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 Abstract  

  

In mammals, repair of bone fractures is believed to be achieved by local activation and 

differentiation of osteogenic progenitor cells. However, lineage-tracing studies after fin 

amputation have demonstrated that bone regenerates from mature osteoblasts in the zebrafish 

fin through a process of partial dedifferentiation, migration and proliferation. Thus, this raises 

the question whether osteoblast dedifferentiation is specific to appendage regeneration, or a 

process found more generally to repair bone in this animal. These studies used tail amputation 

which is a more severe form of damage than a bone fracture. Nevertheless, Sousa and colleagues 

(2012) proposed a novel crush assay for adult bones in zebrafish fin rays which showed 

promising results and was also developed for this project. 

The first objective of the thesis was to go beyond to find differences in zebrafish compared to 

what is already known in the mammalian fracture model during the different healing stages 

(inflammation, repair, remodeling). Interestingly, my analysis showed no remarkable differences 

at the cellular or molecular level in comparison to mammalian fracture repair. Notably, reactive 

oxygen species (ROS) production, which are one of the first signals to be induced after damage, 

depend on the lesion type in adult zebrafish. IL1β cytokine is induced early after bone damage 

and neutrophils are recruited at the fracture site after few hours as well. Both seem to induce 

directly or indirectly osteoclast recruitment. Osteoclasts participate early but also remained active 

after several days. 

Moreover, to determine whether osteoblasts dedifferentiation is restricted to appendage 

regeneration, efforts were done to stablish the Cre-Lox system in adult zebrafish. As a first step, 

a set of six double transgenic lines were created to enable tracking of bone cells in vivo. 

Afterwards, different tamoxifen-induced Cre-recombination strategies were implemented but 

no successful results were obtained. Further research is needed to get positive results. 

The knowledge generated in this research can contribute to set the basis for the development of 

further studies of bone repair in zebrafish that can complement the ones performed in classical 

models. 
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CHAPTER I 
 
General Introduction 
 
1.1 Appendage Regeneration 

 

The goal of regenerative medicine is to restore cells, tissues and structures that have been lost or 

damaged after disease, injury or aging. Human beings have a limited capacity to restore and 

replace tissue or organs. This field has taken advantage of the knowledge obtained from diverse 

animal groups that at multiple levels can regenerate lost cells, tissues, organs or even an entire 

body (Bely and Nyberg., 2010; Brockes and Kumar., 2005) (Figure 1.1) 

 

 

Figure 1.1 Different degrees of regeneration in the animal kingdom. Adapted from (Bely & Nyberg, 2010). 

To illustrate this, animals such as cnidarians and flatworms have the capacity to regenerate the 

whole body from a small body fragment; also, species like Drosophila, Xenopus and Zebrafish, have 

an extensive ability to regenerate a missing portion of body lost to trauma (imaginal disc; limb; 

and heart and fin, respectively) (Martin and Parkhurts, 2004; Brockes and Kumar., 2005; Reddien 

and Sanchez Alvarado, 2004; Tanaka and Reddien., 2011). 
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Moreover, urodele amphibians (salamanders, axolotls and newts) are outstanding animals 

employed since many years ago to study vertebrate regeneration; they can regenerate several 

body parts such as : its limbs, tail, upper and lower jaws and ocular tissues, (Ghosh et al., 1994; 

Oberpriller et al., 1974; O’Steen et al., 1962).  

In these animals, limb regeneration is one of the most studied regenerative models due to two 

key features: the body part accessibility and its remarkable restoration efficiency. 

Dedifferentiation is believed to be the main mechanism involved in this process. After 

amputation, the wound closes and a layer of cells, called wound epidermis, covers it. Then, cells 

surrounding the wound will migrate towards it and form a mass of cells called the blastema. This 

group of cells is thought to be undifferentiated and highly proliferative. Cell proliferation will 

start and these cells re-differentiate into the tissue or tissues that will reconstruct the absent 

structure (Kawakami 2010; Poss et al., 2003) 

Tanaka and colleagues showed that regeneration of the limb is lineage-restricted. By using 

transgenic axolotls expressing a GFP transgene, they labeled different cell types independently 

and performed amputations to detect the fate of those cells during the regeneration process. 

Results showed that for example, labeled cartilage cells did contribute to the regrown bone but 

not to other tissues like muscle or epidermis (Tanaka and Reddien 2011) (Figure 1.2) 
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Figure 1.2. Axolotl limb amputation experiments demonstrated that cells are lineage-restricted. Each 

tested labeled cell type (bone, muscle, nerves etc.) showed that it helps to regrow their own tissue after limb 

amputation, but not a different one.  (Tanaka and Reddien, 2011). 

 

Moreover, like urodeles, the zebrafish has become another attractive model to study regeneration 

due to its enhanced capacity to regenerate many tissues: tail fin, spinal cord, ocular tissues and 

heart (Becker et al., 1997; Johnson and Weston, 1995; Poss et al., 2002; Vihtelic and Hyde, 2000). 

This model is going to be described in detail in the next section.  

 

1.2 Zebrafish as an Experimental Model to Study Regeneration 

The zebrafish has emerged as a powerful vertebrate regenerative model. Advances in genetics, 

rapid generation time, the ability to obtain vast quantities of externally fertilised eggs, and also 

the ability to transiently modify gene function during development, are valuable features 

(Lieschke and Currie., 2007; Tal TL. et al., 2006). The zebrafish is considered one of the most 

spectacular regenerative animals in the natural world because of its natural capacity to regenerate 

its heart muscle, retina, optic nerve, liver, spinal cord and the tail fin. In most of the cases, this 

occurs due to the formation of a highly proliferative tissue at the injury site (blastema structure) 

which contains undifferentiated cells needed to complete the regeneration process (Poss, 2010; 
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Nakatani et al., 2007; Akimenko et al., 2003). It is notable that many human conditions such as 

injury, disease or aging, could have the potential to benefit from the knowledge that will be 

generated by zebrafish research in the coming years (Tal TL. et al., 2006).  

The zebrafish caudal fin has been used for some time in the regeneration field for research of 

vertebrate appendage regeneration by several groups. This regenerative phenomenon is known 

as “epimorphic regeneration” which is going to be explained later in this chapter. The popularity 

of the caudal fin as a model is due to its structural simplicity, rapid and robust regeneration 

(Kawakami, 2010; Akimenko et al., 2003).  

The caudal fin structure is composed of a series of fin rays called (lepidotrichia) which are joined 

by soft tissue interrays that do not contain skeletal elements. The fin rays are a series of bony 

segments and its function consists of protecting different components (mesenchymal cells, 

blood vessels, nerves, melanocytes and fibroblasts). Also, it gives support and allows locomotion 

in water (Tu and Johnson, 2011; Tal TL . et al., 2006; Akimenko et al., 2003) (Figure 1.3) 

 

 

Figure 1.3. Adult zebrafish caudal fin architecture. (A) Adult caudal fin picture. This structure contains several 

fin rays connected by soft tissue interrays that lack skeletal elements. B) Single zebrafish fin ray zoom in. Each is 

formed by a series of bony segments comprised of a pair of concave hemirays. C) Cross section diagram showing 

different cell types found within a bony ray. (Tu et al., 2011) 
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1.2.1  Epimorphic Regeneration in Zebrafish Caudal Fin.  

 Just after the tail fin is amputated, a series of regenerative stages are initiated in order to restore 

the complete structure (Figure 1.4). First, the wound is closed by actins strings, and then a wound 

epidermis will be formed along the injury. In a second step, cells next to the amputation plane 

migrate towards it, dedifferentiate and then form a mass cell structure known as the blastema. 

Those blastema-like cells proliferate, and they will be the responsible for generating tissue 

outgrowth that will restore the lost part (Tu and Johnson, 2011; Kawakami, 2010; Nechiporuk 

and Keating, 2002). 

 

 

Figure 1.4. Zebrafish caudal fin regeneration process. Approximately 10 days are needed to complete the adult 

zebrafish tail fin regeneration after wound. Epithelial tissue is formed along the amputation plane and following 

this, cell migration and proliferation take place to create the blastema structure. This is the source of new material 

to restore the lost part.  Blue area: Wound epidermis. In red: blastema zone. (Kawakami, 2010). 

 

It is currently known that different signaling pathways take part in zebrafish regeneration. For 

example, the Wnt pathway is a highly evolutionary conserved mechanism in animals that has 

different roles in regeneration. This pathway was first implicated in zebrafish fin regeneration 

due to Lef1 expression after wound, which is a Wnt target (Poss et al., 2000). The Canonical Wnt 

signaling that involves B-catenin is required for wound healing, blastema formation and 

regenerative outgrowth (Poss et al., 2000, Stoick Cooper et al., 2007). Interestingly, it has been 
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observed that different Wnt factors perform different functions during the regeneration process. 

For example, Wnt5 which is part of the Noncanoncial Wnt signaling (no B-catenin involved), 

its over expression gave rise to an absence of tail outgrowth (Stoick Cooper et al., 2007). 

Therefore, this suggest that Noncanoncial Wnt signaling negatively regulates regeneration after 

fin amputation. 

FGF signaling is also important for wound healing, blastema formation and regenerative 

outgrowth like Wnt signaling pathway. For example, experiments done with mutants that lack 

some fgf factors sucha as fgf20, and the suppression of fgf receptors (fgfr1), showed absence of fin 

outgrowth after amputation (Whitehead et al., 2005; Poss et al., 2000). 

 Hedghehog (Hh) and bone morphogenetic protein (BMP) are other signaling pathways that 

have a role in zebrafish regeneration. The data suggest that Hh signaling seems to be upstream 

of BMP (Quint et al., 2002) and both are involved in different tasks during regeneration such as: 

bone-cell proliferation, ray patterning and formation.  

In addition, more signaling pathways have been identified that have a participation in fin 

regeneration such as: Retinoic Acid (RA) which has emerged as an important regulator of 

regenerative cell proliferation. RA signaling specifically controls the formation, proliferation and 

survival of the blastema (Blum et al., 2012). Insulin-like growth factor (IGF) is important for the 

correct regenerative growth of the fin due to its effect on the wound epidermis patterning. IFG 

signaling sees to mediate mesenchymal-epithelial interactions during regeneration (Chablais et 

al., 2010). Calcineurin phosphatase pathway, was recently identified as an inhibitor of 

regenerative growth; its interference enhanced this process. Also, data suggests Calcineurin 

might act via inhibition of RA signaling but further experiments are needed to confirm it. 

(Kujawski, et al., 2014). Notch, is important to maintain blastemal progenitor cells in a 

proliferative state and when attenuated allows differentiation to proceed. It is still unknown 

whether Notch acts in osteoblast progenitors (Grotek et al., 2013; Munch et al., 2013). 

Mechanistic target of rapamycin complex 1 (Mtor), is activated in different cell types during 

regeneration such as: epidermis, osteoblasts and in the proliferative proximal regions of the 

blastemal. It has been found that Wnt/β-catenin and IGF signaling induce its activation and 

regeneration is arrested when it is blocked (Hirose et al., 2014). ROS signaling pathway triggers 
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cell proliferation in the blastema to orchestrate fin outgrowth. (Gauron et al., 2013; Han P. et al., 

2014) (Figure 1.5). 

 

 

Figure 1.5 Different signaling pathways are involved in blastemal regulation. Many major signaling pathways 

that regulate development have also been found to be essential for fin regeneration. Wnt, IGF, FGF, Notch Hh, 

BMP, mTOR signaling pathways have an effect regarding blastemal cell proliferation. FGF was the first pathway 

known to regulate this process. 6Colored areas show regions where pathways are active (Wehner and Weidinger 

2015). 

 

Regeneration is a mechanism where different cell types interact with each other; it is essential to 

identify the exact sources of the different cell types that are restored after injury. Only recently 

have genetic fate-mapping approaches been applied to address those questions. Cre-

recombinase-based technology is now a common technology used with zebrafish to answer 

fundamental questions in the regeneration field (Akerberg et al., 2014; Knopf et al 2010; Hans et 

al., 2009). 

It is important to remark that one of the principal goals to achieve in the regeneration field is to 

determine the cellular source of regenerated skeletal elements. That means, to identify different 



8 
 

cell types which can produce regenerated bone elements. (Tanaka and Reddien, 2011; Poss, 

2010). 

 

 

1.2.2  Use of Zebrafish to Study Bone Regeneration and Development 

 

Most of the significant findings in bone research have been done in the classical models such as 

mice, chicken, or cell cultures but in the last 15 years, the zebrafish has become a popular animal 

model to study skeletogenesis (Spoorendonk et al., 2008). Zebrafish can be used as a powerful 

tool to complement the studies done with the other models in the past and to understand 

different unresolved issues regarding bone regeneration and development. 

 

 

1.2.3 Differences between zebrafish and mammalian bone cells 

 

In the following lines, I am going to mention some similarities and differences regarding bone 

cells between zebrafish and mammals. 

Firstly, it is important to mention that key regulators of bone formation are highly conserved 

between zebrafish and mammals (Flores et al., 2004; Yan et al., 2005; Li et al., 2009). Both have 

in common the same cellular components such as osteoblasts and osteoclasts cells which regulate 

bone formation and degradation. At the subcellular level, the situation is the same, different 

factors such as Sox9 (chondrocyte differentiation) or Runx2 (osteoblasts differentiation) known 

to be involved in bone development and regeneration in mammals are also conserved in 

zebrafish (Apschner et al., 2011). 

Regarding disease, several orthologous genes implicated in mammalian skeletal disease are 

expressed in zebrafish (Rivadeneira et al., 2009). Interestingly, it has been shown that zebrafish 

mutants can display similar phenotypes associated to human bone diseases (Laizé et al., 2014). 

 

However, differences exist which make researchers skeptical to use zebrafish for bone associated 

studies in the past. For example, fish show an absence of haematopoietic bone marrow tissue 

like in mammals; hematopoiesis is maintained in the kidney instead (Witten and Huysseune, 
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2009). Also, due to its natural aquatic environment, zebrafish do not depend on their skeleton 

to maintain plasma calcium homeostasis. Compared to mammals, additional skeletal tissue 

subtypes are recognized in fish, which makes sometimes difficult to compare studies with 

mammals.  

Research using zebrafish is giving us an insight to understand skeletogenesis and is helping 

considerably to understand mammalian bone physiologies during development, maintenance, 

regeneration and disease (Hammond and Moro, 2012; Spoorendonk et al., 2009; Marí-Beffa et 

al., 2007). 

 

To understand how bone regenerates in zebrafish which have an outstanding regeneration 

capacity, different lab groups using different cell tracking experiments demonstrated that bone 

regenerates from mature osteoblasts (bone- forming cells) in the zebrafish fin by acquiring 

progenitor cell properties, in a process known as dedifferentiation (Knopf et al., 2011; Singh et 

al., 2012; Sousa et al., 2011; Stewart and Stankunas, 2012; Tu and Johnson, 2011). It has been 

found by using Cre/LoxP-marking technology after tail amputation, that those cells display 

partial dedifferentiation, a process which was corroborated by the down-regulation of osteoblast 

markers, followed by a proliferative stage. Interestingly, osteoblasts only contributed to generate 

new bone, a result that suggests that osteoblasts possess a cell fate restriction (Knopf et al., 2011). 

Lineage restriction is a general event find in other cell types, such as: in epidermis and fibroblasts 

(Tu and Johnson, 2011).  

Retinoic acid (RA) has been found to control the osteoblast differentiation state at different time 

points. Osteoblasts need to protect themselves from retinoic acid signaling via cyp26 expression 

to be able to dedifferentiate, while later retinoic acid promotes osteoblast proliferation (Blum 

and Begemann 2012; 2015) (Figure 1.6). 

These findings are different from what it is known in mammals, where repair of bone fractures 

is believed to be achieved by local activation and differentiation of osteogenic progenitor cells 

(Maes et al., 2010; Park et al., 2012) 
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Figure 1.6 Osteoblasts dedifferentiate during zebrafish regeneration. A) After damage, osteoblasts will 

undergo a dedifferentiation process (progenitor cell like phenotype), important to create new cellular material. B) 

Retinoic Acid produced by fibroblasts is an important regulator of osteoblast regeneration due to its inhibitory 

effect. The RA-degrading enzyme cyp26b1 is upregulated by osteoblasts to protect themselves of RA influence. 

This enzyme expression is ceased afterwards by dedifferentiated osteoblast in the blastema region, allowing RA to 

promote their proliferation. Modified from (Shering et al., 2016) 

 

Interestingly, Singh and colleagues (2011) showed that a reserve population of cells which have 

not been identified yet, can regenerate osteoblasts when these are experimentally depleted. This 

study gave rise to the possibility that stem cells could be involved in bone formation when 

osteoblasts are not present. Further experiments are needed to explain this finding. Authors 

eliminated all the osteoblast cells by using the Nitroreductase-mediated cell/tissue ablation 

technology. The reaction of nitroreductase (NRT) in contact with a metronidazole (Mtz) 

compound generates a harmful drug, leading to cell death in a bone tracking transgenic line. 

After fin amputation, fish with no osteoblast population regenerated new rays as compared with 

the control group where this population was intact. Afterwards, cell tracking experiments with 

the use of a triple transgenic fish, with tamoxifen-dependent Cre-Lox technology, Tg 

(osx:CreER; β-actin2:Lox-DsRed-Stop-Lox-EGFP; osx:NTR), the authors showed that new 
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bone cells formed in the regenerated fin and that do not proceeded from dedifferentiated 

osteoblasts (Figure 1.7).  

This finding answered an important question that emerged regarding fin regeneration, whether 

the absence of a cell lineage such as osteoblasts during the fin regeneration reestablished the 

same cell lineage or not.  

 

 

Figure 1.7 Zebrafish can regenerate new bone without the presence of osteoblasts. A) Left, transgenic line 

expressing osterix and osteocalcin bone markers. Right) After Mtz administration, gene expression was depleted. 

(B-C) Controls, no fin amputation performed. (D-G) after fin amputation and osteoblast ablation, GFP+ bone-

positive cells (white arrowheads) were detected in the regenerating fin after continuing days post amputation (dpa) 

(Singh et al, 2012). 

 

 

 

 



12 
 

1.3    A New Zebrafish Bone Crush Injury Model 

The amputation model has been used by several groups for years to study fin regeneration. 

Specifically, this phenomenon is called epimorphic regeneration, which consists of the formation 

of a blastema structure, described in the previous section. The main disadvantage of using this 

model is that even though humans can regenerate some tissues (bone) or organs they do not 

undergo epimorphic regeneration.  

Thus, in order to understand how skeletal cells regenerate and to try to outline a model that 

could be more comparable to human bone fracture repair, Sousa and colleagues (2012) proposed 

a novel crush assay for adult bones in zebrafish fin rays. The main feature is that this model does 

not involve removal of tissue and is less disruptive than the classical amputation model. The 

assay involves the crush of single bone rays using forceps. 

