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Abstract 

Presently, there is a global push to improve the productivity of heavy duty 

machinery. With increasing demands to apply to stricter fuel and emission 

standards alongside increasing energy costs, it has become vital to maximise 

the energy efficiency of systems. Swash plate axial piston motors have 

inefficiencies up to 15% caused by fluid leakage and internal friction. 

Mechanical systems are being modified to reduce friction amongst 

components whilst allowing them to run at higher operating conditions and 

temperatures. This is where surface improvement technology plays a crucial 

role. By achieving compatibility between the modified surfaces and lubricant 

additives optimum efficient systems can be achieved. MoS2 coatings and 

nitriding heat treatments are applied to sample surfaces to improve their 

tribological properties. There are however only a few studies that focus on the 

tribochemical interactions of nitrided samples with lubricant additives. 

This study aims to investigate the impact of the properties of the modified 

surfaces on tribological and tribochemical interactions. The primary focus will 

be validating the application of the nitriding treatment to improve the durability 

of components and investigating the interactions with various lubricant 

additives in comparison to alternative treatments.  

To achieve this, tribological performance of the various samples and oils has 

been evaluated using the Cameron Plint TE77 tribometer in the boundary 

lubrication regime. This was followed by using the MTM-SLIM testing rig to 

validate the trends observed with the TE77 and add another level of 

complexity to the testing conditions. The MTM SLIM would allow visualisation 

of the formation and development of a tribofilm on the sample variants whilst 

using testing conditions similar to that used within a hydraulic motor. A number 

of surface analysis techniques were employed in this study such as Scanning 

Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), X-ray 

Photoelectron Spectroscopy (XPS) and Raman spectroscopy. They helped to 

characterise the tribofilms formed and understand the effect of the properties 

of treated surfaces. 
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The results of this study indicate that the mechanical properties of the 

compound layer formed during the nitriding process had a significant impact 

on the sample tribological properties, allowing it to perform better than the 

untreated and MoS2 coated samples. However the inertness of this layer 

prevents the formation of a thick tribofilm which could further impact friction 

and wear. However the presence of additional layers upon the nitrided surface 

are shown to impact not only tribological behaviour but also tribochemical 

formation, due to the chemical compounds present.  

Critically the results showed that not only did the type of treatment applied to 

the samples impact the tribological behaviour but also the chemical 

interactions with the compounds within the lubricant played a significant role. 

This was shown with the MoS2 coated samples and sulphurised olefin 

additive, where the synergy between coating and FeS formed lead to the 

lowest friction system observed within this study.  

This study has shown that the oxy-nitriding process is an effective treatment 

to improve the tribological performance of the samples, with lower friction and 

wear being achieved compared to alternative samples. The presence of an 

oxide layer led to the formation of FeS2 within the tribofilm. However, due to 

the relative thinness of the tribofilm the impact on friction was minimal. The 

thickness of the tribofilm with the nitrided was influenced by the presence of 

nascent iron on the sample surface. The tribological influence of the oxide 

layer was minimal however with alternative layers such as FeS the friction and 

wear response the influence was significant. The project demonstrated that 

the various additive types could positively and negatively impact the friction 

and wear of the modified surfaces depending on its tribochemical interaction.  
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Chapter 1 Introduction 

Global competitiveness pushes manufacturers to receive the most from their 

equipment, and forces them to try and achieve small increases in machine 

productivity which could mean the difference between profit and loss. With 

increasing demands to apply to stricter fuel and emission standards alongside 

increasing energy costs, it has become vital to maximise the energy efficiency 

of systems, components and tribological contacts. Heavy duty mobile 

construction machineries are controlled using hydrostatic transmissions 

(Figure 1-1), where it is crucial that the efficient conversion of mechanical to 

hydraulic energy is carried out [1-3]. Industrial hydraulics is recognised as one 

of the most cost-effective methods of supplying power to a range of 

manufacturing processes. In the event of system failure, downtime can cost 

thousands of pounds per hour, which can lead to significant financial loss. 

Therefore it is crucial to ensure proper maintenance to prevent failure and high 

efficiency [4]. 

Over the years these hydrostatic systems have become smaller and lighter 

alongside utilizing higher pressures to achieve this goal of maximum system 

efficiency. Increasing the systems energy efficiency causes a fall in the use of 

energy by the hydrostatic drive lines and working kinematics [1-3]. 

Within hydrostatic systems, swash plate type axial-piston pumps and motors 

are used to transmit power hydraulically. The axial motor concept is focussed 

on a rotating barrel of spring-loaded pistons aligned against an angled swash 

plate in order to provide a pumping action; through the controlling of the plates 

angle the output displacement can be determined [5]. This mechanical output 

Figure 1-1. A hydrostatic transmission including the engine, 
transmission and wheel [2]. 
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is then used to perform useful work [6, 7]. It has been shown that swash plate 

axial piston motors are only 85 to 95% efficient with power transmission, due 

to volumetric & torques losses from leakage and internal friction [6].  

This project aimed to define and understand the tribological behaviour of a 

swash plate type axial-piston hydraulic motor in terms of reducing wear and 

friction at the piston/cylinder component interface to improve the performance 

and efficiency of the hydrostatic system. The focus is on the effect of heat 

treatments or coatings applied to the piston surface on the tribology and 

tribochemistry processes happening between lubricants and interacting 

surfaces. 

1.1 Aims and Objectives 

There is strong need in today’s market to push mechanical systems further 

alongside ensuring the durability of components. The overall aim of this 

project was to increase the system efficiency by primarily understanding the 

interface and lubricant interactions within a surface treated system. This study 

provides a novel insight into the selection of an ideal surface treatment to be 

applied to the piston/cylinder interface, which would deliver optimal wear and 

friction results whilst increasing the life and efficiency of the hydraulic motor 

or friction pairs within systems. Key objectives of this project are: 

 To investigate the wear and friction results when different surface 

improvement techniques are applied during wear tests on a 

reciprocating tribometer. 

 Assess the wear and friction effects of a range of lubricant additives 

applied alongside surface modification techniques. 

 Conduct a series of surface analysis measurements in order to 

understand the tribochemistry behind the wear and friction mechanism 

occurring when using different surface improvement techniques and 

lubricant additives.  

 Validate and investigate friction and wear trends using an alternative 

tribometer with contact conditions close to that observed within a 

hydraulic motor.  
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The results from this project will help to select and validate the application of 

a new surface protection treatment to pistons within a piston/cylinder friction 

pair.  

1.2 Contribution of this Thesis 

In this thesis the application of a variant of the nitriding heat treatment process 

will be investigated as a method to improve the tribological properties of a 

piston component. To understand the friction and wear behaviour, a number 

of questions need to be answered such as: 

 What is the impact of the different layers formed after surface treatment 

on friction and wear? 

 How do these layers influence the formation and properties of a 

tribofilm?  

 Can the surface treatment processes be modified to improve 

tribological and tribochemical interactions?  

 What additives can be used to further optimise the behaviour of the 

treatments? 

Experimentation and surface analysis are combined to give an insight into the 

behaviour of the treatment variants.  

The results from this study were presented at several national and 

international conferences highlighting the tribochemical interactions of the 

modified surfaces with lubricant additives. Publication in the peer-reviewed 

Wear Journal illustrated the key factors influencing the tribological and 

tribochemical behaviour of nitrided surfaces. Komatsu used the project as a 

basis to implement the application of the nitriding treatment to friction pairs 

within the hydraulic motors. 

1.3 Thesis Outline  

 Chapter Two: Fundamental theory relevant to this is presented. 
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 Chapter Three: Literature review of the hydraulic system and viable 

surface enhancement treatments and lubricants to be applied within a 

hydraulic motor. 

 Chapter Four: Materials, equipment and experimental procedures used 

in this study are presented. 

 Chapter Five: Surface characterisation of the treated samples used 

within this project. This will help to gain an understanding of the impact 

of each treatment on the material mechanical and tribological 

properties. 

 Chapter Six: The friction and wear behaviour of treated sample variants 

with fully formulated oil is investigated. This will help to gain an 

understanding on how the layers formed after treatment impact the 

behaviour observed. 

 Chapter Seven: Expands on exploring the tribological and 

tribochemical influence of the layer variants applied upon the nitrided 

layer. 

 Chapter Eight: The friction and wear effect of using alternative extreme 

pressure and anti-wear additives with the sample variants. 

 Chapter Nine: Validation of the behaviour of the nitrided (QPQ) and 

MoS2 coated samples with various additives using an alternative to the 

reciprocating tribometer was carried out.  

 Chapter Ten: Discussion on results obtained from Chapter Six to 

Chapter Nine is presented. 

 Chapter Eleven: Main conclusions from this study are detailed and 

recommendations for future studies are outlined. 
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Chapter 2 Fundamental Theory 

2.1 Tribology 

William’s [8] states tribology is “the science and technology of interacting 

surfaces in relative motion and of related subjects and practices” which takes 

into consideration every aspect of lubrication, friction and wear. Hydraulic 

systems efficiency can significantly be affected by tribological factors, where 

friction losses are blamed for a third of the energy waste of global energy 

consumption. 

In the 1960’s the failure and breakdown of machines in plants was a frequent 

occurrence, due to poor lubrication which was causing high friction and wear. 

It was determined that tribology had great potential in contributing towards the 

reduction in energy and material loss. Through the reduction of friction and 

wear, a reduction in energy loss and an increase of the lifetime of components 

can be achieved respectively. To achieve this lubrication plays a crucial role 

in the ability to reduce friction between interacting surfaces and protecting 

them against wear through the formation of a lubricating film [9].  

2.2 Friction 

Friction is the mechanical force which hinders or resists movement between 

two surfaces and can lead to wear, deformation and heat loss [10].  

The ratio between the tangential force (F) and the normal applied load (W) is 

known as the coefficient of friction (μ), is a widely used function in engineering 

(Equation 2-1), depicting the friction resistance of interacting surfaces. Its 

behaviour is influenced by the Amonton-Coulomb friction laws; independence 

from the load, the contact area and the sliding speed [11].   

                                                   µ = 
𝑭

𝑾
                                      (2-1) 
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Guillaume Amontons [12] two-first friction laws stated that “the resistance due 

to friction rises or falls proportionately with the amount of normal load 

whatever plane size or shape.” His work concluded that resistance due to 

friction was the same whatever the materials when the interacting surfaces 

were covered in lubricant (rendered pork fat in this case). He proposed that 

friction resistance is roughly equivalent to a third of normal load. His definition 

of friction was “anything else than the action by which a part pressed on the 

other is moving on the surface to that which it touches.” He believed friction 

was the force needed to overcome surface inequalities, therefore in the case 

of rigid surfaces the theory of the proportionality of the friction force with load 

was applied. Compared to non-rigid surface inequalities he compared the 

proportionality of friction with load to the linearity of the load-displacement 

replacement seen with springs. 

In the latter half of the 18th century, Coulomb was commissioned to investigate 

friction. He believed Amontons’ experiments were carried out in a set 

environment/laboratory and were on a smaller scale than expected in actual 

situations in machines and therefore could not accurately portray friction 

conditions occurring. Coulomb’s study aimed to study precisely under 

numerous conditions the reliance of friction on the nature of materials 

interacting, the extent of the surfaces, the load that surfaces bear. His key 

general findings were [13]: 

- Dry friction of woods and metals appeared to be propositional to the 

normal load. 

- Friction is lower when sliding than after a standstill time, especially in 

case of woods. 

- Speed has low effect on dry friction of wood or on friction of metals. 

Coulomb also documented varieties of friction behaviour besides his general 

findings: 

- When interacting surfaces are reduced to the minimum size and the 

sliding direction is with the wood grains, friction decreases when the 

normal load or sliding speed increases. 
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- With the application of a low normal load related to the extent of 

surface, friction is high and increases with the sliding speed. 

- Heterogeneous material contacts showed to produce different results 

than with interacting homogeneous contacts. Friction is very dependent 

on the sliding speed, and static friction intensity increases slowly 

relatively to waiting time. 

- Applying lubricant (fat or suet) to surfaces showed very different friction 

behaviours depending on the contact conditions. 

Coulomb’s explanation to these varieties in friction focussed on various 

physical causes such as gearing of surface asperities, deformation of 

interacting surfaces due to high pressure, entanglement of wood fibres, and 

surface coherence due to nearness of surfaces. Regarding the influence of 

other factors, he concluded that friction is proportional to load, independently 

of the extent of surface [11]. 

For several machine and system components such as hydrodynamic bearings 

and gears low friction coefficients are desirable. This can be achieved through 

several methods such as the use of low-friction material or the lubrication of 

surfaces or application of heat treatments and coatings to the material surface. 

The opposite effect can be seen when using a selection of materials or using 

rough and aggressive surfaces that still interact with the opposing surface 

even with lubrication, this effect would be needed for other machine elements 

such as brakes and clutches [10]. For the piston/cylinder interface within a 

swash plate axial piston motor, low friction coefficients would need to be 

achieved to help improve the motors efficiency. 

2.3 Lubrication  

Friction and lubrication are intertwined and intimately connected. Lubrication 

is simply described as a lubricant which is used between two sliding surfaces 

with the aim to reduce friction and limit damage to the surfaces. It aims to help 

two contacting bodies to behave in the most efficient and favourable way in a 

desired and set state. Blau [14] states that for lubrication to work effectively, 

interfacial geometry must be properly designed alongside the selection of 
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appropriate running conditions (speed, temperature, load and environment), 

which in turn should complement the selected lubricant composition. 

The ultimate purpose of lubrication is to separate two moving surfaces which 

are relative to each other using a film. Four different lubrication modes can be 

identified depending on the thickness of the film and the geometric conformity 

of the surfaces [15]. These regimes allow the performance analysis of a 

system in relation to friction and wear. The four regimes are described below 

[10]: 

 Boundary Lubrication (BL): There is high asperity interaction 

between the two surfaces even though there is a fluid present (Figure 

2-1). The lubrication characteristics are controlled by the surface films 

chemical and physical properties that are of molecular proportion. The 

properties of the lubricant film at the contacting surfaces determine the 

frictional mechanisms.  

 

 

 

 

 

 

 

 Mixed Lubrication (ML): The two surfaces are partially separated and 

partly in contact (Figure 2-2). The separation is created due to the 

lubricating film and the regime is influenced by a mixture of boundary 

and fluid film characteristics. 

 

 

 

 

Figure 2-1. Boundary lubrication between two interacting surfaces 

Figure 2-2. Mixed lubrication between two interacting surfaces. 
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 Elastohydrodynamic Lubrication (EHL): A hydrodynamic fluid film is 

present and prevents any asperity contact between the two surfaces, 

which are usually characterised as being non-conformal (Figure 2-3). 

Due to high pressures being developed, the lubricants pressure and 

temperature viscosity characteristics and also the elastic deformation 

of solid surfaces are deemed important. Friction is present in this mode 

due to the shearing of the viscous lubricant. The applied load to the 

system does not really affect the minimum film thickness, as the contact 

area increases with the load creating a larger lubricated area to support 

the load. 

 

 

 

 

 

 

 

 Hydrodynamic Lubrication (HL): A thick lubricating film prevents any 

contact between the two surfaces, which are characterised as being 

conformal. As with EHL friction is present due shearing of the viscous 

lubricant. Due to sliding motion applied load affects the minimum film 

thickness. 

The lubrication state between the piston and cylinder interface can be 

determined by a range of parameters such as surface roughness, sliding 

velocity to the hardness of the material. By calculating the minimum film 

thickness, the lambda ratio (Equation 2-2) can be determined which would 

allow the identification of the lubrication mode [14]. The lambda ratio is 

classified as the ratio of film thickness to the composite surface roughness. 

                                 𝝀 =  
𝐡𝐦𝐢𝐧

√𝑹𝒒𝟏
𝟐 +√𝑹𝒒𝟐

𝟐
                                                   (2-2)                                                                                   

Figure 2-3. Hydrodynamic lubrication between two interacting 
surfaces. 
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Where λ is the lubrication regime, h𝑚𝑖𝑛 and Rq is the surface roughness of the 

two interacting surfaces. 

For modelling the wear of the piston/cylinder interface the following definition 

of the lubricating regimes can be used [14]: 

Boundary lubrication - λ < 1 

Mixed lubrication - 1< λ < 3 

Full lubrication - λ > 3 

Using the Dowson-Hamrock equation (Equation 2-3) the minimum film 

thickness can be calculated based on point contact, as the piston/cylinder 

interface can be modelled as this. 

𝐡𝐦𝐢𝐧

𝐑′ = 𝟑. 𝟔𝟑 (
𝐔𝛈

𝐄′𝐑′)
𝟎.𝟔𝟖

 (𝛂𝐄)𝟎.𝟒𝟗  (
𝐅

𝐄𝐑′𝟐)
−𝟎.𝟎𝟕𝟑

 (𝟏 − 𝐞−𝟎.𝟔𝟖𝐤)                           (2-3)                                         

Where hmin is the minimum film thickness (m), R′ is the reduced radius (mm), 

E′ is the reduced contact modulus (GPa) (Equation 2-4), U is the mean sliding 

speed (m/s), η is the dynamic viscosity at atmosphere pressure (Pa.s), α is 

the pressure viscosity coefficient of the lubricant (1/Pa) and k is the elliptical 

parameter (1.0339 for pin). 

                                       𝐄′ = 2[ 
𝟏−ʋ𝟏

𝟐

𝐄𝟏
 + 

𝟏−ʋ𝟐
𝟐

𝐄𝟐
 ]-1                          (2-4) 

E1, E2 and ʋ1,ʋ2 are the elastic moduli and Poisson’s ratios for each of the 

interacting bodies. 

The Stribeck curve relates friction coefficient or film thickness against 

viscosity, load and speed, and also identifies the position of the lubrication 

regimes in relation to these parameters (Figure 2-4). Boundary lubrication is 

shown to occur at low viscosity and speed but at a high applied load. With little 
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lubrication between the two surfaces and high surface contact, high friction 

results are observed [16]. 

With an increase in speed and viscosity or a decrease in applied load, fluid 

film forms allowing the two interacting surfaces to separate. This stage is 

acknowledged as mixed lubrication as the formed film supports more and 

more of the load. With the separation of the surfaces and increase in 

lubrication fluid, a drop in friction coefficient is observed. Hydrodynamic 

lubrication occurs when a full fluid film is developed due to the speed or 

viscosity increasing and there is no surface contact with the load being fully 

supported by the film. At this point friction coefficient is at a minimum and no 

wear occurs due to there being no solid-solid contact [14]. 

There is a noticeable rise in friction in the hydrodynamic lubrication region; 

this is related to fluid drag, where the drag on surfaces from the fluid increases 

with higher speeds. The same effect is observed with increasing the viscosity 

of the lubricant [17]. 

 

 

  

 

 

   

 

 

 

Figure 2-4. The Stribeck curve according to Czichos and Habig [16]. 
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Figure 2-5 is a Stribeck curve of friction coefficient against film thickness, 

which demonstrates the behaviour of a hydraulic motor (bold section of curve). 

The first bold section up 0.6λ represents the sliding motion in the stroke, and 

the second portion up to 2λ is the squeeze motion experienced at the end of 

the stroke [14]. The cylinder/piston interface within a swash plate type axial 

piston motor is reported to run in boundary lubrication. 

 

 

 

 

 

2.4 Wear 

Wear is acknowledged as one of the most damaging processes in machine 

components, as it can cause surface damage or during the interaction of two 

moving surfaces it can cause material removal, which can lead to changes to 

surface topography and surface properties. To maximise component 

efficiency the ultimate goal is to minimise wear for a number of reasons such 

as with a rapid increase of wear, seizure can occur causing the component to 

be completely destroyed. Another reason is that wear particles released could 

ultimately damage other machine elements in the hydraulic motor [10, 14, 18]. 

In boundary lubrication the wear process of the piston/cylinder interface 

interaction, can be influenced by factors such as surface coatings and 

treatments alongside lubricant additives [14].  

Figure 2-5. A Stribeck curve comparing coefficient of friction versus film 
thickness, with hydraulic motor operation indicated by the boldface 
portion of the line [14]. 
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The most common types of wear are described below and highlighted in 

Figure 2-6 [14]:  

 Adhesive wear: Debris is formed or joins on to a surface when the 

junction between two materials is damaged/broken. This type of wear 

mainly occurs in boundary and mixed lubrication regime. 

 Abrasive wear: Material is removed from the softer surface of two 

materials. This usually occurs in boundary lubrication regimes. 

 Fatigue wear: When materials are subjected to cyclic loading damage 

occurs progressively and locally. The main cause of fatigue wear is 

high local stresses between surface contacts. 

 Chemical wear: Loss of material from surfaces due to chemical 

reactions causing oxidation or corrosion of them, which can be due to 

contaminants and high levels of chemical active additives. 

 Polishing wear: Wear generated as a result of mechanical-chemical 

interaction between the surfaces. This type of wear leads to a very 

smooth surface texture. This can lead to failure in lubricated 

components since the polished surface is unable to preserve enough 

oil on the surface. 

 

 

 

 

 

 

 

Figure 2-6. Schematic diagram of four different types of wear 
mechanisms [18]. 
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Wear rate incorporates the effect of time to allow the assessment of the 

evolution of the system. In the majority of cases wear begins at a high level, 

termed as the running-in period after which wear reduces to a steady state. 

This can be due to the presence of anti-wear additives which form a protective 

tribofilm [19]. 

The wear rate of a material can be defined as: 

                     W = 
𝐕𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐦𝐚𝐭𝐞𝐫𝐢𝐚𝐥 𝐫𝐞𝐦𝐨𝐯𝐞𝐝

𝐒𝐥𝐢𝐝𝐢𝐧𝐠 𝐃𝐢𝐬𝐭𝐚𝐧𝐜𝐞
                                   (2-5) 

The Archard equation (Equation 2-6) directly relates wear volume loss to 

applied load, stating that they are directly proportional but the wear is inversely 

proportional to the surface hardness [8]. 

                                                   Q = 
𝐊𝐖𝐋

𝐇
                                                   (2-6) 

Where Q is the volume loss due to wear, K is a dimensionless constant, W is 

the applied load, L is the sliding distance and H is the hardness of the softest 

contacting surface. 

2.5 Interacting Surfaces 

Two non-conforming solids initially contact at a single point or along a line. 

These initial contact points and the area close to their vicinities are deformed 

under the application of a load, and touch over an area which is smaller when 

comparing against the dimensions of the two bodies. Hertzian contact theory 

can be applied to systems where there is contact between two surfaces of low 

conformity and high curvature. This theory allows the determination and 

prediction of the shape of the area of contact and its evolution as the applied 

load is changed. This understanding allows the calculation of the deformation 

and stresses acting on both bodies within the area of contact [20]. Depending 

on the shape of the rubbing surfaces, there are different type’s contacts. 

Within this study the contact can be defined either as a ball-on-ball or ball-on-

flat contact, with both being considered to be a point contact.   
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Figure 2-7 presents a schematic representation of a point contact [21], with 

Table 2-1 highlighting the equations used to calculate the contact areas and 

pressures. 

 

 

 

 

 

 

 

 

2.6 Flash Temperature  

Frictional heat is generated with the interaction of two surfaces which causes 

an increase in temperature. This is generally referred to as flash temperature. 

Due to the difficulty of measuring the temperature rise within a contact, several 

numerical models are used to provide an estimate of the temperature rise [22-

25].  

Equation 2-7 can be used to calculate the maximum temperature rise at high 

sliding speeds within a point contact. Equation 2-8 is used to estimate 

Radius of contact area, a a = (
3𝑊𝑅∗

4𝐸∗ )1/3 

Relative radius of curvature, R* R* = 
1

𝑅1
 + 

1

𝑅2
 

Reduced Young’s modulus, E* E* = 
2 𝐸1𝐸2

(1− ʋ1
2)𝐸2+(1− ʋ2

2)𝐸1
 

Maximum contact pressure, 
Pmax 

Pmax = 
1

2𝜋
 (

3𝑊𝐸∗2

𝑅∗2 )1/3 

Mean contact pressure, Pmean Pmean = 
2

3
 Pmax 

Table 2-1. Equations for calculating Hertzian contact pressure for point 

contacts. [8] 

Figure 2-7. Schematic diagram showing two bodies in a point contact 
[21]. 
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temperatures at slow speeds, whereas Equation 2-9 is used to estimate 

maximum temperature at all sliding velocities. 

                                       Tmax = 
𝒒𝒂

𝑲 √𝝅𝑷𝒆
 (Pe > 10)                                       (2-7) 

                                      Tmax = 
𝒒𝒂

𝑲
 (Pe < 0.2)                                             (2-8) 

                                     Tmax = 
𝒒𝒂

𝑲√𝝅(𝟏.𝟐𝟑𝟕𝟑+𝑷𝒆)
                                           (2-9) 

Pe is the Peclet number and is given by Pe = Usa/2k. Us is the relative sliding 

velocity |U2-U1|, a the radius of the contact area and k the thermal diffusivity 

(k = K/ρCp). K is the thermal conductivity, ρ the density and Cp the specific 

heat capacity of the material. q is the heat supply rate given by q = μPUs where 

μ is the friction coefficient and P the contact pressure. 

2.7 Tribochemistry 

The chemical reactions that occur under boundary lubrication conditions 

between lubricant molecules and a material’s surface are defined as 

tribochemistry. Tribochemistry is the investigation into the changes of matter 

in chemical and physiochemical terms due to the influence of mechanical 

energy. These reactions are crucial to mechanical systems as they can 

determine the reliability and lifespan of machine components through 

influencing the lubrication processes occurring [26, 27].  

Two key mechanisms have been suggested as the catalysts for tribochemical 

reactions resulting in the formation of a protective layer [28]: 

 Thermal induced reactions caused by high temperatures at asperities 

 Mechanical induced reactions caused by shear stress at the 

tribocontact.  

This investigation will focus on the interactions of different surfaces and 

treatments with a range of lubricants and additives.  
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Chapter 3 Literature Review 

3.1 Introduction 

The literature review in this chapter aims to explore key work that help give an 

understanding of the interaction of components within a hydraulic system. 

There is a review on the application of surface treatments to improve the 

durability of friction pairs, with a strong focus on the variants of nitriding. This 

will help to explain the tribological behaviour of a nitride layer under a range 

of testing parameters. It will also closely examine the interactions of the 

surface with a range of extreme pressure lubricant additives. Structurally, the 

review will be split so as to deal with many aspects of the hydraulic system 

and the application of surface modification techniques to components.  

Firstly a brief overview of the workings and key components within a hydraulic 

system are discussed. This is followed with a review on the causes of 

inefficiencies and failures of hydraulic motors, with a particular focus on friction 

pair components.  

Following this an overview on the possible surface protection treatments 

which can be applied to the surface of the pistons within a piston/cylinder 

interface is presented. Different variants of the nitriding process are 

highlighted and discussed in depth.  

The final section of the literature review then focusses on the mechanical 

properties of the nitrided layers formed and the influence of lubricant additives 

on the tribological behaviour. The tribochemistry of the tribofilm when using 

common lubricant additives with the nitrided layer is compared to the well 

document behaviour with untreated steel systems. Finally, a summary is 

presented to bring together the most defining points reviewed.  
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3.2 Analysis of Hydraulic Systems 

Hydraulic systems take mechanical energy provided from an electric motor or 

an internal combustion engine which is then converted into pressure and fluid 

flow used to carryout useful work. They can be made up of a hydrostatic 

transmission (Figure 3-1) which consists of two main components: a hydraulic 

pump and motor, with the possibility of adding a gear box between the IC 

engine and the pump. Mechanical energy from the IC motor is transformed 

into hydraulic energy by the pump which is then transferred to the motor which 

then reconverts this energy to a mechanical one, which can be used in the 

case of mobile equipment, to drive the wheels [1, 2, 29].  

Compared to other transmissions such as a discrete gear transmission, the 

hydrostatic drive has several advantages such as: 

 The ability to operate over a wide range of torque/speed ratios 

 Transfer high power with low inertia 

 There is dynamic braking 

A common problem associated with hydrostatic transmissions is the increase 

in leakage from the pump & motor as the applied load increases, which leads 

to a reduction in the motors output [30]. This will be discussed in greater detail 

further on in the chapter. 

3.3 Hydraulic Pumps 

In a hydraulic transmission the pump aims to provide flow within the system. 

It converts the mechanical energy from an IC engine in to hydraulic energy. 

Hydraulic power is the product of pressure and flow. At the inlet of the pump 

a partial vacuum is created, which leads to fluid being forced in by atmosphere 

Figure 3-1. The key components powering a hydrostatic drive [3]. 
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pressure created by this restriction. This fluid is then transferred into a 

hydraulic transmission system by the pump [7]. 

3.4 Hydraulic Motors 

Hydraulic motors essentially do the opposite function of a pump; energy is 

extracted from the fluid pushed to the motor from the pump and converted to 

a mechanical form to perform work such as rotating a wheel [7]. 

3.4.1 Piston Motors 

This study focuses on one type of continuous rotation hydraulic piston motor. 

Compared to pumps rather than pushing the fluid, the fluid acts on the motor 

causing its continuous rotation. The two types of piston motors are fixed or 

variable displacement units. When fluid pressure is applied to the end of 

pistons reciprocating inside a cylinder block a torque is generated. The fluid 

pushed from the hydraulic pump acts on the motors’ pistons. This pressure 

causes them to extend and when they retract the fluid is ejected.  In hydraulic 

motors containing either a bent-axis, eccentric ring or swash plate the piston 

motion is represented as a circular shaft motion. Piston motors are recognised 

as one of the most efficient of hydraulic motors with the capability of operating 

at high pressures and speeds [7].  

3.4.2 Swash Plate Axial-Piston Motor 

Axial piston motors are surpassing vane and gear hydraulic motors as the 

popular alternative for developing hydraulic power. Its design simplicity and 

variable output displacement, allows it to offer versatility within hydraulic 

systems [31]. With fixed displacement swash plate axial-piston motors (Figure 

3-2) the cylinder block and drive shaft are positioned on the same axis. The 

motor is composed of a group of key components such as a cylinder block, 

pistons, swash plate, valve plate and drive shaft as shown in Figure 3-2. Fluid 

is pushed through the valve plate into the cylinder plate, forcing the pistons 

out of the cylinder block and to slide against the angled swash plate. This 

causes the cylinder block and pistons to rotate causing the drive shaft to 
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revolve. The set swash plate angle forces the pistons back into the cylinder 

block, forcing fluid out through the valve plate and returning to the reservoir 

[7].  

Figure 3-3 illustrates the operational cycle of the motor, which shows that flow 

enters at a high pressure at point D. The displacement chamber volume is 

increased up to point C, but due to the expansion of the fluid a drop in pressure 

is observed to point B. Fluid flows out until point A as the displacement 

chamber opens to the low pressure line at the outlet. The fluid is compressed 

when the displacement chamber closes to the outlet due to its reduction in 

volume up to point D. The cycle then repeats continously [32]. 

The force of the piston, the radius of the piston circle and the angle of the 

swash plate determine the torque delivered by the motor. By increasing the 

swash plate angle, the greater the torque output will be for any given pressure 

[31].   

 

 

 

 

 

 

 

 

 

Figure 3-2. An in-line swash plate axial-piston motor [7]. 
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Hydraulic motors and pumps are used within systems containing highly –

pressurized liquid and are responsible for the efficient conversion of energy, 

hence tribology plays a significant role in the performance of the components. 

Figure 3-4 highlights the factors limiting the efficiency and capability of 

hydraulic motors. The influence of tribology within hydraulic equipment can be 

related to the following areas [33]: 

(1) Operating fluids also being used as lubricants. 

(2) Operating conditions are varied over a wide range hence there is widely 

varying contact pressures on the sliding members [33, 34]. 

(3) The sliding parts are also in charge of seals. 

(4) Sliding parts within the motor/pump. 

 

 

 

 

 

 

Figure 3-3. Ideal operational cycle of a swash plate motor [32]. 

Figure 3-4. Limits of operation of hydraulic systems [33]. 
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Volumetric efficiency of the motor is influenced by the internal leakage 

between the motor inlet and outlet, whereas mechanical efficiency is affected 

by the friction between mated surfaces and also fluid turbulence [7]. 

3.4.3 Efficiency Loss of Piston Motors 

As stated previously swash plate axial-piston motors are only 85% to 95% 

efficient, with losses occurring due a range of factors such as internal friction 

and leakage [6]. Several sliding/friction pairs such as the following can be 

identified within a hydraulic motor (Figure 3-5) for being responsible for the 

loss efficiency [33]: 

 Interaction between the swash plate and piston slipper. 

 Interaction between the valve plate and cylinder block. 

 Interaction between the piston and cylinder wall.  

 

 

 

 

i) Interaction between the swash plate and piston slipper 

A bronze slipper is commonly positioned between the swash plate and piston 

head, with hydraulic fluid being fed through the internal passages to the 

piston/slipper and slipper/swash plate interfaces, providing lubrication to these 

surfaces. Axial motors are commonly used with mining equipment and 

industrial applications involving environments where it is very difficult to keep 

foreign particulate matter out of the working fluid. Eventually these particles 

can block the small lubricating passages or become embedded between 

interacting surfaces causing severe wear [5].  

Figure 3-5. Typical sliding parts of swash plate type piston pump [33]. 
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During cold start-up, there is minimal lubrication at the slipper which causes 

rapid acceleration of wear [5]. Heavy scoring of the piston slipper surface 

(Figure 3-6) which acts as a seal for hydrostatic balance pressure, can cause 

fluid leakage. This leakage can cause a pressure drop between the piston 

area and slipper’s balancing area, reducing the hydrostatic balancing force 

which increases the load on the lubricated surfaces of the slipper and 

swashplate. The eventual loss of hydrostatic balance causes slipper failure 

[35]. 

 

 

 

 

ii) Interaction between the valve plate and cylinder block 

The valve plate and cylinder block interface is deemed to be a crucial sliding 

component. With the rotation of the cylinder block, the pistons within the 

cylinders perform a suction and discharge action of the oil within the system. 

At this point, momentarily the pressure distribution on the valve plate varies 

requiring an optimal force balance to reduce the leakage flow rates and friction 

[36].  

There are two key axial forces acting on the surface between the valve plate 

and cylinder block: a pushing and separating force. A pushing force is 

generated by highly pressured pistons pushing the cylinder block to the valve 

plate. If this force is too large, the faces will be subjected to high friction and 

wear which will reduce the overall mechanical efficiency. Alternatively the 

separating force due to the pressure distribution on the seal lands is too big, 

the cylinder blocked is pushed way from the valve plate causing excessive 

leakage losses [36].   

