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Abstract 

Many recent studies have developed our understanding of Toxoplasma gondii and host 

interactions whilst in the brain as well as the mechanisms that the parasite uses to change the 

behaviour of the host, since the parasite was found to increase dopamine production in 

catecholaminergic cells (PC12). Indeed, in vivo staining of the parasite cyst found dopamine 

accumulation inside the cysts. However, a detailed mechanism of dopamine production and 

the immune response involvement to dopamine levels is not yet clear. Several approaches 

have been used is this study to gain a better understanding. Firstly, immunostaining and 

mRNA expression have revealed that culturing T. gondii in tryptophan free media induces 

tachyzoite to bradyzoite differentiation. Secondly, analysis of the effect of kynurenic acid 

(KYNA) on dopamine levels showed that the parasite blocks the suppression of dopamine 

levels by KYNA through interfering with KYNA-induced changes in phosphorylation of 

tyrosine hydroxylase. Finally, host-parasite dynamics were examined by RNA sequencing 

(RNA-Seq) of T. gondii infected neurotransmitter-expressing cell. Our data found that the 

parasite does not increase dopamine production alone, but also modifies catecholamine 

metabolism to increase dopamine production and decrease norepinephrine and epinephrine; 

these modifications together with changes in expression of genes encoding dopamine 

receptors, neuronal function, neurodevelopmental, and NMDR suggest mechanisms of host 

neurotransmission modification. RNA-Seq data also revealed changes in the immune 

response of infected neural cells with subversion in expression of host cell cytokines and 

chemotaxis i. RNA-Seq data also show the simultaneous change in T. gondii expression 

during neural cell infection and showed that this profile is distinct from the expression profile 

in other host cells. 
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Chapter One 

1 Toxoplasma gondii: Biology, Immune Response and Host 
Manipulation  
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1.1 Abstract 

Toxoplasma is arguably one of the most successful parasites infecting humans, causing 

severe encephalitis in immunocompromised patients; however, its pathogenesis in 

immunocompetent individuals remains unknown. Much evidence suggests that T. gondii may 

have behavioural effects on humans for three main reasons: first, it induces behavioural 

change in rodents. Second, a higher T. gondii seroprevalence has been found in schizophrenia 

patients compared to controls; and finally, the antipsychotic drugs used for the treatment of 

schizophrenia inhibit the growth of the parasite in vivo and in vitro and might induce 

behavioural change via proximate or indirect mechanisms. Two tyrosine hydroxylase 

enzymes that produce L-Dopa were discovered. This finding suggests that the parasite might 

be involved in the production of dopamine. Additionally, T. gondii may effect brain changes 

indirectly by inducing host-determined humoral and cytokine immune responses, whereby 

the T. gondii activates an immune response in the brain that leads to the release of different 

cytokines. Activated astrocytes will increase Indoleamine 2, 3-dioxygenase (IDO) activity, 

leading to decreased tryptophan and the production of kynurenic and quinolinic acid. 

Quinolinic acid is an agonist of the N-methyl-D-aspartate (NMDA) receptor, while kynurenic 

acid is an antagonist of NMDA; the net result of this may be an alteration in glutamatergic 

neurotransmission. In addition, kynurenic acid is an antagonist of α-7 nicotinic acetylcholine, 

resulting in a decrease in dopamine level. This chapter reviews T. gondii biology, and the 

proximate and indirect mechanisms of host behaviour manipulation. 
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Toxoplasma gondii is arguably the most successful intracellular parasites worldwide because 

of their ability to infect all warm-blooded animals (including humans) and birds. The parasite 

has been recorded to have 350 host species, the vast majority of which live in the wild (Weiss 

and Kim, 2007). It is estimated that 25-30% of the world’s human population are infected 

(Montoya and Liesenfeld, 2004). This prevalence varies widely between countries (10%-

80%) and even within the same country and regions, and between different communities 

within these regions (Pappas et al., 2009). On the other hand, in North America, in South East 

Asia, in Northern Europe, and in Sahelian countries of Africa the seroprevalence is relatively 

low (10-30%). While in the countries of Central and Southern Europe, the seroprevalence is 

moderate (30-50%) and high prevalence has also been found in Latin America and in tropical 

African countries (Robert-Gangneux and Darde, 2012). 

 

1.2 Life cycle of T. gondii 

The definitive hosts of the parasite are cats and other members of the Felidae family, where 

the parasite undergoes its sexual life cycle in the host’s small intestines. The result of this 

sexual mating is millions of oocysts shed in cat stool. These oocysts are highly infectious and 

resistant to environmental conditions (Frenkel, 1970). The T. gondii oocyst is released 

unsporulated in the cat stool, but sporulate later and form an isospora-like oocyst with two 

sporocysts, each containing four sporozoites (Dubey et al., 1970). The ingestion of this 

oocyst by the intermediate host will lead to the release of the sporozoites in the intestine; the 

parasite first moves to the nearest secondary lymphoid tissue (Sumyuen et al., 1995) and then 

to the site of infection by using the dendritic cells as a Trojan horse (Channon et al., 2000). 

Inside the intermediate host, the parasite undergoes asexual replication , this stage is known 

as tachyzoite stage, the stage that allows the parasite to rapidly increase in number and spread 

throughout the body. Later, due to the immune response, the parasite will develop into 

hundreds of slowly dividing semi-dormant parasites within tissue cysts; this is called the 

bradyzoite stage. In chronic infection of the brain, bradyzoites are found in cysts. These cysts 

are located inside a viable cell surrounded by a thin layer of the host cytoplasm. Inside the 

cyst, there are hundreds of mature bradyzoites, which appear more elongated than the 

tachyzoites, and have a posteriorly located nucleus with the presence of polysaccharide 

granules (Weiss and Kim, 2007). Ingestion of tissue cyst from the intermediate host by a cat 
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will lead to the release of the merozoite stage, allowing this parasite to undergo the sexual life 

cycle again (Dubey, 1998). 

All three T. gondii stages are involved in the infection: tachyzoites, bradyzoites and oocysts. 

Bradyzoite-containing tissues infect cats via ingestion, while herbivores are infected by the 

ingestion of T. gondii–sporulated oocysts contaminated food or drinking water. 

Transplacental infection occurs when tachyzoites are transmitted from infected mothers to 

her foetus during pregnancy. In addition, tachyzoites can be transmitted to humans during 

blood transfusion and organ transplantation (Weiss and Kim, 2007). The uniqueness of the 

life cycle of T. gondii among its group is the ability of the parasite to transmit between 

different intermediate hosts or even between definitive hosts (Afonso et al., 2006)(Figure1-1)

 

Figure 1-1: The life cycle of T. gondii. 

1.3 T. gondii biology 
T. gondii is a crescent-shaped cell, around 2 μm wide and 5 μm long, with one pointed apical 

end and a rounded posterior end. It is surrounded by a complex membrane, called the pellicle, 

and a cytoskeleton, which is involved in the structural integrity and motility of the cell. T. 

gondii possesses many organelles, including a nucleus, ribosomes, an endoplasmic reticulum, 

a mitochondria, a Golgi complex and a unique plastid-like organelle called the apicoplast 
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formed of multiple membranes. The apicoplast was hypothesized to formed due to a possible 

acquisition by the parasite via a secondary endosymbiosis of a free-living red alga (Roos et 

al., 1999). Similar to other members of the phylum Apicomplexan, the apicoplast is found 

specialized cytoskeletal structure in the apical part, called the conoid, together with numerous 

secretory organelles (rhoptries [ROPs], dense granules, and micronemes) this part is involved 

in cell invasion (Dubey et al., 1998; Weiss and Kim, 2007).   

 

1.4 T. gondii genotyping and strains 

T. gondii has a large clonal population structure, which consists largely of three main 

genotypic lineages (Strain I, II, and III), each with distinct properties in terms of virulence, 

epidemiological pattern of infection and effects on host cell signalling (Sibley and Ajioka, 

2008; Weiss and Kim, 2007). Recently a new fourth clonal lineage has been described to 

share lineage with types I and II  (Khan et al., 2011). Strain I am the most virulent during the 

acute stage of the infection, and can be found in congenital infection. Strains II and III are 

less virulent and have higher tendency to establish chronic infections (Sibley and Ajioka, 

2008; Sibley and Boothroyd, 1992). Strain II is involved in congenital infection and 

infections involving AIDS patients. Strain III was isolated from animals (Weiss and Kim, 

2007).  

Genetic crosses were used to map loci involved in strain specific virulence differences in T. 

gondii and host cell signalling and two rhoptry kinases were identified: ROP16 and 18. These 

mediate key functional differences between the genotypes and secreted during host invasion 

(Taylor et al., 2006; Saeij et al., 2006; Saeij et al., 2007; Khan et al., 2009) as further 

discussed in (Behnke et al., 2011) 

 

1.5 Mechanism of cell invasion 

The invasion of the host cell is a highly coordinated process of attachment and penetration, 

Two apical secretory organelles are involved, the micromeres and rhoptries (Carruthers and 

Boothroyd, 2007). 

The invasion processes starts with the attachment of the parasite to the host cell membrane 

through the calcium-dependent secretion of adhesions from micronemes, like the MIC2 

microneme protein, this protein recognises host cell receptors and establishes parasite 
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attachment and reorientation. The invasion process is initiated by the gliding motility; a 

complex actin-myosin interaction between host cell surface and the parasite, besides a 

dynamic rearrangements of the parasite cytoskeleton (Carruthers and Boothroyd, 2007). After 

that, the entry of the parasite is established by the formation of the moving junction. A tight 

association is formed by moving junction between the parasite apical end and the host cell 

membrane. As this compound moves from the apical end to the posterior end of the parasite, 

the internalization of the parasite into a parasitophorous vacuole (PV) is established. During 

the establishment of the moving junction, micronemes secret apical membrane antigen 

(AMA1), that disrupted over the entire surface of the parasite, Rhoptry (ROP) proteins are 

secreted into the host cell membrane (Dubremetz, 2007) and they are involved in the 

formation of the nascent parasitophorous vacuole membrane (PVM). For example, ROP18 is 

associated with the cytosolic side of the PVM and has protein kinase activity, which – as 

mentioned previously – has a massive effect on parasite growth and virulence (El Hajj et al., 

2007).  

Dense granular proteins beside rhoptry proteins contribute to PVM formation. During the 

PVM formation and invasion process, the parasite modifies the biochemical characteristics of 

the PVM by striping most of the host’s transmembrane proteins and preventing fusion with 

lysosomes or any cytoplasmic vesicle. In addition, dense-granule proteins are involved in the 

development of a complex network of membrane tubules that extend from the PVM  into the 

vacuolar lumen (Mercier et al., 2005). 

This network of membranes is involved in the exchange between the host and the parasite 

importing in nutrients from the host cell cytosol to the parasite, and exporting proteins or 

lipids from the parasite PVM or the host cell. In addition, the PVM and the host cell 

mitochondria are also closely associated, which contributes to parasite metabolism (Sinai et 

al., 1997; Schatten and Ris, 2004; Crawford et al., 2006). 

 

1.6 Medical importance 

T. gondii infection can be asymptomatic or symptomatic (toxoplasmosis). The medical 

importance of the parasite is discussed here in the setting of both immunocompetent and 

immunocompromised patients. 
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1.6.1 Immunocompetent patients 

The majority of T. gondii infections are considered asymptomatic, although a minority of 

individuals with acute infection may present signs and symptoms. The symptoms are mainly 

mild and non-specific (flu-like symptoms), but sometimes symptoms may be severe, 

including prolonged fever, fatigue (Remington, 1974) and retinochoroiditis. The most 

common symptom is cervical lymph-adenopathy, where lymph nodes are discrete and non-

tender, and measure only a few centimeters in diameter (McCabe et al., 1987). Chorioretinitis 

with visual impairment may rarely be associated with primary infection, although it was 

thought that chorioretinitis is due to congenital infection. (Delair et al., 2008) found that 

almost 25% of infections are acquired in immunocompetent individuals. 

Congenital infection occurs if a seronegative mother is infected during pregnancy. The 

relationship between the duration of pregnancy and the clinical manifestation of infection is 

an inverse relationship. This means that an infection acquired during the last trimester is the 

most serious (Dunn et al., 1999). During congenital toxoplasmosis, the central nervous 

system is affected mostly; non-specific signs include retinochoroiditis, blindness, epilepsy, 

psychomotor or mental retardation, encephalitis, microcephaly, intracranial calcification, 

hydrocephalus, anaemia, jaundice, rash and petechiae due to thrombocytopenia. The severity 

of these clinical manifestations is high if infection is acquired before week 26 of gestation 

(Remington et al., 2001). 

 

1.6.2 Immunocompromised patients 

Toxoplasma encephalitis is the most common presentation of reactivated toxoplasmosis in 

AIDS patients, although toxoplasmosis in AIDS patients could be due to acute acquired 

infection (Luft and Remington, 1992). However, reactivated toxoplasmosis in AIDS patients 

might involve other organs e.g., heart, lungs, eyes, liver, pancreas, bone marrow, bladder, 

lymph nodes, kidney, spleen and skin (Robert-Gangneux and Darde, 2012). 

The symptoms of toxoplasmosis in transplant patients are similar to those in AIDS patients. 

The infection might transmit from transplanted organs of seropositive donors to the 

seronegative patients. Otherwise, transplant-related immunosuppression may cause 

reactivation of latent infection of seropositive transplant recipients (Botterel et al., 2002; 

Rogers et al., 2008; Martina et al., 2011). 
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1.7 Diagnosis 

The main method of diagnosing infection in clinical laboratories is through the detection of 

circulating antibodies during the acute stage of infection. First, IgM is present during acute 

infection, and, after eight weeks, IgG production starts with or without IgM (Jenum and 

Stray-Pedersen, 1998). Therefore, the acute stage is diagnosed through the presence of IgM, 

and serial specimens will demonstrate an increasing IgG titre. In the chronic stage, only IgG 

is present, without changing the titre in serial specimens. During pregnancy, the serological 

response is the same as in acute infection, but it is necessary to know whether the infection 

was acquired during pregnancy: IgM can be detected for months after the infection and the 

parasite can only be transmitted to the foetus if infection occurred during the pregnancy. 

However, the time of infection during pregnancy could be defined by the use of IgG-avidity 

(low in acute infection). This test is needed to determine and evaluate T. gondii transmission 

in utero (Robert et al., 2001).  

Serological techniques rely on detecting the circulating antibodies in patient serum. The 

Sabin-Feldman dye test is one of the earliest serological techniques used to detect 

toxoplasmosis. The Feldman dye test nowadays has been replaced by wide varieties of 

techniques including indirect fluorescence antibody tests (IFATs), hemagglutination, 

enzyme-linked immunosorbent assays (ELISAs), capture ELISAs, and immunosorbent 

agglutination assays (ISAGAs). All these tests are suitable for IgM, IgA, or IgE detection. 

However, for low titres of IgG, sensitive Western blot (WB) assay might be used to reveal 

specific IgG interaction to several T. gondii antigens, including the SAG-1 tachyzoite major 

surface protein; a kit is available commercially (WB Toxo GII; LDBio). This method has 

been shown to have 100% specificity and 99.2 % sensitivity compared to the dye test (Franck 

et al., 2008). Finally, PCR is a very good diagnostic tool and has employed to detect the 

presence of the parasite during congenital infection using amniotic fluid sample (Thalib et al., 

2005). However, results from multicentric studies showed an absence of reproducibility of 

parasite quantification, especially with low parasite number, and showed that standardization 

of the techniques is required. Rep529 DNA target is more adequate and recommended for 

this diagnosis than the widely used B1 gene (Sterkers et al., 2010). 
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1.8 Treatment 

Toxoplasmosis can be treated by combined therapy with sulfadiazine and pyrimethamine 

(Eyles and Coleman, 1953) or spiramycin (Beverly, 1985). Atovaquone may be given to 

pyrimethamine- and sulfonamide-intolerant patients (Kovacs, 1992). However, atovaquone 

and pyrimethamine resistance in patients has been reported with long-term treatment 

(Jacobson et al., 1996; Baatz et al., 2006). For T. gondii infections during pregnancy, the 

antibiotic spiramycin treatment is used (Wong and Remington, 1994) to minimize the 

possibility of transplacental transmission (McAuley et al., 1994). 

These drugs are effective in the treatment of the acute stage, congenital and eye infection 

because they have antiparasitic effects on the tachyzoite stage but they are not effective 

against the bradyzoite stage or chronic infection. 

1.9 Prevention and control of Toxoplasma infection 

Knowledge of T. gondii biology and life cycle suggests that hygienic measures can be 

implemented to avoid infection. Direct contact with cat faeces increases the risk of infection 

with oocyst. Careful hand washing after handling a cat, wearing gloves when changing cat 

litter box, as well as washing the tray with hot water (60°C), coupled with avoiding putting 

cat litter box in the kitchen, and feeding cats dried or canned food are the key preventative 

measures necessary to avoid infection. Thorough washing of the hands and nails after any 

outdoor activities in contact with soil, and wearing gloves for gardening are advised to avoid 

infection with oocysts in the environment. Moreover, bottled mineral water is preferred to tap 

water (in countries where the water network is supplied mainly by surface water) so as to 

avoid infection through contaminated water. In addition, one has to be careful to wash 

thoroughly vegetables, fruits, and herbs that are eaten raw, especially if they grow close to the 

ground. 

Finally, infection through consumption of tissue cysts in meat could be avoided by thorough 

cooking of meat; avoiding microwave cooking; keeping meat frozen in -20°C or lower for at 

least 15 days; and washing hands, knives, any containers, and tables thoroughly after meat 

manipulation or cutting (Robert-Gangneux and Darde, 2012). 
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1.10 Immune response to T. gondii 

Usually T. gondii infection is acquired due to the ingestion of the tissue cyst. After surviving 

the gastric processes, the parasite crosses the intestinal epithelium and continues its 

propagation by regulating migratory capacity (Barragan and Sibley, 2002). T. gondii is an 

intercellular parasite; this is advantageous as it protects the parasite from soluble, humoral, or 

cellular antimicrobial factors (Foureau et al., 2010).  

During T. gondii infection of enterocytes, the parasite causes physiological and 

morphological disturbances. Enterocytes might release cytotoxic molecules such as nitric 

oxide (NO) (Yap and Sher, 1999). In addition, chemokines and cytokines are releases from 

enterocytes as a response to the infection; these secretions neutrophils and dendritic cells 

(DC). Parasite replication inside an enterocyte causes host cell lysis, parasite egress and 

tachyzoite dissemination throughout the host is circulating macrophages (Da Gama et al., 

2004; Courret et al., 2006) or CD11c+ dendritic cells (DC). This may act as a ‘Trojan horse’ 

to spread the infection (Courret et al., 2006; Lambert et al., 2006). 

The immune response to T. gondii is cell-mediated by the release of interferon gamma (IFN-

γ). The first immune response is by macrophages, neutrophils and dendritic cells; these cells 

release IL-12 that stimulates the release of IFN-ɣ from T-cells, while NK cells kill T. gondii-

infected cells (Gazzinelli RT et al., 1993; Scharton-Kersten TM et al., 1996; Pfefferkorn and 

Guyre, 1984). 

 

 

 

 

 

1.10.1 Cells involved in the innate immune system 

1.10.1.1 Neutrophils 

Neutrophils have a role in the release of pro-inflammatory cytokines such as IL-12 and TNF-

α, as well as several chemokines. when exposed to T. gondii antigen and lead to the recursion 

of other immune cells (Denkers et al., 2004b); additionally, neutrophils have an immune 

regulatory role (Bliss et al., 2001) and have reactive oxygen intermediate independent 
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antimicrobial functions (Denkers et al., 2004b). The neutrophils are recruited at the site of the 

infection by chemokines released from the enterocyte and by other chemotactic material 

released from the CD4 T-cells and neutrophils like IL-17, a granulopoiesis cytokine. These 

chemokines induce CXCR chemokines receptors, leading to the recruitment of neutrophils to 

the site of infection during early infection (Kelly et al., 2005). The receptor for these 

chemokines is CXCR2. The expression of the CXCR2 receptor is essential for the neutrophils 

trafficking (Del Rio et al., 2001). 

1.10.1.2 Dendritic cells 

Dendritic cells play a major role in innate immunity and as a connection between the innate 

and adaptive immune response (Aliberti et al., 2003). Furthermore, dendritic cells act as 

antigen-presenting cells (APC) for the T-cells through the expression of CD80 and 

CD86(Weiss and Kim, 2007). They have an antimicrobial function via the release of IFN-ɣ 

and triggering oxygen-dependent inhibition of T. gondii (Aline et al., 2002). Moreover, 

dendritic cells are known for their ability to carry different pathogens to the lymph node.  

1.10.1.3 Macrophages 

Macrophages play a key role in the innate immunity during T. gondii infection. During T. 

gondii infection, macrophages function as APC and antimicrobial agents. These functions are 

activated by IFN-ɣ. Macrophages function as an antimicrobial by tryptophan starvation or 

stimulation of inducible nitric oxide synthesis (iNOS). Tryptophan depletion will prevent the 

parasite growth as T. gondii are dependent on tryptophan for growth(Pfefferkorn and Guyre, 

1984). Tryptophan degradation occurs due to induction of indoleamine 2, 3-dioxygenase 

(Murray et al., 1989). While nitric oxide synthesis leads to the production of reactive nitrogen 

intermediates, these intermediates are toxic to the parasite (Liesenfeld et al., 1999). 
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1.10.1.4 Natural killer cells 
Natural killer (NK) cells also play a critical role in innate immune response in the acute stage 

of T. gondii infection and they are the early source of IFN-γ (Sher et al., 1993). 

During the early phase of infection with T. gondii, CCR5-binding chemokines mediate the 

recruitment of NK cells to the infection site (Khan A et al., 2006). In the site of the infection, 

NK cells have several functions: first, IFN-γ production by NK cells is induced by IL-12 

released from infected DC or macrophages  (Guan et al., 2007; Korbel et al., 2004; Sher et 

al., 2003).  Moreover, it can regulate cytotoxic CD8 T-cell immunity to T. gondii, even in the 

absence of CD4 T-cells (Combe et al., 2005). Finally, T. gondii-infected target cells can be 

killed by NK cells (Subauste et al., 1992), while during the chronic stage, perforin-dependent 

cytolytic NK cell activity has been found to be important in protecting mice (Denkers et al., 

1997). 

 

1.10.2 Innate sensing of T. gondii 

T. gondii is sensed as foreign by the innate arm of the immune system via several unique 

protozoan parasite different molecules. 

Host CCR5 interacts with cyclophillin-18 and stimulates DC IL-12 production (Aliberti et al., 

2003). In addition, TLR11 interacts with actin-binding molecule profilin and the interaction 

leads interleukin-12 production, though the role of this interaction is not clear, as TLR11 is 

non-functional in humans, and the profilin is a cytosolic protein that only exposed to immune 

system after the death of the parasite (Yarovinsky et al., 2005). TLR12 also recognises 

profilin; this TLR may increase host resistance by triggering NK and pDC cell function 

(Koblansky et al., 2013). 

TLR4 is activated by both glycosylphosphatidylinositols (GPI) (Debierre-Grockiego et al., 

2007), heat shock protein 70 (HS70) (Mun et al., 2005) and TLR2-activated 

glycosylphosphatidylinositols (GPI) (Debierre-Grockiego et al., 2007). 

Such TLR signalling is mediated by a series of adaptor proteins of which myeloid 

differentiation factor 88 (MyD88) is the most influential. MyD88 is important for host 

resistance(LaRosa et al., 2008). MyD88-deficient mice that still express IL-1 or IL-18, which 

also signals through MyD88, showed an impaired IL-12 and IFN-γ response and could not 

control the infection(Sukhumavasi et al., 2008). This indicates effective activation of 

immunity through MyD88 signalling. TLRs must first recognise T. gondii molecules. 
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However, mice deficient in individual TLRs, including TLR2, 4, and 11, showed slightly 

more susceptibility to T. gondii infection when compared with wild-type mice. MyD88 in 

relation with TLR receptors during T. gondii infection was reviewed in (Egan et al., 2009). 

Although the activation of TLR/MyD88 signalling clearly has a major impact on the T. 

gondii infection, the parasite is capable of suppressing the TLR/MyD88 signalling pathway in 

the infected cells. The mechanism of the blocking is unclear, though this may be due to the 

blocking of the nuclear accumulation of NF-κB, which has a short-term effect (Shapira et al., 

2005). Alternatively, by targeting the chromatin modification machinery rather than gene-

specific transcription factors (Leng et al., 2009), which might explain the parasite’s ability to 

simultaneously suppress a large panel of pro-inflammatory mediators. 

 

1.10.3 Adaptive immune response 

Adaptive immune response is also dependent on the production of IFN-ɣ. However, in 

adaptive immune response the IFN-ɣ is produced from T-cells and NK 

1.10.3.1 T-lymphocytes 

Both CD4 and CD8 participate in the adaptive immune response. Proliferation of resting T-

cells in response to parasite-infected cells is dependent on both CD80 and CD86, and IL-12 

by monocytes, which require CD40 in antigen-processing cells (APCs) to interact with CD40 

ligand on activated T-cells (Subauste et al., 1998). 

While CD4 is needed for long-term protection, the decline of CD4 numbers during HIV 

infection (Luft et al., 1984; Israelski and Remington, 1988) or the lack of CD4 in mouse 

model (Johnson and Sayles, 2002) increases susceptibility during the chronic stage of 

infection. During the early stage of infection, CD4 cells optimise the response of the B-cell 

and CD8 T-cells (Johnson and Sayles, 2002; Lutjen et al., 2006) by producing IFN-γ or their 

expression of CD40L, leading to activation of macrophage-effector mechanisms (Gazzinelli 

et al., 1992; Reichmann et al., 2000; Andrade et al., 2005; Subauste and Wessendarp, 2006; 

Subauste et al., 2007; Portillo JA et al., 2010). However, during acute infection,  CD4 plays a 

smaller role to that of the CD8 cytolytic effect (Casciotti et al., 2002).  

1.10.3.2 CD8+ T cell response 

The involvement of CD 8 cells in an anti-T. gondii immune response is not surprising, as 

CD8 cells are those that recognise and destroy cells infected with intracellular viral, bacterial 
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and parasitic organisms. Similar to CD4, the treatment of chronically infected mouse with 

Anti-CD8 mAb  increases the susceptibility to toxoplasmosis, and the mice succumbing 

approximately 60 days post-infection (Gazzinelli et al., 1992). CD8 controls the infection 

through the production of INF-ɣ and through the perforin-mediated cytolysis of infected host 

cells (Gazzinelli et al., 1992; Montoya et al., 1996; Denkers et al., 1997) 

1.10.3.3 Natural killer T cells 

These cells are found to help CD8 cells by producing IL-12 (Denkers et al., 1996) However, 

NK cells can take part in CD8 priming in the absence of CD4 cells (Intlekofer et al., 2005). 

Moreover, they help in the production of the antibodies, have a cytotoxic effect, regulate 

Th1/Th2 differentiation, help in the parasite clearance, and contribute in GIT 

immunopathology by shifting the cytokine profile toward a Th1 pattern (Ronet et al., 2005). 

1.10.3.4 B-cell and humoral immunity 

As mentioned previously, CD4+ T-cells are necessary to activate and regulate optimal B-cell 

response. The absence of B-cells during T. gondii infection leads to the host’s death within 3-

4 weeks following challenges, associated with high parasite burdens in the CNS (Kang et al., 

2000). Antibodies produced by B-cells can mediate protective effects through several 

mechanisms. Antibodies can activate the classical complement pathway, block invasion and 

can opsonize parasites for phagocytosis based on in vitro studies (Nakao and Konishi, 1991; 

Erbe DV et al., 1991; Hammouda et al., 1995; Vercammen M et al., 1999; Schreiber and 

Feldman, 1980). 

1.10.4 T. gondii antigens involved in immune response activation 

A few T. gondii antigens activate the immune response. The B-cell is activated by SAG1 

(Rachinel et al., 2004), SAG2A (Prince et al., 1990), GRA4 (Mevelec MN et al., 1994), while 

T-cells are activated by GRA6 (Blanchard et al., 2008), GRA4 and ROP7 (Frickel et al., 

2008) in mice. However, the major T. gondii antigens and the T-cell antigens that interact 

with them are yet to be identified in humans. 

1.10.5 Effector mechanism controlling T. gondii infection 

Cellular immunity mediates protection through the production of pro-inflammatory cytokines 

e.g., IFN-γ, TNF-α and CD40 ligation; these pathways are integrated to trigger specific 

effector mechanisms needed to control infection with T. gondii. 
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First, IFN-γ controls the infection by altering host cell metabolism, leading to tryptophan 

degradation in fibroblasts (Pfefferkorn and Guyre, 1984), and iron starvation in enterocytes 

(Dimier and Bout, 1998). Phagocytes is also stimulated by IFN-γ leading to the  production 

reactive oxygen and nitrogen intermediates, resulting in parasite damage and impeding the 

growth in macrophages (Murray et al., 1985; Adams et al., 1990). The replication of T. gondii 

in macrophages and other cell types is inhibited by NO (Scharton-Kersten et al., 1997). This 

is in addition to induction of the recently described p47 GTPases, including IGTP, IRG-47, 

and LRG-47 (Taylor et al., 2004). 