To start characterizing the novel bone crush model, the authors showed in the first instance, 

that both assays (bone crush vs partial amputation of the fin) presented different tissue 

architecture when fins were analysed and compared in the same fin (Figure 1.8, A). The damage 

produced by the crush assay was noticeable when comparing it with the amputation plane which 

was not distinguishable after 10 days (Fig. 1.8, C). Interestingly, a structure similar to a callus was 

formed after the crush in the damaged rays (Fig 1.8. E), reminiscent of the process that occurs 

during mammalian bone repair after a bone fracture (Schindeler et al., 2008), as a control, the 

callus-like structure was absent from amputated fins. (Fig 1.8, C left side).   
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Figure 1.8 The bone crush showed differences in tissue architecture respect to amputation model. (A–C) 

Bright field images showing the result of both assays (bone crush vs amputation) applied in the same caudal (A) 24 

hpc and (B) 10 dpc. (C) Magnification of the inset in picture B. (D) Bone stained with Alizarin Red at 48 hpc; 

dashed lines indicate the region of callus formation. (E) Bright field confocal image of 48 hpc injury site. The arrow 

highlights the callus structure. (F) Hematoxilin/Eosin staining in a transversal section of a 48 hpc ray to show tissue 

thickness. Arrowheads indicate the amputation plane and asterisks indicate crush injury area in A and B, and crush 

injury sites in C and D. (hpa = hours post-amputation; hpc = hours post- crush injury). Source (Sousa et al., 2012) 

 

Authors continued to characterize the model and showed that expression of wound healing 

markers was delayed in the bone crush injury model compared with amputation.  One of the 

first events that occur after the amputation injury is the formation of a wound epithelium that 

surrounds and cover the damage site. By using immunofluorescence, it was shown that the p63 

protein, a structural epidermis marker (Stewart et al., 2009) was detected after 24 hours post- 

crush (hpc) surrounding the injury (Figure 1.9, A). Interestingly, the epidermis layer was thicker 

in the callus- like-structure compared with non-damaged rays. Other several epidermis markers 

were tested during the regeneration process to compare both models; for example, the pea3 gene 

(ETS-domain transcription factor) is one of the several targets of FGF which is one of the 

factors secreted by the wound epidermis (Stoick-Cooper et al., 2007) (Fig 1.9 B-E). The lef1 gene 

(lymphocyte enhancer binding factor 1) was also tested. This is a member of the Wnt signaling pathway 

used to define the correct specification of the basal layer of the wound epidermis (Poss et al., 

2000). Both genes were detected by in situ hybridization assay at 24 hours post- crush but 

surprisingly, the expression levels were lower when those of the post-amputation epidermis. At 
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48 hpc, the pea3 gene was also detected with lower levels when compared with the amputated 

rays, however for the lef1 gene, expression level was similar to the control (Figure 1.9 F-I). The 

results suggested that perhaps activation of FGF/Wnt pathways were delayed following the bone 

crush repair. 

 

 

 

 

 

 

Figure 1.9. The tested wound healing markers showed a delayed expression in the bone crush model 

compared with amputation. A) Caudal fin transversal section. p63 Immunohistochemistry (green dots). Blue 

represents DAPI-positive nuclei. The arrow indicates an intact bony ray and the asterisk is the site of crush injury. 

(B–I) pea3 and lef1 whole-mount in situs at 24 and 48 hours post injury (crush/amputation). Arrowheads indicate 

the amputation plane and asterisks indicate the crush injury sites.  (hpa= hours post-amputation; hpc = hours post-

crush injury).  Source (Sousa et al., 2012) 

 

To investigate the expression of different skeletogenesis markers, osterix (osx), collagen I (colI) and 

osteonectin (osn) in situ hybridisations were performed at 24 and 48 hpc (Figure 1.10).  
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Figure 1.10. The tested skeletogenesis markers showed a delayed expression in the bone crush model 

compared with amputation. (A–L) osterix, collagen I and osteonectin whole-mount in situs, performed at different 

times in both tested models. Arrowheads indicate the amputation plane and asterisks indicate the crush injury sites. 

(hpa = hours post-amputation; hpc = hours post-crush injury). Source (Sousa et al., 2012) 

 

These data showed that the three genes were expressed until 48hpc but not during the first hours 

after injury, in comparison to the control. These results followed the same trend as the wound 

healing markers, in that expression of genes involved in skeletogenesis was also delayed. 

 

The findings suggested that both models share the same molecular programs but it seems that 

in the crush model the expression of important genes is delayed. 

The novel bone crush model of bone repair in zebrafish showed encouraging results in relation 

to comparison with mammalian bone fracture models.  It is of interest to continue with its 

characterisation, supported using novel tools (i.e. the Cre-Lox system for cell tracking 

experiments) that have emerged for zebrafish research. 

In the Aims and Objectives section, several questions that emerged from this study are outlined.  

 



16 
 

1.4  Fracture Healing Process 

 

Most of the knowledge that we have of fracture healing is based on mammalian classical animal 

studies, (rats and mice) which offered distinct advantages over large animals (dogs, goats etc.); 

animal housing is easier and less expensive, large number of animals can be kept in a limited 

space and breeding cycles are shorter. Also, the use of genetically-manipulated animals allows us 

to study distinct molecular and cellular mechanisms of the bone healing process (Histing et al., 

2011) 

 

Interestingly, even though each model differs on healing capacity and speed, the general 

mechanisms of repair seem to be similar to humans. Determining a fracture model in a small 

animal such as zebrafish could have some advantages as mentioned in the previous section.  

 

1.4.1  Phases of Fracture Healing 

 

Fracture healing is a process that can be divided into three partially overlapping phases: 

inflammation, repair, and remodeling (Einhorn and Gerstenfield, 2015). This sequence of events 

has been observed in many animal species, and it is best illustrated in rodents (mice and rats) 

(Histing et al., 2011). Moreover, the healing process varies among animals in the speed and thus 

the repair time. I am going to provide an overview of this repair process. 

 

 

1.4.1.1  Inflammatory Phase 

 

Blood vessel rupture and damaged cells and tissues promote the initiation of the inflammatory 

cascade and fracture healing process (Kolar et al., 2010). Consequently, a hematoma is formed 

which is characterised by hypoxia and low pH. This structure houses inflammatory cells together 

with pro-inflammatory and anti-inflammatory cytokines (Kolar et al., 2010), and acts as a 

temporary scaffold for the invasion of additional inflammatory cells. The first cells to arrive to 

the damaged site are the neutrophils cells, attracted by death cells and debris (Chung et al., 2006). 

These cells release several cytokines (such as IL6, C-C motif chemokine 2 [CCL2]) which attract 

macrophages to the site (Bastian et al., 2011; Glynne et al., 1994; Xing et al., 2010) Two different 
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macrophage populations affect this process, the resident population (osteomacs) present on 

healthy unfractured bone seem to be important for intramembranous bone formation (the 

process of bone development from fibrous membranes, involved in the formation of flat bones: 

such as the skull and mandible) during fracture healing. By contrast, inflammatory macrophages 

that are recruited to the site of injury, promote endochondral ossification, the process of bone 

development from hyaline cartilage. (Xing et al., 2010). 

 

Moreover, many pro-inflammatory cytokines (IL-1β, IL-6, TNF, receptor activator of nuclear 

factor kB ligand [RANKL], macrophage colony-stimulating factor [MCS-F] and members of the 

transforming growth factor (TGF)-β superfamily (bone morphogenetic protein [BMP]-2/6) are 

released early in the inflammatory phase (Al-Aql et al., 2008; Gerstenfeld et al., 2003). 

Revascularization is essential for fracture healing, angiogenic factors (angiopoetin-1, vascular 

endothelial growth factors) are also released due to the hypoxic conditions in the injury site. (Al-

Aql et al., 2008). 

All these early events are thought to initiate the repair cascade by stimulating anigiogenesis, 

attracting and promoting differentiation of mesenchymal stem cells (MSCs) and enhancing 

extracellular matrix synthesis (Xing et al., 2010; Gerstenfeld et al., 2003). 
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Figure 1.12. Inflammation and repair stages during fracture healing process. The first event is the appearance 

of a fracture hematoma after damage; formed due to blood clotting. Also, it is characterised by the presence of 

hypoxia, low pH conditions and the release of pro-inflammatory and anti-inflammatory cytokines. 

1 -Immune cells are rapidly recruited to the site of injury. 2 – The first cell to invade the callus are neutrophils, 

followed by other immune cells such as macrophages and lymphocites. 3- Osteomacs influence osteoblast by 

attracting them to zones of intramembranous bone formation. 4- Whereas inflammatory macrophages mainly 

contribute to endochondral bone formation (4). Abbreviations: PMN= polymorphnuclear neutrophils. Modified  

from (Claes et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

1.4.1.2 Repair Phase 

1.4.1.2.1 Soft Callus Formation 

 

This process is very active and begins after the inflammatory response. Commited 

osteoprogenitor and undifferentiated mesenchymal cells proliferate and produce a semi-rigid 

cartilaginous template adjacent to the fracture site (Barnes et al., 1999). This tissue will later 

undergo mineralization, resorption and is superseded by the production of the bony callus. 

Coordinated expression of different growth factors, such as TGF-β2, TGF-β3, PDGF, FGF-1, 

and insulin-like growth factor (IGF), stimulate the proliferation/differentiation of the emerging 

fibroblastic and chondrocytic cells (Gerstenfeld et al., 2003; Cho et al., 2002; Einhorn, 1998) while 

chondrogenesis is promoted by various members of the BMP family of cytokines, such as BMP-

2, -4, -5, and -6 (Al-Aql et al., 2008). 
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Chondrocyte cells synthesize an extracellular matrix composed predominantly of type II collagen 

(Col2) and proteoglycans. As these cells mature, they undergo hypertrophy and begin to prodce 

type X collagen (Al-Aql et al., 2008). Prior to the synthesis of hard callus, the deposited cartilage 

scaffold undergoes calcification, gradual removal of soft callus, neovascularisation, and the 

deposition of woven bone through the expression of several cytokines and pro-angiogenic 

factors that include: VEGF, BMPs, FGF-1 and TGF-β (Marsell et al., 2009; Gerstenfeld et al., 

2003; Cho et al., 2002). Other factors are also important for the resoprtion process such as: 

macrophage colony stimulating factor (M-CSF), receptor activator of nuclear factor NF-LB 

ligand (RANKL), osteoprotegerin (OPG) and TNF-α (Gerstenfeld et al., 2003; Barnes et al., 

1999). 

 

  

1.4.1.2.2 Hard callus formation 

 

In the hard callus stage, the soft callus becomes extensively vascularised and is replaced by 

woven bone. This occurs by a combination of endochondral bone formation and some areas of 

intramembranous bone formation. This stage of bone repair is characterised by high levels of 

osteoblast activity and represents the most active period of osteogenesis, leading to the 

formation of mineralized bone matrix. The progression of the hard callus stage involves the 

replacement of the calcified cartilage with woven bone which provides mechanical rigidity to the 

healing bone (Gerstenfeld et al., 2003) b). MMP13 produced by cells in the osteoblastic lineage 

is important for this last event which invades the cartilage matrix (Nakamura et al., 2004). MMP9 

is another important degradative enzyme for cartilage resorption (Colnot, 2005), synthesized by 

osteoclast cells (bone-degrading cells), which follow the early osteoblast in- growth phase. 

 

 

1.4.1.3 Remodeling Phase 

 

In this process the generated rigid hard callus which is composed of woven bone, requires to be 

remodeled back to the original bone configuration. A second phase of resorption takes place to 

replace the unorganized woven bone of the hard callus with a more organised lamellar bone 

structure (Marsell et al., 2011; Gerstenfeld et al., 2003). This phase is regulated by different 
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biochemical factors such as IL-1β, TNF-α, BMP-2, which show a reasonably high expression 

level during this stage of bone healing (Marsell and Einhorn, 2009; Al-Aql et al., 2008; 

Mountziaris and Mikos, 2008). This process involves the balanced coordination of lamellar bone 

synthesis by osteoblasts, followed by hard callus resorption by osteoclasts (Marsell and Einhorn, 

2009; Schindeler et al., 2008). As I mentioned previously in more detail, osteoclasts (bone- 

degrading cells) developed from hematopoietic progenitors in mammals are the principal factors. 

These cells remodel the external bone surface and decrease the callus size restoring the original 

anatomy. This process takes a variable amount of time depending on the animal model.  

 

 

 

Figure 1.13. Schematic of fracture healing process in rats. The most studied animal model related to the 

topic. A, Three different overlapping stages occur during the fracture healing process: inflammation, repair (soft 

and hard calls formation) and remodeling. Inflammation is the first event to happen which triggers the next 

responses. Intramembranous bone and endochondral formations are part of the repair phase, the objective is to 

promote callus formation, essential to enhance new bone formation. Blood vessels invade the cartilaginous callus, 
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osteoclast-like cells resorb the calcified cartilage and osteoblasts build new bone. In the last part of the process, the 

callus decreases its diameter due to the participation of osteoclasts (bone remodeling cells). 

C) It has been shown that a set of different cell types are involved in the fracture healing process. Modified from 

(Povinka and Dunstan., 2012). 

 

 

 

 
 
 
 
 

1.5 Aims and Objectives 

Mammals have only a limited capacity to regenerate some structures such as: skin, muscle, bone, 

blood or liver. They fail to regenerate other important structures or tissues such as the heart, 

retina, spinal cord or limbs. The potential of the regenerative capacity in animals varies across 

the animal kingdom. 

Interestingly, the zebrafish has an outstanding regenerative capacity which makes it an important 

animal model for the research of its outstanding regenerative properties. Therefore, many human 

conditions such as injury, disease or aging have the potential to benefit from the usage of 

therapies based in regeneration knowledge. In addition, the zebrafish has also become a popular 

animal model to study skeletogenesis. Importantly, key regulators of bone formation are highly 

conserved between fish and mammals. Therefore, zebrafish can be used as a powerful tool to 

complement the skeletogenesis studies performed in classical models. 

In recent years, regeneration after partial amputation of the tail fin in zebrafish has been studied 

by several researchers. However, it is not possible to compare this model with a bone fracture 

repair in humans. Therefore, in order to understand how skeletal cells regenerate which could 

be more comparable with a human bone fracture repair or other non-regenerating systems, 

Sousa and colleagues (2012) proposed a novel crush assay for adult bones in zebrafish fin rays 

that does not involve removal of tissue and is less disruptive than the classical model. Interesting 

results were found; thus, further research is needed. 
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Firstly, in this thesis we planned to go beyond continuing with the characterization of the novel 

zebrafish fracture model to find differences at the cellular and molecular level compared to what 

is already known in the mammalian fracture model during the different healing stages 

(inflammation, repair, remodeling). We focused our attention on inflammation stage which is 

the earliest event and essential to trigger the bone healing process.   

Second, with the use of powerful zebrafish genetic tools such as the Cre-Lox technology, we 

wanted to determine which cell types contribute to the new tissue formation. This knowledge 

could provide molecular targets for the development of pharmaceuticals for enhanced skeletal 

regeneration, for example. 

In this last section, unfortunately, negative results were obtained regarding the detection of 

founders and in other cases, the induction of spatio-temporal recombination in adult transgenic 

lines for the project objectives. These topics are explained and analysed in detail in the following 

chapters. 

 

Question 1.  

To what extent is the zebrafish fracture healing process like the mammalian model? Can we find 

differences at the cellular or subcellular level? 

Aims: 

Characterisation of the different fracture healing stages (inflammation, repair, remodeling) in 

zebrafish. 

Inflammation: 

•  ROS production analysis. 

• (IL1-β) cytokine production analysis. 

• Role of neutrophil cells by using the Tg (mpx:GFP) transgenic line 

Repair stage: 

•  Osteoblast cells (bone-forming cells) participation, (osteocalcin expression analysis)  
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Remodeling stage  

• Osteoclast cells (bone degrading cells) participation, (cathepsin K and TRAP 

expression analysis). 

• Generation of tg (ctsk: Kaede) and tg (ctsk: creER2) lines to enable tracking of osteoclast 

cells in vivo. 

 

 

 

Question 2.  

Different cell types could have a role during the bone fracture repair in zebrafish. In this process, 

which cells are recruited to promote repair? Do the same bone cells also ossify the break point? 

• Generation of Cre driver transgenic lines, tg (osc:creER-ins) and tg (twist2:creER2) to 

enable tracking of bone cells in vivo. 
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CHAPTER 2 

Materials and Methods 

2.1 Zebrafish maintenance  

Adult zebrafish (wild type and transgenic lines) were kept at 27 – 28°C with a 14 hours light and 

10 hours dark cycle. Fish were supervised by the aquarium staff from BMS Department. 

(University of Sheffield). All tests with zebrafish manipulation were composed ahead as a Study 

Plan (ISP); this document was submitted to the aquarium manager in turn for its approval. 

Following this, experiments were carried out under supervision. 

 

2.2 Fish manipulation and tail fin amputations / bone fracture injuries. 

Adult zebrafish (6-12 months old) were anesthetized in 0.1 % benzocaine (Aminobenzoic acid 

ethyl ester, Ethyl 4-aminobenzoate, Sigma-Aldrich). To perform fin ray fractures in the tail, fish 

were set horizontally onto a Petri Dish. With the utilization of forceps, a single fracture was 

produced in a fin ray, in a zone proximal to the bifurcation of the dorsal fin rays (Figure 2.1). 

For most of the trials, the 2nd and 4th rays from both lobes (counting them from outer to inner) 

were damaged and the neighbors were left untouched as controls (occasionally the 3 th and 5 th  

rays were used instead if fins were heavily pigmented) . Occasionally, only one fin ray (central) 

was fractured in each lobe, whereas the rest were left untouched. After performing the injury, 

animals remained for some minutes in fish water to recover at 28.5 °C. 

Tail fin amputations were done with a micro scalpel. A piece of tape was used as a surface while 

performing the removal. Fish stayed in fish water to recover at 28.5 °C as well. 

For whole- mount in situs, the fracture injuries were performed as described above at different 

time points, animals were culled by a Schedule 1 procedure (anesthesia sobredosis) and then 

fixed (4% PFA).  
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Figure 2.1 Adult zebrafish caudal fin scheme. (A) The caudal fin is composed by two lobes which contain bony 

fin rays. With the use of forceps, a single fracture was produced in a fin ray (stars). For live experiments, the 2nd and 

4th rays from both lobes (counting them from outer to inner) were damaged and the neighbors were left untouched 

as controls. In some experiments, only one fin ray (central) was fractured in each lobe, whereas the rest were left 

untouched. (B) Detail of the crush of single bony ray.  

 

 

2.3 Identification of tartrate resistant acid phosphatase (Trap) enzyme in zebrafish 

tail fins. 

To detect Trap activity (Acid Phosphatase) in zebrafish tail fins, the Sigma-Aldrich Diagnostics 

Acid Phosphatase kit was utilized. Trap5b (tartrate resistant acid phosphatase) is commonly used 

in bone research as an enzyme that detects osteoclasts in mammals and other different animal 

models. Several compounds are used to form a final red precipitate in situ that can be visualized 

by microscopy. 

 Steps: 

The fixing solution was made by adding (24 % Citrate Solution, + 65 %  acetone, + 8 % ( 37 % 

of formaldehyde); tail fins were kept in this solution for 40 mins at room temperature (RT). 
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Several washes with PBST (3 x 5 mins) were done afterwards to eliminate the solution. 

Subsequently, different solutions were mixed to make Trap staining: 

 

• Fast Garnet GBC and Sodium nitrate solutions were mixed, shacked and left for 2 min 

before use.  

• (91 % deionised water (37°C), 2 % diazotonized Fast Garnet GBC solution, 1% Naphtol 

AS-BI Phosphate solution, 4% Acetate and 2% Tartrate solution) were mixed and added 

to the previous solutions.  

Tail fins were kept with the staining during 3 hours in dark, rinsed with PBST (3x 5 mins), post-

fixed in 4% PFA for 30 mins and stored in 75% glycerol. The samples were visualized by light 

microscopy. 

 

 

2.4 DNA digestion 

 

This procedure is used in the molecular biology field to manipulate or analyze DNA by using 

restriction enzymes.  

 

DNA Digestion Steps: 

 

• 1 microliter (ul) of DNA. 

• 2 ul of buffer (depending on the enzyme). 

