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Abstract

This thesis investigates approaches to virtual room acoustic modelling and auralisation

in order to a develop hybrid modelling solution that is capable of efficient and accurate

simulation of enclosed sound propagation. Emphasis is placed on the advantages and

disadvantages of state of the art numerical and geometric acoustic modelling methods.

Numerical methods have been shown to preserve important sound wave characteristics

such as diffraction and room modes, and are considered more accurate for low fre-

quency acoustic modelling than geometric techniques which fail to preserve such wave

effects. However, the implementation of numerical acoustic models inherently requires

large computational effort compared to more efficient geometric techniques such as

ray-tracing. This is particularly problematic for simulations of large-scale 3D acoustic

environments and for high spatio-temporal sampling rates. A novel acoustic modelling

solution is presented, which seeks to circumvent the disadvantageous computational

requirements of 3D numerical models while producing a suitable approximation to low

frequency sound behaviour. This modelling technique incorporates multiple planar

cross-sectional 2D Finite Difference schemes that are utilised in combination to syn-

thesise low frequency wave propagation throughout the target acoustic field. In this

way a subset of prominent low frequency sound wave characteristics may be emulated

with low computational cost compared to 3D numerical schemes. These low-frequency

results can then be combined with the high-frequency output from efficient geometric

simulations to create a hybrid model providing accurate broadband results at a rela-

tively low computational cost. Investigation of room impulse response rendering for a

series of theoretic and real spaces demonstrates advantages of this new hybrid acoustic

modelling technique over purely ray-based methods in terms of low frequency accuracy,

and over 3D numerical methods in terms of computational efficiency. Conclusions are

drawn from objective measurements obtained from simulation results of the virtual

models produced. Results demonstrate the applicability of the novel hybrid approach

to the enhancement of purely ray-based room impulse response rendering by which a

more realistic representation of low frequency wave phenomena may be simulated in an

efficient manner, improving the theoretical accuracy of objective and audible results.

This study contributes towards research and design of high-speed, interactive virtual

acoustic simulations appropriate for industrial and creative virtual reality applications.
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Chapter 1

Introduction

The process of room acoustic modelling seeks to digitally simulate the propagation

of sound through enclosed environments. This, in turn, facilitates the analysis and

sonic reproduction of real or theoretical spaces. In recent decades, various acous-

tic simulation procedures have undergone significant development to provide reliable

means of designing, examining and shaping the world around us. The acoustic char-

acteristics of a given space may be predicted in an objective sense and subjectively

experienced through auralisation: the reproduction of a soundfield over loudspeakers

or headphones. Several commercial and industrial applications rely on and benefit from

this outcome. For instance: in architectural consultancy, acoustic modelling processes

are used to investigate and listen to the sonic properties of a new building or structure

to inform important acoustic design decisions prior to construction; for virtual reality

systems, where a primary aim is to convince a person they are somewhere they are

not, the simulation and presentation of accurate auditory information is required to

produce an immersive and realistic user experience; room acoustic modelling methods

may be applied to the simulation of external environments supporting the study of

noise control to objectively and perceptually evaluate the impact of day-to-day factors

(e.g. transportation networks, large-scale industry projects, noise from machinery) on

soundfields in which people live, work and socialise; digital heritage uses acoustic mod-

elling to represent soundfields in areas of historic architectural/cultural significance

for posterity and to recreate the sound experienced by historic communities in spaces

which no longer exist.
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1.1 Motivation

There are two categories of acoustic modelling techniques: numerical and geometric.

While geometric methods are considered appropriate for simulating only mid-to-high

frequency sound propagation, they are in general less computationally expensive than

alternative numerical methods. Currently, there is a prevalence of geometric modelling

methods applied to both industry (e.g. acoustic consultancy, architectural design, noise

pollution control) and creative arts (e.g. game audio development, virtual reality sys-

tems, sound design and composition). The author postulates that this prevalence is

influenced by established use of geometric acoustic modelling techniques, which have

been in existence for a longer period than numerical methods, and the prohibitive

computational costs inherent to numerical acoustic modelling. As such, areas of in-

dustry in which sound simulation is a primary concern have yet to harness the proven

capabilities of numerical acoustic modelling for faithfully representing wave motion.

Furthermore, acoustic modelling procedures that facilitate real-time manipulation of

simulated soundfields are an attractive proposition for all applications listed previously.

With dynamic control of model attributes, such as geometry and source/receiver loca-

tions, it is possible to rapidly examine and experience changes in a simulated soundfield

as the model attributes are altered.

This thesis is concerned with reducing the computational requirements of numerical

acoustic models while maintaining a level of accuracy in the representation of low

frequency wave characteristics which cannot be achieved using alternative geometric

modelling methods. To this end, numerical modelling is applied to simulate sound

propagation over 2D planar cross-sections of a target acoustic field as part of a hybrid

acoustic modelling approach. This reduction in dimensionality provides an approxima-

tion to 3D wave simulation while providing significant savings in memory requirements

and simulation run-times compared to full 3D numerical modelling.

1.2 Statement of Hypothesis

This research examines the applicability of 2D Finite Difference Time Domain (FDTD)

schemes to the simulation of low frequency sound propagation in enclosed spaces as

part of a hybrid RIR synthesis solution. As discussed in the statement of motivation,

the justification for this work stems from the following concepts:

• Prohibitive computational requirements of numerical acoustic modelling paradigms

is significantly alleviated by reducing the spatial dimensionality of the synthesised

target acoustic field.
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• Low frequency sound wave phenomena in 3D space may be represented, in part,

by efficient 2D numerical acoustic simulations.

• Wave characteristics, such as diffraction and resonances, may be emulated to a

higher level of accuracy in 2D numerical acoustic simulations than that attained

using alternative geometric acoustic modelling paradigms.

In line with the concepts above, a novel numerical acoustic modelling strategy, which

synthesises low frequency enclosed sound propagation by means of multiple 2D FDTD

planes, is developed in this study. This technique, termed ‘2D multiplane FDTD’, is

intended to be applied to virtual acoustic modelling in combination with high frequency

geometric simulations forming an efficient hybrid solution.

In order to examine the extent to which this new hybrid acoustic model is suited to the

task of simulating soundfields, the following hypothesis is investigated in this research:

2D multiplane FDTD acoustic modelling facilitates efficient simulation of low frequency

soundfields to a level of accuracy higher than geometric models and comparable to 3D

FDTD simulations as part of a hybrid modelling solution.

This hypothesis is assessed primarily through objective analysis of low frequency room

impulse responses (RIRs) synthesised using the 2D multiplane FDTD approach with

reference to results obtained from both 3D FDTD and geometric acoustic models.

These results are drawn from a range of virtual acoustic models created during the

course of this study. Simulation data pertaining to the computational cost of 2D

multiplane and 3D FDTD is documented in order to demonstrate the notable reduction

in memory and run-time requirements achieved by the multiplane approach compared

with 3D FDTD modelling.

1.3 Novel Contributions of this Thesis

In the completion of this thesis, the following novel contributions have been identified:

1) Comparison of three implementations of frequency-dependent absorbing boundary

conditions used in 3D FDTD acoustic simulations provides insight on the performance

of each in terms of accuracy and computational efficiency.

2) Investigation into the numerical stability of frequency-dependent and frequency-

independent locally reacting surface absorbing boundary conditions for standard recti-

linear 3D FDTD acoustic simulations leads to a reformulation of frequency-dependent
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boundary conditions that is shown to be robust against numerical instability issues

which arise for complex acoustic model geometries.

3) The development and evaluation of a 2D multiplane hybrid acoustic modelling solu-

tion demonstrates that this novel approach is capable of simulating RIRs with increased

accuracy at low frequencies compared to that produced using geometric methods only

while achieving significant reductions in computational cost compared to alternative

3D numerical acoustic modelling.

1.4 Thesis Structure

This section details the contents of this thesis as presented.

Chapter 2: A range of concepts drawn from fundamental acoustic theory are dis-

cussed. Particular attention is given to the principles of sound wave propagation in

enclosed environments and the means by which characteristics of room acoustics may

be quantified, analysed and explained. The theory reviewed in this chapter informs the

implementation and evaluation of virtual acoustic modelling paradigms developed for

the purposes of this work.

Chapter 3: An extensive review of current state of the art in virtual acoustics mod-

elling is presented in order to inform the design of the hybrid RIR synthesis method

investigated later in this thesis. The theoretical basis and implementation of a range

of geometric and acoustic modelling methods are examined to ascertain the scenar-

ios in which each may be successfully applied to the problem of RIR synthesis. This

involves assessing the capabilities and limitations inherent to each method. Addition-

ally, details of numerical/geometric hybrid acoustic modelling solutions are given to

demonstrate the advantages of hybrid approaches over purely geometric or numerical

methods. Findings support the application of the FDTD method to 2D multiplane

modelling.

Chapter 4: Having noted that the FDTD paradigm is appropriate for constructing

the 2D multiplane acoustic model, important aspects of rectilinear FDTD schemes are

examined in depth. Specifically, scheme isotropy, sound source excitation, RIR capture,

frequency-independent and frequency-dependent absorbing boundary conditions, and

numerical stability issues are detailed for both 2D and 3D FDTD simulations. With

reference to RIR capture, a method for deriving spatial RIRs from FDTD models is

briefly investigated. The concepts detailed in this chapter underpin and influence the

implementation of the 2D multiplane and 3D FDTD models created in order to investi-

gate the hypothesis that informs this thesis. This chapter includes an investigation into
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the implementation of three frequency-dependent absorbing boundary conditions for

3D FDTD acoustic models. Findings are drawn from analysis of objective results calcu-

lated from RIRs simulated using each boundary condition implementation and details

pertaining to the computational cost incurred in each modelling case. Additionally,

examination of numerical stability issues arising due to the use of absorbing boundary

conditions in rectilinear 3D FDTD acoustic model of complex room geometries are also

presented.

Chapter 5: In this chapter, the aspects of virtual acoustic modelling and acoustic

theory discussed in previous chapters are applied to the definition, implementation and

analysis of the 2D multiplane FDTD hybrid RIR synthesis approach. Objective results

drawn from RIRs produced for three scenarios of virtual room acoustic modelling are

applied to investigate the stated research hypothesis.

Chapter 6: Key findings of this work are summarised and reviewed with regards to

the guiding research hypothesis. The novel contributions of this work are reflected

upon in the context of recent developments in the field. Additionally, routes for future

studies that have been brought to light through completion of this work are detailed.



Chapter 2

Elements of Acoustic Theory for

Sound Simulation and Analysis

Theoretical acoustics is the study of physical systems that facilitate sound transmis-

sion. In general, such systems are derived from observed events and translated into

mathematical equations that seek to describe the nature of sound propagation in any

given medium. The phenomenon of sound may manifest in solids, liquids and gases

and exist beyond the ranges of human perception in the form of ‘infrasonics’ and ‘ul-

trasonics’. For the purposes of this work, the interest lies in sound that is detectable

by the human auditory system and propagates over a medium of bounded air, or more

plainly, ‘Room Acoustics’. When investigating the emulation of room acoustics via a

computer modelling method, it is required that an understanding of sound properties

be applied to inform the model’s design. More crucially, an appreciation of the as-

sumptions made to construct the governing mathematical equations provides insight

into potential limitations of any given modelling approach. Key principles of theoreti-

cal acoustics must be applied in order to evaluate the correctness of an acoustic model

through comparison of modelled results and those derived from theory. Furthermore,

an overview of the human hearing system and psychoacoustic concerns is necessary to

provide insight on the subjective evaluation of simulated audio. This chapter provides

a review of particular concepts in acoustics that are central to the topics of study pre-

sented throughout this work. The fundamental theory detailed in the following may

be found in various texts on the subject of acoustics, e.g. [1, 3, 23–27].

29



Chapter 2. Elements of Acoustic Theory for Sound Simulation and Analysis 30

Figure 2.1: A free-body diagram of the Simple Harmonic Oscillator with one degree of spa-
tial freedom x, comprised of a Mass (M) and Spring with constant (K) connected to a rigid
termination.

2.1 Principles of Wave Motion

Sound exists as waves. A wave may be described as the transport or movement of a dis-

turbance in a medium through the medium itself. In reality, the shape of a disturbance

of this kind, when viewed over space or time (or both), can take infinite forms depend-

ing on the state of the medium before excitation and the nature of the excitation that

caused the disturbance. In an idealistic case, sound waves travel unimpeded through-

out an isotropic fluid medium. Although this is a radical simplification of what occurs

in practice, analysis of such ideal cases provides important and useful expressions that

are central to the study of acoustics.

2.1.1 The Simple Harmonic Oscillator

Simple harmonic motion is a concept that provides the fundamental basis for the mathe-

matics of wave motion. The most basic mechanical system that supports this particular

type of behaviour is the simple harmonic oscillator (SHO). This system, as depicted

in Figure 2.1, is comprised of a mass body that is linked to a rigid termination via a

spring. To begin analysis, it is first assumed that the system is lossless and, therefore,

does not account for the effects of friction and so forth. Displacing the mass M in

the positive x direction produces a force F acting on the mass which is governed by

Hooke’s law:

F = −Kx (2.1)

where force F is measured in Newtons (N), K is the stiffness constant of the spring with

units kg
s2

and x is the amount by which the mass is displaced in metres (m). Employing

Newton’s second law of motion, it is possible to express the transient behaviour of the
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system by means of the time domain differential equation for SHO:

d2x

dt2
+
K

M
x = 0 (2.2)

a general solution to which is:

x = A cos(ω0t+ φ0) (2.3)

where ω0 =
√

K
M is angular frequency (rads/s), φ0 is a phase constant (rads) and A is

amplitude. As such, it is apparent that when the mass is displaced from its equilibrium

position and released, the resulting motion of the mass is unimpeded sinusoidal oscilla-

tion with resonant frequency f = ω0
2π Hz. This regular, or harmonic, mass displacement

over time represents lossless temporal sound wave motion and is recognised and per-

ceived as a single frequency ‘tone’. SHO is the fundamental basis of all sound waveforms

due to the fact that any complex waveform may be expressed as the weighted sum of

sinusoidal components in accordance with Fourier theory. In addition, the SHO can be

viewed as the building block of any acoustic system as it describes the oscillation of a

point mass over time. Coupling a series of these point masses in any degree of spatial

dimensionality creates a physical system that facilitates wave motion through time and

space.

2.1.2 Travelling Waves

As waves propagate throughout a medium, the medium itself deforms taking on the

shape of the wave across the space where the waveform is situated at some point in

time. This deformation is composed of a series of compressions and rarefactions that are

produced due to the transport of kinetic energy resulting from a disturbance. An apt

analogy to this process is provided by Howard & Angus [1], referred to as the ‘golf ball

and spring’ model. This model consists of a number of SHO elements interconnected by

springs where the point masses are depicted as golf balls. This arrangement is depicted

in Figure 2.2.

It is assumed that the 1D model, which comprises a simple representation of an air

column, is lossless and that the mass and spring constants are uniform throughout.

Upon excitation, the left-most golf ball is displaced in the positive x direction causing

the right hand spring to compress and the left hand spring to extend. This compression

acts to transfer kinetic energy to the next mass and the rarefaction imposed on the

first mass restores the mass to its equilibrium position. The resulting movement of

the first mass causes a rarefaction between the first two masses as the second mass

is compressed against its right hand spring. An interaction of this kind is repeated
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SYSTEM AT REST (EQUILIBRIUM)

MASS SPRING

Figure 2.2: Depiction of a travelling wave based on the golf ball and spring model, after [1].
The waveform resulting from the series of rarefactions and compressions is shown below each
stage by the dashed red line.

for every mass-spring-mass group. Hence, the transport of energy throughout the

model is achieved by a series of compressions and rarefactions. Notice that the shape

of the resulting waveform does not change shape as it propagates over time through

the medium, hence this type of wave is called a travelling wave. In terms of sound

propagation in air, this model represents the way in which pressure fluctuations, i.e.

the displacement of air molecules, progress throughout an infinitely thin column of air.

In order to further study the nature of wave movement in space and time, this concept

can be translated into a single governing mathematical expression.
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   x

Figure 2.3: A simple 1D string model, represented by the red dashed line, with displacement
along a section length.

2.1.3 The Wave Equation

Central to the theoretical description of any propagating acoustic waveform is a second-

order partial derivative expression: the wave equation. This single equation is a com-

mon starting point for numerical acoustic models and can be employed to realise simu-

lation of sound propagation in any given space. In addition to close examination of the

wave equation and related properties, this section provides insight on simple boundary

conditions that must be used to appropriately terminate the spatial domain in order

to emulate and examine the properties of enclosed sound waves.

2.1.3.1 1D Wave Equation

A simple 1D physical system may be envisaged as a flexible string that occupies a set

length in a single spatial dimension, x, giving a system similar to that used during dis-

cussion of travelling waves. At rest, the string has no deformations. Upon excitation,

a portion of the string is displaced from equilibrium position as shown in Figure 2.3.

Intuitively, it is expected that when the string is displaced in this manner and then re-

leased, some form of wave motion will occur over time and space. Thus, what is desired

is an expression that relates the shape of the waveform, i.e. the initial deformation, to

the transient behaviour of a single point on the string. This is achieved by examining

a small portion of the string as it is displaced as shown in Figure 2.4.

It is assumed that the string is infinitely flexible, has uniform mass ρ0 and is being acted

upon by some tension, T . Under such conditions, the overall force acting on the string

section ds in the p-direction is given by T (sin(θ2)−sin(θ1)). A further assumption that

the displacement of the string is very small suggests that the angles θ1 and θ2 are also

very small. Under this condition it is possible to state that sin(θ1) ≈ tan(θ1) with a
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T
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x x+dx

ds

1 2

Figure 2.4: An analytical diagram showing uniform tension (T) acting on a subsection (ds)
of the 1D string.

similar expression for θ2. Since tan(θ2) and tan(θ1) are equal to the slope of the string

at points (x + dx) and x respectively, the total vertical force on this portion of the

string is:

T

((∂p
∂x

)
x+dx

−
(∂p
∂x

)
x

)
= Tdx

∂

∂x

(∂p
∂x

)
= Tdx

∂2p

∂x2
(2.4)

after [23, 26], using the following relationship:

f(x+ dx) = f(x) + dx
∂f

∂x
(2.5)

which states that the value of some function f(x) at the point (x + dx) is equal to

the value of f(x) plus the the spatial element dx multiplied by the variance of f as x

increases to the point (x+dx). Hence, the displacement of the string p has been related

to the spatial variable x. What remains is to relate this expression to the transient

behaviour of the element of the string. Using Newton’s second law of motion, the net

force in the direction of displacement Fp on the portion of the string can be written as:

Fp = ρ0dx
∂2p

∂t2
(2.6)

where the term ρ0dx gives the total mass of the string section. Given that an expression

for the vertical force is known (2.4), the spatial and temporal terms may now be

equated.

Tdx
∂2p

∂x2
= ρ0dx

∂2p

∂t2
(2.7)
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Finally, (2.7) may be rearranged to yield the homogeneous 1D wave equation:

∂2p

∂t2
= c2 ∂

2p

∂x2
; c =

√
T

ρ0
(2.8)

The solutions to (2.8) are recognised as waves that, under the assumptions previously

defined, propagate without change in shape at a constant speed of c (m/s). In this one

dimensional case, the value p(x, t) simply refers to the distance (m) of a point on the

string from its equilibrium position at time t (s).

In order to validate the simulation of wave motion of this kind, it is useful to gain

a theoretical understanding of how a 1D system reacts to a disturbance. Green’s

functions provide a means of expressing the propagation of an impulsive disturbance in

free field conditions. The Dirac delta function is an impulsive excitation that simplifies

the derivation of the Green’s function for the 1D wave equation. This impulse is defined

as follows:

δ(t) =

∞, t = 0

0, t 6= 0
(2.9)

with the following property: ∫ ∞
−∞

δ(t)dt = 1 (2.10)

Applying such an impulse to the homogeneous wave equation yields the following in-

homogeneous expression:
∂2p

∂t2
= c2 ∂

2p

∂x2
+Aδ(t)δ(x) (2.11)

where A is the magnitude of the source excitation. Following [28], the aim is to seek

solutions to (2.11) by removing the differential terms through Laplace and Fourier

transforms to yield a simple algebraic expression for the unknown p(x, t). Firstly, the

system is defined to operate under the initial time condition,

p(x, t)

∣∣∣∣∣
t=0

=
∂p(x, t)

∂x

∣∣∣∣∣
t=0

= 0 (2.12)

and the infinite convergence criterion,

p(x, t)

∣∣∣∣∣
x→±∞

=
∂p(x, t)

∂x

∣∣∣∣∣
x→±∞

= 0 (2.13)

after [28]. The time derivative may be removed by means of the Laplace transform,

defined as:

P (s) = L[p(t)] =

∫ ∞
0

p(t)e−stdt (2.14)
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where s = σ + jw is the Laplace variable. Applying (2.14) to (2.11) yields,∫ ∞
0

∂2p(x, t)

∂t2
e−stdt = c2 ∂

2

∂x2

∫ ∞
0

p(x, t)e−stdt+Aδ(x)

∫ ∞
0

δ(t)e−stdt (2.15)

Carrying out the integrations with employment of the initial time condition and the

properties of the Dirac delta function results in the following ordinary differential equa-

tion:
d2P

dx2
=
(s
c

)2
P −Aδ(x) (2.16)

of the transformed function P = L[p(x, t)]. A similar approach is taken to now remove

the spatial derivative through use of the Fourier transform:

p̄(φ) =

∫ ∞
−∞

p(x)ejφxdx (2.17)

Applying the Fourier transform to (2.16) gives,∫ ∞
−∞

d2P

dx2
ejφxdx =

(s
c

)2
∫ ∞
−∞

Pejφxdx−A
∫ ∞
−∞

δ(x)ejφxdx (2.18)

where the dual transformed unknown function is now,

P̄ =

∫ ∞
−∞

Pejφxdx (2.19)

Calculation of the integrals in (2.18), which relies on the properties of the Dirac delta

function as well as the convergence criterion, results in the sought after algebraic rela-

tion.

− φ2P̄ =
(s
c

)2
P̄ −A (2.20)

Through basic manipulations, the unknown may now be solved for.

P̄ =
A

φ2 +
(
s
c

)2 (2.21)

What remains at this point is to transform (2.21) back into the time and space domains

to achieve an expression for the unknown relative to the original independent variables

x, t. Firstly, the inverse Fourier transform (2.22) is applied.

p(x) =
1

2π

∫ ∞
−∞

p̄(φ)e−jφxdφ (2.22)
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Figure 2.5: 1D Green’s function for the Wave Equation - the arrows signify the directions of
propagation away from the point of excitation.

Now, since the integrand P̄ is symmetrical, a single sided semi-infinite integral will

suffice to transform the integrand back into the spatial domain.

P =
A

π

∫ ∞
0

1

φ2 +
(
s
c

)2 cos(φx)dφ =
A

2( sc )
e−(

s|x|
c

) (2.23)

This result, after [28], is a standard transform as detailed in [29]. Finally, the inverse

Laplace transform is employed to regain the time variable,

p(x, t) = L−1[P ] =
cA

2
L−1

[1

s
e−(

s|x|
c

)
]

(2.24)

Fortunately, the inverse Laplace transform of the type in (2.24) is known to result in

the Heaviside unit step function H [29] and hence, the Green’s function solution to the

1D wave equation in response to an impulsive excitation is,

p(x, t) =
cA

2
H(ct− |x|) (2.25)

This result states that the expected free-field waveform produced in 1D in response to an

impulse excitation will take the form of two wavefronts that travel in opposing directions

with amplitude cA
2 at a speed of c (m/s). Figure 2.5 demonstrates this type of wave

propagation. In order to verify the correct implementation of a numerical system, the

resulting simulated waveform may be compared to this theoretical expression to ensure

that the wave equation is being numerically solved as desired. A similar approach to

that described here may be taken to generating the Green’s function for waves in 2D

and 3D [28, 30].
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Figure 2.6: A square sub-element of a 2D membrane of size dxdy with equal tension acting
on all sides.

2.1.3.2 2D Wave Equation

The derivation of the 2D wave equation is a similar process to that of its 1D equivalent.

To begin, the wave motion is defined as propagating throughout an infinitely flexible

membrane with uniform mass and density. If the membrane is pulled with equal tension

T around its bounding edges, it can be stated that any small area dxdy of the membrane

will have the same tension acting on each side. This notion is encapsulated in Figure

2.6. As with the 1D system, the objective is to relate a disturbance in the medium to

the transient motion of a single point on the membrane. In this case, the disturbance

will be a displacement of the membrane from its equilibrium position perpendicular to

the xy plane denoted p(x, y, t). In the x-direction, the overall force acting on the small

area is given as,

Tdy
[(∂p
∂x

)
x+dx

−
(∂p
∂x

)
x

]
= T

∂2p

∂x2
dxdy (2.26)

Similarly, the net force acting in the y-direction is,

Tdx
[(∂p
∂y

)
y+dy

−
(∂p
∂y

)
y

]
= T

∂2p

∂y2
dydx (2.27)

Hence, the total net force Fp acting normal to the xy plane is simply the sum of these

tensional forces:

Fp = T
∂2p

∂x2
dxdy + T

∂2p

∂y2
dydx (2.28)

which can be related to the acceleration of the area element to form the 2D wave

equation,

T
∂2p

∂x2
dxdy + T

∂2p

∂y2
dydx = ρ0dxdy

∂2p

∂t2
(2.29)

∂2p

∂t2
= c2∇2p; ∇2 =

∂2p

∂x2
+
∂2p

∂y2
(2.30)
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Figure 2.7: A cross section of the 2D Green’s function for the Wave Equation - the arrows
signify the directions of propagation away from the point of excitation. The non-zero pressure
field within the two wavefronts is referred to as afterglow.

where ρ0 is the density of the membrane material, ∇2 is the 2D Laplacian operator and

the wave propagation speed c =
√
T/ρ0 (m/s). In this system, as with the 1D wave

equation, it is clear that the shape of the disturbance propagating through the medium

is directly proportional to the acceleration of a point on the membrane normal to the

xy plane. The expression in (2.30) is the homogeneous form of the 2D wave equation

for an isotropic medium. In order to examine the nature of waveform propagation in

such a system, a non-homogeneous, impulsive excitation term is introduced to (2.30)

and the resulting Green’s function is derived. Hence, in 2D the initial equation is,

∂2p

∂t2
= c2∇2p+Aδ(t)δ(x)δ(y) (2.31)

and the Green’s function is sought under quiescent initial conditions with convergence

at infinity criterion applied for both spatial dimensions [28]. Following a similar deriva-

tion as that of the 1D case, as noted in [28, 30], and references therein, the Green’s

function in 2D for wave motion in response to an impulsive excitation may be written,

p(x, y, t) =
cA

2π

H(ct− r)√
((ct)2 − r2)

(2.32)

where r =
√
x2 + y2 (m) is the magnitude distance from the excitation location. This

is a very useful result as it exposes an interesting property of 2D wave motion. If the

resulting function is plotted out across one dimension of the membrane over time, as

in Figure 2.7, it is shown that decaying non-zero components are produced after the

passing of the initial wavefront. This quality, known as afterglow [30–33], is common to

all 2D wave-based systems and special care must be taken if the effects of afterglow are
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Figure 2.8: Diagram of a cubic volume of air (4x4y4z m3) with the flow of mass ρ and at
velocity u highlighted in the x-direction.

to be removed. Further discussion of afterglow is given in relation to dimensionality

reduction for efficient numerical acoustic modelling in Chapters 4 and 5.

2.1.3.3 3D Wave Equation

The derivation of the 3D wave equation is a more involved process than that of the lower

dimensionality equations. This is mainly due to the fact that the idea of tension cannot

strictly be applied to describe forces acting on a volume. Instead, the derivation begins

with the introduction of the law of mass conservation. The diagram given in Figure 2.8

represents a small cubic element of space with volume 4V = 4x4y4z. Considering

the scenario where a fluid, for example air, is able to flow through the element from

every direction, it may be stated that the rate of increase of mass within the element

must equal the amount of mass flowing in and out through each element surface. Hence,

in the case of air flow in the positive x-direction, the following expression must be true:

− ∂ρ

∂t
4y4z = (ρux|x − ρux|x+4x)4y4z (2.33)

where ux is the fluid velocity component in the x-direction and ρ is the density of the

fluid. Similar expressions exist for inflow and outflow in the remaining two spatial

dimensions.

−∂ρ
∂t
4x4z = (ρuy|y − ρuy|y+4y)4x4z (2.34)

−∂ρ
∂t
4x4y = (ρuz|z − ρuz|z+4z)4x4y (2.35)

As such, the rate of increase of mass in element 4V is related to the total fluid inflow

by,

−∂ρ
∂t
4V = (ρux|x − ρux|x+4x)4y4z + (ρuy|y − ρuy|y+4y)4x4z +

(ρuz|z − ρuz|z+4z)4x4y (2.36)
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Dividing through by4V yields the continuity equation [26] in terms of particle velocity

and instantaneous density:
∂ρ

∂t
+∇ūρ = 0 (2.37)

where ū(x, y, z, t) is the particle velocity vector in three spatial dimensions. However,

for the study of acoustics the variable of interest is acoustic pressure p(x, y, z, t) which

can be related to fluid density using the following equations.

s =
ρ− ρ0

ρ0
(2.38)

p = Bs (2.39)

The new term s is a measure of condensation which calculates the density of a fluid

with reference to the equilibrium density. For example, a value of s = 0 suggests that

the fluid is neither compressed or in a state of rarefaction, s > 0 suggests that the fluid

is compressed in the volume under observation and s < 0 implies that a rarefaction is

occurring. Additionally, the value B refers to the bulk modulus of the fluid. After [26],

the instantaneous density my be written as ρ = ρ0(1 + s). It is then assumed that ρ0

can be regarded as constant over space and time, hence s << 1 giving:

ρ0
∂s

∂t
+ ρ0∇ū = 0 (2.40)

Finally, dividing through by ρ0 allows expression of the continuity equation in terms

of acoustic pressure and particle velocity.

1

B

∂p

∂t
+∇ū = 0 (2.41)

Next, the law of conservation of momentum is considered in order to relate the par-

ticle velocity ū to acoustic pressure such that it will then be possible to construct an

expression in terms of pressure, space and time only. Referring again to Figure 2.8, it

may be stated that to displace the element of fluid mass 4m at an acceleration ā, a

force 4f̄ is required. In a similar fashion to the balance of mass flow, the net force

acting on the element in the x-direction may be expressed as follows:

4fx = (P |x − P |x+4x)4y4z = −∂P
∂x
4V (2.42)

where P is a measure of instantaneous pressure at a discrete point in space and time.

Similar relations exist for forces acting in the remaining two spatial dimensions. Follow-

ing the derivation given in [26], the acceleration of the element mass may be obtained

from the particle velocity at location [x, y, z] at time t and that which occurs at a new,

nearby location at time t+4t. Employing Taylor’s series expansion allows expression
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of the new velocity in a convenient form.

ū(x+ ux4x, y + uy4y, z + uz4z, t+4t) = ū(x, y, z, t) +
∂ū

∂x
ux4t+ (2.43)

∂ū

∂y
uy4y +

∂ū

∂z
uz4t

The acceleration may, consequently, be found by taking the first-order difference of

velocity with respect to time. Letting the right hand side of (2.43) = I(x, y, z, t),

ā = lim
4t→0

I(x, y, z, t)− ū(x, y, z, t)

4t
=
∂ū

∂t
+ (ū.∇)ū (2.44)

where,

(ū.∇) = ux
∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
(2.45)

Now, employing Newton’s second law facilitates the relating of velocity and instanta-

neous pressure:

−4P4V =
(∂ū
∂t

+ (ū.∇)ū
)
4m (2.46)

Since the mass of the small cubic element 4m = ρ4V and assuming only small density

and acoustic pressure fluctuations (such that P and ρ are respectively equal to the

acoustic pressure and fluid density at equilibrium), (2.46) becomes:

4p+ ρ0

(∂ū
∂t

+ (ū.∇)ū
)

= 0 (2.47)

This expression may now be arranged into the linear Euler’s equation [3, 26] under

further application of the assumption that the variance in acoustic variables are small

compared to space. As such, the time derivative of ū has a much greater magnitude

than the spatial derivative giving the linear Euler’s equation:

4p+ ρ
∂ū

∂t
= 0 (2.48)

The linear 3D wave equation results from combination of the laws of mass and momen-

tum conservation. This is achieved by eliminating the particle velocity term in (2.48)

using (2.41) giving,

∇4p+ ρ0
∂

∂t

(−1

B

∂p

∂t

)
= 0 (2.49)

and by rearranging,

∂2p

∂t2
= c2∇2p; ∇2 =

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
(2.50)

where c =
√

B
ρ0

is the speed of sound in the medium and ∇2 is the 3D Laplacian

operator. The derivation of this equation has involved numerous assumptions that
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mostly relate to the restriction that sound waves cause only very small fluctuations in

a medium from the equilibrium state. Additionally, the wave equation is linear and

assumes an isotropic medium where movement of the medium from one location to

another is not facilitated. This is a simplification of what occurs in reality where most

instances of sound propagation will involve many non-linear and chaotic processes.

However, the homogeneous linear wave equation is sufficient for the purposes of this

thesis.

The Green’s function for the 3D wave equation in response to an impulsive sound source

may be stated as follows,

∂2p

∂t2
= c2∇2 +Aδ(x)δ(y)δ(z)δ(t) ⇒ p =

A

4πR
δ
(
t− R

c

)
(2.51)

where R (m) is the magnitude distance from the sound source location. Again, as per

[28], this result is derived assuming quiescent conditions and the convergence criterion

in all spatial dimensions. Examination of (2.51) shows that the 3D wave equation is

the only case discussed so far that preserves the shape of the initial excitation function

as the wave propagates over the space at speed c (m/s). As the surface area of the

wave increases, the amplitude of the waveform will decrease inversely proportional to

this area increase. Again, this result is very useful in verifying correct sound wave

propagation in numerical models.

2.1.3.4 Simple Boundary Conditions

In order to fully describe a realistic acoustic system, the spatial domains must be

terminated appropriately leading to the requirement of boundary conditions. Such

conditions, which govern the nature of the interaction of a pressure wave on impact

with a surface, can take many forms. This is due to the fact that any combination

of basic mechanical elements can be arranged at the termination of a spatial domain

to reflect and absorb acoustic energy in a manner approximating reality. This subject

will be discussed at various points throughout the following chapters, however a review

of basic boundary conditions is given here to introduce important characteristics of

particular boundary formulations.

The most basic boundary conditions are the Dirichlet and Neumann conditions that

describe ideal, lossless terminations. Firstly, the Dirichlet (‘Fixed’) boundary is defined

as,

p(Lx, y, z, t) = 0 (2.52)
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for a right-hand side surface boundary at locations [Lx, y, z] where p(x, y, z, t) is acoustic

pressure. A condition of this kind forces the pressure at such boundaries to a zero value.

In 1D and 2D systems, the terminations can be thought of as physically clamped as

the string or membrane will never be displaced in these locations. A further property

of this condition is that waves incident upon the boundary will undergo phase reversal.

The Neumann boundary condition is given by,

∂p(x, y, z, t)

∂n
= 0 (2.53)

In contrast to the fixed condition, the Neumann boundary forces the gradient of the

pressure field p(x, y, z, t) in the direction normal to the boundary n. As such, in 1D and

2D systems this termination type facilitates variance in pressure at the boundary and

phase preservation of an ingoing waveform. Application of each boundary type results

in different solutions to the wave equation and in both cases no energy will be absorbed

at the terminations of the domain. Ideal systems of this form, for simple spatial

geometries, may be solved to produce theoretical solutions which can be employed

to validate the results of an acoustic modelling approach.

For more realistic boundaries, that allow for absorption at terminations a simple con-

dition may be imposed [34],
∂p

∂t
= α

∂p

∂n
(2.54)

which relates the velocity of the pressure field p to the gradient of the pressure field

normal to the boundary. Recalling that the variance in displacement of the medium

from the equilibrium position is very small, this condition imposes a restriction on the

rate of movement of the pressure field with a variance governed by the values of a loss

coefficient α. This condition facilitates the rate at which energy is dissipated from

an acoustic system to be altered as required to approximate a real physical process.

Further development of this useful absorbing boundary condition is detailed in Chapter

4.

2.1.4 A Lossy Wave Equation

A simple lossy wave equation is defined in [26], as follows:

∂2p

∂t2
= c2∇2 − β∂p

∂t
(2.55)

where all variables are as previously defined and the additional term β is a loss coef-

ficient. This loss term governs the extent to which the velocity of the pressure field is
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reduced as the term −β ∂p∂t acts contrary to the direction of acceleration. As such, for

values of β > 0 the loss term will cause a decay of energy within the medium itself,

regardless of boundary conditions, as wavefronts propagate over space and time. In

general, β can be defined as a function of frequency facilitating frequency-dependent

loss consistently throughout the medium. However, for the purposes of this work, β

will take a positive-real numerical value to provide a frequency-independent lossy wave

equation. In a 2D system, the additional loss term can be thought of as reducing the

kinetic energy in a membrane. For example, if the membrane is pulled up from its equi-

librium position and released, the counteracting velocity term acts to slow its returning

movement implying that kinetic energy is being dissipated at a rate proportional to β.

2.2 Sound Propagation in Air

2.2.1 The Speed of Sound

Following on from the formulation of the 3D wave equation, it can be stated that the

speed of sound in air, c, is equal to the square root ratio of the bulk modulus and

the equilibrium density of air
√

B
ρ0

. Calculating a numeric constant for the speed of

sound requires empirical investigation of the properties of air. Furthermore, the bulk

modulus of a fluid varies depending on temperature. Kuttruff [3] provides an expression

for calculating the speed of sound in air as follows:

c = 331.4 + 0.6θT ms−1 (2.56)

where θT is the temperature in degrees Celius (◦). For the purposes of this study, (2.56)

is used to calculate sound wave propagation speed as constant speeds for a given room

temperature (i.e. 20◦) may be found.

2.2.2 Air Absorption

Air is a viscous medium. As such, it is not sufficient to treat the propagation of

sound through air as a lossless process. In reality, air absorption of sound is a highly

complex phenomenon dependent on an array of factors, especially in exterior environ-

ments. When disregarding the impacts of the weather, i.e. considering only interior

environments, air absorption levels are found to be related to humidity, temperature

and frequency [20]. The frequency dependency of air absorption is encountered in

practice and can be experienced by listening to distant sound sources in large external

environments. In the vicinity of the sound source, the frequency range of the source
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Frequency (Hz) 125 250 500 1k 2k 4k

Attenuation (dB/100m), approx. 0.032 0.07 0.18 0.46 1.00 2.62

Table 2.1: Approximate attenuation (dB SPL) of sound in air over a distance of 100m mea-
sured for a range of frequencies, after [20].

is experienced within the limits of the human auditory system. At a large distance

away from the source, the same sound is perceived as dull or lacking in timbre. This is

the effect of frequency-dependent absorption reducing the amplitude of high frequency

sound components as the sound is propagated through air.

In a study conducted by Harris [20], an experimental procedure was devised to empir-

ically define a temperature, humidity and frequency-dependent attenuation coefficient

for air. The results produced demonstrate that air absorption is reasonably low for

room temperature and frequencies up to 2 kHz. For example, given a relative humidity

of 50% and a temperature of 20◦C (typical values for interior environments) the atten-

uation of sound pressure (dB) over a distance of 100m are given approximate values

shown in Table 2.1 for a range of frequencies.

Hence, it may be stated that air absorption becomes an increasingly important factor as

sound source frequency increases above the 2kHz range. Furthermore, pressure attenu-

ation due to the properties of air must be considered for spaces of large dimensions and

boundaries with low absorption. More recent investigation of air attenuation [35, 36]

verifies these statements. In the ISO documentation [36] an atmospheric attenuation

coefficient is defined as the reduction in pressure (dB) of a sound source over a distance

of 1 km. For a relative humidity of 70% and temperature 20◦ the attenuation for a

noise source in the 500 Hz band is noted as 2.8 dB/km, whereas for an 8 kHz band

noise source the attenuation is markedly higher at 76.6 dB/km.

2.2.3 Monopoles and Plane Waves

As sound waves emanate from an excitation position in space, the resulting wavefronts

expand travelling away from the excitation point. The most basic conceptualisation

of an expanding waveform is the single frequency monopole or point source. In 2D, a

monopole sound source is one that produces an expanding circular pressure wave. In

3D, the pressure wave is spherical. Mathematically, a monopole is defined as follows,

p(r̄, ω) =
A0

|r̄ − r̄s|
e−j(k|r̄−r̄s|) (2.57)
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λ

Point of excitation 

Figure 2.9: A 2D monopole sound source of wavelength λ.

where A0 is the pressure amplitude of the wave and r̄s and r̄ are the source and reference

positions respectively expressed as vectors in 2D or 3D space. The wavenumber, k, in

3D space is given by,

k = kxî+ ky ĵ + kzk̂ (2.58)

kx = k cos θ cosφ

ky = k sin θ cosφ

kz = k sinφ

where k = ω
c (the wavenumber, radians per metre) and ω = 2πf is the angular fre-

quency in radians per second corresponding to a specific frequency f(Hz) with wave-

length λ = c
f (m). The angles of azimuth and elevation are given by θ and φ respec-

tively. By forcing kz to zero, the definition of a 2D monopole results. This expression is

depicted in Figure 2.9. Notice the similarities between (2.57) and the Green’s function

for the 3D wave equation (2.51) derived previously. It is evident that the amplitude of

the expanding wave is consistent in all directions around the solid angle and that this

amplitude decreases as the wavefront travels further from the source position. Further-

more, an arbitrary source may be represented by weighted summation of exponential

terms of different frequencies thus removing the restriction to a single wavenumber in

(2.57).

The planewave approximation to a propagating wavefront arises from examination

of a monopole at infinite distance. As the circular/spherical wavefront continues to

expand, the distance over which a portion of the wavefront approximates a straight line

increases. Hence, at sufficiently large distances from the source location, the monopole
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Directions of Propagation

Figure 2.10: A 2D planewave as produced by a bi-directional line sound source producing a
sinusoid with wavelength λ.

begins to emulate the type of propagation produced by a line source. This concept is

exemplified in Figure 2.10.

At a reference location r̄, a planewave may be written as,

p(r̄, t) = A0e
j(ωt−k·r̄) (2.59)

Where all terms are as previously defined. Planewaves provide a useful means of

investigation for many acoustic systems. For example, the reflection model detailed in

section 2.3.2 relies on this approximation.

2.2.4 Sound Pressure - SPL

For the purposes of room acoustic description and modelling, the leading quantity of

interest is sound pressure. A unit of pressure, or 1 Pa (Pascal), refers to a force of 1

Newton acting on an area of 1 square metre. However, acoustic pressure is commonly

quantified through use of sound pressure level, or ‘SPL’. This quantity is defined as the

ratio of the instantaneous pressure occurring at an arbitrary position in space and the

lower threshold of the human auditory system. Due to the extensive range of values in

which sound pressure may be perceived as audible, sound pressure level is defined on

a logarithmic scale as follows:

SPL = 20 log10

[
prec
pref

]
dB (2.60)

where pref is the lowest audible pressure value in the region of 20µPa. prec is the

pressure value recorded at some instant in time. Values for recorded pressure levels
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can be as high as 20 Pa [1]. As such, the choice of a logarithmic scale is justified as the

pressure range of interest can vary by a factor of 106.