Figure 3-6. Heavily scored piston slipper by third party particles within 
the hydraulic motor [35]. 



- 24 - 

iii) Interaction between the piston and cylinder wall 

This study will primarily be focussing on the piston/cylinder wall interface and 

its effect on the performance of the hydraulic motor.  

When low shaft speeds are used during working, the pistons operate in 

boundary lubrication conditions and experience large side loads caused by 

the eccentric nature of the drive and the inability to produce a significant 

centring force [37]. With the increasing of the sliding speed of the piston there 

is a reduction in the frictional forces present within the cylinder block. This 

reduction is due to an increase in fluid film build-up which in turn prevents 

direct contact between the piston and cylinder. But with the continuous 

increase of the piston’s sliding speed an increase in friction of the cylinder 

bore is observed. This phenomenon can be explained by the increase in 

viscous shear of the lubricating fluid when a fully hydrodynamic lubrication 

regime is achieved. Hydraulic motors are seen to be affected with the increase 

of sliding speed which impacts the friction force observed within the cylinder 

bore [6]. Due to the lateral forces acting on the pistons being so large, it is 

very difficult to avoid metal contact between the cylinder wall and piston 

especially at large swash plate angles. In this circumstance it is effective to 

reduce the friction acting on pistons by inducing the hydrostatic effect to the 

sliding components [33]. 

The manufacturing tolerances of the piston and cylinder bore can determine 

the clearance between the two components which can influence factors such 

as the load bearing ability of the lubricating film and leakage of the system. 

Smaller clearances are preferable to improve the carrying ability and reduce 

the leakage from the interacting components, but too low clearances can 

cause metal on metal contact of the piston and cylinder (Figure 3-7) which can 

severely affect the mechanical efficiency and reliability of the motor. The 

disadvantage associated with smaller clearances is the significant increase in 

manufacturing costs required to improve assembly error and surface 

roughness, factors which play a crucial role in determining leakage loss and 

carrying ability of the components at reduced clearances [38].  
Piston 
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A key source of energy dissipation at the piston/cylinder interface during the 

operation of the motor is fluid viscous shear. This release of energy causes 

an increase in temperature of the rotating cylinder which leads to uneven 

temperature distributions across the systems mechanical components. An 

increase in temperature of solid components leads to internal thermal stress 

causing its deformation and change in the thickness of the fluid film acting and 

also its load carrying ability. These changes can cause catastrophic failure of 

the system through “piston stick” [39]. 

3.4.4 Causes of Failure 

Hydraulic motors can be completely destroyed by a process commonly known 

as seizure, which is caused by catastrophic wear. Several causes of seizure 

initiation have been identified [18]: 

1. Entrapment of particles between sliding surfaces 

2. Lubricant film breakdown 

3. Loss of running clearances between components due to thermal 

expansion. 

3.4.4.1 Entrapment of Wear Particles 

Wear particles created due to the interaction of sliding surfaces can cause 

significant problems if they are entrapped between the piston/cylinder 

interface as they may become embedded into the softer surface and initiate 

scratching of the harder one. The wear particles themselves may initiate 

Figure 3-7. Metal-on-metal contact between the piston and cylinder 
components within the hydraulic motor causing eventual seizure. 
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seizure or cause the breakdown of the lubricating film through their abrading 

action. The build-up of a significant amount of wear particles between the 

cylinder and piston will propagate wear and scuffing of the interface [18]. 

3.4.4.2 Lubricant Film Breakdown 

The primary cause of seizure is said to be the breakdown of the lubricant film 

at interacting surfaces. The lubricant film can be of several types produced 

due to different conditions such as a films produced under boundary 

lubrication through the interaction of lubricant additives with the contacting 

surfaces or a thick hydrodynamic film which allows the separation of the two 

mating surfaces. Under low-speed, high torque conditions when starting-up 

the hydraulic motor operates in boundary condition. When the speed of the 

system and/or the viscosity of the oil decreases, the lubricant film becomes 

very thin where it can reach a point where the entire load is supported by the 

interacting asperities of the contacting surfaces. This process can eventually 

initiate seizure [18, 40].  

3.4.4.3 Thermal Expansion  

Energy losses due to viscous shear can cause the thermal expansion of solid 

components causing a situation where the piston is stuck in the cylinder bore 

causing seizure [18, 39]. 

3.4.5 Current Research Focus 

Current research has highlighted the significance of the friction acting at the 

cylinder/piston interface and its influence on the failure of the axial-piston 

motor. There is a movement away from traditional materials and treatments 

which are deemed inadequate to resolve issues involving the motors 

reliability, efficiency and performance. Yamaguchi states that to solve the 

tribological problems associated with hydraulic systems; three key areas need 

to be improved [41]: 

I. Hydraulic fluids 

II. Materials and surface treatments 
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III. Mechanisms and designs of the system 

Traditional techniques used to reduce friction at interacting surfaces include 

the optimisation of the surface topography of the piston and cylinder and also 

the application of coatings to the piston. Wear resistant and low friction 

coatings would act as prevention against the embedding and abrasion of wear 

particles in to the surfaces of interacting components during operation, whilst 

reducing the clearance between them which would minimise lubricant leakage 

and acting friction.   

3.5 Surface Improvement Techniques 

With an increasing demand for high quality and performance from ferrous 

materials, there is a constant need to modify and improve components 

protection against wear and corrosion. Developing industrial applicable 

surface modification and coating processes within the stringent environmental 

regulations, is becoming a leading challenge in surface improvement 

technology [42]. 

Wear is deemed to be one of the key processes reducing the life expectancies 

of engineering components. Increases in wear will eventually reduce the 

operating efficiency of the system through the power losses, leakage and rate 

of component replacement. One of the most common problems observed in 

industrial applications is sliding wear which can eventually lead to scuffing or 

galling [43].  

Engine designs and mechanical systems are being modified to reduce friction 

amongst components whilst allowing them to run at higher operating 

temperatures. Czichos [44] stated that friction and wear cannot only be 

determined by the properties of the material but also the characteristics of the 

engineering system. Reducing wear can be achieved through modifying 

operating parameters, lubricant and optimising the wear counterface 

combination [43]. This is where surface improvement technology plays a 

crucial role. The final aim is to produce durable and optimum efficient systems. 

This can be achieved by ensuring compatibility between surfaces and 
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lubricants within tribological environments, as it is not sufficient enough to just 

introduce new or modified materials to achieve desired results [26,27].  

Surface improvement treatments can be divided in to two broad categories:  

1) Surface coatings 

2) Surface treatment  

The former involves treatments where a layer of hard material is deposited or 

formed on the surface, whereas the latter involves the production of a 

hardened surface by surface treatment, usually achieved by the diffusion of 

elements such as nitrogen or carbon into the surface. Coatings can be 

deposited through a range of methods such as chemical deposition, physical 

vapour deposition, spraying and electro-deposition, whereas surface 

treatments usually involve carburizing, nitriding and metallizing [45]. 

However there are a number of different variations of for the classification of 

surface treatments. Bell’s [46] classification is described as: 

1) Coating and plating 

2) Thermochemical treatment 

3) Thermal treatment 

4) Implantation 

According to Bell’s [46] classification coating and plating refers to the addition 

of material to the surface, whereas thermochemical and thermal treatment 

corresponds to treatments that change the surface chemistry and those which 

change the surface microstructure respectively. Implantation involves ion 

implantation processes. 

In comparison Wilson [47] has categorised surface treatments from a 

tribological point of view: 

1) Short-life surface treatments 

2) Long-life surface treatments 
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Short-life treatments refer to the application of thin, relatively ductile and soft 

layers to a surface. The aim of these layers is to behave as running-in coatings 

in the initial stages of operation, as they are usually worn away rapidly and 

have a shorter life than the component. 

On the other hand, long life surface treatments increase the hardness of the 

material surface and are expected to survive the life of the component. 

A number of surface improvement technique options can be suggested to be 

used to improve the wear resistance of the piston and cylinder surfaces within 

axial piston motors: 

I. Diamond Like Carbon (DLC) coating 

II. Molybdenum disulphide (MoS2) coating  

III. Nitriding/Nitrocarburising Variants  

a. Salt bath oxy-nitriding heat treatment 

b. Plasma oxy-nitriding heat treatment 

c. Gas nitriding heat treatment 

d. Sursulf 

Techniques II-III will be the primary focuses of this project and will be applied 

to samples used during experimental analysis. Currently treatment II is used 

on the piston surfaces of a swash plate axial-piston motor. This study will 

investigate the option of substituting this treatment for a variant of treatment 

III, by analysing and comparing the wear and friction effects on the motor 

when both treatments have been applied separately. 

3.5.1 DLC Coating 

DLC coatings are of carbon nature composed from graphite and diamond like 

bonds which essentially determine their physical and chemical properties. The 

coating is well known for its excellent tribological properties, due to its high 

hardness and chemical stability. With its low friction and ideal running-in 

properties, DLC is becoming a popular choice in the automotive industry 

helping to meet the stringent demands for fuel efficiency and component 
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durability. Figures show an annual increase of 50% in automotive application, 

but one of the problems faced in the industry is application of the coating to 

friction pairs where there are high temperatures and loads acting, factors 

which greatly impact the tribological characteristics of the coating. The 

components at the piston/cylinder interface are known to operate at high 

temperatures (80-120°C), pressures and sliding velocities. Previous research 

has shown that at temperatures above 100°C the coatings tribological 

behaviour is affected and it begins to lose its effectiveness above 300°C, 

increasing wear and friction. Komatsu’s findings have shown that during metal 

on metal interaction of the piston and cylinder bore flash temperatures above 

500°C were recorded. Due to this behaviour at high temperatures and the 

difficulty to mass produce the coating because of economic viability, it is 

challenging to apply the coating to friction pairs within a hydraulic system [48]. 

3.5.2 MoS2 and Manganese Phosphate Coatings (Defric Process) 

MoS2 is one the most common solid lubricants used within industry today, with 

a range of techniques such as plasma spraying or sputtering methods being 

used to apply the suspensions of MoS2 particles on to the friction surface to 

either form a dry or thin film. Solid lubricants are defined as solid materials 

that reduce friction and mechanical interactions of surfaces in relative motion. 

They are seen as alternatives in situations where traditional lubricants are 

deemed ineffective such as at high temperatures where the lubricant is 

oxidised or decomposed rendering it ineffective. Also the application of high 

loads and contact stresses on bearing points of interacting surfaces, can 

cause the squeezing out of liquid lubricants causing lubricant starvation [49]. 

This project applies a sprayed-on solid film lubricant (MoS2) coating paint to a 

manganese phosphated layer (Figure 3-8). 

 

 

 

Figure 3-8. Schematic of bonded coating layer after the defric process 
[50]. 
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The MoS2 compound has a hexagonal layered structure, with the crystal 

constituted by unit layers composed of three planes S-Mo-S. The layers are 

connected by  weak molecular forces and MoS2 is easy to slip between the 

layers; giving the formed layer excellent solid lubricating properties. In vacuum 

conditions MoS2 coatings present excellent friction and wear resistance but 

when there is oxygen or humidity present these properties degrade [50-52].  

Bonded solid lubricating films have excellent solid lubricating characteristics 

as they can strongly adhere to the substrate material to prevent adhesion of 

the metal friction pair effectively. In environments where lubricating oils or 

grease are unsuitable to use, MoS2 coatings can be used instead making it 

an ideal option for use as lubrication material for machinery working in 

starvation [51]. The main constituents of a bonded coating are [50]: 

 Solid lubricant – molybdenum disulphide (MoS2), graphite, 

polytetrafluoroethylene (PTFE) or a combination of solid lubricants. 

 Binder – organic or inorganic, composed of one or two components 

 Solvent – organic or water 

Manganese phosphate coatings are heavily used in the automotive industry 

as a running-in coating between interacting surfaces, with the aim to reduce 

the wear rate experienced. Due to the porosity of the surface layer after 

treatment a large amount of lubricant can be absorbed allowing the creation 

on a non-metallic barrier between two contacting surfaces, which prevents 

seizure occurring and adds protection against corrosion [53]. However within 

this project phosphating is used to roughen up the material to encourage the 

bonded coating is firmly rooted on the surface [50]. After the application of the 

coatings the sample is oven baked from 160-250°C. 

A schematic diagram of the complete Defric process is highlighted below 

(Figure 3-9) [50]: 
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3.5.2.1 Summary 

The core benefits of a combination of an MoS2 and manganese phosphate 

coating is its capability in producing low friction motion between surfaces and 

the ability to prevent galling and scuffing. This can be partly put down to the 

easy shear between the layers and the oil retaining capability of the coatings 

In many industries such as automotive and heavy equipment, the MoS2 

coating is used as a running-in coat to facilitate the breaking in of new 

interacting components such as gears, pistons and cylinder liners. The key 

disadvantages of the coating are the deterioration of its chemical stability and 

its dehydration behaviour when exposed to high temperatures as expected 

between the piston/cylinder interface. The coatings primary aim is to act as a 

running-in coating, but with the application of high load conditions as expected 

at friction pairs, the coating can easily be removed exposing the substrate 

material below which may significantly increase the wear rate and cause the 

Figure 3-9. Schematic of complete Defric process [50]. 
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seizure of the component [54]. In the presence of moisture the lubricating 

properties of MoS2 deteriorates due to the oxidation of the MoS2 to MoO3, 

which does not have the lubrication properties of the former compound. With 

the increase of MoO3 content, abrasive wear behaviour increases leading to 

the increase of friction coefficient for the surfaces being lubricated [49].  

3.5.3 Principles of Heat Treatment of Steels 

The mechanical properties of steel are greatly influenced by its microstructure, 

which can be modified through heat treatment to achieve desired mechanical 

properties.  

Many steels owe their durability to the presence of certain alloying elements. 

Carbon is deemed to be a key element controlling the properties of all steels. 

With iron alloyed with carbon, the carbon content influences the 

transformation over a temperature range. When an iron-carbon alloy is 

formed, carbon is present either in solution or in the elementary form of 

graphite, or in a combination as iron carbide (Fe3C). The iron-carbon phase 

diagram (Figure 3-10) shows the phase changes occurring during very slow 

cooling or heating in relation to temperature and carbon content [55]. 

Steels are iron alloys with relatively low carbon weight content (<2%). Alloys 

with carbon above 2% are generally classified as cast irons. Carbon is one 

the elements which is known to stabilize austenite by increasing the range of 

austenite formation in steel, facilitating heat-treatment of low carbon steel. As 

shown in phase diagram (Figure 3-10) as carbon content increases the 

formation of ferrite from austenite decreases, this point is commonly known 

as the eutectoid point [55, 56].  

Steels with less than 0.8% carbon are known as hypoeutectoid steels. These 

are relevant for the steels used within this study. The microstructure of slowly 

cooled hypoeutectoid steel is shown below (Figure 3-10) [55]:  
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It can be surmised that depending on carbon content, the structure of the 

slowly cooled (annealed) carbon steels at room temperature will be [56]: 

1. 0.007-0.025% carbon – ferrite. 

2. 0.025-0.8% carbon – ferrite and pearlite. 

3. 0.80-2.06% carbon – pearlite and carbides precipitated from austenite. 

4. 2.06-4.2% carbon – pearlite and graphite. 

The iron-carbon phase diagram allows the selection of the temperature for 

annealing, normalising and hardening.  

3.5.4 Metallographic Structure and Associated Properties 

The common types of microstructure that can be formed during heat treatment 

are [55]: 

Figure 3-10. Schematic representation of the microstructural changes 
occurring during slow cooling of 0.4% C steel. a) Formation of 
austenite (gamma – γ), b) Formation of a grain at γ grain 

boundaries, c) Growth of ferrite α at grain boundaries [55]. 
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Ferrite: Solid solution of carbon and other alloying elements in body-centered 

cubic (α-Fe). Known for its soft and ductile properties, with a hardness of 70-

100 BHN. 

Cementite: Compound composed of iron and carbon. It has an orthorhombic 

crystal structure, known for its brittle and hard properties with a hardness of 

65-85 HRC. 

Pearlite: Is a eutectoid mixture of cementite and ferrite possessing a hardness 

of RC 10-30.  

Martensite: Is the supersaturated solid solution of carbon and other elements 

in alpha iron with a distorted lattice.  

3.5.5 Nitriding and Nitrocarburizing Fundamentals 

The nitriding process is a ferritic thermochemical case hardening process 

where the surface of a component is enriched with atomic nitrogen allowing it 

to dissolve interstitially into the iron matrix after diffusing into the surface zone. 

The treatment is usually carried out within the temperature range of 400-

590°C and if the nitrogen concentration is greater than 2.5 wt% a single or 

multi-phase nitride layer is created, which can improve the wear resistance of 

the component alongside other dynamic characteristics of the ferrous 

material. One of the advantages of nitriding or nitrocarburizing is the low 

temperature the process is carried out at, which prevents phase 

transformation to austenite which prevents the physical distortion of the 

component which would essentially reduce its service life [42, 56, 57].  

Nitriding refers to the process where only nitrogen is introduced to the surface, 

but if carbon is also diffused in simultaneously this treatment is referred to as 

nitrocarburizing. Post nitriding/nitrocarburizing, oxidation can be carried out 

producing a layer of magnetite on top of the nitrided zone. This layer acts as 

a running-in coat and can further improve the treated components friction and 

wear properties [42]. 
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The key properties produced by nitriding can be summarized as follows [55]: 

1. High fatigue strength. 

2. High surface hardness and wear resistance alongside reduced risk of 

scuffing and galling. 

3. Improved corrosion resistance, 

3.5.5.1 Microstructure of Nitrided Zone 

The nitriding/nitrocarburizing treatment usually produces two distinct layers at 

the surface of the component, the first layer is commonly known as the 

compound layer, with a diffusion zone directly below (Figure 3-11) [42]. Most 

of the Nitrogen diffuses in to the metal forming a deep diffusion zone, only 

10% of the nitrogen remains at the surface which combines with carbon and 

iron to create the tough compound layer [55]. 

Using the iron-nitrogen phase diagram Figure 3-12, due to nitriding being 

carried out at temperatures within the ferrite phase field, the process has to 

occur below eutectoid temperature (590°C). When nitrogen content exceeds 

0.1 wt%, γ’-nitride (Fe4N) phase is formed, consisting of an fcc arrangement 

of Fe atoms with ordered occupation of the N atoms at the octahedral 

interstitial sites. With nitrogen content over 6 wt%, γ’ phase begins to form in 

Figure 3-11. Schematic diagram of the structure through the cross-

section of an oxy-nitrided sample [16]. 
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to ε-nitride (Fe2-3N) phase, which in contrast has hcp arrangement of Fe atoms 

with ordered occupation of the N atoms at the octahedral interstitial sites. 

Below 500°C as the nitrogen content increases ζ-nitride (Fe2N) phase begins 

to form [58]. 

 

 

 

 

 

 

As nitrogen diffuses into the surface of the steel during the nitriding process, 

these iron nitrides begin to form as solubility wt% limits are reached. The 

compound layer usually composed of γ’ & ε- nitride phases is commonly 

referred to as the white layer [43]. The layer can be composed of iron nitrides 

either as a single layer of γ’-Fe4N or ε –Fe2-3N or as a mixed-phase compound 

layer composed of both types of nitrides. γ-phases are seen to dominate the 

compound zone after nitriding, whereas ε-phases are almost solely seen after 

nitrocarburizing [58]. Compared to the nitriding process, nitrocarburising has 

a greater effect on the composition of the compound layer and of the wear 

properties of the component [42, 56, 57, 59]. 

Both phases have different crystalline phases with the ε-phase having a 

hexagonal closely packed (HCP) structure while the γ-phase has a face 

centred cubic (FCC) arrangement [60]. A nitride layer purely composed of γ-

phase is of higher hardness than that of one composed of ε-single phase. The 

single γ-phase also increases the wear resistance and fatigue strength of the 

Figure 3-12. Iron-Nitrogen phase diagram [56]. 
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parts compared to ε-phase, whereas the latter phase improves the scuffing 

wear resistance under high loading conditions. However a higher percentile 

of the ε-phase is desired in the nitride layer due to its toughness and ductility 

and limited brittleness [61]. The two crystalline structures with the application 

of shear stresses responded differently. Ease of plastic deformation with 

materials is determined by the number of available slip planes, and for 

successive plastic deformation to occur it is necessary for at least five 

independent slip systems to be present. The limitations of slip planes within 

the HCP structure reduces the probability of plastic deformation occurring, and 

improves its ductility [60]. 

However with a nitride layer composed of a mixture of ε and γ’ phases it is 

prone to spalling due to its brittleness caused by the presence of two phases 

and sliding bands. With the application of high stresses the compound layer 

is fractured alongside the formation of hard abrasive particles [62, 63].  

The impact of both phases on the properties of compound layer are 

summarised in Figure 3-13 [64].  

The presence of carbon during the nitrocarburizing process stabilises the ε –

Fe2-3(N,C) phase allowing it to form at much lower nitrogen levels than in the 

absence of carbon. This results in faster growth of the compound layer due to 

the much wider solubility range of carbon and nitrogen in the ε-phase enabling 

a steeper concentration gradient than in the γ’-phase as shown by the Fe-N-

C phase diagram (Figure 3-14) [43, 65]. Figure 3-15 is a schematic diagram 

of the formation and evolution of the compound layer upon nitriding α-Fe. 

 

Figure 3-13. Different types of compound layers formed with nitriding 
variants [64]. 
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The nitrogen rich compound layer contains porosity caused by the association 

of dissolved nitrogen as gas molecules (N2) at grain boundaries and within 

grains. At the surface-adjacent part of the layer, porosity is most 

distinguishable due to this layer having the largest dissolved nitrogen content 

[56, 57, 66]. The advantage of this porosity is that they behave as small 

Figure 3-15. Schematic illustration of 
the microstructural stages of 
compound-layer formation and 
evolution upon nitriding α-Fe. 
a)Nucleation of γ’ nitride at the 
surface followed by its growth 
with Nitrogen presence b) ε 
phase can grow on top of the γ’ 
particles c) As a result a double 
ε/γ’ layer has formed, and further 
growth can only be established 
by nitrogen transport through 
both sublayers. d) 
Decomposition of iron nitride 
underneath the surface of the 
compound layer occurs for 
extended stages of nitriding, 
leading to development of pores 
filled with N2 gas at grain 
boundaries and within the 
grains. e) Pores at grain 
boundaries leads to channels at 
grain boundaries in contact with 
the outer nitriding atmosphere 
[56]. 

 

Figure 3-14. Fe-N-C phase diagram at 570-580°C [65]. 
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reservoirs of lubricants forming a self-lubricating surface improving wear 

resistance [64].  

Binder et al [58] found that ε-phase compound layers showed superior 

performance in sliding wear tests, with wear volume loss being approximately 

twice less than that of the γ’ phase. They proposed that the model of the wear 

process (Figure 3-16) consisted of the wear of the compound layer until the 

occurrence of micro-cracks, which had the ability to propagate and reach the 

interface of the compound/diffusion layers. Hard particles are formed by the 

fracturing of the compound layer due to repeated loading, these particles can 

induce plastic deformation and the creation of other wear particles. 

 

 

 

 

 

Wear resistance is influenced by the hardness of the compound layer, where 

harder surfaces generally produce more wear resistant surfaces. This 

provides effective resistance against abrasive particles and nitrocarburising 

especially improves protection against adhesive wear [64].  

With the additional presence of a shallow porous layer at the surface of the 

compound layer the scuffing and seizure resistance properties of the samples 

are improved. The compound layer’s ability to reduce the tendency to cold 

weld against interacting surfaces and provide low friction combined with the 

lubricant reservoirs due to the porosity present on the outer layer of the 

Figure 3-16. Proposed wear mechanisms for the compound layer after 
nitriding [58]. 
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compound layer act to give significant protection against adhesive wear and 

scuffing [64].  

The diffusion layer lies beneath the compound layer with a thickness ranging 

from 0.1-0.8mm, due to the decrease of nitrogen content from the edge to the 

core of treated components iron nitrides are not formed in this zone. With 

unalloyed steels the crystalline phases produced in the diffusion layer are 

influenced by the cooling rate after treatment. At a faster cooling rate e.g. 

using water, a higher hardness is achieved in the zone compared to slow 

cooling which allows greater ductility [59].  Binder et al [58] demonstrated that 

the nature of the compound layer had no influence of the frictional behaviour 

however this behaviour was instead governed by the properties of the two 

different layers present after nitriding.  

With alloyed steels the diffusion zone is mostly composed of solid solution (α-

Fe,N), and due to alloying elements nitrides and carbonitrides such as γ’ - 

Fe4N and ζ-Fe2N are formed in the diffusion layer formed by precipitation [56, 

66]. This is due to the diffused nitrogen interacting alloying elements such as 

aluminium, chromium and vanadium. The nitrides created such as aluminium 

nitrides are shown to exhibit very high hardness values and also influence the 

depth of the diffusion zone [42].  

The diffusion zone hardness is influenced by either the presence of interstitial 

solution of nitrogen or the formation of nitrides. In the first case small amounts 

of nitrogen increase the hardness of steel drastically this is effective with low 

alloy steels. Whereas in the second situation with the formation of nitrides of 

iron nitrides or alloying elements cause precipitation hardening, making this 

the predominate hardening mechanism with alloyed steels [64].  

Enhancement of a component surface with nitrogen or nitrogen and carbon 

can be achieved using three techniques [42]: 

 Use of a molten salt (salt bath oxy-nitriding) 

 Using a gas mixture (gas nitriding) 

 Using energy plasma (plasma oxy-nitriding) 
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3.5.5.2 Salt Bath Oxy-Nitriding Heat Treatment 

Salt bath nitriding is a well-established thermochemical process used widely 

in a range of industries from automotive to oil. The process significantly 

improves wear and corrosion resistance alongside fatigue strength, and is 

considered as an alternative to other processes such as case hardening and 

galvanic techniques. Since the 1970’s there has been environmental concerns 

about treatments employing toxic cyanide-based baths. With the 

implementation of stringent anti-pollution measures there has been the 

development of alternative treatments. The Tufftride process by Degussa in 

Germany, uses a cyanide free salt bath process, with as little as three to four 

percent cyanide being present in the bath [55]. 

The process consists of five stages [42, 67, 68]– 

I. Degreasing – Removal of dirt from surface. 

II. Preheating – Removes any water on the components alongside 

producing a thin oxide layer on surface on the components which 

benefits the nitriding process. 

III. Nitriding – Surface of ferrous material enriched with nitrogen. 

IV. Oxidising – Nitrided layer covered by an oxide film. 

V. Mechanical Processing – Oxide layer moderately polished and 

oxidised again – due to rough surface. 

When the process is carried out from steps I-III, it is referred to as an Isonite 

(Iso) process and when done using steps I-V it is known as QPQ (Figure 3-

17) [69].  

 

 

 

Figure 3-17. Salt bath nitriding heat treatment process [69]. 
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The samples are nitrided in a molten salt bath of cyanate at 400-600°C which 

causes its catalytic decomposition to form cyanate, carbonate and adsorbed 

nitrogen. Due to the formation of carbonate, both nitrogen and carbon diffuse 

in to the surface of the steel to form a nitrate layer consisting of carbon, hence 

this process is recognised as nitrocarburising (Equation 3-1) [42, 67, 70].  

𝟒𝐂𝐍𝐎 → 𝐂𝐎
𝟐

𝟑 + 𝟐𝐂𝐍𝐎 + 𝐂𝐎 + 𝟐𝐍                                                               (3-1) 

Nitrocarburizing creates a layer consisting of an outer compound layer and an 

underlying diffusion layer. The samples are then oxidised in a specialised 

cooling bath at 370-430°C, which produces an oxide layer on the surface of 

the treated component [59].  

Post oxidation of the nitrided layer forms a compound layer composed of ε-

carbonitride and magnetite, this is due to free iron & iron nitrides from the 

compound layer combining with oxygen molecules to form a stable oxide 

layer. Magnetite (Fe3O4) is known to improve the wear and corrosion 

resistance of a surface due to its low friction properties and chemical stability, 

and acts as some sorts as a running-in protective layer. The magnetite phase 

growth is enhanced with the presence of ε-carbonitrides in the compound 

layer due to more oxygen being present in this phase [56, 71, 72].  

3.5.5.3 Plasma Oxy-Nitriding Heat Treatment 

Plasma nitriding commonly known as ion nitriding uses low energy plasma to 

introduce nitrogen and in some cases carbon into the surface of ferrous 

components, within a vacuum environment filled with gas mixture of nitrogen, 

hydrogen and an additive gas containing carbon [42, 73]. Typically a gas 

mixture of 25% nitrogen with 75% hydrogen is used, with the nitrogen 

concentration being increased to 50% during processing to increase the rate 

of case development. Using a higher range of nitrogen concentration (above 

50%) will lead to the formation of an excessive white layer. If too low a 

percentage of nitrogen is used, the formation of the case is reduced [55]. The 

ionised gas serves as a medium for both heating and nitriding [43]. The 

component to be treated is made the cathode of an electrical circuit whilst the 
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chamber is used as the anode (Figure 3-18). Using a voltage of 300-800V 

between the two electrodes within a pressure range of 1-8 mbar a glow 

discharge is created. This discharge covers the component at the cathode 

and the component becomes heated by the transfer of energy due to ionic 

bombardment. This energy transfer allows the diffusion of nitrogen in to the 

components surface where it interacts with existing elements to form the 

nitrided structure described previously [73].  

Post-oxidation of the nitrided component is carried out by exchanging the gas 

mixture used for nitriding to a gas composition of hydrogen and oxygen. The 

process is usually carried out at a lower temperature than nitriding, allowing 

the formation of a stable iron oxide layer. The process has to be controlled to 

prevent the formation of hematite instead of magnetite in the oxide layer [73, 

74].   

 

 

 

 

 

3.5.5.4 Gas Nitriding Heat Treatment 

The gas nitriding process (Figure 3-19) is carried out using a convection 

furnace in an ammonia atmosphere at temperatures ranging from 490-530°C. 

The ammonia can be mixed with nitrogen or hydrogen. The furnace is heated 

up to the chosen nitriding temperature in the presence of nitrogen before 

ammonia is added; this is done to minimise the risk of explosion by the mixing 

of ammonia and oxygen [57]. Only part of the ammonia dissociates 

catalytically at the surface of the hot steel sample, and some of the nascent 

Figure 3-18. Cross section of a plasma nitriding furnace [74]. 
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nitrogen is absorbed [43]. Initially there is a rapid transfer of nitrogen to the 

components surface as a high flow rate is used, but once the compound layer 

is produced the process is then controlled and carried on until the desired 

nitriding depth is reached. Cooling of the sample is carried out in nitrogen to 

prevent oxidation [57].  

3.5.5.5 Sursulf 

The Sursulf (SN) process is a low polluting, cyanide free nitriding salt bath 

treatment which uses sulphur as accelerant.  The bath is composed of a 

mixture of cyanates and carbonates of lithium, sodium and potassium along 

with small amounts of potassium sulphide (K2S). The cyanate is used as the 

source for nitrogen and sulphide (K2S) is the source for sulphur. At the surface 

the cyanate catalytically decomposes at the surface of the steel components 

being treated, to liberate carbon monoxide and nascent nitrogen diffuses in to 

the material of the sample being treated to form a compound layer. The 

sulphides in the bath also react with components being treated to form iron 

sulphide on the outer surface layer and filling the porosity present on this 

surface of the treated component. The presence of a sulphide layer acts as 

solid lubricant due to its close packed hexagonal crystalline structure allowing 

easy slip along the close-packed plane [51, 55].  

Figure 3-19. Gas nitriding process [74]. 
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The presence of sulphur within the treatment bath stabilises the formation of 

primarily ε-phase within the compound layer and a very shallow finely porous 

zone.  

With only the presence of ε-phase, there is a reduction in the loss of particles 

from the surface as compared with the amount of lost from biphasic compound 

layers containing both γ’-phase and ε-phase [64].  

3.5.5.6    Case Depth Modification 

The case depth obtained by nitriding can be influenced by a range of factors 

such as nitriding temperature, duration, steel composition, microstructure and 

availability of nitrogen [55]. 

For all variants of the nitriding technique the compound layer thickness is 

shown to be influenced by the alloy content in the steel (Figure 3-20). The 

thickness is seen to decrease with the increasing of alloy content for all 

variants of the technique. For the salt bath nitriding technique with the 

decreasing of carbon content of the steel a reduction of the compound layer 

thickness is also observed [57].  

The compound layer thickness is also influenced by the nitriding temperature 

where at the higher temperatures between 400-580°C, a thicker layer is 

formed due to the increase in nitrogen diffusivity [75].  

With the increase of nitriding time the diffusion layers thickness is also seen 

to increase, but with steels of a higher alloy content a lower depth is observed 

when compared over the same times and nitriding temperatures. This may be 

due to alloying elements absorbing nitrogen to form nitrides, thus a greater 

concentration of nitrogen atoms will be needed to reach a set depth when 

compared to steels where there are no elements to trap any nitrogen [57]. 
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3.5.6 Environmental and Technical Difficulties  

Salt bath nitriding is a popular choice due to a range of factors such as its 

ability to produce tough and wear resistant nitride layers in fairly short process 

times and it is conceptually simpler and cheaper when compared to its 

counterparts - plasma and gas nitriding [59]. 

The key problem with using salt baths is that it presents some serious 

environmental concerns. One of these problems is with the post processing 

cleaning steps of the salts used, which contain high percentages of toxic 

potassium and sodium cyanide. Compared to plasma oxy-nitriding, the latter 

seems to present fewer environmental problems and is seen as a greener 

process where virtually no toxic products or waste are created. Plasma oxy-

nitriding is not only considered to be the more environmental friendly option 

but also the better choice to produce superior results in terms of surface 

improvement. Salt bath and gas nitriding can produce surfaces which are 

brittle and spalled which requires grinding or cleaning to remove but this is not 

a problem associated with the plasma process. Plasma techniques help to 

achieve higher surface hardness whilst maintaining the core properties of the 

material due to lower processing temperatures (Figure 3-21) [66, 76, 77]. One 

of the advantages of salt bath nitriding over the other variants is the production 

of a single phase compound layer; a mixed structure formed by gas and 

plasma nitriding causes high internal stresses and the interface between the 

Figure 3-20. The effect of the alloying contents of the treated steel on the 
hardness of the compound layer [57]. 
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two crystalline phases is weak. This is due to the volume growth difference 

with the formation of the two phases. The high stresses also cause an 

increase in friction and the samples wear rate [78]. 

