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Abstract. 

The problem of sympatric speciation and speciation with gene flow has been of great interest to 

evolutionary biologists for years. While both concepts were highly debated in the past, it is now 

known that both events are possible. Ecological factors can come into play to encourage species 

divergence in sympatry, with different selective pressures giving rise to different adaptive 

phenotypes within the same territory, thereby forming separate races within a population that can 

eventually evolve into fully separate species. When this happens, gene flow may be partially 

retained between the incipient species as they diverge. But gene flow and divergent selection do 

not affect all parts of the genome equally: novel adaptations that promote speciation tend to 

accumulate in specific regions known as islands of divergence, that can act as reproductive 

barriers between the diverging taxa. Understanding the genetics of traits that are leading 

speciation is thus of great importance in the study of evolution, and Heliconius butterflies offer a 

great model system for researching this phenomenon. In this study, hybrid individuals are used to 

characterize the genetic structure of two traits that are likely to have this role, the colour pattern 

and the pheromone blend, in two sister species of Heliconius butterflies, H. pardalinus butleri and 

H. elevatus. Several putative colour pattern loci were found, potentially arranged into 2-3 linkage 

groups, consistent with the arrangement observed in other Heliconius species. The biosynthetic 

machinery underlying pheromone production in Heliconius was also partially characterized for the 

first time by investigating correlations between compounds within the F2 hybrids, which also 

offered insight into the genetic organization of pheromone genes.  
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Chapter 1  

General Introduction 

 

1. Speciation and speciation genes 

The study of how organisms respond to environmental changes is of crucial interest in 

Evolutionary Biology. Every natural community is constantly faced with challenges in the form of 

natural selection, and each organism must rise to the occasion in order to survive and pass down 

its genes. Natural communities consist in more than one kind of organism, so the diversity of a 

community depends in large part on the number of species it comprises, a parameter known as 

species richness. This makes species the fundamental units of biodiversity. In light of this, 

speciation (alongside extinction and adaptation) plays an important role in modifying its patterns. 

Speciation is the process by which new species arise from pre-existing populations, and it has 

become one of the most discussed topics in evolution. The formation of new species through a 

process of divergence is a problematic topic like many in Evolutionary Biology, due to the 

impossibility of observing it in real time. Yet, the origin of new traits and their success (or lack 

thereof) ultimately depends on genes: in order for evolution to take place, the traits must be 

heritable and an individual must be able to pass them down to its offspring. Thus, the study of 

speciation has benefitted greatly from the development of genetic techniques that allow us to 

study its effects on the genome more so than on a macroscopic scale (Wu & Ting, 2004). To better 

understand changes in biodiversity patterns, it is crucial to investigate the genetic mechanisms 

that lead to the origin of new species. 

Noor & Feder (2006) highlighted the usefulness of genomics as a tool for research on natural 

populations, which offer an insight into the process of speciation and reproductive isolation that is 

not influenced by artificial factors. In addition to this, with genomic approaches one can explore 

the evolutionary history of new taxa that do not have a history as laboratory model organisms 

(Noor & Feder, 2006). Aside from this, there are many ways genetics can help answering 

important questions about speciation (Noor & Feder, 2006; Nosil & Schluter, 2011).  These include 

how many genes are generally involved in speciation and to which extent do they affect it, or what 

regions of the genome are most likely to play a part in the process, or how does genetic 
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incompatibility in hybrids influence the formation of novel species. According to Nosil and Schluter 

(2011), these questions are relevant to the interests of geneticists, ecologists and evolutionary 

biologists alike, as their solutions can advance our understanding of speciation and the origins of 

species diversity, and they offer several examples of how they can be of use. For example, the 

classes of genes involved most closely with speciation and their effect on the phenotype can paint 

a picture of what environmental pressures and genomic conflicts (which arise when different 

genes in the same genome are subject to different rules of inheritance) are leading to adaptation. 

In addition to that, they can be informative as to what kind of selection is acting on those genes- 

whether it’s divergent, stabilizing or convergent (Nosil & Schluter, 2011). In the same paper, Nosil 

and Schluter refer to any gene of interest to the evolution of a species which has had a substantial 

effect on the development of reproductive isolation as a “speciation gene”.  

There are many possible definitions of “speciation gene”, but what they all have in common is an 

emphasis on the reduction of gene flow at that locus between the two developing species, with 

reproductive isolation (i.e. the complete lack of genetic exchanges between the two species’ gene 

pools) as the final outcome. Orr and Presgraves (2000) for example defined them as genes that 

have deleterious effects when they are transferred to a different species, thus reducing hybrid 

fitness. Mihola et al. (2009) use a similar definition as they describe what they call a mammalian 

speciation gene, a methyltransferase involved in chromatin remodeling and responsible for hybrid 

sterility in mice. Both of these definitions imply that any form of gene flow between the incipient 

species would be immediately impeded in the presence of such genes, since the hybrids have no 

means of mating back to the parental populations, and thus no part of the genome could be 

transferred from one population to the other. Wu and Ting (2004) choose a more generalistic 

approach: while speciation genes ultimately promote reproductive isolation, their effect does not 

always need to be immediately as drastic as hybrid sterility or inviability, and gene flow can 

occasionally keep occurring between the populations even as they diverge into different species.  

In fact, it is tempting to consider speciation as a process that affects the whole genome at once. 

Mayr, a major figure in evolutionary biology, strongly argued in favour of an interpretation of 

genomes as complexes of genes whose effects are tightly interconnected and co-dependent. He 

implied that a genome would act as a large unit in the face of natural selection and genetic drift 

rather than a set of independent elements, and as a consequence, changes experienced by one 

locus would affect all the others as well (Mayr, 1963). However, increasing evidence points to a 
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genic view of speciation, which considers each gene as a unit with its own effect on species 

divergence and its own fitness value. In this context, speciation genes can have a range of effects 

that range from weak ecological, physiological and/or behavioural discrepancies between the 

diverging populations to complete hybrid inviability. Additionally, while speciation genes exert 

their influence by inhibiting gene flow, the rest of the genome that is not involved in speciation 

may continue to be exchanged between the emerging species (Wu and Ting, 2004). This results in 

the formation of so-called “islands of divergence”, genomic regions that are highly differentiated 

in comparison to the rest of the genome, which in the context of the “island” simile represents the 

“sea” of gene flow. 

The debate between supporters of the whole-genome speciation concept and the genic one is 

closely tied to the problem of speciation with gene flow. The formers tend to argue that in order 

for species to form, strong barriers (of usually geographical nature) must exist between the 

diverging populations, while the latters are supportive of a scenario where new species can arise 

in the face of gene flow and a lack of reproductive isolation. 

1.1 Sympatry and speciation with gene flow 

Speciation is most commonly exemplified as a process of vicariance, by which two subpopulations 

of the same species diverge due to geographic barriers to reproduction, until they become unable 

to produce viable offspring, even in the event that they were to reunite- at which point they are 

considered fully separate species (Coyne & Orr, 2004). This situation is actually known as allopatric 

speciation and it is identified by a complete lack of gene flow between the two diverging 

subpopulations (Coyne & Orr, 2004). This is a rather extreme occurrence, as it is also possible for 

two lineages to diverge without any strict barriers to reproduction. The extreme opposite to 

allopatric speciation, sympatric speciation, is what happens when two lineages diverge from the 

same population while consistently occupying the same range, with no apparent substructure 

(Coyne & Orr, 2004; Kawecki, 2004). Fitzpatrick et al. (2008) add to these prerequisites the 

necessity for panmixia (random mating, so that every individual has equal chances to pass down 

its genes) in the original population. While it may be tempting to classify the different modes of 

speciation into discrete categories, allopatric and sympatric speciation may simply represent the 

two ends of a continuum. With that being clarified, most instances of speciation likely occur with 

some degree of gene flow between the diverging taxa. 
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The problem of sympatry and speciation-with-gene-flow has been of great interest to evolutionary 

biologists for years. This is because, due to the way natural selection works, which implies 

selective mating between the most adaptive individuals, it can be difficult to imagine how traits 

can diverge with no hurdles to reproduction and no environmental differences to drive the 

evolution of different adaptations. Effectively, gene flow tends to homogenize subpopulations, as 

recombination between two diverging taxa tends to break up the adaptive genetic combinations 

that are being developed by the two intermixing populations. Disruptive selection on the other 

hand tends to separate them, so speciation in sympatry may seem like a paradox (Coyne & Orr, 

2004). 

However, sympatric speciation between two intermixing populations is possible if the two are 

subjected to different ecological optima, and thus, to divergent selection (Bolnick & Fitzpatrick, 

2007). This phenomenon is known as ecological speciation, and it is well distinct from models of 

speciation where ecological factors do not play a central role, such as those that revolve around 

chance events (like population bottlenecks or genetic drift) or sexual selection (Rundle & Nosil, 

2005). It needs to be said that while ecological speciation is being presented here in the context of 

sympatry, it is not inherently a feature of sympatric speciation, and can in fact have a large role 

regardless of whether the two diverging populations exist in sympatry, allopatry or in any 

intermediate state (Rundle & Nosil, 2005). When ecological speciation occurs in sympatry, 

divergent selection shapes the populations’ phenotypes so they form a barrier to homogenization 

in the same way as a geographical feature of the territory in the context of allopatric speciation. 

However not all traits are equally subjected to selection, and not all regions of the genome have 

equal chances of being exchanged during mating, which means that the genomes of closely 

related, recently diverged species often show specific islands of divergence rather than 

widespread differentiation (Harrison & Larson, 2014). In such a situation, mating between the 

species and the subsequent exchange of alleles can still occur, but the areas of divergence will 

remain stably untouched, in which case the islands themselves represent the species boundary. 

It is worth mentioning that in order for islands of divergence to form, it is necessary that genetic 

variation already be present in the population. However it is important to distinguish between 

cases where such variation arose in sympatry and cases where it arose in allopatry, with the two 

populations of interest becoming sympatric only following secondary contact (Harrison & Larson, 

2014). For example, in the case of Ficedula flycatchers, a popular example of non homogeneous 
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genome divergence, the formation of islands between the sympatric species F. albicollis and F. 

hypoleuca was probably favoured by the presence of polymorphisms resulting from periods of 

allopatry due to glaciations. Later, the two populations came into secondary contact and re-

established gene flow but these polymorphic loci were not subject to homogenization in the same 

measure as the rest of the genome, and thus, even with the species having been reunited, they 

continued diverging in sympatry (Ellegren et al., 2012). 

It is still unclear what may make a genomic region more prone to becoming an island of 

divergence in the face of gene flow, but some broad patterns have been identified. The most 

obvious trend is that regions that are naturally subject to less recombination due to their location 

are also the ones more likely to become highly divergent. These include centromeres and sex 

chromosomes (Harrison & Larson, 2014), as well as inversions and rearrangements (Navarro & 

Barton, 2003).  

In recently diverged species with very similar genomes, a chromosome rearrangement becomes 

an area of differentiation. This is because even in the event of hybridization, the rearranged region 

will not be involved in recombination between heterozygous homologous chromosomes due to its 

structure being discrepant between the two homologs (but the exchange will occur naturally if the 

two chromosomes are homozygous and thus sport the same inversion). As a consequence, alleles 

that are contributing to species divergence may accumulate there and keep diverging in the face 

of gene flow across the rest of the genome as they would remain unaffected by it (Nachman & 

Payseur, 2012).  

Selection dictates what alleles accumulate in the low-recombination zones. While in high-

recombination zones exchanges between the two sub-populations may maintain normal levels of 

nucleotide variation, the islands of divergence remain untouched in the two sub-populations, and 

thus tend to lose diversity due to stabilizing selection. This loss of diversity causes the effects of 

selection to be magnified in the low-recombination zones, as deleterious alleles are more quickly 

eliminated and beneficial ones are easily preserved (Nachman & Payseur, 2012). This explains why 

advantageous alleles that contribute to sub-population divergence under differing selective 

pressures will tend to accumulate there.  

This trend is only visible in relatively recently diverged species: species that diverged with gene 

flow in the remote past tend to have more uniformly differentiated genomes not unlike those of 
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species that diverged in allopatry, due to a phenomenon called “genetic hitchhiking” (Feder, Gejji 

et al., 2012; Feder et al., 2012; Via, 2012). Initially, only the loci that are under direct divergent 

selection become differentiated, but this effect tends to extend to the nearby loci due to physical 

linkage: this is known as “divergence hitchhiking” and it leads to enlargement of the islands of 

divergence. As more and more loci begin diverging due to this, the effect gradually extends to the 

genome as a whole, at which point it is known as “genome hitchhiking”. This final step in the 

process of speciation effectively means that loci cannot introgress across any part of the genomes. 

At this point the effect of genomic barriers to gene flow has acquired the same magnitude as the 

effect of geographical barriers in allopatrically diverged species (Feder et al., 2012). This implies 

that the absence of islands of divergence does not necessarily indicate that species diverged with a 

complete lack of gene flow. 

1.2 Magic traits 

If traits under divergent selection found in islands of divergence also happen to have an effect on 

the phenotype that pleiotropically influences mate choice and favours reproductive isolation, they 

are known as “magic traits”. In their presence the separation between species in the face of gene 

flow is facilitated. Effectively, a single gene is controlling both ecological fitness and non-random 

mating (Bolnick & Fitzpatrick, 2007; Servedio, 2011). 

A classic example of sympatric ecological speciation where ecological divergence affects mate 

choice as well is observed in Rhagoletis pomonella, the apple maggot fly. This species is broadly 

distributed in North America all the way to Mexico and it commonly infests hawthorn, yet certain 

populations in the Northern United States successfully colonized apples and formed a separate 

race, which is to this day not considered a species on its own, but it could be taken as an instance 

of an incipient species (Bush, 1969). Mating in Rhagoletis is strongly associated with the host 

plant: courtship behaviour is synchronized with fruiting periods as males typically establish a 

territory on a fruit of the same plant they emerged from, where they wait for a female to mate 

with. The females in turn lay eggs within that same fruit. This implies that subpopulations of the 

original R. pomonella race that chose to use apple rather than hawthorn as their host easily 

became reproductively isolated from the hawthorn-feeding species, without finding themselves in 

a situation of allopatry (Bush, 1969). This change in ecology has a genetic basis: the apple-feeding 

behaviour is associated with a chromosomal inversion that originated in the Mexican populations 

of R. pomonella and later got introduced in the Northern populations via introgression (Feder, 
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2003). This event essentially reconciles allopatric and sympatric speciation as the inversion formed 

in allopatry, yet when it was introduced in a new population it favoured ecological specialization 

thus allowing the apple and hawthorn races to diverge without geographical barriers. 

Hybridization as a source of novel alleles can play an important role in speciation (Harrison & 

Larson, 2014). Under strong divergent selection, one may expect the two races to eventually 

become fully distinct species. 

1.3 Hybrid speciation 

Speciation by hybridization is a type of speciation that necessarily occurs in sympatry, since in 

order to hybridize, two species have to coexist within the same habitat. It is a phenomenon 

wherein a new species originates from the intercrossing of two other species, from which it 

becomes distinct (Mavares, 2006). In order for this to happen, F1 individuals must be viable and at 

least one sex must be fertile and able to backcross to a parental species, introducing new alleles in 

it. If these alleles are adaptive, a new lineage can form and give rise to a new species (Jiggins et al., 

2008). However backcrossing is not necessary for the formation of a new species if the F1 

individuals can interbreed and form a stable lineage (so, if both sexes are fertile) (Jiggins et al., 

2008). Moreover, the hybrid phenotype itself must cause reproductive isolation of the hybrid 

lineage from its parental taxa (Mavares, 2006). There are two kinds of hybrid speciation: polyploid 

and homoploid. The former occurs when the number of chromosomes of the hybrid doubles, as a 

result of selfing (Mallet, 2007). The latter on the other hand involves no change in chromosome 

number. Some of the best-known examples of hybrid speciation are observed in plants. At least 

25% of modern plant species are known to hybridize naturally, (Mallet, 2005), and in these 

organisms polyploid speciation is particularly common. For example, the sunflower Helianthus 

anomalus is a hybrid species derived from H. annuus and H. petiolaris (Rieseberg, 1995). The 

plasticity of a plant’s genome and physiology means that two different species are able to 

hybridize without the offspring suffering major consequences from genome incompatibilities and 

polyploidy. In animals, hybrid speciation is thought to be much rarer and only possible in case of 

homoploidy (where the chromosome number is the same between the two parental species) 

(Mallet, 2007).  

It is a common misconception that in the event that hybridization between two animal species 

does occur, the F1 crosses are usually non adaptive and infertile, and that in the possibility that 

backcrosses may occur, the resulting F2 would be even less fit for survival. This essentially paints 
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hybridization as a rare, unfavourable phenomenon overall. However, this is not always the case: 

within distinct groups of animals, crossing occurs at varying, but often relatively high rates, and as 

seen in Rhagoletis flies, it is not always disadvantageous. Another common example of adaptive 

introgression is seen between two species of Anopheles mosquitos, A. coluzzii and A. gambiae, 

both of which are malaria vectors (Norris et al., 2015). A. gambiae carries an island of divergence 

containing a single nucleotide polymorphism (SNP) that confers resistance to several insecticides. 

Upon introduction of new insecticide-laced bed nets in Mali, Malian populations of both species 

were subjected to new selective pressures, that favoured hybridization as the F1 hybrids and the 

backcrosses to A. coluzzii that carried the SNP became advantaged against the new control 

measures (Norris et al., 2015). Thus, the SNP successfully introgressed from A. gambiae to A. 

coluzzii while previous to the introduction of the insecticide nets the hybrids were disadvantaged 

in comparison to the two pure species.  

Another classic example of adaptive introgression comes from warfarin resistance in mice (Song et 

al., 2011; Hedrick, 2013): warfarin is a rodenticide that was deployed in the 1950s against house 

mice (Mus musculus domesticus), which developed resistance to its anticoagulant effect in around 

a decade from its introduction. Polymorphisms in the gene vkorc1, involved in vitamin K 

metabolism, can confer resistance to warfarin, and Song et al. (2011) demonstrated that some of 

the resistant variants of this gene in house mice were actually derived from M. spretus, the 

Algerian mouse. In M. spretus, the polymorphism probably represented an adaptation to dietary 

requirements that was selected independently of warfarin usage, since the pesticide was not used 

extensively on this species, and this is plausible given that M. spretus’ diet is poor in vitamin K and 

this would require particularly efficient metabolism of this blood coagulation factor. (Hedrick, 

2013; Song et al., 2011). Following positive selection at the resistant vkorc1 allele vkorc1spr 

Vkorc1spr crossed species barriers following hybridization between M. spretus and M. musculus 

domesticus, where it was readily subjected to novel positive selective pressures dictated by 

warfarin usage (Song et al., 2011). 

With the notion that hybridization in the animal world may often have neutral or even positive 

effects rather than debilitating ones, the fact that it is fairly common seems less surprising. The 

amount of species that partake in hybridization varies with the taxon: certain taxa include a very 

high percentage of hybridizing species, while in others it is less common. In Heliconiinae 

butterflies, hybridization is quite common as it is thought to involve 26% of all species, with 
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Heliconius being a very active genus in these regards (Mallet, 2005). By hybridizing, Heliconius 

butterflies have managed to exchange colour pattern genes in the past, with distantly related 

species acquiring the same patterns, as is the case for H. elevatus and H. melpomene (which will 

be covered in the next paragraphs) (Heliconius Genome Consortium, 2012). This is a good example 

of adaptive introgression since these butterflies depend on their aposematic colouration to avoid 

predation, and the more common a warning pattern is, the stronger the signal sent to potential 

predators.  

1.4 Heliconius butterflies as model organisms 

Heliconius butterflies are one the most important animal models in the study of evolution, and in 

particular, speciation (Merrill, 2015). This genus, which comprises over 40 species resulting from a 

relatively recent evolutionary radiation, populates Central and South America (with one species 

being found in the Southern United States as well), reaching maximum levels of diversity in the 

Amazon basin (Rosser et al., 2012). They are best known for their aposematic colouration: their 

striking, highly contrasting colours offer them protection against predators by signalling that the 

butterfly is unpalatable. Originally Heliconius butterflies were studied as models for mimicry, in 

particular Müllerian mimicry (Bates, 1862), which had an important effect on Heliconius evolution. 

