predict the calculated OH reactivity. In both of these experiments,

ozone was added to the chamber in order to initiate ozonolysis reactions; following this,

all instruments tracked the calculated OH reactivity well, however, greater deviations

from the calculated OH reactivity were observed. This deviation following the ozonolysis

reactions was attributed to unmeasured OH reactive ozonolysis products.

5.4.1 Addition of H2O with CO / CH4

OH reactivity measurements that are carried out in the field, do so over a wide range of

humidities. Correct characterisation of OH reactivity instrumentation under

atmospherically relevant variations in [H2O] present in the gas sample is vital in order to

determine whether any instrument shows a dependence or any interferences from [H2O].

Throughout the course of this experiment, the roof shutters remained closed, keeping the

contents of the chamber in the dark. Following humidification, O3 (~80 ppbv) was added

to the SAPHIR chamber to allow LIF instruments to produce OH within the flow tube of

the instruments. A zero measurement period of ~1 hour passed before the addition of CO

and CH4, to give a total OH reactivity of ~20 s-1. Humidification and the addition of CO

and CH4 (to maintain a total reactivity of ~20 s-1) to SAPHIR was repeated a further three

times, reaching a final relative humidity of ~83%. An addition of NO2 (~10 ppbv) was

also made at the end of the experiment at ~15:20:00.
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Figure 5-5: Time series of the measurement of k’
OH by eight instruments in the SAPHIR chamber.

Water was added to SAPHIR in four stages to increase the humidity from ~20%, reaching
a final relative humidity of ~83%. CO and CH4 were also added to SAPHIR following
humidification in order to give a calculated OH reactivity of ~20 s-1 to allow for all
instruments to measure well above their LODs. The green hatched area represents the
calculated OH reactivity attributed to the CO, CH4 and NO2 added to SAPHIR, as well as
measured contributions from NO and HCHO. Measurements labelled “LIF 4” were made
using the Leeds LFP-LIF OH reactivity instrument.

All instruments followed the time profile of the calculated OH reactivity well, with

greater scatter observed for measurements from the three CRM instruments. Agreement

is particularly good between LIF instruments. Measurements from CRM instruments are

generally more scattered, with CRM 1 and CRM 2 being generally lower than the

measurements from the LIF instruments, and CRM 2 being higher than the LIF instrument

measurements and calculated OH reactivity. Measurements with the LIF 4 (Leeds)

instrument are in good agreement with the calculated OH reactivity and other LIF

instruments, however, there is an offset of ~2 s-1 above measurements from other LIF

instruments. This offset is also seen in the “zero” measurement period (~08:00 – 09:30,

where only H2O and O3 were present in SAPHIR), and it is concluded to be due to residual

species present in the sampling line and minor leaks within the instrument. The results

from this experiment show that, especially for the LIF instruments, that no dependence

on relative humidity of OH reactivity measurements is observed.
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The Leeds LFP-LIF (LIF 4) instrument shows very good agreement with other LIF

instruments and the calculated OH reactivity. This agreement, and absence of any

dependence on the water concentration, shows the reliability of the measurements from

the Leeds LFP-LIF instrument for a range of environments, including field measurements

and chamber measurements, such as those that are discussed in Chapter 8, where the

relative humidity in HIRAC can vary considerably depending on the chemical reactions

under investigation.

5.4.2 Addition of NO with CO / CH4

OH reactivity measurements are often carried out in urban areas where levels of NOx can

vary greatly, with some environments having extremely high levels of NOx;

concentrations of up to 200 ppbv have been reported from measurement sites in London

(Jenkin 2014) . As has been discussed in Chapter 4, for LIF instruments, increased levels

of NO present in the gas being sampled, may lead to recycled OH within the flow tube of

the instruments, artificially enhancing the [OH] and affecting the measurement of OH

reactivity. This experiment aimed to test the influence of varying NO concentrations on

the measured OH reactivity from all instruments. The chamber was initially flushed with

humidified synthetic air. As high concentrations of NO were to be investigated for this

experiment, no O3 was added to the chamber, and so O3 was required to be added directly

into the LIF instruments in order to facilitate the production of OH radicals within the

flow tube of the instruments. For the Leeds LFP-LIF instrument (LIF 4), 1 l min-1

synthetic air was passed over a mercury pen ray lamp and combined with a 15 l min-1

sample drawn from SAPHIR, giving ~60 ppbv O3 in the total gas sampled by the

instrument. A correction was made to account for this dilution in the analysis process.

Following the humidification of SAPHIR, no further additions were made for ~1 hour in

order to allow for a “zero” measurement period. CO and CH4 were then added to SAPHIR

to reach ~20 s-1 OH reactivity. A further ~1 hour period passed before NO was added to

SAPHIR. Three further NO additions were made to SAPHIR; following which, CO and

CH4 were added in order to maintain an OH reactivity of ~20 s-1. A further three NO

injections were made following this. The time series of the measurements of OH

reactivity from seven instruments is shown in Figure 5-6 for this experiment. Due to

technical problems with the instrument, CRM 1 was unable to make reliable OH reactivity

measurements during this experiment.
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Figure 5-6: Time series of the measurement of k’
OH by seven instruments in the SAPHIR chamber.

Seven additions of NO were made to SAPHIR, with two additions of CO/CH4 to give a
reactivity of ~20 s-1. The green hatched area represents the calculated OH reactivity
attributed to the CO, CH4 and NO2 added to SAPHIR, as well as measured contributions
from NO and HCHO. Measurements labelled “LIF 4” were made using the Leeds LFP-LIF
OH reactivity instrument. Dashed blue vertical line represents when SAPHIR was
humidified and dotted black vertical lines represent the times at which species were added
to SAPHIR.

Again, all instruments track the profile of the calculated OH reactivity well, with the LIF 4

(Leeds) instrument showing particularly good agreement with the profiles of the other

LIF instruments. Following the fifth addition of NO to SAPHIR, resulting in a total

[NO] ~ 15 ppbv, greater deviation from the calculated OH reactivity was observed for all

instruments.

Measurements of OH reactivity made by LIF instruments are prone to the influence from

OH recycling by NO in the flow tube of the instruments at high concentrations of NOx

present in the sampled gas. LIF type instruments where OH radicals are produced by

water photolysis (TOHLM) produce high concentrations of HO2 within the flow tube

under normal operating conditions:

06:30 08:30 10:30 12:30 14:30 16:30

0

20

40

60

80

100

120 NONONO

CO

CH
4 NONO

LIF 1

LIF 2

LIF 3

LIF 4

LIF 5

CRM 2

CRM 3

Calculated
k' O

H
/

s-1

Time (UTC)

H
2
O

CO

CH
4 NO



Chapter 5 156 OH Reactivity Intercomparison

H2O + hν(184.9 nm)  →  OH  +  H R 5-1

H + O2  +  M  →  HO2 + M R 5-2

and so simultaneous measurements of ambient NO concentrations are made in order to

correct for the formation of OH within the flow tube following:

HO2  +  NO  →  OH  +  NO2 R 5-3

LFP-LIF instruments do not produce high concentrations of HO2 in the flow tube under

normal operating conditions, however, under certain conditions, production of HO2 or

RO2 within the flow tube of the instrument may lead to the formation of OH by reaction

with NO:

CO  +  OH  →  H  +  CO2 R 5-4

H + O2  +  M  →  HO2 + M R 5-5

CH4 + OH + O2  →  CH3O2 + H2O R 5-6

CH3O2  +  NO  →  CH3O + NO2 R 5-7

CH3O + O2  →  HO2 + HCHO R 5-8

HO2  +  NO  →  OH  +  NO2 R 5-9

In the experiment described here, the recycling of NO to produce OH in the flow tube of

the Leeds LFP-LIF instrument was observed by bi-exponential OH decay profiles,

following a total NO concentration >15 ppbv in SAPHIR. This is shown in Figure 5-7

where the data have been fitted with a single exponential fitting function (a) and a

bi-exponential fitting function (b). Figure 5-8 shows a comparison of data fitted with a

single exponential function, and where data has been fitted with a bi-exponential function

for [NO] > 15 ppbv in SAPHIR, against the calculated OH reactivity. The measured OH

reactivity follows the same time profile as the calculated OH reactivity when k’
OH has

been extracted using a bi-exponential fitting fuction. Model simulations carried out by

Stone et al. (2016) for similar experimental conditions where CO, CH4 and NO are

present showed that neither the single exponential or the bi-exponential fitting functon
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returned the true value of k’
OH, however, at values of [NO] > 15 ppbv, the bi-expoential

fitting function returns a value closer to that of the true value.

(a) (b)

Figure 5-7: Example bi-exponential decay profile as obseverved at high NOx concentrations
(NO = 40 ppbv for data shown). (a) data fitted with single exponential function, resulting
in a value of k’

OH(raw) = 19.22 ± 0.58 s-1. (b) data fitting with bi-exponential function,
resulting in a value of k’

OH(raw) = 37.2 ± 1.1 s-1, where the fast component of the decay is
used as an estimation for the measured value of k’

OH.

Figure 5-8: Time series of k’
OH as measured by the Leeds LFP-LIF (LIF 4) instrument compared

to the calculated OH reactivity. Open blue circles represent data fitted with a single
exponential function and filled blue circles represent data fitted with a bi-exponential
function to extract a value of k’

OH.

As OH radicals are produced within the flow tube of the LIF instruments following

reactions R 5-4 to R 5-9, this would be observed as an artificial growth in OH to a
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maximum, which then decays. When this artificially enhanced OH production and decay

is combined with relatively fast OH decay from the true OH reactivity measurement, this

is observed as a bi-exponential decay profile. The artificially produced OH decay occurs

on a relatively long time scale as compared to the true OH decay, at longer times, the

generated OH has a greater influence on the true OH decay.

5.4.3 CO with NOx

A third experiment was carried out where OH reactivity measurements from SAPHIR

were taken in the presence of CO and NOx. Following a chamber “zero” measurement

period of ~1 hour, three additions of CO were made to the chamber. Two injections of

2,3-dimethylbutene were made to SAPHIR in order to quench any O3 present, observed

by two spikes in OH reactivity at ~11:45:00 and ~12:45:00. Following this, O3 was added

directly to the LIF instruments as described above. The time series for this experiment is

shown in Figure 5-9. Following the removal of O3 from SAPHIR by the addition of an

alkene, three additions of NO were made.

Figure 5-9: Time series of the measurement of k’
OH by eight instruments in the SAPHIR chamber.

Measurements were carried out sampling from SAPHIR with multiple additions of CO and
NO. The green hatched area represents the calculated OH reactivity in SAPHIR.
Measurements labelled “LIF 4” were made using the Leeds LFP-LIF OH reactivity
instrument. Dashed blue vertical line represents when SAPHIR was humidified and dotted
black vertical lines represent the times at which species were added to SAPHIR.

06:00 08:00 10:00 12:00 14:00 16:00 18:00

0

20

40

60

80

100

120

140

160 NONOAlkeneCOCO

LIF 1

LIF 2

LIF 3

LIF 4

LIF 5

CRM 1

CRM 2

CRM 3

Calculated

k' O
H

/
s-1

Time (UTC)

H
2
O CO Alkene NO



Chapter 5 159 OH Reactivity Intercomparison

The OH reactivity measurements from all instruments track the time profile of the

calculated OH reactivity very well. Due to a loss of power to the Leeds FAGE shipping

container, OH reactivity measurements from the LIF 4 instrument were only made from

09:00:00 onwards. A large spike to ~150 s-1 OH reactivity was observed following the

first injection of 2,3-dimethylbutene to SAPHIR, with a smaller spike to ~100 s-1

following the second injection of 2,3-dimethylbutene. At these two spikes, the LIF

instruments follow the time profile of the calculated OH reactivity extremely well,

showing their excellent time resolution and sensitivity in measurements. The three CRM

instrument measurements observe smaller spikes in the OH reactivity measurements;

CRM OH reactivity instruments have poorer time resolution (making one OH reactivity

measurements every 600 – 900 seconds, compared to one measurement every 30 – 160

seconds for LIF instruments), and so are unable to track such rapid fluctuations in OH

reactivity.

Following the addition of 2,3-dimethylbutene to SAPHIR, good agreement between all

LIF instruments is observed. Following the second addition of 2,3-dimethylbutene to

SAPHIR, measurements by LIF 4 (Leeds) are slightly higher than the calculated OH

reactivity, whereas measurements from LIF 1, LIF 2, LIF 3 and LIF 4 are slightly lower

than the calculated OH reactivity. As the calculated OH reactivity is only determined

from a small number of measured VOCs, this value is likely not the exact OH reactivity

within SAPHIR during the experiments. The differences between the measured and

calculated OH reactivities, however, indicate the presence of some systematic

uncertainties for measurements from the different LIF instruments following the addition

of an alkene, likely arising from unmeasured ozonolysis products from the reaction of

2,3-dimethylbutene with O3.

Measurements of OH reactivity from CRM 1 are seen to be consistently lower than all

the other OH reactivity measurements following the addition of 2,3-dimethylbutene to

SAPHIR. As suggested for the LIF measurements, this may also arise due to interferences

within the instrument following the addition of an alkene into the measured gas and any

related ozonolysis products and intermediate species. Measurements from CRM 2 agree

very well with the calculated OH reactivity and the majority of other measurements at all

times throughout the experiment. Following the final addition of NO to SAPHIR, greater

deviation from the calculated OH reactivity was observed for OH reactivity

measurements; it is possible that the concentration of NO at this point has reached values
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such that OH recycling within the flow tube of the LIF instruments was more significant

than expected.

5.4.4 Measurements of an urban VOC mixture in the presence of NOx

In order to test the performance of the OH reactivity instruments to more complex

systems, experiments were carried out with an “urban” mixture of VOCs, characteristic

of typical VOC mixtures sampled in urban areas, in the presence of NOx. The urban

mixture consisted of 1-pentene (42% OH reactivity), toluene (14% OH reactivity) and

o-xylene (44% OH reactivity). For the first of these experiments, shown in Figure 5-10,

measurements were carried out with multiple additions of NO2 to SAPHIR. Following

the “zero” chamber measurement period, the urban VOC mixture was injected into the

chamber. Approximately 20 minutes following this, the chamber roof was opened to

expose the contents of the chamber to sunlight, allowing for the photolysis of NO2 for the

remainder of the experiment, to give an atmospherically relevant ratio of NO2 : NO. A

period of ~1 hour elapsed after opening the chamber roof prior to the first addition of

NO2. Four further NO2 additions were made before a second addition of the urban VOC

mixture was injected into SAPHIR. One final addition of NO2 was made to SAPHIR

~1 hour following this.
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Figure 5-10: Time series of the measurement of k’
OH by eight instruments in the SAPHIR chamber.

Measurements were carried out sampling an urban VOC mixture from SAPHIR with
sequential additions of NO2. The roof shutters were opened, at 09:35, in order to produce
atmospherically relevant ratio of NO2 : NO within the chamber. The green hatched area
represents the calculated OH reactivity in SAPHIR. Measurements labelled “LIF 4” were
made using the Leeds LFP-LIF OH reactivity instrument. The dashed blue vertical line
shows the time at which SAPHIR was humidified, the dotted black vertical lines represent
the times at which reactive species were added to SAPHIR, and the solid orange vertical
lines represent the time at which the chamber roof shutters were opened and closed.

A second experiment was carried out with the same urban VOC mixture, where only two

additions of NO2 were made to SAPHIR. Figure 5-11 shows the time series of the OH

reactivity measurements from eight instruments, and the calculated OH reactivity.

Following a period of ~1 hour for a chamber “zero” measurement, NO2, CO and an urban

VOC mixture were added to SAPHIR. An hour of measurements were taken before a

second addition of the urban VOC mixture was made. The SAPHIR roof shutters were

opened ~1 hour following this, to allow for the photolysis of NO2. A further NO2 injection

was added ~1 hour after the chamber roof was opened, and two further additions of the

urban VOC mixture were made.
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Figure 5-11: Time series of the measurement of k’
OH by eight instruments in the SAPHIR chamber.

Measurements were carried out sampling from SAPHIR with multiple additions of an urban
VOC mixture and two additions of NO2. The roof shutters were opened, at 11:15, in order
to expose the contents of SAPHIR to sunlight and to allow for the photolysis of NO2 within
the reaction mixture. The green hatched area represents the calculated OH reactivity in
SAPHIR. Measurements labelled “LIF 4” were made using the Leeds LFP-LIF OH
reactivity instrument. The dashed blue vertical line indicates when SAPHIR was
humidified, the dotted black vertical lines indicate the times at which reactive species were
added to SAPHIR, and the solid orange vertical lines indicate the time at which the roof
shutters were opened and closed.

All instrument measurements track the profile of the calculated OH reactivity well. For

the first two VOC additions, agreement of measurements from CRM 2 with all other

instruments and the calculated OH reactivity is good; following the third step increase in

OH reactivity, CRM 2 is no longer in good agreement. Although CRM 2 shows poor

agreement following the third step increase in OH reactivity, the measurements from the

instrument follow the same time profile in OH reactivity through the following step

increases in reactivity to the end of the experiment. The observation here of lower OH

reactivity measurements from CRM 2 instrument at higher NOx concentrations present in

SAPHIR is similar to that observed in the previous experiment.

Measurements from the LIF 3 instrument are in excellent agreement with calculated OH

reactivity at later times during the experiment; following the third step increase in OH

reactivity and onwards. Poorer agreement is seen for measurements from the LIF 3

instrument following the first two step increases in OH reactivity. Excellent agreement is
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seen for measurements from the LIF 1 and LIF 2 instruments with calculated OH

reactivity throughout the entire experiment. The Leeds LFP-LIF (LIF 4) and LIF 5

instruments are seen to typically measure OH reactivity higher than the measurements

from the LIF 1 and LIF 2 instruments, and the calculated OH reactivity. Both the LIF 4

and LIF 5 instruments show a positive offset in OH reactivity measurements as compared

to the calculated during the chamber “zero” period at the beginning of the experiment,

suggesting that, similar to the experiments discussed in Section 5.4.1, contamination

within the sampling lines or small leaks within the instruments may be influencing the

OH reactivity measurements from these instruments. Measurements from the LIF 4

(Leeds) instrument are typically more scattered for reactivities ≥30 s-1, however, stated

errors are typically within errors of the measurements from other LIF instruments.

5.4.5 Correlations

To gain an insight into the performance of all instruments across the entire study, the

relationship between the measured OH reactivity, with the calculated OH reactivity is

shown in Figure 5-12. In order to give an indication as to the performance of instruments,

data only for experiments when CO and CH4 were present in SAPHIR are shown in these

correlations; measurements following oxidation and photolysis reactions are excluded as

reaction products are not included in the calculation of k’
OH and so the calculated OH

reactivity would not be representative of the true OH reactivity within the air being

sampled. Very good agreement is observed between all instrument measured OH

reactivity and the calculated OH reactivity for all experiments, especially for

measurements from the LIF instruments.
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Figure 5-12: Correlation plots showing the relationship between measured OH reactivity from
eight instruments with calculated OH reactivity for all ten experiments conducted during
the OH reactivity intercomparison in October 2015. Each different colour represents a
different experiment. Measurements labelled “LIF 4” are those carried out with the Leeds
LFP-LIF OH reactivity instrument. Provided by Dr. Hendrik Fuchs.

Figure 5-13 shows the difference between the measured OH reactivity from seven of the

OH reactivity instruments, and the calculated OH reactivity as a function of NO

concentration in SAPHIR (due to technical issues with CRM 1 during Experiment 3, data

from this instrument has not been included for this comparison).
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Figure 5-13: Relative differences between measured and calculated OH reactivity for the
experiment on the test of NO with CO / CH4 for measurements of OH reactivity from the
seven instruments able to measure during this experiment. LIF 4 refers to measurements
from the Leeds LFP-LIF instrument. Provided by Dr. Hendrik Fuchs.

For all LIF type instruments only minor differences were observed between the measured

and calculated OH for all NO concentrations, with the difference increasing with NO

concentration in the gas sampled from SAPHIR. A greater difference was observed for

all of the LIF instruments at the highest NO concentrations; this is attributed to the change

in the data analysis procedure. A bi-exponential fitting function has been used in the data

analysis for LIF instruments at the highest NO concentrations, which gives only an

approximation to the true OH reactivity value, as has been described in Chapter 4. Much

greater differences in the measured and calculated OH reactivity for all of the CRM

instruments were observed at all NO concentrations, however, no systematic dependence

on the NO concertation was observed.

5.5 Conclusions

Overall, all of the OH reactivity instruments performed well for the duration of the

intercomparison at SAPHIR in October 2015, with very few unplanned gaps in

measurements from a small number of instruments. It should be noted that the results

presented and discussed in this chapter are preliminary; further detailed analysis of data
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is being carried out by researchers at the Jülich Forschungszentrum, Germany, and will

be presented in future publications. Agreement between all instruments and the calculated

OH reactivity is generally good, particularly for measurements of “simple” reaction

mixtures for measurements where concentrations of species were well known (e.g CO,

CH4, urban VOC mixture). Deviations from the calculated OH reactivity were 3 – 16%

for all instruments in the correlations shown in Figure 5-12. The difference between the

measured and calculated OH reactivity for all instruments was observed to increase with

more complex reaction mixtures such as the initiation of ozonolysis and photolysis

reactions within the chamber. The increased difference between measured and calculated

OH reactivity in these cases is due to the relatively small number of OH reactive species

that were measured; ozonolysis and photolysis reaction intermediates and products were

not measured, leading to an underestimation in the calculated OH reactivity.

CRM instruments show more scatter than LIF instruments due to their lower precision

and accuracy, especially at low values of OH reactivity due to the large number of

corrections required in the data analysis process. LIF instruments all show good precision,

however, scatter is seen to increase with increasing values of k’
OH due to their reduced

accuracy for the measurement of higher OH reactivity values. This was typically seen for

measured values of k’
OH > 50 s-1; values which are generally higher than those measured

under ambient conditions. Measurements of high OH reactivity (>50 s-1), however, are

useful in chamber studies where VOC concentrations are often required to be higher than

in the atmosphere to allow instruments to measure their concentrations reliably above

their detection limits and for an appreciable reaction timescale; results from experiments

carried out in the HIRAC chamber (given in Chapter 8) are typically 30 – 60 minutes in

duration with starting concentrations of VOC ~3 × 1013 molecule cm-3.

A number of significant findings were made for instruments during the OH reactivity

intercomparison. The importance of correct characterisation for CRM instruments over a

range of normal operating parameters is already known (Michoud et al. 2015), however,

a previously unknown dependence on O3 concentrations was observed for one of the

CRM instruments during this study, leading to an initial underestimation in the measured

OH reactivity prior to corrections being applied to the data for this interference.

Significant influence from NO recycling in LFP-LIF instruments was observed as OH

decay profiles changed from single exponential to bi-exponential at [NO] > 15 ppbv.

Fitting of a bi-exponential function to this data returns a value of k’
OH giving a close

estimation to that of the true value of k’
OH. Bi-exponential decay profiles have only been
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reported once previously for ambient measurements (Lou et al. 2010) as a result of NO

recycling within the flow tube of the instrument.
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Chapter 6. Temperature Dependent
Relative Rate Studies of Butanols with
Cl atoms

6.1 Introduction

The relative rate technique is commonly used to measure the rate coefficients of a target

compound of interest (Atkinson 1986, Nelson et al. 1990, Wu et al. 2003, Kaiser and

Wallington 2007). The technique relies on measuring the rate of loss of the target

compound, relative to that of a reference compound. The ratio of rate coefficients of the

target compound and reference compound are reported; the absolute rate coefficient

determined will be dependent on the literature rate coefficient chosen for determining the

rate coefficient of interest. The importance of chlorine in the atmosphere has been

discussed in Chapter 1. Hydrocarbons typically have rates of reaction with Cl atoms

orders of magnitude greater than their analogous reactions with the hydroxyl radical, OH.

Here, a study is presented on the temperature dependence of the rate of reaction of Cl

atoms, with n-butanol and iso- butanol. Cyclohexane was used as a reference compound

for the relative rate technique. The choice of reference compound is important in relative

rate studies; it should have a rate coefficient that is well defined in the literature, and also

react at a comparable rate to the compound of interest. It should be easily detectable by

the analytical method chosen for monitoring the concentration of compounds throughout

the course of the experiment. It is also important to know whether the reference reaction

kinetics have any pressure or temperature dependencies. Reaction rates can also be

determined using absolute methods; pulsed laser photolysis resonance fluorescence

(PLP-RF) or discharge flow tube technique.

Chlorine atoms are produced through the photolysis of molecular chlorine, Cl2, at

wavelengths ~360 nm (R 6-1). The chlorine atoms then subsequently react with both the

reactant, n-butanol or iso-butanol, and the reference, cyclohexane, compounds (R 6-2 and

R 6-3).