 

 

 

 

 

 

When comparing gas nitriding to plasma nitriding, the former is less harmful 

to the environment compared to salt bath nitriding but it still produces 

significant amounts of exhaust fumes and gases which are still detrimental to 

the environment. A significant risk associated with gas nitriding is possibility 

of explosions due to the use of a combustible atmosphere during the 

application of the treatment. Plasma nitriding does not have the same 

problems associated with gas nitriding and has actually shown to have 

reduced processing times and energy consumption as shown in Figure 3-22 

[63, 76].  

 

 

 

 

Figure 3-21. Comparative hardness of plasma nitriding versus gas 
nitrided steel [77]. 

Figure 3-22. Comparisons of emissions for plasma (PNC) and gas 
nitrocarburizing (GNC) [76]. 
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3.5.7 Material Optimisation 

The difficult task faced with producing optimal results through the use of 

surface treatments is the selection of the base material. This factor is most 

critical with the nitriding process, where it is important to select a type of steel 

which will not only be appropriate for the operating environment of the 

component but will also produce good nitriding results whilst being cost 

effective and easy to mechanically process [77].  

3.5.7.1 Alloying Elements for Nitriding Steel 

Certain types of alloyed steels have been shown to respond better to nitriding 

in terms of surface hardness, distortion, core hardness and formation of stable 

nitrides. The most common elements found in nitriding steels are aluminium, 

chromium, molybdenum, tungsten and vanadium. The effects of each of the 

elements are described below and highlighted in Figure 3-23 [77]: 

 Aluminium: forms extremely tough and hard nitrides during the 

nitriding process at the materials surface, but wt% content over 1% 

will cause the surface to crack under extreme loading conditions. 

This will occur due to the core of the material being ductile 

compared to the surface which may cause crack propagation to 

occur during heavy loading. 

 Chromium: are known to form stable nitrides and a tough casing, 

but a high content such as those found in stainless steels make it 

difficult to nitride. This is due to the chromium elements reacting 

with oxygen to create a chromium oxide barrier on the surface of 

which depasivation must occur before the nitriding treatment is 

effective.  

 Molybdenum: allows the formation of stable nitrides and prevents 

the surface of the steel becoming brittle during nitriding. 

 Tungsten: allows the steel to retain its hardness at high operating 

temperatures. 

 Vanadium: forms stable nitrides alongside tough grains in the case. 
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It is very difficult to nitride stainless steels using conventional methods such 

as salt bath and gas nitriding due to the surfaces passivation caused by the 

high content of chromium [77]. It can be achieved using the plasma nitriding 

process which allows the surface to be highly activated [57].  

 

 

 

 

 

 

 

This study will use a low carbon alloy steel (31CrMoV9) for samples that will 

be nitrided, this material will replicate the one used for pistons in a hydraulic 

motor by Komatsu Global, the sponsors of the project [79]. 

3.6 Lubricants 

The function of a lubricant is to essentially control the friction and wear in the 

system it is applied to. It is important to access the performance of the 

lubricant in relation to its influence on the friction, wear and degradation 

prevention behaviour of a system. Oils can be of different origins mineral or 

synthetic which provides a vast array of hydrocarbon compounds. These 

substances are not only used for their lubrication properties but to help control 

other factors such as wear and friction. Lubricants made from mineral oils are 

partly refined and impure, the balance of this impurity and purity is crucial to 

the oxidation stability of the oil. Additives are added to the lubricant to change 

its properties and modify its overall performance. The additives can dictate 

Figure 3-23. Effect of alloying elements on hardness after nitriding [77]. 
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specific characteristics such as wear, friction, corrosion tendency and 

oxidation amongst others [80].  

Lubrication oils typically used are composed of 95% base stock and 5% 

additives. Two main sources of base stock are mineral or synthetic, each type 

of oil exhibit different properties and are suitable for different applications [80].  

Mineral oils: Are the most commonly used lubricants. Manufactured from 

crude oil, there are certain advantages and disadvantages to the usage of 

mineral oil to lubricate specific machinery and components, which must be 

considered before it is used within lubricating systems. The low cost of mineral 

oils ensures its continued use in many industries even with the rapid 

development of synthetic oils. 

Synthetic oils: They were originally developed as a replacement for mineral 

oils for countries which lacked a reliable supply of it. Even with the high costs 

of manufacturing, in some cases three times higher than mineral oils, synthetic 

alternatives are increasingly being used especially in specialised applications 

where the lubricating properties of mineral oils are deemed inadequate. 

Mineral oils have serious disadvantages such as oxidation and viscosity loss 

at high temperatures and solidification at low temperatures. With the 

increasing demand of high performance lubricants to increase the durability 

and performance of machinery, the development of synthetic oils without the 

flaws of mineral oils has rapidly progressed.  

The base stock/oil of lubricants whether mineral or synthetically derived can 

be categorised in to five categories highlighted below (Figure 3-24) [81]. 

 

 

 

Figure 3-24. Base oil categories and properties [81]. 
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Properties of an ideal base oil are for it to be moderately viscous, inert towards 

surface, thermally stable, less volatile, provide wear and friction reduction and 

have good additive solubility [82]. 

3.7 Hydraulic Fluids 

Hydraulic fluids are considered to be an integral component of a hydraulic 

system. Its main purpose is to act as a lubricant, sealant and a medium to 

transfer heat and energy. One of the key advantages of hydraulic fluids is its 

ability to take the shape of any container, which allows the efficient transfer of 

force across the hydraulic system. It is crucial that a clean, high quality fluid is 

used to optimise the operation of the motor [7].  

With the expectation of hydraulic systems to run under high pressures and 

loads, closer component fits are necessary which in-turn can cause acute 

lubrication problems.  Eighty percent of hydraulic system break-downs are 

connected to fluid failure. This why hydraulic fluids with adequate lubricating 

properties are needed to provide sufficient lubrication between interacting 

components through the formation of continuous films, adaptable over a range 

of temperatures and pressures. They also need to have high chemical stability 

and wear resistant properties to allow the application of high loads. The 

tribological properties of the motor can be significantly affected by other 

properties of the fluid such as viscosity, concentration of contamination and 

additives [30, 83].  

3.7.1 Lubricant Viscosity 

Using a fluid of too low viscosity prevents the sealing of clearances in the 

system which results in a loss of motor efficiency due to the increase of 

internal leakage. Low fluid viscosity leads to the system operating in boundary 

condition and the failure of the lubricating film, which increases wear until 

failure due to seizure occurring. Fluids with higher viscosities create better 

lubrication regimes due to the formation of a thicker lubricating film, hence a 

reduction in wear and friction can be observed. Using a fluid of too high 

viscosity also has significant consequences such as the oil being too thick 
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preventing it from flowing easily through the motor, requiring it to work harder 

which in-turn reduces the motors efficiency. It can also cause the overheating 

of the motor which may lead to cavitation [30]. 

Running temperature and pressure has an important role on influencing the 

viscosity of the fluid, a decrease is observed with the increasing of both 

factors. Fluids with a high viscosity index are less affected by temperature, 

than those with a low V.I. With the high temperatures experienced at the 

piston/cylinder interface of the hydraulic motor, it can be expected to run in 

boundary condition with metal-on-metal occurring increasing wear and 

friction. Due to the inability of the fluid to protect the interacting surfaces 

additives are added to form a solid-like protective film [83].  

3.7.2 Lubricant Contamination 

As stated earlier it is crucial to use clean, high quality lubricant as it greatly 

influences the performance of the system. There are a range of common 

sources of contamination [30]: 

 Contaminated new oil: The oil is contaminated during manufacture 

and handling and is then used in the system. 

 Internally produced contaminants: Particles produced from the 

rubbing of surfaces will remain in the system until the fluid is cleaned 

or removed. As explained previously the interaction of these particles 

with surfaces can lead to the seizure of the entire motor. 

With swash plate axial-piston motors as particles of material are removed from 

the component surfaces, there is an increase in fluid leakage caused by 

enlargement of clearances, alongside an increase in operating temperature. 

The removal of particles allows the exposure of surface material to the 

lubricating fluid which increases the loss of material and the degradation of 

the motors performance. The most common areas of contamination in a 

hydraulic axial-piston motor are highlighted in Figure 3-25 [30]. 
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3.7.3 Lubricant Additives 

The performance of lubricants can be enhanced through the use of a 

combination of additives. These additives allow the improvement of 

performance properties of the base oil, which is essentially responsible for 

giving the lubricant its inherent properties such as lubricity, viscosity etc. It is 

critical to have a balance of concentration of the additives mixed with the base 

oil, as an additive can enhance aspects of the system behaviour alongside 

also negatively impacting its chemistry [83, 84]. Ninety five to ninety eight 

percent of hydraulic fluids are composed from base oils, whilst the rest is from 

additives. The most important additives are surface active modifiers such as 

friction modifiers, dispersants/detergents and wear inhibitors shown in Figure 

3-26 [16].  

 

Figure 3-25. Critical areas in an axial piston pump where contamination 
produces excessive wear [30]. 

Figure 3-26. Most common additives in hydraulic fluids [16]. 
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The lubricating mechanism of additives on worn surfaces is known as 

adsorption lubrication. The formation of a low shear strength interface 

between interacting surfaces helps to achieve a lubricating or friction reduction 

effect. The two types of adsorption are physisorption and chemisorption, with 

the latter occurring at higher temperatures and being more effective within 

practical applications [80].  

 Physisorption 

Physical adsorption is when the molecules of the adsorbate can attach or 

detach from a surface without any irreversible changes to the surface or 

the adsorbate. Although most liquids and gases physisorb to most solid 

surfaces, this process is limited by a temperature threshold. The bonding 

between the substrate and the adsorbate is provided by dispersion forces 

(Figure 3-27). The process is effective in reducing friction as long as 

temperatures do not excessively exceed ambient temperature.  

 

 

 

 Chemisorption 

Chemical adsorption is an irreversible or partially irreversible form of 

adsorption partially due to chemical bonding between the substrate and 

the adsorbate (Figure 3-28). The strength of the chemical bonding 

between the adsorbate and the substrate depends on the reactivity of the 

substrate material. 

 

 

Figure 3-27. Schematic illustration of physisorption [80]. 

Figure 3-28. Schematic illustration of chemisorption [80]. 
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3.7.3.1 Extreme Pressure (EP) Additives 

EP additives are used to reduce wear and prevent seizure occurring due to 

the interaction of surfaces. EP additives act with surfaces under severe 

distress and aim to prevent failure from scuffing or seizure. They inhibit metal 

on metal adhesion when the natural protective oxide layer is removed due to 

surface contact in high load, temperature and speed conditions [49]. Generally 

most EP additives contain at least one aggressive non-metal such as sulphur, 

which can react with the exposed metallic surface to create a protective 

surface film which can improve friction and wear behaviour [80]. The additives 

are activated at certain temperatures and pressures, in the case of sulphur 

based EP additives high pressures and temperatures are needed to produce 

a tribofilm [49]. 

3.7.3.2 Anti-Wear (AW) Additives 

Anti-wear additives differ from extreme pressure types as they are designed 

to operate and produce protective surface films to reduce wear rates, under 

normal operating conditions. Whereas EP additives are applied to situations 

of severe environments as they have the ability to react swiftly with the surface 

under distress. 

AW additives are able to reduce the wear rates of interacting materials by 

either forming a thick protective film, which can prevent contact between the 

two surfaces and is removed in place of the surface material or by modifying 

the geometry of the surface asperity through chemical bonding to allow the 

formation of a hydrodynamic film [49]. 

3.7.3.3 Zinc Dithiophosphates (ZDDP) 

ZDDP is the most common additive used in hydraulic fluids, as it is well known 

for its excellent antiwear and extreme pressure properties. Additives 

determine the wear and friction behaviour of the system through the formation 

of tribofilms on running tracks due to sliding contacts. These tribofilms are 

formed through thermochemical reactions of additive molecules with the 

metallic surface. The molecular structure of ZDDP is shown in Figure 3-29. 
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The advantages gained though additives can either be further improved or 

eliminated depending on the surface treatment or coating applied [48, 85]. The 

effectiveness of ZDDP and its wear properties are said to be improved when 

using harder surfaces where there is only a small difference between the 

hardness of the two interacting surfaces [86, 87].  

  

 

The structure of the tribofilm is influenced by several factors such as the 

composition of the lubricant and the interaction of the two surfaces. Under 

moderate contact conditions, the ZDDP reacts with iron in the surface material 

and a thick inorganic amorphous phosphate film is formed. The film consists 

of glass containing zinc, phosphorous, oxygen and iron sulphide. The 

production of long chain polyphosphates has been shown experimental to 

provide better wear resistance compared to a layer composed of short chains 

[88, 89]. 

It is believed that ZDDP can reduce wear in boundary lubrication through a 

number of mechanisms: (i) by the formation of a protective film, which acts as 

a viscous lubricant and separates interacting surfaces, (ii) the digestion of 

hard and abrasive oxide particles helping to reduce third body abrasion [89, 

90]. The most accepted mechanism is that the ZDDP tribofilm acts as a 

mechanically protective barrier, preventing direct contact between surfaces. 

This helps to reduce stresses at asperity contacts. Williams et al [91] 

suggested that the ZDDP tribofilm is softer than the substrate and could 

reduce the asperities in contact. The thickness of the tribofilm is dependent 

on a number of factors highlighted in the following section.  

There have been contradictory reports on the effect of ZDDP of friction 

behaviour of contacts. It has been reported that the formation of a ZDDP 

Figure 3-29. Simple structural formula of ZDDP [88]. 
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tribofilm increases friction due to the roughness of the pads present, which 

promotes boundary lubrication and higher friction [92, 93].  

Taylor et al [94] found that an increase in friction was due the tribofilm 

preventing lubricant being entrained into the rolling/sliding contact. It is 

believed that the formation of a ZDDP tribofilm would prevent the flow of 

lubricant in to the contact area causing lubrication starvation. In contrast, other 

studies have reported studies have reported that the presence of ZDDP had 

either a neutral [95] or helped to decrease friction. The difference in the 

reported results can be attributed to the differences in testing conditions and 

parameters used in each study [96].  

The mechanism of tribofilm formation with ZDDP on steel surfaces can be 

summed up as follows [97]: 

1. ZDDP is physisorbed onto the steel surface 

2. With the rubbing of the interacting surfaces, ZDDP decomposes and 

reacts in the rubbing contact due to high local temperatures at the 

interacting asperities. Spikes and Fujita [90] suggest that catalytic and 

triboelectronic processes alongside thermal interactions maybe 

responsible for the decomposition of ZDDP.  

3. Initially the phosphorous and sulphur from the ZDDP additive react 

with the steel surface to form iron sulphide and phosphate. On the 

rubbing surface zinc sulphide and long chained phosphates form from 

the decomposition of ZDDP. As rubbing continues a mixture of iron 

suphides/phosphate and zinc sulphide/phosphate begins to cover the 

surface.  

4. On the rubbed surface the decomposed products of ZDDP continue 

to react within the rubbing contact, Fe diffuses from the steel surface 

and reacts with the long chain Zn phosphate to create shorter chain 

phosphates.  

5.  Within the tribofilm a constant ratio of Zn/P phosphate cannot be 

maintained causing the polymerisation of zinc phosphate to form 

longer chain length zinc phosphate. This process is enhanced with 

longer rubbing times.  



- 59 - 

6. This process results in the formation of a multi-layer tribofilm, as 

shown in Figure 3-30 [98]. 

 

 

 

 

It is deemed important to characterise the chain length of the phosphates 

formed to understand the tribochemical reaction of ZDDP. The chain length of 

the phosphates can determine the mechanical and rheological properties. 

Important parameters used to characterise the phosphate glass are the P/O 

atomic ratio and the ratio of bridging oxygens (P-O-P) to non-bridging oxygens 

(-P=O and P-O-Zn). The disadvantage of using this method of 

characterisation is the presence of sulphur in the contact could partially 

substitution oxygen in the polymer chain backbone (O-P-S instead of O-P-O). 

The quantification is also easily affected by the presence of contaminants. The 

use of ΔBE (Zn 3 s – P 2p3/2) has the advantage of being independent of static-

induced uncertainties, and combined with the BO/NBO intensity ratio it can 

used as an effective analytical tool [99].  

3.7.3.4 ZDDP Film Formation and Thickness 

The thickness and formation of the tribo film produced by ZDDP is influenced 

by a number of physical parameters: 

 ZDDP Concentration: Willermet et al [100] showed that at higher 

concentrations the decomposition rate of ZDDP increased producing a 

thicker tribofilm and a greater surface area is covered. This 

demonstrates that the antiwear performance is greatly influenced by 

this factor. 

Figure 3-30. ZDDP film structure [98]. 
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 Lubricant Temperature: Palacios [101] work showed that with the 

increasing of temperature of the lubricant, the decomposition of ZDDP 

increases producing a thicker tribofilm which would in turn reduce the 

frictional force. But thicker films are reported to produce worse anti-

wear results due to a reduction in their durability and lubricant viscosity. 

A reduction in mechanical strength and the formation of short chain 

polyphosphates is also observed [88]. Lin et al [86] report that with 

lubricants containing ZDDP, at temperatures below 50°C a 

physisorbed film is formed but at 80°C and above a combined 

chemisorbed and chemically reacting film is created. 

 Applied Load: Nicholls et al.’s [88] study showed that with an increase 

in load and applied pressure ZDDP decomposition increased and a 

thicker tribofilm was formed. The increase in decomposition was 

suggested to be initiated by an increase of pressure at areas of 

asperities contacts.  

 Sliding Frequency: So et al [87] reported, with the presence of ZDDP 

additives in lubricants at higher sliding frequencies, the tribofilm is 

formed faster hence a decrease in friction coefficient was observed. 

 Surface Roughness: Yin et al [90] states that the interaction against 

a rougher counter face would provide greater opportunity for ZDDP to 

become trapped between the two surfaces, which would encourage the 

formation of thicker tribofilms. 

3.7.3.5 Interaction of ZDDP with Oxide and Nitrided Layers 

At room temperature the ZDDP molecules physically adsorb to the iron oxide 

layer. Lubricant temperatures above 60°C cause the decomposition of ZDDP 

molecules, releasing zinc ions which then adsorb on the iron oxide layer. This 

causes the formation of an enriched zinc adsorption layer on the iron oxide. 

During mechanical sliding, free iron ions interact with the tribofilm, where 

some interact with the sulphur from the DDP-, creating iron sulphides such as 

FeS2. Zinc sulphide is also created by the interaction of free Zinc (Zn) and 

Sulphur ions. This increases the thickness of the layer containing Zn. This 

mechanical mixing also enhances the formation of polyphosphates alongside 
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some Zn ions becoming oxidised [102]. This process is highlighted in Figure 

3-31. 

Xia et al [103] found that ZDDP additive reacted with nitride layer present to 

form a tribochemical film with low shear strength. The film has a good 

synergistic effect with the hard nitride surface because of the interplay 

between of the phase composition of the layer and tribochemical reactions 

under lubrication conditions. The combination of the oxide and tribochemical 

film together with the nitride layer contributes to a reduction in friction and 

wear.  

 

 

 

 

 

The interaction of ZDDP with worn nitrided surfaces has shown to produce 

shorter chains of polyphosphates, which are known to provide better 

tribological properties. The presence of iron oxides on the surface react with 

the polyphosphates, which can cause a shortening of chains and the formation 

of shorter chain length iron/zinc phosphates [102]. Worn nitrided surfaces are 

expected to contain higher amounts of Phosphorous & Carbon elements 

compared to non-treated surfaces, as the phosphates and carbon chains can 

be easily adsorbed on to the nitrided layer. A tribofilm would prevent the direct 

contact and adhesion of two interaction surfaces helping to reduce friction and 

wear [104]. 

 

Figure 3-31. Proposed model of tribofilm formation on the iron oxide in 
ZDDP containing a lubricant [102]. 
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3.7.3.6 Lubricant Additives for Oxy-Nitrided Steel Surfaces 

This project will have a strong focus on improving the friction coefficient and 

wear rates of samples which have been oxy-nitrided, so it is important to 

identify the additives which interact most effectively with this heat treatment. 

Sulphurized olefin (extreme pressure additive) and Tricresyl phosphate (anti-

wear additive) are commonly used additives which have shown to have 

excellent synergistic effects to reduce friction and wear of oxy-nitrided steels 

[105].  

 TCP: Shown to have strong antiwear properties in boundary lubrication 

conditions due to it reacting with iron present to form a thick iron 

phosphate lubricating film and iron oxide. The effectiveness of the TCP 

tribofilm formed is determined by the presence of oxygen in the reacting 

environment. TCP significantly increases the load carrying ability of the 

treated samples, alongside reducing friction and anti-wear behaviour 

[106].  

 SO: SO is widely used as an EP additive, usually found in two types, 

one based on a long chain olefin with 10-20% sulphur, and the other 

based on a shorter olefin and higher sulphur content. The higher the 

sulphur content the higher the expected incidence of S-S bonds in the 

molecule and the higher therefore its reactivity and EP potency [107].  

Under boundary conditions the additive reacts with the oxy-nitrided 

surface to form a film composed of iron oxide and iron sulphide (FeS). 

The film has a thick lubricating continuous structure which provides it 

with good anti-wear properties [108].  

When using both additives the synergistic effects for increasing load-carrying 

ability of the produced tribofilms is greater than just using a single additive. 

With the increasing of the applied load the friction coefficients of the samples 

decreases [105].  
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3.7.3.7 Detergent & Dispersant Additives 

Lubricants need to have the ability to prevent unwanted products from causing 

thermal and oxidative degradation. It is crucial to have additives in the 

lubricant that are able to suspend insoluble contaminates and keep surfaces 

clean; this can be achieved by the combined action of detergents and 

dispersants. Detergents are classed as a stabilizer and deposit control agent 

additive, with the aim to prevent the formation of harmful products in bulk 

lubricants and therefore essentially control the build-up of rust and corrosion 

in hydraulic motor components. They neutralize any acid present in the fluid 

by chemically reacting with it [49].  

Dispersants differ from detergents in three significant ways; they do not 

contain any metals unlike dispersants. They virtually have no acid neutralizing 

ability, as they rapidly deplete when they react. Finally dispersants are of a 

higher molecular weight than detergents, this allows them to be more effective 

with the suspending of contaminates and cleaning. Dispersants play a 

significant role with the dispersing of soot particles and sludge to prevent it’s 

settling and deposits [49]. 

3.7.3.8 Effect of Detergent on ZDDP Tribofilms 

Detergents are a common additive to hydraulic lubricants so it is important to 

understand and analyse the possible effects it may have on the formation of 

ZDDP tribofilms. Recent studies have shown that detergents are responsible 

for the deterioration of the effective anti-wear tribofilms formed by ZDDP; this 

is caused by the competition of surface sites between ZDDP and the detergent 

which could essentially reduce ZDDP’s surface concentration. Using over 

based calcium detergents reduces the rate of decomposition of ZDDP, and 

leads to the formation of short chained polyphosphates and calcium 

phosphate in the tribofilm which effectively reduces its anti-wear properties 

[109]. 

3.8 Summary of Literature Review 



- 64 - 

The literature provides an insight in to the role of hydraulic axial piston motors 

in a hydrostatic transmission system. The problems relating to the 

piston/cylinder friction pair component was highlighted, and the factors which 

influence its failure were investigated. Based on this literature review, there 

seems to be a lack of understanding regarding the best choice of coating that 

could be applied to the piston which would help reduce the friction and wear 

of the component. There are limited studies focussing on the tribo-interactions 

between nitrided surfaces and lubricant additives. With the ever growing 

demand to extend the durability of heavy equipment, surface improvement 

techniques such as nitriding combined with lubricant additives can be applied 

friction pairs within the system to improve their tribological properties. 

Therefore, the first objective of this project will be to investigate the most 

suitable heat treatment to be applied to piston in terms of reducing friction and 

wear. This stage will involve understanding why the chosen treatment 

provides the best results. Another key stage will to be gain an understanding 

how different lubricant additives interact with the chosen surface treatments 

to determine the best choice to give optimum wear and friction results. These 

stages will aim to provide a solution which will not only prevent the failure of 

the hydraulic motor but also improve its performance and efficiency. The final 

stage of the study would involve simulating a contact replicating the 

piston/cylinder interaction to investigate the tribological response of the 

chosen treatments if used in application. 
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Chapter 4 Materials and Methods 

4.1 Introduction  

This chapter outlines the main experimental procedures applied within this 

study. This includes both mechanical and chemical analysis techniques used 

to assess wear and changes to surface properties. 

4.2 Surface Treatment 

4.2.1 Treatment Specifications 

The different nitriding treatments applied were commercial samples produced 

by HEF Durferrit using salt bath or gas furnace techniques. The procedure for 

salt bath nitriding is highlighted in Table 4-1 and the samples produced are 

characterised in Chapter 5.  

The salt bath nitriding variant is the chosen technique to be applied to the 

piston component within the hydraulic motor to replace the existing Defric 

treatment currently used. The Defric coating treatment is produced by Parker 

Trutec, consisting of the application of a manganese phosphate coating 

followed by a MoS2 layer. The treatment process is highlighted in Table 4-2. 

4.2.2 Salt Bath Oxy-Nitriding  

The pin/ball samples are nitrided for the QPQ and Isonite treatments in a 

molten salt bath of cyanate at 400-600°C forming a nitride/compound layer. 

With the Sursulf treatment the salt bath is sulphur activated. For the QPQ 

treatment this process is followed by post oxidation in a specialised cooling 

bath at 370-430°C, which produces an oxide layer on the surface of the 

treated component. The nitriding procedure forms a layer ranging in thickness 

from 10-15 µm with oxidation creating a 0.5 µm oxide on top. Table 4-1 

highlights the procedure used for the QPQ treatment. 
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Table 4-1. QPQ treatment process breakdown. 

Process Temperature °C Time (min) 

Cleaning 40～60 <5 

Pre-heat 250±30 <30 

Nitriding 580±10 <120±10 

Oxidizing 400±10 <20±10 

Cooling In water <2 

Polishing - - 

Post-oxidizing 400±10 - 

4.2.3 Gas Nitriding 

The gas nitriding process is carried out on the plate samples using a 

convection furnace in an ammonia atmosphere at temperatures ranging from 

490-530°C. Only part of the ammonia dissociates catalytically at the surface 

of the hot steel sample, and some of the nascent nitrogen is absorbed [43]. 

Cooling of the sample is carried out in nitrogen to prevent oxidation [57]. This 

nitriding variant produces a layer 10 µm thick. 

4.2.4 Defric Coating 

The pins/balls are initially hardened using the gas nitriding process described 

in section 4.2.4, however the nitrided layers formed are removed through 

polishing leaving the hardened substrate. The surface is then phosphate 

before the spray-on application of a molybdenum disulphide (MoS2) running-

in paint coating (28µm) on top. After the application of the coatings the sample 

is oven baked from 160-250°C. The procedures form a 5 µm thick manganese 

phosphate layer followed by a 28 µm MoS2 coating. Table 4-2 highlights the 

procedures used. 
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Table 4-2. Defric treatment process breakdown. 

Process Temperature °C Time (min) 

Cleaning with 

Absorbent 
60±10 10±5 

Water Rinsing R.T. 1±0.5 

Surface Regulation 

(Refining) 
R.T. 1±0.5 

Coating Chemical 

Thynthesis 

(Phosphating) 

95±5 12.5±2.5 

Water Rinsing R.T. 1±0.5 

Hot Water Rinsing 90±10 1±0.5 

Dry (Stoving) 120±20 - 

Defric Coating - - 

Baking 180 60 

Inspection - - 

4.3 Pin/ball Substrates and Counter Bodies 

For the pin on plate tribotesting, the pins were used to represent the piston 

components of the piston/cylinder contact within the hydraulic motor whereas 

the plates represented the latter. The characteristics of the pins and plates 

used are highlighted below: 

 EN 10085 steel pin with semi spherical end with a radius of 10mm, with 

a substrate hardness 300 HV1 and a roughness (Ra) of 0.08 µm. 

Different nitriding variants and the Defric coating treatment were 

applied to the pins. The surface finish achieved with each treatment is 

highlighted in Table 4-3. 
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Table 4-3. Surface finish of pin samples after various surface treatments. 

Treatment Surface Finish (Ra - µm) 

Plain 0.08 

QPQ 0.05 

Defric 0.30 

SN 0.15 

 FCD 600 cast iron plate of dimensions 7×7×3 mm. The treatment 

applied to the plates is kept constant – gas nitriding, which leaves a 

surface finish - 0.6 µm. 

For the Mini Traction Machine (MTM) tribometer tests (section 4.6), a ball on 

disc configuration was used. The characteristics of the components are 

highlighted below. 

 EN 10085 ¾ inch ball, with a substrate hardness 300 HV1 and a 

roughness (Ra) of 0.02 µm. The QPQ heat treatment and Defric coating 

was applied to the balls. The surface finish achieved with each 

treatment is highlighted in Table 4-4. 

Table 4-4. Surface finish of MTM ball samples after various surface 
treatments. 

Treatment Surface Finish (Ra - µm) 

Plain 0.03 

QPQ 0.03 

Defric (MoS2) 0.68 

 

 FCD 600 cast iron disc – 46 mm diameter. The treatment applied to the 

plates is kept constant – gas nitriding, which leaves a surface finish - 

0.5 µm. 
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4.4 Test Lubricants 

Within this study four lubricants were used, they are summarised in Table 4-

5. A group I mineral oil (Oil A) is used to create a fully formulated hydraulic oil 

(Oil B) containing Ca, P, S and Zn elements. ZDDP is blended in to the oil 

alongside anti-oxidants, detergents and dispersants.  

Oil’s C and D use a blend of the base oil (Oil A) with alternative EP additives 

SO (1.5%) and TCP (0.25%) individually. 

Table 4-5. Oils used within this study. 

Oil Type 

Oil A Mineral oil (Group I) 

Oil B Fully –formulated 

Oil C Oil A + SO 

Oil D Oil A + TCP 

4.5 Pin-on-plate Tribotests 

4.5.1 Large TE77 

The large Cameron Plint TE77 reciprocating tribometer allows the tribological 

investigation when simulating the interaction of various contacts with varying 

conditions such as applied load and temperature. In this study the 

piston/cylinder contact is characterised to interact within boundary lubrication 

which is simulated using the TE77. Using a simple pin-on-plate configuration 

allows the opportunity to gain a basic understanding of the tribological 

behaviour of the different materials and lubricants being used within this study. 

Before testing all mechanical components are sonically cleaned in acetone for 

fifteen minutes and dried thoroughly. Heating of the lubricant present within 

the sample holder is controlled by a thermo couple which regulates the oil 

temperature to that set by the user. The heater plate is positioned below the 

sample holder. A load is used to measure the frictional force and using an 

analogue to digital convertor a digital signal is produced. A schematic of the 

TE77 tribometer is highlighted in Figure 4-1 [110]. A data file of the friction 

force every 300 seconds for the duration the length of the test is produced 
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using Labview software. Each data file is composed of 1000 measurements 

taken every 0.3 seconds. After completion of the test the pin and plate 

components are rinsed with heptane to remove excess oil and then stored in 

aluminium foil to avoid contamination. 

 

4.5.2 Test Conditions for TE77 Tribotests 

Through the application of a load an initial maximum Hertzian contact 

pressure (using Equation 2-1) is given to emulate the conditions between a 

piston/cylinder friction pair. The experimental set up conditions detailed in 

Table 4-7 are derived from testing conditions used by Komatsu to match those 

observed between components with the running of a hydraulic motor. For 

calculations the material properties used are summarised in Table 4-6. Oils 

A-D (Table 4-5) were used for this section of testing. 

Table 4-6. Properties of substrates used for pin and plate samples. 
 Pin Plate 

Material EN 10085 FCD 600 

Radius Radius 10 mm - 

Young’s modulus 190-210 GPa 190-210 GPa 

Poisson’s ratio 0.27 0.27 

(a) (b) 

Figure 4-1. (a) Images of large TE77 tribometer (b) Schematic of a TE77 
tribometer [110]. 
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Table 4-7. Test conditions for TE77 tribotests. 
Set up Conditions 

Stroke length 7 mm 

Sliding speed 0.17 (12Hz) & 0.35 m/s (25Hz) 

Hertzian contact pressure 0.92-1.90 GPa 

Lubricant temperature 80 °C 

Volume of oil 10 ml 

Testing duration 2 h 

Lambda ratio, λ 0.009 -0.02 

Figure 4-2 shows images of the tribopair after the TE77 tribotests. The wear 

scars generated on both samples were further analysed to determine 

chemical composition and morphology. 

 

 

 

 

 

4.6 Mini Traction Machine with Space Layer Imaging Method 

(MTM -SLIM) Tribotests 

4.6.1 MTM SLIM 

Figure 4-3 shows images of the MTM SLIM equipment from PCS instruments 

that was used within this study. The ball sample is fitted to a mechanical shaft 

whereas the disc is fixed to the bottom of the lubricant bath. The MTM allows 

the simulation of a sliding/rolling condition with both the ball and disc rotating 

Figure 4-2. Images of a TE77 worn pin and plate samples. 
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during tests (Figure 4-4) [111]. This tribometer allows the extension of the 

tests and analysis carried out when using the TE77 tribometer, whilst 

replicating contact conditions similar to that observed within the hydraulic 

motor. The MTM allows testing using pre-programmed test profiles 

highlighting the temperature, speeds, load, test sequence and the rate of data 

acquisition.  

 

 

 

 

 

 

 

Using the space layer interferometry method images of the ball during testing 

could be obtained and analysed. This technique uses a glass disc coated with 

a semi-reflective chromium layer which is attached to the glass window. An 

interference image is formed when light passes through the disc and is 

partially reflected from the chromium layer and steel ball. By recombining 

these beams which have travelled various distances an interference image is 

formed. Using proper calibration the thickness of the tribofilm between the 

glass disc and steel ball can be calculated. However due to the high 

roughness of the treated balls used within this study, it is difficult to accurately 

determine the thickness of tribofilm formed on the surface. The interference 

images obtained during tests were only used to monitor changes on the ball 

wear track with rubbing time.  