Müllerian mimicry is a phenomenon by which different species of poisonous or unpalatable 

animals evolve convergently to adopt the same aposematic colouration. Bates first described the 

Heliconius mimicry system, where different species within a certain area of the neotropics would 

often adopt the same model warning pattern, but different territories would have different 

models (Bates, 1862). Additionally each territory may have more than one model, each model 

being known as a “mimicry ring”, so within the same territory closely related species may evolve 

strikingly divergent colour patterns (Bates, 1862). Thus, there are cases where distantly related 

species can sport similar colour patterns, and cases where sister species or different races of the 

same species evolve divergently to become part of different mimicry rings. For example H. cydno, 

which is closely related to H. melpomene, mimics members of the distantly related H. sapho clade, 

whose species are often black and white and rather different in biology from species in the 

melpomene/cydno clade (Kronforst & Papa, 2015). Mimicry was the starting point for the study of 

Heliconius biology, and today it is known that the Heliconius history is rich in phenomena that are 

not easily observed in other models of the animal kingdom.  
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Heliconius butterflies in fact provide some of the most well-known examples of speciation with 

gene flow and hybrid speciation, both of which have left still-observable traces on their genome 

(Merrill et al., 2015, Supple et al., 2015, Mavarez et al., 2006). As the divergence between 

Heliconius species is relatively recent (Kozak et al., 2015) the genomes of many sister and non-

sister species remain compatible to this day and the F1 hybrids can potentially not only survive, 

but also backcross, making introgression an important aspect of this genus’ evolution (Heliconius 

Genome Consortium, 2012, Martin 2013). These events, which have occurred between closely 

related species as well as between distant relatives within the genus (Zhang et al., 2016, Pardo-

Diaz et al., 2012), have led to the formation of new species in the past. These may have benefitted 

from the acquisition of novel colour pattern alleles from one of the parental species (this would be 

the case if the novel alleles allowed the new species to become part of a mimicry ring). This overall 

makes Heliconius an excellent animal model system for the study of hybrid speciation, horizontal 

gene transfer and the species continuum since these concepts are appropriately exemplified in 

this genus’ history (Merrill et al., 2015). Their relevance to the study of speciation genomics have 

led to the sequencing of the Heliconius melpomene genome, which is now used as a reference 

genome in Heliconius genetics: it first presented evidence for introgression between H. 

melpomene’s close relative, Heliconius timareta, and the more distantly related silvaniform 

species, Heliconius elevatus. When compared to the Bombyx mori genome it revealed expansions 

in several gene families including chemosensory/olfactory genes and opsins (Heliconius Genome 

Consortium, 2012). The latters are expected because due to being diurnal, butterflies are more 

visually-oriented than moths, and colour pattern recognition is of great importance in the search 

for a mate. The formers may appear more surprising: given the large effect of visual signals in 

mate choice, one may expect chemical signals to play a much smaller role. Actually, 

chemosensation is crucial for species recognition, since chemical cues like pheromones can be 

used by co-mimetic species to discriminate against one another and in favour of conspecifics 

(Meròt et al., 2015).  
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H. melpomene and its close relatives (such as H. cydno) and co-mimics (such as H. erato) are the 

best studied members of the Heliconius genus. Research on them has led to an understanding of 

the genetic architecture of mimicry and colour pattern evolution, on the role of assortative mating 

in ecological separation between species, and on sympatric speciation (Merrill et al., 2015). 

However the Heliconius genus includes several poorly studied species. The silvaniform clade has 

received relatively little attention, with most studies focusing on H. numata, but it is interesting in 

its own right. Silvaniform Heliconius generally have very different colour patterns from those 

observed in the melpomene/cydno clade, as they usually mimic the genus Melinaea, and one 

species, H. numata, is very plastic 

in the variety of colour patterns it 

can adopt within the same 

territory. Phylogenetic 

relationships between species in 

the silvaniform and melpomene 

clades can be seen in Fig. 1.  

This study focuses on H. 

pardalinus butleri and its sister 

species, H. elevatus, two 

sympatric silvaniform species that 

live in Perù and across the 

Amazon Basin (Fig. 2). H. elevatus 

is believed to have formed by 

hybridization with H. melpomene 

(Heliconius Genome Consortium, 

2012), making it a good model for 

adaptive introgression. Both are a 

good study system for sympatric speciation in the silvaniform clade, as there are no geographical 

barriers between them but several ecological barriers are believed to have driven their divergence, 

including but not limited to their colour pattern, their sex pheromone blend, their flight dynamics, 

wing shape and preferred food plant (Queste, 2015). Introgression of colour pattern genes from H. 

melpomene into H. elevatus allowed the latter to join the rayed mimicry ring to which several 

other species belong. This may have occurred via backcrossing of the F1 hybrids to the parental 

Figure 1. Phylogeny of the silvaniform and melpomene clades 
of Heliconius (adapted from Heliconius Genome Consortium, 
2012). 
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silvaniform species, and by the subsequent reproductive isolation of individuals carrying the 

introduced allele. This situation is analogous to what may have happened in H. heurippa, another 

hybrid species. The result of adaptive introgression at the colour pattern loci is that the outcomes 

of phylogenetic analysis differ depending on the region of the genome that is taken into account. 

Regions that are unlinked to colour loci produce a signal that reflects that of the whole genome, 

with different species clustering with their close relatives, whereas in phylogenetic trees based on 

colour loci the species that share a pattern cluster together regardless of their general taxonomic 

relationship (Heliconius Genome Consortium, 2012). This is observed, in fact, in H. elevatus: 

phylogenetic analyses based on its main colour locus place it closest to rayed races of H. 

melpomene even though they are very distant relatives (Heliconius Genome Consortium, 2012). 

Because this locus is linked to loci controlling assortative mating in H. melpomene (Merrill, 2015), 

H. elevatus must have inherited a behaviour that cause it to mate preferentially with individuals of 

the same colours (Queste, 2015).  

Thus, colour pattern acted as a magic trait to promote the lineage’s divergence. When H. elevatus 

is compared to its sister species H. pardalinus, 95% of their genomes show no divergence and is 

consistent with a situation of complete admixture (FST=0), but the remaining 5% is strongly 

divergent between the two (Dasmahapatra, in prep). The aim of this study is to use F2 hybrids to 

characterize the genetic architecture responsible for the colour pattern of the two species. The 

two main priorities are to assess whether this architecture is based on multiple loci or a single 

polymorphic locus (as seen in H. numata), and whether the arrangement of the loci mimics that 

observed in other Heliconius species, regardless of whether they are multiple or a single one. In 

addition to this, this research projects aims at characterizing the genetic structure of  another trait 

that is thought to be important in Heliconius speciation: the composition of male sex pheromones. 

Unlike the colour pattern, male sex pheromones have not been studied in-depth in these species 

before, and remain poorly characterized in the Heliconius genus as a whole as most work on these 

butterflies’ chemical ecology has been carried out on a different class of pheromones, the 

antiaphrodisiacs. This study attempts for the first time to explore the genetic organization of loci 

responsible for male sex pheromone production, with a detailed analysis of hybrid phenotypes. 
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Figure 2. The overlapping ranges of H. pardalinus and H. elevatus (Rosser, 2012). Triangles and 
squares indicate collection sites. 
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Chapter 2 

Phenotypic analysis of the H. pardalinus and H. 

elevatus colour pattern. 

1. Introduction 

1.1 The colour pattern as a reproductive barrier 

The wing colour patterns are perhaps Lepidopterans’ most striking trait. Their functions range 

from crypsis (avoiding detection by blending in the background) to aposematism (signalling 

toxicity with bright alarming colours). In addition, as butterflies are very visually-oriented 

organisms, the colour pattern is thought to be one of the main methods they use to recognize 

their conspecifics, even when the patterns that distinguish two different species are minute, as 

seen in some species of Lycaenid butterflies (Fordyce et al., 2002). Lycaenid wing patterns are 

usually made up of several small spots whose arrangement, size and colours varies between 

species, occasionally in very subtle ways. In the two recently diverged parapatric North American 

species Lycaeides idas and Californian Lycaeides melissa this difference is given simply by a slight 

variation in the size of certain spots (Fordyce et al., 2002). In spite of the small difference, L. idas 

males are able to distinguish their conspecific females by the colour pattern alone, and 

discriminate positively towards them when presented with the choice to mate with them or with 

L. melissa populations. While pheromones play an important part in this discrimination (L. idas live 

females whose hindwing pattern was scraped off were still preferentially approached by males of 

their own species), the discrimination remained true when males were presented with odourless 

wing models (Fordyce et al., 2002). However, the allopatric population of Nevadan L. melissa 

shows no preference towards their own species, implying a stronger pressure on maintaining the 

discrimination in parapatric species where interspecific encounters are most likely. In fact, while L. 

idas and Californian L. melissa are parapatric, the latter is adapted to a more mountainous habitat 

than the former, potentially making the exchange of genes disadvantageous as the two species 

have different requirements, and thus explaining why there may be pressure to reinforce 

reproductive barriers. But Nevadean L. melissa do not usually encounter either L. idas or their 

Californian conspecifics, so they have no pressure to develop barrier reinforcement (Fordyce et al., 
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2002). In Heliconius, the colour pattern has a central role in mate choice (Jiggins et al., 2001), as 

individuals belonging to one mimicry ring will mate preferentially with partners sporting the same 

pattern. 

1.2 What makes a colour pattern? The Nymphalid groundplan and its variations.  

All Nymphalid wing patterns including the ones seen in Heliconius follow a basic groundplan 

(Nijhout et al., 1990) (Fig. 3A): a nonspecific ancestral Nymphalid butterfly has a wing that can be 

divided into three regions- the base, the centre and the border. Each of these has its own basic 

fixed elements that form symmetrical smooth bands along the wing (plus spots in the case of the 

border region) and that can be evolutionarily modified to change size or shape, to disappear 

altogether, or to become fused together (Nijhout, 2002). These elements are peculiar compared to 

the colour patterns seen in mammals because they form individually: each evolutionarily derived 

element on a butterfly’s wing can be traced back to the original basic groundplan, whereas the 

same cannot be said about each stripe of a zebra or each spot of a leopard (Nijhout, 2002). This 

means that as evolution proceeds, butterflies are “free” to tweak their own pattern as their 

A                                                           B 

Figure 3A. The general Nymphalid groundplan (picture from 
http://sites.biology.duke.edu/nijhout/patterns2.html Nijhout, n.d.). B. The derived Heliconius 
groundplan showing the variable black elements (picture from Nijhout et al., 1990). 
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ecology and lifestyle dictate, thus giving rise to the striking cryptic or aposematic patterns and the 

eyespots seen in many species of Nymphalids.  

The Heliconius groundplan is derived from the Nymphalid one (Fig. 3B). It is most easily observed 

in silvaniform species since their patterns are mostly comprised of small melanic (black) dots on 

wide orange or white backgrounds, whereas the more melpomene-like patterns have simpler, 

more minimalistic coloured shapes with large black areas (Nijhout, n. d.). The black dots of the 

basic Heliconius groundplan can expand and fuse with each other to form the large black areas 

seen in the melpomene/cydno clade, and the areas in-between the black elements can evolve 

different colours or become white (Nijhout et al., 1990).    

1.3 The Heliconius pattern: mimicry and assortative mating 

The Heliconius colour pattern, in addition to being a cue for mate recognition, has enough 

ecological importance due to its aposematic function to effectively act as a magic trait in at least 

some species. Many species of Heliconius are sympatric, yet they manage to remain reproductively 

isolated. As stated before this phenomenon in animals can be caused by genomic incompatibilities 

that make the F1 hybrids non viable or sterile, resulting in post-zygotic isolation and the 

subsequent lack of gene flow. This is not always the case for Heliconius hybrids, which are often 

not only healthy, but also able to produce offspring by crossing with one another or by 

backcrossing to parental species (Mallet et al., 2007). In spite of this, post-zygotic ecological 

barriers do exist: in the wild hybrids are strongly selected against due to their pattern not falling 

within either parental mimicry ring and thus not being recognized by predators as a warning signal 

(Merrill et al., 2012). Another factor acting against hybridization is disruptive sexual selection: in H. 

cydno and H. melpomene, while F1 hybrids were shown to readily hybridize with each other in 

captivity, parental species often discriminated against them (Naisbit et al., 2001). So the Heliconius 

colour pattern prevents hybrids from backcrossing to their parental species, while also being an 

important aspect of pre-zygotic reproductive isolation between species. Much like a parental 

species will discriminate against hybrids, it will also discriminate against species which sport a 

different colour pattern, even when the two species would be partially interfertile (Merrill et al., 

2015, Kronforst & Papa, 2015). In fact, mate preference has been found to be genetically linked to 

colour pattern loci (Kronforst et al., 2006; Merrill et al., 2011). H. cydno galanthus and H. pachinus 

are distinguishable by the colour of the bands on their wings, which are white in the former (white 

being a structural colour) and yellow in the latter. Colour pattern and mate preference both map 
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to the wingless gene region (Kronforst et al., 2006). Because wingless is responsible for the 

production of red/orange ommochromes (a type of pigment) in other Nymphalid species, it makes 

sense that it would retain that function in Heliconius pachinus, given that the yellow pigment is 

also an ommochrome (Kronforst et al., 2006). Similarly, in H. melpomene and H. cydno, male 

preference for red patterns (seen in H. melpomene) rather than white ones (seen in H. cydno) 

maps to the same genetic region as the loci that control red pattern elements (mainly the B locus 

for the red forewing band) (Merrill et al., 2011). Thus, the Heliconius colour pattern is under 

divergent ecological selection and at the same time it dictates mating preference, potentially 

making it a good example of a magic trait, at least in some species. (Merrill et al., 2015).   

H. elevatus and H. pardalinus, the models of this study, are sister species but they belong to 

different mimicry rings despite the massive overlap of their ranges. While H. elevatus has a typical 

rays and dennis pattern that mimics those found in Amazonian H. melpomene races, H. pardalinus 

has complex spotted patterns which mimic the colours of butterflies from the genus Melinaea, 

that belongs to a different Nymphalid sub-clade, the Ithomiini (Fig. 4). 

H. elevatus H. pardalinus 

 

 

Figure 4. The H. elevatus and H. pardalinus butleri colour patterns. Photos by Lucie Queste. 
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H. elevatus and H. pardalinus can produce viable hybrids, but rarely do so in nature. This means 

that there must be reproductive barriers between the two species, and it is likely that colour 

pattern constitutes a “magic trait”. Indeed, although Heliconius hybrids are often fertile (Naisbit et 

al., 2001), the colour pattern is subject to strong disruptive selection, the main opposing force to 

hybridization. In a mimicry ring, it is advantageous to convergently evolve the same colour pattern 

(Naisbit et al., 2001). Thus it makes sense that colouration may influence mate choice. This is seen 

in H. melpomene and H. cydno, with assortative mating between individuals bearing the same 

pattern, and this effect is stronger in sympatric populations where there is more pressure to avoid 

mixing (Jiggins et al., 2001). It is via this association between mate choice and colour pattern that 

“pure” colour patterns are maintained in sympatric, recently diverged species of Heliconius, and 

colour pattern genes, with their evolution driven by strong disruptive selective pressures, can form 

clear islands of divergence.  

1.4 The Heliconius mimicry toolbox. 

Most studies of the Heliconius colour pattern have focused on the melpomene/cydno clade and on 

the H. melpomene co-mimics such as H. erato (Sheppard et al., 1985; Nadeau et al., 2014). H. 

melpomene is often a mimic of H. erato, from which it is believed to have diverged 15-20 million 

years ago (making the two rather distant relatives). Across their range in the Neotropics they have 

evolved to become co-mimics, with the model colour pattern varying with the territory (Bates, 

1862). Both of them exist in a wide variety of races, whose colours vary from the typical postman 

pattern consisting of a few simple band shapes on a black background to a more complex rayed 

pattern, but races of both species found in the same territory will almost always be co-mimic 

(Sheppard et al., 1985, Kronforst & Papa, 2015). The alleles involved in this process are 

homologous between the two (Nadeau et al., 2014).  

Broadly speaking, the Heliconius mimicry toolbox seems to be comprised of a few large genes of 

developmental significance, whose function is sometimes linked to the production of the pigments 

themselves, as is the case for wingless, mentioned in 1.3. Within these genes, several loci are 

found which correspond to cis-regulatory elements of the main gene. The action of these loci 

produces differently shaped spots (Kronforst & Papa, 2015; Jiggins et al., 2017). This implies quite 

a flexible control mechanism for the colour pattern, where different regulatory elements can 

become activated or inactivated or acquire new allelic variants and easily create large-scale 

modifications in the looks of the wing.   
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The H. melpomene colour pattern is controlled by a 

few loci that have been very well-characterized in a 

series of studies. Originally, Turner & Crane (1962) 

had described several putative loci for H. 

melpomene (12 loci) and H. erato (16), each 

controlling one or few elements of the pattern, but 

with the advent of molecular techniques in genetics, 

most of these traits were conflated into fewer loci. 

In rayed melpomene, the main locus that controls 

the presence of the typical basal orange elements on 

both fore and hindwing, commonly referred to as 

“dennis”, is the D locus, which also controls the 

presence of hindwing rays. D is closely linked to 

another locus, B, which controls the presence of red 

pigmentation in the forewing band of postman races 

(Sheppard et al., 1985). In H. erato the main red and 

orange elements are controlled by the D locus, 

which is homologous to H. melpomene’s B/D loci 

(Baxter et al., 2008). The rays were at first described 

as a separate locus, R (Turner & Crane, 1962), 

however with further studies it was confirmed that the rays phenotype is given by an allele of the 

D locus, DR (Sheppard et al., 1985).  

It is now known that all the red/orange elements of the melpomene/erato patterns may be 

attributable to the action of a single gene, optix, that controls production of the red pigment (Fig. 

5). All the variations in shape of the red/orange elements are given by the cis-regulatory elements 

associated with optix, each of whom acts as a locus with its own set of alleles to determine the 

distribution and shape of different red shapes (Reed et al., 2011, Supple et al., 2013; Wallbank et 

al., 2006; Lewis et al., 2016,). Thus, the cis-regulatory region of optix appears to be organized as a 

set of tightly linked consecutive genetic “cassettes”, each determining the positional information 

for one red element of the pattern- B and D being an example of such regulatory modules (Supple 

et al., 2013).  

Figure 5. The main Heliconius colour pattern 
genes that have been researched in depth 
thus far. An additional gene of this kind is 
presumably found on chromosome 1, and 
may contain the K locus from H. numata. 
Picture adapted from Jiggins et al. (2017). 
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A similar system is found in the WntA gene, which encodes an extracellular signalling molecule 

active during the butterfly’s development. WntA is responsible for variations in the shape of 

melanic elements on the forewing collectively known as forewing shutter, found in several 

subspecies of H. melpomene, H. erato and H. cydno (Fig. 5). Much like optix, WntA has a very 

conserved sequence across the whole genus, meaning that its variable phenotypes too are given 

by cis-regulatory elements (Kronforst & Papa, 2015).   

Similarly to the orange elements and their B/D loci and the melanic elements with WntA, the 

yellow and white elements of H. melpomene wings are given by another small group of closely 

linked loci known as Yb-N-Sb, each of whom controls the presence, shape and intensity of 

different white or yellow elements (Sheppard et al., 1985, Mallet, 1989). Very recent studies by 

Nadeau et al. (2016) have revealed that in several species of Heliconius Yb and other loci 

responsible variations in the yellow/white elements map to a gene called cortex (Fig. 5), which is 

also associated with colour pattern variations in the moth Biston betularia. This gene also 

produces the pink colour seen in some H. melpomene races by controlling the presence of white 

scales on the red band region (Nadeau et al., 2016). It appears to have a conserved function across 

Lepidoptera and it seems to have undergone rapid evolution in this taxon (Nadeau et al., 2016; 

Jiggins et al., 2017). In addition to red/orange and white/yellow loci, H. melpomene, as well as H. 

cydno and the more distantly related H. erato, also carry several small effect QTLs associated with 

the shape and size of melanic spots (Martin et al., 2012, Papa et al., 2013).  

1.5 The silvaniform colour pattern and its genetic architecture 

Compared to the melpomene clade, the silvaniform colour patterns have received little attention. 