2.2.5 Sound Intensity - SIL

An alternative measure corresponds to the flow of sound energy through a unit area

as opposed to the force acting on the area. This quantity is the sound intensity level,

‘SIL’, which corresponds to the number of Joules of energy passing through a unit area

per second. For simplicity, it is useful to introduce ‘sound power’, P (Watts), defined

as the number of Joules of energy passing a point in space per second. Hence, SIL has

units W/m2 providing insight into the power density at an arbitrary position in the

soundfield under examination. Due to the fact that SIL describes a flow of energy, it

must assume a direction of sound propagation. In general, the direction of propagation

is assumed to be travelling away from an active sound source and perpendicular to

the unit area of interest. As such, SIL holds only for free-field conditions realised, in

the most part, under anechoic conditions. Mathematically, SIL is calculated using the

following equation:

SIL = 10 log10

[
Irec
Iref

]
dB (2.61)

where Irec is the recorded intensity level and Iref is a reference intensity level. As

with SPL, the reference level is set to the threshold of human perception, 10−12 W/m2.

Again, a logarithmic scale is employed to cover the range of intensities that may be

achieved by a real sound source (10−12 - 10 W/m2) [1]. The SIL measure bears less

relevance than SPL to the perception of sound experienced in a sonic environment due

to the fact that variance in sound energy is perceived as fluctuations in pressure at a

localised position. However, examination of SIL leads to an important law concerning

the spread of sound energy throughout free space: the inverse square law.

2.2.6 The Inverse Square Law

The diagram in Figure 2.11 shows a monopole sound source projecting sound energy

into a portion of the free field. As the spherical wavefront progresses away from the

point of excitation, the total area, A, over which the wavefront is spread increases as

per:

A = 4πr2 (2.62)

where r is the distance from the source location. Recalling that sound intensity is the

energy flow through a unit area, it is apparent the decrease in intensity over space is
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Figure 2.11: Depiction of the Inverse Square Law. This diagram shows how the surface
area and spread of energy increases proportionally to the distance from the point of excitation.
Image adapted from [2].

inversely proportional to the distance from the excitation position. This law, which

holds only when assuming negligible loss due to the viscosity of air, is:

I =
P

4πr2
(2.63)

where P is the sound power of the source in Watts. This law is commonly encountered

in practice and provides explanation as to why sound sources are perceived as loud

when close by and less loud when further away with a consistent sound source power.

2.3 Elements of Room Acoustic Theory

Examination of sound propagation in free field conditions provides useful relations and

concepts relating to sound characteristics. However, this idealistic system does not

occur in reality as any waveform created in practice must eventually dissipate energy

through interaction with resistive mediums, for example solid surface obstructions. In

the specific case of room acoustics, a sound environment is generally considered to be

an enclosure of bounded air. In such an environment, the propagation of sound energy

throughout the space is far more complex as the waves are contained due to reflection

and forced to interact with one another. This section provides insight on a number of

important concepts through which the acoustics of a room may be investigated.

2.3.1 Stages of Enclosed Sound Propagation

There are minimum requirements for the creation and perception of sound in an room.

These are: a bounded volume of air, a sound source and a sound receiver. A simple
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model that seeks to describe sound propagation from source to receiver temporally

divides the arrival of sound energy at the receiver into three stages: Direct Sound,

Early Reflections and Reverberant Sound. Referring to Figure 2.12, the left most panel

depicts the direct sound path from source to receiver in a simple 2D square geometry.

Upon excitation of the soundfield, assuming that the path between source and receiver

is unobstructed, the direct sound is that which first arrives at the receiver. In a real

space, the reduction of sound energy occurring over the direct path is due only to the

inverse square law and loss due to the viscosity of air. For this reason, the direct sound

generally gives rise to the strongest pressure fluctuation experienced at the receiver

location. As sound waves propagate throughout a space, they interact with bounding

surfaces and undergo reflection. This interaction, which is detailed in more depth in

section 2.3.2, acts to partially dissipate energy from the sound waves. Early reflections

are those which travel along the shortest propagation paths between source and receiver

via at least one boundary. In some cases, a high temporal density of early reflections

can cause the pressure fluctuations to increase to a level greater than that of the direct

sound. This can occur when the room geometry acts to focus reflection paths onto the

receiver location. Examples of 1st and 2nd order reflections are shown in the center and

right panels of Figure 2.12 respectively. These reflections are separated from the direct

sound component, and in most cases each other, in the following respects:

Sx Sx Sx

RxRxRx

Figure 2.12: A simple 2D diagram of the direct sound path between sound source (Sx) and
receiver (Rx) within a rectangular enclosure (left). Examples of 1st order (centre) and 2nd

order (right) reflections are also shown.

Amplitude: Reflected sound waves travel an increasingly larger distance as the or-

der of reflection increases. Hence, they are subject to increased reduction in pressure

amplitude due to the inverse square law and the effects of air absorption. In addition,

pressure reduction is also induced by the dissipation of energy upon successive bound-

ary interactions.

Time of Arrival: Sound waves approaching a receiver position via one or more bound-

aries take longer to reach the position than the direct sound. This is simply due to the
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Figure 2.13: Magnitude of pressure variation at a receiver position in response to an impulsive
sound excitation. The three prominent temporal stages of enclosed sound propagation are
highlighted (‘DS’ - Direct Sound, ‘ER’ - Early Reflections).

differences between propagation path lengths of reflections and results in a temporal

distribution of reflections after the time of arrival of the direct sound component.

Angle of Arrival: Reflections arrive at the receiver location as secondary sources

from the direction of the boundary with respect to the receiver’s orientation within a

room.

The nature of early reflections, as perceived by a listener at the receiver location,

will change significantly if the receiver and/or source locations or orientations are al-

tered. As suggested in [1], these changes are of psychoacoustical importance as they

provide a listener with auditory cues that describe the size of the environment and

the arrangement of source/receiver locations within the soundfield. In large room ge-

ometries, temporal delays between early reflections can become very large. For delays

greater than approximately 30 ms, the reflections are perceived as echoes [1].

The final temporal stage of sound in an enclosure is the reverberant sound. Reverber-

ant sound is composed of many reflections that have interacted with several boundary

surfaces and arrive at the receiver location with a high temporal density. This stage

begins when the soundfield is said to have become diffuse, meaning that the soundfield

is largely stochastic in state with indistinguishable rapidly successive reflections. These

diffuse reflections possess decreasing amounts of energy as their traversal distance and

reflection order increase. Due to the rapid arrival of the diffuse soundfield components

at the receiver location, a listener at this position will have difficulty discerning the

reflections as individual events. Nor will the angle of arrival be obvious. As such, the

diffuse field is generally considered perceptually constant throughout a sonic environ-

ment. When a sound source stops emitting energy into the acoustic field, the diffuse
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sound components will decay exponentially over time giving rise to a reverberation tail

that acts to colour the reception of the sound generated. This is an important acoustic

feature that is exploited in many audio applications to enhance the performance of

speech and music. Figure 2.13 provides a graphical summary of the 3-stage temporal

model of sound propagation in an enclosure in response to a sudden excitation. A more

rigorous extension of this model is detailed in section 2.3.6.

2.3.2 Reflection and Absorption

In a homogeneous medium, sound waves propagate unimpeded in an outward direction

from a sound source. This continues until the wavefronts encounter a change in medium

density. Such a change arises at a boundary where the density of a solid surface is far

greater than that of air. Upon interaction, the total wavefront splits into two portions,

one of which is transmitted into the new density medium while the other is reflected

back into the air. Formally, this physical interaction is described by means of an

impedance quantity and relationship. Following discussion in [3], the characteristic

impedance of air may be calculated as,

Zair = ρc = 414kgm−2s−1 (2.64)

The impedance of a boundary is defined as the ratio of pressure and velocity normal

to the boundary divided by the characteristic impedance of air, [3]:

ζω =
p

ρūnc
(2.65)

where ζω is assumed to be, in general, complex in order to facilitate frequency-dependency

and phase characteristics. A simple model of reflection at normal incidence provides

insight into how this ratio of impedances acts on a reflected wavefront. Consider a 1D,

single frequency planewave of amplitude Ao with pressure and velocity component:

p(x, t) = Aoe
j(ωt−kx) (2.66)

ū(x, t) =
Ao
ρc
ej(ωt−kx) (2.67)

This simple model is depicted in Figure 2.14. Upon reflection, the reflected wavefront

will have a lesser amplitude than the incident wave due to the fact that some acoustic

energy will be transmitted into the boundary medium. It is assumed at this point that

the transmitted acoustic wave dissipates as heat or otherwise and no longer has any

impact on the acoustic field present in the adjacent air. As such, the amplitude of the

reflected wave will be reduced by the factor R - the reflection coefficient. Hence, the
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Figure 2.14: A simple model of wave reflection for a single frequency wave interacting with
a phase-preserving absorbing boundary.

reflected wave components may now be written, [3]:

pref (x, t) = RAoe
j(ωt−kx) (2.68)

ūref (x, t) = −RAo
ρc
ej(ωt−kx) (2.69)

noting that the change in sign of the velocity component corresponds to a reversal

in propagation direction along the x-axis. By examining the pressure and velocity

components at the boundary itself, assuming that the boundary is situated at x = 0

for convenience, is it possible to define the impedance of the boundary, Zb, in terms of

the reflection coefficient,

Zb = ρc
1 +R

1−R
(2.70)

This in turn leads to a relationship between the reflection coefficient and the charac-

teristic impedance of the boundary:

R =
ζω − 1

ζω + 1
(2.71)

For realistic systems, the reflection coefficient R is bounded such that −1 < R < 1

in order that acoustic energy is always conserved or dissipated at a boundary, never

increased. This leads to three distinct extremes of impedance values which correspond

to specific boundary types [3]:

• ζω = 0, R = −1: A soft boundary type from which an incident planewave of

frequency ω will be fully reflected. Additionally, the phase of the outgoing wave

will be inverted due to the negative reflection coefficient.

• ζω = 1, R = 0: A completely absorbing boundary surface that can be approached

in acoustically treated anechoic environments. Reflections at frequency ω will not

occur under this condition.
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• ζω = ∞, R = 1: A fully reflective, phase-preserving boundary type. The re-

flected wave will differ from the incident wave only in terms of a reversed velocity

component.

By including a further spatial degree in equation (2.71), such that the wavenumber

k becomes k̂ = x cos(θ) + y sin(θ), the reflection coefficient for reflections at oblique

incidence may be defined as follows:

R =
ζω cos(θ)− 1

ζω cos(θ) + 1
(2.72)

for angles of incidence θ with respect to the boundary normal. From the above expres-

sion, it is possible to calculate angle and frequency dependent values for impedance

given the corresponding reflection coefficient.

In the majority of the literature, the value used to quantify the absorption characteris-

tics of different surfaces is the absorption coefficient. This measure relates the intensity

of incident and reflected waves rather than the amplitude. Formally, the intensity of a

sound wave in air is given as,

I =
p2

ρc
(2.73)

for pressure p. Hence, the intensity of a reflected wave will be reduced by |R2| giving

a measure of the incident energy that is dissipated upon interaction with a boundary

as 1− |R2|. This is the definition of the absorption coefficient α,

α = 1− |R2| (2.74)

which, like the related reflection coefficient and impedance values, can be frequency

and angle dependent.

2.3.3 Scattering

Ideal specular reflection, as defined by Snell’s law [26, p. 138], will not occur in practice

at all frequencies. Instead, portions of a wavefront incident on a boundary will be

reflected at an angle which deviates from the angle of incidence. This concept is

called wave scattering. Scattering occurs when a wave encounters a boundary with

surface irregularities, as is the case in most real environments. In brief, the relationship

between the amount of scattered energy upon reflection and the frequency of a wave

is dependent on the size of the surface irregularities. For example, an irregularity

of length d metres will have negligible scattering effect on a wave of length λ � d.

Conversely, a surface with many small irregularities is likely to scatter sufficiently
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Figure 2.15: The general relationship between surface irregularities and scattering of different
wavelengths, adapted from [3].

high frequency wave components upon reflection. Kuttruff [3] further expands on this

concept through the example shown in Figure 2.15. This diagram demonstrates the

low frequency scenario as previously described. Additionally, wavelengths equal to the

length of surface irregularities are greatly diffused while wavelengths much less than

this length are steered towards a direction normal to the surface orientation.

(a) (b)

Incident Sound

Specular Reflection 

            Path

Incident Sound

Figure 2.16: (From left to right) Visual representation of Lambertion scattering (diffusion)
where sound is scattered in all directions (a) and oblique Lambert scattering where the distri-
bution of scattered sound is centered on the angle of specular reflection (b), after [4].

Employing a geometric approach to the investigation of predictable scattering leads

to the Lambertian scatterer, as applied in optics [37]. The underlying assumption of

the geometric investigation is that sound wavefronts may be represented as 1D paths

orientated in the direction of sound propagation. Hence, the frequency-dependency of

scattering effects is not preserved in this approximation. As shown in Figure 2.16 (a), a

lambertian scatterer distributes reflected energy in all directions proportional to cos(θ)

where θ = π
2 is the surface normal. This is the case regardless of angle of incidence.

To further improve this concept and facilitate variance of the amount of diffusion, the

oblique Lambert law is commonly employed in commercial acoustic modelling programs

such as ODEON [4, 21, 38]. The implementation of the oblique Lambert scattering

requires the definition of a scattering coefficient that governs the amount by which the
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Figure 2.17: (From left to right) Diagram (a) displays an expanding monopole sound wave
diffracting around a single boundary. Diagram (b) shows a propagating monopole sound wave
upon exit from an aperture.

propagation path of a reflection deviates from the angle of incidence. The extremes of

scattering coefficients, as applied in geometric acoustic models, are ‘0’ yielding specular

reflection and ‘1’ leading to a random angle of reflection as detailed in [39].

2.3.4 Diffraction

As waves progress throughout a medium, they encounter obstacles and boundaries con-

taining the medium itself. While the total interaction process of a wavefront with any

object is complex, specific elements are easily observed. Such an element is diffraction

which, in the field of acoustics, refers to the ability of sound waves to ‘bend’ around

objects that lie in the path of propagation. Diffraction is regularly encountered in

practice, for instance, when a listener perceives a sound source located around a cor-

ner as arriving from the approximate direction of the corner itself (in absence of any

reflections from other surfaces). Figure 2.17 provides visual examples of diffraction as

modelled in a 2D wave-based acoustic simulation. Diagram A displays a 2D monopole

wavefront interacting with, and diffracting around, a partial boundary. In diagram B,

the same 2D wavefront interacts with two boundaries and diffracts upon exit from an

aperture between the two obstacles. If diffraction did not occur, the wavefront would

continue only along paths perpendicular to the aperture. A more rigorous explana-

tion for diffraction arises from the condition that continuity must be maintained in

air pressure over space. As such, the pressure field in the region of an obstacle edge

(or corner) must move in sympathy with incoming and outgoing wavefronts. This is

further exemplified by investigation of Huygen’s principle which states that any wave-

front many be represented by a series of point sources located along the wavefront

itself. The relationship between this principle and diffraction is shown in Figure 2.18.



Chapter 2. Elements of Acoustic Theory for Sound Simulation and Analysis 58

Figure 2.18: Graphical interpretation of sound wave diffraction as described by means of
Huygen’s principle. In this example, a wavefront is radiating from the exit of an aperture
between two boundaries.

The wavefront passing through the aperture is approximated by a number of monopole

sources. Upon exit from the aperture, the wavefront will expand over space beyond

the boundaries reaching propagation paths that are not parallel to the orientation of

the aperture sides. Referring back to Figure 2.17, it is apparent that the amplitude of

the diffracted wavefront decreases as the diffraction angle increases. This is due to the

fact that the diffraction process is both frequency-dependent and related to the size of

an obstacle.

Consider, for example, the case of a wavefront encountering a small obstruction as

displayed in Figure 2.19 (a). The wave diffracts around the obstruction and proceeds

(a) (b)

Boundary Boundary

Figure 2.19: (From left to right) Diagram (a) shows the case of planewave diffraction around
an object when the object length is smaller than the wave length. Diagram (b) displays the
same planewave diffracting to a lesser extent due to the increase in obstruction size. In both
diagrams, red signifies high pressure values.

relatively unaltered. Conversely, in the case of a larger obstruction (Figure 2.19 (b)),

a greater amount of shading occurs leading to a decrease in pressure amplitude of the
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wavefront perpendicular to the center of the obstruction. This seeks to demonstrate

the relationship between wavelength (and by extension, wave frequency) and the length

of the obstruction. As the length of the obstruction increases, the spectral content of

the diffracted components decreases to include wavelengths longer than or equal to the

obstacle length. Hence, in general, it can be stated that in the study of room acoustics,

where the majority of primary boundary dimensions are the length of low frequency

wavelengths, diffraction is most prevalent at low frequencies.

2.3.5 Interference

Interference effects arise when multiple waveforms interact. In the free field, this can

occur when sounds emanating from two or more sound sources merge in space. In

the case of fully or partially enclosed environments, sound waves produced by a single

source interact with reflected waves originating at boundary surfaces. Interference may

be catagorised as either constructive or destructive. Constructive interference results

when sound pressure waves interact in a region of space to produce a net increase

in the amount of air compression or rarefaction occurring in the region. Conversely,

destructive interference arises when rarefactions and compressions interact in space

producing a net decrease in the extent of compression or rarefaction. The extremes of

both interference types are displayed in Figure 2.20 for the case of 1D travelling waves.

This concept can be extended to 2D and 3D systems.
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Figure 2.20: (First row from left to right) Interaction of positive right-going and left-going
travelling waves resulting in constructive interference. (Second row from left to right) Inter-
action of positive left-going and negative right-going travelling waves resulting in complete
waveform cancellation due to destructive interference.
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Figure 2.21: Modes of vibration (or ‘standing waves’) between two boundaries separated
by a distance ‘L’ (length). The panels depict the first three modes resulting from cyclical
propagation of pressure waves with resonant frequencies.

2.3.6 Standing Waves and Room Modes

Physical systems that exhibit vibrational characteristics resonate at particular fre-

quencies that vary depending on the composition of the system itself. In an acoustic

system, resonances are perceived as pronounced frequency components that are spaced

in the frequency spectrum to the extent that the pitch of the components may be dis-

cerned. These resonances are produced when the spatial dimension(s) of an acoustic

environment are directly related to the wavelength of particular sinusoidal sound wave

components. For a single spatial dimension, it may be shown (as per Figure 2.21)

that constructive cyclic wave propagation occurs between terminating boundaries at

frequencies given by:

fres =
cN

2L
(2.75)

for a length L (m), wave speed c (ms−1) and an integer value N . Hence, fres is a

resultant series of resonant frequencies. An important underlying assumption of (2.75)

is that both boundaries are subject to the Neumann (‘free’) condition facilitating phase-

preservation. Upon phase-preserving reflection at the boundaries, as is usually the case

in room acoustics, the reflected waveform is exactly in phase with waveforms that exist

in the space for every instance of fres. Therefore, the spatial positioning of compressions

and rarefactions will appear stationary yielding a standing wave. This is a particular

type of constructive interference that facilitates a build up of sound wave energy at

resonant frequencies leading to large pressure fluctuations.

An example of a 1D acoustic system that exhibits this resonant behaviour is that of
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Figure 2.22: Graphical depiction of the cyclical modal sound wave paths throughout a simple
cuboid space. Examples of Axial, Tangential and Oblique modes are given. Image sourced
directly from [2].

an air column, or pipe, with two open ends. Changing the boundary condition at one

end to the Dirichlet, ‘fixed’, type yields the case of a pipe with one closed end or closed

flue pipe. This adaption of boundary type impacts the pattern of interference arising

in the system. From (2.75) it is evident that resonant frequencies are integer multiples

of half wavelengths that are equal to the length of an open end pipe. Conversely, it

may be shown that resonances in a closed flue pipe are odd integer multiples of quarter

wavelengths that are equal to the pipe length [1].

The notion of standing waves can be extended to 2D and 3D where resonances arise

between a number of surfaces. For simplicity, examples are given for parallel boundaries

in 3D space where resonances (or room modes) are categorised as ‘Axial’, ‘Tangential’

or ‘Oblique’. Axial room modes manifest in a single dimension and result from cyclic

wave propagation between two parallel surfaces. Tangential modes occur over two

dimensions between four surfaces and oblique modes arise over three dimensions and

six boundaries. Examples of these cyclic propagation paths are given in Figure 2.22. In

such simplistic topologies, it is possible to analytically derive the frequencies for each

type of room mode [1, 24]:

fnx,ny ,nz =
c

2

√(nx
L

)2
+
(ny
W

)2
+
(nz
H

)2
(2.76)

where fnx,ny ,nz is the series of modal frequencies (Hz), L, W and H are the length,

width and height (m) of the enclosure respectively and nx, ny and nz are integer

values corresponding to the number of half wavelengths existing between the bounding

surfaces. Note that for phase-reversing boundaries, a condition exists such that nx, ny

and nz must be greater than zero. Such a condition does not apply in the case of phase-

preserving boundaries allowing a ‘DC mode’ to amplify within the system. Room modes

also occur in sonic environments of more geometric complexity, however deriving an
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analytical means of calculating the resonant frequencies by analytical methods becomes

very complicated, if not impossible. Furthermore, room modes are generally regarded

as a low frequency sound phenomenon. This is due to the fact that the separation of

modes in the frequency spectrum is larger at low frequencies. As frequency increases,

this separation becomes less apparent as modal frequency values become increasingly

coincident in the spectrum. As such, resonant sound behaviour in 3D enclosures, at

higher frequencies, results as the combination of various modes of vibration which are

difficult to distinguish. Schroeder and Kuttruff [40] provide a statistical means for

calculating an approximate critical frequency, Fc below which a space may said to

produce distinguishable modal activity as follows:

Fc ≈ 2000

√
RT60

V
(2.77)

where, V (m3) is the volume of the space and RT60 (s) is the reverberation time (defined

in section 2.3.8).

The experience of room modes will vary significantly as a listener’s position within

a space changes. This is due to the fact that standing waves are most prominent

along the cyclical paths which they traverse. In addition, interaction between spatially

distributed standing waves can lead to constructive and destructive interference causing

spatially varying locations of modal frequency increase, reduction and cancellation.

Hence, the nature of enclosed soundfields is inherently inconsistent throughout space

in terms of the spectral content of perceived sound. This presents a problem for room

acoustic design where, in most cases, the ideal outcome is to produce a soundfield

which consistently compliments the reception of sound at all listening positions. For

this reason, modal analysis through virtual modelling methods is extremely useful as

it provides insight into how to counteract manifestation of undesired resonances by

altering room topologies and surface absorption characteristics.

2.3.7 Echograms and the Room Impulse Response

An important method of analysing the acoustic characteristics of a space may be con-

ducted by recording the pressure fluctuations at a discrete point in response to an

acoustic excitation. Ideally, the excitation function should be full bandwidth, contain-

ing all audible frequency components with a consistent amplitude. This signal type

is the Dirac delta function (2.9), defined previously. In terms of acoustic pressure,

the Dirac delta function is an infinitely large and infinitely thin amplitude distribution

located at time t = 0. This infinitely short burst of pressure constitutes an acoustic

impulse. In reality, such a signal cannot be generated and, therefore, approximations
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Figure 2.23: Examples of a sampled Room Impulse Response (RIR) (top) and an acoustic
echogram (bottom).

must be made to realise useful measurements. In accordance with ISO documentation

[17], there are best-practice guidelines that detail the equipment and signal types that

should be employed. In particular, the sound source should be near omni-directional,

meaning that sound is distributed evenly about the solid angle with, ideally, a flat fre-

quency response. In terms of sound capture, the recording microphone should be small

as to not interfere significantly with the local soundfield and also possess a flat fre-

quency response. Suggestions pertaining to the nature of the impulsive signal required

by [17] have given rise to the creation of a number of sound excitation and capture

methods. Among these, the most notable are the Maximum Length Sequence [41] and

Exponential Swept Sine [42, 43] approaches.

The data collected by employing these techniques facilitates the examination of Echograms

and Room Impulse Responses (RIRs). These two signal types describe the pressure

variations recorded, in response to an optimal excitation signal, as functions of time.

An example of each type is provided in Figure 2.23.

The plots depicted serve to highlight the difference between the two representations

of pressure variation: an echogram contains information on the pressure magnitude

variations over time, whereas a RIR contains both magnitude and phase information.

Both signal types allow examination of the time-of-arrival and amplitude of the direct

sound and significant early reflections experienced at the receiver position. Addition-

ally, the overall nature of the reverberant soundfield and temporal decay of pressure

levels may be ascertained. However, RIRs provide a more complete representation of

the soundfield due to the fact that sound pressure compressions and rarefactions are

distinguishable. Moreover, a room impulse response generated using an optimally flat
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sound source defines the approximate transfer function between source and receiver.

A RIR of this kind may, therefore, be thought of as the acoustic fingerprint of a sonic

environment which, when analysed, yields a wealth of objective measurement data re-

garding the acoustic qualities of the space. It is for this reason that digital emulation

of RIRs is often the ultimate goal in the realm of acoustic modelling and prediction.

2.3.8 Acoustic Parameters

Upon collection of a RIR (or echogram), it is possible to calculate numerous acoustic

parameter values that objectively quantify important acoustic characteristics of the

space measured. The ISO documentation [17] defines the means by which these pa-

rameters are derived from room impulse responses. What follows is a description of

particular parameters that are deemed important in relation to the studies detailed in

later sections.

Reverberation Time:

There are numerous approaches to the prediction of the reverberation time related

to a soundfield. Each method is based on the same underlying principle that the

reverberation time is the amount of time taken, in seconds, for sound energy to drop

by 60 dB after initial excitation, assuming no further excitation. For this reason,

reverberation time is commonly referred to as ‘RT60’. In absence of a room impulse

response it is possible to determine an approximate value for RT60 via statistical means

developed by Wallace C. Sabine [44]. According to Sabine, the reverberation time of a

space is directly related to the volume of the enclosure V , the total area of bounding

surfaces S and the absorption coefficient possessed by each surface α:

RT60 =
0.161V

Sα
(2.78)

The term on the denominator of the above equation refers to the total absorption, given

in Sabins (A) calculated as A =
∑N

n=1 Snαn where N is the total number of surfaces,

of area Sn metres squared, present within the space. For realistic surface materials, the

absorption value will vary with frequency, therefore the value of RT60 is also frequency-

dependent. In order to compensate for this variance, both absorption characteristics

and RT60 are calculated in octave bands in order to attain more accurate results.

Sabine’s equation provides a quick and simple means of predicting sound decay times

in an enclosure. However, its employment is subject to a number of conditions. Firstly,

the formulation of (2.78) relies on the definition of a ‘mean free path’ (MFP) length

which is the average distance between bounding surfaces. This can be problematic

in the case of sonic environments that are radically longer than they are wide as the
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MFP will not be representative of either the large or smaller inter-surface distances.

Secondly, it is assumed that the soundfield is diffuse, i.e. the sound energy distribution

and direction of travel is stochastic. In practice this will not be the case for spaces that

exhibit numerous strong early reflections in response to excitation. Lastly, it may be

demonstrated that the accuracy of Sabine’s formula decreases for increasing values of

α > 0.3 [1]. As an example, for fully absorbing surfaces, α = 1, a reverberation time

of zero would be expected, however (2.78) will yield a non-zero value. An alternative

statistical means of calculating reverberation time is that provided by the Norris-Eyring

equation:

RT60 =
−0.161V

S ln(1− α)
(2.79)

where, as before, S is the total bounding surface area and α is the average absorption

coefficient. This formula is subject to the same underlying assumptions as Sabine’s

RT60 calculation, however results yielded from its use are more realistic for high values

of absorption [26]. For example, the case of full absorption, α = 1, returns a reverber-

ation time of zero as expected due to the inclusion of the natural logarithm. As noted

in section 2.3.2, surface absorption characteristics are frequency dependent and, there-

fore, RT60 will also vary with frequency. Specific values of absorption coefficients are

commonly documented in octave bands to provide an approximation to the variation of

absorption levels over frequency. Hence, the calculation of RT60 may be conducted in

octave bands to provide a frequency-dependent measure of sound energy decay rates.

A more rigorous approach to RT60 calculation that derives reverberation time from a

captured or synthesized RIR is detailed in [17]. Recorded RIR data must be manip-

ulated into a form that better represents the decay of sound energy over time. This

process culminates in the created of an energy decay curve (EDC), also known as the

‘Schroeder Curve’ after Manfred Schroeder’s original work on reverberation time cal-

culation [45]. The EDC is calculated as follows, [17, 45]:

EDC(t) =

∫ ∞
t

p2(τ)dτ =

∫ ∞
0

p2(τ)dτ −
∫ t

0
p2(τ)dτ (2.80)

where p(t) is the recorded RIR giving a pressure p at time t and EDC(t) is the energy

decay curve. Interpretation of the integral limits is as follows: t = 0 corresponds to the

temporal point of sound excitation; t = ∞ is the time by which the soundfield local

to the capture position has settled to its equilibrium position. Upon calculation of the

EDC, the decay curve is converted onto a logarithmic scale to better suit the range of

values returned. Figure 2.24 shows an example logarithmic EDC.

A value of RT60 is obtained by constructing a linear least squares regression line that
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Schroeder Curve

Figure 2.24: An example EDC or ‘Schroeder’ Curve, represented by the blue curve. The
extrapolation for T20 and T30 regression lines are shown in black and red respectively.

approximates the decay of energy over time. Ideally, this regression line would be de-

rived such that the temporal point at which a -60 dB decay has occurred is found.

However, in practice, a pressure drop of this magnitude is rarely attained due to the

presence of a noise floor or prominent background noise leading to a regression line that

is not representative of the decay curve and overestimated reverberation time values.

To overcome this problem, the regression line is instead extrapolated from a portion of

the EDC defined between lower and upper energy level limits. In this way, the rever-

beration parameter ‘T30’ provides the reverberation time calculated by extrapolating

the gradient of the regression line in the range EDC = [−5 : −35] dB assuming a nor-

malised initial energy level of 0 dB. In environments with large amounts of background

noise or a relatively high noise floor, an alternative reverberation parameter ‘T20’ may

be calculated in an analogous manner using the energy limits, EDC = [−5 : −25] dB.

RT60, and indeed every other parameter described in the following, should be evaluated

in specific frequency bands. Hence, it is required that RIRs are first band-pass filtered

to obtain the response in either one-octave or third-octave bands.

The reverberation experienced in a sonic environment is an extremely important acous-

tic quality in a subjective sense. A space with large reverberation times may enhance

the reception of musical performances if the nature of the space acts to colour the

sound produced by instruments in a timbrally pleasing manner. Conversely, there are

scenarios where low reverberation times are of great importance, for example recording

studio control rooms and other acoustically dry environments. This is due to the fact

that reverberation can lead to problems, such as unacceptable loss of source signal

fidelity upon reception if RT60 values are too large. Hence, this parameter is of great
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interest to persons wishing to evaluate or design ideal acoustic conditions for spaces of

particular sonic purposes.

Early Decay Time:

The early decay time (EDT) measures the sound energy decay for the initial part of

a RIR and is defined as the time taken, in seconds, for the sound energy to decrease

to 10 dB below an initial level. EDT is derived by extrapolating the portion of the

EDC in the range EDC = [0 : −10] dB (assuming a normalised initial energy level) to

a level of -60 dB. Hence, EDT is an alternative value of RT60. The difference between

EDT and T20 or T30 is that the direct sound and early reflections contribute to the

EDC portion from which EDT is derived. As such, EDT can provide insight into the

strength and temporal width of the non-diffuse soundfield leading to a parameter that

is closely related to perceived reverberance [1, 17]. For this reason EDT values may be

deemed more psychoacoustically relevant than T20 and T30.

Early-to-Late Index:

The early-to-late index, Cte , is the logarithmic ratio of squared sound pressure arriv-

ing at a receiver from the early and late soundfields. Commonly, the early soundfield

is defined as containing both the direct sound component and significant early reflec-

tions when calculating this parameter. The late sound is that which arrives when the

soundfield begins to become more diffuse. Cte is formally defined as follows:

Cte = 10 log10

(∫ te
0 p2(t)dt∫∞
te
p2(t)dt

)
dB (2.81)

where p is the instantaneous pressure recorded at time t and te is the temporal limit

imposed to differentiate between early and late arriving RIR components. The lower

limit of the numerator integral refers to the time at which the direct sound is recorded.

The upper limit of the denominator integral, in reality, is set to a time by which sound

energy has decayed to a sufficiently low level, usually by at least 30 dB [17]. In a

perceptual sense, this quantity describes how intelligible the audio information ema-

nating from a sound source will be to a listener for a given source/listener arrangement

within a soundfield. For this reason, Cte , is commonly referred to as the ‘clarity index’.

Quantitatively, a high value of this measure calculated from a RIR suggests that the

sonic features experienced at the listening position are clear and distinguishable and

are without excessive colouration due to the features of the room from which the RIR

was collected. In contrast, a low value corresponds to a soundfield in which the fidelity

of the audio information produced by a sound source is greatly reduced en route to the

listening position. In practical terms, the ratio between early and late arriving energy
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provides insight into the diffusivity of the acoustic environment and is, therefore, highly

related to reverberation time.

The ISO document [17] provides advice on the temporal limits to apply when attempt-

ing to monitor the clarity of a space for different types of sound source. Officially,

the Clarity Index is the measure of Cte obtained when the temporal division te is set

to 80 ms giving a quantity best suited to evaluating the reception of live music. For

the purposes of investigating the clarity of speech, a value of te = 50 ms is advised.

Reflecting on the fact that Cte is related to RT60, these time limits are justified. Gen-

erally, reverberation is understood to support the performance of music and colour the

perceived sound in a subjectively pleasing manner. Hence, the perception of clarity

in this sense will differ to that of speech where reverberation can degrade understand-

ing in communication and cause annoyance. For this reason, the division between the

early and late energies should be altered depending on the nature of the sound being

communicated in the space under investigation.

Definition:

Definition, D50, is a similar quantity to the early-to-late index in that it provides a

measure of how recognisable the sonic features of a source signal are to a listener when

transferred over an acoustic field. D50 is defined as follows, after [17]:

D50 =

∫ 50
0 p2(t)dt∫∞
0 p2(t)dt

(2.82)

In this calculation, the numerator of the above expression is a measure of the acoustic

energy arriving at a receiver position in the first 50 ms of impulse response capture

(direct sound and early reflections). The denominator integral calculates the total

energy experienced at the listening position over the entire duration of the recorded

signal. As such, Definition corresponds to the ratio of early arriving energy to the

total energy present in the RIR and is presented as a percentage. Subjectively, D50

is another advised measure for investigating the intelligibility of speech within a sonic

environment. Notice that the same temporal division between early and late arriving

sound is used for both D50 and the early-to-late index for speech. The close relationship

between D50 and C50 is demonstrated by the fact that one may be calculated from the

other:

C50 = 10 log

(
D50

1−D50

)
dB (2.83)

When calculated independently from a RIR, C50 and D50 values can be compared to

validate the correctness of results.
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Source Strength:

The difference between sound pressure fluctuations at a receiver position and those

emitted by a sound source can be expressed by means of the sound strength measure,

G. This quantity is a logarithmic value pertaining to the difference between the pressure

signal recorded at the receiver, in response to an omni-directional source, and the sound

pressure experienced at a distance of 10 m from the same source in the free field (i.e.

anechoic conditions). As a function,

G = 10 log

( ∫∞
0 p2(t)dt∫∞
0 p2

10(t)dt

)
dB (2.84)

where p and p10 are instantaneous pressure values recorded at time t at the receiver

location and in the free field at 10 m respectively. The integral limits, as with the

calculation of the parameters described previously, refer to integrating from the start

of the RIR signal, t = 0, to a temporal position at which the soundfield has decayed

sufficiently, t = ∞. Through use of G it is possible to discern the nature of sound

distribution throughout a measured space by applying the above expression to RIRs

captured in various locations. Moreover, comparison of sound levels experienced in

different acoustic environments may be conducted in a similar manner.

2.4 Audio Convolution

Any Linear Time Invariant (LTI) expression that describes the nature of an acoustic

system may be reduced to a simple input/output system. Figure 2.25 (a) displays

such a system with input X(z) and output Y (z), where (z) signifies the z -domain

resulting from the discrete z -transform. The transfer function H(z) = Y (z)
X(z) governs the

modification of the input to create the output. An impulse response can be found for the

system by simply setting X(z) equal to the z -transform of the Dirac delta function (i.e.

a discrete frequency-domain signal with constant magnitude at all frequencies). The

modification of an input signal by a transfer function signal is the basis of convolution

which, when applied to two discrete time-varying signals, results in the combination of

both signals. In the discrete-time domain, this process is defined as follows:

y[n] = p1[n] ? p2[n] =
∞∑

m=−∞
p1[m]p2[n−m] (2.85)

with y[n] being the resulting convolution of discrete signals p1 and p2. Integers n and

m reference to discrete time samples. Returning to the concept of the input/output

system given above, the temporal process of sound propagation through a space may be

described if the transfer function is defined as the RIR of that space. Hence, once the
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Input System Output

(Acoustic Environment)(Sound Source) (Sound in Space)

*Auralisation*

X(z) Y(z) = H(z) X(z)H(z)(a)

(b)

Figure 2.25: Diagram (a) shows a simple abstraction of an input/output transfer function
system defined in the discrete z -domain. Diagram (b) displays the transfer function concept
as applied to room acoustics where the system (i.e. a room) modifies input audio to produce
the sound of the input audio as if it were played in the space. The transfer function (H(z))
representing the room is the RIR captured in the space.

RIR is known, it is possible to calculate the propagation of any sound source through

the space in which the RIR was captured by setting the input equal to the choice of

sound source, as per Figure 2.25 (b). This concept is central to the rendering of acoustic

auralisations (see section 2.6), allowing any sound to be experienced as if played in the

environment from which the RIR was extracted. Furthermore, the discrete z -domain

system highlights the potential for carrying out convolution in the frequency domain

as follows:

y[n] = F−1{P1[w]× P2[w]} (2.86)

where P1 and P2 are discrete frequency-domain representations of the signals p1 and p2

with [w] referencing discrete frequency and F−1 denotes the inverse Fourier Transform.

This is a useful property of convolution that allows for efficient calculation by means

of the Fast Fourier Transform [46].

2.5 Elements of the Human Auditory System

2.5.1 The Sound Reception Chain

The human auditory system, under usual conditions, incorporates two ears as sound

receivers giving rise to the term binaural. This natural sound reception system, as

discussed here, is composed of numerous elements which together contribute to the
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Figure 2.26: A simplified flow diagram (from left to right) of the sound reception chain in
human hearing. Major physiological components of the auditory system are noted. Image
adapted from [5].

sound reception chain. The nature of the physiological components of the reception

chain vary from person to person. As such, it is broadly accepted that every person

perceives sound in a different way owing to this variance. Perceptual cues, such as

localisation and distance, will therefore also vary from person to person as these cues

are reliant on the physical attributes of the auditory system.

A simplified overview of the sound reception chain is displayed in Figure 2.26. As

shown, a sound impacting on a human ear is first manipulated by the pinna which acts

as a direction-dependent filter and channels incoming sound into the auditory canal.

The canal is terminated by the timpanic membrane or ‘ear drum’ and is approximately

0.027 m in length. Interestingly, this arrangement is analogous to a pipe with one open

and one closed end and, therefore, the auditory system exhibits increased sensitivity

in frequency ranges that correlate with the theoretical resonant frequencies of such a

system.

The timpanic membrane defines the boundary between the outer and middle ear seg-

ments. This a thin layer of tissue that separates the air in the atmosphere from the

internal mechanisms in the head. Under normal conditions, the membrane takes on

a concave conical shape, as viewed from the auditory canal, due to the fact that it is

pulled taught via the attachment to the ossicular chain. The tension provided facili-

tates vibration in response to small variations in the pressure of sound waves incident

on the membrane.

The subsequent transmission of sound through the reception chain occurs via the os-

sicular chain due to its fixture to the timpanic membrane. The ossicles are a collection

of three connected bones which, together, straddle the middle ear portion and transmit

vibrations from the ear drum to the inner ear via mechanical movement. The inner-

most termination of the ossicular chain is attached to the cochlea via the oval window.

In its entirety, this system acts to amplify the vibrations experienced by the ear drum

due to the smaller dimensions of the oval window compared to the ear drum.
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The cochlea is situated in the inner ear and is comprised of two fluid filled chambers

separated by the basilar membrane which are, together, rolled into a spiral. Vibrations

from the oval window pass into the fluid and are transmitted through the length of

one of the chambers to the apex of the cochlea. At this point, the vibrations are

transferred into the second chamber which terminates with the circular window. Hence,

the circular window (a small membrane) moves in sympathy with the oval window as

pressure fluctuations in the fluid are passed through the full length of the cochlea.

The separating basilar membrane possesses some 30000 nerve endings [1] that sense

the pressure variations in the surrounding fluid. Finally, these nerve endings send

appropriate signals to the brain via the cochlear nerve in order that the sound may be

processed and perceived.

It is apparent that the generation of auditory cues is reliant on the combined effects of

each stage of the reception chain. Hence, the modulation of sound pressure waves via

the mechanisms present in the system briefly described above produces and relays the

characteristic auditory cues that shape the perception of sound on an individual basis.

2.5.2 Sound Localisation

Broadly speaking, sound localisation refers to the ability of the human auditory system

to allow the direction of incoming sound to be determined upon reception. This, in

turn, enables the perception of spatialised sound attributes whereby the positioning

of incoming sound components is perceived for all directions around the solid angle.

With reference to binaural hearing, sound localisation is partly characterised by the

Duplex theory, initially devised and investigated by Lord Rayleigh [47]. This theory

involves two distinct localisation models: the Interaural Time Difference, ITD and

Interaural Level Difference, ILD. These models are briefly described here in order to

provide context for the following discussion of spatial sound reproduction formats.

Interaural Time Difference: Due to the distance present between a human’s ears,

sound incident on a listener from any angle other than 0◦ and 180◦ around the azimuthal

plane will arrive at the ears at different times. This causes an inherent time delay in

the reception of sound at the ear that is located furthest away from the sound source.

In turn, this time delay cue is resolved psychoacoustically by a listener producing a

perception of the direction from which the sound is originating.

Interaural Level Difference: The presence of the human head between the ears acts

to occlude sound from the ear that is located furthest away from a sound source. This

occlusion causes a difference in the pressure amplitude received at each ear whereby the

level is lower in the ear that is occluded in relation to the source location. This provides
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a listener with a further perceptual cue that is resolved to indicate the direction of

the incoming sound. However, as discussed in [1], low frequency wave components are

capable of diffracting around the head and, therefore, the pressure amplitude difference

arising at each ear becomes less perceptible as frequency decreases. As such, it is widely

accepted that the human auditory system applies a combination of both ITD and ILD

to localise incoming sound. For frequencies below around 1500 Hz, ITD is the dominant

acoustic cue. For frequencies above around 1500 Hz ILD is dominant.