Figure 4-3. Images of the Mini Traction Machine. 
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4.6.2 Test conditions for MTM Tribotests 

Tests with the MTM were conducted using treated ¾ inch EN 10085 steel balls 

and 46 mm FCD 600 diameter discs.  

During testing, the temperature was kept constant at 80°C and a load of 36N 

was applied corresponding to an initial Hertzian contact pressure of 1 GPa. 

The sliding-rolling ratio (SRR), defined as the ratio of the sliding speed (Ub-

Ud) to the entrainment speed (Ub+Ud)/2 (where Ub and Ud are the speed of the 

ball and the disc, with respect to the contact) was 150% [111]. Yamaguchi [41]  

states the piston and cylinder component within the piston pump is a pure 

sliding contact, but for this study a percentage of rolling contact will be applied 

to replicate the rotation of the pistons within the cylinder block. 

The tribological tests were split into three alternative stages which were 

carried out at fixed time intervals, with an overall two hour testing period. The 

first stage, known as the conditioning phase, included rubbing the ball and 

disc together at a fixed slow entrainment speed in the mixed lubrication regime 

to encourage the formation of tribofilm on the ball and disc wear track. This 

was then followed by applying the Stribeck curve parameters, starting at a 

high speed - 2 m/s (mixed regime) and continued towards the lowest speed 

value - 0.01 m/s (boundary regime) to protect the formed tribofilm by 

preventing damage at low speeds when in boundary lubrication regime. The 

final stage involved halting the test and the ball sample was loaded against 

the spacer layer-coated window, where an image was captured which would 

allow the measurement of the tribofilm. Table 4-8 summarises the conditions 

Figure 4-4. Schematic of MTM SLIM tribometer [111]. 
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used with the tribometer within this study. Lubricants B-D (Table 4-5) were 

used within this section of testing. 

Table 4-8. Testing conditions for MTM - SLIM. 

Conditioning Phase  

Temperature 80°C 

Load / Hertzian Contact Pressure 36 N / 1 GPa 

Entrainment Speed 0.1 m/s 

Sliding-rolling Ratio 150% 

Stribeck Curve Phase  

Temperature 80°C 

Load / Hertzian Contact Pressure 36 N / 1 GPa 

Entrainment Speed 2 to 0.01 m/s 

Sliding-rolling Ratio 150% 

Figure 4-5 shows an example of the tribopair immediately after the completion 

of a test. Circular wear tracks are present on both the disc and ball, which can 

be further analysed for chemical composition and morphology.  

 

 

 

 

 

 

Figure 4-5. Images of the worn MTM plate and ball tribopair. 
 

 

Wear Tracks 
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4.7 Sample Preparation Techniques 

For the samples to be analysed using a range of surface analysis techniques 

a number of preparation processes were carried out. Initially the pin samples 

were cut in half across their lengths using a Accutom cutter and a diamond 

cut-off wheel. The cut samples were then mounted into a resin case, allowing 

the pins cross-section be polished using polishing paper and 3-0.1 µm 

diamond paste. The samples were then etched in 3% nital solution to reveal 

the microstructure of the treated steel. If the samples were to be analysed 

using SEM, the resin case in which the samples were mounted was coated in 

carbon to prevent charging. 

4.8 Analytical Techniques 

Certain analytical techniques were applied to characterise the modified 

surface prior to and post testing. SEM, EDX and XRD were amongst the 

techniques used to characterise the modified surfaces prior to testing. Post 

testing FIB-SEM was used to determine the presence and thickness of a 

tribofilm formed followed by XPS and Raman spectroscopy to determine its 

chemical properties. To analyse wear results and changes to surface 

topography interferometry and contact profilometry were employed. 

4.8.1 Micro Hardness Measurements 

The mechanical property hardness can be measured through a number of 

techniques such as using a micro-indenter. A Mitutoyo micro-hardness testing 

machine was used to measure the micro - hardness of the specimens. A 

chosen load is applied for duration of time, with this procedure being repeated 

a minimum of ten times around each area of interest. This technique was used 

to analyse the hardness of the different layers formed after the application of 

different coatings and heat treatments to the specimens. 

It was difficult to take microhardness readings close to the edge of the top of 

the surface, where it was required that each corner of the indentations were 
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made at least half the length of a diagonal from the surface edge to prevent 

the sample edging effect. 

4.8.2 Scanning Electron Microscope (SEM) 

SEM analysis was carried out using a Carl Zeiss EVO (Figure 4-6) [112].  

Under vacuum conditions high resolution images are produced to nano-meter 

scales (nm) using electrons to produce images instead of conventional light, 

which has the advantage of having longer wave lengths. This allows the 

observation and characterisation of metallic materials prior and post 

experiments. All images were recorded at an accelerating voltage of 20 keV 

corresponding to a volume fraction analysis depth around 2-3 µm.  

 

 

 

 

 

 

Scanning electron microscopes use a focused beam of high-energy electrons 

to bombard the samples surface producing a range of signals of the material 

such as secondary electrons, backscattered electrons and X-rays are 

produced. When the electron beam interacts with the atoms in the specimen 

surface there is an emission of secondary electrons (SE). Due to the kinetic 

energy of the supplied electrons, the electrons in the sample are knocked out 

of their orbiting shell. To keep the atom in a state of equilibrium, an electron 

from a higher energy shell will jump to the inner shell. This results in an 

emission of an X-ray with a characteristic wavelength of the given element. 

Back-scattered electrons (BSE) are electrons supplied by the beam that are 

Figure 4-6. Schematic representation of a SEM [112]. 
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reflected from the sample by elastic scattering. These signals allow the 

identification of surface features and small particles present [112]. 

4.8.3 Energy Dispersive X-ray Analysis (EDX) 

EDX was the technique used to identify the elemental and chemical 

composition of the different treated samples or an area of interest. The EDX 

system is integrated within SEM, and when the specimen surface is being 

bombarded with electrons, the energy of the X-ray signal released is 

measured which is then used to identify the atom which released it. This 

analysis technique was used to determine the chemical composition through 

the cross-section of different treated specimens, alongside analysing the 

surface chemistry after testing allowing the characterisation of any tribofilms 

formed. 

4.8.4 Electron Probe Micro Analysis (EPMA) 

EPMA was used to establish the composition of small areas on the 

specimens. A beam of accelerated electrons is focussed on the surface of a 

specimen using a series of electromagnetic lenses, and these energetic 

electrons produce characteristic x-rays within a small volume (1-9 µm3) of the 

specimen. The x-rays are analysed by energy dispersive detectors, where the 

resulting energy spectra allows the identification of the qualitative elemental 

composition of the sample. The characteristic x-rays are detected at particular 

wavelengths, with quantitative analysis being carried out using their intensity. 

Locally resolved analysis becomes possible due to the ability of the diameter 

of the exciting electron beam spot to be focussed below 1 µm [113].  

The advantages of this technique are its high spatial resolution and sensitivity, 

where in some cases individual analysis can be extremely short.  

4.8.5 Focused Ion Beam (FIB) 

FIB sample preparations and subsequent SEM were utilised as a technique 

to quantify the exact thickness, composition and morphology of any tribofilm 

formed on the specimens tested. The sample was prepared using an FEI 
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Nova200 dual beam SEM/FIB fitted with a Kleindiek micromanipulator for in 

situ lift-out. A 1 μm carbon film was deposited on to the centre of the wear 

scar area of 20 μm × 30 μm at 320 pA. Using a Ga+ ion beam FIB milling was 

carried out to create an initial volume of 20 µm × 20 µm × 10 µm at 30,000 

pA. Then a cleaning cross section was done at 1000 pA. Further cleaning 

cross sections were carried out at 320 pA with a volume of 25 µm × 1.5 µm × 

8 µm. The milled area was then imaged and analysed using SEM-EDX (Figure 

4-7).   

 

 

 

 

 

4.8.6 X-ray Diffraction (XRD) 

XRD measurements are taken using X’PERT and is known to be a non-

destructive technique used to analyse and determine the phase structure of 

the layers present in the specimen. Radiation is reflected off the specimen’s 

surface, from which the appropriate crystal structure can be identified from its 

unique reflection with Bragg’s law (Figure 4-8). 

Crystal structures are composed of layers, which act as a mirror. When there 

are X-rays with wavelengths similar to the distances between each of the 

planes, they can be reflected with the angle of reflection being equal to the 

angle of incidence. Bragg’s diffraction law (Equation 4-1) highlights this 

phenomenon [114]:   

                                               2dsinθ = nλ                                                (4-1) 

Carbon 

Tribofilm 

Milled Area 

Figure 4-7. FIB section of Plain pin sample. 
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Where d is the spacing between the diffracting planes or lattice, θ is the 

incident angle, n is any integer and λ is the wavelength of the beam. 

When this law is achieved, there is constructive interference produced by the 

diffracted X-rays and this can be detected by sensors scanning at set angles. 

2θ scans between 0° and 80°were carried out using Cu Kα radiation, and through 

the analysis of diffraction patterns it was possible identify and validate the crystal 

phases present. 

4.8.7 White Light Interferometry 

3D images of wear tracks generated on the plate samples after tribotests were 

obtained using white light interferometry using NPFLEX from Bruker, UK. The 

equipment is able to move in 3-dimensions to accurately use non-contact 

methods to produce an image of the surface examined. The ‘Vision64’ 

software suite allows the analysis and interpretation of data produced giving 

information such as volume lost, roughness and other useful surface 

parameters. The technique works by emitting white light which is split in two 

using a beam splitter. The first beam is directed towards an internal reference 

mirror while the second is directed towards the surface of the sample being 

analysed. Both of these beams are reflected back to a detector where waves 

of the same frequency undergo constructive interference and waves of 

different frequencies destructively interfere. These interference images are 

used to provide information on the topography of the samples being analysed.  

Analysis of the plates used within this project showed no measurable wear 

occurring with all testing conditions, so these results will not be presented in 

this study. 

Figure 4-8. a) Shows the setup of the X’PERT XRD rig. b) Schematic 
representation of Bragg diffraction [114]. 
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4.8.8 Contact Profilometry    

Contact profilometry can be used to provide data of higher accuracy than that 

received using non-contact interferometry, and was applied to the pin/ball 

samples used within this study. A Taylor Hobson Form TalySurf was used to 

carryout contact profilometry measurements. It is important to calibrate the 

stylus using a standard to ensure accuracy of measurements taken. 

Measurements were processed using the Ultra software suite which was used 

to produce visual images and numerical data. Profilometry data yields wear 

scar width and depth measurements, alongside surface topography readings 

such as roughness and other useful parameters.  

4.8.9 X-ray Photoelectron Spectroscopy (XPS) 

XPS is a surface sensitive analytical technique that uses X-rays to excite the 

surface of interest. Under high vacuum the X-rays cause the ejection of 

electrons which are characterised in terms of their kinetic energy, in electron 

volts (eV) using an electron detector (Figure 4-10) [115]. 

Within this study XPS were primarily employed to investigate any 

tribochemical interactions that may have occurred between the modified 

surfaces and lubricants used. XPS uses monochromatic X-rays from 

aluminium K alpha source. An approximate area of 500 µm2 was analysed in 

the centre of the worn areas of the pin samples. 

 

Figure 4-9. Wear measurements of the pin samples after TE77 tests. 
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XPS is surface specific as it can only penetrate the upper few nanometres (5-

10 nm) of the sample [116, 117]. Short survey scans were carried out to 

initially determine which elements were present. This was achieved using 

setting of 0.8 eV energy step size and 20 ms dwell time. High resolution scans 

of selected element peak regions were carried out to allow for full resolution 

of the peak components present. The settings for high-resolution scans were: 

0.1 eV for energy step size and 100 ms for dwell time. In order to assess the 

variation in composition and to mitigate any contamination effects each 

sample was subjected to etching using a 3 kV, 10 mA argon-ion gun.  

The data was analysed using Casa XPS software where the positions, areas 

and height of element peaks can be determined. Using C-1s known electron 

energy value of 284.8eV, the binding energy scale can be calibrated. Values 

of binding energies, full width at half maxima (FWHM) and relative sensitivity 

were taken and found from literature and then applied to the data received. 

There are certain instance where using XPS cannot definitively identify how 

the element is incorporated into a film. Two examples of this are calcium 

carbonate versus calcium phosphate which are detected at very similar eV 

values (347 eV for both compounds) and zinc oxide versus zinc sulphide 

(1021-1022 eV) [118-120]. In these cases a secondary analytical technique 

can be employed to fully attribute species present.  

For this study the results for an etching depth of 1.34 nm are presented and 

focussed on in this study as it was believed due to the relative thinness of the 

tribofilms formed with the QPQ samples as shown by FIB-SEM, etching too 

Figure 4-10. Schematic diagram how XPS analysis is conducted [115]. 
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deep may change the chemical species present within the tribofilm. Using a 

low etching time would allow the analysis of the tribofilm close to its top surface 

avoiding any possible contaminants which may be present.  

4.8.10 Raman Spectroscopy 

Raman spectroscopy was the secondary analysis technique used to support 

the identification of key chemical species detected when using XPS. In this 

study a commercial Raman microscope (inVia Raman microscope, Renishaw 

plc.) was used. A light source is directed on to the sample and the scattered 

light is collected from the sample by the same lenses used to radiate the 

samples. A 488 nm wavelength (30 mW) Modu-laser Steller REN Argon laser 

and 785 nm (300 mW) diode laser are used as the exciting light source. The 

Raman spectrometer provided a maximum depth and lateral resolution of 2 

µm.  

There is a 180° backscattering of the scattered light from the specimen 

surface and it passes through a notched filter that removes Rayleigh 

scattering and then a lens through a slit is used to focus and direct them onto 

a diffraction grating. This scattered light is then split into component 

wavelengths or spectrum and detected on a charged-couple device (CCD) 

detector (Figure 4-11).  

 

 

 

 

With the Renishaw Raman spectrometer spectra can be obtained using two 

methods: 

Figure 4-11. Schematic diagram of the Raman spectrometer. 
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1. Single spot analysis: With this analysis option, a single spectrum is 

obtained from a single spot on the sample. 

2. Spot-to-spot mapping: Several spectra are obtained from different 

spots on the samples in a single analysis, allowing the mapping of 

larger areas. However this technique is heavily time-consuming. 

Using Renishaw’s analysis software suite – WiRE program where Raman 

peaks were fitted with mixed Gaussian/Lorentzian curves to determine the 

peak frequency, FWHM and peak intensity.  

4.9 Summary 

The experimental techniques and analysis methods highlighted in this chapter 

allow the investigation of the impact of surface modification and lubricant 

additives have on the tribological behaviour of steel. Surface analysis makes 

it possible allows the ability to observe and characterise changes to the 

surface of a metal pre and post testing, whereas surface chemistry analysis 

allows the quantification and characterisation of any layers formed posting 

experiments. Combinations of the techniques listed above were used to 

complete a full and comprehensive investigation in to interaction of modified 

surface with various lubricant additives. 
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Chapter 5 Surface Characterisation 

5.1 Introduction 

The various surface treatments applied to the test samples have an impact on 

the mechanical properties and microstructure of the untreated base steel and 

play an important role on its friction and wear behaviour. In order to 

understand the effect of these surface protective treatments, characterisation 

of the samples treated layers are necessary. This is achieved through using 

SEM and EDX to characterise the changes in morphology and confirm the 

nature of the chemical composition of the layer.  

From a tribological point of view it is also important to characterise the change 

of hardness through the different layers of a treated sample. The information 

gathered in this chapter will allow the correlation of the samples behaviour to 

the characteristics and properties of the layers present. 

5.2 Pin Substrate Material 

The base material used for the samples, on which the different surface 

improvement techniques were applied to, was low alloy/nitriding steel (EN 

10085). The substrate contained key elements such as Mo, Cr & V, which 

enhanced the properties of the nitride layer formed. The elemental 

composition of the material is highlighted below (Table 5-1) combined with an 

SEM image of the microstructure of an untreated plain sample (Figure 5-1) 

[79]. The base material microstructure showed the presence of ferrite and 

pearlite phases as expected of an untreated sample with a carbon content 

0.26-0.34% according to the iron-carbon phase diagram (Figure 3-10). 

%C %Si %Mn %P %S %Cr %Mo %V 

0.26-0.34 ≤0.40 0.40-0.70 ≤0.025 ≤0.030 2.30-2.70 0.15-0.25 0.10-0.20 

Table 5-1. Elemental composition of 31CrMoV9 Steel [79] 



- 85 - 

5.2.1 Nitriding (QPQ) Treatment 

5.2.1.1 Microstructure and Elemental Analysis 

Figure 5-2 shows the SEM microstructure of the cross-section of a salt bath 

nitrided (QPQ) pin sample. The salt bath nitriding process was carried out at 

580 10−
+ °C for 2 hours within a cyanate salt bath. This was followed by using 

a specialised cooling bath to form an oxide layer. This process was done at 

400 10−
+ °C for 20 minutes. A very thin oxide layer (0.5 µm) is formed at the top 

surface, followed by a porous compound layer (white layer) with a thickness 

of 13-15 µm below. The porosity (~ 5-7 µm) formed on the compound layer is 

filled with the iron oxide (Fe3O4). Under this layer a thick diffusion zone of 

about 250 µm is formed. The Isonite process is identical to the QPQ treatment 

with the absence of an oxide layer. 

Figure 5-1. SEM image profile through the cross-section of a plain 
untreated sample. 

Figure 5-2. SEM image profile through the cross-section of a QPQ 
sample. 

Pearlite and Ferrite 
Phases 

Diffusion Zone 

(250 µm) 

Compound 
Layer (13 µm) 

Oxide Layer & 

Porosity 
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Using energy dispersive X-ray analysis (EDX) the C, Fe, N, O profiles through 

the QPQ samples can be line scanned from the surface to the core (shown in 

Figure 5-3). The distribution of C through the cross-section shows a high 

content at the surface, due to the presence of a carbon coating around 

sample, followed by a quick decline. With the O profile there is a presence 

through 6 µm of the cross section from the top surface, before there is a steep 

decline. The presence of O correlates to the depth of the porosity present on 

the surface of the compound layer. The porosity is formed after the nitriding 

process and is subsequently packed with Fe3O4 after the sample is oxidised, 

hence oxygen is detected below the top surface. 

Using the nitrogen profile the compound layer thickness can be verified (13 

µm – highlighted with dashed line) as the nitrogen peak begins to decline 

through the compound layer, and then levels off. The nitrogen profile is seen 

to have the lowest intensity compared to the others, which relates to the 

(a) 

(b) 

(c) 

(d) 

Figure 5-3. The elemental line profiles created using EDX through the 
cross-section of a QPQ sample:  (a) C Profile (b) N Profile (c) O 
Profile (d) Fe Profile. 
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gradual diffusion of nitrogen from the surface to the core during the oxy-

nitriding process. At a 6 µm depth from the surface, an interesting 

phenomenon is observed where an increase of nitrogen content is measured. 

This is due to iron atoms diffusing from the nitrided layer to surface which is 

being oxidised, which leads to a redistribution of nitrogen atoms in the 

compound layer and nitrogen atoms become abundant [70]. The nitrogen rich 

compound layer contains porosity caused by the association of dissolved 

nitrogen as gas molecules (N2) at grain boundaries and within grains. At the 

surface-adjacent part of the layer, porosity is most distinguishable due to this 

layer having the largest dissolved nitrogen content [56, 57, 66].  

From the iron profile it is possible to see that its intensity becomes stronger 

after a depth of 13 µm (circled in Fe profile – Figure 5-3), where the compound 

layer ends. The compound layer has intermetallic/inert properties [121, 122] 

and the substrate has no real influence here. This changes at a greater depth 

where an increase in iron influence is observed.    

5.2.1.2 Hardness Profile 

Figure 5-4 shows the microhardness curve for an applied load (9.81 N) against 

the distance from the surface for the oxy-nitrided samples. The peak hardness 

of the surface layer was 830 HV1 at 0.05 mm from the surface, with the 

hardness of the diffusion layer gradually decreased with an increase in 

distance from the surface. The gradual decrease of nitrogen through the 

specimen would hinder the formation of iron nitrides and fine nitrides which 

would account for the decrease in hardness through the specimen’s depth. 

The surface hardened layer depth at which the hardness reaches the value of 

the core substrate hardness (370 HV1) was about 0.35 mm.  

The case hardened depth is deemed to be lower than when using alternative 

nitriding processes due to the shorter treatment time of the salt bath nitriding 

treatment. The higher treatment temperature of the salt bath process 

compared to other variants leads to the production of coarse nitride 

precipitates resulting in lower surface hardness [123]. 
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5.2.1.3 Phase Identification 

Figure 5-5 shows the X-ray diffraction spectrum of the salt bath nitrided 

samples, through which the formation of magnetite (Fe3O4) and hematite 

(Fe2O3) phases were identified within the oxide layer. With the nitrided layers 

ε-Fe2-3N and γ’-Fe4N phases were detected. The trends matched other similar 

studies who used nitrided samples [70]. With the nitrocarburising process the 

surface is treated in the presence of nitrogen and carbon, which enhances the 

formation of ε-nitride phases (Figure 3-14), as shown in Figure 5-5. The 

formation of ε-carbonitride phases are preferred over γ’-Fe4N as they are more 

ductile and provide higher hardness and wear resistance alongside having a 

wider N and C solubility range in comparison [57, 65].   
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Figure 5-4. Comparison of the hardness through the treated (QPQ) 

sample’s cross-section compared to the untreated Plain sample. 

Figure 5-5. X-ray diffraction pattern of a QPQ sample. 
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5.2.2 MoS2 Coated Sample 

5.2.2.1 Microstructure and Elemental Analysis 

Figure 5-6 shows the SEM microstructure of the cross-section of a MoS2 

coated pin sample, which possesses a thick granular layer followed by a thin 

coating underneath. The thick granular layer is the bonded coating (MoS2) 

composed of a solid lubricant and binder.  

Initially the thin 5 µm manganese phosphate coating is formed using a 

chemical thynthesis process at 95 5−
+ °C for 15 minutes. This was followed by 

the application of a 28 µm thick Defric coating consisting of MoS2 particles 

which were sprayed on.  

 

 

 

 

 

 

Using EDX the Mo, S, C, Fe, N, Mn, P, O profiles through the MoS2 samples 

can be mapped from the surface to the core (shown in Figure 5-8). The line 

scan showed that the first ~10 µm of the MoS2 coating was shown to be 

composed of C & O due to the sprayed on application of an MoS2 paint coating 

and then as expected mainly consisted of Mo & S, as it is composed of 

molybdenum di-sulphide. However using a Mo & S profile map scan (Figure 

5-7) of the entire layer showed that MoS2 was distributed through the entire 

coating from the top surface. The profiles show that the coating is ~28 µm 

thick, stopping where the manganese phosphate coating begins at a depth of 

~28 µm. The Mo & S peaks overlap in EDX, but this indicates both elements 

MoS2 Coating (~28 µm) 

MnP Layer (~4 µm) 

Figure 5-6. SEM image profile through the cross-section of a MoS2 
coated sample. 
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are present, but it is not possible to quantify the intensity of each individual 

element. There is a high distribution of C through MoS2 and there is a steep 

decline at the point where the manganese phosphate layer begins and 

remains at a very low level through the diffusion layer. An opposite trend is 

observed with Fe, where a very low presence is observed through the MoS2 

and manganese coating, but there is a quick increase at the boundary and 

through the substrate. At a depth of 28 µm from the surface after the MoS2 

coating there is a peak of manganese and phosphorous of about 4 µm 

thickness, which validates the thickness and position of the manganese 

phosphate coating. 

There is an overall increase of nitrogen presence at the end of the MoS2 and 

MnP coating, and through the substrate. This increase is due to the original 

application of a gas nitriding treatment to the substrate, before the nitride 

layers were removed. Another significant peak appearing in the O profile when 

the manganese phosphate coating begins. This indicates the presence of 

oxygen in the layer supporting the results shown from using XRD.  

 

 

 

 

 

 

 

 

 

Figure 5-7. EDX mapping of (a) Mo & (b) S through the cross-section of 
the MoS2 coated sample. 

(a) Molybdenum (b) Sulphur 
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5.2.2.2 Hardness Profile 

Figure 5-9 shows the microhardness curve for an applied load (9.81N) against 

the distance from the surface for the MoS2 coated pin. The peak hardness of 

the surface layer was 763 HV1 at 0.05mm from the surface, with the hardness 

of the diffusion layer gradually decreased with an increase in distance from 

the surface. The surface hardened layer depth at which the hardness reaches 

the value of the core substrate hardness (370 HV1) was about 0.35mm.  

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

Figure 5-8. The elemental line profiles created using EDX through the 
cross-section of a MoS2 coated sample: (a) C Profile (b) Mn Profile 
(c) P Profile (d) Fe Profile (e) O Profile (f) N Profile (g) Mo & S 

Profiles. 
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Due to the relative softness of the MoS2 layer it was applied on to a hardened 

substrate, which was achieved using gas nitriding after which the nitride layers 

were removed leaving just a diffusion zone. Using a material of high hardness 

would ensure contact loads are essentially supported by the contact material 

instead of the formed film. The hardening of the sample is also most likely 

responsible for the similarity of hardness through the cross-section of the QPQ 

samples.  

 

Figure 5-9. Comparison of the hardness through the treated (MoS2 
coated) sample’s cross-section compared to the untreated Plain 
sample. 

5.2.2.3 Phase Identification 

Figure 5-10 shows the X-ray diffraction spectra of the MoS2 coated samples 

through which the presence of MoS2 is detected alongside MnP and Fe2-4N 

nitrided phases. γ-Fe4N is most likely to be present within the diffusion layer 

formed by the gas nitriding process used to harden the substrate. Figure 3-13 

highlights that a bi-phasic nitride layer is formed composed of ε & γ nitride 

phases when the gas nitriding process is used, and this is supported by the 

results gained from XRD (Figure 5-10). 
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5.2.3 Sursulf (SN) 

5.2.3.1  Microstructure and Elemental Analysis 

Figure 5-11 shows the SEM microstructure of the cross-section of a sulphur 

salt bath nitrided (Sursulf) pin sample. The salt bath nitriding process was 

carried out at 580 10−
+ °C for 2 hours within a sulphur activated cyanate salt 

bath. On the top surface a thin iron sulphide layer is formed (0.5 µm) which 

also fills in the porosity present on the compound layer. Like the QPQ 

treatment an 8 µm thick compound layer is created followed by a thick 

diffusion zone of about 200 µm.  

 

 

 

 

 

 

Figure 5-10.  X- ray diffraction pattern of a MoS2 sample. 

Figure 5-11. SEM image profile through the cross-section of a Sursulf 
sample. 
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 5-12. The elemental line profiles created using EDX through the 
cross-section of a Sursulf sample: (a) C Profile (b) Fe Profile (c) 
N Profile (d) S Profile (e) O Profile. 
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Using energy dispersive X-ray analysis (EDX) the C, Fe, N, O, S profiles 

through the Sursulf samples can be mapped using a line scan from the surface 

to the core (shown in Figure 5-12). The distribution of C through the cross-

section shows a high content at the surface then a quick decline. Using the 

nitrogen profile the compound layer thickness can be verified (8 µm – 

highlighted with dashed line) as the nitrogen peak begins to decline through 

the compound layer, and then levels off. With the EDX scans carbon and 

nitrogen peaks are known to overlap, however due to the presence of the 

nitrided layer the nitrogen peaks can be clearly identified.  

From the iron profile it is possible to see that its intensity becomes stronger 

after a depth of 8 µm (circled in Fe profile – Figure 5-12), where the compound 

layer ends. The compound layer has intermetallic/inert properties and the 

substrate has no real influence here. This changes at a greater depth where 

an increase in iron influence is observed.    

The sulphur profile follows a similar trend observed with the oxygen profile 

with the QPQ samples. The presence of sulphur is detected for the depth of 

the porosity (4 µm) – circled in S profile, present on the compound layer. 

During the Sursulf process the porosity is packed with FeS instead of Fe3O4 

as seen with the QPQ samples, hence sulphur is detected. 

5.2.3.2 Hardness Profile 

Figure 5-13 shows the microhardness curve for an applied load (9.81 N) 

against the distance from the surface for the Sursulf samples. The peak 

hardness of the surface layer was 756 HV1 at 0.05 mm from the surface, with 

the hardness of the diffusion layer gradually decreased with an increase in 

distance from the surface. The gradual decrease of nitrogen through the 

specimen would hinder the formation of iron nitrides and fine nitrides which 

would account for the decrease in hardness through the specimen’s depth. 

The surface hardened layer depth at which the hardness reaches the value of 

the core substrate hardness (370 HV1) was about 0.20 mm.  
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Figure 5-13. Comparison of the hardness through the treated (Sursulf) 
sample’s cross-section compared to the untreated Plain sample. 

5.2.3.3 Phase Identification 

Figure 5-14 shows the X-ray diffraction diagrams of the Sursulf samples, 

through which the formation FeS, ε-Fe2-3N and γ’-Fe4N phases were detected 

within the compound layer. This is due to the presence of a FeS layer above 

a compound layer. The sulphur activated nitrocarburising process stabilises 

the formation of the ε-phase within the compound layer. As stated earlier the 

formation of ε-carbonitride phases are preferred over γ’-Fe4N as they are more 

ductile and provide higher hardness and wear resistance compared [57].   
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Figure 5-14. X-ray diffraction pattern of a SN sample. 
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5.3 Plate Substrate Material 

The base material used for the plates, which were nitrided, was spheroidal 

graphite cast iron (FCD 600). Typical used for components where good 

damping is necessary such as gears, pistons, cylinders, dies and moulds 

[124]. The elemental composition of the material is highlighted below (Table 

5-2) : 

Table 5-2. Elemental composition of FCD cast iron. 

5.3.1 Gas Nitriding Treatment 

5.3.1.1 Microstructure and Elemental Analysis 

Figure 5-15 shows the SEM microstructure of the cross-section of a gas 

nitrided plate sample. The process was carried out at 580 10−
+ °C for 10 hours 

within an ammonia gas atmosphere furnace. A thick compound layer (white 

layer) of 10 µm was formed on the top surface. Under this layer a thick 

diffusion zone with a fine pearlite microstructure of about 250 µm is formed.  

 

 

 

 

 

 

%C %Si %Mn %P %S %Ni %Cr %Mo %V 

3.50-4.00 2.00-2.50 0.50-0.80 ≤0.06 ≤0.02 - - - - 

Diffusion 
Zone (250 

µm) 

Compound 
Layer (9 µm) 

Figure 5-15. SEM image profile through the cross-section of a gas 
nitrided plate sample. 
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Using EDX the C, Fe, N, O profiles through the gas nitrided plates can be 

mapped from the surface to the core with a line scan (shown in Figure 5-18). 

The distribution of C through the cross-section shows a high content at the 

surface then a quick decline. Using the nitrogen profile the compound layer 

thickness can be verified (9 µm – highlighted with dashed line) as the nitrogen 

peak begins to decline through the compound layer, and then levels off when 

reaching the diffusion zone.  

From the iron profile it is possible to see that its intensity becomes stronger 

after a depth of 9 µm (circled in Fe profile – Figure 5-16), where the compound 

layer ends and there is no real presence previous to this. This suggests that 

the compound layer has inert properties and the substrate has no real 

influence here. This changes at a greater depth where an increase in iron 

influence is observed.    

 

 

 

 

 

 

 

 

 

 

 

Figure 5-16. The elemental line profiles created using EDX through the 
cross-section of a gas nitrided plate sample:                                                    
(a) C Profile (b) O Profile (c) N Profile (d) Fe Profile. 
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5.3.1.2 Hardness Profile 

Figure 5-17 shows the microhardness curve for an applied load (9.81 N) 

against the distance from the surface for the oxy-nitrided samples. The peak 

hardness of the surface layer was 475 HV1 at 0.05 mm from the surface, with 

the hardness of the diffusion layer gradually decreased with an increase in 

distance from the surface. The peak hardness of the gas nitrided sample is 

significantly lower than when gas nitriding or alternative variants are carried 

out on nitriding steel, this is most likely due to the absence of key elements 

within the FCD 600 iron needed to formed hard nitrides that help to improve 

the treated material’s hardness. 

The gradual decrease of nitrogen through the specimen would hinder the 

formation of iron nitrides and fine nitrides which would account for the 

decrease in hardness through the specimen’s depth. The surface hardened 

layer depth at which the hardness reaches the value of the core substrate 

hardness (260 HV1) was about 0.20 mm.  

 

Figure 5-17. Comparison of the hardness through the treated (gas 
nitrided) sample’s cross-section compared to the untreated Plain 
plate sample. 
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5.3.1.3 Phase Identification 

Figure 5-18 shows the X-ray diffraction diagrams of the gas nitrided plate 

samples, with the most dominate layers being identified as ε-Fe2-3N and γ’-

Fe4N phases.  

 

5.4 Summary 

 Salt bath nitriding (QPQ) produced three distinct layers – an oxide 

layer, compound and diffusion zone. The compound zone 

demonstrated inert properties and was composed of ε-Fe2-3N & γ-Fe4N 

phases. 

 The MoS2 and Manganese Phosphate coating treatments apply two 

coatings on to a gas hardened steel surface. XRD detected the 

presence of MoS2 from the soft coating and γ-Fe4N due to the initial 

gas nitriding process. 

 The hardness through the cross-section of QPQ treated and MoS2 

coated samples were almost identical due to the hardening of the latter 

samples substrate using a variant of nitriding. 

Figure 5-18. X-ray diffraction pattern of a gas nitrided plate sample. 
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 The Sursulf sample was composed of a compound and diffusion layer 

with a thin FeS layer at the very top. Due to the sulphur activation of 

the bath the compound layer is primarily composed of ε-Fe2-3N phases. 

A thinner compound layer is formed compared to the QPQ treatment 

and therefore a steeper decline of hardness through the depth of the 

sample compared to QPQ and MoS2 coated samples is observed. 

 The gas nitrided plates were also composed of a compound and 

diffusion zone of similar properties as the QPQ samples. However the 

hardness of the treated plates were significantly lower than the treated 

pin samples due to the application of the treatment on to non-nitriding 

steel. 