Chapter 6 170 Butanol Relative Rate Studies

Cl2 + hν  →  Cl  +  Cl R 6-1

Cl + reactant
kreactant
ሱ⎯⎯⎯ሮ products R 6-2

Cl + reference
kreference
ሱ⎯⎯⎯⎯ሮ products R 6-3

The rate coefficient of the target reactant compound (n-butanol or iso- butanol) can then

be determined from the known rate coefficient of the reference compound (cyclohexane),

following equations Eq. 6-1 to Eq. 6-5. The rate of decay of both the reactant and

reference compounds with respect to their reaction with Cl atoms are described by Eq. 6-1

and Eq. 6-2; integrating these two equations gives Eq. 6-3 and Eq. 6-4, which, when

combined, gives Eq. 6-5. A plot of Eq. 6-5 should yield a straight line, where the gradient

is equal to kreactant / kreference. As the relative rate method relies on the decay of one

compound relative to another, the exact concentrations of each compound do not need to

be known. In the work presented here, signal from the HIRAC GC-FID, as described in

Chapter 2, was used as an indicator of concentration.

-
d[reactant]

dt
= kreactant[Cl][reactant] Eq. 6-1

-
d[reference]

dt
= kreference[Cl][reference] Eq. 6-2

lnቆ
[reactant]t

[reactant]0
ቇ= kreactant[Cl] Eq. 6-3

lnቆ
[reference]t

[reference]0
ቇ= kreference[Cl] Eq. 6-4

lnቆ
[reactant]t

[reactant]0
ቇ=

kreactant

kreference
ቊlnቆ

[reference]t

[reference]0
ቇቋ Eq. 6-5

An example of decays of a reactant and reference compound following a relative rate

experiment is shown in Figure 6-1(a), with the linear plot described by Eq. 6-5 being

illustrated in Figure 6-1(b). The linear fit to Figure 6-1(b), shown by the solid red line,

gives the relative rate ratio of kreactant / kreference, from which the rate coefficient for the

reaction of the reactant compound with the reactive species (Cl atoms in this case) is

determined from the well-defined literature rate coefficient of the reference compound

with the reactive species.
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(a) (b)

Figure 6-1: (a) example decay as would be produced from a relative rate experiment. (b) example
relative rate plot of ln([reactant]0 / ln[reactant]t) vs. ln([reference]0 / [reference]t) where the
solid red line represents the linear fit to the data, with the gradient giving the ratio of
kreactant / kreference.

The accuracy of the rate coefficients determined by the relative rate method is dependent

on the accuracy of the reference rate coefficient; however, the relative rate ratio is

reported so that the reference rate coefficients can be updated as more accurate values are

reported in the literature.

6.2 Cl + Butanol Temperature Dependent Relative Rate Studies

As discussed in Chapter 1, the isomers of butanol are of particular interest in atmospheric

chemistry as they show great potential for use as biofuels. OH is the most abundant

oxidising agent in the troposphere, however, Cl atoms also play an important role in VOC

oxidation processes under certain conditions in the troposphere (Simpson et al. 2015). Cl

atoms typically react considerably faster with VOCs as compared to the reaction of OH

with VOCs in the troposphere (e.g. kCl + CH4 = (1.0 ± 0.14) × 10-13 molecule cm-1 s-1

compared to kOH + CH4 = (6.4 ± 0.89) × 10-15 molecule cm-1 s-1 (Atkinson et al. 2006)).

Oxidation reactions and product studies of iso-butanol are presented in Chapter 7 and

Chapter 8 of this thesis, with comparisons made between OH radical and Cl atom

chemistry, and with the analogous, non-substituted alkane; iso-butane. Only one previous

temperature dependent study of the kinetics of n-butanol with Cl atoms has been reported

in the literature (Garzón et al. 2006); the rate coefficients were measured by an absolute

method; pulsed laser photolysis resonance fluorescence (PLP-RF). A number of relative

rate studies have been reported for the determination of the room temperature rate

coefficient of n-butanol with Cl atoms (Nelson et al. 1990, Wu et al. 2003, Hurley et al.

2009). Photolysis of Cl2 or COCl2 was used as the Cl atom source, and cyclohexane,

propane, acetylene, ethene and propene were used as reference compounds. Garzón et al.
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(2006) reported a value for the room temperature rate coefficient slightly lower,

(1.96 ± 0.19) × 10-10 cm3 molecule-1 s-1 at 298 K, than that recommended by IUPAC

(Atkinson et al. 2006), (2.21 ± 0.41) × 10-10 cm3 molecule-1 s-1 at 298 K, and lower than

those presented from relative rate studies. Previous Cl atom rate coefficients measured

using the absolute PLP-RF method have been shown to give values more than a factor of

two lower than other literature values (Farrugia et al. 2015). It was suggested that these

lower values are likely due to the reaction of alkyl radicals, R∙, in the system with the high

concentration of Cl2 present to regenerate Cl atoms, described by R 6-4 to R 6-6.

Cl2 + hν  →  Cl  +  Cl R 6-4

RH  +  Cl  →  R∙ + HCl R 6-5

R∙ + Cl2  →  RCl  +  Cl R 6-6

The lower value at 298 K reported by Garzón et al. (2006) for the rate coefficient for the

reaction of Cl atoms with n-butanol is within the error of the IUPAC recommended value.

Garzón et al. (2006) reported a slight negative temperature dependence of the reaction of

n-butanol with Cl atoms over the range 264 – 382 K. In the study presented here,

cyclohexane was used as a reference compound, and experimental relative rate ratios were

put on an absolute basis using k(cyclohexane + Cl) = (3.08 ± 0.12) × 10-10 cm3 molecule-1 s-1

(Aschmann and Atkinson 1995).

Cl2 photolysis is routinely used as a Cl atom source for kinetic and mechanistic studies in

the HIRAC chamber, and so this was chosen as the Cl atom source for these experiments.

Previous chlorine atom relative rate studies in HIRAC have shown excellent agreement

with literature values (Farrugia et al. 2015).

Experimental

Experiments were carried out in the HIRAC chamber at an ambient pressure of 1000 mbar

over the temperature range 266 – 343 K. The HIRAC chamber temperature control

system is described in Chapter 2. Experiments were carried out in 80% N2 (BOC,

99.998% purity) and 20% O2 (BOC, 99.999% purity) with all four mixing fans on.

HIRAC was evacuated to <1 mbar between experiments in order to clean the chamber.

Chlorine atoms were produced from the photolysis of molecular chlorine using UV-B

photolysis lamps (Philips TL 40 W/12 RS SLV). Cl2 (~6 – 9 ppmv, Sigma-Aldrich,

≥99.5%) was introduced into the chamber as a gas via a vacuum line. Hydrocarbons 

(~2 ppmv) iso-butanol (Sigma-Aldrich, ≥99.0%), n-butanol (Sigma-Aldrich, ≥99.4%) 
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and cyclohexane (Fisher Scientific, >99%.) were injected directly into the chamber with

a 50 ± 0.5 μl glass syringe. 

The decay of the hydrocarbons were monitored by two GC-FIDs. One GC, GC1, was

fitted with a DB-WAX polyethylene glycol column (15 m length, 0.25 μm film and 

0.32 mm internal diameter). The second GC, GC2, was fitted with a CP-Sil-5CB 100%

dimethylpolysiloxane column (50 m length, 0.25 μm film and 0.32 mm internal 

diameter). For studies of n-butanol, the GC1 oven temperature was held at 40 °C and the

GC2 oven temperature was held at 100 °C for the duration of the experiments. For studies

of iso-butanol, the GC1 oven temperature was held at 42 °C and the GC2 oven

temperature was held at 90 °C for the duration of the experiments. The sampling system

for GC measurements from HIRAC has been described in Chapter 2.

Errors are calculated as the sum in quadrature of the accuracy and precision in the

measured rate coefficients. Linear least squares regression analysis of the plots of

ln([reactant]0 / [reactant]t) vs. ln([reference]0 / [reference]t) yield a straight line plot where

the gradient is the relative ratio of the two rate coefficients. For each individual

experiment (multiple experiments were carried out for each temperature), a rate

coefficient was calculated using Eq. 6-6. Error in the calculated kreactant values was

propagated from the error in the gradient and the error in the literature reference rate

coefficient. Final values quoted are the average calculated kreactant values, with their

propagated uncertainties.

kreactant = gradient × kreference Eq. 6-6

Due to the low vapour pressures of both n-butanol (4 mmHg at 20 °C) and iso-butanol

(8 mmHg at 20 °C), difficulties were encountered in the delivery of these compounds into

HIRAC, especially at low temperatures for iso-butanol. The concentrations of both

n-butanol and iso-butanol took considerable time to stabilise in HIRAC at ~265 K and

~275 K. Figure 6-2 shows the GC peak heights for both n-butanol and cyclohexane during

the course of one experiment at ~265 K.
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Figure 6-2: Plot to show the stability of n-butanol and cyclohexane at ~265 K in HIRAC. Blue
squares represent n-butanol GC peak heights and green triangles represent cyclohexane GC
peak heights. Stability of compounds was tested without Cl2 present with the photolysis
lamps on, and with Cl2 present with the photolysis lamps off. Vertical lines indicate the
times at which the photolysis lamps were switched on and off, and when Cl2 was added to
the chamber.

N-butanol was present in the chamber prior to the first GC injection, and it was observed

to take ~1000 s to reach a stable concentration, as recorded from the peak height in the

GC chromatogram. Cyclohexane was added to the chamber at 640 s, and its peak height

shown in the GC chromatogram was immediately stable. Data points prior to the

photolysis lamps being switched on at 2280 s are representative of the wall losses for each

compound, which was taken into account during the analysis procedure. A small decrease

in the peak heights for both n-butanol and cyclohexane can be observed at ~4500 s in

Figure 6-2, due to the addition of Cl2 to HIRAC; a small amount of the total gas mixture

was evacuated from HIRAC in order to introduce the Cl2 gas from the vacuum line. The

lamps were switched on at ~ 6500 s, initiating the photolysis of Cl2 and the resultant decay

of n-butanol and cyclohexane was used to determine the value of k(n-butanol + Cl).

Similar wall effects were also observed for iso-butanol at temperatures of ~265 K and

~275 K, however, were much more significant than those observed for n-butanol at these

temperatures. Figure 6-3 shows the peak heights for both iso-butanol and cyclohexane

during the course of an experiment in HIRAC carried out at ~265 K.
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Figure 6-3: Plot to show the stability of iso-butanol and cyclohexane at ~275 K in HIRAC. Purple
circles represent iso-butanol GC peak heights and green triangles represent cyclohexane
GC peak heights. Stability was tested with Cl2 present with the lamps off.

Cyclohexane and iso-butanol were both present in the chamber prior to the first GC

injection. Similar to that of the n-butanol at ~265 K, the concentration of iso-butanol

following injection into the chamber took a significant time to stabilise as compared to

the cyclohexane which stabilised in concentration almost immediately. Again, wall losses

were be determined for iso-butanol and cyclohexane in the absence of Cl2 with the

photolysis lamps switched on and off. A dip in the peak heights observed at ~4400 s

coincided with the addition of Cl2 to the chamber. The decays of iso-butanol and

cyclohexane following the photolysis of Cl2 were used to determine the rate coefficient

for the reaction of iso-butanol with Cl atoms (6200 - 8580 s).

Considerable difference in the measured apparent wall loss was observed when measured

with the lamps off with Cl2 present, as compared to with the lamps on without Cl2 present

in HIRAC. This indicates that the iso-butanol is reacting in some way, however,

examination of FTIR spectra for these wall loss periods with the photolysis lamps on

showed no evidence of HCl production, which would be expected if the loss was due to

reaction with Cl atoms. It is possible that this increased loss rate could be due to reaction

with OH radicals on illumination of the chamber; compounds on the walls of the chamber

(e.g. nitrates or acids) may be photolysed when the photolysis lamps are turned on,
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producing OH radicals which would then react with the iso-butanol present. If this were

the case, it would be expected that the cyclohexane present in the chamber would also

react with any OH radicals present, and a value for k(iso-butanol + OH) could be determined

from the relative decays of iso-butanol and cyclohexane, however, this was not the case.

The wall losses are likely more complex than initially thought; arising from a combination

of affects under varying conditions of the chamber.

A significant difference in wall effects was observed with iso-butanol, dependent on the

cleanliness of HIRAC. The chamber had been previously been cleaned five months prior

to the first set of experiments being conducted at ~265 K and ~275 K. During experiments

carried out in September of 2016, HIRAC needed to be opened up for the replacement of

a broken quartz tube. During this time it was decided to carry out an extensive cleaning

procedure for the chamber. Due to the complex nature of the problems encountered at

low temperatures with the iso-butanol experiments, and the greatly differing k(iso-butanol + Cl)

values obtained from these experiments, these results have been excluded from further

analysis and discussion in this work. Detailed studies of the wall effects at different

temperatures of the isomers of butanol, and other low vapour pressure compounds of

interest to study in HIRAC, form the basis of ongoing work within the HIRAC laboratory.

Results and Discussion

Previous measurements of the rate coefficient of n-butanol with Cl atoms have been

carried out by a number of research groups, using both the relative rate technique and the

pulsed laser photolysis – resonance fluorescence technique. A comparison of previous

measurements with those obtained in this work is presented in Table 6-1. Only one

previous temperature dependence study has been reported for this reaction (Garzón et al.

2006), using the pulsed laser photolysis – resonance fluorescence absolute rate method.

The results obtained at room temperature in this work, for the relative ratio of rate

coefficients, 0.73 ± 0.03, are in good agreement with the previous values of 0.73 ± 0.03

and 0.66 ± 0.05 reported by Wu et al. (2003) and Nelson et al. (1990), respectively, where

cyclohexane was also used as the reference compound. The slightly lower value of

0.66 ± 0.05 reported by Nelson et al. (1990) results in a rate coefficient value of

(2.03 ± 0.15) × 10-10 cm3 molecule-1 s-1, within the error of the IUPAC recommended rate

coefficient for the reaction of n-butanol with Cl atoms; (2.2 ± 0.4) × 10-10 cm3

molecule-1 s-1. The room temperature rate coefficients obtained also agree well with those

obtained by Wu et al. (2003) and Hurley et al. (2009), where a range of reference
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compounds were used. Garzón et al. (2006) carried out a number of studies at room

temperature over a range of pressures (20 – 200 Torr), with no pressure dependence being

observed. The room temperature rate coefficient obtained in this work agrees, to within

the quoted error, with those determined by Garzón et al. (2006) over a range of pressures.

The IUPAC recommended rate coefficient for the reaction of n-butanol with Cl atoms is

(2.2 ± 0.4) × 10-10 cm3 molecule-1 s-1 at 298 K (Atkinson et al. 2006), obtained from

averaging the rates reported by Garzón et al. (2006), Nelson et al. (1990) and Wu et al.

(2003). As the only available temperature dependent study of this reaction is that reported

by Garzón et al. (2006), the IUPAC recommended temperature dependent rate coefficient

is this value, adjusted to return the IUPAC recommended rate coefficient at 298 K.

An example relative rate plot, produced for the reaction of n-butanol with Cl atoms at

298 K, using cyclohexane as the reference compound is shown in Figure 6-4, where the

straight line represents the relative rate ratio. In this example, a relative rate ratio of

0.71 ± 0.01 was obtained, resulting in a rate coefficient of kn-butanol = (2.20 ± 0.10) × 10-10

cm3 molecule-1 s-1 when put on an absolute basis using the reference rate coefficient of

kcyclohexane = (3.08 ± 0.12) × 10-10 cm3 molecule-1 s-1 (Aschmann and Atkinson 1995).
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Figure 6-4: Example relative rate data plot for the reaction of n-butanol + Cl using cyclohexane
as a reference at 298 ± 1 K and 1013 ± 4 mbar. The experiment was carried out in 80:20
N2:O2 and the decay of compounds was measured using two GC-FID systems. Error bars
represent 1σ errors, propagated from GC measurements. The red line shows the linear least 
squares regression analysis giving a slope of 0.71 ± 0.01 and an intercept of -0.01 ± 0.01.
kn-butanol = (2.20 ± 0.10) × 10-10 cm3 molecule-1 s-1. Error bars represent error in the
measurements to 1σ, errors in gradient and intercept are the standard error of the fitting 
procedure.

Arrhenius plots were obtained for both n-butanol and iso-butanol by plotting the natural

logarithm of the obtained rate coefficients against 1 / temperature, where the gradient is

equal to Ea/R and the intercept is equal to lnA, as described by equations Eq. 6-8 and

Eq. 6-7. Figure 6-5 and Figure 6-7 show the Arrhenius plots for the reactions of Cl atoms

with n-butanol and iso-butanol, respectively.

ln k = -
Ea

RT
+ ln A Eq. 6-7

ln k = gradient ×
1

T
+ intercept Eq. 6-8

k = A exp-Ea RT⁄ Eq. 6-9
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Figure 6-5: Arrhenius plot of the temperature dependent rate coefficient for the reaction of
n-butanol + Cl over the temperature range 265 – 345 K, determined in the HIRAC chamber
at a pressure of ~1000 mbar. The red line represents the linear least squares regression
analysis giving a gradient of 235.07 ± 34.45 and an intercept of -23.02 ± 0.11 cm3

molecule-1 s-1. Error bars represent error propagated from the error in the measurements to
1σ, errors in gradient and intercept are the standard error of the fitting procedure. 

Table 6-2 gives a comparison of the Arrhenius parameters obtained with those in the

literature, where the IUPAC value is based solely on that reported by Garzón et al. (2006),

for the reaction of n-butanol with Cl atoms. The value of Ea obtained from this study was

-1.95 ± 0.28 K, which is not in very close agreement with that reported by Garzón et al.

(2006) (Ea = -4.56 ± 0.54 K) or that recommended by IUPAC; Ea = -4.57 ± 1.66 K

(Atkinson et al. 2006). Considering the IUPAC recommended value of Ea is based only

on the one temperature dependent study reported by Garzón et al. (2006), it is difficult to

draw conclusions on the agreement of this work to the previous study. The Arrhenius

expression determined in this work, for the reaction of n-butanol with Cl atoms is given

by Eq. 6-10:

k = 1.01 × 10-10 exp((235 ± 34) T⁄ ) cm3 molecule-1 s-1 Eq. 6-10

over the temperature range 266 – 343 K.
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A / 10-10 cm3 molecule-1 s-1 Ea / kJ mol-1
Temperature

Range / K
Reference

31.2 ± 0.31 -4.56 ± 0.54 266 – 382 Garzón et al. (2006)

35.0 -4.57 ± 1.66 260 – 390 Atkinson et al. (2006)*

1.01 ± 0.30 -1.95 ± 0.28 266 – 343 This work

Table 6-2: Comparison of Arrhenius parameters for the temperature dependence for the reaction
of n-butanol with Cl atoms. *IUPAC recommended value.

Table 6-3 compares the rate coefficients determined in this work for the reaction of

iso-butanol with Cl atoms over the temperature range of 296 – 344 K, with those

previously reported in the literature. No previous temperature dependence for the rate

coefficient of the reaction of iso-butanol with Cl atoms has been reported in the literature.

Only two previous studies on the room temperature rate coefficient have been reported,

both using the relative rate method for the determination of kiso-butanol (Wu et al. 2003,

Andersen et al. 2010). The results obtained in this work were in very good agreement

with those reported previously, for the room temperature rate coefficient

((1.95 ± 0.14) × 10-10 cm3 molecule-1 s-1). Agreement was particularly good when

compared to the previous studies where cyclohexane was used as a reference compound;

(1.88 ± 0.07) × 10-10 cm3 molecule-1 s-1 reported by Andersen et al. (2010) and

(1.95 ± 0.11) × 10-10 cm3 molecule-1 s-1 reported by Wu et al. (2003). It should be noted

that the rate coefficients reported in Table 6-1 and Table 6-3, where cyclohexane was

used as the reference compound, have all been put on an absolute basis using the rate

coefficient of cyclohexane of (3.08 ± 0.12) × 10-10 cm3 molecule-1 s-1 (Aschmann and

Atkinson 1995).
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Figure 6-6 shows an example relative rate plot produced for the determination of the rate

coefficient of iso-butanol with Cl atoms at 297 K, where cyclohexane was used as a

reference compound. The gradient of the linear fit to the data gives the relative rate ratio,

in this example a value of 0.64 ± 0.01 was obtained, which, when put on an absolute basis

for the literature value of kcyclohexane + Cl from Aschmann and Atkinson (1995), returns a

value of kiso-butanol + Cl = (1.98 ± 0.09) × 10-10 cm3 molecule-1 s-1.

Figure 6-6: Example relative rate data plot for the reaction of iso-butanol + Cl using cyclohexane
as a reference at 297 ± 1 K and 1011 ± 2 mbar. The experiment was carried out in 80:20
N2:O2 and the decay of compounds was measured using two GC-FID systems. Error bars
represent 1σ errors, propagated from GC measurements. The red line shows the linear least 
squares regression analysis giving a slope of 0.64 ± 0.01 and an intercept of -0.01 ± 0.01.
kiso-butanol + Cl = (1.98 ± 0.09) × 10-10 cm3 molecule-1 s-1. Error bars represent error in the
measurements to 1σ, errors in gradient and intercept are the standard error of the fitting 
procedure.

An Arrhenius plot for iso-butanol temperature dependence of the rate coefficient for the

reaction with Cl atoms is shown in Figure 6-7, which gave an Ea of -3.06 ± 0.63 kJ mol-1.

The Arrhenius expression for the reaction of iso-butanol with Cl atoms is given by

Eq. 6-11:

k=5.53 × 10-11 exp((367±76) T⁄ ) cm3 molecule-1 s-1 Eq. 6-11

over the temperature range 296 – 344 K.
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Figure 6-7: Arrhenius plot of the temperature dependent rate coefficient for the reaction of
iso-butanol + Cl over the temperature range 296 – 344 K, determined in the HIRAC
chamber at a pressure of ~1000 mbar. The red line represents the linear least squares
regression analysis giving a gradient of 367.67 ± 76.27 and an intercept
of -23.62 ± 0.24 cm3 molecule-1 s-1. A = (5.53 ± 1.66) × 10-11 cm3 molecule-1 s-1. Error bars
represent the propagated error from the error in the measurements to 1σ, errors in gradient 
and intercept are the standard error of the fitting procedure.

The Arrhenius plots for the reaction of Cl atoms with both n-butanol and iso-butanol show

slight negative temperature dependence. For the reaction of n-butanol with Cl atoms, this

is in agreement with what has previously been shown by Garzón et al. (2006), where they

also reported slight negative temperature dependence for other alcohols, including

1-pentanol, 1-propanol and ethanol. They also noted that the rate coefficients of these

alcohols with Cl atoms increased with carbon number. The rate coefficients of for the

reaction of n-butane and iso-butane with Cl atoms have also been reported to show slight

negative temperature dependence (Sarzynski and Sztuba 2002), however, these studies

gave substantial errors, making the activation energy, in effect, zero.

The first relative rate temperature dependence study of the reaction of Cl atoms with

n-butanol over the temperature range 266 – 343 K is reported here. The rate coefficient

obtained in this work for the reaction of n-butanol and Cl atoms at 298 K,

(2.25 ± 0.11) × 10-10 cm3 molecule-1 s-1, is in excellent agreement with the IUPAC

recommended value of (2.2 ± 0.41) × 10-10 cm3 molecule-1 s-1 (Atkinson et al. 2006). The

value, (1.96 ± 0.19) × 10-10 cm3 molecule-1 s-1, reported by Garzón et al. (2006) is within
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error of the IUPAC recommended value, however, is lower than other literature values

using the relative rate technique. Other studies of Cl atom kinetics with hydrocarbons

have also shown that PLP-RF studies, often report lower values of rate coefficients than

those with the relative rate technique (Farrugia et al. 2015). It has been suggested that

these lower reported values are due to regeneration of Cl atoms by the reaction of alkyl

radicals with high concentrations of Cl2 present in the system (Kaiser and Wallington

2007, Farrugia et al. 2015). Agreement was observed for the temperature dependence of

the reaction of n-butanol with Cl atoms with that described by Garzón et al. (2006), where

a slight negative temperature dependence was reported both in this relative rate study and

the absolute study in the literature. Here, the Arrhenius expression

k = 1.03 × 10-10 exp((235 ± 34)/T) cm3 molecule-1 s-1 was determined, compared to

3.12 × 10-11 exp((548 ± 65)/T) cm3 molecule-1 s-1 determined by Garzón et al. (2006).

Further studies into the temperature dependence with different reference compounds

would assist in reducing the uncertainty. The relative rate method has been previously

shown to give good agreement with literature rate coefficients of hydrocarbons with Cl

atoms, such as those reported by Farrugia (2013) on the reaction of Cl atoms with a series

of ketones, carried out in the HIRAC chamber. Cl atom regeneration is not expected in

the relative rate method for the determination of rate coefficients of compounds with Cl

atoms.

Two temperature dependent studies for the reaction of OH radicals with n-butanol have

been reported in the literature; those by McGillen et al. (2013) and by Mellouki et al.

(2004). The former reported on the temperature dependence between 220 and 380 K

where non-Arrhenius behaviour was observed, and the latter between 241 and 373 K

where the Arrhenius expression k = 5.3 × 10-12 exp[(146 ± 92)/T] was reported. The

study by McGillen et al. (2013) reports on the temperature dependence for the rate

coefficients of all four isomers of butanol with OH radicals over the temperature range

220 – 380 K, where non-Arrhenius behaviour was observed for all compounds, made

more apparent when their data was combined with high temperature data available in the

literature. McGillen et al. (2013) discuss the site specific reactions for the OH attack of

the four isomers of butanol; at tropospherically relevant temperatures. Over the same

temperature range, 265 – 345 K, as has been studied in this work for the rate coefficient

of n-butanol and iso-butanol with Cl atoms, McGillen et al. (2013) also reported a

negative temperature dependence for the rate coefficients with OH radicals. Temperature

dependence has also been observed for the analogous non-functionalised alkanes;
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n-butane and iso-butane for their rate coefficients with Cl atoms (Farrugia 2013),

however, are not as strongly temperature dependent as the results reported in this work

for n-butanol and iso-butanol.