Silvaniforms do not usually fall within the postman or rayed mimicry rings, and instead mimic 

butterflies of the related genus Melinaea, developing patterns characterized by complex 

arrangements of melanic spots and stripes on orange, yellow and white backgrounds (Joron et al., 

2006). Melinaea butterflies are themselves toxic and very variable in colour, but unlike Heliconius, 

they do not tend to form strict mimicry rings: rather, across their geographical distribution, these 

Ithomiine adopt a complex mosaic of local variants, with several types of differently patterned 

butterflies inhabiting the same range (Joron et al., 2006). This implies that H. numata, whose 

different morphs mimic several different species of Melinea, is under a different kind of selective 

pressure than H. melpomene/erato. While evolutionary convergence towards a single pattern is 

encouraged in the latters, H. numata instead had to evolve a method for genetic control of its 
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pattern that would allow it to flexibly shift from one layout to the other depending on the types of 

Melinaea patterns present in that territory (Joron et al., 2006). Thus, sympatry with Melinaea led 

to a phenomenon known as polymorphic mimicry: the coexistence of Melinaea species with 

different colour patterns promoted the evolution of polymorphisms in H. numata, whose multiple 

races defined by the different patterns are now arranged in a mosaic that reflects the distribution 

of the Melinaea species it mimics (Joron, 1999).  

H. numata’s complex colour pattern is given by a single polymorphic supergene locus P formed 

from chromosomal rearrangements (Joron et al., 2011). It is homologous to H. melpomene’s N-Yb-

Sb complex (Joron et al., 2006), with each polymorphism corresponding to a different type of 

Melinaea pattern, and within the same area one can expect to find several different H. numata 

phenotypes (Joron et al., 1999). Additionally, races of H. numata are able to interbreed. There is a 

clear dominance hierarchy between certain alleles of the P locus, so crosses between individuals 

with different phenotypes do not produce an intermediate pattern, implying that the cost to 

exchanging alleles that one would expect in strict mimicry rings is not present in H. numata’s case 

(Jones et al., 2012). Le Poul et al. (2014) studied this dominance hierarchy in depth and found that 

sympatric pairs of alleles generally have very strict dominance relationships, so the heterozygous 

hybrid phenotypes fall into one of the two parental mimicry rings and suffer no loss in fitness. 

Sympatric alleles can have incomplete dominance however: for example, crosses between the 

sympatric alleles tarapotensis/acruella or elegans/aurora produce hybrids with intermediate 

phenotypes (Le Poul et al., 2014). However these hybrids’ pattern also comes at no cost, as while 

it is distinct from the parental phenotypes, it still falls within a separate mimicry ring (Le Poul et 

al., 2014). Meanwhile, in parapatric species, dominance relationships are less strict and how 

dominant each morph is depends on the dominance relationships of the single independent 

pattern elements, with black elements generally taking priority over orange and yellow elements 

and orange elements over yellow ones (Le Poul et al., 2014). Of all the H. numata morphs, the one 

carring the bicoloratus allele can recombine with all the others, and this allowed mapping of the P 

locus, which turned out to correspond to the cortex gene much like white/yellow pattern elements 

in other Heliconius species (Nadeau et al., 2016). 

However what is true in H. numata’s case cannot be assumed to hold true for the rest of the 

silvaniform clade. H. hecale and H. ismenius are two silvaniform species whose colour pattern was 

also analyzed, and it was shown that they have a multilocus architecture comparable to that 



 
31 

 

observed in H. melpomene (Huber et al., 2015). This means that we cannot predict with certainty 

the genetic organization of the H. elevatus and H. pardalinus colour patterns. These species’ colour 

pattern genetics have never been studied before, so the question is whether they have a single-

locus architecture like H. numata, or a multilocus architecture more like H. hecale and H. ismenius. 

The aim of this study is to characterize the genetic structure underlying generation of the colour 

pattern in pardalinus and elevatus, using hybrid wing phenotypes and their frequencies as 

indicators of the number of loci that are affecting these traits and of the dominance relationships 

between their alleles. In addition to this, another important aim is to search for evidence of 

homologies between them and other clades, as well as evidence of introgression from H. 

melpomene into H. elevatus. In the process, it will be clarified whether their genetic structure is 

more similar to H. numata or to hecale and ismenius. 

2. Materials and methods 

422 F2 hybrids between Heliconius elevatus and Heliconius pardalinus were captively bred by the 

Dasmahapatra laboratory prior to the beginning of this research project, in 2014, and used for 

colour pattern analysis. 148 of these hybrids were bred in York. These 148 individuals came from 5 

separate broods. 274 more F2 individuals were bred in Perù in 2015-2016 from 8 different 

mothers. In addition, 116 F1 hybrids (35 from York and 81 from Perù) were used for determining 

the heterozygous phenotype. In addition to these, a single brood of 34 backcrosses to H. 

pardalinus (B3) was also scored.  

Both pairs of wings from these 572 individuals were scanned twice at a resolution of 300dpi in true 

colours against a white background, once for the ventral side and once for the dorsal side. 

Scanning front and back was necessary due to some elements of the pattern only being visible on 

one side. where needed, The images’ brightness and contrast were enhanced in Adobe Lightroom 

in order to make the single pattern elements clearer to the naked eye.   

Identification and scoring of the phenotype was based on the Heliconius groundplan proposed by 

Nijhout & Wray (1990), which described the major areas of phenotypic variations and the main 

shapes making up the pattern of H. melpomene. H. melpomene’s phenotypes do not present the 

same pattern elements as the F2 hybrids here described, but the layout of the wing remains very 

similar and thus parallels can be drawn. 
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In total, 9 elements were scored plus 3 smaller details that appeared more ambiguous due to 

showing high levels of variation in the parental species as well (Fig. 6). The 9 major elements were: 

the shape of the dennis marking, the shape of the horizontal bar on the hindwing, the shape of the 

hindwing rays, the colour of the white band on the forewing (which is faded in H. pardalinus and 

full in H. elevatus), the presence of the orange band on the forewing, of two dumbbell-shaped 

spots in the discal region of the forewing (counted as two separate traits, but later analysed as a 

single trait), of orange rays and of a secondary white band in the apical region of the forewing (as 

two separate traits). The three minor elements were the rim spots, the elevatus tornal dot and the 

pardalinus hindwing bridge (Fig. 6). While they were initially scored they were eliminated from 

subsequent analysis due to the aforementioned high levels of variation.  
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Figure 6. Phenotypes of 
all scored traits. The pure 
species phenotypes are 
shown as well as the 
heterozygous 
phenotypes if any. 
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The Chi-squared test for Goodness of Fit was used to determine whether the frequencies of each 

phenotype for each trait followed Mendelian expectations, and thus whether the single traits 

were potentially controlled by a single gene. In the case of complete dominance, the expectation 

is the frequencies of the two phenotypes of a trait should be consistent with a 3:1 ratio, while in 

the case of incomplete dominance the ratio should be 1:2:1 as the trait will appear to have three 

phenotypes rather than two. In addition, evidence for linkage between traits was also tested with 

pairwise Chi-squared tests, assuming a 9:3:3:1 ratio of parental : recombinant : recombinant : 

parental phenotypes.  

3. Results 

3.1 Colour pattern analysis.  

Several putative loci were identified for the colour pattern. Most of them display the expected 

frequencies for Mendelian loci with two alleles and incomplete dominance, but even in the loci 

that fit this model some degree of quantitative variation in the shape and size of the spots was 

detected, suggesting the presence of additional loci of small quantitative effect. Examples of F1, 

backcross and F2 phenotypes are in Fig. . Note that occasionally some individuals had to be left out 

of the analysis due to wing damage that prevented accurate scoring of the phenotypes. 
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Figure 7A. Pure species phenotypes and putative genotypes, with elements of the phenotype 
highlighted. B. Comparison of phenotypes seen in the pure species, F1, F2 (though not all F2 
phenotypes are shown) and backcrosses. Putative genotypes are also reported.  

H. pardalinus 

[DpardDpard-RpardRpard 

FrFr-DbDb] 

[YbYb-AA] 

H. elevatus 

[DelevDelev-RelevRelev 

frfr-dbdb] 

[ybyb-aa] 

A. 

B. 
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Dennis, hindwing bar and rays- The dennis (hereby tentatively referred to as D), the horizontal 

hindwing bar (B) and the rays (R) are the most prominent features of the H. elevatus and H. 

pardalinus pattern. The dennis and the bar are monomorphic in the parental species, while the 

rays are monomorphic in elevatus but can take on a variety of phenotypes in pardalinus. In H. 

elevatus, the combined action of these three loci produces the typical pattern seen in rayed H. 

melpomene races that inhabit the Amazon basin, with a uniform orange area in the basal region of 

the forewing, a wedge-shaped hindwing bar and long, narrow, tack-shaped rays (Fig. 6-7). Thus, 

the H. elevatus genotype for these three traits would be DelevDelev/BelevBelev/RelevRelev. Conversely in 

H. pardalinus the genotype is DpardDpard/BpardBpard/RpardRpard and the dennis appears as a pair of 

narrow orange bands running along the contours of the discal cell, separated by black areas. The 

hindwing bar is long and curved and spans most of the hindwing’s width, and the rays are tend to 

be short, wide and Y-shaped (Fig. 7), albeit there is a degree of quantitative variation in their 

shape, and there are H. pardalinus butleri populations with noticeably different rays.  

All these alleles have incomplete dominance, so heterozygous individuals 

(DelevDpard/BelevBpard/Relev/Rpard), including the entirety of the F1 hybrids, have phenotypes that look 

like neither parental species. In these individuals the spots that make up the dennis take on an 

intermediate shape between the two homozygous phenotypes and the hindwing bar is curved, but 

not as prominently as in BpardBpard. The rays are commonly long but wider than those seen in 

RelevRelev, and while the F1 have a stable rays phenotype, some quantitative variation is observed in 

regards to how Y-like their shape is in the backcrosses and in the F2: RelevRpard individuals can have 

really pronounced branching in their rays, thus adopting a more pardalinus-like shape, while 

others only have a small indentation (Fig. 11). In the broods produced in Peru, a second pardalinus 

R allele Rdil was introduced from a population of H. pardalinus dilatus, which are very similar to H. 

pardalinus save for the rays’ shape, and the corresponding homozygous phenotype has wide rays 

that are joint together in a single jagged orange spot.  

The expected proportions of F2 phenotypes for a trait with incomplete dominance are 1:2:1, with 

the heterozygous phenotype appearing twice as frequently as either homozygous parental 

phenotype. The dennis and hindwing bar appear with frequencies consistent with the expectation 

of incomplete dominance. The frequencies for the dennis are 91:208:117 for 

DelevDelev:DelevDpard:DpardDpard (Chi-square, X2=2.17, df=2, p=0.34), those for the hindwing bar are 

111:218:88 for BelevBelev:BelevBpard:BpardBpard (Chi-square, X2=3.4, df=2, p=0.18). However for the rays, 
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the frequencies of RelevRelev:RelevRpard:RpardRpard are 37:77:34 for the York broods, which fit 

Mendelian expectations (Chi-square, X2=0.36, df=2, p=0.83), and 57:155:57 for the Peru broods, 

wherein they do not fit expectations (Chi-square, X2=6.25, df=2, p<0.05).  

In the backcross brood, born from an F1 mother and a pardalinus father, one would expect a 1:1 

ratio of pardalinus homozygous:heterozygous alleles, and this expectation is met by the 

frequencies of the three phenotypes. The frequencies are 14:19 for DelevDpard:DpardDpard (Chi-square, 

X2=0.48, df=1, p=0.49), 15:18 for BelevBpard:BpardBpard (Chi-square, X2=0.12, df=1, p=0.73) and 15:18 

for RelevRpard:RpardRpard (Chi-square, X2=0.12, df=1, p=0.73). 

Linkage between D, B and R. With the assumption that the genotype can reliably be predicted 

from the phenotype thanks to incomplete dominance, a putative arrangement for the D, B and R 

loci can be inferred using the frequency of recombinant individuals. Knowing that a recombinant 

phenotype indicates that a crossover has occurred between the chromosomes that carry the loci, 

and knowing that the chances of a crossover between two given loci is directly proportional to 

their physical distance on the chromosome, one can use the percentage of recombinant 

phenotypes to infer the distance between loci and evaluate their linkage. The unit of measure of 

distance between loci is the centimorgan (cM). Two loci are located at 1 cM from one another if in 

a single generation the proportion of crossover events (and thus, recombinant phenotypes) 

between them is 0.01 (1%). Linkage and genetic distance between D, B and R could only be 

inferred for the York broods due to the presence of extraneous alleles in the Peruvian broods. The 

percentage of recombinants is 25.7% (25.7 cM) between dennis and bar, 31.8% (31.8 cM) between 

dennis and rays and 27.7% (27.7 cM) between bar and rays. 

Female Heliconius butterflies do not form recombinant gametes, so in the backcross brood no 

recombinant phenotypes should be observed: all individuals are expected to carry fully parental 

genotypes, either DpardDpard/BpardBpard/DpardDpard or DelevDpard/BelevBpard/Relev/Rpard. In fact, no 

recombination is observed between the D and the R locus, but 8 seemingly recombinant 

individuals were observed between the dennis/rays and the bar (26.5% of the brood). It is possible 

that these were not actually recombinants, and that quantitative variation affected the phenotype 

to a point where it was indistinguishable from that of a recombinant. 

Orange forewing band. This locus, Ob, controls the presence of an orange band on the forewing, 

which is always present in H. pardalinus (ObOb) and always absent in H. elevatus (obob). All F1 
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hybrids and backcrosses have an orange band, with no observed instances of any intermediate 

phenotype. This suggests complete Mendelian dominance of the H. pardalinus allele. The 

observed frequencies in the F2, 321:92 (Ob-:obob), do not differ significantly from the expected 

3:1 ratio (Chi-square, X2=1.49, df=1, p=0.22). 

Two dumbbells. The pardalinus colour pattern is characterized by several spots in the central 

region and along the border of the wing, distinguishing it from the elevatus forewing pattern 

which is mostly black and features no spots other than the dennis and the white band. These spots 

are not easy to score due to displaying the highest amount of quantitative variation in their F2 

phenotypes of any other pattern element. Although the F1 phenotypes for both traits are more 

variable in shape than one would expect from two simple 1-locus systems, they usually still look 

distinct from the parental phenotypes.  

The dumbbells are absent in elevatus and present in pardalinus (wherein they are both fully visible 

from both the ventral and the dorsal side of the forewing), and in most F1s they are partially 

present, with only 1 York F1 individual out of 35 (1 out of 80 for the Peru F1) showing no 

dumbbells at all. If one considers the two dumbbells as two separate loci and assumes partial 

presence as the heterozygous phenotypes, they would be expected to each have 1:2:1 ratios 

(elev:incomplete:pard) in the F2s, but these expectations are not met in either the York or the 

Peru broods. Instead, assuming them as a single trait with co-dominance or incomplete dominance 

produces frequencies of 46:71:31 for the York F2, not significantly different from the expected 

ratio (Chi-square, X2=3.28, df=2, p=0.19). In the Peru F2 even with this method the frequencies 

(66:157:46) remain significantly different from the expectations (Chi-square, X2=10.5, df=2, 

p<0.01). For the purpose of these calculations, any phenotype with at least one incomplete 

dumbbell was counted as heterozygous. In the backcrosses, there are no individuals without 

dumbbells at all and the frequencies of 20:14 are not significantly different from the expected 1:1 

ratio (Chi-square, X2=0.74, df=1, p=0.39). It is worth noting that there is an alternative way to score 

the two dumbbells, assuming they are a Mendelian trait with complete dominance of the 

pardalinus allele and that the incomplete phenotypes are an effect of QTLs. In this case the 

frequencies become 300:110, which are consistent with the expected 3:1 ratio (Chi-square, 

X2=0.42, df=1, p=0.64).  
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Forewing rays. The other variable feature of the pardalinus wing, these rays are observable along 

the edge of H. pardalinus’s forewing, and are always absent in H. elevatus. They appear 

incomplete and narrower than they are in H. pardalinus in all the F1 individuals from both York 

and Peru where they could be observed, however due to the apical portion of the wing being the 

most exposed to wear and tear, they could not always be scored with confidence. Attempts to 

score the three phenotypes in the F2 resulted in frequencies of 26:82:33 

(absent:incomplete:present) in the York broods, significantly different from the expected 

frequencies (Chi-square, X2=6.94, df=2, p<0.05) and 66:141:57 in the Peru broods, which fit the 

expectations (Chi-square, X2=1.84, df=2, p=0.4). In the pardalinus backcrosses the forewing rays 

are always present to some extent and 

attempts to score the heterozygous 

and the pure pardalinus phenotype 

produced frequencies of 12:11, which 

fit expectations (Chi-square, X2=0.01, 

df=1, p=0.99) albeit many wings could 

not be scored due to damage around 

the edges. Like the dumbbells, the 

forewing rays can be scored as a simple 

Mendelian locus with complete 

dominance of the pardalinus allele, 

assuming the heterozygous phenotype 

is given by separate QTLs, and the 

cumulative frequencies thus obtained, 

295:90, satisfy the 3:1 expectations 

(Chi-square, X2=0.45, df=2, p=0.5). 

White band. This locus (Yb) controls 

the presence of white scales on the 

forewing band and on the subcostal 

vein of the hindwing. The parental 

phenotypes are monomorphic: in H. 

elevatus, the ybyb genotype produces Figure 8. Different phenotypes of Yb and white invasion on 
different Rb backgrounds. 

Rb- 
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an intense, uniformly white band and white scales on the subcostal hindwing vein, whereas in H. 

pardalinus (YbYb) the white band is faded and no white scales are seen on the hindwing (Fig. 8). 

The F1 individuals all display the pardalinus phenotype with a faded band and no white scales on 

the vein, suggesting complete dominance of the H. pardalinus allele and making Yb a Mendelian 

locus. In the F2 hybrids, phenotypes resembling the heterozygous H. melpomene Ybyb phenotype 

are occasionally observed: the heterozygous phenotype is comprised of both white scales and 

shaded scales with a different reflectance from the rest of the wing, better visible on the ventral 

surface. but this phenotype can only be observed on a black background, a condition that is often 

not met in the F2 and is never met in the F1. Due to this, the heterozygous individuals had to be 

scored alongside the homozygous pardalinus individuals, assuming complete dominance. Thus, 

the expected proportion of Yb-:ybyb phenotypes in the F2 broods is 3:1. The observed frequencies 

of 301:114 are consistent with these expectations (Chi-square, X2=1.23, df=1, p=0.27).  

White invasion. Occasionally, white scales are observed outside of the region normally occupied 

by the white band, in the central area of the wing (Fig. 8). This phenotype was nicknamed “white 

invasion” in reference to the fact that white scales are never observed in this area in either 

parental species. Its own phenotype appears to depend on that of the white band: white invasion 

forms is especially evident when it appears alongside the ybyb phenotype as it forms intense 

white spots, yet it is not restricted to ybyb individuals. Occasionally it appears in individuals that 

sport a faded white band, wherein it takes on a different phenotype: a mix of white scales and 

lightly coloured scales with different reflectance from the rest of the black background. In the F2 

broods the phenotype frequencies of this trait are 321:93 (absent:present) consistent with the 

expected 3:1 ratio (Chi-square, X2=1.49, df=1, p=0.22). The extent to which white invasion affects 

the central region of the wing varies, but it always follows the contours of spots that are ordinarily 

present there, such as the dumbbells.  

Apical band. The apical region of the H. pardalinus forewing sports a second white band that 

bisects the forewing rays and is comprised of three spots. The F1 phenotype is variable: in 

individuals where the apical portion of the forewing was relatively undamaged at least one spot of 

the apical band could always be observed, in both the York and the Peru broods. In the F2 

however the band does not behave like a mendelian locus: while the York F2s show at least one 

spot of the band with a frequency of 88:38 (present:absent) which is not significantly different 

from Mendelian predictions (Chi-square, X2=1.52, df=1, p=0.21) in the Peru F2 it appears less often 
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than expected, with a frequency of 148:91 of present:absent (Chi-square, X2=21.11, df=1, 

p<0.0001).  Scoring incomplete apical bands in the F2 as heterozygous gives frequencies of 

38:58:30 (absent:incomplete:present) for the York broods and 91:11:138 for the Peru ones. While 

the formers are not significantly different from the frequencies expected from a heterozygous trait 

(Chi-square, X2=1.81, df=2, p=0.4) the latters are still significantly different (Chi-square, X2=35.85, 

df=2, p<0.0001). 
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Table 1. Chi-squared tests for Mendelian frequencies of different putative loci, 
assuming complete or incomplete dominance. In the backcrosses, the expected ratios 
refer to heterozygous:pardalinus phenotype, as pure elevatus phenotypes are 
expected to be completely absent. 