TNF-α is another cytokine that can prevent the replication of the tachyzoite in vitro, while 

TNF-α activated cells generate NO by inducible NO synthase (iNOS) and inhibit the 

tachyzoite intracallular replication (Adams et al., 2004). Nonetheless, it is important to note 

that IFN-γ alone is sufficient to control the acute infection in mice (Scharton-Kersten et al., 

1997). 

However, other interleukins play a less important role in controlling the T. gondii infection 

such as IL-4 (Suzuki et al., 1996), IL-6 (Suzuki et al., 1997), and IL-5 (Zhang and Denkers, 

1999), while IL-10 (Wilson et al., 2005) IL-4 (Roberts et al., 1996) and LXA4 (Aliberti et al., 

2002) are important for down regulation of pro-inflammatory responses during the infection 

and prevent immunopathology. 

 

1.10.6 Inhibition of host cell signalling cascades 

The binding of IFN-γ to its IFN-γ receptor at the cell surface promotes IFN-γ actions, leading 

to the initiation of a signalling cascade; the JAK family of tyrosine kinases and STAT family 

of transcription factors are involved in these signalling cascades (Cerávolo et al., 1999). T. 

gondii subverts the host immune response by inhibiting the signalling pathways initiated by 

this response for example by  blocking the transcription factors signal transducer and 

activator of transcription 1 (STAT1) (Luder et al., 2001) and nuclear factor-κB (NF-κB) 

(Luder et al., 2001; Shapira et al., 2005; Shapira et al., 2002).  

STAT1 transcription is inhibited by T. gondii subverting the IFN-γ signalling (Zimmermann 

et al., 2006). In fact, T. gondii infection causes a decrease in the response to IFN-γ-induced 

up regulation of many genes, including MHC Class II, iNOS, and the p47 GTPases (Luder et 

al., 2001). Besides, the down-regulation of the nuclear factor-κB (NF-κB) leads to down-
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regulation of immune signals that use NF-κB e.g.: tumour necrosis factor (TNF) and CD40 

and their effector mechanisms (Denkers et al., 2004a; Mason et al., 2004).  

Additionally, T. gondii prevents LPS-triggered IL-12 and TNF–α production via up 

regulation of host STAT3 (Butcher et al., 2005) while the suppressor of cytokine signalling 

(SOCS) proteins SOCS1 (Zimmermann et al., 2006; Stutz et al., 2012) and SOCS3 

(Whitmarsh et al., 2011) are anti-inflammatory pathways that are also up-regulated during the 

infection, potentially compromising host mechanisms of parasite control. The ability of T. 

gondii to subvert the immune system allows it to be a most successful parasite.  

The parasite subverts the signalling pathway in the infected cells to evade the immune 

response by secreting molecules e.g., Profilin, GPI; Cyclophilin, Lipoxygenase; ROP16, 

ROP18 and HSP70 (Pollard et al., 2009). 

1.11 Immune response in the brain 

The immune response in the brain is similar to the immune response in different body parts; it 

is a cell-mediated immune response involving the release of IFN-γ. In the brain, IFN-γ is 

produced by dendritic cells, which play a major role in innate immunity and as a connection 

between innate and adaptive immune response. In innate immunity, dendritic cells release 

interleukin (IL)-12, which induces the release of IFN-ɣ from T-cells and NK cells (Aliberti, 

2003). In addition, dendritic cells are known for their ability to carry different pathogens to 

the lymph nodes. In T. gondii infection, dendritic cells facilitate the T. gondii dissemination 

to different organs in the body (Dubey, 1997).The adaptive immune response is the immune 

response against the bradyzoite cyst during chronic infection by T-cells. 

The means by which parasites cross the blood brain barrier (BBB) and how the immune 

system controls the parasites within the brain remain unclear (Masocha and Kristensson, 

2012; Feustel et al., 2012). After entering the central nervous system (CNS), tachyzoites 

infect astrocytes, microglia and neurons. Parasite infiltration is followed by CD4+and CD8+ 

T-cell recruitment, which is important for control of CNS infection; CD28 or ICOS 

stimulatory pathways are activated to control the infection (Parker et al., 1991; Villegas et al., 

2002; LaRosa et al., 2008; Jordan and Hunter, 2010; Harris et al., 2010). This lymphocyte 

infiltration causes structural modification in the CNS based on two photon image 

observations (Wilson et al., 2009).  

Microglia are the most important effector cells. They release a tumour necrosis factor (TNF)-

α following infection, and this production of the TNF-α is mediated by IFN-ɣ (Deckert-
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Schluter et al., 1999) Furthermore, the activation of the microglia leads to the production of 

IL-1a, IL-12 and IL-15, and the expression of MHC class I and II, LFA-1 and ICAM-1. This 

indicates that microglia work as antigen-presenting cells (Schluter et al., 2001). 

Astrocytes function as immune effector cells that are involved in different immune responses 

and act as host cells. Activated astrocytes regulate T-cell trafficking by producing 

chemokines such as IL-10. In addition, T. gondii-infected astrocytes resist the development of 

T. gondii encephalitis by   producing the proinflammatory cytokines IL-1, IL-6 and TNF-α. 

Moreover, the expression of MHC class II and co-stimulatory molecules on the surface of 

IFN-γ-activated astrocytes may indicate that these cells function as antigen presenting cells 

(Wilson and Hunter, 2004). It is also important to point out that some cytokines that have a 

minor role in T. gondii infection resistance play a more important role in the control of the 

TE, such as IL-1 (Wilson and Hunter, 2004), IL-6 and TNF-α (Chao et al., 1994; Däubener et 

al., 1996). 

Finally, the significant antimicrobial effector mechanisms for controlling T. gondii in the 

brain are through IDO-induced tryptophan starvation and NO synthesis, as well as p47 

GTPases. Microglia control the parasite via NO synthesis(Chao et al., 1993) While astrocytes 

control the infection by inducing NO synthesis and IDO-induced tryptophan 

starvation(Oberdorfer et al., 2003)  and activating the genes encoding for the p47 GTPases in 

mice (Halonen et al., 2001). 

During chronic infection, parasites are found in the cyst stage and disseminate through the 

brain, predominantly in the cerebral cortex, hippocampus, basal ganglia, and amygdala 

(Melzer et al., 2010). In addition, cyst-bearing cells burst open regularly (randomly) in 

immune-competent individuals and infect nearby cells (Ferguson et al., 1989). 

It is important to realize that, during chronic infection, the cyst-bearing cells are not visible to 

the CD8 T-cells (Schaeffer et al., 2009). Besides, MHC I expression by neurons is low and 

the behaviour of T-cells in the CNS is dependent on antigen availability (Wilson et al., 2009), 

suggesting that such intracellular cyst structures are an effective means of immune evasion.

  

1.12 T. gondii and behavioural change 

The manipulation hypothesis states that parasites change the host’s behaviour (phenotype) for 

their own benefit, generally to increase their transmission rate to a definitive host (Thomas et 

al., 2005). In T. gondii, the parasite manipulates the rat’s behaviour by decreasing the innate 
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fear of cats, which leads to an increase in the transmission rate. A number of types of 

evidence support the theory that T. gondii is involved in behavioural change in humans. First, 

the observed rodent behaviour found to change during chronic T. gondii infection. Second, a 

higher T. gondii seroprevalence was found in schizophrenia patients compared to controls. 

Finally, the antipsychotic drugs used for the treatment of schizophrenia inhibit the growth of 

the parasite in vivo and in vitro. These evidences are discussed below.  

 

1.12.1 Rat behavioural change due to T. gondii infection 

A number of behaviours have been found to change during the chronic phase of T. gondii 

infection. First, T. gondii infection blocks the innate fear of cats (Berdoy et al., 2000; Vyas et 

al., 2007b; Webster, 2007) decreases neophobicity and enhances the willingness to approach 

a novel object or odour in infected rodents (Webster, 1994). Furthermore, these changes were 

found to be specific and not related to sickness behaviour (Vyas et al., 2007a). Moreover, the 

spatial memory of the rats remained intact as their ability to compete for mates and social 

status changes (Berdoy et al., 1995). In addition, the rodents did not lose their olfactory 

sense; they only lost their fear towards a middle range of cat odour strength (Vyas et al., 

2007b). Finally, they did not lose their ability to learn aversion to unfamiliar food (Vyas et 

al., 2007a). Rodent attraction to cat odours is not equal: infected rats had a stronger 

preference for wild cat odour over domestic cats (Kaushik et al., 2014). Further evidence is 

the fact that the intensity of some of the observed behavioural changes increased over time of 

the infection (Flegr et al., 1996; Havlicek et al., 2001). Therefore, the observed behavioural 

patterns cannot be side effects of the acute form of infection; otherwise, the intensity of the 

behaviour change would decrease with the length of the time after the infection. 

These observations suggest that the behavioural changes in the infected rodent are specific 

and not related to loss of sensory perception or generic malaise. Another study (Evans et al., 

2014) showed that attenuation of predator odour aversion and changes in anxiety-related 

behaviour are associated  with T. gondii cyst presence in specific forebrain areas. Epigenetic 

change in arginine vasopressin promoter DNA methylation in the medial amygdala of T. 

gondii-infected male rats was also associated with rodent odour aversion. Furthermore, the 

loss of fear in the infected animals can be inverted by systemic hypermethylation in the 

medial amygdala (Dass.H and Vyas, 2014). 
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1.12.2 Schizophrenia and seroprevalence of T. gondii in humans 

It has been found in 40 studies that schizophrenia patients have a higher T. gondii 

seroprevalence than healthy controls (Torrey and Yolken, 2003; Torrey et al., 2007; 

Mortensen et al., 2007; Yolken and Torrey, 2008). Furthermore, the strong association 

between schizophrenia and the detection of T. gondii antibodies, summarised in terms of odds 

ratio (OR) is higher (OR = 2.73) than in any human gene in a genome-wide linkage analysis 

or environmental study (OR ≤ 1.40) (Purcell et al., 2009). and recent meta-analyses 

estimating potential associations between schizophrenia and different infectious agent found 

a prominent significant association with T. gondii (OR=2.70; CI 95%: 1.34–4.42; P=0.005) 

(Arias et al., 2012). It was also found that individuals with early life infection with T. gondii 

developed schizophrenia in later life; this includes both in utero exposure and early postnatal 

exposure (Torrey and Yolken, 2003).  

Other evidence of the T. gondii effect on humans is the prolonged reaction times in infected 

individuals, measured by a test of simple reaction times (Havlicek et al., 2001) with 

psychomotor performance reduce with prolonged infection. The performance of the 

individuals in the 3-minute simple reaction time test indicates that toxoplasmosis decreases 

long-term concentration ability and not maximum performance. Interestingly, these 

performance changes were also associated with the host rhesus factor (RhD) genotype, while 

negative subjects have the lowest performance in the test, while the performance of RhD-

positive heterozygotes was not changed by the infection (Novotna et al., 2008; Flegr et al., 

2010). The decrease in psychomotor performance of infected individuals may explain the 

results of four retrospective studies (Flegr et al., 2002; Yereli et al., 2006; Kocazeybek et al., 

2009; Alvarado-Esquivel et al., 2012) and one prospective study (Flegr et al., 2009) that 

found an increased risk of traffic accidents and work accidents observed in T. gondii 

seropositive subjects. In addition, the risk of traffic accident is increased in RhD-negative 

drivers compared to RhD-positive drivers (Flegr et al., 2009). Changes in personality profile 

and phenotype in humans with latent toxoplasmosis were also reported and have been 

reviewed elsewhere (Flegr, 2013). 

 

1.12.3 Antipsychotic drugs 

Antipsychotic drugs used for the treatment of schizophrenia inhibit the growth of the parasite 

in cell culture. The antipsychotic haloperidol and the mood stabiliser valproic acid most 
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effectively inhibit T. gondii growth in vitro (Jones-Brando et al., 2003). Furthermore, 

antipsychotic drugs prevent the development of behaviour alteration in infected rodents 

(Webster JP et al., 2006). Moreover, T. gondii antibody levels in treated individuals with a 

recent onset of schizophrenia are intermediate between the control groups and untreated 

patients, while patients undergoing current drug treatment showed a significant reduction in 

antibody levels (Leweke et al., 2004). Recently diagnosed bipolar disorder patients with 

positive serum antibodies against T. gondii presented more lifetime depressive episodes 

(P= 0.048) when treated using psychiatric drugs having no anti-Toxo activity, compared to 

patients having received drugs with anti-Toxo activity (Fond et al., 2015). These findings 

suggest that antipsychotic treatment may affect T. gondii infection levels, and this is another 

piece of evidence for the relation between behaviour change and T. gondii infection.  

 

1.13 Mechanisms of manipulation 

The exact mechanisms whereby T. gondii induces changes in the behaviour of the host are 

unknown, but there are some clues as to proximate and indirect mechanisms that might 

interact to induce such change. These are described below. 

 

1.13.1 The proximate effect 

The ideal mechanism for manipulating the host’s behaviour is changing neurotransmitter 

levels. Stibbs (Stibbs, 1985) was the first to study the level of neurotransmitters during T. 

gondii infection, finding that the level of norepinephrine showed a 28% decrease, while 

homovanillic acid (HVA) showed a 40% increase during acute infection. On the other hand, 

in chronic infection, dopamine showed a 14% rise above uninfected mice. Later, many 

studies showed that the dopamine level is modulated during T. gondii infection (Flegr et al., 

2003). 

Other evidence was found by measuring novelty seeking using the hole-board test. The 

principle of this test is to measure the length of time mice spend sniffing and head dipping at 

holes in order to test levels of novelty seeking. Infected mice recorded a longer compared to 

control, head dipping and sniffing. Furthermore, treating Toxoplasma infected BALB/c mice 

with (GBR 12909 1-(2-(bis (4-fluorophenyl) methoxy)-ethyl)-4-(3-phenylpropyl) piperazin), 
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a dopamine selective uptake inhibitor, significantly altered mice behaviour. This suggests a 

direct relation between dopamine and T. gondii behavioural changes (Skallova et al., 2006). 

A piece of evidence which suggests that T. gondii changes the host’s behaviour by dopamine 

manipulation, and this manipulation is the effect antipsychotics have on the T. gondii 

behavioural changes  in rats. Haloperidol, which is a dopamine D2 antagonist, was found to 

reduce the suicidal feline attraction and altered behaviour described in T. gondii infection. 

The ability to normalise the behaviour of infected rats may involve controlling the dopamine 

level (Webster JP et al., 2006). 

All of this evidence, besides the relation between schizophrenia and dopamine known as the 

“dopamine hypothesis” mentioned above and the similarity between T. gondii-infected rodent 

behaviour and the hyperactivity caused by increased levels of dopamine in the mesolimbic 

and nigrostriatal regions, has increased speculation that dopamine could be the key in T. 

gondii-induced behavioural change. Furthermore, Gaskell et al. (2009) found that the 

parasites have the ability to produce dopamine itself. Tyrosine hydroxylase was found in the 

genome of the parasite. This enzyme represents the rate-limiting step in dopamine synthesis. 

Tyrosine hydroxylase catalyses tyrosine to L-Dopa, which is then metabolised to dopamine 

by the aromatic L-amino acid decarboxylase (AADC) in dopaminergic neurons, and 

packaged into vesicles. Interestingly, T. gondii orthologues to the enzyme had the same 

activity as the mammalian counterpart, and this was not found in any other Apicomplexan 

parasite except Neospora caninum. Furthermore, two copies of this enzyme gene were found 

in T. gondii. The genes were nearly identical in their sequence and kinetics, but different in 

their expression time. One copy is expressed throughout the life cycle of the parasite, while 

the other is up regulated during the bradyzoite stage. An explanation for this might be that the 

enzyme is required to supply the parasite with tyrosine from phenylalanine during parasite 

growth, while, during the bradyzoite stage, it is used in the production of L-Dopa. These 

findings suggest that T. gondii might be involved in the synthesis of dopamine itself. 

Furthermore, brain sections containing T. gondii cysts stain with commercial antibody 

specific to dopamine showed accumulation of dopamine inside T. gondii cysts. Infection of 

neural cells that produce, package and release catecholamine (PC12) cells led to increase in 

the production and release of dopamine several fold. This result indicates that the large 

amount of the produced dopamine is properly packaged for release from infected neurons. On 

the one hand, tissue cysts in vivo contain a hundred fold more parasites than in vitro cysts, 

which suggests that infected neurons might release several hundred times more dopamine 
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than uninfected dopaminergic neurons. This indicates that the physiological implication is 

massive, and, through this mechanism, T. gondii could discreetly alter dopamine levels from 

specific (i.e. infected) neurons (Prandovszky et al., 2011).  

Recently Xiao et al. (Xiao et al., 2014) found that miRNA was up-regulated during T. gondii 

infection of neuroepithelioma cells (20h) (in vitro) and mice (5d) (in vivo). This miRNA is 

MiR-132, a cyclic AMP-responsive element binding (CREB)-regulated miRNA. T. gondii 

MiR-132 targets were identified by pathway enrichment analysis in the transcriptome of T. 

gondii-infected mice; the strongest affected pathways were 20 genes and dopamine receptor-

signalling pathway. Furthermore, decreased expression of D1-like dopamine receptors 

(DRD1, DRD5), metabolizing enzyme (MaoA) and intracellular proteins associated with the 

transduction of dopamine-mediated signalling (DARPP-32 phosphorylation at Thr34 and 

Ser97) were detected by examination of striatum of T. gondii-infected mice  

Additionally, this study showed an increase in dopamine, serotonin (5-HT) and 5-

hydroxyindoleacetic acid concentrations measured by HPLC analysis in five-day infected 

mice brains although the metabolism of dopamine was decreased while the 5-HT metabolism 

was unchanged. 

In summary, these studies clearly identify dopamine with a key role in T. gondii cellular 

modification mechanisms and behaviour change. HPLC and immunohistochemistry had 

shown an increase in dopamine production in vivo and in vitro. Increase in dopamine 

production may be due to the expression of the rate-limiting enzyme in dopamine production 

tyrosine hydroxylase by the parasite, in addition to the parasite’s ability to manipulate the 

host’s dopamine metabolism.  

Another mechanism that might be involved in the pathogenesis of the parasite is the 

localisation in the brain. Although gross pathology was found in the brain of 

immunocompromised individuals, this effect is rare in immunocompetent individuals, which 

shows that physical change is not the cause of the behavioural change. In addition, infected 

rats did not lose other brain functions; social status and mating success is still intact (Webster, 

2007). The specificity of the behavioural change suggests that the effect of T. gondii might be 

due to the localisation in a certain region in the brain.  

Cysts containing T. gondii can be found in different regions in the brain. However, such cysts 

have been found to be more frequent in limbic structures like the amygdala and nucleus 

accumbens (Vyas et al., 2007a; Gonzalez et al., 2007). The amygdala is important in the 
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expression of emotion, while nucleus accumbens is used in the processing of reward and 

pleasure (Gonzalez et al., 2007). This suggests that the presence of the T. gondii cyst in these 

brain areas may play a role in the pathogenesis of schizophrenia. However, the odour dose 

specificity and the attraction to the definitive host mentioned above cannot be explained by 

the presence of cysts in a certain region in the brain. Moreover, the small number of T. 

gondii–infected cells compared to the number of brain cells and the similarity of the 

behavioural change between different studies necessitates a specific localisation in the brain. 

All of these observations indicate that direct damage of the brain structure alone might not be 

the main cause of the behavioural change.  

 

1.13.2 The indirect effect 

T. gondii might manipulate the host’s behaviour indirectly through the involvement of the 

immune system. The immune system could change neurotransmitter concentrations, e.g. by 

changing the concentration of kynurenines, Kynurenines are tryptophan metabolites that are 

naturally found in the brain. Tryptophan is an essential substrate in the synthesis of serotonin. 

It is metabolised by two enzymes: tryptophan hydroxylase (TPH) and amino acid 

decarboxylase (AADC). The TPH-mediated reaction is the rate-limiting step in serotonin 

pathway (Walther et al., 2003). 

Tryptophan starvation is one of the mechanisms that are induced by IFN-ɣ to control 

infections. IFN-ɣ activates indoleamine 2, 3 dioxygenase (IDO), which metabolises 

tryptophan through the kynurenine pathway (Pfefferkorn, Eckel, and Rebhun, 1986). IDO is 

present in macrophages, dendritic cells and all body organs (Wirleitner et al., 2003). It 

metabolises tryptophan to kynurenine, which is then degraded through catabolic pathways to 

either 3-hydroxykynurenine (3-HK) and quinolinic acid (QA) or kynurenic acid (KYNA). In 

the brain, microglia preferentially produce QA, whereas astrocytes produce KYNA (Figure 1-

2)(Schwarcz, 2004). 

The neuropsychiatric implications of IDO are not only related to with serotonin depletion, but 

also the metabolic products of tryptophan degradation. Kynurenic acid is an N-methyl-D-

aspartate receptor (NMDA) and α-7 nicotinic acetylcholine (a7nACh) receptor antagonist 

(Schwarcz and Pellicciari, 2002). Actually, KYNA acts as a competitive blocker of the 

glycine coagonist site of the NMDA receptor. However, both receptors are involved in 

physiological processes underlying learning, memory and other manifestations of synaptic 
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plasticity. On the other hand, QA is an NMDA receptor agonist. However, 3-HK is not 

expected to participate in the kynurenine effect, because it does not show any direct 

interaction with glutamatergic or dopaminergic processes (Olsson et al., 2009).  

Furthermore, kynurenine 3-monooxygenase (KMO), which converts L-kynurenine to 3-HK, 

was found to have a lower expression level and enzymatic activity in schizophrenic patients 

(Sathyasaikumar et al., 2009). However, this branch of the metabolic pathway is localised in 

microglial cells and does not interact with KYNA production under normal conditions. The 

effect of the up- or down-regulation of the microglial branch pathway is still under 

investigation, especially during the upstream activation of L-kynurenine production. On the 

other hand KYNA and kynurenine  (KYN) have been reported to be higher in the 

cerebrospinal fluid (CSF) (Erhardt et al., 2001) and central nervous system (CNS) regions of 

schizophrenics as compared with controls, reported an evaluated level of KYNA in the post-

mortem prefrontal cortex. These increases were probably unrelated to treatment with 

antipsychotic medications. Evidence from studies in rats suggests that treatment with 

antipsychotic drugs reduces endogenous concentrations of KYNA, while KYN levels are 

unaffected. In addition, the level of L-kynurenine, KYNA’s immediate bio-precursor, was 

found to increase with an increase in KYNA (Vecsei et al., 1992). Furthermore, KYNA was 

found to decrease dopamine level, suggesting that astrocyte-derived KYNA may exert 

functionally significant local control over dopaminergic activity (Wu et al., 2007). 

In addition, KYNA was found to interfere with dopaminergic neurotransmissions as Nano 

molar concentration of KYNA were capable of significantly reducing dopamine level in vitro 

(Rassoulpour et al., 2005). Furthermore, Amori et al. (2009) found that the inhibition of 

kynurenine synthesis increases the extracellular level of dopamine. This means that the 

relationship between KYNA and dopamine is bidirectional. KYNA levels in the prefrontal 

cortex (PFC) caused a decrease in the extracellular levels of two other neurotransmitters 

known for their effect on cognitive functions, i.e., glutamate and acetylcholine. This effect is 

also bidirectional, which means that a decrease in the KYNA level causes an increase in the 

neurotransmitter level, as studies on rats have shown (Zmarowski et al., 2009; Wu et al., 

2010). In schizophrenia, a blunted type-1 immune response and activated type-2 immune 

response both were linked to the imbalanced activation of astrocyte and in the tryptophan-

kynurenine metabolism, resulting in increased production of KYNA in schizophrenia (Miller 

et al., 2006) 
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As mentioned above, astrocytes are the cell type that produces KYNA in the brain. 

Astrocytes are able to produce KYNA due to the presence of kynurenine aminotransferases 

(KATs) that convert L-kynurenine to KYNA. The produced KYNA is released rapidly from 

the astrocytes to the extracellular milieu, where it has access to neuronal a7nAChRs and 

NMDRs. Furthermore, KYNA cannot be degraded enzymatically or removed by reuptake 

from the brain. It only can be removed slowly by nonspecific acid transporters. KYNA 

synthesis in astrocytes is driven by the availability of substrate (L-kynurenine) and co-

substrate (2-oxoacids), and further regulated by cellular energy status (Schwarcz and 

Pellicciari, 2002). All of this information suggests that astrocytes are the main producer of 

KYNA, and that they control the extracellular concentration of KYNA, thereby influencing 

cognitive functions. During T. gondii infection, the astrocytes are activated as one of the 

effector cells to control the infection (Oberdorfer et al., 2003). In addition, the IDO mRNA 

expression level in the brain of T. gondii-infected rats is higher than the normal level, with 

increased KYNA and a decreased tryptophan level (Silva et al., 2002). 

This evidence suggests that T. gondii might manipulate the host behaviour via the immune 

system. T. gondii infection activates the astrocytes, which induces IDO and leads to the 

production and release of kynurenine. Kynurenine will block the NMDR and α-7 nicotinic 

acetylcholine receptors, leading to the decrease of dopamine in the brain in individuals who 

are genetically susceptible to developing schizophrenia i.e., the increase expression of the 

tryptophan dioxygenase (TDO). 

KYNA production starts with the opening of the oxidative ring of tryptophan by IDO and/or 

TDO. However, the mRNA for tryptophan 2,3-dioxygenase (TDO2) is elevated in the brain 

of schizophrenic patients; furthermore, a concomitant increased density of TDO2-

immunopositive astroglial cells is seen in the patients’ white matter (Miller CL et al., 2004). 

This evidence suggests that TDO2 is involved in the pathophysiology of schizophrenia. It has 

actually been speculated that TDO2 is the enzyme responsible for the pathophysiology of the 

schizophrenia rather than IDO. The evidence for this hypothesis is that in schizophrenia, 

type-2 immune response is activated and the IDO is inhibited by the type 2 cytokines (Miller 

et al., 2006). In addition, the brain’s IDO expression level appears normal in schizophrenia 

patients (Miller CL et al., 2004).   

These results suggest the following hypothetical sequence: T. gondii activates the astrocytes, 

which leads to an increase in the formation of KYNA in the brain. This effect is augmented in 

individuals with elevated brain TDO activity and reduced KMO levels and activity, i.e., 
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individuals with a genetic predisposition for schizophrenia. In addition, increased brain 

KYNA levels contribute to the excessive reduction in glutamatergic and nicotinergic 

neurotransmitters, which is believed to play an important role in the pathogenesis of 

schizophrenia. 
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Figure 1-2:  Kynurenine pathway during T. gondii infection.  

 

 

1.14 Objectives 

This thesis includes a number of studies that investigate T. gondii’s proximate and indirect 

mechanism(s) that may cause behaviour changes in the host. In terms of the proximate 

mechanism, the transcriptome of nerve growth factor NGF-activated T. gondii-infected PC 12 

Learning & memory  

Antagonist 

Agonist 

NMDA 

 

Learning & memory  



28 
 

cells was studied. These cells were infected with induced bradyzoite-stage parasites to mimic 

chronic infection conditions. Bioinformatics analysis were performed for the host and the 

parasite transcriptome to identify the changes induced by the infection on both the parasite 

and the host, This also allowed me to identity the infection effect on genes involved in 

dopamine metabolism. Moreover, whether the parasite produces the dopamine itself or 

activates the PC-12 cells to produce it. 

In terms of the indirect mechanism, the effect of tryptophan metabolites on T. gondii was 

studied. T. gondii was cultured in tryptophan-free media in the presence of different 

concentrations of three tryptophan metabolites: KYNA, kynurenine and QUIN. Then, the 

dopamine levels were measured by high-performance liquid chromatography (HLPC) also 

the tyrosine hydroxylase expression levels were measured. The aim of this study was to 

determine whether these metabolites affect dopamine production during T. gondii infection. 

Besides the above, the effect of tryptophan starvation on T. gondii differentiation was also 

investigated by using histoimmunochemistry and mRNA expression levels. 
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Chapter Two 

2 Effect of Tryptophan Starvation on Host and Toxoplasma gondii  
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2.1 Abstract 

T. gondii infection induces IFN-γ secretion by the immune system and one of IFN-γ effector 

mechanisms is tryptophan (TRP) degradation; this effect has been implicated as controlling 

the tissue cyst (bradyzoite stage) in the host. Therefore, the effect of TRP starvation on host 

and parasite was analysed in vitro. Initial results found that human fibroblasts and myotubes 

survive in TRP-free media, while neural PC12 cells do not survive. T. gondii survived in 

TRP-free media. Indeed, the absence of TRP induced T. gondii differentiation to bradyzoites 

as monitored by immunostaining and detection of mRNA expression of stage-specific 

markers for vegetative tachyzoite and bradyzoite stages. T. gondii TRP starvation was found 

to induce bradyzoite differentiation and cystogenesis, but not autophagy of T. gondii or host 

mitochondria as seen during starvation of multiple amino acids as monitored by assessing the 

membrane potential of the T. gondii mitochondria under TRP starvation. Therefore, TRP 

starvation as an immune effector controls the parasite growth, but does not have a 

microbicidal effect on T. gondii. Suggesting, TRP-free media may also be used as a method 

for culturing bradyzoites in vitro.   
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2.2 Introduction 

During T. gondii infection, the host immune response induces interferon gamma INF-γ, a 

cytokine involved in innate and adoptive immune response (Green et al., 1969). INF-γ plays a 

major role in the immune response and induces immune cells (dendritic cells, NK cells) and 

effectors (Weiss and Kim, 2007). These anti-T. gondii effector mechanisms include nitric 

oxide (NO) production, TRP starvation, and generation of reactive oxygen species, iron 

deprivation, and finally induction of the p47 GTPases, including IGTP, IRG-47, and LRG-47.  