• 2 ul of BSA (bovine serum albumin). 

• 1 ul of restriction enzyme. 

• Water to make a final volume of 20 ul. 

 

The DNA digestion mix was put into an eppendorf tube and incubated into a metal rack at 37 

°C for 2 hours. 
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2.5 DNA electrophoresis, DNA gel extraction. 

 

DNA electrophoresis is also a procedure used in the molecular biology field to separate DNA 

by length through an agarose matrix.  

 

Electrophoresis steps: 

 

• Agar gel made at 1% concentration dissolved in a suitable buffer such as 1X TBE (Tris, 

Borate, EDTA) and Ethidium Bromide (EtBr). 

• Addition of with 16 ul of the DNA digestion enzyme mix + 4 ul of loading dye (NEB 

company) + 3 -5 µl of 1 KB DNA ladder (NEB) to load the gel wells.  

• The DNA bands were analysed under ultra violet (UV) light for detection.  

 

 

2.6 DNA dephoshorylation. 

 

In molecular biology, DNA dephosphorylation is needed to avoid plasmid self-ligation, for 

example. To overcome this, phosphate sides needed to be removed from DNA. Shrimp Alkaline 

Phosphatase (rSAP) enzyme from NEB, was used for this reaction as the following: 

  

• 3 ul of rSAP reaction buffer 

• 1 ul of rSAP enzyme 

• 10 ul DNA 

• 6 ul mQ H20 

 

2.7 Bacterial transformation 

 

In molecular biology, bacterial transformation means the introduction of foreign DNA into the 

bacterial genome for a specific goal.  

   

The protocol for bacteria transformation commonly used in Roehl`s lab is described as follow: 
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• Maintenance on ice of competent E. Coli cells during 10 minutes.  

• Addition of 1-2 ul of the plasmid of interest into 25 ul of E. Coli cells. 

• Maintenance of the mix on ice during 30 minutes. 

• Heat shock step in hot bath at 42º C during 30 seconds. 

• Maintenance on ice during 5 more minutes. 

• Addition of 450 ul of Super Optimal Broth (SOC) medium at RT and placed in the 

shacker during 1 hour.  

• Distribution of the mix in different agar plates containing a specific antibiotic (Ampycilin 

etc) 

• Incubation at 37 °C overnight for growth. 

 

 

2.8 Plasmid preparation (Miniprep, Midiprep) 

 

Plasmid preparation is a method used for DNA extraction and purification. Plasmid miniprep 

and midipreps were used to get purified samples at high concentrations. 

 

Miniprep preparation steps: 

 

• Growth of the bacteria colony of interest inside a Falcon tube containing 2 ml of 

Lysogeny broth (LB) with the desired antibiotic. Conditions: 37º C overnight. 

• After 24 hrs.  cell recovery by centrifugation (3 minutes at 80,000 rpm.) 

• Cell resuspension by addition of 200 ul of Resuspension Buffer (50mM Tris-Cl, pH 8.0, 

10mM EDTA, 100ug/mL RNase A). 

• Addition of 200 ul at RT. of Lysis Buffer (200mM NaOH, 1% SDS w/v). 

• Addition of 200 ul of Neutralization buffer (3.0 M potassium acetate, pH 5.5) 

• Centrifugation of the mix during 5 minutes at 250,000 rpm.  

• Addition of chill isopropanol for DNA precipitation and kept at -20 C for 30 minutes. 

• Pellet washes with 700 ul of PE buffer. 

• Addition of 700 ul (TE buffer ) and storage at -20º C. 

Midiprep preparation steps: 
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• Growth of the bacteria colony of interest inside a Falcon tube containing 2 ml of 

Lysogeny broth (LB) with the desired antibiotic. Conditions: 37º C overnight during 6 

hours. 

• Use of the standard Qiagen Midiprep kit for plasmid amplification and purification. 

 

 

2.9 Whole- mount in situ hybridization. 

The purpose of this technique is to visualize the location of expressed RNAs in the entire 

structure (the fin tail in this project). In this process, synthetically produced RNA probes are 

first complementarily bound, or "hybridized," to the transcripts of target genes. This protocol 

was adapted from (Thisse et al., 2008). 

 

2.10 Probe synthesis. 

Production of the template for probe synthesis was carried out by first amplifying a region of a 

stock plasmid containing the gene, or using primers, designed using primer3, from IDT (Table 

1) to amplify zebrafish cDNA. Templates were then transcribed using their respective RNA 

polymerase. The PCR program was run for 35 cycles, each consisting of 45 seconds at 94°C; 30 

seconds at 58°C; 120 seconds at 72°C. 
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Table 2.1  List of primers used for anti-sense probe synthesis. 

Probe Primers RNA 
pol. 

Source 

IL-1β drIL-1β: 5’ 
ATGGCATGCGGGCAATATGA 3’ 
drIL-1β:5’ CTAGATGCGCACTTTATCCT 
3’ 
 

T7 Probe provided by Renshaw’s lab 
(BMS, Uni. Sheffield) 

cathepsin K ctskF: 
5’CCTTAGTCCTCAGAACCTGGTG 3’ 
ctskR: 5’ 
ATCCAGTACTTCTTGCCTCTCG 3’ 

T7 Plasmid from Roehl’s lab 

osteocalcin oscF: 5’ 
CTGACACAGAAAGCGAACATG 3’ 
oscR: 5’ 
TGTGTGTGTGTAGAAGGGAATG 3’ 

T7 Plasmid provided by Cancela’s lab 
(Uni of Algarve, Portugal) 

 
 

For templates from cDNA an initial PCR reaction using specific primers was setup, the steps 

were the following:  

• 2.5 µL 10X PCR Buffer  

• 1 µL of a 1:3 NTP mix 0.5 µL TAQ DNA Polymerase  

• 1 µL of 2.5 µM F1 and R1 primers  

• 1 µL cDNA 18 µL MilliQ H2O 

 

Templates from plasmid used the PCR reaction below only. After the first – nested –PCR the 

amplification product was carried over:  

• 20 ng plasmid / 1 µL nested PCR amplification in 85 µL H2O  

• 10 µL 10X PCR Buffer  

• 1 µL NTP mix 2 µL TAQ DNA polymerase  

• 1 µL of primer F2 and R2-T3/7 at 25 µM  

 

The PCR products were purified using centrifugal filter units (Millipore: UFC505024) according 

to manufacturer’s instruction. Finally, DNA was quantified using a spectrophotometer.  
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Transcription:  

• 1 µg DNA template in 21 µL H2O  

• 3 µL Transcription buffer 10X (NEB) 

• 3 µL Digoxigenin-RNA labelling mix (Roche) 1.5 µL RNase Inhibitor, murine (NEB: 

M0314)  

• T3/T7 RNA polymerase 

 

Last steps of probe synthesis: 

• Incubation of reaction mix for 2 h at 37°C. 

• Addition of 2 uL RNase-free DNase I (NEB, M0303). 

• Addition of 18 µL depc H20. 

• Incubation for 30 min. at 37º C. 

• Filtration of transcription mix through (Sigma-Aldrich, S5059) columns.  

• Addition of 14 µL RNA later (Sigma, R0901). 

• Validation by analysis on a 1% agarose gel.  

 

 

2.11 In situ hybridization (ISH) protocol. 

• Tail fin fixation and storage - 4% PFA in PBS overnight at 4°C. 

• PBST washes (X2) for 2 minutes. 

• Methanol series (30%, 60%, 100%). 

• Rehydration process- by reverse methanol series and PBST washes. 

• Sample digestions with 10 µg/mL Proteinase K at RT during 45 minutes. 

• Refixation in 4% PFA for 20 min. 

• PBST washes (4 X 5 min). 

 

- Prehybridization step – 

• Incubation of samples in the hybridization solution (+) for 2 hours at 70°C. 

• Solution replacement with fresh Hyb (+) containing 1 to 4 µl of the RNA probe. 

• Incubation of samples overnight at 70º C for hybridization. 
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• Washing series - 2xSCCT/Hyb (+) – Different dilution percentages (25%, 50 % and 

75%). 

• Washing of samples (x2) in PBST, at RT. 

• Blocking, tail fins kept in blocking buffer (sheep serum, BSA) for 3 hours at RT. 

• Anti-DIG antibody addition (1:10000; Roche, USA) with fresh blocking buffer and left 

overnight at 4º C. 

• Washing of samples (x6) in PBST.  

• Staining Buffer incubation for 1-3 hours. 

• Addition of PBST 1mM EDTA for 15 min.  

• Methanol series and maintenance of samples in 100% MeTOH for 2 hours at RT. 

• Washing of samples in in PBST (x2) for 5 min. 

• Bleaching step - (hydrogen peroxide) for 10 min at 37°C. 

• Tail fin washes in PBST (x3) for 5 min. 

• Glycerol series (50 and 70%) for storage. 

 

 

 

2.12  Reactive oxygen species (ROS) detection.  

The compound 2’, 7’- dichlorofluorescin diacetate (H2DCFDA, ThermoFisher Scientific) was 

used to monitor the accumulation of reactive oxygen species in adult zebrafish fin. Fluorescent 

DCF was formed thorough ROS oxidation. This method is useful to provide an overview of 

general ROS production. 

ROS detection procedure: 

 

• Incubation of adult zebrafish with H2DCFDA (30µM) during 15 minutes. 

• Anesthetization with (0.1 % benzocaine). 

• Injury - amputation or bone fracture procedure. 

• Imaging – anesthetized fish (horizontal position). 
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• Microscopy details: Zeiss fluorescence microscope, using excitation sources and filters 

appropriate for fluorescein detection. ROS indicator specifications: Ex/Em: ~492–

495/517–527 nm. 

 
 

 
 
Figure 2.2 ROS detection in adult zebrafish. Wt adult zebrafish were incubate with H2DCFDA (30µM) during 

15 minutes and anesthetized (0.1 % benzocaine) for amputation or bone fracture. Immediately, fish were kept 

anesthetized for imaging. Fluorescence was monitored using a Zeiss fluorescence microscope, using excitation 

sources and filters appropriate for fluorescein detection.  

 

 
 
2.13 Zebrafish imaging 
 
 

• In situ analysis- ProgRes R camera and its image capture software were used.  
 

• Fluoresce analysis - Zeiss fluorescence microscope.  
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2.14 Microinjection and screening for stable transgenic lines. 

DNA constructs generated for this thesis (described in detail in the next Chapters) were injected 

into AB wild-type zebrafish at the one-cell. 

 

Procedure:  

• Mix of: construct of interest + tol2 transposase mRNA (25 ng/µl final concentration of 

both). 

• Microinjections: a) micro injector (World Precision Instrument, USA), b) dissecting 

microscope (Leica Microsystem GmbH, Wetzler, Germany) and c) glass capillary needles 

(Kwik-Fil Borosiliocate Glass Capillaries, World Precision Instruments Inc, USA) 

• Embryos incubation in with E3 medium (5 mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 

0.33mM MgSO4 plus 0.000001 Methylane Blue)- 28°C for 3 days. 

• Fluorescence microscope analysis - positive fish larvae expressing GFP in the eyes 

(genome integration marker) were collected into Petri dishes (50 positive embryos 

approximately) containing E3 medium. 

• Fish maintenance to adulthood – 5 dpf. embryos sent to the Sheffield University 

aquarium facility until sexually mature. 

• F2 obtainment by out crossing of generations with wild type AB stains and selection of 

positive fish (GFP expression in the eyes). 
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Figure 2.3. Transgenic zebrafish lines generation. Firstly, the DNA construct is designed to have a transgene 

marker (alpha crystalline promoter) for easy detection of positive fish. For injections, a mix of the construct of interest 

+ tol2 transposase mRNA is incorporated into the cell of the fertilized egg. Afterwards, founder fish and its progeny 

will be detected by expression of EGFP in the eyes. (Mater Methods. 2012; 2:109). 

. 

 

2.15 Generation of Cre/lox double transgenic zebrafish lines. 

 

 Table 2.2, shows the set of the different stable Cre driver transgenic lines generated for this 

thesis (each described in detail in the next chapters) and their controls (Cre driver lines previously 

generated by lab members). All the lines were crossed with two different Cre-dependent reporter 

lines, Tg(EF1α: loxPGFPloxP-DsRed) or Tg(ubiquitin:loxPGFPloxP-mCherry) and raised to 

adulthood to test Cre recombination in the target tissue by tamoxifen administration.  
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Table 2.2 Double transgenic lines generated for Cre-Lox based experiments 

Cre driver transgenic 
line 

Reporter transgenic 
line 

Cre/lox double 
transgenic line 

Target tissue 

Tg (osc:creERT2-ins) Tg (EF1α: loxPGFPloxP-
DsRed) 

Tg (osc:creERT2-ins; EF1α- 
DsRed) 

Osteoblasts 

Tg (osc:creERT2-ins) Tg (ubiquitin: 
loxPGFPloxP-mCherry)   

Tg (osc:creERT2-ins; ubi- 
mCherry) 

Osteoblasts 

    

Tg (osc:ERT2creERT2-
ins) 

Tg (EF1α: loxPGFPloxP-
DsRed) 

Tg (osc: ERT2creERT2-ins; 
EF1α-DsRed) 

Osteoblasts 

Tg (osc:ERT2creERT2-
ins) 

Tg (ubiquitin: 
loxPGFPloxP-mCherry)   

Tg (osc: ERT2creERT2-ins; 
ubi- mCherry) 

Osteoblasts 

    

Tg (twist2:creERT2) Tg (EF1α: loxPGFPloxP-
DsRed) 

Tg (twist2:creERT2; EF1α- 
DsRed 

Mesenchymal cells 

Tg (twist2:creERT2) Tg (ubiquitin: 
loxPGFPloxP-mCherry)   

Tg (twist2:creERT2-ins; ubi- 
mCherry) 

Mesenchymal cells 

    

Controls    

    

Tg(fli1α:ERT2CreERT2) Tg (EF1α: loxPGFPloxP-
DsRed) 

Tg (fli1α:creERT2; EF1α- 
DsRed 

Blood/Endothelium 

Tg(fli1α:ERT2CreERT2) Tg (ubiquitin: 
loxPGFPloxP-mCherry)   

Tg (fli1α:creERT2-ins; ubi- 
mCherry) 

Blood/Endothelium 

    

Tg(nestin:ERT2CreERT2) Tg (EF1α: loxPGFPloxP-
DsRed) 

Tg (nestin:creERT2; EF1α- 
DsRed 

Neurons 

Tg(nestin:ERT2CreERT2) Tg (ubiquitin: 
loxPGFPloxP-mCherry)   

Tg (nestin:creERT2-ins; ubi- 
mCherry) 

Neurons 
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2.16 Pharmacological treatments for CreERt2 induction and live imaging. 
 

To exemplify Cre recombination after Tamoxifen administration in fish, the following scheme 

illustrates the process during larvae stage.   

 

 

Figure 2.4 Cre-induced recombination in zebrafish. To induce CreERT2 recombination, Tamoxifen (TAM) or 

4-OHT administration in the water is needed. Without drug addition, EGFP is expressed in the whole body due to 

the EF1 promoter effect in this scenario. After drug administration, dsRED expression is detected due to the 

elimination of the EGFP cassette. Adapted from (Hans et al., 2009).  

 

Tamoxifen administration to induce Cre recombination in adult fish: 

• Dissolution of Tamoxifen (Sigma) or 4-Hydroxytamoxifen (4-OHT) (Sigma) in DMSO 

or 100% ethanol respectively for 2 hours at 70 ºC. 10Mm final concentration aliquots. 

• Warm up at 70°C for drug administration. 

• Fish acclimatization inside an incubator (28 °C during 4 - 5 days). 

• Soaking of fish in water with specific drug concentration depending on treatment.  

Controls - Vehicle DMSO or ethanol were added in the water with the same 

experimental concentrations. 

 

Drug treatments  

• Incubation overnight of fish in dark with a specific drug concentration (light-sensitive 

chemicals). 
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• Recovery period, change to fresh water without chemicals. 

• Injury procedure (fracture or amputations). 

• Imaging- Analysis at different time points post- injury to detect tissue recombination. 

The recombined tissue should express the DsRed fluorescent protein. Fish were imaged 

using the ZEN pro software. (Figure 2.5) 

 

 

Figure 2.5 Experimental strategy scheme for CreERt2 induction and exemplification.  The Tg (osc:creERT2; 

EF1α:loxP-GFP-loxP-DsRed) transgenic line is showed to represent the expected results. Tamoxifen or 4-OHT were 

administrated to induce tissue-specific recombination of few cells in the tail fin, positive samples could start to 

express dsRed fluorescent protein. Subsequently, fish will be injured (stars) and photographed at different time 

points, to detect and track cells of interest.  
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2.16.1 Jopling`s strategy to induce CreERt2 recombination in adult tail fins. 

This protocol is similar to the described above with drug concentration and number of 

treatments as the main differences. The treatment was shared by members from Jopling´s lab 

(Uni. of Montpellier. France). 

• Incubation overnight of fish with 4-OHT at a 3uM final concentration in dark.  

• Injury procedure (fracture or amputations). 

• Imaging- Analysis at different time points post- injury to detect tissue recombination. 

The recombined tissue should express the DsRed fluorescent protein. Fish were imaged 

using the ZEN pro software. (Figure 2.6) 
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Figure 2.6 Jopling`s experimental strategy for CreERt2 recombination.  The Tg (osc:creERT2; EF1α:loxP-GFP-

loxP-DsRed) transgenic line is showed to represent the expected results. A single session of fish soaked in tank water 

for 8 hours long with 4-OHT at a 3uM final concentration was performed to induce CreERt2 recombination. 

Subsequently, fish were injured and immediately photographed at different time points to detect cell recombination. 

The recombined tissue should express the DsRed fluorescent protein. 
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CHAPTER 3. 

Characterisation of the different fracture healing stages in zebrafish. 

 

3.1 Introduction 

The fracture healing process involves the coordination of several cells and molecules that will 

repair the damaged tissue (Einhorn and Gerstenfield, 2015; Fergurson et al., 1999; Einhorn 

1998). In mammals, this process is divided into three stages: inflammation, repair and 

remodeling. In each step, specific cells and molecules are induced to form the environment of 

healing (Marzona and Pavolini, 2013; Schindeler et al., 2008); these steps overlap each other, and 

it is difficult to separate them. In general, the healing process is regulated by a balance between 

removal of damaged tissues and new tissue formation, which is regulated primarily by osteoclasts 

and osteoblasts. Osteoclasts are bone resorbing cells that work catabolically to remodel the bone, 

and osteoblasts are bone forming cells important to calcify fractured bones and repair them after 

damage (Marzona and Pavolini, 2013). 

 

In this part of the project, I planned to go beyond continuing with the characterization of the 

novel zebrafish fracture model proposed by Sousa and colleagues (2012). Interestingly, in the 

last years, there were a growing number of publications focused on zebrafish caudal fin 

epimorphic regeneration following an amputation (Poss, 2010). But, information regarding the 

regeneration process that occurs after a bone fracture in zebrafish was unknown. With this 

intention, I took advantage of the adult zebrafish bone fracture model to find differences at the 

cellular and molecular level compared to what is already known in the mammalian fracture 

model. Thus, the different healing stages (inflammation, repair, remodeling) were tried to been 

characterised and compared. Moreover, I focused my attention on the first cellular events that 

triggers the bone healing process, such as inflammation response. 
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3.2 Results  

3.2.1 Inflammation Stage 

3.2.1.1 Rapid IL1-β acute inflammatory response before 24 hours post fracture. 

The first cellular process to occurs during the fracture healing process is the acute inflammatory 

response that involves the production of several important molecules. One of these molecules 

is Interleukin-1 (IL-1 β) which is an important activator known as the ‘gatekeeper’ of 

inflammation (Dinarello et al., 2011) released mainly by macrophages, endothelial cells, B cells 

and fibroblasts (Dunne and O’Neill, 2003; Subramaniam et al., 2004). In order to characterise 

the cellular inflammatory response that occurs during the fracture healing process in adult 

zebrafish, a 24-hour time course in situ hybridisation for IL-1 β was performed in wild-type fish. 