The first study of the temperature dependence of iso-butanol with Cl atoms has been

reported here. Excellent agreement was obtained with the literature for the rate coefficient

of k(iso-butanol + Cl) at room temperature, were a value of k = (1.95 ± 0.14) × 10-10 cm3

molecule-1 s-1 was determined. Again, a slight negative temperature dependence was

observed. Due to the complex nature of the wall effects observed with iso-butanol in a

metal chamber such as HIRAC, the temperature dependence could not be determined

below ~298 K. Work is ongoing into better understanding these wall effects in order to

accurately determine the rate coefficient of iso-butanol with Cl atoms at lower

temperatures. Again, further studies with a range of reference compounds would also

assist in reducing any uncertainties in the determination of the temperature dependence

for the reaction of Cl atoms with iso-butanol.

Tropospheric chlorine chemistry has seen increased interest in recent years; Cl atoms are

important oxidising agents in the atmosphere and their precursors are found in a range of

environments across the globe including the Arctic, the marine boundary layer and in

urban areas (Saiz-Lopez and von Glasow 2012, Faxon and Allen 2013). Fully

understanding the kinetics and mechanisms of the butanol isomers is critical in assessing

their suitability as biofuels. The reaction of Cl atoms with butanols, in the presence of

NOx, leads to the formation of ozone in the atmosphere. The importance of ozone in the

atmosphere has been described in Chapter 1; Chapter 7 reports a detailed study of the

products of the atmospheric oxidation of iso-butanol with both Cl atoms and OH radicals

under a range of [NOx] concentrations relevant to the urban atmosphere.

The temperature dependence of the site specific reactions of OH radicals with the four

isomers of butanol has been reported by McGillen et al. (2013); where non-Arrhenius

behaviour was observed for all isomers. The analogous rate coefficients with Cl atoms,

as has been described in this work, may be expected to follow a similar temperature

dependence. Negative temperature dependence has been observed for the rate coefficients

of n-butanol and iso-butanol with OH radicals over a similar temperature range as in this

work, 265 – 345 K, with a slightly stronger temperature dependence having been reported

in the literature. The attack of Cl atoms is typically less selective than that of OH radicals;
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as is deduced from end product studies of n-butanol and iso-butanol with both Cl atoms

and OH radicals.

Garzón et al. (2006) studied the rate coefficients for the reaction of Cl atoms with a series

of alcohols; methanol, ethanol, n-propanol, n-butanol and n-pentanol. With the exception

of methanol, all of the alcohols showed a negative temperature dependence over the

temperature range 264 – 382 K, with the temperature dependence becoming more

pronounced as the carbon chain was increased from ethanol to n-pentanol. This trend in

reactivity towards Cl atoms for the series of alcohols has also been reported by Wallington

and Kurylo (1987), Wallington et al. (1988), Nelson et al. (1990) and Wu et al. (2003).

The study by Garzón et al. (2006) concluded the observed temperature dependencies for

methanol, ethanol, n-propanol, n-butanol and n-pentanol are indicative of the carbon

chain lengths; the positive temperature dependence observed for the reaction of methanol

with Cl atoms is characteristic of compounds only containing CH3 groups, with the

presence of CH2 groups in the other alcohols studied typically resulting in a negative

temperature dependence. Similar temperature dependencies have also been reported for a

series of ketones and aldehydes with CH2 groups (Cuevas et al. 2004, Cuevas et al. 2006).

The Arrhenius expressions for the reaction of Cl atoms with n-butanol and iso-butanol

from this work are compared with those recommended by IUPAC for the reaction of OH

radicals with n-butanol and iso-butanol in Table 6-4. A negative temperature dependence

is reported for all four reactions; with the dependence being stronger for the reaction with

Cl atoms for n-butanol and iso-butanol than with OH radicals.

n-butanol iso-butanol Reference

k(Cl + butanol)

/ cm3 molecule-1 s-1

1.10 × 10-10 exp(235 / T) 5.53 × 10-11 exp(367 / T)

This Work

Temperature / K 266 – 343 296 - 344

k(OH + butanol) / cm3

molecule-1 s-1
5.3 × 10-12 exp(140 / T) 2.73 × 10-12 exp(352 / T)

Atkinson et al.

(2006)

Temperature / K 260 - 380 240 - 370

Table 6-4: Comparison of Arrhenius expressions determined from this work for the rate
coefficients of Cl atoms with n-butanol and iso-butanol and IUPAC recommended
Arrhenius expressions for the rate coefficients of OH radicals with n-butanol and
iso-butanol.
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An article by Sims (2013) discusses temperature dependencies of chemical reactions,

showing how negative temperature dependencies are characteristic of barrierless

reactions which proceed via a weakly bound intermediate complex, illustrated by the

potential energy surface diagram in Figure 6-8. As the temperature decreases, the

intermediate complex is more stabilised, allowing for the reaction to proceed towards the

products of the reaction. At higher temperatures, the intermediate complex is less stable,

and dissociates back to the reactant species.

Figure 6-8: The potential energy surface (top) and temperature dependence (bottom)
characteristic of reactions with negative temperature dependencies. Adapted from Sims
(2013).

As discussed, the negative temperature dependence of straight chain alcohols is related to

the number of carbons in the chain, where for the room temperature rate coefficients for

their reaction with Cl atom; k(Cl + methanol) < k(Cl + ethanol) < k(Cl + n-propanol) < k(Cl + n-butanol)

< k(Cl + n-pentanol), with the reaction of ethanol and Cl atoms having a positive temperature

dependence, characteristic of compounds with only a CH3 group present. The reaction of

OH radicals with straight chain alcohols also show a similar trend in their reactivities;

k(OH + methanol) < k(OH + ethanol) < k(OH + n-propanol) < k(OH + n-butanol), where the rate coefficient for

the reaction of OH radicals with methanol shows a positive temperature dependence and

the other alcohols show a negative temperature dependence which becomes more

pronounced as the carbon chain is increased. In all alcohol reactions with Cl atoms or OH

radicals where a negative temperature dependence is observed, the temperature

dependence is more pronounced for the reaction with Cl atoms as compared to OH

radicals, and also becomes more pronounced as the carbon chain is increased. The

negative temperature dependence reported in this work for the rate coefficient for the
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reaction of iso-butanol with Cl atoms is only slightly more pronounced than that of the

reaction with OH radicals. In contrast, no temperature dependence is observed for the rate

coefficient for the reaction of iso-propanol with Cl atoms, and a strongly negative

temperature dependence is observed for its reaction with OH radicals. The difference in

these observations is related to the structures of the compounds (shown in Figure 6-9);

negative temperature dependencies are typical of compounds with CH2 groups, where

n-propanol, n-butanol and iso-butanol all have CH2 groups and iso-propanol does not.

n-propanol n-butanol

iso-propanol iso-butanol

Figure 6-9: Structures of n- and iso-propanol and n- and iso-butanol.

Tropospheric concentrations of Cl atoms are typically lower than concentrations of OH

radicals, 105 molecule cm-3 and 106 molecule cm-3, respectively. The reaction of n-butanol

and iso-butanol with Cl atoms would become a significant loss pathway in environments

where Cl atom concentrations are high, such as in the marine boundary layer and in

certain urban areas as has been discussed in Chapter 1. The negative temperature

dependencies reported are likely to have a significant impact on the tropospheric

production of ozone in such environments.
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Chapter 7. Product studies of the
oxidation of iso-butanol in the presence
and absence of NOx

7.1 Introduction

The use of alcohols as biofuels has been discussed in detail in Chapter 1. The four isomers

of butanol demonstrate potential for use as biofuels due to their physical properties being

more similar to that of petrol than ethanol or methanol. The production of biofuels will

inevitably lead to an increase in their release into the troposphere from fugitive emissions;

through direct emission of gaseous fuels or evaporation into the atmosphere. An increase

in biofuel oxidation products, primarily carbonyl compounds, would therefore also be

expected. Biofuels have been shown to reduce regulated pollutants, however, they are

known to produce and increase in unregulated emissions such as carbonyls, which could

potentially be more harmful to the atmosphere (Cardone et al. 2002, Fontaras et al. 2009,

He et al. 2009, Lin et al. 2009, Chai et al. 2013). The oxidation of VOCs in the atmosphere

is closely linked to the formation of tropospheric ozone and other pollutants. Iso-butanol

has seen interest as a second generation biofuel as has been discussed in Chapter 1. Before

any potential biofuel can be put into use as a vehicle fuel, a detailed understanding of its

oxidation processes is required in order to fully assess the atmospheric implications of its

oxidation products, including its potential to produce ozone.

As discussed in Chapter 1, OH radicals are the most abundant oxidising agent in the

troposphere, and so it is vital to investigate the processes occurring throughout the OH

radical initiated oxidation of iso-butanol. Cl atoms are also widely employed to

investigate kinetics and oxidation processes of tropospherically relevant VOCs under

atmospheric conditions. The kinetics of Cl atom initiated reactions are typically 10 – 100

times faster than the analogous OH radical initiated reactions. Cl atoms are typically

formed in atmospheric simulation chamber studies following the photolysis of molecular

chlorine (Cl2) or oxalyl choloride, (COCl)2, at wavelengths <300 nm, R 7-1 and R 7-2.
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Cl2 + hν(λ < 300 nm)  →  Cl  +  Cl R 7-1

(COCl)2 + hν(λ < 300 nm)  →  2Cl  +  CO R 7-2

OH radicals are typically produced in chamber studies following the photolysis of methyl

nitrite, CH3ONO at wavelengths ≥290 nm, or the photolysis of HONO: 

CH3ONO + hν(λ ≥ 290 nm)  →  CH3O + NO R 7-3

CH3O + O2  →  CH2O + HO2 R 7-4

HO2  +  NO  →  OH  +  NO2 R 7-5

HONO + hν(190 nm < λ < 400 nm)  →  OH  +  NO R 7-6

The use of CH3ONO or HONO as OH radical precursors leads to high concentrations of

NOx being present in the chamber. Peroxides such as hydrogen peroxide (H2O2) and

tert-butyl hydroperoxide (tBuOOH) can also be photolysed to produce OH radicals in

chamber studies, however, the photolysis of peroxides occurs at much shorter

wavelengths, typically photolysis lamps with a maximum output at ~254 nm are used.

The use of peroxides as OH precursors allows for OH radical initiated processes to be

investigated in the absence of NOx.

H2O2 + hν(λ > 230 nm) → OH + OH R 7-7

The use of 254 nm lamps for the photolysis of peroxides can lead to some complications

arising from the photolysis of oxidation products, influencing product yields. When

carrying out investigations into ozone formation under varying NOx conditions, the sole

use of 254 nm photolysis lamps is not sufficient as longer wavelengths (λ > 300 nm) are 

required in order to facilitate ozone formation following R 7-8 and R 7-9:

NO2 + hν(λ > 300 nm)  →  NO  +  O(3P) R 7-8

O(3P) + O2  →  O3 R 7-9

In this case, two sets of lamps with maximum wavelength output, one at 254 nm and one

at 360 nm are used in order to ensure NO2 is photolysed to NO and O(3P).

Previous chamber oxidation product studies of VOCs, specifically those of the isomers

of butanol, have investigated the OH radical initiated oxidation only in the presence of

NOx (Cavalli et al. 2002, Hurley et al. 2009, Andersen et al. 2010) as CH3ONO or HONO
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were employed as the OH precursor. Cl atom initiated oxidation studies of butanol

isomers in the literature have been reported in both the presence and absence of NOx,

(Hurley et al. 2009, Andersen et al. 2010), however, these studies were carried out in the

presence of very high concentrations of NOx, ~100 ppmv; levels typically not observed

in the troposphere.

The studies presented here are the first reported on the products of the OH radical initiated

oxidation of iso-butanol in the absence of NOx, employing H2O2 as the OH radical

precursor. They are also the first reported under varying levels of tropospherically

relevant concentrations of NO, allowing for more relevant conclusions to be drawn on the

implications of the OH radical initiated oxidation of iso-butanol. The Cl atom initiated

oxidation process of iso-butanol is also reported in the absence of NOx for comparison

with previous literature studies (Andersen et al. 2010); and in the presence of varying

levels of tropospherically relevant concentrations of NO for comparison with the OH

radical initiated oxidation of iso-butanol in the presence of varying initial NO

concentrations.

Tropospheric ozone is harmful to both plant and animal life (Krupa et al. 1998, Felzer et

al. 2007, Ellingsen et al. 2008, Monks 2009); its formation is closely related to VOC

oxidation in high NOx environments. The first measurements of ozone concentrations

following the oxidation of iso-butanol by either Cl atoms or OH radicals in the absence

and presence of varying initial NO concentrations are presented. Comparison is drawn on

the ozone formation between the iso-butanol oxidation and the oxidation of iso-butane.

The comparison with iso-butane was used as the analogous non-functionalised alkane in

order to better understand the impact of the alcohol functional group of potential biofuel

compounds.

Measurements of OH reactivity provide valuable information on the total loss rate of OH

within the specific environment where measurements are being carried out (Kaiser et al.

2016, Whalley et al. 2016, Fuchs et al. 2017). The ability to measure OH reactivity in

chamber studies allows for more in depth investigation into the discrepancies typically

observed between measured and calculated OH reactivity from field studies. In chamber

studies, chemical reactions can be studied in isolation, with knowledge of exact

compounds being inputted into the system. By comparing measured and calculated OH

reactivity for such constrained reaction systems, it is possible to gain further insight into

our understanding of the chemical processes occurring. The first OH reactivity
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measurements following the oxidation of VOCs in the HIRAC chamber are presented in

Chapter 8, with comparison to calculated OH reactivity, from measured species, made for

the Cl atom and OH radical oxidation of iso-butanol and iso-butane in the absence and

presence of varying initial NO concentrations.

7.2 Experimental

All experiments were carried out in the HIRAC chamber at ambient temperature and

pressure of ~298 K and ~1000 mbar. HIRAC was filled to 1000 mbar with 80% N2 (BOC,

99.998% purity) and 20% O2 (BOC, 99.999% purity). GC-FID with a CP-Sil 5CB (50 m

length, 0.32 mm i.d., 5 μl film thickness) column was used to quantify concentrations of 

iso-butanol, iso-butane, iso-butyraldehyde and acetone for all of the experiments carried

out. FTIR spectra were used to quantify iso-butanol, iso-butane and formaldehyde for all

of the experiments carried out. It was not possible to detect formaldehyde using the

GC-FID.

OH and HO2 radicals were measured using the HIRAC FAGE instrument, as described

in Chapter 3 and OH reactivity was measured with the LFP-LIF instrument as described

in Chapter 4. OH reactivity measurements are discussed in Chapter 8. O3 and NOx (NO

and NO2) were measured using commercial instruments; Thermo Envirnomenal

Instruments Inc. Model 49C UV Photometric O3 Analyzer (LOD = 1 ppbv) and Thermo

Environmental Instruments Inc. Model 42C Trace Level Chemiluminescence

NO-NO2-NOx Analyzer (LOD = 50 pptv).

Iso-butyraldehyde formed in the oxidation reactions with both Cl and OH initiated

chemistry, can subsequently react with any Cl atoms or OH radicals present in the

chamber:

Iso-butyraldehyde + Cl
kCl+iso-butyraldehyde
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ products R 7-10

Iso-butyraldehyde + OH
kOH+iso-butyraldehyde
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ products R 7-11

and it was necessary to take this into account in the product yield analysis. In the OH

radical systems, significant loss of iso-butyraldehyde due to photolysis also needed to be

taken into consideration. Iso-butyraldehyde is known to photolyse at wavelengths of

230 - 350 nm (Martinez et al. 1992, Chen et al. 2002).
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Iso-butyraldehyde + hν
jiso-butyraldehyde
ሱ⎯⎯⎯⎯⎯⎯⎯⎯⎯ሮ products R 7-12

In all experiments, loss of reactants and products due to dilution of HIRAC by the large

total sampling flow of ~8 l min-1 was also considered. These losses can be observed by

the curvature of the iso-butyraldehyde concentration profiles, shown in Section 7.3 and

Section 7.4. Knowing the loss processes involved, the product data can be fitted using

Eq. 7-1, similar to that described by Meagher et al. (1997) and used by Andersen et al.

(2010) for analysis of iso-butanol oxidation product data (see Appendix A for derivation

of Eq. 7-1).

y =
α h⁄

1-ቀ
g
hቁ

(1-x)ቄ(1-x)ቀ



- 1ቁ-1ቅ Eq. 7-1

h =
kRH[OH] + kdil

kRH[OH]
Eq. 7-2

g =
kprod[OH] + kdil + j

prod

kRH[OH]
Eq. 7-3

y =
[prod]t

[RH]0

Eq. 7-4

x = 1 -
[RH]t

[RH]0

Eq. 7-5

where kRH is the rate coefficient for the reaction of the reactant and the oxidising agent

(Cl or OH), kprod is the rate coefficient for the reaction of the product (iso-butyraldehyde)

and the oxidising agent (Cl or OH), kdil is the rate of loss due to dilution in the chamber

and jprod is the photolysis rate of the product (iso-butyraldehyde) in the chamber. The

values of kRH and kprod are taken from the literature, values of kdil are determined for each

experiment from counter flow data and/or dilution measurements of the reactant prior to

the initiation of the oxidation reaction, and jprod was determined for each measured

compound in separate photolysis experiments.

7.2.1 Cl Atom Initiated Oxidation Studies

The photolysis of molecular chlorine was used to produce Cl atoms in the HIRAC

chamber at a wavelength of ~360 nm. Cl2 ((1.24 – 1.69) × 1014 molecule cm-3) was added

to the chamber via the delivery vessel. Iso-butanol (2.90 × 1013 molecule cm-3) was

injected directly into the chamber using a 50 ± 0.5 μl syringe, over a flow of N2.
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Iso-butane ((3.31 – 4.10) × 1013 molecule cm-3) was injected into the chamber via the

delivery line (described in Chapter 2) as a gas. All measurements were carried out as

described above in Section 7.2. Experiments were typically run for 20 - 30 minutes.

7.2.2 OH Radical Initiated Oxidation Studies

Iso-butanol (2.9 × 1013 molecule cm-3) was injected directly into the chamber using a

50 ± 0.5 μl syringe over a flow of N2. Iso-butane was introduced into the chamber via the

delivery vessel as described in Chapter 2. H2O2 (8.95 × 1013 molecule cm-3) was injected

directly into the chamber using a 50 ± 0.5 μl syringe over a flow of N2. OH radical

initiated oxidation experiments employed the use of two sets of photolysis lamps; GE

G55T8 / OH 7G UVC photolysis lamps with a maximum output at ~254 nm were used

to photolyse the OH precursor, and Philips TL-K 40W/05 lamps with a maximum output

at ~360 nm were required in order to investigate O3 formation from the oxidation of the

selected hydrocarbons.

7.3 Cl Atom Initiated Oxidation of Iso-butanol

7.3.1 Studies in the Presence of NOx

Mixtures of iso-butanol, Cl2 and NO in 1000 mbar 4:1, N2:O2, were irradiated using black

lamps with a maximum output at ~360 nm in order to investigate the products of the Cl

atom initiated oxidation process of iso-butanol in the presence of NOx. Iso-butyraldehyde,

acetone and HCHO were observed as major products following the oxidation process in

all experiments conducted.

The formation of iso-butyraldehyde following the oxidation of iso-butanol by Cl atoms,

under varying initial NO concentrations, is shown in Figure 7-1. The dashed lines

represent the linear least squares fit to the data, with the intercept forced through zero, for

<30% consumption of iso-butanol, where the gradient represents the initial yield of

iso-butyraldehyde. These gradients are given in Table 7-1. No clear trend in the initial

yield of iso-butyraldehyde is observed, indicating that other factors may be influencing

the formation of iso-butyraldehyde. It would be expected that in cases where the initial

NO concentration was similar, such as 61 ppbv and 73 ppbv initial NO, that the initial

yield of iso-butyraldehyde would also be similar. In fact, this was not observed, with the

initial iso-butyraldehyde yield with 61 ppbv initial NO being 94%, and 68% with 73 ppbv

initial NO. This suggests that the initial yield was influenced by the initial concentrations

of other species within HIRAC, such as OH and HO2 radicals, or NO2. These species will

be discussed later in this section. Under all initial NO concentrations, the
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iso-butyraldehyde is observed to go through a maximum and decay towards zero as the

iso-butanol was consumed. This was expected, as iso-butyraldehyde will react with Cl

atoms present, at a faster rate than the reaction of iso-butanol with Cl atoms

(kCl + iso-butyraldehyde = (1.37 ± 0.08) × 10-10 cm3 molecule-1 s-1 and

kCl + iso-butanol = (2.06 ± 0.40) × 10-10 cm3 molecule-1 s-1) (Andersen et al. 2010); OH

radicals are also formed during the Cl atom initiated oxidation process, with which the

iso-butyraldehyde can react.

Andersen et al. (2010) noted that iso-butanol may also be lost through reaction with OH

radicals, which is produced in the Cl atom initiated oxidation experiments in the presence

of NOx, however, they observed no significant impact on the iso-butyraldehyde yield and

concluded that the OH radicals did not play an important role in the chemistry occurring.

The authors were able to fit their experimental data using an equation similar to Eq. 7-1,

taking into account the loss of iso-butyraldehyde from its reaction with Cl atoms.

In the work presented here, initial Cl2 concentrations were nearly 100 times lower than

those used in the study by Andersen et al. (2010), (1.24 – 1.69) × 1014 molecule cm-3 and

(4.21 – 8.04) × 1015 molecule cm-3. It was not possible to obtain a value for the initial

yield of iso-butyraldehyde by fitting the experimental data with Eq. 7-1; it is likely that

higher initial [OH] present in HIRAC, and the lower initial [Cl2] lead to OH radicals

playing a more significant role in the chemistry occurring than in the work presented by

Andersen et al. (2010). This result indicates the importance of understanding the chemical

processes occurring at varying ratios of Cl:OH in the troposphere; concentrations of OH

radicals in the troposphere are typically considerably greater than Cl atoms.
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Figure 7-1: Formation of iso-butyraldehyde vs. the loss of iso-butanol following the Cl
atom initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the presence of NOx. Dashed lines represent linear least
squares fit to the data with the intercept fixed through zero at <30% iso-butanol
consumption.

[NO] / ppbv Gradient

61 0.94

73 0.68

101 0.41

136 0.61

162 0.35

250 0.57

Table 7-1: Iso-butyraldehyde production yields following the Cl atom initiated oxidation
of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in
the presence of NOx. Gradients represent linear least squares fit to the data where
the intercept is fixed through zero for iso-butanol consumption <30%.

Figure 7-2 shows the formation of acetone vs. the loss of butanol under a range of initial

NO concentrations. No curvature is observed in the acetone formation, unlike the

iso-butyraldehyde formation. The kinetics of the reaction of acetone with Cl atoms are

considerably slower (kCl + acetone = (2.10 ± 0.29) × 10-12 cm3 molecule-1 s-1 (Atkinson et al.
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2006)) than that of the reaction of Cl atoms with iso-butanol

(kCl + iso-butanol = (2.06 ± 0.40) × 10-10 cm3 molecule-1 s-1) (Andersen et al. 2010), and so no

loss of acetone was observed. A general trend is observed in that as the initial [NO] was

increased, the yield (taken from the gradient of the linear least squares fit fixed through

zero) decreased. Yields determined from the linear least squares fit to the data in

Figure 7-2 are given in Table 7-2.

Figure 7-2: Formation of acetone vs. the loss of iso-butanol following the Cl atom
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the presence of NOx. Dashed lines represent linear least
squares fit to the data with the intercept fixed through zero. Values reported in the
text refer to linear least squares fit to the data without the intercept fixed (see
Table 7-2).

Andersen et al. (2010) reported an acetone yield of 35 ± 3% following the Cl atom

initiated oxidation of iso-butanol in the presence of NOx; this is in good agreement with

the yields reported in Table 7-2 for the studies carried out at the highest concentrations of

initial NO in HIRAC (36 ± 1% for an initial NO concentration of 162 ppbv and 45 ± 2%

for an initial NO concentration of 250 ppbv). These acetone yields, however, should be

taken as upper limits as no correction has been made for the formation of acetone

following subsequent reactions of iso-butyraldehyde within the system.
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[NO] / ppbv Gradient Intercept

61 0.60 ± 0.03 -0.03 ± 0.01

73 0.61 ± 0.01 0.004 ± 0.009

101 0.49 ± 0.01 -0.02 ± 0.01

136 0.57 ± 0.01 0.02 ± 0.01

162 0.36 ± 0.01 0.01 ± 0.01

250 0.45 ± 0.02 0.01 ± 0.01

Table 7-2: Acetone production yields following the Cl atom initiated oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
presence of NOx. Gradients represent linear least squares fit to the data where the
intercept is not fixed through zero. Errors represent the standard error from the
fitting procedure.