2.2.1 Tryptophan starvation 

TRP  starvation as an IFN-γ effector mechanism to inhibit T. gondii growth was first 

described by Pfefferkorn (Pfefferkorn, 1984) and treatment of human fibroblast with IFN-γ 

24 hours prior to infection were found to inhibit T. gondii growth significantly. The 

mechanism of the inhibition is due to the induction  of indoleamine 2, 3-dioxygenase (IDO). 

IDO is an enzyme that catalyses the initial, rate-limiting step of TRP conversion to N-

formylkynurenine and kynurenine (Pfefferkorn and Guyre, 1984; Pfefferkorn et al., 1986). 

TRP starvation leads to T. gondii growth inhibition, as TRP is an essential amino acid and 

required for parasite growth. Furthermore, adding excess TRP to cultures treated with IFN-γ, 

abrogated the IFN-γ toxoplasmastatic effect. TRP starvation mediated by IDO has been 

described in a variety of host cell species including humans, rats and mice. And different cell 

lines including epithelial cells, endothelial cells, and tumour cell lines (Dimier et al., 1992; 

Nagineni et al., 1996; Daubener and MacKenzie, 1999). TRP degradation as a 

toxoplasmastatic effect was detected in pigmented epithelial cells and microvascular 

endothelial cells in vivo. This pathway has also been found in the central nervous system 

immune response to infection with researchers (Gazzinelli et al., 1993; Silva et al., 2002) 

finding decreased levels of TRP and increased of IDO expression in the lungs and brains of 

infected mice. Different human cells express IDO when stimulated by IFN-γ; and IL-4 and 

IL-13 regulate IDO expression (Chaves et al., 2001).  

 

2.2.2 Tryptophan starvation effect on brain 

The question remains: how does TRP starvation affect brain functions, especially in the 

chronic stage of the infection? Several studies have been carried out on TRP depletion. TRP 
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enters the brain by active transport for the synthesis of serotonin. Acute TRP depletion 

(ATD) leads to serotonin reduction and consequently mood lowering (Moore et al., 2001)  

but a large decline in TRP is needed to see this effect on serotonin. TRP depletion has not 

been observed to affect dopamine levels also, acute phenylalanine/tyrosine depletion does not 

modulate DA levels (Young, 2013).   

In addition, patients who receive immunotherapy have low TRP plasma levels; which was 

correlated with patient depression scores (Capuron et al., 2002). The fall in plasma TRP level 

could be due to the activation of enzymes involved in TRP catabolism (Wirleitner et al., 

2003). Despite the TRP level, IDO activation might affect brain functions through the 

increase in the production of kynurenic pathway products (KYNA, QUIN) (for a detailed 

discussion, see the next chapter). These findings indicate that TRP starvation during the 

chronic stage of infection might influence the functions of the brain.   

 

2.2.3 Tryptophan starvation effect on T. gondii 

TRP  starvation controls T. gondii growth and might induce differentiation via induction of a 

stress response (similar to that with altered pH or serum starvation), Indeed, this is important 

especially when we consider that TRP is an essential amino acid and T. gondii lacks the 

enzymes to make TRP (Pfefferkorn, 1984). Likewise, arginine depletion during T. gondii 

infection has been found to induce differentiation of tachyzoites to bradyzoite-containing 

cysts in vitro due to natural arginine auxotrophy, although arginine is a non-essential amino 

acid (Fox et al., 2004). 

Although differentiation is a programmed response, bradyzoite differentiation is stress 

induced. Stress conditions were used to induce differentiation of T. gondii to bradyzoites in 

vitro, these conditions result in more bradyzoites under such conditions than simple inhibition 

of tachyzoite replication. Conditions that induce bradyzoite formation within host cells are 

temperature stress (43°C; (Soete et al., 1994)), pH stress (pH 6.6–6.8 or 8.0–8.2 (Soete et al., 

1994); chemical stress (Na arsenite (Soete et al., 1994)) and arginine starvation (Fox et al., 

2004).  

However, these systems result in heterogeneity in bradyzoite differentiation in vitro; the 

presence of tachyzoites in the cultures will lead to complications in analysis of bradyzoite 

populations, and the tachyzoite overgrown bradyzoite culture, though using more extreme 

differentiation conditions, may be toxic and therefore detrimental to long-term culture 



33 
 

maintenance. In addition, other studies (Fouts and Boothroyd, 2007) looked at the difference 

between bradyzoite and tachyzoite by using alkaline induction of bradyzoite, and different 

experiment controls included the uninfected cells with or without alkaline media. Comparing 

controls shows that alkaline media itself induced numerous transcriptional changes in host 

cells. Therefore, the hypothesised TRP effect on bradyzoite differentiation was investigated, 

as was the suitability of TRP starvation as a bradyzoite induction system that may provide 

longer culturing period without being toxic to the parasite.  

  

2.3  Aims 

TRP starvation is a phenomenon that occurs during T. gondii infection due to the immune 

response. However, the direct effect of this starvation on T. gondii is poorly characterised. 

The effect of TRP starvation on host cell and parasite growth and development were 

investigated to find an optimum condition to induce bradyzoite differentiation and model-

exclusive bradyzoite cultures. This could provide an in vitro system for the analysis of 

neurochemical effects of bradyzoite infection.  
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2.4 Experimental design 

2.4.1 Growth of the parasite and cell culture 

Low passage number HFF (human foreskin fibroblast) cells (ECACC) were maintained in 

Dulbecco's Modified Eagle's medium (DMEM) (Invitrogen Paisley, UK) supplemented with 

10% Foetal bovine serum (FBS)(Invitrogen) and 100 units/ml penicillin/streptomycin 

(Sigma, Poole, UK). This cell line was grown as monolayers at 37°C in an atmosphere of 5% 

CO2. HFF cells were passaged every four to five days. For HFF passaging, cells were washed 

in pre-warmed phosphate buffer saline (PBS) and then 0.5 ml trypsin was added, and, after 90 

seconds, the cells were forced to detach. Afterwards, 30 ml of fresh DMEM was added and 

then the newly passaged cells were moved to three new flasks. 

Rat pheochromocytoma (PC12 cells) cells from ECACC were maintained in Roswell Park 

Memorial Institute medium RPMI (Invitrogen Paisley, UK) supplemented with 10% horse 

serum (Invitrogen), 5% FBS (Invitrogen) and 100 units/ml penicillin/streptomycin (Sigma, 

Poole, UK). PC12 was passaged by pipetting up and down to break the cell clusters, then 

centrifuged at 800 rpm for 10 min and re-suspended in 30 ml of new fresh RPMI media and 

then removed to three new flasks and incubated at 37°C in an atmosphere of 5% CO2. 

The parasite was grown by infecting the HFF cell monolayer. The parasite was passaged by 

first trypsinization of the HFF cells, the cells were then centrifuged at 2500 rpm for 10 

minutes, after that the media was discarded and the pallet was re-suspended in PBS and 

transferred through a 27-gauge needle to release the intracellular parasite. Then the 

suspension was centrifuged at 2500 rpm for ten minutes; finally, the parasite pellet was re-

suspended in fresh media and used to infect a 75-95% confluent HFF. 

Human myotubes were extracted, cultured and differentiated by Dr Patrick Booms, Leeds 

Institute of Molecular Medicine, UK Malignant Hyperthermia, Investigation Unit Level 8, 

Clinical Sciences Building St. James's University Hospital lab and were a kind gift.  

2.4.2 Induction of bradyzoite differentiation 

For the induction of parasite differentiation to bradyzoites, free, released tachyzoites were re-

suspended in alkaline DMEM (pH 8.2) and incubated in 5% CO2 for 18 hours. Then the 

alkaline media was removed by centrifugation at 2500 rpm for 10 minutes and the parasites 

were re-suspended in fresh DMEM or RPMI depending on the type of the infected cells. 



35 
 

2.4.3 Poly-D-lysine coating 

500 µL of 0.1 mg/ml Poly-D-lysine (P6407 Sigma) solution in PBS was used to coat cover 

slips in 24 well plates. Then the plates were incubated at 37°C for two hours. After this, the 

wells were rinsed twice with PBS. 

2.4.4  Preparing Tryptophan-free DMEM 

2.4.4.1  Dialysed serum 

To prepare the dialysed serum, a strip of Bio Design Dialysis Tubing was used. The tube was 

prepared by soaking it in distilled water (H2O) for one hour, and then for three hours to get 

rid of the glycerol. To remove heavy metals, the tube was soaked in EDTA for one hour and 

then a further three hours. Finally, the tube was placed in a beaker with distilled H2O and 

autoclaved before use.  

Fifty ml of FBS was dialyzed by placing the FBS in the tube tied by a knot, and the FBS-

filled tube was placed in an HHBS x 10 filled autoclaved beakers. The HHBS was changed 

after one hour, three hours and overnight.     

2.4.4.2 TRP -free media 

Five hundred ml of DMEM-TRP medium was prepared by mixing 50ml prepared HBSS 

(10X), 5ml MEM vitamin (100X)(Invitrogen), 5 ml MEM Non-Essential Amino Acid 

Solution 10 mM (100X)(Invitrogen), 10 ml prepared amino acid mix (50X), 282 mg solid L-

Glutamine 282 mg, and 1.75g  glucose. The pH was adjusted to 7.2 with 10% NaHCO3, and 

then sterilized dH2O was added to a total volume of 500 ml. The prepared DMEM medium 

was then filtered, sterilized and supplemented with 50 ml dialysed FBS and 1% Penicillin-

Streptomycin antibiotic and stored at 4ºC. HBSS (10X) stock solution was created by 

dissolving the following inorganic salts in 500ml sterilized ddH2O:  

1.32 g CaCl2.2H2O, 0.5 ml Fe (NO3)3.H2O stock solution (Fe (NO3). 3.H2O was prepared 

by dissolving 0.05 g Fe (NO3)3.H2O in 500 ml sterilized dH2O as a stock solution), 2 g KCl, 

1g MgSO4.7H2O, 32 g NaCl, 18.5 g NaHCO3, 0.7 g NaH2PO4.2H2O. In addition to adding 

other compounds such as 22.5 g of D-Glucose and 0.075 g Phenol Red, the mix stock was 

stored at 4ºC.  

100X amino acid mix stock solution were prepared by dissolving the following amino acids 

in 100ml sterilized dH2O:  
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420 mg L-Arginine. HCl, 240 mg L-Cystine, 29 g L-Glutamine, 150 mg Glycine, 210 mg 

L.Histidine HCl.H2O, 525 mg L-Isoleucine, 522 mg L-Leucine, 730 mg L-Lysine. HCl 150 

mg L-Methionine, 330 mg Phenylalanine, 210mg L-Serine, 475 mg L-Threonine, 360 mg L-

Tyrosine, 470 mg L-Valine and (with and without) 80 mg L-tryptophan. It was then filtered, 

sterilized and stored at 4ºC. All chemicals were analytical grade and provided from (Sigma-

Aldrich). 

2.4.5 Induction of tryptophan starvation 

A confluent HFF cell monolayer in T25 flask or cover slip, PC12 cells T25 flask or 

differentiated myotubes in T25 flask were cultured with TRP-free media (TM) or normal 

homemade DMEM. Before adding the TM to the cultured cells, cells were washed twice with 

1XPBS each time for 20 minutes. The media was changed every three days. 

If the cells were infected, the parasites were also washed before the infection twice with 

1XPBS for 20 minutes. 5X105 parasites were used to infect cells cultured in T25 flask and 

5X104 were used to infect cells cultured on cover slip.  

2.4.6 Impact of starvation on cell viability  

The viability of a confluent HFF cell monolayer cultured in 96 well plates, the medium of 

these cells was changed to TRP reduced media (10%,1%,0.1% TRP ), TRP-free media and 

DMEM with TRP. At week one, two and three after induction of TRP, a starvation effect on 

viability of the cells was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) viability assay (CT02 Millipore). The assay reflects the viable cells number 

by measuring NAD (P) H-dependent cellular oxidoreductase enzymes ability to reduce MTT 

dye. A 10 µl of 5mg/ml MTT solution was added to each well of 96 well plates cultured with 

HFF cells in 100 µl media. After four hours of incubation in a CO2 incubator, the medium 

was removed via a 21 g needle and a 10 ml syringe, and 100 µl of DMSO was added to 

dissolve the formazan precipitate. After 10 minutes on the shaker, the result was obtained by 

reading the absorbance by a spectrophotometer at 670 nm and 570 nm. The result was the 

subtraction of the 670 nm reading from the 570 nm. 

This assay was also performed on PC12 cells. The first assay was performed on cells cultured 

in RPMI, homemade DMEM and TRP-free media and a second on PC12 cells cultured in 

TRP-free DMEM with and without a gradual amount of added TRP. 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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2.4.7 Immunofluorescence analysis and image processing 

Confluent HFF cells growing on sterile 12 mm glass cover slips in 24-well plates were 

infected with freshly harvested parasite, and starvation was induced, as mentioned above. At 

various time points noted in the figure legends, the cells were fixed and permeabilized  by 4% 

paraformaldehyde, and 0.5% 10x Triton in PBS solution was then blocked with streptavidin 

biotin-blocking kit Streptavidin/Biotin Blocking Kit (SP-2002)(vector lab) USA. The cells 

were stained by incubating overnight at 4 C° with rabbit anti-BAG1 antibodies 1:1000. After 

that, it was incubated with anti-rabbit biotin1:500(BA-1000) vector lab USA, then 

streptavidin TRITC conjugated 1:200 (SA-5006) vector labs USA for 30 minutes each at RT. 

Finally, the slides were washed-stained with Hoestch stain and mounted by vectashield. 

Images were acquired by using a Zeiss confocal Fluorescence Microscope with a 40X, 63X 

oil immersion objective. ImageJ software was used to merge images that were generated by 

pseudo-colourings. In all images and experiments, uniform adjustments for brightness and 

were used.  
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2.4.8 RNA extraction 

The cells were scraped by using a small scraper to detach the cells from the flask surface. 

Then the media and cell mixture was collected and moved to a conical tube and centrifuged 

for 45000 g for 10 minutes. Afterwards, the media was discarded and the cells were re-

suspended with leftover media. Then the RNA extraction was performed following the 

manufacturer’s instruction. Briefly, the cells were lysed by 350 µl adding Buffer RLT, 

homogenated by pipetting several times, and then 350 µl of 70% ethanol was added and the 

mixture was left in RT for five minutes. After that, the mixture was transformed to a spin 

column; the column was placed in 2 ml collection tubes and centrifuged at 15s at _8000 x g 

(10,000 rpm) and the flow-through was discarded. After this, the column was washed several 

times with 700 µl of RW1 buffer and 500 µl RPE buffer (twice); during the washing step the 

column and collection tube ware centrifuged at 15s at 8000 x g (10,000 rpm) and the flow-

through was discarded. Lastly, the column was placed in 1.5 Eppendorf tube, and 20 µl of 

Diethyl Pyrocarbonate (DEPC) treated H2O was added then the column and the collection 

tube were centrifuged for 1 min at 8000 x g (10,000 rpm). RNA quantity was examined using 

Nano Drop 2000.  

2.4.9 cDNA synthesis 

First, a single strand of cDNA was constructed by adding 100 ng of mRNA and 8.3 µl of 

DEPC H2O. Then, 1 µl random hexamers (50 ng/µl) (Promega) and 1 µl dNTPs (0.5 µg/µl) 

(Promega) were added and incubated at 65oC for five minutes. In the second step, a 4 µl  

reaction buffer, 2 µl 0.1 M DTT and 1ul RNAsin (Promega) were added and incubated at 

25C for two minutes. Finally, 1µl superscript of RT enzyme (Invitrogen) was added and 

incubated at 25°C for 10minutes, 42°C for 50 minutes and 70°C for 15 minutes. 

2.4.10 RT-PCR 

Each sample contained 50ng cDNA, 1 µl  Forward primer(100 ng/µL), 1 µl  Reverse primer 

(100 ng/µl), 1 µl dNTPs (0.5 µg/µl)(Promega), 4 µl  Green Buffer, 0.2 µl  GoTaq polymerase 

(Promega) and DEPC-H2O in a final volume of reaction 20 µl as described by the 

manufacturer. These were mixed together, incubated for two minutes at 95°C and 35 cycles 

of one minute at 95°C, one minute at 55°C and one minute at 72°C. The final step was five 

minutes at 72°C with H2O included instead of cDNA as a negative control. After this, the 

product was run in 2% agarose gel with 1µl of ethidium bromide for 20 minutes at 70 volts. 



39 
 

2.4.11 Detection of stage specific genes by quantitative PCR 

For each sample, a 12.5 µl SYBR® reen PCR master mix (4309155 Applied Biosystems) 

was added and a 0.5 forward primer (100 ng/µL), a 0.5µl reverse primer (100 ng/µL) with 

each initial concentration at 20µM then 11µl of DEPC treated H2O and 5ng of the template. 

This was then incubated at 95°C for 10 minutes and followed by 45 cycles of 95°C for 15 

seconds, 55°C for 15 seconds, and 60°C for 45 seconds. It was finally followed by a melt 

curve.  

The primers that were used are T. gondii Glyceraldehyde 3-phosphate 
dehydrogenase(GAPDH), surface antigen 1(P30) (SAG1)  as tachyzoite marker (Cheng 
Xiong et al., 1993) and surface antigen 4 (SAG4)as bradyzoite marker  (Odberg-Ferragut et 
al., 1996). Values are expressed using the delta-delta Ct method to derive relative fold 
change, ΔΔ Ct= ΔCt ( SAG sample-GAPDH sample)- ΔCt (SAG control-GAPDH control). 
 

 

T. gondii  GAPDH Forward GTA TTG GCC GTC TGG TGT TC 

 Reverse CGT GGA CCG AGT CGT ATC TC 

SAG1 Forward GAC GAC GCA CAG AGT TGT AT 

 Reverse ACA ACT TGA CAG GAC CAA GAG 

SAG4 Forward TGG ACC TAC GAT TTC AAG AAG GC 

 Reverse GCT GCG AGC TCG ACG GGC TCA TC 

 

2.4.12 Mitochondrial membrane potential assay 

For mitochondria membrane potential detection, Mitotracker ® Red CM – H2X Ros 

(Molecular Probes; Invitrogen detection technologies, Carlsbad CA) dye was used as 

previously described (Sinai et al., 1997). Infected cells were fixed and permeabilized , as 

mentioned before. After this, cover slips were incubated with 1:500 diluted dyes for 15-30. A 

Hoechst stain (33342, Thermo Fisher) was used to detect the host and parasite nucleic acid.

  

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FGlyceraldehyde_3-phosphate_dehydrogenase&ei=gb3QVJv8GYOV7Aat74G4Ag&usg=AFQjCNHFLovEEmwo3tnUKX-Et3EhrE487Q&bvm=bv.85076809,d.ZGU
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2.5 Results 

2.5.1  Impact of starvation on cells 

In order to investigate the effect of tryptophan on HFF cells survival, the HFF cells were 

cultured in normal DMEM, different concentrations of TRP and TRP-free media, and the 

viability was measured by MTT assay after weeks 1, 2 and 3.  A reduction in the viability of 

HFF cells that were cultured in TRP-free DMEM was showed in (Figure 2-1), and this 

reduction did not change after two and three weeks. Moreover, there is no difference between 

the reduced and the TRP-free media. Hence, HFF cells were used to culture T. gondii in TRP-

free DMEM. 

 

 

 

Figure 2-1: The effects of DMEM, TRP-reduced DMEM, and TRP-free-DMEM on viability 

of HFF cells. TRP values expressed as percentage of normal medium.  

 

The viability of PC12 cells in RPMI, DMEM and TRP-free DMEM was measured. PC12 

cells were cultured with these media and, after three days, the viability of PC12 cells in each 

culture was measured by MTT assay. The spectrophotometer readings were converted to 

percentages, comparing to the reading of the cells cultured in RPMI media.  TRP-free media 

is not appropriate for PC12 cell culturing (Figure 2-2). The RPMI is slightly better for 
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viability of PC12 cells than DMEM, although the difference between the two media is not 

significant. 

 

 

 

Figure 2-2: Viability of PC12 cells in RPMI, DMEM and TRP-free DMEM. The  
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The optimum concentration of TRP for PC12 cells growth was investigated by growing the 

cells in seven different TRP concentrations. After three days the viability of these PC12 cells 

cultures was measured by the MTT assay, with the spectrophotometer readings then 

presented as a percentage of the cells cultured in 100% TRP media. Direct relationship 

between the TRP concentration and PC12 cell growth was showed in (figure 2-3). This test 

clearly shows the necessity of TRP for PC12 growth. Therefore, PC12 cells do not present a 

good model for investigating TRP-free media effect on T. gondii ability to increase dopamine 

production. 

 

        

 

Figure 2-3: Viability of PC12 cells in different concentrations of TRP in DMEM media. The    
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2.5.2 Impact of TRP starvation on T. gondii 

The impact of TRP starvation on T. gondii structure was investigated by immunofluorescent 

staining with anti-BAG1 antibody, BAG1 is a bradyzoite specific protein. Immunofluorescent 

staining was used to study T. gondii cultured in HFF cells in TRP-free DMEM on cover slips. 

The staining of T. gondii bradyzoite with BAG1 shows intact, healthy bradyzoites in TRP-

free media (Figure 2-4). The restricted media did not deform the parasite and TRP starvation 

induced the differentiation of T. gondii from tachyzoite to bradyzoite.  
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Figure 2-4: Expression of bradyzoite antigen following in vitro differentiation of T. gondii in 

TRP-free media in HFF cells. 
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SAG4 were detected on day three for T. gondii cultured in normal media and TRP-free 

media; these markers were detected at day six for T. gondii cultured in TRP-free media. The 

gene expression of mRNA-encoding SAG1 (tachyziote marker)(Figure 2-5) had a positive 

result in normal media only while gene expression of mRNA-encoding SAG4 (bradyzoite 

marker) had positive results in TRP-free media at both day three and day six. These result 

confirm the conversion of the parasite from tachyzoite to bradyzoite in TRP free media. 

 

HFF cells DMEM Day 3 TRP-free Day 3 TRP-free Day 6 

T. gondii  

GAPDH 
 

SAG1 

 

SAG 4 

 

 

Figure 2-5: Photograph of an agarose gel (2 %) showing RT-PCR products with SAG1 and 

SAG4 specific primers for T. gondii grown in HFF cells for different times.  

 

The previous experiment was repeated using qPCR to confirm the previous results, (Figure 2-
6) shows a folds change  decreases in SAG1 expression and fold change increase in SAG4 
expression, confirming the ability of TRP free media to induce the bradyzoite differentiation 
in HFF cells   
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a 

 

b  

 

Figure 2-6: Quantitative PCR showing stage-specific mRNA expression of SAG4 and SAG1 

in parasites cultured in TRP free media.  
 

Myotubes were cultured and infected with T. gondii in TRP-free media and bradyzoite 
conversion and viability was monitored by measuring mRNA expression levels of stage 
specific markers (SAG1 and SAG4). The expression level of SAG1 and SAG4 in myotubes 
in the absence of TRP (Figure 2-7) . Culturing the T. gondii in myotubes and TRP-free media 
increased the expression of SAG4 and absences of  the expression of SAG1, thus indicating 
differentiation of T. gondii.  
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T. gondii GAPDH 

 

SAG1 

 

SAG4 

 

 

Figure 2-7: Bradyzoite differentiation in human myotubes grown in TRP free media 

 

 

 

 

 

 

 

 

To further confirm the previous  result, qPCR was used to detect mRNA levels of T. gondii 

cultured in myotubes and TRP free media. Gene expression of mRNA-encoding SAG1 

during infection was down-regulated (Figure 2-8), while gene expression of mRNA-encoding 

SAG4 was up-regulated in TRP-free media in days three, six and nine. The gene expression 

of mRNA encoding the differentiation markers illustrate that TRP-free DMEM and myotubes 

induce T. gondii differentiation from tachyzoite to bradyzoite.  
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Figure 2-8: Bradyzoite conversion in myotubes in TRP-free media. quantitative RT-PCR 
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2.5.3 Mitochondrial membrane potential 

The possibility that the absence of TRP induces autophagy was investigated. Previous studies 

found that the absence of amino acids causes starvation of the parasite and that this starvation 

causes autophagy and mitochondrial depolarization which was evident in T. gondii (Ghosh D 

et al., 2012), similar to yeast and mammalian systems upon nutrient starvation (Rodriguez-

Enriquez et al., 2006; Zhang et al., 2007; Rodriguez-Enriquez et al., 2009; K and Kondo-

Okamoto, 2011). 

Mitotracker, a membrane potential-sensitive dye, was used to dye intracellular T. gondii after 

six days of infection in TRP-free DMEM; (Figure 2-9) shows that using TRP-free media for 

culturing did not affect the membrane potential. In addition, no difference is observable 

between the TRP-free media and the normal media, which shows that absence of TRP does 

not have a starvation effect on T. gondii and the absence of TRP specifically induces 

differentiation and not starvation of the parasite 
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Figure 2-9: The effect of TRP-free media on the induction of autophagy. Mitochondrial 

potential was measured as a marker of autophagy using MitoTracker. 
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2.6 Discussion 

 
TRP is an essential amino acid; TRP starvation is one of the methods that the immune system 

uses to control T. gondii infection in the brain and peripherally (Pfefferkorn, 1984; 

Pfefferkorn et al., 1986). The effect of TRP starvation was examined on the host cells with 

extremely different results. Three different types of cells were used: HFF, PC12 and 

myotubes. First, the effect of TRP starvation was examined on HFF cells (Figure 2-1), HFF 

cell viability was reduced in TRP-free media, but the reduction was within an acceptable 

range. In particular, the examined HFF cells were found to be confluent and contact inhibited, 

and excess TRP was not needed for cell survival. 

However, the investigation of TRP absence on the PC12 cells shows that the cells were able 

to grow in homemade DMEM but not in TRP-free DMEM (Figure 2-2). and adding TRP to 

TRP-free media recovers the TRP-free media effect and increases the viability of these cells, 

indicating that the reduction of the PC12 cell growth is a direct effect on the of TRP 

starvation(Figure 2-3). Therefore, PC12 cells cannot be used for studying T. gondii without 

TRP. Finally, myotubes were found to differentiate and survive in TRP-free DMEM. 

Moreover, TRP-free media was found useful for survival and differentiation of myotubes 

(result not shown as the experiment was carried out by P. Booms Laboratory, Leeds Institute 

of Molecular Medicine). 

To investigate the effect of the absences of TRP on T. gondii, T. gondii-infected HFF were 

cultured in TRP-free media. Interestingly, absence of TRP was found to induce the 

differentiation of T. gondii to the bradyzoite stage; moreover, the majority of T. gondii 

cultured in TRP-free media was at the bradyzoite stage with the tachyzoite stage in a 

minority. 

The figures (Figure 2-4) of the T. gondii-infected HFF stained with anti-BAG1(Figure 2-4), a 

bradyzoite-specific antigen (Bohne et al., 1995; Parmley et al., 1995), show a parasite stained 

with BAG1 at different time points with cysts and single parasites stained with BAG1, 

indicating that T. gondii parasite differentiated to bradyzoites, mostly formed cyst-like 

structures. Indicating that TRP-free media induces tachyzoite differentiation to bradyzoite, 

and cyst formation and maturation efficiently. 

Furthermore, to confirm the differentiation of tachyzoite to bradyzoite in the absence of TRP, 

RT-PCR was performed with stage-specific primer SAG1 (tachyzoite) and SAG4 
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(bradyzoite). The first conventional RT-PCR showed that both SAG1 is expressed in T. 

gondii cultured in normal DMEM at day three, while SAG4 expression was also not detected 

(Figure 2-5). On the other hand, T. gondii cultured in TRP-free media showed an increase in 

SAG4 expression and diminished in SAG1 expression at day three. Comparing days three to 

day six in terms of T. gondii cultured in TRP-free media, similar results were seen, indicating 

that the TRP media does not eradicate the parasite and suitable for the parasite survive and 

differentiate. 

Furthermore, quantitative PCR confirms these results. The expression levels for normal 

media at day three (Figure 2-6) showed that SAG1 is expressed more than SAG4 and that 

most of the parasites are tachyzoites. On the contrary, SAG4 expression is much higher than 

SAG1 for the parasites that were cultured in TRP-free media, confirming the dominant TRP-

free media effect on T. gondii differentiation. However, the day six results showed an 

increase in the SAG4/SAG1 ratio (result not shown) indicating that the parasite continued to 

differentiate. Concluding, PCR confirms the ability of TRP-free media to induce T. gondii 

differentiation to bradyzoite, and the parasites survive and grow in this media. 