2.5.3 Just Noticeable Differences (JNDs)

The study of the perception of sound provides insight into how sensitive the human

auditory system is to changes in a soundfield or in received audio. This concept of

detecting variances in the attributes of received sound is made quantifiable by means of

Just Noticeable Differences (JNDs). JNDs correspond to the minimum change in any

sound attribute (e.g. pitch, loudness, localisation) that the human auditory system

is capable of resolving. Hence, the notion of JNDs may be readily extended to the

objective acoustic parameters derived from RIRs (see section 2.3.8) in order to ascertain

whether objective differences between two or more RIRs are likely to translate into an

easily perceived difference. Such quantities can be useful in the design and analysis

of room acoustic properties and so the definition of reliable JND values has been the

focus of extensive research (see e.g. [48, 49] and references therein). Currently, JNDs

Perceived Attribute Acoustic Parameter Frequency Range (Hz) JND

Clarity C80 (dB) 500 - 1000 Hz 1 dB
Definition D50 (%) 500 - 1000 Hz 5%

Reverberance EDT (s) 500 - 1000 Hz 5%

Table 2.2: Just Noticeable Difference (JND) values for C80, D50 and EDT acoustic parameters
as defined in [17]. These values are assumed to be valid over the frequency ranges provided.

pertinent to room acoustic parameters listed in ISO 3384 [17] are generally regarded as

the benchmark values to be used when evaluating RIRs in a perceptual sense. A subset

of these values are provided in Table 2.2. However, particular attention has recently

been given to the derivation of a reliable JND for reverberation time, T30 [16]. While a

JND for RT60 is stated in ISO 3384 [17], this value refers to EDT and is defined as 5%

as derived in [50]. Hence, this EDT JND is not readily applicable to the alternative

T30 measure of reverberation time and is considered too stringent for T30 [16]. This

consideration is justified by studies that indicate a much larger range for T30 JND, for

example [16] and [51] which document ranges of +/- 24.5 % and 30 % respectively. For
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the purposes of this study, the T30 JND is defined as the former due to the fact that

this range is shown to be equally applicable to band-limited and full audio bandwidth

stimuli [16] and is the more conservative of the two. EDT and C80 JNDs are defined in

this work as per Table 2.2 in order to maintain consistency with recognised standards.

Following the discussion in [48] it is noted that while JND ranges provide a basis of

quantifiable perceptual comparison between audio signals, these ranges are approximate

and can vary depending on two notable factors. Firstly, the derivation of JNDs for

acoustic parameters documented in related literature relies on the use of different audio

stimuli (e.g. noise, instruments etc.) leading to a lack of consistency between reported

ranges. Secondly, the ranges of acoustic parameter measures incorporated in studies

also varies. As such, there is uncertainty when considering whether the application of a

JND range derived using a large parameter range in audio stimuli is equally applicable

to both low and high objective parameter measures. Hence, JNDs are considered an

approximate guideline for perceptual RIR analysis for the purposes of this work and

are applied only to further quantify the relative agreement of modelled RIR parameters

obtained from simulations (see sections 5.2-5.3).

2.6 Auralisation

Room impulse responses, captured in real environments, or simulated in their virtual

representations, provide the data required to numerically quantify acoustic character-

istics such as reverberation and clarity. Although these measures are significant in the

realm of acoustic design and analysis, they do not provide a subject with a sense of the

auditory nature of soundfields. This is where auralisation becomes central to the ex-

periential evaluation of room acoustics. In [52], Kleiner et al. aptly define auralisation

as follows:

“Auralisation is the process of rendering audible, by physical or mathematical modelling,

the soundfield of a source in space, in such a way as to simulate the binaural listening

experience at a given position in the modelled space.”

The desired outcome of this procedure is the relation of an aural impression of the

acoustic characteristics inherent to a given space in response to a sound source (or sound

sources) to a listener. Approaches to auralisation may be divided into two categories:

Fully Computed Auralisation and Computed Multiple-Loudspeaker Auralisation, after

[52]. The first category relies on the calculation of RIRs by means of a virtual modelling

approach. The RIR generated is then processed to create an auditory representation

of a sound source in the modelled space suitable for playback over headphones.
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Computed multiple loudspeaker and Fully Computed Auralisation approaches differ

only in the means by which the modelled soundfield is presented to a listener. In

this case, the sound reproduction system consists of an array of loudspeakers arranged

in a manner governed by the type of sound capture method used (i.e. B-Format,

see section 4.3.2). This gives the approach a considerable advantage in that a more

immersive, natural listening experience is attained owing to the directivity inherent to

multi-channel speaker setups and the removal of the requirement for listeners to wear

headphones. However, auralisations of this kind must be undertaken in anechoic or

suitably treated listening environments in order to avoid colouration of the presented

audio. In addition, the loudspeakers used must also adhere to particular restrictions.

As stated in [52], they must be: small as to avoid undesirable scattering effects that

may give rise to increased diffusivity of the rendered auralisations; full-range such that

the entire audible bandwidth may be represented.

2.6.1 Walkthrough Auralisation

This auralisation procedure involves the reproduction and presentation of a dynamic

auditory scene such that a listener may experience the evolution of a changing sound-

field. The progressive alterations commonly applied in walkthrough auralisations in-

clude: moving sound source and receiver positions; adjustment of room geometries;

modifying model parameters such as surface absorption and scattering characteristics.

Various implementations of walkthrough auralisations are described in related litera-

ture (e.g. [53–61]). These examples demonstrate rendering interactive auralisations in

either online or offline processes.

The offline approach, i.e [55, 59], relies on the pre-computation of a selection of vary-

ing RIRs that differ with respect to the changing aspects of a soundfield or virtual

model. For example, a moving listening location may be represented by a series of

RIRs recorded at minimally spaced instances along a predetermined route throughout

the measured space. The impression of movement, in relation to a static sound source,

may then be achieved by interpolating between RIRs as required during the aurali-

sation process. Alternatively, a moving source position, or a combination of moving

source and receiver, can be handled by similar means. The advantage of this approach,

when using virtual models to produce RIRs, is that no time constraints are imposed

on simulation and rendering of results. Therefore, accurate, yet computationally ex-

pensive, wave-based or hybrid methods (see Chapter 3) may be utilised to produce a

set of detailed RIRs, thus enabling the production of highly realistic auralisations.
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The online approach, i.e [54, 60, 61], is by far the more difficult of the two to imple-

ment. This is largely due to the requirement that alterations of the modelling scenario,

and their consequent effects on the auralisation, must be carried out in real-time. As

a result, restrictions on the level of detail and accuracy of the chosen modelling tech-

nique are usually implied to seek a compromise between between simulation speed

and resulting realism of auralisations. Implementations such as those documented in

[53, 54, 57] operate by accurately modelling early reflections and synthesizing the re-

verberant stages of sound by means of estimation or delay and filtering networks. The

simplification in the representation of diffuse soundfields is justified by the listener’s

inability to distinguish separate reflection components that occur closely in time. Re-

duction in levels of geometric complexity may also be considered to lower computational

load [54]. This is particularly useful when employing the Image Source Method (see

section 3.1.2) to compute early reflection paths where simulation times are prohibitive

for large numbers of model surfaces.

There is a considerable benefit that arises from the use of real-time auralisations. The

introduction of user-interaction with such systems allows a listener to specify changes

to model attributes and immediately receive a means of perceptually monitoring the

effects of these changes on acoustic characteristics. Recently, such systems have been

developed to inform the design of buildings in terms of acoustic properties [60, 61]. In

the alternative offline case, a new set of RIRs would be required for each alteration made

to the model. Hence, walkthrough auralisations constitute a highly useful extension

to static auditory scene reproduction in the context of all the related applications

of acoustic modelling outlined in Chapter 3. This is especially true in cases where

comparative testing is desired for subjective evaluation purposes.

2.7 Summary

This chapter has provided a review of acoustic theory and concepts that are related

to the studies documented in the following. The nature of sound waves in air has

been investigated and the governing mathematical expressions for wave propagation

in 1D - 3D space have been derived and analysed. A review of important acoustic

phenomena that arise in real enclosed sonic environments has been documented in

order to highlight key characteristics of sound that an acoustic simulation should aim

to model. The discussion of RIRs addresses the ISO standardised approach to the

calculation of acoustic parameters that define the sonic properties of a space. Lastly,

the concept of audio convolution has been introduced in relation to the production of

auralisations which are, in turn, described alongside elements of the human auditory
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system and subjective JND ranges for ISO acoustic parameters. The topics reviewed

here serve as a basis for analysis and explanation of results derived from virtual acoustic

models documented in later chapters.



Chapter 3

Virtual Acoustic Modelling

Methods

The primary aim of virtual acoustic modelling is to digitally represent the behaviour

of sound propagation within a sonic environment ensuring faithful recreation of the

acoustic characteristics inherent to that environment. In most cases, the process of

virtual acoustic modelling involves simulating a room impulse response. As discussed

in Chapter 2, a RIR reveals the acoustic properties of the space in which it is captured.

Hence, the ability to simulate RIR signals is significant as it provides a means to

investigate spaces that are under development, inaccessible, no longer in existence,

theoretical or in initial design/development stages. For this reason, acoustic modelling

processes find application in a number of disciplines including:

• Architectural Design: acoustic prediction informs the design of spaces where

acoustic qualities are of importance (e.g. concert halls, theatres and recording

studio control rooms).

• Environmental Noise: the impact of sound barriers and other approaches to noise

control and reduction may be investigated prior to implementation to assess and

optimise performance.

• Virtual Reality: the creation of realistic reverberation effects can enhance the

sense of immersion experienced in the virtual realm. This notion also extends to

audio in film and game production.

• Architectural Heritage: the acoustics of a site of architectural significance may be

simulated such that it is possible to provide and contribute to a complete account

of the properties of the site for posterity.

78



Chapter 3. Virtual Acoustic Modelling Methods 79

There exists a wide range of different approaches to virtual acoustic modelling, all of

which have their strengths and weaknesses. These approaches may be divided into

two distinct categories: Geometrical and Numerical. What follows in this chapter is

a review of select acoustic modelling paradigms that have been investigated during

this study to inform the design and development of the novel RIR synthesis method

presented in Chapter 5.

3.1 Geometrical Acoustic Models (GAMs)

Geometrical approaches include the most established acoustic modelling paradigms

with a history of digital implementations that dates back to the 1960s [62]. All GA

models are constructed with the assumption that sound propagates throughout space as

a series of 1D paths of traversal or “rays”. While this underlying principle contributes to

the efficiency of simulations, it also impacts negatively on the accuracy of the results

produced. This is due to the fact that wave properties are not preserved in such

simulations leading to inaccuracies in low frequency ranges where wave phenomena

(such as standing waves, diffraction and occlusion) are most apparent. For this reason,

it is generally accepted that GA models are valid only at mid-high frequency ranges

where wavelengths are much shorter than the dimensions of the surfaces that compose

the modelled space.

Despite this general limitation and recent developments in more modern numerical tech-

niques that preserve wave effects, GAMs remain a highly useful and popular means of

room acoustic modelling as noted by Savioja and Svensson [63]. This claim is supported

by the current dominance of GAMs in commercially available acoustic prediction pro-

grams such as CATT-Acoustic [19], ODEON [21] and EASE [64].

3.1.1 Ray Tracing

One of the earliest examples of the application of ray-tracing to the problem of acoustic

prediction was produced by Krokstad et al. [62] in 1968. This work defines and

examines the basic principles of ray-tracing methods that continue to inform the design

of current acoustic prediction techniques. The ray-tracing algorithm begins by defining

a sound source location in a given space, from which a number of 1D ray paths are

projected into the space. These rays represent the progression of sound energy along

the paths, the directions of which are distributed (approximately) uniformly around

the solid angle. As the ray paths emanate from the sound source and traverse the

space they interact with boundary surfaces and are consequently reflected according
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to the laws of geometrical reflection. In [62], the ray paths terminate upon arrival

at a receiver area, defined as a rectangluar audience area in the space. Upon arrival

at the receiver area, the time of arrival (defined as the time elapsed since excitation)

is recorded. The recorded data takes the form of an echogram that can be utilised to

describe the temporal nature of the soundfield relative to a predefined listening position.

Note that echograms may be further processed to include synthesised/approximated

phase components in order to yield a room impulse response [63].

Since the early work by Krokstad et al., ray-tracing algorithms for acoustic modelling

have undergone significant developments to increase the accuracy of simulations. In

[65], Kulowski examines the implementation of sound reflection/absorption, emission

and reception in ray-tracing models which together facilitate more accurate emulation

of sound propagation in space. Following [65], the approach to omni-directional source

modelling is refined by considering two scenarios. Firstly, if the number of rays cast

is known, outgoing rays may be defined to yield a uniform distribution over the solid

angle. Alternatively, a random distribution is applied when the number of rays to

be cast is unknown. The second situation may arise when the amount of ray paths

required to investigate a space is determined during run-time as the results produced

approach and eventually attain a predefined condition. Furthermore, for the case of a

directional sound source, the initial energy applied to outgoing rays can be weighted

with respect to a desired source directivity function.

The attribution of initial energy to each ray cast facilitates the simulation of absorption

due to the absorptive characteristics of boundary surfaces. Upon each ray reflection,

the amount of energy dissipated in the surface encountered is calculated and subtracted

from the incident energy level. Hence, successive reflections over time cause a decrease

in the total energy of a ray. Commonly, the amount of absorption applied during ray

reflection is assumed to be independent from angle of incidence. This assumption holds

for diffuse soundfields and may be utilised for calculating absorption for late reflections

as applied in an early implementation of ODEON [66]. Furthermore, the length of a

calculated ray path may be used to calculate frequency-dependent energy loss due to

the viscosity of air. If a ray dissipates enough energy to fall below a defined minimum

before arriving at a receiver, the traced path will be terminated and discarded.

The reception of a ray at a receiver point occurs when the ray path intersects a volume

located around the receiver location. Point-like receivers are not applied in ray-tracing

due to the low probability that a suitable number of rays will intersect the receiver’s

position in a reasonable run-time. However, the use of receivers which occupy a defined

amount of space leads to the potential for invalid or duplicated ray paths to register
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as contributions to the resulting echogram. This problem is addressed in [67] where

examples of invalid ray paths are given as follows:

• Multiple detections of ray paths emulating the direct sound component or early

reflections.

• Ray paths between source and receiver that are obstructed by elements of the

room geometry.

• Rays that are detected on the opposite side of an interior boundary with respect

to the receiver due to the fact that the receiver volume encompasses both sides

of the boundary.

The first example can be remedied by tracing a series of pyramidal volumes between

source and receiver for direct sound and early reflection paths, as is the case with beam

tracing algorithms (see section 3.1.3). This reduces the potential for casting several

rays towards the receiver and instead the sound components arriving at the receiver

are recognised by an intersection of the receiver volume with the volume cast.

In order to identify invalid rays that are in some way obstructed by boundaries, it

is possible to reduce the volume of the receiver to a minimum allowable size. The

governing equation for this minimum value is documented in [67] for the case of sphere.

A further solution, which may be used in conjunction with the first, is to trace a reverse

path from the receiver to the source. If a backtracked ray path fails to arrive at the

source at the correct time (the time of arrival), the ray is discarded. While this is

a rigorous means of ray validation, this approach does incur increased computational

effort as each ray path must be traced twice.

Ray tracing is currently employed in a range of acoustic modelling programs, including

CATT-Acoustic [19] and ODEON [21], as a means of simulating late reflections in dif-

fuse soundfields [63]. The inclusion of diffuse reflection in ray tracing was examined by

Hodgson [68]. A previous work by the same author, [69] demonstrates that accounting

for only specular reflections in a ray-based acoustic prediction model produces results

which are likely to deviate from those recorded in practical measurements. The dis-

crepancies were hypothesized to be a consequence of the presence of diffuse sound

reflections occurring in practice and their omission in the models. In [68], Lamber-

tian scattering was applied in order to simulate the effects of diffuse reflection and, in

turn, this led to the notion of controlling the amount of diffuse reflection arising in the

later stages of a room impulse response. The incorporation of diffusion is shown to

lead to the prediction of reverberation times that better match those found in practice

[68]. Further refinement of the methods by which diffuse soundfields are simulated in
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Sound Source

Receiver

Figure 3.1: 2D depiction of rays traced throughout a simple domain. The ray casts signified
by the red and black lines traced from the sound source are cases of received rays as they
intersect the receiver domain. The blue ray cast is an example of one which does not arrive at
the receiver before imposition of the termination criteria.

ray-based algorithms are given in [70, 71] and [71] in relation to ODEON specifically.

While GAMs do not inherently emulate sound wave characteristics, diffraction mod-

elling has been introduced to ray-tracing algorithms in order to increase the accuracy

of auralisations. A study by Torres et al. [72] demonstrates that synthesis of diffrac-

tion in the early stages of a RIR contributes significantly to the perception of spatial

and low-frequency qualities within a model. However, the inclusion of diffracted ray

components in simulations can greatly increase computation time.

Having examined the ray-tracing technique, it is possible to conclude that this method

is well suited to the simulation of the late temporal stages of sound propagation in

mid-to-high frequency bands. However, due to the nature of ray casting, reflection and

reception in ray-tracing algorithms, there is the potential for valid paths to be omitted

during simulation. This, in turn, suggests that ray tracing is not reliable for simulating

prominent early reflections. Hence, this technique is commonly used in combination

with the image source method which directly calculates specular early reflection paths.

3.1.2 Image Source Method

The theory behind the Image Source Method (ISM) as applied to acoustics was pre-

sented by Eyring in [73] where the process was employed to predict the reverberation

time of acoustically treated rooms. This approach was then digitally implemented

many years later by Allen and Berkeley [74] to simulate RIRs in spaces with rectan-

gular, parallel surfaces. The case of such cuboid topologies yields the simplest form of

ISM and is best described with the aid of the diagram depicted in Figure 3.2.
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Figure 3.2: 2D graphical interpretation of the Image Source Method. Source (S) and receiver
(R) positions are shown within the boundaries of a simple rectangular space. Examples of 1st

- 3rd order reflections are given alongside their respective image sources. Further examples of
valid image sources are denoted ‘x’.

The diagram shows a 2D plan view of a cuboid space with a sound source location

‘S’ and receiver location ‘R’ situated within the boundary surfaces (shown in bold

black). As with all GAMs, the propagation of sound energy is assumed to occur along

a number of 1D paths originating at the sound source. However, in the ISM each

reflection occurring in a path is represented using a secondary image source. Examples

of first, second and third order reflections are displayed in the diagram with their

respective image sources, S' - S''', each positioned in a fictitious space with dimensions

equal to those of the original space. The path length between an image source and

the receiver is equal to that of the reflected path to be represented. In addition, the

angle of arrival of each reflection at the receiver is preserved and the reflection order is

given by the number of boundaries intersecting the path from the image source to the

original space.

It is evident from Figure 3.2 that a symmetry exists in the positioning of image sources

for cuboid room topologies. This arrangement of contributing image sources is the

result of the underlying assumption in the ISM that all reflections are specular. Defining

a lattice of image sources in this way yields an efficient algorithm that guarantees the

simulation of all specular reflection paths between source and receiver up to a given

order. In terms of sound energy decay, absorption due to surface reflections and the

viscosity of air may be applied in a manner similar to that found in ray-tracing methods.

Furthermore, the recursion of the ISM algorithm produces an echogram from the direct

sound and reflection paths recorded at the receiver over time. This recursion ceases

when a prescribed condition is met, for example when a defined reflection order is

attained or when reflected components have decayed below a given sound energy level.
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The development of a more rigorous implementation of the ISM, which is capable

of handling arbitrary enclosures, is described by Borish [75]. This work exposes two

prominent challenges that arise when applying the ISM to complex room geometries.

Firstly, defining the locations of image sources that reflect across surfaces of arbitrary

orientation in space requires a greater number of mathematical operations in compar-

ison to the simple case previously discussed. This is due to the fact that the repeated

image source structure (lattice) will not occur for any non-cuboid topology. Naturally,

this gives rise to an increase in computation time. Secondly, the recursive definition of

image sources is subject to validity checking in order to ascertain whether a given reflec-

tion is visible to the receiver. In brief, this iterative operation progresses by reflecting

each located image source across every boundary surface, which, in turn, generates a

new set of image sources. A resulting reflection path is deemed invalid if it is either

not visible to the receiver via successive specular reflection or in excess of a defined

maximum path length.

For a given room topology, it may be stated that O(N r) image sources are required

to accommodate a reflection order ‘r’ in an enclosure composed of ‘N ’ boundary sur-

faces [76, 77]. For arbitrary geometries, the same number of validity checks must be

undertaken for each image source. It is, therefore, apparent that increases in geometric

detailing and required reflection order can lead to prohibitive simulation times. This

prompts model design challenges when attempting to approximate structures such as

curved surfaces, which must be represented as a series of planar surfaces [75], leading

to proposed methods of geometry simplification to reduce computational load [78].

The ISM is capable of predicting specular reflection paths and, as such, is well suited

to the calculation of strong early reflections arriving at a receiver position. In this

way, the ISM is deemed more accurate than ray-tracing techniques in which strong

specular reflections may be omitted during simulation. However, as previously noted,

this accuracy comes at the cost of prohibitive computational requirements for high

order reflections and successive specular reflection rarely occurs in practice. Hence, the

ISM is commonly applied to the calculation of the early arriving sound contributing to

a RIR. Restricting the utilisation of this method allows for low-order early reflections

to be computed at interactive rates [79] allowing alterations in the acoustic model

to be carried out in real-time. This process may then be supplemented by applying

an alternative, more efficient and representative means of acoustic modelling to the

simulation of the diffuse soundfield, creating a hybrid modelling method capable of

rendering temporally complete RIRs (see e.g [66, 80, 81]).
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Figure 3.3: Visual comparison of conical and pyramidal beams projected from an omni-
directional sound source. Image sourced directly from [6].

3.1.3 Beam Tracing

Beam tracing provides a means of optimising the ISM by removing a large quantity

of the aforementioned visibility checks that are required to validate sound propagation

paths in complex enclosure geometries. This process is conducted by determining

approximate valid paths by recursively tracing beams (or rays with volume) throughout

the modelled space during a pre-computation stage. Potential propagation paths are

then revealed upon the intersection of a receiver location with a beam volume. In this

way, a number of invalid image sources that are not visible to the receiver location are

ignored entirely. The application of several adaptations of this optimisation procedure

in the realm of virtual acoustics modelling are detailed in [6, 76, 77, 82, 83]. A significant

difference between the various implementations discussed in the literature is the form

of which the beams take. Figure 3.3 highlights a comparison between conical and

pyramidal beam tracing approaches. This diagram demonstrates the advantage of

tessellating an omni-directional sound source with pyramidal beam volumes over conical

volumes. In the case of conical volumes, a certain degree of overlap is unavoidable

when all path directions are to be represented around the solid angle of a sound source.

Consequently, multiple detections of valid propagation paths can occur giving rise to

imbalances in sound energy levels emitted into the modelled space [6]. This problem

is overcome by projecting pyramidal beams from a source position such that the solid

angle is completely represented while overlapping beams are avoided. However, even

with the use of pyramidal volumes, there is the potential for spaces within an enclosure

to remain uninvestigated. Studies, detailed in [82, 83], describe a technique in which

beam topologies are derived from the shape of the sounding surfaces. This ‘adaptive’

beam tracing technique ensures a geometrically exact reproduction of the soundfield

[82]. In order to provide a brief overview of a general approach to beam tracing, Figure

3.4 displays a simple modelling scenario. A single beam is shown to originate from a
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Figure 3.4: The traversal of a single beam throughout a 3D space with examples of entire
(1st order - surface A) and partial (2nd order - surface B) reflections. Image sourced directly
and adapted from [7].

defined source location and undergo consequent interaction with a 3D geometry. Upon

interaction with an obstructing surface, the portion of the beam in contact with the

surface is removed to form a shadow region. This shadow region, or transmission beam,

is reflected in the plane of the surface to create a reflection beam [76]. Examples of

entire (surface A) and partial (surface B) obstruction are provided. The recursion

of this process is repeated until a maximum path length, or alternative termination

condition, is attained.

Figure 3.5: Example beam-tree (partial) highlighting the fragmentation of a beam incident
upon multiple surfaces, after [8]. In this way, approximate propagation paths are mapped and
stored for later use by the ISM.

This recursive process defines a series of potential (volumetric) propagation paths in

which valid image sources are located and is applied during pre-computation. The result

of this pre-computation stage is referred to as a beam-tree, an example of which is given
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in Figure 3.5. In brief, a beam-tree is a hierarchical data-structure that stores the details

of the approximate valid propagation paths between source and receiver [76]. Upon

completion of the beam-tree, the ISM is then applied to detect exact specular reflection

paths through investigation of the volumes mapped by the beam-tree. This acts to

reduce the amount of geometric space that the ISM is required to examine and ensures

omission of invalid image sources thus removing the need for validation procedures.

The resulting optimisation of the ISM has been proven capable of rendering interactive

auralisations for large-scale auditory scenes incorporating multiple stationary sound

sources and a moving receiver location [76].

3.1.4 Acoustic Radiosity

Radiosity methods are derived from a different basis than that of the techniques previ-

ously described. As opposed to tracing discrete paths of energy propagation throughout

a volume, radiosity approaches seek to simulate the transport of energy between the sur-

faces of a bounded enclosure. The acoustic radiosity (AR) method is a time-dependent

implementation of the radiosity approach for illumination that is applied in the realm

of computer graphics rendering in which the transferred energy is that of light [84].

This time-dependency is required in order to facilitate the comparatively slow wave

speed inherent to sound propagation.

The transfer of energy in an AR system assumes that all bounding surfaces are Lam-

bertian diffusers such that sound is dispersed uniformly in all directions upon boundary

interaction, regardless of angle of incidence. This constraint gives rise to both an ad-

vantage and a limitation of the method. The limitation arises due to the inability of

this technique to model significant, low-order, specular reflections which may arise in

real scenarios. However, from a computation point of view, benefits to the underly-

ing algorithm are attained both in terms of speed and memory as the calculation and

storage of individual ray-paths (including angles of incidence and reflection) are not

required [9, 63].

Building upon the work by Kuttruff [85], the AR method was extended in later work to

include arbitrary enclosure topologies, air absorption and surface absorption yielding

the following governing integral equation, as documented in [9, 86],

B(r, t) =

∫
s
ρ(r)B(r

′
, t− R

c
)e−mR

(
cos(θ) cos(θ

′
)

πR2

)
dS
′
+Bd(r, t) (3.1)

The spatial elements of this expression are shown in Figure 3.6. In the diagram, a sound

source position is shown within the confines of an arbitrarily shaped enclosure bounded
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Figure 3.6: A 2D cross-section interpretation of the spatial terms of the AR integral equation,
after [9]. A radiation path, of length R, is shown between two surface patches dS and dS

′
. The

angles θ and theta
′

provide the angles between the radiation path and the surface normals of
patches dS and dS

′
, denoted r and r

′
respectively

by the surface S. This boundary is broken down into a series of elements of equal length,

known as ‘patches’, of which dS and dS
′

are examples. The sound energy emitted from

the source is given in terms of acoustic radiation density Bd(r, t), defined as the surface

integral of sound intensity over the solid angle at a given distance from the source

location. The radiation is transferred to all surface patches. In terms of a single patch

B(r, t), whose location is given by the vector r, the emitted radiation is calculated from

the energy received from the source and all other surface patches (denoted collectively

by B(r
′
, t) for all locations r

′
). Additionally, the radiation transferred from all other

patches is subject to a reduction in level imposed by the surface reflection coefficient

ρ(r). In this way, each patch is defined as a simultaneous emitter and receiver of

acoustic energy.

The distance R yields the path length between two patches and, therefore, it is possible

to account for the time delay present due to the speed of sound c and energy dissipation

due to air arising from the exponential term with loss calibration coefficient m. Finally,

angles θ and θ
′
are those found between the radiation path R and the surface normals of

dS and dS
′

respectively, providing the cosine terms that impose Lambertian diffusion.

From the governing AR integral equation it is evident that the rendering method is

independent of receiver location. An output RIR may be arrived at by calculating

the total radiation transferred from all patches (and sound sources) to a prescribed

receiver location and recording the value in terms of pressure for individual discrete

time-steps. This leads to another advantage over the GA methods previously discussed

in which simulations required predefinition of a single listening position. In contrast,

once a scene has been rendered using radiosity, the soundfield may be analysed at any

point in the modelled space without the requirement of repeating the simulation. AR
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is, therefore, particularly suitable for the production of interactive simulations with a

moving receiver, as the computational cost of calculating the radiation present at any

point in space is deemed minimal and can be carried out in real-time [9, 63].

3.1.5 Geometric Acoustic Models Summary

Having examined and reviewed a selection of GA approaches to virtual acoustic mod-

elling, it is possible to discern suitable applications for each method when seeking to

render a RIR by computational means. Firstly, the most apparent limiting factor com-

mon to all GAMs is their inability to inherently preserve sound wave characteristics as

previously noted. While techniques exist to incorporate diffraction modelling in ray-

based simulations, implementing this phenomenon is computationally expensive and

achieves only a coarse approximation to the behavior of diffracted sound that occurs in

reality. Further elements of low frequency sound propagation are not represented for

arbitrary environment topologies. Hence, the use of GAMs in virtual acoustic mod-

elling must be considered on a case-specific basis. If low frequency sound propagation is

deemed an important element of investigation, alternative means of providing accurate

results must be sought.

Secondly, each GAM discussed here has associated strengths and weaknesses which

may be summarised as follows:

• Ray-Tracing: does not guarantee the representation of specular early reflections,

but can efficiently simulate diffuse soundfields.

• ISM: directly calculates specular reflections to provide good representation of the

early stages of a RIR, however computational cost increases dramatically with

modelled reflection order and sound diffusion is not emulated. Furthermore, the

underlying algorithm design is non-trivial for complex room geometries.

• Beam-Tracing: optimises the ISM to gain a reduction in computational require-

ments. As with ISM, non-specular sound reflection is not modelled.

• Acoustic Radiosity: suited to the simulation of diffuse soundfields such as those

arising during the later stages of a RIR. The assumption of Lambertian scattering

limits this approach to the case of an idealised, stochastic soundfield implying that

the early stages of a RIR (strong specular reflections) are not modelled.

Given these broad conclusions, it is reasonable to state that an efficient and accurate

approach to mid-high frequency RIR simulation is possible through appropriate com-

bination of a selection of GAMs where each method used is applied to its strength. As
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previously stated, such combinations are implemented in industry standard acoustic

prediction software. Furthermore, each GAM investigated has been demonstrated ca-

pable of achieving interactive simulation rates under certain conditions. This implies

that temporally complete and accurate mid-high frequency RIRs may be calculated in

real-time. Recent work in this area conducted by Aspöck et al. [61] corroborates this

claim.

For the purposes of this work, commercial software was utilised in order to produce

high frequency RIRs for the purposes of developing and examining the hybrid modelling

paradigm discussed in Chapter 5. Specifically, ODEON and CATT-Acoustic were used

to produce results for the cases studies and final study respectively. In brief, ODEON

applies the ISM for reflections up to a user-defined order known as the transition

order. For reflection orders above the transition order, ODEON reverts to a ray-tracing

algorithm to produce the later diffuse portion of the output RIR. CATT-Acoustic

provides the facility to combine specular cone (beam) tracing, the ISM and ray-tracing

to render a temporally complete RIR. Further details on the employment of these

programs in this work are given where relevant in Chapter 5. It is assumed, in light of

the previous discussion, that the results of these methods may be approximated using

real-time GA algorithms.

3.2 Numerical Acoustic Models (NAMs)

Numerical, or ‘wave-based’, techniques for virtual acoustic modelling share a simple

unifying principle: they seek to directly solve the wave equation using a physics-based

approach. For the purposes of modelling sound propagation throughout an isotropic

medium, the continuous wave equation takes the form of (2.8), (2.30) and (2.50) for 1, 2

and 3 spatial dimensions as derived in section 2.1.3. The number of spatial dimensions

included in a given model is determined by the system that is to be represented. For

example: a 1D system approximates waves on a string; 2D systems may be applied to

the modelling of vibrations in membranes or thin plates; for the purposes of emulating

sound propagation in space, 3 spatial dimensions are required.

Numerical acoustic modelling paradigms possess a significant advantage over the pre-

viously described GAMs due to the nature of their implementation: wave phenomena

(i.e. diffraction, interaction and standing waves/resonances) are inherently preserved

in the models. Hence, these methods are deemed to be valid over the entire audible

bandwidth in contrast to GAMs which are assumed to be accurate at mid-high fre-

quencies only. However, this advantage comes at the cost of extensive computational
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resources required to simulate realistic and spectrally complete soundfields. What fol-

lows is an investigation into a variety of NAMs that are currently applied to the problem

of acoustic modelling and prediction. This review, while not exhaustive, informs and

justifies the selection of Finite Difference Time Domain methods for use in this work

over alternative NAM paradigms.

3.2.1 Finite Difference Time Domain (FDTD)

The mathematical descriptions of dynamic system behaviour, such as the nature of

sound wave propagation, commonly rely on the use of partial differential expressions

(PDEs). Finite Difference Time Domain (FDTD) approximations provide a means of

calculating numerical solutions to PDEs, rendering possible the discrete-time simula-

tion and analysis of physical systems through use of iterative algorithms. This approach

was utilised by Yee in 1966 [87] to solve Maxwell’s equations for electrodynamics and

later applied to the realm of acoustic modelling by Savioja [88] and Botteldooren [89]

in the 1990s. As an introduction to FDTD algorithms, also referred to as ‘schemes’,

the numerical solution of the 1D wave equation, which provides a rudimentary string

model, is detailed here.

The primary components of FDTD schemes are the forward-, backward- and centered-

difference approximations to the derivatives of an arbitrary function f(x). These are

obtained from truncated forms of the Taylor’s series expansion of f(x+4x) and f(x−
4x) given respectively as:

f(x+4x) = f(x) +4xf ′(x) +
4x2

2!
f ′′(x) +

4x3

3!
f ′′′(x) + ... (3.2)

f(x−4x) = f(x)−4xf ′(x) +
4x2

2!
f ′′(x)− 4x

3

3!
f ′′′(x) + ... (3.3)

Truncation and rearrangement of (3.2) yields the first-order forward-difference approx-

imation to the first derivative of f(x) as:

f ′(x) =
f(x+4x)− f(x)

4x
+O(4x2) (3.4)

where O(4x2) refers to terms of the order 4x2 or greater and are, in this instance,

assumed negligible. Similarly, the backward-difference approximation to the first-order

derivative may be derived from (3.3):

f ′(x) =
f(x)− f(x−4x)

4x
+O(4x2) (3.5)
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Additionally, the second-order derivative of f(x) may be approximated through sum-

ming (3.2) and (3.3) to arrive at the following relation:

f ′′(x) =
f(x+4x)− 2f(x) + f(x−4x)

4x2
+O(4x3) (3.6)

giving the centered-difference approximation to f ′′(x) where, in this case, third-order

terms O(4x3), and greater, are assumed to be negligible. The second-order finite

difference approximation provides the basis of the numerical solutions to the wave

equation discussed in this work. In the following example, the means by which the 1D

wave equation may be solved by FDTD modelling is demonstrated.

1D FDTD String Example:

The derivation of a simple 1D FDTD scheme begins with spatio-temporal sampling of

the continuous space, x, and time, t, variables:

t = nT (3.7)

x = lh (3.8)

where T is the temporal sampling period (s), defined as the reciprocal of the temporal

sampling frequency FS , and h is the spatial sampling instance (m). The integers n

and l describe the position of the system in discrete-time and space respectively. Using

these discretised variables in combination with the second-order centered-difference

approximation, the 1D wave equation may now be re-expressed as follows:

∂2p

∂t2
= c2 ∂

2p

∂x2
⇒

pn+1
l − 2pnl + pn−1

l

T 2
= c2 p

n
l+1 − 2pnl + pnl−1

h2
(3.9)

where pnl and pn−1
l are regarded as the displacement of the string at spatial location

lh during the current and previous time steps respectively. Hence, the single unknown

term of (3.9) refers to the displacement at the next time step, pn+1
l . This quantity

may be solved for by re-arranging the discrete approximation of (3.9) yielding the final

iterative FDTD algorithm:

pn+1 =
c2T 2

h2
(pnl+1 − 2pnl + pnl−1) + 2pnl − pn−1

l (3.10)

The above algorithm provides an approximate numerical solution to the 1D wave equa-

tion through recursive computation of displacement values along the length of the

discrete domain as time increases. As previously shown, the FDTD approximations

applied are second-order accurate and, therefore, small numerical errors between com-

puted and theoretical values are expected, yet deemed insignificant.
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The extension of the FDTD method to the numerical solution of the 2D and 3D wave

equations is realised by similar means as those provided in the above example. In brief,

finite difference approximations are applied to both the second-order time derivative

of pressure and the 2D or 3D spatial Laplacian operator. As such, a 2D FDTD wave

equation simulation may be envisaged as a grid of pressure nodes which facilitate the

propagation of scalar pressure values throughout 2D space in discrete time steps. The

extension of this notion to 3D results in the conception of a lattice of pressure nodes

occupying a given volume (i.e. virtual room model).

While this numerical acoustic modelling approach is capable of inherently preserving

wave phenomena, which are particularly apparent at low frequencies, the required dis-

cretisation of the simulated spatial domain leads to implementation issues. These issues

include: dispersion error which arises due to the anisotropic wave propagation simu-

lated over a discretised domain; numerical stability issues which limit the resolution

of the discrete spatial domain relative to a given temporal sampling rate; the require-

ment of extensive computational resources. These aspects of FDTD simulations are

addressed and examined in depth in Chapters 4 and 5.

3.2.2 Digital Waveguide Mesh (DWM)

Digital waveguides gained considerable attention in the 1980s and 1990s as an approach

to physical modelling of musical instruments [90–92]. Techniques used previously, for

example additive/spectral synthesis and frequency modulation, provide a means of

approximating complex timbres. However, these synthesis techniques are abstracted

from the physical mechanisms present within the modelled instrument and rely on

experimentation and subjective evaluation to determine the correctness of resulting

sounds. Through physical modelling it became possible to describe and simulate virtual

instruments to a high level of detail leading to improved accuracy of audible results.

Digital waveguides seek a computable solution to the wave equation via a discrete form

of the travelling wave solution discovered by d’Alembert in 1747,

p(nT, lh) = p+(n− l) + p−(n+ l) (3.11)

for a 1D system where all variables are as defined in the previous section. In this

solution, p+ exists as a travelling wave of displacement in the positive x-direction and

p− exists likewise but travels in the opposite direction. The behaviour of (3.11) may

be represented by two digital delay lines, which together form a simple bi-directional

digital waveguide as demonstrated in Figure 3.7.
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Figure 3.7: Diagrammatic depiction of a basic digital waveguide which provides numerical
solution of the 1D wave equation via a computable travelling wave approximation, after [10].
The system is comprised of two delay lines of length l (signified by the z-transform quantity z−l)
that propagate right- and left-going displacement travelling waves p+(n) and p−(n) respectively.
A time-varying output is gained by summing the values present on each delay line at the desired
location in space lh where h is the spatial sampling instance.

Multidimensional wave propagation is simulated through combination of DWG ele-

ments to construct a Digital Waveguide Mesh (DWM) [93]. The DWM structure is

created by interconnecting unit delay waveguide elements via an arrangement of scat-

tering junctions. As with FDTD models, the arrangement of scattering junctions is

defined to spatially discretise the target acoustic field at regularly spaced sampling

instances. The role of these junctions is to apply appropriate equations to incoming

wave components such that outgoing scattered wave components may be calculated

in accordance with the wave equation thus facilitating wave propagation. In this way,

scattering junctions may be seen as providing the same function as grid nodes used

for FDTD simulations. However, the equations governing the interconnecting element

are slightly more complex in DWMs. A generic arrangement of scattering junctions

is depicted in Figure 3.8. As shown, the interconnection of bi-directional unit delay

lines is such that incoming and outgoing signals are directed along separate delay lines.

There are two conditions that enable solution of the wave equation as described in

[93]. Firstly, the pressure value that occurs at a given junction is equal to the sum of

all incoming and outgoing pressure values directed along interconnecting delay lines.

Secondly, the net velocity arising at a given junction is zero. This second condition is

met by ensuring the sum of velocities arising on incoming delay lines is equal to the

sum of velocities on outgoing delay lines. Combination of these two conditions gives

rise to the general equation for pressure at a scattering junction PJ with associated

impedance ZJ , after [11, 94]:

PJ =
2
∑N

i=1

p+J,i
ZJ∑N

i=1
1
ZJ

(3.12)

where p+
J,i is the pressure incoming from the ith of N neighbouring junctions. The

value PJ may then be applied to calculate the outgoing pressure values scattered to
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Figure 3.8: A generic scattering junction, J with associated pressure PJ and impedance
ZJ values and N neighbouring scattering junctions interconnected by bidirectional unit delay
(z−1) lines. Examples of incoming (p+J,i) and outgoing (p−i,J) pressure values arising across the
interconnecting delay lines are shown. Image sourced directly from [11].

neighbouring junctions, p−J,i using:

p−J,i = PJ − p+
J,i (3.13)

Temporal recursive updating of the pressure values passed from junction to connected

junction is facilitated by the unit delay line through which outgoing pressure values

from one junction become the incoming pressure values to a neighbouring junction, as

per:

p+
i,J = z−1p−J,i (3.14)

Hence, the iterative DWM based solution of the wave equation for a given multidimen-

sional acoustic field is carried out through recursive calculation of (3.12) - (3.14).

DWM modelling has been applied to a range of virtual acoustic modelling scenarios

such as drum membranes [95] and room acoustics [94, 96]. The DWM paradigm is

considered to be a subset of a broader family of FDTD schemes [34] which, under certain

conditions, produces effectively equivalent results to the FDTD counterpart. Hence,

it is assumed that the DWMs have the same advantages and disadvantages as those

noted for FDTD schemes in the previous section. However, DWMs possess a particular

advantage in that impedance values associated with scattering junctions are readily

accessible via the governing equations and, therefore, may be altered dynamically to

emulate changes in the geometry of the target acoustic field. The ability to facilitate
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Figure 3.9: Graphical depiction of a mechanical Mass (M), Spring and Damper system with
spring constant K, damping coefficient C and one degree of freedom, x, after [12]. This system
forms a single element which, when connected to other elements of the same form, can be used
to represent pressure fluctuations due to sound wave propagation.

transient changes in model topologies has placed DWMs at the center of dynamic vocal

tract modelling (see e.g. [97]).