The formation of HCHO vs. the loss of iso-butanol is shown in Figure 7-3, for varying

initial NO concentrations. Again, a general trend is observed; the initial yield of HCHO

(represented by the linear least squares fit line to the data for <40% iso-butanol

consumption with the intercept forced through zero) decreases with increasing initial

[NO] to a minimum, and then increased again. Table 7-3 details the initial yields of

HCHO, for <40% iso-butanol consumption. As the initial [NO] was increased, the

potential for OH formation following reaction R 7-13 increased, leading to more OH

radicals present in the system to react with the iso-butanol and its oxidation products.

NO + HO2  →  OH  +  NO2 R 7-13

NO2 + hν  →  NO  +  O(3P) R 7-14
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Figure 7-3: Formation of HCHO vs. the loss of iso-butanol following the Cl atom initiated
oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total
pressure in the presence of NOx. Dashed lines represent linear least squares fit to
the data (for <40% iso-butanol consumption) with the intercept fixed through zero.
Values reported in the text refer to linear least squares fit to the data without the
intercept fixed (see Table 7-3).

[NO] / ppbv Gradient Intercept

61 0.59 ± 0.12 0.01 ± 0.02

73 0.47 ± 0.03 0.01 ± 0.01

101 0.28 ± 0.03 0.01 ± 0.01

136 0.20 ± 0.02 0.01 ± 0.01

162 0.29 ± 0.03 -0.001 ± 0.004

250 0.57 ± 0.04 0.002 ± 0.009

Table 7-3: HCHO production yields following the Cl atom initiated oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
presence of NOx. Gradients represent linear least squares fit to the data (for <40%
iso-butanol consumption) where the intercept is not fixed through zero. Errors
represent the standard error from the fitting procedure.

Curvature is observed in Figure 7-3 for the formation of HCHO vs. the loss of iso-butanol,

whereas no curvature is observed in the analogous plot for acetone in Figure 7-2. This
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difference is attributed to the relative reactivities of acetone and HCHO with Cl atoms

and OH radicals. The reaction of acetone with Cl atoms is two orders of magnitude slower

than that of iso-butanol with Cl atoms, whereas the reaction of HCHO with Cl atoms is

comparable with that of iso-butanol with Cl atoms.

It is assumed that both iso-butanol and acetone are additionally lost due to dilution only,

where the gradient obtained from a linear least squares fit gives the yield of acetone.

Yields of acetone quoted should be taken as an upper limit; it is known that acetone will

also be formed following the reaction of iso-butyraldehyde with OH radicals or Cl atoms

present in the system, as described by R 7-15 to R 7-21, giving an overestimation of the

yield of acetone.

(CH3)2CHCHO  +  Cl(or OH)  →  (CH3)2CHCO + HCl(or H2O) R 7-15

(CH3)2CHCO + O2  →  (CH3)2CHC(O)O2 R 7-16

(CH3)2CHC(O)O2 + RO2  →  (CH3)2CHC(O)O + RO + O2 R 7-17

(CH3)2CHC(O)O  →  (CH3)2CH + CO2 R 7-18

(CH3)2CH + O2  →  (CH3)2CHO2 R 7-19

(CH3)2CHO2 + RO2  →  (CH3)2CHO + RO + O2 R 7-20

(CH3)2CHO + O2  →  CH3C(O)CH3 + HO2 R 7-21

In the presence of NOx, OH radicals are formed during the Cl atom initiated oxidation of

iso-butanol; Andersen et al. (2010) observed no discernible difference in the

iso-butyraldehyde yield between experiments carried out in the absence and presence of

NOx, implying that OH radical chemistry in the Cl atom initiated oxidation process does

not play a significant role in the formation of iso-butyraldehyde. It should therefore be

possible to use Eq. 7-1 to fit to the product data in order to obtain a value of α for 

iso-butyraldehyde in the Cl atom initiated oxidation of iso-butanol, assuming that the OH

radical concentration reaches a steady state in a short time period from the initiation of

the oxidation reaction. Along with considerably higher concentrations of Cl2 used by

Andersen et al. (2010), the authors also used much higher initial concentrations of NO;

(2.1 – 2.7) × 1015 molecule cm-3 compared to (1.5 – 6.3) × 1012 molecule cm-3 used in this

work. The results presented in this work suggest that the yields of products in the Cl atom

initiated oxidation of iso-butanol in the presence of NOx are affected by the initial

concentration of [NO] present in HIRAC. The considerably higher concentrations of Cl2
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used in the experiments by Andersen et al. (2010) ensure that OH radicals are

insignificant in the chemical processes occurring in the oxidation process; the high

concentrations of NO ensure that all peroxy radicals produced in the oxidation process

react with NO to directly form the oxidation products. In the work presented here, it is

suggested that a competition may exist between the reaction with NO and the reaction

with peroxy radicals in the oxidation process, influencing the yields of the oxidation

products.

The time series concentration profiles of O3, OH, HO2, NO and NO2 are shown in

Figure 7-4 for the Cl atom initiated oxidation of iso-butanol in the presence of varying

initial NO concentrations. It can be seen from these time series concentration profiles that

in the presence of NOx, the OH concentration reached a steady state within 100 s, except

in the case of the highest initial [NO], where the OH reached a steady state within 400 s.

In all cases the OH concentration reached a steady state as the NO concentration tends

towards zero, showing that the two are closely related. The HO2 concentration reached a

maximum steady state as the NO concentration decreased, following almost an inverse

concentration time profile to that of the NO concentrations. As the initial NO

concentration was increased, the HO2 took longer to reach a steady state. The vertical

lines in the HO2 concentration time series indicate the time at which the photolysis lamps

were switched off, following which the HO2 concentration decayed towards zero. In the

absence of any other reactive species, this HO2 decay would be equal to the HO2

self-reaction, in which the HO2 decay would be complete in ~90 seconds. The decay of

HO2 observed in Figure 7-4 typically occurs over ~250 seconds; considerably longer

timescale than that of the HO2 self-reaction. This would suggest that there are other dark

reactions occurring leading to the formation of HO2. This HO2 formation likely arises

from any RO species present, following R 7-22:

RO + O2  →  HO2 + RCHO R 7-22
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Figure 7-4: Time series of [O3], [OH], [HO2], [NO] and [NO2] for the Cl atom initiated
oxidation of iso-butanol in the presence of NOx. Vertical dashed lines in the [OH]
and [HO2] time series indicate the time at which the photolysis lamps were switched
off. O3 analyser LOD = 1 ppbv, NO LOD = 50 pptv (120 second averaging).

Dark formation of HO2 may also arise from the reaction of OH radicals with O3 or CO;

the OH radical concentration also decayed on a similar timescale to the decay of HO2

when the photolysis lamps were switched off. The reaction of OH radicals with O3,

however, is unlikely as the [O3] was approximately zero in all cases at this time in the

experiment.

With the exception of the 162 ppbv initial NO concentration case, the peak ozone

concentration was observed to increase with increasing initial NO. As the initial NO

concentration was increased, greater concentrations of NO2 were produced, which go on
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to produce O3 following R 7-8 and R 7-9. It is known that the chemiluminescence NOx

analyser used measures any compound that is converted into NO by the molybdenum

NO2 to NO converter, and so the NO2 concentrations reported should be considered as a

total of NO2 and any NOy species present in the sample gas. As expected, the peak NO2

concentrations shown in Figure 7-4 increased with increasing initial [NO]. In all cases,

the NO2 concentration rapidly increased, at shorted times, to a maximum, and then

declined. The NO2 concentration never reached zero, due to the recorded concentration

of NO2 being the sum of NO2 and NOy species, and the rapid recycling of NO2 following

R 7-13 and R 7-14.

7.3.2 Studies in the Absence of NOx

Mixtures of Cl2 and iso-butanol, in 1000 mbar total pressure 4:1 N2:O2, were irradiated

with black lamps with a maximum output of ~360 nm. In the absence of NOx; HO2 + RO2

and RO2 + RO2 reactions play a significant role in the conversion of the peroxy radicals

to alkoxy radicals. In experiments carried out in the absence of NOx this was observed as

it is not possible to use Eq. 7-1 to obtain a value of α for the formation of 

iso-butyraldehyde.

The formation of acetone vs. the loss of iso-butanol is shown in Figure 7-5, where the

solid red line represents the linear least squares fit to the data without the intercept fixed,

and the dashed black line represents the linear least squares fit to the data with the

intercept forced through zero. The gradient of the linear least squares fit represents the

acetone yield; 72 ± 1%. This yield is relatively high compared to that reported by

Andersen et al. (2010), where they reported an initial yield of <5% for <20% iso-butanol

consumption. Here, the higher yield may be attributed to higher background levels of HOx

within HIRAC influencing the acetone yield formation as a primary product in the

iso-butanol oxidation, and as a secondary product from the oxidation of

iso-butyraldehyde. Andersen et al. (2010) observed significant curvature in their acetone

formation (circles in Figure 7-6) from the Cl atom initiated oxidation of iso-butanol in the

presence of NOx, indicating that acetone was not a primary product in the oxidation

process. As discussed in Section 7.2.1, the higher background [HOx] combined with lower

[Cl2]0, as compared to Andersen et al. (2010), may lead to the OH radicals playing a more

significant role in the chemical processes occurring.
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Figure 7-5: Formation of acetone vs. the loss of iso-butanol following the Cl atom
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the absence of NOx. The dashed lines represents linear
least squares fit to the data with the intercept fixed at zero. The solid red line
represents linear least squares fit to the data without the intercept fixed.

Figure 7-6: Formation of acetone (circles) and HCHO (triangles) vs. the loss of
iso-butanol following the Cl atom initiated oxidation of iso-butanol in the absence
of NOx. Reproduced from Andersen et al. (2010).
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The formation of HCHO vs. the loss of iso-butanol is shown in Figure 7-7. It can be seen

that the yield of HCHO increased to a maximum, at iso-butanol consumption of >60%,

and then declined. This decline in HCHO may arise from a number of contributing

factors; reaction with Cl atoms present in the system, reaction with OH radicals present

in the system, and loss due to the dilution of HIRAC. The low yield of HCHO reflects the

lower concentration of OH radicals produced in the system in the absence of NO; HCHO

is formed as a secondary product in the oxidation of iso-butanol. Low yields of HCHO

from the Cl atom initiated oxidation of iso-butanol in the absence of NOx were also

reported by Andersen et al. (2010), where they also concluded that HCHO is not formed

as a primary product in this oxidation process; formation of HCHO vs. the loss of

iso-butanol is shown by the triangles in Figure 7-6. Andersen et al. (2010) reported yields

of HCHO of <5% for <20% iso-butanol consumption. Here, slightly higher yield of 10%

was observed for <20% iso-butanol consumption, likely influenced by higher background

levels of OH within HIRAC. Background levels of HOx within HIRAC can vary from

day to day due to the varied use of the chamber; similar to the frequent study of reactions

in the presence of NOx which can lead to higher levels of NOx containing species on the

walls of the chamber, the frequent study involving certain compounds can lead to varying

levels of compounds present on the chamber walls that produce HOx in subsequent

experiments. Detailed investigation into the use of different species and their influence

on background levels of HOx has, to date, not been conducted, however, the addition of

Cl2 in 100 – 200 mbar of laboratory N2, left with the photolysis lamps set to switch on

and off repeatedly overnight between experiments has been seen to reduce the levels of

background HOx present in HIRAC. Further investigation into the influence of residual

compounds within the chamber is required in order to fully appreciate sources of

background HOx, and would assist in determining the most appropriate cleaning protocols

between experiments.
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Figure 7-7: Formation of HCHO vs. the loss of iso-butanol following the Cl atom initiated
oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total
pressure in the absence of NOx. The dashed line represents linear least squares fit to
the data (for <40% iso-butanol consumption) with the intercept fixed at zero. The
solid red line represents linear least squares fit to the data without the intercept fixed.

Concentration time profiles for O3, OH, HO2, NO and NO2 are shown in Figure 7-8 for

the Cl atom initiated oxidation of iso-butanol in the absence of NOx. It can clearly be

shown here that the studies are carried out in the absence of NOx, from the NO

concentration time profile. In this case, no ozone formation was observed, which is to be

expected in the absence of NOx as no NO2 formation is possible in the oxidation process

to produce ozone following R 7-8 and R 7-9. The OH concentration peaks to

~8 × 108 molecule cm-3 at around 500 s from the initiation of the oxidation reaction. This

peak comes at much later times to the peak OH concentration observed for the Cl atom

initiated oxidation of iso-butanol in the presence of NOx, is significantly greater in

concentration, and remains at a steady concentration for ~300 s; whereas in the presence

of NOx, the OH concentration immediately decayed following its maximum. This lasting

peak in OH concentration is likely due to a number of factors; the reaction of the majority

of hydrocarbons (and intermediate species) with Cl atoms is significantly faster than their

reaction with OH radicals. In the presence of NOx, OH radicals may also be lost following

their reaction with NO2:
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OH + NO2  →  NO  +  HO2 R 7-23

which will not be occurring in the absence of NOx.

Figure 7-8: Time series comparison of [O3], [OH], [HO2], [NO] and [NO2] for the Cl atom
initiated oxidation of iso-butanol in the absence of NOx. The vertical line in the
[HO2] time series indicates the time at which the photolysis lamps were switched
off. O3 analyser LOD = 1 ppbv, NO LOD = 50 pptv (120 second averaging).

7.4 OH Radical Initiated Oxidation of Iso-butanol

7.4.1 Studies in the Presence of NOx

Mixtures of iso-butanol, H2O2 (50% purity in water) and NO were irradiated with two

sets of photolysis lamps; one set with a maximum output at ~254 nm in order to initiate

the H2O2 photolysis reaction, and a set of black lamps with a maximum output at ~360 nm
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in order to photolyse NO2 produced in the reaction to enable production of O3 to be

observed, following reactions R 7-8 and R 7-9.

The formation of iso-butyraldehyde vs. the loss of iso-butanol under three different initial

[NO] is shown in Figure 7-9, where the dashed lines represent the fit to Eq. 7-1, and the

solid lines represent the linear least squares fit to <30% iso-butanol consumption to give

an initial yield of iso-butyraldehyde prior to any significant influence from secondary

chemistry in the oxidation reaction. The curvature observed in the formation of

iso-butyraldehyde represents the loss of iso-butyraldehyde due to reaction with OH

radicals and loss due to photolysis and dilution within HIRAC. The initial yield of

iso-butyraldehyde (for <15% iso-butanol consumption) increased with increasing initial

[NO]. The formation of the alkoxy radical from the peroxy radical is enhanced by the

presence of NO, following reaction R 7-24.

RO2 + NO → RO + NO2 R 7-24

Figure 7-9: Formation of iso-butyraldehyde vs. the loss of iso-butanol following the OH
radical initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the presence of NOx. The dashed lines represent a fit to
Eq. 7-1. The solid lines represent linear least squares fit to the data (for <30%
iso-butanol consumption) with the intercept fixed at zero.
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The initial yields at <30% iso-butanol consumption and the final molar yields of

iso-butyraldehyde are given in Table 7-3. The initial yields for iso-butanol consumption

increased with increasing initial NO concentration. In contrast, the final molar yield

increased and then decreased at the maximum initial NO concentration. As only three

different initial NO concentrations were investigated, it is difficult to draw conclusions

as to any trend in the yields relating to the initial [NO]. It is suggested that the trend in

initial iso-butyraldehyde yields, for <30% iso-butanol consumption is influenced by the

initial concentrations of OH and HO2 present in HIRAC. The concentration time profiles

of O3, OH, NO and NO2 are shown in Figure 7-14.

[NO] / ppbv Final Molar Yield
Initial Yield

(<30% iso-butanol consumption)

55 83 ± 14 % 34 ± 2%

91 91 ± 14% 48 ± 6%

206 47 ± 20% 61 ± 4%

Table 7-4: Yields of iso-butyraldehyde from the OH radical initiated oxidation of
iso-butanol in the absence of NOx. Errors represent the standard error from the
fitting procedure.

The formation of acetone vs. the loss of iso-butanol is shown in Figure 7-10, where the

dashed lines represent the linear least squares lines of best fit, forcing the intercept

through zero, in order to obtain a value for the final product yield. For the reaction of

iso-butanol with OH radicals, the acetone product yield increases as the initial [NO] is

increased.

As the initial [NO] was increased, the initial peak concentration of OH also increased,

however, the background OH concentration, i.e. [OH]0, decreased. The acetone yield is

enhanced by the presence of NO in the system as the peroxy radical formed from the

ß-hydrogen abstraction is rapidly converted to the alkoxy radical which rapidly

decomposes to form acetone and HCHO. In the absence of NO, the peroxy radical can

react with other peroxy radicals or HO2 radicals to produce acetone and HCHO. The

presence of NO provides a more direct route to the formation of acetone, whereas in the

absence of NOx, the peroxy radicals may be lost through reaction with other peroxyl

radicals, not resulting in the formation of acetone. The yield of acetone under the highest

initial NO concentration studied, 64 ± 1%, is in good agreement with that reported by

Andersen et al. (2010) for the OH radical initiated oxidation of iso-butanol in the presence
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of NOx; 61 ± 4%. As with the acetone yield for the Cl atom initiated oxidation of

iso-butanol in the presence of NOx, the yields reported here should be taken as upper

limits, due to the formation of acetone following the oxidation of iso-butyraldehyde.

McGillen et al. (2013) constrained the acetone yield closer to 40% for the OH radical

initiated oxidation of iso-butanol.

Figure 7-10: Formation of acetone vs. the loss of iso-butanol following the OH radical
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the presence of NOx. The dashed lines represent linear
least squares fit to the data with the intercept fixed through zero. Values reported in
the text refer to linear least squares fit to the data without the intercept fixed (see
Table 7-3).
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Figure 7-11: Formation of acetone vs. the loss of iso-butanol for the OH radical initiated
oxidation of iso-butanol in the presence of NOx. Reproduced from Andersen et al.
(2010).

[NO] / ppbv Gradient Intercept

55 0.30 ± 0.04 0.03 ± 0.02

91 0.42 ± 0.02 0.02 ± 0.01

206 0.64 ± 0.01 -0.011 ± 0.003

Table 7-5: Acetone production yields following the OH radical initiated oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
presence of NOx. Gradients represent linear least squares fit to the data where the
intercept is not fixed through zero. Errors represent the standard error from the
fitting procedure.

Figure 7-12 shows the formation of HCHO vs. the loss of iso-butanol under varying initial

[NO]. The dashed lines represent the linear least squares fit to the data for <40%

consumption of iso-butanol. Upwards curvature of the HCHO production is observed in

all three initial [NO] conditions, indicating the formation of HCHO as a secondary

product in the OH radical initiated oxidation process of iso-butanol in the presence of

NOx. There are numerous sources of HCHO formation in the iso-butanol oxidation

process from secondary chemistry and so it is not possible to use the HCHO product yield

as an indication of attack from one single position of the iso-butanol. No yields of HCHO

following the OH radical initiated oxidation of iso-butanol in the presence of NOx were

reported by Andersen et al. (2010).
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Figure 7-12: Formation of HCHO vs. the loss of iso-butanol following the OH radical
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the presence of NOx. The dashed lines represent linear
least squares fit to the data (for <40% iso-butanol consumption) with the intercept
fixed through zero. Values reported in the text refer to linear least squares fit to the
data without the intercept fixed (see Table 7-3).

[NO] / ppbv Gradient Intercept

55 0.28 ± 0.01 -0.003 ± 0.004

91 0.34 ± 0.02 0.001 ± 0.005

206 0.23 ± 0.02 0.005 ± 0004

Table 7-6: HCHO production yields following the OH radical initiated oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
presence of NOx. Gradients represent linear least squares fit to the data (for <40%
iso-butanol consumption) where the intercept is not fixed through zero. Errors
represent the standard error from the fitting procedure.

Concentration time profiles of O3, OH, HO2, NO and NO2 are shown in Figure 7-14 for

the OH radical initiated oxidation of iso-butanol in the presence of varying initial NO

concentrations. Similar to the Cl atom initiated oxidation of iso-butanol in the presence

of varying initial NO concentrations, following an initial spike, the OH concentration

tends towards a steady state. As the initial NO concentration was increased, the maximum

of the initial spike in OH concentration decreased in magnitude, and the time for it to

reach its maximum increased. The chemistry of HOx and NOx are very closely related, as
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has been discussed in detail in Chapter 1. A clear trend between the initial NO

concentration and maximum O3 concentration was not observed, however, as with the Cl

atom initiated oxidation of iso-butanol in the presence of varying initial NO

concentrations, the time for the ozone concentration to reach a maximum increased with

increasing initial NO concentration. The lack of a correlation between the initial NO

concentration and the maximum O3 concentration indicates a regime change; as the initial

iso-butanol concentration was kept constant between all experiments, and only the initial

[NO] was altered, it is likely that the reaction system has changed between NOx limiting

and VOC limiting conditions. Unlike in the Cl atom initiated oxidation of iso-butanol in

the presence of NOx, the NO in the OH radical initiated oxidation of iso-butanol decayed

over a much greater time period. As the kinetics of Cl atom initiated processes are

considerably faster than the kinetics of OH radical initiated processes, products and

intermediates are formed on much longer time scales, hence, the NO was consumed over

longer time scales.

The difference in kinetics between the OH radical and Cl atom initiated oxidation of

iso-butanol is displayed by the hydrocarbon concentration time profiles in Figure 7-13.

The concentration time profiles in Figure 7-13 (a) and (c) show the OH radical and Cl

atom initiated oxidation of iso-butanol in the absence of NOx, respectively. From these

plots, the considerably faster kinetics of the Cl atom oxidation process is clearly

observable in the profiles of iso-butanol, iso-butyraldehyde and acetone. Figure 7-13 (b)

and (d) show a comparison of the concentration time profiles for the OH radical and Cl

atom initiated oxidation of iso-butanol in the presence of NOx, respectively. Again, the

difference in kinetics between the OH radical and Cl atom initiated oxidation processes

is observed.
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(a) (b)

(c) (d)

Figure 7-13: Comparison of iso-butanol and stable product concentration time profiles.
(a) iso-butanol + OH in the absence of NOx (b) iso-butanol + OH in the presence of
91 ppbv initial [NO] (c) iso-butanol + Cl in the absence of NOx (d) iso-butanol + Cl
in the presence of 101 ppbv initial [NO].

A difference in kinetics is also observed between the oxidation processes in the absence

of NOx and in the presence of NOx for both the OH radical and Cl atom initiated oxidation

of iso-butanol. This difference is attributed to the greater production of OH radicals in

both systems in the presence of NOx, as has been described by R 7-25 and R 7-26:

NO + HO2  →  OH  +  NO2 R 7-25

NO2 + hν  →  NO  +  O(3P) R 7-26

The [HO2] and [O3] for the OH radical initiated oxidation of iso-butanol in the presence

of varying initial NO concentrations follow very similar time profiles as shown in

Figure 7-14. The sharp decay of HO2 (and decay of O3) observed from ~1900 s for

91 ppbv initial NO, from ~2800 s for 206 ppbv initial NO and from ~2500 s for 55 ppbv

initial NO coincides with the photolysis lamps being switched off, ending the oxidation

reaction. As has been discussed in Section 7.3, the observed HO2 decay is on a much

longer time scale than would be expected if the decay was solely due to the HO2
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self-reaction; it is concluded that a number of dark reactions leading to the formation of

HO2 are influencing the HO2 decay once the photolysis lamps are switched off. The slow

growth of HO2 radicals in the 206 ppbv initial NO case corresponds with the decay of

NO, as the [NO] tends towards zero at ~2000 s, the HO2 concentration reached a

maximum steady state also coinciding with the maximum [O3]. This was also the case for

the growth of HO2 radicals in the 90 ppbv initial NO and 55 ppbv initial NO.

Figure 7-14: Time series comparison of [O3], [OH], [HO2], [NO] and [NO2] for the OH
radical initiated oxidation of iso-butanol in the presence of NOx. Vertical lines in
the [O3], [OH] and [HO2] plots indicate the time at which the photolysis lamps were
switched off. O3 analyser LOD = 1 ppbv, NO LOD = 50 pptv (120 second
averaging).

The observed steady state concentrations of OH radicals indicates some mechanism for

OH recycling within the system, which would be expected in the presence of HO2, NOx
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and O3. It is possible that O3 photolysis may play a significant role in the production of

OH radicals following:

O3 + hν(220 nm < λ < 305 nm)  →  O(1D) + O2 R 7-27

O(1D) + H2O  →  OH  +  OH R 7-28

Investigation into the formation of OH radicals from O3 photolysis within HIRAC would

help elucidate the OH production following such oxidation processes.

7.4.2 Studies in the Absence of NOx

Mixtures of H2O2 and iso-butanol were irradiated using two sets of photolysis lamps; four

lamps with a maximum output at ~254 nm in order to initiate H2O2 photolysis, and four

lamps with a maximum output at ~360 nm. The use of the black lamps in the absence of

NOx allows for more direct comparison of product yields, as they are likely influence by

photolysis from these lamps.