The second and fourth rays (counting them from outer to inner) were crushed using forceps, 

neighbors were left untouched as controls. IL1-β in situ showed a rapid expression at the fracture 

sites, whereas a high peak response was detected at 8 hours post crush (Figure 3-1). No 

expression was detected on the neighbour rays (controls). These results were consistent with an 

early role of IL1-β response after injury (fin amputation) in zebrafish larvae (Ogryzko et al., 

2014), and during in vivo studies (bone fracture) in mice (Einhorn et al., 1995; Kon et al., 2001; 

Rundle et al., 2006; Lange et al., 2010). 
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Figure 3-1. Rapid IL1-β acute inflammatory response before 24 hours post fracture. Time course IL1-β in situ 

hybridisation shows a high peak response at 8 hours post crush (hpc). For bone fractures in the caudal fin (black 

arrows), wild-type adult zebrafish were anesthetized in 0.1% tricaine and only the second and fourth rays (counting 

them from outer to inner) were crushed using forceps; neighbors were left untouched as controls. Experimental 

numbers) n = 3 fish with 12 fractured rays for each time point. 12/12 rays without signal at the fracture sites (1hpc), 

7/12 rays with signal at the fracture sites (2 hpc), 8/12 with signal (4 hpc), 9/12 with strong signal (8 hpc), 10/12 

with strong signal (12 hpc), 7/12 without signal (16 hpc), 10/12 without signal (18 hpc), 11/12 without signal (24 

hpc). A representative picture was used per time point. Scale bar corresponds to 100 µm in all panels. Hours post 

crush (hpc). 

 

 

3.2.1.2 Rapid neutrophil cells recruitment at the injury sites in Tg (mpx:GFP) line after 

bone crush 

Due to the special interest on early events that occur after the bone fracture repair, which are 

essential to trigger this process, we focused on time points before 24 hours to assess how fast 

cells are recruited at the fractured sites. To better understand the dynamics of the inflammatory 

response, I have taken advantage of the transgenic line Tg (mpx:GFP) kindly provided by 

Renshaw´s lab (BMS department, Uni of Sheffield) in which neutrophils are visualized with 
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fluorescence. The mpx promoter has been used in previous studies as a neutrophil marker in 

zebrafish (Bennett et al., 2001; Lieschke et al., 2001). After inducing bone damage, data showed 

that neutrophil recruitment started rapidly after few hours post-crush, these cells accumulated 

through time at the fractured sites (Figure 3-2); this was also consistent with an early role of 

neutrophils in response after injury as observed in zebrafish larvae (Renshaw et al., 2006) and in 

mice in vivo studies (Kubes and Mehal, 2012; Woodfin et al., 2011). A peak accumulation was 

observed at the injury sites between 12 to 20 hpc. Moreover, neutrophils were resident in the 

uninjured adult fin tissue. 

 

 

Figure 3-2. Rapid neutrophil recruitment at the injury sites in Tg (mpx:GFP) line after bone crush. 

Representative images showing a 24 hours time course of neutrophil accumulation in Tg (mpx:GFP) line. (Stars) 

indicate the bone crush sites, neighbor rays were left untouched as controls. After inducing bone damage, neutrophil 

recruitment started since 1 hpc; this was consistent with an early role in response after injury. A peak accumulation 

was observed at the injury sites between 12 to 20 hpc. Experimental numbers) n = 4 fish with 8 fractured rays for 

each time point. 8/8 rays with weak GFP+ signal at the fracture sites (1hpc), 7/8 rays with weak GFP+ signal at 

the fracture sites (4 hpc), 8/8 with GFP+ signal (8 hpc), 6/8 with strong GFP+ signal (12 hpc), 7/8 with very 

strong GFP+ signal (16 hpc), 8/8 with GFP+ signal (20 hpc), 8/8 with GFP+ signal (24 hpc). (hpc) hours post 

crush. The scale bars represent 100 μm. 
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3.2.1.3 ROS is induced early after damage; its production is sustained after fin 

amputation but not in the bone fracture model. 

 

Reactive oxygen species (ROS) is a rapid signal originated from the wound epithelium that 

mediates early leukocyte recruitment in zebrafish larvae (Niethammer et al., 2009). Injury-

induced ROS production through the first 24 hpc was detected in live adult wild-type zebrafish 

by using the free permeable radical sensor (H2DCFDA). A bone fracture was performed in 

anesthetized fish and fluorescence was monitored through microscopy. Fish amputations were 

performed as control and for comparison. Data shows that since the first hour after inducing 

damage, ROS was detected localised at the fracture site, and was produced uniformly at the level 

of the amputation plane (Figure 3-3 b, f). After 4 hours post- injury (hpi), ROS was detected in 

both models (Figure 3-3 c,g). At 12 hpi ROS was not detected at the fracture site or further time 

points (Figure 3-3 h, m-p). Surprisingly, in the amputation model, ROS was still detected at 4 

hpi and its production remained until 20 hpi (Figure 3-3 d, i-k). By 24 hpi, ROS was no longer 

detected in the amputation plane (Fig 3-3 l). These results show that after injury, ROS is induced 

early and its production depends on the lesion type. Also, it suggests that regarding fin 

regeneration, it could be possible that ROS length production is necessary to induce mechanisms 

which are not required for wound repair. 
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Figure 3-3. ROS production is sustained after fin amputation but not in the bone fracture model. Time 

course to detect ROS production with a fluorescent probe (H2 DCFDA) in adult wt fish. A bone fracture was 

performed in anesthetized fish and fluorescence was monitored by microscopy; Fish amputations were performed 

as control and for comparison. Data shows that since the first hour after inducing damage, ROS were detected 

localized at the fracture site and uniformly at the level of the amputation plane after amputation (b, f). After 4 hours 

post- injury (hpi), ROS were detected in both models (c, g). Surprisingly, at later time points, ROS were not 

produced at the fracture site or elsewhere (h, m-p). In contrast, ROS were still detected and its production remained 

until 20 hpi (d, i-k). By 24 hpi, ROS could not be longer detected in the amputation plane (l). Experimental numbers) 

For each time points, n = 3 fish (Amputations) / n = 3 fish (Fractures); 8 fractured rays in total. Amputations, 3/3 
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fish without fluorescence (0 hpi), 3/3 fish with fluorescence at the amputation site (1 hpi), 3/3 with fluorescence 

(4, 8 and 12 hpi), 2/3 with strong fluorescence (16 hpi), 3/3 with fluorescence (20 hpi), 3/3 very low fluorescence 

(24 hpi). Fractures - 8/8 rays without fluorescence at the fracture site (0 hpi), 7/8 rays with fluorescence at the 

fracture site (1 hpi), 4/8 with fluorescence (4 hpi), 8/8 rays without fluorescence (8- 24 hpi). A representative picture 

was used per time point. hours post-injury (hpi). Scale bars represent 200 μm.  

 

 

3.2.2 Repair stage  

3.2.2.1 New bone was formed after 3 days post damage at the fractured sites . 

After inflammation, the repair stage begins when the cartilaginous callus formation appears and 

bone formation occurs (Einhorn and Gerstenfield, 2015). In mammals, bone repair is 

characterized by high levels of osteoblast activity and represents the most active period of 

osteogenesis, leading to formation of mineralized bone matrix (Shapiro F, 2008). Monika 

Tomecka, a colleague from the laboratory performed Alizarin Red (bone) and Alcian Blue 

(cartilage) staining during several days after performing fractures, to follow the cartilage-bone 

transition mentioned previously. At day 3 and 4 post fracture, Alcian blue-positive tissue was 

highly stained at the fracture sites (Figure 3-4, A) but it decreased the following healing days. 

Whereas Alizarin red- positive calcified tissue was absent before 4 dpc and the staining increased 

considerably since 5 dpc which was still detected the following healing days (Figure 3-4, B). 

These data indicate that bone repair started by the newly Alizarin red-positive calcified bone via 

the Alcian blue-positive tissue. 

 

. 
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Figure 3-4. Cartilage was replaced by bone during the fracture healing process in zebrafish. Alcian Blue 

(cartilage) and Alizarin Red (bone) stainings were performed on fractured rays at different days to follow the 

cartilage-bone repair. At day 3 and 4 post fracture, (A) Alcian blue-positive tissue was highly stained at the fracture 

sites (3 and 4 dpc) and it decreased the following healing days. (B) Whereas Alizarin red- positive calcified tissue 

was absent before 4 dpc and the staining increased considerably since 5 dpc which was still detected the following 

healing days. Experimental numbers) n = 3 fish with 12 fractured rays for each time point. A) Alcian Blue (cartilage): 

12/12 rays with weak blue staining at the fracture sites (1dpc), 10/12 rays with weak blue staining at the fracture 

sites (2 dpc), 9/12 with staining (3 dpc), 10/12 with strong staining (4 dpc), 12/12 with staining (5 dpc), 10/12 with 

staining (6 dpc). B) Alizarin Red (bone): 10/12 rays without red staining at the fracture sites (1dpc), 9/12 without 

red staining (2 dpc), 7/12 without red staining (3 dpc), 18/12 with weak staining (4 dpc), 9/12 with strong staining 

(5 dpc), 10/12 with strong staining (6 dpc), 10/12 with staining (7 dpc), 6/12 with staining (8 dpc). dpc. days post 

crush. The scale bars represent 100 µm 

 

As osteocalcin is produced by mature osteoblasts, it is often used as a marker for the bone 

formation process (Shapiro F, 2008). To confirm osteoblast activation at the gene expression 

level by the bone fracture event, whole-mount osteocalcin in situ hybridizations were performed in 

wild-type adult zebrafish for this purpose; whereas fin amputation was used as a control. 

Osteocalcin was not expressed at 1 one day-post-injury (dpi) in both models (Figure 3-5. a, e). 

Later, at 3 dpi, osteocalcin induction started at the fractured sites, but not at unfractured rays used 

as controls (Figure 3-5, b), this was also detected at the amputation plane (Figure 3-5, f). osteocalcin 

expression was also detected in both models at 5 dpi (Fig 3-5. c, g) and at 7 dpi (Figure 3-5. d, 
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h). These data support results found in the previous experiment (Figure 3-4) indicating that new 

bone is formed at the fractured sites for repair. 

 

 

Figure 3-5. Osteocalcin is expressed at the fractured sites after 3 days post injury. Time course whole- mount 

osteocalcin in situ hybridization.  Osteocalcin was induced on damaged rays after bone fracture and fin amputation 

since 3 dpi (b, f), expression was detected at 5 dpi (c, g) and still detected at 7 dpi (d, h) in both models. For bone 

fractures in the caudal fin (black stars), wild-type adult zebrafish were anesthetized in 0.1% tricaine and only the 

second and fourth rays (counting them from outer to inner) were crushed using forceps; neighbors were left 

untouched as controls. Amputations were performed with a scalpel. Arrowheads indicate the amputation plane. 

Experimental numbers) Crush, n = 3 fish with 12 fractured rays in total for each time point. Amputations, n = 3 

fish for each time point. Crush - 12/12 rays without signal at the fracture sites (1dpi), 9/12 rays with signal at the 

fracture sites (3 dpi), 8/12 with signal (5 dpi), 10/12 with signal (7 dpi). Amputations - 12/12 rays without signal at 

the fracture sites (1dpi), 9/12 rays with signal at the fracture sites (3 dpi), 8/12 with signal (5 dpi), 10/12 with signal 

(7 dpi). Amputations- 3/3 fish without signal at the amputated site (1dpi), 3/3 with signal (3 dpi), 3/3 with signal 

(5 dpi), 3/3 with signal (7 dpi). Scale bar corresponds to 100 µm in all panels. (dpi) – days post injury.  
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3.2.3 Remodeling stage 

Bone remodeling is essential for repairing and optimizing bone structures for mechanical 

function, these processes are mediated by specialized bone resorbing cells called the osteoclasts 

(Raggat and Patridge, 2010; Shapiro F, 2008). In mammals, osteoclasts express crucial molecules 

such as tartrate resistant acid phosphatase (TRAP) and cathepsin K (CTSK) that regulate bone 

shape (Boyle et al., 2003).  

 

Receptor activator of nuclear factor-κB ligand (RANKL), a member of the TNF (tumor necrosis 

factor receptor) superfamily, is expressed by osteoblasts and is the primary mediator of 

osteoclastogenesis (Lacey et al., 1998). Through the interaction with its receptor RANK, which 

is expressed on osteoclasts and their precursors, RANKL promotes osteoclast differentiation, 

fusion and activation (Lacey et al., 1998). 

 

3.2.3.1 Bone is remodeled during two stages of the fracture healing process in adult 

zebrafish 

In mammals, during the fracture healing process, osteoclasts take part at two different moments. 

In the first instance, these osteoclasts initially play a role in the removal of the broken bone and 

a second step is necessary to remodel the new bone (Schindeler et al., 2008). In order to 

determine the role of these cells in my fracture model (6 days-post-fracture), two different 

methods to detect osteoclast activity were performed. First, cathepsin K in situs showed that cells 

expressing cathepsin K were detected from 1 dpc until 3 pdc at the fracture sites (Fig. 3-6 a-c) 

but not at later time points (d-f). Neighbor rays were left untouched as controls and did not 

show osteoclast recruitment. Furthermore, TRAP (+) cells were detected from 1dpc and 

remained through the fracture healing at the crush sites (Fig. 3-6, g-l). Interestingly, TRAP 

enzyme remained over the remodeling bones despite the absence of ctsk (+) cells.  

Our results suggest that bone is remodeled at two stages during the fracture healing process in 

adult zebrafish, like mammalian studies (Schindeler et al., 2008). 
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Figure 3-6. Osteoclastic activity over the course of bone healing. Time course experiment for osteoclast 

activity detection during the fracture healing process. TRAP (+) and cathepsin K positive cells, were detected at the 

bone crush sites over 6 days. TRAP assay and ctsk in situ experiments were performed respectively.  Cells expressing 

cathepsin K were detected from 1dpc until 3 pdc at the fracture sites (a-c) but not at later time points. Furthermore, 

TRAP activity was detected from 1 dpc and remained through the fracture healing at the crush sites. For bone 

fractures in the caudal fin, a ray from wild-type adult zebrafish was crushed using forceps, neighbors were left 

untouched as controls. Experimental numbers, n = 3 fish with 12 fractured rays in total for each time point in both 

assays. Cathepsin K in situ - 11/12 rays with signal at the fracture sites (1dpc), 9/12 rays with signal (2 dpc), 7/12 

with signal (3 dpc), 6/12 without signal (4 dpc), 8/12 without signal (5 dpc), 11/12 without signal (6 dpc). TRAP 

assay - 11/12 rays with staining at the fracture sites (1dpc), 7/12 rays with signal (2 dpc), 8/12 with signal (3 dpc), 

6/12 without signal (4 dpc), 8/12 with signal (5 dpc), 9/12 with signal (6 dpc). Arrowheads indicate the bone crush 

sites. Scale bar corresponds to 100 µm. (dpc)- days- post -crush.  

 

Focused on early time points, a 24 hrs time course ctsk in situ was performed to detect osteoclast 

activity during the first hours post fracture. I found that the first osteoclast cells to be recruited 

at the fractured site appeared at 12 hours post crush but not before this time (Figure 3-7). In the 

following time points, from 16 to 24 hpc, it seems that the cell number increased at the fracture 

sites. This result suggests that activate osteoclasts respond fast after bone damage; its role is 

important during the first hours post fracture. 
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Figure 3-7. The first osteoclast cells appear after 12 hpc during the bone fracture healing process. Time 

course (24 hrs) ctsk in situ for early osteoclast activity detection. At 12 hpc, cathepsin K positive cells (black arrows) 

were detected first at the bone crush sites (white stars) but not before this time point. In the following time points 

from 16 to 24 hpc, the number of these cells increased at the fracture sites. Wild-type adult zebrafish were 

anesthetized in 0.1% tricaine and a ray was crushed using forceps, neighbors were left untouched as controls. 

Experimental numbers, n = 3 fish with 12 fractured rays in total for each time point. 12/12 rays without signal at 

the fracture sites (4 hpc), 11/12 rays without signal (8 hpc), 7/12 with signal (12 hpc), 9/12 with signal (16 hpc), 

11/12 with signal (20 hpc), 9/12 with signal (24 hpc). hpc- hours post crush. The scale bars represent 100 µm.  
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3.3 Discussion  

3.3.1 Inflammation 

Regarding the inflammation response after injury, an IL1-β in situ was performed after bone 

fracture in adult zebrafish. Results showed that IL1-β presents an early enhancement suggesting 

an important role in initiating the inflammatory response in the bone fracture healing context 

(Figure 3-1). This IL1-β response has been observed also in zebrafish larvae after fin amputation 

(Ogryzko et al., 2014); and during fracture healing in mice (Einhorn et al., 1995; Kon, T et al 2001; 

Lange et al., 2010).  

Furthermore, neutrophils are cells that migrate and accumulate to sites of injury by responding 

to stimulation by IL1-β cytokines (de Oliveira et al., 2016). Several studies in zebrafish larvae had 

shown that this occurs after tail fin amputation (Renshaw et al., 2006; Yoo et al., 2011; Colucci-

Guyon et al., 2011). This evidence suggests that neutrophils are like mammalian cells. Whether 

these cells are functionally important for wound healing in adult zebrafish was unknown when 

this project started. To better understand the dynamics of the inflammatory response during the 

fracture healing context, the Tg(mpx:GFP) line was used to visualize neutrophils. After inducing 

bone damage, data showed that neutrophil recruitment started early after at bone fracture sites 

compared to controls (unfractured rays). Also, a peak accumulation was observed at the injury 

sites between 12 to 20 hpc. Recently, Petrie and colleagues, showed similar results regarding 

neutrophil response after injury by inducing tail fin amputation in adult zebrafish (Petrie et al., 

2014). However, it is important to mention that in this study Tg(mpo:GFP) line was used; mpo 

promoter is another marker to label neutrophils in zebrafish  (Mathias et al., 2006; Renshaw et 

al., 2006).  

Interestingly, Yan and colleagues investigated if a difference existed regarding neutrophil 

recruitment in wounding versus an infection model in zebrafish larvae. They demonstrated that 

the Myd88-dependent IL-1 receptor signaling pathway is essential for neutrophil recruitment in 

response to an injury (tail amputation) but not for a bacterial infection. Moreover, this pathway 

functions independently to ROS signaling which is also necessary for neutrophil recruitment 

(Yan B et al., 2014). 

http://dev.biologists.org/content/141/13/2581.long#ref-53
http://dev.biologists.org/content/141/13/2581.long#ref-68
http://dev.biologists.org/content/141/13/2581.long#ref-5
http://dev.biologists.org/content/141/13/2581.long#ref-5
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Furthermore, reactive oxygen species (ROS) signaling, specifically H202, is one of the main early 

signals known to be directly sensed by neutrophils in a tissue gradient manner after wounding 

in zebrafish larvae (Niethammer et al., 2009). H202 it has been shown that this molecule promotes 

chemotaxis of human and mouse neutrophils in vitro (Yoo et al., 2006; Klyubin et al., 1996). 