3.2.3 Finite Element Method (FEM)

Finite element analysis (FEA) is a well established numerical method that is commonly

applied to the investigation of a range of mechanical systems [98, 99]. In the field of

virtual acoustic modelling, the principles of FEA have been used to develop the Finite

Element Method (FEM) that facilitates the numerical solution of the Helmholtz equa-

tion, also referred to as the reduced wave equation [100]. A straight-forward derivation

of the Helmholtz equation is obtained by applying the Fourier Transform to the time-

dependent wave equation. This transformation may be carried out by inserting a single

frequency ansatz of the form:

p(x, y, z, t) = P (x, y, z)e−jωt (3.15)

into the wave equation (assuming 3 spatial dimensions), yielding:

∂2

∂t2
[P (x, y, z, t)ejωt] = c2∇2[P (x, y, z, t)e−jωt] (3.16)

which reduces to the Helmholtz equation,

∇2P + k2P = 0; k =
ω

c
(3.17)

where k is the wavenumber for a wave with angular frequency ω.

In [12], Wright exposes the underlying principles of FEM through use of vibrating

mechanical elements. The diagram in Figure 3.9 portrays such a system consisting of
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a mass M connected to a spring of stiffness K and a damping element C. If the mass

is acted upon by a force F , causing displacement in the single spatial dimension x, the

governing equation of motion may be stated as,

M
∂2x

∂t2
+ C

∂x

∂t
+Kx = F (3.18)

which corresponds to the lossy wave equation given in section 2.1.4. Removing the

external force and damping condition from the system yields the Helmholtz equation

in terms of the physical constants for the mass and spring,

M
∂2|x|e−jwt

∂t2
+K|x|e−jwt = 0 (3.19)

for an arbitrary frequency ansatz x = |x|e−jωt. This equation further simplifies to,

(K − w2M)x = 0 (3.20)

from which the natural frequencies (or ‘modes’) of vibration can be calculated. The

application of FEM to the simulation of sound propagation involves representing an

enclosed volume of air with a discretized, multidimensional arrangement of mechanical

elements. This process can be thought of as a concatenation of mass-spring systems in

1, 2 or 3 spatial dimensions depending on the nature of the system to be modelled. In

this way, it is possible to model acoustic pressure in a soundfield as the displacement

of a series of interconnect masses from their respective equilibrium positions. Solution

of the Helmholtz equation for the given discretized space may then be achieved by

defining a frequency-domain driving function F(ω) and calculating,

x = (K−Mω2) \ F(ω) (3.21)

where ‘\’ signifies solution through the pseudo-inverse. In the expression above, x is

an array containing the multidimensional pressure distribution arising from the dis-

placement of masses M, interconnected by springs K, in response to the excitation

for a particular frequency ω. Hence, to obtain a spectrally complete response in the

frequency domain, this expression must be repeated for each required frequency (i.e.

discrete frequency values ranging across the audible bandwidth). In order to derive a

RIR for a specific location in the pressure field x, the frequency-domain pressure signal

for a single element (or ‘node’) of array M is transformed into the time-domain via the

inverse Fourier transform.

This method of solution highlights a notable disadvantage of the FEM approach in

that the pressure field calculation for each frequency value requires a matrix inversion
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which becomes increasingly inefficient for large discretized spatial domains [101]. Fur-

thermore, pressure values for the complete spectrum must be gained prior to applying

the inverse Fourier transform to obtain a RIR. This implies that the entire system must

be solved before time-domain information is accessible for use.

As with most examples of wave-based modelling methods, the use of FEM is usually

constrained to low frequency sound simulation (see e.g. [102–104]). This is mainly

due to the computational challenges arising from the relationship between the spa-

tial dimensions of elements and the upper simulation frequency. As stated in [104],

approximately 6-10 elements are needed per shortest wavelength modelled, leading to

vast numbers of nodes required to represent large pressure fields at high frequencies. It

is for this reason, together with the fact that the approach is applied in the frequency-

domain, that FEM is deemed unsuitable for rendering RIRs at interactive simulation

rates [101].

3.2.4 Boundary Element Method (BEM)

As highlighted in [105] and previous discussion, FEM requires the medium to be dis-

cretised and modelled leading to high element counts for high frequency acoustic sim-

ulations and large room geometries. The same is also true for discrete time simulation

paradigms such as DWMs and FDTD schemes. In contrast, the Boundary Element

Method (BEM) seeks a solution to the wave equation through simulation of sound

behaviour at domain boundaries only. Therefore, the dimensionality of BEM simula-

tions is always one less than those which require discretisation of the bounded medium.

This in turn leads to a significant reduction in the number of elements needed to suffi-

ciently model sound waves in space, especially for modelling scenarios involving a large

medium volume-to-surface-area ratio.

The formulation of a BEM scheme appropriate for acoustic simulation begins with the

Kirchoff-Helmholtz equation (as documented in [24, 105]). This equation constitutes

the boundary value integral expression for the wave equation. To reiterate briefly, this

equation states that the scalar acoustic field existing in a medium can be calculated

via the projection and summing of free-field Green’s functions from discrete boundary

surface nodes. As described in [106], there are two approaches to such a solution. The

boundary integral can be evaluated for a given spatial topology by means of a linear

system solve applied iteratively over a range of discrete frequency values in a manner

similar to that taken in the FEM. The resulting frequency domain representation of

the soundfield may then be transformed into the time domain to recover the impulse

response of the system. Alternatively, the governing Kirchoff-Helmholtz equation may
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be transformed into the time domain prior to applying a discrete time domain approx-

imation. The derivation of the latter solution is addressed in [106] and [105].

There are two clear advantages of BEM over alternative approaches. Firstly, the afore-

mentioned inherent reduction in problem dimensionality leads to reduced memory and

computation time relative to the FEM. Secondly, the BEM preserves Sommerfield’s

radiation condition given as:

lim
r→∞

(∂P (r, ω)

∂r
− ikP (r, ω)

)
= 0 (3.22)

which is required in order that free-field propagation is preserved over infinite space

with no reflected wave components. The preservation of this condition is possible

due to the avoidance of spatial discretisation of the domain medium. In alternative

numerical approaches, dispersion error due to anisotropic wave propagation leads to

spurious reflections from theoretically fully absorbing boundaries. As such, the BEM

is particularly applicable to exterior acoustic simulations such as those conducted to

model the impact of human physiology on the soundfield [107, 108] and investigation

of surface scattering properties [105, 109]. However, examples of the application of

BEM to RIR generation are relatively sparse in the literature as the development of

this approach has predominantly focused on models for sound scattering rather than

enclosed wave propagation.

3.2.5 Adaptive Rectangular Decomposition and the Discrete Cosine

Transform

The basis of this approach stems from the Helmholtz equation. As discussed in [110],

analytical solutions to the Helmholtz equation exist under certain conditions giving

rise to the so-called ‘Eigenmode model’ for cuboid spatial topologies. Following [110],

(3.17) may be solved by separation of variables yielding the solution:

p(x, y, z, ω) = px(x, ω)py(y, ω)pz(z, ω) (3.23)

for 3 dimensions, where each term on the right hand side is an equation that satisfies

the ordinary differential equation:

∂2pi
∂i2

+ k2pi = 0; i = x, y, z (3.24)
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As such, the terms pi describe wave propagation along each axis in a Cartesian coor-

dinate system with wave number contributions kx, ky and kz given,

k2 = k2
x + k2

y + k2
z (3.25)

For a cuboid space with dimensions Lx, Ly and Lz, where each surface is subject to

Neumann boundary conditions (2.53), solutions of the following form result:

pi = cos(kii); i = x, y, z (3.26)

in which the wavenumber contributions are constrained by,

k2
i =

N2
i π

2

L2
i

; i = x, y, z; Ni ∈ (3.27)

Given this condition, the eigenfunctions of the wave equation in a rectangular domain

may be defined as,

pi(x, y, z) = cos

(
ixπx

Lx

)
cos

(
iyπy

Ly

)
cos

(
izπz

Lz

)
(3.28)

after [110], which yields the frequencies of resonance (or Room Modes, see section 2.3.6)

of the system.

In [111–113], the authors propose a means of applying the above result to wave-based

room acoustics modelling in enclosures of non-rectangular topologies. It is noted in [111]

that a time-dependent expression for sound pressure at a given point in a rectangular

space is obtained through a weighted sum of calculated eigenfunctions:

p(x, y, z, t) =
∑

i=ix,iy ,iz

mi(t)pi(x, y, z) (3.29)

where pi(x, y, z) is as previously defined and mi(t) are temporal weighting coefficients.

These coefficients are calculated through application of a discrete cosine transform

(DCT). Following [111, 114], values formi(t) are solutions to the forced simple harmonic

oscillator equation. Hence, they take the form:

mi(t) = ejωit +
Fi
ω2
i

(3.30)

as a solution to:
∂2mi(t)

∂t2
+ ω2

imi(t)− Fi = 0 (3.31)

where Fi is the forcing term, after [114]. The calculation of the weighting coefficients
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may be carried out as a discrete-time iterative process. Expressing mi(t) in discrete-

time samples gives mi(nT ), where T is the sampling period and n is an integer. The

terms for the next and previous sample values for mn
i are denoted mn+1

i and mn−1
i

respectively where,

mn+1
i = ejωinT ejωiT +

Fi
ω2
i

(3.32)

mn−1
i = ejωinT e−jωiT +

Fi
ω2
i

(3.33)

Summation of the above expressions yields,

mn+1
i =

2Fi
ω2
i

+ 2 cos(ωnT )ejωinT −mn−1
i (3.34)

Inserting the discrete-time form of (3.30) into (3.34) yields the update equation that

results in the weighting coefficients to be applied in (3.29) at the next time sample

[111],

mn+1
i = 2 cos(ωinT )mn

i −mn−1
i +

2Fi
ω2
i

(1− cos(ωinT )) (3.35)

Hence, the pressure field p(x, y, z, t) is recursively calculated by means of the DCT.

This approach has a significant advantage in that the solution to the wave equation is

discretised in time only. The simulated spatial pressure field is continuous and, there-

fore, is not subject to dispersion effects that are inherent to alternative methods such as

digital waveguide meshes and finite difference schemes (see sections 3.2.6 and 3.2.7 re-

spectively). However, this advantage only holds for rectangular domains. Furthermore,

the DCT has been demonstrated as an extremely efficient means of simulating a sound

pressure field as the fast Fourier transform may be employed to calculate the required

Cosine transform. As noted in [113], parallel computation of the required transform

using GPUs results in low simulation times and memory requirements in comparison

with alternative finite difference schemes.

In order to simulate arbitrary room topologies by means of the DCT, the domain must

be segmented into a series of rectangular/cuboid sub-domains. A simple example is

shown in Figure 3.10. This segmentation is facilitated through ‘Adaptive Rectangular

Decomposition’ (ARD) as described in [111]. In brief, this decomposition is carried

out pre-computation and seeks to fit the largest rectangular sub-domain possible in

the room geometry. The limit of the rectangular domain volume is reached when one

or more boundaries of the sub-domain reaches a boundary of the room topology. This

process continues for the remaining volume in the space until the entire room geometry

is represented by rectangular domains of the largest possible size.
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(a) (b)

Figure 3.10: An example of rectangular decomposition as applied to a simple 2D domain,
given in (a). The way in which the interior domain may be segmented into a series of rectangular
sub-domains as per the ARD approach is given in (b).

Once the decomposition is complete, the DCT update may be applied to calculate the

pressure field in each sub-domain. In order to link each sub-domain, a finite difference

scheme is employed at the interface between adjacent sub-domains such that sound

pressure waves are transferred from one sub-domain to another. This finite difference

scheme subjects pressure waves to the Neumann boundary condition on each interface

allowing phase-preserving continuation of a wavefront from one domain to another. The

pressure fluctuations represented by the finite difference scheme are applied as driving

functions for the adjacent sub-domain in the governing update equations (3.29) and

(3.31). A similar approach is used to interface sub-domains with absorbing boundary

conditions at the surfaces of the topology. It is noted in [111, 113] that this approach

to interface handling gives rise to spurious wavefronts that are reflected back into the

sub-domain from which they were travelling. The intensity of the erroneous reflections

varies with frequency and is documented to be as high as -28 dBFs in the 1 kHz range

[111]. The authors in [111, 113] state that these errors are imperceptible in resulting

auralisations, however evidence to support this claim (e.g. via subjective testing) is not

provided. Similar errors are also produced as a result of absorbing boundary interfacing

[111].

There are a few shortcomings in the literature on the application of the DCT/ARD to

room acoustic modelling:

• Spectral analysis of resulting RIRs is not provided to demonstrate correct/ap-

proximate solution to the wave equation for the spaces modelled.

• The issue of numerical stability is not addressed. Therefore, the conditions under

which this simulation method operates correctly are unknown.
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Figure 3.11: Diagrammatic representation of the FTM as applied to PDEs, after [13].

• The dispersive effects of the interfacing approach are not documented. While it

may be assumed that there are is no dispersion error in each sub-domain, the

global solution of the wave equation achieved using interfaced sub-domains will,

to some extent, exhibit dispersion due to the discretisation of the pressure field

on each interface.

Hence, while this method demonstrates clear advantages in terms of run-time and mem-

ory reduction comparative to alternative algorithms, the accuracy of results requires

further investigation.

3.2.6 Functional Transform Method (FTM)

The Functional Transform Method (FTM), as presented in [115, 116], provides a gen-

eral approach to the frequency-domain solution of partial differential equations (PDEs).

In contrast to FDTD/DWM/FEM techniques, the direct discretisation of differential

operators is avoided by instead producing a transfer function description of the system

under examination. In relation to room acoustics modelling, the FTM shares similar-

ities with the DCT/ARD method (described previously) in that it seeks to find the

eigenfunctions and, therefore, the modes of geometrically simplistic resonant systems.

However, the approach to this outcome, as shown in Figure 3.11 differs notably.

The initial step is to define a PDE describing the acoustic system to be modelled (i.e.

a tube, membrane or enclosure). Associated initial conditions (ICs), such as sound

source excitations, and boundary conditions (BCs) must also be defined. Following

[117], the Laplace transform, L{.} is applied to remove time derivatives terms yield-

ing a differential equation with spatial derivatives only. The result then undergoes

a further transformation to remove the remaining spatial derivatives and arrive at a

purely algebraic transfer function expression for the system. This second transform,

T{.}, is a problem specific Sturm-Liouville transformation which requires calculation
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of a transformation kernal that is adapted to the system under investigation [117–119].

The transfer function expression for the system may be discretised via the Impulse

Invariant Transformation which provides a discrete-time representation of the complex

variable introduced by the initial Laplace transform. Finally, inverse z- and Strum-

Liouville transformations are applied to produce a discrete-time solution of the system

in the form of weighted first order resonating systems - a result that is analogous to

the related DCT/ARD approach.

The FTM has been demonstrated as applicable to the physical modelling of membranes

[117, 119, 120] and wave propagation throughout enclosures [121]. The latter modelling

scenario highlights a key limitation of this method that arises due to the reliance on the

definition of a PDE describing the overall system. For complex enclosed geometries,

incorporating internal obstacles and/or apertures, the process of calculating resonant

frequencies (eigenfunctions) becomes complicated due to the difficulty in defining an

appropriate governing PDE. To alleviate this problem, it is possible to segment the

spatial domain into an arrangement of rectangular or triangular elements, for which

governing PDEs are known [13]. This process, which is similar to ARD, forms the

basis of ‘block-based’ modelling [117, 122]. The segregation of enclosure geometry

leads to the requirement of interfacing adjacent blocks via wave digital filters or DWMs

[120, 122]. As with the ARD approach, the chosen methods of interconnecting adjacent

sub-domains have been demonstrated to produce undesirable spurious reflections within

the modelled domain [120].

The FTM has inherent advantages over alternative numerical acoustic modelling paradigms

including DWMs, FDTD and FEM/BEM approaches:

• Results gained from model simulations do not suffer from the effects of numerical

dispersion error due to the avoidance of direct discretisation of the spatial domain

[13]. However, this is only true for models that do not rely on interconnected sub-

domains.

• Source sources and receivers may be placed at liberty within virtual models and

are not constrained to locations dictated by a lattice of spatial sampling points

[13].

• The solution of the wave equation for simple topologies may be realised through

application of the fast Fourier transform yielding efficient computation [121].

However, such an approach to implementation has only been demonstrated for a

simple cuboid room topology [121].
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In summary, the FTM shares similar advantages to those exhibited by the ARD/DCT

approach in terms of dispersion reduction and efficiency of implementation. However,

this modelling paradigm has to date only been applied to soundfield simulation in

simplistic 3D environments and validation of resulting RIRs has not been carried out.

Hence, it is not possible to conclude from associated literature that the FTM is appro-

priate for, or indeed capable of, rendering accurate representations of room acoustics

characteristics.

3.2.7 Numerical Acoustic Summary

In review of the discussions put forward on numerical modelling paradigms, it is ev-

ident that each approach is highly applicable to accurate simulation of propagating

sound waves. All techniques highlighted here facilitate iterative solution of the wave

equation for a target acoustic field, thus preserving wave-like characteristics that are

omitted in purely ray-based models. Unfortunately, even with optimised use of parallel

computation architectures, these numerical solutions present computational issues in

terms of lengthy run-times and large memory demands. It is noted that in the case of

ARD techniques and FTM, this concern is somewhat alleviated due to the alternative,

mostly spatially non-discrete, formulation of numerical solution.

Particular findings drawn from the literature are of significance in relation to this

work. With regards to the methods that rely on segregation of the target acoustic

field, such as the FTM and ARD technique, it may be concluded that the method of

interfacing adjacent sub-domains and interior domains with surface boundaries is not

optimal. Undesirable wave scattering effects that occur at these interfaces, which are

required for all but the most basic cuboid model, reduce the accuracy of simulated

wave properties. Therefore, for geometrically complex sonic environments, the validity

of such approaches is somewhat compromised. This claim is supported by considering

requirements for predictable surface absorption characteristics which cannot be ensured

given the nature of erroneous frequency-dependent wave scattering effects.

Alternative frequency domain approximations to the wave equation, facilitated by the

FEM and BEM, approach RIR generation through a solution for discrete frequency

values. This imposes the requirement for a linear system solution for each simulated

frequency in turn, prior to transforming the solution into the time domain to render

the RIR. The computation times associated with such an approach for large scale

acoustic environments are deemed too extensive for interactive modelling scenarios.

Although time-domain formulations of BEM have been developed, the application of
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this method has, to date, been limited to basic room topologies [106] and particular

surface scattering problems [105, 109].

In recent years, considerably more research has been conducted on the application

of discrete time domain DWM and FDTD techniques to RIR simulation than their

frequency domain counterparts. In particular, the work carried out by Kowalczyk

and van Walstijn [110, 123, 124] and the NESS project [125] on FDTD simulation

has provided extensive research into this method culminating in an established room

acoustic modelling technique. While both DWM and FDTD solutions inherently give

rise to numerical dispersion error, the properties of this phenomenon are predictable

and well understood. Hence, the conditions under which simulation results are deemed

to be valid and accurate are known. Furthermore, issues surrounding the nature of

surface boundary conditions, preservation of numerical stability and optimised parallel

scheme computation have been addressed such that emulation of realistic enclosed

sound wave propagation may be facilitated with low simulation run-times. Finally, it

is noted that the DWM is a particular case of FDTD scheme [34, 126] and, therefore,

these approaches achieve effectively equivalent results. In light of these findings, the

selection of the FDTD method is justified for the purposes of this work. Specific

considerations and attributes of this method, as applied to room acoustic modelling,

are discussed further in Chapter 4.

3.3 Geometric/Numerical Hybrid Acoustic Modelling

Hybrid acoustic modelling (HAM) techniques are generally based on the combination

of two or more modelling methods, such that each contributing method is used to its

advantage. Most often, the overall aim is to create a means of virtually representing

sound propagation which seeks the optimal balance between computational efficiency

and accuracy of simulation results. As detailed throughout this chapter, all virtual

acoustic modelling possess inherent strengths and limitations. Therefore, the combina-

tion of different methods facilitates the opportunity to devise an approach that applies

each method to its strengths to tackle specific elements of RIR generation. For the

purposes of this study, discussion of GAM/NAM hybrid examples is provided here.

An initial example of a GAM/NAM HAM solution is the RenderAIR system [14, 96].

The underlying motivation for the design of this modelling approach stems from the

inaccuracy of GAMs at low simulation frequencies and prohibitive computation costs

associated with NA solutions. The DWM paradigm is utilised to simulate wave prop-

agation at low frequencies such that an accurate representation of prominent wave

features may be achieved. By limiting the simulation bandwidth of the DWM to low
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Figure 3.12: The time/frequency division between application of modelling methods in the
RenderAIR system [14]. The frequency bandwidth f is plotted on the vertical axis with fc
denoting the frequency of transition between the use of DWM and ray-tracing paradigms during
simulation. The simulation time range t is given on the horizontal axis with ttr denoting the
optional temporal division between early reflection (ER) and late reflection (LR) RIR stages.

frequencies only, a larger spatial sampling instance compared to that required for full

audio bandwidth simulations may be applied in order to restrict the total number of

pressure nodes to a manageable amount yielding reasonable simulation times. High

frequency RIR content is then rendered by a comparatively efficient ray-based acoustic

model. This hybrid arrangement of modelling approaches is shown in Figure 3.12. A

further point of interest noted in [96] is the optional application of a single 2D DWM

to the synthesis of the low frequency soundfield. The usage of the 2D DWM, as doc-

umented in [14, 96], is variable and can be applied to either the low frequency diffuse

field (consisting of late reflections only) or the entire low frequency soundfield. It is

noted in [96] that simulation of early reflections is more accurate using 3D DWMs

compared with their 2D counterparts, however this accuracy comes at higher compu-

tational cost. Results presented in [14] demonstrate a significant reduction in run-time

and memory requirements when comparing the cases in which the 2D DWM is ap-

plied. At the same time, low frequency analysis provided for the same study reveals

the improvement of modelled low frequency RIR features comparative to purely ray-

based simulation results. The notion of significantly reduced computational cost and

improved low frequency accuracy over geometric acoustic simulations gained through

use of 2D numerical modelling is central to the investigations of this work (see Chapter

5).
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A more recent study, conducted by Southern et al. [80, 81], combines the FDTD NAM

approach with beam tracing and radiosity methods to realise a hybrid RIR synthe-

sis system. As with the RenderAIR project, the central motivation is to produce an

accurate digital representation of a given soundfield while maintaining realistic com-

putational requirements. Again, this results in a transition between numerical and

geometric RIR simulations as frequency increases. A notable advantage of the HAM

described in [81] is the use of beam tracing and radiosity RIR synthesis which seeks

to provide an optimal solution to high frequency acoustic modelling. Through this

combination, efficient early reflection modelling may be handled by a beam tracing

algorithm while the radiosity approximation can be introduced at some transition time

to calculate the diffuse field. Hence, the prohibitive computation associated with beam

tracing for high reflection orders, and therefore late stages of a RIR, is avoided. This, in

theory, leads to a more faithful emulation of early RIR components than that achieved

by means of a ray-tracing algorithm in which prominent low order specular reflection

paths may be omitted (see section 3.1.1). A significant contribution presented in [81] is

the derivation of an energy matching procedure that enables appropriate combination

of RIRs rendered by geometric and SRL FDTD models. This calibration process is

utilised throughout the work presented in Chapter 5, facilitating the creation of hybrid

RIRs as required for this study.

3.4 Summary

In review of the discussion put forward in this chapter, it is evident that approaches

to acoustic modelling are many. This survey addresses the implementation and design

of established geometric and numerical acoustic simulation techniques. In turn, this

facilitates the evaluation and review of inherent advantages and limitations common to

each approach. This review culminates in the finding that the definition of an optimal

solution to RIR synthesis is most likely realised by means of HAM systems. The

primary justification for this claim stems from the relative advantages/disadvantages

of GAM and NAM paradigms in upper and lower regions of simulation bandwidths

which are detailed in depth. For the purposes of this work, a combination of the

FDTD and ray-based methods is highlighted as the most appropriate means of hybrid

RIR generation.

Recent research and investigation into the use of parallel computation for NA simulation

has demonstrated reductions in required run-times, particularly for the case of FDTD

schemes. However, there remains a significant trade-off between model scale/simula-

tion bandwidth and computational cost for 3D modelling scenarios, especially when
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attempting to approach real-time sound synthesis. In order to alleviate this trade-off,

while retaining agreeable levels of accuracy in synthesised RIRs at low frequencies, a

new HAM system is devised in this study. This novel approach is influenced by both

the RenderAIR system and the 2D DWM room modelling work of Kelloniemi [127]. It

is proposed that the use of a series of 2D cross-sectional FDTD schemes may be applied

to sufficiently represent low frequency sound propagation throughout a 3D enclosure.

Hence, through combination of RIRs rendered in this way with those produced by mid-

high frequency GA models, a spectrally complete sonic description of an environment

may be produced in a computationally inexpensive manner. The design, implemen-

tation and validation of this Multiplane FDTD HAM is documented in Chapter 5,

following coverage of considerations for generic FDTD scheme development presented

in the next chapter.



Chapter 4

Developing ‘SRL’ Finite

Difference Schemes for Acoustic

Simulations

Based on previous discussion of approaches to acoustic modelling, the Finite Difference

Time Domain (FDTD) method has been identified as an appropriate means of simulat-

ing low frequency room acoustic behaviour for the purposes of this study. This chapter

addresses important properties of FDTD acoustic models and investigates the imple-

mentation of key aspects of these models such as sound source/receivers and realistic

boundary surface conditions.

4.1 Derivation of Standard Rectilinear (SRL) Finite Dif-

ference Schemes

The standard rectilinear (SRL) FDTD scheme has been previously used for numerical

acoustic modelling in a range of studies to simulate low frequency sound propagation

in rooms [80, 81, 128–131]. The derivation of such a scheme begins with centered-

difference approximations (see section 3.2.1) to the second-order partial derivative

terms of the wave equation (2.8, 2.30 & 2.50) for the required number of spatial dimen-

sions. This acts to discretise the continuous time (t) and Cartesian spatial dimensions

([x, y, z]) given:

t = nT, x = lh, y = mh, z = qh (4.1)

where T and h are the temporal and spatial sampling intervals respectively. In the

following, T will be referred to as the time step and h the grid spacing. The values n,

110
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l, m and q are integers that describe the position of discrete pressure values in time

and space. Each instance of pressure over the scalar pressure field is termed a node.

Using these variables and centered difference approximations, the second order time

derivative of pressure in 3D may be approximated as follows:

∂2p

∂t2
≈ p(t+4t)− 2p(t) + p(t−4t)

4t2
⇒

pn+1
l,m,q − 2pnl,m,q + pn−1

l,m,q

T 2
(4.2)

Extending this practice to the spatial derivatives of (2.50) yields a discrete approxima-

tion to the 3D wave equation:

pn+1
l,m,q − 2pnl,m,q + pn−1

l,m,q

T 2
= c2

(pnl+1,m,q − 2pnl,m,q + pnl−1,m,q

h2
+ (4.3)

pnl,m+1,q − 2pnl,m,q + pnl,m−1,q

h2
+
pnl,m,q+1 − 2pnl,m,q + pnl,m,q−1

h2

)
where pn+1

l,m,q, p
n
l,m,q and pn−1

l,m,q are, respectively, the next, current and previous pressure

values for the node position [lh,mh,qh] and time t = nT . From this expression, the

SRL FDTD iterative update scheme may be derived by solving for the single unknown

term pn+1
l,m,q:

pn+1
l,m,q = λ2Snl,m,q + 2(1− 3λ2)pnl,m,q − pn−1

l,m,q (4.4)

where,

Snl,m,q = pnl+1,m,q + pnl−1,m,q + pnl,m+1,q + pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1 (4.5)

and

λ =
cT

h
(4.6)

Such a scheme may be envisaged as a rectilinear lattice of pressure nodes distributed

throughout a given topology with a constant inter-nodal distance in all dimensions.

This lattice represents the discretised scalar pressure field arising in a medium (air) in

response to a disturbance and facilitates simulation of wave propagation by means of

(4.4). Following the same method of formulation, the 2D SRL FDTD update scheme

for the wave equation may be derived as:

pn+1
l,m = λ2Snl,m + 2(1− 2λ2)pnl,m,q − pn−1

l,m (4.7)

where, in this case:

Snl,m = pnl+1,m + pnl−1,m + pnl,m+1 + pnl,m−1 (4.8)

The SRL FDTD scheme is one example of many numerical approximations that may be
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applied to calculate the wave equation. Alternative schemes, such as those documented

in [110], apply a different numerical approximation to the spatial Laplacian operator

leading to a variance in the characteristics and accuracy of wave simulation across a

discretised domain. For example, ‘Interpolated Wideband’ [110, 123] and higher-order

explicit [131, 132] schemes have been demonstrated as superior to SRL formulations in

terms of run-time/memory requirements for a given simulation bandwidth. However,

the SRL formulation remains one of the more simple topologies for which to implement

realistic boundary conditions for the following reasons (which will be expanded upon

in section 4.4):

• Development of ‘Locally Reacting Surface’ (LRS) boundary conditions has shown

that this condition remains numerically stable for all values of reflection coefficient

in SRL schemes [110]. The same cannot be stated for higher order explicit schemes

such as those documented in [132].

• Imposition of the LRS boundary condition in 3D SRL topologies requires only

27 distinct pressure node update formulations to simulate an arbitrary bounded

topology with rectilinear spatial sampling. The interpolated wideband approach

requires a further 72 formulations in order to handle re-entrant boundary nodes

sufficiently.

Hence, the SRL scheme poses the most straight-forward, reliable means of producing

FDTD based sound wave simulations for arbitrary topologies. For the purposes of

this work, the accuracy of resulting acoustic models is deemed sufficient (as discussed

in the following section) when considering the ease of implementation greatly reduces

potential for algorithmic errors in simulation code. Finally, the widespread use of

SRL schemes in recent research (see e.g. [133–135]) is testament to its applicability to

wave-based modelling scenarios.

4.2 Numerical Stability and Dispersion

The spatio-temporal discretisation required to derive a computable solution of the wave

equation introduces numerical errors to any given FDTD scheme. These errors are due

to the truncation of Taylor’s series expansion used to derive the difference approxi-

mations (see section 3.2.1) and the employment of finite precision arithmetic during

digital computation. The inherent FDTD algorithmic inaccuracies impact on both

the numerical stability and the conditions under which wave propagation in multidi-

mensional schemes may be regarded as sufficiently isotropic. The following provides
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an overview of the mathematic means by which the issues of numerical stability and

dispersion may be investigated in order to quantify the stability and accuracy of SRL

simulations.

4.2.1 Numerical Stability

Numerical stability, in the context of this work, refers to the absence of continuously

amplified solutions to a given discrete-time recursive update equation. For example,

the wave equation is solved for all simulated frequencies by means of (4.4). If a par-

ticular solution is allowed to grow continuously over time, the output of the algorithm

will tend towards an infinite value at the corresponding frequency of resonance, thus

greatly overpowering and obscuring the behaviour of the scheme at all other simulated

frequencies. Hence, preservation of stability is crucial in FDTD schemes for simulating

realistic wave propagation and producing usable/meaningful results.

Conditions for stability in discrete-time algorithms may be derived by means of von

Neumann analysis [93, 136]. In relation to FDTD wave equation schemes, this analysis

places constraints on the constant values in (4.4) and (4.7) to ensure that growing

solutions are not present in the algorithm. For the case of the 2D SRL scheme (4.7), a

single frequency ansatz of the form:

pnl,m = ejwnT ejkxlh+jkymh (4.9)

is inserted to the discretised 2D wave equation as a trial solution. This results in the

following expression:

ejwT − 2 + e−jwT = λ2(ejkxh − 2 + e−jkxh + ejkyh − 2 + e−jkyh) (4.10)

Applying the discrete time relation z = ejwT and noting that ejθ−2+e−jθ = −4 sin2( θ2):

z− 2 + z−1 = λ2

[
− 4 sin2

(
kxh

2

)
− 4 sin2

(
kyh

2

)]
(4.11)

which may be written as:

z2 + 2Bz + 1 = 0 (4.12)

where,

B = −1 + 2λ2

[
sin2

(
kxh

2

)
+ sin2

(
kyh

2

)]
(4.13)

In order to preserve numerical stability, the condition |z| ≤ 1 must be ensured. Adher-

ing to this condition positions the solutions to (4.12) (and therefore (4.7)) within the
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unit circle of the z-plane such that no growing solutions exist for all wave numbers kx

and ky [136]. Following from (4.12), it can be stated that:

(z +B)(z +B) = 0 (4.14)

and hence,

z = −B (4.15)

Therefore, in order to realise the condition |z| ≤ 1, an equivalent condition exists for

real-valued B:

|B| = −1 + 2λ2

[
sin2

(
kxh

2

)
+ sin2

(
kyh

2

)]
≤ 1 (4.16)

The above expression may be simplified by considering the maximum unity value of

the sin2 terms leading to:

− 1 + 4λ2 ≤ 1 (4.17)

which imposes the constraints on the constant values applied in (4.7):

λ =
cT

h
≤ 1√

2
(4.18)

The parameter λ is referred to as the Courant number and the maximum value it can

take while retaining stability (λ = 1√
2
) is termed the Courant limit.

Stability analysis can be conducted following the procedure above for the case of the

3D SRL approximation to the wave equation. Insertion of a trial solution pnl,m,q =

ejwnT ejkxlh+jkymh+jkzqh into (4.4) leads to a z-domain expression with the same form

as (4.12), with:

B = −1 + 2λ2

[
sin2

(
kxh

2

)
+ sin2

(
kyh

2

)
+ sin2

(
kzh

2

)]
(4.19)

Again, noting that sin2(θ) ∈ [0,1] ∀θ, the maximum value of each sine term is known

to be unity. Hence, the condition on B, such that |z| ≤ 1 for the 3D scheme may be

written:

|B| = −1 + 6λ2 ≤ 1 (4.20)

giving the constraint on the Courant number as:

λ ≤ 1√
3

(4.21)
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4.2.2 Dispersion Analysis

The speed of sound in air is constant for all frequencies in real environments. However,

in discretised SRL simulations the propagation of modelled sound waves is anisotropic

and, therefore, the characteristics of propagation are direction-dependent. In order

to quantify the extent to which this non-uniform propagation impacts on simulation

results, dispersion analysis examines the phase velocity of sound waves as they travel

over a discrete spatial domain. Ideally, modelled phase velocity will be constant for

all frequencies and directions of travel in order to be consistent with real systems.

Hence, dispersion error is measured by comparing the characteristics of phase velocity

in discretised solutions to the wave equation with the ideal, realistic case. This measure

is termed the ‘relative phase velocity’, v̂, and is defined as:

v̂(k, θ) =
ĉ

c
=

ω

kc
(4.22)

where c is the ideal, constant wave propagation speed, ĉ is the wave speed produced in a

given simulation for angular frequency ω and wavenumber k. From this expression, it is

possible to determine the relative phase velocity for a prescribed propagation direction

provided by k and frequency. In order to calculate a value for (4.22) for a particular

scheme, ω must be derived from a trial solution of the scheme under investigation. As

with the case of numerical stability analysis, a single frequency ansatz is employed for

this purpose.

2D SRL Dispersion Error:

For the case of the 2D SRL wave equation scheme, insertion of the ansatz pnl,m =

ejωnT ejkxlh+jkymh into (4.7) results in:

4 sin2
(ωT

2

)
= λ2

[
4 sin2

(kxh
2

)
+ 4 sin2

(kyh
2

)]
(4.23)

for wavenumber k =
√
k2
x + k2

y. Re-arranging the above expression for ω gives:

ω =
2

T
sin−1

(
λ

√
sin2

(kxh
2

)
+ sin2

(kyh
2

))
(4.24)

which may be inserted into (4.22) to provide the relative phase velocity occurring in

each direction around the azimuthal angle for a given Courant number, λ. Referring

back to the stability condition imposed on the Courant number (4.18) for 2D SRL

schemes, it is apparent that the smallest grid spacing h occurs when λ is set to the

Courant limit giving h =
√

2cT . Under this condition, the resolution of the spatial
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Figure 4.1: (a) Colour map depiction of relative phase velocity v̂(k, θ) for the SRL FDTD
scheme for wavenumber contributions kx and ky with grid spacing h. (b) Surface plot of SRL
relative phase velocity. Colour bar scale is provided for reference.

sampling grid is as fine as possible while retaining numerical stability and, therefore,

dispersion error is reduced to its minimum value for a given wave speed and time step.

The relative phase velocity in the horizontal plane for a 2D SRL scheme operating at

the Courant limit is depicted in Figure 4.1. As shown, the relative phase velocity is

unity in directions of travel that are diagonal to the axes of the grid for all wave number

contributions kx and ky. As such, the phase velocity is constant at all frequencies up

to 0.5 Fs, where Fs is the temporal sampling rate (Hz), in diagonal directions only.

Moreover, the dispersion pattern shown possesses symmetry in both x and y axes.

As the direction of travel deviates from diagonal paths, the relative phase velocity is

shown to decrease markedly as wave frequency and angle of deviation from the diagonal

increases. Hence, for all non-diagonal directions, wave component propagation speeds

decrease as the frequency of components increases. The worst instances of dispersion

error occur in axial directions aligned with the SRL grid.

By measuring the two extremes of dispersion error, it is possible to define the extent to

which the SRL scheme may be considered reasonably isotropic. Following the discussion

in [110], an acceptable level of anisotropy is defined for a range of frequencies in which

the maximum deviation of relative phase velocity is no greater than 2% for all azimuthal

angles. For the 2D SRL scheme, when using the axial directions to find the relative

phase velocity, this is calculated as 0.1 Fs [110]. Therefore, to produce a simulation

response accurate up to a desired upper frequency of fmax, a 2D SRL scheme must

be run at the Courant limit with a temporal sampling rate of Fs ≥ 10 fmax. This

condition is adhered to for all simulations documented in Chapter 5 for the purposes

of rendering low frequency RIRs.
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3D SRL Dispersion Error:

In the case of 3D SRL schemes, the calculation of relative phase velocity is dependent

on the following expression for ω derived by inserting a single frequency ansatz into

(4.3):

ω =
2

T
sin−1

(
λ

√
sin2

(kxh
2

)
+ sin2

(kyh
2

)
+ sin2

(kzh
2

))
(4.25)

given for 3D wave number k =
√
k2
x + k2

y + k2
z . Hence, in this instance, the relative

phase velocity is defined for both azimuthal and elevation angles θ and φ respectively:

v̂(k, θ, φ) =
ω

kc
(4.26)

As with the 2D SRL scheme, it may be shown that the relative phase velocity is unity in

directions diagonal to all axes for schemes operating at the Courant limit. Therefore,

dispersion error does not arise in diagonal paths of propagation with respect to the

rectilinear lattice of grid points. The lowest values of relative phase velocity occur

in axial directions, which reveals the direction of maximum dispersion. Again, by

imposing the condition for sufficient isotropy of wave propagation whereby v̂(k, θ, φ) ≥
0.98 for a maximum error in v̂ of 2%, the maximum valid simulation frequency for 3D

SRL simulations is 0.075 Fs [110, 137].

While this result suggests a lower valid bandwidth for the 3D scheme compared to 2D

simulations previously discussed, studies on the perceptual impact of dispersion effects

on auralisations imply that usable bandwidths may be as high as 0.15 Fs for 3D SRL

models [138]. However, it should be noted that this bandwidth may only hold for

particular source audio material and domain topologies. The perception of dispersion

depending on the distance of source/listener separation and scheme topology remains

an area of active research (see e.g. [137]). Hence, for the purposes of producing

auralisations in this work, the objective measure of a maximum 2% error in relative

phase error is adhered to in all simulations that are used to produce audible results.

4.3 Source Excitation and Virtual Sound Receivers

As discussed in section 2.3.7, the creation of a RIR involves the appropriate excitation

of an acoustic environment and the measurement of resulting pressure fluctuations

local to a receiver location. In FDTD schemes, this process requires appropriate initial

conditions to be defined and applied to the wave equation approximation. The capture

of simulated sound behaviour at a listening position (or positions) within a modelled

domain is handled by simply recording the time-varying pressure value occurring at a
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single grid point. However, in order to render spatial impulse responses, it is necessary

to capture multiple grid point outputs and utilise post-processing techniques to create

receivers with appropriate directivity functions. Details of the source and receiver

implementations employed for this study are provided in the following for reference.

4.3.1 Sound Excitation Sources

The theoretical excitation function associated with RIR measurement is the continuous-

time Dirac delta function as defined by (2.9) and (2.10). The discrete-time equivalent

of this excitation signal is the Kronecker delta function, defined for an excitation at

discrete-time sample τ :

d[n, τ ] =

1, n = τ

0, n 6= τ
(4.27)

where n is the discrete-time sample index. The Kronecker delta can be demonstrated

as being the discrete-time equivalent of δ(t) using two properties. Firstly, given (4.27)

it may be stated that for a discrete time function, p[n];n = [−N : N ]:

N∑
n=−N

p[n]d[n, τ ] = p[τ ] (4.28)

which is analogous to the sifting property of the Dirac delta function, stated here for

a continuous-time function f(t):∫ ∞
−∞

f(t)δ(t− t0)dt = f(t0) (4.29)

Secondly, δ(t) is known to possess an ideally flat magnitude spectrum with equal energy

at all frequencies. This property is demonstrated by:

F [δ(t− t0)] =

∫ ∞
−∞

e−jωtδ(t− t0) = e−jωt0 (4.30)

where,

e−jωt0

∣∣∣∣∣
t0=0

= 1; ∀ω ∈ R (4.31)

Hence, the magnitude spectrum of δ(t) is shown to be equal at all frequencies when

the impulse is defined at time t = 0. Applying the discrete Fourier transform to d[n, τ ]

yields the same result:

N∑
n=−N

d[n, τ ]e−jω
n
N = e−jω

τ
N = 1; τ = 0, ∀ω ∈ R (4.32)
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Hence, the Kronecker delta function is shown to be a suitable form of impulsive excita-

tion function for the purposes of simulating RIRs. However, further consideration must

be given to how the impulse is applied to a discrete finite difference pressure domain

in order to produce realistic and serviceable results.

4.3.1.1 Generic Source Implementation

The various methods of exciting the discretised acoustic field of FDTD models have

gained recent attention in related studies [139, 140]. There are three notable approaches

to sound source implementation in FDTD simulations. These are commonly referred

to as soft, hard and transparent sources. Referring to the discussion provided in [139],

each source type is briefly described here.

Soft Source:

The soft source type is defined as an input signal that is summed with the discrete

pressure field of a FDTD model at a grid point located at the given sound source loca-

tion. In the case of a Kronecker delta excitation function, a soft source is implemented

by means of initial conditions. To obtain a RIR, the pressure field of the model is

assumed to be in an equillibrium state (i.e. all nodes are given a zero value) with an

exception at the source location which is initialised to a unity value. Upon iterative

updating of the FDTD wave equation, the impulse propagates away from the source

location with monopole directivity characteristics. No further treatment of the source

node is required. In the case of exciting the pressure field with a discrete-time varying

pressure signal, each sample of the signal is summed with the pressure arising at the

source node. A notable property of the soft source is that it allows preservation of

resonance at DC for systems that incorporate phase-preserving boundaries. Referring

to section 2.3.6, there is a solution to the wave equation at 0 Hz for such systems.

Hence, it is expected that the resulting RIR will exhibit DC drift, an example of which

is displayed in Figure 4.2.