Trait elev het. pard exp. ratio χ2 p-value df

dennis 32 76 40 1:2:1 0.97 0.62 2

hindwing bar 37 82 29 1:2:1 2.59 0.27 2

rays 37 77 34 1:2:1 0.36 0.83 2

forewing rays 26 82 33 1:2:1 26.24 <0.0001 2

dumbbells 46 102 1:3 3.28 0.19 1

orange band 26 120 1:3 3.65 0.06 1

white band 39 109 1:3 0.08 0.77 1

invasion 27 121 1:3 3.25 0.07 1

apical band 38 88 1:3 1.81 0.4 1

Trait elev het. pard exp. ratio χ2 p-value df

dennis 59 132 77 1:2:1 2.48 0.3 2

hindwing bar 74 136 59 1:2:1 1.71 0.42 2

rays 57 155 57 1:2:1 6.25 <0.05 2

forewing rays 66 157 46 1:2:1 1.84 0.4 2

dumbbells 66 198 1:3 10.5 <0.05 1

orange band 66 201 1:3 0.01 0.99 1

white band 75 192 1:3 1.2 0.27 1

invasion 66 200 1:3 0 1 1

apical band 91 148 1:3 35.85 <0.0001 1

Trait elev het. pard exp. ratio χ2 p-value df

dennis 91 208 117 1:2:1 2.17 0.34 2

hindwing bar 111 218 88 1:2:1 3.4 0.18 2

rays 94 232 91 1:2:1 5.34 0.07 2

forewing rays 92 239 79 1:2:1 10.7 <0.001 2

dumbbells 112 300 1:3 0.93 0.33 1

orange band 92 321 1:3 1.49 0.22 1

white band 114 301 1:3 1.23 0.27 1

invasion 93 321 1:3 1.49 0.22 1

apical band 129 236 1:3 20.28 <0.0001 1

Trait elev het. pard exp. ratio χ2 p-value df

dennis 14 19 1:1 0.48 0.49 2

hindwing bar 15 18 1:1 0.12 0.73 2

rays 14 19 1:1 0.12 0.73 2

forewing rays 12 11 1:1 0 0.99 2

dumbbells 20 14 1:1 0.74 0.39 1

orange band 33 1:1 0 1 1

white band 33 1:1 0 1 1

invasion 34 1:1 0.48 0.48 1

apical band 5 18 1:1 6.26 <0.05 1

Backcross to H. pardalinus
Phenotype frequencies Chi-square test

Phenotype frequencies Chi-square test

Joint datasets
Phenotype frequencies Chi-square test

Phenotype frequencies Chi-square test

York

Peru
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3.2 Inferred linkage between traits.  

While a linkage map could only be attempted for the dennis, bar and rays due to them having the 

clearest heterozygous phenotype, it is possible to infer linkage between traits or lack thereof by 

checking for 9:3:3:1 ratios between different phenotypes: such ratios indicate that two loci are 

unlinked. This was attempted between the traits with potentially Mendelian frequencies: forewing 

rays, dumbbells, orange band, white band, white invasion and apical band (albeit the apical band 

only behaves like a simple locus in the York F2). This analysis focused on the phenotypes, so each 

trait was considered as the result of a single locus with complete dominance, with partial 

phenotypes and complete pardalinus phenotypes scored together. The results are shown in Table 

2. This analysis revealed that the orange band and the forewing rays are potentially given by the 

same locus (as there are no recombinant phenotypes of the two traits), and it suggested the 

possibility of linkage between the dumbbells and the forewing rays/orange band, and between the 

white band and the apical band. Discrepancies were observed between the frequencies of 

recombinants with the apical band between the York and Peru broods, due to the band’s non 

Mendelian frequencies. However even in the Peru broods the frequencies of parental phenotypes 

between the white band and the apical band were higher than the frequencies of recombinants. In 

the Peru broods the apical band segregates with the forewing rays/orange band and with the 

dumbbells with patterns significantly different from 9:3:3:1 but this is probably due not to actual 

linkage but to the odd frequencies of the apical band phenotype in these F2s. White invasion 

appears linked to both white and orange pattern elements, but this is likely to be because white 

invasion only happens within the boundaries of regular orange elements. This is further explained 

in the Discussion.    
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Table 2. Chi-square tests for linkage based on phenotype frequencies. All combinations with the 
apical band (A) are calculated only with the York frequencies. In=white invasion. If p<0.05, traits 
may be linked. 

 

3.3 Quantitative variation.  

Variations in the shape of various spots suggests that some QTLs are affecting the formation of the 

pattern, and that their action mostly influences the shape and size of the black spots. Most F1 and 

F2 individuals show some degree of quantitative variation in the shape of the melanic spots. The 

most strongly affected regions are the central and apical portion of the forewing (where the 

dumbbells and the forewing rays are usually found, as well as part of the white band’s final cell), 

the lower portion of the dennis, and the region surrounding the hindwing bar (Fig. 9).  

 

Figure 9. Various degrees of black expansion in F2 individuals. Notice how it can affect the discal 
area and the apical area independently. It is also shown that extensive amounts of black expansion 
on the forewing do not necessarily affect the hindwing as well. 

 

 

 

Loci Phenotype combinations Exp. Ratio Parental Recomb. Recomb. Parental χ2
p-value df

Fr/Dbs FrDb : Frdb : frDb : frdb 9:3:3:1 257 57 40 51 51.54 <0.0001 3

Fr/Ob FrOb : Frob : frOb : frob 9:3:3:1 313 0 0 92 359.42 <0.0001 3

Fr/Yb FrYb : Fryb : frYb : fryb 9:3:3:1 235 64 70 35 9.25 <0.05 3

Fr/A FrA : Fra : frA : fra 9:3:3:1 73 14 28 9 5 0.17 3

Dbs/Ob DbOb : Dbob : dbOb: dbob 9:3:3:1 263 58 41 52 52.52 <0.0001 3

Dbs/Yb DbYb : Dbyb : dbYb : dbyb 9:3:3:1 219 81 85 29 2.05 0.56 3

Dbs/A DbA : Dba : dbA : dba 9:3:3:1 65 22 22 15 7.24 0.06 3

Ob/Yb ObYb : Obyb : obYb : obyb 9:3:3:1 242 70 66 35 6.08 0.11 3

Ob/A ObA : Oba : obA : oba 9:3:3:1 73 14 28 9 5 0.17 3

Yb/A YbA : Yba : ybA : yba 9:3:3:1 75 13 16 21 29.58 <0.0001 3

In/Ob InOb : Inob : inOb : inob 9:3:3:1 262 51 50 54 52.77 <0.0001 3

In/Dbs InDb : Indb : inDb : indb 9:3:3:1 222 81 99 35 8.03 <0.05 3

In/Yb InYb : Inyb : inYb : inyb 9:3:3:1 191 45 97 52 54.22 <0.0001 3

In/Ab InAb : Inab : inAb : inab 9:3:3:1 98 23 11 27 43.54 <0.0001 3
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4. Discussion 

4.1 Multilocus architecture of the colour pattern 

Phenotype analysis showed that H. elevatus and H. pardalinus have evolved a multilocus system 

for colour pattern generation. Heterozygous phenotypes and parental phenotypes detected in the 

F2 broods are slightly more variable in shape than homozygous phenotypes seen in the pure 

species, a phenomenon also observed by Mallet in H. erato and H. melpomene (Mallet, 1989). The 

amount of elements of the pattern whose appearance varies among F2 individuals may not 

correspond to the actual number of genes controlling pattern formation, but while this number 

currently remains unclear, the complete absence of linkage between the white elements and the 

orange elements of the pattern suggests the presence of more than one locus. In light of this it is 

possible to make an attempt at defining the two pure species’ genotype: for pardalinus, 

[DpardDpardRpardRpardFrFrDbDb][YbYbAA], for elevatus [DelevDelevRelevRelevfrfrdbdb][ybybaa], with the 

orange elements and the white elements apparently falling into two separate linkage groups. 

Moreover, the presence of QTLs that control the size and presence of different melanic spots was 

inferred.  

Linkage between Yb and A. The Yb locus and the A locus segregate with a ratio that is significantly 

different from the expected 9:3:3:1 ratio for unlinked loci. The parental phenotypes consist in 

faded band/present apical band (Yb-/A-, typical of pardalinus) and full band/absent apical band 

(ybyb/aa, typical of elevatus) and they both appear more often than the recombinant phenotypes 

(Yb-/aa and ybyb/A-) in the F2, with frequencies of 75:13:16:21 against the expected ~70:23:23:8. 

This strongly suggests linkage between these traits. The fact that they are both associated with the 

presence of white scales suggests homology with H. melpomene’s N-Yb-Sb linkage group that 

controls the appearance of the majority of white elements on its colour pattern and it is located 

on chromosome 15 (Papa et al., 2008; Jiggins et al., 2005). With the frequency of recombinants 

being 29/125 (23.2%), it is tempting to say that these two loci may lie at 23.2cM from one another. 

However the impossibility to score the entire F2 brood and to distinguish heterozygous individuals 

means that the estimated number of recombinants is necessarily imprecise. It is clear they are not 

the same locus, which is consistent with melpomene’s linkage group, whose loci are distinct, even 

though their relative distances are much shorter than those one could infer from these crosses 

(Naisbit et al., 2003).  
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It may appear counter-intuitive that the Yb locus and the orange band locus, which control the 

colour of exactly the same area of the wing, are actually completely unlinked. However they 

clearly produce four different phenotypes: orange band with faded white band (Fr-Yb-, pardalinus 

phenotype), orange band with full white band (Fr-ybyb, recombinant), no orange band with faded 

band (frfrYb-, recombinant) and no orange band with full white band (frfrybyb, elevatus 

phenotype). This is not surprising: a similar spread of phenotypes is observed in crosses between 

different non-rayed races of H. erato, where they are given by the combined action of two 

unlinked loci with incomplete dominance- Cr (for the yellow band) and D (for the red forewing 

band) (Mallet, 1989; Papa et al., 2008). It is also seen in crosses between rayed races of H. 

melpomene, where it is given by the interaction between Yb and B.   

Linkage between orange elements. Both Yb and A segregate with ratios similar to 9:3:3:1 with all 

the orange elements of the pattern that appear controlled by Mendelian loci. Linkage is observed 

however between different orange spots. This implies that the orange elements form a separate 

linkage group from the white ones. The dennis, rays and hindwing bar all appear linked, as the 

recombination frequencies are lower than 50%. The calculated distances of 25.7cM between 

dennis and bar, 31.8cM between dennis and rays, and 27.7cM between bar and rays however 

appear very large compared to H. melpomene’s (Papa et al., 2008), and the relative distances are 

inconsistent. This is most likely due to errors in scoring the heterozygous phenotypes due to 

interference from the QTLs associated with black spots. The presence of recombinant individuals 

in the backcross is a clear sign of phenotyping errors. While pure elevatus phenotypes are very 

distinctive, distinguishing the heterozygous phenotype from the pardalinus one remains tricky 

(Fig. 10). With the knowledge that dennis and hindwing bar are given by extremely tightly linked 

genes in H. melpomene (Papa et al., 2008), one may assume that in truth the bar and the dennis 

are the same locus. This would solve both the inconsistency between distances and the problem of 

recombinants in the backcross: any phenotype scored as recombinant between dennis and 

hindwing bar could simply be given by quantitative variation affecting the shape of the bar. This 

hypothesis would be supported by the fact that in H. hecale and H. ismenius the entirety of the 

orange pattern is controlled by a single locus, Br, found on chromosome 18 and homologous to H. 

melpomene’s B/D locus (Huber et al., 2015).  



 
47 

 

 

Figure 10. A variety of phenotypes found in the backcrosses to H. pardalinus. Notice variations in 
the shape of the hindwing rays. 

The other orange spots also appear linked to each other when they are scored as Mendelian loci. 

The orange band and forewing rays, originally scored as two separate elements, are instead given 

by a single locus hereby referred to as Fr, which shows evident linkage with the dumbbells locus. It 

is possible that the two dumbbells, the forewing rays and the orange band are actually all part of 

the same locus, with the recombinant phenotypes that lack the dumbbells being the result of 

epistatic interactions with the black QTLs. Based on this it would appear that the H. pardalinus and 

H. elevatus patterns are controlled by 5-6 loci (depending on whether the forewing rays and the 

dumbbells are assumed to be the same locus): dennis/band and rays (D and R), forewing 

rays/orange band (Fr), dumbbells (Db), white band (Yb) and apical band (Ab).   

4.2 Quantitative variation in the black spots.  

According to Nijhout’s groundplan the majority of basic black spots that make up the Heliconius 

pattern are located in the apical and central region of the forewing and in the upper portion of the 

hindwing (Nijhout, 1990). Papa et al. (2013) verified the presence of several QTL-associated 

melanic spots in these regions of the H. erato wings. Thus, the two dumbbells and the apical 

forewing rays, which are located in these two regions, are subject to the most disturbance. While 

all F1 individuals show incomplete forewing rays and incomplete dumbbells, it is likely that these 

loci are in fact Mendelian in nature, with complete dominance of the pardalinus allele, and the 

incomplete phenotype associated with heterozygous individuals is instead dependent on the 

action of separate QTLs, unlinked to the orange group and responsible for the expansion of black 

elements. This possibility seems supported by the frequencies of complete:incomplete:absent 

dumbbells in the F2s, which are significantly different from the expected 1:2:1 ratios of loci with 

incomplete dominance. It is also potentially supported by the appearance of the Fr locus: the 
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orange band and the forewing rays never appear independently from one another- there are no 

individuals that sport the orange band and no forewing rays or vice versa. Yet the orange band 

never shows intermediate phenotypes, only the rays do. This is an example of how quantitative 

variation in the black spots may make the phenotype and its inferred genetic structure appear 

more complex than it actually is. In addition, the possible epistatic interactions between black 

elements and orange spots means that there may be instances where the alleles responsible for 

presence of the dumbbells are expressed in the genotype, but have no visible effect on the 

phenotype. This would be an extreme example of black expansion. 

Notably some H. melpomene races sport a spot, called the cell spot, that is located in the same 

region as H. pardalinus’s upper dumbbell and has a similar shape (Sheppard et al., 1985). In H. 

melpomene, depending on the race, the cell spot can appear whole, or just as its upper or lower 

half. Suppression of this spot is given by QTLs and the amount of it that is expressed in the 

phenotype is also given by different combinations of suppressor alleles that vary with the 

population, with the entire dumbbell only appearing in the absence of all suppressors (Sheppard 

et al., 1985). 

The presence of such high levels of disturbance from black expansion on the forewing is likely to 

be the result of the very different patterns of melanization seen in H. pardalinus and H. elevatus. 

The latter show extensive amounts of black pigment in the central and apical portion of the 

forewing, with only the dennis area and the white band being spared. The former instead shows 

enlarged but distinct black spots in the central region, in the discal cell, and in the lower portion of 

the forewing- the discal spot’s elongated shape invades the dennis area. Less variation is observed 

in the hindwing’s pattern due to the relatively smaller number of differences between the two 

species, but this is still enough to make scoring of heterozygous phenotypes less straightforward. 

Presumably the individuals that sport the maximum amounts of black expansion had all their black 

elements enlarged, both those typical of H. elevatus and those typical of H. pardalinus. This 

phenomenon is observed in other silvaniform species as well. When crossed, different races of H. 

hecale, in particular H. h. melicerta and H. h. clearei, that also have very different black patterns, 

produce offspring that display continuous variation in the levels of melanization of their fore- and 

hindwings, with the parental phenotypes representing the two extremes of the spectrum (Huber 

et al., 2015). Even H. numata’s patterns, which are given by a single gene, are nonetheless subject 
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to varying degrees of quantitative variation given by small effect QTLs controlling the black spots 

(Joron et al., 2006).   

4.3 Different developmental interpretations of the loci can affect phenotype scoring.  

From a developmental perspective, the interpretation of these loci’s action changes depending on 

the way the phenotype is interpreted. There are two options: either the phenotype is seen as the 

formation of coloured elements on a basic melanic background, or the basic background consists 

in the coloured elements themselves and the melanic spots are the variable pattern. While this 

distinction does not affect the process of phenotype scoring, it provides alternative explanations 

for the observed patterns. As an example, in postman races of H. melpomene and H. cydno, the 

alleles that produce the most melanic phenotypes and those that in general involve a reduction in 

size of the coloured or white elements often appear dominant over those that promote an 

expansion of the coloured elements (Nijhout, 1994). In H. hecale crosses this also seems to be the 

case: the K locus that produces the white band is Mendelian and the recessive phenotype involves 

production of a wide, full white band, which is instead broken into smaller white regions in the 

dominant phenotype, due to expansion of black elements (Huber et al., 2015). The dominant form 

of an allele is typically (albeit not always) the one that represents a gain of function, which means 

that the dominant black expansion validates the hypothesis that the black pattern is laid onto an 

orange background rather than vice versa. However since the dennis is a dominant trait in rayed 

races of H. melpomene (Turner, 1962), this may not always be the case.  

Understanding whether black expansion represents a gain of function or a loss of function is 

important, albeit impossible to determine from phenotype observation alone. If expansion of the 

melanic spots is in fact a gained function, then the incomplete orange pattern elements should be 

counted among the phenotypes where the orange elements are missing altogether (Sheppard et 

al., 1985), which would create different ratios. The explanation is likely to be more complex: 

observation of the pardalinus-elevatus hybrids suggests that there are actually two different sets 

of loci, one for the orange pattern elements and one for the QTLs controlling melanization. This is 

impossible to determine with certainty with no genomic data, but it is plausible because H. hecale 

and H. ismenius have two separate linkage groups, one for the orange/red elements and one for 

the melanic ones (Huber et al., 2015). 
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4.4 H. elevatus and H. pardalinus’s colour patterns share their genetic architecture with 

other silvaniforms.  

This interpretation places the genetic architecture of H. elevatus and H. pardalinus’s colour 

pattern closer to that observed in H. hecale and H. ismenius than to the polymorphic single-gene 

system observed in H. numata. Huber et al. (2015) suggested that the single-locus architecture 

may be unique to H. numata among the silvaniforms, and that it may have evolved from the 

multilocus system seen in H. hecale and H. ismenius, a concept that had also been suggested by 

Jones et al. (2012). H. numata’s P locus is located on chromosome 15 (LG15), homologous to H. 

melpomene and H. cydno’s N-Yb-Sb group, and to H. erato’s Cr locus that controls the appearence 

of the yellow hindwing bar (Huber et al., 2015, Mallet 1989). In H. hecale and H. ismenius the locus 

on LG15 is called N and it controls the shape of the white band in ismenius and the presence of 

elements similar to pardalinus’s apical band in hecale (Huber et al., 2015). In H. pardalinus and H. 

elevatus the Yb and a loci are likely to be located in this linkage group.  

Regardless of how many of the orange elements that were scored as separate loci are actually part 

of the same large effect locus, the presence of an orange linkage group is also consistent with the 

H. hecale, H. ismenius and H. melpomene architecture: in all these three species the orange/red 

portion of the pattern is controlled by a linkage group located on chromosome 18 (LG18) near the 

optix gene. LG18 consists in D/B in melpomene and in Br in the other two. It is likely that the 

pardalinus and elevatus orange LG corresponds to LG18, with DBR/Fr/Db being homologous to D/B 

and Br.     

In H. melpomene, ismenius and hecale, as well as in H. erato and H. cydno, loci that control the 

shape of coloured pattern elements via the expansion or contraction of melanic spots are located 

on chromosome 10 (LG10) near the developmental gene WntA. These loci are all known as Ac save 

for H. erato’s, whose main QTL is Sd, that acts on melanic spots in the central region of the wing. 