The review of the literature highlights the lack of information of the interaction 

of oil additives with the modified surface. Therefore this project will focus on 

the tribochemistry of the different layers formed after treatment with the 

lubricant, which will be discussed in the following chapters. This Chapter 

helped to characterise the thicknesses and structure of the layers present after 

treatment, which will help with the identification and correlation to tribological 

behaviours observed. 
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Chapter 6 Friction and Wear Behaviour of Oxy-nitrided (QPQ) 

Samples in Comparison to Untreated and MoS2 Coated 

Samples 

6.1 Introduction 

The current protective treatment applied to the piston surface of a hydraulic 

piston motor is the initial hardening of the surface using gas nitriding followed 

by the application MnP and MoS2 layers. An alternative to this treatment is the 

application of the salt bath nitriding heat treatment process.  

Oxy-nitriding has been found to be an effective surface treatment technique, 

used widely in industrial applications due to its ability to prolong the 

performance lifetime of components. This chapter focusses on tribological and 

tribochemical interactions occurring between a modified steel surface and a 

fully-formulated hydraulic oil (TO10). Tribology tests are supported by 

chemical analysis to identify the mechanisms of low friction and wear 

behaviour. Low friction is usually associated with high wear, due to the 

application of soft running-in coatings/layers which are used as a friction 

control measure.  

This section analyses the ability to achieve and maintain low friction and wear 

using surface engineering techniques in the context of the oxy-nitriding and 

MoS2 coating processes. By understanding the tribochemistry at the interface, 

avenues to optimise the lubricant formulation for that particular surface 

treatment are opened up.   

The friction and wear properties of the alternative surface treatments were 

investigated with the large TE77 tribometer using contact pressures of 0.92, 

1.19 & 1.90 GPa at sliding frequencies 12 & 25 Hz. Fully formulated hydraulic 

oil (TO10) was used at 80°C due to the closeness to the actual temperature 

value used within the motor. During the two hour tests, the pin samples used 

were plain- untreated, nitrided (QPQ) and MoS2 coated with a 10mm sliding 
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radius against gas nitrided plates. The wear depths and volume loss of the 

plates were not analysed due to wear being negligible.  

To access the tribochemical interaction between the treated samples and the 

lubricant FIB-SEM was used to highlight the presence of a tribofilm, followed 

by employing XPS and Raman Spectroscopy to characterise the chemical 

species present. It is important to access the impact of the chemical species 

formed within the tribofilms of the samples on friction and wear. 

6.2 Friction Response of Sample Variants  

Figure 6-1 highlights the typical change in behaviour over time observed with 

the three samples during the complete duration of the test with TO10 as a 

lubricant. Generally the friction for plain samples remains steady throughout 

with the surface of the sample shown to be heavily worn as shown in section 

6-3. The friction values were similar to that observed in other studies using 

untreated steel with ZDDP [1]. When using the MoS2 coated samples the 

friction curve shows that there is a running-in period at the beginning until the 

system reaches a steady state as the surface asperities are removed. During 

all testing conditions the MoS2 coating is completely removed (section 6-4) 

and the diffusion layer below is exposed. The removal of the coating does not 

impact the friction behaviour shown by minimal changes to the friction trend 

(<10%) over the entirety of the testing period.  

With the QPQ samples a similar friction trend compared to the MoS2 samples 

is observed, with an initial running-in stage until steady state friction is 

achieved and maintained. The oxide layer present at the top surface of the 

QPQ samples is removed during testing (Figure 6-12), with no real impact on 

friction. Overall the friction values of the QPQ and MoS2 coated samples were 

very similar; however the QPQ samples in general demonstrated better friction 

and wear behaviour. This chapter will show the association of friction and wear 

with the physical changes at the surface.  
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The average friction coefficients for the untreated and treated samples in the 

stable stage (last 30 min of the test) under various contact pressures and 

sliding speeds are shown and compared in Figure 6-2. It is observed that the 

general trend is that QPQ samples produce the lowest friction results 

compared to the MoS2-coated and plain samples, which confirms the role of 

the oxy-nitrided heat treatment in friction reduction. Similar trends have been 

observed in previous studies with untreated and nitrided samples [104].This 

general trend is observed at the different contact pressures and sliding 

speeds. With MoS2-coated samples as the contact pressure is increased a 

drop in friction is consistently observed. For the untreated and MoS2-coated 

samples the friction coefficient values are comparable across the different 

testing conditions. The results with the MoS2 samples in this study are in 

disagreement with that observed by Demydov et al [125], where a significant 

decrease in friction was observed with MoS2 samples and ZDDP. 

A change in trend is observed at the extreme contact pressure of 1.90 GPa 

which was applied to simulate an environment where the compound layer of 

the QPQ sample is removed. At this testing condition the MoS2 sample has a 

lower friction coefficient than the plain and QPQ samples. The friction value 

of the QPQ was also the highest observed when compared to the other 

contact pressures applied. This increase in friction is highlighted in Figure 6-

3. The increase in friction is not substantial but is deemed to be significant in 

this study as in general the QPQ sample produced the lower friction trends for 

all previous testing conditions. With the application of the extreme contact 
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Figure 6-1. Friction coefficient vs time results over 2 hrs with the three 
samples at a 1.19 GPa contact pressure and sliding frequency - 12 
Hz with TO10 lubricant. 
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pressure for a shorter duration (40 minutes), Figure 6-4 highlights the return 

to a low friction coefficient for the QPQ sample. 

Common trends were observed with the friction results (Figure 6-2) with the 

steady increase of contact pressure and sliding frequency. With the 

application of a higher contact pressure with the different types of samples at 

both sliding frequencies (12 & 25 Hz) it is possible to see that in general there 

is a slight increase in friction but the effect was not significant enough to 

change the behaviour of the system. However with the doubling of the tests 

sliding frequency to 25 Hz, a measurable reduction in friction for all treated 

samples is observed. This is most likely due to the impact of the change in 

sliding distance with the increase of frequency while keeping the sliding time 

constant [126]. This will be discussed in detail later in section 10.1.  
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Figure 6-2. Friction coefficient results from experiments when the 
applied load and sliding frequency are varied using fully formulated 
lubricant with three types of samples at 80°C. 

Figure 6-3. Friction coefficient result for the QPQ sample when an 
extreme pressure (1.90 GPa) was applied at a sliding frequency of 
12Hz. The line highlights the increase in friction after a period of 
2000 seconds. 
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6.3 Wear Response of Sample Variants 

Using an optical microscope the worn surfaces of the different samples 

(Figure 6-5) were analysed. With the QPQ pin when the compound layer was 

not worn away (Figure 6-5(a)), the surface showed the presence of a tribofilm 

formed on edges of the worn surface. In comparison to when the compound 

layer is removed (Figure 6-6(b)) a wider surface covering film is seen to form 

across the entire surface. With the MoS2 coated samples (Figure 6-5(c)) it is 

possible to see a deeper penetrating wear scar, with higher magnification 

images showing the exposure of the substrate surface alongside the patchy 

remnants of the coating and the formation of a thick tribofilm. The images 

show the delamination of the coating and scoring of the exposed surface. The 

plain samples (Figure 6-5(d)) show the exposure of a rough surface with the 

presence of a thicker continuous tribofilm, who’s composition will be confirmed 

using other techniques such as EDX and XPS. 

 

 

Figure 6-4. Friction coefficient result for the QPQ sample when an 
extreme pressure (1.90 GPa) was applied for a duration of 2 hours 
and 40 minutes at a sliding frequency – 12 Hz. 
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Figure 6-5. Optical images of the wear scar regions of the different 
treated pin samples when a 1.19 GPa contact pressure was applied 
at 12 Hz. 
a) QPQ – Compound Layer b) QPQ – Compound Layer Removed c) 

MoS2 Coated d) Plain 

a) QPQ – Compound 
Layer Present 

c) MoS2  

b) QPQ – Compound 

Layer Removed 

d) Plain 
Sample 
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The depth profile measurements using Talysurf (Figure 6-6) showed that the 

QPQ pins had the lowest wear depths, compared to the other samples where 

the loss was significantly higher, with the plain samples showing the greatest 

loss. Generally, the wear depths of the pins increased with the application of 

higher loads and frequencies as expected. With the QPQ pins the wear depth 

was mainly contained within the compound layer (<13 µm), rarely reaching 

the diffusion zone. This is in contrast to the MoS2 coated samples where the 

coating did not survive testing and in almost every case the wear depth (>28 

µm) penetrated into the diffusion zone. However with the application of the 

extreme contact pressure of 1.90 GPa, Figure 6-7 highlights that the wear 

depth for the QPQ penetrates into the diffusion zone (>13 µm) and this 

correlates with an increase in friction observed in Figure 6-3. However when 

the extreme pressure test was run for a shorter duration (40 mins) wear does 

not penetrate through the compound layer. This indicates that the properties 

of the compound layer influence the samples low friction behaviour. 

As with the friction results, certain trends to the wear depths of the pin samples 

(Figure 6-5) were observed with the increasing of applied contact pressure 

and sliding frequency. The wear depths of the pin samples generally 

increased with the application of a larger contact pressure likely relating to the 

removal of greater amount of material. As with increasing the applied contact 

pressure a general increase in wear depth is observed with increasing the 

sliding distance.  
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0.92-1.90 GPa are applied at  12Hz & 25Hz sliding frequencies using 
fully formulated lubricant at 80°C. Red dashed line - thickness of the 
compound layer, green dashed line – MoS2 coating thickness. 
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The wear depth of the gas nitrided counter plates were negligible for all tests, 

instead there was small amounts of material transfer from pins on to the 

counter face.  

6.4 Tribofilm Analysis 

6.4.1 Tribofilm Analysis using SEM-EDX & FIB-SEM 

SEM-EDX (Figures 6-8, 6-10 & 6-12) was used to analyse spots inside and 

outside the worn areas of the different pin samples after the tribometer tests 

using fully formulated lubricant (TO10).  It allowed the mapping of selected 

elements across the surface to give an indication of the interaction of the 

surface with the additives within the lubricant. This process was followed by 

using FIB-SEM to analyse the cross-section of the samples to identify if a 

tribofilm was formed. Figures 6-9, 6-11 & 6-13 show the images where cross 

sections of the anti-wear (AW) tribofilms formed were made by FIB milling and 

then examined using SEM.  

With the plain samples SEM-EDX (Figure 6-8) shows high concentration of 

Fe present on the surface of the sample as expected with an untreated steel 

sample. Within the worn area there is a low presence of carbon, but oxygen 

Figure 6-7. Wear depths of the QPQ pins with the application of an 
extreme contact pressures 1.90 GPa for a duration of 2 hours and 
40 minutes at a sliding frequency – 12Hz. 
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is detected most likely due to natural oxidation occurring at the surface. Within 

the wear scar sulphur and phosphorous are clearly detected, elements which 

are associated with the formation of a tribofilm when using the ZDDP additive. 

Zinc, which is usually associated with the formation of a phosphate tribofilm, 

is not clearly detected. All elements are identified in the EDX spectrum. 

Using FIB-SEM (Figure 6-9) the tribofilm was identified and analysed at two 

points on the plain samples, having thicknesses of ~104 nm and ~194 nm 

respectively and EDX verified the presence of a phosphate tribofilm with the 

detection of phosphorous and sulphur presence. XPS carried out on the worn 

surfaces later on (section 6.4.2) confirmed the presence of a ZDDP formed 

tribofilm.  

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 



- 111 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-8. a) SEM image, b) EDX maps  and c) spectrum of the unworn 
and worn surface of the Plain pin samples at 1.19GPa contact 
pressure and 12Hz sliding speed. 

Figure 6-9. a) FIB-SEM images & b) EDX spectra of the tribofilm formed 
on the surface of the Plain sample at 1.19 GPa contact pressure and 
12 Hz sliding speed. 

c) 

a) 

b) 
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With the MoS2 samples high amounts of molybdenum and sulphur were 

detected outside the worn area when using SEM-EDX (Figure 6-10)) which 

relates to the presence of a MoS2 coating. Within the worn area a strong 

presence of iron is detected, but no molybdenum or sulphur supporting the 

assumption the MoS2 coating is completely removed during testing. 

Phosphorous and sulphur are not clearly detected within the worn surface with 

maps, however there is a clear presence of zinc detected which may  indicate 

a tribofilm may be present. However just outside the worn area a strong 

presence of manganese and phosphorous is detected most likely relating to 

the remnants of the MnP coating which was present under the MoS2 coating. 

No clear presence of nitrogen is detected on either the unworn or worn areas 

of the pin, even though the sample had initially been hardened using the gas 

nitriding process before the nitride layers were removed. The EDX spectrum 

taken within the wear scar showed the presence of Fe, P, S & Zn. When using 

FIB-SEM with the MoS2-coated sample (Figure 6-11) a ~62 nm thick film was 

identified and EDX showed a strong presence of phosphorous and zinc 

commonly used to indicate the presence of a tribofilm. XPS (section 6.4.2) 

was also used confirm the presence of a tribofilm. 
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Figure 6-10. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the MoS2 pin samples at 1.19GPa contact 

pressure and 12Hz sliding speed. 

Figure 6-11.  a) FIB-SEM images & b) EDX spectra of the tribofilms formed 
on the surface of the MoS2 coated sample at 1.19GPa contact 
pressure and 12Hz sliding speed. 

c) 

a) 

b) 
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When analysing the QPQ samples using SEM-EDX (Figure 6-12) a high 

presence of oxygen is present on the unworn areas of the pin sample, which 

relates to the presence of a Fe3O4 oxide layer. However within the wear scar 

a significantly lower oxygen presence is detected most likely due the removal 

of the oxide layer during testing. Within the wear scar a high concentration of 

iron and nitrogen is detected relating to the nitride layer exposed under the 

oxide layer. A low presence of sulphur and phosphorous is detected within the 

wear region, however zinc is not identified. The presence of phosphorous 

indicates the possibility of the presence of phosphate tribofilm. The EDX 

spectrum shows the presence of all the expected elements including zinc 

within the wear scar. 
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With the QPQ samples (Figure 6-13) SEM showed the presence of a patchy 

tribofilm on the surface. However no significant tribofilm was visible in the 

areas analysed using FIB-SEM, supported by EDX measurements showed a 

low presence of phosphorous, sulphur and zinc which are the common 

elements associated with the formation of a glassy phosphate tribofilm. When 

using XPS to analyse the worn surface (section 6.4.2), the presence of a 

phosphate tribofilm was detected. 

 

 

 

 

 

 

 

 

Figure 6-12. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surfaces of the QPQ pin samples at 1.19GPa contact 
pressure and 12Hz sliding speed. 

Figure 6-13. a) FIB-SEM images & b) EDX spectra of the tribofilms formed 
on the surface of the QPQ sample at 1.19GPa contact pressure and 

12Hz sliding speed. 

c) 

No Tribofilm 

a) 

b) 
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In the FIB-SEM images where the tribofilms were identified two dominant 

layers were observed. In each image the top layer is the tribofilm followed by 

the steel substrate underneath. A thicker non-uniform film was found to be 

formed on the plain sample which had the lowest surface hardness. Under 

boundary lubrication conditions, ZDDP reacts with the rubbing steel surface 

forming a tribofilm. This tribofilm is generally composed of mainly a mixed iron 

and zinc polyphosphate glass forming a pad-like structure. The surface is 

protected by the sacrificial properties of the tribofilm [127].  

6.4.2 Tribofilm Characterisation using XPS 

XPS was used to analyse the changes in chemical states of elements on the 

different treated pin sample worn surfaces. Figures 6-14 – 6-16 present the 

XPS data curves with fitted peaks, with Table 6-2 quantifying the elements on 

the different worn surfaces at a 1.34 nm etching depth. The results presented 

here focus on when an applied pressure of 1.19 GPa and a sliding speed of 

12 Hz are applied as the tribochemical findings were representative of the 

findings of all contact pressures used at the lower sliding frequency. The 

results for an etching depth of 1.34 nm are presented and focussed on in this 

study as it was believed due to the relative thinness of the tribofilms formed 

with the QPQ samples, etching too deep may change the chemical species 

present within the tribofilm. Using a low etching time would allow the analysis 

of the tribofilm close to its top surface avoiding any possible contaminants 

which may be present.  

Interestingly the presence of a phosphate anti-wear tribofilm was identified 

using XPS on the QPQ samples (Figure 6-16). This is most likely due to the 

larger area analysed and due to XPS being a more surface sensitive 

technique than EDX it was able to detect a relatively thin tribofilm. The 

tribofilms formed for all types of samples show the presence of ZnS/ZnO/Zn-

phosphates and also the presence of sulphide and sulphate formation which 

are expected to appear and in agreement with EDX results (Figure 6-12). The 

tribofilm can mostly be classed as being composed from inorganic amorphous 

pyrophosphates associated with Zn and S [90].   
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For all samples the key elements identified were carbon, oxygen, 

phosphorous, sulphur, zinc, iron, calcium and nitrogen. The main chemical 

species identified in both samples tribofilms are listed in Table 6-1. Common 

compounds identified within the different sample tribofilms are CaCO3 (347.0 

eV) from the presence of detergents within the lubricants. As expected with 

the presence of ZDDP, sulphides (161.7 eV) and phosphates (133.4 eV) were 

detected within all the samples tribofilms which can be associated with 

formation of amorphous pyrophosphates alongside zinc compounds. 

There are key differences between the tribofilms of the different samples. With 

the QPQ samples (Figure 6-16) the N 1s peaks show a tribofilm consisted of 

nitrides (397.8 eV)  due to presence of the nitride layer and organic species 

attributed to absorbed nitride complex [103]. Using XPS no chemical species 

of Molybdenum are detected in the tribofilm of the MoS2 coated samples after 

testing.  

The common Fe chemical states found in the tribofilms of all types of samples 

were Fe2O3 (710.4 eV), FeO (709.4 eV) & FeS2 (706.8 eV) (Table 6-1). The 

Fe chemical states found within the plain sample tribofilms were the same as 

the QPQ and MoS2 samples with the additional presence of FeS (712.1 eV). 

The detection of FeS2 within the plain samples (Figure 6-14) tribofilm is more 

common than with MoS2-coated samples (Figure 6-15), but the at% is 

significantly lower than with QPQ samples (Figure 6-16) which could be due 

to the formation of a thin film with the latter samples. The presence of a Fe3O4 

layer with the QPQ samples may have influenced the formation FeS2 [102]. 

Due to the treatment applied to the counter plates being kept constant, the 

tribofilm compositions from all tests were almost identical and they were 

thicker than that formed on the pin samples. It was assumed that due to the 

varying of treatment to the pin samples that the chemical species formed on 

these samples would be influenced, hence only the XPS data of the pin 

samples is presented.  
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The presence of a MoS2 coating and FeS2 compounds may influence the 

improved wear and friction behaviour seen with the MoS2 coated and QPQ 

samples. 

Table 6-1. General binding energy values for compounds relevant to the 
tribofilms formed on the worn surfaces of all treated samples [103, 
129]. 

 

Additive Element 
B.E / eV ( 1−

+ eV) Chemical State 

Plain MoS2 QPQ Plain MoS2 QPQ 

Fully 

Formulated 

(ZDDP) 

Fe 2p 712.1 - - FeS - - 

 710.4 - 710.3 Fe2O3 - Fe2O3 

 709.4 709.4 - FeO Fe2O3 - 

 706.8 706.8 706.8 FeS2 FeS2 FeS2 

N 1s - - 397.8 - - Nitride 

P 2p 133.2 133.4 133.9 Phosphate Phosphate Phosphate 

Zn 3s 139.4 140.1 139.9 ZnS ZnS ZnS 

S 2p 161.8 161.7 161.7 Sulphide Sulphide Sulphide 

 Ca 2p 347.3 347.0 347.0 CaCO3 CaCO3 CaCO3 

Figure 6-14. XPS Fe 2p, O 1s, P 2p and S 2p spectra of the tribofilms 
formed on the plain treated samples at an applied contact pressure 
1.19 GPa and 1.34 nm etching depth. 
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Figure 6-15. XPS Fe 2p, O 1s, S 2p and P 2p spectra of the tribofilms 
formed on the MoS2 treated samples at an applied contact pressure 
1.19 GPa and 1.34 nm etching depth. 
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Table 6-2 highlights the XPS at% quantification of all elements on the worn 

surfaces of the three sample variants. It is shown that at a 1.34 nm etching 

depth the tribofilm element concentrations are very similar for all sample 

variants. There are slight differences in P & Zn contents between the 

untreated plain, MoS2 coated and QPQ samples, most likely relating to a 

different tribofilm formation. As shown in Figure 6-10 (b) there is a strong 

presence of phosphorous within the wear scar of the MoS2 sample due to the 

remnants of an MnP layer. 

Table 6-2. XPS quantification (at%) of tribofilm formed on pin sample 
variants at 1.34 nm etching depth. 
 O N P S Ca Fe Zn 

Plain 52 - 8 8 24 5 3 

QPQ 50 1 9 8 29 2 2 

MoS2 51 - 11 6 28 1 2 

Interestingly when comparing the elemental composition of the tribofilm of the 

QPQ sample when the compound layer is present and removed, Table 6-3 

shows higher Fe and P content when the compound layer is removed. This 

may be an indication that the removal of inert compound layer could impact 

the formation of a tribofilm [89, 121]. 

 

 

Figure 6-16. XPS Fe 2p, O 1s, P 2p, S 2p and N 1s spectra of the tribofilms 
formed on the QPQ treated samples at an applied contact pressure 
1.19 GPa and 1.34 nm etching depth. 
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Table 6-3. XPS quantification (at%) of tribofilm formed on QPQ samples 
when the compound layer present and removed during testing (1.34 
nm etching depth). 

 O N P S Ca Fe Zn 

QPQ (layer 
present) 

50 1 9 8 29 1 2 

QPQ (layer 
removed) 

52 1 16 3 26 2 1 

With the removal of the compound layer (Figure 6-17(b)) with the extreme 

contact pressure and the exposure of the nascent iron substrate, a thicker and 

closer packed tribofilm can be observed on the surface of the sample (Figure 

6-17). This highlights the impact of the different layers on the formation of a 

tribofilm and potentially tribological behaviour. 

 

 

 

 

To understand the formation of the ZDDP tribofilm, the phosphate glass can 

be characterized. The glass polymerisation number (n) can be calculated 

using the (bridging oxygen) BO (P-O-P)-to- (non-bridging oxygen) NBO (-P=O 

and P-O-Zn) ratio, Equation 6-1:  

                                      BO/NBO = (n-1)/2(n+1)                                       (6-1) 

For n=1, the glass is an orthophosphate; for n=2 or higher the glass is a 

pyrophosphate or a metaphosphate [128, 129].  

Tribological samples generally have a heterogeneous composition and the 

presence of overlapping species can affect the measured BO/NBO value. To 

unambiguously determine and distinguish between different chain length 

a) b) 

Figure 6-17. SEM images of the tribofilm surface coverage of the QPQ 
samples a) the compound layer has not been removed b) compound 
layer removed. 
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samples the Zn 3s – P 2p3/2 binding energy (BE) difference can be used in 

conjunction with glass polymerisation number. Smaller BE differences 

indicate longer phosphate chain lengths [130].  

Table 6-4. BO/NBO ratios for sample variants. 
 BO (area) NBO (area) BO/NBO ratio Zn 3s-P2p3/2 BE (eV) 

Plain 5000 10965 0.5 6.2 

MoS2 4614 15381 0.3 6.4 

QPQ 2992 19384 0.2 6.8 

With all types of worn samples in general pyrophosphate chains were formed, 

but QPQ treated samples produced shorter chain length of polyphosphate 

tribofilms (BO/NBO ratio and Zn 3s-P2p3/2 BE) as shown in Table 6-4. Similar 

observations were made by Yue et al [104]. Crobu et al [127] showed that with 

higher oxide content the average chain length of the phosphates decreased. 

Within this study QPQ samples showed higher presence of oxides further 

supporting the indication of the presence of short phosphate chains (Table 6-

4). The interaction of the treated surface with the lubricant could also lead to 

the formation of species which may influenced the shortening of chains. It has 

been acknowledged that non-bridging oxygen can have P-O-S bonds which 

would affect the BO/NBO ratio, however within this study the influence was 

assumed to be negligible as it was not detected. Studies have shown the 

phosphate chain length could influence the samples tribological behaviour 

[127, 131, 132]. 

6.4.3 Tribofilm Characterisation using Raman Spectroscopy  

Raman spectroscopy was carried out to confirm the presence of key chemical 

compounds such as FeS2, FeS & MoS2 within the tribofilms formed by taking 

surveys of a wide coverage of the wear scars of the pins (Figure 6-18), Table 

6-5 summarises the species detected. With the QPQ samples (Figure 6-18(c)) 

the Raman peaks of FeS2 were centred at 340 cm-1 and 373 cm-1 and were 

clearly identified [133], with the presence of phosphates being detected with 

a broad peak ranging from 900-1100 cm-1 [134]. Uy et al.’s [135] study showed 

that Raman spectroscopy peaks centred around ~960-980 cm-1 and 1090 cm-
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1 related to the presence of calcium and/or zinc/magnesium orthophosphates 

and calcium carbonate respectively.  With all the samples Raman 

spectroscopy shows a peak at 670 cm-1 and broad peaks in the region 1373-

1575 cm-1 which indicates the presence of Fe3O4 and amorphous carbon 

respectively [136, 137]. In comparison to the MoS2 (Figure 6-18(b)) coated 

samples where a broad FeS2 peak was detected (300-400 cm-1), supporting 

the XPS and EDX findings that FeS2 was present but at a smaller quantity 

than in the QPQ tribofilms. However the Raman spectroscopy peaks of MoS2 

were clearly identified at 384 cm-1 and 409 cm-1 [133] alongside the presence 

of phosphates (900-1100 cm-1) [134]. With the plain samples (Figure 6-18(a)) 

no clear FeS2 signal was identified, whereas two FeS peaks centred at 207 

cm-1 and 283 cm-1 supporting the XPS findings that FeS compounds were 

present [138]. As observed with SEM a thick tribofilm is present on the 

surface, Raman spectroscopy detected the presence of a phosphate tribofilm 

(900-1100 cm-1) [134]. 

Table 6-5. Summary of the species detected within the tribofilm of the 
sample variants using Raman. 

Sample Treatment Raman Peaks (cm-1) Notes 

QPQ 
340, 373 (FeS2) 

955, 1080 (Phosphates) 

Even though the peaks are 
noisy – FeS2 is identified 

clearly 
 

Orthophosphates – 955 
cm-1, calcium carbonate – 

1080 cm-1 

Plain 
207, 283 (FeS) 

955-1080 (Phosphates) 

FeS Clearly identified 
Orthophosphates – 955 

cm-1, calcium carbonate – 
1080 cm-1 

MoS2 
384, 409 (MoS2) 

955-1080 (Phosphates) 

MoS2 clearly identified, 
Noisy FeS2 peaks 

Orthophosphates – 955 
cm-1, calcium carbonate – 

1080 cm-1 

a)  
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6.5 Summary 

In this chapter, the tribological performance of the untreated, MoS2 coated and 

QPQ samples with a fully formulated lubricant was investigated. The following 

key points can be drawn from this part of the study: 

 QPQ samples produce the lowest friction and wear results compared 

to the alternative treatments applied to the pin samples. At the 

application of an extreme contact pressure 1.90 GPa, an increase in 

friction with the QPQ samples is observed with the removal of the 

compound layer. This indicated the compound layer plays an important 

role influencing the friction behaviour of the sample. 

 Doubling the sliding frequency from 12 to 25 Hz, led to a drop in friction 

with the increased sliding distance. A general increase in wear was also 

observed. 

b)  

c)  

Figure 6-18. Raman spectra of different treated samples for FeS2, FeS, 
MoS2 & phosphate compounds within the formed tribofilms of the 
pins tested at a contact pressure 1.19 GPa and 12 Hz sliding 
frequency. a) Plain b) MoS2 c) QPQ 
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 FIB-SEM was not able to clearly identify the presence of a tribofilm with 

the QPQ sample. XPS and Raman were able to detect the presence of 

a thin tribofilm, indicating that the properties of the nitrided layer 

impacted its formation. The presence of higher concentration of FeS2 

within the QPQ samples tribofilm may have impacted its tribological 

behaviour. 

 There is higher Fe and P content within the tribofilm of the QPQ 

samples which had their compound layer removed and the presence 

of a visibly thicker and greater surface covering tribofilm is observed to 

form. 

 Using BO/NBO ratio and Zn 3s-P2p3/2 BE to characterise the 

phosphate glass present within the tribofilms, the QPQ samples were 

of a shorter chain length than that found in the tribofilms of the plain 

and MoS2 coated samples. 

With the application of coatings and surface treatment the aim is to extend the 

lifetime of the hydraulic motor by improving the tribological behaviour at the 

piston/cylinder interface. Reducing the friction and wear of the two 

components would help to limit the formation and trapping of abrasive 

particles which can eventually lead to complete system seizure. The QPQ 

samples demonstrated lower friction and significant lower wear than the MoS2 

treatment currently being used, which would help to improve the efficiency of 

the system. The Chapter shows that the layers produced by the QPQ 

treatment plays a significant role in the behaviour observed, however it was 

not possible to determine how much of an impact the Fe3O4 layer had on 

tribological and tribochemical behaviour. The next Chapter will focus on 

analysing the impact of an iron oxide and other layers on not only friction and 

wear but also their role in tribochemical interaction and formations.  
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Chapter 7 Tribological Impact of Varying the Layers Present 

on the Nitrided Surface 

7.1 Introduction 

The previous chapter demonstrated the effectiveness of the QPQ samples in 

improving tribological behaviour in comparison to the alternative treatments 

currently being applied. It is important to further investigate the influence of 

the properties of the layer which is present on top of the nitrided surface, to 

assess its impact on the tribological behaviour and tribofilm formation of the 

QPQ sample. This was achieved by using two modified QPQ samples – 

Isonite (Iso) & Sursulf (SN); the properties of these are highlighted in Table 

7.1. Full characterisation of the different sample variants are highlighted in 

Chapter 5. 

Table 7-1. Summary of the treatment processes applied to the sample 
variants. 

Sample Treatment Process 

QPQ Salt bath nitriding + Oxidising + Polishing 

Isonite Salt bath nitriding + Polishing 

SN Salt bath nitriding + FeS layer 

Using the Isonite (Iso) samples allows the assessment of the impact of the 

oxide layer on the friction and wear behaviour of the QPQ sample. It also 

facilitates the investigation into the tribochemical interactions that form the 

tribofilm and the compounds present within it. The Sursulf (SN) samples allow 

the investigation of the tribological and tribochemical interactions of an 

alternative layer instead of an oxide layer present on the nitrided surface. This 

provides the analysis of the impact on friction and wear behaviour with the 

presence of a solid lubricant layer acting as a running-in coating. 

Using the large TE77 tribometer the tribological properties of the alternatively 

treated samples were compared to the QPQ sample. Two contact pressures 

(0.92 & 1.19 GPa) whilst varying the sliding frequency between 12 & 25 Hz 

were applied when using the TO10 fully formulated hydraulic fluid lubricant. 

Post-experimental analysis using an optical microscope and surface analysis 
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techniques such as XPS and Raman allow the comparison of the changes in 

surface topography, tribofilm surface coverage and composition with the 

different sample variants.  

7.2 Friction Response of the Nitrided Sample Variants 

Figure 7-1 highlights the typical change in behaviour over time observed with 

the three nitriding sample variants during the complete duration of the test with 

TO10 as a lubricant. Similar friction trends are observed with all samples types 

with an initial running-in period until friction reaches a steady state value. As 

mentioned in Chapter 6, with the QPQ samples the oxide layer is removed in 

the early stages of the test and no clear impact on friction is detected. The 

smooth nitride layer is left exposed by the end of the test. Almost identical 

friction trends were observed when using the Isonite sample. As with the QPQ 

sample by the end of the testing period the nitride layer was left exposed. With 

the sulphur nitrided (SN) samples a running-in period before a steady state 

friction is reached is observed as with the alternative samples, however the 

friction values are lower. As observed with the QPQ samples the FeS layer is 

removed early on with testing and the nitride layer is exposed. However as 

shown in section 7.3 the surface shows evidence of adhesive and abrasive 

wear with remnants of the FeS layer remaining. The SN sample also shows 

the presence of a thicker film in the centre of the wear scar.  
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Figure 7-1. Friction coefficient vs time results over 2 hrs with the three 
samples at a 1.19 GPa contact pressure and sliding frequency - 12 
Hz with TO10 lubricant. 
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The average friction coefficients for the QPQ samples compared to the 

alternatively treated samples (last 30 minutes of the test) in the steady stage 

when using the fully formulated (TO10) lubricant are shown and compared in 

Figure 7-2. The general behaviour observed was that the friction response of 

the QPQ and Isonite samples at the different testing conditions were almost 

identical and statistically overlap. The friction coefficients of the SN samples 

were on an average generally lower than that of the alternative samples. The 

frictional impact of the alternatively treated samples were not significantly 

different to the QPQ samples, however a clear friction behaviour pattern could 

be observed. The trends observed were similar to that observed in previous 

studies, with the lower friction behaviour of the SN samples being attributed 

to the presence of an FeS layer [139].  

7.3 Wear Response of the Nitrided Sample Variants 

Using an optical microscope the worn surfaces of the different samples 

(Figure 7-3) were analysed. With the QPQ and Isonite pins (Figure 7-3(a) & 

Figure 7-3(b)) a smooth surface is exposed. With the Sursulf (SN) samples 

(Figure 7-3(c)) the presence of a thick tribofilm can be observed.  

Figure 7-2. Friction coefficient results from experiments when the applied 
load and sliding frequency are varied with different variant pin samples 
when using fully formulated lubricant at 80°C. 
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Figure 7-3. Optical images of the wear scar regions of the different 
treated pin samples when a 1.19 GPa contact pressure was applied 
at 12 Hz. 

a) QPQ 

b) Isonite 

c) SN 
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The depth profile measurements using Talysurf (Figure 7-4) showed that wear 

did not penetrate past the compound layer (QPQ & Iso = 13 µm and SN = 9 

µm) for all the samples. The average wear depths for the QPQ and Isonite 

samples are almost identical and had statistical overlap. The SN samples on 

average showed lower wear depths compared to the alternative samples.  

7.4 Tribofilm Characterisation 

7.4.1 SEM-EDX Analysis 

SEM-EDX was used to analyse the areas inside and outside the worn areas 

of the different nitride variant pin samples after the tribometer tests using fully 

formulated lubricant (TO10). The analysis gives an indication whether a 

tribofilm has formed on the worn surface and of its chemical composition. 