Hard Source:

In a similar fashion to soft sources, a Kronecker delta excitation can be implemented as

a hard source by intialising the source node to a unity value. The difference between the

two source types arises in the treatment of the source node after the imposition of the

excitation. For a hard source, the source node is fixed to a zero value after the initial

excitation according to (4.27). This acts to clamp or ‘fix’ the source node such that the

global solution to the wave equation rendered by the FDTD scheme does not facilitate

preservation of the solution at DC. In simple terms, the incorporation of a clamped node
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Figure 4.2: Comparison of 2D FDTD impulse responses generated using soft source imple-
mentation. The response given in blue exhibits the expected DC offset drift while the response
given in red shows the same impulse response after filtering with a DC blocking filter.

in the pressure field creates a Dirichlet boundary node in the domain. While this has

the positive effect of removing DC drift from resulting RIRs, the source node becomes

an unwanted wave scatterer leading to deviations in resonant frequency values from

theoretical values. In the case of a time-varying excitation signal, the source node is

forced to take on the value of each signal sample regardless of the pressure fluctuations

that occur at the source node.

Transparent Source:

The transparent source type seeks to provide the advantage of the hard source (sup-

pression of DC drift) while avoiding the implications of introducing a fixed boundary

node in the pressure field. This is achieved by applying a compensation signal to the

source node update equation during a simulation in which the source node is forced

to take on the value of the excitation signal at each sample. The compensation signal

is defined as the free-field impulse response generated using a hard source excitation

convolved with the required input excitation signal and is subtracted from the update

expression for the source node only. Hence, the update expression for a source node

for 2D transparent source implementation may be written, after [139, 140]:

pn+1
l,m = λ2Snl,m + 2(1− 2λ2)pnl,m − pn−1

l,m + pn+1
in −

n∑
t=0

hn−t+1
2D ptin (4.33)

hn2D = λ2Sn−1
l,m + 2(1− 2λ2)pn−1

l,m − p
n−2
l,m (4.34)

where pin is the desired excitation signal. By removing the response of the scheme to

the excitation signal at the source location, the scattering effects of the hard source node
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2D FDTD RIR Differentiated

Figure 4.3: 2D FDTD impulse response spectrum resulting from soft source excitation (blue)
showing a large DC component. The red and black spectra depict the frequency content of the
same impulse response after DC blocking filtering and differentiation respectively. Note the
low frequency roll-off in the case of the differentiated response.

are effectively removed. The result is a global scheme response that neither exhibits DC

offset drift nor irregularities due to the constrained source node. However, rendering

this source type comes at the cost of computing a suitable compensation signal either

prior to simulation or as a post-processing stage. As noted in [139], this can lead to

significant computational overhead, especially for high resolution 3D FDTD schemes.

For the purposes of this work, the soft source excitation type is utilised. The justi-

fication for this approach stems from the issues associated with the alternative hard

and transparent sources in terms of undesirable wave scattering effects and increased

computational efforts respectively. However, as noted above, impulse responses ob-

tained from soft source excitation require pre- or post-processing in order to remove

unwanted drift due to resonance at DC. An example of DC drift as rendered in a simple

2D FDTD scheme and the resulting magnitude spectrum are shown in Figures 4.2 and

4.3 respectively. In [140], it is suggested that the offset present in RIRs rendered using

a Kronecker delta soft source excitation may be removed by differentiating the output

signal or by exciting the pressure field with a differentiated Kronecker delta function.

While this does indeed suppress the DC component, the act of differentiation creates

an unwanted roll-off of low frequency components [140]. This roll-off characteristic is

depicted in Figure 4.3 for the case of the impulse response shown in Figure 4.2.

A solution to the problem of DC drift which has less of an impact on the audible

frequency range of the resulting output is realised through use of a DC blocking filter.

A Kronecker delta function may be filtered using a 1st-order high pass filter with a

cut-on frequency of 20 Hz prior to simulation. However, this may only be carried
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out if the impulse response length is known in advance of simulation. The resulting

filtered delta function can then be summed into the pressure field as per the soft source

implementation. Alternatively, the captured response to a simple soft source Kronecker

delta function can be filtered using the DC blocking filter post-simulation. Owing to the

linear time-invariant nature of the discrete wave equation, both approaches yield the

same output signal. Hence, this approach to soft source excitation is deemed optimal

as DC offset drift is suppressed while incurring minimal computational overhead and

avoiding source node scattering effects. Furthermore, as displayed in Figure 4.3, the

low frequency roll-off introduced by the alternative differentiation approach described

previously is also circumvented.

4.3.1.2 2D Source Implementation

As with the case of 3D FDTD source implementation, a simple omnidirectional impul-

sive soft source can be produced by initialising the grid point at the source location to a

unity value. However, application of a Kronecker delta function to a 2D FDTD simula-

tion of the wave equation inherently gives rise to the afterglow phenomenon [30, 33] as

per the associated Green’s function (see section 2.1.3.2). The afterglow effects manifest

as non-zero pressure values which trail the passage of the first wavefront. While this

is the expected outcome of 2D wave equation simulations, there are scenarios in which

these effects are undesirable. One such scenario is the emulation of 3D sound wave

propagation using 2D FDTD schemes. This process is central to the studies presented

in this work and, therefore, the removal of afterglow effects from resulting simulation

results requires investigation.

The basic notion of afterglow removal may be understood as a means by which the 2D

Green’s function for the wave equation may be manipulated into a form that resembles

the 3D equivalent. The aim is not to seek an equality between the two functions,

but rather attain similar function characteristics. A critical concern in numerical RIR

simulation is the resulting frequency content of the output. Figure 4.4 provides a

visual comparison between the resulting spectral response of a 3D SRL FDTD model

of a simple 2 x 2 x 2 (m) cube and a 2D cross-sectional model of the space using a

2D SRL FDTD scheme. Each simulation is run at the respective Courant limit with

a temporal sampling rate, Fs= 44.1 kHz. Frequency-independent Locally Reacting

Surface boundary conditions, which are fully described in section 4.4, are applied to

provide an absorption coefficient of α = 0.01 in both 3D and 2D simulations. As can be

seen from the spectra displayed in Figure 4.4, it is evident that the 2D cross-sectional

RIR is of greater magnitude in the low frequency range, f = [0:200] Hz. This result is

consistent with those documented in [31] and is a direct consequence of the afterglow
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Figure 4.4: Low frequency spectra of 3D (blue) and 2D (red dashed) SRL FDTD simulated
RIRs for a simple cubic room topology. A significant increase in the magnitude of spectral
peaks in the low frequency range is observed in the 2D RIR case compared to the 3D RIR.

phenomenon. In order to better equalise the low-frequency response characteristics

between the 3D and 2D cases, the 2D RIR may be treated by considering the associated

Green’s function (2.32), re-written in the following form:

p(x, y, t) =
A

2π

H(t− r/c)√
t+ r/c

√
t− r/c

; r =
√
x2 + y2 (4.35)

as per (4) of [31]. Now, considering the case where t ≈ r/c, (4.35) may be reduced to

the following form to yield the Green’s function as it tends towards a maximum value:

p(x, y, t) ≈
( Ac

8π2r

) 1
2 H(t− r/c)√

t− r/c
(4.36)

Hence, under this condition, the 2D Green’s function can be recognised as a displaced

Kronecker delta function of amplitude Ac
8π2r

(where A is the amplitude of the initial

excitation) multiplied by a scaled Heaviside step function H(t − r/c). Following [31],

this step function may be assumed to preserve minimum-phase properties. As a result,

it is possible to remove the step function component through deconvolution of (4.36)

using the inverse filter:

p2Dinv =
H(t)√
t

(4.37)

Note that the time dependence on the term r/c has been removed as this serves only

to represent the decay proportional to r−
1
2 as the wavefront propagates outward from

the source location. It therefore follows that a 2D FDTD RIR can be defined for the
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Figure 4.5: Low frequency spectra of 3D (blue) and 2D (red dashed) SRL FDTD simulated
RIRs for a simple cubic room topology. The 2D RIR has been treated with afterglow removal
processing to reduce magnitude differences between 3D and 2D cases at low frequencies.

case of equalised responses with afterglow removal applied:

p(x, y, t)2DRIR = p2Dinv ? p(x, y, t) (4.38)

where ? signifies convolution in the time domain. The above expression serves to ap-

proximate the Kronecker delta function response characteristics common to 3D FDTD

simulations. The result of applying afterglow removal to the RIR cases previously

displayed previously in Figure 4.4 is shown in Figure 4.5. As depicted, the difference

between the low frequency spectral components of the 3D and 2D response is markedly

reduced in magnitude. Therefore, it is evident that this process is significant towards

the rendering of RIRs by means of 2D FDTD modelling such that results possess similar

characteristics to 3D FDTD RIRs. The application of afterglow removal, as a means

of post-processing RIRs, is further documented in Chapter 5.

4.3.2 Virtual Sound Receivers

In numerous acoustic modelling scenarios, it is desirable to utilise sound receivers that

model those encountered in practice. For example, virtual receiver arrays may be used

to collect spatial impulse responses which, in turn, facilitate the creation of aurali-

sations with enhanced immersive attributes. In order to achieve such an outcome, a

means of producing the directional characteristics of a microphone must be attained

by adapting the process through which acoustic pressure data is retrieved from a given

virtual acoustic model. The most direct and commonly employed method of obtain-
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Figure 4.6: Directivity patterns for encoded B-Format channels W, X, Y and Z. Image sourced
directly from [15].

ing impulse responses, or other such pressure signals, from FDTD simulations involves

recording the numerical pressure values at a given grid point. This inherently gives

rise to omnidirectional response characteristics at the chosen receiver location as equal

consideration is given to sound incoming from all directions. The creation of directional

sound receivers, therefore, relies on the ability to partially or fully reject sound from

particular directions in order to achieve a desired response pattern.

One such directional receiver type is derived from Ambisonics. Ambisonics is a particu-

lar category of sound capture/rendering methods that are based on spherical harmonic

decomposition of a soundfield. Initial work in this area, conducted by Gerzon [141, 142],

led to the classification of the B-Format spatial audio encoding method. B-Format au-

dio consists of four channels denoted W, X, Y and Z where the W channel refers to

an omnidirectional receiver and the remaining X, Y and Z channels refer to pressure-

gradient (bi-directional) receivers orientated in the x-, y- and z-axis respectively. The

arrangement of directivity response patterns is depicted in Figure 4.6. As shown, the

B-Format signals not only refer to pressure fluctuations local to the receiver location

(W channel), but also to the directionality of the soundfield, which may be derived

from the pressure-gradient signals (X, Y and Z channels), around the solid angle. The

consequent ability to record the direction of the soundfield at a receiver location, in
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turn, gives rise to the ability to spatialise sound components across a loudspeaker rig

for the purposes of rendering accurate 3D soundscapes for auralisation purposes.

A notable advantage of Ambisonics arises from the way in which B-Format signals

may be manipulated post-processing. Once the pressure-gradient characteristics of the

soundfield over all axes are known, the soundfield may be rotated around the solid angle

by applying simple trigonometric functions to the audio data. Thus, the directional

perspective of a listening position may be altered during playback without having to

repeat the measurement procedure. A method to derive the B-Format signals from RIR

data simulated in a SRL FDTD model is presented here in order to detail the means

by which 3D auralisations may be created using this acoustic modelling approach.

Extensive coverage of approaches to 1st- Ambisonics encoding of numerical acoustic

models is provided in related literature [7, 143–146]. Furthermore, the emulation of

directional microphone characteristics in DWM-based room acoustics models has been

investigated by Hacıhabiboğlu et al. [147]. While the work in [147] demonstrates

successful implementation of realistic microphone directivity patterns, the underlying

method is unsuitable for the creation of bi-directional characteristics.

The principle of the Ambisonics encoding in FDTD schemes, as per [146], is largely

based on the Blumlein Difference Technique (BDT) [148] which allows the synthesis of

higher order spherical harmonic directivity functions through manipulation of outputs

produced by adjacent receivers with lower order directivity functions. For the purposes

of this work, two adjacent omnidirectional (0th-order) receiver outputs are combined to

produce the 1st-order pressure-gradient directivity by means of the governing equation,

after [143, 146]:

v(t) ≈ 1

ρ0d

∫ t

−∞
[p1(τ)− p2(τ)]dτ (4.39)

where p1(t) and p2(t) are the pressure signals recorded from two axially aligned grid

nodes in an FDTD scheme, d is the spacing between the two grid nodes (m) and ρ0

is the density of the modelled medium. The integration limits may be interpreted

as covering the range of time t from the beginning of recorded RIRs, to the time at

which the pressure fluctuation amplitudes are negligible. In terms of discrete-time RIRs

obtained from FDTD simulations, (4.39) may be re-expressed as follows:

v[n] ≈ 1

ρ0d

[ n∑
i=0

p1[i]− p2[i]
]
; n = [0 : N ] (4.40)

where n is the discrete time index for a signal of N samples. The arrangement for this

receiver type in a 2D SRL FDTD scheme is depicted in Figure 4.7 where the pressure-

gradient directivity functions are created from axially aligned omnidirectional receivers
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Figure 4.7: (a) Node arrangement for a single pressure-gradient output aligned with the
x-axis in a 2D SRL FDTD scheme with contributing nodes p1 and p2 separated by distance
d = 2h. (b) The same concept applied to a single pressure-gradient output aligned with the
y-axis.

in the (a) x- and (b) y-directions giving the X and Y B-Format channels respectively

using (4.40). The corresponding analytical directivity functions are displayed in Figure

4.8. Referring again to Figure 4.7, the arrangement of receivers is distributed around

a single, central pressure node. The RIR captured from this central node provides

the omnidirectional B-Format W channel. Hence, all required response patterns are

coincident around a common central receiver location.

In terms of implementation, there is one further consideration that must be addressed

in order to create appropriate B-Format RIRs. The scaling term and subtraction

present in the discrete-time expression for pressure-gradient components, v[n] (4.40),

leads to an overall reduced amplitude relative to the omnidirectional W channel signal

amplitude. This can be compensated for by calculating the expected first wavefront

amplitude of the X and Y channel signals relative to the W channel wavefront ampli-

tude based on the angle of incidence. Both X and Y signals may then be multiplied

by an amplification factor to ensure consistency between the B-Format signal levels.

These factors may be calculated from the following expressions for X and Y channels

respectively:

GX = cos(θ)
pWfw

pXfw
; GY = sin(θ)

pWfw

pYfw
(4.41)

where θ is defined as the azimuthal angle of incidence of incoming sound from a given

source, pWfw
, pXfw and pYfw are the pressure amplitude value of the first wavefront

captured on the W , X and Y channels respectively. Hence, GX and GY yield the
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(a) (b)

Figure 4.8: (a) Analytical directivity function for a pressure-gradient receiver aligned with
the x-axis of a given scheme - note a negative polarity is present in the range (90◦ : 270◦). (b)
Directivity function for pressure-gradient receiver aligned with the y-axis with negative polarity
present in the range (180◦ : 360◦). (a) and (b) correspond to the X and Y B-Format channels
respectively.

required amplification factors that equalise pressure levels between the corresponding

directional B-Format channels and the omnidirectional response.

Finally, it is noted that the extension of the above process to 3D FDTD schemes is

trivial as the additional vertical pressure-gradient signal may be calculated by analogous

means.

4.4 Frequency-Independent Boundary Conditions

In order to accurately replicate enclosed sound propagation using FDTD simulations,

it is vital that modelled boundary surfaces possess realistic characteristics. This leads

to the requirement of appropriate boundary conditions that closely correspond to the

reflection/absorption properties of real surface materials. Hence, the application of

simple Neumann and Dirichlet conditions, while useful for validating the correctness

of a given scheme through modal analysis, is not suitable for modelling real acoustic

environments. Numerous examples of absorbing boundary conditions have been inves-

tigated in relation to numerical acoustic modelling paradigms (see e.g. [34, 89, 149]).

In the context of this work, particular attention is given to Locally Reacting Surface

(LRS) boundary conditions [3]. The incorporation of this boundary type into FDTD

acoustic models has been examined extensively in the work of Kowalzyck and van

Walstijn [110, 126, 150]. These studies demonstrate that the absorbing characteris-

tics of the LRS condition may be accurately represented in FDTD schemes for the full
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range of reflection coefficients, R = [-1:1], facilitating the simulation of surface material

properties encountered in practice.

4.4.1 Locally Reacting Surface Boundaries

Following the discussion of sound wave reflection documented in [3, 110], locally react-

ing surface conditions may be assumed under the following conditions:

• Surface irregularities must be negated for irregularities that are significantly large

in comparison to the shortest wavelength to be modelled. Hence, LRS boundaries

in SRL schemes consider only planar surfaces and normal incidence reflection.

• The reflected waveform exiting a boundary is defined at a range of discrete po-

sitions over the boundary surface and sound propagation throughout the surface

itself is considered negligible. Therefore, each spatially distributed reflected wave

component is dependent on the local incident waveform and independent of ad-

jacent boundary/wave interactions.

With these conditions in place, it is possible to derive the LRS condition for a discrete

point on a boundary surface. Sound wave propagation, as discussed in Chapter 2,

assumes conservation of mass and momentum within a given medium. However, at

a boundary, conservation of mass is no longer a requirement as the boundary surface

does not move. Therefore, conservation of momentum alone is sufficient to describe

the behaviour of pressure waves at the boundary. From (2.42), it may be stated that

the force acting on the boundary in the positive x-direction is given by:

F = −∂p
∂x

(4.42)

in which the force F may be calculated as the product of mass and acceleration, giving:

∂p

∂x
= −ρ∂ux

∂t
(4.43)

Following the derivation given in [110], the relationship between boundary impedance

and particle velocity (2.65) is applied to the above expression to yield the boundary

condition in terms of sound pressure only. Differentiating (2.65) with respect to time,

∂ux
∂t

=
1

ζωρc

∂p

∂t
(4.44)
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provides the velocity component in terms of pressure and the specific acoustic impedance

of the boundary. Inserting this expression into the relationship for momentum conser-

vation provides the LRS condition:

∂p

∂t
= −cζω

∂p

∂x
(4.45)

where, as previously described, the impedance of the boundary is related to the reflec-

tion coefficient by:

ζω =
1 +R

1−R
(4.46)

Following the initial definition and use of this boundary condition, it has been applied

in various FDTD acoustic modelling scenarios to simulate absorbing surface properties.

However, it is noted in [110] that LRS boundaries are unsuitable for modelling purely

anechoic surface properties as total absorption is only possible for waves interacting

with the surface at normal incidence. Nevertheless, LRS conditions exhibit a consid-

erable advantage over alternative boundary conditions (such as those given in [89])

as their implementation can be shown to preserve numerical stability for all realistic

values of surface impedance [110].

4.4.2 LRS Implementation in SRL Schemes

At the boundary terminations of an SRL scheme, it is assumed that at least one pressure

node required for the wave equation update will fall outside of the domain. This concept

is depicted in Figure 4.9 where the nodes positioned beyond the interior are referred

to as a ghost nodes. For the case of Dirichlet boundary conditions, these ghost nodes

would be consistently set to a pressure of zero in order to implement physically clamped

terminations producing a fixed boundary. However, for LRS boundaries the ghost nodes

are treated as unknown quantities which are incorporated into the SRL wave equation

update for each node adjacent to a surface by means of a discrete approximation to

the boundary condition. There are two distinct approaches to achieving this outcome,

as documented in [151], which are termed pressure-centered and velocity-centered.

4.4.2.1 Pressure-Centered LRS

The pressure-centered FDTD approximation to LRS conditions results from applying

centered-difference finite difference terms to both the temporal and spatial derivatives

in (4.45) giving (in 3D):

pn+1
l,m,q − p

n−1
l,m,q

2T
= −cζω

pnl+1,m,q − pnl−1,m,q

2h
(4.47)
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Figure 4.9: (a) Example of a 2D SRL, right hand boundary with known and unknown
(‘ghost’) pressure node arrangement for the locally reacting surface condition. (b) 2D SRL
corner boundary pressure node arrangement.

which yields the form investigated by Kowalczyk and van Walstijn [110, 126, 150]. The

above expression corresponds to the case of a right hand, vertical boundary in the

Cartesian coordinate system for which the ghost node is pnl+1,m,q. Rearranging for this

unknown quantity gives:

pnl+1,m,q = − 1

ζωλ
(pn+1
l,m,q − p

n−1
l,m,q) + pnl−1,m,q (4.48)

where λ is as previously defined. Similarly, a left hand, vertical boundary possesses the

ghost node pnl−1,m,q which may be solved for in the same manner:

pnl−1,m,q = − 1

ζωλ
(pn+1
l,m,q − p

n−1
l,m,q) + pnl+1,m,q (4.49)

Having derived an expression for the unknown ghost node, this may now be inserted

into the SRL wave equation update in order to apply the boundary condition. For a

right hand, vertical surface the following update equation results for the pressure node

adjacent and normal to the boundary:

pn+1
l,m,q = λ2

[
− 1

ζωλ
(pn+1
l,m,q − p

n−1
l,m,q) + 2pnl−1,m,q + pnl,m+1,q + pnl,m−1,q (4.50)

+pnl,m,q+1 + pnl,m,q−1

]
+ 2(1− 3λ2)pnl,m,q − pn−1

l,m,q
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Rearranging the above expression to an explicit form in terms of pn+1
l,m,q results in the

final LRS boundary update equation:

pn+1
l,m,q =

[
λ2(2pnl−1,m,q + pnl,m+1,q + pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) (4.51)

+2(1− 3λ2)pnl,m,q −
(
1− λ

ζω

)
pn−1
l,m,q

]( 1

1 + λ
ζω

)

This derivation is equally valid for all planar boundary surface orientations which are

arranged on-axis with the Cartesian coordinate system.

The imposition of the boundary condition for a vertical edge implies two ghost nodes

that will lie outside the domain on two Cartesian axes. For instance, a vertical edge will

produce one ghost node on the x-axis and another on the y-axis. Each ghost node is

solved for independently by means of the discretised LRS expression and inserted into

the update equation for the node adjacent to both boundary surfaces. Considering the

case of a vertical edge where ghost nodes are present in the positive x- and y-directions,

the update expression for the interior node adjacent to both boundaries becomes:

pn+1
l,m,q =

[
λ2(2pnl−1,m,q + 2pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) + 2(1− 3λ2)pnl,m,q (4.52)

−
(
1− λ

ζωx
− λ

ζωy

)
pn−1
l,m,q

]( 1

1 + λ
ζωx

+ λ
ζωy

)

where ζωx and ζωy are the boundary impedances of the surface normal to the x- and

y-directions respectively.

Lastly, the case of a corner introduces three axially aligned ghost nodes positioned nor-

mal to three joining surfaces with impedances ζωx , ζωy and ζωz . The update expression

for the interior corner node adjacent to all three surfaces results from solving for the

ghost nodes in a manner similar to that for the case of an edge, yielding:

pn+1
l,m,q =

[
λ2(2pnl−1,m,q + 2pnl,m−1,q + 2pnl,m,q−1) + 2(1− 3λ2)pnl,m,q (4.53)

−
(
1− λ

ζωx
− λ

ζωy
− λ

ζωz

)
pn−1
l,m,q

]( 1

1 + λ
ζωx

+ λ
ζωy

+ λ
ζωz

)

Note that, as with surface boundary update schemes, the derivation of edge and corner

interior node update expressions is equally valid for all orientations that are aligned

with the SRL lattice. Furthermore, similar expressions may be derived for the case

of 1D and 2D boundaries by simply following the same procedure for the appropriate

wave equation.
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4.4.2.2 Velocity-Centered LRS

An alternative ‘velocity-centered’ means of applying the LRS boundary condition in

SRL FDTD schemes is documented in [130] and subsequently [151]. The derivation

outlined in [130] begins by applying centered-difference approximations to the time

derivative of (4.45). Backward/forward-difference approximations are applied to the

spatial derivative depending on the position of the bounding surface relative to the

interior domain. For example, a right-hand boundary makes use of a backwards differ-

ence and a left-hand boundary uses a forward difference. For the case of a right hand

boundary in 3D, (4.45) is approximated as:

pn+1
l,m,q − p

n−1
l,m,q

2T
= −cζω

pnl+1,m,q − pnl,m,q
h

(4.54)

where pnl+1,m,q is the unknown ghost node value which is solved for using:

pnl+1,m,q =
−1

2ζωλ
(pn+1
l,m,q − p

n−1
l,m,q) + pnl,m,q (4.55)

The above expression highlights an important difference between the pressure-centered

and velocity-centered LRS implementations: the impedance term is doubled due to

the combination of centered and forward finite differences applied in the derivation.

This feature must be included in boundary update schemes in order to approximate

the correct rate of absorption. Further investigation of the absorption qualities of each

implementation is documented in section 4.4.3.

Using the velocity-centered approximation, the update expressions required for every

node type (air, face (one ghost node), edge (two ghost nodes) and corner (three ghost

nodes)) and orientation may be condensed into a single generic form, after [130, 151]:

pn+1
l,m,q =

[
λ2Snl,m,q + (2−Kλ2)pnl,m,q − (1−Bk)pn−1

l,m,q

]( 1

1 +Bk

)
(4.56)

Bk =
(6−K)λ

2ζω
(4.57)

with the following conditions:

• The ghost nodes that appear in the term Snl,m,q = pnl+1,m,q + pnl−1,m,q + pnl,m+1,q +

pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1 for a given boundary type are assumed to have a

pressure value of zero.



Chapter 4. Developing ‘SRL’ Finite Difference Schemes for Acoustic Simulations 134

Figure 4.10: Example domain and ‘ghost’ node arrangements for all right-hand boundary
types with associated K values shown for each case. Such arrangements may also be defined
for left-hand boundaries.
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• The constant K changes depending on the node type: K = 6 for interior (air);

K = 5 for a face boundary; K = 4 for an edge boundary and K = 3 for a corner

boundary.

Figure 4.10 demonstrates example node arrangements and K values for right-hand

boundary types. Such a scheme facilitates an efficient means of implementing SRL/LRS

schemes using accelerated parallelised algorithms on graphics processing units (GPUs).

Further details of this implementation are available in [130]. As with the pressure-

centered difference LRS conditions, velocity-centered LRS may also be implemented in

1D and 2D following the method of derivation detailed here for 3D.

4.4.3 Investigation of Absorbing Properties

Although pressure-centered and velocity-centered implementations of LRS boundary

conditions are derived from the same governing equation, the contrasting difference

approximations applied to construct the boundary node update schemes leads to dif-

ferences in resulting absorption characteristics. These discrepancies are examined here

using two 1D FDTD schemes, one of which incorporates pressure-centered difference

LRS conditions while the other incorporates the velocity-centered approximation. The

use of 1D schemes ensures that error due to numerical dispersion is not present in

results.

The effect of each LRS boundary type may be observed by simply examining reflected

waveforms exiting the terminations of the 1D schemes. Examples of reflected wave-

forms are presented in Figure 4.11 for the pressure-centered (top) and velocity-centered

(bottom) boundary cases with a reflection coefficient, R = 0.2. The excitation function

used to initialise the pressure field takes the form of a spatially distributed Hanning

function of arbitrary amplitude 2.0. In accordance with the Green’s function for the 1D

wave equation, this excitation produces left-going and right-going travelling waves with

unity amplitude. Hence, upon reflection, the travelling wave components are expected

to have a peak amplitude of 0.2 as per the reflection coefficient applied. This is in-

deed the case for the pressure-centered LRS boundary. However, the velocity-centered

condition does not reduce the amplitude of the ingoing wave as expected. Instead, the

reflected travelling wave has a peak amplitude of 0.231 demonstrating that the velocity-

centered LRS boundary absorbs less energy than the pressure-centered boundary which

is shown to be in agreement with theory. Empirically, it may also be shown that the

peak amplitude error introduced by the velocity-centered boundary increases as the

reflection coefficient, R, decreases, whereas the pressure-centered boundary behaves as

expected for all values of R in 1D systems.
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Figure 4.11: (a) Scalar pressure field of a 1D FDTD scheme after a single reflection of left
and right travelling wave components with pressure-centered LRS boundary conditions applied
to both terminations. (b) The same 1D FDTD scheme with velocity-centered LRS boundary
conditions.

Another interesting feature of the velocity-centered LRS boundary is that it acts to

deform the ingoing waveform producing a reflection with phase-inverted components

preceding and following the main lobe. This suggests that the reflection process im-

posed on the ingoing wave by the velocity-centered boundary update scheme is differ-

ent from that of the pressure-centered case leading to a spatial and temporal smearing

of the original excitation waveform. This finding corresponds to the results docu-

mented in [151] where velocity-centered LRS conditions are demonstrated to exhibit

less attenuation at high frequencies than pressure-centered conditions upon reflection.

Examining the results from the 1D schemes in the frequency domain, as per Figure

4.12, it is clear that boundary absorption using the velocity-centered LRS case is in-

deed frequency-dependent. The discrepancy between the absorptive characteristics of

pressure-centered and velocity-centered boundary formulations increases as frequency

increases.

Further examination of absorption properties may be conducted by investigating the

energy decay times for the two 1D schemes that result for a range of reflection coefficient

values. The difference in RT60 values calculated by subtracting the pressure-centered

scheme energy decay times from that of the velocity-centered scheme for R = [0:1]
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Figure 4.12: Comparison of magnitude spectra of impulse responses resulting from 1D finite
difference schemes with pressure-centered (blue) and velocity-centered (red) LRS boundary
conditions. The difference between the absorption characteristics of velocity-centered conditions
compared to pressure-centered conditions becomes increasingly apparent as frequency increases.
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Figure 4.13: (a) Difference between RT60 values (s) for a 1D finite difference scheme using
pressure-centered and velocity-centered, phase preserving boundary conditions (0 ≤ R ≤ 1).
(b) Close up of RT60 differences given in (a) for (0.9 ≤ R ≤ 1. Values are given in octave bands
up to, and including, the 4 kHz band.
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are displayed in Figure 4.13 for a range of frequency octave bands. This analysis

shows that while the peak amplitude discrepancy between reflected waves from each

boundary implementation type increases as R decreases (as previously discussed), this

does not directly translate to energy decay time results that share the same trend.

Instead, the difference between RT60 times increases significantly for large reflection

values, R > 0.9. Additionally, it is apparent that the deviation of energy decay times

produced by the velocity-centered boundary is frequency-dependent as expected due

to the high-pass filtering characteristics of the boundary. RT60 times in the 125 and

250 Hz octave bands are significantly less in the case of velocity-centered boundaries

yielding the negative time differences obtained for high reflection values. Conversely,

due to the inherent reduction in absorption at higher frequencies, the difference in

RT60 times recorded for frequencies greater than 500 Hz increases as the reflection

coefficient increases. Frequencies above the 4 kHz octave band were not considered as

this higher frequency range is rarely modelled using FDTD approaches due to excessive

computational requirements.

The purpose of this brief investigation is to empirically demonstrate that velocity-

centered and pressure-centered LRS boundary conditions cannot be assumed to be

equivalent in terms of absorptive characteristics. To the author’s knowledge, the impact

of this discrepancy on FDTD simulation results has not be fully examined in related

literature. From the results presented here, it is possible to conclude that velocity-

centered LRS implementations serve as a reasonable approximation to pressure-centered

formulations for reflection coefficients R < 0.98. However, this conclusion is based on

the assumption that the LRS boundary behaviour exhibited in 1D also arises in 2D

and 3D systems. The necessity for fully quantifying and remedying the differences

between the two boundary formulations stems from instability issues inherent to the

pressure-centered boundary implementation as discussed in the next section.

4.4.4 Numerical Stability Issues

The pressure-centered LRS boundary conditions can be proven to preserve numerical

stability for all reflection coefficient values and a given Courant limit, as per [110].

However, the analysis documented is restricted to each boundary type in isolation

(i.e. only considering the boundary node and its neighbouring pressure nodes). Addi-

tionally, the stability of re-entrant nodes (those which occur when boundary surfaces

connect to produce a concave structure) is examined in exactly the same way as in-

terior/air nodes and, hence, are shown to be stable for simulations running below the

Courant limit. Unfortunately, for complex room topologies which incorporate mul-

tiple re-entrant boundary node types, it may be demonstrated that instabilities can
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(a) (b)

Figure 4.14: (a) 3D depiction of the lattice that incorporates a single re-entrant corner
where vertices and lines represent pressure nodes and inter-nodal spacings respectively. (b)
The lattice that incorporates both a re-entrant corner and a re-entrant edge. Dashed lines are
used to represent continuation of the lattice in each dimension - these parts of the models have
been excluded from the diagrams for brevity.

occur regardless of whether the stability criteria are met [151]. For the purposes of

this study, it is necessary to simulate complex 3D room geometries such that resulting

RIRs might be used for the purposes of comparison. Therefore, an empirical investiga-

tion into the stability of both pressure-centered and velocity-centered LRS boundary

implementations is conducted to ascertain whether the simulation of 3D environments

incorporating complicated boundary structures can be carried out.

Two simple 3D geometries are developed for this experiment. The first geometry is a

8 x 8 x 8 lattice of nodes with one re-entrant corner node and LRS conditions applied

to face, edge and corner boundaries. The second geometry is identical, but with the

addition of one vertical re-entrant edge. Examples of these two topologies are shown

in Figure 4.14. Each geometry is simulated using a 3D SRL FDTD scheme running at

the Courant limit with pressure-centered and velocity-centered LRS boundary imple-

mentations. The sampling rate applied is 44.1 kHz giving an inter-nodal distance of

h =
√

3ck = 0.0135 m for wave speed c = 344 ms−1. LRS boundaries were implemented

with a reflection coefficient of R = 0.998, corresponding to an absorption coefficient of

α = 0.004. All scheme calculations are conducted using double precision arithmetic.

The RIRs obtained using each boundary implementation for the geometry with a single

re-entrant node are displayed in Figure 4.15. As shown, both boundary implementa-

tions operate as expected preserving numerical stability to produce a valid RIR. How-

ever, the combination of both a re-entrant corner and a re-entrant edge (see Figure
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(a)

(b)

Figure 4.15: (a) Output RIR from a 3D FDTD SRL simulation with a single re-entrant corner
node terminated with pressure-centered LRS boundary conditions. (b) Output RIR from the
same scheme topology with velocity-centered LRS boundary conditions.

(a)

(b)

Figure 4.16: (a) Output RIR from a 3D FDTD SRL simulation with a re-entrant corner
and edge nodes terminated with pressure-centered LRS boundary conditions. (b) Output RIR
from the same scheme topology with velocity-centered LRS boundary conditions. The pressure-
centered LRS scheme is shown to become numerically unstable over time.
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4.14 (b)) causes the scheme with pressure-centered LRS boundaries to become unsta-

ble. Conversely, the velocity-centered boundaries do not lead to instability during sim-

ulation highlighting the finding that velocity-centered LRS implementations are more

robust against instability issues. This claim is also supported by conclusions drawn

in [151] which postulate that SRL schemes with velocity-centered LRS boundaries do

not enable amplification of unstable resonances, particularly DC modes which occur

for systems with phase-preserving terminations.

The combination of findings from the previous section and those presented above poses

a challenging issue for SRL room acoustic models. In order to emulate the absorbing

qualities of boundary surfaces to a sufficient level of accuracy, the pressure-centered

LRS approximation is optimal. However, for complex 3D topologies the pressure-

centered implementation is shown to be conditionally stable while the velocity-centered

implementation demonstrates robust numerical stability. This finding is further sup-

ported by the results documented in section 5.3 in which a 3D scheme involving several

re-entrant pressure node configurations is successfully simulated with preservation of

numerical stability, producing usable RIR outputs. Hence, equating the absorbing

properties of pressure-centered and velocity-centered LRS boundaries may prove a use-

ful route of further investigation in order to render stable and acoustically accurate

SRL finite difference room acoustic models.

4.5 Frequency-Dependent Boundary Conditions

The absorption characteristics of surface materials in real spaces are, in general, frequency-

dependent as discussed in section 2.3.8. As per the convention set out in the majority

of related literature (see e.g. [17, 26]), the absorption coefficient for a given material

may be defined in octave bands (for example Table 4.2). This, in turn, facilitates

increased virtual acoustic simulation accuracy as a more complete model of surface

material properties is preserved comparative to frequency-independent boundary mod-

elling. The work presented in this section closely follows a case study [152] in which

the development and comparison of distinct approaches to frequency-dependent LRS

boundary implementation were investigated. This case study was conducted to inform

and support the approach to rendering RIRs for the final acoustic modelling scenario

documented in section 5.3.
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Figure 4.17: Overview of the room geometry used for the purposes of the case study into
frequency-dependent boundary conditions. Dimensions and sound source (S1 - S3) and receiver
(R1 - R3) locations are displayed.

4.5.1 Case Study Acoustic Model

The acoustic environment used to investigate frequency-dependent boundary conditions

consisted of a simple, fully enclosed, cuboid topology. The selection of this room geom-

etry allows straightforward modal analysis whereby the resonant frequencies arising in

obtained RIRs can be compared with those given by known eigenvalue solutions to the

wave equation in a rectilinear domain. As shown in Figure 4.17, the room geometry

has dimensions 4 x 3 x 2.5 m corresponding to length, width and height respectively.

Three sound source and receiver pairs are located throughout the space with positions

as listed in Table 4.1. The RIRs rendered using source/receiver placements 1-3 are

referred to as cases 1-3 respectively in the following.

CASE Source (x, y, z) (m) Receiver (x, y, z) (m)

1 (0.21, 0.21, 0.21) (3.83, 2.77, 2.34)
2 (2.13, 1.49, 1.28) (2.55, 2.77, 1.28)
3 (0.42, 1.50, 1.70) (3.70, 0.42, 1.70)

Table 4.1: Overview of source and receiver placements defined for each RIR measurement.

Surface materials with frequency-dependent absorption coefficients, defined in octave

bands, are prescribed in two different arrangements. The first arrangement consists

of plasterboard material absorption characteristics applied to all surfaces. The second

arrangement consists of a wooden floor, rough concrete walls and a plasterboard ceiling.
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Material fl:Center Frequency:fu(Hz) α R

Plaster 44 : 63 : 88 0.08 0.9592
(Ceiling) 88 : 125 : 177 0.08 0.9592

177 : 250 : 355 0.2 0.8944
355 : 500 : 710 0.5 0.7071
710 : 1k : 1.42k 0.4 0.7746

1.42k : 2k : 2.84k 0.4 0.7746
2.84k : 4k : 5.68k 0.36 0.8000

Wood 44 : 63 : 88 0.15 0.9220
(Floor) 88 : 125 : 177 0.15 0.9220

177 : 250 : 355 0.11 0.9434
355 : 500 : 710 0.1 0.9487
710 : 1k : 1.42k 0.07 0.9644

1.42k : 2k : 2.84k 0.06 0.9695
2.84k : 4k : 5.68k 0.06 0.9695

Concrete 44 : 63 : 88 0.02 0.9899
(Walls) 88 : 125 : 177 0.02 0.9899

177 : 250 : 355 0.03 0.9849
355 : 500 : 710 0.03 0.9849
710 : 1k : 1.42k 0.03 0.9849

1.42k : 2k : 2.84k 0.04 0.9798
2.84k : 4k : 5.68k 0.07 0.9644

Table 4.2: Summary of absorption (α) and reflection (R) coefficients for the materials applied
to model surfaces for each octave band simulated.

Absorption data applied in each model material arrangement is available from the

ODEON Auditorium 10.1 software [21] and is listed in Table 4.2 alongside the frequency

ranges defined for each octave band simulated.

For the purposes of this investigation, the frequency bandwidth of output RIRs is

selected as the upper limit of the 4 kHz octave band (5.68 kHz) in the interests of

maintaining reasonable simulation run-times and computational requirements. In or-

der to avoid the manifestation of spatial aliasing in the required frequency range, the

temporal sampling rate must follow the criterion fu ≤ 0.196 Fs where fu is the highest

required simulation frequency [123]. This criterion is derived from the dispersion rela-

tion (4.25) for the worst-case dispersion error arising in axial directions of propagation

with a particular Fs. For example, for axial propagation in the x-direction, the largest

valid wavenumber in x is given as kxh = π in accordance with the Nyquist condition.

Also, it is noted that the largest wavenumber must coincide with the upper frequency

of simulation, fu. Therefore, using (4.25) for axial dispersion in the x-direction, the
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following relation is derived:

2πfu =
2

T
sin−1

(
λ

√
sin2

(π
2

))
(4.58)

which, for a 3D SRL scheme running at the Courant limit, yields:

fu = Fs

(
sin−1

(
1√
3

)
π

)
= 0.196Fs (4.59)

Hence, for the purposes of simulating the cuboid model up to fu = 5.68 kHz, a temporal

sampling rate of Fs = 5fu = 28.4 kHz is selected. For a simulation wave speed of 344

ms−1, the grid spacing h is set as per the Courant limit for numerical stability and

minimum dispersion, giving h =
√

3cT = 0.021 m.

4.5.2 Octave Band Approaches

A simple approach to emulating frequency-dependent boundary conditions in FDTD

simulations is presented in [153]. This method involves simulating the target acoustic

field once per octave band with the associated absorption coefficients applied in each

instance. The resulting full bandwidth RIRs are then filtered as appropriate to isolate

the octave band for which the absorption coefficients are correctly defined. Finally, each

rendered octave band RIR is then summed to create a spectrally complete RIR with

frequency-dependent absorption characteristics. Following on from the work presented

in [153], two different approaches to this problem are investigated here.

4.5.2.1 Constant Fs Implementation

As previously discussed, the temporal sampling rate selected for the FDTD simulations

is Fs = 28.4 kHz. For the case of a constant Fs implementation, the room topology

is discretised to form a SRL lattice of grid points with an inter-nodal distance of h =

0.021 m. This acoustic model is then simulated for each of the 7 octave bands using

the SRL update scheme and LRS boundary conditions with respective absorption co-

efficients applied in each simulation. RIRs are generated in this way for each of the

3 source/receiver pairs using a soft source Kronecker delta excitation and an omnidi-

rectional receiver implemented by recording the pressure fluctuations at the receiver

location.

The resulting RIRs are then grouped in terms of source/receiver case and filtered

by a means of a 3rd-order IIR bandpass filter bank with Butterworth characteristics.
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This enables the creation of a total RIR for each case by summing each octave band

contribution recovered from the filter bank. Finally, a DC blocking filter is applied to

removed the DC offset drift caused by the method of pressure field excitation. This

process is repeated for both surface material arrangements noted in section 4.5.1.

4.5.2.2 Variable Fs Implementation

In contrast to the constant Fs approach, the variable Fs implementation models the

topology for each octave band with the temporal sampling rate set to a value suf-

ficiently high such that a level of dimensional consistency is maintained and spatial

aliasing is avoided. It is necessary to impose a lower limit on Fs in order to realise the

aforementioned geometric consistency between all octave band models. To this end,

the lowest three octave bands (63, 125 and 250 Hz) simulations were defined with a

sampling rate of Fs = 2.8 kHz in order to maintain a maximum absolute error in room

geometry dimensions of < 5% when compared to the desired geometry of 4 x 3 x 2.5 m.