Having this in mind I analyzed the injury-induced ROS production during the first 24 hours-

post-injury (hpi) in the fracture healing model versus fin amputation as control, by using a 

fluorescent probe (H2DCFDA) (Figure 3-3). Interestingly, the results showed that a brief injury-

induced ROS production happens in the fracture model.  In contrast, ROS production after tail 

amputation was sustained several hours, detected until 20 hpi. However, in zebrafish larvae this 

does not occur as it was shown that H202 is produced at a short time window with levels peaking 

at 20 minutes post amputation (Niethammer et al., 2009). My data suggests that after injury, ROS 

production depends on the lesion type. Regarding fin regeneration, it could be possible that ROS 

production is sustained thorough longer times to induce cellular mechanisms which are not 

required for wound repair. Recently, these questions were address by Gauron and colleagues in 

adult zebrafish. They compared fin amputation versus a wounding model; in this case, they 

caused an injury by cutting slits in the fin between rays. My results are similar, ROS injury-

production was brief (2 hours) during wounding, but remained until 20 hpi during regeneration. 

They showed that a sustained production of ROS is an essential signal for blastema formation 

(Gauron et al., 2013). 

 

3.3.2 Repair stage 

Osteocalcin in situs and cartilage-bone staining experiments (Figure 3-4, 3-5) revealed that new 

bone starts to form after 3 days post injury at the fracture sites; this process lasts several days. 

Recently, another group developed a similar fracture healing model in medaka fish (Oryzias 

latipes) (Takeyama et al., 2014), the difference between models consists on the way caudal fin rays 

are fractured. Authors performed this by using a glass capillary without injuring the other 

surrounding tissues including blood vessels. By using the same cartilage-bone staining approach, 

they showed that bone formation started at a similar time point compared to my fracture model 

(Takeyama et al., 2014).  Important to mention is the fact that several zebrafish larvae studies 

have shown that mature osteoblasts dedifferentiate after tail fin amputation (osteoblasts get a 

progenitor phenotype that will provide an important source of newly forming bone) (Knopf et 
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al., 2011; Sousa et al., 2011). Interestingly, mature osteoblasts do not contribute to bone repair 

in mammals; it has been shown that new osteoblasts are formed by mesenchymal stem cells 

differentiation (Park et al., 2012). The tools used in this section to characterize the repair stage 

cannot answer the question regarding whether osteoblasts dedifferentiate during bone repair in 

the fracture healing process, as it occurs in a regeneration context. Therefore, new tools are 

needed to demonstrate this hypothesis, which is going to be described in Chapter 5. 

 

 

3.3.3 Remodeling stage 

I have found that activated osteoclasts are recruited early at the fracture sites (since 12 hpc) in 

the fracture model (Figure 3-7) and remained during several days -post- fracture. Interestingly, 

at 6 dpc ctsk (+) cells were not detected while TRAP staining remained. It has been demonstrated 

that this enzyme still active degrading bone, even without an osteoclast presence (Ballanti et al., 

1997). As I mentioned previously, another group developed a similar fracture healing model in 

medaka fish. By using a transgenic line that label osteoclasts Tg (TRAP:GFP) they found that 

two different types of functional osteoclasts were induced before and after osteoblast (bone-

forming cells) callus formation (Takeyama et al., 2014). Similarly, their results and mine show 

comparable results to what it is known in mammals; whereas early osteoclast recruitment is 

important to the removal of the broken bone and a second wave is necessarily after bone 

formation to remodel it (Schindeler et al., 2008). 

Moreover, it is now well established that cells associated to bone (osteoblasts, osteoclasts) and 

immune cells (neutrophils, macrophages etc.) are functionally interconnected. Diverse 

interactions between these cells occur during normal bone development and the bone fracture 

healing process (Zupan et al., 2012; Bastian et al., 2011). To illustrate this, it has been 

demonstrated that IL1-β which is expressed mainly by macrophages, endothelial cells, B cells, 

fibroblasts and by neutrophils to a lesser extent (Dunne and O’Neill, 2003; Subramaniam et al., 

2004); participate in various steps of osteoclast development (activation, survival) (Lee et al., 

2010; Yao et al., 2008). Specifically, this cytokine up regulates RANKL (the osteoclast master 

regulator) (Jimi et al., 1999; Chakravarti et al., 2009).  

 My data suggests that in the zebrafish fracture model, osteoclast recruitment is also coordinated 
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with the inflammatory response.  Further support for this claim comes from observations that 

IL1-β cytokine has a response peak between 8 and 12 hours post fracture (Fig 3-1). This, 

correlates in time with the appearance of the first activated osteoclast cells that arrive at the 

fracture site (Figure 3-7). In addition, neutrophils started to accumulate at similar time points, 

according to literature, these cells are stimulated by IL1-β cytokine from several sources and 

produce it as well to induce osteoclast activation (Jimi et al., 1999; Chakravarti et al., 2009). 

Further experiments using transgenic lines labeling each cell type with different fluorescent 

proteins could be useful to perform experiments in vivo to understand the interactions between 

immune and bone-related cells. 

 

 

Figure 3-8.  Possible cellular scenario occurring within the first 24 hours post fracture.  H202 is released by 

damaged cells inducing neutrophil recruitment to the injury site. These cells and macrophages release IL1-β 

cytokines which induce osteoclastic activation.  
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3.4 Conclusions 

The objective of this first part of the research was to characterize the three different stages 

(inflammation, repair and remodeling) that occur during the bone fracture healing process in 

adult zebrafish, to find potential differences in respect to the mammalian model. 

The experiments described here suggest that the three different stages (inflammation, repair and 

remodeling), also occur during the bone fracture healing process in adult zebrafish, like 

mammalian fracture repair. This confirms a high degree of conservation regarding healing 

mechanisms in fish and mammals. 

My analysis shows that within the first 24 hours-post-fracture, different cell types and molecules 

take part in a coordinated manner. IL1 cytokine is induced early after bone damage, which has 

a peak response. Also, neutrophils are recruited after few hours to the fracture sites. Both seem 

to induce directly or indirectly the recruitment of activated osteoclasts towards the damage zone 

in the first hours. These bone remodeling cells, participate early but also remained active after 

several days. 

Moreover, reactive oxygen species (ROS) production and maintenance, seems to depend on the 

lesion type in adult zebrafish. Lastly, the data suggests that bone repair starts due to activated 

osteoblasts at the fracture sites. 

Considering the following aspects:  the relative low costs of animal maintenance compared to 

other classic models, the speed of bone repair, the availability of novel genetic tools, and a high 

degree of mechanisms conservation, I propose that the fracture model is very useful to 

investigate various aspects of vertebrate bone biology, making it a good complement to mice 

studies. Thus, the zebrafish fracture model characterized in this first part of the project will aid 

in understanding the key mechanisms of bone repair. Furthermore, this could lead to clinical 

applications to understand fracture healing disorders in humans, for example. 

 

After characterizing the zebrafish fracture model, the importance to develop transgenic lines to 

perform experiments in vivo for lineage tracing and fate mapping studies arose. In the next 

chapters, these topics are going to be developed.  
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CHAPTER 4.  

Construction of a zebrafish transgenic line to enable tracking of osteoclasts in vivo 

 

4.1 Introduction 

As I mentioned previously, the fracture healing process involves different stages. Remodeling 

(removal of bone), is a necessary event that occurs due to the activity of specialized cell types 

called the osteoclasts. These cells possess several nuclei and are formed by the differentiation 

and fusion of haematopoietic precursors (Teitelbaum, 2000). Important to mention is that 

recently, in mice it has been demonstrated that these precursors of osteoclast formation are 

provided through the capillary blood supply (Kristensen et al., 2013). Also, different chemokines 

stimulate this action including Sphingosine-1-phosphate (S1P) (Ishii et al., 2010).  

Moreover, osteoclast precursors require close interaction with osteoblasts (bone forming cells) 

for their activation. Development and differentiation of osteoclasts is controlled by growth 

factors and cytokines, two different molecules are essential to promote the process known as 

osteoclastogenesis: macrophage colony-stimulating factor (M-CSF) and receptor for activation 

of nuclear factor kappa B (NF-kB) (RANK) ligand (RANKL). The first, binds to its receptor c-

Fms, on early osteoclasts precursors, which provides essential signals for its survival and 

proliferation (Udawaga et al., 1990). The second, is a member of the TNF superfamily, which is 

expressed by osteoblasts. (Lacey, 1998) 

Furthermore, because hematopoietic and osteoclast cells share the same origin, it is not 

surprising that different cytokines and colony-stimulating factors that are involved in 

hematopoiesis also affect the development of these cells. Among a variety of molecules, we can 

mention IL-1, IL-3, IL-6, IL-11, tumor necrosis factor (TNF), granulocyte macrophage-colony 

stimulating factor (GM-CSF) and M-CSF (Manolagas et al., 2006). 

As osteoclasts develop and become active, these cells attach to bone, creating a tight seal. The 

micro- environment formed between the cell and the bone surface becomes acidic due to the 

activation of H+ATPase proton pumps (Blair, 1989). Cathespin K, one of the major bone-

resorbing proteases, is essential for bone remodeling and degradation of the skeletal matrix 

(Goto, 2003). This molecule is considered a marker of mature osteoclasts and was used to create 
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a zebrafish transgenic line to enable tracking of osteoclasts in vivo to determine whether two 

osteoclast waves participate during the fracture healing process as described by (Takeyama et al., 

2014) in medaka fish. 

 

 

4.2 Background 

In Roehl´s lab the study of osteoclasts has been of great interest since some years ago, the 

generation of a transgenic line that could label osteoclasts with fluorescence in adult zebrafish 

has the potential to perform different studies in vivo that could answer several questions regarding 

my project. These questions include how osteoclasts interact in vivo with osteoblasts or with 

different immune cells (macrophages, neutrophils) during the fracture healing process, as 

examples. A fluorescent labeled osteoclast line would make studies more feasible than doing in 

situ analysis. Therefore, a previous fellow PhD student, tried to generate a stable cathepsin K 

fluorescent transgenic line using BAC recombination (Lee et al., 2001) to mark developing and 

mature osteoclasts. Unfortunately, no founder fish was identified with visible fluorescent protein 

expression (Elks, P. M. 2008). 

Moreover, in this part of my project the goal was to generate a cathepsin k: kaede transgenic line 

which could give us a powerful tool to track several cells or even at a single cell level. This was 

made possible thanks to a special sub-set of fluorescent proteins: photoactivatable fluorescent 

proteins (PAFPs). Included in this family is the PAFP found naturally in coral, Kaede; which is 

able to convert from green to red when exposed to ultraviolet light (Stark and Kulesa, 2007). To 

illustrate this, Phil Jankun a lab fellow; generated a transgenic fish line that expressed Kaede 

protein in the whole body (ubiquitous promoter). He showed that converted kaede was visible 

48 hours post conversion in larval tails (Jankun P. J. 2015) (Figure 4.1) 
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          48 hpf                          72 hpf +              96 hpf + 
           O hrs. post- conversion              24 hrs. post- conversion              48 hrs. post- conversion 
        

 

Figure 4.1. Converted kaede is visible 48 hours post conversion in larval tail.  

(A-C) Uncut caudal fins of wild-type ubi-kaedesh343 (48 hpf) were manipulated with laser to induce a UV-converted 

strip of kaede (red). Samples were analyzed and photographed at (A) 48 hpf + 0 hrs. post-conversion (B) 72 hpf + 

24 hrs post- conversion (C) 96 hpf + 48 hrs post-conversion, respectively. Red dots are auto fluorescence, not 

converted cells. Images taken on an Olympus confocal microscope with a 20X objective. All images represent one 

sample. (Jankun P.J 2015) 

 

 

4.3 Results 

4.3.1 Generation of the Tg (cathepsin K: Kaede) transgenic line 

4.3.2 Gateway clonase to produce a cathepsin K: kaede expression vector. 

The Tol2kit, which is a multisite gateway-based construction kit for Tol2 transposon transgenesis 

constructs, was used to create the construct needed to generate the transgenic line (Kwan et al., 

2007). To illustrate, a vector was obtained from Dr. Cristoph Winkler (University of Singapour) 

whereas a 3.18 kb upstream sequence of the cathepsin K gene (ENSORLT00000019682), 

including 80 nucleotides of exon 1 from medaka fish (Oryzias latipes) was cloned. Winkler´s lab 

previously generated a stable osteoclast reporter medaka line expressing membrane bound 

EGFP (mEGFP) under control of this promoter fragment (To TT et al., 2012) (Figure 4.2) 
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Fig 4.2. Medaka Tg (ctsk: m EGFP) generated in Winkler`s lab to label osteoclasts. (A) ctsk:mEGFP 

construct (medaka) obtained from Winkler’s lab and used to generate a zebrafish transgenic line. P, polyadenylation 

signal. (C-D) Higher magnification views of head regions of embryo. C, lateral; D, dorsal. Arrows in D indicate 

olfactory pits. (L) ctsk:mEGFP expression at larvae stage (12 dpf). Modified from (To TT et al., 2012). 

 

In order to generate a ctsk: kaede zebrafish line, 3.18 kb of cathepsin K promoter were subcloned 

in the entry vector p5e-MSC (p473) with the use of KpnI – XmaI and KpnI – AgeI restriction 

enzymes, respectively. The generated entry vector was annotated as p5e (p702) (Figure 4.3). Both 

digested plasmids were observed in an electrophoresis gel and the correct DNA fragments were 

selected, purified and ligated (Chapter 2. Material and Methods).  
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Figure 4.3 A schematic showing the strategy for creating the entry vector p5e (p702). 3.18 kb of cathepsin K medaka 

promoter (Winkler´s lab) were subcloned in the entry vector p5e-MSC (p473) with the use of KpnI – XmaI and 

KpnI – AgeI restriction enzymes, respectively. 

 

Using the gateway clonase technology (Kwan et al., 2007) (see Materials and Methods for a 

description), three components of the construct- p5e- ctsk promoter (p702), pMe- Kaede (kindly 

supplied by Rob Wilkinson, Van Eeden lab), and p3e-PolyA (p302) – were inserted into the 

destination vector (p480) to generate the final construct p ctsk: Kaede (p765). 

In order to calculate the correct amount of each vector the following formula was used: 

10* N * 0.000330 
N= number of base pairs 
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• p 5e -   ctsk promoter   (p702)       

• p Me- Kaede (Wilkinson´s lab) 

• p 3e- PolyA (p302)     p ctsk : Kaede (p765) 

• p Dest Tol2 – (480)   

 

The final concentration units were in nanograms (ng) /µl. Each concentration was multiplied 

x2. Then, 5 µl of each component (p5e- pMe – p3e-) were taken and mixed with another 5 µl of 

TE (Tris, EDTA) buffer giving a 20 µl final volume. From this, just 2 µl were used and mixed 

with 1 µl of the clonase enzyme; 1 µl of the destination vector and 1 µl TE Buffer. Finally, the 

clonase enzyme (Invitrogen) was added to the reaction mix and incubated for 16 hours at 25°C 

to synthesize the final construct. To end the reaction 1 µl ProK was added to the mix for 10 min 

at 37°C. The final map of ctsk: Kaede construct (p765) is shown in figure (4.4) 

 

 

Figure 4.4.  A schematic showing the ctsk- kaede construct (p765) after the gateway clonase reaction. The medaka 

ctsk promotor (yellow) drives the photo-convertible kaede expression, which includes a polyA tail for efficient 

translation of RNA to protein. The final plasmid size has 9849 bp. 
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To confirm that the DNA construct was correct, it was sequenced and also diagnostic digestions 

were performed with Sal I-HF (NEB) restriction enzyme; the expected fragments size after 

DNA digestion were of 7.2 and 2.5 kbs. (Figure 4.5) 

     p (ctsk: kaede) (p765) 

 

Figure 4.5 Diagnostic digest of  p (ctsk: kaede) (p765) with Sal I-HF restriction enzyme in different clones (A, B 
and C). The gel electrophoresis showed correct expected band sizes (7.2 and 2.5 kb). 

 

This process was followed by bacterial transformation and plasmid preparation for micro 

injections (for description Chapter 2. Material and Methods).  

 

 

4.3.3 Identification of transgenic founder fish by reporter gene expression 

The ctsk: kaede construct (p765) was microinjected into one –cell zebrafish embryos (for details 

Materials and Methods section). At 3 days post-fertlization (dpf), zebrafish larvae were screened 

for transient expression, positive fish were selected by expressing GFP in the eyes (transgenesis 

marker). Detection of the marker suggested the success of injection. These selected larvae (80 

positive fish) were raised to produce F0 adults to establish the transgenic fish line. When F0 fish 

became sexually mature (3 months old), fish were separated and screened for germline 

transgenesis by outcrossing each to wild-type zebrafish independently to obtain FI generation. 

The obtained eggs from an outcross of an F0, were examined the same way as mentioned 

previously; after this procedure, only 5 potential F0 parents were found. From those, the 
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percentage of siblings expressing the dominant marker was low (1 %) from a total of 

approximately 100 samples each. These larvae were kept and analyzed by microscopy for 

expression of the ctsk promoter at different development stages (5 dpf and 2 months old). Two 

medaka ctsk: GFP transgenic lines generated by different groups were used as a reference (To 

TT et al., 2012; Chatani et al., 2011) and also different ctsk in situ studies done in zebrafish to 

detect osteoclast activity (Chatani et al., 2011; Elks, P. M. 2008. Doctoral dissertation). 

Unfortunately, no fish was identified with visible fluorescent protein expression driven by the 

ctsk promoter at different developmental stages (Figure 4.6); this result suggested that the 

heterologous promoter cloned from medaka cannot drive the ctsk gene expression in zebrafish 

(Figure 4.6) 

 

 

 

Figure 4.6 [F1] fish didn´t show visible fluorescent protein expression driven by the ctsk promoter at different 

developmental stages. Representative images of ctsk: kaede [F1] fish analyzed by microscopy.  At 5 dpf, lateral and 

ventral views of larvae head showed only expression of the transgenesis marker (eye lenses), but no signal was seen 

on facial bones, whereas osteoclasts are expected to appear at first instance (A.B). In (B) the yolk auto-fluorescence 

was also seen. (C) [F1] fish expressing the transgenesis marker were also analyzed after two months, but no 
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expression driven by ctsk promoter was detected in different reported areas whereas osteoclasts participate (head, 

fins, vertebral column).  

 

 

4.4 Discussion 

Although some (F1) fish were found by expressing the transgenesis marker (γ-crystalin 

promoter) in the eye lenses, no possible founder fish was identified; this due to the lack of 

Cathepsin K fluorescent protein detection in those fish after its microscopy analysis at different 

developmental stages.  

First thing to remember is that when a transgenic line is generated, the initial quality control step 

comes from the expression of the transgenesis marker incorporated in the construct. This 

reporter provided a relative easy method of subsequent genotyping. Previous efforts using PCR 

to detect positive fish from Phil Elks to create a stable ctsk transgenic line in the lab gave some 

positive-negative results (Elks, P. M. 2008). The raise of several injected positive embryos 

increased the chances to find fish with germline integration. However, an aspect to consider is 

the fact that F0 animals with visible transgene marker expression indicates successful injection, 

but does not predict successful transgene transmission (Clark et al., 2012) 

In general, germline transgenesis in F1 generation is mosaic, this means that the expression will 

not be Mendelian at this generation. If F0s are transmitting the construct to the germline, it is 

common to see about 10 to 15% of the embryos expressing the dominant marker (Clark et al., 

2012). In contrast, I just found 5 potential F0 parents after performing FI screenings, but only 

1% of its siblings (approximately 100 fish) expressed the transgenesis marker. Those positive 

fish were kept for cathepsin K fluorescent protein expression. Surprisingly, no fish was identified 

with visible fluorescent protein expression driven by the ctsk promoter (Figure 4.6). One first 

possibility exist that bone remodeling was not occurring; thus, the lack of fluorescence signal. In 

this case, pictures taken at different developmental stages were compared with published data 

from two different labs that previously generated a stable ctsk line in medaka fish (To TT et al., 

2012; Chatani et al., 2011). At 5 dpf, they detected ctsk:GFP expression on bones associated to 

the head which started to suffer bone remodeling, after two months, no visible signal was 

detected as well, according to literature ctsk:GFP signal can detected at that stage in several 
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regions, such as: the fins and vertebral column (Figure 4.2). Moreover, ctsk in situ studies in 

zebrafish have showed osteoclast activity at the same analyzed developmental stages (Chatani et 

al., 2011; Elks, P. M. 2008. Doctoral dissertation). 