The formation of iso-butyraldehyde vs. the loss of iso-butanol is shown in Figure 7-15,

where the solid straight line represents the linear least squares best fit line to the data for

<20% iso-butanol consumption, and the dashed line represents the linear least squares

best fit line to the data for <50% iso-butanol consumption. It can be seen that the

production of iso-butyraldehyde was linear until ~50% consumption of iso-butanol. The

absence of NOx here reduces any secondary OH radical formation, which was observed

in reactions in the presence of NOx, preventing the iso-butyraldehyde from being lost to

secondary chemistry by the reaction with OH radicals. The yields obtained from the linear

least squares fitting to the data (given in Table 7-7) may be reported as a lower limit; it is

known that iso-butyraldehyde photolyses in the wavelength region 230 - 350 nm with a

maximum at 294 nm (Martinez et al. 1992). Iso-butyraldehyde produced in the oxidation

process of iso-butanol will therefore go on to photolyse when the chamber is irradiated

with both sets of photolysis lamps. The linearity observed for the production of

iso-butyraldehyde vs. the loss of iso-butanol indicates that loss of iso-butyraldehyde due

to photolysis was not significant. Investigation into the photolysis of iso-butyraldehyde

with the two sets of photolysis lamps switched on yielded a photolysis rate of

2.6 × 10-4 s-1. Further investigation into photolysis of iso-butyraldehyde, and other similar

carbonyl compounds, would be beneficial in determining their product yields, enabling a

better understanding of the impact of photolysis processes in such experiments. The initial

yield of iso-butyraldehyde at iso-butanol consumption of <20% was 80%, indicating that
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the primary abstraction site for the OH radical initiated attack of iso-butanol is at the α 

position. No previous yields of iso-butyraldehyde have been reported for the OH initiated

oxidation of iso-butanol in the absence of NOx.

Figure 7-15: Formation of iso-butyraldehyde vs. the loss of iso-butanol following the OH
radical initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the absence of NOx. The dashed line represents linear
least squares fit to the data (for <50% iso-butanol consumption) with the intercept
fixed through zero. The solid line represents linear least squares fit to the data (for
<20% iso-butanol consumption) with the intercept fixed through zero. Values
reported in the text refer to linear least squares fit to the data without the intercept
fixed (see Table 7-3).

% iso-butanol consumption Gradient Intercept

<50 0.56 ± 0.04 0.02 ± 0.01

<20 0.80 0

Table 7-7: iso-butyraldehyde production yields following the OH radical initiated
oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total
pressure in the absence of NOx. Gradients represent linear least squares fit to the
data (for <50% and <20% iso-butanol consumption) where the intercept is not fixed
through zero. Errors represent the standard error from the fitting procedure.

The formation of acetone vs. loss of iso-butanol for the OH radical initiated oxidation of

iso-butanol in the absence of NOx is shown in Figure 7-16, where the solid red line
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linear least squares fit to the data with the intercept forced through zero. Yields obtained

from these fits to the data are 27 ± 3 % and 30 ± 1 %, respectively. As discussed for the

production of acetone following the Cl atom initiated oxidation of iso-butanol, here the

formation yield of acetone should also be considered as an upper limit as its formation

following R 7-15 to R 7-21 has not been accounted for in the analysis procedure. The

linearity also indicates that little acetone was lost through reaction with OH radicals; this

is not surprising when considering the relative rates of reaction for acetone

((1.8 ± 0.3) × 10-13 cm3 molecule-1 s-1 (Atkinson et al. 2006)) and iso-butanol

((8.9 ± 1.7) × 10-12 cm3 molecule-1 s-1 (Atkinson et al. 2006)) with OH radicals. The

reaction of acetone with OH radicals is over an order of magnitude slower than the

reaction of iso-butanol with OH radicals. Similar to iso-butyraldehyde, it is known that

acetone photolyses in the region of 210 – 340 nm; the linearity of the production of

acetone vs. loss of iso-butanol indicates that acetone photolysis does not play a significant

role in the loss of acetone during this reaction. It may also be the case that the linearity

observed in the formation yield of acetone arises due to the loss of acetone being balanced

by the formation of acetone.
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Figure 7-16: Formation of acetone vs. the loss of iso-butanol following the OH radical
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the absence of NOx. The dashed line represents linear
least squares fit to the data with the intercept fixed through zero
(gradient = 0.30 ± 0.01). The solid red line represents linear least squares fit to the
data without the intercept fixed through zero (gradient = 0.27 ± 0.03,
intercept = 0.02 ± 0.01).

Figure 7-17 shows the formation of HCHO vs. the loss of iso-butanol following the OH

radical initiated oxidation of iso-butanol in the absence of NOx. The dashed black line

represents the linear least squares fit to the data for <40% iso-butanol consumption, and

the solid red line represents the linear least squares fit to the data for <40% iso-butanol

consumption with the intercept forced through zero. The yields of HCHO obtained from

these fits are 19 ± 2 % and 20 ± 1%, respectively. There are many sources of HCHO

production following the OH initiated oxidation of iso-butanol in the absence of NOx.
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Figure 7-17: Formation of HCHO vs. the loss of iso-butanol following the OH radical
initiated oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in the absence of NOx. The dashed black line represents
linear least squares fit to the data (for <40% iso-butanol consumption) with the
intercept fixed through zero (gradient = 0.20 ± 0.01). The solid red line represents
linear least squares fit to the data (for <40% iso-butanol consumption) without the
intercept fixed through zero (gradient = 0.19 ± 0.02, intercept = 0.001 ± 0.004).

The concentration time profiles shown in Figure 7-18 are of the measured O3, OH, HO2,

NO and NO2 for the OH radical initiated oxidation of iso-butanol in the absence of NO.

As with the Cl atom initiated oxidation of iso-butanol in the absence of NO, this can also

be shown to be truly in the absence of any NO from its concentration time profile. No

ozone formation was observed; as no NO was present in the system, no NO2 formation

can occur to facilitate the production of ozone. An initial OH peak was observed to a

maximum of ~1.0 × 108 molecule cm-3 which then decayed towards a steady

concentration of ~1.0 × 107 molecule cm-3. The initial spike in OH concentration was

primarily due to photolysis of H2O2 (R 7-7). The HO2 was also seen to peak at ~100s and

decay to roughly a steady concentration, following a similar profile to the [OH].
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Figure 7-18: Time series comparison of [O3], [OH], [HO2], [NO] and [NO2] for the OH
radical initiated oxidation of iso-butanol in the absence of NOx. The vertical line in
the [HO2] plot indicates the time at which the photolysis lamps are switched off. O3

analyser LOD = 1 ppbv, NO LOD = 50 pptv (120 second averaging).

7.5 Comparison of Product Formation

7.5.1 Comparison of the Oxidation of Iso-butanol by OH Radicals and Cl
Atoms in the Absence of NOx

A comparison of the formation of acetone vs. the loss of iso-butanol for the oxidation of

iso-butanol in the absence of NOx, initiated by Cl atoms and OH radicals is given in

Figure 7-19. The final production yield of acetone from the OH radical initiated oxidation

was ~30%, whereas for the analogous reaction with Cl atoms, the final production yield

was ~75%. The difference in acetone product yields between the Cl atom and OH radical

initiated oxidation of iso-butanol is primarily due to difference in kinetics between OH

radical and Cl atom initiated oxidation; as iso-butyraldehyde was formed rapidly in the
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Cl atom initiated oxidation, it was also seen to rapidly decay, predominantly through

further oxidation with Cl atoms (and OH radicals), leading to greater concentrations of

acetone being produced. The presence of OH radicals (produced during the oxidation

reaction) in the Cl atom initiated oxidation reactions will also play a role in the increased

yield of acetone from Cl atom initiated oxidation.

Figure 7-19: Formation of acetone vs. the loss of iso-butanol following the oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
absence of NOx. Purple circles represent Cl atom initiated oxidation, green squares
and orange triangles represent OH radical initiated oxidation.

The formation profile of HCHO vs. the loss of iso-butanol is shown in Figure 7-20 for

both the OH radical and Cl atom initiated oxidation reactions in the absence of NOx. There

is a distinct difference in the profiles between the two systems; in the Cl atom initiated

oxidation, the HCHO increased to a maximum at ~70% iso-butanol consumption and then

decayed. In marked contrast, the HCHO formation continued to increase with iso-butanol

consumption in the OH radical initiated oxidation process. In the Cl atom initiated

oxidation, OH radicals are also formed throughout the oxidation process, the HCHO

produced can be lost through secondary chemistry with either Cl atoms or OH radicals

present in the system. In the OH radical initiated oxidation, only OH radicals are present

for reaction with species present in the chamber. The reaction of HCHO with OH radicals

is an order of magnitude lower, kOH + HCHO = (8.5 ± 1.6) × 10-12 cm3 molecule-1 s-1
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(Atkinson et al. 2006), than that of the reaction with Cl atoms,

kCl + HCHO = (7.2 ± 1.0) × 10-11 cm3 molecule-1 s-1 (Atkinson et al. 2006), and so it should

be expected that HCHO is lost at later times in the oxidation process. In the absence of

NOx, Andersen et al. (2010) observed a similar HCHO formation profile for the Cl atom

initiated oxidation study, with yields <5% being reported for iso-butanol consumption

<20%. HCHO is formed from numerous pathways in the oxidation process, and increased

photolysis of products in the OH radical oxidation system, due the wavelength of lamps

required for the photolysis of H2O2 to produce OH, will increase the formation of HCHO

throughout the oxidation process as both iso-butyraldehyde and acetone are photolysed

in the wavelength region irradiating the chamber. At ~50% iso-butanol consumption, both

systems showed similar HCHO production yields of ~15%. The similarity of the HCHO

production between the two systems confirms that HCHO was formed from numerous

secondary reactions of other oxidation products with Cl atoms, OH radicals and

photolysis.

Figure 7-20: Formation of HCHO vs. the loss of iso-butanol following the oxidation of
iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total pressure in the
absence of NOx. Purple circles represent Cl atom initiated oxidation, green squares
and orange triangles represent OH radical initiated oxidation.

7.5.2 Comparison of the OH Radical Initiated Oxidation of Iso-butanol in
the Presence and Absence of NOx

Figure 7-21 shows a comparison of the formation of iso-butyraldehyde vs. the loss of
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presence of NOx. The solid lines represent the initial iso-butyraldehyde production yields

for <20% iso-butanol consumption. There is a marked difference in the observed initial

yields for iso-butyraldehyde in the presence and absence of NOx; the initial yields are

compared in Table 7-8. The initial production yield of iso-butyraldehyde in the absence

of NOx, 80%, was much greater than in the presence of NOx. As the initial [NO] was

increased, the initial production yield of iso-butyraldehyde increased towards that of the

initial production yield in the absence of NOx. Andersen et al. (2010) did not report any

yields for iso-butyraldehyde for the OH radical initiated oxidation of iso-butanol in the

presence of NOx due to IR features of CH3ONO obscuring those from iso-butyraldehyde.

In this study, iso-butyraldehyde was measured using GC-FID, and could also be observed

in the FTIR spectra as H2O2 was used as the OH radical precursor.

(a) (b)

Figure 7-21: Comparison of formation of iso-butyraldehyde vs. the loss of iso-butanol
following the oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and
1000 mbar total pressure in (a) the absence and (b) the presence of NOx. Solid lines
represent linear least squares fit to the data for iso-butanol consumption <20% with
the intercept forced through zero.

Initial [NO] / ppbv Gradient

Low 0.80

55 0.40

91 0.59 ± 0.11

206 0.79 ± 0.08

Table 7-8: Comparison of initial iso-butyraldehyde formation yields for the OH initiated
oxidation of iso-butanol in the presence and absence of NOx. Gradients are those
fitted to the data in Figure 7-21 for iso-butanol consumption <20%. Errors represent
the standard error in the fitting procedure.

A comparison of the formation of acetone vs. the loss of iso-butanol in the absence and

presence of NOx for the OH radical initiated iso-butanol oxidation is given in Figure 7-22.
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The dashed lines represent the linear least squares fit of the data with the intercept forced

through zero. Table 7-9 details the gradients for the linear least squares fit to the data in

Figure 7-22. As the initial [NO] was increased, the product yield of acetone from the OH

initiated oxidation of iso-butanol increased. Under high [NOx] conditions, Andersen et al.

(2010) reported that 61 ± 4% of the reaction of OH radicals with iso-butanol occurred at

the ß position; the results reported here, at the highest initial [NO] in the system, agree

well, with 64 ± 1% of the reaction occurring at the ß position to produce acetone.

Andersen et al. (2010) did not account for any production from the secondary reaction of

iso-butyraldehyde with OH radicals present in the system. The formation of acetone from

the ß position is shown in Figure 7-23. In the absence of NOx, the peroxy radical formed

in the second step of the mechanism shown in Figure 7-23 would react with HO2 or RO2

radicals present which would not form the alkoxy radical.

(a) (b)

Figure 7-22: Comparison of formation of acetone vs. the loss of iso-butanol following the
oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total
pressure in (a) the absence and (b) the presence of NOx. Dashed lines represent
linear least squares fit to the data with the intercept forced through zero.

Initial [NO] Gradient Intercept

Low 0.27 ± 0.03 0.02 ± 0.01

55 0.30 ± 0.04 0.03 ± 0.02

91 0.42 ± 0.02 0.02 ± 0.01

206 0.64 ± 0.01 -0.011 ± 0.003

Table 7-9: Comparison of initial acetone formation yields for the OH initiated oxidation
of iso-butanol in the presence and absence of NOx. Gradients are those fitted to the
data in Figure 7-22. Errors represent the standard error in the fitting procedure.
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Figure 7-23: Mechanism for the formation of acetone from the ß-hydrogen abstraction in
the OH radical initiated oxidation of iso-butanol in the presence of NOx.

Figure 7-24: Mechanism for the formation of acetone from the ß-hydrogen abstraction in
the OH radical initiated oxidation of iso-butanol in the absence of NOx.

A comparison of the formation of HCHO vs. the loss of iso-butanol for the OH radical

initiated oxidation of iso-butanol in the absence and presence of NOx is shown in

Figure 7-25, where the dashed lines represent the linear least squares fit to the data with
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the intercept forced through zero. The gradients from the linear least squares fit to the

data are given in Table 7-10, where the gradient represents the product yield fit to <40%

iso-butanol consumption. An increase in HCHO yield at <40% iso-butanol consumption

was observed as the initial [NO] increased, until a maximum when the HCHO product

yield then decreased. As the initial [NO] increased, more OH was formed via R 7-13. As

this reaction increased the [OH] produced, more OH radicals were available for reaction

with HCHO.

This observation of initial HCHO formation yields also corresponds to the initial

formation yields of iso-butyraldehyde under varying NO concentrations. As the initial

yield of iso-butyraldehyde increased and decreased with increasing initial [NO], the

formation of HCHO, either from photolysis or secondary reaction of iso-butyraldehyde

with OH radicals, increased through a maximum and the decreased. Due to the relative

reactivities of iso-butyraldehyde and acetone with OH radicals, it is likely that the HCHO

formation observed primarily arises from the degradation of iso-butyraldehyde than from

the degradation of acetone.

(a) (b)

Figure 7-25: Comparison of formation of HCHO vs. the loss of iso-butanol following the
oxidation of iso-butanol in 80:20 mixtures of N2:O2 at 298 K and 1000 mbar total
pressure in the absence (a) and presence (b) of NOx. Dashed lines represent linear
least squares fit to the data for <40% iso-butanol consumption, with the intercept
forced through zero.
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Initial [NO] Gradient Intercept

Low 0.19 ± 0.02 0.001 ± 0.004

55 0.28 ± 0.01 -0.003 ± 0.004

91 0.34 ± 0.02 0.001 ± 0.005

206 0.23 ± 0.02 0.005 ± 0004

Table 7-10: Comparison of initial HCHO formation yields for the OH initiated oxidation
of iso-butanol in the presence and absence of NOx. Gradients are those fitted to the
data in Figure 7-25 for <40% iso-butanol consumption. Errors represent the
standard error in the fitting procedure.

7.5.3 Comparison with preliminary modelling results

As described in Chapter 1, the use of chemical models are extremely useful for

comparisons with both field measurements and laboratory based studies, such as the

atmospheric simulation chamber studies reported in this work. The chemical simulation

software, Kintecus V.5.50, was used with the tropospheric degradation mechanism for

iso-butanol taken form the MCM v3.3.1 to conduct a preliminary study into the formation

of ozone under varying initial NO concentrations for the OH radical and Cl atom initiated

oxidation of iso-butanol (Jenkin et al. 2003, Bloss et al. 2005, Ianni 2014). For the Cl

atom initiated oxidation modelling study, Cl atom chemistry was added to the MCM

mechanism, taken from IUPAC (Atkinson et al. 2006) and Andersen et al. (2010).

Initial concentrations of iso-butanol, NO, NO2, O3, OH, HO2, H2O2 and Cl2 were taken

directly from experimental measurements, with j(Cl2) and j(H2O2) being determined for

each experiment from fitting a simplified oxidation model to the measured decay of

iso-butanol, and j(iso-butyraldehyde) and j(acetone) determined experimentally for each

set of photolysis lamps. All model runs were carried out at 298 K and 1000 mbar and

were run for a total time of 30 minutes. Results presented below should be considered as

preliminary comparisons of trends in ozone formation. Dilution, wall losses and

photolysis of other products or intermediate species were considered to be zero for the

purposes of the modelling study; experimental measurements will be influenced by all of

these factors.

A comparison of the measured and modelled ozone formation following the Cl atom

initiated oxidation of iso-butanol in the presence of varying initial NO concentrations is

shown in Figure 7-26. Due to the differences in conditions described above between the

experimental conditions and the preliminary modelling conditions, it is only possible to
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currently draw qualitative comparisons between the two sets of results. Experimental

results observed ozone concentrations approximately ten times greater than those from

the modelling study; this difference most likely occurs due to photolysis rates not being

accurately described in the model mechanism.

(a) (b)

Figure 7-26: Comparison of ozone formation for the Cl atom initiated oxidation of
iso-butanol under varying initial NO concentrations. (a) experimental results (b)
preliminary MCM modelling study using experimental initial concentrations.

A similar trend in ozone formation was observed from both the experimental

measurements and the modelled ozone; the greatest ozone formation was observed with

the highest initial concentration of NO present in the system, with the peak ozone

generally increasing with the initial NO concentration. The absence of any direct

correlation between the initial NO concentration and the peak ozone concentration

observed in both the experimental results and the modelled ozone, indicates that the initial

concentrations of other species present in the system (primarily OH, HO2 and NO2) play

an important role in the formation of ozone during the oxidation process.

The ozone formation following the OH radical initiated oxidation of iso-butanol under

varying initial NO concentrations is shown in Figure 7-27 for experimental data and

modelled results. Again, the experimental ozone concentrations are approximately a

factor of ten greater than those predicted through model simulations. The trend in peak

ozone concentration measured was not replicated through the modelling study.
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(a) (b)

Figure 7-27: Comparison of ozone formation for the OH radical initiated oxidation of
iso-butanol under varying initial NO concentrations. (a) experimental results (b)
preliminary MCM modelling study using experimental initial concentrations.

The preliminary modelling results described here, and compared with measurements of

ozone concentrations following the Cl atom and OH radical initiated oxidation processes

of iso-butanol under varying initial NO concentrations, show the importance of accurately

representing all processes occurring within atmospheric simulation chamber studies. Full

characterisation of the output of the photolysis lamps used in such chamber studies is

essential to accurately model oxidation processes. The agreement in the trend observed

in ozone formation following the Cl atom initiated oxidation of iso-butanol indicates that

the mechanism employed is appropriate; the lack of agreement for the OH radical initiated

oxidation of iso-butanol may be improved with the inclusion of comparisons over a larger

range of initial NO concentrations, as for the Cl atom initiated study.

Further work is required into the modelling of the iso-butanol oxidation processes, with

full characterisation of chamber specific processes such as the photolysis of products and

intermediate species. The photolysis lamps used in HIRAC are typically thought of for

their photolysis at the maximum wavelength output, however, as can be seen in

Figure 7-28, each of the different photolysis lamps has varying output at numerous

wavelengths. Careful consideration of the absorption cross sections of species present,

and experimental investigation into their photolysis with different photolysis lamps, in

the chamber is required in order to correctly describe the photolysis rates of species

present in the oxidation processes. The lamps used in this study were a set of Philips TL-K

40W/05 with a maximum wavelength output at ~360 nm for the Cl atom initiated

oxidation processes, and a combination of these lamps and a set of GE G55T8 / OH 7G

UVC lamps with a maximum wavelength output at ~254 nm for the OH radical initiated

oxidation processes.
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Figure 7-28: Emission spectra of the three different photolysis lamps available for use
within HIRAC. Reproduced from Winiberg (2014).

As can be seen from the emissions spectra, the lamps used for the photolysis of H2O2 (GE

G55T8 / OH 7G UVC) have multiple sharp, strong emissions; at ~290 nm, ~325 nm,

~350 nm, ~ 370 nm and 435 nm, all of which may play significant role in the photolysis

of a number of products and intermediate species formed throughout the oxidation

process. The lamps used for the photolysis of Cl2 (Philips TL-K 40W/05) have a very

broad emission band ranging from 350 nm to 400 nm, with a maximum output at

~360 nm. This broad emission band is also likely to influence the photolysis of products

and intermediate species.

7.6 Comparison with a non-functionalised alkane, iso-butane

The alcohol functional group of iso-butanol gives this functionalised alkane different

reactivity towards OH radicals and Cl atoms as compared to its analogous,

non-functionalised alkane, iso-butane. In order to investigate the potential benefit to the

use of alcohols as biofuels as compared to their analogous non-functionalised alkanes,

studies of the OH radical and Cl atom initiated oxidation of iso-butane under varying

initial NOx conditions were carried out. Here, a comparison of ozone formation for the

oxidation of iso-butanol and iso-butane under varying NOx conditions for both the OH

radical and Cl atom initiated oxidation processes, is presented. The structures of
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iso-butanol and iso-butane are given in Figure 7-29, where the different hydrogen

positions are numbered.

Iso-butanol Iso-butane

Figure 7-29: Structures of iso-butanol and iso-butane, numbered with different hydrogen
atoms.

7.6.1 Ozone Formation from the Cl Atom Initiated Oxidation of iso-butanol
and iso-butane in the Presence and Absence of NOx

Figure 7-30 shows a comparison of the measured O3 formation throughout the Cl atom

initiated oxidation of iso-butanol and iso-butane under varying initial [NO]. The trend

observed in both cases, shows that an increase in the initial [NO] leads to greater [O3]

throughout the oxidation process. A significant difference was observed between the

iso-butanol and the iso-butane systems in that considerably greater concentrations of

ozone were produced in the iso-butane oxidation process as compared to the iso-butanol

oxidation process for similar initial NO concentrations. This is of importance in

determining appropriate alternative biofuels for use in motor vehicles, as ozone is a

pollutant and harmful to human, animal and plant health, it is important to reduce the

potential for fuels to produce ozone in the troposphere. As Cl is not the most dominant

oxidising agent in the troposphere, it is therefore important to investigate the potential for

ozone production from potential biofuels from their OH radical initiated oxidation

process under similar NOx environments. Nitrogen oxides also play a significant role in

controlling the concentration of ozone in the troposphere:

O3 + hν  →  O2 + O R 7-29

NO + O3  →  NO2 + O2 R 7-30
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(a) (b)

Figure 7-30: Comparison of measured O3 for the Cl atom initiated oxidation of
iso-butanol (a) vs. iso-butane (b) in the presence of NOx.

Table 7-11 shows the peak ozone concentrations and the time from the beginning of the

oxidation process at which it occurs for the Cl atom initiated oxidation of iso-butanol and

iso-butane in the presence of varying initial [NO]. Under all comparable initial NO

concentrations, the peak ozone concentration is reached at much longer times in the

iso-butane oxidation as compared to the iso-butanol oxidation process. The peak ozone

concentration also corresponds to significantly lower hydrocarbon consumption for the

iso-butanol oxidation as compared to the iso-butane oxidation; with the hydrocarbon

consumption increasing with increasing [NO]0 for both compounds.

Iso-butanol Iso-butane

[NO]0 /

ppbv

[O3]max /

ppbv

Time

/ s

Iso-butanol

consumption

[NO]0 /

ppbv

[O3]max /

ppbv

Time

/ s

Iso-butane

consumption

61 1 28 10% 58 33 561 75%

73 2 308 20% 60 20 419 50%

101 13 396 40% 110 45 835 80%

136 20 550 40% 190 125 1032 95%

162 10 623 60%

250 38 690 75%

Table 7-11: Percentage hydrocarbon consumption at peak ozone concentrations for the
Cl atom initiated oxidation of iso-butanol and iso-butane under varying initial NO
concentrations.