In order to demonstrate the effect of the host cell and to validate that the effect of TRP-free 

media does not occur in HFF cells only, differentiated myotubes were used to culture parasite 

in TRP-free media. RNA was extracted at days three, six and nine and conventional and 

qualitative PCR were carried out by using SAG1 and SAG4 primers.   

Myotubes have been used to culture T. gondii, and were found to be an appropriate cell type 

for T. gondii stage conversion and tissue cyst formation (Guimaraes et al., 2008; Guimaraes 

et al., 2009). This conversion is spontaneous and does not need any exogenous stress systems 

such as heat or alkaline media (Ferreira da Silva Mda et al., 2008). Indeed, other studies 

(Swierzy et al., 2014) have also reported that the differentiated myotubes of the murine 

SkMC cell line C2C12 induces expression of bradyzoite-specific genes and formation of a 

carbohydrate-rich tissue cyst wall. In contrast, the undifferentiated myoblasts did not 

efficiently induce T. gondii differentiation, which indicates that differentiation of myotubes is 

essential for bradyzoite differentiation and cyst formation. (Blader and Saeij, 2009) have also 

suggested a model in which tachyzoite growth is preferred inside of growing cells, suggesting 

that bradyzoite development initiate when tachyzoites are unable to manipulate the host’s cell 

cycle,. 
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When TRP-free media was used with T. gondii-infected myotubes, the RNA expression 

profiling showed that SAG4 expression in increased while SAG1 expression in decreased 

(Figure 2-7, 8). This indicates that parasites were mostly if not completely at the bradyzoite 

stage; moreover, it indicates that the bradyzoite continues to grow in these media. Indeed, this 

further indicates that TRP starvations induction of differentiation might be performed using 

different cell types, as long as the host cell can survive in the TRP-free media. Therefore, T. 

gondii-infected myotubes cultured in TRP-free media might be a good model for studying T. 

gondii bradyzoite and cystogenesis. Considering that T. gondii bradyzoite, induction methods 

by stress or host cell increased the bradyzoite numbers but did not achieve a bradyzoite 

exclusive and tachyzoite free culture. 

However, amino acid starvation triggers the loss of mitochondrial integrity. Mitochondrial 

depolarization is evidence of autophagy in both yeast and mammalian systems induced by 

nutrient starvation (Rodriguez-Enriquez et al., 2009; Rodriguez-Enriquez et al., 2006; Zhang 

et al., 2007). Mitochondrial morphology is associated with the loss of the membrane potential 

(ΔΨm); therefore, membrane potential-sensitive dye MitoTracker was used. Accumulation of 

MitoTracker detected both the parasite and host mitochondria. MitoTracker stain clearly 

shows that TRP starvation did not affect mitochondrial depolarization and the induction of 

autophagy of host or parasite (Figure 2-9). This indicates that TRP absence is different from 

the absence of other amino acids, and TRP starvation triggers parasite differentiation to 

bradyzoite not parasite autophagy. Therefore, TRP starvation as an immunological method 

controls the parasite growth and induces diffraction, but does not induce autophagy or kill the 

parasite. 

Previously, it has been reported that TRP degradation may be neither sufficient nor required 

for antimicrobial activity (Murray et al., 1989). whereas, during Chlamydia sp infection, TRP  

degradation mediates persistent growth of Chlamydia trachomatis (Beatty et al., 1994) and 

inhibits the growth of Chlamydia psittaci replication (Byrne et al., 1986), indicating that the 

TRP  starvation effect may not have antimicrobial activity and the effect of TRP  starvation 

varies with different organism and species. 

Moreover, another amino acid was found to trigger cystogenesis, T. gondii lacks the enzyme 

required for de novo arginine, and arginine starvation induces bradyzoite differentiation cyst 

formation (Fox et al., 2004). Inducible nitric oxide synthase causes local depletion of arginine 

and bradyzoite differentiation and thus the host’s immune system controls parasites 

replication. Both TRP and arginine auxotrophy were linked to host immune response by 
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increasing bradyzoite differentiation during the host’s immune response. These findings are 

consistent with a model of host-parasite evolution: as the host reduces the parasite virulence 

by bradyzoite induction, its increases the parasite persistence. 

Additionally, developing a bradyzoite exclusive culture might be very useful for future 

researchers, where these cultures are required to study bradyzoite stage without tachyzoite 

involvement. Such culture might be helpful for studying the bradyzoite-switching mechanism 

and drug development for bradyzoite stages.  

 

Future work: 

TRP-free media is suitable for understanding the T. gondii mechanism of differentiation and 

for comparing the tachyzoite and bradyzoite transcriptome during different time points. This 

is a good and easy method to understand the T. gondii differentiation mechanism. Moreover, 

the bradyzoite culture provided by TRP-free media is an easy and cheap method that could be 

used for in vivo investigation of the T. gondii chronic stage. 

On the other hand, further investigations are required on the effect of other amino acids on T. 

gondii growth and differentiation – especially phenylalanine and tyrosine, which will give 

further clues about the function of the parasite aromatic amino acid hydroxylase functioning 

as a phenylalanine hydroxylase.  
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Chapter Three 

3 Toxoplasma gondii blocks the effect of KYNA on Dopamine  
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3.1 Abstract 

  

Latent infection with Toxoplasma gondii involves the induction of the immune response that 

degrades tryptophan, producing kynurenic acid and quinolinic acid. As changes in kynurenic 

acid are associated with dopamine levels and dopamine has been found to accumulate in 

brain tissue cysts in mice and to be released at several-fold higher levels in infected 

dopaminergic cells, this study sought to understand the relationship of kynurenic acid with 

dopamine levels during infection. Kynurenic acid decreased dopamine synthesis and release 

from dopaminergic PC12 cells with a direct correlation between kynurenic acid 

concentration and dopamine level paralleling published in vivo studies of kynurenic acid 

effect on dopamine levels. In contrast, there were no changes in dopamine released from 

infected cells at any kynurenic acid concentration tested. Kynurenic acid reduced tyrosine 

hydroxylase (TH) activity at nano-molar concentrations in uninfected cells. Further analysis 

found that this is associated with a decrease in phosphorylation of ser19, a key residue for 

enzyme activation. In contrast, TH activity remained high in infected cells and 

phosphorylation of key residues in enzyme activation was unchanged. Hence, T. gondii 

infection mitigated the effects of kynurenic acid on dopamine. This is the first description of 

a mechanism for kynurenic acid suppressing dopamine expression and its subversion by T. 

gondii infection. 
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3.2 Introduction 

Immune response to infection may be involved in the behaviour changes observed during 

latent T. gondii infection. As an indirect effect, this involvement may be mediated by the 

continuous production of proinflammatory cytokines (Aliberti, 2005; Miller et al., 2009). 

Likewise, a critical cytokine of the body’s defenses against parasites is interferon-γ produced 

by immune cells (Denkers and Gazzinelli, 1998), through activation of macrophages and 

lymphocytes. Subsequently, indoleamine 2, 3-dioxygenase (IDO) expression is increased 

leading to tryptophan levels being reduced and induction of tryptophan starvation. 

Tryptophan starvation is a critical immune defence effector mechanism against T. gondii 

proliferation (Pfefferkorn, 1984; Pfefferkorn et al., 1986). Tryptophan starvation will lead to 

the production of tryptophan-degradation products i.e., kynurenine, kynurenic acid and 

quinolinic acid. T. gondii -infected mice show an increase in KYNA levels and  activation of 

astrocyte (Guidetti et al., 2006).  

 

3.2.1 Synthesis and elimination of tryptophan catabolic products 
Tryptophan is degraded mainly by the kynurenine pathway in mammals. The pathway starts 

by transforming TRP into kynurenine (KYN) with this reaction being catalysed by two 

enzymes: indoleamine 2, 3-dioxygenase (IDO) and tryptophan 2, 3-dioxygenase (TDO). 

After tryptophan conversion into kynurenine by (IDO), kynurenine is then metabolized by the 

action of enzymes within the kynurenine pathway to tryptophan degradation products  (Stone 

and Darlington, 2002). Kynurenine 3-hydroxylase (kynurenine 3-monooxygenase) converts 

KYN to toxic 3-hydroxykynurenine (3-HK) (Stone, 1993). One of the end products of this 

pathway arm is quinolinic acid (QUIN), which is an agonist of the N-methyl- D-aspartate 

(NMDA) sensitive glutamate receptors (Stone and Perkins, 1981).  

However, kynurenic acid (KYNA) is produced in the astrocyte by an arm of the kynurenine 

pathway; KYNA is an endogenous antagonist of NMDA receptors (Swartz et al., 1990; 

Vecsei et al., 1992; Stone, 1993). The synthesised KYNA is released into the extracellular 

milieu and it is not removed by reuptake or degraded enzymatically; however, KYNA is 

slowly eliminated from the brain by a nonspecific acid transporter  (Schwarcz and Pellicciari, 

2002). The slow eliminating process places the metabolite in an excellent position to 

influence surrounding neurons. 
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3.2.2 Tryptophan catabolic products function in brain physiology and pathology 

KYNA was first described as a neuroinhibitory compound (Perkins and Stone, 1982). At high 

non-physiological concentrations, KYNA is a broad-spectrum antagonist of ionotropic 

excitatory amino acid receptors. Therefore, it was used to block excitatory neurotransmission 

in vitro and in vivo experiments. Also high concentrations of KYNA are anticonvulsant and 

protect from excitotoxic injury (Foster et al., 1984). KYNA is a non-competitive antagonist at 

the glycine site of the NMDA receptor (IC50 ∼8 μM) (Parsons et al., 1997) and an orphan G 

protein-coupled receptor GPR35 (Wang et al., 2006) and aryl hydrocarbon receptor (DiNatale 

et al., 2010), KYNA does have a controversial ability to inhibit alpha7 nicotinic receptors 

(IC50 ∼7 μM (Hilmas et al., 2001; Dobelis et al., 2012). The difference in the observed 

inhibitory effect on nicotinic receptors might be due to experimental differences between 

groups and the age of the examined rat (Alkondon et al., 2011). as well as to the fact that the 

inhibition of the a7nAChR by KYNA is a complicated phenomenon that depends on many 

factors, i.e., cell maturation, receptor expression on interneurons versus pyramidal neurons, 

compartmentalization of receptors to dendritic versus somatic locations, and additional 

variables such as modification of subunits and association with other proteins and 

intracellular regulatory factors (Albuquerque and Schwarcz, 2013). Moreover, KYNA does 

not only influence dopaminergic neurotransmission, it also influences glutamatergic and 

cholinergic neurotransmission i.e., in vivo studies on the rat brain striatum shows that 

reduction in KYNA levels enhance vulnerability to an excitotoxic insult (Poeggeler et al., 

1998) and there is an inverted relationship between KYNA level and glutamate release 

(Carpenedo et al., 2001).  

KYNA is capable of altering dopamine levels, and even nano molar increases in the brain 

levels of KYNA are capable of decreasing interstitial dopamine levels in anesthetized rats in 

vivo by using micro dialysis technique. KYNA reduce dopamine in a dose-dependent manner 

, resulting in a more than 50% reduction at 500 nM. Dopamine levels return to control value 

after KYNA was removed by perfusion solution (Rassoulpour et al., 2005). Furthermore, 

Amori et al (2009) found that the level of dopamine was increased by the inhibition of 

kynurenic acid synthesis. KYNA was inhibited by kynurenine aminotransferase II (KAT II) 

knock out or by using the selective KAT II inhibitor (S)-4-(ethylsulfonyl) benzoyl alanine (S-

ESBA); these results suggest that the relationship between KYNA and dopamine is 

bidirectional(Amori et al., 2009). Finally, behavioural studies in rats have found that 
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increased cortical KYNA levels affect sensory gating, and startle reflex prepulse inhibition 

(Wonodi and Schwarcz, 2010)  

QUIN is an agonist of the N-methyl- D-aspartate (NMDA) sensitive glutamate receptors 

(Stone and Perkins, 1981). The over-activation of NMDA by the increased levels of 

quinolinic acid may possess antidepressant properties (Schwarcz et al., 2012). Moreover, it 

has been demonstrated that increased QUIN  levels are associated with increased depressive 

symptoms (Maes et al., 2011). The kynurenine pathway has a regulatory function for both 

innate and adaptive immune responses; for that reason, tryptophan metabolism and 

kynurenine pathway reveal an important border between immune and nervous system (Mandi 

and Vecsei, 2012). During T. gondii infection, tryptophan degradation might favour 

immunosuppression and systemic tolerance (Engin et al., 2012).  

 

3.2.3 T. gondii and schizophrenia: linkage through kynurenic acid? 

During T. gondii infection, T. gondii modulates biochemical pathways associated with 

schizophrenia, this evidence together with the other evidence, including the hypothesised T. 

gondii and schizophrenia relationship; the fact that T. gondii activates astrocytes during the 

infection; KYNA levels have been linked to schizophrenia; KYNA is produced by astrocytes; 

KYNA is an antagonist for NMDA and a7nACh receptors; and finally the link between 

infection and  TDO. The following sequence of events was  hypothesised: T. gondii infection 

increases the KYNA in the brain by astrocyte activation. This effect is increased in persons 

with elevated brain TDO activity, i.e., in individuals with a genetic tendency towards 

schizophrenia (Schwarcz and Hunter, 2007). Further, increased brain KYNA during infection 

might contribute to glutamatergic and nicotinergic neurotransmission- and these 

neurotransmitters play an important role in the cognitive impairments seen in schizophrenia.   

KYNA is associated with decreased dopamine in rats whereas large amounts of dopamine 

were observed with T. gondii infection in infected mouse brains  (Prandovszky et al., 2011). 

The finding that T. gondii increases dopamine level is not coherent with the fact that T. gondii 

infection increases KYNA level and KYNA reduces dopamine levels. Therefore, the aim of 

this chapter is to investigate the effect of KYNA on dopamine during T. gondii infection.  

http://en.wikipedia.org/wiki/Antidepressant
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3.3 Aims 

 The aim of this chapter is to investigate the effects of tryptophan catabolic products (KYN, 
QUIN, and KYNA) during T. gondii infection on dopamine levels. In particular, we are 
looking at the effect of tryptophan catabolic products on dopamine production at the 
molecular level and how this is affected by T. gondii infection. In order to understand how 
dopamine levels are altered during infection, a cell-based model was developed to investigate 
the effect of KYNA during T. gondii infection. Initial experiments investigated the effect of 
KYN, QUIN and KYNA on dopamine in PC12 cells to determine whether these cells show 
parallel observations to in vivo findings. After this, the effects on T. gondii infected cells were 
investigated. 
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3.4 Experimental design 

3.4.1 Parasite and cell culture 
As described in chapter 2. 

3.4.2 Induction of bradyzoite differentiation 

As described in chapter 2. 

3.4.3  Growth and differentiation of T. gondii in the presence of tryptophan catabolic 

metabolites 

Prugniard Δku80 Δhxgprt strain (kind gift of David Bzik) was used to assess the effect of 

tryptophan metabolites on T. gondii differentiation. In this strain, GFP is expressed under the 

control of a bradyzoite-specific promoter (Fox et al., 2011). HFF cells cultured in black 96 

well plate were infected with this strain. The fluorescence was measured every three days 

using a POLAR star OPTIMA microplate reader at excitation 488 nm, emission 508 nm. To 

detect the effect of TRP metabolites (KYNA, KYN and QUIN) on T. gondii growth, the RH-

YFP strain (kind gift of B. Striepen) was used and the fluorescence was measured after 24 

and 72 hours. YFP in expressed by this strain, and YFP intensity is relative to parasite 

number. The readings were converted to a percentile by comparing them with the control 

reading for each time point (n=9). 

3.4.4  Kynurenic acid treatment 

The dopaminergic cell line PC12 (ECACC) was infected with the Prugniard strain of T. 

gondii. Tachyzoites were alkaline shocked to induce bradyzoite differentiation. The cell: 

parasite ratio was 1:1 and culture proceeded for five days prior to assay. The percentage of 

infected cells was 40–50%.   

Stock of KYNA (K3375 Sigma) was dissolved in sterile distilled H2O to a concentration of 

500 mM. Dilutions of 1000, 500, 200, 100 and  50 nM were added to cultures and incubated 

37oC in CO2 incubator for three hours prior to experimentation. The concentration used in the 

experiments was within the physiological range of each component (Linderholm et al., 2012; 

Fujigaki et al., 2002; Guillemin et al., 2007; Guillemin et al., 2001; Rassoulpour et al., 2005; 

Braidy et al., 2009; Espey et al., 1997). 

The same above experiment design was used fro QUIN (Q104 Sigma) and KYN (K8625 

Sigma) treatments. 
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3.4.5  MTT Assay 

The cells were cultured in a 96 well plate and treated with different concentrations of KYN, 

QUIN and KYNA. After three days, an MTT assay was carried out, as described in chapter 2 

for samples (n=9). 

3.4.6 Dopamine release assay 

The dopaminergic cell line PC12 (ECACC) was infected with Prugniard strain tachyzoites 

that had been alkaline shocked to induce bradyzoite differentiation; the cell to parasite ratio 

was as described above and cultures proceeded for five days prior to assay. First, PC12 cells 

cultures were washed with PBS and then equilibrated with wash buffer with low KCl 

concentration (140 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 2.5 mM CaCl2, 11 mM 

dextrose, 10 mM HEPES, pH 7.4) for 30 minutes, with a 250µl aliquot taken and 

supplemented by 125 µl of (0.1M) perchlorate (PCA), followed by incubation with two 

volumes high KCl-containing buffer (40 mM NaCl, 100 mM KCl, 1.2 mM MgCl2, 2.5 mM 

CaCl2, 11 mM dextrose, 10 mM HEPES, pH 7.4) for two minutes and then supplemented 

with125 µL PCA. After that, cultures were harvested by adding 500µl trypsin for five 

minutes at 37C; the trypsin was deactivated by fresh RPMI and collected, centrifuged for five 

minutes at 2000 and re-suspended in 1ml of PBS; in addition, 100µl of suspension was 

centrifuged at 2000 for five minutes in 4c and used later for normalization assay. The 900µl 

of cell suspension was centrifuged at 2000 for five minutes and then resuspended in 350µl of 

PCA. After that, it was lysed by sonication and centrifuged at 13000 for 15 minutes in 4°C. 

and finally the supernatant was used for dopamine measurement by HPLC with 

electrochemical detection, and dopamine levels were detected by HPLC with electrochemical 

detection(HPLC-ED) using Dionex HPLC system, 20µl of sample was injected on to a C18 

Acclaim 120 column (5µm, 4.6 x 150 mm). The mobile phase consisted of 90% 57 mM citric 

acid, 43 mM sodium acetate trihydrate, 0.1 mM EDTA (Sigma Aldrich), 1 mM sodium 

octanesulphonate at pH 4, and 10% methanol (All reagents were HPLC grade or above). 

Flow rate was 0.4 ml/min. Peaks were detected via an ESA Coulochem III (Dionex, 

Camberley, UK) detector with the potential set at 275 mV. Data were collected using the 

Chromeleon software (Dionex) and processed as previously described (Prandovszky et al., 

2011).. Statistical analysis was carried out by a graph pad prism; first, the concentration of 

the dopamine was obtained by using standard curve, then the result was divided by the 
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number of the cells obtained from the normalization assay and the results were presented as a 

percentage compared to the control (n=9). 

 

3.4.7 Normalization assay 

To normalize the result, the dopamine concentration was divided by cell count. Cyquant 

assay (Invitrogen) was used to obtain cell count. First, the cells were lysed by using 100µl of 

1:20 diluted lysing buffer, then 25µl  the samples were plated in 96 well plate. Then 75µl of 

the lysing buffer were added to the samples; after this, 100µL of 1:400 diluted GR dye was 

added and the plates were read on a fluorescence plate reader with excitation =485nm and 

emission=520nm. The cell counts were calculated from sample reading by using a standard 

curve of known PC12 cell count.   

 

3.4.8  Tyrosine hydroxylase activity assay 

PC12 cells were cultured in T25 flasks of 1x106 cells. Cells were infected with 1x106 

differentiation-induced Prugniaud tachyzoites and treated with different concentrations of 

KYNA. After five days, Tyrosine hydroxylase enzymatic activity was measured using the 

method described (Naoi et al., 1988).  

First, the PC12 cells were sonicated after they were washed with PBS and resuspended in 

50µL 10mM potassium phosphate buffer (pH 7.4); at this point, a Bradford assay was 

performed after which the (25 µg) cell lysate was incubated at room temperature with 26µL 

200mM sodium acetate-acetic acid buffer (pH 6.0), then 1µL from 2mM carbidopa (Sigma 

Aldrich) in sodium acetate-acetic acid buffer, 0.01M glacial acetic acid  and 1mg/ml catalase 

(Sigma Aldrich) was added  and incubated at 37C° for five minutes. Lastly, 1µL of 20mM L-

tyrosine solution and 20µL of 10mM tetrahydrobiopterin (Schicks Laboratories, Jona, 

Switzerland) in 1M β-mercaptoethanol was added and reactions incubated at 37C° for 10 

minutes. The reaction was terminated by adding 100µl (0.1M) PCA perchloric acid. After 

this, the L-Dopa was quantified by using HPLC-ED as descried preciously. Statistical 

analysis was carried out by using prism graph pad software; first, the concentration of the L-

Dopa was obtained by using standard curve, and then the result was divided by the number of 

the cells calculated from the normalization assay and the results were presented as a 

percentage compared to the control (n=6). 



65 
 

 

3.4.9 Immunoblotting 

PC12 cells plated in 6-well plates and treated as described above were centrifuged at 2000 

rpm for five minutes. Cell pellets were then re-suspended in a radio-immunoprecipitation 

assay (RIPA) buffer (Caymen Chemicals, Ann Arbor, MI). Protein was quantified and five 

mg of total protein was loaded in each well for 12% SDS-polyacrylamide gel electrophoresis 

and subsequent transfer to a nitrocellulose membrane. Following the transfer, the membrane 

was incubated at room temperature for 1 h in 5% non-fat dried milk. The membrane was then 

washed three times for five min with PBS at pH 7.4 containing 0.05% Tween 20 at room 

temperature. After overnight incubation with the primary antibody at 4°C, the membrane was 

washed as above and then incubated with goat anti-mouse HRP conjugate (1:10,000; Abcam) 

secondary antibody and then washed and visualised with SuperSignal West Pico 

Chemiluminescent Substrate (Pierce, Loughborough, U.K.). Primary antibodies were rabbit 

anti-tyrosine hydroxylase phosphor ser19 (Millipore, Watford, U.K.), rabbit anti-tyrosine 

hydroxylase phosphor ser40 (Millipore) and rat tubulin (1:25,000; Sigma). Different 

concentrations of antibodies were used to adjust the experiment (1:5000, 1:10000 and 

1:25000). 

3.4.10 Bradford Assay 
One µl of each sample was placed in a well of 96 well plate then the samples were diluted by 

4µl of dH2O. Then, 250 µl of Bradford assay reagent (B6916 sigma Aldrich) was added and 

incubated for 30 seconds. After this, the absorbance was read by spectrophotometer at 595 

nm wavelength. Finally, the final protein concentration was calculated by using standerds 

prepared from descending concentrations of bovine serum albumin BSA.  

 

 

  

http://www.sigmaaldrich.com/ProductLookup.html?ProdNo=B6916&Brand=SIGMA
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3.5 Results 

The PC12 cell line was used as a neuronsecretory model as in numerous studies (Westerink 

and Ewing, 2008). Firstly, the use of a dopaminergic cell line as an in vitro model of 

dopamine regulation by KYNA was verified. In vivo studies have found that nano molar 

concentrations of KYNA decreased interstitial dopamine (Rassoulpour et al., 2005). The 

effect of KYNA on cell viability was measured. Moreover, the effects of other tryptophan 

metabolites quinolinic acid (QUIN) and kynurenine (KYN)) on PC12 cells were also 

investigated.  
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The effect of tryptophan catabolism metabolites on PC12 cell viability was tested by the 

MTT assay at different concentrations of tryptophan metabolite compounds in the cultures, 

whilst the pH was maintained at 7 , and incubated for three days. The measurements are the 

averages of three biological replicates with each three technical replicate presented as a 

percentage of control media with error bars representing standard deviation. Kynurenic acid 

(KYNA), kynurenine (KYN) and quinolinic acid (QUIN) did not affect PC12 cell viability at 

the concentrations tested (0.01nM to 1 mM) (Figure 3-1). Thus, these compounds do not 

effect PC12 growth. 

 

Figure 3-1: Effect of tryptophan metabolites on the viability of PC12 cells. Prior studies have 

observed that KYNA protects the brain parenchyma by acting on the NMDA receptor glycine 

site and other different molecular targets (Urenjak and Obrenovitch, 2000), but the 

neuroprotective effect of KYNA was not tested here. QUIN is an agonist in the NMDA 

receptors, and it produces axon-sparing lesions on the brain by generating free radicals and, 

to a certain extent, creating mitochondrial damage (Stone, 2001). PC12 cells used here do not 

express functional NMDA receptors (Edwards et al., 2007). 

The use of dopaminergic cells as an in vitro model to study the effect of KYNA on the 

dopamine level was tested, and compared to prior studies using an in vivo model 

(Rassoulpour et al., 2005). Moreover, other effects of tryptophan catabolism metabolites 

(QUIN and KYN) on dopamine levels produced from PC12 cells were also investigated. 
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Infected and uninfected dopaminergic PC12 cells were treated with different concentrations 

of KYNA, QUIN and KYN, and the amount of dopamine released from PC12 cells after 

three hours of treatment with a range of concentrations were measured via HPLC-ED. 

Dopamine release was induced with a high concentration of potassium (Yamboliev et al., 

2009). KYNA reduced the dopamine content of PC12 cells, resulting in more than a 40% 

reduction at 200 nM cells (p =0.01, paired t-test, n=9) (Figure 3-2). This result verifies that 

PC12 cells can be used as a cell-based model of the relationship between KYNA and 

dopamine. The PC12 cells showed a similar response as those in rat brains, except that they 

responded to KYNA at a lower concentration than in the in vivo model. However, QUIN and 

KYN did not affect the dopamine production in PC12 cells. 
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Figure 3-2: Dopamine levels in dopaminergic cells incubated with tryptophan 

metabolites.The effect of tryptophan degradation products (KYNA, QUIN and KYN) 

on T. gondii growth was investigated by culturing RH-YFP in different concentrations of 

tryptophan metabolites. This parasite strain expresses YFP, thus the parasite growth was 

detected by measuring the YFP fluorescence.  

In comparison with untreated samples, TRP metabolites treated samples had no significant 

effect on parasite growth measured on days 1 (dark grey bars) and day 3 (light grey bars). 

(ANOVA p>0.97) (Figure 3-3), The results (averaging of three biological replicates each 

three technical replicates) was plotted as percentage compared to untreated for each time 

point and shows that tryptophan metabolites have no effect on the growth of the parasites. 
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Figure 3-3: Effect of tryptophan metabolites on the growth of T. gondii. Strain   

T. gondii Prugniaud Δku80 Δhxgprt parasites were cultured in DMEM with different 

concentrations of tryptophan metabolite. The fluorescence emitted by the parasites 

differentiated into bradyzoite, monitored every three days, No significant difference at any 

tryptophan metabolite concentration (Figure 3-4) (ANOVA, p>0.94), Indicating that these 

TRP metabolites do not effect T. gondii differentiation. 
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Figure 3-4: Effect of tryptophan metabolites on T. gondii differentiation.  

To observe the effect of T. gondii infection on the ability of KYNA to reduce PC12 dopamine 

production, PC12 cultures were infected with alkaline-induced T. gondii tachyzoites. On day 

4 after infection, concentrations of 50-1000 nM KYNA were added to the infected and 

uninfected PC12 cells. 

Dopamine release assays were performed to assess the effect of KYNA on dopamine 

signalling and to determine whether it changed over the course of the infection. Three hours 

after adding different concentrations of KYNA using the methods reported in previous 

studies, the uninfected cultures and those infected with alkaline-induced T. gondii were 

induced to release dopamine with K+, which causes the release of vesicle-packaged 

dopamine (Yamboliev et al., 2009). The dopamine levels were measured via HPLC-ED. The 

experiment found that KYNA no longer decreased dopamine when PC12 cells were infected 

(Figure 3-5). By contrast, the effect of KYNA in decreasing dopamine levels was maintained 

in uninfected cells (p =0.0003, paired t-test, n=9). The amount of dopamine released from the 

uninfected PC12 cells was around 50% of the total dopamine content. Also, adding KYNA to 

PC12 cells cultures did not affect the dopamine signalling, as dopamine release by high K 

buffer indicates. In addition, measurements of total dopamine content of cells found the same 

pattern of reduction in dopamine in response to KYNA as the measurements of released that 

was also reversed by infection. Hence, infection mitigates the reduction in dopamine induced 

by KYNA. 
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Figure 3-5: Effect of infection on dopamine release from dopaminergic cells treated with 

KYNA.  

 

To investigate the mechanism by which KYNA reduces the dopamine content in uninfected 

PC12 cells and how infection disrupts this effect, a tyrosine hydroxylase (TH) activity assay 

was performed on the cultures. Infected and uninfected PC12 cells were assayed for TH 

activity three hours after adding different concentrations of KYNA. In this assay, the TH 

activity was assessed by measuring the production of L-Dopa using HPLC-ED. 