 

 

Moreover, another possibility that could explain the lack of ctsk:kaede signal in the analyzed fish 

is the fact the cloned heterologous promoter from medaka cannot drive the ctsk:kaede gene 

expression in zebrafish. Certainly, several zebrafish transgene expressing lines have been created 

using heterologous promoters from different animals, including those from Xenopus, carp, 

medaka, goldfish, mouse, and rat, for example. In fact, studies have been performed to test 

heterologous promoters in zebrafish to discover conserved regulatory elements (Barton et al., 

2001; Motoike et al., 2000; Reinhard et al., 1994; Udvadia et al., 2001;  Westerfield et al., 1992). 

The possibility exists that the ctsk promoter sequence cloned from medaka lacks important 

regulatory sequences for its expression in zebrafish. Moreover, it is important to consider that 

the strength and fidelity of the transgene expression from heterologous promoters will depend 

on how well the regulatory sequences, and the factors that bind them, are conserved between 

the two species for a specific gene (Udvadia and Linney, 2003). 

Also, it has been suggested that the use of promoter sequences from other species could lead to 

transgene silencing, that means, reduced or no expression of one or more copies of a transgene 

introduced into an organism (Higashijima et al., 1997). This possibility cannot be discarded, but 

the finding that some (F1) fish expressing the transgene marker in the eye lens suggests that at 

least the complete construct inserted into zebrafish genome is not susceptible to gene silencing.  

. 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB6
http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB6
http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB75
http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB87
http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB95
http://www.sciencedirect.com/science/article/pii/S0012160602000830#BIB98
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4.5 Conclusion 

A zebrafish transgenic line that fluorescently identify osteoclasts has the potential to be a useful 

tool to answer several questions involving osteoclast participation during the fracture healing 

model. This coupled with the fact that the use of photoactivatable fluorescent proteins (PAFPs) 

such as Kaede protein, can permit cell tracking studies. The aim was therefore to construct a 

stable cathepsin K: kaede fluorescent transgenic line using the Tol2kit (Kwan et al., 2007) to mark 

osteoclasts within the living zebrafish. 

Unfortunately, no founder fish have been identified to date with visible ctsk:Kaede fluorescent 

protein expression. Moreover, the transgenesis marker expression in F0s suggested successful 

injections but F1 larvae screening, showed a low germline transmission. Also, positive F1 larvae 

expressing the transgenesis marker didn´t show the cathepsin k: kaede signal when analyzed by 

microscopy at different developmental stage. 

Future experiments are needed to assess the cause of not Kaede protein expression in the 

cathepsin k: kaede transgenic line. A bioinformatic analysis that check and compare zebrafish and 

medaka ctsk promoters is a first attempt to understand the issue. 

If this transgenic line can work afterwards, it could be crossed with different transgenic lines 

from Renshaw`s lab to study osteo-immunology questions during fracture healing process, for 

example.  
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CHAPTER 5 

Construction of zebrafish transgenic lines with bone- associated promoters to induce 

controlled site-specific recombination. 

 

5.1 Introduction  

 Spatiotemporal transgene regulation by using transgenic DNA recombinases is a powerful tool 

used nowadays for reverse genetics. To be specific, Cre recombinase enzyme (from 

bacteriophage P1-derived cyclic), since its discovery in the early 1980´s and its subsequent use 

in the mouse in the early 1990´s, it has become useful for genome manipulation (Sternberg and 

Hamilton, 1981; Lakso et al., 1992; Orban et al., 1992).  

The system known as Cre-lox consists of the Cre enzyme that promotes strand exchanges 

between lox (from locus of X-ing over) target sites without any additional cofactors (Dymecki 

and Kim, 2007). To give a better illustration, this system needs the generation of two different 

transgenic lines; the first contains the effector gene flanked by loxP sites in such a way that 

prevents its expression (also known as lox Switch lines). Secondly, another transgenic line which 

contains the coding sequences for the expression of Cre recombinase under the control of tissue-

specific regulatory elements. Due to this feature, scientists have had the chance to carry out 

different types of DNA manipulation, such as, gene activation and repression, or even exchange 

for other genes, as well (Detrich et al., 2011). 

 Important to mention is that chimeric Cre recombinases are available to allow temporal control 

of Cre-mediated recombination.  This is due to a Cre fused to the mutated human ligand-binding 

domain of the estrogen receptor (CreERT2) which was shown to possess ligand sensitivity and 

inducible recombination efficiency in mice (Metzger et al., 1995; Feil et al., 1997). CreERT2 

enzyme allowed that Cre enzyme can be expressed in a cell type or triggered by a chemical signal 

or a heat shock.  

Moreover, this ligand-inducible CreERT2 version was used for zebrafish studies with successful 

results as well (Hans et al., 2009). Therefore, different tissue-specific Cre ERT2 driver lines are 

now available and have shown its importance to perform several studies (Detrich et al., 2011). 
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The same has occurred with the lox switch lines whereas better versions have been generated to 

drive ubiquitous transgene expression at different developmental stages including adulthood 

(Mosimann et al., 2011). 

 

5.2 Background 

At the time when I started to work on this project, different lab members joined their efforts to 

implement the Cre-lox system to study different topics in larvae such as, epimorphic 

regeneration. Montserrat García a lab fellow, during her PhD generated and characterized a set 

of 6 different tissue specific CreERT2 -driver lines, in order to perform lineage tracing analysis 

after fin amputation. She showed that most of the generated lines could undergo tissue 

recombination and that this event was tightly dependent of 4OHT administration (García 

Romero. 2016. PhD dissertation). Her results suggested that Cre-lox system success was working 

in larvae and its success was promoter dependent. 

The aim of this part of the project was to use this novel tool available in the lab in order to 

generate different CreERT2 -driver lines that could allow us to temporally control Cre-mediated 

recombination in adult zebrafish for the following purposes: 

It was unknown whether osteoblast dedifferentiation is restricted to appendage regeneration, or 

a more general process found in fish bone, such as repair after a fracture. Also, whether 

osteoblast cells at the fracture site participate in the repair process or not.  In order to answer 

this question, I generated two different Cre driver transgenic lines, Tg (osc:creER T2-ins) and Tg 

(twist2:creER T2) to enable tracking of bone cells in vivo. The rationale was because osteocalcin is 

specifically expressed in differentiated osteoblasts and I could use that line to label few mature 

osteoblasts to perform my studies, for example. Likewise, previous studies showed that a 

osteocalcin:GFP transgenic fish labeled osteoblasts specifically (Knopf et al., 2011; Gavaia et al., 

2006).  

Moreover, it has been shown that twist2 expression transiently inhibits Runx2 which is a master 

regulator for osteoblast differentiation. Twist2 expressing cells are considered to show a pre-

osteoblast phenotype (Bialek et al., 2004) 
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 The generation of a Tg (cathepsin K: ERT2Cre-ins) transgenic line to enable tracking of osteoclast 

cells in vivo was a project thought to be done in parallel to the Tg (ctsk K: Kaede) line as a 

complement. The goal was to assess with the Cre lox system whether the same osteoclast cells 

participate at different time points during the fracture process or not. Also, the system could 

allow us to determine whether osteoclast cell division occur after its arrival at the fracture site; 

the Kaede approach couldn`t help us to answer this question, for example. 

 

 

5.3 Results 

5.3.1 Generation of the CreERT2 - driver lines. 

In contrast to the ones created by the fellow Montserrat García, my CreERT2 - driver lines were 

designed with additional features for its optimization, based on previous experience from lab 

members working with this technology.  

To illustrate, the expressed Cre recombinase was fused to only one mutated human ligand-

binding domain of the estrogen receptor (ERT2), instead of two domains (ERT2CreERT2) to 

induce recombination after 4-Hydroxytamoxifen (4OHT) administration. The reason of this 

change, was because lab members had difficulties by inducing Cre-mediated recombination in 

the generated lines expressing (ERT2CreERT2).  Experiments suggested that 4OHT was not able 

to reach two ERT2 sites at the same time. Additionally, a pair of insulator sequences (SINE CD 

insulator sequence was kindly provided by Dr. Kelsh, Bath University) were inserted flanking 

the promoter and Cre sequences within the transgene constructs. The reason was to use 

insulators as DNA barriers that could prevent the effect of external sequences in cis during 

recombination. Specifically, to avoid Cre leakiness (Cre recombination without 4OHT 

administration). The following table shows important information regarding the generated Cre-

driver lines: 
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Table 5-1:  Cre-driver lines generated, general information. 

Transgenic line Tissue specific 

promoter 

Expected 

tissue/cells 

recombination  

Source 

Tg (osc: ERT2Cre-ins) osteocalcin Mature osteoblasts Inohaya et al., 2007 

Tg (twist2: ERT2Cre-ins) twist2 Chondrocytes and 

sclerotomal cells 

Inohaya et al., 2007 

Tg ( cathepsin K: ERT2Cre-

ins) 

cathepsin K Osteoclasts (To TT et al., 2012) 

medaka 

 

 

5.3.2 Gateway clonase system to produce the expression vectors 

The Tol2kit (Kwan et al., 2007), which is a multi-site gateway-based construction kit for Tol2 

transposon transgenesis constructs, was also used to generate a set of different transgenic lines. 

The shared technical information regarding the creation of the construct and generation of the 

lines has been described in detail. Material and methods section (Chapter 2). All the gateway 

components were the same, except the 5’ entry clone which was specific for each construct. 

 

5.3.3 Tg (osc: ERT2Cre-ins) transgenic line 

The following components of the construct (5′, middle, and 3′ entry clones) were inserted into 

the destination vector p Tol2cryaa: venus (p518) generated in the lab by Montserrat García which 

possess the transgenesis marker that is expressed in the eye lenses (See Material and Methods). 

The following plasmids were used to generate the final construct: 
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• p 5e -   osc promoter (p397)       

• p Me- ERT2Cre (p512) 

• p 3e- PolyA (p302)     p osc: ERT2Cre-ins (p578) 

• p Dest- CryA – (p518)   

 

The final plasmid map is shown: 

 

• Figure 5.1   Plamid map (osc: ERT2Cre-ins) construct (p578).  

 

 

To confirm that the DNA construct was correct, it was sequenced and diagnostic digestions 

were performed with Not I (NEB) restriction enzyme; the expected fragments size after DNA 

digestion were of 2.7 and 9.6 kbs. (Figure 5.2) 

    p (osc: ERT2Cre-ins) (p578) 
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Figure 5.2 Diagnostic digest of p osc: ERT2Cre-ins (p578) with NotI restriction enzyme in different clones (A, B 

and C). The gel electrophoresis showed correct expected band sizes (9.6 and 2.7 kb). 

 

5.3.4 Tg (twist2: ERT2Cre-ins) transgenic line 

In this case, the following plasmids were used to generate the final construct: 

• p 5e -  twist2 promoter         

• p Me- ERT2Cre (p512) 

• p 3e- PolyA (p302)     p twist2: ERT2Cre-ins (p579) 

• p Dest- CryA – (p518)   
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Figure 5.3. Plasmid map (twist2: ERT2Cre-ins) construct (p579). 

 

The DNA construct was sequenced and diagnostic digestions were performed with Spe I (NEB) 

restriction enzyme; the expected fragments size after DNA digestion were of 6.2, 4.9 and 2.7 

kbs. (Figure 5.4) 

 

 

        p (twist2: ERT2Cre-ins) (p579) 

 

Figure 5.4 Diagnostic digest of p (twist2: ERT2Cre-ins) (p579) with SpeI restriction enzyme in different clones. 

The gel electrophoresis showed correct expected band sizes (6.2,4.9 and 2.7 kb). 

 

 

5.3.5 Tg (cathepsin K: ERT2Cre-ins) transgenic line 

For this transgenic line, almost all the components that were used to generate the Tg (cathepsin 
K: kaede) (Chapter # 4) were used as well, only the destination vector was the difference, (p518 
) was included for this case.   
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The following plasmids were used to generate the final construct: 

 

• p 5e -   ctsk promoter  (p473)       

• p Me- ERT2Cre (p512) 

• p 3e- PolyA (p302)     p cathepsin K: ERT2Cre-ins (p764) 

• p Dest- CryA – (p518)   

 

 

Figure 5.5 Plasmid map (ctsk: ERT2Cre-ins) construct (p764). 

 

 

The DNA construct was sequenced and also diagnostic digestions were performed 

independently with KpnI and StuI (NEB) restriction enzymes; the expected fragments size after 

DNA digestion were of (6.1, 3.2, 2.4 kbs) and (7, 3.4, 1.4 kbs) respectively (Figure 5.6) 
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p (ctsk: ERT2Cre-ins) (p764) 

KpnI                                  StuI 

 

Figure 5.6 Diagnostic digestions of p (ctsk: ERT2Cre-ins) (p764 )with KpnI and StuI restriction enzymes in 

different clones . The gel electrophoresis showed correct expected band sizes (6.1, 3.2, 2.4 kbs) and (7, 3.4, 1.4 

kbs) respectively 

 

After the constructs generation, the process was followed by bacterial transformation and 

plasmid preparation for micro injections (for description Chapter 2. Material and Methods).  

 

 

5.3.6 Identification of transgenic founder fish by reporter gene expression 

The three different Cre-driver constructs were microinjected into one –cell zebrafish embryos 

(for details Materials and Methods section). At 3 days-post-fertilization (dpf), zebrafish larvae 

were screened for transient expression, positive fish were selected by expressing GFP in the eyes 

(transgenesis marker). Approximately 100 positive fish were raised to produce F0 adults to 

establish each transgenic fish line. When F0 fish became sexually mature (3 months old), fish 

were separated and screened for germline transgenesis by outcrossing to wild-type zebrafish 

independently to obtain the FI generation.  Founders (n= 80 fish) were isolated and the 

screening procedure was repeated to get the F2 generation of each transgenic line. 

 



79 
 

5.3.7 Generation of double transgenic lines (CreERT2 driver x lox Switch lines) 

F2 generation fish are considered to be stable, thus; to investigate whether the three generated 

tissue-specific CreERT2 driver lines Tg (ctsk:ERT2Cre-ins), Tg (osc:ERT2Cre-ins) and Tg(twist2: 

ERT2Cre-ins) can chemically induce recombination, each generated CreERT2 driver line  were 

crossed independently with two different lox switch reporter lines which were available in the 

lab to generate double transgenic animals (dTg) (Figure 5.7). The Tg (EF1α:loxPGFPloxP-DsRed) 

(Hans et al., 2009) and Tg (ubiquitin:loxPGFPloxP-mCherry) (Mosimann et al., 2011) are green-to-

red reporter lines for easy detection of Cre activity; its ubiquitous expression at all stages of 

development and functionality to perform Cre/loxP-based lineage tracing experiments were ideal 

lines to work with. Moreover, important to mention is the fact that this type of studies were 

performed in larvae by Monterrat García in the lab, which showed its functionality, as well 

(García Romero. 2016. PhD dissertation). 

 To illustrate, each double transgenic line ( dTg) expresses DsRed2 or mCherry constitutively, 

under the control of the Xenopus Elongation Factor 1 alpha (EF1α) or the zebrafish ubiquitin (ubi) 

promoter. After tamoxifen addition or its active metabolite 4-hydroxytamoxifen (4-OHT), we 

expected that the chemical triggers dose-dependent CreERt2-mediated loxP excision events. Thus, 

after a period the change of color from Green to Red fluorescence in specific tissue would 

suggest a successful recombination event.  
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Figure 5.7.  Schematics of the Cre-lox double transgenics generated.  Tissue-specific CreERT2 drivers were 

crossed independently with lox switch Tg (EF1α:loxPGFPloxP-DsRed) (Hans et al., 2009) and Tg 

(ubiquitin:loxPGFPloxP-mCherry) (Mosimann et al., 2011), to generate double transgenic lines. 

 

Also, the following CreERT2 driver lines: Tg (fli1α:ERT2CreERT2, Tg (osc:ERT2CreERT2-ins) 

and Tg (nestin:ERT2CreERT2) generated by Montserrat García and Dr. Carlos Cruz (Roehl lab), 

were crossed independently with the two lox reporter lines previously mentioned as controls 

(Table 5-2, Figure 5.8). 

Table 5-2:  Cre-driver lines used as controls, general information. 
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Transgenic line Tissue 

specific 

promoter 

Expected 

tissue/cells 

recombination  

Source Synthesis 

Tg (osc:ERT2CreERT2-ins) osteocalcin Mature osteoblasts Inohaya et al., 

2007 

M. García 

Tg (fli1α:ERT2CreERT2 fli1α Blood vessels Lawson et al., 

2002 

M. García 

Tg (nestin:ERT2CreERT2) nestin Neural stem cells Chen et al., 2009 Carlos 

Cruz 

 

 

Figure 5.8.  Schematic of the Cre-lox double transgenics generated as controls.  Tissue-specific CreERT2 drivers 

generated by different lab members, were crossed independently with two lox switch transgenic lines Tg 

(EF1α:loxPGFPloxP-DsRed) (Hans et al., 2009) and Tg (ubiquitin:loxPGFPloxP-mCherry) (Mosimann et al., 2011). 
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For each double transgenic lines, positive siblings expressing strong GFP in all visible external 

organs, such as the skin, eyes, and fins were screened and selected. Positive fish were also 

analyzed for Cre leakiness (Cre recombination without 4OHT administration), DsRed or 

mCherry signals were not detected in any fish expressing strong GPF; this indicating tight 

regulation of CreERT2 in the respective CreERT2 driver lines. To illustrate this, representative 

images of the generated double transgenic line, dTg (osc:ERT2Cre-ins;EF1α:loxPGFPloxP-dsRed) 

and dTg (osc:ERT2Cre-ins; ubiquitin:loxPGFPloxP-mCherry) are shown as examples of the generated 

set lines (Figure 5.9, 5.10). Positive siblings (5dpf) expressing strong GFP signal in all visible 

external organs, such as the skin, eyes, and fins were screened and collected. Selected fish were 

also analyzed for Cre leakiness (Cre recombination without 4OHT administration), dsRed or 

mCherry signals were not detected in fish expressing strong GPF. These animals were sent to 

raise (2 tanks of 40 fish each); after 3 months, fish were examined again by fluorescence 

microscopy to detect ubiquitous and strong GFP expression in adulthood; also, dsRed or 

mCherry signals were still absent indicating a lack of Cre leakiness. The data suggested that the 

generated double transgenic lines were suitable to perform drug-inducible experiments in adults, 

however, it has been previously shown that recombination depends on the expression strength 

of CreERT2 (Hans et al., 2009) for example. Furthermore, TAM or 4- OHT conditions needed to 

be tested and optimized for each CreERT2 driver line. These experiments are going to be 

described in the next Chapter.  
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Figure 5.9. The dTg (osc:ERT2Cre-ins;EF1α:loxPGFPloxP-dsRed) showed high ubiquitous GFP 

expression at different developmental stages. No Cre leakiness (Cre recombination without 4OHT 

administration) was detected as well. Representative images of this dTg is shown as an example of the CreERT2 

drivers crossed with the lox Switch line tg (EF1α:loxPGFPloxP-DsRed). Positive siblings (5dpf) expressing strong 

GFP signal in all visible external organs, such as the skin, eyes, and fins were screened and selected (a-b). Selected 

fish were also analyzed for Cre leakiness (Cre recombination without 4OHT administration), dsRed signal was not 

detected in fish expressing strong GPF (c). These animals were sent to raise (2 tanks of 40 fish each); after 3 months, 

fish were examined again by fluorescence microscopy to detect ubiquitous and strong GFP expression (d,e,g,h,j,k) 

in adulthood;  Cre leakiness was still  absent (f,i,l). 
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Figure 5.10. The dTg (osc:ERT2Cre-ins; ubiquitin:loxPGFPloxP-mCherry) showed high ubiquitous GFP 

expression at different developmental stages. No Cre leakiness (Cre recombination without 4OHT 

administration) was detected as well. Representative images of this dTg is shown as an example of the CreERT2 

drivers crossed with the lox Switch line tg (ubiquitin:loxPGFPloxP-mCherry). Positive siblings (5dpf) expressing strong 

GFP signal in all visible external organs, such as the skin, eyes, and fins were screened and selected (a-b). Selected 

fish were also analyzed for Cre leakiness (Cre recombination without 4OHT administration), mCherry signal was 

not detected in fish expressing strong GPF c). These animals were sent to raise (2 tanks of 40 fish each); after 3 

months, fish were examined again by fluorescence microscopy to detect ubiquitous and strong GFP expression 

(d,e,g,h) in adulthood;  Cre leakiness was still  absent (f,i). 
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5.4 Discussion  

5.4.1 Generation of double transgenic lines dTg to perform Cre/loxP - based lineage 

tracing experiments 

In general, the Cre-lox system has been used with successful results in zebrafish at different 

developmental stages, since Langenau and colleagues demonstrated that this system could be 

applied in this animal model (Langenau et al., 2005).  