Sd’s action is accompanied by Ro’s, a QTL for melanic spots in the apical region (Papa et al., 2013). 

In F2 hybrids between H. elevatus and H. pardalinus there appear to be two independent regions 

of black expansion on the forewing, in the central and apical region, much like in H. erato, so a 

similar organization is likely. 
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4.5  The white invasion dilemma: a re-activated H. elevatus allele?  

White invasion, scored as the presence of white scales outside of the white band region regardless 

of the extent of its manifestation, is a phenotype that is unique to hybrids. The phenotype it 

adopts appears dependent on the Yb phenotype: in ybyb individuals the spots formed by white 

invasion are fully white, while in Yb- individuals even the spots are faded, much like the white 

band itself. It is occasionally possible to observe the contours of white invasion as scales with a 

different reflectance on a black background (Fig. 8), occasionally accompanied by sparse white 

scales- as stated before, this phenotype is thought to be typical of Ybyb individuals. In H. 

melpomene and H. erato, the yellow bar given by Yb takes on this phenotype in heterozygous Ybyb 

individuals, is complete in ybyb individuals and absent in YbYb (Mallet, 1989; Naisbit, 2003). Due to 

the appearance of white invasion depending on Yb, it is possible that the existence of such 

phenotypes is proof that Yb truly has incomplete dominance- it just cannot be detected in most 

cases.  

While white invasion is apparently linked to orange elements of the pattern as well as the white 

band, it cannot be genetically linked to both. The apparent linkage between white invasion and 

the dumbbells is a product of the fact that white invasion always occurs within the shapes of 

pattern elements that would ordinarily be present on the wing. Thus, the presence of white 

dumbbells as a result of white invasion, even with no orange background, was scored as presence 

of the dumbbells rather than absence. If such spots are not expressed, white invasion is not 

observable. This suggests that white invasion does not have epistatic interactions with the black 

QTLs in the same way as other pattern elements do. This characteristic is useful because it may 

reveal whether the two dumbbells are expressed even in a background of full black expansion, and 

white expansion in the dumbbells was in fact interpreted as such. In an individual with black in its 

central forewing region, if white scales are present in the areas normally occupied by the 

dumbbells, it might mean that Db is being expressed but the excess of black scales is masking their 

normal effects. 

White invasion is never observed in the F1 or in the backcrosses to H. pardalinus, meaning it must 

be an allele that originated in H. elevatus (Fig. 11). While the parental population of H. elevatus 

used for these crosses only has a simple white band, there are other races wherein the white 

elements have a similar configuration (Turner, 1966). For example, Guianese races of H. elevatus 

such as H. elevatus bari have several white spots in the central region of the wing, and such 
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phenotypes are also seen in H. erato (Papa et al., 2013) and in H. melpomene (Sheppard et al., 

1985). The parental population of H. elevatus in these crosses sports a small white dot in the 

tornal region of the wing that may itself be a very restricted form of white expansion. It is possible 

that the phenomenon of white invasion is due to an ancestral gene that originally introgressed 

from H. melpomene into H. elevatus and was subsequently silenced in some H. elevatus races. If 

this is the case, its expression in F2s means that hybridization is removing the silencing 

mechanism. 

 

Figure 11. Comparison between white invasion in an F2 hybrid (left) and H. elevatus bari (right). 
Picture of H. elevatus bari from http://www.heliconius.net/. 

 

5. Conclusion.  

The traits and associations characterized in this study seem to validate the hypothesis that H. 

elevatus may have formed via gene flow from H. melpomene into the silvaniform clade, as it seems 

to carry several alleles that are also present in the melpomene/cydno clade, and both H. elevatus 

and H. pardalinus appear to have linkage groups homologous not only to melpomene’s LG10, LG15 

and LG18, but also to their close relatives H. hecale and H. ismenius. By contrast, this study 

confirmed that H. numata’s supergene is an acquired trait and that ancestral silvaniform 

Heliconius probably had a multilocus architecture.  

Mate choice experiments (Queste, 2015) revealed that H. elevatus shows preference for 

individuals sharing its same colour pattern and discriminates against the H. pardalinus butleri 

pattern. Merrill (2011) showed that assortative mating in H. melpomene is a behavioural trait that 

can be mapped onto the genome and appears associated with the B/D locus, which means that H. 
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elevatus may have inherited this behaviour alongside the melpomene colour pattern loci. This 

would make the colour pattern in H. elevatus and H. pardalinus a magic trait: ecologically 

divergent, under strong disruptive selection, and at the same time associated with mate choice. 

There is no doubt that the colour pattern and the introgression event in H. elevatus’s evolutionary 

history have played a large role in the separation between these species. QTL mapping of the 

identified loci will reveal their location in the genome, confirming whether or not the two studied 

species’ colour pattern loci are distributed in the same linkage groups as H. melpomene’s. In 

particular, QTL mapping of the melanic spots is expected to reveal important information about 

their organization (whether it is, in fact, similar to H. erato), their relationship with H. 

melpomene’s Ac locus and their interactions with other loci such as B/D and Yb, which could not 

be inferred from phenotype analysis.  
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Chapter 3 

Characterizing the pheromone blend of H. pardalinus and H. 

elevatus. 

1. Introduction 

1.1 Insect pheromones: important means of communication 

Pheromones are one of the most important means of conspecific and heterospecific 

communication in the living world, employed by bacteria, plants and animals alike to convey 

information to other individuals (Tillman et al., 1999). Broadly speaking, pheromones are highly 

species-specific blends of chemicals (or single chemicals) that have the function of altering another 

individual’s behaviour, or in some cases, its physiology (Symonds & Elgar, 2008). Pheromone 

components are volatile molecules that are picked up by olfactory receptors and affect the 

recipient’s nervous system: their range of action depends on factors such as the pheromone’s 

chemical composition and volatility, the rate at which they diffuse, the mode of emission, the 

target individual’s receptivity and environmental factors such as air currents. The immediacy of 

the behavioural response varies, with some taking effect instantly and others priming the recipient 

for a long-term behavioural change (Regnier & Law, 1968). Insects are among the best studied 

organisms in the field of chemical ecology due to their pheromone blends being particularly varied 

both in composition and in purpose. For insects, pheromones represent a method to understand 

the environment and to receive information about other individuals in the area, as a chemical 

signal may contain information about, for instance, sex, species, distance, mating status, age or 

relatedness of the emitter in relation to the recipient (Howard & Blomquist, 2005). The functions 

of insect pheromones as signals thus range from dispersal to aggregation and recruitment, from 

alarm to reproduction, and different species employ them for different tasks and to varying 

degrees (Howard & Blomquist, 2005).  

These functions are especially evident in social insects, where communication and coordination 

are vital for the colony’s success. Ants for example produce a range of pheromones that include 
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alarm and recruitment signals (Bossert & Wilson, 1963). A classic example of the latter are 

pheromone trails, commonly used by worker ants to communicate the location of a foraging spot 

to their nest mates. For instance, Solenopsis saevissima workers release a continuous recruitment 

signal in the air around them as they travel from their colony to a food source, and this prompts 

other workers to follow the trail, and as the followers release the same continuous emission, the 

signal is reinforced for every ant that follows the same route (Bossert & Wilson, 1963). There are 

species of ants whose trails can persist for several days (Bossert & Wilson, 1963). Ant alarm 

pheromones on the other hand are emitted in brief puffs and they have an alerting effect. These 

signals are often emitted as a result of injuries or death. At low concentrations, alarm pheromones 

act as attractants to other workers, but at high concentrations they become repellent (Moser et 

al., 1968). In honeybees (Apis mellifera), alarm pheromones are released by workers upon stinging 

a target, and signal to other bees to attack the same spot (Regnier & Law, 1968).  

While the alarm and recruitment pheromones have been mainly studied in eusocial insects, the 

most well-known type of pheromones, the mating signals, as well as the aggregation signals, have 

been thoroughly studied on a variety of insect taxa, with particular focus on Blattodea, Diptera, 

Coleoptera and especially Lepidoptera (Tillman et al., 1999). Compared to other insect taxa, 

Lepidopterans are particularly well-studied as sex pheromones were originally characterized in 

moths due to many species of caterpillar being economically important agricultural pests 

(Symonds & Elgar, 2008).  

1.2 Lepidopteran pheromone biosynthesis: a general look 

Lepidopterans have been crucial in the study of pheromone chemical composition and in research 

concerning the biosynthetic pathways that lead to pheromone production. In fact, the first 

pheromone component ever identified was an alcohol isolated in 1959 from the secretions of the 

silkworm Bombyx mori (a commercially important species), subsequently named bombykol 

(Butenandt et al., 1961; Ando & Yamakawa, 2011). Since then, the blends of hundreds of species 

of moths have been characterized in-depth. In moths, female individuals produce long-distance 

sex pheromones that are picked up by the male antennae, providing potential mates with accurate 

information as to the female’s position. As most moths are nocturnal, this represents their main 

method of mate localization- this is the reason why male moths sport very elaborate antennae, 

able to derive subtle information from a female’s chemical signal (Roelofs et al., 2002)  
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Across all insect orders and regardless of the type of signal, there are two possible starting points 

to pheromone biosynthesis: de-novo synthesis and sequestration of precursors from the larval 

host plant. In the latter’s case, the host plant precursor can be transformed into a behaviourally 

active molecule by either a few simple chemical reactions or more complex novel biosynthetic 

mechanisms evolved for that specific purpose (Tillman et al., 1999). These two starting points do 

not exclude each other and the same species can often make use of both. While pheromone 

blends can be very variable, this does not always imply a large number and a wide range of genes 

involved in their production (Symonds & Elgar, 2008). Many moths for example use simple 

hydrocarbons as their chemical signals, including simple and methylated alkanes or alkenes 

(Howard & Blomquist, 1982), which require the action of few families of enzymes, mainly 

desaturases, reductases and oxidases that act on fatty acid precursors (Symonds & Elgar, 2008). 

These hydrocarbons serve as the base of several derivatives including esters, alcohols and 

aldehydes (Roelofs & Rooney, 2003). Pheromones that consist of saturated molecules 10-18 

carbons in length (including any derivative thereof with an oxidized functional group, such as 

aldehydes, alcohols and esters) are known as Type I pheromones and are most common in moths, 

while unsaturated molecules usually 17-23 carbons in length are Type II pheromones and they are 

rarer (Matsumoto, 2010). A single species’ blend can include both types. Most important to the 

production of pheromones are the fatty acyl-CoA reductases, also known as fatty acid reductases 

(FARs), which replace the -COOH functional group with an -OH group, and the fatty acyl-CoA 

desaturases (also known as fatty acid desaturases or FADs) which carry out one of the most 

important steps: the transformation of a saturated chain into an unsaturated one via introduction 

of a double bond (Matsumoto, 2010) (Fig. 12). 
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Figure 12. Fatty acid metabolism (Mann et al., unpublished). C(n) indicates the number of carbons 
in the main chain, Z(n) indicates the position of a double bond, if present (the number of double 
bonds is given after the number of carbons: C(n):0 for no double bonds, C(n):1 for one double 
bond). –COOH denotes fatty acids. Notice the desaturation event occurs early on, as C18:0-COOH 
(stearic acid) is transformed into Z9-C18:1-COOH (oleic acid). Other relevant compound classes 
represented here include alcohols (-OH), acetates (-Ac) and aldehydes (-CO). C(n) on its own 
represents alkanes, while Z(m)-C(n):1 represents alkenes.  

For example, the red-banded leafroller moth Argyrotaenia velutinana has a sex pheromone blend 

mostly based on esters, with (Z)-11-tetradecenyl acetate and (E)-11-tetradecenyl acetate being the 

two main components (Bjostad & Roelofs, 1981; Roelofs & Rooney, 2003). These two esters are 

almost identical, sporting 14 carbons and a double bond in position 11 from the functional group, 

with the only difference being the orientation of the CH2 groups adjacent to the double bond. In 

fact they are both derivatives of tetradecanoic acid (myristic acid): this precursor first undergoes 

desaturation, carried out by Δ11-desaturase which introduces the double bond; then, reduction, 

turning the fatty acid into an alcohol; lastly, acetylation, wherein the acetate group is added 

(Bjostad & Roelofs, 1981). Similarly, Trichoplusia ni, the cabbage looper moth, uses (Z)-7-

dodecenyl acetate, which derives from hexadecanoic (palmitic) acid via Δ11-desaturation, 

followed by chain shortening (which turns the 16-carbon chain of palmitic acid into a 12-carbon 

chain), reduction and acetylation (Bjostad & Roelofs, 1983).  
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Unsaturated chains are common in nature and Δ11-desaturation is far from the only mechanism 

by which they can be formed. Several different families of desaturases exist, all of which specialize 

in introducing the double bond at different positions from the functional group (Roelofs & Rooney, 

2003, Rodriguez et al., 2004). Δ9-desaturases are among the most common,  being ubiquitous in 

animals as components of a cell’s organelle membranes (Shanklin & Cahoon, 1998), and due to 

their fundamental role in metabolism, the double bond between C9 and C10 introduced by this 

family of enzymes is a very common structure in nature (Liénard et al., 2014).  

Δ14, Δ5 and Δ7-desaturases also exist, and sometimes closely related species can differ 

dramatically in their active families of FA desaturases (Roelofs & Rooney, 2003). Evidence 

presented by Roelofs et al. (2002) showed that FADs evolved before the divergence between 

Lepidoptera and Diptera occurred, since both orders employ them for pheromone production, and 

different FAD families seem to have acquired this function independently from one another. In 

total, Roelofs lists the two kinds of Δ9 desaturases (the ones that favour 16C substrates and the 

ones that favour 18C ones), Δ10-desaturases/Δ11-desaturaes and Δ14-desaturases as the four 

main groups of FADs based on their genetic structure (Roelofs et al., 2002). Δ9 desaturases evolve 

slowly, presumably due to their ancestral metabolic function (Knipple et al., 2002); Δ10/11 

desaturases evolve relatively faster and have completely lost metabolic function, being involved 

exclusively in sex-pheromone production; Δ14 desaturases, still poorly studied, evolve at the 

fastest rate (Roelofs et al., 2002). Interestingly, while it appears that the majority of characterized 

moth Δ9 FADs specialize on molecules within the 16C-18C range, a type of Δ9-desaturase was 

found in Choristoneura parallela, the spotted fireworm moth, that can act on any substrate 

between 14C and 26C in length (Liu et al., 2004). Its  sequence does not cluster with the other two 

groups of Δ9-desaturases, suggesting it could probably be a cluster of its own (Liu et al., 2004).  

Another crucial enzyme family in pheromone biosynthesis consists in fatty-acyl CoA reductases 

(FARs). The role of these enzymes is to transform fatty acids into alcohols, that can then be 

transformed into other classes of compounds such as aldehydes and esters, as seen in Argyrotenia 

velutinana and Trichoplusia ni. FARs are not very substrate-specific: usually, a single type of FAR 

can reduce a range of fatty-acyl precursors to alcohols, regardless of the presence of double 

bonds, with the only restriction coming from the length of the substrate molecule, which has to 

fall within the acceptable range for that FAR (Liénard et al., 2010). For instance, in the moth genus 
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Yponomeuta, pgFAR enzymes (pheromone gland FARs) accept substrates between 14 and 16 

carbons in length. Thus the diversity in blends shown by different Yponomeuta species does not 

depend so much on the action of fatty acyl reductases as it does on the upstream biosynthetic 

machinery that determines the production of intermediates (Liénard et al., 2010). The fact that 

FARs do not specialize on a single substrate and that the end product depends largely on the 

available fatty acyl compounds is important, because it means that these enzymes can effectively 

facilitate the evolution of a diverse range of pheromone blends across different species. In fact, 

they will be able to carry out the reduction step regardless of the intermediates they are provided 

with (Hagström et al., 2012). 

Like FADs, FARs are very diversified in insects, and as in FADs, changes in the genetic structure of 

FARs can cause significant modifications in the pheromone blend composition that can drive 

species divergence (Lassance et al., 2010). An example of this is seen in the corn borer moth 

Ostrinia nubilalis, which exists in two races: E and Z. Their blends are comprised of the same two 

compounds, (E)-11-tetradecenyl acetate and (Z)-11-tetradecenyl acetate, but the ratios are 

different between the two races. However, the unsaturated fatty acyl- intermediates to these two 

compounds are present in similar ratios in both races, which suggests that the important switch is 

occurring at the reduction stage (Lassance et al., 2010). In fact, a study on F1 hybrids between the 

two revealed that the change in ratios between the E and Z populations is due to a single allele of 

the gene pgFAR that encodes for the reductase (Lassance et al., 2010). The two alleles, pgFARE and 

pgFARZ, are fixed in the E and Z population respectively, and the different results they produce in 

the pheromone blend are enough to cause reproductive isolation between the otherwise 

interfertile races (Lassance et al., 2010). 

1.3 Pheromones in butterflies 

 Butterflies and moths are often culturally regarded as separate groups of Lepidopterans, but this 

is unlikely to be the case. In fact, butterflies (Rhopalocera) are currently believed to be 

phylogenetically nested within the moths (Heterocera), essentially having descended from moths 

ancestors and having acquired a number of traits that are unusual in other moth families, 

including bright colours, a diurnal lifestyle and enhanced visual perception (Liénard et al., 2014). 

While in moths females emit pheromones to attract males, in butterflies it is males. Due to 

butterflies relying heavily on their colour patterns to detect potential mates and conspecifics, it 
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seems reasonable to expect a loss in chemosensory genes compared to the moths that have to 

rely on chemical signals for those tasks. Yet certain butterfly genera (namely Danaus and 

Heliconius) actually show expansions in the chemosensory gene families (Heliconius Genome 

Consortium, 2012). Moreover, while it is true that butterflies appear to have lost the long-range 

signals observed in moths, male butterflies appear to still be able to convey large amounts of 

information to the females in the form of short range “scent-bouquets” (Liénard et al., 2014). One 

of the most important species in the study of butterfly pheromones, Bicyclus anynana, had its 

male sex pheromone blend characterized and the study in question revealed a composition not 

unlike that of female moths’ sex pheromones, including (Z)-9-tetradecenol (Z9-14:OH) and 

hexadecanal (16:Ald), both derived from the metabolism of palmitic acid (C16) (Nieberding et al., 

2008). The similarity of B. anynana males’ blend with that of several female moths made it a good 

model for researching the evolutionary origin of butterfly biosynthetic pheromone production 

pathways in relation to moths. A study by Liénard et al. (2014) revealed that the production of Z9-

14:OH is given by a three-step pathway of Δ11-desaturation of hexadecanoic acid into (Z)-11-

hexadecenoic acid followed by β-oxidation into (Z)-9-tetradecenoic acid and finally reduction into 

(Z)-9-tetradecenol. 16:Ald is instead produced via a two-step pathway that begins with reduction 

of hexadecanoic acid to hexadecanol and then oxidation into hexadecanal. These two reactions 

involve a Δ11-desaturase and two pheromone gland FARs whose genes are orthologous to moth 

FADs and FARs (Liénard et al., 2014). 

Butterflies rely on their vision to a much greater extent than moths do, which may be problematic 

in groups with mimicry. Several species of butterflies, even outside of the Heliconius genus, 

engage in Müllerian or Batesian mimicry such that multiple species converge on similar colour 

patterns. For example, African species of Danainae (the milkweed butterflies) form mimicry rings 

corresponding to several colour pattern models, meaning that several species cannot recognize 

their conspecifics visually. A study on 10 species of African Danainae butterflies revealed that 

males of each species have a bouquet made up of different classes of compounds (with complexity 

varying among species from 12 to 59 different molecules), including saturated and unsaturated 

hydrocarbons, aldehydes, alcohols, aromatic compounds and other plant derivatives (Schulz et al., 

1993). While they share several common molecules, each species has at least one unique 

compound that distinguishes its blend from other species- in other words, an evolutionary 

autapomorphy: a feature that is only found in a specific taxon (Schulz et al., 1993). In such cases, it 
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is plausible and likely that chemical communication may become important in species recognition 

(Schulz et al., 1993).   