SEM-EDX gives a suggestion of the interaction of the surface with the 

additives within the lubricant.  

With the QPQ samples SEM-EDX (Figure 7-5) as shown in Chapter 6, a high 

presence of oxygen is present on the unworn areas of the pin sample, which 

relates to the presence of a Fe3O4 oxide layer. However, within the wear scar 

a significantly lower oxygen presence is detected most likely due the removal 

of the oxide layer during testing. Within the wear scar a high concentration of 

iron and nitrogen is detected relating to the nitride layer exposed under the 

oxide layer. A low presence of sulphur and phosphorous is detected within the 
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Figure 7-4. Wear depths of the three types of pins when contact 
pressures 0.92-1.19 GPa are applied at a 12Hz & 25Hz sliding 
frequencies using fully formulated lubricant at 80°C. 
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wear region, however zinc is not clearly identified. The EDX spectrum showed 

the presence of P, S and Zn. 

In comparison to the QPQ sample, with the Isonite samples SEM-EDX (Figure 

7-6) showed no real presence of oxygen outside the wear scar due to the 

absence of an oxide layer with this sample. With the absence of an oxide layer 

there is a high presence of iron and nitrogen mostly likely due to the presence 

of the compound layer. No real presence of phosphorous, sulphur and zinc is 

detected within the worn area in comparison to the QPQ sample. However the 

EDX spectrum showed the presence of P, S and Zn within the tribofilm.  

With the sulphur nitrided sample EDX (Figure 7-7) showed a strong presence 

of iron and sulphur outside the worn area of the pin relating to the presence 

of a FeS layer after treatment. Within the worn area a higher presence of iron 

and sulphur is detected possibly indicating the formation and presence of FeS 

within the contact areas, similar to that observed by Yue et al [139] and Liu et 

al [140]. Interestingly also present in the worn area is phosphorous and zinc 

indicating a protective phosphate tribofilm is also present within the wear area. 

The presence of nitrogen is detected on the edges of the wear scar however 

it is absent within it, possibly due to the high presence of iron, sulphur and 

phosphorous within the area. The EDX spectra shows the presence of all 

elements within the wear scar. 

Table 7-2 highlights the P/Zn ratio of the tribofilms formed on the different 

sample variants. The ratios are almost identical for the Isonite and SN 

samples with the QPQ sample showing almost double the presence in 

comparison. This indicates that the presence of an oxide layer may impact the 

tribofilm formation of the samples. The higher presence of sulphur and greater 

impact of FeS with the SN samples may have impacted the P/Zn ratio. 

Table 7-2. P/Zn ratio within the tribofilms of the nitrided sample variants. 

Sample P/Zn Ratio 

QPQ 0.7 

Isonite 0.4 

SN 0.4 
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Figure 7-5. a) SEM image, b)EDX maps and c) spectra of the unworn and 
worn surface of the QPQ pin samples at 1.19GPa contact pressure 
and 12Hz sliding speed.  

a) 

b) 

c) 
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Figure 7-6. a) SEM image, b) EDX maps and c) spectra of the unworn 
and worn surfaces of the Isonite pin samples at 1.19GPa contact 
pressure and 12Hz sliding speed. 

a) 

b) 

c) 
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Figure 7-7. a) SEM image, b) EDX maps and c) spectra of the unworn and 
worn surface of the sulphur nitrided pin samples at 1.19 GPa 
contact pressure and 12Hz sliding speed. 

a) 

b) 

c) 
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7.4.2 EPMA Analysis 

EPMA was utilised to verify and support the findings from SEM-EDX. 

Elemental maps  (Figure 7-8) were taken at the centre of the wear scars of 

the three nitride sample variants, allowing comparison of the concentration of 

elements across the samples. When comparing the QPQ (Figure 7-8(a)) and 

Isonite (Figure 7-8(b)) samples a higher presence of P, S and Ca were 

detected across the worn surface of the QPQ samples. This supported the 

EDX results (section 7.4.1) and indicated the formation of a patchy but thicker 

tribofilm on the QPQ sample surface. However higher concentrations of Zn 

were identified with the Isonite samples indicating the possible presence of a 

tribofilm.  

In comparison to the other samples, the SN pins (Figure 7-8(c)) showed a 

higher concentration of P, S, Ca and Zn across the surface. The EPMA maps 

indicated the presence of a thicker tribofilm with a greater surface coverage in 

comparison to the QPQ samples, similar to that observed with EDX (Figure 7-

7(b)).  

 

 

  

Figure 7-8. EPMA maps within the wear scars of the nitrided sample 
variants (a) QPQ (b) Isonite (c) SN. 
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7.4.3 Tribofilm Characterisation with XPS 

XPS analysis was carried out to confirm the presence of a tribofilm and 

analyse the changes in chemical species within the tribofilm formed on the 

QPQ, Isonite & SN samples when using the fully formulated lubricant. Using 

XPS to etch 1.34 nm through the depth of the tribofilm the results generally 

showed the formation of a relatively thin tribofilms with QPQ and Isonite 

samples. The SN samples produced the thickest tribofilm. Table 7-3 highlights 

the species present after etching using XPS. 

Table 7-3. General binding energy values for compounds relevant to the 
tribofilms formed on the worn surfaces of all treated samples [103, 
129]. 

The tribochemical analysis using XPS (Figures 7-9 - 7-11) allowed the 

characterisation of the tribofilms formed, to investigate the impact the different 

layers applied to the top of the nitride surfaces had on chemical state of the 

tribofilm compared to that formed on the QPQ sample. With wear penetrating 

the nitride layer for all samples, nitrides (397.1 eV) were detected within each 

samples tribofilm (QPQ – Figure 7-9(d), Isonite – Figure 7-10(d) & SN – Figure 

7-11(d)). 

As seen in Chapter 6, with the QPQ samples the key species identified within 

the tribofilm was the presence of phosphates (133.9 eV - Figure 7-9(b)) and 

ZnS/ZnO (139.9 eV) as supported by the SEM-EDX analysis (Figure 7-5), 

further indicating the presence of a tribofilm. FeS2 (706.8 eV) is detected 

within the tribofilm (Figure 7-9(a)) which in high concentrations could impact 

the friction behaviour of the sample. 

Etch 
Depth  
1.33 
nm 

Element 
B.E / eV ( 1−

+ eV) Chemical State 

QPQ Isonite SN QPQ Isonite SN 

Fe 2p 710.4 710.1 712.0 Fe2O3 Fe2O3 FeS 

 706.8 - 710.1 FeS2 - Fe2O3 

N 1s 397.8 397.5 397.1 Nitride Nitride Nitride 

P 2p 133.9 133.1 133.2 Phosphate Phosphate Phosphate 

Zn 3s 139.9 139.9 139.9 ZnS ZnS ZnS 

S 2p 161.7 162.0 161.7 Sulphide Sulphide Sulphide 
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With the Isonite samples it was possible to see that with the absence of an 

oxide layer the species formed within the tribofilm may have been impacted. 

XPS also detected the formation of a phosphate (133.1 eV - Table 7-2) 

containing tribofilm, which was seen when using SEM-EDX (Figure 7-5). 

However in comparison to the QPQ samples iron sulphides were not seen 

present with XPS (Figure 7-9(a)).  

With the SN samples which has the presence of a FeS lubricating layer on the 

nitriding layer, FeS is detected with XPS (712.1 eV), Figure 7-11(a), and this 

is supported with EDX scans which detected the strong presence of iron and 

sulphur within the wear scar (Figure 7-7). The presence of phosphates (133.2 

eV) are also detected within the tribofilm indicating the formation of a 

protective layer, supporting the SEM-EDX analysis (Figure 7-7) showing the 

presence of phosphorous in the wear scar. 

 

 

 

 

Figure 7-9. XPS Fe 2p, P 2p, S 2p and N 1s spectra of the tribofilms formed 
on the QPQ treated samples at an applied contact pressure 1.19 GPa 
and 1.34 nm etching depth. 
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Figure 7-10. XPS Fe 2p, P 2p, S 2p and N 1s spectra of the tribofilms 
formed on the Isonite treated samples at an applied contact 
pressure 1.19 GPa and 1.34 nm etching depth. 

Figure 7-11. XPS Fe 2p, P 2p, S 2p and N 1s spectra of the tribofilms 
formed on the SN treated samples at an applied contact pressure 
1.19 GPa and 1.34 nm etching depth. 
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7.4.4 Tribofilm Characterisation using Raman Spectroscopy  

Raman spectroscopy was carried out to confirm the presence of key chemical 

compounds within the tribofilms formed by taking surveys of a wide coverage 

of the wear scars of the pins variants (Figures 7-12 – 7-14), Table 7-4 

summarises the species detected. 

Raman spectroscopy scans with the QPQ samples (Figure 7-12), showed the 

formation of FeS2 (340 & 375 cm-1) [133] alongside the presence of 

phosphates (900-1100 cm-1) [134] which indicated the presence of 

orthophosphates (~960-980 cm-1) and calcium carbonate (1090 cm-1) [135]. 

This supported the findings from XPS analysis of the tribofilm formed. Raman 

spectroscopy shows a peak at 670 cm-1 and broad peaks in the region 1373-

1575 cm-1 which indicates the presence of Fe3O4 and amorphous carbon 

respectively [136, 137]. 

With the Isonite samples Raman spectroscopy was able to confirm the 

presence of phosphates within the tribofilm formed, with the presence of 

peaks from 950-1100 cm-1 [134]. As shown with the XPS Fe peaks, it was 

difficult to clearly identify the formation of iron sulphide (200-300 cm-1) [138] 

where a broad peak is detected with Raman (Figure 7-13). Raman 

spectroscopy shows a peak at 670 cm-1 and broad peaks in the region 1373-

1575 cm-1 which indicates the presence of Fe3O4 and amorphous carbon 

respectively [136, 137]. 

Figure 7-12. Raman spectra of the QPQ pin samples for FeS & phosphate 
compounds within the formed tribofilms tested at a contact 
pressure 1.19 GPa and 12 Hz sliding frequency with TO10 lubricant. 
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In comparison to the other samples, Raman spectroscopy was able to identify 

the strong presence of iron sulphides (200 – 300 cm-1) [138] and phosphates 

(900 -1100 cm-1) [134] within the tribofilm of the SN samples (Figure 7-14). 

This supported the indication from SEM-EDX (Figure 7-7) and XPS (Figure 7-

11) of the formation of a thicker tribofilm. 

 

 

 

 

 

 

 
 
 
 

Figure 7-13. Raman spectra of the Isonite pin samples for FeS & 
phosphate compounds within the formed tribofilms tested at a 
contact pressure 1.19 GPa and 12 Hz sliding frequency with TO10 

lubricant. 

Figure 7-14. Raman spectra of the SN pin samples for FeS & phosphate 
compounds within the formed tribofilms tested at a contact 
pressure 1.19 GPa and 12 Hz sliding. frequency with TO10 lubricant. 
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Table 7-4. Summarises the chemical compounds detected within the 
different samples tribofilms using Raman Spectroscopy. 

7.5 Summary 

In this chapter, the impact of different layers formed upon a nitrided layer on 

friction and wear were investigated. SEM/EDX, XPS and Raman analysis 

were used to investigate the influence of the properties of these layers had on 

tribochemical interactions and tribofilm formation. 

 With the Isonite samples the friction and wear response were identical 

to that observed with the QPQ samples. With the absence of an oxide 

layer XPS and Raman spectroscopy showed the absence of FeS2 and 

a higher P/Zn ratio within the QPQ tribofilm. EPMA indicated the 

presence of a stronger and thicker tribofilm on the surface of the QPQ 

samples 

 The SN samples produced better friction and wear response compared 

to the other nitrided variant samples. Compared to the alternative 

samples a thicker tribofilm is formed, EDX and EPMA showed strong 

presence of iron, sulphur and phosphorous within the wear scar. Using 

XPS and Raman spectroscopy the chemical species identified were 

FeS and phosphates, which would impact friction and wear behaviour. 

The addition of the oxidising with nitriding process aimed to improve the 

corrosion resistance and cosmetic appearance of the samples. The chapter 

showed that the layer had minimal impact on friction and wear behaviour 

however the influence on FeS2 formation was important and could potentially 

change tribological behaviour. It was also shown that the composition of the 

layer present played a significant role in improving the samples durability. It is 

also important to consider the possible role of lubricant additives in improving 

the performance of the applied treatments. 

TO10 
Lubricant 

Sample Variant 

QPQ Isonite SN 

Raman 
Peaks 
(cm-1) 

340, 375 (FeS2) 
955, 1090 

(Orthophosphates, 
calcium 

carbonate) 

955, 1080 
(Orthophosphates, 

calcium 
carbonate) 

280, 320 (FeS) 
952, 1078 

(Orthophosphates, calcium 
carbonate) 
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Chapter 8 Effects of using Alternative Extreme Pressure (EP) 

and Anti-Wear (AW) Additives with Sample Variants 

8.1 Introduction 

Friction and wear performance is influenced by a number of factors such as 

lubricant additives and surface modification, which can individually improve 

tribological properties or through a synergistic effect between the two factors. 

To achieve optimal tribological performance between friction pairs it is crucial 

to understand the mechanics of the synergistic interaction between modified 

surfaces and lubricant additives [104]. 

This chapter will focus on investigating the optimisation of the friction and wear 

behaviour of the plain, MoS2 coated and QPQ samples using different fluid 

additives. The overall aim is to improve the tribological properties and 

extending the life of friction pairs within hydraulic systems. 

The effect of alternative extreme pressure additives on friction and wear 

behaviour with the three sample variants were investigated with the large 

TE77 tribometer. A contact pressure of 1.19 GPa at a sliding frequency of 25 

Hz was applied. During the two hour tests, the pin samples used were plain- 

untreated, MoS2 coated and oxy-nitrided (QPQ) against gas nitrided plates. 

The wear depths and volume loss of the plates were not analysed due to wear 

being negligible as shown in the previous chapter. The experiments used base 

oil (BO) and a combination of three effective EP and AW additives (ZDDP, SO 

& TCP) commonly used within industry to investigate and compare the 

tribological responses of the samples. XPS and Raman Spectroscopy were 

employed to characterise the chemical species present. 

8.2 Friction Response with Additive Variants 

Figure 8-1 highlights the typical change in behaviour over time observed with 

the three sample variants during the complete duration of the tests with the 

different lubricant additives. Similar behaviour trends are observed with the 
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different samples with an initial running-in period followed by steady state 

friction. Key differences in behaviour observed from figure 8-1 was the general 

lower friction results and trends achieved with the QPQ samples with all 

lubricants in comparison to the alternative treatments. However a combination 

of the MoS2 sample and SO additive produced the lowest friction response 

with a continuous reduction throughout the duration of the test. Key 

differences observed with the QPQ samples were friction when using base oil 

was higher than when using TO10 during the final duration of the test. A low 

friction response was also initially observed when using SO however during 

the final 35 minutes of the test it rose to match that observed with the TCP 

lubricant. 

In terms of wear as shown in section 8.3 the sample surfaces when using SO 

showed heavy signs of wear, whereas with the TCP additive a blue tribofilm 

was formed on all sample variant surfaces and showed lower signs of wear. 

Wear trends when using the TO10 lubricant matched those observed in 

Chapter 6. 

The average friction coefficients for the sample variants in the steady stage 

(last 30 minutes of the test) with plain base oil and with it mixed with different 

EP and AW additives are shown and compared in Figure 8-2. The common 

trend observed was that the friction response of the QPQ samples with all the 

lubricant variants used were lower than that of the untreated plain and MoS2 

coated samples, with the exception of using the SO additive with the latter 
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Figure 8-1. Friction coefficient vs time results over 2 hrs with the three 
samples at a 1.19 GPa contact pressure and sliding frequency 25 
Hz with the variant lubricants. 
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treatment. This combination provided the lowest friction response from all 

samples types with the different additives.  

The base oil and the fully formulated lubricant containing ZDDP had the 

highest friction compared to the other additive-containing oils, for the QPQ 

samples the base oil tests produced the higher friction however with the plain 

and MoS2 coated samples the ZDDP containing lubricant had a clear higher 

friction coefficient. With the Plain samples, the SO additive produces a slightly 

lower friction result than when using TCP however the responses are very 

similar with statistical overlapping. With the QPQ samples the SO & TCP 

additive produced almost identical friction responses. This trend differed to 

that observed by Ma et al [105] where the oxy-nitrided samples showed lower 

friction behaviour with the TCP additive. 

When using the SO additive with a MoS2 coated surface a gradual continuous 

reduction of friction with time is observed (Figure 8-1) which differed from the 

other sample variants, with the overall steady state friction value being the 

lowest observed during this section of testing. A similar trend was observed 

by Wang et al [51] when using MoS2/FeS multilayer samples. With the TCP 

additive with the MoS2 samples a higher friction was observed than using SO 

but the response was almost identical to that when using base oil. The same 

response was observed with the plain samples, indicating that the TCP 

additive has no real impact on friction behaviour.  

Generally the Plain and QPQ sample surfaces showed limited sensitivity to 

the lubricant additive variants, with friction coefficients being impacted by up 

to 15%. However with the MoS2 coated surfaces the impact was significantly 

greater with the SO additive changing friction by over 70%, indicating the 

surfaces greater sensitivity. 
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8.3  Wear Response with Additive Variants 

Figures 8-(3-5) highlight the wear scars of the Plain, MoS2 & QPQ samples 

when the different additives are used. With the plain sample when using BO 

(Figure 8-3(a)), wear penetrated deep in to the substrate, the scans revealed 

heavy scoring of the surface and abrasive wear. When using the fully 

formulated TO10 lubricant (Figure 8-3(b)) a thick tribofilm is seen to form on 

the surface. Figure 8-3(c) shows a polished surface with abrasive wear, 

however a tribofilm is observed covering portions of the surface. When using 

the TCP additive (Figure 8-3(d)) a thick blueish tribofilm is observed covering 

large areas of the surface.  

When using BO with the MoS2 samples (Figure 8-4(a)) the coating has been 

completely removed, with the surface showing evidence of abrasive wear. 

When using the TO10 fully formulated lubricant (Figure 8-4(b)) a thick tribofilm 

is formed on the worn surface. There are remnants of the delaminated coating 

still present. With the SO lubricant (Figure 8-4(c)) a tribofilm is observed to 

form on the surface however abrasive wear is also present. Similarly to the 

Plain samples when using TCP a thick blueish tribofilm is observed covering 

large portions of the MoS2 coated surface (Figure 8-4(c)).  

Figure 8-2. Friction coefficient results from experiments when using a 
contact pressure 1.19 GPa at a sliding frequency 25 Hz with four 
different oil additive with Plain, MoS2 and QPQ samples. 
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With the QPQ samples when using base oil (Figure 8-5(a)) the surface is 

heavily worn by abrasive wear and the nitride surface worn through. When 

using the TO10 lubricant, Figure 8-5(b), a patchy thin tribofilm is formed on 

the smooth nitrided surface of the sample. A different behaviour is observed 

when using the SO additive (Figure 8-5(c)), abrasive wear is detected on the 

surface alongside the delamination of the oxide layer and wearing of the 

nitride surface. When using the TCP additive Figure 8-5(d), the presence of a 

patchy tribofilm is easily identified.  

Figure 8-3. Optical images of the wear scar regions of the plain pin 
samples when a 1.19 GPa contact pressure was applied at 25 Hz 
when using various lubricants. a) Base oil  b) TO10 c) SO d) TCP 

a) Base Oil 

b) TO10 

d) TCP 
 

c) SO 
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Figure 8-4. Optical images of the wear scar regions of the MoS2 pin 
samples when a 1.19 GPa contact pressure was applied at 25 Hz 
when using various lubricants. a) Base oil  b) TO10 c) SO d) TCP  

a) Base Oil 

b) TO10 

c) SO 

d) TCP 
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Figure 8-5. Optical images of the wear scar regions of the QPQ pin 
samples when a 1.19 GPa contact pressure was applied at 25 Hz 
when using various lubricants. a) Base oil  b) TO10 c) SO d) TCP  

a) Base Oil 

b) TO10 

c) SO 

d) TCP 
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From Figure 8-6 the plain pin samples when used with BO produced the 

greatest wear depths, followed by the fully formulated (ZDDP) lubricant. SO 

produced high wear but the depths were lower and similar to that seen with 

the ZDDP lubricant. The TCP additive produced significantly lower wear than 

the alternatives. Published work [141] showed similar wear trends with the 

same additives. 

The wear patterns of the MoS2 and QPQ samples were identical with the 

various lubricant additives. Base oil (Figure 8-6) produced the highest wear, 

however when additives were applied the SO additive caused the greatest 

wear penetration, followed by the ZDDP additive. The TCP additive had the 

greatest effect showing the lowest wear. With the QPQ samples when using 

the additives with the base oil the wear depths never penetrated past the 

compound layer, whereas with the BO it did (>15 µm). In all cases the MoS2 

coating was removed (>28 µm), it is also important to note that the wear 

depths when using BO & SO were very similar. Overall the wear of the QPQ 

samples were significantly lower than using the plain pins with the different 

additives and the trends matched those observed by Ma et al [105] with oxy-

nitrided samples. 

The surface sensitivity to wear of the plain and MoS2 samples with different 

the lubricant additives were similar with depths being reduced by 20-80%. The 
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Figure 8-6. Wear depths of the Plain, MoS2 and QPQ pins when using a 
contact pressure 1.19 GPa at a 25 Hz sliding frequency using base 
oil and four lubricant additives at 80°C. Red dashed line-MoS2 

coating thickness, Orange line – compound layer thickness. 
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lubricants had a greater impact with the QPQ samples with wear being 

reduced by 60-90% 

8.4 Tribofilm Characterisation 

8.4.1 SEM-EDX Analysis 

SEM-EDX was used to analyse the areas inside and outside the worn areas 

of the different variant pin samples when tested with the different lubricant 

additives. The analysis gives an indication whether a tribofilm has formed on 

the worn surface and the differences in chemical composition with the different 

surface treatments and lubricants.  

The interaction of the three sample variants with the TO10 is highlighted in 

Chapter 6 (section 6.4.1). The plain samples SEM-EDX scans (Figure 6-8(b)) 

showed the clear presence of sulphur and phosphorous within the tribofilm, 

elements which are associated with the formation of a tribofilm when using the 

ZDDP additive. With the MoS2 samples (Figure 6-10(b)) the worn area a 

strong presence of iron is detected, but no molybdenum or sulphur supporting 

the assumption the MoS2 coating is completely removed during testing. 

Phosphorous, sulphur and zinc are detected within the worn area. When 

analysing the QPQ samples using SEM-EDX maps and spectrum (Figure 6-

12(b)) there is a low presence of sulphur, phosphorous and zinc within the 

wear region. The presence of phosphorous indicates the possibility of the 

presence of phosphate tribofilm. 

Different trends are observed with the different samples and the SO additive. 

With the plain samples (Figure 8-7) within the worn area there is a strong 

presence of iron and sulphur, which may indicated the formation of FeS. There 

is a strong presence of oxygen around the edges of the worn area most likely 

due to oxidation. 

With the MoS2 samples (Figure 8-8) similarly to the plain sample there is a 

strong presence of oxygen on the edges of the wear scar, most likely related 

to oxidation. Phosphorous is also detected around the edges relating to the 
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remnants of MnP layer which was present under the MoS2 coating. The strong 

presence of iron within the wear scar indicates the complete removal of the 

MoS2 and MnP coatings during testing. There is a strong overlapping 

detection of molybdenum and sulphur within the worn area. Combined with 

iron this could indicate either the formation of FeS or remnants of the MoS2 

coating are still present within the contact. With EDX it is difficult to 

differentiate so other analysis techniques are applied later on. 

With the QPQ sample when using the SO additive (Figure 8-9) similar trends 

are observed to when using the TO10 lubricant. There are lower levels of 

oxygen detected with the worn area with the removal of the oxide layer. With 

the exposure of the nitride layer, a high presence of iron and nitrogen is 

detected. Lower of amounts of sulphur is detected in comparison to the plain 

and MoS2 samples possible because of the formation of a thinner film and 

inertness of the nitride layer. 
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Figure 8-7. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the Plain pin samples at 1.19 GPa contact 
pressure and 12 Hz sliding speed with SO additive. 

Figure 8-8. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the MoS2 pin samples at 1.19 GPa contact 
pressure and 12 Hz sliding speed with SO additive. 

c) 
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Figure 8-9. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the QPQ pin samples at 1.19 GPa contact 
pressure and 12 Hz sliding speed with SO additive. 

a) 

b) 

c) 
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With the TCP additive and the plain samples (Figure 8-10), there is a strong 

presence of phosphorous and oxygen within the worn area. Iron is detected 

within the wear scar, but the darker presence indicates a lower concentration 

in comparison to outside the wear scar. This may be due to combination of 

high amounts of phosphorous and oxygen being detected within the same 

region. The presence of iron, phosphorous and oxygen within the wear scar 

may indicate the presence of phosphates and in particular the formation of 

FePO4, which would impact the wear behaviour of the sample. Other surface 

analysis techniques are utilised to help identify the chemical species present 

within the tribofilm. 

With the MoS2 coated samples (Figure 8-11) similar elements are detected 

within the wear scar as with the plain samples when using TCP. There is a 

strong presence of phosphorous around the edges of the wear scar, this most 

likely due to the remnants of the MnP layer which was present under the MoS2 

coating. Both of which are removed during testing. Phosphorous is detected 

within the worn area indicating the formation of a tribofilm due to the 

interaction of the additive and surface. 

With the QPQ samples (Figure 8-12), within the wear scar there is a high 

presence of nitrogen due to the exposure of the nitride layer. Like the other 

sample variants, there is a strong presence of phosphorous and iron within 

the worn area. However there is a low presence of oxygen within the wear 

scar, but this is mostly likely due to the strong signal from the oxide layer 

outside the scar. In comparison to when using the TO10 & SO additive it 

appears that there is a higher oxygen presence with the TCP additive. This 

indicates the possible presence of a tribofilm composed of phosphates and 

FePO4. 
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Figure 8-10. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the Plain pin samples at 1.19 GPa contact 
pressure and 12 Hz sliding speed with TCP additive. 

a) 

c) 

b) 
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Figure 8-11. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the MoS2 pin samples at 1.19 GPa contact 
pressure and 12 Hz sliding speed with TCP additive. 

a) 

b) 

c) 
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Figure 8-12. a) SEM image, b) EDX maps and c) spectrum of the unworn 
and worn surface of the QPQ pin samples at 1.19 GPa contact 

pressure and 12 Hz sliding speed with TCP additive. 

a) 

b) 

c) 
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8.4.2 Tribofilm Characterisation using XPS 

XPS analysis was carried out to confirm the presence of a tribofilm and 

analyse the changes in chemical species within the tribofilm formed on the 

plain, MoS2 and oxy-nitrided samples when using the different additives. 

Using Ar ion etching through the depth of the tribofilm the results generally 

showed the formation of a relatively thin tribofilm with the QPQ samples with 

all additives, never exceeding more than 20 nm in thickness, however with the 

plain and MoS2 samples a significantly thicker tribofilm was formed. Table 8-

1 and Figures 8-(13 – 18) highlight the key species formed on the worn surface 

of both samples when using different additives. Table 8-1 shows the species 

present at an etching depth of 1.34 nm, alongside confirming the presence of 

a tribofilm on the sample variants with all the additives in this study.  

The tribofilm composition on all sample variants with the TO10 lubricant 

matched that observed in Chapter 6 and are highlighted in Table 8-1. A 

common compound identified within the different sample tribofilms was 

CaCO3 (347.0 eV) from the presence of detergents within the lubricants. As 

expected with the presence of ZDDP, sulphides (161.7 eV) and phosphates 

(133.2 eV) were detected within all the samples tribofilms which can be 

associated with formation of amorphous pyrophosphates alongside zinc 

compounds. Within the plain sample’s tribofilm FeS (712.1 eV) and FeS2 

(706.8 eV) compounds were detected. With the MoS2 coated samples there 

was no trace of the MoS2 coating present after testing. FeS2 (706.8 eV) was 

also detected within the QPQ tribofilm which in high concentrations could 

impact the friction behaviour of the sample. With the presence of a nitride 

layer, nitrides (397.8 eV) were also detected. 

With the three sample variants the composition of the tribofilms formed with 

the various additives were of similar composition (Table 8-1). With the SO 

additive, the presence of sulphides (161.7 eV – Figures 8 - 13(a) – 15(a)) were 

detected which corresponded with the formation of FeS (712.1 eV) found 

within the tribofilms of all the samples (Figures 8 -13(b) – 15(b)). Similar 

compounds were identified within the tribofilms of other studies when using 

SO [142, 143]. With the MoS2 samples XPS did not clearly detect the presence 
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of MoS2. As seen when using TO10 lubricant the QPQ sample’s tribofilm 

shows the presence of nitrides due to exposure of the nitride surface (Figure 

8-15(c)) [103, 104]. 

Table 8-1. General binding energy values for compounds relevant to the 
tribofilms formed on the worn surface of the QPQ sample when 
using the different EP and AW additives at 1.34 nm etching depth 
[129]. 

 

 

 

Additive Element 
B.E / eV ( 1−

+ eV) Chemical State 

Plain MoS2 QPQ Plain MoS2 QPQ 

Fully 

Formulated 

(ZDDP) 

Fe 2p 712.1 - - FeS - - 

 710.4 - 710.3 Fe2O3 - Fe2O3 

 709.4 709.4 - FeO Fe2O3 - 

 706.8 706.8 706.8 FeS2 FeS2 FeS2 

N 1s - - 397.8 - - Nitride 

P 2p 133.2 133.4 133.9 Phosphate Phosphate Phosphate 

Zn 3s 139.4 140.1 139.9 ZnS ZnS ZnS 

S 2p 161.8 161.7 161.7 Sulphide Sulphide Sulphide 

 Ca 2p 347.3 347.0 347.0 CaCO3 CaCO3 CaCO3 

SO 

Fe 2p 712.1 711.8 712.4 FeS FeS FeS 

 710.4 709.8 710.8 Fe2O3 Fe2O3 Fe2O3 

N 1s - - 397.8 - - Nitride 

S 2p 161.8 161.7 161.7 Sulphide Sulphide Sulphide 

TCP 

Fe 2p 712.0 712.2 712.4 FePO4 FePO4 FePO4 

 710.4 710.6 710.7 Fe2O3 Fe2O3 Fe2O3 

N 1s - - 399.5 - - Organic 

Species 

P 2p 133.9 134.1 134.3 Phosphate Phosphate Phosphate 

Figure 8-13. XPS S 2p and Fe 2p spectra of the tribofilms formed on the 
plain treated samples at an applied contact pressure 1.19 GPa and 
25 Hz sliding speed at 1.34 nm etching depth with SO additive. 
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With the TCP additive, within the tribofilm of all the sample variants 

phosphates (133.7 eV) were detected as shown in Table 8-1 and Figures 8-

16(a) – 18(a). This indicated the formation of phosphate tribofilm which 

Figure 8-14. XPS S 2p and Fe 2p spectra of the tribofilms formed on the 
MoS2 treated samples at an applied contact pressure 1.19 GPa and 
25 Hz sliding speed at 1.34 nm etching depth with SO additive. 

Figure 8-15. XPS S 2p, Fe 2p and N 1s spectra of the tribofilms formed 
on the QPQ treated samples at an applied contact pressure 1.19 GPa 
and 25 Hz sliding speed at 1.34 nm etching depth with SO additive. 
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contained FePO4 compunds (712.1 eV) as shown with XPS (Figures 8- 16(b)-

18(b)). Similar compounds were observed by Ma et al [106]. The QPQ 

sample’s tribofilm (Figure 8-18(c)) showed the presence of organic nitrogen 

species (399.5 eV) due the presence of absorbed nitride complexes [103]. 

 

Figure 8-16. XPS P 2p and Fe 2p spectra of the tribofilms formed on the 
plain treated samples at an applied contact pressure 1.19 GPa and 

25 Hz sliding speed at 1.34 nm etching depth with TCP additive. 

Figure 8-17. XPS P 2p and Fe 2p spectra of the tribofilms formed on the 
MoS2 treated samples at an applied contact pressure 1.19 GPa and 
25 Hz sliding speed at 1.34 nm etching depth with TCP additive. 
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8.4.3 Tribofilm Characterisation with Raman Spectroscopy  

To verify and support the findings of the XPS analysis, Raman spectroscopy 

was carried out to confirm the presence of key chemical compounds such as 

FeS2, FeS, MoS2 & FePO4 within the tribofilms formed on the sample variant 

surfaces by taking surveys of a wide coverage of the wear scars of the pins 

(Table 8-2). With the SO additive on all sample variants instead of identifying 

FeS as seen with XPS, Raman spectroscopy detected FeS2 with peaks clearly 

centred at 340 cm-1 and 375 cm-1 (Plain – Figure 8-19(a), MoS2 coated – 

Figure 8-20(a) & QPQ – Figure 8-21(a)) [133]. This was most likely due to 

deeper depth penetration of the monocratic light from Raman spectroscopy. 

With the MoS2 samples MoS2 was detected alongside FeS2 at 384 cm-1 and 

409 cm-1 (Figure 8-20(a)) [133]. The presence of phosphates was identified 

with the three samples when using the TCP additive with a broad peak being 

detected from 900 -1100 cm-1 [134] supporting the results from XPS (Plain – 

Figure 8-19(b), MoS2 coated – Figure 8-20(b) & QPQ – Figure 8-21(b)). Peaks 

centred around ~1000 cm-1 indicated the formation of iron phosphates [135]. 

The Raman spectra when using the fully formulated TO10 (ZDDP) lubricant 

matched that observed previously in Chapter 6 (Table 6-5) with FeS2 & FeS 

being detected with the QPQ and Plain samples respectively and an MoS2 

presence with the MoS2 coated samples. Phosphates were detected within 

the tribofilm of all sample variants. Due to these results being highlighted in 

Chapter 6 they will not be shown again here, but key species identified with 

the TO10 lubricant are highlighted in Table 8-2. 

Figure 8-18. XPS P 2p, Fe 2p & N 1s spectra of the tribofilms formed on 
the QPQ treated samples at an applied contact pressure 1.19 GPa 
and 25 Hz sliding speed at 1.34 nm etching depth with TCP additive. 
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Table 8-2. Summarises the chemical compounds detected within the 
different samples tribofilms using Raman Spectroscopy. 