Table 4.3 displays the sampling rates and corresponding maximum error values in all

dimensions. Additionally, an error in the positioning of source and receiver locations

also arises as these must be located at a pressure node in the SRL lattice. The maxi-

mum deviation from the ideal values stated in Table 4.1 is 0.11 m and arises for RIR

case 2 in the 500 Hz octave band model. The different sampling rates applied across

Octave Band (Hz) Fs (Hz) Max. Dimension Error (%)

63, 125, 250 2800 2.14
500 3700 3.06
1000 7100 0.70
2000 14200 0.70
4000 28400 0.18

Table 4.3: Sampling rates applied to each octave band model for the variable Fs approach.
The maximum errors in model dimensions are also provided.

all 7 octave band simulations gives rise to a large difference in the number of pressure

nodes required to represent the cuboid model domain in each instance. As such, the

amount of energy applied during excitation must be compensated for as the nature of

pressure distribution over the propagating wavefront is inconsistent between adjacent

octave bands. This topic is the subject of [154] in which a procedure to equalise the

energy of each contributing octave band is formulated. Following [154], each rendered

RIR is multiplied by a weighting coefficient, KSX , defined as:

KSX =
λFs
pDCc

(4.60)
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where PDC is the DC component of the RIR to which the weighting is being applied

and λ is the Courant number associated with the FDTD scheme used. Furthermore,

the resulting weighted RIRs for the 63 - 2000 Hz octave bands must be upsampled to

the sampling rate of the highest octave band for consistency. Upon completion of these

procedures, the variable Fs RIRs are then subject to the filtering processes applied in

the constant Fs implementation to render the total RIRs.

4.5.3 LRS Boundaries using Digital Impedance Filters (DIFs)

A notable disadvantage of the octave band based approach to frequency-dependent

boundary modelling is the requirement for multiple simulations of the target acoustic

field. As initially documented in [124], an alternative approach to achieving frequency-

dependent absorption characteristics in LRS boundary conditions is possible through

use of digital filtering techniques. To begin, following the discussion in [110], frequency-

dependent reflection coefficients, Rω, are defined in terms of a discrete-time filter trans-

fer function:

Rω(z) =
ψ0 +

∑N
i=1 ψiz

i

κ0 +
∑N

i=1 κiz
i

(4.61)

for the case of an N th-order infinite impulse response (IIR) digital filter defined by

a z-transformed transfer function by polynomials of z with coefficients ψi and κi; i

= [0:N ]. The magnitude response of a given filter is designed such that the required

reflection coefficient values are defined over each octave band. This, in turn, leads to

the definition of a digital impedance filter with a transfer function, ζω(z), given by:

ζω(z) =
1 +Rω(z)

1−Rω(z)
(4.62)

yielding,

ζω(z) =
b0 +B(z)

a0 +A(z)
(4.63)

where,

b0 = ψ0 + κ0 (4.64)

B(z) =

N∑
i=1

(ψi + κi)z
i; bi = ψi + κi (4.65)

a0 = κ0 − ψ0 (4.66)

A(z) =

N∑
i=1

(κi − ψi)zi; ai = κi − ψi (4.67)

A full description of the incorporation of ζω(z) into pressure-centered LRS bound-

ary conditions documented in section 4.4 is detailed in [110, 124]. For brevity, the
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expressions central to the FDTD algorithm development are given here. Firstly, an

intermediate filter term gn is defined for each ghost node present at a given boundary

at time sample n, as per [110]:

gn =
N∑
i=1

(bix
n−i − aiyn−i) (4.68)

where xn and yn are the input and output digital impedance filter values respectively.

It is assumed that the target acoustic field is zero for time, t ≤ 0, throughout and,

therefore, both filter input and output values are also zero. Hence, the intermediate

value may be defined as zero value during the first scheme iteration prior to applica-

tion in the following boundary update expressions. These are constructed for face (at

the limit of the spatial domain in the x-direction), edge (at the limits of the spatial

domain in the x- and y-directions) and corner (at the limits of the spatial domain in

all directions) LRS boundaries respectively, after [110], for a 3D domain:

pn+1
l,m,q =

(
λ2(2pnl−1,m,q + pnl,m+1,q + pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) (4.69)

+2(1− 3λ2)pnl,m,q +
(λa0x

b0x
− 1
)
pn−1
l,m,q +

λ2

b0x
gnx

)(
1

1 +
λa0x
b0x

)

pn+1
l,m,q =

(
λ2(2pnl−1,m,q + 2pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) + 2(1− 3λ2)pnl,m,q (4.70)

+
(λa0x

b0x
+
λa0y

b0y
− 1
)
pn−1
l,m,q +

λ2

b0x
gnx +

λ2

b0y
gny

)(
1

1 +
λa0x
b0x

+
λa0y
b0y

)

pn+1
l,m,q =

(
λ2(2pnl−1,m,q + 2pnl,m−1,q + 2pnl,m,q−1) + 2(1− 3λ2)pnl,m,q (4.71)

+
(λa0x

b0x
+
λa0y

b0y
+
λa0z

b0z
− 1
)
pn−1
l,m,q +

λ2

b0x
gnx +

λ2

b0y
gny

+
λ2

b0z
gnz

)(
1

1 +
λa0x
b0x

+
λa0y
b0y

+
λa0z
b0z

)

where coefficients with subscript x, y and z refer to the DIF terms applied while solving

for the boundary ghost nodes positioned beyond the domain in the corresponding axial

directions. Note that, as with the case of frequency-independent LRS boundaries,

appropriate update equations for other boundary orientations may be expressed in a

similar fashion. Each boundary node, therefore, requires contributions from at least
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one DIF with the input and output values calculated using:

xn =
a0

λb0
(pn+1
l,m,q − p

n−1
l,m,q)−

gn

b0
(4.72)

yn =
1

a0
(b0x

n + gn) (4.73)

which are defined for a boundary node at location [lh,mh, qh] and a given DIF, as per

[110]. Hence, the update scheme operates as follows. The intermediate value gn for all

boundary filters is initialised to zero for the first iteration, during which all boundary

nodes are updated and, consequently, the filter input and output values are calculated.

Upon the subsequent iteration, gn is recalculated for all DIFs and applied in each

boundary node update. The simulation progresses in this manner with air nodes being

treated as they would in a frequency-independent case.

Digital Impedance Filter Design:

As suggested in [110], the required DIFs for the case study model are designed by first

defining the reflection filter Rω(z). This is achieved by constructing an interpolated

curve through the prescribed reflection coefficient values defined at the center frequency

of each octave band. The MATLAB digital filter design tool (fdesign.arbmag [155])

is then utilised to derive suitable filter coefficients which provide an approximation

to the desired magnitude response. Note that phase response characteristics are not

considered in this study as data corresponding to the phase response of the surface

materials used is not readily available.

Figure 4.18 depicts |Rω(z)| for the plasterboard surface material alongside the inter-

polated reflection coefficient curve and ideal octave band reflection values. This filter

response curve is generated using a 12th-order digital filter. As shown, the filter mag-

nitude response gives a good approximation to the interpolated reflection curve which,

in turn, exhibits a close resemblance to the octave band values. The reflection filter

is then re-formulated as a DIF by means of (4.63). The resulting impedance magni-

tude response is given in Figure 4.19. It can be seen that small errors in the response

of Rω(z) are magnified when transferring from reflection values to impedance values

highlighting the sensitive dependence of the DIF response on |Rω(z)| when R is large.

The largest error in impedance values are shown to be in the region of the 125 and 250

Hz octave bands. This discrepancy between desired and actual DIF responses impacts

the results documented in section 4.5.4.

For the cases of the wood and concrete reflection filters, the same design procedure is

implemented utilising 14th- and 18th-order filters respectively. Filters of higher order are
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Figure 4.18: Reflection filter magnitude response, |Rω(z)| (solid black line), for the case of
plasterboard material depicted in terms of reflection coefficient vs. frequency. Interpolated
frequency-dependent reflection curve (dashed grey line) and ideal octave band reflection values
(dashed red line) are also provided.

found to produce negligible improvement in terms of response accuracy. Figures 4.20

and 4.21 show the characteristics of the wood surface reflection and impedance filter

magnitude responses respectively. A high level of agreement between the interpolated

reflection curve and the designed filter magnitude response is apparent. This, in turn

translates to a low error between desired frequency-dependent impedance values and

those resulting in the magnitude response of the corresponding DIF (as shown in Figure

4.21). The concrete reflection filter and DIF characteristics are displayed in Figures 4.22

and 4.23 respectively. Again, as with the case of the plasterboard material, the small

deviations in the reflection filter magnitude response from the interpolated reflection

curve cause notable errors in the DIF response (see Figure 4.23). These errors are

particularly apparent for frequencies greater than 250 Hz, suggesting that a faster rate

of absorption will occur for the second material arrangement in the upper 4 simulated

octave bands.

As previously noted, the phase response of the DIFs was unconstrained during the

computation of suitable filter coefficients. Thus, the phase response of each filter does

not correspond to the physical properties of the surface materials modelled and is simply

a consequence of creating the required frequency-dependent impedance characteristics.

The phase response of each DIF is depicted in Figure 4.24. It is clear from this diagram

that all DIFs exhibit highly non-linear phase responses in the frequency range of [0 : 1.5]

kHz. As such, it is expected that RIRs generated using the DIF approach will possess

resonances at low frequencies that deviate from those present in RIRs simulated using

the octave band implementation. This is due to the fact that the frequency-independent
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Figure 4.19: Magnitude response of the resulting impedance filter for the plasterboard ma-
terial, |ζω(z)| (solid black line), as a function of of impedance vs. frequency. The interpolated
impedance curve (dashed dark grey line) is derived from the corresponding reflection curve.
The error between desired and resulting impedance values is shown by the dashed light-grey
line.

Figure 4.20: Reflection filter magnitude response, |Rω(z)| (solid black line), for the case of the
wood material depicted in terms of reflection coefficient vs. frequency. Interpolated frequency-
dependent reflection curve (dashed grey line) and ideal octave band reflection values (dashed
red line) are also provided.
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Figure 4.21: Magnitude response of the resulting impedance filter for the wood material,
|ζω(z)| (solid black line), as a function of of impedance vs. frequency. The interpolated
impedance curve (dashed dark grey line) is derived from the corresponding reflection curve.
The error between desired and resulting impedance values is shown by the dashed light-grey
line.
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Figure 4.22: Reflection filter magnitude response, |Rω(z)| (solid black line), for the case
of concrete material depicted in terms of reflection coefficient vs. frequency. Interpolated
frequency-dependent reflection curve (dashed grey line) and ideal octave band reflection values
(dashed red line) are also provided.
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Figure 4.23: Magnitude response of the resulting impedance filter for the concrete mate-
rial, |ζω(z)| (solid black line), as a function of of impedance vs. frequency. The interpolated
impedance curve (dashed dark grey line) is derived from the corresponding reflection curve.
The error between desired and resulting impedance values is shown by the dashed light-grey
line.
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Figure 4.24: The phase response of the designed DIFs for each surface material type applied
in the cuboid case study acoustic model, displayed over the simulation bandwidth.
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LRS boundary conditions applied in the octave band approach are phase-preserving.

Therefore, the process of combining each octave band contribution is analogous to

applying an ideal zero-phase DIFs to boundary nodes. Given the low phase delay and

advance characteristics of the plasterboard and wood DIFs respectively in the region

of [2 : 4] kHz, it is expected that good agreement between the nature of reflections

from the octave band and DIF-based boundaries will result for the upper 2 octave

bands. However, the concrete material DIF possesses significant phase delay values

for the majority of the simulated bandwidth. This material is applied to the majority

of the surface area present in the second surface material arrangement and, as such,

deviations from resonant frequency components present in the octave band RIRs are

expected across the simulated spectra.

4.5.4 Simulation Results and Discussion

A total of 6 RIRs were rendered using each of the three frequency-dependent boundary

implementations. These RIRs correspond to the 3 source/receiver cases for the two

model material arrangements. Findings from simulation data, presented here, impact

on the design of the hybrid modelling procedure applied in the final study presented

in section 5.3. Additionally, the following results provide pertinent insight into the

comparison of frequency-dependent numerical acoustic modelling methods on which

future studies in this area may be based (see section 4.5.4.4).

4.5.4.1 Spectral Analysis

Frequency domain analysis of the simulated RIRs facilitates the evaluation and verfi-

cation of model results in two ways. Firstly, modal analysis may be applied to compare

simulated resonant frequency values to those calculated from theory. Secondly, visual

inspection of relative energy levels across each modelled frequency band demonstrates

the extent to which results agree with the frequency-dependent absorption character-

istics defined for surface materials in each arrangement. RIR case 1 is selected for the

purposes of this analysis as the positioning of source and receiver locations (in diag-

onally opposing corners) gives rise to the highest presence of resonant low frequency

activity. Both material arrangements are considered in the following.

Material Arrangement 1:

As previously noted, material arrangement 1 incorporated the plasterboard material

absorption properties applied to all surfaces. The magnitude spectra of RIRs rendered

using each frequency-dependent LRS boundary implementation are displayed in Figure
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Figure 4.25: Magnitude spectra of constant Fs octave band (OCT. BAND CFs - blue line),
variable Fs octave band (OCT. BAND VFs - green line) and DIF (black line) boundary simu-
lation RIRs for source/receiver case and material arrangement 1.

4.25. From this diagram, it is immediately apparent that the energy equalisation

process used in the creation of the variable Fs simulation RIR has not been successful.

There are significant differences in energy levels for all octave bands up to the 4 kHz

band which is consistent with the constant Fs RIR. While this erroneous result has not

yet been fully examined, the cause may stem from the following issues:

• The sensitivity of response characteristics on source/receiver locations and model

dimensions. The variable Fs approach renders contributing octave band RIRs

with small errors in geometry. These errors may translate to significant changes in

RIR spectral properties comparative to the more geometrically accurate constant

Fs simulation results.

• In this study, the application of the energy-matching constant, (4.60), is carried

out after filtering the contributing RIRs with a DC blocking filter. This causes

a reduction in the value of pDC in (4.60), in turn leading to an increase in the

equalisation constant KSX .

Both of the above points are possible areas of future research in order to investigate

this comparative inaccuracy which is common to all RIRs rendered using the variable

Fs approach in this study.

The level of agreement between overall spectral properties of the constant Fs and

DIF simulation RIRs (as per Figure 4.25) is significantly high for the majority of the

simulated bandwidth. However, there are exceptions in the lower and upper frequency
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Figure 4.26: Low frequency magnitude spectra of constant Fs octave band (OCT. BAND
CFs - blue line), variable Fs octave band (OCT. BAND VFs - green line) and DIF (black
line) boundary simulations. Theoretical mode values, up to second-order, are provided by the
vertical dashed red lines.

ranges. Of particular note are the overall energy levels present in the 125 and 250

Hz octave bands for these RIRs. The differences arising in these frequency ranges is a

direct result of the error present in the magnitude response of the DIF developed for the

plasterboard material. Compared to the octave band approach, the impedance applied

in the case of the DIF boundary model is consistently less than required, leading to

faster rates of absorption and less resonance of low frequency components.

Figure 4.26 provides a closer examination of the comparison between low frequency

components for the Case 1 RIR as produced by each simulation method. From this di-

agram, it is clear that both the constant and variable Fs models share good agreement

with theoretical mode values which are provided up to second-order. Slight deviations,

which are more pronounced in the case of the variable Fs response, from the true modal

values are due to numerical dispersion error. Hence, it may be stated that the variable

Fs RIR would serve as a good approximation to the constant Fs RIR at low frequen-

cies, provided the aforementioned error in overall energy levels was reduced. Finally,

the DIF-based simulation RIR spectrum exhibits the impact of the phase response

characteristics of the plasterboard material filter. The phase delay (see Figure 4.24)

of the DIF causes a progressively worsening skew of resonant peak values compared

to the theoretical values and those present in the constant Fs RIR in the 125 and 250

Hz octave bands. Note, as previously highlighted, that the low phase delay present at

higher frequency octave bands results in a much higher correlation between constant

Fs and DIF RIRs in the upper simulation bands (as shown in Figure 4.25).
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Figure 4.27: Magnitude spectra of constant Fs octave band (OCT. BAND CFs - blue line),
variable Fs octave band (OCT. BAND VFs - green line) and DIF (black line) boundary simu-
lation RIRs for source/receiver case and material arrangement 2.

Material Arrangement 2:

Following the same analysis procedure as used in the material arrangement 1 case, the

resulting spectra of RIRs simulated for material arrangement 2 are displayed in Figure

4.27. Again, the variable Fs RIR exhibits the previously discussed energy imbalance

across adjacent octave bands. By way of contrast, the agreement between DIF and

constant Fs spectra is consistently high across the full simulation bandwidth with

only small differences in magnitude due to the errors associated with contributing

DIFs. Figure 4.28 further highlights the agreement of the DIF and constant Fs RIR

spectra. As shown, the positioning and magnitude of resonant peaks is much more

consistent compared to those resulting for material arrangement 1. This is due to the

application of the concrete material DIF to the majority of the model surface area. As

previously described, the concrete material DIF maintains a lower phase delay than

the plasterboard material DIF for the lower 3 octave bands. Therefore, the deviation

of resonances present in the DIF model RIR is less in this modelling case.

4.5.4.2 Acoustic Parameters

The simulated RIRs are analysed here in terms of the EDT, T30 and C80 ISO parameters

[17] described in section 2.3.8. This analysis is conducted to ascertain the agreement

between the acoustic characteristics rendered using each boundary modelling approach

applied to the case study room for both material arrangements. Due to the fact that

each RIR is bandpass filtered into frequency octaves in order to calculate parameter



Chapter 4. Developing ‘SRL’ Finite Difference Schemes for Acoustic Simulations 157

0 50 100 150 200 250
−60

−50

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

RIR Case 1, Material Arrangement 2

 

 

OCT. BAND CFs
OCT. BAND VFs
DIF

Figure 4.28: Low frequency magnitude spectra of constant Fs octave band (OCT. BAND
CFs - blue line), variable Fs octave band (OCT. BAND VFs - green line) and DIF (black line)
boundary simulations for material arrangement 2. Theoretical mode values, up to second-order,
are provided by the vertical dashed red lines.
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Figure 4.29: Global early decay time (EDT) (s) values of constant Fs octave band (OCT.
BAND CFs), variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs.
Results shown are calculated by averaging values derived from the three RIR cases for model
material arrangement 1 for each octave band. Standard derivations are presented by the error
bars.

values for each octave band, the erroneous energy levels present in the variable Fs RIRs

is expected to have minimal impact on the results documented here. Furthermore, the

parameter values returned by each simulated RIR are combined and averaged across

all three source and receiver cases. Hence, one global average value is given for each

parameter (EDT, T30, C80) per modelling approach (variable Fs, constant Fs, DIF

based) per octave band (63, 125, 250, 500, 1k, 2k, 4k (Hz)).



Chapter 4. Developing ‘SRL’ Finite Difference Schemes for Acoustic Simulations 158

Material Arrangement 1:

In general, it is expected that differences will exist between the ISO parameters returned

from each RIR rendering method due to the inherent variations in model characteris-

tics. However, despite these variations, the isolated octave-band acoustic characteristics

exhibited by each model are encouragingly similar. Figure 4.29 depicts the global av-

erage EDT calculated for the case study domain RIRs using each frequency-dependent

boundary modelling approach. As can be seen, the general trend of all model results are

in agreement with the EDT progressively decreasing across the four lower octave-bands

and settling on comparatively low decay times in the 1 - 4 kHz range. The standard

deviation ranges presented by the error bars give useful insight into the variance that

arises between EDT values for each source/receiver case and each modelling approach.

It is observed that larger deviations between values occur in the lower three octave

bands. In this frequency range, the constant and variable Fs global EDT and related

variance values share good agreement with the exception of a larger deviation in the

variable Fs RIRs in the 125 Hz band. This result may be attributed to the differences

in model geometry and source/receiver placements.

The differences arising between the octave band and DIF-based global EDTs are shown

to be consistently low with the largest discrepancies arising in the 125 and 250 Hz octave

bands. It is observed that this discrepancy is inconsistent with the error associated with

the impedance values given by the magnitude response of the filter applied which is

consistently lower than that required in this frequency range. Hence, a lower EDT

is expected in the 250 Hz band for the DIF-based model than for the case of the

constant and variable Fs implementations. However, referring to Figure 4.30, it is

shown that the T30 measure of RT60 better demonstrates the impact of the variance

in surface impedance values between octave band and DIF-based models. The lower

reverberation times recorded in the DIF-based model for the 250 and 500 Hz octave

bands are representative of the lower impedance values applied in this frequency range.

Additionally, the higher T30 observed in the lower 63 Hz octave band for the DIF-

based model is also consistent with error between the ideal and derived DIF magnitude

response. The similarity between decay time characteristics in each octave band model

is consistently high, with the single exception of the 2 kHz octave band. This result

constitutes an anomaly given the agreement between the trends in T30 for both models

and may be the result of sensitive dependence of decay times on energy calibration

and/or dimensional differences inherent to the variable Fs modelling approach applied

in this study.

As displayed in Figure 4.31, the Clarity (C80) measures returned for both DIF-based

and constant Fs models are in strong agreement with one exception arising in the
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Figure 4.30: Global T30 (RT60) (s) values of constant Fs octave band (OCT. BAND CFs),
variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs. Results shown are
calculated by averaging values derived from the three RIR cases for model material arrangement
1 for each octave band. Standard derivations are presented by the error bars.
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Figure 4.31: Global C80 (Clarity Index) (dB) values of constant Fs octave band (OCT. BAND
CFs), variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs. Results
shown are calculated by averaging values derived from the three RIR cases for model material
arrangement 1 for each octave band. Standard derivations are presented by the error bars.
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500 Hz octave band. The higher Clarity level exhibited in the frequency region is a

direct result of the impedance error introduced by the DIF and is consistent with the

comparatively low T30 value previously demonstrated. The overlapping of variance

and similarity of trends exhibited by the constant and variable Fs C80 values at low

frequencies adds credence to the claim that lower resolution schemes are capable of

emulating acoustic behaviour to a good level of accuracy. Unfortunately, this agreement

of results diminishes in the 1 - 2 kHz octave bands. Given that T30 has been shown to

be longer in this frequency range, this result may be related to the assumed sensitive

dependence on model characteristics as previously postulated.

Finally, the 4 kHz octave band models rendered for the constant and variable Fs cases

are exactly the same as they incorporate the same inter-nodal distance corresponding

to Fs = 28.4 kHz. Hence, it follows that the results returned should be exactly the

same. However, for all parameters analysed in this frequency range, this is shown

to not be the case. It is expected that the bandpass filtering stage applied prior to

RIR analysis, as per [17], should minimise the impact of adjacent band characteristics

on the calculated results. However, the application of finite order filters allows for

crosstalk between adjacent frequency bands. Hence, properties of the 2 kHz variable

Fs octave band model, which has been shown to produce significantly higher RIR

energy levels than that of the constant Fs model, are introducing variance between the

values returned for the upper most simulation frequency range. In turn, it is noted that

the method of equating energy levels across the variable Fs octave band RIRs requires

further attention, not only to remedy the spectral discrepancies previously discussed,

but also to reduce the differences in reverberation and Clarity measurements.

Material Arrangement 2:

Applying the same method of analysis to the second material arrangement model yields

results that further demonstrate the agreement of acoustic characteristics across each

boundary modelling method. Observing the nature of frequency-dependent EDT, dis-

played in Figure 4.32, it is apparent that all models are in agreement in terms of overall

trends. For this material arrangement, three DIFs are used to model the frequency-

dependency of the LRS boundary condition. Hence, ascertaining the cause of differences

between recorded parameter values for constant Fs and DIF-based RIRs becomes more

involved. Referring back to Figures 4.19, 4.21 and 4.22, which depict the magnitude

response of the plaster board, wood and concrete DIFs respectively, the following DIF

properties may be noted:

• Both the concrete and plasterboard surface impedance values are higher than

those applied in the constant Fs model over the range of the lowest 63 Hz octave
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Figure 4.32: Global early decay time (EDT) (s) values of constant Fs octave band (OCT.
BAND CFs), variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs.
Results shown are calculated by averaging values derived from the three RIR cases for model
material arrangement 2 for each octave band. Standard derivations are presented by the error
bars.

band. For the same octave band, the wood surface impedance values closely

match those defined in the octave band model.

• The concrete material, which is applied to the four vertical walls of the model,

possesses impedance values that are significantly lower than those defined in the

octave band models for frequencies above ∼ 200 Hz.

The differences between recorded EDT for DIF-based and constant Fs RIRs may, in

part, be attributed to the properties listed above. Firstly, the higher impedance values

for plasterboard and concrete materials in the 63 Hz band cause longer decay times

in the DIF-based RIRs compared to the constant Fs RIRs in this frequency region.

This is shown in Figure 4.32. Secondly, in the 125, 250 and 500 Hz octave bands, the

DIF-based RIRs produces EDTs that are shorter than those recorded in the constant

Fs model. This is most likely due to the lower impedance values of the concrete DIF

applied at higher frequencies. However, these lower EDT values are not recorded for

the upper 1, 2 and 4 kHz octave bands in which the concrete impedance values are

also lower than those of the constant Fs model. This suggests that the overall higher

impedance characteristics of the constant Fs model is acting to retain a higher level

of low frequency resonances which, in turn, increases the difference between the EDTs

for the two models in the 125 - 500 Hz octave bands.

In terms of the variable Fs EDT values, it is apparent that a larger variance between

recorded decay times for each RIR case compared to those produced by the other two



Chapter 4. Developing ‘SRL’ Finite Difference Schemes for Acoustic Simulations 162

63 125 250 500 1000 2000 4000
0

0.2

0.4

0.6

0.8

1

1.2

Global T30 Values − Material Arrangement 2

T
30

 −
 A

ve
ra

ge
 (

s)

Frequency (Hz)

 

 

OCT. BAND CFs
OCT. BAND VFs
DIF BC

Figure 4.33: Global T30 (RT60) (s) values of constant Fs octave band (OCT. BAND CFs),
variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs. Results shown are
calculated by averaging values derived from the three RIR cases for model material arrangement
2 for each octave band. Standard derivations are presented by the error bars.
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Figure 4.34: Global C80 (Clarity Index) (dB) values of constant Fs octave band (OCT. BAND
CFs), variable Fs octave band (OCT. BAND VFs) and DIF based simulation RIRs. Results
shown are calculated by averaging values derived from the three RIR cases for model material
arrangement 2 for each octave band. Standard derivations are presented by the error bars.

models. However, the overall trend of frequency-dependent decay times is similar to

that of the closely matched DIF-based and constant Fs RIRs. Furthermore, a strong

agreement between average EDT values for the 1 - 4 kHz octave bands is demonstrated.

Again, the variable Fs model is shown to be capable of simulating acoustic character-

istics similar to those produced by the constant Fs model. Differences in calculated

values are assumed to arise for the reasons put forward in the previous sections.
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Encouraging results are calculated for T30 and C80 measures as presented in Figures

4.33 and 4.34 respectively. As shown in Figure 4.33, it is observed that the level of

agreement between reverberation times recorded for DIF-based and constant Fs model

RIRs is consistently high across the simulation bandwidth. In addition, the trend of

variable Fs model T30 values is consistent with those of the DIF-based and constant Fs

models with only slight differences occurring in the 250 Hz and 500 Hz octave bands.

This overall agreement of T30 observed between all modelling approaches, in turn,

contributes to a level of consistency across C80 values (see Figure 4.34). Again, highly

similar C80 trends are observed for each modelling approach across the simulation band-

width. These values act to support the claim that the simulation of equivalent acoustic

characteristics using the three implementations of frequency-dependent LRS bound-

aries is an attainable target with reference to suggested model refinements provided in

section 4.5.4.4.

4.5.4.3 Simulation Data

In order to demonstrate, in a broad sense, the computational requirements of each

modelling approach investigated in this case study, the run-time (per second of audio

output) and number of required pressure nodes are provided in Table 4.4. As shown, the

variable Fs octave band model requires the smallest run-time and memory allocation

in terms of number of pressure nodes. Sequentially, this approach can be simulated

in approximately 5x less time than a sequential simulation of the constant Fs model.

Additionally, a parallel implementation, whereby each contributing octave band model

is simulated simultaneously by means of multiple processors or otherwise, achieves

a reduction in memory requirement of 310 MB compared to a constant Fs parallel

simulation approach. However, as demonstrated in the previous discussion of simulation

results, these computational savings come at the cost of differences between rendered

variable and constant Fs RIR properties.

The DIF model requires over 1.5x the number of pressure nodes required by each con-

stant Fs model. This demonstrates that, in cases of large-scale FDTD models with

high spatial sampling resolution, the constant Fs approach may be favorable as an

equivalent DIF-based approach may exceed computational resources. The same con-

sideration may also arise for implementations that require high order DIFs to achieve

the required frequency-dependent surface absorption characteristics. This is demon-

strated in the models created for this case study, the additional boundary filters cause

an increase of approximately 48 and 66 MB for material arrangements 1 and 2 respec-

tively. However, recorded run-times suggest that the DIF implementation is a more
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Model Band (Hz) Fs Nodes Run time (s) Mem. (MB)

OB VFs 63, 125, 250 2800 11700 0.03 0.09
OB VFs 500 3700 26520 0.12 0.20
OB VFs 1000 7100 168609 1.33 1.29
OB VFs 2000 14200 1264896 26.93 9.65

OB C/VFs 4000 28400 9953280 429.23 79.54
DIF MA1 [ALL] 28400 16669440 1670.00 127.18
DIF MA2 [ALL] 28400 17691072 2014.00 135.00

Table 4.4: Run time and number of grid points (nodes) used for each model simulation.
Memory requirements for double floating-point precision simulations are also provided. Key:
OB VFs - Octave Band Variable Fs, OB C/VFs - Octave Band Constant and/or Variable Fs ,
DIF MA1 - DIF model, material arrangement 1, DIF MA2 - DIF model, material arrangement
2.

efficient approach than a sequential constant Fs simulation, achieving a comparative

∼4.1x reduction in required simulation time.

4.5.4.4 Case Study Discussion

This comparative investigation into implementation of frequency-dependent LRS bound-

aries yields useful insights towards future incorporation of realistic surface conditions

in FDTD simulations. Findings drawn from rendered RIRs suggest that all three

approaches are capable of producing similar results both in terms of spectral charac-

teristics and acoustic parameters while noting the following summarised observations:

• The octave band RIR energy calibration process applied to the variable Fs model

results produces energy levels that are consistently higher than those recorded in

the DIF-based and constant Fs RIRs. As such, it is proposed that the application

of the calibration constant be revisited in order to ascertain the cause of this

erroneous result.

• Derivation of appropriate DIF coefficients for accurate representation of frequency-

dependent impedance characteristics is problematic when relying on initial for-

mulation of reflection filter magnitude curves. Direct calculation of filter coef-

ficients for an interpolated impedance curve will avoid the observed magnifica-

tion of errors introduced when transferring from approximate reflection curves to

impedance values.

• Phase response characteristics inherent to DIFs, if not controlled as in this case,

may cause unacceptable deviation of modal frequency values from those expected
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from theory. In the absence of surface phase response data, it is therefore rec-

ommended that the phase delay/advance of each DIF applied are constrained to

low values as far as possible.

• The nature of, and values returned for, acoustic parameters may be directly at-

tributed to the accuracy of the DIFs applied to boundary surfaces in terms of

impedance values. This claim is valid when assuming the constant Fs approach

provides accurate results, thus constituting the base case for comparison. How-

ever, there does not appear to be a straightforward means of identifying exact

causes of differences between constant and variable Fs octave band simulation re-

sults prior to remedying the issue of energy calibration noted above. It is evident

that variance in parameter values do occur due to differences in model geometry

and source/receiver placement.

To conclude, this study informs the design and implementation of hybrid modelling

approaches documented in section 5.3 by highlighting the constant Fs octave band ap-

proach as the optimal means of frequency-dependent LRS boundary modelling. This

selection is justified as both DIF-based and variable Fs approaches have been demon-

strated as requiring further refinement in order to improve the accuracy of results.

However, areas for further research towards this outcome are identified here that seek

to improve the accuracy of DIF-based and variable Fs methods.

4.5.5 Numerical Stability Issues

As shown previously in section 4.4.4, the pressure-centered LRS approximation is prone

to instability for 3D topologies that involve combinations of re-entrant node types (i.e.

edges and corners). In order to study this further an example is presented here to high-

light the merits of applying velocity-centered approximations to frequency-dependent

boundaries modelled with DIFs. It is also necessary to reformulate the DIF LRS bound-

ary conditions such that both pressure-centered and velocity-centered approximations

may be derived in a similar fashion in the interests of consistency. This is not possi-

ble following the derivation in [110] which is applicable only to pressure-centered LRS

approximations.

RIRs are rendered using both pressure-centered and velocity-centered frequency-dependent

DIF formulations for the test topologies presented in section 4.4.4. Each scheme is run

at the Courant limit with a temporal sampling rate of Fs = 28.4 kHz yielding a grid

spacing of h = 0.021 m for wave speed c = 344 ms−1. All scheme calculations are con-

ducted using double point precision and each boundary node utilises DIF coefficients
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Figure 4.35: The magnitude and phase response characteristics of the DIF applied to investi-
gate the stability of pressure-centered and velocity-centered frequency-dependent LRS bound-
ary formulations as utilised in 3D SRL FDTD acoustic models.

derived to produce the filter characteristics displayed in Figure 4.35. As shown, the

resulting DIF maintains high impedance values across the valid simulated bandwidth

of 0 - 0.196 Fs Hz. The impedance characteristics translate to high reflection coeffi-

cients in the range R = [0.996:0.998]. This enables simulations to be run with very low

absorption rates as are applied in the case of the frequency-independent LRS stability

case study. Phase response characteristics are unconstrained during the calculation of

required filter coefficients using the MATLAB fdesign.arbmag function.

4.5.5.1 Reformulation of DIF Boundary Model

To begin the reformulation of the pressure-centered LRS boundary, a right-hand surface

termination is considered:

pnl+1,m,q = − 1

λζω
(pn+1
l,m,q − p

n−1
l,m,q) + pnl−1,m,q (4.74)

which, when inserted into the SRL wave equation update for the pressure node at the

boundary, gives:

pn+1
l,m,q = λ2(− 1

λζω
(pn+1
l,m,q − p

n−1
l,m,q) + 2pnl−1,m,q + pnl,m+1,q + pnl,m−1,q +

pnl,m,q+1 + pnl,m,q+1) + 2(1− 3λ2)pnl,m,q − pn−1
l,m,q (4.75)
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This expression can be re-arranged as follows considering ζω = b0+B(z)
a0+A(z) :

pn+1
l,m,q(λa0 + λA(z) + b0 +B(z)) = λ2(b0 +B(z))(2pnl−1,m,q + pnl,m+1,q +

pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) + 2(b0 +B(z))(1− 3λ2)pnl,m,q

+(λa0 + λA(z)− b0 −B(z))pn−1
l,m,q (4.76)

Finally, by expressing C(z) = λA(z) +B(z), D(z) = λA(z)−B(z) and re-arranging for

pn+1
l,m,q gives the final update expression for a right hand boundary node:

pn+1
l,m,q =

(
λ2(b0 + B(z))(2pnl−1,m,q + pnl,m+1,q + pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) +

2(b0 +B(z))(1− 3λ2)pnl,m,q + (λa0 − b0 +D(z))pn−1
l,m,q −

C(z)pn+1
l,m,q

)( 1

λa0 + b0

)
(4.77)

While the above expression appears implicit due to the unknown term, pn+1
l,m,q, resulting

on the right hand side, this is not the case. The update equation is explicit as required

due to the fact that pn+1
l,m,q is multiplied by C(z) referring to delayed pressure quantities

for the boundary node at [l,m, q] which are known. Update expressions for edge and

corner boundaries may be derived by similar means. It is noted in [110] that this

approach to formulation of the DIF boundary update can lead to instabilities. For this

reason, the experiments conducted with combinations of re-entrant boundary nodes also

include simulations that utilise the pressure-centered formulation described in section

4.5.3.

For the case of the velocity-centered approximation, the right-hand boundary node

expression is:

pnl+1,m,q = − 1

2λζω
(pn+1
l,m,q − p

n−1
l,m,q) + pnl,m,q (4.78)

which, when inserted into the discrete wave equation (4.4), gives:

pn+1
l,m,q =

(
λ2(b0 +B(z))(pnl−1,m,q + pnl,m+1,q + pnl,m−1,q + pnl,m,q+1 + pnl,m,q−1) +

(b0 +B(z))(2− 5λ2)pnl,m,q + (λa0 − b0 +D(z))pn−1
l,m,q −

C(z)pn+1
l,m,q

)( 1

λa0 + b0

)
(4.79)

where it is assumed that all DIF terms account for the doubling of the impedance term

given in (4.55). Derivations for edge and corner update expressions are developed by

solving for additional unknown ghost node values as required.
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Figure 4.36: Arrangement of nodes in a 8 x 8 x 8 SRL lattice used for the purposes of investi-
gating numerical stability in simulations with DIF-based frequency-dependent LRS boundaries.
The left and right diagrams display the domain in diagonally opposing orientations to highlight
the inclusion of multiple re-entrant node configurations.

4.5.5.2 Experimental Procedure and Results

In total, three small spatial domains were simulated for the purposes of investigation.

The two topologies previously described for the frequency-independent LRS stability

investigation (see Figure 4.14) were used along with a further, more complex, third

domain. Figure 4.36 displays the arrangement of grid cells in this additional model. As

shown, this additional model topology incorporates two diagonally opposing re-entrant

edges. All corners of the 8 x 8 x 8 grid point cube are defined as re-entrant nodes with

one corner possessing two re-entrant corners.

Each model domain is simulated using three implementations of the DIF-based frequency-

dependent LRS boundary conditions:

• The pressure-centered approximation which makes use of an intermediate filter

term as documented in [110, 124] and detailed in section 4.5.3.

• The pressure-centered approximation derived by direct manipulation of the bound-

ary update scheme equations as per (4.77).

• A velocity-centered approximation derived by direct manipulation of resulting

boundary update scheme equations as per (4.79).

Each simulation is run to produce 5 seconds of audio output with Fs = 28.4 kHz.

Resulting RIRs are plotted in Figures 4.37, 4.39 and 4.40 for each of the three model
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Figure 4.37: Simulated RIRs for the domain geometry that includes a single re-entrant cor-
ner node with frequency-dependent boundaries implemented using: (top) the pressure-centered
formulation as derived in section 4.5.3; (middle) the pressure-centered formulation (4.77); (bot-
tom) the velocity-centered formulation (4.79). The first 2 seconds of audio output (Fs = 28.4
kHz) are shown.

domains. Visual examination of the RIRs simulated in the model domain with a single

re-entrant corner (see Figure 4.37) demonstrates that all LRS boundary implemen-

tations are preserving numerical stability. The initial 2 seconds of RIR output are

displayed to increase clarity in the plots provided. Furthermore, the two different ap-

proaches to formulating the pressure-centered DIF-based LRS conditions are shown to

produce very similar results, as per Figure 4.38. Referring to the bottom panel of this

figure, the numerical difference between the two simulated RIRs (for the case of the

single re-entrant node domain) may be assumed as the result of arithmetic inaccuracies

due to finite precision.

A notable result is observed for the case of the simulated domain that incorporates

diagonally opposing re-entrant corner and edge nodes. It is demonstrated in section

4.4.4, that this particular node arrangement gives rise to instabilities when applying

frequency-independent pressure-centered LRS conditions to boundary nodes. However,

in the case of frequency-dependent DIF-based LRS boundaries, it is demonstrated (as

per Figure 4.39) that simulations may be run while maintaining numerical stability.

This result is of particular interest as further examination may reveal the cause or

conditions that encourage the amplification of solutions within a scheme with pressure-

centered LRS boundaries. For example, an upper limit on the impedance value applied

to boundaries may exist for a given frequency of resonance such that below this value,

the scheme will maintain stability. This initial rationalisation is justified when consid-

ering the difference of impedance values applied through use of the DIF as previously
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Figure 4.38: A comparison between the two formulations of pressure-centered DIF-based
LRS boundary implementations for the re-entrant corner domain (shown top and middle for
the first 2 seconds of audio output with Fs = 28.4 kHz). The small, non-increasing, level of
numerical error between the results of the two schemes is shown for the total duration of the
simulations (bottom).
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Figure 4.39: Simulated RIRs for the domain geometry that includes diagonally opposing re-
entrant corner and edge nodes with frequency-dependent boundaries implemented using: (top)
the pressure-centered formulation as derived in section 4.5.3; (middle) the pressure-centered
formulation (4.77); (bottom) the velocity-centered formulation (4.79). The first 2 seconds of
audio output are shown (Fs = 28.4 kHz).

discussed. However, seeking a generalised condition of this kind for all possibilities of

domain geometries poses a significant problem when relying on empirical investigation

such as is documented here.

Nonetheless, the simulation results depicted in Figure 4.40 demonstrate the poten-

tial for instability for the pressure-centered LRS formulation as the geometry of the
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Figure 4.40: Simulated RIRs for the complex domain geometry with frequency-dependent
boundaries implemented using: (top) the pressure-centered formulation as derived in section
4.5.3; (middle) the pressure-centered formulation (4.77); (bottom) the velocity-centered formu-
lation (4.79). The first 2 seconds of audio output are shown (Fs = 28.4 kHz).

modelled domain increases in complexity. In this instance, the boundary surfaces are

arranged such that numerous re-entrant nodes are present within the space. As dis-

played in the top two graphs, the RIRs generated for both pressure-centered DIF based

boundary conditions exhibit the exponential increase in amplitude that is the result of

numerical instability. Conversely, the velocity-centered formulation preserves stability

with no evidence of amplified solutions present in the resulting RIR. Hence, as with

the case of the frequency-independent boundary conditions discussed previously, it may

be concluded from this short empirical investigation that the robustness of velocity-

centered LRS boundary formulations exists also for frequency-dependent cases. This

result is of significant value when considering the application of such modelling ap-

proaches to realistic room topologies, such as those documented in Chapter 5.

4.6 Summary

This chapter has highlighted several important considerations relating to the design and

implementation of FDTD acoustic models. Investigations into modelling elements, in-

cluding dispersion characteristics, boundary conditions and sound source excitation/re-

ceiver methods have been conducted in order to provide a basis for the construction

and evaluation of the hybrid modelling method proposed in this work. Key findings

that inform the design choices applied in this novel hybrid approach are given below.
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• In order to ensure that numerical dispersion effects have minimum impact on

audible results rendered using SRL FDTD schemes, the upper frequency limit

on the usable bandwidth, fu, must be defined in accordance with the relations

fu ≤ 0.075 Fs for 3D and fu ≤ 0.1 Fs for 2D. These conditions ensure that the

isotropy of the schemes remain within a 2% error bound for all directions of wave

propagation.

• Soft sound source implementations form the most simple and, arguably, inher-

ently correct means of exciting the virtual acoustic field in a FDTD model. When

applied in conjunction with a simple DC filtering process, this source type pro-

duces results which can be post-processed to synthesise RIRs with minimal com-

putational overhead.

• To imitate the sound source characteristics resulting in a 3D FDTD system, a

2D excitation signal must be manipulated by means of a simple filtering process

to remove the afterglow effects that are inherent to the Green’s function for the

wave equation in 2D.