1.4 Heliconius pheromones: a relatively unexplored topic 

In spite of the importance of Heliconius butterflies as Lepidopteran models in the study of 

evolution, relatively little attention has been given to their pheromones. Most studies concerning 

Heliconius chemical communication have focused on two specific types of signals: chemicals 

produced by female pupae and antiaphrodisiacs (Schulz et al., 2008; Estrada et al., 2010; Estrada 

et al., 2011).  

Heliconius males often engage in a unique behaviour known as pupal mating, wherein they form 

an association with a mature female chrysalis and remain to its side until it ecloses so as to secure 

mating with that specific individual (Estrada et al., 2010). A study on H. charithonia revealed that 

while male and female pupae produce the same cuticular hydrocarbons and the same volatiles, 

some of the plant derivatives (terpenoids) are sex specific (Estrada et al., 2010). Mature male 

pupae produce linalool, which repels males, while mature female pupae produce linalool oxide 

(found in immature female pupae as well, but only in trace amounts), which attracts them (Estrada 

et al., 2010). Antiaphrodisiacs on the other hand have a very different function: they are donated 

from the male to the female during mating and their function is to enforce monogamy and reduce 

male-male competition by signalling that the female is already mated, making her less attractive to 

other males that may wish to attempt courtship and reducing harassment (Schulz et al., 2008). 

Like other classes of pheromones in other organisms, the antiaphrodisiac bouquet’s chemical 

composition is very diverse in terms of number of compounds and their concentrations, and 

different compounds and compound classes have been gained and lost several times during the 

Heliconius evolutionary radiation (Estrada et al., 2011). The effect of this is so strong that except in 

the case of recently diverged species pairs like H. cydno and H. pachinus, the antiaphrodisiac 

composition carries little phylogenetic signals (Estrada et al., 2011).  

It is known that antiaphrodisiacs and sex pheromones released by the males during courtship are 

different in a number of ways. Antiaphrodisiacs are released from the male abdominal glands, 

while sex pheromones are released from a specific region of the male hindwing that is covered in 

live brush-like scales (androconia) which have been hypothesized to have a secretory function 
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based on their morphology, as opposed to the rest of the wing which is covered in dead scales 

(Vanjari et al., 2015). Antiaphrodisiacs are passed to the females by contact, while sex 

pheromones are likely dispersed during courtship: males will approach and hover the female 

before attempting to mate, and the hovering phase is probably the time male sex pheromones are 

released. In H. melpomene, antiaphrodisiacs and male sex pheromones have been characterized 

by Schulz et al. (2008) and Vanjari et al. (2015) respectively, and the two blends have different 

compositions. Similarly, in a study on H. melpomene and H. timareta’s sex pheromones (Meròt et 

al., 2015) it was shown that the androconia and the male abdominal tips produce different blends, 

with the abdominal tip’s blend being more diverse and consisting in a concoction of several esters 

and fatty acids. Thus albeit the pheromones identified in H. melpomene and H. timareta are only 

putative, even in other Heliconius species, sex pheromones cannot be assumed to have the same 

chemical composition as antiaphrodisiacs.  

In light of this, the courtship emissions of Heliconius require more attention, as they are likely to 

play an extremely important part in species divergence, due to their role in mate choice and 

identification of conspecifics. In the study of Heliconius evolution and speciation, it is a priority not 

only to characterize the blends’ composition, but also to understand through what mechanisms 

different species have developed different blends. While the pheromone blend components may 

be expected to be quantitative rather than Mendelian in nature, the F2 hybrid phenotypes can still 

be used to deconstruct the parental species’ blends, offering important insights as to the genetic 

organization of this complex trait. Using gas chromatography-mass spectrometry the pheromone 

composition of H. pardalinus, H. elevatus and their hybrids was characterized. In addition to this, a 

novel method involving correlation plots between compounds was employed in an attempt to 

determine the genetic structure underlying the production of different blend components using 

the phenotype of F2 hybrids.  

2. Materials and methods 

 

Androconia were extracted from the hindwings of 189 adult Heliconius males (~21 days old, as this 

is when they reach sexual maturity). These included 133 F2 hybrids, 19 F1 hybrids, 14 backcrosses 

to H. pardalinus, 10 H. elevatus and 13 H. pardalinus. Of these, Jake Morris (Ph.D) had previously 

analyzed the 17 F1 individuals, as well as 5 elevatus and 5 pardalinus. Among the 133 F2 hybrids 
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are 5 individuals that were fed exclusively on Passiflora edulis as caterpillars and 5 that were fed 

exclusively on P. serratodigitata, included in the study to check whether the butterflies 

pheromone blend was affected by larval food plant. Otherwise, larvae were reared on a mixture of 

Passiflora species; P. caerulea and P. edulis in York, and P. edulis and P. serratodigitata in Peru. Of 

the F2 individuals, 18 descended from F1 parents bred in captivity in York, and the other 115 were 

bred in Peru (the York and the Peru population they came from are the same mentioned in 

Chapter 2 concerning colour pattern analysis, though not all individuals used for colour pattern 

scoring were used for pheromone analysis).  

All individuals were sacrificed and their androconia were excised from the hindwings and 

suspended in dichloromethane (CH2Cl2). Dichloromethane was chosen due to being a weakly polar 

molecule, making it the ideal solvent for large organic molecules such as pheromone components, 

which tend to be non-polar. Pheromone analysis was carried out via GC/MS in the Department of 

Organic Chemistry of Braunschweig Technische Universität.  

The dichloromethane suspensions containing the androconia were separated from the wing 

fragments and their volume reduced with a nitrogen evaporator (this process only evaporates 

dichloromethane and the least heavy molecules- the compounds that make up the pheromone 

blend remain unchanged). 212.8 ng of tridecyl acetate was added to each suspension to serve as 

the internal standard. Tridecyl acetate was prepared via tridecane esterification in a 

dichloromethane medium. 

The resulting solutions were run on a 7890A GC-System coupled with a MSD 5975C mass analyzer 

(Agilent Technologies, Santa Clara, USA) instrument fitted with a HP-5MS column (50 m, 0.25 mm 

i.d., 0.25 µm f.t.; Agilent Technologies). The ionization-method was electron impact with a 

collision-energy of 70 eV. Conditions were as follows: inlet pressure 9.79 psi, He 20 mL min-1, 

injection volume 1 µL. The GC was programmed as follows: starting at 50°C increasing at 5°C min-1 

to 320°C and hold that temperature for 5 min. The carrier gas was He at 1.2 mL min-1. For all 

identified compounds the concentration was calculated from the peak’s area, as reported by the 

AMDIS software. Each compound’s chromatogram was interpreted by the software via the NIST 

databases and the additional databases compiled at the Institute of Organic Chemistry of 

Braunschweig TU by F. Mann (Ph.D), who had also originally identified most of the compounds. All 
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identifiable compounds between undecane and nonacosanal were scored, including any potential 

contaminants or extraneous compounds, which were eliminated at a later point alongside 

compounds that appeared very sporadically (less than 10 times across the entire dataset).   

Pure species analysis. The 10 previously analyzed pure individuals (5 H. elevatus and 5 H. 

pardalinus) were pooled with the newly analyzed individuals, for a total of 10 elevatus and 13 

pardalinus. The two datasets were pooled together as conservatively as possible, eliminating all 

compounds that were found in only one dataset and all compounds that appeared in fewer than 

four individuals. Forty compounds in total were retained. The logged concentrations (ln(conc. +1)) 

of all these compounds were analyzed using R(corrplot). The expectation for this investigation was 

that the correlated compounds should show two clusters, one for the H. pardalinus compounds 

and one for the H. elevatus ones, and the non species-specific compounds should either not fall 

into either cluster, or appear correlated to both. Kruskal-Wallis tests were run to check for 

differences between the compounds’ median concentrations (not logged) in the two species. This 

test was favoured over a t-test due to the concentrations not being normally distributed. A 

principal component analysis was then performed on the compounds that were significantly 

different to check for consistency with past analyses. 

Whole-dataset analysis. The entire dataset (including both the York and the Peru F2 broods, the 

backcrosses, the F1s and the pure species) was logged (ln +1 to control for the presence of zeros) 

and then normalized using the concentrations of a single compound that had appeared 

consistently across all samples and in past samples of the same kind. The amounts of this 

compound would presumably act as proxies for the general amount of blend produced by an 

individual, while being unaffected by any other factor. 11-Methylpentacosane was chosen as a 

normalising compound due to appearing in all but 3 individuals (which had to be eliminated from 

the analysis). This normalization method results in the chosen standard compound’s 

concentrations always being reduced to 1, thus rendering the compound impossible to analyze, 

and a methylated alkane was considered an acceptable loss of information compared to the other 

possible candidates which were alkenes (Z-9-Henicosene and Z-9-Tricosene). This method was 

chosen over percentage contribution of each compound to the overall blend because transforming 

the concentrations into percentages causes the values of each compound to be affected by others; 
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this effect is particularly pronounced when the overall amount of compounds in the blend varies 

due to a few abundant compounds. This normalized dataset will be referred to as C25Me dataset.  

A separate attempt at normalizing the dataset was made with the averaged concentrations of 

heptacosane and nonacosane. The reason for this choice was that due to their size and weight 

heptacosane and nonacosane are likely to be cuticular hydrocarbons, and were in fact 

documented as cuticular hydrocarbons in Heliconius melpomene the past (Vanjari et al., 2015). 

Due to this, they are unlikely to be involved in chemical signalling. The size range for cuticular 

hydrocarbons in Heliconius is thought to be C26-C30 but hexacosane and octacosane were not 

used as they were often absent from individuals. This dataset will be referred to as C27-29 

dataset. 

Statistical analysis of the results was carried out in R-Studio 0.99.491 using mainly the ggplot2, 

reshape2 and corrplot packages. The ggplot2 and reshape2 packages were used to produce 

histograms for the distribution of concentrations of every compound across all individuals. The 

reason why this was done was to show whether any compound showed a bimodal or trimodal 

distribution of its frequencies, with most individual falling into either of two or three clusters. This 

situation may indicate simple Mendelian control for the production of a compound, as the two 

main peaks would represent the dominant and the recessive phenotype, or in the case of three 

peaks, incomplete dominance. On the other hand, corrplot was used to produce a correlation 

matrix between all the identified compounds. The order of the compounds in the matrix was 

manipulated with the hclust algorithm (part of corrplot itself) to so as to show clear clusters of 

correlated molecules. This was done in order to detect associations between compounds that may 

hint at a shared biosynthetic origin (and may thus be indicative of genetic structure). Compounds 

that appeared less than 4 times in the F2 were excluded from the analysis, and 3 individuals where 

11-methylpentacosane and heptacosane/nonacosane were not found (these were the same 

individuals). Obvious contaminants such as plasticizers were eliminated.  

Correlation matrices were produced for a dataset including the two pure species and for one 

including F2 hybrids and backcrosses. In the case of the two F2 datasets (the C25Me and the C27-

29 ones), 100 90% bootstrap replicates were extracted from the data, each one selecting 117 

individuals out of the 133 that made up the full dataset. This was used as a method to reduce the 
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impact of outliers that may affect correlations. Correlations were calculated for all 100 of them, 

then averaged to produce a single final correlation matrix. Correlations for both datasets were 

calculated three times, using Pearson, Spearman and Kendall’s coefficients to check for robustness 

of the associations. This was also a method to control for the effect of outliers: Pearson’s 

correlation coefficient is calculated from the actual concentrations of the compounds, which make 

it a powerful test for detecting linear relationships but also particularly sensible to outliers, 

whereas Spearman and Kendall’s coefficients are calculated based on ranks and are thus less 

subject to the outliers’ effect.   

Clusters that were consistent across both standardization methods and regardless of the 

correlation coefficient used in R(corrplot) were noted and all compounds within each cluster were 

averaged. Histograms were produced with ggplot to check whether any of them behaved like a 

single locus, much like what was done for the single compounds. 

A principal component analysis was carried out on the whole dataset including all F1, F2, BC and 

pure individuals, in order to check whether the F2 clustered closer to any of the other groups 

(pure, F1 and BC). A PCA was also run on the two pure species on their own to check for 

consistency of this dataset with previous pure species analysis (this was necessary as the two pure 

species datasets were later joined together), and on a dataset including just the 10 individuals 

from the feeding experiment. The dataset used for PCA was not normalized by the concentration 

of 11-methylpentacosane, but it was logged. 

3. Results  

3.1 Preliminary analysis of the pure species 

Past analysis. In previous analyses by Jake Morris (Ph.D), 56 compounds overall were scored in the 

pure species, but only 31 were shown by Kruskal-Wallis tests to be significantly different between 

the species, and only 20 were used in the PCA as rare compounds and compounds whose identity 

was unconfirmed were excluded. These 20 were: heneicosadiene, homovanillylalcohol, oleyl 

acetate, eicosene, icosyl acetate, (Z)-11-icosenylpropionate, phytol, ?-docosene, (Z)-9-tricosene, 

(Z)-11-eicosenylacetate, (Z)-9-heneicosane, hexahydrofarnesylacetone, octadecyl acetate, 

hexacosanal, tricosane, heneicosene, icosane, hexacosane, 11-methylpentacosane and ?-
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Figure 13. Principal component analysis of the pure species. Red = H. elevatus, cyan = H. pardalinus. 

henicosenyl acetate. Importantly, for the purpose of this analysis, the concentrations of each 

compound were converted to percentages by individual. The resulting PCA sorted H. elevatus and 

H. pardalinus individuals into two clear clusters, as expected from the two pure species given their 

very different pheromone blends. This dataset will be referred to as the “J” dataset.  

Joining the J dataset with new data. For this analysis concentrations were favoured over 

percentages, and because the original concentrations were not available for all of the J dataset, 

some individuals had to be left out of the joint analysis. The 10 J dataset individuals (5 H. elevatus 

and 5 H. pardalinus butleri) for whom the concentration could be rescued were analyzed alongside 

newly acquired individuals, for a total of 13 H. pardalinus and 10 H. elevatus. The new individuals 

were analyzed alongside F2 individuals, thus 93 compounds were scored, but for the sake of 

joining the two datasets, most of them (including contaminants, compounds that appeared less 

than 4 times across both species, and compounds that were only detected in one of the two 

datasets) were eliminated, bringing the number of compounds down to 40. The discrepancy in the 

number of compounds detected in this preliminary analysis compared to the current one stems 

from the fact that the J dataset individuals were run on a different GC column, however most of 

the parental compounds that did not appear in the current dataset were present at low 

concentrations and were not species-specific.  

A Kruskal-Wallis test was run on the compounds’ concentration to check for differences between 

species and  28 compounds were found to differ significantly in median concentration between H. 

elevatus and H. pardalinus (Table 3). A PCA was run on these compounds and it revealed two 
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neatly separated clusters corresponding to H. pardalinus and H. elevatus, consistent with previous 

results from the J dataset in spite of the difference in the number of compounds used for the 

analysis (20 for the J dataset, 28 for the current one) (Fig. 13).  



 
69 

 

Table 3. Median, 25% (Q1) and 75% (Q3) quartiles for the concentrations (nmol) of compounds 
from H. elevatus and H. pardalinus. Also shown are the results of the Kruskal-Wallis test between 
the two species. 
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R(corrplot) generates correlation plots wherein each compound is tested against itself (complete 

correlation with a coefficient always = 1) and every other compounds in the dataset. Each square 

of the matrix represents a correlation test and the colour of the squares indicates the correlation 

coefficient and thus the strength and direction of the relationship, with red representing strong 

negative correlations and blue representing strong positive ones. Shown in colours are only the 

significant correlations (p<0.05): blank squares represent pairs of compounds that had a 

correlation coefficient of 0 and showed no significant correlation with one another (p>0.05). The 

correlation matrix obtained from the compounds’ concentrations in the two pure species (Fig. 14) 

shows two clusters of positively correlated compounds alongside a few unspecific compounds that 

appear correlated to both. The positive correlations are shown in blue, and the negative ones in 

red. These clusters represent the pheromone blends of H. elevatus and H. pardalinus. Compounds 

belonging to either cluster are generally negatively correlated to those belonging to the other 

cluster. The larger cluster, corresponding to H. pardalinus, includes alkenes and alkene derivatives, 

alcohols, aldehydes, esters, homovanillyl-alcohol and syringaldehyde (albeit syringaldehyde only 

correlates with homovanillyl-alcohol, docosyl acetate and (Z)-11-icosenal) phytol and 

hexahydrofarnesyl-acetone, while the other cluster, corresponding to H. elevatus, includes alkanes 

and methylated alkanes, and an unidentified diterpene as the only plant derivative.  
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Figure 14. Correlations between compounds in the pure species. Colours represent Pearson’s 
correlation coefficient. Only significant correlations (p<0.05) are shown. Different families of 
compounds are indicated by the small shapes. 

While the presence of alkenes (especially those with a double bond in position 9) is obviously an 

important difference between the two species, it was not possible to determine the position of 

the double bond for even-numbered alkenes such as ?-icosene and ?-docosene, as well as the 

position of the functional groups on several compounds derived from even-numbered alkanes, 

and the position of the two double bonds in ??-henicosadiene. Regardless of this, they were used 

for the analysis due to showing obvious differences between the two species. 

 

Aromatic compounds 
Alkanes and methylalkanes 
Aldehydes 
Esters 
Plant derivatives 
Alcohols 
Alkenes 
Dienes 
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3.2 F2, F1 and BC analysis 

Detected compounds. In total, 93 compounds were detected in the F2 but only 40 were actually 

used in the analysis: contaminants, unidentified molecules and compounds that appeared 4 times 

or less and compounds that appeared only as trace amounts were eliminated. Analyzed 

compounds include aromatic plant derivatives (homovanillyl-alcohol and syringaldehyde), 

diterpenes (mainly phytol and its derivative hexahydrofarnesyl-acetone), long-chained alkanes 

starting from 18C in length (albeit octadecane and nonadecane were later eliminated from the 

analysis due to appearing very infrequently), methylated alkanes starting from 23C, long-chained 

alkenes starting from 20C, including a diene (??-Henicosadiene), esters both saturated and 

unsaturated, including acetates, propionates and butyrates, alcohols and aldehydes (both 

saturated and unsaturated). An entire list of used compounds is reported in Table 4. 

F1 and backcrosses to H. pardalinus. In terms of their location in the PCA scatterplot (Fig. 17), 

backcrosses to H. pardalinus behave as one might expect: their phenotypes are  usually 

intermediate between the two pure species but closer to that of H. pardalinus. In terms of 

concentrations, the BC were also more pardalinus-like, with the compounds’ concentrations being 

usually smaller than those observed in pardalinus. The main exception to this is (Z)-9-Henicosene, 

whose median concentration is much higher in BC than in H. pardalinus (Table 4). The BC 

correlation matrix shows clusters of strongly correlated compounds.  

F1 hybrids on the other hand do not have intermediate phenotypes as one might expect. While in 

the PCA they cluster at an intermediate point between the pure species (albeit closer to H. 

pardalinus), several compounds both saturated and unsaturated appear strongly upregulated in 

the F1s. These are usually, but not exclusively, H. pardalinus compounds. They include 

homovanillyl-alcohol, (Z)-9-henicosene, (Z)-9-Tricosene,  tetracosane, (Z)-11-icosenylacetate and 

propionate, and heptacosane (Table 4).   
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Table 4. List of all compounds included in the whole dataset analysis. Median, 25% quartile (Q1) 
and 75% quartile (Q3) of the compounds’ concentrations (nmol) are reported for comparisons 
between the different broods.   