Therefore, taking advantage of this system a set of different double transgenic lines were 

generated to assess different questions in a fracture healing context in adult zebrafish. 

Knopf and colleagues (Knopf et al. 2011) showed that osteoblast dedifferentiation is restricted 

to appendage regeneration but it is interesting to determine whether this is a more general 

process found in fish bone, such as repair after a fracture.   

Moreover, in what regards osteoclast participation during a fracture process, I wanted to 

determine whether the same osteoclast cells participate at different time points during the 

fracture process or not. In addition, whether osteoclast cell division occurs after its arrival at the 

fracture site, are questions I want to tackle.  

Thus, three different tissue-specific drivers were generated for this purpose: Tg (osc: ERT2Cre-

ins), Tg (twist2: ERT2Cre-ins) and Tg (ctsk: ERT2Cre-ins). Certainly, one aspect to consider is to 

know that the endogenous gene transcript of each Cre-driver is expressed during the fracture 

healing process. This was confirmed by in situ experiments, Figures 3.5 (osc) and 3.7 (cathepsin k ) 

in Chapter 3 showed that these genes are induced during the fracture healing process in 

zebrafish. Also, twist2 expression was detected post-fracture (data not shown). It has been shown 

that twist2 is expressed after an injury in zebrafish. In the regeneration context, the gene is 

induced in the first 24 hours -post-amputation in preosteoblasts near the amputation site to 

maintain them in a mesenchymal state that later will form the new bone.  

Furthermore, complementary analyses, such as mRNA in situ to detect creERT2 transgene in the 

double lines can help to ensure faithful transgene expression. Unfortunately, these experiments 

couldn´t be performed in the generated lines to assess the levels of Cre expression due to the 



86 
 

unsuccessful production of a Cre probe.  Attempts to detect the Cre RNA by ISH in transgenic 

lines paired with one ERT2 were done without success. The generation of an antisense Cre 

probe that can detect only the ER section could solve this issue. Also, RT-PCR could be done 

to determine Cre expression in the constructed transgenic lines.  

 

 

5.4.2 Double transgenic lines showed ubiquitous and strong GFP expression until 
adulthood.  

Lox Switch lines that has efficient promoters that drive ubiquitous transgene expression in larvae 

and adult tissues in zebrafish was challenging for the community. Some attempts by using Xef1α 

or B-actin promoter –controlled lox cassettes containing fluorescent protein genes were reported 

by different groups (Langenau et al., 2005; Yoshikawa et al., 2008; Hans et al., 2010), but these 

were inefficient. Moreover, lines with EF1α and ubiquitin promoters showed ubiquitous 

expression in adulthood, which is important to get successful Cre-lox experiments in my case. 

Thus, double transgenic lines were generated either with lox Switch transgenic lines: Tg 

(EF1α:loxPGFPloxP-dsRed) or Tg (ubiquitin:loxPGFPloxP-mCherry). Representative images of dTg 

(osc:ERT2Cre-ins;EF1α:loxPGFPloxP-dsRed) (Figure 5.9) and (osc:ERT2Cre-ins; 

ubiquitin:loxPGFPloxP-mCherry) (Figure 5.10)  were used to illustrate that ubiquitous strong GFP 

expression was detected at larvae and adulthood stages. However, not all the animals analyzed 

had the same result; transgene silencing (non- expression of the transgene at particular tissues or 

body parts due to different effects) was observed in different fish as well. This effect is 

commonly observed in adult transgenic lines (Detrich et al., 2011). The use of insulators that 

flank the DNA cassette can prevent gene silencing due to the intrusion of chromatin 

condensations (Burgess-Beusse et al., 2002), but it seems that these DNA elements couldn´t 

avoid the effect at all.  

 

5.4.3 No Cre mediated leakiness was detected in double transgenic lines (dTg) 

The first Cre-drivers generated in zebrafish contained hsp70-controlled Cre (hsp70:cre and 

hsp70:EGFP-cre) offering temporal control through heat shock-inducible activity of the 
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promoter. But they lacked efficiency due to “leakiness” of the promoter and its low expression 

(Le et al., 2007; Thummel et al., 2005). The integration of DNA insulators (DNA sequences that 

act as barriers) that flank the DNA cassette probably helped to increase the recombination 

efficiency of Cre enzyme. The analyzed samples didn´t show Cre-recombination in the tail fin 

or other body parts either at larvae or adulthood stages. Figures (5.9 b,e,h,k) and (5.10 b,e,h). 

Moreover, these observations were also seen in different transgenic lines that also incorporated 

DNA insulators that flank the DNA cassette. The observations were seen in larvae by   

6Monsterrat García in the laboratory (García Romero. 2016. PhD dissertation). This information 

suggested that Tamoxifen-induced- Cre-lox recombination experiments could be performed in 

adult zebrafish. 

 

 

5.5 Conclusions 

Three different Cre-driver bone-associated transgenic lines were generated as a first step to 

induce controlled site-specific recombination in zebrafish tail fins. To do this, the Cre-drivers 

were crossed with two available lox Switch reporter lines that contain different ubiquitous 

promoters. Thus, different double transgenic lines were generated to find the most suitable to 

perform Cre-lox lineage tracing experiments in a bone fracture healing context.  Moreover, fish 

adulthood is the stage of interest to perform experiments; thus, double transgenic lines were 

analyzed by microscopy and those fish showing strong and ubiquitous GFP expression were 

selected for cell tracking experiments. Also, the analysis showed that no Cre mediated leakiness 

was detected in the generated double transgenic lines (dTg). 
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CHAPTER 6 

Usage of different strategies to induce Cre-recombination in adult double transgenic 
lines. 

 

6.1 Introduction  

The appearance of a modified Cre recombinase version fused to the human ligand-binding 

domain of the estrogen receptor (ER) allowed for recombination events to be performed with a 

tight temporal and spatial control. Therefore, the main feature of this Cre version is its 

insensitivity to natural estrogen but not to the chemicals Tamoxifen or its derivate 4-

hydroxitamoxifen (4-OHT) (Feil et al., 1997; Metzger et al., 1995). Therefore, the sensitivity and 

recombination efficiency increased considerably compared to the original Cre enzyme. 

In general, the system works as the following, in the default state the CreERT2 version is 

sequestered in the cytoplasm and can only be translocated into the nucleus when Tamoxifen or 

(4-OHT) are added. After this action, the modified enzyme mediates lox excision; resulting in a 

tight temporal control over recombination. Moreover, depending on the lox sites orientation the 

recombination event not only can cause excisions, also invertions of the DNA cassette flanked 

by these sites can be done. In addition, these lox sites have been modified by mutagenesis (such 

as lox2272 and loxN) to increase its efficiency (Livet et al., 2007) 

Important to realize is the fact that in mice the administration of Tamoxifen or 4-OHT induces 

an effect that can be problematic due to the body size, ways of administration, etc. In contrast, 

zebrafish drug administration is easier; drugs can be added directly into the water which causes 

effective CreERT2 responses (Hans et al 2009; Mosimann et al., 2011). Moreover, according to 

Hans and colleagues, in zebrafish the optimal Tamoxifen/4-OHT dose for a specific CreERT2 

driver paired with a lox switch requires individual tests to get the best results (Hans et al., 2009). 
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6.2 Background 

As mentioned in the previous Chapter, at the time I started to work on this project, different lab 

members joined their efforts to implement the Cre-lox system in the laboratory in order to 

perform studies related to epimorphic regeneration in zebrafish larvae. Related to this, 

Montserrat García a lab fellow, during her PhD generated and characterized a set of 6 different 

tissue specific CreERT2 -driver lines to perform lineage tracing analysis after fin amputation. She 

showed that most of the generated lines could undergo tissue recombination and that this event 

was tightly dependent of 4OHT administration (García Romero. 2016. PhD dissertation).  Thus, 

her results showed that Cre-lox system was working in the laboratory and that at least for 

experiments performed in larvae, the conditions to induce recombination were established. 

Therefore, the objective of the project was to perform Cre-lox based experiments in adult 

zebrafish, which compared to larvae, a considerable smaller number of publications were 

available. Also, working with adult zebrafish represented additional challenges such as, the 

amount of chemical needed to perform experiments and the appearance of transgene silencing, 

a phenomenon commonly observed in transgenic lines during adulthood (Detrich et al., 2011). 

 

6.3 Results 

6.3.1 Tamoxifen couldn´t induce recombination in the tested transgenic lines 

 

CreERT2 -  mediated lox recombination can be induced at concentrations as low as 0.5 µM 

Tamoxfen (TAM) or 4-OHT in zebrafish larvae (Hans et al., 2009; Mosimann et al., 2011).  

Moreover, at the moment when the different set of double transgenic lines were ready to 

perform Cre lox experiments, different lab members had technical difficulties to obtain 

satisfactory results with 4-OHT administration; thus, Tamoxifen was planned to be tested first.  

Few references were found which used Tamoxifen and not 4-OHT to induce Cre-based 

recombination experiments in adult zebrafish. For instance, Tamoxifen was administrated at a 

final concentration of 1 µM added to fish water for 1 hour during a regimen of 3 consecutive 
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days prior imaging to obtain results. But importantly to consider, authors used the Gal4-ERT 

system which is a different way to induce temporal Cre-recombination (Akerberg et al., 2014). 

Also, CreERT2-mediated recombination in adult zebrafish was showed to be induced by four 

or five soakings (10 hours each) in 5 M Tamoxifen in a DMSO/fishwater (1:1000) solution 

(Kroehne et al., 2011). 

First, groups of 3 wild-type adult fish (6-8 months old) were soaked independently in fish water 

with a specific final Tamoxifen concentration [0.5, 1, 2, 5 or 10 µM] to determine chemical 

toxicity. In addition, vehicle DMSO was added in water with the same experimental drug 

concentration in controls.  After 30 minutes fish were checked and the experiment showed that 

5 and 10 µM were lethal for fish. The rest of the groups didn´t show adverse effect and 

completed the first 8 hours session. Then, when the second (8 hr) session finished only 1/3 fish 

of the 2 µM group was alive; in contrast, fish of 0.5 and 1 µM groups survived and completed 

four hour sessions soaked in Tamoxifen without showing evident signals of chemical toxicity. 

Importantly, control fish didn´t show toxicity effects suggesting that this was due to the chemical 

concentration. Thus, these experiments showed that in my hands addition of Tamoxifen at a 

final 5 and 10 µM are lethal to fish, 2 µM showed to be less toxic but was not suitable for Cre-

Lox experiments. Moreover, 0.5 and 1 µM were not toxic to finish with potential to use them in 

experiments. The summary is shown in the following Table 6.1: 
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Table 6.1    Tamoxifen toxicity experiment (adult zebrafish) 

Concentration 

[] 

0.5 µM 1 µM 2 µM 5 µM 10 µM 

Effect 

Observation 

# wt 

Not toxic 

4 sessions 8 hrs 

long, no effect 

3/3 fish 

Not toxic 

4 sessions 8 hrs 

long, no effect 

3/3 fish 

Toxic 

Toxic after 2nd 

session 

2/3 fish 

Lethal 

Immediate 

toxicity  

3/3 fish 

Lethal 

Immediate 

toxicity  

3/3 fish 

 

Therefore, after Tamoxfen toxicity experiments I decided to test [0.5 and 1 µM] to induce Cre 

recombination in double transgenic lines that have the lox reporter (EF1α:loxPGFPloxP-DsRed). 

The reason was due to observations from different lab members who got better results with the 

switch from GFP to DsRed (tissue recombination) in the target tissues in zebrafish larvae.  

To perform experiments, 3 fish of each double transgenic lines: dTg (ctsk:ERT2Cre-ins; 

EF1α:loxPGFPloxP-DsRed), dTg (osc ERT2Cre-ins; EF1α:loxPGFPloxP-DsRed) and dTg (twist2: 

ERT2Cre-ins; EF1α:loxPGFPloxP-DsRed) were soaked in fish water with a specific final 

Tamoxifen concentration [0.5 and 1 µM]. Drug treatments were repeated 4 times (8 hours long). 

Also, the dTg (osc:CreERT2;EF1α:loxPGFPloxP-DsRed) was also tested. This line was generated 

by Montserrat García in the lab to label mature ostebolasts as well, it is similar to the line 

generated by me dTg (osc ERT2Cre-ins; EF1α:loxPGFPloxP-DsRed) because it shares the same 

osteocalcin promoter but differs in some specific features (section 5.3.1). In addition, the positive 

control dTg (fli1a:ERT2CreERT2;EF1α:loxPGFPloxP-DsRed) which label blood vessels was also 

included in experiments (García Romero. 2016. PhD dissertation).  Furthermore, vehicle DMSO 

was added in the water with the same experimental drug concentration as controls. 

Subsequently, two ray fractures were induced in the tail fin and immediately photographed after the 

insult (O hpc) and at different time points (once every 24 hours post- injury during 5 consecutive 

days) in order to detect tissue recombination. The recombined tissue should express the DsRed 

fluorescent protein.  
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Thus, I searched for DsRed signal detection in the tail fin of all the tested transgenic lines but 

couldn´t find Cre-recombination induced by Tamoxifen addition; the rest of the body of each 

fish was also analyzed but results were negative as well. DsRed protein was not detected during 

the drug treatments or after inducing two bone fractures on each side of the tail fin. Also, due 

to the fact that recombination effect could take several hours, fish were monitored during 5 days 

post fracture to detect DsRed signal but it was unsuccessful. Moreover, fish treated with vehicle 

(EtOH) didn´t show DsRed protein in any transgenic line, suggesting that Cre leakiness 

(recombination without Tamoxifen addition) was not present. In addition, the positive control 

dTg (fli1a:ERT2CreERT2;EF1α:loxPGFPloxP-DsRed) didn´t express DsRed protein in the blood 

vessels as expected. Thus, the available evidence suggested that tested Tamoxifen conditions 

and/or treatment are not able to induce Cre recombination in the analyzed transgenic lines, but 

other reasons could exist which are mentioned in the discussion section. 

In the following figure (6.1) I show representative images of dTg (osc ERT2Cre-ins; 

EF1α:loxPGFPloxP-DsRed) and positive control dTg (fli1a:ERT2CreERT2;EF1α:loxPGFPloxP-

DsRed) as examples. 
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Figure 6.1. No tissue recombination was detected in the double transgenic lines after Tamoxifen 

treatments. Representative images of dTg (osc ERT2Cre-ins; EF1α:loxPGFPloxP-DsRed) (a-c, c´) and positive 

control (fli1a:ERT2CreERT2;EF1α:loxPGFPloxP-DsRed) (d-f, f´) are shown  as examples.  

Transgenic lines were soaked in fish water with a final [1 µM] Tamoxifen concentration during 8 hours (x4) times. 

Furthermore, vehicle EtOH was added in fish water with the same experimental drug concentration as controls. 

Subsequently, two bone fractures were induced on both sides of the tail fin (stars) and imaged once every 24 hours 

post- fracture during 5 consecutive days in order to detect tissue recombination (change from GFP to DsRed). 

Experiments showed that DsRed signal detection was absent on tail fins and wasn´t detected after several days post 

fracture (c), suggesting the lack of recombination event. DsRed signal was also absent from the positive control (f). 

Other body parts were also analyzed with negative results as well (c´, f´). Moreover, fish treated with vehicle (EtOH) 

didn´t show DsRed protein in any transgenic line, suggesting that Cre leakiness (recombination without Tamoxifen 

addition) was not present in tested transgenic lines (b, e). Stars indicate the bone crush sites. (dpc)- days post 

 

 

6.3.2 4-hydroxitamoxifen (4-OHT) couldn´t induce recombination in the tested 

transgenic lines 

Tamoxifen requires to be transformed chemically in order to produce 4-hydroxitamoxifen (4-

OHT). Thus, it introduces a potential lag in CreERT2 response. Due to this, nowadays most of 

Cre-lox experiments are performed using  (4-OHT) which provides a direct activity and is less 

toxic to the animal (Detrich et al., 2011). Moreover, to illustrate, the Cre recombinase-based 

genetic cell-labeling approach has been used in adult zebrafish to study bone regeneration after 

fin amputation by tracking osteoblast cells (Knopf et al., 2011).  In order to perform these studies, 

authors used 4-OHT at a 0.5 uM final concentration during 3 consecutive sessions (8 hours long 

each one). By the time I planned to perform experiments, members from Jopling´s lab (Uni. of 

Montpellier. France) recommended a treatment with 4-OHT at a 3 uM final concentration with 

a single session of fish soaked in tank water for 8 hours long. Therefore, due to the fact that 

Jopling´s lab members use regularly a similar lox Switch reporter line, Tg (EF1α:loxP DsRed loxP- 

EGFP)  with successful results,   I decided to perform experiments with the same protocol on 

double transgenic lines that have, either (EF1α:loxP DsRed loxP- EGFP)  or 

(ubiquitin:loxPGFPloxP-mCherry) lox Switch reporters to detect the best for experiments. 
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Details of both protocols are annotated in the following Table 6.2: 

Tamoxifen (4-OHT) 
Concentration used 

Drug treatment Reference 

0.5 uM 3 consecutive sessions (8 
hours long each) 

Knopf et al., 2011 

3 uM 1 session (8 hours long) Jopling´s lab protocol.      