• For complex spatial domain topologies where SRL LRS boundary conditions are

to be applied to model surfaces, the velocity-centered formulation provides the

preferred approach as it has been demonstrated to be more robust against nu-

merical stability issues compared to the pressure-centered formulation.

• For acoustic models that require frequency-dependent boundary conditions, the

constant Fs octave band approach has been demonstrated to produce the most

accurate results in terms of theoretical low frequency response characteristics with

less computational requirements than that needed for the alternative DIF-based

approach.

It has also been shown that while the velocity-centered boundary formulation maintains

numerical stability to a greater extent than the pressure-centered case, the nature of ab-

sorption characteristics is not as expected from the LRS model. Initial findings from the

comparative investigation of energy decay in 1D FDTD systems with velocity-centered

and pressure-centered LRS boundaries (see section 4.4.3) demonstrate a difference be-

tween RT60 calculated from each system which increases as the reflection coefficient

increases.

The variable Fs octave band approach to frequency-dependent boundary implementa-

tions has been demonstrated as able to give acoustic parameters to a level of accuracy

that is, on the most part, consistent with more computationally intensive DIF-based

and constant Fs octave band approaches. However, these results will, in part, be af-

fected by differences in model geometries and source/receiver placement and the energy
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matching procedure applied to RIR contributions for each octave band which has not

produced expected results in terms of overall magnitude levels in resulting RIR spectra.

Finally, experimentation with different approaches to DIF-based frequency-dependent

LRS boundary implementations has revealed the advantage for formulating the up-

date scheme using velocity-centered approximations. By applying this formulation, as

with the frequency-independent case, FDTD acoustic models may be run for complex

geometries with increased robustness against numerical instability.



Chapter 5

Multiplane Hybrid RIR

Synthesis

The work documented in this chapter investigates the design, implementation and

analysis of a 2D multiplane FDTD method as part of an efficient hybrid RIR synthesis

system. In brief, the multiplane method seeks to model low frequency sound propa-

gation through the use of two or more independent 2D schemes which represent 2D

planar cross sections of the target acoustic environment.

Three studies, which seek to demonstrate the applicability of the multiplane FDTD

paradigm to low frequency acoustic modelling, are described. A pilot study concerning

the emulation of enclosed sound propagation in a simple cuboid environment provides

insight into the accuracy that may be achieved by the proposed hybrid model. RIR

contributions are produced by FDTD and geometric models in the low and mid-high

frequency regions (as per Figure 5.1) to render spectrally complete hybrid RIRs. Re-

sults are discussed with reference to those produced by 3D FDTD simulations in order

to assess the extent to which the multiplane model is capable of emulating low frequency

soundfields.

The remaining two studies examine the application of the multiplane hybrid model

to the virtual representation of real acoustic environments of increasing complexity.

For these modelling scenarios, data recovered from practical measurements of the real

spaces are used in order to evaluate the accuracy of the multiplane method. Addi-

tionally, 3D FDTD models are rendered for each simulation case to provide further

reference data for the purposes of comparison and evaluation.

174
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Figure 5.1: Diagram depicting the contribution of geometric and 2D multiplane FDTD models
to the creation of hybrid RIRs. As shown, the 2D multiplane model renders the low frequency
component of the full temporal range of hybrid RIRs while the geometric approach yields RIR
contributions above a defined transition frequency fc.

5.1 Pilot Study: A Simple Cuboid

The initial investigation of 2D multiplane FDTD acoustic modelling, presented here,

constitutes a feasibility test in which the applicability of this new approach to low

frequency sound simulation is evaluated. In terms of scope, this pilot study seeks to

serve as a proof of concept in support of the claim that the accuracy of 3D FDTD mod-

elling methods may be approached by their 2D counterparts. Low frequency analysis

of resulting RIR spectra is used as the basis of analysis to verify this claim. Simulation

run-times and memory requirements are presented to demonstrate the comparative effi-

ciency of the multiplane HAM. Additionally, examination of early reflections recorded

in each RIR reveals the agreement of temporal aspects simulated in each model. A

subset of this work is presented in [156].

5.1.1 The Acoustic Models

The conceptual target acoustic environment modelled in this work consists of a sim-

ple cuboid geometry with uniform reflection characteristics applied to each bounding

surface. A reflection coefficient of R = 0.97 is selected to ensure that absorption is

sufficiently low to allow build up of defined resonant frequency peaks, which in turn fa-

cilitates comparative spectral analysis. While this choice of room topology and surface

characteristics is rarely encountered in practice, the simplicity of the space is justified

by the requirement to compare the low frequency spectra of synthesised RIRs under

ideal conditions. Hence, although this modelling scenario is useful for the validation of



Chapter 5. Multiplane Hybrid RIR Synthesis 176

low frequency multiplane as an initial proof of concept, the applicability of this HAM

cannot be assumed for more complex room topologies. Three scenarios are created for

the purposes of this pilot study, as described in the following.

5.1.1.1 3D FDTD Model

The 3D FDTD model consists of a SRL lattice (see Chapter 4) which populates a cuboid

geometry of approximate dimensions 3 x 4 x 2.5 m. In order to preserve numerical

stability and minimise dispersion error, the spatial sampling instance h3D is set equal

to the lower limit, given as:

h3D =
√

3ck (5.1)

which yields a usable bandwidth of 0.196 Fs. As such, for the selected sampling rate

of Fs = 44100 Hz and wave speed c = 344 ms−1, an inter-nodal distance of h3D =

0.0135 m results. It follows that a 222 x 296 x 185 node lattice gives an interior cuboid

air cavity of dimensions 2.9859 x 3.9857 x 2.4860 m on which the geometric and 2D

multiplane models are based.

CASE Source (x, y, z) (m) Receiver (x, y, z) (m)

1 (1.1889, 1.0133, 1.6213) (1.1889, 2.9994, 1.6213)
2 (0.4999, 0.4999, 0.4999) (0.4999, 3.4993, 0.4999)
3 (0.2027, 0.2027, 0.2027) (0.2027, 3.7965, 0.2027)

Table 5.1: Source and receiver placements defined for three cases of RIR measurement in a
simple cuboid model.

Frequency-independent LRS boundary conditions are defined for all surfaces by means

of the pressure-centered formulation which has previously been demonstrated to retain

numerical stability for simple topologies. An impedance coefficient of ζ = 65.667, cor-

responding to the required reflection coefficient of 0.97, is applied to all nodes situated

on the boundaries. The interior target acoustic field is excited by a soft-source Kro-

necker Delta function inserted into the lattice at a node corresponding to the given

sound source location. RIRs are then rendered by recording calculated pressure fluctu-

ations at defined receiver locations. Three source and receiver combinations, as listed

in Table 5.1, provide three different RIR cases. The arrangement of source/receiver

positions, displayed in Figure 5.2, ensures that each RIR case consists of a source and

receiver location that share a common vector parallel to the y-axis. This particular

arrangement is informed by the way in which the multiplane model is constructed, as

described in section 5.1.1.3.
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Figure 5.2: Plan (left) and profile (right) views of the source and receiver arrangements
applied for RIR Cases 1-3. Cartesian axes are shown.

Finally, the 3D FDTD model requires approximately 12.2 million nodes to store one

instance of the discretised pressure field, of which two are required for simulation

purposes. This corresponds to a memory requirement of ∼ 0.182 GB. Simulation run-

times for CPU-based implementations are noted to be, on average, 1600 s per second of

audio output excluding post-processing required for RIR calibration and hybridisation.

5.1.1.2 Geometric Model

ODEON 10.1 Auditorium [21] is utilised to calculate the mid-high frequency portion of

the RIR for each source and receiver combination case. It is widely acknowledged that

this acoustic prediction program is of industry standard and, therefore, this software

is deemed suitable for the purposes of this work. Briefly, ODEON renders RIRs by

means of the ISM for early reflections up to a user-defined reflection order. Above this

reflection order, late reflections and diffuse soundfield components are calculated via

a ray-tracing algorithm. Control of this variable simulation parameter is provided in

ODEON via selection of a required Transition Order (T.O.). To accurately emulate the

early stages of sound propagation within the virtual model, the T.O. is set to 5th-order.

This selection follows the discussion in [48] based on [39] which recommend T.O. ≥ 2

for simulation.

The room geometry is compiled in ODEON via a parameter (.par) file consisting of

a list of vertices, given by co-ordinates in 3D space, and surfaces defined by a series

of selected vertices. Surface dimensions are set such that they define the exact room

topology of dimensions 2.9859 x 3.9857 x 2.4860 m represented by the 3D FDTD lattice
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previously described. For consistency with the single node Kronecker delta excitation

and RIR capture method applied in the FDTD schemes, both source and receiver

directionalities are set to be omni-directional with frequency-independent amplitude.

Material properties are assigned to all surfaces allowing the application of an appropri-

ate absorption coefficient of α = 1−R2 = 0.591 to all boundaries, which corresponds

to the constant reflection coefficient applied in the FDTD model.

A total of 50000 rays are used to investigate the space for each RIR case. Mono RIRs

are obtained by outputting 24-bit, B-Format .wav files and extracting the W-channel

post-simulation.

5.1.1.3 2D FDTD Multiplane Model

The 3D cuboid space is represented by two cross-sectional planes orientated in the x-y

and y-z planes. The resulting multiplane model may be envisaged as two intersecting,

non-interacting rectilinear grids of pressure sampling instances with a common vector of

intersection on which the source and receiver locations are defined. This arrangement,

depicted in Figure 5.3, allows RIR recordings to be combined in a straight-forward

manner through summation. The equal distance between source and receiver on each

of the two planes ensures that the time of arrival and amplitude of the direct sound

components are consistent in each scheme. Alternative arrangements involving arbi-

trary source/receiver positioning and/or an additional cross-sectional plane lead to the

requirement of extrapolated sound excitation methods as examined in the studies doc-

umented later in this chapter. The pressure field in each planar scheme is excited using

a soft-source Kronecker delta function and the two contributing responses are produced

by recording and summing pressure fluctuations arising at the common receiver loca-

tion. Additionally, LRS boundary conditions, consistent with those applied in the 3D

FDTD model are implemented at the terminating edges of each scheme. Details of

RIR post-processing and generation of the complete hybrid RIRs are given in section

5.2.1.

For 2D SRL FDTD schemes, the inter-nodal distance, h2D, is subject to the following

condition in order to achieve maximum spatial sampling resolution while maintaining

numerical stability:

h2D =
√

2ck (5.2)

Therefore, by matching the simulation parameters c and k with those applied in the

3D FDTD model, a value of h2D = 0.011 m is defined. Due to the difference that exists

between h2D and h3D, small errors arise between model dimensions and source/receiver

locations in the 3D and 2D multiplane model. The values of these errors, which are
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Figure 5.3: Arrangement of 2D planes in the multiplane model for source (Sx)/receiver (Rx)
Case 1. Locations of the source and receiver, which share a common vector parallel to the
y-axis, are shown. The cross-sectional planes occupy the x-y and y-z planes, intersecting on
the common vector between source and receiver, providing a representation of the 3D space
(given by the wire-diagram outline). This approach is replicated for the remaining 2 Sx/Rx
cases.

considered to have insignificant impact on model accuracy, are detailed in Table 5.2.

Also shown in the table is the difference between the number of pressure nodes required

to represent the space in each FDTD model. The multiplane simulations require a total

of only 179056 nodes per state of the modelled pressure field, of which two are required.

This corresponds to a reduction of 11935744 sampling instances against the 3D FDTD

model and, in turn, a memory saving of ∼ 98.5%. The impacts of this large reduction

in the number of pressure nodes is reflected in simulation run-times for the multiplane

model which are, on average, 15.5 s per second of RIR output. Again, the value

of simulation time excludes time taken to post-process RIRs into their hybrid form.

Compared to the 3D model, this translates to a run-time reduction of ∼ 99%. Hence,

the multiplane modelling approach demonstrates significant computational savings as

expected.

5.1.2 Hybridisation

A series of post-processing procedures must be applied to the simulated FDTD and

ODEON RIRs in order to render them compatible for combination into final hybrid
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MODEL/CASE Source (x, y, z) (m) Receiver (x, y, z) (m)

CASE 1
3D FDTD/ODEON (1.1889, 1.0133, 1.6213) (1.1889, 2.9994, 1.6213)

2D Multiplane (1.1914, 1.1049, 1.6216) (1.1914, 3.0006, 1.6216)
Difference (0.0025, 0.0016, 0.0003) (0.0025, 0.0012, 0.0003)

CASE 2
3D FDTD/ODEON (0.4999, 0.4999, 0.4999) (0.4999, 3.4993, 0.4999)

2D Multiplane (0.4964, 0.4964, 0.4964) (0.4964, 3.4970, 0.4964)
Difference (0.0035, 0.0035, 0.0035) ( 0.0035, 0.0023, 0.0035)

CASE 3
3D FDTD/ODEON (0.2027, 0.2027, 0.2027) (0.2027, 3.7965, 0.2027)

2D Multiplane (0.1986, 0.1986, 0.1986) (0.1986, 3.7948, 0.1986)
Difference (0.0041, 0.0041, 0.0041) (0.0041, 0.0017, 0.0041)

Dimensions (x, y, z) (m) No. of Grid Points (FDTD)

ALL
3D FDTD/ODEON (2.9859, 3.9857, 2.4860) 12211480

2D Multiplane (2.9895, 3.9824, 2.4821) 179056
Difference (0.0036, 0.0033, 0.0039) 11935744

Table 5.2: Overview of the comparison between model dimensions and source/receiver loca-
tions. The difference between the required number of pressure nodes in the 3D and multiplane
FDTD models is also provided.

RIR outputs. This collection of processes is detailed here with regards to matching

both 3D and 2D multiplane FDTD model RIRs with the ODEON simulation outputs.

The methods of hybridisation are applied consistently to each RIR case.

5.1.2.1 Calibrating 3D FDTD and Geometric RIRs

The initial concern with the 3D FDTD model RIRs is the impact of combining a soft-

source excitation with a positive reflection coefficient applied to all boundaries. As

discussed in section 4.3.1.1, these model characteristics together result in DC offset

amplitude drift due to resonances at the 0 Hz solution of the discrete wave equation.

Removal of the drifting effects may be achieved by use of a DC blocking filter. In

this work, the DC blocking filter is defined as a 1st-order high pass IIR filter with a

cut-on frequency of 20 Hz with Butterworth coefficients. As such, the filter is effective

in reducing the magnitude of low frequency components that contribute to amplitude

drifting while having minimal impact on the audible bandwidth. In addition, it may be
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demonstrated empirically that a single pass of the DC blocking filter removes drifting

effects as observed in the time domain. However, a modal component centered on 0 Hz

remains. This component is suppressed sufficiently by applying a second pass of the

DC blocking filter, yielding a filtering process that is effectively 2nd-order.

A second filtering process is required to reduce the FDTD RIR to the valid bandwidth.

For an SRL scheme, the valid passband is defined as 0.196 Fs. However, dispersion

effects can reduce the accuracy of the RIR in this valid passband. For this reason, a

transition frequency of 1 kHz (0.023 Fs) is used. Hence, the upper frequency limit of

the FDTD simulation, fu is in accordance with the condition fu ≤ 0.075 Fs (derived

in section 4.2) which ensures a dispersion error of < 2% for 3D SRL schemes. An 11th-

order Butterworth IIR low pass filter is applied to each RIR providing a sufficiently

steep roll-off to suppress mid-high frequency components.

The final stage of processing the FDTD RIR into a state compatible with the ODEON

results involves energy calibration. A method for ensuring consistent energy in the

source excitation across both SRL FDTD and geometric models is discussed extensively

in [81]. In brief, this method of energy calibration scales the amplitude of RIRs such

that the acoustic energy of the direct sound component emitted by the sound source,

E, at a distance of 1 m from the source location is unity for both models, giving:

E =

N∑
n=1

(p[n])2 = 1 (5.3)

where N is the number of discrete-time pressure samples p[n] that contribute to the

direct sound component. In geometric models, such as ODEON, it is trivial to scale

RIRs such that this criterion is met. For a given geometric RIR, the direct sound

component occupies a single time sample with amplitude pdir at an arbitrary distance

r from the sound source. An appropriate scaling factor may be derived from the

following relationship between pressure amplitudes at two different distances from the

source location:

pdir =
r1

r
p1 (5.4)

For the case of unity pressure, p1 = 1, at a distance of 1m from the source, r1 = 1, it

can be stated that the pressure pdir arising at an arbitrary distance from the source, r

is:

pdir =
1

r
(5.5)

Therefore, a scaling constant Kgeo that is calculated using the amplitude of the direct
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Figure 5.4: Magnitude spectra of calibrated (blue solid line) and non-calibrated, ‘NC’, (blue
dashed line) 3D FDTD low frequency RIRs and respective ODEON RIRs (black solid line).
The transition frequency of 1 kHz is shown in each RIR case by the vertical red solid line for
reference.
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sound component of each RIR may be defined as follows:

Kgeo =
1

pdirr
(5.6)

Multiplication of output RIRs by the above constant preserves the unity energy condi-

tion required for the energy matching process. Each ODEON RIR is also subject to a

high pass filtering process to remove the inaccurate low frequency results present below

the selected transition frequency of 1 kHz. For consistency with the FDTD filtering

process, the filter applied is an 11th-order IIR Butterworth high pass.

The approach to calculating the total energy of the direct sound component in SRL

FDTD schemes given in [81] is more involved. Briefly, the spread of energy throughout

a SRL lattice is dependent on the inter-nodal distance and, therefore, the temporal

sampling rate. As such, the total energy of the direct sound varies as Fs varies. The

following expression, derived in [81], may be applied to calculate a scaling constant

which ensures that E = 1 at a distance of 1m from the sound source in a 3D FDTD

SRL scheme:

K3D,FDTD = 5.437(Fs10−3)− 3.6347 (5.7)

The use of this constant is considered accurate for Fs > 11 kHz and is, therefore,

valid for application here. Each FDTD RIR is multiplied by K3D,FDTD to match

the energy of the sound source to that of the ODEON model outputs. The impact

of the energy calibration procedure are displayed in Figure 5.4. For each RIR case,

the spectra of filtered ODEON and FDTD RIRs is shown. Note, prior to calibration,

the FDTD RIRs consistently exhibit lower energy levels than those present in the

ODEON counterparts highlighting the importance of the energy matching process.

Post-calibration the agreement between the overall energy level of both contributing

RIRs is shown to be significantly improved for all RIR cases indicating the successful

implementation of the calibration process.

Once the energy calibration has been conducted, the two filtered and scaled RIRs

may be combined through summation to render the final spectrally complete hybrid

RIRs. Prior to summation, it is necessary to align both ODEON and FDTD simulation

outputs such that the direct sound component in each occurs at the same discrete-time

sample. An overview of the major hybridisation process components is presented as a

flow diagram in Figure 5.5.
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Figure 5.5: Summary flow diagram of the hybridisation process as conducted in the case of
3D FDTD/ODEON hybrid RIR rendering.

5.1.2.2 Calibrating 2D FDTD Multiplane and Geometric RIRs

As discussed in [31], the nature of energy decay in 2D FDTD simulations of the discrete

wave equation is different from that of the 3D case. In turn, characteristics such as

reverberation time and resonant frequency amplification are also expected to be differ-

ent. As such, application of the same reflection coefficients to the 2D multiplane model

as those used in the 3D models can lead to significant differences in the emulation of

resonant behavior at low frequencies. In order to overcome this issue, for the purposes

of this study, a simple coefficient matching procedure is devised. Firstly, it is assumed

that the Norris-Eyring equation for 2D space, as noted in [31], offers a reasonable pre-

diction of RT60. This expression may be re-arranged for a given absorption coefficient

α giving:

α = 1− e
−πSln(106)
cLRT60 (5.8)

where S is the area of the 2D scheme with total side length l and c is wave speed. Sec-

ondly, the RT60 of the 3D model may be measured to provide a numerical value that

can be inserted into the above expression to yield a more appropriate absorption and,

therefore, reflection coefficient. This coefficient can be calculated for each contributing

cross-sectional scheme of the multiplane model. Although this is a rudimentary ap-

proach, it is suitable for the purposes of this pilot study as the reflection coefficients

applied in each model are arbitrarily high in order to encourage resonant behavior.

Having simulated each 2D multiplane model yielding the 3 RIR case outputs, the results

are then subject to similar filtering processes as those applied to the 3D FDTD RIRs.

Each RIR is passed through the 2nd-order DC blocking filter to remove DC amplitude

drift and the low pass filter removing spectral components above 1 kHz. Additionally,
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Figure 5.6: Magnitude spectra of calibrated (red solid line) and non-calibrated, ‘NC’, (red
dashed line) 2D multiplane FDTD low frequency RIRs and respective ODEON RIRs (black
solid line). The transition frequency of 1 kHz is denoted by the vertical red solid line for
reference.

an afterglow removal filter (see section 4.3.1.2) is applied in order to reduce the effects

of the afterglow phenomenon on RIR outputs.

The final calibration step involves the energy calibration between multiplane RIRs

and those produced in ODEON. This procedure is conducted by matching the total

energy present in the filtered multiplane RIR to that of the calibrated 3D RIR for each

source/receiver case. The total energy E3D,i of each 3D FDTD model RIR p3D,i[n] can

be calculated using:

E3D,i =

N∑
n=1

(p3D,i[n])2 (5.9)

where, N is the total number of discrete time samples n recorded in the RIR and

subscript i refers to the source/receiver case (i.e i = 1,2,3). The total energy of the

corresponding multiplane RIR EMP,i may be calculated by similar means. This leads

to the definition of an energy calibration constant KMP :

KMP,i =

√
E3D,i

EMP,i
(5.10)

where subscript MP denotes the multiplane RIR energy for source receiver case i. Mul-

tiplying each multiplane RIR by KMP,i equates the total energy present in each case

with that of the corresponding 3D RIR. By extension, the low frequency multiplane

RIRs are considered to be compatible with the ODEON mid-high frequency contri-

butions in terms of energy balance either side of the transition frequency. Figure 5.6
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Figure 5.7: Summary flow diagram of the hybridisation process as conducted in the case of
2D Multiplane FDTD/ODEON hybrid RIR rendering.

demonstrates the significant improvement observed between energy level agreement of

uncalibrated and calibrated multiplane RIR with the ODEON RIR for source/receiver

Case 1. Such a result is also observed for RIR Cases 2 and 3.

Having processed each multiplane RIR into a form compatible with the corresponding

ODEON signals, outputs from both models are time-aligned to match the temporal

position of the direct sound component. The total hybrid RIR is then rendered by

summing both low frequency and high frequency RIRs together. A summary flow

diagram of the multiplane calibration/hybridisation processes is displayed in Figure

5.7 for reference.

5.1.3 Results

Objective results pertinent to the scope of this pilot study, presented here, are recov-

ered from the RIRs produced by each of the modelling methods described previously.

Particular attention is given to the nature of low frequency sound simulation to demon-

strate the level of agreement between multiplane FDTD and 3D FDTD RIR spectra.

Also observed are the representations of the low frequency soundfield as rendered by

ODEON. This is required in order to compare the accuracy of geometric and multi-

plane models in the lower frequency region. Note that it is assumed that the 3D FDTD

model produces the most accurate results given the inherent preservation of 3D wave

characteristics. As such, the aforementioned levels of accuracy of the remaining two

models is a comparative measure against the ideal 3D FDTD RIR cases.
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5.1.3.1 Low Frequency Analysis

The low frequency magnitude spectra of each model RIR is calculated via the Fourier

transform and examined in three ways. Firstly, visual inspection and comparison of

low frequency spectra with reference to the 3D FDTD model results and theoretic

modal values provides initial insight into the agreement of simulated low frequency

characteristics. This is conducted for two frequency regions fr1 = [0 : 380] Hz and fr2

= [0 : 1000] Hz. The first frequency region accounts for simulation frequencies up to

an approximate value for the Schroeder frequency Fc, below which resonant behaviour

is most prominent. The second frequency region provides an overall description of the

low frequency magnitude trends up to the transition frequency.

Secondly, the frequency response assurance criterion (FRAC), as documented in [157,

158], is used to provide a single numeric value that represents the agreement between

magnitude spectra. For two frequency domain signals X(f) and Y (f), the FRAC

calculation seeks to establish the level to which both signals are linearly related by

means of the following equation, after [157]:

FRAC =

∣∣∣∣∑f2
f=f1

X(f)Y ∗(f)

∣∣∣∣2∑f2
f=f1

X(f)X∗(f)
∑f2

f=f1
Y (f)Y ∗(f)

(5.11)

assuming, ∣∣∣∣∑f2
f=f1

X(f)X∗(f)

∣∣∣∣2∑f2
f=f1

X(f)X∗(f)
∑f2

f=f1
X(f)X∗(f)

=

∣∣∣∣∑f2
f=f1

Y (f)Y ∗(f)

∣∣∣∣2∑f2
f=f1

Y (f)Y ∗(f)
∑f2

f=f1
Y (f)Y ∗(f)

= 1

(5.12)

where ∗ denotes the complex conjugate and f1 and f2 denote lower and upper frequency

bounds respectively, thus setting the FRAC analysis bandwidth. If the two frequency

domain signals, X(f) and Y (f) are related in an exact linear manner (i.e. they may

differ only in amplitude in the time domain), then the FRAC will return a unity value.

However, as the correlation between the two signals degrades, the FRAC value decreases

with a minimum value of 0 signifying complete absence of any linear relationship. This

measurement is applied in order to compare the extent to which the ODEON and

multiplane FDTD RIRs represent the 3D FDTD RIRs in the frequency regions fr1 and

fr2.

Finally, the magnitude spectra resulting in each RIR case may be compared by means

of the magnitude similarity measures as proposed in [158]. Briefly, a new signal H(f)

is defined to express the relationship between two arbitrary frequency domain signals,
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X(f) and Y (f), such that: ∣∣H(f)
∣∣ =

∣∣∣∣∣Y (f)

X(f)

∣∣∣∣∣ (5.13)

In this way, |H(f)| yields the ratio of magnitude spectra for the signals. Therefore,

if X(f) and Y (f) are the same, H(f) = 1. Following [158], the logarithmic ratio,

|20log10(H(f))| dB, is deemed more straightforward to interpret. Use of logarithm

ensures that the magnitude similarity value resides between 0 and -∞. This, in turn,

may be translated into a magnitude similarity value, MS(f), via the following equation,

after [158]:

MS(f) = 1− tanh

(
ln 3

2
.
|20 log10 |H(f)||

20

)
(5.14)

Hence, for a given frequency f , MS(f) takes on a value in the range [0 : 1] where 0

represents a large difference in magnitude values |X(f)| and |Y (f)| and 1 signifies no

difference. Furthermore, for a given frequency range [f1 : f2] Hz an overall representa-

tion of the agreement between magnitude spectra can be calculated by integrating the

function MS(f) over frequency:

MI =
1

f2 − f1

∫ f2

f1

MS(f)df (5.15)

where the coefficient outside the integral serves to scale MI to the range of [0 : 1]. In

combination with the FRAC measurement, MS and MI offer useful insight into the

agreement of spectral components present in simulated RIRs.

Note that the ODEON RIRs analysed are calibrated in terms of energy, but not subject

to the high pass filtering stage for the purposes of all comparisons conducted. For

clarity, each RIR case is examined in turn in the following.

RIR Case 1:

Low frequency spectra of the modal region fr1 for each model simulation are shown in

Figure 5.8. Modal values calculated using (2.76), signified by the vertical dashed lines,

are provided for reference. As an initial analysis step, the correctness of the FDTD

models may be assessed by examining the position of resonant peaks relative to the

theoretic modal frequency values. It is observed, in the case of the 3D FDTD RIR,

that a strong relationship exists between modal values and simulated resonances, thus

verifying the correctness of the model.

The level of agreement exhibited between the 2D multiplane and 3D FDTD RIR spectra

is significantly high for the first five modal values up to a frequency of ∼ 80 Hz.

However, the multiplane model is not capable of capturing tangential modes in the

x-z plane or oblique modes (denoted by the green dashed lines) due to the nature of
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Figure 5.8: Low frequency spectra of 3D FDTD (blue solid line), 2D multiplane FDTD (red
solid line) and ODEON (black solid line) RIRs (Case 1). Theoretic modal values are shown by
the vertical dashed lines. The modal values plotted in green highlight modes that are either
tangential in the x-z plane or oblique.

its construction. This is particularly evident upon comparison of resonant components

simulated in the 3D model to those rendered in the multiplane model over f ≈ [90

: 100] Hz. This frequency region contains the first x-z tangential and oblique modes

which are present in the 3D FDTD RIR, but absent in the multiplane response. Such

results also exist for higher order modes of this kind. The presence of a resonant peak

at oblique or x-z tangential mode values in the multiplane spectrum is the result of a

coincident mode occurring across either of the two cross-sectional planes. Furthermore,

it is apparent that resonances that are not active in the 3D model, due to the location of

sound source and receiver, are also suppressed in the multiplane spectrum. This further

highlights the agreement between both RIR spectra and demonstrates the ability of the

multiplane model to produce a reasonable representation of the low frequency sound

behaviour occurring in the space. In the upper half of the modal region, f > 200 Hz,

the level of agreement between 3D and multiplane RIR spectra decreases somewhat.

As frequency increases, the coincidence of multiple modal values increases in the 3D

model. The same is true for the multiplane model, however the absence of higher order

x-z tangential and oblique modes acts to reduce the similarity of 3D and multiplane

spectra towards the upper limit of the modal region. Nonetheless, the position of several

resonant peaks coincide across both modelling approaches as frequency increases.
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Figure 5.9: Magnitude similarity for 2D multiplane FDTD (red) and ODEON (black) spectra
compared to 3D FDTD spectrum resulting for RIR Case 1 in the modal region fr1. Values are
calculated using (5.14).

Also depicted in Figure 5.8 (bottom) is the comparison of ODEON and 3D FDTD low

frequency RIR spectra. It may be observed that the overall energy level trends are

similar for both models with the exception of the low frequency region f ≈ [85:115]

Hz. However, the presence of distinct modal peak values is lacking in the ODEON RIR

spectrum as expected due to the inability of the modelling approach to emulate reso-

nances. Hence, it may be determined by visual inspection alone that the 2D multiplane

RIR exhibits a higher level of agreement with the 3D FDTD model in terms of low

frequency spectral characteristics. This finding is further supported through analysis of

magnitude similarity, MS, which compare the ODEON and 2D multiplane spectra to

that of the 3D FDTD model. The MS functions for RIR Case 1 are provided in Figure

5.9. As shown, the 2D multiplane spectrum possesses a more consistent agreement with

the 3D results than the ODEON RIR spectrum. This is observed through comparison

of the MS values calculated for the multiplane (red curve) and ODEON (black curve)

RIRs over the frequency range f = [0:120] Hz. Examination of the MS curve for the

ODEON RIR reveals that the similarity between geometric and 3D FDTD spectra is

highly variable across the low frequency bandwidth. Conversely, the 2D multiplane MS

curve maintains a higher and more consistent agreement with the 3D RIR spectrum

due to the preservation of resonant characteristics. The reduction in multiplane MS

values around 100 Hz is a notable result as this directly correlates with the absence of

the x-z tangential and oblique modes from the multiplane RIR previously described.

Furthermore, the significant difference between ODEON and 3D FDTD spectra in the

region f ≈ [85:115] Hz is also represented by the low MS values returned over this

bandwidth.

Integrating each MS curve over the modal frequency range yields the magnitude sim-

ilarity indexes MI as per (5.15) provided in Table 5.3. FRAC values are also given as

a measure of the correlation of ODEON and multiplane RIR magnitude spectra to the

3D FDTD RIR spectrum. Both FRAC and MI provide measurement of similarity be-

tween time varying signals through analysis of their frequency domain representations.
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Case 1 (vs. 3D FDTD), f = fr1 FRAC MI

2D Multiplane FDTD 0.488 0.853
ODEON 0.006 0.785

Table 5.3: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 1) in the modal region fr1.

However, the FRAC quantity assesses the covariance of the signals (thus incorporating

phase properties), whereas the MI value provides a measure of the extent to which

a linear relationship exists between magnitude spectra only. Measurement of these

parameters show that the multiplane RIR is more comparable to the 3D counterpart

than the ODEON RIR. This is expected given previous analyses of resulting spectra

and MS properties and further supports the fact that the multiplane model is capable

of emulating prominent modal components where the geometric approach is not.

Case 1 (vs. 3D FDTD), f = fr2 FRAC MI

2D Multiplane FDTD 0.113 0.844
ODEON 0.001 0.830

Table 5.4: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 1) in the low frequency simulation bandwidth fr2.

FRAC and MI measures for the full low frequency simulation bandwidth fr2 up to the

transition frequency of 1 kHz are noted in Table 5.4. These results provide an impor-

tant comparison against those returned for the modal frequency region. Firstly, it is

noted that FRAC values for both multiplane and ODEON RIRs decrease significantly

compared to those given for fr1. Hence as the frequency range under examination

increases, the variance between simulated RIR signals also increases. This is due to the

accurate simulation of wave motion provided by the 3D FDTD model which preserves a

more complete representation of enclosed sound propagation compared to the alterna-

tive modelling techniques. In terms of the multiplane model, only a subset of resonant

frequencies are successfully emulated. Therefore, as the number of modal components

occurring in 3D space increases with frequency, the representation provided by the

subset decreases in accuracy leading to a lower FRAC value. The same notion may be

extended to rationalise the decrease in FRAC value calculated for the ODEON RIR in

which modal components are largely omitted.

A different trend is observed between the MI returned for each frequency region. The

overall magnitude similarity is shown to increase significantly for the ODEON RIR

when considering the wider frequency region, whereas the similarity decreases slightly
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Figure 5.10: Low frequency spectra of 3D FDTD (blue solid line), 2D multiplane FDTD (red
solid line) and ODEON (black solid line) RIRs (Case 2). Theoretic modal values are shown by
the vertical dashed lines. The modal values plotted in green highlight modes that are either
tangential in the x-z plane or oblique.

for the multiplane RIR. This exposes the fact that the MI measure becomes less

sensitive to differences between spectra as the frequency region under analysis widens.

Hence, the level of similarity between spectra local to a sub-region of the bandwidth (i.e.

the modal region) will no longer contribute significantly to the MI value. This concept

explains the converse trends noted in FRAC and MI values across the examination

of small (fr1) and larger (fr2) bandwidths. However, the use of MI over the region

f = fr2 is justified for cases where notable deviations between overall RIR spectra

magnitude levels are present over a large frequency region (see RIR Case 3).

Overall, for this RIR case, it may be stated that the multiplane RIR shares a higher

level of similarity to the 3D RIR reference compared to the ODEON RIR. This has

been demonstrated by all means of analysis applied and is particularly apparent in

the modal frequency region where the multiplane model is shown to produce a good

approximation to the 3D low frequency soundfield.

RIR Case 2:

The second RIR case considers sound source and receiver locations which are positioned

towards the corners of the cuboid model. As such, the magnitude of low frequency

components is expected to increase compared to RIR Case 1 as resonant frequency

waves collect and increase in amplitude towards edges and corners. Figure 5.10 displays
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Figure 5.11: Magnitude similarity for 2D multiplane FDTD (red) and ODEON (black) spec-
tra compared to 3D FDTD spectrum resulting for RIR Case 2 in the modal region fr1.

the 3D FDTD (blue) and 2D multiplane (red) Case 2 RIR spectra (top). As shown, the

expected increase in low frequency modal component magnitudes, with those simulated

for RIR Case 1, is demonstrated by both modelling approaches. The agreement between

modal response up to f ≈ 80 Hz is shown to be high with the multiplane model correctly

emulating low order resonance characteristics. This agreement degrades somewhat

in frequency regions containing x-z tangential and oblique modes. In particular, the

omission of these modal components in the multiplane RIR for f = [180:200] Hz results

in a significant drop in overall magnitude compared to the 3D RIR spectrum. These

results are consistent with those produced in RIR Case 1. As frequency increases

towards the upper limit of the modal region fr1, the general trend of magnitude values

in each spectra are very similar.

Conversely, the low frequency spectrum recovered from the ODEON RIR (see Figure

5.10 (bottom)), denoted by the black curve, displays little obvious agreement with the

3D RIR spectrum. Specifically, the prominent low frequency modes and increase in

overall magnitude in the region f = [40:100] Hz are not represented. This result is

demonstrated in the MS curve displayed in Figure 5.11. As shown, the magnitude

similarity between ODEON and 3D RIRs (black curve) is highly variable in this fre-

quency range and is generally lower than the more consistent multiplane spectrum

similarity (red curve). However, the multiplane RIR MS curve reveals the extent to

which the similarity reduces for the frequency region where low order x-z tangential

and oblique modes are expected (f = [90:100] Hz). Over this frequency range, the MS

values returned for the multiplane RIR reduce significantly reaching values that are

notably less than those given from the ODEON RIR. This, in turn, impacts on the

FRAC and MI measures calculated for this RIR case which are provided in Table 5.5.

Both FRAC and MI values for the modal region of multiplane RIR Case 2 are lower

than those calculated for Case 1. This suggests that the increase in energy in modal

components that are not simulated in the multiplane model has an impact on the

similarity measure and correlation between 3D and multiplane RIRs and causes the
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Case 2 (vs. 3D FDTD), f = fr1 FRAC MI

2D Multiplane FDTD 0.397 0.834
ODEON 0.005 0.761

Table 5.5: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 2) in the modal region fr1.
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Figure 5.12: RIR spectra for 3D FDTD (blue), multiplane FDTD (red) and ODEON (black)
for RIR Case 2 over the low frequency simulation bandwidth fr2 up to 1 kHz.

decrease in MI and FRAC measures. However, both measures remain higher than

those calculated for the ODEON RIR demonstrating the positive effect of the simulation

of a subset of modal activity in the multiplane model. Compared to a geometric

approach with inherently low accuracy in the modal region, the multiplane model

exhibits a notable improvement. Visual inspection of the simulated RIR spectra in the

wider bandwidth fr2 up to the transition frequency, displayed in Figure 5.12, provides

further insight on how overall magnitude levels vary between models. As shown, the

ODEON RIR spectra exhibits a lower range of magnitude levels, within the range of ∼[-

15:12] dB, across this bandwidth. Conversely, the FDTD RIRs both demonstrate more

variable magnitude level trends. The agreement of these trends for 3D and multiplane

RIRs has been discussed previously for the modal frequency region. Additionally, the

3D RIR possesses several significant spectral peaks at higher frequencies in the range

of ∼[350:750] Hz. A number of these peaks, which are not present in the ODEON

RIR spectrum, are shown to be successfully represented in the multiplane model. Of

particular interest are the coincident spectral peaks arising in both 3D and multiplane

RIRs located at approximately 350, 470, 720 and 760 Hz. However, it is noted that

the same level of agreement between RIRs for both FDTD models observed in the

modal region is not maintained as frequency increases. As with the findings reported
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for RIR Case 1, this is due to the greater increase in the number of modal components

modelled by the 3D scheme compared to the multiplane model as frequency increases.

As displayed in Table 5.6, the FRAC and MI values calculated for the multiplane RIR

Case 2 (vs. 3D FDTD), f = fr2 FRAC MI

2D Multiplane FDTD 0.306 0.839
ODEON 0.001 0.803

Table 5.6: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 2) in the low frequency simulation bandwidth fr2.

are greater than those calculated for the ODEON RIR for fr2. This again reinforces the

claim that the multiplane model shares a higher level of similarity with the 3D FDTD

model than the ODEON model across the full low frequency simulation bandwidth.

Interestingly, the MI value for the multiplane RIR increases slightly compared to the

value calculated from the modal region. The same trend in MI is observed for the

ODEON RIRs when comparing values from each analysis range. As with the ODEON

Case 1 RIR MI value trend, this may be attributed to the tendency of MI to increase

as the frequency range used for calculation increases. Hence, the levels of agreement

and disagreement between resulting spectra in the modal region contribute less to the

MI value calculated for the wider bandwidth fr2.

The results presented here, in conjunction with those detailed for RIR Case 1, demon-

strate that the multiplane model is capable of simulating low frequency sound behaviour

to a greater extent than the geometric model as the sound source and receiver locations

are varied. This result is exemplified in RIR Case 2 by the level of agreement between

significant 3D and multiplane RIR spectral attributes in both fr1 and fr2 which are

largely omitted in the corresponding ODEON RIR.

RIR Case 3:

The final RIR case in this pilot study concerns an arrangement in which the target

acoustic field is excited and recorded in close proximity to opposite corners of the

cuboid in one axial direction. Hence, the trend in the increase of low frequency energy

as the source and receiver approach the corners (as demonstrated by comparing the

spectra for RIR Cases 1 and 2) is expected to be maintained. This is observed in

Figure 5.13 which displays the magnitude spectra of 3D and 2D multiplane FDTD and

ODEON RIRs across the modal region fr1. As with RIR Cases 1 and 2, a high level

of agreement is observed between the 3D (blue) and 2D multiplane (red) RIR spectra

for low order modes in the range f = [0:∼80] Hz. Additionally, the 2D multiplane

RIR is demonstrated to provide a good representation of the overall magnitude trends
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Figure 5.13: Low frequency spectra of 3D FDTD (blue solid line), 2D multiplane FDTD (red
solid line) and ODEON (black solid line) RIRs (Case 3). Theoretic modal values are shown by
the vertical dashed lines. The modal values plotted in green highlight modes that are either
tangential in the x-z plane or oblique.

possessed by the 3D RIR spectra. This is most apparent when considering the level of

spectral peaks across the range f ≈ [45:175] Hz and the gradual reduction in magnitude

levels towards the upper limit of the modal region resulting from both models. However,

the omission of prominent x-z tangential and oblique modes from the 2D multiplane

RIR again acts to emphasise the inherent limitations of the two plane arrangement

implemented in this study. The bottom graph of Figure 5.13 provides insight into the

similarity of ODEON (black) and 3D FDTD (blue) RIR spectra. It is demonstrated

that the overall magnitude trends common to both 3D and 2D multiplane FDTD RIRs

are not present in the ODEON RIR spectra. This is shown by the notably lower

magnitude levels of the ODEON spectral across f ≈ [60:200] Hz. Additionally, the

decrease in magnitude levels towards the upper limit of fr1 observed in the 3D and 2D

multiplane RIRs is not evident in the ODEON RIR spectrum. However, in this instance

of source and receiver positioning, the geometric approach implemented in ODEON is

shown to produce a higher level of similarity with the 3D FDTD RIR in terms of the

coincidence of a subset of modal frequencies. This is contrast to results produced for

the previous two measurement cases. For example, the ODEON RIR contains resonant

peaks that coincide with theoretical modal frequency values, particularly in the range

f ≈ [45:150] Hz. While this result constitutes an improvement in the correctness

of spectral characteristics of the ODEON RIR compared to previous cases, the same
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Figure 5.14: Magnitude similarity for 2D multiplane FDTD (red) and ODEON (black) spec-
tra compared to 3D FDTD spectrum resulting for RIR Case 3 in the modal region fr1.

improvement is not apparent elsewhere in the modal frequency range. The observations

drawn from visual comparison of Case 3 RIRs are reflected in the calculation of MS,

FRAC and MI values. Figure 5.14 displays the MS curves comparing the similarity

of 2D multiplane (red) and ODEON RIRs (black) to the 3D FDTD RIR. As with

results documented for RIR Cases 1 and 2, the multiplane RIR demonstrates a more

consistent agreement with the 3D RIR in terms of low frequency spectral characteristics

(f = [0:60] Hz). Again, this agreement reduces for the frequency region containing the

first x-z tangential and oblique modes represented in the 3D FDTD model (f = [85:100]

Hz). The MI and FRAC values values calculated over the modal region are noted in

Table 5.7.