3.3 In-depth analysis of F2 hybrids 

Principal component analysis. PCA on the dataset with all F2 individuals shows no clusters and 

high amounts of variation, albeit the two groups from the feeding experiment clustered relatively 

close to each other (Fig. 15). No clusters were detected between the 10 individuals used for the 

feeding experiment when they were analyzed on their own (Fig. 15). With the exception of two 

individuals of the P. serratodigitata treatment, all individuals that were part of this experiment 

clustered together (Fig. 15). Due to the small sample size it is difficult to tell whether this by 

Compound  Q1 Q3  Q1 Q3  Q1 Q3  Q1 Q3  Q1 Q3  Q1 Q3

Homovanillylalcohol 0.04 0.02 0.09 0.09 0.07 0.15 1.88 0.20 2.85 0.12 0.00 0.31 0.30 0.15 0.54 1.02 0.27 5.10

Syringaaldehyde 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 3.98

Diterpen 0.04 0.02 0.08 0.03 0.02 0.05 0.04 0.00 0.06 0.01 0.01 0.03 0.01 0.01 0.02 0.03 0.00 0.06

Hexadecanal 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hexahydrofarnesylacetone 0.00 0.00 0.00 5.74 4.54 6.91 0.18 0.00 0.36 0.17 0.12 0.54 0.07 0.02 0.28 0.09 0.00 1.27

U-icosen 0.00 0.00 0.00 0.03 0.02 0.06 0.13 0.07 0.19 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00

icosane 0.04 0.01 0.10 0.00 0.00 0.01 0.07 0.04 0.10 0.00 0.00 0.01 0.01 0.00 0.02 0.01 0.00 0.03

UU-Henicosadiene 0.00 0.00 0.01 0.03 0.01 0.04 0.09 0.07 0.13 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00

(Z)-9-Henicosen 0.01 0.00 0.04 8.70 7.52 12.74 49.11 43.80 53.25 20.04 12.18 39.31 2.71 1.16 4.31 2.66 0.52 11.10

1-henicosene 0.00 0.00 0.00 0.00 0.00 0.05 0.16 0.08 0.21 0.02 0.00 0.07 0.01 0.00 0.02 0.00 0.00 0.05

1-Octadecanol 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Henicosane 12.99 8.08 15.51 0.08 0.05 0.12 6.46 3.93 7.85 0.30 0.15 0.89 0.66 0.32 0.85 1.38 0.36 6.72

U-Docosene 0.00 0.00 0.00 0.10 0.06 0.16 0.90 0.42 1.25 0.08 0.05 0.12 0.06 0.02 0.09 0.01 0.00 0.07

oleyl_acetate 0.00 0.00 0.00 0.08 0.06 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(Z)-11-icosenal 0.00 0.00 0.00 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Docosane 0.12 0.07 0.21 0.01 0.00 0.02 0.14 0.07 0.18 0.03 0.01 0.04 0.03 0.01 0.04 0.03 0.00 0.09

Octadecyl_acetate 0.00 0.00 0.00 0.05 0.04 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Phytol 0.00 0.00 0.00 0.09 0.02 0.13 0.07 0.02 0.12 0.07 0.03 0.08 0.02 0.00 0.05 0.00 0.00 0.04

(Z)-11-icosenol 0.05 0.00 0.08 0.62 0.43 0.76 0.39 0.00 0.92 0.17 0.08 0.25 0.13 0.04 0.38 1.33 0.29 6.75

(Z)-9-Tricosene 0.02 0.02 0.06 0.83 0.44 1.17 8.78 4.29 12.64 0.83 0.66 1.22 0.74 0.22 1.25 0.40 0.06 1.32

Tricosane 0.91 0.58 1.24 0.03 0.03 0.06 0.61 0.49 0.85 0.08 0.05 0.12 0.10 0.05 0.15 0.13 0.04 0.48

11-Methyltricosane 0.01 0.00 0.02 0.00 0.00 0.02 0.06 0.00 0.11 0.02 0.01 0.03 0.02 0.00 0.03 0.00 0.00 0.02

(Z)-11-icosenylacetate 0.00 0.00 0.00 20.63 17.03 22.13 11.56 8.67 22.41 4.22 1.13 7.06 0.41 0.02 2.89 0.04 0.00 3.45

Tetracosane 0.10 0.07 0.15 0.03 0.00 0.05 0.16 0.05 0.25 0.06 0.06 0.11 0.03 0.02 0.05 0.06 0.02 0.14

Icosyl_acetate 0.00 0.00 0.00 0.12 0.07 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(Z)-11-icosenylpropionate 0.00 0.00 0.00 2.08 1.60 2.70 3.39 1.57 7.16 0.69 0.12 1.81 0.09 0.01 0.17 0.02 0.00 0.64

henicosenyl_acetate 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Pentacosane 0.35 0.27 0.42 0.11 0.05 0.13 0.34 0.20 0.53 0.19 0.12 0.23 0.14 0.10 0.19 0.15 0.08 0.38

(Z)-11-icosenylisobutyrate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

11-Methylpentacosane 0.64 0.26 0.70 0.12 0.08 0.21 0.31 0.23 0.43 0.17 0.11 0.23 0.14 0.10 0.34 0.19 0.09 0.42

Icosyl_butyrate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(Z)-13-Docosenylacetate 0.00 0.00 0.00 0.04 0.02 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hexacosane 0.12 0.08 0.14 0.04 0.03 0.07 0.03 0.00 0.09 0.03 0.01 0.04 0.02 0.02 0.03 0.05 0.02 0.12

11-Methylhexacosane 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.02 0.01 0.00 0.02 0.00 0.00 0.01

Heptacosane 0.74 0.62 0.83 0.16 0.12 0.24 0.76 0.47 1.11 0.27 0.15 0.40 0.31 0.21 0.46 0.55 0.28 1.16

11-Methylheptacosane 0.11 0.05 0.14 0.05 0.04 0.06 0.03 0.00 0.08 0.07 0.03 0.12 0.04 0.03 0.11 0.06 0.01 0.12

octacosane 0.06 0.04 0.11 0.01 0.01 0.08 0.03 0.00 0.06 0.02 0.01 0.03 0.01 0.01 0.02 0.04 0.01 0.10

Hexacosanal 0.01 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00

Nonacosane 0.52 0.46 0.61 0.25 0.18 0.28 0.73 0.48 1.53 0.21 0.13 0.26 0.21 0.17 0.31 0.64 0.36 1.22

Octacosanal 0.21 0.08 0.60 0.01 0.00 0.07 0.18 0.09 0.37 0.12 0.06 0.22 0.03 0.02 0.07 0.12 0.02 0.34

H. elevatus H. pardalinus F1 BC York F2 Peru F2
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chance, or if actually limiting the caterpillars to a single host plant reduces overall variance in the 

pheromones. When a PCA is run on the feeding experiment individuals alone, they do not form 

separate clusters, but the two serratodigitata outliers remain (Fig. 16). 

Figure 15. PCA of the logged concentrations of the pheromone blend in F2 individuals with 
different colours showing the individuals from the feeding experiments. Red = fed on P. edulis, 

black = fed on P. serratodigitata, cyan = F2 that were not part of the feeding experiment. 
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Figure 16. PCA of logged concentrations of the pheromone blend in the 10 individuals from the 
feeding experiment. Red = fed on P. serratodigitata, cyan = P. edulis. 

PCA on the full dataset including the pure species, the F1 and F2 hybrids and the backcrosses 

shows that the two pure species form two well-separated clusters. All the F1 hybrids cluster 

together closer to H. pardalinus than to H. elevatus, with the exception of an outlier that appears 

very different from the rest and closer to the H. elevatus cluster; backcrosses show the same 

patterns, albeit they did cluster separately from the F1 hybrids. The F2 hybrids do not form their 

own cluster and instead appear scattered across the entire plot, covering the entire range of 

values from H. elevatus to H. pardalinus. While the 18 York F2 individuals are overall less variable 

than the Peru ones, they do not form separate clusters: the phenotypes of the York F2 hybrids still 

cover the entire range of values between the two pure species (Fig. 17). 



 
76 

 

 

Figure 17. PCA on the logged pheromone blends of the full dataset. Black = F2 (Peru), orange = F2 
(York), cyan = H. pardalinus, red = H. elevatus, purple = backcrosses to H. pardalinus, green = F1. 

F2 hybrids show tremendous variability in their phenotype. No compound appears to be given by a 

single gene with Mendelian properties (i.e. distributions are not bimodal or trimodal), and no 

compound is normally distributed. Most compounds show an evident skew towards low 

concentrations even when logged, regardless of the normalization method, as shown by 

histograms produced with R(ggplot) (Fig. 18), though 11-methylpentacosane normalization yielded 

less skewed distributions in general. The most common compound is henicosane, which appeared 

in all 133 individuals. The two rarest compounds were hexacosanal and oleyl acetate, both of 

which only appeared 11 times. In the York F2 individuals the compounds with highest median 

values were (Z)-9-henicosene (x=2.71), henicosane (x=0.66) and (Z)-9-tricosene (x=0.74). In the 

Peru F2 individuals these compounds were (Z)-9-henicosene (x=2.66), henicosane (x=1.38) and (Z)-

11-icosenol (x=1.33) (Table 2).   



 
77 

 

 

F2 concentration histograms (C25Me) 
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Figure 18. F2 pheromone blend components. Concentration histograms for the 11-
methylpentacosane normalized dataset. Each graph represents a compound. None show bimodal 
or trimodal distributions expected of control by a single Mendelian locus. On each plot, the x-axis 
represents the compound’s concentration, the y-axis is a simple count of individuals. Each bar 
reports the number of individuals whose concentration falls within a specific range.  

 

F2 concentration histograms (C25Me cont.) 
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The genomes of each of the F2 individuals comprise a different mosaic of contributions from H. 

pardalinus and H. elevatus. Correlations between compounds were used as a method to 

investigate the genetic structure of the hybrids’ biosynthetic machinery, the assumption being 

that compounds controlled by the same section of the genome and those that share a common 

biosynthetic step in their production should be correlated. Using R(corrplot), six correlation 

matrices were generated: three (using Pearson, Kendall and Spearman’s correlation coefficient 

respectively) for the C25Me dataset and three for the C27-29 dataset. The resulting correlation 

matrices ordered by the hclust algorithm on R shows several small clusters (Fig. 19-20). Most of 

these are in common between the two normalization methods (11-methylpentacosane and 

heptacosane/nonacosane) and they are present regardless of the three types of correlation 

coefficient used. Other associations were only detected in some of the six correlation matrices. 

Occasionally clusters detected as separate in a certain matrix would appear joint in another- the 

most obvious case of this is the cluster of alkanes in the 11-methylpentacosane dataset. 
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Figure 19. Correlations between compounds in the F2 standardized by C27-29. Colours represent 
Pearson's correlation coefficient. Only significant values (p<0.05) are shown. 
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Figure 20. Correlations between compounds in the F2 standardized by C25Me. Colours represent 
Pearson's correlation coefficient. Only significant values (p<0.05) are shown. 
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Seven clusters of associated compounds appeared in 

both the 11-methylpentacosane and the 

hepta/nonacosane dataset regardless of the correlation 

coefficient (Table 5). The first includes the main C21-C23 

alkenes: (Z)-9-henicosene, ?-docosene and (Z)-9-

tricosene. The second includes C20-C23 alkanes (icosane, 

henicosane, docosane, tricosane); it is worth mentioning 

that occasionally these compounds appeared as part of a 

more inclusive alkane cluster in the 11-

methylpentacosane dataset, but this cluster was not 

robust across all methods. The third includes large even-

numbered alkanes in the C24-C28 range. The fourth 

includes homovanillyl-alcohol, syringaldehyde and the 

large aldehyde octacosanal- this cluster consistently 

includes (Z)-11-icosenol in the heptacosane/nonacosane 

dataset. The fifth cluster includes phytol, 

hexahydrofarnesyl acetone, (Z)-11-icosenyl acetate and 

(Z)-13 docosenyl acetate, whose correlation with the 

other three compounds is often weaker than the other 

correlations in the cluster. The sixth cluster consists of 

two complex esters, (Z)-11-icosenyl propionate and (Z)-11-icosenylisobutyrate. icosenyl 

isobutyrate. Lastly, the seventh cluster includes two minor alkenes, ?-icosene and ??-

henicosadiene. When averaged, no cluster behaved like a single-locus trait (Fig. 22-23). Structures 

of all the compounds belonging to these seven clusters are in Fig. 21. 

  

  

 

 

Cluster 

A

B

C

D

E

F

G

H phytol J Henicosane

HHFA tricosane

Z13-docosenylacetate icosane

Z11-icosenylacetate docosane

Z9-henicosene pentacosane

U-docosene heptacosane

Z9-tricosene Nonacosane

I heptacosane Tetracosane

pentacosane Octacosane

Hexacosane

List of all detected clusters
Common clusters

tetracosane

docosane

??-henicosadiene

?-icosene

Z11-icosenylisobutyrate

Z11-icosenylpropionate

Z11-icosenylacetate

Z13-docosenylacetate

HHFA

phytol

syringaldehyde

homovanillylalcohol

octacosanal

octacosane

hexacosane

Unique to C27-29 Unique to C25Me

Z9-henicosene

?-docosene

Z9-tricosene

icosane

tricosane

henicosane

Table 5. The main clusters of 
compounds detected by R(corrplot). 
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Figure 21. Chemical structures of the compounds belonging to the main clusters A-G. 

In the 11-methylpentacosane dataset most alkanes formed a single cluster, which was always 

broken up into smaller clusters in the heptacosane/nonacosane dataset. Conversely, heptacosane 
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and pentacosane always formed their own separate cluster in the hepta/nonacosane dataset, and 

phytol, hexahydrofarnesyl acetone, (Z)-11-icosenyl acetate and the main C21-23 alkenes formed a 

large cluster, further subdivided into smaller blocks based on the strength of the association (Table 

3). 

 

Figure 22. Histograms for the averaged concentrations of compounds belonging to each cluster in the C25Me dataset. 

Cluster names are indicated at the top of each graph. Cluster A= C21-23 alkenes; B= C20-23 alkanes; C= large 
even numbered alkanes; D= vanillin derivatives; E= phytol derivatives; F= complex esters; G= minor 
alkenes; J= all alkanes. For a complete list of compounds in each cluster, see Table 5. 
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4. Discussion 

 

The results from the pure species analysis were consistent with previous analysis of the male sex 

pheromone blend in H. elevatus and H. pardalinus, as discussed below. F1 individuals were 

expected to have concentrations intermediate between the two pure species, but in fact several of 

their compounds were strongly upregulated. Backcrosses had concentrations similar to H. 

pardalinus as expected. F2 individuals were highly variable, but correlation matrices revealed 

clusters of correlated compounds, potentially hinting at the underlying genetic structure. 

4.1 Male sex pheromone differences between H. elevatus and H. pardalinus.  

Preliminary PCA analysis carried out by Jake Morris (PhD) on the percentages of compounds found 

on 24 pure individuals showed the different species as clearly separated into neat clusters. 

Previous GC/MS analysis revealed that H. elevatus and H. pardalinus have very different 

Figure 23. Histograms for the averaged concentrations of compounds belonging to each cluster in the 
C27-29 dataset. Cluster names are indicated at the top of each graph. Cluster A= C21-23 alkenes; B= 
C20-23 alkanes; C= large even numbered alkanes; D= vanillin derivatives; E= phytol derivatives; F= 
complex esters; G= minor alkenes; H= alkenes and phytol derivatives; I= large odd-numbered alkanes. 
For a complete list of compounds in each cluster, see Table 5. 
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pheromone blend components: the former has a relatively simple blend comprising highly 

concentrated long-chained alkanes starting from icosane (20C), accompanied by methylated 

alkanes starting from 11-methyltricosane (23C) and very low concentrations of alkenes (20-23C). 

Conversely the latter has a complex blend that includes high concentrations of alkenes (C20-23), 

esters, phytol derivatives, the aromatic compounds homovanillyl-alcohol and syringaldehyde, 

alcohols and aldehydes, with alkanes being found in very low concentrations. In light of this, the 

pure species correlation matrix behaved as expected: the compounds that were previously found 

to be typical of H. elevatus appeared all positively correlated to one another, and negatively 

correlated to the typical H. pardalinus compounds, and vice versa (Fig. 14). With no 

recombination, the pure species phenotype behaves as a single block of co-varying elements. In H. 

elevatus, the most prominent compounds are henicosane (C21) and tricosane (C23), while in H. 

pardalinus they are the corresponding alkenes (Z)-9-henicosene and (Z)-9-tricosene. Increasing the 

sample size of individuals analysed and using concentrations rather than percentages does not 

change these results. Of all these compounds, homovanillyl-alcohol was the only one that gave 

contrasting results between the percentage dataset and the actual concentration dataset: in the 

former, its relative amounts appeared significantly different between the two pure species, while 

in the latter they do not. However, the pure species correlation matrix still revealed that the 

concentrations of homovanillyl-alcohol co-vary with those of other pardalinus compounds.  

4.2 Fatty acid derivatives in H. elevatus and H. pardalinus.  

Most compounds detected in H. elevatus and H. pardalinus are fatty acid derivatives that range in 

size from C20 to C29 (Fig. 24). Considering most moths use molecules below C20 in size, this may 

appear unusual but it is not the first time such large compounds have been detected in a 

butterfly’s pheromones. Idea leuconoe, a Danaine butterfly, also shows long chain hydrocarbons 

as part of its blend, including, most prominently, tricosane and (Z)-9-tricosene, alongside other 

alkanes and alkenes (as well as several other classes of large FA derivatives) (Nishida et al., 1996). 

H. melpomene itself has been shown to use compounds in the C18-C22 size range, mainly 

aldehydes both saturated and unsaturated (Vanjari et al., 2015). 
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Figure 24. The FA metabolic pathway showing the most prominent H. pardalinus and H. elevatus 
specific compounds. Even-numbered alkanes and alkenes, as well as their derivatives, minor 
compounds, and compounds of unclear structure are not included in this figure.  

In H. elevatus, the high number and high concentrations of alkanes relative to other compounds 

suggest a relatively simple mechanism for pheromone production. Alkanes have no side groups or 

double bonds, and they are simply created via the elimination of the carboxy- group from their 

fatty acid precursors, a reaction initiated by FARs that convert the fatty acid into its derivative 

alcohol (Matsumoto, 2010). The different lengths displayed by alkanes are given not by 

subsequent elongation of the alkane chain itself, but by fatty acid elongation prior to their 

reduction. Fatty acid elongation is a reaction that proceeds two carbons at a time: that is because 

the new units are provided by a molecule, malonyl-CoA (Voet & Voet, 2011), which consists in a 

two-carbon chain. It is itself a fatty acid derivative, with malonic acid being its precursor. Thus, 

even-numbered FAs are always present in higher amounts than odd-numbered FAs. 

Because alkanes (and alkenes) are ultimately formed via loss of the fatty acid’s carboxyl group, 

including its single carbon atom, an alkane always sports one less carbon than its fatty acid 

precursor, leading to an odd-numbered chain (Voet & Voet, 2011). Thus one would expect the 

most abundant alkanes in the H. elevatus blend to be the odd-numbered ones, and this is 
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confirmed by the data: henicosane (C21) and tricosane (C23) are not only the most abundant 

alkanes, they are also the most abundant compounds of the H. elevatus blend overall. All odd-

numbered alkanes up to nonacosane, the largest odd-numbered alkane scored in this analysis, 

have higher concentrations than the even-numbered ones, not only in H. elevatus, but also in 

pardalinus, where all alkanes have low concentrations overall. The odd-numbered alkanes’ 

averaged concentrations are also more variable. While alkanes of any size between C20 and C29 

are produced in H. elevatus, any alkane larger than pentacosane (C25) is more likely to be a 

cuticular hydrocarbon than a pheromone component (Vanjari et al., 2015). 

While in H. elevatus the alkanes make up the majority of the blend, in H. pardalinus alkenes and 

unsaturated esters are the most abundant compounds (Fig. 24). The production of both these 

classes of compounds primarily depends on the introduction of a double bond within a fatty acid 

precursor, performed by fatty acid desaturases (Roelofs & Rooney, 2003). This process begins with 

octadecanoic acid, also known as stearic acid (C18-COOH): it is transformed into (Z)-9-

octadecenoic (oleic) acid (Z9-C18:1) by a Δ9-desaturase, and its length is then adjusted by 

elongation (Mann F. et al, unpublished), by the same process as saturated fatty acids. Thus, 

unsaturated fatty acids with an odd carbon number are once again expected to be present at 

higher concentrations than even-numbered ones. The detectable alkenes, unlike the alkanes, are 

restricted to the C20-C23 range, and the medians of (Z)-9-henicosene and (Z)-9-tricosene were 

higher than those that of ?-icosene and ?-docosene (wherein the double bond position could not 

be determined). The exception to this is 1-henicosene, but this compound’s concentration was not 

significantly different between the two species, and it was usually very small (on average, 0.01 

nmol in H. elevatus and 0.02 nmol in H. pardalinus).  

The production of esters begins with the reduction of the FA precursor by FARs, into an alcohol. 