Uni. of Montpellier. France 

 

To perform experiments, the following double transgenic lines were analyzed: 

 

 

 

 

 

Table 6.3 

Tansgenic line Recombination 

Target tissue 

(after recombination 

event) 

 

dTg (osc ERT2Cre-ins;  

EF1α:loxPGFPloxP-DsRed) 

 

From GFP to DsRed Mature osteoblasts 

 

dTg (twist2: ERT2Cre-ins; 

EF1α:loxPGFPloxP-DsRed) 

 

From GFP to DsRed 
Chondrocytes and 

sclerotomal cells 

 

dTg (osc ERT2Cre-ins; 

ubiquitin:loxPGFPloxP-mCherry) 

 

From GFP to 

mCherry 
Mature osteoblasts 

 
From GFP to 

mCherry 

Chondrocytes and 

sclerotomal cells 
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dTg (twist2 ERT2Cre-ins; 

ubiquitin:loxPGFPloxP-mCherry) 

 

Positive Controls 

 

dTg (fli1a:ERT2CreERT2;  

EF1α:loxPGFPloxP-DsRed) 

 Montserrat García 

From GFP to DsRed Blood vessels 

 

dTg (fli1a:ERT2CreERT2; 

ubiquitin:loxPGFPloxP-mCherry 

Montserrat García 

From GFP to 

mCherry 
Blood vessels 

 

 

 

To perform experiments, 3 fish of each double transgenic lines (Table 6.3) were soaked 

independently in fish water with a specific final Tamoxifen (4-OHT) concentration [3 µM] and 

kept during 8 hours. Furthermore, vehicle EtOH was added in the water with the same 

experimental drug concentration in controls. 

Subsequently, fish were injured and immediately photographed after the insult (O hpc) and at 

different time points (once every 24 hours post- injury during 5 consecutive days) in order to 

detect tissue recombination. The recombined tissue should express DsRed or mCherry 

fluorescent proteins respectively.  

As a result, I searched for DsRed or mCherry signal detection in the tail fin of all the tested 

transgenic lines but couldn´t find Cre-recombination induced by Tamoxifen addition. 

Representative images of dTg ( osc ERT2Cre-ins; ubiquitin:loxPGFPloxP-mCherry) (Fig 6.2 a-c, c´);  

(osc ERT2Cre-ins; EF1α:loxPGFPloxP-DsRed) (Fig 6.2. g-i, i´) and positive controls dTg 

(fli1a:ERT2CreERT2; ubiquitin:loxPGFPloxP-mCherry) (Fig 6.2 . d-f, f´); and 

(fli1a:ERT2CreERT2; EF1α:loxPGFPloxP-DsRed)  (Fig 6.2. j-l, l´), are shown as examples.  
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Transgenic lines were soaked in fish water with a final [3 µM] Tamoxifen concentration during 

8 hours (x1) time. Furthermore, vehicle EtOH was added in fish water with the same 

experimental drug concentration as controls. Subsequently, two bone fractures were induced on 

both sides of the tail fin (stars) and imaged once every 24 hours- post- fracture during 5 

consecutive days in order to detect tissue recombination (change from GFP to DsRed or 

mCherry respectively). Experiments showed that DsRed or mCherry signal detection was absent 

on tail fins and couldn´t be detected after several days post fracture (Fig 6.2 g, i), indicating the 

lack of Cre- recombination event. DsRed or mCherry signal was also absent from the positive 

controls (Fig 6.2 f, l). Other body parts were also analyzed and no Cre-recombination was 

detected (Fig 6.2 c´, i´), either in positive controls (Fig 6.2 f´, l´). Moreover, , fish treated with 

vehicle (EtOH) didn´t show DsRed/mCherry protein in any transgenic line, suggesting that Cre 

leakiness (recombination without Tamoxifen addition) was not present in tested transgenic lines 

(Fig 6.2 b, e, h, k).  
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Figure 6.2. No tissue recombination was detected in the double transgenic lines after 4-OHT treatment. 

Representative images of dTg ( osc ERT2Cre-ins; ubiquitin:loxPGFPloxP-mCherry) (a-c, c´);  (osc ERT2Cre-ins; 

EF1α:loxPGFPloxP-DsRed) (g-i, i´) and positive controls dTg (fli1a:ERT2CreERT2; ubiquitin:loxPGFPloxP-mCherry) 

(d-f, f´);  and (fli1a:ERT2CreERT2; EF1α:loxPGFPloxP-DsRed)  (j-l, l´),  are shown  as examples.  

Transgenic lines were soaked in fish water with a final [3 µM] Tamoxifen concentration during 8 hours (x1) time. 

Furthermore, vehicle EtOH was added in fish water with the same experimental drug concentration as controls. 

Subsequently, two bone fractures were induced on both sides of the tail fin (stars) and imaged once every 24 hours- 

post- fracture during 5 consecutive days in order to detect tissue recombination (change from GFP to DsRed or 

mCherry respectively). Experiments showed that DsRed or mCherry signal detection was absent on tail fins and 

couldn´t be detected after several days post fracture (g, i), indicating the lack of Cre- recombination event. DsRed 

or mCherry signal was also absent from the positive controls (f, l). Other body parts were also analyzed and no Cre-

recombination was detected (c´, i´), either in positive controls ( f´, l´). Moreover, , fish treated with vehicle (EtOH) 

didn´t show DsRed/mCherry protein in any transgenic line, suggesting that Cre leakiness (recombination without 

Tamoxifen addition) was not present in tested transgenic lines (b, e, h, k). Stars indicate the bone crush sites. (dpc)- 

days post 
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6.4  Discussion 

 

A set of Cre-driver transgenic lines were generated to perform Cre-lox lineage tracing 

experiments in adult zebrafish. To assess this, different strategies were performed to induce Cre 

recombination in the transgenic lines by adding Tamoxifen or 4-OHT; unfortunately, I couldn`t 

get positive results. 

6.4.1  Tamoxifen /4-OHT- did not mediate CreERT2 induction 

One of the first aspects to consider when issues exist regarding the lack of Cre-lox recombination 

is to consider the chemical handling.  

The relative efficacies of TAM and 4-OHT for CreERT2 induction are difficult to assess due to 

their instability, both are light- and temperature- sensitive chemicals. Therefore, it is advised to 

keep them in the dark and to use fresh or recently dissolved chemical stocks because it was 

found that prolonged storage decreases recombination efficiency over time (Mosimann et al., 

2011). This phenomenon was also observed by laboratory fellows in larvae studies as well. 

Tamoxifen and 4-OHT experiments were performed with fresh stocks most of the times. In few 

occasions, 1 month old (4-OHT) stocks were used because laboratory fellows still got good 

recombination efficiency in larvae 

 

 

6.4.2  The optimal induction time point still needs to be determined for each 

transgenic line. 

CreERT2-mediated lox recombination can be triggered in zebrafish at concentrations as low as 

0.5 µM Tamoxifen or 4-OHT in larvae (Hans et al., 2009; Mosimann et al., 2011). The same 

Tamoxifen concentration can also produce efficient recombination in adult zebrafish (Knopf et 

al., 2011). Interestingly, zebrafish larvae can tolerate 10 – 20 µM 4-OHT treatments without 

adverse effects, which are high concentrations. In contrast, adult zebrafish seems to be more 

sensitive than larvae, Tamoxifen or 4-OHT treatments are not exceptions. After performing a 

Tamoxifen chemical test, in my hands only fish treated with 0.5 and 1 µM Tamoxifen survived 
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(Table 6.1). It is possible that higher Tamoxifen concentrations are ideal to induce recombination 

in the different transgenic lines but fish couldn´t tolerate treatments higher than 1 µM. (Figure 

6.1) 

 Moreover, it is known that 4-OHT is less toxic than Tamoxifen; this prodrug requires metabolic 

transformations to produce 4-OHT. Thus, it introduces a potential lag in CreERT2 response. 

This is one of the reasons why most of Cre-lox recombination experiments use 4-OHT rather 

than Tamoxifen, also due to its less toxicity as mentioned before. The treatment I used (I session, 

3 µM 4-OHT) suggested by Jopling´s lab (Univ. of Montpellier), didn´t induce Cre recombination 

in the tested transgenic lines, either in the positive controls dTg 

(fli1a:ERT2CreERT2;ubiquitin:loxPGFPloxP-mCherry) or (fli1a:ERT2CreERT2; 

EF1α:loxPGFPloxP-DsRed) that label blood vessels after a recombination event (Figure 6.2).  

Given these points, further experiments need to be done to determine the suitable conditions 

(chemical concentration and treatment) to induce recombination in the generated transgenic 

lines. I would suggest the use of intraperitoneal injections as it has been performed to induce 

Cre-recombination for adult cardiomyocyte studies, for example (Jopling et al., 2010; Kikuchi et 

al., 2010) 

 

 

6.5 Conclusion 

 

A set of different Cre- driver lines were crossed with two different lox Switch lines to perform 

Cre-Lox lineage tracing experiments in the fracture healing context.  Furthermore, to induce Cre 

recombination in adult fish, different strategies that involved Taxmoxifen or 4-OHT chemicals 

were tested. Unfortunately, no recombination was detected after several days- post-treatment. 

Positive controls didn´t show recombination either suggesting that optimal conditions were still 

needed to get positive results. I suggest the screening of more fish to find adult fish that when 

crossed with a lox Switch reporter line, express high level of Cre recombinase. Also, it is 

necessarily to test fish during larvae stages. 
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CHAPTER 7  

  

7.1 General Discussion   

In recent years, zebrafish has become an attractive model in the Biomedical Science field, due to 

the constant development and availability of molecular tools that enable studies which cannot 

be performed in other classical models so far. The use of zebrafish to study skeletogenesis is one 

of those fields where the model can be very useful. Thus, in my project I continued with the 

characterization of the bone fracture model that was proposed originally by Sousa and colleagues 

(Sousa et al., 2012). In this publication, authors focused their analysis on the expression of 

different regeneration markers during fracture healing compared with fin regeneration after 

amputation.    

Moreover, the analysis made in this PhD thesis of the different fracture healing stages 

(inflammation, bone formation, remodeling) suggest that molecular and cellular events are 

similar between zebrafish and mammals, as suggested by different studies (Flores et al., 2004; 

Yan et al., 2005; Li et al., 2009); probably, the main difference is the time frame needed in each 

animal model for healing. 

Notably, during the process of this PhD project, two groups proposed different bone fracture 

models in medaka and zebrafish, which differ in the way bone fracture is performed. First, 

Takeyama and colleagues, performed bone fractures on fin hemirays with special needles to 

avoid blood vessels and surrounding tissue damage (Takeyama et al., 2014). From my point of 

view, the way those fractures are performed, do not mimic the fracture healing context at all.  

When this process takes place, tissues at the site and surroundings are seriously damaged 

(including blood vessels). Therefore, this effect triggers different restoration mechanisms 

(Schindeler et al., 2008). Also, in zebrafish with a similar method to induce damage like in medaka 

study, Geurtzen and colleagues with the use of photoconvertible Kaede protein and Cre-driven 

genetic fate mapping, showed that osteoblasts migrate to the site of injury to replace damaged 

tissue. Their finding suggests that adult fish osteoblasts display elevated cellular plasticity 

compared with mammalian bone-forming cells (Geurtzen et al., 2014).   
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Moreover, as suggested in the previous chapter, further strategies are needed to determine the 

suitable conditions to induce Cre-recombination in the target tissue of the different created 

transgenic lines. For example, to explore whether the generated transgenic lines offspring have 

the capacity to be stimulated by Tamoxifen (4-OHT) addition, I crossed the tg (osc ERT2Cre-

ins; EF1:loxPGFPloxP-DsRed) and tg (twist2 ERT2Cre-ins; EF1:loxPGFPloxP-DsRed) lines 

with wildtype fish. In collaboration with my lab fellow Monsterrat García, I performed Cre-lox 

based experiments in larvae (5 dpf), to confirm the hypothesis. Interestingly, after adding 10 µM 

4OHT to tg (twist2 ERT2Cre-ins; EF1:loxPGFPloxP-DsRed) line, experiments showed tissue 

recombination after some days in the jaw area. The cells that expressed the DsRed protein 

seemed to have chondrocyte identity, which are cells that creates cartilage matrix (Perka et al., 

2000). Data suggested that possibly, the specific optimal conditions to induce recombination in 

adult still need to be found.   

However, when the same experiments were performed in tg (osc ERT2Cre-ins; 

EF1:loxPGFPloxPDsRed), recombination was not observed in larvae. It has been reported that 

osteocalcin is expressed at 7 dpf on the fifth ceratobranchial (Gavaia et al., 2006). To consider, 

another publication reported the expression of GFP until 22 dpf in a tg (osteocalcin:GFP) line. 

Thus, fish were kept for several days until almost 30 dpf for analysis but recombination was still 

absent. For these experiments, no Cre mRNA could be tested due to the lack of a suitable Cre 

probe. Also, I confirmed by DNA sequencing that osteocalcin promoter sequence doesn´t have 

any abnormality. Moreover, Monika Tomecka, a lab fellow, generated the tg (osc:Kaede) line to 

track cells. She reported the expression of Kaede protein (photoconvertible) (Ando et al., 2002) 

in adult fin rays, where osteocalcin is normally expressed. Further experiments need to be done 

to discard the idea that the integrated transgene suffers a silencing effect that doesn´t allow gene 

expression in the transgenic line.   
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7.2 Future Directions  

The characterization of the fracture healing model in adult zebrafish, proposed originally by 

Sousa and colleagues (2012) suggests that this process is similar to mammalian fracture repair.  

Advances in imaging, genetic tools and chemical genetics have positioned zebrafish as a powerful 

tool to dissect the temporal and spatial relationship between inflammation and injury repair, such 

as a bone fracture. The identification of reverse neutrophil migration as a mechanism that can 

resolve local inflammation is an example on how zebrafish studies had uncover new mechanisms 

related to wound healing (Mathias et al., 2006). Therefore, I propose to test this mechanism in 

adults in the fracture healing context. To do this, a collaboration with Renshaw´s lab (University 

of Sheffield) to use the available Tg (mpx:Kaede) line and see if it is functional in adult fish. 

Thus, this could permit the tracking of neutrophil cells after performing bone fracture.   

Also, taken advantage of the Nitroreductase-mediated cell/tissue ablation technology in 

zebrafish, it could be possible to ablate specifically neutrophils for example, to analyze their 

influence on bone formation through the fracture healing process. Same experiments could be 

performed on osteoclasts or macrophages as well by using ctsk and mpeg1 promoters respectively.   

Moreover, the participation of macrophages in the same fracture healing context needs to be 

addressed as well. One first attempt was done to study these cells in vivo with the use of the Tg 

(mpeg1: GFP) line, but this promoter seemed to label resident macrophages and Langerhans 

cells (dendritic cells similar in shape and function as macrophages) (data not shown). Thus, it 

was difficult to differentiate them; a transgenic line that possess a different promoter that label 

macrophages could be helpful. In 2015, Walton and colleagues described mfap4 as a new 

macrophage-specific promoter in zebrafish with better features than mpeg1 because it remained 

stable during more time and a Cre transgenic line under the control of this promoter showed 

promising results (Walton et al., 2015). 

Furthermore, understanding the interactions between immune (neutrophils, macrophages, 

cytokines) and skeletal cells (osteoblasts, osteoclasts) during the fracture healing process in 

zebrafish is an interesting field to explore. To be precise, Osteo-immunology is the field that 

studies interactions between these cells. The possibility to generate double transgenic lines that 

label two different cells with fluorescent proteins could be useful to perform in vivo studies after 
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a bone fracture. For example: the generation of a dTg (IL1:GPF; osc; DsRed) line (to label IL1 

cytokines an osteoblasts) or dTg (IL1: GFP; ctsk: dsRed) (to label IL1 cytokines and osteoclasts) 

could help us on exploring the way how bone and immune cells interact in vivo during the fracture 

healing process, something which has just started to be explored.   

In addition, regarding the Cre-lox experiments, further studies are needed to identify the optimal 

conditions necessary to induce Cre recombination in the generated double transgenic lines. 

Intraperitoneal injections which consist in injections into the abdominal cavity of adult zebrafish 

could promote successful Cre-recombination. Also, the usage of specific zebrafish codons could 

enhance Cre expression within cells to get positive recombination results. Moreover, it is needed 

further screenings to detect more founders for each transgenic line to perform Cre 

recombination experiments.    
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7.3 General Conclusions  

Firstly, the analysis of the fracture healing steps (inflammation, repair, remodeling) by different 

approaches in adult zebrafish, showed no remarkable differences at the cellular or molecular 

level in comparison to mammalian fracture repair. These results suggested an important level of 

conservancy regarding bone repair mechanisms between fish and mammals. 

Notably, reactive oxygen species (ROS) production, which are one of the first signals to be 

induced after damage, depend on the lesion type in adult zebrafish. Amputation lesions released 

and maintained ROS for longer time compared to bone fracture which was brief. Also, my 

analysis shows that within the first 24 hours-post-fracture, different cell types and molecules take 

part in a coordinated manner. IL1β cytokine is induced early after bone damage and neutrophils 

are recruited at the fracture site after few hours as well. Both seem to induce directly or indirectly 

osteoclast recruitment. These bone remodeling cells, participate early but also remained active 

after several days. 

Moreover, the second objective of this project was to determine whether osteoblasts 

dedifferentiation is restricted to appendage regeneration, or a more general process found in 

zebrafish, such as repair after a fracture. To solve this, efforts were done during the project to 

stablish in the laboratory the Cre-Lox system in adult zebrafish. As a first step, a set of double 

transgenic lines were created to enable tracking of bone cells in vivo. Afterwards, different 

tamoxifen-induced Cre-recombination strategies were performed in adult zebrafish but 

unfortunately, no successful results were obtained in any tested organism with different drug 

treatments. Further research is needed to get positive results. 

The knowledge generated in this research can contribute to set the basis for the development of 

further studies of bone repair in zebrafish that can complement the ones performed in classical 

models. 
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Abbreviations  

  

4 OHT  4-Hydroxytamoxifen  

BSA   Bovine Serum Albumin  

ºC   Centigrade  

DIG   Digoxigenin  

DMSO     Dimethyl Sulfoxide  

Dpa   Days post- Amputation  

Hpc   Hours post-Crush  

DsRed       Discosoma RED  

EF1alpha  Elongation Factor 1 Alpha  

ER   Estrogen Receptor 

F1   First Generation  

F2   Second Generation  

FGF   Fibroblast Growth Factor  

GFP   Green Fluorescent Protein 

Hh   Hedgehog 

Hpa  Hours post Amputation  

Hpc   Hours post Crush  

Hpf   Hours post Fertilization  

IGF   Insulin-like Growth Factor 

ISH   In situ-Hybridization  

ISP   Study Plan  

LB   Lysogeny Broth  

Mg   Milligrams  
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ml   Milliliter  

mM   Milimolar 

mq   Mili-q 

NBCS      New Born Calf Serum  

NEB     New England Biolabs inc 

NEBinc  New England Biolabs  

Ng   Nanograms 

Nm   Nanometers  

PBST     Phosphate buffered saline plus 0.1% tween 20 

PCR   Polymerase Chain Reaction  

PFA   Paraformaldehyde  

PK   Proteinase K  

RA   Retinoic Acid  

raldh2   Retinaldehyde Dehydrogenase 2 

RNA   Ribonucleic Acid  

Rpm   Revolution per minute 

rSAP   Shrimp Alkaline Phosphatase  

RT   Room Temperature  

SOC   Super Optimal Broth  

TBE   Tris,Borate, EDTA  

tcf7   Transcritption Factor 7  

TE   Tris, EDTA  

µM   Micromolar  

UV   Ultra Violet  

X   Times  
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µl   Microliter  

ng   Nanogram 