The rate coefficients for the reaction of Cl atoms with iso-butanol and iso-butane are not

significantly different; iso-butanol ((2.06 ± 0.40) × 10-10 cm3 molecule-1 s-1 (Atkinson et
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al. 2006)) being 50% greater than that of iso-butane ((1.25 ± 0.04) × 10-10 cm3

molecule-1 s-1) (Choi et al. 2006)). The presence of the OH functional group in iso-butanol

plays a significant role as it influences the reactivity of the α-hydrogen towards Cl atoms, 

leading to there being three different hydrogen atoms present in iso-butanol, whereas

there are only two different hydrogens in iso-butane, as indicated in Figure 7-29. The

faster kinetics of iso-butanol with Cl atoms leads to the peak ozone concentration

occurring at shorter times due to the more rapid production of NO2 which subsequently

produces O3. The α-peroxy radical produced following the oxidation of iso-butanol

rapidly decomposes to produce iso-butyraldehyde, whereas the corresponding α-peroxy 

radical produced from iso-butane reacts with NO to produce the alkyl radical which

subsequently decomposes to iso-butyraldehyde. The NO2 produced goes on to form O3.

7.6.2 Ozone Formation from the OH Radical Initiated Oxidation of
iso-butanol and iso-butane in the Presence and Absence of NOx

As discussed in Chapter 1, ozone in the troposphere is toxic to plant and animal health.

The potential for compounds to produce ozone throughout their oxidation process is,

therefore, of great importance to determine, in order to fully assess their impact on air

quality and the environment. OH radicals are the primary oxidising agent in the

troposphere. Whilst studies involving Cl atoms are valuable for investigating overall

trends, studies of OH radical initiated oxidation processes provide more relevant

information on the influence of VOC oxidation in the troposphere.

The concentration of ozone in time following the OH radical initiated oxidation of

iso-butanol and iso-butane under varying initial [NO] conditions is shown in Figure 7-31.

In both cases, as the initial [NO] was increased, the time at which the observed ozone

reaches a maximum is also increased. In contrast to the Cl atom initiated oxidation of

iso-butane under varying initial [NO], the maximum ozone observed for the OH radical

initiated oxidation decreased with increasing NO.
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(a) (b)

Figure 7-31: Comparison of ozone formation for the OH radical initiated oxidation of
iso-butanol (a) and iso-butane in the presence of NOx (b).

For both compounds, the ozone production was significantly lower than that of the Cl

atom initiated oxidation process. The relative kinetics of the OH radical versus Cl atom

initiated oxidation of both compounds are over two orders of magnitude slower. It is

concluded that slower formation of peroxy radicals in the OH oxidation processes leads

to the lower measured O3 concentrations. Again, the peak ozone concentrations at the

time at which it occurs are compared in Table 7-12, with the total hydrocarbon

consumption also given. As with the Cl atom initiated oxidation processes, the time at

which the peak ozone was reach was later for the iso-butane oxidation process as

compared to the iso-butanol oxidation process, and the iso-butanol consumption was

significantly greater at the peak ozone concentration.

Iso-butanol Iso-butane

[NO]0 /

ppbv

[O3]max /

ppbv

Time

/ s

Iso-butanol

consumption

[NO]0 /

ppbv

[O3]max /

ppbv

Time

/ s

Iso-butane

consumption

55 8 898 60% 49 42 1200 20%

91 19 1384 75% 50 21 1708 30%

206 11 2330 90% 54 10 1365 35%

109 3 2492 55%

218 2 2884 50%

Table 7-12: Percentage hydrocarbon consumption at peak ozone concentrations for the
Cl atom initiated oxidation of iso-butanol and iso-butane under varying initial NO
concentrations.

The ozone concentration time profiles for the OH radical initiated oxidation of iso-butanol

and iso-butane under low NOx conditions is shown in Figure 7-32. In both cases, no ozone
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formation was observed under low NOx conditions, owing to the lack of NO2 being

produced in the system, which reduces the amount of O(3P) available to react with O2

present and form O3 (see R 7-8 and R 7-9).

(a) (b)

Figure 7-32: Comparison of ozone formation for the OH radical initiated oxidation of
iso-butanol (a) and iso-butane (b) in the absence of NOx.

Little is available in the literature on the ozone formation from Cl atom initiated oxidation

of VOCs; a modelling study by Chang and Allen (2006) investigated the enhancement of

ozone formation due to Cl atoms in an urban environment. The authors reported that

ozone enhancement could be up to 70 ppbv for a one hour average, in localised areas

during the morning, with the peak ozone (typically observed in the later hours of the day)

showing an enhancement of <10 ppbv due to chlorine. This study highlights the

importance of Cl atom chemistry in early hours of the day, when chlorine containing

species are rapidly photolysed to produce Cl atoms. They also noted an influence on the

VOC and NOx emissions on the production of ozone. It is possible that the observed

differences in ozone production presented in this work between the OH radical and Cl

atom initiated oxidation processes, arise from any differences in photolysis rates of H2O2

to produce OH radicals and Cl2 to produce Cl atoms. Further study into the photolysis

rates and yields of OH radicals and Cl atoms is required in order to gain a further insight

into this. From the POCP values alone, 37.5 and 30.7 for iso-butanol and iso-butane,

respectively, it would be expected that iso-butanol would lead to the formation of greater

concentrations of ozone.

7.7 Summary and Conclusions

This chapter has described a comprehensive study into the oxidation processes of

iso-butanol and iso-butane, initiated by Cl atoms or OH radicals in the absence and

presence of varying initial NO concentrations. This is the first study of the OH radical

initiated oxidation of iso-butanol in the absence of NOx, and under varying,
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tropospherically relevant NO concentrations. The products of the Cl atom and OH radical

initiated oxidation of iso-butanol in the absence and presence of varying initial [NO] have

been discussed and, where appropriate, comparisons with previous literature studies have

been drawn. The ozone formation following the Cl atom and OH radical initiated

oxidation of iso-butanol in the absence and presence of NOx has been reported, with

comparison made to the analogous, non-functionalised alkane; iso-butane.

In a previous study reported by Andersen et al. (2010), no discernible difference was

observed in the iso-butyraldehyde yields for the Cl atom initiated oxidation of iso-butanol

in the absence or presence of NOx. The authors reported an initial yield of 48 ± 3% in the

absence of NOx and 46 ± 3% in the presence of NOx. In this study, a clear trend was

observed in the initial iso-butyraldehyde yields; when the initial NO concentration was

increased, the initial iso-butyraldehyde yield decreased through a minimum and increased

again at the maximum initial [NO]. The initial yield of iso-butyraldehyde of 57 ± 15%

for Cl atom initiated oxidation of iso-butanol in the presence of 250 ppbv initial NO is in

good agreement with that reported by Andersen et al. (2010) in the presence of NOx. The

yields of iso-butyraldehyde observed under varying initial NO concentrations indicate

that they are highly dependent on the exact initial [NO] present.

Products in the oxidation process of VOCs play a significant role in their ozone

production following the oxidation process. The ozone formation is, however, more

complex as it is also closely linked with the concentrations of NOx and HOx present in

the system. For the OH radical initiated oxidation of iso-butanol, peak ozone formation

increased with increasing initial [NO], however, the ozone formation in the OH radical

initiated oxidation of iso-butanol peaked at ~4.5 × 1011 molecule cm-3 for an initial NO

concentration of 91 ppbv and decreased to ~2 × 1011 molecule cm-3 for 206 ppbv initial

NO. For the Cl atom initiated oxidation of iso-butane under varying initial [NO], the peak

ozone formation also increased with increasing initial [NO]. The peak ozone

concentration measured for the Cl atom initiated oxidation of iso-butane under varying

initial [NO] was considerably higher, (0.5 – 3.0) × 1012 molecule cm-3 for initial [NO] in

the range 58 – 190 ppbv, than the peak measured for the Cl atom initiated oxidation of

iso-butanol under varying initial [NO]; (0.05 – 0.8) × 1012 molecule cm-3. This difference

in maximum ozone formation demonstrates the potential benefit, in terms of ozone

formation, for the use of alcohols as fuels over alkanes.
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In the troposphere, VOCs are predominantly oxidised by OH radicals rather than Cl

atoms, as they are in far greater abundance. The peak ozone formation for the OH radical

initiated oxidation of iso-butanol in the presence of 91 ppbv initial NO was at

~4.5 × 1011 molecule cm-3, decreasing to ~2 × 1011 molecule cm-3 for 206 ppbv initial

NO. This trend in peak ozone formation was also observed for the OH radical initiated

oxidation of iso-butane in the presence of NOx; with the maximum ozone formation peak

at 10 × 1011 molecule cm3 for 49 ppbv initial NO, and decreasing towards zero for 190

and 218 ppbv initial [NO]. Although the ozone formation tends towards zero for the OH

radical initiated oxidation of iso-butane at 109 ppbv initial NO, with an ozone

concentration of ~2 × 1011 molecule cm-3, for the iso-butanol oxidation, the range of O3

concentrations under varying initial [NO] was much lower, (1.8 – 4.5) × 1011 molecule

cm-3 for 91 - 206 ppbv initial NO, as compared to (0 – 10) × 1011 molecule cm-3 for

49 - 218 ppbv initial NO. The lower range of peak ozone formation from the OH radical

initiated oxidation of iso-butanol shows the potential benefit of the use of alcohols as

fuels, over alkanes, in varying NOx environments.

The difference in trends observed in the ozone formation between the Cl atom initiated

oxidation and the OH radical initiated oxidation is attributed to the differences in OH and

HO2 concentrations in the two different systems. Preliminary results of ozone formation

from a model simulation of the OH radical and Cl atom initiated oxidation of iso-butanol

in the presence of varying initial NO concentrations have been presented, and compared

to measured ozone concentrations. A similar trend to that of the measured peak ozone

concentrations, was observed in the simulation of Cl atom initiated oxidation of

iso-butanol in the presence of varying initial NO concentrations, where the peak ozone

concentration increased with increasing initial NO concentration. The trend observed in

the measured peak ozone concentrations from the OH radical initiated oxidation of

iso-butanol in the presence of varying NO was not replicated through simulations,

however, fewer initial NO concentrations were investigated for the OH radical oxidation

process. Comparison of a greater range of initial NO concentrations for this oxidation

process would assist in verifying these results. The MCM is a complex chemical

mechanism describing the tropospheric degradation of VOCs; with 338 reactions and 90

species included in the tropospheric degradation process of iso-butanol. Further

investigation into the chemical mechanism used in the simulation is required in order to

ascertain whether the inclusion of all such reactions are required in simulating the

oxidation processes as occurring in HIRAC. It is also necessary to fully characterise the
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photolysis of all species included within the chemical model to accurately represent their

loss processes. Detailed characterisation of processes occurring in HIRAC, for a wide

range of species, is ongoing work within the laboratory in order to gain further

understanding of reactions occurring within the chamber that would not occur in the

troposphere. Further in depth examination of the reactions included in the chemical model

would allow for the relative importance of each reaction in the ozone formation to be

considered, and for determination of potentially simplifying the reaction mechanism to

more directly describe the oxidation processes occurring. As the MCM has been primarily

produced to simulate chemical processes occurring in the troposphere, only a small

number of reactions involving chlorine chemistry are included. Chlorine is routinely used

in atmospheric simulation chambers as a low NOx precursor for reactions, it is photolysed

at long wavelengths; the inclusion of more detailed chlorine chemistry in the MCM would

allow for more accurate comparisons to be made with results from chamber experiments.

In summary, the use of iso-butanol as a potential biofuel shows potential in terms of

reduced ozone emissions when compared to its analogous non-functionalised alkane,

iso-butane. Product yields from the Cl atom initiated oxidation of iso-butanol in the

presence and absence of NOx are shown to be in reasonable agreement with those in the

literature, with any differences primarily attributed to background chemistry within

HIRAC. Product yields from the OH radical initiated oxidation of iso-butanol in the

presence and absence of NOx have also been reported, with the yield of acetone being in

excellent agreement with that reported by Andersen et al. (2010). Yields of

iso-butyraldehyde and HCHO were also reported. Measurements of the OH radical

initiated oxidation of iso-butanol in the presence of NOx employing CH3ONO as the OH

radical precursor would allow for more direct comparison to those measurements reported

by Andersen et al. (2010), however, this would lead to very high levels of NOx not

normally found in tropospheric environments.
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Chapter 8. OH reactivity
measurements following the oxidation
of iso-butanol and iso-butane in the
presence and absence of NOx

8.1 Introduction

As discussed in Chapter 1, measurements of OH reactivity are an extremely useful tool

in understanding the oxidation potential of specific environments of the troposphere. The

ability to measure OH reactivity in chamber studies allows for discrepancies between

calculated, modelled and measured OH reactivity to be investigated more thoroughly; it

is possible to study oxidation processes of individual compounds in isolation. With these

chamber measurements of OH reactivity, comparisons with calculated OH reactivity from

measurable species and comparisons with model simulations can provide useful

information on our current level of understanding of the chemical processes occurring. A

laser flash photolysis coupled with laser induced fluorescence (LFP-LIF) instrument for

the measurement of OH reactivity has been described in Chapter 4, with details on recent

development for the improvement of the measurement capability and for measurements

with the HIRAC chamber. Results from a comprehensive comparison of instruments for

the measurement of OH reactivity have been described in Chapter 5, where all LFP-LIF

instruments employed were shown to be in very good agreement with each other, and for

simple systems, to be in good agreement with calculated OH reactivity over a range of

VOC mixtures.

Few studies of OH reactivity measurements from atmospheric simulation chambers have

been previously reported in the literature (Nakashima et al. 2012, Fuchs et al. 2013, Nehr

et al. 2014, Nölscher et al. 2014). Three of these studies investigated the oxidation of

isoprene and compare measurements with results from modelling studies (Nakashima et

al. 2012, Fuchs et al. 2013, Nölscher et al. 2014), with the fourth investigating the

oxidation of aromatic hydrocarbons (Nehr et al. 2014). The three studies into the

oxidation of isoprene all showed discrepancies between measured and modelled OH

reactivity, with a general under prediction observed from the modelled OH reactivity.
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These studies show the value of OH reactivity measurements in chamber studies, enabling

the finer details of VOC oxidation processes to be investigated. As described in Chapter 1,

the incorporation of modelled intermediates in the modelling of OH reactivity has been

shown to reduce the gap between modelled and measured OH reactivity (Whalley et al.

2016). Comparison of measurements of OH reactivity with both calculated and modelled

OH reactivity for a range of VOCs under different conditions will assist in increasing the

depth of knowledge into these oxidation processes, and enable specific areas to be

identified that require more detailed investigation.

The importance of investigating both OH radical and Cl atom initiated oxidation

processes has been discussed in Chapter 1. Here, OH reactivity measurements are

compared with calculated OH reactivity from the OH radical and Cl atom initiated

oxidation processes of iso-butanol and iso-butane in the presence and absence of NOx.

Discrepancies between measured and calculated OH reactivity are discussed, with

conclusions being drawn based on the compounds used in the calculation of OH reactivity

and the measurement techniques.

8.2 Experimental

All experiments were carried out as described previously in Chapter 7. A LFP-LIF

instrument was used for the measurement of OH reactivity from the HIRAC chamber.

The OH reactivity measurement procedure from HIRAC has been outlined in Chapter 4.

For the measurements reported here, approximately 1 l min-1 was sampled from the

chamber during all experiments, and the measured OH reactivity, k’
raw, was corrected to

account for the dilution into the instrument and for the instrument zero (k’
OH(physical),

discussed in Chapter 4), in order to obtain a value of k’
OH representative of the true OH

reactivity within the chamber.

OH reactivity was calculated from the measured species within HIRAC for each

experiment. This included [HO2] measured with the FAGE instrument; [iso-butanol],

[iso-butane], [iso-butyraldehyde] and [acetone] measured by GC-FID using a CP-Sil 5CB

column (50 m length, 0.32 mm i.d., 5 μl film thickness); [HCHO] measured by FTIR; 

[O3] measured with a commercial UV photometric analyser (Thermo Electron

Corporation, Model 49C, LOD = 1.0 ppbv); and [NO] and [NO2] measured with a

commercial chemiluminescence NOx analyser (Thermo Environmental Instruments Inc.,

Model 42C, LOD = 50 pptv at 120 s averaging time). The rate coefficients for the

reactions with OH for each of the species mentioned here, and used for the calculation of
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OH reactivity, are given in Table 8-1. OH reactivity was calculated at 298 K and

1000 mbar, as these were the conditions during the experiments.

Species kOH + species / cm3 molecule-1 s-1 Reference

HO2 1.10 × 10-10 Atkinson et al. (2004)

iso-butanol 8.90 × 10-12 Atkinson et al. (2006)

iso-butane 2.12 × 10-12 Atkinson (2003)

iso-butyraldehyde 2.60 × 10-12 Atkinson et al. (2006)

Acetone 1.80 × 10-13 Atkinson et al. (2006)

HCHO 8.50 × 10-12 Atkinson et al. (2006)

O3 7.30 × 10-14 Atkinson et al. (2004)

NO 1.00 × 10-11 Atkinson et al. (2004)

NO2 1.12 × 10-11 Atkinson et al. (2004)

Table 8-1: Rate coefficients used in the calculation of OH reactivity.

8.3 OH Reactivity Measurements following the Cl Atom Initiated
Oxidation of iso-butanol and iso-butane in the Presence and
Absence of NOx

The measured OH reactivity and calculated contributions to the total calculated OH

reactivity for the Cl atom initiated oxidation of iso-butanol in the absence of NOx and in

the presence of 101 ppbv and 250 ppbv initial NO are shown in Figure 8-1, Figure 8-2

and Figure 8-3, respectively. In the absence of NOx, the measured OH reactivity prior to

the initiation of the oxidation reaction was in excellent agreement with the calculated OH

reactivity, solely from iso-butanol present in the chamber. As the oxidation process

proceeds, a discrepancy was evident between the measured and calculated OH reactivity;

at early times (0 – 900 s), the calculated OH reactivity overestimates that of the measured

OH reactivity, and at later times (900 – 3000 s), the calculated OH reactivity considerably

underestimates the measured OH reactivity. The measured OH reactivity has errors

typically of ~10%, propagated from the error in the OH reactivity measurements and the

error in the dilution of the sample taken from HIRAC. Discrepancies between measured

and calculated OH reactivity at shorter times are likely due to losses of iso-butyraldehyde
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within the sampling line into the OH reactivity instrument, whereas discrepancies at later

times, where the calculated OH reactivity was underestimating the measured OH

reactivity, are more likely due to numerous unmeasured minor products and intermediate

species formed throughout the oxidation process.

Figure 8-1: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butanol under low
NOx conditions. The vertical line at time = 0 shows the start of the oxidation process. Error
bars represent 1σ propagated uncertainties in the measurements. 

As the initial NO concentration was increased, a discrepancy between the measured and

calculated OH reactivity prior to the initiation of the oxidation process was observed, and

was seen to increase with increasing initial [NO] from 101 ppbv to 250 ppbv, Figure 8-2

and Figure 8-3, respectively. Again, the measured and calculated OH reactivities show

similar discrepancies at shorter and longer times for the Cl atom initiated oxidation of

iso-butanol in the presence of 101 ppbv initial NO, Figure 8-2. The overestimation of the

OH reactivity observed in the presence of NOx prior to the initiation of the oxidation

process may in fact be an underestimation of the measured OH reactivity due to OH

recycling within the flow tube of the OH reactivity instrument. As discussed in Chapter 5,

this has been seen in similar VOC/NOx chamber studies with the measurement of OH

reactivity of a CO/CH4 mixture in the presence of NOx. In this case, the measured OH
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reactivity may be underestimating the OH reactivity as OH is formed in the flow tube

following the reaction of NO with HO2 present in the flow tube:

Iso-butanol  +  OH  →  products  +  HO2 R 8-1

HO2  +  NO  →  OH  +  NO2 R 8-2

Further details on how this would lead to an underestimation in measured OH reactivity

have been discussed in Chapter 5. For the Cl atom initiated oxidation of iso-butanol in

the presence of 101 ppbv initial NO, the measured and calculated OH reactivity both

follow a similar time profile; an initial sharp increase in OH reactivity, followed by a

rapid decay up to ~1000 s and then a more gentle decay from ~1000 s to ~3000 s. The

initial sharp increase in OH reactivity is attributed to the rapid production of

iso-butyraldehyde following the attack of Cl atoms at the α-hydrogen position of 

iso-butanol. As previously discussed, the measured NO2 is in fact the sum of all NO2

containing species. At some experimental time points, the calculated contribution to the

total calculated OH reactivity from NO2 may be an overestimation, dependent on the real

identity of the species being measured as NO2. In order to determine the true contribution

of NO2 to the total calculated OH reactivity, NO2 concentrations should be determined

by other measurement techniques where this interference does not occur. At the time of

experiments and analysis, no NO2 reference spectrum was available to determine exact

NO2 concentrations from the FTIR spectra, however, NO2 was observable in the

experimental spectra recorded. If the NO2 contribution were to be excluded entirely from

the total calculated OH reactivity, better agreement would be observed between the

measured and calculated OH reactivity at shorter times (0 – 1000 s), however, at later

times (1000 – 3000 s) agreement would be poorer.
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Figure 8-2: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butanol under an
initial [NO] of 101 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. 

Similar to Figure 8-2, Figure 8-3 shows a significant discrepancy between the measured

and calculated OH reactivity prior to the initiation of the oxidation reaction, again

attributed to OH recycling from the reaction of NO with HO2 radicals within the flow

tube of the OH reactivity instrument. Overestimation of the calculated OH reactivity was

also observed at shorter times (0 – 1200 s), where, in this higher initial [NO] system, if

the contribution to the calculated OH reactivity from NO2 were to be excluded, excellent

agreement between the measured and calculated OH reactivity would be observed.
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Figure 8-3: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butanol under an
initial [NO] of 250 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. 

Figure 8-4 shows the calculated contributions to the total calculated OH reactivity for the

Cl atom initiated oxidation of iso-butanol under low NOx, 101 ppbv NO and 250 ppbv

NO at 600 second time intervals throughout the oxidation process. The calculated

contributions to the total calculated OH reactivity for the Cl atom initiated oxidation of

iso-butane under low NOx, 110 ppbv NO and 190 ppbv NO are shown in Figure 8-8. As

would be expected, the contribution the total calculated OH reactivity from NO at time

zero increased with the increase in the initial [NO] present in HIRAC. The contribution

to the total calculated OH reactivity from NO2, more unexpectedly, was observed to

increase with increasing time under low NOx conditions for both the iso-butanol and

iso-butane Cl atom initiated oxidation systems. This is attributed to any residual nitrate

compounds present on the chamber walls which will be photolysed when the lamps are

switched on, to produce NO2. Nitrates coming from walls throughout the course of the

experiments, which when measuring with a commercial NOx analyser, are all measured

as “NO2”. The contribution from NO2 to the total calculated OH reactivity, in both the

iso-butanol and iso-butane Cl atom initiated oxidation, increased with increasing initial

[NO] for each 600 second time point.

0 600 1200 1800 2400
0

50

100

150

200

250

k'
/

s-1

Time / s

Iso-butanol

Iso-butyraldehyde

NO
2

NO

HCHO

O
3

Acetone

HO
2

Measured k'
OH



Chapter 8 252 OH Reactivity Measurements

The percentage contributions from measured species to the total calculated OH reactivity

at 600 s time intervals for the Cl atom initiated oxidation of iso-butanol in the presence

and absence of NOx are given in Table 8-2, with a graphical representation shown in

Figure 8-4. As would be expected, as the initial NO concentration was increased, the

percentage contribution to the total calculated OH reactivity from NO also increased,

from <0.1% in the absence of NO, to 17.8% at 101 ppbv initial NO and 36.7% at 250 ppbv

initial NO. With the increasing initial [NO], the contribution to the total calculated OH

reactivity from NO2 also increased at each time point. Slightly unexpected was the

contribution to the total calculated OH reactivity from NO2 in the Cl atom oxidation of

iso-butanol in the absence of NOx, eventually dominating the total calculated OH

reactivity by the end of the experiment, at 3000 s. NO2 has previously been observed upon

irradiation of HIRAC in 80:20 N2:O2; due to the stainless steel construction material of

the chamber certain compounds are more prone to sticking to the chamber walls,

particularly nitrate compounds, which can then photolyse to produce NO2 upon

irradiation of the chamber, or come off the walls upon irradiation due to surface reactions

and temperature changes within the chamber, making them available for reaction with

other species present. The more the chamber is used daily, and the more NOx reactions

are investigated, the more NO and NO2 containing compounds remain on the chamber

walls. The contribution to the total calculated OH reactivity from NO2 is attributed to NO2

containing compounds coming from the walls of HIRAC.