  

Sample Treatment 
Lubricant Additives - Raman Peaks (cm-1) 

SO TCP TO10 

Plain 340, 375 (FeS2) 
950 - 1100 

(Phosphates) 

207, 283 (FeS) 
950 - 1100 

(Phosphates) 

MoS2 

340, 375 (FeS2) 
384, 409 
(MoS2) 

950 - 1100 
(Phosphates) 

384, 409 (MoS2) 
950 - 1100 

(Phosphates) 

QPQ 340, 375 (FeS2) 
1045 (Iron 
phosphate) 

340, 373 (FeS2) 
950 - 1100 

(Phosphates) 

a) SO 

b) TCP 

Figure 8-19. Raman spectra of the Plain samples for FeS2 & phosphates 
compounds within the formed tribofilms tested at a contact 
pressure 1.19 GPa and 25 Hz sliding frequency with a) SO & b) TCP 
lubricants. 
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a) SO 

b) TCP 

Figure 8-20. Raman spectra of the MoS2 coated samples for FeS2, MoS2 
& phosphates compounds within the formed tribofilms tested at a 
contact pressure 1.19 GPa and 25 Hz sliding frequency with a) SO 
& b) TCP lubricants. 
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8.5 Summary 

In this phase of this research the tribological impact of various lubricant 

additives were investigated with the three sample variants. The results from 

a) SO 

b) TCP 

Figure 8-21. Raman spectra of the QPQ samples for FeS2 & phosphate 
compounds within the formed tribofilms tested at a contact 
pressure 1.19 GPa and 25 Hz sliding frequency with a) SO & b) TCP 
lubricants. 
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SEM/EDX, XPS and Raman spectroscopy analysis together aim to provide an 

explanation of the wear mechanism and surface chemistry. In summary, the 

following key points can be drawn from this part of the study: 

 With the fully formulated lubricant a high friction response was 

observed in comparison to the other lubricants, however with the QPQ 

sample BO produced a higher friction response. 

 A combination of an MoS2 coating and SO additive led to a low friction 

response not observed with the other sample and additive variants. 

 The impact of the TCP additive on friction response was minimal across 

all the sample variants. However with the QPQ samples both the SO 

and TCP additives had no impact.  

 The wear behaviour of QPQ samples was shown to be affected by the 

different lubricant additives and showed greater sensitivity in 

comparison to the other samples.  

 The plain sample combined with the SO additive showed similar wear 

levels to when using the ZDDP containing additive, whereas with the 

alternative samples SO lead to high wear. The plain sample showed a 

strong presence of FeS within the worn area in comparison to the QPQ 

and MoS2 samples. 

 Raman spectroscopy showed the presence of MoS2 and FeS within the 

tribofilm of the MoS2 sample with the SO additive.  

The varying of lubricant additives allowed the investigation of the interaction 

of different surfaces with the additives. This chapter showed that additives 

impacted the samples friction and wear behaviour but also certain additive 

types had a greater impact than others. A synergistic effect between the 

surface and lubricant can have a significant impact of performance. It is 

important to verify the behaviour trends observed in this and the previous 

chapters using a different tribometer and conditions replicating the actual 

contact within a hydraulic motor. 
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Chapter 9 Comparison of Surface Modification Treatments 

with Extreme Pressure & Anti-Wear Additives Using MTM-

SLIM 

9.1 Introduction 

To further understand and capture the interaction of the different treated 

samples with a range of EP and AW additives, the MTM SLIM tribometer was 

used. The advantage of using this technique is that it allows the replication of 

the contact within a piston and cylinder. Yamaguchi [41] states that the piston 

and cylinder component within the piston pump is a pure sliding contact, 

however for this study a percentage of rolling contact will be applied to 

replicate the rotation of the pistons within the cylinder block. The presence of 

a 3D Spacer Layer Imaging Method (SLIM) attachment allows in-situ capture 

of optical interference images of tribofilm formation during testing, which would 

allow the opportunity to confirm and understand the tribochemistry involved in 

its development. Konicek et al [144] states conclusions about the nature and 

formation of a tribofilm depend on when during a test the surface is analysed. 

This chapter focuses on investigating the interaction of treated surfaces with 

various EP and AW additives in MTM tests, whilst allowing the in-situ capture 

of the formation of tribofilms. These experiments provide support and verify 

the results observed in Chapter 8 with the Cameron Plint tribometer alongside 

primarily helping to gain an understanding of the friction and wear behaviour 

of the modified surface with the different additives and varying lubrication 

regimes.   

The balls were treated using the QPQ and MoS2 coating processes which 

modified the surfaces as described in Chapter 5. However the thickness of the 

layers formed after each treatment were different in comparison to the pin 

samples as highlighted in Figures 9-1 & 9-2. The QPQ process forms a 19 µm 

thick compound layer with a 250 µm diffusion zone (Figure 9-1). Whereas the 

Defric process forms a 9 µm thick MoS2 coating above a 250 µm diffusion 

layer on the ball samples (Figure 9-2).  
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Initially all three ball sample variants (Plain, QPQ, MoS2 coated) were tested 

using the TO10 lubricant to compare and validate the behaviour observed with 

TE77, however further testing with different EP and AW additives were carried 

out only with the two treated samples. The two alternative lubricant mixtures 

were composed of either sulphur or phosphorous containing additives, 

allowing the investigation of the effect of both elements on the tribological 

behaviour of the treated surfaces individually. During testing, the temperature 

was kept constant at 80°C and a load of 36 N was applied corresponding to 

an initial Hertzian contact pressure of 1 GPa. The sliding-rolling ratio (SRR) 

was set to 150% [5]. The tribological tests were split in to three alternative 

stages which were carried out at fixed time intervals. The first stage, known 

as the conditioning phase, included rubbing the ball and disc together at a 

fixed slow entrainment speed in the mixed lubrication regime to encourage the 

formation of tribofilm on the ball and disc wear track. This was then followed 

by applying the Stribeck curve parameters, starting at a high speed of 2 m/s 

(mixed regime) and continued towards the lowest speed value of 0.01 m/s 

Figure 9-1. SEM image profile through the cross-section of a QPQ ball 
sample (Ra = 30 nm) . 

Figure 9-2. SEM image profile through the cross-section of a MoS2 
coated ball sample (Ra = 680 nm). 

Diffusion Zone (~250 µm) 

Compound Layer (~19 µm) 

MoS2 Coating (~9 µm) 

Diffusion Zone (~250 µm) 

Oxide Layer & Porosity  
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(boundary regime). The final stage involved halting the test and the ball 

sample was loaded against the spacer layer-coated window, where an image 

was captured which would allow the measurement of the tribofilm.  

9.2 Behaviour Validation 

Using similar test conditions to that of the TE77, the MTM SLIM was used to 

analyse the repeatability in tribological behaviour of the three samples with an 

alternative tribometer. The TO10 fully formulated lubricant was used as a 

reference oil.  

9.2.1 Friction and Wear Behaviour Validation of the Three Sample 

Variants using the MTM-SLIM 

Figure 9-3 shows the interaction of the TO10 additive with the QPQ treated 

sample. As the sliding speed is reduced friction steadily increases. At all 

entrainment speeds with an increase in time the friction coefficient is seen to 

reduce steadily. The optical interference images (Figure 9-4) show virtually no 

tribofilm was formed during the duration of the test. The optical interference 

images show that the wear of the sample increased with time, shown by the 

distortion of the wear track in the SLIM image. 

However with the MoS2 coated samples (Figure 9-5) a different friction trend 

was observed in the mixed lubrication regime from 100 mm/s – 2000 mm/s, it 

is possible to see that friction begins to reduce with time until the entrainment 

speed reduces below 100 mm/s (boundary regime) where friction remains 

constant for the 2-hr rubbing period. The change of lubrication regime is 

highlighted on the stribeck curves with a red dashed line. The initial decrease 

in friction observed with decreasing with the entrainment speed with MoS2 

coated samples in the first minute  of testing relates to the initial wearing away 

of the MoS2 coating. This trend is observed with all the tests using the MoS2 

samples. The optical interference images (Figure 9-6) show the formation of 

a thick tribofilm early on during testing, however with duration the tribofilm 

thickness decreases and leaving the presence of a very thin tribofilm by the 

end of the test.  
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With the Plain sample (Figure 9-7) in mixed regime the friction behaviour is 

similar to that observed with the previous samples, with time a reduction in 

friction is observed. However in boundary regime conditions with time an 

increase in friction is observed, which is contrary to that observed with the 

treated samples. SLIM (Figure 9-8) showed the formation of a thick tribofilm 

on the wear track with time, with wear seeming to remaining constant as the 

wear tracks did not seem to distort with time. 

Different trends were observed by Spikes [89] and Ratoi et al [111], an 

increase in friction was observed with ZDDP containing additives over time 

with Stribeck curves. The friction reduction observed within this study was 

assumed to be due to the differences in the surface roughness’s of the 

samples in both studies. Samples within this study were 3-20x rougher and it 

is believed the friction response is dominated by the asperity removal instead 

of the properties of the tribofilm as seen in other studies [89, 111, 145]. 
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Figure 9-3. Series of Stribeck curves when using a QPQ ball and gas 
nitrided disc with TO10 lubricant. 
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Figure 9-4. Optical interference (SLIM) images of the tribofilm formation 
on QPQ samples with TO10 lubricant. 

Figure 9-5. Series of Stribeck curves when using a MoS2 coated ball and 
gas nitrided disc with TO10 lubricant. 

Figure 9-6. Optical interference (SLIM) images of the tribofilm formation 
on MoS2 coated samples with TO10 lubricant. 
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When comparing the friction performance of all samples after the 2hr testing 

period (Figure 9-9), at the starting entrainment speed (2000 mm/s) the friction 

responses of the sample variants are almost identical until the speed is 

reduced and the lubrication regime begins to move towards boundary 

conditions. At the lower entrainment speeds clear behaviour trends are 

observed for the different sample variants, the QPQ sample produced the 

lowest friction results in both lubrication regimes whilst the untreated sample 

had the highest. These trends followed that observed when testing with the 

Cameron Plint TE77. However in terms of wear depths (Figure 9-10), the 

MoS2 coated sample produced the highest wear depths with wear penetrating 
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Figure 9-7. Series of Stribeck curves when using a Plain ball and gas 
nitrided disc with TO10 lubricant. 

Figure 9-8. Optical interference (SLIM) images of the tribofilm formation 
on Plain samples with TO10 lubricant. 
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past the coating in to the substrate. Similar trends were observed by Suzuki 

[146], who found that the wear behaviour of MoS2 films worsened within a 

rolling contact than with pure sliding. With the QPQ sample wear depths 

remained within the compound layer. 

 

 

 

 

 

 

9.3 Tribological Response of Treated Balls when Lubricated 

with EP & AW Additives 

Using the three different variants of the ball samples with the TO10 lubricant 

showed similar behaviour trends observed when testing with Cameron Plint 
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Figure 9-9. Comparison of the Stribeck curves after 2hr rubbing test for 
QPQ, MoS2 coated & Plain samples and gas nitrided discs with 
TO10 lubricant. 
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Figure 9-10. Comparison of the wear depths of QPQ, MoS2 coated and 
Plain ball samples when using TO10 lubricant. 
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TE77 tribometer. The rest of the chapter focuses on comparing the tribological 

and tribochemical behaviour of the treated ball variants (QPQ & MoS2 coated) 

with various EP and AW additives, to gain a better understanding of how each 

treated surface interacts with single element containing lubricants. The 

primary aim of this chapter is to investigate the tribological and tribochemical 

behaviour with the application of a sliding contact and different lubrication 

regimes representing conditions occurring with the  actual piston and cylinder 

components. Sliding components are to operate under a mixed lubrication 

region, especially for the case of low speed conditions or low viscous working 

fluids [33]. 

The tests would also allow the opportunity to investigate and compare trends 

and gain a better understanding of the behaviours observed in Chapter 8 with 

the TE77 tribometer. This would be achieved by analysing the changes to 

surface topography and the formation of a tribofilm over the duration of the 

test. 

9.3.1 Friction & Wear Behaviour of the Treated Samples with BO + 

SO Lubricant Mixture 

Figure 9-11 shows the friction coefficient as a function of entrainment speed 

for the SO additive with the QPQ treated sample. As the entrainment speed 

is reduced friction steadily increases. In the mixed lubrication regime from 100 

mm/s – 2000 mm/s, it is possible to see that friction begins to reduce with time 

until the entrainment speed reduces below 100 mm/s (boundary regime) 

where friction remains constant for the 2-hr rubbing period. The optical 

interference images (Figure 9-12) show virtually no tribofilm was formed 

during the duration of the test. The optical interference images show that the 

wear of the sample increased with time, shown by the distortion of the wear 

track in the SLIM image. 

 A different trend is observed with the MoS2 coated sample (Figure 9-13), 

where at all entrainment speeds with an increase in time the friction coefficient 

is seen to reduce steadily. The reduction in friction after the two hour testing 

period at the different entrainment speeds ranged from 20-40%. The MoS2 
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coated surface was significantly more sensitive to the SO additive than the 

QPQ samples. The SLIM images (Figure 9-14) showed the formation of a thin 

tribofilm and exposure of a rougher surface that that observed when using 

QPQ samples (Table 9-1). Once again the wear of the sample increased with 

the duration of the test. 
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Figure 9-11. Series of Stribeck curves when using a QPQ ball and gas 
nitrided discs with BO+SO lubricant. 

Figure 9-12. Optical interference (SLIM) images of the tribofilm formation 
on QPQ samples with BO+SO lubricant. 
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Figure 9-13. Series of Stribeck curves when using a MoS2 coated ball 
and gas nitrided discs with BO+SO lubricant. 

Figure 9-14. Optical interference (SLIM) images of the tribofilm 
formation on MoS2 coated samples with BO+SO lubricant. 
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Table 9-1. The roughness (Ra) of the treated ball samples pre and post 
testing when using the SO additive. 

When comparing the friction performance of the two treated samples, Figure 

9-15, after 2hrs it is possible to see that the MoS2 coated sample performed 

better in both boundary and mixed regime, producing lower friction values.  

Optical images of the worn area of the QPQ MTM ball samples (Figure 9-

16(a)) after testing showed the removal of the oxide layer and the exposure 

of a porous compound layer. There are signs of scoring across the surface. 

No clear tribofilm is identified on the worn surface. 

However with the MoS2 ball samples (Figure 9-16(b)) the worn surface shows 

the almost complete removal of the MoS2 coating, with only remnants of it 

being observed in the wear scar. Scoring in observed across the surface 

alongside the presence of a uniform tribofilm covering the worn area. 

 Ra (µm) Pre-test Ra (µm) Post-test 

QPQ Ball Sample 0.03 0.22 

MoS2 Ball sample 0.68 1.71 

0.03

0.05

0.07

0.09

0.11

0.13

0.15

1 10 100 1000 10000

Fr
ic

ti
o

n
 C

o
ef

fi
ci

en
t 

(μ
)

Entrainment Speed (mm/s)

MoS2 (120min)

QPQ (120min)

Figure 9-15. Comparison of the Stribeck curves after 2hr rubbing test for 
QPQ and MoS2 coated samples and gas nitrided discs with BO+SO 
lubricant. 
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In terms of wear (Figure 9-17), the MoS2 coated samples had greater wear 

depths and penetration than the QPQ samples. The wear scar images and 

depth analysis indicate the MoS2 coating was removed during testing. 

 

 

 

 

 

 

Figure 9-16. Optical images of wear scar regions of the MTM ball 
samples with the SO additive – (a) QPQ ball (b) MoS2 ball. 

(a) 

(b) 
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9.3.2  Friction & Wear Behaviour of the Treated Samples with BO 

+ TCP Lubricant Mixture 

Figure 9-18 shows the friction coefficient of TCP additive with the QPQ treated 

sample. As the entrainment speed is reduced friction steadily increases. In 

boundary condition it is possible to see that friction is constant throughout the 

two hours of the test. In the mixed regime friction begins to reduce slightly with 

time, however taking in to consideration statistical error the change does not 

have a significant impact. The SLIM images are similar to those from the SO 

oil tests, no clear tribofilm is formed. However at 60 and 120 minutes a thin 

tribofilm seems to be present as highlighted in Figure 9-19. The SLIM images 

show less distortion of the samples wear track with time, suggesting lower 

wear is occurring. 

With the MoS2 coated sample, in boundary regime there seems to be no 

change in friction during the duration of the test (Figure 9-20), there is a slight 

reduction in friction within the mixed regime with time however the behaviour 

is similar to that seen with the QPQ sample and the change is not significant. 

The optical interference images show the formation of a tribofilm on the wear 

track (Figure 9-21), composed of non-uniformly distributed patches elongated 

along the sliding direction developing in thickness with the duration of the test. 
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Figure 9-17. Comparison of the wear depths of QPQ & MoS2 coated ball 
samples when using BO+SO. 
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The images also show the shape of the wear track is maintained during the 

test. The wear scar shows signs of adhesive wear and the surface is once 

again rougher than using the QPQ sample (Table 9-2). Even with the 

presence of a tribofilm on the QPQ and MoS2 balls there was no real impact 

on friction behaviour. This indicated that the properties of the tribofilm formed 

when using the TCP additive were different to that observed when using the 

ZDDP additive which lead to an increase in friction. This behaviour was also 

observed when using the same treated samples and lubricant additives with 

the Cameron Plint TE77 tribometer (Figure 8-1), indicating TCP has no impact 

on frictional behaviour. 
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Figure 9-18. Series of Stribeck curves when using a QPQ ball and gas 
nitrided disc with BO+TCP lubricant. 

Figure 9-19. Optical interference (SLIM) images of the tribofilm formation 
on QPQ samples with BO+TCP lubricant. The highlighted sections 
show the presence of a thin tribofilm. 
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Figure 9-20. Series of Stribeck curves when using a MoS2 coated ball 
and gas nitrided disc with BO+TCP lubricant. 

Figure 9-21. Optical interference (SLIM) images of the tribofilm formation 
on MoS2 coated samples with BO+TCP lubricant. 
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Table 9-2. The roughness (Ra) of the treated ball samples pre and post 
testing when using the TCP additive. 

 Ra (µm) Pre-test Ra (µm) Post-test 

QPQ Ball Sample 0.03 0.14 

MoS2 Ball sample 0.68 1.35 

When comparing the friction performance of the two treated samples, Figure 

9-22, after two hours it seems the friction response of the two treated samples 

are almost identical.  

The wear track of the QPQ MTM balls (Figure 9-23(a)) with the TCP additive 

showed the partial wearing of the Fe3O4 oxide layer in contrast to using the 

SO additive (Figure 9-16(a)), where the layer was completely removed. Even 

though the Fe3O4 layer survived the test, sections of it were worn through. 

When using the TCP additive the presence of a tribofilm can be observed on 

the worn surface which was not the case when using the SO additive. 

Similar to when using the SO additive, the MoS2 coating was worn away with 

the TCP additive (Figure 9-23(b)) with only remnants present within the 

contact. A thicker tribofilm is observed to form on the surface.  

However in terms of wear, once again the MoS2 coated samples had greater 

wear depths than the QPQ samples (Figure 9-24). The wear analysis of the 

QPQ samples indicated wear was less than 1µm, suggesting the oxide layer 

survived testing as supported by the optical images (Figure 9-23(a)).  With the 
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Figure 9-22. Comparison of the Stribeck curves after 2hr rubbing test for 
QPQ and MoS2 coated samples gas nitrided disc with BO+TCP 
lubricant. 
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MoS2 samples wear depths were similar to the thickness of the coating, which 

may explain the presence of remnants of the MoS2 coating as observed by 

the optical images (Figure 9-23(b)). 
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Figure 9-24. Comparison of the wear depths of QPQ & MoS2 coated ball 
samples when using BO+TCP. 
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Figure 9-23. Optical images of wear scar regions of the MTM ball 
samples with the TCP additive – (a) QPQ ball (b) MoS2 ball. 
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9.3.3 Tribological Response of the Each Additive on the Different 

Treated Surfaces 

Using Figure 9-25 to compare the friction response of the two additives with 

the QPQ samples, it is possible to see the friction trends are almost identical 

and the differing additives have no real affect when compared to each other. 

There is a stark comparison when analysing the effect of the different additives 

on the wear loss of the sample (Figure 9-26), the wear depth when using the 

TCP additive is lower than using the alternative additive. The figure also 

shows that with all additives the wear never penetrated past the compound 

layer and in to the substrate. The SLIM also showed the formation of a thin 

tribofilm with the TCP additive whereas nothing was formed with the 

alternative oil was used. 
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Figure 9-25. Comparison of the Stribeck curves after 2hr rubbing test for 
QPQ samples with gas nitridied discs when using BO+SO & 
BO+TCP lubricants. 
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Analysing the effect of the different additives with the MoS2 coated sample 

using Figure 9-27, the SO additive has a clear and effective impact on friction 

compared to the TCP additive. The SO additive produces significantly lower 

friction results in mixed and boundary conditions. These trends matched that 

observed when running similar tests with the TE77 tribometer. 

However there is a different trend observed when comparing the depth of the 

wear scars on the ball, where the trend follows that seen with the QPQ sample. 

The samples tested with the TCP additives have the smallest wear penetration 

(Figure 9-26), but for both oils it seems the coating did not survive the tests 

0.03

0.05

0.07

0.09

0.11

0.13

0.15

1 10 100 1000 10000

Fr
ic

ti
o

n
 C

o
ef

fi
ci

en
t 

(μ
)

Entrainment Speed (mm/s)

SO
(120min)

TCP
(120min)

0
2

4
6

8
10

12
14

16
18

20

QPQ MoS2

W
ea

r 
D

ep
th

 (
µ

m
)

Treatment Applied to Ball

SO TCP

MoS2 Coating Thickness 

Compound Layer 
Thickness 

Figure 9-26. Comparison of the wear depths of QPQ & MoS2 coated ball 
samples when using BO+SO & BO+TCP lubricants. 

Figure 9-27. Comparison of the Stribeck curve s after 2hr rubbing test for 
MoS2 coated samples and gas nitrided discs when using BO+SO & 
BO+TCP lubricants. 
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with the wear depth penetrating past the applied coating and into the substrate 

material. It had also been observed that a thicker tribofilm was formed when 

using the TCP additive, whereas it was thinner when using the SO additive. 

9.4 Tribofilm Characterisation using XPS 

XPS analysis was carried out to analyse the changes in chemical species 

formed in the tribofilms on the surface of the various samples. With the three 

samples tested with fully formulated TO10, the tribofilm compositions matched 

that found with the TE77.  

The XPS results in this chapter focus on characterising the tribofilms formed 

on the QPQ and MoS2 coated MTM balls when using the two different lubricant 

additives – SO & TCP, which vary in chemical composition. Table 9-3 and 

Figures 9 - (28 - 31) confirm the presence of a tribofilm and highlight the key 

species formed on the worn surface of the two sample types when using the 

different additives.  

When using the SO additive with QPQ samples, sulphides (162.3 eV - Figure 

9-28(a)) are detected within the MTM balls tribofilm which corresponds with 

the formation of FeS (712.1 eV - Figure 9-28(b)). Organic nitrogen species 

(399 eV - Figure 9-28(c)) are detected within the tribofilm. The species 

detected within the MoS2 coated samples tribofilm were similar to that 

observed with the QPQ samples. Sulphides (161.9 eV - Figure 9-29(a)) and 

FeS (712.1 eV - Figure 9-29(b)) were identified, however there were no 

nitrogen species detected due to the absence of a nitride layer. 

With the TCP additive, phosphates (133.4 eV - Figure 9-30(a) & Figure 9-

31(a)) and FePO4 (712.4 eV) alongside iron oxides (Figure 9-30(b) & Figure 

9-31(b)) are detected within the tribofilms of the QPQ and MoS2 MTM ball 

samples. Similarly to with the SO additive nitrides were not detected within the 

QPQ tribofilm, only organic nitrogen species (Figure 9-30(c)). 
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Table 9-3. General binding energy values for compounds relevant to the 
tribofilms formed on the worn surface of the QPQ and MoS2 
samples when using the different EP additives at a 1.34 nm etching 
depth [119]. 

 

 

 

Sample 
Type 

Additive Element 
B.E / eV 

( 1−
+ eV) 

Chemical state 

QPQ 

SO  

N 1s 399.0 Organic Species 

S 2p 162.3 Sulphide 

Fe 2p 712.1 FeS 

 709.5 Fe3O4 

TCP 

N 1s 398.1 Organic Species 

P 2p 133.4 Phosphate 

Fe 2p 712.4 FePO4 

 709.3 Fe3O4 

MoS2 

SO 

S 2p 161.9 Sulphide 

Fe 2p 711.9 FeS 

 709.0 Fe3O4 

TCP 

P 2p 133.7 Phosphate 

Fe 2p 712.4 FePO4 

 710.3 Fe2O3 

Figure 9-28. XPS spectra of S 2p, Fe 2p & N 1s on the worn surface of the 
QPQ MTM ball samples at 1.33 nm etching depth with SO additive. 
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Figure 9-29. XPS spectra of S 2p & Fe 2p on the worn surface of the MoS2 
coated MTM ball samples at 1.33 nm etching depth with SO additive. 

Figure 9-30. XPS spectra of P 2p, Fe 2p & N 1s on the worn surface of 
the QPQ MTM ball samples at 1.33 nm etching depth with TCP 
additive. 
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9.5 Summary 

This chapter aimed to investigate the tribological and tribochemical behaviour 

of the treated samples with the application of an almost pure sliding contact 

similar to that observed between the piston and cylinder component. This 

section also helped to verify the friction and wear trends observed with the 

sample and lubricants variants tested with TE77 tribometer. The results 

obtained in this part of the study allowed the analysis of the tribological 

behaviour of the surface treated MTM balls, alongside the visualisation of the 

formation of a tribofilm.  

 In boundary lubrication there was no real change in friction behaviour 

which differed to the behaviour observed with the TE77. However in 

mixed lubrication the behaviour observed with the different samples 

was the reduction in friction with time.  

 The different treatments applied to the MTM balls impacted the friction 

and wear behaviour of the samples. These behaviours could also be 

affected by the synergistic effect of the treated surface with the varying 

lubricant additive. 

 With the QPQ sample all additives had no real impact on friction 

behaviour, however wear depths with the TCP additive were lower than 

Figure 9-31. XPS spectra of P 2p & Fe 2p on the worn surface of the MoS2 
coated MTM ball samples at 1.33 nm etching depth with TCP 
additive. 
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with using the alternative additives. No visible tribofilms were formed 

on the surface of the sample with all additives.  

 With the MoS2 coated sample a significantly lower friction response 

was achieved with using the SO additive, however with using the TCP 

additive a better wear response was achieved. Thin tribofilms on the 

sample surface were formed with the SO additive however the TCP 

additive a thicker tribofilm developed with time.  

 On both samples the friction effect of the TCP additive was minimal, 

however when using SO the friction response with the MoS2 samples 

were significantly lower than the QPQ samples in both lubrication 

regimes. Similar behaviour was observed when using MoS2 pins with 

the SO additive with the Cameron Plint tribometer. 

 The friction trends and behaviour observed with sample variants and 

the different additives matched that seen when using the TE77 

tribometer. The results supported the hypothesis that the TCP made 

no impact on friction behaviour. 

Using a tribometer which closely replicated the contact of a piston/cylinder in 

a hydraulic allowed verification of the behaviour trends observed when using 

the TE77 tribometer. The Chapter demonstrated the type of treatment applied 

to the samples significantly impacts the friction and wear behaviour. This is 

further influenced by the synergistic effect of the surface and the lubricant 

additive. 
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Chapter 10 Discussion 

In the literature review, it was discussed that studies showed that one of the 

key causes of inefficiency and failure within hydraulic systems was due to the 

tribological interaction of components. In particular the contact of the piston 

with the cylinder wall within the hydraulic pump led to the build-up of wear 

particles between the components eventually leading to seizure or the 

breakdown of the lubricating film. The application of a wear resistant and low 

friction nitriding heat treatment aimed to prevent the embedding of particles in 

to the surfaces of interacting components and reduce clearances to minimise 

lubricant leakage and acting friction. This study incorporates inspiration from 

the findings of Yue et al [104, 139] who currently provides the only  

comprehensive work involving the interaction of lubricant additives with 

nitrided surfaces. This work provides a novel insight into the impact of the 

individual layers produced after nitriding on tribological and tribochemical 

behaviour. This includes investigating the influence of the presence of oxide 

and FeS layers produced with nitriding variants on tribological and 

tribochemical behaviour, which very few studies have researched. 

Very few studies have investigated optimising the tribological properties of the 

nitride surface through lubricant additive selection. Ma et al [105] believed the 

presence of an oxide layer on the samples would enhance the friction and 

wear reduction properties when using TCP in comparison to SO. This 

research investigated the interaction of these additives with the oxy-nitrided 

samples however tribological parameters replicating conditions observed in 

the real contact of a hydraulic piston and cylinder were used. The novel aspect 

of this part of the study, would be employing an MTM SLIM tribometer to allow 

the real time in-situ analysis of tribological behaviour and tribofilm formation 

with heated treated and coated samples in boundary and mixed lubrication 

regimes.  

In this chapter, the following topics will be discussed: (1) The impact of surface 

modification treatments on tribological and tribochemical behaviour (refer to 

results presented in Chapter 6 and 7); specifically:  



- 192 - 

 The link between testing parameters and tribological behaviour 

 The impact of the properties of the layers produced after surface 

treatment on tribological behaviour 

 The link between the modified layers and tribochemical interactions 

(2) The effect of AW & EP additive alternatives on tribological and 

tribochemical performance of oxy-nitrided and MoS2 coated samples. 

10.1 Tribological Performance of the Layers Formed by the 

Oxy-Nitriding and MoS2 Coating Treatments with a Fully 

Formulated Lubricant. 

10.1.1 The Influence of the Properties of the Surface Post- 

Treatment on Friction 

A decrease in friction is sometimes observed with the application of a higher 

load or sliding frequency (Figure 10-1) and may be attributed to the following: 

(1) a reduction in contact pressure from the enlargement of the contact area 

during wear and (2) the build-up of debris at the contact interface which 

introduces low-friction localised rolling to the otherwise high-friction two body 

abrasion [126]. Other studies [147] concluded the reduction in friction 

coefficient was due to an increase in surface temperature caused by the 

higher sliding speed. This would cause the flattening of surface protrusions 

resulting in steady state and a reduction in shear force and friction coefficient.  
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Figure 10-1.  Friction and wear comparison of the three sample variants 
at contact pressures from 0.92 – 1.90 GPa at 12 Hz sliding 
frequency. 
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The characterisation of the MoS2 coated samples in chapter 5 showed the 

presence of a 28 μm thick MoS2 layer. The lower friction behaviour of the 

MoS2 coated pins in comparison to the untreated samples (Figure 10-1), may 

be due to the presence of the MoS2 layer. Martin et al [148] states the 

presence of an MoS2 transfer film on the frictional counter-face can lead to 

low friction behaviour, due to the easy shear between lamellae within the 

layers [149]. The application of the soft MoS2 coating on to a gas nitrided 

hardened surface, could have ensured that contact loads were essentially 

supported by the contact material instead of the formed film [150]. 

Demydov et al [125] showed that MoS2 nanoparticles delivered dialkyl 

dithiophosphate groups to wear points between interacting surfaces, causing 

these groups to decompose under high pressure and temperature, forming a 

protective polyphosphate tribofilm integrated with MoS2.They believed that the 

synergistic interaction between the MoS2 nanoparticles and polyphosphates 

accounted for the decrease in friction and wear observed. Due to an MoS2 

coating instead of MoS2 nanoparticles being used in this study, the low friction 

results achieved in Demydov et al.’s [125] work were not achieved. Even 

though the MoS2 coating was removed there were no particles remaining 

within the contact area to form low friction MoS2 sheets as there would be with 

nanoparticles. 

 

 

 

Chapter 5 showed the formation of a thin oxide layer above a ~13 µm 

compound/nitride layer after the QPQ process. The properties of these layers 

(Figure 10-2) seemed to play an influential and significant factor with wear and 

friction results observed. The QPQ samples produced the lowest friction 

Figure 10-2. Cross-sectional scheme of treated pin sample’s worn 
surface. 
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response in comparison to the alternatively treated samples (Figure 10-1). 

The samples wear depths after testing (Figure 10-1) showed wear remained 

within the compound layer (<13 µm) for all tests. Qiang et al [151] reported 

that the formation of a ε-phase containing compound layer with non-metallic 

properties makes it difficult for metallic counterparts to adhere with. 

Characterisation of the compound layer using XRD (Figure 5-5) showed a 

strong presence of ε-phases with samples used in this study. This combined 

with a lamellar close packed hexagonal microstructure, which is easy to slide 

and to run in along the base plane would help to reduce the heat produced by 

friction. These characteristics may have influenced the low friction behaviour 

observed.  

10.1.2 The Influence of the Properties of the Surface Post-

Treatment on Wear 

With the application of an extreme contact pressure (1.90 GPa), wear 

penetrated past the compound layer (Figure 6-7) and an increase in friction 

was observed (Figure 10-1). This is possibly due to the non-ceramic and 

rougher (Table 10-1) properties of the now exposed diffusion zone. This study 

gives a clear indication of the influence of the compound layer and diffusion 

zone on friction behaviour. 

Table 10-1. The roughness of different QPQ layers exposed during 
testing. 

 Roughness, Ra (µm) 

QPQ (unworn) 0.05 

Compound layer present 0.11 

Compound layer removed 0.23 

The compound layer mainly composed of ε–Fe2-3N, detected using XRD 

(Figure 5-5), is known for its high hardness and wear resistance which allows 

the application of large loads [57, 66]. The porosity present at the top of the 

compound layer is acknowledged for its ability to retain extra lubricant, 

combined with the presence of an oxide layer composed of magnetite (Fe3O4) 

acting as a running–in coating, would further enhance the samples friction 
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abilities. The oxide layer is known for its low adhesion tendency due to its 

ceramic features which increases its wear resistance, contributing to further 

friction reduction [57, 151, 152].  