This alcohol can then be transformed into either an aldehyde or an ester (Liénard et al., 2010). This 

process does not involve the loss of one carbon from the main chain, unlike the production of 

alkenes and alkanes. Thus, a FA-derived ester will have the same number of carbons as its FA 

precursor, and esters with an even number of carbons are tendentially more common. H. 

pardalinus’s main ester, (Z)-11-icosenyl acetate (Z11-C20:Ac), derives from (Z)-11-icosenoic acid 

with (Z)-11-icosenol as an intermediate, which can also be transformed into (Z)-11-icosenal. Like 

all fatty acid (Z)-11-icosenoic acid is undetectable and its alkene derivative, (Z)-9-nonadecene, is 
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not part of the pardalinus blend. The other even-numbered unsaturated ester found in H. 

pardalinus, (Z)-13-docosenyl acetate (Z13-C22:Ac), derives from (Z)-13-docosenoic acid by the 

same reaction. H. pardalinus also produces other esters: icosyl acetate (C20:Ac), from the 

saturated icosanoic acid, and oleyl acetate (?-octadecenyl acetate) from oleic acid. It is worth 

noting that both species can produce both alkanes and alkenes: the vast differences in the 

abundances of these two classes of compounds are what distinguishes the two species.  

4.3 Species-specific non FA-derivatives: compounds sequestered from the food plants. 

Other than FA derivatives both species show unique compounds that derive from plants. In H. 

elevatus the only compound of this type is a diterpene, but lack of info about its structure made it 

impossible to use in the analysis. In H. pardalinus there are two groups of plant derivatives: the 

aromatic compounds, which include two vanillin-like molecules, homovanillyl-alcohol and 

syringaldehyde, both derived primarily from lignin, and the terpenoids phytol and 

hexahydrofarnesyl acetone, both derived from chlorophyll. Both of these were probably acquired 

at the larval stage given that lignin and chlorophyll are found in the stem and leaves of the host 

plants primarily. Because these are ubiquitous compounds, H. elevatus caterpillars also acquire 

them while feeding, but it appears that only H. pardalinus has evolved a mechanism to produce 

pheromones from them. Whichever their origin is, it is clear that Heliconius are capable of 

synthesizing their compounds both by sequestration of plant derivatives and by de novo 

production, as reported for other species in the past (Tillman et al., 1999).  

4.4 Several biosynthetic reactions are upregulated in F1 but not in BC.  

The high median concentrations of compounds found in the F1 individuals may be indicative of an 

interesting phenomenon: by hybridizing, H. pardalinus and H. elevatus are apparently loosening 

their regulatory mechanisms, leading to a general increase in the concentrations of products. This 

does not only involve the FA biosynthetic pathway however, since it also affects homovanillyl-

alcohol. However, these F1 results are currently difficult to interpret without further knowledge of 

the genetic architecture controlling Heliconius male sex pheromones. In the backcrosses this is not 

the case. The backcrosses’ correlation matrix shows several associations that are present in the F2 

as well, but also many cases where compounds appear correlated that were not significantly 

correlated in the F2. This implies that the BC blend is not under the same control mechanisms as 
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the F1 and the F2 blend- a finding that justified the exclusion of backcrosses from the correlation 

analysis of F2 hybrids (Fig. 25). 

 

 

Figure 25. Correlation matrix for logged compound concentrations in the backcross. Colours 
represent Pearson's correlation coefficient. Only significant correlations (p<0.05) are shown. 

4.5 F2 analysis: no compound acts like a Mendelian locus.   

Single-compound concentration analysis with ggplot2 was not deemed useful to understand the 

genetic mechanisms underlying pheromone production. The histograms had two purposes: 1) to 

show whether each compound’s concentrations were normally distributed, and 2) to find out 

whether any of the compounds showed a bimodal distribution, potentially hinting at simple 

genetic control. It is unlikely that any compound’s production would be controlled by a single 
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gene, but if a single Mendelian locus were having a large effect on the concentration, one might 

expect to see a bimodal distribution with the two peaks representing two different concentration 

phenotypes (subject to quantitative variation), or potentially a trimodal distribution in a scenario 

of incomplete dominance. Instead, no histograms showed any such patterns. Standardizing by 11-

methylpentacosane removed more skew than standardizing by heptacosane/nonacosane. The PCA 

similarly revealed no subgroups within the F2: individuals are continuously distributed between 

the two parental phenotypes. This makes it difficult to infer how many genes underlie the 

production of a single compound. 

4.6 Clusters partially resolve the biosynthetic machinery.  

Clusters detected in the correlation matrices can offer insight into the problem. The F2 correlation 

matrices, as expected, do not show the two clear pure species blocks: recombination 

deconstructed the parental phenotype. Those detected with all three correlation methods and 

across both datasets appear to have biological significance, though others may be an artefact of 

the standardization method. As 7 clusters were detected, one may infer that there are at least 7 

unlinked genomic region controlling 

pheromone production. 

Cluster A: C21-23 alkenes. A 

prominent cluster contains (Z)-9-

henicosene (Z9-C21:1), ?-docosene 

(?-C22:1) and (Z)-9-tricosene (Z9-

C23:1) (Fig. 26). This cluster contains 

two of the most important 

compounds of the H. pardalinus 

blend, Z9-C21:1 and Z9-C23:1. These 

alkenes are the simple product of Δ9-

desaturation of stearic acid into (Z)-9-

oleic acid, followed by its elongation 

and reduction. This suggests the presence of a Δ9-desaturase that acts on C18 substrates similarly 

to those seen in Ostrinia nubilalis (Roelofs et al., 2002). Z9-C21:1 and Z9-C23:1 are present in both 

species, meaning that they must necessarily share the gene encoding this FAD, yet the average 

Figure 26. Cluster A. Note that in ?-docosene, neither the 
double bond's position nor its orientation (E or Z) are 
known. 
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unlogged concentration of (Z)-9-henicosene in H. pardalinus and in H. elevatus are approximately 

in a 500:1 ratio, and the ratio is 24:1 for (Z)-9-tricosene. This must mean that the species-specific 

switch did not involve the FAD itself, but rather its control system, leading to upregulation in Δ9-

desaturase production in H. pardalinus. This does not necessitate a complex evolutionary history: 

a single mutation can have large results on pheromone production, as seen in different Ostrinia 

races (Roelofs et al., 2002). ?-docosene is never observed in H. elevatus which would seem to pose 

a problem to this hypothesis. However it may simply be a side product: its unlogged 

concentrations in H. pardalinus average to 0.12 nmol against (Z)-9-henicosene’s average of 10.9 

nmol and (Z)-9-tricosene’s average of 0.94 nmol, yet the three are correlated. It may be 

undetectable in H. elevatus simply because the concentrations of Z9-C21:1 (on average 0.02 nmol) 

and Z9-C23:1 (0.04 nmol) are too low for its biosynthesis as a side product (or it could be that ?-

docosene is produced, but its concentrations are undetectable). The same phenomenon is seen 

with ?-icosene, which occasionally appears as part of this cluster (its concentration in H. pardalinus 

being even lower than ?-docosene, at 0.04 nmol). 

Clusters B and C: alkanes. The presence of different alkane clusters (Fig. 27) confirms the presence 

of FARs with different 

substrate specificities. 

The main cluster is C20-

23, which includes 

henicosane and 

tricosane, the main 

compounds of the H. 

elevatus pheromones, 

and the even-numbered 

icosane and docosane. 

Once again, the low 

concentrations of even-

numbered alkanes and 

their correlation with 

henicosane and 

tricosane seem to 

Figure 27. The two most robust alkane clusters, B (C20-23 in length) and C 
(C24-28 in length). 
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suggest that they are side products. Within the heptacosane/nonacosane dataset it is possible to 

observe an association between pentacosane and heptacosane- these two compounds are always 

strongly correlated but only in the heptacosane/nonacosane dataset they form a cluster 

separately from other alkanes. However out of this two, heptacosane is unlikely to play a major 

role in chemical signalling due to its large size. This potentially suggests the presence of two FARs, 

one that acts on FAs of a maximum length of C24, and one that acts on larger compounds, 

regardless of their function. The third alkane cluster, comprising the even-numbered low-

concentration alkanes tetracosane, hexacosane and octacosane, is peculiar in that it contains no 

odd-numbered alkanes, and it includes non species-specific compounds (hexacosane and 

octacosane), which may be cuticular hydrocarbons. This suggests the presence of three FARs. All 

organisms are expected to have several types of FARs and the evolution of FARs with different 

substrate specificities has been shown in the past to require only a few amino acid substitutions 

(Chacòn et al., 2013). Once again, their presence in both parental species suggests that H. elevatus 

has only upregulated its alkane production rather than evolving novel FARs. 

 

Figure 28. Cluster D. Notice the similarity in structure between homovanillyl-alcohol and 
syringaldehyde. 

Cluster D: aromatic vanillin derivatives. The two aromatic compounds detected in H. elevatus and 

H. pardalinus, homovanillyl-alcohol and syringaldehyde, are correlated to each other and to 

octacosanal (Fig. 28), occasionally showing correlations with other alcohols and aldehydes as well. 
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Homovanillyl-alcohol and syringaldehyde belong to the same class of compounds, 

methoxyphenols, which are plant derivatives. Homovanillyl-alcohol, also known as vanillic alcohol, 

is a vanillin derivative whose biosynthetic mechanism in animals is unstudied. It is known however 

that in yeast it can be produced via the simple reduction of vanillin (Loscos et al., 2007). 

Syringaldehyde and vanillin are not derivatives of one another, but they both derive from the 

degradation of lignin in weakened plants (Meyer & Norris, 1967). They are behaviourally active as 

have attractant effects on Scolytus bark beetles that lay their eggs within damaged bark (Meyer & 

Norris, 1967). So both homovanillyl-alcohol and syringaldehyde are ultimately lignin derivatives, 

which makes it is highly unlikely that H. elevatus and H. pardalinus are producing these 

compounds. It is far more plausible that they are obtaining the compounds from their food plant, 

and it is probable that this uptake occurs at the larval stage of their life cycle (as adults feed on 

nectar and pollen), when they feed on the leaves and stems of Passiflora, and that the compounds 

are stored, only to be transported in 

the androconia when the butterfly 

reaches adulthood. This kind of 

behaviour is not unheard of in 

Lepidoptera since it is also observed 

in Pieris brassicae, wherein the larvae 

take up plant compounds by feeding 

and later they are transformed into 

pheromone components (Schulz et 

al., 2011). If this is the case, the 

different levels of HVA and SA 

detected in the two species (albeit the 

difference is not significant) are 

probably due to the activity of a 

transporter. The significance of 

octacosanal in relation to these two 

compounds is unknown, but it could 

be a component of the food plant’s 

cuticular wax (Schmid & Bandi, 1969). 

Figure 29. Cluster E. The similarity in structure between 
phytol and HHFA is evident. The acetate groups 
potentially derived from phytol degradation are circled. 
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Cluster E: phytol, its degradation product and unsaturated esters. The cluster comprising phytol, 

hexahydrofarnesylacetone (HHFA) and the esters also appears to have biological significance (Fig. 

29). These compounds only appear in H. pardalinus: they do appear one time in H. elevatus. Phytol 

and HHFA are both plant derivatives: the former, in fact, is a component of chlorophyll and is thus 

ubiquitous in plants. HHFA is a product of the 

oxidative degradation of phytol and it is used as 

a pheromone by Pieris brassicae, phytol being 

the aforementioned compound that they can 

assimilate during their larval stage (Schulz et al., 

2011). Thus it makes sense that these two 

compounds would be correlated. The 

production of HHFA also releases acetates 

(Schulz et al., 2011), that may be incorporated 

into the production of unsaturated esters such 

as (Z)-11-icosenylacetate and (Z)-13-

docosenylacetate. 

Cluster F: propionates and butyrates. This 

cluster includes complex esters, that is, esters 

derived from the elongation of (Z)-11-

icosenylacetate’s acetate chain (Fig. 30). These 

consist in (Z)-11-icosenylpropionate and (Z)-11-

icosenylisobutyrate. Both (Z)-11-icosenylacetate and (Z)-11-icosenylpropionate are commonly 

found in H. pardalinus but (Z)-11-icosenylisobutyrate is very rare, only appearing in samples with 

the highest concentration of (Z)-11-icosenypropionate. This makes sense because the latter is built 

upon the former (Blomquist & Vogt, 2003): upon the acetate base, a new carbon unit is added 

forming a propionate, to which a new carbon unit is added to form the butyrate. This process 

might be performed by the same enzyme.  

Cluster G: minor alkenes. This cluster consists in ?-icosene and the poly-unsaturated ??-

henicosadiene (Fig. 31). The absence of information on the double bonds’ positions makes it 

difficult to tell what the relationship between these two compounds is. They often appear 

Figure 30. Cluster F. The main chain's length is 
the same in both esters, but the functional 
group's length changes. The black circles 
indicate the propionate and butyrate group, the 
blue ones the acetate portion of the functional 
group. 
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correlated with cluster A, and due to their basic carbon chain being longer than C18, it is likely that 

they both derive from the desaturation of stearic acid into (Z)-9-oleic acid by a Δ9-desaturase just 

like all the other alkenes. But the second double bond of ??-henicosadiene must be introduced by 

a different enzyme, and in the possibility that ?-icosene may not be derived from the same Δ9-

desaturation event as alkenes from cluster A, one may hypothesize that its double bond is 

introduced by the same FAD that confers ??-henicosadiene its second double bond. Thus, 

important information lies in the double bond’s position and the impossibility to identify it in this 

study means that this cluster cannot be fully explained. Since some noctuid moths like Achaea 

janata use (Z6,Z9)-6,9-henicosadiene (Francke & Schulz, 2010), it is plausible that this double bond 

would be located on carbon 6. 

5. Conclusions.  

 

Overall, determining the genetic architecture of the H. pardalinus and H. elevatus pheromone 

blend from this preliminary phenotypic analysis is difficult. However patterns are visible within the 

F2 which help with resolving the biosynthetic machinery of these butterflies. Certainly the activity 

of FADs and FARs represents the main difference. At least one FAD, a Δ9-desaturase, had its 

activity upregulated in H. pardalinus. Both species share 2-3 FARs with different specificities, but 

they seem to be more active in alkane production in H. elevatus- this is isn’t however necessarily 

due to actual differences in the activity of FARs. Rather, due to the fact that its FADs are very 

downregulated compared to H. pardalinus, H. elevatus may simply have more saturated substrate 

for the FARs to act on and produce alkanes. 

Figure 31. Cluster G. The positions of the double bonds remain unknown, the 
ones represented here are just some of the possibilities. 
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H. pardalinus is able to produce esters, both saturated and unsaturated, yet the lack of correlation 

between all of them suggests that they are given by different mechanisms. It is interesting that the 

production of HHFA may promote ester biosynthesis by releasing acetates- it means that acquiring 

the ability to sequester and transform plant compounds may promote the development of novel 

compounds for the pheromone blend. This is not necessarily the case however, since the aromatic 

plant derivatives in cluster D appear to have no effect on anything else. 

The F2 pheromone results suggest that male sex pheromone differences between H. pardalinus 

and H. elevatus are controlled by 7 unlinked genomic regions each corresponding to the 7 clusters 

discussed above. H. pardalinus and H. elevatus are very closely related sister species, and genomic 

data suggest that current gene flow between the two is rampant across ~95% of their genomes (K. 

Dasmahapatra pers. Comm). Under the “islands of divergence” scenario of speciation with gene 

flow, genes responsible for reproductive isolation between taxa are expect to be clustered in the 

genome. However, the preliminary insight into the genomic architecture of the pheromone 

differences obtained here suggest that there is no such clustering of reproductive barrier genes 

between these two taxa. 

Overall, the correlation method revealed a large amount of information on the H. pardalinus and 

H. elevatus pheromone biosynthetic machinery and paved the way to many more potential studies 

to further explore the topic. For example, it is unlikely that all analyzed compounds actually have 

an active role as sex pheromones in H. pardalinus and H. elevatus. Behavioural experiments and 

analysis of olfactory stimulation via an electroantennographic assay may reveal which ones are the 

most important. Experiments on incorporation of deuterium-labelled FA precursors would reveal 

more about the biosynthetic pathways themselves. QTL mapping of these compounds may help 

validate the hypotheses outlined above about each of the 7 clusters. 
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Chapter 4 

Concluding remarks 

 

The study of speciation is closely dependent on the study of the genetic mechanisms underlying 

species divergence, especially when it comes to the elusive sympatric speciation. Heliconius 

pardalinus and Heliconius elevatus are an extremely useful system for researching the genetics of 

species divergence in sympatry. A genomic island of divergence that originated from an adaptive 

introgression event with H. melpomene is observable in the H. elevatus genome, centered around 

a colour locus homologous to H. melpomene’s B/D (Heliconius Genome Consortium, 2012). 

Moreover, the colour pattern itself acts as a magic trait, since mate preference maps to the same 

region of the genome in H. melpomene (Merrill et al., 2011). This means that in a simple system of 

two sister species it is possible to observe the effects of sympatric speciation and three of the 

main phenomena associated with it: adaptive introgression, the formation of islands of 

divergence, and magic traits. Yet the silvaniform clade, to which they belong, remains poorly 

studied in comparison to the melpomene-cydno clade. The aim of this study was to resolve the 

genetic structure of two features of H. elevatus and H. pardalinus, both important in mating 

isolation. One is the colour pattern, a topic that has been studied in Heliconius for more than a 

century (Merrill et al., 2015), which is already known to be a magic trait. The other, suggested by 

the expansion of chemosensory and olfactory gene families in Heliconius (Heliconius Genome 

Consortium, 2012), is the male sex pheromone blend, a topic that in contrast to the colour pattern 

is almost completely unexplored. 

In Chapter 2 I focused on the genetic structure of the colour pattern. Even with a lack of genomic 

data, the phenotype can be used to infer how many loci are involved in colour pattern formation 

and whether they are linked. It appears that these two species’ colour pattern is controlled by the 

action of 5-6 large effect loci that control the general appearance of orange and white spots, and 

several QTLs associated with melanic spots. Importantly, the loci associated with orange elements 

of the pattern and those associated with white/yellow elements appear to belong to two separate 

linkage groups. If the black QTLs do in fact map to a third linkage group, this means the genetic 

organization of colour pattern loci in H. pardalinus and H. elevatus is not only similar to their close 
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relatives H. hecale and H. ismenius, but also to H. melpomene (Huber et al., 2015). Aside from the 

main pattern elements, the white invasion phenotype is particularly intriguing because it may 

offer some insight on the control mechanism for colour pattern formation. It appears that this 

locus has been silenced in the parental H. elevatus population used for this study, and 

hybridization removed the inhibitory mechanism.  

The investigation of pheromones detailed in Chapter 3 did not yield such clear results, as no 

compound’s production appeared controlled by a Mendelian locus. However an impressive 

amount of information could be derived from the species’ phenotype, and especially from 

correlations between compounds. The pardalinus-specific upregulation of a Δ9-desaturase and the 

elevatus-specific upregulation of at least 3 fatty acid reductases were observed, as well as the 

ability, in H. pardalinus, to sequester plant compounds and use their derivatives as pheromones. 

The fact that one such plant derivative (HHFA) appears to affect the production of esters may hint 

at the fact that a single change in the pheromone biosynthetic network can affect the production 

of multiple compounds. As the first time a Heliconius sex pheromone blend has been investigated 

at this depth, this study posed several problems that need to be addressed as pheromones 

become the focus of more Heliconius-centered studies, namely the best way to normalize such a 

complex dataset while minimizing loss of information. The pheromone study also served as an 

important basis for future research, potentially focusing on behavioural responses or on 

investigating the putative biosynthetic mechanisms via deuterium-labelling. Both the pheromone 

study and the colour pattern one need to be complemented by QTL mapping to investigate the 

actual genetic structure of these traits, to verify the accuracy of inferences based on the 

phenotype, and most importantly to check whether any of these traits maps to known islands of 

divergence. When this data will be joined with data on other potential prezygotic barriers such as 

host plant preference, wing shape and flight dynamics, the result will be a powerful analysis of 

divergence in the H. pardalinus-H. elevatus system that will advance our general understanding of 

the mechanisms behind sympatric speciation and speciation with gene flow. 
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