The contribution to the total calculated OH reactivity from HO2 was seen to be

significantly greater at longer times in the absence of NOx as compared to in the presence

of NOx, however, the actual concentration of HO2 at later times was not significantly

different between the differing initial [NO]; [HO2] = ~4 × 1010 molecule cm-3 for all initial

levels of NO at 1800 s. The difference in percentage contribution to the total calculated

OH reactivity from HO2 at 1800 s under varying levels of initial NO is attributed to the

greater concentration of NOx contributing to the total measured OH reactivity under

higher initial NO conditions.
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[NO]t=0 Contributing Species 0 s 600 s 1200 s 1800 s 2400 s

Low NOx

Iso-butanol 99.9 28.3 <0.1 <0.1 <0.1

Iso-butyraldehyde <0.1 61.5 78.5 <0.1 <0.1

Acetone <0.1 0.6 3.5 17.3 13.7

NO2 0.1 0.2 1.4 13.3 21.4

O3 <0.1 <0.1 <0.1 <0.1 <0.1

NO <0.1 <0.1 <0.1 <0.1 <0.1

HO2 <0.1 3.2 12.4 69.5 64.9

HCHO <0.1 6.2 4.3 0.1 <0.1

∆k’
OH 19.6 49.4 76.0 174.8 180.3

101 ppbv

Iso-butanol 81.1 30.5 <0.1 <0.1 <0.1

Iso-butyraldehyde <0.1 42.5 <0.1 <0.1 <0.1

Acetone <0.1 0.7 5.1 4.8 3.2

NO2 0.3 20.6 83.0 75.9 78.2

O3 <0.1 <0.1 <0.1 <0.1 <0.1

NO 17.8 <0.1 <0.1 <0.1 <0.1

HO2 <0.1 3.7 11.9 19.3 18.5

HCHO <0.1 2.0 <0.1 <0.1 <0.1

∆k’
OH 2.6 42.1 44.2 63.3 63.5

250 ppbv

Iso-butanol 61.8 16.8 <0.1 <0.1 <0.1

Iso-butyraldehyde <0.1 46.2 <0.1 <0.1 <0.1

Acetone <0.1 0.5 2.5 2.9 2.1

NO2 <0.1 33.6 89.8 86.3 82.3

O3 <0.1 <0.1 0.1 <0.1 <0.1

NO 36.7 <0.1 <0.1 <0.1 <0.1

HO2 <0.1 2.2 7.5 10.8 15.6

HCHO 1.7 0.5 <0.1 <0.1 <0.1

∆k’
OH 50.0 80.3 22.2 0.9 36.0

Table 8-2: Percentage contributions of measured species to total calculated OH reactivity for the
Cl atom initiated oxidation of iso-butanol under low, 101 ppbv and 250 ppbv initial [NO]
conditions at 600 s time intervals.
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A comparison of the measured OH reactivity and the calculated OH reactivity from

measured species for the Cl atom initiated oxidation of iso-butane in the absence of NOx,

and in the presence of 110 ppbv initial NO and 190 ppbv initial NO are given in

Figure 8-5, Figure 8-6 and Figure 8-7, respectively.

Again, good agreement was observed between the measured and calculated OH reactivity

for the Cl atom initiated oxidation of iso-butane in the absence of NOx prior to the

initiation of the oxidation reaction; when only iso-butane was present in the system.

Following the initiation of the oxidation reaction, the calculated OH reactivity

overestimates the measured OH reactivity at shorter times (0 – 1000 s) and

underestimates the measured OH reactivity at later times (1000 – 2400 s). As with the

iso-butanol oxidation, the primary product of iso-butane oxidation is iso-butyraldehyde,

which was likely lost to the walls of the sampling line into the OH reactivity instrument,

resulting in the OH reactivity being undermeasured for high concentrations of

iso-butyraldehyde. Discrepancies between the calculated OH reactivity at later times

(1000 – 2400 s) may arise from a number of unmeasured products and intermediates

species.
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Figure 8-5: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butane in the
absence of NOx. The vertical line at time = 0 shows the start of the oxidation process. Error
bars represent 1σ propagated uncertainties in the measurements. 

Discrepancies between measured and calculated OH reactivity for the Cl atom initiated

oxidation of iso-butane in the presence of NOx were smaller compared to the

discrepancies observed in the absence of NOx; with the majority of the observed

discrepancies being an underestimation of the calculated OH reactivity as compared to

the measured OH reactivity. In both 110 ppbv initial NO and 190 ppbv initial NO, the

time profiles of the measured and calculated OH reactivity show very good agreement.
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Figure 8-6: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butane under an
initial [NO] of 110 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. Missing 
measured k’

OH data points were due to technical issues with the OH reactivity instrument.

The calculated and measured OH reactivity for the Cl atom initiated oxidation of

iso-butane in the presence of 190 ppbv initial NO are in good agreement, shown in

Figure 8-7. Unlike the situations discussed so far, for oxidation processes in the presence

of NOx, here the calculated OH reactivity underestimates the measured OH reactivity.

This discrepancy may arise for a number of reasons, including greater concentrations of

residual contaminants within HIRAC which are not included in the calculation, or greater

concentrations of contaminants within the dilution gas supplied to the OH reactivity

instrument. A slight discrepancy was observed at ~1250 s, where the calculated OH

reactivity underestimates the measured OH reactivity. A sharp change in gradient was

seen at this time in the calculated OH reactivity as the iso-butyraldehyde concentration

decreased towards zero, whereas the measured OH reactivity shows a much gentler

change in gradient as the iso-butyraldehyde was consumed. It is likely that the

discrepancy observed here was due to the detection limit of the GC-FID for the

measurement of iso-butyraldehyde. Following this, towards longer times
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(1500 – 2400 s), a small discrepancy was observed between the measured and calculated

OH reactivity; attributed to the sum of unmeasured products and intermediate species.

Figure 8-7: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the Cl atom initiated oxidation of iso-butane under an
initial [NO] of 190 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. Missing 
measured k’

OH data points were due to technical issues with the OH reactivity instrument.

Percentage contributions to the total calculated OH reactivity from measured species for

the Cl atom initiated oxidation of iso-butane in the presence and absence of NOx at 600 s

time intervals throughout the oxidation process are given in Table 8-3, and depicted in

Figure 8-8. Again, the percentage contribution from NO to the total calculated OH

reactivity for the Cl atom initiated oxidation of iso-butane increased as the initial NO

concentration increased, from <0.1% in the absence of NOx to 29.5% at 110 ppbv initial

[NO] and 46.7% at 190 ppbv initial [NO].

Similar to observations from in the Cl atom initiated oxidation of iso-butanol in the

absence of NOx, a contribution to the total calculated OH reactivity from NO2 was

observed at later times in the oxidation of iso-butane in the absence of NOx; attributed to

NO2 containing species present on the walls of the chamber.
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The percentage contribution to the total calculated OH reactivity from iso-butyraldehyde

decreased at 600 s and 1200 s as the initial [NO] was increased; decreasing from 84.5%

in the absence of NOx, to 59.0% in 110 ppbv initial NO and 47.3% in 190 ppbv initial

NO. At 1200 s, the percentage contribution from iso-butyraldehyde to the total calculated

OH reactivity increased in both the absence of NOx and in 110 ppbv initial NO from the

percentage contribution at 600 s. The iso-butyraldehyde was completely consumed by

1200 s in the presence of 190 ppbv initial NO; the peak [OH] in fact decreased from

110 ppbv initial NO to 190 ppbv initial NO, however, the maximum [OH] was

considerably longer lived in the 190 ppbv initial NO, remaining for ~100 s before

decaying at a relatively slow rate as compared to the much faster instant decay of OH

radicals in the 110 ppbv initial NO. This longer lived [OH] enables the iso-butyraldehyde

to be consumed by both Cl atoms and OH radicals present in the system.

The percentage contribution to the total calculated OH reactivity from acetone was

observed to increase throughout the oxidation process for all initial NO concentrations.

The rate of reaction of acetone with Cl atoms is considerably slower,

kCl + acetone = (2.10 ± 0.29) × 10-12 cm3 molecule-1 s-1 (Atkinson et al. 2006), than the rate

of reaction of iso-butyraldehyde, kCl + iso-butyraldehyde = (1.37 ± 0.08) × 10-10 cm3

molecule-1 s-1 (Andersen et al. 2010), and so little to none of the acetone produced from

the iso-butanol oxidation was consumed by Cl atoms. An increase in the percentage

contribution to the total OH reactivity from acetone was observed in the absence of NOx

throughout the oxidation; from <0.1% at 0 s to 0.8% at 600 s, 3.8% at 1200 s, 36.2% at

1800 s and 36.1% at 2400 s. The large percentage contribution from acetone at later times

(1800 s and 2400 s) arises as acetone was also produced following the oxidation and

photolysis of iso-butyraldehyde, and other products in the oxidation process have been

consumed by reaction with Cl atoms and OH radicals.

Ozone does not have a significant influence on the total calculated OH reactivity;

remaining ≤0.1% at all times throughout the oxidation of iso-butane for all initial NO

concentrations, with the exception of 190 ppbv initial NO at 1200 s where the percentage

contribution from ozone reaches 0.4%. As shown in Chapter 7, the concentration of

ozone produced following the Cl atom initiated oxidation of iso-butane in the presence

of NOx was significantly larger than concentrations from the Cl atom initiated oxidation

of iso-butanol in the presence of NOx, however, the slow kinetics of O3 with OH radicals

(kOH + O3 = (7.30 ± 2.57) × 10-14 cm3 molecule-1 s-1 (Atkinson et al. 2004)) lead to ozone

having very little to no impact on the total calculated OH reactivity.
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[NO]t=0 Contributing Species 0 s 600 s 1200 s 1800 s 2400 s

Low NOx

Iso-butane 99.2 13.5 3.1 <0.1 <0.1

Iso-butyraldehyde <0.1 84.5 88.4 <0.1 <0.1

Acetone <0.1 0.8 3.8 36.2 36.1

NO2 0.2 0.4 2.1 36.0 63.8

O3 <0.1 <0.1 <0.1 0.1 0.1

NO <0.1 <0.1 <0.1 <0.1 <0.1

HO2 0.6 0.9 2.5 27.8 <0.1

∆k’
OH 2.6 39.5 4.1 155.4 200

110 ppbv

Iso-butane 70.5 16.0 4.0 <0.1

Iso-butyraldehyde <0.1 59.0 65.0 <0.1

Acetone <0.1 0.6 2.0 8.7

NO2 <0.1 24.4 29.0 91.2

O3 <0.1 <0.1 <0.1 0.1

NO 29.5 <0.1 <0.1 <0.1

HO2 <0.1 <0.1 <0.1 <0.1

∆k’
OH 0.8 21.7 28.1 61.4

190 ppbv

Iso-butane 52.2 8.3 <0.1 <0.1

Iso-butyraldehyde <0.1 47.3 <0.1 <0.1

Acetone <0.1 1.1 4.2 4.5

NO2 1.1 42.2 90.5 88.6

O3 <0.1 0.1 0.4 0.1

NO 46.7 <0.1 <0.1 <0.1

HO2 <0.1 1.0 4.9 6.9

∆k’
OH - 7.6 58.7 28.0

Table 8-3: Percentage contributions of measured species to total calculated OH reactivity for the
Cl atom initiated oxidation of iso-butane under low, 110 ppbv and 190 ppbv initial [NO]
conditions at 600 s time intervals
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8.4 OH Reactivity Measurements following the OH Radical Initiated
Oxidation of Iso-butanol and Iso-butane in the Presence and
Absence of NOx

The OH radical initiated oxidation of iso-butanol in the absence and presence of NOx is

compared to that of the OH radical initiated oxidation of iso-butane in the absence and

presence of NOx, in order to investigate the influence of the alcohol functional group on

OH reactivity measurements. Comparison with the Cl atom initiated oxidation processes

will be given in Section 8.5.

Figure 8-9, Figure 8-10 and Figure 8-11 show the calculated contributions to the total

calculated OH reactivity compared to the measured OH reactivity for the OH radical

initiated oxidation of iso-butanol in the absence of NOx, in the presence of 91 ppbv initial

NO and in the presence of 206 ppbv initial NO, respectively. In Figure 8-9, the measured

and calculated OH reactivity are seen to be in good agreement prior to the initiation of

the oxidation reaction. Following the initiation of the oxidation reaction, discrepancies

were observed between the calculated and measured OH reactivity. Iso-butyraldehyde is

the primary oxidation product following attack by OH radicals at the α-hydrogen position 

of iso-butanol. It is likely that lower values of the measured OH reactivity, compared to

the calculated values, arise due to losses in the sampling line into the OH reactivity

instrument. Unlike in the Cl atom initiated oxidation of iso-butanol, the

iso-butyraldehyde was not completely consumed within the ~30 minutes of the reaction;

the kinetics of iso-butyraldehyde with OH radicals are ~10 times slower

(kOH + iso-butyraldehyde = (2.60 ± 0.60) × 10-11 cm3 molecule-1 s-1 (Atkinson et al. 2006)) than

the kinetics with Cl atoms (kCl + iso-butyraldehyde = (1.37 ± 0.08) × 10-10 cm3 molecule-1 s-1

(Andersen et al. 2010)).
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Figure 8-9: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the OH radical initiated oxidation of iso-butanol under
low NOx conditions. The vertical line at time = 0 shows the start of the oxidation process.
Error bars represent 1σ propagated uncertainties in the measurements. 

In the presence of 91 ppbv initial NO, a discrepancy was observed between the measured

and calculated OH reactivity prior to the initiation of the oxidation reaction; the

calculated OH reactivity was greater than the measured OH reactivity. This discrepancy

is attributed to the analysis process for the OH reactivity measurements, resulting in

lower values due to recycling of OH within the flow tube of the instrument. At shorter

times following the initiation of the oxidation reaction (0 – 500 s), the calculated OH

reactivity underestimates the measured OH reactivity. Another significant factor in the

underestimation of OH reactivity as compared to measured OH reactivity may be losses

of species to the walls of the sampling line into the instrument.
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Figure 8-10: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the OH radical initiated oxidation of iso-butanol under
an initial [NO] of 91 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. Missing 
measured k’

OH data points were due to technical issues with the OH reactivity instrument.

The measured and calculated OH reactivity for the OH radical initiated oxidation of

iso-butanol in the presence of 206 ppbv initial NO is shown in Figure 8-11. Again, a

discrepancy between the measured and calculated OH reactivity was observed at times

prior to the initiation of the oxidation reaction, when only iso-butanol and NO are present

in the chamber.

As with the other systems described previously for the Cl atom initiated oxidation of

iso-butanol in the presence of NOx, the measured OH reactivity was much lower than the

calculated OH reactivity at short reaction times (0 – 600 s); likely due to influences as

previously explained from measurements of NO2 and wall losses.
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Figure 8-11: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the OH radical initiated oxidation of iso-butanol under
an initial [NO] of 206 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. Missing 
measured k’

OH data points were due to technical issues with the OH reactivity instrument.

Percentage contributions to the total calculated OH reactivity from measured species at

600 s time intervals are given in Table 8-4, and graphically displayed in Figure 8-12. As

expected, as the initial NO concentration was increased, the contribution to the total

calculated OH reactivity at 0 s from NO increased; from <0.1% in the absence of NOx,

to 12.8% at 91 ppbv initial NO and 24.4% at 206 ppbv initial NO.

Under all three initial NO conditions, the contribution to the calculate OH reactivity from

iso-butyraldehyde increased throughout the oxidation process; in the absence of NOx the

iso-butyraldehyde percentage contribution increased from <0.1% at 0 s, to 49.8% at

600 s, 63.1% at 1200 s, 70.2% at 1800 s and 73.2% at 2400 s. No contribution to the total

calculated OH reactivity was observed from NO2 for the OH radical initiated oxidation

of iso-butanol in the absence of NOx. The NO2 formation and measurement upon

irradiating the chamber in the absence of any NOx is highly dependent on the condition

of the chamber walls; influenced by the previous experiments carried out in HIRAC. The

contribution from NO2 to the total calculated OH reactivity was observed to increase
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throughout the oxidation process for both the 91 ppbv initial NO and 206 ppbv initial

NO.

Under all initial NO concentrations, the contribution to the total calculated OH reactivity

from HCHO was observed to increase with time; in the absence of NOx, HCHO increased

from <0.1% at 0 s, to 4.4% at 600 s, 6.5% at 1200 s, 7.9% at 1800s and 8.5% at 2400 s.

The HCHO contribution to the total calculated OH reactivity at different time intervals

generally increased with increasing initial NO concentration. For an initial NO

concentration of 91 ppbv, the HCHO contribution at 0 s was <0.1%, increasing to 6.2%

at 600 s, 11.6% at 1200 s, 21.2% at 1800 s and 12.7% at 2400 s. Increasing the initial

NO concentration again to 206 ppbv, the contribution to the total calculated OH

reactivity increased from <0.1% at 0 s to 7.3% at 600 s, 12.0% at 1200 s, 17.4% at 1800 s

and 23.5% at 2400 s. HCHO is a secondary product formed in the oxidation of

iso-butanol; as the primary products, iso-butyraldehyde and acetone, are formed, they go

on to form HCHO in their subsequent reactions with OH radicals present and from

photolysis. As the initial NO concentration was increased from low NOx through 91 ppbv

to 206 ppbv, the potential for OH recycling increased, increasing the OH radicals

available for iso-butyraldehyde and acetone to react with and subsequently forming

HCHO; this was observed as the contribution to the total calculated OH reactivity from

HCHO increased for each 600 s time interval as the initial NO concentration was

increased.

The contribution to the total OH reactivity from O3 was very low throughout all time

points for all concentrations of initial NOx, typically being ≤0.1%. As has been 

previously discussed in Chapter 7, the formation of ozone from the OH radical initiated

oxidation of iso-butanol was observed in the presence of NOx, however, the kinetics of

the reaction of ozone with OH radicals are very slow as compared to the kinetics of the

other species used in calculating OH reactivity, kOH + O3 = (7.30 ± 2.57) × 10-14 cm3

molecule-1 s-1 (Atkinson et al. 2004), compared to (110 – 8.9) × 10-12 cm3 molecule-1 s-1

for other species included in calculating OH reactivity (excluding acetone).

The kinetics of acetone with OH radicals are also considerably slower than those of other

measured species used in calculating total OH reactivity,

kOH + acetone = (1.80 ± 0.33) × 10-13 cm3 molecule-1 s-1 (Atkinson et al. 2004). Acetone was

observed as a primary product for the OH radical initiated oxidation of iso-butanol in the

presence and absence of NOx (Chapter 7); however, the contribution from acetone to the
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total calculated OH reactivity was observed to be insignificant, contributing <1% under

all initial NOx conditions at all times throughout the oxidation process.

[NO]t=0

Contributing

Species
0 s 600 s 1200 s 1800 s 2400 s 3000 s

Low NOx

Iso-butanol 99.5 45.3 29.9 21.5 17.9

Iso-butyraldehyde <0.1 49.8 63.1 70.2 73.2

Acetone <0.1 0.2 0.2 0.2 0.3

NO2 0.2 0.1 0.1 0.1 0.1

O3 <0.1 <0.1 <0.1 <0.1 <0.1

NO <0.1 <0.1 <0.1 <0.1 <0.1

HO2 0.4 0.2 0.1 0.1 <0.1

HCHO <0.1 4.4 6.5 7.9 8.5

∆k’
OH 21.9 27.6 23.3 30.9 32.7

91 ppbv

Iso-butanol 69.1 38.5 20.5 <0.1 <0.1

Iso-butyraldehyde <0.1 24.1 36.8 40.4 63.8

Acetone <0.1 0.2 0.3 0.6 0.3

NO2 18.1 29.0 30.3 37.4 23.3

O3 <0.1 <0.1 <0.1 <0.1 <0.1

NO 12.8 1.8 0.4 0.5 <0.1

HO2 <0.1 <0.1 0.1 0.1 <0.1

HCHO 0 6.2 11.6 21.1 12.7

∆k’
OH 9.7 43.6 - - -

206 ppbv

Iso-butanol 75.6 36.2 20.2 8.3 <0.1 <0.1

Iso-butyraldehyde <0.1 31.2 38.8 42.5 42.1 37.2

Acetone <0.1 0.2 0.4 0.5 0.6 0.7

NO2 <0.1 15.7 25.5 30.1 32.9 34.6

O3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

NO 24.4 9.4 3.1 1.1 0.8 0.6

HO2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

HCHO <0.1 7.3 12.0 17.4 23.5 27.0

∆k’
OH 43.0 30.0 - - - -

Table 8-4: Percentage contributions of measured species to total calculated OH reactivity for the
OH radical initiated oxidation of iso-butanol under low, 91 ppbv and 206 ppbv initial [NO]
conditions at 600 s time intervals.
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The stacked area contributions to the calculated OH reactivity comapared to the

measured OH reactivity for the OH radical initiated oxidation of iso-butane under

109 ppbv initial NO and 218 ppbv intial NO are shown in Figure 8-13 and Figure 8-14,

respectively. As with the Cl atom initiated oxidation of iso-butane in the presence of

NOx, the calculated OH reactivity underestimates the measured OH reactivity for the OH

radical initiated oxidation of iso-butane in the presence of NOx. Prior to the initiation of

the oxidation process, the calculated OH reactivity underestimated the measured OH

reactivity by ~15 s-1 for the oxidation in the presence of 109 ppbv initial NO when only

iso-butane was present, with this discrepancy increasing to ~60 s-1 upon the addition of

NO to the system. In the presence of 218 ppbv initial NO, the calcualted and measured

OH reactiivty are in excellent agreement prior to the initiation of the oxidation process

when only iso-butane was present, however, a discrepancy of ~50 s-1 between the

caclualted and measured OH reactivity was observed as NO was introduced. The

discrepancy observed between the calculated and measured OH reactivity with 109 ppbv

initial NO when only iso-butane was present is likely due to impurities in the bath gas

used, dilution gases and residual compounds within the chamber from previous

experiments. As discussed previously for the oxidation of iso-butanol by OH radicals or

Cl atoms, in the presence of NOx, the discrepancy observed prior to the intiaition of the

oxidation process showed an over exestimation of the calcualted OH reactivity comapred

to the measured OH reactivity (or under measurement of the OH reactiivty due to OH

recycling within the flow tube of the instrument). This was not the case here for the OH

radical initiated oxidation of iso-butane in the presnece of NOx as the calculated OH

reacitivty was significantly underestimating that of the calculated OH reactivity. In both

the 109 ppbv initial NO and 218 ppbv initial NO situations, the contribution to the

calculated OH reactivty becomes dominated by NOx following the initiation of the

oxidation process.
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Figure 8-13: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the OH radical initiated oxidation of iso-butane under
an initial [NO] of 109 ppbv. The vertical line at time = 0 shows the start of the oxidation
process. Error bars represent 1σ propagated uncertainties in the measurements. Missing 
measured k’

OH data points were due to technical issues with the OH reactivity instrument.
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Figure 8-14: Stacked area plot to show the contribution to k’OH from measured species in
comparison with measured k’OH for the OH radical oxidation of iso-butane under an initial
[NO] of 218 ppbv. The vertical line at time = 0 shows the start of the oxidation process.
Error bars represent 1σ propagated uncertainties in the measurements. Missing measured 
k’

OH data points were due to technical issues with the OH reactivity instrument.

Table 8-5 gives the percentage contributions to the total calculated OH reactivity from

measured species for the OH radical initiated oxidation of iso-butane under varying

initial NO concentrations, displayed graphically in Figure 8-15. As with all systems

discussed so far, the percentage contribution to the total calculated OH reactivity from

NO increased with increasing initial NO for time = 0 s; 47.6% at 109 ppbv initial NO

and 52.2% at 218 ppbv NO. The contribution from NO to the total calculated OH

reactivity then decreased throughout the course of the oxidation process, although still

remaining as a significant contribution throughout all time intervals for 218 ppbv initial

NO than 109 ppbv initial NO.

As the iso-butane was consumed through its oxidation process, the contribution to the

total calculated OH reactivity from iso-butane decreased; for 109 ppbv initial NO the

iso-butane contribution decreased from 43.0% at 0 s to 37.6% at 600 s, 31.5% at 1200 s,

27.3% at 1800 s, 23.2% at 2400 s and 23.8% at 3000 s. For 218 ppbv initial NO the

percentage contribution to the total calculated OH reactivity from iso-butane decreased
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from 38.5% at 0 s, to 35.4% at 600 s, 31.8% at 1200 s, 28.4% at 1800 s, 24.6% at 2400 s

and 22.5% at 3000 s.

No iso-butyraldehyde was observed for the OH radical initiated oxidation of iso-butane

in the presence of NOx, it is possible that due to the NO present, any iso-butyraldehyde

formed was immediately consumed following further oxidation by OH radicals present

in the system, however, the absence of any HCHO present would suggest that this may

not be the case. Another possible reason for the absence of iso-butyraldehyde and HCHO

observed is the large dilution required to maintain a constant pressure within HIRAC;

any small concentrations of iso-butyraldehyde or HCHO formed could be immediately

removed due to dilution and wall losses. It would be expected that iso-butyraldehyde and

HCHO would be observed as the attack of OH radicals at the α carbon of the iso-butane

would primarily form iso-butyraldehyde, which subsequently produce HCHO as a

secondary product following its own oxidation by OH radicals present. In comparison,

in the Cl atom initiated oxidation of iso-butane in the presence of NOx, both

iso-butyraldehyde and HCHO were observed, owing to the faster kinetics of iso-butane

with Cl radicals (kCl + iso-butane = (1.40 ± 0.08) × 10-10 cm3 molecule-1 s-1 (Beichert et al.

1995)) than with OH radicals (kOH + iso-butane = (2.12 ± 0.42) × 10-12 cm3 molecule-1 s-1

(Atkinson 2003)).

As with the oxidation systems in the presence of NOx previously described, despite the

high concentrations of ozone observed, the contribution to the total calculated OH

reactivity from ozone was <0.1% at all times throughout the oxidation process under all

initial NO concentrations, due to its slow rate of reaction with OH radicals.