With the MoS2 coated samples the wear depths show that by the end of the 

two hour testing period the entire coating is almost removed, which can be 

expected due to it being deemed to be a running-in coating as stated by the 

bonded coating manufacturer Klueber [50]. The durability of the coating is 

relatively short and once it has been worn through it cannot be replenished 

[149]. The substrate exposure is also a likely explanation why the friction 

results are comparable to that seen with the untreated samples and the 

slightly lower friction results seen may be due to the initial presence of a low 

friction coating and formation of low friction MoS2 sheets.  

The substrate exposure could explain the significantly higher wear penetration 

when compared to the QPQ sample due to its lower hardness compared to 

the compound layer, Yue et al [104] proposed this also contributed to the 

QPQ’s low friction behaviour.  

10.2 Tribochemical Interactions with the Modified Surfaces 

FIB-SEM was used to analyse the thickness of glass phosphate tribofilm’s 

formed the three sample variants. 

10.2.1 Tribofilm Formation with Plain Samples 

With the Plain sample a thick tribofilm was detected ~100-200 nm (Figure 6-

9(a) ) to be formed on the worn surface. Li et al’s [153] research demonstrated 

that on softer substrates thicker and non-uniform films were formed, the 

irregularities of the film thickness were due to the deformation of the substrate, 

and this was common with softer surfaces. This deformation also resulted in 

rougher surface topographies. Within this study, plain samples had the lowest 

hardness (Figure 5-4), hence forming the thickest tribofilms.  
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10.2.2 Tribofilm Formation with MoS2 Samples 

A 70 nm tribofilm was detected with the MoS2 samples (Figure 6-11(a)).  Even 

with the removal of the MoS2 coating and the exposure of the substrate the 

tribofilm formed was thinner that observed with the Plain sample. This was 

due to the higher hardness than the plain samples (Figure 5-9), which resulted 

in a thinner tribofilm being formed. Yin et al [90] states that the interaction 

against a rougher counter face would provide greater opportunity for ZDDP to 

become trapped between the two surfaces, which would encourage the 

formation of thicker tribofilms. The MoS2 coated samples had the highest initial 

surface roughness (Table 4-3) which may led to a patchier tribofilm in 

comparison to the plain samples. 

10.2.3 Tribofilm Formation with QPQ Samples 

With the QPQ samples, the presence of a hard and smooth layer (Table 4-3) 

may be deemed responsible for the development of a thin tribofilm on the 

samples surface (Figure 6-13(a)). Spikes [89] research demonstrated that the 

thickness of the tribofilms formed were influenced by the elements present on 

the rubbing surfaces, with the absence of nascent iron in the treated layers of 

the QPQ samples [121, 122] it is difficult to detect a tribofilm.  

The formation of a tribofilm when using ZDDP would be further hindered due 

to the presence of detergents and dispersants within the fully formulated oil 

used. Several researchers [109] have observed the deterioration of ZDDP’s 

anti-wear properties in the presence of metallic detergents. This is due to the 

competition between the two additives for surface sites hence reducing the 

effective ZDDP surface concentration. 

10.2.4 Tribofilm Composition 

To investigate the role of the tribofilm and tribochemistry between the sample 

surfaces and lubricant in reducing friction during testing, XPS and Raman 

spectroscopy were used to characterise the formed protective layers. Nitrides 

were detected within the tribofilm of the QPQ samples.  The presence of hard 
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nitrides detected within the tribofilm after the surface could further enhanced 

the wear resistance of the sample, however Yue et al [104]  and Xia et al [103] 

believed the nitride presence was attributed to the exposure of the nitride 

layer. One of the key chemical species identified to be present in the QPQ 

tribofilms was FeS2. 

Ito et al [102] proposed that with the presence of an iron oxide (Fe3O4) layer, 

above 60°C ZDDP molecules present in the lubricant would decompose 

creating free zinc ions. These free ions would adsorb on to the iron oxide 

surface, forming a zinc-rich, sulphur-free absorption layer (ZnFe2O4) that can 

grow without modifying the crystal structure of the surface. During testing, the 

sliding between two surfaces causes mechanical mixing to occur allowing Zn2+ 

and Fe2+ ions to exchange cations. Free iron ions are able to react with sulphur 

from the DDP- forming iron sulphides and FeS2. Watanabe et al [154] reported 

that a porous FeS2 layer was formed on Fe3O4, while a dense FeS layer was 

formed on iron. Figure 10-3 summarises schematically the chemical nature of 

fully formulated tribofilms formed on steel and QPQ samples. 

Wada et al [155, 156] concluded that the formation of large amounts of FeS2 

the greater the influence it would have on friction reduction, which is 

demonstrated in Figure 10-4. The presence of FeS2 in the tribofilm combined 

with the QPQ compound layer could further enhance the samples friction 

reduction ability. FeS2 had a greater presence in the QPQ sample tribofilms 

ZDDP Tribofilm Formation 
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Figure 10-3. Schematic representation of tribofilms formed on plain and 
QPQ samples using fully formulated oil. 
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than plain and MoS2 -coated samples. However due to the relative thinness 

of the tribofilm the influence of FeS2 on friction reduction could be negligible.  

With the removal of the compound layer of the QPQ sample (Figure 6-17), the 

tribofilm formed showed a higher content presence of Fe and P (Table 6-3). 

Basso et al [121] states that the compound layer is inert which other studies 

[89] indicate would impact the formation and development of a tribofilm. With 

the exposure of the iron rich diffusion zone a higher presence of iron is 

expected (Figure 5-3), however the higher presence of phosphorus may 

possibly be due to the formation of a thicker protective tribofilm (Figure 6-

17(b)). This may be due to the removal of the inert compound layer allowing 

a greater rate of formation and interaction. This study shows the importance 

of nascent iron in the development of a tribofilm and its influence on 

tribological performance. 

10.2.5 Tribofilm Characterisation 

This study’s XPS analysis showed the formation of short chain length 

polyphosphates within the tribofilms of the QPQ samples (Table 6-4). Shorter 

chained polyphosphates are regarded to enhance the mechanical and 

rheological properties of the surface giving it better tribological properties 

when compared to plain and MoS2-coated samples which formed longer 

chained polyphosphates. Ito et al [102] and Yue et al [104] suggested that the 

formation of a native iron oxide layer (Fe2O3) and nitrides on the nitrided 

surface would interact with the polyphosphates forming shorter chain lengths.  

Figure 10-4. a) Effect of sulfides in tribofilm on friction coefficient [156] 
b) At 1.19GPa contact pressure and 1.34 nm etching depth. 
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5 Zn(PO3)2 + Fe2O3 → Fe2Zn3P10O31 + 2ZnO5 (ZnO, P2O5)(Fe2O3, 3 ZnO, 5 

P2O5)                                                                                                       (10-1) 

The reaction highlighted in Equation 10-1 will result in de-polymerization, 

resulting in the formation of shorter poly-phosphate chain [99, 128, 157, 158]. 

The presence of an iron oxide layer composed of Fe3O4 as in this study, would 

prevent de-polymerization occurring and the formation of longer chained poly-

phosphates as seen with the formation of the QPQ samples thermal unworn 

film. This due to the cation exchange between the Fe2+ and Zn2+ ions in the 

polyphosphate layer [102]. However the exposure of the nitrided layer may 

have led to the formation of shorter chained polyphosphates within the worn 

surface tribofilm, due to the reaction of the nitrides with the polyphosphates. 

Similar behaviour was observed by Yue et al [104]. 

Heuberger et al [131] states that polyphosphates with two or three units of 

phosphates are possibly harder and tougher than longer chain lengths, and 

coupled with a hard nitride layer this would greatly reduce the wear rate, 

explaining the behaviour seen with the QPQ sample. 

The results from this chapter showed the influence of the nitride layer on 

tribological and tribochemical behaviour. In the following section the 

implication of the presence and absence of a thin nascent iron containing layer 

will be discussed in detail. 

10.3 Tribological and Tribochemical Influence of Modified 

Layers Present on a Nitrided Surface with a Fully 

Formulated Lubricant. 

10.3.1 Isonite Samples 

The friction and wear response of the Isonite samples matched that of the 

QPQ sample (Figure 10-5) suggesting that the impact of the Fe3O4 layer 

present with the QPQ samples has minimal impact of friction and wear 

behaviour. 
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 HEF state that the presence of the black oxide layer is primarily for cosmetic 

and corrosion protection purposes [59]. It was believed that the presence of 

the (Fe3O4) oxide layer led to the formation of FeS2 (Equation 10-1) which 

when present in high concentrations can impact friction behaviour (Figure 10-

3). XPS (Table 7-3) and Raman (Figure 7-12) showed no real presence of iron 

sulphides within the tribofilm of the Isonite samples, supporting the theory that 

the oxide layer presence was responsible for the compound’s formation 

(section 10.2). With the FeS2 absence within the tribofilm of the Isonite 

samples demonstrated that the compounds presence made minimal impact 

as the two samples friction behaviour were almost identical. This was most 

likely due to the thin tribofilm formed (Figure 6-13) which would limit the 

concentration of key compounds present within it.  

This study’s findings demonstrated the possibility of forming a thicker tribofilm 

with presence of thicker oxide layer, which could have a greater FeS2 

concentration allowing a lower friction response. The Fe3O4 layer was shown 

to be a source of nascent iron which impacted the formation of a tribofilm, with 

the QPQ samples showing a higher P/Zn ratio (Table 7-2) than the nitride 

alternatives. The interaction of the nascent iron and phosphorous present 

within the lubricant additive would encourage the formation of a protective 

layer. 
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10.3.2 Sulphur Nitrided Samples 

With the sulphur nitrided samples the friction  and wear response (Figure 10-

5) was lower than the QPQ and Isonite alternatives. Yue et al [159] and Wang 

et al [51] (Figure 10-6(a)) observed similar trends with their study. This was 

due to the presence of a FeS layer on the top surface of the pins as identified 

when the samples were characterised in chapter 5 (Figure 5-11). FeS is softer 

than the metal surface, acting as a solid lubricant which allows easy slip due 

to its layered structure and would contain wear to its thickness [141]. Even 

when the FeS layer was worn away to a certain extent, it could be 

decomposed under high friction heat and contact stress to produce S ions, 

which could react with Fe atoms from substrate to form FeS again, i.e. FeS 

could be retained continuously in a certain period [139, 159]. 

 

The results with the sample variants from Chapter 7 support the theory that 

the inertness of the compound layer limits the formation of an effective 

tribofilm. The presence of nascent iron within the contact area could influence 

the formation of thicker and protective phosphate film. 

 

Figure 10-6. Friction response of plain and sulphur nitrided samples as 
shown by (a) Wang et al [51] and (b) this study. 
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10.4 Performance of Treated Samples with Extreme Pressure 

and Anti-Wear Additive Variants 

The tribological behaviour observed in Chapter 8 is due to the tribochemical 

interaction of the different additives with the modified surfaces. The following 

sections summarises this study’s findings of the role chemical interaction 

plays in the friction and wear behaviour observed.    

10.4.1 Friction 

High friction trends (Figure 8-2) were observed when using the ZDDP lubricant 

in comparison to using the SO and TCP additives. This is a well recorded 

phenomenon due to the formation of an anti-wear tribofilm which has an 

uneven, pad-like distribution separated by deep fissures (Figure 10-7). The 

roughness of these pads is usually orientated towards the direction of sliding, 

which is shown by the high friction coefficients in boundary condition usually 

ranging from 0.11 to 0.14 [160].  

However, with the QPQ samples BO produced the highest friction response 

in contrast to behaviour observed with the alternatively treated samples. This 

is most likely due to the removal of the compound layer (Figure 8-6) and 

exposure of the diffusion zone similarly to that observed in Chapter 6 (Figure 

6-4) and discussed in section 10-1.  

The friction response in the last 30 minutes of testing when using BO and TCP 

with the non-nitrided samples were almost identical. This is in contradiction to 

the behaviour observed by Ma et al [105, 106]. However, Ma et al [105] 

believed the presence of a film formed when using a TCP additive would only 

Figure 10-7. Schematic diagram of pad like structure of ZDDP tribofilms 

– adopted from Spikes [89]. 

rough pad surface ZDDP pad 
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improve the samples anti-wear and load carrying properties, which was 

observed in this study. This study showed the properties of the tribofilm 

formed using TCP differed to that formed with ZDDP, with the latter increasing 

friction response.  

When using the SO additive with the Plain samples a slightly lower friction 

response was recorded compared to when using the alternative lubricants. 

EDX (Figure 8-7(b)) and XPS (Table 8-1) showed a strong presence of FeS. 

The compound is softer than the metal surface and acts as solid lubricant, 

making it effective in friction reduction [141]. 

With the MoS2 samples a significant reduction in friction with time is observed 

when using the SO additive (Figure 8-1). XPS showed the formation of FeS 

within the tribofilm formed, this combined with the remnants of the MoS2 

coating would greatly influence the friction behaviour of the sample. A similar 

response was observed within Wang et al.’s [51] (Figure 10-8(a)) work with 

MoS2/FeS multilayer films under lubrication, where the friction decreased and 

was lower than steel with a FeS film. Wang et al [51] proposed this was due 

both compounds possessing a close packed hexagonal crystalline structure 

allowing easy slip along the close-packed plane. With the formation of FeS on 

the worn MoS2 coated surface, this multilayer film would be subject to plastic 

deformation creating a plastic flow layer over the worn surface which help to 

reduce friction within the system. The relative softness of both compounds 

would have a detrimental effect on the wear rate of the sample.  

(a) (b) 

Figure 10-8. (a) Friction behaviour of MoS2/FeS multilayer, FeS film and 
steel under oil lubrication as shown by Wang et al [51], (b) Change 
in friction coefficient with MoS2 samples with SO additive. 
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With the QPQ samples when comparing the impact on friction behaviour of 

the SO and TCP additives the responses are almost identical. As mentioned 

in section 10.1 this may be due to the inertness and non-metallic properties of 

the compound layer, where wear was contained for all the additives used. The 

absence of nascent iron in the treated layers of the QPQ samples would have 

impacted the tribochemical behaviour of the sample. This may have caused 

the formation of a relatively thin tribofilm or hindered the formation of sufficient 

concentrations of key compounds (FeS) when using the SO additive 

minimalising the influence of the tribofilm on friction behaviour. As observed 

with Plain and MoS2 it is also believed that the TCP additive has no impact on 

friction behaviour of the QPQ samples. 

10.4.2 Wear  

The wear trends observed with the alternative EP and AW additives were 

similar to Ma et al.’s [105] study. With the absence of additives in the lubricant 

to form a protective surface tribofilm, the experiments using base oil produced 

the highest wear results. Wear reached the diffusion zone (>15 µm) past the 

compound zone for the QPQ samples and deep in to the substrate for the 

alternative samples (Figure 8-6). The wear when solely using BO was in some 

cases five times higher than when an extreme pressure additive was present. 

Even with the formation of relatively thin tribofilms with the different additives 

their formation was extremely effective on the wear performance of the 

samples. Similar behaviour was observed by Konicek et al [144] where the 

formation of a thick tribofilm was not crucial to protect surfaces from wear.  

With the MoS2 coated samples the wear depths with BO were similar to that 

observed when using the SO additive, where the MoS2 coating was removed 

in both cases (Figure 8-8) and similar levels of penetration in to the substrate 

material were achieved. However even though the wear behaviours were 

similar the friction responses (Figure 8-2) with the two lubricants were in stark 

contrast. This indicates that the low friction behaviour observed when using 

the SO additive was not primarily caused by mechanical or wear mechanisms 

occurring with the exposure and wearing of the substrate, but more likely due 
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to the chemical interaction of the SO additive with the worn surface similar to 

that observed by Wang et al [51]. 

When assessing the wear performance of the different additives, SO produced 

the largest wear (Figure 8-6). This is most likely due to the absence of a 

phosphate protective layer and the presence of soft FeS compounds within 

the tribofilm (Table 8-1). This behaviour is also supported by Kawamura et al 

[161] who state the crystal structure of the reaction products (FeS) when using 

SO would substantially affect the samples wear properties. Ma et al [105] 

found that TCP additives were more effective on improving the anti-wear 

properties and load-carrying abilities of samples whereas SO additives only 

tended to improve the samples load-carrying abilities. 

In contrast to the other samples, with SO the Plain samples produced similar 

wear results to when using the ZDDP lubricant. This may be due to higher 

amounts of FeS being formed within the tribofilm (Figure 8-7(b)) which helps 

to further protect the surface as a protective layer.  

The TCP additives produced the lowest wear depths in comparison to the 

other additives, especially with the oxy-nitrided (QPQ) surface. XPS (Table 8-

1) showed the presence of FePO4 within the tribofilm alongside phosphates 

which improved the anti-wear behaviour of the samples. Ma et al [106] 

believed due to the formation a thick and compact boundary lubrication film 

containing FePO4 and iron oxide, oxy-nitrided samples would have better anti-

wear properties and load-carrying capacity as observed within this study. It is 

believed that the TCP additive is activated by the presence of oxygen or 

oxidised surfaces, which in the case of the QPQ samples would be the 

presence of an Fe3O4 layer.  

Guan et al [162] believed that the mechanism of decomposition of TCP 

involved a chemical mechanism of decomposition with an initial P=O bonding 

of intact TCP to the surface. This results in increased polarisation and 

activation of the P=O bond, followed by nucleophilic attack of residual H2O or 

surface O2- onto the P-atom. Ultimately this results in the formation of the 
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metal phosphate or polyphosphate layer. Figure 10-7 highlights the proposed 

model. 

 

 

 

 

The fully formulated oil had higher wear rates when compared to the TCP 

additive, even though ZDDP is described as the most effective anti-wear 

additive. This behaviour is like that observed by Khorramian et al [141]; this is 

likely due to the presence of detergents and dispersants alongside ZDDP 

within the fully formulated oil. Several researchers [109] have observed the 

deterioration of ZDDP’s anti-wear properties in the presence of metallic 

detergents. This is due to the competition between the two additives for 

surface sites hence reducing the effective ZDDP surface concentration.  

The presence of nitrides within the tribofilms formed when using the SO and 

ZDDP additives maybe due to the greater wear and exposure of the nitrided 

layer in comparison to using the other additives. It was important to determine 

whether the presence of a nitrided layer would enhance the effectiveness of 

the lubricant additive in reducing wear. Yue et al [104] found that the effect of 

the additive ZDDP did not greatly enhance the wear reduction properties when 

used with a nitrided surface compared to a plain untreated sample as shown 

within this study (Table 10-2).  

Table 10-2. Shows the wear depth ratio’s (BO/ZDDP) for untreated and 
nitrided samples. 

 

 

 Wear Depth Ratio (BO/ZDDP) 

Untreated 1.70 

Nitrided 1.60 

Figure 10-9. Schematic image of metal catalysed TCP decomposition 
mechanism – adopted from Guan [162]. 
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Chapter 8 showed that the tribological properties of the treated samples could 

be influenced by different EP and AW additives. This study further highlighted 

the interactions and impact of the inert compound layer on the enhancing and 

limiting the friction and wear performance of the QPQ sample. The results also 

showed an effective synergistic behaviour of the MoS2 coating with the SO 

additive, which could potentially be researched to be implemented within a 

nitrided system to further improve tribological behaviour. 

10.5 Friction and Wear behaviour of MoS2 and QPQ Samples 

using MTM SLIM 

10.5.1 Tribological Impact of a Sliding/Rolling Contact 

When using almost a pure sliding contact with the MTM SLIM and the lubricant 

additives, no real change with friction was observed with time when in 

boundary lubrication however when in mixed lubrication a reduction was 

observed. These results are in conflict with a study by Ratoi et al [111], who 

showed an increase in friction with time when using the ZDDP additive with 

untreated chrome steel MTM samples. The reduction in friction observed in 

this study may have been dominated by the removal of asperities on the ball 

samples surfaces, which would allow greater entrainment of lubricant between 

two surfaces and hence a reduction in friction is observed with time. Friction 

within boundary regime remained constant over time with both samples and 

additives; this may be due to the inability to form a tribofilm which would impact 

friction behaviour as observed with other studies [89, 111].  

Samples used within other studies have had significantly lower surface 

roughness values (0.01-0.015 µm) and were untreated in comparison to the 

samples within this study. The QPQ samples had a surface roughness (Ra) 

was 0.03 µm and the MoS2 coated samples surface roughness (Ra) was 0.68 

µm. The smoothening of the contact within this study may have dominated the 

tribological responses and limited the chemical interaction of the surfaces with 

the lubricants in comparison to the behaviour observed with Ratoi’s et al.’s  

[111] study. This study highlights the difficulty in using heated treated and 

coated sample with the MTM SLIM due to the rough surface finish.  
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Figure 10-10 compares the different friction behaviour trends over time in 

boundary lubrication with the TE77 tribometer and MTM SLIM, with the latter 

closely replicating contact behaviour observed with the piston and cylinder 

components. The friction values between the two tribometers widely differ,  

which is important as it highlights the impact of the application of realistic 

contact conditions. The MTM results may provide behaviour trends closely 

representative to that observed with the actual interaction of the piston and 

cylinder components.  

With the MTM samples the friction response (Figure 10-10) for all the samples 

and lubricants are almost identical, whereas with the TE77 tribometer different 

friction responses are observed with the sample and lubricant variants. The 

impact of the lubricants on friction may have been more effective with TE77 

tribometer due to the entirety of the test being carried out in boundary 

lubrication where the properties of AW and EP additives are activated [49, 89, 

90, 141]. The MTM SLIM tests are carried out in boundary and mixed 

lubrication where the surface properties of the samples as discussed earlier 

may have had a significant influence on tribological behaviour.  

As observed when comparing the friction behaviour, the wear results 

observed from using the TE77 and MTM tribometers were incomparable. 

Figure 10-11 shows the wear depths produced with the TE77 tribometer were 

significantly higher than that observed with MTM for both sample and additive 

variants. It is believed this due to the geometry and stress distribution with the 

(a) (b) 

Figure 10-10. Friction response of MoS2 and QPQ samples with SO and 
TCP additives in boundary lubrication (a) MTM tribometer – 10 mm/s 
entrainment speed (b) TE77 tribometer – 0.35 m/s sliding speed. 
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different contact types. Bayer [163] believed with the application of a point 

contact as with the TE77 samples, which concentrates loading may result in 

the immediate wearing of a coating or layer. However with the application of 

a conforming or rotating contact the coating or layer may fail by gradual wear. 

This is due to the presence of a greater contact area alongside the distribution 

of contact stresses across the surface. The wear generated by the sliding 

rolling-contact with the MTM tribometer may give a closer representation of 

the expected behaviour of the surface treatments when applied to actual 

components within a hydraulic system. 

The clear difference in friction and wear trends between the two tribometers 

is significant as it highlights a difference in behaviour with the application of 

contact parameters similar to that observed between the piston and cylinder 

components. Konicek et al [144] found that the wear and tribofilm 

development when comparing results from a simple tribometer and engine 

test differed widely. It was concluded that the ability to develop a classical 

adherent tribofilm or replicate traditional behaviour will depend on various 

experimental factors. 

10.5.2 Tribological and Tribochemical Behaviour 

With the application of a sliding contact and the ability to analyse the 

development of a tribofilm in-situ would allow further understanding of the 
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interaction of lubricants with nitrided surfaces. The SLIM images with all 

lubricant variants showed no real formation of a clear tribofilm matching the 

assumptions made in the previous chapters when using the TE77 tribometer, 

regarding the inertness of the compound layer limiting the formation of a 

tribofilm [89, 121]. XPS with SO and TCP additives identified the presence of 

organic nitrogen species within the tribofilm with the MTM samples. This 

indicates that the presence of nitrides observed within the tribofilm of TE77 

samples was due to the greater exposure of the nitride layer [103, 104] rather 

than the formation of nitride species within the tribofilm, which could potential 

impact tribological behaviour.   

The identical friction response observed after the two hour testing period when 

using the SO & TCP additives with the QPQ samples (Figure 9-23) matched 

that observed in Chapter 8 with the TE77 tribometer. These results help to 

further validate the assumption that the compound layers non-metallic 

properties limits the formation of a thick tribofilm containing a sufficient 

concentration of compounds which would influence tribological behaviour. 

SLIM images showed no real formation of a tribofilm with the two additives 

used (Figures 9-12 & 9-18). XPS (Table 9-3) showed the presence of FeS 

when using SO and FePO4 with TCP. As observed in chapter 8, the TCP 

additive had a greater impact on reducing wear than SO (Figure 9-24). 

The friction trends observed with the MoS2 coated samples with the two 

additives (Figure 9-25) validated the behaviour observed in Chapter 8 with the 

TE77. A reduction in friction with time was also observed when using the SO 

additive, further supporting Wang et al.’s [51] findings of a synergistic effect 

due to the interaction of FeS formed within the tribofilm with the MoS2 coating.  

The friction response with the MoS2 samples and TCP additive were identical 

to that observed with the QPQ sample (Figure 9-21). Thus adding weight to 

the hypothesis made in section 10.4.2 that the TCP additive and the formation 

of FePO4 compounds (Table 9-3) had no impact on friction behaviour only on 

wear. Both sample variants showed a lower wear response when using the 

TCP additive (Figure 9-24). However the optical images (Figure 9-23(a)) of 

the QPQ sample wear scars showed the presence of a tribofilm of the surface, 
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indicating the additive was more reactive to the surface than the SO additive. 

This supports Quan et al.’s [162]  assumption that the presence of an oxide 

layer would make the TCP additive more reactive to the surface.  

10.5.3 Challenges with using the MTM SLIM 

This study showed the limitations of using the MTM SLIM to analyse 

quantitatively the development of a tribofilm on coated or heat treated 

samples. The inability to estimate the thickness of the tribofilms formed on the 

sample surface in this work was due to the high surface roughness. The SLIM 

requires a conforming smooth surface to be pressed against the glass 

window. The contact area is illuminated by white light and any film formed by 

the additive reflects back part of the light which is recombined to form an 

interference image. However the roughness of the samples used within this 

study would hinder the reflection of the illuminating white light, thus limiting 

the ability to accurately measure the thickness of the formed tribofilm on the 

treated samples [164]. 

This study highlights the need for smoother surfaces (Ra = 0.01-0.15 µm) after 

the application of surface treatments to the samples, to allow the impact of 

tribofilms formed on tribological performance to be assessed. 

However the results were able to clearly highlight the impact of the properties 

of the modified surfaces on tribological behaviour. The QPQ samples had 

greater wear resistance than the MoS2 coated samples. The results also 

showed that not only can the surface impact behaviour but so can its 

interaction with the additives in the lubricant. The TCP additive produced lower 

wear when used with both samples and the synergistic interaction of the SO 

additive and MoS2 surface led to low friction behaviour. 
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Chapter 11 Conclusions and Future Work 

11.1 Conclusions 

This chapter summarises the conclusions derived from the various works 

presented in this thesis. This study has provided an insight in to the impact of 

coatings and heat treatments on tribological and tribochemical behaviour with 

a range of lubricants. Finally, this chapter provides a series of 

recommendations for future works on this subject. 

The key findings of this research are summarised in the following sections.  

11.1.1 Tribological and Tribochemical Performance of the 

Layers Formed by Oxy-Nitriding and MoS2 Coating. 

 The characteristics and mechanical properties of the layers formed by the 

oxy-nitrided treatment influenced the wear resistance and friction reduction 

behaviour observed. Through the removal of the compound layer, an 

increase in friction was observed, demonstrating its influence tribological 

behaviour.  

 The removal of the MoS2 coating and the exposure of the substrate of the 

sample greatly reduced the samples friction and wear reduction ability. 

 The presence of a Fe3O4 layer influenced the formation of FeS2 within the 

QPQ sample tribofilm. However the relative thinness of the tribofilm formed 

may have negated the influence of the FeS2 compounds. 

 A thicker tribofilm was observed to form with the removal of the compound 

layer and the exposure of the nascent iron diffusion layer. 

 The presence of the nitrided layers with the QPQ sample influenced the 

detection of nitrides within the tribofilm after the surface was worn and the 

top oxide layer was removed. 

 The interaction of the nitride layer with the phosphate layer led to the 

presence of shorter phosphate chains within the tribofilm. The presence of 

short phosphate chains improves the samples mechanical and rheological 

behaviour. 
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11.1.2 Tribological and Tribochemical Influence of Modified 

Layers Present on a Nitrided Surface. 

 The absence of Fe3O4 with the Isonite samples limited the presence of iron 

sulphide within the tribofilm formed, indicating the FeS2 detected within the 

tribofilms or Fe3O4 layer of the QPQ samples made no impact on friction or 

wear behaviour.  

 The presence of an FeS layer greatly improved friction and wear behaviour 

due it’s properties as a solid lubricant and its reformation during testing. 

11.1.3 Effects of using Alternative Extreme Pressure (EP) and 

Anti-Wear (AW) Additives with Sample Variants 

 When using base oil the wear was significantly higher than with the 

presence of an extreme pressure additive in the lubricant. This study 

showed that the wear performance of nitrided surfaces can be greatly 

improved even with the formation of relatively thin tribofilms due to the 

presence of additives.  

 Compared to other lubricants the fully formulated oil containing ZDDP 

produced high friction and wear due to the roughness of the pads forming 

the tribofilm. The presence of detergent within the oil reduces the 

effectiveness of ZDDP’s anti-wear properties hence it performs worse than 

the TCP additive. 

 The TCP additive makes no impact on friction behaviour, however with the 

formation of FePO4 wear performance is greatly improved. The TCP 

additive was more effective with the  presence of oxide layer as with the 

QPQ samples. 

 A synergistic effect of the MoS2 coating and FeS led to low friction 

behaviour with time.  

 When using BO with the QPQ samples, the friction behaviour is similar to 

that observed with the application of an extreme pressure in Chapter 6. An 

increase in friction is observed due to the removal of the compound layer, 

supporting the assumption of the significant role of the layer in low friction 

behaviour. 
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 No change in friction was observed when using SO with QPQ samples 

compared to the alternative samples where a drop a friction is observed. 

This is most likely due to the relative thinness of the tribofilm formed, limiting 

the potential impact of FeS on friction. 

11.1.4 Friction and Wear Performance under Varying 

Lubrication Regimes 

 The friction and wear behaviour observed with MTM tribotests may have 

closed matched that expected within the actual contact within a hydraulic 

motor. 

 The MTM SLIM provides different friction response in boundary lubrication 

in comparison to the TE77 tribometer, possibly due to the use of conditions 

similar to that observed within the actual application contact. 

 The friction response within boundary lubrication was identical over time 

due to the inability to form an effective tribofilm. Friction reduction was 

observed within the mixed lubrication regime, however it is assumed this 

behaviour is dominated by the surface roughness of the samples after 

treatment. 

 There are limitations to using heat treated or coated samples with the MTM 

SLIM, primarily the inability to measure the thickness of the tribofilm formed 

and tribological response being dominated by the surface roughness. 

 The SLIM attachment highlighted the difficulty in forming a visible tribofilm 

with the QPQ samples in comparison to the MoS2 samples. This gave 

visual support to the hypothesis presented in previous chapters regarding 

the influence of the nitride compound layer in the formation of a protective 

layer. 

 The properties of the layers produced after surface treatment can impact 

tribological performance as seen with QPQ samples which showed lower 

wear penetration in comparison to the alternative sample. The interaction 

of the surface with various lubricant additives can further influence 

behaviour. 

 The trends observed with the sample and lubricant additive variants 

matched those observed in Chapter 8, supporting the assumptions made.  
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11.2 Future Work 

11.2.1 Influence of Friction Modifiers 

This study showed interesting behaviour when using lubricants containing 

extreme pressure and anti-wear additives. Further tests should be carried out 

using lubricants containing friction modifiers such as molybdenum 

dialkyldithiocarbamate (MoDTC). This will allow the investigation in to the 

analysis of the interaction of the friction modifier with the nitrided surface in 

comparison to just using EP and AW additives.  

Future work should focus on the interactions of using MoDTC when combined 

with base oil or fully formulated oil with the modified surface, with chemical 

analysis being carried out using XPS and Raman spectroscopy.  

11.2.2 Modifying Nitriding Parameters 

Variants of the nitriding process were used within this project however the 

treatment parameters such as treatment temperature and time were not 

changed. These parameters would impact the composition, thickness and 

properties of the layers produced. This study showed that the presence of a 

Fe3O4 layer led to the formation of FeS2, however due to its relative thinness 

the impact of the formed compound was minimal. However future projects 

could focus on the tribological and tribochemical impact of a thicker Fe3O4 

layer, using XPS and Raman analysis to identify any changes to the chemical 

species present within the tribofilm. 

By influencing the phase composition of the compound layer would allow 

investigation in to the tribological impact of the different phases formed. 

Currently this study only used compound layers formed of ε-Fe2-3N phase or 

a combination ε-Fe2-3N & γ-Fe4N phases, however the tribological impact of a 

pure γ-Fe4N containing layer has not been analysed.  
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11.2.3 Application of a Combination of Low Friction Layers 

This study showed in Chapters 7 & 8 that a combination of MoS2 and FeS 

layers led to a low friction response. Future work should focus on the 

application of a sulphur gas nitriding process to the counter plates, to form a 

FeS layer above the nitrided surface. For the pin/ball samples the aim would 

be to apply a MoS2 layer upon the oxy-nitrided surface however due to its 

relative softness and high thickness this would make it unsuitable for 

application on a piston within a low clearance piston/cylinder arrangement. An 

alternative coating is a molybdenum disulphide/titanium (MoST) composite 

coating which is relatively thin (~2 µm) and of high hardness. The aim is to 

replicate the synergistic behaviour previously observed to achieve a durable 

low friction system. 

11.2.4 Application of surface modification and texturing 

techniques  

This study showed the importance of the application of surface modification 

techniques to improve the tribological behaviour of the samples. To further 

improve the nitriding process the use of complex surface modification 

technology such as ultrasonic cold forging or texturing can help to accelerate 

the chemical reaction of the material surface. After cold forging the surface 

possesses ultrafine grains with a large number of grain boundaries which may 

act as fast atomic diffusion channels. It is reported that the nitride nano-

particles distributed on the surface after cold-forging and then nitriding are 

smaller due to the increase in grain boundaries which accelerate the formation 

of nitride precipitates. Overall samples pre-treated using cold forging tend to 

form thicker and harder nitride layers with smaller nitrided nano-particles and 

more nitride phases. With the application of texturing/dimpling to the nitride 

treated surface lubricant retention maybe increased improving tribological 

performance in lubricant starvation conditions. A combination of the surface 

modifying techniques could further improve the friction and wear response of 

the samples compared to only the application of nitriding. 
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