The results (Figure 3-6) revealed that KYNA reduced the TH activity in PC12 cells by 

greater than 40%. This finding correlates directly with the decrease in amounts of dopamine 

with KYNA treatment (Figure 3- 2).  

The reduction in TH activity by KYNA was not observed in the infected cells (Figure 3-6). 

These data indicate that T. gondii infection maintains the dopamine content level by 

sustaining the TH activity. Hence, the infection may have mitigated the effect of KYNA on 

dopamine by stopping the KYNA from reducing the TH activity (p =0.0005, paired t-test, 

n=6).  
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Figure 3-6: Tyrosine hydroxylase (TH) activity assay from PC12 cells exposed to KYNA.  

To understand how KYNA reduces TH activity, the TH mRNA expression level of infected 

and uninfected PC12 cells treated with different concentration of KYNA was measured. No 

change in the amounts of TH mRNA was detectable using RT-PCR (data not shown). The 

phosphorylation of TH was investigated as TH activity is tightly regulated by 

phosphorylation and KYNA effect the phosphorylation. Serine 19 and serine 40 are amino 

residues involved in the activation of the regulatory domain of TH (Fitzpatrick, 1999). 

Different concentrations of KYNA were added to PC12 cell cultures and PC12 cell lysates 

were probed with anti-ser19, anti-ser40 and, as a control, anti-tubulin. No change in Ser40 

phosphorylation was observed, but Ser19 phosphorylation decreased in a dose-dependent 

manner (Figure 3-7). Detection of Tubulin expression was used as a control. The 

quantification of the Ser19 band intensity shows a direct relationship between the decrease in 
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phosphorylation and the increase in KYNA concentration. This may explain the decrease in 

dopamine levels observed in vivo with KYNA (Rassoulpour et al., 2005; Fitzpatrick, 1999). 
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Figure 3-7: TH phosphorylation is inhibited by KYNA. To examine the effect of T. gondii 

infection on the relationship between KYNA and Ser19, lysates from T. gondii -infected 

PC12 cells treated with KYNA were probed with anti-ser19 and anti-tubulin. (Figure 3-8). 

We found that T. gondii -infected PC12 cells maintained the phosphorylation of serine 19 

even in the presence of KYNA in contrast to the decrease observed in KYNA-treated 

uninfected cells. Hence, T. gondii infection mitigates the effect of KYNA on serine 19 

phosphorylation.   
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Figure 3-8: Effect of T. gondii infection on TH regulatory phosphorylation with KYNA 
treatment.  
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3.6 Discussion 

During the immune response to T. gondii infection, IFN-mediated degradation of tryptophan 

produces KYNA that alters neuromodulators (Pfefferkorn, 1984; Pfefferkorn et al., 1986). 

Intriguingly, one of the effects of elevated KYNA is a decrease in extracellular dopamine 

(Rassoulpour et al., 2005). Therefore, decreased dopamine levels in the brain might be 

observed in T. gondii-infected individuals. These conflicts with reports of excess dopamine 

associated with T. gondii cysts in infected mouse brains. This study set out to resolve these 

conflicting possibilities.  

Initially, T. gondii PC12 cells were found to replicate in vitro the observations in vivo that 

KYNA decreases dopamine, although the cultured cells responded at a slightly lower 

concentration of KYNA than in vivo experiments  (Rassoulpour et al., 2005) (Figure 3-2). 

The PC12 system is considerably simplified from in vivo with the brain containing many 

different cell types. The relationship between dopamine reduction and KYNA was previously 

explained as an antagonism of alpha7 nicotinic receptors by KYNA based on in vivo studies 

(Hilmas et al., 2001). However, recent studies have refuted this relationship (Alkondon et al., 

2011), leaving the KYNA and dopamine correlation unexplained. This study found, for the 

first time, that KYNA directly caused reduction of TH activity and dopamine content in 

dopaminergic cells (Figures 3-5, 6). 

We further dissected the process finding that KYNA caused a decrease in phosphorylation of 

serine 19 in TH that directly correlated be with KYNA concentration and level of 

phosphorylation. Phosphorylation of the Ser19 residues in the R domain increases the activity 

of the TH (Dunkley et al., 2004). In contrast, the phosphorylation status of the regulatory 

residue serine 40 in TH was unaffected by KYNA treatment. The results clearly suggest that 

KYNA causes a reduction in TH activity through reduced phosphorylation of serine 19. 

To determine the effect of KYNA on dopamine levels during infection, dopaminergic cells 

were infected with T. gondii and treated with KYNA. In this study, the parasite-infected cell 

cultures did not respond to the added KYNA but maintained their dopamine levels (Figure 3-

5). In contrast to the observations with uninfected PC12 cells, the TH activity in infected 

cultures was not only unchanged but was elevated in infected cultures relative to control 

PC12 cells (Figure 3-6), Additionally TH ser19 phosphorylation did not change in the 

infected cultures. Clearly, the parasites have the ability to obstruct the effect of KYNA on 

dopamine metabolism.  
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Two possible scenarios can explain how infection blocks the KYNA effect on dopamine. 

Firstly, TH activity in infected cells may be partially produced by the T. gondii-encoded TH 

replacing the blocked activity of the rat TH. However, this assumption suggests that the T. 

gondii-encoded TH differs from the mammalian TH such that it is not inhibited by KYNA. 

Secondly, T. gondii infection may modulate the host proteins or pathways that interact with 

KYNA, leading to the interruption of the KYNA effect on TH activity. T. gondii modulates 

many different signalling pathways in host cells and subverts host cell signalling pathways by 

secreting effectors, e.g. ROP16, ROP18 and ROP5 (Blader and Saeij, 2009). ROP16 directly 

subverts the host STAT6 through tyrosine phosphorylation (Ong et al., 2010), and ROP18 is 

a Ser/Thr protein kinase important in acute virulence because it inhibits the host NF-κB 

pathway (Du et al., 2014). Blocking phosphorylation have been reported as a machinery for 

host altering, T. gondii  blocks  histone H3 Ser10 phosphorylation and Lys9/14 acetylation at 

the IL-10 promoter and TNF-α promoter, leading to reduced IL-10 and TNF production in 

infected microphages (Leng and Denkers, 2009; Leng et al., 2009) 

This study illustrates the effect of KYNA on dopamine metabolism in the presence of T. 

gondii. However, when the brain is infected, the KYNA effect may be different. During brain 

infection, the produced KYNA is released into the extracellular milieu. It is not removed by 

reuptake or degraded enzymatically but is slowly eliminated from the brain by a nonspecific 

acid transporter  (Schwarcz and Pellicciari, 2002). However, KYNA may have a pleiotropic 

effect and KYNA can modulate other neuromodulators than dopamine. For example, 

extracellular glutamate in the hippocampus is modulated by KYNA (Pocivavsek et al., 2011).  

A recent study evaluated the KYNA levels in the brains of T. gondii-infected mice and found 

that KYNA increased several-fold during infection (Notarangelo et al., 2014). However drug 

treatment of infected mice from with anti-parasitic drugs pyrimethamine and sulfadiazine, 

retained the KYNA post-infection levels but did not reliably duplicate the abnormalities seen 

in the brain of individuals with schizophrenia (Notarangelo et al., 2014). In conclusion, we 

assume that the effect of KYNA on the TH of an infected brain is limited as the amount of 

increased KYNA during the infection is much lower than that required to induce the KYNA 

effect on TH activity or the physiological levels during psychiatric diseases. 

T. gondii infection has the ability to modulate its microenvironment. Koshy (Koshy et al., 

2012) reported that T. gondii had the ability to co-opt uninfected cells in vivo by injecting 

rhoptry proteins into the uninfected cells. IL-12 was found to be produced from the infected 

and uninfected cells, and that a soluble host or parasite factor was responsible for the bulk of 
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IL-12p40 production in vivo (Christian et al., 2014). These findings suggest that the parasites 

may affect the response of uninfected cells to KYNA and therefore stop the KYNA effect on 

the infected brain.  

In sum, these studies show that KYNA reduces dopamine production by controlling the 

regulation of TH, the rate-limiting enzyme in the dopamine production. Moreover, T. gondii 

infection blocks the KYNA effect on the infected cells, and KYNA does not change the 

dopamine production or the TH activity in the infected cells.  

In the future, to distinguish between the parasite-encoded and host TH activity, TH activity 

assays could be performed using a TH knockout strain of T. gondii, to further investigate the 

ability of T. gondii block the KYNA effect. 
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Chapter Four 

4     Dual transcriptional profiling of PC12 cells and T. gondii reveal 

potential behaviour change modification mechanisms   
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4.1 Abstract 

T. gondii induces behavioural changes in its intermediate host during its infection of neurons; 

therefore, it is of interest to obtain information about the global alteration to the neuronal cell 

transcriptome caused by infection. RNA sequencing was performed on T. gondii-infected 

differentiated PC12 cells at three time points in infection, and a collection of differentially 

regulated genes were identified. The most significantly changed gene in bradyzoite-stage T. 

gondii infection was down-regulation of dopamine beta hydroxylase mRNA expression. 

qPCR of T.gondi-infected rat’s brain samples found that dopamine beta hydroxylase (DBH) 

is reduced in vivo during infection and this reduction is modulated in female rats by the stage 

in the oestrogen cycle. Monitoring monoamine neurotransmitters during infection found 

reduced epinephrine and norepinephrine in T. gondii infected PC12 cells as measured by 

HPLC-ED. Gene ontology (GO) analyses of the sequencing data found that T. gondii 

infection manipulates gene expression of several neurological functions including genes 

involved in catecholamine secretion; olfactory sensory, cell signalling, neurodevelopment, 

behaviour and N-methyl-D-aspartate receptor (NMDR). Hence, parasitic infection alters 

several host neurological functions that may be involved in host behaviour changes 

particularly expression of genes involved in catecholamine metabolism pathways that 

decreased epinephrine and norepinephrine and result in an increase in dopamine production. 

Finally, our data showed the neuronal cell immune response to T. gondii infection regulates 

host genes in chemotaxis and cytokines secreted during infection as well as up regulation of 

immunoglobulin gene expression and T-cell interaction. Moreover, the parasite methods to 

down-regulate the immune response like steroids secretion and G-coupled protein receptors 

down-regulation were revealed. 

  



83 
 

4.2  Introduction 

The information in the previous chapters has provided a valuable insight into host-parasite 

interaction during infection. In order to get a clearer global view of the changes that T. gondii 

induces in the infected cells and changes in the whole transcriptome profile, RNA sequencing 

(RNA-Seq) was performed to obtain expression data on the cell’s complete set of transcripts, 

and the quantity of these transcripts, at a physiological condition or specific developmental 

stage. 

The transcriptome profiles of T. gondii and host cell have been studied several times before; 

however, most of the previous investigations have used microarray data. Microarray has a 

number of limitations: firstly, for reliability, several biological repeats are necessary; 

secondly, microarray detection is biased towards unusual transcripts; third, it has a narrow 

dynamic range as compared with RNA-Seq technology; fourth, RNA-Seq allows 

transcriptome profiling of any organism that have a sequenced genome; and, finally, RNA-

Seq has high specificity and sensitivity and provides an easier detection of rare and low-

abundance transcripts. The table below enumerates transcriptome analyses that have been 

done on T. gondii and its host.                             .                                                                                                                                            



84 
 

Parasite strain Stage Host Method Reference 

II strain Tachyzoite 
Human foreskin fibroblast 

(HFF) 
Microarray (Blader et al., 2001) 

II strain Bradyzoite  
Human foreskin fibroblast 

(HFF) 
Microarray (Cleary et al., 2002) 

I strain Tachyzoite 
Human foreskin fibroblast 

(HFF) 

Serial analysis of gene 

expression (SAGE) 
(Radke et al., 2005) 

II strain Tachyzoite and bradyzoite 
Human foreskin fibroblast 

(HFF) 
Microarray (Fouts and Boothroyd, 2007) 

I strain Tachyzoite Rat brain TSS-Seq (Yamagishi et al., 2010) 

I, II and III 

strain 
Tachyzoite 

The human neuroepithelioma 

cell line SK-N-MC 
Microarray (Xiao et al., 2011) 

I, II and III 

strain 
Tachyzoite 

Human foreskin fibroblast 

(HFF) 
Microarray  (Bahl et al., 2010) 

II strain Bradyzoite Mouse brain  Microarray (Buchholz et al., 2011) 

II strain Tachyzoite 
Human foreskin fibroblast 

(HFF) 
Microarray (Skariah and Mordue, 2012) 
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Table 4-1: T. gondii and host transcriptome analysis 

I, II strain Tachyzoite 
Bone marrow derived 

macrophages (BMDM) 
Illumina RNA-Seq (Hassan et al., 2012 ) 

I, II strain Bradyzoite 
brain tissues and peripheral 

lymphocytes from mice 
Microarray  (Jia et al., 2013) 

II strain, Pru Δ 

CST1 
Tachyzoite  

Human foreskin fibroblast 

(HFF) 
SOLiD RNA-Seq  (Tomita et al., 2013) 

II strain Tachyzoite and bradyzoite Mouse brain Illumina RNA-Seq (Pittman et al., 2014) 
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Previous studies (Table 4-1) that characterised the transcriptome of T. gondii and host 

provide valuable information about host-parasite interactions; however, there are several 

limitations of these studies. The study design of the in vivo studies did not demonstrate the 

changes that occur during chronic infection, and most of these studies involved only the 

tachyzoite stage. Additionally, host selection is critical as host-parasite interaction varies 

between different hosts or cell lines. Given that the main goal of these experiments to have 

comprehensive knowledge about the global changes that T. gondii induces in host brain 

during chronic infection, most of the published data are not relevant to the pursued 

information. 

Two investigations focused on the host neurological transcriptome: (Xiao et al., 2011) and 

(Pittman et al., 2014). Xiao et al. (2010) studied the changes that different T. gondii strains 

induced in the human neuroepithelioma cell line SK-N-Mc through microarray. Although the 

work provided significant information on the differences between T. gondii strains, the use of 

microarray and limitation to tachyzoite infection restricted the type of information that can be 

obtained from this experiment. Pittman et al. (2014), on the other hand, reported differences 

in host-parasite interaction between the acute and chronic stages, suggesting that host-parasite 

interplay is contained during the chronic infection. Indeed, less than 0.01% of cells are 

infected (J.P. Dubey, personal communication); therefore, only indirect effects of infection 

are observable by RNA sequencing in in vivo studies. Analysis of the data obtained from 

different microarray analyses related to host-parasite interactome revealed that the pathogen 

interacts with ∼3000 host proteins or genes. These genes include susceptibility genes for 

Alzheimer’s disease, multiple sclerosis, schizophrenia, depression, bipolar disorder, 

Parkinson’s disease, childhood obesity and attention deficit hyperactivity disorder – all found 

to be differentially expressed during infection (Carter, 2013). However, the results of this 

study are very vague because the study did not consider the specific strain and infection 

stages. 

To provide a comprehensive analysis of T. gondii and host changes, and host-parasite 

interactions during the chronic infection of the brain, RNA-Seq was performed on nerve 

growth factor (NGF) differentiated PC12 cells where T. gondii conversion to bradyzoites was 

induced and RNA was collected at days 0, 3 and 6 to monitor the changes over time. PC12 

cells are an embryonic origin line, derived from a pheochromocytoma of male rat adrenal 

medulla (Greene and Tischler, 1976). These cells differentiate into neuron-like cells by NGF 

and have the ability to produce catecholamines, making them a good model for 

http://en.wikipedia.org/wiki/Pheochromocytoma
http://en.wikipedia.org/wiki/Rat
http://en.wikipedia.org/wiki/Adrenal_medulla
http://en.wikipedia.org/wiki/Adrenal_medulla
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neuronsecretion in vitro (Westerink and Ewing, 2008) and one of the best studied models of 

monoaminergic neurons. Finally, the analysis focused on the neurological and the alteration 

in catecholamine metabolism. Besides, immunological functions were also analysed to 

understand the immune response in infected non-immune host cells. Finally differential gene 

analysis was also performed on the T. gondii transcriptome results.  

 

4.3 Aims 

The aim of this study was to obtain information about the changes in host neural cells that the 

parasite induces during infection. Specifically, this study looked into the changes that occur 

during chronic stages of infection, as well as the alterations that the parasite induced that may 

lead to behavioural changes. Transcriptome analysis of T .gondii-infected PC12 cells was 

performed through RNA sequencing of the host and parasite transcriptome at several time 

points in order to observe the changes over time. Differential expression analysis between 

different time points was performed, with particular focus on genes involved in neurological 

and immunological functions. 
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4.4 Experiment design 

4.4.1 Growth of the parasite and cell culture 

The cells and parasites that were used in this experiment were cultured, as mentioned 

previously in section 2.4.1., and parasite differentiation was induced, as previously described 

in section 2.4.2. 

4.4.2 Differentiation of PC12 cells by NGF  

Three ml of PC12 cells were cultured in each well of a poly-D-lysine-coated 6-well plate, 20 

plates were used with a cell density of 1 x 105 cells/ml and incubated at 37˚C and 5% CO2 

for 24 hours. Afterwards, the media was changed with low serum media HS 1%, FBS 0.5%. 

After another 24 hours, 100 ng/ml of Nerve Growth Factor (NGF) (Sigma) was added. The 

addition of NGF was repeated once every 24 hours throughout the length of the experiment. 

After 72 hours from the initial addition of NGF, free wild-type Prugniard tachyzoites induced 

by high pH media were transferred to each well, maintaining a parasite density of 2.5 x 104 

cells/ml (Day 0) (1:1 ratio). At this point, 33.3% of the plates were used for RNA extraction 

while the rest were extracted at day 3 and day 6 of infection. The cultures were monitored 

daily by light microscope. At day 6 of infection, the percentage of cells infected was 

estimated to be 60-70% by light microscope examination. 

4.4.3 RNA extraction 

The cells were detached from the well surface using a small scraper. Then the media with the 

suspended cells were transferred to a conical tube and centrifuged at 8000 g for 10 minutes. 

The media (supernatant) was discarded and the cells were resuspended in leftover media. TRI 

reagent solution (Invitrogen) (1 ml) was added to each tube and mixed by pipetting the 

mixture several times. This was followed by removing the insoluble material from the 

homogenate by centrifugation at 12,000 g for 10 minutes at 2-8 °C. The samples were then 

allowed to stand for five minutes at room temperature. After that, 0.2 ml of chloroform was 

added and the sample was shaken vigorously for 15 seconds and incubated for 2-15 minutes 

at room temperature. The resulting mixture was centrifuged at 12,000 g for 15 minutes at 2-8 

°C. Subsequently, the aqueous phase of the separated mixture was transferred to a fresh tube 

and 0.5 ml of isopropanol was added. The sample was kept at room temperature for 5-10 

minutes before it was centrifuged at 12,000 g for eight minutes at 4 °C. The supernatant was 
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removed and the RNA pellet was briefly dried for 5-10 minutes. Finally, 20 µl DEPC-treated 

H2O was used to resuspend the pellet. The RNA samples were stored in -80°C. 

4.4.4 mRNA purification by Poly A selection 

RNA was resuspended in nuclease-free H2O to a final concentration of 600 μg/ml and was 

vortexed vigorously. Then, an equal volume of 2X binding solution was added and the 

resulting solution was mixed thoroughly. mRNA was selected with a Poly A selection: Poly 

(A) Purist™ MAG Kit (Ambion AM1922). Briefly, an aliquot of Oligo (dT) was prepared. 

For each RNA sample, an equivalent mass of Oligo(dT) Capture the Oligo(dT) MagBeads 

was used by placing the tube on the magnetic stand and the tube was left  on the stand until 

all of the Oligo(dT) MagBeads were arranged inside the tube near the magnet; then the buffer 

was carefully removed by aspiration. Then, Wash Solution 1 was added to the captured Oligo 

(dT) MagBeads at a ratio of 500 μl per mg of beads. The tube was removed from the 

Magnetic Stand and the beads were resuspended by inverting the tube several times. The 

Oligo (dT) MagBeads were recaptured with a magnetic stand and supernatant was discarded. 

The RNA in 1X binding solution was added to the Oligo (dT) MagBeads and the resulting 

solution was mixed by inversion to thoroughly resuspend the RNA. Then the mixtures were 

incubated for five minutes at 65-75°C. After this, the tube was gently rocked for 30-60 

minutes at room temperature. The Oligo (dT) MagBeads were then captured by putting the 

container on a magnetic stand to pull the Oligo (dT) MagBeads to the side of the tube while 

the supernatant was carefully removed by aspiration. The Oligo (dT) MagBeads were washed 

twice with Wash Solution 1 (as described above) and once with Wash Solution 2. 

The poly (A) RNA was eluted by adding 200 µl of pre-warmed RNA storage solution to the 

Oligo (dT) MagBeads and resuspended. The Oligo (dT) MagBeads were captured on a 

magnetic stand and the RNA Storage Solution was transferred to a fresh tube. The RNA 

eluting steps was repeated with the Oligo (dT) MagBeads once more. The RNA was 

precipitated by adding 0.1 volume 5 M NH4 Ac,1 μl Glycogen and 2.5x volumes ethanol to 

the eluted poly(A) RNA and the mixture was left in the in a -70°C freezer for 30 minutes. 

After this, the RNA were recovered by centrifugation at ≥12,000 x g for 20-30 min at 4° C. 

Finally, the RNA was resuspended in pre-warmed RNA storage solution and stored at -70° C. 
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4.4.5 mRNA purification by ribosomal RNA removal 

One hundred µL hybridization buffer, 10 μl RiboMinus™ Probe (15 pmol/μL) and 1-10 μg 

total RNA were mixed and incubated at 70-75ºC for five minutes to denature the RNA. After 

that, the tube was transferred to a 37ºC water bath/heat block and incubated for 30 minutes. 

The mRNA was selected using RiboMinus™ (Ambion K1500-01). Prior to use, 

RiboMinus™ Magnetic Beads were thoroughly resuspended using a vortex, and 750 μl of 

bead suspension was pipetted into a sterile, RNase-free, 1.5-ml micro centrifuge tube. Then 

the tube with the bead suspension was placed on a magnetic separator for one minute and 

supernatant was gently aspirated and discarded. After this, 750 μl of sterile, nuclease-free 

H2O was added to the beads and the previous preparing procedures were repeated; beads 

were re-suspended in 750 μl hybridization buffer. For use at a later step, 250 μl of the beads 

were transferred to a new tube and maintained at 37º C. Finally, the tube with a remaining 

500 μl of beads was placed on a magnetic separator for one minute. The supernatant was 

aspirated and discarded, and the beads were resuspended in 200 μL Hybridization Buffer and 

kept at 37ºC for later use.  

After the RNA/RiboMinus™ Probe mixture had cooled to 37ºC for 30 minutes, the sample 

was centrifuged briefly to collect the sample at the bottom of the tube. They were then 

transferred to the prepared 200µl RiboMinus™ Magnetic beads from the final step in the 

preparing procedure and mixed well by pipetting several times. After this was done, the 

mixture was incubated at 37ºC for 15 minutes. During incubation, the content was gently 

mixed occasionally, and was then centrifuged briefly to collect the sample to the bottom of 

the tube. Lastly, the tube was placed on a magnetic separator for one minute to pellet the 

rRNA-probe complex, and the supernatant containing RiboMinus™ RNA was aspirated and 

kept.  

The tube with 250 μl of beads from the previous subsection was placed on a magnetic 

separator for one minute and the supernatant was aspirated and discarded. Subsequently, the 

supernatant containing RiboMinus™ RNA  (~320 μl) was added to the new tube of beads, 

mixed well by pipetting up and down, incubated at 37ºC for 15 minutes and briefly 

centrifuged to collect the sample to the bottom of the tube. Finally, the tube was placed on a 

magnetic separator for one minute to pellet the rRNA-probe complex, and the supernatant 

containing RiboMinus™ RNA was aspirated and transferred to new tube.  
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The sample was then concentrated according to the same standard protocol mentioned above 
in section 9.4.5.1.4. 

Sample processing was by The University of Liverpool Centre for Genomic Research. 

The concentrated RNA samples were sent to the University of Liverpool Centre for Genomic 
Research where a cDNA library was prepared from the RNA using the Epicentre ScriptSeq 
v2 RNA-Seq Library Preparation Kit (Catalogue No. SSV21106) and eventually was 
sequenced using the Illumina Hiseq 2000.  

 

4.4.6 Bioinformatic analyses 

The generated data were mapped against the reference genomes using Tophat 2.0.8b and 

Bowtie 2.1.0, and the results were analysed using R version 2.15.2 and edgeR package 

version 3.0.4. Reference sequence and annotation for Rattus norvegicus and T. gondii were 

obtained using the Ensembl Genome Browser. The results were normalised for differential 

gene expression analysis, as the difference in library size might causes biased fold change 

values. The normalisation factor was calculated for handling the difference in library size. In 

RNA-Seq data analysis, the library size of a sample is the total number the reads of this 

sample counted across all features.  

A set of tables and plots was generated from the analytical results. The main table contains all 

the information, including the data, annotation and results, and shows the log2 counts per 

million (CPM) mapped reads, log2 fold changes for each contrasts, p-value and adjusted p-

value (FDR),  raw counts and FPKM values. All further investigations were conducted based 

on this table (results not shown in this chapter). T. gondii and rat genes were separated and 

analysed independently from each other. 

4.4.6.1 Rat gene analysis 

The rat genes were divided into four groups based on their differential expression patterns. 

The first group was the genes that were up-regulated day 3 compared to day 0 (day 3/0). 

These genes had p-value<0.05 and log2 fold change higher than 1. After this, then the down-

regulated gene at day 3/0 group was created, These genes had p-value<0.05 and log2
 fold 

change lower than -1; the next group was the up-regulated gene at day 6 compared to day 0 

(day 6/0)., These genes had p-value<0.05 and log2 fold change higher that 1; the last group 

was the down-regulated gene at day 6/0. These genes had a p-value<0.05 and log2 fold 

change lower than -1; these groups of genes were referred to as segregated genes. In addition, 
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a list that combines all these groups was created; this list contains any gene that had 

significantly changed and was called the ‘pooled gene list’. Finally, the genes that had a p-

value<0.05 and the log2 between <1 and >-1 were included in the control gene list. 

The genes from the segregated gene list were submitted to PANTHER 

(http://www.pantherdb.org) to get GO slim annotations of these gene groups. The same genes 

were then submitted to GOrilla (http://cbl-gorilla.cs.technion.ac.il/) to obtain the GO 

enrichment analysis. PANTHER was used to interface the gene functions by using a list of 

genes, and the list was analysed graphically in the terms of sortable functional classes (Mi et 

al., 2013). GOrilla was used for identifying and visualizing enriched GO terms, by using 

ranked lists of genes, the search mode that was used in searching for enriched GO terms in a 

target list of genes compared to a background list of genes (Eden et al., 2009). 

In addition, the pooled genes were analysed by DAVID to get the GO functional annotations; 

genes that were categorised in immunological or neurological GO term and had enrichment 

scores higher than 1 were further analysed by generating differential expression heat maps for 

each GO term by MeV. finally, the gene group was submitted to STRING to create pathway 

analysis maps. However, the neurological pathway analysis contained the gene found by 

DAVID analysis plus any  gene was found in the pooled genes list and in schizophrenia 

database (www.szgene.org/) (Allen et al., 2008). 

DAVID is a bioinformatics resources consisting of an integrated biological knowledgebase 

and analytic tools aimed at systematically extracting biological meaning from large 

gene/protein lists (Huang da et al., 2009b; Huang da et al., 2009a). STRING 

(http://stringdb.org) is a database of known and predicted protein interactions. Including 

direct (physical) and indirect (functional) associations. STRING represents a comprehensive 

description of cellular mechanisms and function by quantitatively integrates data; these data 

are derived from different sources: Genomic Context, High-throughput Experiments, 

(Conserved) Co-expression and Previous Knowledge (Franceschini et al., 2013). 

MeV Multiexperiment Viewer (http://www.tm4.org/mev.html) is an analysis tool that 

analyses algorithms used mostly for microarray data; this tool clusters, visualizes, classifies, 

and perform statistical analysis and biological theme discovery. MeV represents the analysis 

result in informative and interrelated displays of expression and annotation data from single 

or multiple experiments (Eisen et al., 1999).  

http://www.pantherdb.org/
http://cbl-gorilla.cs.technion.ac.il/
http://www.szgene.org/
http://stringdb.org/
http://www.tm4.org/mev.html
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Figure 4-1:  Flow chart showing the procedures used in the RNA-Seq data analysis for rat 

and T. gondii. 
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4.4.6.3 T. gondii gene analysis 

T. gondii genes were divided into four groups based on their differential expression patterns. 

The first group was the up-regulated gene at day 3 compared to day 0 (day 3/0); these genes 

were considered significantly differentially expressed because they had p-value<0.05 and 

log2 fold change higher than 1; after this the down-regulated gene at day 3/0 group included 

genes with a p-value<0.05 and log2
 fold change lower than -1. The next two group were the 

gene at day 6 compared to day 0 (day 6/0) significantly differentially up and down-regulated, 

based on the criteria that stated previously. These groups of genes were referred to as 

segregated genes. In addition, a list that combined all these groups was created; this list 

contain any gene had significantly changed and was called pooled gene list. Lastly, the genes 

that have a p-value<0.05 and the log2 between <1 and >-1 were included in a control gene 

list. 