Acetone was also observed as a primary product in the OH radical initiated oxidation of

iso-butane in the presence of NOx, similarly to ozone, owing to its relatively slow kinetics

with OH radicals (kOH + acetone = (1.8 ± 0.30) × 10-13 cm3 molecule-1 s-1 (Atkinson et al.

2006)), acetone contributed only a very small amount, <1% for all initial NO

concentrations and at all times throughout the oxidation process, to the total calculated

OH reactivity.

The contribution from NO2 to the total calculated OH reactivity was observed to increase

throughout the oxidation process for both the 109 ppbv initial NO and 218 ppbv initial

NO; at 109 ppbv initial NO the NO2 percentage contribution increased from 9.3% at 0 s

to 32.2% at 600 s, 46.0% at 1200 s, 57.4% at 1800 s, 67.8% at 2400 s and 69.7% at

3000 s. At 218 ppbv initial NO, the NO2 percentage contribution to the total calculated
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OH reactivity increased from 9.4% at 0 s to 21.6% at 600 s, 31.8% at 1200 s, 41.1% at

1800 s, 50.7% at 2400 s and 58.0% at 3000 s. The difference in percentage contribution

to the total calculated OH reactivity between the 109 ppbv initial NO and the 218 ppbv

initial NO is likely due to varying wall conditions within the chamber. As with the Cl

atom initiated oxidation of iso-butane in the presence of NO, little to no significant

influence on the total calculated OH reactivity comes from the presence of HO2, being

<0.1% at all time intervals for both the 109 ppbv initial NO and 218 ppbv initial NO

situations.

[NO]t=0 Contributing Species 0 s 600 s 1200 s 1800 s 2400 s 3000 s

109 ppbv

Iso-butane 43.0 37.6 31.5 27.3 23.2 23.8

Iso-butyraldehyde <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Acetone <0.1 <0.1 0.3 0.5 0.6 0.7

NO2 9.3 32.2 46.0 57.4 67.8 69.7

O3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

NO 47.6 30.1 22.2 14.8 8.3 5.9

HO2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

∆k’
OH 50.0 53.0 77.3 84.8 72.7 73.2

218 ppbv

Iso-butane 38.5 35.4 31.8 28.4 24.6 22.5

Iso-butyraldehyde <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Acetone <0.1 0.2 0.3 0.4 0.5 0.6

NO2 9.4 21.6 31.8 41.1 50.7 58.0

O3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

NO 52.2 42.8 36.2 30.2 24.2 19.0

HO2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

∆k’
OH 35.7 35.0 38.8 - - -

Table 8-5: Percentage contributions of measured species to total calculated OH reactivity for the
OH radical initiated oxidation of iso-butane under 109 ppbv and 218 ppbv initial [NO]
conditions at 600 s time intervals.
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8.5 Summary and Conclusions

OH reactivity provides valuable information on the total VOCs within an environment.

The ability to measure OH reactivity in chamber studies allows for the oxidation

processes of compounds to be investigated in isolation. If all species present throughout

such processes are measured, and their rate coefficients for reaction with OH radicals are

known, then the measured and calculated OH reactivities should show perfect agreement.

Discrepancies were observed between the measured and calculated OH reactivity for the

Cl atom and OH radical initiated oxidation of both iso-butanol and iso-butane under

varying initial NO concentrations. The development of the OH reactivity instrument, and

its coupling to the HIRAC chamber has been described in Chapter 4. Few previous

studies have been reported on OH reactivity measurements from atmospheric simulation

chambers. A major source of discrepancies between measured and calculated OH

reactivity for field measurements are typically attributed to unmeasured intermediate

species. In the chamber studies presented here, discrepancies between measured and

calculated OH reactivity may arise for other factors as well as unmeasured intermediate

species. A comprehensive set of OH reactivity measurements has been described here

following the oxidation processes of iso-butanol and iso-butane in the presence and

absence of NOx. Both the Cl atom and OH radical initiated oxidation processes have been

studied.

In nearly all cases presented, the calculated OH reactivity, prior to the initiation of the

oxidation reaction, in the presence of NOx, was greater than the measured OH reactivity.

It is concluded that this discrepancy observed in the presence of NOx was due to recycling

within the flow tube (as has been described in Chapter 4), where fitting the data at these

time points with a bi-exponential fitting function may yield a value of k’
OH closer to the

true value of the OH reactivity. Further work into the analysis of data from these time

points would determine whether the discrepancy is due to recycling or from losses of NO

in the sampled gas in the sampling line into the instrument. Measurements of the NO

concentration in the OH reactivity instrument, taking a small portion of the sampled gas

close to the input into the instrument, for measurement with a NOx analyser would allow

for any wall losses to be accounted for. Measurements of NO concentrations in this way,

for varying levels of NO and VOCs within HIRAC would aid interpretation of results

and indicate if any modifications are required in the sampling procedure for HIRAC

measurements.
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In the absence of NOx, in the time periods prior to the initiation of the oxidation process,

very good agreement was observed between the measured and calculated OH reactivity,

indicating that there are no significant losses of iso-butanol or iso-butane within the

sampling line into the instrument. Further studies into a range of VOCs, such as the

carbonyl products observed in the oxidation processes studied in this work, would

determine whether this is the case for all of these compounds; it is likely that some

compounds are prone to more significant losses within the sampling line. Such losses

could be reduced in a number of ways; reducing the residence time in the sampling line

by reducing the length of the sampling line or increasing the sample flow rate from

HIRAC into the instrument; or the use of a sampling line made from different material.

A general trend in the difference between the measured and calculated OH reactivity was

observed; in the OH radical initiated oxidation processes, the average percentage

difference increased for all initial NO concentrations as the experiment proceeds,

indicating that at later times, unmeasured species become more significant to the total

OH reactivity. As the initial NO concentration was increased in the OH radical oxidation

processes, the average percentage difference between the measured and calculated OH

reactivity decreased; the presence of NO provides a more direct route for the peroxy

radicals to the final carbonyl products, whereas in the absence of NO, the peroxy radicals

can react with other peroxy radicals, resulting in the formation of numerous other

products. The greater difference observed in the absence of NOx is attributable to

numerous unmeasured minor products and intermediate species.

Measurements of OH reactivity following the OH radical initiated oxidation of

iso-butanol in the presence of varying initial NO concentrations increase with increasing

initial [NO]. NO containing species contribute significantly to the OH reactivity; NO and

NO2 contributed 55% and 10%, respectively, to the calculated OH reactivity for the

MEGAPOLI winter campaign (Dolgorouky et al. 2012) which was carried out in the

urban environment of Paris where high levels of NOx would be expected. In contrast,

only 18% of the total calculated OH reactivity came from NO and NO2 for measurements

carried out at a coastal site in North Norfolk (Lee et al. 2009).

Overall, the time profiles of the measured and calculated OH reactivity are in better

agreement for the Cl atom and OH radical initiated oxidation process of iso-butane under

varying initial NO concentrations than for the oxidation processes of iso-butanol. This

better agreement most likely arises due to differences in site specific reactivity between

iso-butane and iso-butanol. There are two different hydrogen types present in iso-butane
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(one tertiary hydrogen and nine primary hydrogens), whereas there are four different

hydrogen types in iso-butanol (one –OH group, two α-hydrogens, one β-hydrogen and 

six γ-hydrogens).The –OH group influences the reactivity of the α-hydrogens, making 

them more reactive towards attack from both OH radicals and Cl atoms, than the

β-hydrogens or the primary hydrogens of iso-butane.

The measurements of OH reactivity in the studies presented in this work demonstrates

their usefulness in atmospheric simulation chamber studies. These are the first

measurements of OH reactivity for relatively complex systems within the HIRAC

chamber, and comparison with the calculated OH reactivity has highlighted a number of

areas for further characterisation of such measurements. These include systematic

investigation into the influence of varying concentrations of NO with a range of VOCs

in order to elucidate any OH recycling within the flow tube of the instrument. It is

suggested that a wide range of VOCs are to be studied in order to establish the transfer

efficiency of different categories of compounds into the instrument in order to determine

whether an alternative sampling line is required.

The effects of OH recycling within the flow tube of the instrument could also be

investigated with the use of deuterated water or H2
18O. If deuterated water (D2O) were

to be used instead of H2O in the bubbler, OD could be produced following R 8-3 and

R 8-4:

O3 + hν  →  O(1D) + O2 R 8-3

O(1D) + D2O  →  OD  +  OD R 8-4

Rate coefficients of VOCs and other reactive species with OD will be different to those

with OH radicals. The total loss rate of OD with reactive species can be monitored in real

time, as would be done for the measurement of OH reactivity, in which any OH radicals

produced following reactions such as R 8-5 to R 8-8 would not influence the OD decay.
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RO2  +  NO  →  RO  +  NO2 R 8-5

RO + O2  →  HO2 + RCHO R 8-6

HO2  +  NO  →  OH  +  NO R 8-7

OH  +  VOC  →  loss R 8-8

OD  +  VOC  →  loss R 8-9

Similarly, the use of H2
18O would produce 18OH, the decay of which could be recorded

following its reaction with reactive species present in the sampled gas.
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Chapter 9. Summary, Conclusions

and Future Work

The development and characterisation of instrumentation used in the investigation of

chemical reactions in atmospheric simulation chambers is extremely important. The

work in this thesis has described the development and characterisation of two instruments

for their measurements with the HIRAC chamber. Measurements with both of these

instruments, utilising the HIRAC chamber, have been reported following the oxidation

of processes of iso-butanol, a potential biofuel, and the analogous non-functionalised

alkane, iso-butane. This chapter summarises the work and conclusions that have been

presented in this thesis, with suggestions being made on important future work which

would allow for further improvements of measurements from the HIRAC chamber.

The HIRAC chamber has been described in Chapter 2, with details of the commercially

available analytical instrumentation available for measurements, including GC-FID,

FTIR and commercial O3 and NOx analysers. The HIRAC FAGE instrument is described

in Chapter 3, with a focus on the development of calibration techniques. The

conventional “wand” method for FAGE calibration has been discussed, focussing on the

N2O actinometry experiment for the determination of the lamp flux, F184.9 nm. Numerous

apparatus has been compared for determining the F184.9 nm, where no discernible

differences were observed. Monte Carlo error propagation has been carried out in order

to better assess the systematic uncertainty associated with the N2O actinometry method

for the determination of F184.9 nm. From this, it was observed that the variation in the

concentration of NO has the most significant influence on the variation in the determined

value of F184.9 nm, 46 – 99%. The error in the measured NO concentrations is dependent

on the error in the calibration of the chemiluminescence NOx analysers used in the

experiments; it is suggested that a different technique for the measurement of NO

concentrations is investigated, in order to reduce the errors associated with these

measurements. Low concentrations of NO (<1 ppbv) are typically measured in the N2O

actinometry experiment, close to the detection limit (50 pptv) of the chemiluminescence

NOx analysers, and so a measurement technique capable of measuring lower NO

concentrations is likely to reduce contribution of the measured NO to the variation in the

determined value of F184.9 nm. The simulation was run twice with different values for the
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rate coefficients; the contribution to the variation in F184.9 nm was observed to increase

with increasing lamp current, with the IUPAC rate coefficient values always showing a

greater contribution to the variation in F184.9 nm than the JPL rate coefficient values,

correlating to the IUPAC rate coefficients having higher uncertainties associated with

them (Atkinson et al. 2004, Sander et al. 2011). As the Monte Carlo error simulation has

only been carried out for one set of experimental data, it is suggested that further

investigation into the errors associated with the N2O method for the determination of

F184.9 nm is carried out.

An alternative method for the calibration of the FAGE instrument HO2 cell has been

described, with results presented on the sensitivity of the HO2 cell as a function of

temperature, determined following the HO2 self-reaction within the HIRAC chamber.

Measurements were carried out over the temperature range 273 – 343 K. Good agreement

between the alternative HIRAC method and the previously reported conventional

“wand” method for determining the HO2 cell sensitivity as a function of temperature was

observed (∆CHO2(HIRAC) = (0.34 ± 0.19) % and ∆CHO2(“wand”) = (0.29 ± 0.42) % increase

per Kelvin, respectively) (Winiberg 2014). Further work into the temperature profile

within the FAGE instrument whilst sampling from HIRAC over a range of temperatures

would assist in validating the alternative method. Work is ongoing into the determination

of the OH cell sensitivity as a function of temperature following alternative HIRAC

calibration methods, and will be presented in a future publication.

The development of a LFP-LIF instrument for the measurement of OH reactivity has

been described in Chapter 4, in order to improve the measurement system and to enable

measurements of OH reactivity from the HIRAC chamber. A new FAGE inlet and

photolysis flow tube pump out system have been described, with validation experiments

being carried out for the determination of the rate coefficient of CH4 with OH. Excellent

agreement was obtained as compared to the IUPAC recommended rate coefficient;

(6.41 ± 0.18) × 10-15 cm3 molecule-1 s-1 compared to (6.4 ± 0.9) × 10-15 cm3

molecule-1 s-1 (Atkinson et al. 2006), with measurements of OH reactivities up to ~150 s-1

being reported. A number of characterisation experiments have been reported for

comparison between the old and new instrument inlet systems, with no discernible

differences being observed over a range of [O3], flow tube flow rates, flow tube pressures

and FAGE cell pressures. The instrument has been successfully coupled to the HIRAC

chamber for measurements, and validation of the sampling set up has been carried out

through the determination of the bimolecular rate coefficient of n-butanol with OH; a



Chapter 9 282 Summary, Conclusions & Future Work

value of (8.21 ± 0.37) × 10-12 cm3 molecule-1 s-1 was obtained, in excellent agreement

with the IUPAC recommended value of (8.5 ± 3.0) × 10-12 cm3 molecule-1 s-1 (Atkinson

et al. 2006). Measurements sampling from HIRAC for a range of VOCs, such as the

carbonyl product compounds measured during the oxidation studies presented in

Chapter 7 and Chapter 8 would help validate the measurement set up. Investigating the

use of different sampling lines such as heated lines or lines made from a different

material, would assist in determining the optimum sampling method whilst carrying out

measurements from the HIRAC chamber.

An OH reactivity instrument intercomparison was carried out at the SAPHIR chamber at

the Forschungszentrum in Jülich, Germany in October 2015. Some of the results from

this study have been presented in Chapter 5, with measurements from the Leeds LFP-LIF

OH reactivity instrument being indicated. Good agreement was observed for the Leeds

LFP-LIF instrument with the calculated OH reactivity in all experiments reported; a

slight positive offset (typically of ~2 s-1) was observed in the majority of the experiments

for the Leeds LFP-LIF instrument, which is attributed to contaminants within the

instrument or minor leaks in the sampling line. Measurements from all other instruments

have been anonymised, with their identities to be revealed in future publications. In

general, all instruments showed good agreement in the time profiles between the

measured and calculated OH reactivity; CRM instruments showed greater discrepancies

to the calculated OH reactivity, and increased scatter, due to their poorer time resolution

and accuracy, particularly at lower OH reactivities.

The temperature dependence of the reactions of Cl atoms with n-butanol and iso-butanol

have been studied by the relative rate method in the HIRAC chamber. The first relative

rate study of the temperature dependence of the rate of reaction of n-butanol with Cl

atoms has been described in Chapter 6 over the temperature range 266 – 343 K, where a

negative temperature dependence was observed (k = 1.01 × 10-10 exp((235 ± 34) / T) cm3

molecule-1 s-1) . This is in agreement with the negative temperature dependence

previously reported in the literature (Garzón et al. 2006), and excellent agreements was

observed for the room temperature rate coefficient (k298K = (2.25 ± 0.11) × 10-10 cm3

molecule-1 s-1) with the IUPAC recommended value (k298 K = (2.2 ± 0.4) × 10-10 cm3

molecule-1 s-1, (Atkinson et al. 2006)). Garzón et al. (2006) reported a slightly greater

temperature dependence than has been determined in this work; it is likely that the

absolute measurements of kOH + n-butanol are influenced by Cl atom regeneration, which has

not been accounted for in the analysis. The first temperature dependent study of the
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reaction of Cl atoms with iso-butanol has been reported in Chapter 6, over the

temperature range 296 – 344 K, where the Arrhenius expression

k = 5.53 × 10-11 exp((367 ± 76) / T) cm3 molecule-1 s-1, is reported. Very good agreement

was observed for the rate coefficient at room temperature, (1.95 ± 0.14) ×-10 cm3

molecule-1 s-1, with values in the literature, particularly for those determined with the

same reference compound, cyclohexane; Andersen et al. (2010) reported a value of

(1.88 ± 0.22) × 10-10 cm3 molecule-1 s-1 and Wu et al. (2003) reported a value of

(1.82 ± 0.12) × 10-10 cm3 molecule-1 s-1. To further verify the temperature dependence of

the rate of Cl atoms with both n-butanol and iso-butanol, it is suggested that further

investigations are carried out with a range of reference compounds. Due to complex wall

effects, it was not possible to extract values for the rate coefficient of the reaction of Cl

atoms with iso-butanol at temperatures below 296 K; further investigation into low

temperature experiments is required in order to determine low temperature rate

coefficients.

Alcohols are showing increased interest as potential biofuels in replacing traditional

fossil fuels (Sarathy et al. 2014). A comprehensive study of the products from the Cl

atom and OH radical initiated oxidation of iso-butanol in the presence of varying initial

NO concentrations is presented in Chapter 7. Previous literature into the oxidation

processes of iso-butanol have reported on the oxidation products of the Cl atom initiated

oxidation in the presence and absence of NOx, and the OH radical initiated oxidation in

the presence of NOx. The studies in the presence of NOx have been carried out previously

in the presence of extremely high concentrations (Andersen et al. 2010). Work presented

in Chapter 7 aimed to investigate the oxidation processes in the presence of

tropospherically relevant concentrations of NOx, with comparisons being drawn to the

previous literature results. The yield of iso-butyraldehyde was observed to decrease

through a minimum and then increase again as the NO concentration was increased. The

yield of acetone, reported as an upper limit, was seen to increase with increasing NO

concentration; this is likely due to chemical activation in the presence of NO, where the

alkoxy radical is formed from the peroxy radical, through a high energy intermediate

species, leading to rapid decomposition of the alkoxy radical. A high yield of acetone

was determined for the Cl atom initiated oxidation of iso-butanol in the absence of NOx

(72 ± 1%), as compared to <5% reported by Andersen et al. (2010); this discrepancy is

attributed to high conversion of the iso-butyraldehyde product to acetone following

subsequent reactions with Cl atoms and OH radicals present in the system.
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In the OH radical initiated oxidation of iso-butanol, the yield of iso-butyraldehyde was

observed to increase with increasing initial [NO], attributed to chemical activation of the

intermediate radicals in the presence of NOx. The yield of acetone was also observed to

increase with increasing [NO], with good agreement at the highest [NO], 64 ± 1%, with

that reported by Andersen et al. (2010), 61 ± 4%. Upward curvature was observed in the

HCHO yields; HCHO is formed through many reactions in the oxidation process, and

through subsequent reactions of initial products with Cl atoms present in the chamber.

Ozone formation following the Cl atom and OH radical initiated oxidation of iso-butanol

in the presence of varying initial [NO] has been compared to that of the analogous alkane,

iso-butane. Overall the ozone formation was observed to be higher in all scenarios for

the Cl atom initiated oxidation processes than the OH radical initiated oxidation

processes; previous studies have shown enhanced ozone formation in the presence of Cl

in NOx polluted environments. Peak ozone was observed to be higher for the iso-butane

oxidation reactions than the iso-butanol oxidation reactions, however, the peak ozone

occurred at later times for the iso-butane oxidation. Further detailed modelling studies

into the oxidation processes that have been described will assist in verifying the

understanding of the chemical processes occurring. The MCM only has limited Cl atom

chemistry, however, Cl atom initiated oxidation processes have been shown to be of

importance in enhancements of tropospheric ozone formation. The addition of detailed

Cl atom chemistry to the MCM for modelling studies will help in understanding the

potential impact of Cl atom initiated oxidation processes on the formation of tropospheric

ozone. Chlorine is routinely used as a precursor in atmospheric simulation chamber

investigations; inclusion of more detailed chlorine chemistry in the MCM would allow

for more direct comparisons with results from chamber based experiments to be made.

The first measurements of OH reactivity from the HIRAC chamber following relatively

complex oxidation systems of the Cl atom and OH radical initiated oxidation of

iso-butanol and iso-butane in the presence of varying initial NO concentrations, have

been presented in Chapter 8. Comparisons have been made between the measured OH

reactivity and the calculated OH reactivity from measureable species within HIRAC. A

number of discrepancies were observed between the measured and calculated OH

reactivities in nearly all scenarios described. Discrepancies prior to the initiation of the

oxidation reactions are typically seen as the calculated OH reactivity is greater than the

measured in the presence of NOx. This discrepancy is attributed to the presence of NOx

in the flow tube of the instrument leading to OH recycling, and higher values of OH
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reactivity being reported. Further investigation into the influence of varying

concentrations of NOx sampled by the OH reactivity instrument for a range of VOCs

would verify whether the recycling of OH need be accounted for in the data analysis

procedure. The time profiles for the measured OH reactivity are in better agreement for

the iso-butane oxidation processes than the iso-butanol oxidation processes. Further work

is suggested on the analysis of FTIR data from the oxidation processes described in order

to determine whether any, currently unaccounted for, products have any significant

influence on the measured and calculated OH reactivity.
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Appendix A
For the reactions, where A is the reactant (iso-butanol), B is the product

(iso-butyraldehyde) and Z is the oxidising species (OH or Cl):

A + Z
kA
→  αB  +  prod. Eq. A- 1

B + Z
kಳ
→ prod Eq. A- 2

A
kೢ ೌ
ሱ⎯⎯ሮ loss Eq. A- 3

B
kೢ ೌ
ሱ⎯⎯ሮ loss Eq. A- 4

B

→ loss Eq. A- 5

Where Eq. A-4 and Eq. A-5 can be combined to give:

B
kೢ ೌశೕ
ሱ⎯⎯⎯ሮ loss Eq. A- 6

The following rate expressions can be written:

[ܣ]݀

ݐ݀
= − ݇[ܣ][ܼ] − ௪݇ [ܣ] Eq. A- 7

[ܤ]݀

ݐ݀
= ߙ ݇[ܣ][ܼ] − ݇[ܤ][ܼ] − ൫݇ ௪ା൯[ܤ] Eq. A- 8

Eq. A-7 is rearranged to give:

=ݐ݀
[ܣ]݀

− ݇[ܣ][ܼ] − ௪݇ [ܣ] Eq. A- 9

Substituting dt into Eq. A-8 gives:

[ܤ]݀

[ܣ]݀
(− ݇[ܣ][ܼ] − ௪݇ [ܣ]) = ߙ ݇[ܣ][ܼ] − ݇[ܤ][ܼ] − ൫݇ ௪ା൯[ܤ] Eq. A- 10

x is equal to the conversion of A and y is the ratio of B to the maximum possible

concentration of B (the initial concentration of A):
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ݔ ≡ 1 −
௧[ܣ]
[ܣ]

Eq. A- 11

ݕ ≡
௧[ܤ]
[ܣ]

Eq. A- 12

Eq. A-11 and Eq. A-12 can be differentiated to give d[A] and d[B] in terms of dx and dy:

[ܣ]݀ = ݔ݀[ܣ]− Eq. A- 13

[ܤ]݀ = ݕ݀[ܣ] Eq. A- 14

Eq. A-13 and Eq. A-14 are substituted into Eq. A-10 to yield:

ݕ݀

ݔ݀
ቆ ݇

௧[ܣ]
[ܣ]

[ܼ] + ௪݇ 

௧[ܣ]
[ܣ]

ቇ

= ߙ ݇

௧[ܣ]
[ܣ]

[ܼ] − ݇

௧[ܤ]
[ܣ]

[ܼ] − ൫݇ ௪ା൯
௧[ܤ]
[ܣ]

Eq. A- 15

Substituting the definitions of x and y from Eq. A-11 and Eq. A-12:

ݕ݀

ݔ݀
=

ߙ ݇(1 − [ܼ](ݔ − ݇ݕ[ܼ] − ൫݇ ௪ା൯ݕ

݇(1 − [ܼ](ݔ + ௪݇ (1 − (ݔ
Eq. A- 16

Rearranging for α: 

ߙ =

ݕ݀
ݔ݀

( ݇[ܼ] + ௪݇ )

݇[ܼ]
+
ቀ݇ݕ [ܼ] + ൫݇ ௪ା൯ቁ

(1 − (ݔ ݇[ܼ]
Eq. A- 17

Simplifying for α: 

ߙ =
ݕ݀

ݔ݀
ℎ + ൬

ݕ

(1 − (ݔ
݃൰ Eq. A- 18
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Defining h and g:

ℎ =
݇[ܼ] + ௪݇ 

݇[ܼ]
Eq. A- 19

݃ =
݇[ܼ] + ൫݇ ௪ା൯

݇[ܼ]
Eq. A- 20

ߙ

ℎ
=
ݕ݀

ݔ݀
+ ݕ

1

(1 − (ݔ

݃

ℎ
Eq. A- 21

=ݕ
ߙ
ℎൗ

1 − ቀ
݃
ℎ
ቁ

(1 − ቄ(1(ݔ − ቀ(ݔ


ି ଵቁ− 1ቅ Eq. A- 22