First, a manual search was carried out to find genes involved in differentiation and secretory 

organelle genes (microneme, rhoptry and dense granules). After this, GO terms grouping was 

carried out by using R project software, T. gondii. The GO term list was downloaded from 

ToxoDB (http://www.toxodb.org/toxo) (Gajria et al., 2008). The inbuilt GO annotation was 

used to identify over-represented GO terms in each of the gene sets and only the terms that 

belong to biological process are listed. The lesser the p-value, the more the likelihood of the 

GO term occurring in the gene set in comparison to the rest of the genes in T. gondii.  

4.4.7 Cell culture for DBH detection 

PC12 cells were cultured in six well plates, with 1.25 x 104 PC12 cells in 2 mL in each well. 

The following day, the cell cultures were infected with differentiation-induced T. gondii (by 

high pH; shocked). The PC12 cells were counted and the number of parasites used in the 

infection was estimated to get these parasite/cell ratios: 2, 1; 0.5, 0.25; 0.125 and 0. After five 

days, the experiment was terminated by freezing down the cell pellet for RNA extraction or 

NE assays.   

4.4.8 Rat brain sections 

A frozen (-80°C) rat’s brain sections were used for RNA extraction; these sections were 

provided by my lab colleagues (Dr. Greg Bristow and Mohamed Alsaad). 

All parasites were cultured in HFF (Human foreskin fibroblast) cells by Dr. Greg Bristow, 

and then the T. gondii parasites were released as described previously from HFF cells in 

Leeds, counted, and then transported from Leeds to London in Dulbecco’s Modified Eagle’s 
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Medium (DMEM) solution. To infect three weeks old Lister-hooded rats from Harlan UK 

Ltd., by Maya Kaushik Dept. of infectious disease epidemiology, School of Public Health, 

Imperial College London. Rats were euthanized after six months. 

The number of T. gondii cyst infected rat brain was determined by immunohistochemistry. 

The rat’s brain sections were lectin stained by Mohammed Alsaad. Brain sections were taken 

from both an infected and uninfected rat; the infected rats brain was selected to have a high 

number of cysts (mean= 8.7). 

4.4.9 Reverse transcriptase PCR and qualitative PCR 

RT-PCR and qualitative PCR was performed as described previously, GAPDH primers 
(Qiagen PPR06557B-200) were used, beside the following primers, on mRNA extracted from 
PC12 cells or rats brain sections as described previously. The data were presented as ΔΔCt or 
fold change  and was calculated as described previously. Values are expressed using the 
delta-delta Ct method to derive relative fold change, ΔΔ Ct= ΔCt (DBH sample-GAPDH sample)- 
ΔCt (DBH control-GAPDH control). 
 

 

DBH Forward primers  CCACAATCCGGAATATA 

Reverse primers  GATGCCTGCCTCATTGGG 

ESR Forward primers  CTACGCTGTACGCGACAC 

Revers primers  CCATTCTGGCGTCGATTG 

 

4.4.10 HPLC for monoamines 

The catecholamines dopamine, norepinephrine, and epinephrine were measured by HPLC-

ED following the method adopted from (Prandovszky et al., 2011). Briefly, cultures were 

harvested by scraping, pelleted and an aliquot taken for cell counting and normalization. The 

remaining amount was pelleted again and resuspended in 350 µL of PCA followed by 

sonication. The mixture was centrifuged at 13000 for 15 minutes in 4oC to remove 

particulates and an aliquot taken for HPLC analysis. Epinephrine was detected at 3.5 minutes, 

norepinephrine at 4.5 minutes and dopamine at eight minutes. 
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4.5  Results 

Wild type Prugniaud II strain was used in this experiment and an initiation of differentiation 

procedure was done on the parasite to mimic the chronic model. An example of a gene that 

was induced during bradyzoite differentiation is TgAaaH2 (Gaskell et al., 2009). 

The experiment was conducted three times to represent three biological replicates. Each 

replicate was evaluated for total RNA isolated at each time point, poly A selected RNA yield 

by using Poly (A) Purist™ MAG Kit (Ambion) following the manufacturers’ instructions, 

and results of RT-PCR.  

Samples sent the University of Liverpool Centre for Genomic Research were analysed using 

a Bioanalyser for the amount and purity of the RNA samples. The QC results shows that 

these replicate samples were good quality and the amounts were enough, but the r-RNA 

percentage was 9-15%, therefore rRNA depletion was carried out by using a RiboMinus™ 

Eukaryote Kit for RNA-Seq (Ambion). 

Afterwards, the samples were sent to the University of Liverpool Centre for Genomic 

Research, where the cDNA libraries were prepared from the submitted RNA using the 

Epicentre ScriptSeq v2 RNA-Seq Library Preparation Kit (Catalogue No. SSV21106), after 

this, it was sequenced using Illumina Hiseq 2000. The location of sequence data is:          

http://www.cgr.liv.ac.uk:8088/illum/LIMS1239IsraAlsaady_0b6d450fee81cff6/   

Furthermore, the University of Liverpool Centre for Genomic Research undertook the data 

analysis. Tophat2.0.8were used to map the generated data, then these data were aligned with 

Bowtie2.1.0 after which the results were analysed using R version 2.15.2 and edgeR package 

version 3.0.4. The combination of the R, norvegicus and T. gondii annotated genomes were 

references for mapping sequence and annotation. The source of the references was 

downloaded from the Ensemble website; afterwards, the results were normalised for 

diffferential gene expression analysis. Then, the results from the two biological replicates 

were combined in the result analysis. The generated result is located at: 

http://www.cgr.liv.ac.uk:8088/illum/ID2061_ecf2da8abc694 f26/results1/ for model 1   

http://www.cgr.liv.ac.uk:8088/illum/ID2061_ecf2da8abc694 f26/results2/ for model 2   
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A set of tables and plots was generated from the analytical result (not included here);  the 

information including the annotation, the log2 counts per million (CPM) mapped reads, log2 

fold changes for each contrasts, p-value and adjusted p-value (FDR), raw counts and FPKM 

values were all included in a main table . All the further investigations were conducted based 

on this table.   

4.5.1 Host gene analysis 
The number of genes that were either up- or down-regulated grouped based on differential 

expression at each time point (Table 4-2). The results are presented as a fold change 

(differential expression) between day 3/0 and day 6/0. 

 
>2 fold change >4 fold change >8 fold change 

Up-regulated day 3/0 180 117 61 

Down-regulated day 3/0 710 544 312 

Up-regulated day 6/0 643 425 286 

Down-regulated day 6/0 192 131 98 

Total 1725 
  

Table 4-2:  The number of differentially expressed host genes at different time points.  

 

Based on previous observations of changes in dopamine metabolism (Prandovsky et al., 

2011), the investigation of T. gondii’s effect on catecholamine metabolism is one of the main 

aims of this experiment and, therefore, the differential expression for genes involved in 

catecholamine metabolism were analysed. 

The differential expression of the genes that are involved in catecholamine metabolism. 

DBH, MaoB and PAH were down-regulated (Table 4-3), while Drd2 and Moxd2 were up 

regulated at day 6/0. 
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Gene name Description 
Fold change 

at day 3/0 

Fold change 

at day 6/0 

Dopamine beta-hydroxylase Dbh -1.30 -244 

Monoamine oxidase B MaoB -2.75 -3.65 

Phenylalanine hydroxylase PAH -1.25 -2.58 

Dopamine receptor D3 Drd3 1 1 

Dopamine receptor D5 Drd5 1 1 

Dopamine receptor D4 Drd4 1 1 

Aromatic L-amino acid 

decarboxylase 
AADC 1 1 

Monoamine oxidase A MaoA 1 1 

Tyrosine hydroxylase Th 1 1 

Catechol-O-

methyltransferase 
Comt 1 1 

Solute carrier family 6 Slc6a3 1 1 

Dopamine receptor D1 Drd1a 1 1 

Solute carrier family 18 Slc18a2 1 1 

Dopamine receptor D2 Drd2 3.58 6.59 

Monooxygenase, DBH-like 

2 
Moxd2 2.21 8.88 

Table 4-3: Differential expression of genes involved in catecholamine metabolism in 

bradyzoite infected dopaminergic cells.  

The segregated gene lists were submitted to PANTHER to create a visual presentation of the 

GO slim classification of the biological functions of these genes. The genes that did not 

significantly change were also submitted to this analysis and presented as a control. The pie 

chart in (Figure 4-2) shows the major biological function terms and the proportion of genes 
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that were classified under each term. Comparing between these charts shows that the 

infection modulates different functions in the PC12 cells such as metabolic process, response 

to stimulus and immune response. Moreover, these changes’ vary between times points 

indicates distinctive alterations along with the parasite differentiation. 
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apoptotic process (GO:0006915)  

  
biological adhesion (GO:0022610)  

  
biological regulation (GO:0065007)  

  
cellular component organization or biogenesis 

(GO:0071840)  

  
cellular process (GO:0009987)  

  
developmental process (GO:0032502)  

  
growth (GO:0040007)  

  
immune system process (GO:0002376)  

  
localization (GO:0051179)  

  
metabolic process (GO:0008152)  

  
multicellular organismal process (GO:0032501)  

  
reproduction (GO:0000003)  

  
response to stimulus (GO:0050896)  

Figure 4-2: Biological functional categories (GO slim) of rat genes that have changed 

between the different time points. In addition, significantly segregated data were 

submitted to GOrilla to perform GO-enriched analysis for each time point. The enrichment 

analysis found which GO terms were over-represented (or under-represented) using 

annotations for that gene set. 

The analysis (Table 4-4) shows that at day 3/0 the up-regulated genes under specific GO term 

classifications with the lowest p-values were: positive regulation for catecholamine secretion 

and positive regulation of amine transport or regulation of epinephrine secretion. These GO 

terms of biological function might be involved with increased production of the 

catecholamine by the parasite. Metabolic functions as well as regulation of acute 

inflammatory response and T cell selection are immune functions that were down-regulated 

at day 0/3.  

Moreover, (Table 4-5) list the up regulated genes GO terms at day 6, this list include more 

specific immune responses e.g., response to protozoan, response to chemical, response to 

http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0006915&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0022610&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0065007&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0071840&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0071840&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0009987&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0032502&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0040007&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0002376&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0051179&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0008152&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0032501&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0000003&chartCategoryType=2&filterLevel=1&listType=1
http://www.pantherdb.org/list/list.do?chartCategoryAcc=GO:0050896&chartCategoryType=2&filterLevel=1&listType=1
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external stimulus, response to stimulus, defines response, response to lipopolysaccharide, 

cellular hormone metabolic process, regulation of toll-like receptor 9 signalling pathway, 

cellular response to high density lipoprotein particle stimulus, cellular response to 

interleukin-6 and defence response to protozoan. Furthermore, neurological and signalling 

functions were up-regulated, like the cell surface receptor signalling pathway, response to 

external stimulus, detection of stimulus, cellular response to biotic stimulus, and response to 

stimulus, signal transduction, neuron-neuron synaptic transmission, signalling and single 

organism signalling. Gene clusters with the lowest p-values were involved in ion 

transmembrane transport and chloride transmembrane transport. In contrast, multiple 

organismal processes and positive regulation of neuron differentiation GO terms were found 

to be significantly enriched by GO-enriched analyses for the genes that were down-regulated 

at day6/0 (Table 4-7). 

Genes associated with olfactory function, G-protein coupled receptor signalling pathway, 

detection of stimulus involved in sensory perception, detection of chemical stimulus involved 

in sensory perception and detection of stimulus were down-regulated at day 3/0(Table 4-6), 

while those involved in sensory organ development and olfactory pit development were 

down-regulated at day 6/0 (Table 4-7). 
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GO term Description P-value 
FDR q-

value 

GO:0033605 positive regulation of catecholamine secretion 1.46E-06 1.76E-02 

GO:0050433 regulation of catecholamine secretion 2.37E-06 1.43E-02 

GO:0051954 positive regulation of amine transport 2.73E-05 1.10E-01 

GO:0051952 regulation of amine transport 4.57E-05 1.38E-01 

GO:0014060 regulation of epinephrine secretion 7.05E-04 1.00E+00 

GO:0051047 positive regulation of secretion 8.92E-04 1.00E+00 

GO:0002676 regulation of chronic inflammatory response 9.36E-04 1.00E+00 

GO:0006700 C21-steroid hormone biosynthetic process 9.36E-04 1.00E+00 

Table 4-4:  Classifications enriched in GO analysis of rat genes that were up-regulated at day 

3 using GOrilla. 
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GO term Description P-value 
FDR q-

value 

GO:0034220 ion transmembrane transport 2.08E-05 0.251 

GO:1902476 chloride transmembrane transport 2.45E-05 0.148 

GO:0007166 cell surface receptor signalling pathway 0.000108 0.435 

GO:0001562 response to protozoan 0.000204 0.352 

GO:0042221 response to chemical 0.000285 0.431 

GO:0009605 response to external stimulus 0.000376 0.505 

GO:0055090 acylglycerol homeostasis 0.000398 0.482 

GO:0070328 triglyceride homeostasis 0.000398 0.438 

GO:0051606 detection of stimulus 0.000432 0.436 

GO:0071216 cellular response to biotic stimulus 0.000463 0.43 

GO:0050896 response to stimulus 0.000506 0.437 

GO:0045765 regulation of angiogenesis 0.000539 0.435 

GO:0007165 signal transduction 0.000558 0.422 

GO:0006952 defines response 0.000589 0.419 

GO:0007270 neuron-neuron synaptic transmission 0.000606 0.407 

GO:0070092 regulation of glucagon secretion 0.00064 0.407 

GO:0032496 response to lipopolysaccharide 0.000661 0.399 

GO:0034754 cellular hormone metabolic process 0.00072 0.415 

GO:0071403 
cellular response to high density lipoprotein particle 

stimulus 
0.000734 0.404 

GO:0034163 regulation of toll-like receptor 9 signalling pathway 0.000734 0.386 

GO:0023052 signalling 0.000748 0.362 

GO:0044700 single organism signalling 0.000748 0.377 

GO:0071354 cellular response to interleukin-6 0.00075 0.349 
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GO:0055085 transmembrane transport 0.000793 0.355 

GO:0040020 regulation of meiosis 0.000842 0.364 

GO:0042832 defense response to protozoan 0.00096 0.4 

 

Table 4-5: Classes of genes enriched in GO analysis of rat genes that were up-regulated at 

day 6 using GOrilla. 
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Table 4-6: GO enriched classes of rat genes that were down-regulated at day 3 using GOrilla 

  

GO term Description P-value 
FDR q-

value 

GO:0007186 G-protein coupled receptor signalling pathway 2.61E-08 0.000315 

GO:0050907 
detection of chemical stimulus involved in sensory 

perception 
4.63E-07 0.0028 

GO:0050906 detection of stimulus involved in sensory perception 8.88E-07 0.00358 

GO:0007166 cell surface receptor signalling pathway 1.37E-06 0.00276 

GO:0051606 detection of stimulus 4.48E-06 0.00774 

GO:0007165 signal transduction 0.000306 0.462 

GO:0045058 T cell selection 0.000521 0.7 

GO:0002673 regulation of acute inflammatory response 0.000543 0.657 

GO:0009092 homoserine metabolic process 0.000641 0.597 

GO:0019344 cysteine biosynthetic process 0.000641 0.705 

GO:0019346 transsulfuration 0.000641 0.646 

GO:0007155 cell adhesion 0.000718 0.621 

GO:0022610 biological adhesion 0.000802 0.646 
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GO term Description P-value 
FDR q-

value 

GO:0007423 sensory organ development 9.04E-05 0.219 

GO:0007166 cell surface receptor signalling pathway 5.58E-05 0.338 

GO:0032501 multicellular organismal process 5.38E-05 0.651 

GO:0045666 positive regulation of neuron differentiation 0.000989 0.797 

GO:0007165 signal transduction 0.000868 0.75 

GO:0001763 morphogenesis of a branching structure 0.00071 0.66 

GO:0061138 morphogenesis of a branching epithelium 0.000566 0.571 

GO:2000026 regulation of multicellular organismal development 0.00039 0.429 

GO:0050678 regulation of epithelial cell proliferation 0.00029 0.351 

GO:0048754 branching morphogenesis of an epithelial tube 0.000269 0.361 

GO:0060166 olfactory pit development 0.000249 0.376 

GO:0001654 eye development 0.000167 0.288 

GO:0051239 regulation of multicellular organismal process 0.000129 0.26 

GO:0044707 single-multicellular organism process 0.000076 0.23 

GO:0014070 response to organic cyclic compound 0.000075 0.302 

Table 4-7: GO enrichment analysis gene classes of rat genes that were down -regulated at 

day 6 using GOrilla.  

The pooled genes were submitted to DAVID to categorise the genes according to biological 

functions. The genes were categorised to the following neurological GO terms: cell-cell 

signalling, neurodevelopmental, behaviour and neurotransmitter NMDR with enrichment 

scores of 4.25, 2.36, 1.24 and 1, respectively. The list of genes under each GO term was 

submitted to MeV to create a heat map. The genes in the lists were submitted along with log 

Fold Change (log FC) for each gene at day 0/3 and 6/0 and the heat maps were created 

according to the log FC of these genes.   
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These figures (Figure 4-3) show that the infection of differentiated PC12 cells infected with 

induced T. gondii had significantly modulated expression of genes involved in cell-cell 

signalling.  

While most of the genes in the behaviour category were up-regulated, the DBH gene was 

down-regulated. The gene expression patterns were specific and changed throughout the 

infection as T. gondii differentiated from tachyzoite to bradyzoite stage. 
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Figure 4-3: Heat maps of neurological function genes modulated by infection.  
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To examine the relationship between the differentially expressed genes that fall under the 

neurological GO term category, these genes were submitted to STRING pathway analysis 

including the genes that were significantly changed and those associated with schizophrenia. 

In the resulting figure (Figure 4-4), each protein is represented by a coloured circle and the 

protein name, and the lines between the proteins represent the predicted interaction. The 

thickness of the lines is proportional to the strength of the associations. The small box in the 

lower right highlights the dopamine metabolism and receptors genes. 

The highlighted group of genes (box) is involved in dopamine metabolism and GABA 

receptors; the figure shows a strong association between DBH, MaoB, SAT1, Aanat and 

Aldah1a3, which are genes involved in dopamine metabolism. Cacng4, Grik4, Gria4, 

Gabrb2, Gabrg2 and Gabrg3 are involved in the formation of GABA receptors. Meanwhile, 

other genes form a large cluster and, in this cluster, there is a strong association found 

between UQcrc1 and Cox6a2; Bmp7 and Bmpr1b; Gdf9, Fgf9, Fgf2, Kitlg, CXCL12, LIF, 

CCL2, CCL5 and Il12b; Alexo12 and Alexo12e; Epha7, Efna5 and Epha4; and, finally, 

between Vav3, Syk and Apbb.   
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Dopamine metabolism  
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Figure 4-4: Network analysis of neurological genes differentially expressed in 

catecholaminergic cells with infection. The pooled genes were submitted to DAVID 

(http://david.abcc.ncifcrf.gov/) to categorise them according to biological functions. In 

(Figure 4-5) the genes were categorised according to the following immunological GO terms: 

cytokines, chemotaxis, immunoglobulin-like and T-cell selection with enrichment scores of 

2.16, 1.74, 1.5 and 1.13, respectively. After this, MeV was used to create a heat map for each 

gene list for each GO term. The heat maps were created according to log Fold Change (log 

FC) for each gene at day 0/3 and 6/0. 
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Figure 4-5: Heat maps of genes involved in immunological function modulated by infection.  

Similar to the neurological genes analysis, immunological genes were also submitted to 

STRING. The resulting figure shows a visual pathway analysis for the protein that was 

classified as immunological by DAVID. In figure (Figure 4-6), Thicker lines are indicative of 

greater evidence of association. All proteins are labelled by their gene name. The diagram 

shows the interaction between genes that are involved in the immune response to T. gondii 

infection in these neuron-like cells. 
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Figure 4-6:  Network analysis of immunological genes differentially expressed in 

catecholaminergic cells with infection 
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4.5.1.1  Regulation of DBH during infection 

As the most significant decrease observed in the RNA-Seq analysis is the down-regulation of 

DBH mRNA, therefore this finding will further confirmed by measuring mRNA levels and 

NE levels. 

 First, RT-PCR using DBH primers of samples from T. gondii-infected PC12 cells with 

different parasite/cell ratios was performed. The result (Figure 4-7) showed that DBH levels 

were decreased in infected PC12 cells as found with RNA sequencing of infected NGF-

differentiated cells. It is a dose-dependant reduction, with an inverse relationship between the 

number of parasites and the reduction in DBH mRNA expression.  

 

 

Figure 4-7: Expression of DBH in T. gondii-infected PC12 cells. Furthermore, as a control to 

identify the effect of NGF on DBH expression, qPCR was done on uninfected NGF-

differentiated PC12 cells at days 0, 3 and 6. (Figure 4-8) quantitative RT-PCR with DBH 

primers for mRNA of NGF-differentiated uninfected PC12 cells showed no change in the 

expression of DBH mRNA because of NGF differentiation, confirming that the initially 

observed DBH expression was caused by T. gondii infection and not by NGF differentiation.  
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Figure 4-8: DBH mRNA expression in NGF differentiated PC12 cells over timeThe DBH 

down-regulation was examined in vivo by detecting the mRNA of DBH in infected rat brain 

RNA. qPCR was performed on RNA purified from frozen sections from infected and 

uninfected rat brains. A Quantitative PCR done on mRNA from rats’ brain homogenate 

showed a reduction in DBH in the infected male rat’s brain, while female brains did not show 

a detectable change in DBH expression, indicating that DBH reduction is gender specific in 

vivo (Figure 4-9). With this in mind, the oestrogen receptors ESR in the female rat brains 

were measured to investigate any link between oestrogen levels and DBH expression. 

Although no difference in ESR between female rats was observed, there was not a clear 

variation because of the high variability in the experiment. 
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Figure 4-9: Expression in rat brain of DBH and ESR. As DBH is responsible for 
norepinephrine (NE) and epinephrine (E) synthesis, experiments were performed to monitor 
the effect of infection on NE and E levels. Down-regulation in DBH mRNA is expected to be 
reflected in decreases in NE and E in T. gondii-infected PC12 cells. Norepinephrine and 
epinephrine production was measured by HPLC-ED. (Figure 4-10) revealed a reduction in 
NE and E production whilst DA increases T. gondii reduces the production of NE and E by 
almost 90%, for NE (ANOVA , p value=1.91E-05) and for E (ANOVA , p value= 2.02E-05). 
In addition, it was observed that an increase in the number of the parasite resulted in a 
decrease in the production of both NE and E in a dose-dependent manner.  
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Figure 4-10: Norepinephrine and epinephrine production in T. gondii-infected PC12 cells.  
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4.5.3 T. gondii gene analysis 

The expression of housekeeping, bradyzoite-specific, and tachyzoite-specific genes were 

used as controls to monitor the differentiation of T. gondii to bradyzoites. T. gondii actin, 

tubulin and GAPDH served as housekeeping genes, whereas bradyzoite-specific genes are 

BAG1, ENO1, and SAG4, and tachyzoite-specific genes are MIC1 and SAG1. 

The results (Table  4-8)  shows housekeeping genes and tachyzoite genes commensurate with 

increased numbers of parasites in the infected culture. In addition, elevation of bradyzoite-

specific genes confirming the bradyzoite differentiation was observed. 

Gene ID Description Fold change day6/3  

TGME49_009030 Actin 2.1 

H
ou

se
 k

ee
pi

ng
  

TGME49_116400 α-tubulin 2.1 

TGME49_089690 GAPDH 1.9 

TGME49_059020 HSP30/BAG1 6.61 

B
ra

dy
zo

ite
  

TGME49_068860 ENO1 7 

TGME49_080570 SAG4 5.1 

TGME49_091890 MIC1 2.0 

T
ac

hy
zi

ot
e 

 
TGME49_033460 SAG1 2.1 

Table 4-8: Fold change between day 6 and day 3 of infection for previously characterized T. 

gondii genes. 
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The table below (Table 4-9) present the number of T. gondii genes that were either up or 

down-regulated at different time points. 

 
>2 fold change >4 fold change >8 fold change 

up-regulated day 3/0 274 229 147 

down-regulated day 3/0 133 121 89 

up-regulated day 6/0 494 324 171 

down-regulated day 6/0 131 120 79 

Total 1,032 
  

 Table 4-9: The number of T. gondii genes differentially expressed at different time points.  

T. gondii secretory proteins that were deferentially expressed during the experiment are 

presented in the following table.  

Secretory proteins (dense granules, micronemes and rhoptry) were differentially expressed 

throughout the experiment (Table 4-10). Other secretory proteins were expressed during the 

experiment, i.e., ROP16 and ROP18, but not included in the table because no difference in 

their expression was found between different time points.  

Dense granules proteins show a similar differential expression profile, the expression of these 

proteins increases at day 6/0, while MIC13 was the microneme that had the highest fold 

change during the experiment. ROP11, ROP15 and ROP41 were the most up-regulated at day 

6/0.   

 

 

 

 

 

 

 

Gene ID Description Fold change day 3/0 Fold change day 6/0  
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TGME49_091890 MIC1 1.25 2.50 
M

icronem
e 

TGME49_119560 MIC3 1.07 2.71 

TGME49_008030 MIC4 -1.58 2.43 

TGME49_018520 MIC6 1.53 2.30 

TGME49_061780 MIC7 2.09 3.42 

TGME49_004530 MIC11 -1.24 2.02 

TGME49_060190 MIC13 4.88 13.5 

TGME49_054430 MIC Putative -1.19 -10.9 

TGME49_070250 GRA1 1.12 2.05 

D
ense granules 

TGME49_027620 GRA2 1.40 2.05 

TGME49_027280 GRA3 1.50 2.44 

TGME49_086450 GRA5 1.19 2.58 

TGME49_003310 GRA7 1.86 2.07 

TGME49_054720 GRA8 -1.41 2.50 

TGME49_109590 ROP1 1.37 2.34 

R
hoptry 

TGME49_108080 ROP5 1.20 3.19 

TGME49_095110 ROP7 1.08 2.48 

TGME49_015780 ROP8 -1.03 2.61 

TGME49_027810 ROP11 -1.16 6.66 

TGME49_011290 ROP15 -1.12 5.09 

TGME49_062050 ROP39 1.05 2.51 

TGME49_066100 ROP41 4.54 14.5 

Table 4-10: Secretory T. gondii proteins differentially expressed in the RNA-Seq 

experiment. 

After this, GO term enrichment grouping was carried out using R project software of each 

group of segregated genes.  

The analysis shows (Tables 4-11, 12, 13, 14) that at day 3/0 the up-regulated genes classified 

under GO terms that had the higher significance (lowest P value) were translation and gene 
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expression. Moreover, pentose-phosphate shunt, NADPH regeneration, NADP metabolic 

process and pyridine nucleotide metabolic process were the GO terms that down-regulated 

genes at day 3/0 were grouped into.  

At day 6/0, the up-regulated genes were grouped into several groups, the most significant of 

which were translation, cellular macromolecule biosynthetic process, macromolecule 

biosynthetic process and cellular protein metabolic process. In contrast, the down-regulated 

genes were grouped into ion transport; cations transport ATP catabolic process and 

establishment of localization. 
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GO Term Description P-value Fold enrichment 

GO:0006412 translation 0.0018 2.26 

GO:0010467 gene expression 0.002 1.9 

GO:0009101 glycoprotein biosynthetic process 0.02 11.16 

GO:0043413 macromolecule glycosylation 0.02 11.16 

GO:0006486 protein glycosylation 0.022 11.16 

GO:0009100 glycoprotein metabolic process 0.022 11.16 

GO:0034645 
cellular macromolecule biosynthetic 

process 
0.028 1.65 

GO:0070085 glycosylation 0.029 9.3 

GO:0009059 macromolecule biosynthetic process 0.029 1.64 

Table 4-11: GO clusters over-represented for T. gondii gene up-regulation at day 3 of 

infection. 
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GO term Description P-value Fold 

enrichment 

GO:0006740 NADPH regeneration 0.008 17.56 

GO:0006098 pentose-phosphate shunt 0.008 17.56 

GO:0006739 NADP metabolic process 0.010 15.36 

GO:0046496 nicotinamide nucleotide metabolic process 0.013 13.66 

GO:0019362 pyridine nucleotide metabolic process 0.013 13.66 

GO:0072524 pyridine-containing compound metabolic 

process 

0.013 13.66 

GO:0006733 oxidoreduction coenzyme metabolic process 0.018 11.17 

GO:0043632 modification-dependent macromolecule 

catabolic process 

0.022 5.27 

GO:0019941 modification-dependent protein catabolic 

process 

0.022 5.27 

GO:0006511 ubiquitin-dependent protein catabolic process 0.022 5.27 

GO:0009056 catabolic process 0.025 2.71 

GO:0006200 ATP catabolic process 0.032 61.46 

GO:0006816 calcium ion transport 0.032 61.46 

GO:0034968 histone lysine methylation 0.032 61.46 
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GO:0016571 histone methylation 0.032 61.46 

GO:0019321 pentose metabolic process 0.032 61.46 

GO:0042026 protein refolding 0.032 61.46 

GO:0006508 proteolysis 0.032 2.54 

GO:0044257 cellular protein catabolic process 0.036 4.29 

GO:0051603 proteolysis involved in cellular protein 

catabolic process 

0.036 4.29 

GO:0044265 cellular macromolecule catabolic process 0.044 3.92 

GO:0000917 barrier septum assembly 0.047 30.73 

GO:0051301 cell division 0.047 30.73 

GO:0000910 cytokinesis 0.047 30.73 

GO:0032506 cytokinetic process 0.047 30.73 

GO:0006303 double-strand break repair via nonhomologous 

end joining 

0.047 30.73 

GO:0000726 non-recombinational repair 0.047 30.73 

Table 4-12: GO clusters over-represented for T. gondii gene down-regulation at day 3 of 

infection. 
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Go Term Description P-value 
Fold 

enrichment 

GO:0006412 translation 1.14E-06 2.43 

GO:0034645 cellular macromolecule biosynthetic process 0.0001 1.85 

GO:0009059 macromolecule biosynthetic process 0.00017 1.83 

GO:0044267 cellular protein metabolic process 0.0002 1.56 

GO:0010467 gene expression 0.0003 1.75 

GO:0019538 protein metabolic process 0.002 1.41 

GO:0006413 translational initiation 0.0067 4.13 

GO:0044249 cellular biosynthetic process 0.0122 1.42 

GO:0044260 cellular macromolecule metabolic process 0.014 1.26 

GO:0009058 biosynthetic process 0.021 1.36 

GO:0044085 cellular component biogenesis 0.021 2.06 

GO:0034622 cellular macromolecular complex assembly 0.022 3.02 

GO:0006102 isocitrate metabolic process 0.027 13.09 

GO:0031497 chromatin assembly 0.028 4.03 
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GO:0006323 DNA packaging 0.028 4.03 

GO:0006334 nucleosome assembly 0.028 4.03 

GO:0034728 nucleosome organization 0.028 4.03 

GO:0065004 protein-DNA complex assembly 0.028 4.03 

GO:0071824 protein-DNA complex subunit organization 0.028 4.03 

GO:0006333 chromatin assembly or disassembly 0.034 3.74 

GO:0065003 macromolecular complex assembly 0.034 2.71 

GO:0000041 transition metal ion transport 0.034 3.74 

GO:0071844 cellular component assembly at cellular level 0.037 2.41 

GO:0071840 cellular component organization or biogenesis 0.042 1.69 

GO:0034621 
cellular macromolecular complex subunit 

organization 
0.043 2.53 

GO:0043170 macromolecule metabolic process 0.045 1.19 

GO:0071841 
cellular component organization or biogenesis at 

cellular level 
0.048 1.7 

GO:0022607 cellular component assembly 0.05 2.23 

GO:0051276 chromosome organization 0.05 2.73 

Table 4-13: GO clusters over-represented for T. gondii gene up-regulation at day 6 of 

infection. 
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GO Term Description P-value 
Fold 

enrichment 

GO:0006811 ion transport 0.002 4.46 

GO:0006812 cation transport 0.0057 4.5 

GO:0006200 ATP catabolic process 0.028 68.42 

GO:0051234 establishment of localization 0.032 2.03 

GO:0006810 transport 0.032 2.03 

GO:0040029 regulation of gene expression 0.034 50 

GO:0051179 localization 0.041 1.94 

GO:0006305 DNA alkylation 0.042 34.21 

GO:0006306 DNA methylation 0.042 34.21 

GO:0006304 DNA modification 0.042 34.21 

Table 4-14 : GO clusters over-represented for T. gondii gene down-regulation at day 6 of 
infection.  
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4.6 Discussion 

4.6.1 Rat gene analysis and verification 

The sequencing of RNA performed on the transcriptome of the T. gondii-infected PC12 cells 

and the T. gondii transcriptome during infection revealed numerous genes significantly 

altered in expression. NGF differentiated PC12 cells infected with Prugniard strain to mimic 

T. gondii chronic infection is the first attempt to analyse gene expression in a model of 

chronic neural infection.  

Considerable regulation of genes involved in the catecholamine pathway were differentially 

expressed with infection (Table 4-3). DBH, MaoB and PAH were down-regulated with DBH 

exhibiting the extreme change in infected PC12 cells. Both DBH and MaoB encode enzymes 

that catabolize dopamine indicating that the parasite blocked catabolism of dopamine during 

infection of dopaminergic cells. This could help maintain increased levels of dopamine. 

Meanwhile, Drd2 and Moxd2 were up-regulated with the Moxd2 gene having similarity to 

the DBH gene. Moxd2 is strongly expressed in the medial olfactory epithelium (Su et al., 

2004), raising the possibility of its overexpression being involved in olfactory function 

alterations. Moxd2 up-regulation could partly compensate for the down-regulation of DBH 

although further studies of the function of the Moxd2 gene product are needed.  

The RNA-Seq experiment indicated that T. gondii infection caused a massive reduction in 

dopamine beta hydroxylase (DBH) mRNA expression. DBH synthesises norepinephrine (NE) 

from dopamine as a copper type-II, ascorbate dependent monooxygenase [EC 1.14.17.1] 

found in the noradrenergic neurons (Weinshilboum, 1978). 

DBH is found within the synaptic vesicles of central and peripheral noradrenergic neurons. 

DBH is simultaneously released into the extra-cellular space during the secretion of the 

synthesized NE (Dunnette and Weinshilboum, 1976). Therefore, DBH can be measured 

easily in the cerebrospinal fluid (from the central nervous system) and plasma (from the 

peripheral nervous system). DBH activity in cerebrospinal fluid and plasma are controlled 

genetically (Goldin et al., 1982), although it varies among populations widely (Weinshilboum 

et al., 1973).  

Down-regulation of DBH leads to a huge reduction in the production of norepinephrine (NE) 

and epinephrine (E). Epinephrine is synthesised by methylation of the primary amine of 

norepinephrine by phenylethanolamine N-methyltransferase (PNMT) (Bulbring and Burn, 

1949). NE is synthesised mainly in the locus coeruleus (LC) in the brain. The LC 

http://en.wikipedia.org/wiki/Methylation
http://en.wikipedia.org/wiki/Primary_amine
http://en.wikipedia.org/wiki/Phenylethanolamine_N-methyltransferase
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preferentially projects to the thalamus, hippocampus, the frontal and the entorhinal cortices, 

as well as to a minor extent most other brain regions (Freedman et al., 1975). 

Norepinephrine and epinephrine are adrenergic catecholamines that play a major role in 

different brain functions including behavioural and physiologic processes. Several reviews 

had already covered the role of the LC noradrenergic system in cognitive processes, arousal 

and wakefulness (Berridge et al., 2012; Berridge and Waterhouse, 2003; Ramos and Arnsten, 

2007; Robbins and Arnsten, 2009; Sara, 2009). Apart from its decrease with aging, changes 

in NE transmission has been related to major brain disorders in psychiatry (depression, 

attention deficit disorder, Tourette's, psychosis, post-traumatic stress disorder, epilepsy, 

Parkinson's, Alzheimer's disease (AD) and sleep) (Feinstein et al., 2002; Szot, 2012).  

Previous studies on DBH knockouts (KO, mutant) animals have shown that DBH -KO rats 

were unable to synthesis both NE and E (Murchison et al., 2004). Mice that lack NE were 

shown to be susceptible to seizures (Szot et al., 1999) (Weinshenker et al., 2001) and exhibit 

reduced contextual-fear but intact cued-fear, indicating that adrenergic signalling is important 

for the retrieval of intermediate-term contextual and spatial memories, but is not essential for 

the consolidation or retrieval of emotional memories in general (Murchison et al., 2004). 

Finally, another study reported that the loss of NE itself impaired synaptic plasticity and 

cognitive performance (Hammerschmidt et al., 2013). 

The DBH down-regulation was verified by RT-PCR of samples from infected PC12 cells that 

were infected cells with increasing parasite/cell ratios. The results showed that T. gondii 

infection decreases DBH expression with an increase with increasing dose supporting that the 

down-regulation of DBH relative to other host genes is directly caused by T. gondii infection. 

In order to confirm that the down-regulation of DBH expression leads to a decrease in 

epinephrine and norepinephrine production, norepinephrine and epinephrine were measured 

from T. gondii-infected PC12 cells, where the cells were infected at increasing parasite/cell 

ratios. The results showed that T. gondii decreases norepinephrine and epinephrine 

production in infected cells, suggesting that the parasite reduced norepinephrine and 

epinephrine to mediate changes in host behaviour, providing more details of the behaviour-

change mechanism. To confirm that norepinephrine and epinephrine production are reduced 

during infection in vivo, DBH mRNA levels were detected by qPCR from T. gondii-infected 

rats’ brains. The results showed DBH down-regulation in male rats but not in female ones, 

indicating that the DBH down-regulation is gender associated.   
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Plasma DBH activity in female rats has been reported to be higher than in male ones 

(Koudelova and Mourek, 1990) and injection of oestradiol benzoate (EB) to ovariectomised  

rats resulted in the elevation of DBH mRNA levels in the rat’s brain (Serova et al., 2002). 

Furthermore, oestrogen regulates DBH at the transcriptional level by inducing DBH promoter 

activity (Serova et al., 2002); (Sabban et al., 2010). Therefore, to detect if the oestrogen cycle 

is the reason for the lack of differences between DBH level in infected and uninfected female 

rat brains, the estradiol receptor alpha (ESR) mRNA expression levels were detected by 

qPCR; however, no difference was found between the infected and uninfected once. This 

indicates that ESR might controls the DBH levels, and blocks the T. gondii effect on DBH 

levels. 

The difference between female and male expression of DBH indicates that T. gondii possibly 

has different effects regarding genders. Moreover, another consideration is that T. gondii 

behaviour change is sex-specific (Flegr et al., 2008; Xiao et al., 2012) as in vivo studies 

showed different expression pattern in the brains of infected male and female rats.  

The massive decrease in DBH expression in vitro in male rat brains suggests that the 

reduction in DBH expression might occur in infected and non-infected cells, especially 

considering that the percentage of the infected cells was 60-70% in PC12 cultures, whereas 

the infected cells number is relatively small to the number of cells in the whole brain number. 

This phenomenon might be due to the ability of T. gondii to modulate uninfected cells and 

sett up an appropriate microenvironment. For example, the parasite modifies infected cells 

and neighbouring cells inducing them to enter the S-phase (Lavine and Arrizabalaga, 2009). 

Moreover uninfected dendritic cells and monocytes cultured with T.gondi-infected dendritic 

cells and monocytes, secrete IL-12 implying that a soluble host or parasite factor is 

responsible for the bulk of IL-12 p40 production in vivo (Christian et al., 2014). The parasite 

modulates the uninfected cells by secretion of host or parasite low molecular weight factors 

or by injection of rhoptry proteins by the parasite without infecting the cells (Carruthers and 

Boothroyd, 2007; Boothroyd and Dubremetz, 2008; Koshy et al., 2010). 

To eliminate the possibility that DBH reduction might be due to NGF differentiation, mRNA 

was extracted from NGF-differentiated PC12 cells at days 0, 3 and 6, and the DBH levels 

were detected by qPCR (Figure 4-8). The results showed that NGF did not affect DBH levels 

at the different time points, while the ascending parasite numbers used to infect 

undifferentiated PC12 cells reduced DBH levels; therefore, we can conclude that the changes 

in the DBH expression level is due to the infection not NGF differentiation. 
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These results clearly show that T. gondii decreases norepinephrine and epinephrine in vitro 

and in rats male brain in vivo. This reduction in production of NE and E, can lead to increase 

in the production of dopamine. Furthermore, the RNA sequencing results show that the 

parasite down-regulates monoamine oxidase (MaoB) an enzyme that catabolizes dopamine. It 

has already been reported that monoamine oxidase A type (MaoA) expression is decreased in 

human neuroepithelioma cells in response to infection with T. gondii with up-regulation of 

MiR-132 micro RNA (Xiao et al., 2014). In addition, dopamine metabolism changed during 

the infection based on pathway analysis for neurological genes. All the evidence indicates 

that T. gondii manipulates host catecholamine metabolism. 

Earlier studies have suggested that elevated NE signalling plays a pathophysiological role in 

schizophrenia (Yamamoto et al., 1994; Yamamoto and Hornykiewicz, 2004; Lechin and van 

der Dijs, 2005). However, NE still contributes to the pathology of schizophrenia possibly by 

modulating dopamine and NMDR dysfunction. In addition, the drop in NE concentration was 

linked with the progression and extent of memory dysfunction and cognitive impairment 

during dementia (Matthews et al., 2002). 

Norepinephrine and epinephrine are neurotransmitters involved a number of brain functions 

(Berecek and Brody, 1982). Norepinephrine affects parts that control the brain’s attention and 

responding actions; therefore, by decreasing the levels of NE and E, the parasite reduced the 

host’s response to threats e.g., in cats. Consequently, this facilitates the transmission of the 

parasite to the host and completes the life cycle. In humans, (Gale et al., 2014) found that T. 

gondii seropositivity is not associated with panic disorder or generalised-anxiety disorders, 

generally NE and E contributes to these disorders. However, a more recent study gave a 

contrasting result and an association was found between generalised-anxiety disorders and T. 

gondii infection seroprevalence (Markovitz et al., 2015). However, this emerging research 

area needs further investigations. 

Dopamine receptor D2 was up-regulated. Previous studies have shown that D2R over-

expression caused a behavioural hypersensitivity to D2R-like agonists, as well as enhanced 

electrophysiological responses to D2R activation in midbrain dopaminergic neuron (Kramer 

et al., 2011). 

Finally, phenylalanine hydroxylase (PAH) was down-regulated; PAH is a class of 

monooxygenase with a non-heme iron for catalysis, similar to TH, that uses 

tetrahydrobiopterin (BH4, a pteridine cofactor) (Kaufman, 1993; Almas et al., 1996). The 

http://en.wikipedia.org/wiki/Monooxygenase
http://en.wikipedia.org/wiki/Tetrahydrobiopterin
http://en.wikipedia.org/wiki/Pteridine
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down-regulation of PAH may be necessary to reduce the consumption of BH4 and increase 

the availability of BH4 to TH. PAH deficiency causes phenylketonuria (Hoang et al., 1996), a 

disease that causes neurological complications.  

Reviewing the catecholamine pathway clearly shows that the pathway was modified to 

increase the production of dopamine and the reduction of E and NE, while the change in the 

expressions of D2R, Moxd2 and PAH provided insights into a new approach to alter the 

host’s neurological function and behaviour.   

GO slim analysis was performed to give a general view of the changes that accrued during 

the experiment that was caused mainly by T. gondii infection and NGF differentiation (Figure 

4-1). Each pie graph represents the GO slim analysis at each time point. The up-regulated and 

down-regulated genes were analysed separately. Finally, the genes that were significantly 

expressed (p-value <0.05) and the gene expression folds change were between two and two 

were analysed as a control.   

By comparing the results of the differentially expressed up-regulated genes at day 3/0 with 

the differentially expressed up-regulated genes at day 6/0, we see that genes involved in 

reproduction had the highest increase while those involved in cellular component 

organization and biogenesis had the highest decrease. This might indicate that though the 

experiment period the change in the GO slim categories of the two up-regulated groups is 

minimal, indicating that the changes in these two up-regulated groups have the same 

tendency. 

When the differentially expressed up-regulated genes at day 6/0 were compared with 

differently expressed down-regulated genes at day 6/0, there is an observed increase in genes 

involved in reproduction while most of the other genes had only minor changes. 

However, major changes were observed when the differentially expressed down-regulated 

genes at day 6/0 were compared with differentially expressed down-regulated genes at day 

3/0 and with differentially expressed up-regulated genes at day 6/0. Specifically, genes 

involved in the metabolic processes that were increased and those involved in biological 

regulation and immune response were decreased the most. This indicates that biological 

regulation and immune response genes were the most up-regulated through the experiment 

due to T. gondii infection, along with the increase in the differentiation of T. gondii. 

However, the changes in the PC12 gene expression might also be due to NGF activation. A 

previous transcriptome study on NGF-activated PC12 cells reported GO slim analysis results 
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that were different from our study (Dijkmans et al., 2008). This might be due to the 

difference in experiments’ time points, as day 0 of infection is day 4 on NGF activation while 

in the published study, day 4 in the latest time point in which the experiment was conducted. 

Furthermore, NGF differentiation can be divided into two processes: an initial stimulation-

driven latent process and an extension stimulation-driven extension process (Vaudry et al., 

2002). Given the FPKM values of genes that have been reported to have a high fold change 

as a result of NGF differentiation i.e., Emp2, dusp5, PVR, Rrad, Loc499660 and Mmp13 

(Chung et al., 2010), these genes were also expressed in our study samples. However, the fold 

change and the p-value did not show any significant differential expression between these 

time points. In sum, the changes that might be due to NGF activation and investigated by this 

study are not similar to what have investigated before. Due to the difference in time points in 

the study design, and the fact that our study was performed late in the NGF activation 

process, suggesting that most of the NGF activation process had occurred already.    

In addition, to have a detailed and specific functional analysis of the changes induced by T. 

gondii infection in PC12 cells, GO enrichment analysis was performed to identify 

overrepresented GO terms in each gene set annotation. Therefore, GO enrichment analysis 

was performed on each gene group of the segregated data according to the time point and the 

regulation direction (up or down). 

At day 3/0, up-regulated genes involved in positive regulation of catecholamine secretion and 

C21 steroid hormone biosynthetic process had the most significant P-value. This indicates 

that T. gondii infection not only increases dopamine production (Gaskell et al., 2009; 

Prandovszky et al., 2011) and decrease epinephrine and norepinephrine production in the 

infected cells, but it also modulates the host protein to regulate the secretion of these 

catecholamines from the infected cell.  

While C21 steroid hormone biosynthetic process GO term is involved with pregnane 

compounds that contain 21 carbons (C21 steroids) which include progesterone and 

corticosteroids, both of these hormones groups have anti-inflammatory effects that may be 

associated with infection. In addition, injection of cortisone to T. gondii infected mice results 

in an increased the number of tachyzoites and cysts in the brain of the infected mice 

(Hulinska et al., 1990). This may explain the increase in C21 steroid hormones as a means to 

modulate the host’s immune response in favour of T. gondii.  
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In the group of up-regulated genes at day 6/0 that represent the infection with bradyzoite 

stage and mimic the chronic infection, genes involved in chloride transmembrane transport 

and ion transmembrane transport had the most significant p-value, 2.45E-05, 2.08E-05 

respectively, showing that the parasite is modulating the host transport system. In addition, 

the GO enrichment shows that the infection up-regulates the immune response to protozoa 

and some neural functions. 

However, the down-regulated genes GO enrichment analysis showed the G-protein coupled 

receptor (GPCR) signalling pathway down-regulated. G-protein coupled receptor signalling 

pathway is involved in transmitting the external stimuli such as neurotransmitters, 

chemokines, hormones, inflammatory mediators, proteinases, odorants, and light (Gilman, 

1987). Immune cells express GPCRs for classical, chemokines, chemoattractant 

neuropeptides, and neurotransmitters (Lombardi et al., 2002). In addition, the injection of 

soluble extract of T. gondii induces G-protein-coupled signalling through the chemokine 

receptor CCR5, and consequently have a key role in the induction of IL-12 from these cells 

(Aliberti and Sher, 2002). Therefore, the down-regulation of this signalling pathway might 

reduce host resistance and response to the external stimulus.   

Moreover, GO enrichment analysis for the group of down-regulated genes shows a down-

regulation of detection of stimulus involved in sensory perception and detection of chemical 

stimulus involved in sensory perception. This finding corresponds with a previous finding 

that the fatal fear attraction in T. gondii-infected rodents is specific and not related to loss of 

sensory perception or generic malaise as detailed previously in the Introduction. RNA 

sequencing results shows transcriptional changes in the genes related with the detection of 

stimulus involved in sensory perception and up- and down-regulation of olfactory genes that 

might lead to odour aversion. However, the ability of T. gondii infection to modulate the 

olfactory sense and block innate fear might be a combination of both transcriptional and 

epigenetic changes and the outcome of neuroanatomical location of T. gondii cyst (Evans et 

al., 2014). 

Once more, GO enrichment analysis of down-regulated genes for day 6/0 revealed a down-

regulation of genes involved in sensory organ development and cell surface receptor 

signalling pathway, which correspond with the earlier changes that were observed in day 3/0 

indicating that these changes are found through the chronic stage of the infection. 
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To analyse the pathways and networks of genes that were differentially expressed with 

infection regardless of whether the genes were up- or down-regulated, the segregated genes 

of each time point were pooled in one list and this list was used in network analysis focussing 

on neurological and immune functions. 

Cell-cell signalling is major function of any neuron. The heat map (figure 4-3) shows that T. 

gondii infection modulates the genes involved in cell-cell signalling by up-regulating 16 

genes and down-regulating 41 genes. This suggests that the infection does not exclusively 

increase or decrease cell-cell signalling; instead, the parasite modifies gene expression to its 

advantage. Furthermore, T. gondii might interrupt major neuronal functions. Indeed, an 

earlier study by (Haroon et al., 2012) regarding live cell calcium (Ca2+) imaging in vitro 

studies showed  that tachyzoites actively manipulate Ca2+ signalling upon glutamate 

stimulation causing either hyper- or hypo-responsive neurons. Moreover, the endoplasmic 

reticulum Ca2+ stores were depleted by T. gondii, and in vivo studies revealed that the 

activity-dependent uptake of the potassiummanalogue thallium was reduced in cyst-

harbouring neurons indicating functional diminishment; moreover, over time the percentage 

of non-functional neurons were increased. However, further in vitro and in vivo investigations 

are needed to understand these processes, magnitude and the effect of this modulation on 

neurons and the nervous system. 

The neurodevelopment GO term was also revealed as overrepresented by the GO 

categorization. The effect of T. gondii during congenital infection on foetal 

neurodevelopment is widely recognised. Congenital infection can cause a range of 

neurological diseases such as retinochoroiditis, blindness, epilepsy, psychomotor or mental 

retardation, encephalitis, microcephaly, intracranial calcification and hydrocephalus (Dunn et 

al., 1999; Remington et al., 2001). Moreover, schizophrenia is a neurodevelopmental disease; 

in fact, elevated maternal T. gondii IgG antibody was associated with a 2.5 fold increase in 

risk of schizophrenia (Brown et al., 2005). T. gondii infection may also cause other 

neurodevelopmental diseases such as autism spectrum disorder (ASD) and attention deficit 

and hyperactivity disorder (ADHD) with the link between these diseases and T. gondii 

infection already having been hypothesized (Prandota, 2010; Carter, 2013). 

Another GO term category that was found to be over-represented in the change with infected 

PC12 cells is the behaviour GO term. The effect of T. gondii infection on behaviour having 

been previously discussed, the RNA sequencing result reinforces genes’ involvement in 

behaviour altered by T. gondii infection. 
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Network mapping of all the genes that were grouped in any neurological GO term plus any 

gene that was differentially expressed between different time points and found in the 

schizophrenia gene database (Figure 4-4), found a network of catecholamine-related genes 

differentially expressed. In addition, the map showed a connection between dopamine 

metabolism pathway genes and GABA receptor genes. This suggests that the changes in the 

genes involved with GABA receptors expression might be due to the change in 

catecholamine metabolism by the parasite.  

It has also been observed that some GABA receptor subunit genes that are classified under 

the four neurological GO terms were found significant in this study, and most of these 

subunits are overexpressed. However, over activation and an increase in the secretion of 

GABA receptors have been noticed before in infected dendritic cells, and this activation has 

led to exhibition of hyper migratory phenotype (Fuks M et al., 2012). Overall, the GO term 

classification revealed that T. gondii infection influences host neuropsychology directly and 

indirectly.  

The DAVID analysis for the pooled genes also showed clustering under four significant 

immunological GO terms: cytokines, chemotaxis, immunoglobulin like and T-cell selection. 

This illustrates the immunological response of infected neuronal cells. Gene clusters related 

to cytokines had the highest enrichment score and therefore the highest significance. The 

results showed that the infection manipulates the innate immune response to the parasite’s 

advantage by down-regulating key innate immune mediators like CXCL12, CXCL11 and IL-

15. However, the key regulator for pro-inflammatory and anti-inflammatory immune 

response during T. gondii infection such as IL-12 and IL-10 were highly up-regulated during 

the infection, especially at Day 6/0.  

Additionally, the chemotaxis GO term genes showed an up-regulation in most of these genes, 

and indicated that chemokine ligand 2 (CCL2), chemokine ligand 5 (CCL5), chemokine 

ligand 20 (CCL20) and chemokine ligand 24 (CCL24) were the major chemotaxis involved 

in recruiting immune cells to the infected cell. It has been reported that different immune 

cells produce these chemokines during T. gondii infection, T. gondii triggers neutrophil 

production of CCL2 (Del Rio et al., 2004) and CCL20 (Denkers et al., 2003), as well as 

neutrophil and monocyte up-regulation of CCL20 and CCL24 mRNA during T. gondii 

infection (Ju et al., 2009).  Finally, CCL5/RANTES is induced in the brains of mice during 

chronic infection with T. gondii (Wen X et al., 2010). 
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While the Immunoglobulin GO term genes show that, the genes involved in immunoglobulin-

like fold Go term were up-regulated. This term is represent domains with an 

immunoglobulin-like (Ig-like) fold, Ig- like domain is found in many proteins including, 

receptors and MHC class I and II MHC II expression; the MHC class that presents antigens 

of intracellular pathogens. Previous studies have shown T. gondii’s ability to down-regulate 

surface major histocompatibility complex (MHC) class II on infected macrophages by 

inhibition of the STAT1 signalling pathway (Luder et al., 2001). This reduction was also 

found in astrocytes and microglia (Luder et al., 2003). Previous studies show a down-

regulation contradicting our results; possibly the parasite has a different effect on APC than 

normal cells, whereas the effect of the parasite on different cell type MHC expression from 

both classes should be further investigated. 

However, the T-cell selection class shows an up-regulation for most genes at Day 6/0, 

indicating that this function is activated after day 3. Surprisingly, the results here indicate that 

the parasites are involved in T-cell selection and activation, which might allow the 

destruction of infected cells. Nonetheless, further lab investigations are needed to have a clear 

understating of T-cell interaction with the T. gondii-infected neural cells. 

Cluster analysis of the genes under immune response indicates a host response to infection 

inducing chemokines and cytokines that recruit and activate different immune cells. 

Interestingly, genes that are involved in catecholamine metabolism are also categorized in the 

immune response and differentially expressed. As dopamine, norepinephrine and epinephrine 

have immunomodulator effect, the relation between catecholamines and the immune system 

has been previously reviewed (Sarkar et al., 2010; Madden et al., 1995).    
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4.6.2 T. gondii gene expression analysis 

One of the aims of this study is to understand the molecular alterations of neuronal cells 

induced by T. gondii and the mechanism of these inductions. Therefore, bioinformatics 

analysis of the parasite transcriptome was also performed to investigate host-parasite 

interactions. The results confirm bradyzoite differentiation and mimicking of the chronic 

stage of infection (Table 4-8). 

Dense granules proteins (GRA) are secreted to alter the PV and acquisition of nutrients. 

Actually, GRA1, GRA3, GRA7, GRA2, GRA4, GRA6, GRA9, GRA12, and GRA14 are 

involved in the vacuolar network membranes. GRA2, GRA4 and GRA6 is associated with 

the formation of a multimeric protein complex, while GRA3, GRA5, GRA7, GRA8 and 

GRA10 are specially detected as PVM associated proteins (Nam, 2009). Recently, GRA 

proteins were found to be exported outside the PV and reach host nucleus and alter host gene 

expression (Bougdour et al., 2014). However, the results show that the GRA proteins 

expressed (Table 4-10) have a similar DE profile that is similar to housekeeping genes. This 

indicates that these GRA functions continued throughout the experiment and did not have a 

specific expression pattern in neuronal cells. 

Rhoptry organelles are the most unique organelles found in apicomplexan parasites (Sam-

Yellowe, 1996); these organelles secret their rhoptry proteins (ROP) after the invasion and 

also inject these proteins into uninfected cells (Koshy et al., 2012). In this study, ROP11, 

ROP15 and ROP41 were highly up-regulated, indicating that these ROP proteins may have a 

major role during neuronal cell infection. ROP11 and ROP41 were previously suggested to 

be active kinases (Bradley et al., 2005; Peixoto et al., 2010), while the function of ROP15 is 

unknown. In addition, ROP5 was moderately up-regulated, indicating an increase in the 

activity of ROP18, as ROP5 is a pseudokinase that acts as a cofactor for ROP18 that facilitate 

the phosphorylation of the target by the kinase (ROB18) (Fleckenstein et al., 2012). 

Furthermore, the expression profile of these ROP in PC12 cells is very different from their 

expression profile in HFF (www.toxoDB.org) indicating that the parasite might have a 

distinct expression in different hosts and cell types. 

Micronemes are adhesion proteins involved in parasite motility and host cell invasion. (Table 

4-10) shows the microneme differentially expressed during the infection. First, MIC1 ,MIC4 

and MIC6 expression is up-regulated; these micronemes form a complex MIC1/4/6 that is 

involved in gliding motility and cell invasion by being an essential part of the actin–myosin 

http://www.toxodb.org/
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driven propulsion system (Opitz and Soldati, 2002).  The up-regulation of this MIC complex 

indicates that the parasite undergoes new host cell invasion.  

Moreover, MIC7 and MIC13 were excessively up-regulated (3.4) and (13.5) respectively; 

MIC7 and MIC13 are bradyzoite specific (Buchholz et al., 2011). This result further confirms 

bradyzoite differentiation. Moreover, MIC13 expression was previously reported to increase 

during mouse brain infection (Pittman et al., 2014) suggesting that this protein might have a 

specific neurological function. Finally, TGME49_054430, a putative MIC, was down-

regulated; the putative GO biological functions of this protein are proteolysis and blood 

coagulation (toxoDB). This protein was reported in the oocyst wall fraction (Fritz et al., 

2012) and was down-regulated during the merozoite stages (Behinke et al., 2014). In this 

study, TGME49_054430 was down-regulated during the bradyzoite stage infection of 

neuronal cells.     

One of the interesting GO terms that was found to be associated with down-regulated genes is 

the cation transport and ion transport GO term at day 6/0; cation transport genes are related to 

neuronal functions, suggesting that certain aspects of neurological function may have 

diminished during T. gondii infection. This result was reported previously, as cation transport 

was also associated with down-regulated genes in T. gondii-infected mice brain transcriptome 

(Tanaka et al., 2013) 

At day 3/0, the up-regulated genes GO enrichment score revealed that the T. gondii 

glycosylation function is significantly increased. T. gondii glycosylation is important for host 

parasite interaction, inhibition of glycosylation of RH stain T. gondii with tunicamycin loses 

the ability to invade host cells and the few parasites that invade the host were found to be 

incapable of replicating and accumulating with a distended endoplasmic reticulum, deformed 

nuclei, and without recognizable late secretory organelles (Luk et al., 2008). Moreover, the 

proteomics and glycan analyses of RH stain glycoproteins identified components involved in 

gliding motility, moving junction, and other additional functions implicated in intracellular 

development (Fauquenoy et al., 2008). Furthermore, glycosylation is important for the 

formation of the bradyzoite cyst wall (Zhang et al., 2001) and N-glycosylation and O-

glycosylation activity was demonstrated from T. gondii extract (Dieckmann-Schuppert et al., 

1994; Stwora-Wojczyk et al., 2004b; Stwora-Wojczyk et al., 2004a).  
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4.6.3 Conclusion 

Overall, the analysis of the RNA sequencing results for infected PC12 cells have shown that 

the parasite induces a high number of changes in the infected cells, influencing a number of 

neurophysiological functions. These suggest that the parasite has a specific effect on the 

neuropsychological state of the host through different mechanisms, yet the outcome of the 

infection on the psychological state of the host is a result of the interaction of T. gondii -

induced changes with other psychological factors. In addition, the analysis provided a model 

of the non-immunological (neuronal) host cells innate immune response to T. gondii 

infection. 

Our experiments were performed on rat cells, a T. gondii intermediate host. While humans 

are an accidental intermediate host, it is important to note that the effect of T. gondii on 

humans might be different and the results should be confirmed on human cells. Moreover, in 

vivo investigations and behaviour studies confirm T. gondii mechanisms of neurological 

alterations are necessary to understand the outcome of these transcriptional changes. Further 

studies to understand the relationship between T. gondii and other neurodevelopmental 

diseases, while measuring cytokines and chemotaxis released from infected cells media, will 

be needed to confirm the innate immunity results. 

In addition, several experiments may be performed to help understand the mechanism of T. 

gondii down-regulation of DBH. In addition, the special secretory protein (ROP, MIC and 

GRA) profile of T. gondii might be confirmed by the construction of T. gondii knockouts for 

these proteins, to reveal the function of these protein and their contributions in host altering.   

Finally, all these results are transcriptomic and need to be further confirmed by proteomic 

analysis to assure that these transcriptome modifications affect the protein expression of these 

genes (Xia et al., 2008). Moreover, it might be helpful to repeat with in vivo infected brains, 

though isolation of infected cells, e.g., laser capture, is required.  
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Chapter Five 

5 Discussion 

Immunological and neurological host parasite interaction during neural 
infection: the mechanisms of manipulation 
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The previous chapters’ experimental results have led to expanding our knowledge and 

understanding of T. gondii and its host interactions, particularly investigating mechanisms of 

neurophysiological changes that may be involved in host behavioural changes. 

It was hypothesized that the parasite changes the host’s behaviour via several mechanisms, 

for example, changing neurotransmitter levels, specifically dopamine, based on the 

observation of increased dopamine during T. gondii infection in vivo and in vitro (Gaskell et 

al., 2009; Prandovszky et al., 2011; Xiao et al., 2014). Further influences might be imposed, 

for example, by the location of the T. gondii cysts in the host brain or host response to 

infection. 

One indirect mechanism is based on this hypothetical sequence: first, T. gondii activates 

astrocytes, which leads to an increase in the formation of kynurenic acid (KYNA) in the 

brain. Increased brain KYNA levels, in turn, contribute to an excessive reduction in 

glutamatergic and nicotinergic neurotransmitters, which is believed to play an important role 

in the pathogenesis of schizophrenia.  

Advancements in our knowledge related to both mechanisms will be discussed in this chapter 

and will be occasionally interjected with previous information to acquire an extensive 

understanding of the host behaviour change mechanism by T. gondii. 
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5.1  Proximate mechanisms  

An important change in the neural system is the influence of the parasite on catecholamine 

metabolism. The components involved in catecholamine metabolism start with the 

hydroxylation of phenylalanine to tyrosine by the enzyme phenylalanine hydroxylase. The 

synthesised tyrosine, in addition to tyrosine acquired from the diet, is metabolised to L-Dopa 

by tyrosine hydroxylase. L-Dopa is converted to dopamine by aromatic L-amino acid 

decarboxylase (AADC). Finally, dopamine is converted to norepinephrine and epinephrine by 

dopamine beta hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT). 

Also catecholamines are degraded by several monoamines. Figure 5-1 illustrates this 

pathway. 

During T. gondii infection various modifications in the catecholamine metabolism occur. 

These modifications include up- and down-regulation of (host) enzymes that are involved in 

the anabolism or catabolism of catecholamines, involvement of T. gondii enzymes in 

catecholamine metabolism directly (chapter 4) and increase the secretion of the synthesised 

metabolites. Figure 5-1  summarises the changes with infection, Based on the findings of the 

RNA-Seq analysis and prior work the changes in catecholamine metabolism include major 

increases in DA and L-dopa whilst catabolism of DA to NE, E and DOPAC are substantially 

decreased. 
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 Figure 0-1: Catecholamine metabolism during T. gondii infection. 
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Phenylalanine hydroxylase was down-regulated although the reasoning for this down-

regulation is not clear, although it is intriguing that TgAaaH and, to a lesser degree, host TH 

convert phenylalanine to tyrosine and a consequence of decreasing PAH would be to liberate 

more of the shared co-factor tetrahydrobiopterin for TH activity.   

Moreover a recent study of micro RNA (Xiao et al., 2014), showed that T. gondii down-

regulates MaoA and MaoB. This might be an additional mechanism to increase the level of 

dopamine by modifying the dopamine static system, via down-regulation of enzymes 

involved in breaking down dopamine as a part of a negative feedback circuit for excess 

produced dopamine.  

Furthermore, the parasite also increases dopamine synthesis via massive down-regulation of 

dopamine beta hydroxylase (DBH) (chapter 4), i.e., the enzyme that catalyses dopamine to 

norepinephrine. This finding was further confirmed by RT-PCR for DBH mRNA from T. 

gondii-infected PC12 cells, which showed a direct relation between the number of the 

parasites and the reduction in DBH expression. This effect would be restricted to neurones 

expressing DBH. Finally, DBH levels were detected in vivo; mRNA from rat brain sections 

homogenate confirmed the in vitro results. In contrast to male rat results, the female rat 

results did not show a reduction. Hence, T. gondii infection does not only increase dopamine 

production, but also decreases NE and E production too. This observation fits well with 

observations that  T. gondii  behaviour change is sex-specific (Flegr et al., 2008, Xiao et al., 

2012) since in vivo study showed different expression patterns of DBH in the infected male 

and female rat brains. NE and E were also decreased in T. gondii-infected PC12 cells 

corresponding with decreases in DBH mRNA. The effect correlated with numbers of T. 

gondii parasites.  

Another modification in the catecholamine pathway is the elevated expression of 

monooxygenase DBH-like 2 (Moxd2), an enzyme that might have a DBH like function and is 

principally expressed in the medial olfactory epithelium (Su et al., 2004). This may indicate a 

direct modification by T. gondii on the olfactory function and imply that the infection could 

induce different modifications in different brain regions with Moxd2 at least partially 

compensating for the decrease in DBH. Finally, dopamine receptor D2R was over-expressed 

during infection, while D1R expression was previously reported to decrease during infection 

(Xiao et al., 2014). D1R and D2R exert opposing intracellular effects on cAMP signalling; 

Drd1 activates it, whereas Drd2 inhibits it (Sibley et al., 1993).  
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GO enrichment analysis of RNA-Seq data showed that G-protein coupled receptor signalling 

pathway genes are down-regulated. Further, dopamine receptors are G-protein coupled 

receptors, this observation combined with the modification of specific dopamine receptors, 

might suggest that these changes contribute to the behaviour change pathology. Especially as 

D2R-enhanced sensitivity was postulated in schizophrenia pathology (Seeman et al., 2005, 

Seeman et al., 2007) and the over-expression of D2R led to enhanced electrophysiological 

responses to D2R activation in midbrain dopaminergic neurons and behavioural 

hypersensitivity to D2R-like agonists (Kramer et al., 2011). In addition, the GO enrichment 

results showed that the parasite up-regulated catecholamine secretion genes in the infected 

cells suggesting that the increased amounts of dopamine were secreted from the infected 

cells.  

In summary, modifications in the catecholamine pathway are indicative of many neurological 

changes that can lead to behavioural changes. T. gondii‘s proximate effects are not based on a 

single modification, the parasite influences (host) neurotransmitter and receptor expression to 

induce specific changes in the host’s psychological status.  

Other effects on host neurology were revealed by RNA-Seq data analysis (chapter 4). Gene 

ontology grouping revealed that the parasite modulates cell-cell signalling, in line with 

observations that bradyzoites and tachyzoites can functionally silence infected neurons 

(Haroon et al., 2012). In addition, gene ontology grouping showed that the parasite modulates 

neurodevelopmental genes. In fact, the effect of congenital toxoplasmosis on foetal 

neurodevelopment is the major clinical manifestation of toxoplasmosis. Clinical 

manifestation includes a range of neurological diseases such as retinochoroiditis, blindness, 

epilepsy, psychomotor or mental retardation, encephalitis, microcephaly, intracranial 

calcification and hydrocephalus that may be due to parasite proliferation or effects of cyst 

stages (Dunn et al., 1999; Remington, 2001). In addition schizophrenia is a 

neurodevelopmental disease; and the risk of schizophrenia is 2.5 fold increased in those with 

elevated maternal T. gondii IgG antibodies (Brown et al., 2005).  

However, these studies were conducted with PC12 cells which are embryonic cells extracted 

from  a pheochromocytoma of the rat adrenal medulla, and have an embryonic origin from 

the neural crest (Greene and Tischler, 1976); therefore, the infection of adult brain might 

elicit different modifications. In addition, the infection location in the brain might be critical 

for the infection outcome. The expression profile of different cells in different brain regions 

widely varies. Indeed, effects on dopamine would not be observed in non-catecholaminergic 

http://en.wikipedia.org/wiki/Pheochromocytoma
http://en.wikipedia.org/wiki/Rat
http://en.wikipedia.org/wiki/Adrenal_medulla
http://en.wikipedia.org/wiki/Embryonic
http://en.wikipedia.org/wiki/Neural_crest
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brain cells when infected. Neuronal cell bodies in the brainstem produce dopamine; the two 

areas are the substantia nigra and the ventral tegmental area, while melanin-pigmented cell 

bodies in locus ceruleus produce norepinephrine.  

Moreover, dopamine receptors are expressed in many brain areas. D1 dopamine receptors are 

highly expressed in nigrostriatal, mesolimbic, and mesocortical areas, such as the caudate-

putamen (striatum), nucleus accumbens, substantia nigra, olfactory bulb, amygdala, and the 

frontal cortex  whereas lower expression levels are found in the hippocampus, cerebellum, 

thalamic areas, and hypothalamic areas. D2R dopamine receptors meanwhile are found at a 

high density in the striatum, nucleus accumbens, and the olfactory tubercle. D2 receptors are 

also expressed at significant levels in the substantia nigra, ventral tegmental area, 

hypothalamus, cortical areas, septum, amygdala, and hippocampus (Missale et al., 1998; 

Beaulieu and Gainetdinov, 2011). Hence, the site of the infection might induce different 

effects according to the type of the infected cells. Although T. gondii parasites do not have 

any preference for specific brain regions in their secondary hosts, the amygdala may be more 

consistently infected (Vyas et al., 2007a) 

Another example of a site-specific modification is the effect of the parasite on olfactory 

function: if the olfactory epithelium was infected, this will lead to the overexpression of 

Moxd2. GO enrichment analysis revealed that genes associated with olfactory function such 

as G-protein coupled receptor signalling pathway, detection of stimulus involved in sensory 

perception, detection of chemical stimulus involved in sensory perception, detection of 

stimulus sensory organ development and olfactory pit development were down-regulated. 

These results may suggest that the parasite directly controls the olfactory functions in the 

brain, although further investigation is needed on olfactory cells. 

Lastly, another mechanism that might contribute to the host behaviour change is NMDR 

manipulation by the parasite. RNA-Seq analysis showed that the infection affects host 

NMDR expression. Previous pharmacologic, genetic, and biochemical evidence supports the 

idea that NMDR hypofunction is a key etiological component of schizophrenia (Krystal et al., 

1994; Lahti et al., 2001; Dalmau et al., 2007; Allain et al., 1998; Dalmau et al., 2011; Kirov 

et al., 2012; Fromer et al., 2014; Purcell et al., 2014). NMDR involvement may also function 

as an indirect mechanism through KYNA, as discussed in the next section.  

All the changed mechanisms that could affect behaviour are summarised in Figure 5-2. 
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Figure 0-2: Flow chart summarises the host’s neurological changes induced by T. gondii. 
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5.2  The indirect mechanisms of neurological change 

Indirect mechanisms of altering neurological function through the immune system have been 

suggested. The hypothesis stated that infection activates astrocytes, which then induce IDO 

leading to the production and release of KYNA(Schwarcz and Hunter, 2007). KYNA blocks 

the NMDR and α-7- nicotinic acetylcholine receptors which then lead to a decrease of 

dopamine in the brain. 

An investigation on the mechanisms in KYNA and T. gondii infection was carried out for the 

first time in this study (chapter 3). First, the KYNA effect on dopamine was confirmed in 

vitro: KYNA decreases dopamine production from PC12 cells, replicating observations in 

vivo. Surprisingly, T. gondii blocked the KYNA effect on PC12 cells and no reduction in 

dopamine levels was detected. KYNA was found to reduce Ser19 phosphorylation in the 

regulatory domain of TH; that will lead to TH activity reduction and therefore reduced 

dopamine production. T. gondii blocked this activity by KYNA on Ser19 phosphorylation.   

These results contradict an indirect mechanism hypothesis of behaviour modification. 

Mainly, the relationship between the host immune system and T. gondii showed that the 

parasite controls the host system mostly and therefore the parasite can subvert mechanisms 

for the parasite advantage.. 

Another KYNA effect is the relationship between KYNA and NMDR. KYNA is a non-

competitive antagonist at the glycine site of the NMDA receptor (IC50 ∼8 µM) (Kessler et 

al., 1989)(Parsons et al., 1997). RNA-Seq bioinformatics analysis of GO grouping showed 

that the parasite infection of PC12 cells moderated NMDR expression. However, further 

investigations on the effect of T. gondii on the glycine-binding site and the receptor response 

to agonist and antagonist like KYNA are needed. Yet, it is important to study KYNA levels 

during infection as KYNA has pleiotropic effects such as, interactions with orphan G protein-

coupled receptor GPR35 (Wang et al., 2006) or the aryl hydrocarbon receptor (DiNatale et 

al., 2010). 

5.3 T. gondii interaction with the host immune system during in vitro infection 

During T. gondii infection, parasites persist as intra-neuronal cysts that are controlled but not 

eliminated. The immune system controls the infection via brain-resident cells including 

leukocytes, astrocytes and microglia while neurons contribute to the brain immune response 

via the production of cytokines, chemokines and expression of immune-regulatory cell 

surface molecules, such as major histocompatibility (MHC) antigens. The parasite avoids 
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elimination by several approaches to subvert the immune system. In this study, the neurons’ 

immune response to the infection and the parasite methods to avoid host elimination were 

investigated. 

During T. gondii infection, the host’s immune response initiates tryptophan starvation by 

increasing the expression of IDO (Pfefferkorn and Guyre, 1984; Pfefferkorn et al., 1986). In 

this study, experiments on the effect of tryptophan starvation on parasite survival have shown 

that tryptophan starvation did not eliminate T. gondii in vitro (chapter 3). Tryptophan 

starvation induced bradyzoite differentiation and cystogenesis. Amino acid starvation can 

trigger the loss of mitochondrial integrity. Mitochondrial depolarization is evidence of 

autophagy in both yeast and mammalians caused by nutrient starvation (Rodriguez-Enriquez 

et al., 2009; Rodriguez-Enriquez et al., 2006; Zhang et al., 2007). Tryptophan starvation was 

found to differ from amino acid starvation as the parasite mitochondria remained intact and 

no sign of autophagy was detectable using the Mitotracker stain.    

The kynurenine pathway has an immune-regulatory role. As stated previously, T. gondii 

blocks KYNA effects on dopamine production. Yet the effect of KYNA and other kynurenine 

catabolites on the immune system during T. gondii infection and the relationship with the 

immune system are unknown. The IDO-mediated tryptophan catabolism plays a significant 

counter-regulatory role in down-regulation of the immune system, as IDO suppresses T cell 

response by induction of regulatory T cells. IDO-kynurenine pathway can serve as a negative 

feedback loop for TH1 cells. By down-regulating the immune response, IDO and the 

kynurenines have an anti-inflammatory effect. Furthermore, the close connection between the 

cytokine and kynurenine systems, and any imbalance in the cytokine activation, with a 

consequent change in the kynurenine cascade, might cause neurologic or psychiatric 

disorders (Mándi and Vécsei, 2012). 

T. gondii infection induces host immune responses in neuronal cells. Transcriptome analyses 

of infected PC12 cells have provided precise details of this immune response (chapter 1). 

Grouping the significant genes into GO terms revealed that the cytokines GO term had the 

highest enrichment score and therefore the most significant immunological activation. The 

results also showed that the infection down-regulated key innate immune mediators like 

CXCL12, CXCL11 and IL-15, thus reinforcing that the parasite manipulates the innate 

immune response to the parasites advantage. On the other hand, the key regulators for pro-

inflammatory (IL-12) and anti-inflammatory immune response (IL-10) during T. gondii 

infection are highly up regulated during the infection, especially at day 6.  
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Another immunological function found to be modified by GO analysis of the RNA-Seq data 

is the chemotaxis GO term. The results showed an up-regulation in most of the genes 

involved in this GO term, and shows that chemokine ligand CCL2, CCL5, CCL20 and 

CCL24 are the major chemotaxis induced and potentially involved in recruiting immune cells 

to the T. gondii-infected cell.  

GO term analysis also showed that the Immunoglobulin-fold like genes were also 

differentially expressed during neural cell infection. This protein domain is found in many 

proteins including immunoglobulins, receptors, adhesion molecules and MHC class I and II 

antigens. The analysis showed that the up-regulated genes are involved in MHCI expression, 

the MHC class that presents antigens of intracellular pathogens to CD8 T cells. On the hand, 

the parasite altered the expression of some receptors that were involved in immune 

regulation, such as CD3. Previously, T. gondii was found to down-regulate surface major 

histocompatibility complex (MHC) class II on infected cells by inhibition of the STAT1 

signalling pathway (Luder et al., 2001) and infected neurons showed low MHC class I 

expression (Wilson et al., 2009). 

T-cell selection genes showed an up-regulation for most genes at day 6, indicating that this 

function is activated after day 3; surprisingly, the results show that the genes are involved in 

T-cell selection and activation, which might allow the host cell to control the infection via the 

T-cell. Further lab investigations are need to clarify the role of these altered genes T. gondii. 

Network analysis of genes categorized under immunological GO terms during T.gondi 

infection suggests that infection induces chemokines and cytokines together that will recruit 

and activate different immune cells. Interestingly, the genes involved in catecholamine 

metabolism were also included as these have an immunomodulator effect as previously 

reviewed (Sarkar et al., 2010; Elenkov, 2008). The involvement of catecholamine metabolism 

genes in immune response, illustrates the interaction between the nervous system and 

immune system and the parasite, by manipulating catecholamine metabolism, is manipulating 

the immune response.   

In addition, the GO enrichment analysis revealed that the parasite also affects another 

hormone that has an anti-inflammatory effect. Pregnanes contain 21 carbons (C21 steroids); 

these GO term genes were found to be up-regulated during infection. C21 steroids, including 

progesterone and corticosteroids, have anti-inflammatory effects. The injection of cortisone 

in T. gondii infected mice increased the number of tachyzoites and cysts in the brain of the 
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infected mice (Hulinska et al., 1990). This indicates that the increase in C21 steroid hormone 

might be another method to modulate the host immune response to  the T. gondii advantage.  

Finally, the G-protein coupled receptor (GPCR) signalling pathway that was observed to be 

down-regulated in GO enrichment analysis is also involve in immune modulation. GPCRs are 

expressed by immune cells and involved in several immune functions such as 

chemoattractant and chemokines (Lombardi et al., 2002). In addition, the injection of soluble 

extracts of T. gondii induced G-protein-coupled signalling through the chemokine receptor 

CCR5, and consequently, plays a major role in the induction of IL-12 from these cells 

(Aliberti and Sher, 2002). Therefore, the down-regulation of this signalling pathway might 

reduce host resistance. 

In summary, the RNA-Seq data have provided detailed transcriptome information about the 

cytokine, chemotaxis, MHC expression and T-cell selection genes involved in the immune 

response, as well as the secretion of anti-inflammatory steroids and down-regulating of the G-

protein coupled receptors to subvert the immune response and the effect of the increased 

dopamine on immune response. 
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5.4 T. gondii host manipulation mechanisms and effector proteins 

Although the parasite is enclosed inside the parasitophorous vacuole, the parasite delivers 

effector protein to the host cell; these proteins interface with the host response by modifying 

the host-signalling pathway, co-opt the host transcription factors, and eventually modulate the 

gene expression. Secretory proteins (micronemes, rhoptry and dense granules) are the main 

effectors; the dense granules proteins deliver products that remain confined in the vacuolar 

space or export to the host cell nucleus and contribute to altered host gene expression. 

RNA Seq simultaneously provided the transcriptome of T. gondii during the infection of 

neuronal cells (PC12) (chapter 4). First, the analysis showed that the experiment succeeded to 

mimic the chronic stage of the infection by showing an up-regulation of different bradyzoite 

specific markers, both structural (BAG1, ENO1 and SAG4) and functional (MIC7, MIC13). 

Furthermore, the T. gondii genes involved with cell invasion and PV formation are  

moderately up-regulated (similar to the housekeeping genes). MIC1, MIC4 and MIC6 

expression showed this expression pattern; these micronemes form a complex MIC1/4/6 that 

were involved in gliding motility and cell invasion by being an essential part of the actin-

myosin driven propulsion system (Opitz and Soldati, 2002). GRA1, 2, 3, 5, 7 and 8 also had 

this expression pattern, dense granules proteins (GRA) are secreted to alter the PV and 

acquire nutrient. The expression of the MIC complex and GRA protein indicates that the 

parasite is to undergo new host cell invasion and PV formation, but these functions are 

limited compared to bradyzoite differentiation and cystogenesis.  

The results have shown that T. gondii transcriptome during neuronal infection is unique, and 

different from the transcriptome of bradyzoites infecting human foreskin fibroblast cells 

(toxoDB). For example, ROP proteins have a special expression pattern during PC12 

infection. This indicates that the parasite might have a distinct expression in different host 

and cell types. In this study, ROP11, ROP15 and ROP41 were highly up-regulated, indicating 

that these ROP proteins may have a major function during neuronal cell infection. ROP11 

and ROP41 were previously suggested to be active kinases (Bradley et al., 2005; Peixoto et 

al., 2010), while the function of ROP15 in unknown. Other ROP proteins were expressed 

throughout the experiment, but no differential expression was found between different time 

points. This indicates that the modifications in host gene expression might be caused by the 

secretion of ROP11, 15 and 41. However, a moderate up-regulation of ROP5 might indicate 

an increase in the activity of ROP18, as ROP5 is a pseudokinase that facilitates the 
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phosphorylation of the target by the kinase (ROP18) by acting as a cofactor for ROP18   

(Fleckenstein et al., 2012). 

As mentioned previously, we found that the parasite blocks the KYNA effect on dopamine 

levels by blocking the down-regulation of tyrosine hydroxylase ser19 phosphorylation by 

KYNA. Previous studies have shown that T. gondii phosphorylates host proteins and thereby 

activates host transcription factors. For example ROP16 phosphorylates serine to activate 

STAT1 (Jensen et al., 2013), and phosphorylates tyrosine to activate STAT3 and STAT6 

proteins (Saeij et al., 2007). While GRA24 triggers an unusual and sustained p38a auto-

phosphorylation (Braun et al., 2013), ROP18 is another known serine/threonine protein 

kinase that phosphorylates host protein to modulate virulence. It phosphorylates immunity-

related p47 GTPases (IRG) proteins and impairs their accumulation on the PV membrane 

(Fentress et al., 2010; Steinfeldt et al., 2010) and phosphorylates the host endoplasmic 

reticulum–bound transcription factor ATF6β leading to ATF6β  proteasome-dependent 

degradation and interface with host immune response (Yamamoto et al., 2011). And, finally, 

it inhibits the host NF-κB pathway (Du et al., 2014). T. gondii is also able to block the host 

phosphorylation directly, for example: T. gondii prevents histone H3 Ser10 phosphorylation 

and Lys9/14 acetylation at the IL-10 promoter and TNF-α promoter too, leading to reductions 

in IL-10 and TNF production in infected microphages (Leng and Denkers, 2009; Leng et al., 

2009). 

Moreover, T. gondii down-regulates cytokines by targeting the host cell chromatin 

remodelling machinery. This suggests that DBH might be down-regulated via similar 

machinery; however, this hypothesis needs to be further investigated alongside other down-

regulating machinery like signalling pathway activation (Zhou et al., 2013). 

RNA-Seq revealed that parasite glycosylation genes are modulated during the early stages of 

bradyzoite conversion (day 3). Glycosylation is an important mechanism for host-parasite 

interactions as inhibition of glycosylation of RH strain parasites with tunicamycin led to a 

loss in the ability to invade host cells and the few parasites that invaded the host were found 

to be incapable of replicating, accumulating with a distended endoplasmic reticulum, 

deformed nuclei, and without recognizable late secretory organelles (Luk et al., 2008). 

Proteomic and glycan analyses of RH glycoproteins identified components involved in the 

moving junction and gliding motility, and additional functions involved in intracellular 

development (Fauquenoy et al., 2008). Furthermore, glycosylation is important for the 

formation of the bradyzoite cyst wall (Zhang et al., 2001) and N-glycosylation and O-
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glycosylation activity has already been demonstrated in T. gondii extracts (Dieckmann-

Schuppert et al., 1994; Stwora-Wojczyk et al., 2004b; Stwora-Wojczyk et al., 2004a). In sum, 

glycosylation is important in the host-parasite machinery during the early stages of infection.  

The parasite may down-regulate neuronal functions directly through T. gondii gene 

expression; for example, cation transport genes were down-regulated, and, since cation 

transport genes are related to neuronal functions, this suggests that certain aspects of 

neurological function may be diminished during T. gondii infection. A similar result was 

previously reported in transcriptome analysis of T. gondii infected mice with an association 

between the cation transport GO term and the down-regulated genes (Tanaka et al., 2013).  

Further confirmation of the biological impact of our results would be provided by examining 

transcriptomic changes from in vivo infected neurones, on both genders. Also the findings 

here show RNA changes and parallel experiments should include proteomic analysis to 

confirm the transcriptome data. In addition, it might be useful to conduct these experiments 

on human cell lines due to the importance of T. gondii infection in humans. Finally, further 

investigation of the parasite mechanism of down-regulating DBH expression is needed. 

RNA-Seq is an ideal method to understand tachyzoite-bradyzoite differentiation, and the TRP 

free media described in this thesis could by used to perform this experiment. Moreover, 

expression patterns in different cell types could by investigated for a better global 

understanding of T. gondii host  manipulation .  
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