Case 3 (vs. 3D FDTD), f = fr1 FRAC MI

2D Multiplane FDTD 0.260 0.830
ODEON 0.035 0.785

Table 5.7: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 3) in the modal region fr1.

A notable improvement is observed in the FRAC value calculated for the ODEON

RIR compared with Cases 1 and 2. This may be attributed to the increase in the

similarity of ODEON and 3D FDTD RIR spectra for a subset of modal frequencies

discussed previously. However, this claim is not supported by the corresponding MI

value which is shown to be consistent with results for Cases 1 and 2. Recalling the

definition of FRAC (5.11), it is apparent that this quantity accounts for the correlation

of phase. Hence, the increase in ODEON RIR FRAC value may be arising due to a

higher agreement in the phase of spectral components present within 3D FDTD and

ODEON RIRs. However, seeking conclusive assumptions that relate this result to

attributes of the geometric modelling approach implemented by ODEON is beyond the

scope of this work. For the purposes of this pilot study it is sufficient to demonstrate
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Figure 5.15: RIR spectra for 3D FDTD (blue), multiplane FDTD (red) and ODEON (black)
for RIR Case 2 over the low frequency simulation bandwidth fr2 up to 1 kHz.

that the FRAC and MI values calculated from 2D multiplane RIRs are consistently

greater than those calculated using the geometric approach. This finding is further

supported by the values shown in Table 5.7.

Visual inspection of the low frequency simulation region, fr2, further demonstrates

the difference between magnitude level trends present in FDTD and ODEON spectra

initially observed in the modal region. As shown in Figure 5.15, there is a notable

reduction in magnitude level in the 3D FDTD RIR in the region f ≈ [400:600] Hz which

also results in the multiplane RIR. Conversely, the ODEON RIR does not emulate this

significant spectral feature. This, in turn, leads to FRAC and MI values for the

ODEON RIR (Table 5.8) which are less than those calculated for the modal region fr1.

Furthermore, while the 2D multiplane RIR FRAC and MI values continue to remain

Case 3 (vs. 3D FDTD), f = fr2 FRAC MI

2D Multiplane FDTD 0.237 0.839
ODEON 0.014 0.782

Table 5.8: FRAC and MI values calculated to compare the agreement of multiplane/ODEON
RIRs with the 3D FDTD RIR (Case 3) in the low frequency simulation bandwidth fr2.

higher than those of the ODEON RIR, the FRAC values are lower than those recorded

in RIR Cases 1 and 2. Indeed, there appears to be a trend by which the FRAC value

decreases as the source and receiver locations approach the corners of the modelled

space while the MI values are mostly consistent for all modelling scenarios. This final

finding further demonstrates the sensitivity of the FRAC value to the correlation of

RIR characteristics beyond magnitude similarity alone. Hence, the correlation between
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the phase of recorded frequency responses affects the value calculated for each case.

Due to the fact that the 2D multiplane FDTD model represents only a subset of

valid reflection paths within the modelled domain, the difference between temporal

attributes of 3D and 2D multiplane RIRs will directly impact the correlation of phase

characteristics. Considering the FRAC values recorded in all three RIR cases, this issue

has been shown to be exacerbated as the source and receiver approach the corners of

the space. Hence, it may be concluded that the number of reflection paths represented

by the multiplane model is not sufficient to fully represent more complex interference

effects occurring in 3D which become increasingly significant as source and/or receiver

approach a location in which resonances coincide and accumulate. Regardless, this

limitation of the multiplane model, which is investigated in more depth in the following

sections, is shown to have little impact on the similarity of 3D and multiplane RIR

magnitude spectra characteristics.

5.1.3.2 Early Reflection Characteristics

Given the arrangement of sound source and receiver in each RIR case, in which both

source and receiver are coplanar in the x-y and y-z planes, a subset of the early reflection

components observed in the 3D model are expected to be represented in the multiplane

equivalent. Figure 5.16 demonstrates the agreement between temporal positioning of

early reflections, for the time region t = [0 : 50] ms, as rendered by the 3D and

2D multiplane FDTD simulations for each RIR case. In each case, squared pressure

amplitude values are shown to enable clear comparison between simulation results.

Considering the RIRs rendered for RIR Case 1 (top), it is observed that the temporal

positioning of early reflections is similar in both models for the first 20 ms of simulation.

However, for the majority of these reflections, there is a significant difference between

the squared pressure amplitude values calculated in each model. The primary reason

for this result is the nature of the Green’s functions for 2D and 3D wave equations which

inherently give rise to different energy spreading characteristics. Although afterglow

removal filtering procedure described previously acts to increase the similarity between

2D and 3D waveforms, it does not consider the amplitude of pressure fluctuations.

Hence, the variance between individual reflection amplitudes between the two modelling

approaches is unavoidable. As time increases (t > 20 ms) a greater number of strong

reflections are present in the 3D FDTD model RIR as reflected wave components are

free to travel in all directions around the solid angle. These later reflections are not

preserved in the 2D multiplane model as wave components are constrained to travel in

horizontal or vertical directions only. However, a series of later reflections occurring in
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Figure 5.16: Early time 2D multiplane (red) and 3D (blue) FDTD RIRs. Square pressure
amplitude curves are shown to highlight the temporal positioning and pressure values of early
reflection components in each model RIR case. The initial 50 ms of RIR output is shown for
each.

the time region t = [40 : 50] ms are shown to be represented in part by the multiplane

model.

Similar results are also exhibited for RIR Cases 2 and 3 (middle and bottom graphs

respectively). For both cases the receiver is located equidistant from three bounding

surfaces with Case 3 closer to the corner of the model. Again, good agreement between

the temporal positioning of strong early reflections (t < 20 ms) simulated in each model

is evident. Due to the location of the receiver in both cases, these early reflections oc-

cur in rapid succession shortly after the arrival of the direct sound component. This

demonstrates the ability of the multiplane model to emulate low order reflection char-

acteristics arising across the cross-sectional planes. As with RIR Case 1, a number of
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later reflections simulated in the 3D model are not represented on the cross-sectional

planes and overall amplitude values are markedly different between models. However,

the agreement between the temporal positioning of later reflections produced by each

model is shown to be reasonable in the time region t = [30 : 40] ms for both RIR Cases

2 and 3.

This examination of early reflections simulated in each FDTD model serves to demon-

strate that the time of arrival of these RIR components is consistent for a subset of low

order reflections which exist across the cross-sectional planes included in the multiplane

model. However, such results will only arise for the specific source and receiver location

arrangements applied in this pilot study. For source/receiver combinations that are not

located on a common vector parallel to one Cartesian axis, the agreement between the

timing of early reflections will decrease. This notion is discussed in more depth with

regards to the case study documented in section 5.2.

5.1.4 Concluding Remarks and Considerations

This pilot study has investigated the performance of the 2D multiplane FDTD model

in terms of low frequency acoustic simulation for a cuboid environment. Three RIR

cases corresponding to three different combinations source/receiver locations have been

considered. Results gathered from analysis of resulting low frequency spectra suggest

that the multiplane model is suitable for simulating a subset of low frequency behaviour

rendered in 3D FDTD models. Moreover, the multiplane model has been demonstrated

as capable of emulating the difference in low frequency behaviour that occurs when

altering the source and receiver locations. These claims are supported by the following

findings:

• Visual comparison of multiplane and 3D RIR spectra reveals that both models

preserve theoretic modal characteristics with the multiplane model RIRs exhibit-

ing notable similarity to the 3D counterparts in frequency regions containing

prominent low order modes.

• Examination of the magnitude similarity and magnitude similarity index has re-

vealed that the agreement between multiplane and 3D FDTD RIR spectra is con-

sistently higher (MI ≥ 0.83) than that observed from the results of the ODEON

model (MI = [0.761:0.83]). This is particularly apparent when examining the

spectra in the modal region.

• Results of FRAC analysis show that the level of correlation between RIR signals

is considerably higher when comparing multiplane and 3D FDTD simulations
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(FRAC = [0.260:0.445]) in the modal region than when comparing 3D FDTD

and ODEON RIRs (FRAC = [0.001:0.035]). This suggests that the increased

level of resonant behaviour rendered in the multiplane model, compared to the

ODEON model, is culminating in a stronger resemblance to the 3D model than

that achieved using ray-based techniques.

• Comparison of spectral characteristics over the low frequency bandwidth fr2 =

[0:1000] Hz demonstrates that the overall trends in magnitude levels observed in

3D FDTD RIR cases are better represented by the multiplane model than the

ODEON model. This can be confirmed, to some extent, through both FRAC and

MI values. This result is of particular importance given the recorded variations

in spectral attributes that occur as source and receiver locations change.

Additionally, analysis of early reflection patterns in both FDTD models have shown

that the time of arrival for a subset of early reflections is correctly simulated in the

multiplane model. However, the amplitudes of these reflections are inconsistent between

3D and multiplane models due to the inherent difference in acoustic energy spreading

characteristics. Moreover, the correct timing of early reflections in the multiplane model

is highly dependent on the specific arrangements of source/receiver locations applied

in each RIR case. It is expected that deviations from this arrangement will result in a

decrease in the agreement of reflection patterns yielded in each FDTD model.

Overall, the results of this pilot study are encouraging given that the level of accuracy

demonstrated by the 2D multiplane model may be achieved while reducing simulation

memory requirements and run-times by ∼ 98.5% and ∼ 99% respectively compared to

3D FDTD modelling. In summary, it may be concluded that the multiplane technique

is a viable alternative acoustic modelling paradigm to hybrid ISM/ray-tracing in terms

of low frequency accuracy and 3D FDTD numerical schemes in terms of computational

efficiency.

Finally, specific considerations regarding the refinement of the multiplane model have

been demonstrated through this pilot study. These may be summarised as follows:

• The arrangement of the multiplane model, as applied here, constrained the model

to two planes only leading to the omission of a subset of modal resonances.

An additional plane is required in order to simulate resonances occurring in the

omitted x-z cross-sectional plane.

• A restrictive condition is imposed on the source and receiver locations. This

is not ideal as realistic reproduction of particular sonic events may require free

placement of both sound source and receiver.
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• Investigation of reverberation times recorded in each modelling approach is re-

quired in order to assess the level to which this acoustic parameter is correctly

represented in the multiplane model.

Each issue listed above is examined in more depth as part of the following case study.

5.2 Case Study: A Recording Studio Live Room

The pilot study demonstrates the applicability of the multiplane FDTD hybrid paradigm

to the problem of low frequency simulation in a simple, theoretical acoustic environ-

ment. The following case study seeks to extend the investigation of multiplane low

frequency RIR synthesis by assessing the accuracy of results produced when simulating

the acoustic field of an existing space. To this end, RIRs captured in a recording studio

live room are approximated by means of both 3D and 2D multiplane FDTD modelling

approaches. Low frequency RIR spectral characteristics and acoustic parameters are

examined to compare the agreement between both virtual models and practical mea-

surements. This case study begins by defining and examining the performance of an

extended 2D multiplane model as presented in the previous section. The extended

multiplane model is then applied to simulate RIRs for the live room.

5.2.1 Extension of Multiplane Model to 3 Planes

The multiplane model used in the pilot study is composed of two cross-sectional planes

to allow for straightforward combination of RIR outputs from each plane. Such an ar-

rangement preserves time alignment of direct sound components recorded on each plane

and the amplitude of these components are equal, therefore, the output of each plane

may be summed during simulation. However, there are two considerable drawbacks

to this multiplane modelling approach. Firstly, as exhibited when comparing resulting

RIR spectra, restricting the model to two planes leads to the omission of prominent tan-

gential modes occurring in the remaining cross-sectional plane which is not accounted

for. Secondly, source and receiver locations are constrained in their location and are

defined to lie on a common vector parallel to one Cartesian axis. This criterion limits

the application of the model to specific cases of source/receiver positioning. Therefore,

arbitrary positioning of sound excitation and reception within modelled environments,

which is desirable for the purposes of rendering realistic scenarios, is not possible with

this approach. In order to overcome both issues, the multiplane model is extended to

three cross-sectional planes. This enables the simulation of additional resonances oc-

curring across the additional cross-sectional plane facilitating the simulation of a larger
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Figure 5.17: An example arrangement of the three plane 2D multiplane FDTD model for the
case of a cuboid room topology. Source (Sx), projected sources (red) and receiver (Rx, blue)
are shown.

subset of room modes that arise in the 3D environment modelled. The three planes

are arranged to coincide at a common point defined by the required listening position.

In order to excite the acoustic field via the cross-sectional planes, a sound source is

projected perpendicularly onto each plane. As such, the source may be positioned

arbitrarily within the modelled space. Consequently, both sound source and receiver

may be positioned at will removing the constraint arising in the two plane multiplane

model.

The overall arrangement is displayed in Figure 5.17. This diagram shows an example

of the extended multiplane model arrangement for the case of a cuboid topology. Each

plane is orientated with respect to the Cartesian co-ordinate system such that cross

sections of the space in the x-y, y-z and x-z are each occupied by an independent 2D

FDTD SRL plane. All cross-sectional planes are arranged to coincide at the receiver
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Figure 5.18: The magnitude spectrum of an RIR rendered using the three plane multiplane
model for the cuboid topology simulated in the pilot study. Theoretic mode values are denoted
by the dashed vertical lines. Tangential modes arising in the additional x-z plane are highlighted
in blue and oblique modes are shown in green.

location (Rx). The source is injected into a plane at a grid node defined by the two

common co-ordinates to both the plane and source location. For example, a source

location with 3D Cartesian co-ordinates (1, 2, 3) would be projected onto point (1, 2)

on the x-y cross-sectional plane, while the y-z and x-z plane schemes would have point

source locations (2, 3) and (1, 3) respectively.

For the purposes of initial testing of the three plane multiplane model, the pilot

study cuboid environment is simulated using this extended approach. The three cross-

sectional planes are defined to coincide at a common receiver location of (2.59, 2.58,

2.08) m. The sound source is projected onto each plane from a position of (0.38, 0.38,

0.38) m. As such, the source and receiver are placed towards diagonally opposing cor-

ners in all dimensions. Figure 5.18 displays the spectrum of the RIR simulated for this

case. For the purposes of comparison with previous implementation results, tangential

modes arising in the additional x-z plane are denoted by the blue dashed vertical lines.

Oblique modal values, which are not preserved by the multiplane model, are given by

the green dashed vertical lines. As shown, the extended multiplane model demonstrates

the capability to simulate the additional modal resonances that were omitted in the

pilot study simulations. In particular, the 1st-order x-z tangential mode occurring at

f ≈ 90 Hz is now present in the resulting RIR spectrum. This result demonstrates the

advantage of the use of an additional plane as a larger subset of low frequency spectral

components are captured in this model. Furthermore, comparison of the extended mul-

tiplane RIR with a corresponding 3D FDTD RIR, through calculation of FRAC and

MI values, provides an additional means of evaluation. The MI value calculated for

the modal frequency range ([0:380] Hz, as defined for the pilot study) is 0.837. This is
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Figure 5.19: Early time extended 2D multiplane (red) and 3D (blue) FDTD RIRs. Square
pressure amplitude curves are shown to highlight the temporal positioning and pressure values
of early reflection components. The initial 50 ms of RIR output is shown.

consistent with the range of values documented for the two plane pilot study model in

the modal region. However, a significant improvement is evident from FRAC analysis

which, for the three plane multiplane model, is calculated as 0.557. This is notably

higher than all FRAC values detailed in the pilot study, calculated as 0.488, 0.397 and

0.260 for RIR Cases 1-3 respectively (f = fr1). Hence, the MI and FRAC values

calculated for the extended multiplane model, in combination with the findings from

inspection of the resulting RIR spectrum, suggest that this 3 plane approach provides

a more accurate representation of low frequency sound propagation than the two plane

model.

However, there is an inherent drawback associated with this extended form of multi-

plane modelling which arises due to the free positioning of source and receiver loca-

tions. As demonstrated in the pilot study, the temporal positioning of early reflections

matched a subset of those recorded in the 3D FDTD model. This is due to the co-

planar locations of source and receiver in both modelled cross-sections of the multiplane

scheme. In terms of the extended multiplane model, the correlation between the timing

of early reflections occurring in 3D and those rendered in the cross-sectional planes is

not guaranteed for arbitrary source/receiver locations. This is demonstrated by Fig-

ure 5.19 which displays the squared amplitude of low order early reflections in the 3D

and 2D extended multiplane FDTD RIRs simulated for the low frequency analysis dis-

cussed previously. As shown, the agreement between the temporal alignment of early

reflections is reduced compared to that observed for the pilot study RIRs. This is most

apparent for the first cluster of reflections (t = [0.01:0.025] s) in which reflections in

the extended multiplane model RIR are seen to be mostly misaligned against the 3D

RIR. Hence, the additional accuracy in terms of modal response demonstrated by the

extended multiplane model and free placement of source and receiver is realised at the

expense of reduced accuracy in early reflection characteristics.



Chapter 5. Multiplane Hybrid RIR Synthesis 207

Figure 5.20: Perspective (left) and plan (right) views of the recording studio live room
geometry with major dimensions and structural components highlighted. Source (S1-S3) and
receiver (R1-R3) locations for RIR Cases 1-3 are also shown.

5.2.2 RIR Capture in the Live Room

The acoustic environment selected for this study is the recording studio live room in

the Audio Lab at the University of York. This space is a (4.11 x 3.35 x 2.6) m cuboid

shape with an extruded doorway area and a window positioned on one side of the

room. Additionally, a small cuboid patch bay is located on one of the walls. Figure

5.20 provides an overview of the major geometric dimensions and components of the

space that are included in the acoustic models created for this case study. Also shown

in the diagrams are the three source and receiver locations used to capture each RIR

simulated using the acoustic models.

The arrangement of the source and receiver location for RIR Case 1 is defined such

that the acoustic field is excited and recorded in opposite corners of the space in all

dimensions. Therefore, it is expected that the RIR recorded for this source/receiver

case will contain a higher level of resonant sound energy than that of the remaining

two cases due to the build up of low frequency energy that occurs towards the corners

of a cuboid space. This concept is demonstrated in the pilot study (comparing RIR

Cases 1 and 3 for the simple cuboid). RIR Case 2 incorporates a source/receiver

combination in which both excitation and recording locations are defined on a common

vector positioned on the x-y plane perpendicular to the z-axis. Finally, RIR Case 3

considers a sound source location in the proximity of a corner and a receiver positioned

near to the wall opposite. This selection of source/receiver arrangements provides a

means of assessing the ability of the multiplane model to simulate the soundfield of the

space as source, receiver and planar cross-section are altered. Table 5.9 provides the

coordinates of source and receiver locations as applied for each RIR case.
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CASE Source (x, y, z) (m) Receiver (x, y, z) (m)

1 (3.61, 2.85, 0.68) (0.60, 0.69, 2.00)
2 (2.91, 0.65, 1.49) (2.91, 2.65, 1.49)
3 (3.61, 0.50, 1.45) (0.70, 1.85, 1.50)

Table 5.9: Source and receiver placements defined for three cases of RIR measurement in the
recording studio live room.

Practical RIR measurements are taken in the live room using the exponential swept

sine technique, as developed and defined by Farina [43]. To this end, a Genelec 8130A

loudspeaker is used as the sound source producing 30 s exponential sine sweeps over

the approximate range of human hearing f = [20:20000] Hz. In order to approximate

an omnidirectional sound source, as applied in the FDTD and geometric acoustic mod-

els, the loudspeaker is rotated around the azimuthal plane at instances of 90◦. The

response produced for each of the four loudspeaker orientations is recorded using a

ST450 Soundfield B-Format microphone [159] and 24-bit bit-depth (Fs = 48 kHz).

This results in four RIRs per source/receiver case. Mono RIRs are produced for each

RIR case by summing the B-Format W-channel of the captured responses for the four

loudspeaker orientations. As such, the three RIRs recorded in the live room possess

approximately omnidirectional source and receiver directivity for consistency with the

FDTD models created for this study. However, it must be noted the low frequency

directivity of the loudspeaker is inherently omni-directional at low frequencies. There-

fore, the summation of multiple responses required to approximate an omnidirectional

sound source for mid-high frequencies also has the effect of enhancing the levels of low

frequency energy in the responses recorded. This is shown to have little impact on the

results of low frequency analysis as documented later in section 5.2.4.2. Examples of

the practical RIR recording arrangement are provided in Figure 5.21.

Figure 5.21: (Left and Right) Examples of RIR capture setup in the live room showing the
Genelec 8130A and Soundfield microphone. Note, the above images are not indicative of source
and receiver locations used to record the RIRs documented in the following.
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5.2.3 The Acoustic Models

The major geometric attributes of the recording studio live room (see Figure 5.20)

provide the approximate representation of the space used in each acoustic model. The

creation of the geometric and FDTD models closely follows the procedure set out in

the pilot study. Additionally, the absorption characteristics of surfaces in the live room

are represented in each acoustic model described in the following.

5.2.3.1 Geometric Model

The geometric model is rendered using ODEON 10.1 Auditorium [21] for the three

RIR cases listed previously. Room dimensions and source/receiver placements are

replicated exactly in this model. For consistency with the FDTD models, which in-

corporate frequency-independent boundary conditions, a single absorption coefficient

is defined per surface material with reference to the ODEON material library. This li-

brary contains random-angle-of-incidence absorption coefficients measured for a range

of material types (see e.g. [39]). The closest material types to those present in the

live room were selected and the absorption coefficient defined for each material over

the 500 Hz octave band is applied for all simulation frequencies. Table 5.10 provides

a summary of the absorption properties applied to each surface incorporated in the

model, where α500 refers to the absorption coefficient α for the 500 Hz octave band.

Surface Material Type α500

Floor Pile Carpet 0.25

Ceiling Wood Fibre 0.20

Walls Plasterboard 0.08

Window Double Glazed Glass 0.05

Door Wood (with air gap) 0.09

Patchbay (Housing) Wood (16 mm thick) 0.10

Patchbay (Front) Aluminium Plate 0.45

Table 5.10: Absorption coefficients of material types as applied to surfaces in the ODEON
model of the live room. Values are sourced directly from the ODEON Auditorium 10.1 material
library [21]
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The geometric model is simulated in ODEON using 50000 rays and a transition order

of 5 for each RIR case detailed previously. Sound source directivity is defined as

omnidirectional and mono RIRs are recorded by extracting the W-channel of a B-

Format 24-bit .wav file. The resulting mono RIRs are then subject to the energy

calibration process described in section 5.1.2.1 to ensure consistency with the FDTD

model RIRs in terms of excitation energy levels.

5.2.3.2 3D FDTD Model and RIR Synthesis

For the purposes of SRL FDTD simulation, the live room geometry is voxelised into

a cubic lattice of pressure nodes with a spatial sampling instance corresponding to Fs

= 44.1 kHz and wave speed c = ms-1. This yields h3D = 0.0135 m as defined for the

3D FDTD pilot study model. As such, a maximum deviation between the dimensions

of the live room and, therefore, the geometric model, may be derived as
√

3h2
3D/2 =

0.0117 (m) corresponding to the maximum error implied by rounding dimensions to

the nearest spatial sampling instance. This error, which is also valid for the discrete

location of source and receiver positions, is considered negligible.

Pressure-centered, frequency-independent LRS boundary conditions are applied to

pressure nodes occupying the surfaces of the model. This constitutes an important

distinction between the geometric model and the actual space in that only a single ab-

sorption coefficient is applied to each surface. Therefore, the frequency-dependent ab-

sorption characteristics possessed by the surface materials of the live room are not rep-

resented in the FDTD model. However, absorption coefficients defined in the ODEON

model for the 500 Hz octave band (see Table 5.10) are utilised to provide an approx-

imation to the properties of each surface. Table 5.11, provides an overview of the

corresponding reflection and impedance values applied for each material type. With

Surface Material Type R3D ζ3D

Floor Pile Carpet 0.866 13.925
Ceiling Wood Fibre 0.894 17.868
Walls Plasterboard 0.959 47.781

Window Double Glazed Glass 0.975 79.000
Door Wood Fibre 0.954 42.478

Patchbay Housing Wood (16 mm thick) 0.949 38.216
Patchbay Front Aluminium Plate 0.742 6.752

Table 5.11: Reflection R3D and impedance ζ3D coefficients for each surface type as applied
in the 3D FDTD model of the live room. Coefficients are derived from absorption data for each
material type as defined in the ODEON Auditorium 10.1 material library [21] for the 500 Hz
octave band.
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Figure 5.22: (Top to bottom) Normalised pressure amplitude and energy decay curves for
3D FDTD RIR Case 1. The first second of simulated output is shown and the -60dB level is
displayed on the bottom graph by the dashed black line.

reference to the investigation of numerical stability of pressure-centered LRS formula-

tions (see section 4.4.4), it is noted that this model maintains stability for a run-time

sufficient to allow the RIR to decay to inaudible levels relative to the direct sound com-

ponent. This is demonstrated in Figure 5.22 which displays 1 second of audio output

for RIR Case 1. As shown, the normalised amplitude and corresponding energy decay

curves for this RIR case decrease to a sufficient extent without any numerical stability

issues. The justification for this consideration stems from the fact that the normalised

energy decay curve drops below -60dB of the initial energy level produced by the source

excitation.

A soft source Kronecker delta excitation function is applied for each source and receiver

combination. Resulting RIRs are then passed through a 2nd-order DC blocking filter

and low pass filtered to remove frequencies above 2 kHz. This cut-off frequency is

selected to allow analysis of acoustic parameters up to and including the 1 kHz octave

band while avoiding the effects of dispersion error. Noting that the 1 kHz octave band

has an upper frequency of 1.42 kHz, this analysis bandwidth is well within the advised

range of 0.075Fs (as derived in section 4.2) to maintain a maximum isotropy error of

<2% in all directions around the solid angle. For the purposes of comparative low

frequency analysis, detailed later in section 5.2.4, each RIR produced using the 3D

FDTD is calibrated to the corresponding ODEON RIR through multiplication by the

energy matching coefficient, K3D,FDTD (5.7).
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Approximately 17 000 000 pressure nodes are required to voxelise the live room geom-

etry, requiring a total of ∼ 0.253 GB of memory to simulate the target acoustic field

at double point precision. An average simulation time of 3800 s per 1 s of RIR output

synthesised at Fs = 44.1 kHz.

5.2.3.3 2D FDTD Model and RIR Synthesis

Following the procedure for constructing the extended multiplane model set out in

section 5.2.1, the live room geometry is simulated using three cross-sectional, planar

2D FDTD schemes. For each RIR case, the cross-sectional schemes orientated in the

x-y, x-z and y-z planes are defined to coincide at the receiver location. The cross-

sections are voxelised using a rectilinear grid corresponding to a temporal sampling rate

of Fs = 44.1 kHz and wave speed c = 344 ms-1. Using (5.2), the internodal sampling

instance is calculated as h2D = 0.011 m providing the highest grid resolution while

maintaining numerical stability. This value of h2D results in a maximum deviation

of cross sectional dimensions, from those present in the real space, of
√

2h2
2D/2 =

0.0078 m provided dimensions are rounded to the nearest sampling instance. As with

the case of the 3D FDTD model, this small error is also applicable to source and

receiver placements and are considered negligible. Additionally, this grid resolution

maintains minimal dispersion error for frequencies up to and including the 1 kHz octave

band as is consistent with the 3D FDTD model. This follows from the discussion of

section 4.2 which details an upper frequency limit of the usable simulation bandwidth

of fmax < 0.1 Fs for 2D SRL FDTD schemes operating at the Courant limit. The

multiplane models for each RIR case require approximately 300 000 pressure nodes for

a constant internodal distance h2D as defined previously. This corresponds to a memory

requirement of ∼0.0045 GB to simulate the target acoustic field. Simulation run-times

for 1 s of RIR output with Fs = 44.1 kHz are recorded as ∼60s on average. Therefore,

the multiplane model used on this modelling scenario achieves a ∼98% reduction in

terms of both memory requirements and processing time compared to the 3D FDTD

model.

As noted in the pilot study, the laws governing energy decay in 3D and 2D acoustic

systems are different (see e.g. [31]). This leads to the requirement of controlling the

absorption rates inherent to the multiplane model such that recorded reverberation

times are consistent with those recorded in the 3D FDTD models. Converse to the

simple modelling scenario investigated in the pilot study where a single absorption

coefficient is applied to all surfaces, the live room model incorporates a range of material

types, each with a specific absorption coefficient. Therefore, a more rigorous method of

calibrating 3D and 2D model absorption characteristics is warranted in this case study.
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In order to approximately match 3D and 2D absorption coefficients, a 3D SRL FDTD 2

x 2 x 2 m cube model with pressure-centered LRS boundary conditions is simulated (Fs

= 44.1 kHz, h3D = 0.0135 m, c = 344 ms-1) once per material type. In each simulation

of the cube model, an absorption coefficient corresponding to one of the material types

is applied consistently to all surfaces. Upon simulation of an RIR for each material

type (M), the frequency-independent RT60,3DM is calculated. The values for RT60,3DM

are then inserted into the Norris-Eyring equation for a 2D acoustic system, after [31],

rearranged to make the absorption coefficient the subject:

α2D,M = 1− e
−πSln(106)
cLRT60,3DM (5.16)

where S (m) and L (m) are defined as the surface area and perimeter of the 2 x 2 m

cross-section of the cube respectively and c is the simulated wave speed. Using (5.16),

it is possible to calculate equivalent 2D absorption coefficients α2D for each material

type M . Table 5.12 details the corresponding reflection R2D and impedance values ζ2D

applied to simulate the absorption characteristics of the surface materials incorporated

on each cross-sectional plane as appropriate. 3D reflection values are also listed for

reference.

Surface Material Type R3D R2D ζ2D

Floor Pile Carpet 0.866 0.798 8.901
Ceiling Wood Fibre 0.894 0.854 12.699
Walls Plasterboard 0.959 0.906 20.277

Window Double Glazed Glass 0.975 0.944 34.714
Door Wood Fibre 0.954 0.903 19.619

Patchbay Housing Wood (16 mm thick) 0.949 0.900 19.000
Patchbay Front Aluminium Plate 0.742 0.674 5.135

Table 5.12: Approximated equivalent reflection R2D and impedance ζ2D coefficients for each
material type as applied in the 2D multiplane model. Reflection coefficients applied in the 3D
FDTD model are provided for reference.

Multiplane Model Sound Source Considerations:

The excitation of each plane is facilitated by projecting the source from the source

location defined for each RIR case as detailed in section 5.2.1 (see Figure 5.17 for

example). A soft source Kronecker Delta function is applied to the projected source

location on each plane in order to excite the target acoustic field. Upon recording RIRs

simulated within each plane, each RIR is then subject to afterglow removal, DC and

lowpass filtering processes following the procedure developed for the pilot study.



Chapter 5. Multiplane Hybrid RIR Synthesis 214

An additional post-simulation process involves time-aligning and normalising the con-

tributing RIRs from each plane prior to the summation that provides the complete

multiplane RIR. Due to the differences in path lengths between the projected source

locations defined on each plane, the time-of-arrival of the direct sound component

recorded on cross-section must be altered such that each one possesses the same di-

rect sound onset time. This is achieved by shifting each planar response in time as

appropriate in each RIR case. Additionally, contributing RIRs recorded on each plane

are normalised by equating the maximum pressure amplitude of each recorded direct

sound component. This is implemented by finding the maximum amplitude of the direct

sound received on each plane and scaling each planar response through multiplication

with the following constant:

KMP =
DSRIRmax
DSRIR

(5.17)

where DSRIRmax is the largest maximum direct sound pressure amplitude of the three

planar responses and DSRIR is either one of the remaining direct sound amplitudes

recorded on the remaining cross-sections. As such, KMP provides two different values

that are applied in order to equate the direct sound components of the two planar

responses that possess the lowest direct sound peak amplitudes.

This process of direct sound amplitude matching is largely influenced by the charac-

teristics of the multiplane model constructed for the pilot study. In the two plane

approach, both the time-of-arrival and direct sound amplitudes are equal due to the

length of the direct sound path being equal over each contributing plane. Hence,

through the processes of direct sound component normalisation and time alignment,

the extended three plane multiplane model replicates the attributes of the two plane

model prior to combining each contributing planar response into the overall multiplane

RIR. While this is considered to be a reasonable means of calibrating the output from

each cross-sectional scheme, this pilot study demonstrates a scenario in which this

approach does not produce reasonable results.

Considering RIR Case 2, the source and receiver locations are defined as (2.91, 0.65,

1.49) m and (2.91, 2.65, 1.49) m respectively. Noting that the x- and z-coordinates

of both source and receiver are equal, it follows that the projected source location on

the x-z plane is the same as the receiver location. As such, the contributing response

recorded on the x-z plane begins with a large direct sound component as the source

signal is inserted directly into the receiver node. Therefore, by imposing the method of

direct sound matching, the two remaining planar responses with comparatively much

lower direct sound amplitudes are scaled by a large KMP value. The result of applying

direct sound matching process to the x-y and x-z planar responses for RIR Case 2

are shown in Figure 5.23. It may be observed that the amplitude of the x-z planar
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Figure 5.23: (Top) Cross-sectional responses recorded from the x-y (blue) and x-z (red) planes
for RIR Case 2. As shown, the application of the direct sound component matching procedure
leads to a significant difference in response amplitudes after the direct sound (t > 0.01 s).
(Bottom) Logarithmic pressure response (dBFS) of the responses displayed in the top graph
emphasising the difference in response amplitudes as time increases.

response is significantly lower than that of the x-y planar response after the direct

sound component (t > 0.01 s). Therefore, upon summation of the responses from each

plane for RIR Case 2 it is evident that the x-z planar response will contribute much

less to the overall multiplane RIR than the other two planar responses. As a result,

the resonant frequency components occurring in the x-z plane of the model will not be

sufficiently represented relative to those occurring across the other two planes.

In order to correct this prior to producing the Case 2 multiplane RIR, the x-z planar

response undergoes a direct sound component scaling operation. This process involves

isolating the direct sound component of the x-z planar response and reducing the

amplitude such that it matches the amplitude of the direct sound component recorded

on the x-y plane. The result of this procedure is displayed in Figure 5.24. As observed,

the amplitude of the direct sound components are equal while the response amplitudes

for t > 0.01 are in much higher agreement. Therefore, through applying the direct

sound scaling operation in this RIR case, the x-z planar response sufficiently contributes

to the overall multiplane RIR.

For completeness, the contributing x-y (blue), y-z (black) and x-z (red) planar re-

sponses for RIR Cases 1 and 3 are provided in Figure 5.25. As shown, the overall

amplitudes of the planar responses in these cases are of a consistent level in the early

stages of the RIRs (t < 0.02 s). This demonstrates that the method of direct sound

matching is suitable for these RIR cases as the sound source projected onto each plane
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Figure 5.24: (Top) Cross-sectional responses recorded from the x-y (blue) and x-z (red)
planes for RIR Case 2. As shown, the application of the direct sound scaling procedure leads to
improved agreement between response amplitude (t > 0.01 s). (Bottom) Logarithmic pressure
response (dBFS) of the responses displayed in the top graph highlighting the improvement in
response level agreement.

Figure 5.25: Planar response contributions for RIR Cases 1 (top) and 3 (bottom). Individual
x-y (blue), x-z (red) and y-z (black) cross-sectional logarithmic pressure responses are shown
for both cases.
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is not in close proximity to the receiver. However, as observed for RIR Case 2, this

approach to combining planar responses to produce the multiplane RIR cannot be con-

sidered valid for scenarios in which the projected sound source is defined on or near to

a given receiver position. This issue is addressed further in section 5.3.3.2 where the

multiplane source model is refined to facilitate improved matching of planar responses

for arbitrary source and receiver locations in terms of overall response amplitudes.

Upon simulation and summation of the contributing planar responses for each RIR

case to render the overall multiplane RIRs, the energy matching coefficient KMP,i

(5.10) is applied. This ensures that the energy levels present in each multiplane RIR

are consistent with the energy levels of the corresponding 3D FDTD RIRs for the

purposes of low frequency analysis as detailed in the following section.

5.2.4 Results and Discussion

Results discussed in the following are derived from the RIRs simulated during the course

of this case study. Both acoustic parameters and low frequency spectral characteristics

recovered from all acoustic models for RIR Cases 1-3 are presented and examined in

turn. As per the analysis procedure followed for the pilot study, the examination

of objective results serves to demonstrate the capabilities of 2D multiplane acoustic

modelling as an efficient means of hybrid RIR synthesis.

5.2.4.1 Acoustic Parameters

The RIR outputs from the 3D FDTD, 2D multiplane and ODEON acoustic models

of the live room are examined here in terms of the reverberation time (EDT and T30

(s)) and Clarity (C80 (dB)) measures detailed in section 2.3.8. Each parameter value

is derived from the RIRs for the 63, 125, 250, 500, 1k Hz octave bands using the

MATLAB Acoustic Parameter Toolbox [160] in accordance with ISO documentation

[17]. Additionally, JND values for each acoustic parameter, as detailed in section 2.5.3,

are provided throughout in order to analyse the agreement of RIRs in a perceptual

sense.

Figure 5.26 displays the T30 values calculated from the RIRs simulated by the 3D

FDTD (blue), 2D multiplane FDTD (red) and ODEON (black) acoustic models for

all source/receiver arrangements over the 63 - 1k Hz octave bands. The JND range

provided by the blue error bar for each octave band is calculated as +/- 24.5% of the

T30 obtained from the 3D FDTD RIRs corresponding to one JND after [16]. It is imme-

diately apparent that the RIRs produced using the geometric ODEON model possess
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Figure 5.26: T30 values calculated from 3D FDTD (blue), 2D multiplane FDTD (red) and
ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000 Hz octave bands. The error
bars display the range of one JND (24.5%, after [16]) above and below the T30 value calculated
from the 3D FDTD RIRs in each octave band.

much longer energy decay times that those recorded from both 2D multiplane and 3D

FDTD RIRs. T30 times derived from the ODEON RIRs are consistently at least twice

those arising in the FDTD models across all RIR cases and octave bands. This result

demonstrates the differences in energy absorption rates inherent to geometric and SRL

FDTD numerical acoustic models that arise when random-angle-of-incidence absorp-

tion coefficients are applied in both modelling methods. While this is not a primary

concern in this case study, it does impact on the extent to which the comparison of

geometric and FDTD RIR spectra may be considered appropriate. This is due to the

fact that large differences in RIR energy decay times affect the level of agreement be-

tween spectra magnitude values, as discussed further in the following section. For this

reason, normal-angle-of-incidence absorption coefficients are used in order to alleviate

these differences in later work (see section 5.3) and, therefore, provide a more appro-

priate comparison between geometric and FDTD RIR spectra. The incorporation of

normal-incidence absorption coefficients in SRL FDTD acoustic models is justified by

the fact that all reflections in such models occur in a direction normal to boundary

surfaces due to rectilinear spatial discretisation.

Considering T30 as derived from the 3D FDTD and 2D multiplane RIRs, it is observed

that both models are in good agreement in terms of this parameter. The 2D multiplane

RIR T30 values are calculated to be within one JND of the 3D RIR T30 for all RIR cases

and all analysed octave bands. This suggests that the absorption coefficient match-

ing procedure applied to the 2D multiplane model has been successful in emulating

frequency-dependent energy decay characteristics of a 3D FDTD model with a range

of different surface material types. However, in some instances (e.g. RIR Case 2, 63

and 1k Hz octave bands and RIR Case 3, 1 kHz octave band) the 2D multiplane RIR
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Figure 5.27: EDT values calculated from 3D FDTD (blue), 2D multiplane FDTD (red) and
ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000 Hz octave bands. The error
bars display the range of one JND (5%, after [17]) above and below the EDT value calculated
from the 3D FDTD RIRs in each octave band.

T30 values are approaching the limit of the T30 JND ranges. Hence, the level of agree-

ment between the reverberation times recorded in each FDTD model is not consistent

for all octave bands. This is due to the fact that the 2D multiplane absorption coef-

ficients are derived by matching frequency-independent RT60 calculated using (5.16)

which does not account for frequency-dependent energy decay characteristics common

to both 2D and 3D SRL FDTD acoustic simulations. As such, this finding influences

the decision to implement a more rigorous RT60 matching procedure in octave band

multiplane models as part of the final acoustic modelling study documented in section

5.3.

The EDT measurements recorded for the ODEON RIRs, displayed in Figure 5.27 share

a similar trend to the T30 values in that they are consistently higher than those calcu-

lated from the multiplane and 3D FDTD models. This is reasonable given that EDT

and T30 are measures of energy decay time and the FDTD models incorporate random-

incidence absorption coefficients as previously discussed. It is also observed in Figure

5.27 that the EDTs calculated from the 2D multiplane model are, in general, lower

than those derived from the 3D FDTD RIRs. Moreover, only one instance (RIR Case

1, 1 kHz octave band) of EDT measurement shows agreement between multiplane and

3D FDTD values whereby the multiplane EDT is within the JND range of 5%. This

finding may be rationalised by considering the derivation of EDT values and the differ-

ences between RIR early reflection characteristics simulated by the multiplane and 3D

FDTD models. As detailed in section 2.3.8, EDT is derived by extrapolating a best line

of fit of the integrated energy decay curve in the region EDC = [0:-10] dB to an energy

level of -60 dB. Hence, this measure is sensitive to the nature of both the direct sound

component and early reflections recorded in an RIR. Previous time domain analysis

comparing multiplane and 3D FDTD demonstrates the inherent difference between the
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Figure 5.28: EDC (dB) for 3D FDTD (blue) and 2D multiplane (red) RIRs simulated for
RIR Case 1. The initial stages of energy decay characteristics in the time region t = (0:80) ms
is shown.

timing and pressure amplitude of the direct sound component and early reflections sim-

ulated by each modelling method. As such, it follows that the initial stages of the EDC

will also differ as a result. Considering RIR Case 1, the early-time normalised EDC

of 3D FDTD (blue) and 2D multiplane (red) RIRs is displayed in Figure 5.28. These

EDCs are frequency-independent and are derived using the RIR analysis bandwidth

f = [0:1420] Hz. From these curves, it is observed that the multiplane RIR possesses

a quicker decrease in energy immediately after the direct sound component (t ≈ 8 ms)

compared to that recorded in the 3D RIR. This is the direct result of the difference

between the pressure amplitudes of the direct sound component and following early

reflections simulated by each model. Additionally, the multiplane RIR EDC shows

a faster rate of energy decay over the range of EDC = [0:-10] dB. This results from

the omission of early reflections that occur in 3D from the multiplane RIR as the 2D

cross-sectional planes represent only a subset of reflection paths which are simulated

in the 3D FDTD model. Hence, it is assumed that the 3D FDTD model RIR energy

decay rate is comparatively slower as a greater temporal density of early reflections

are inherently simulated. Consideration of these RIR characteristics explains, to good

extent, the reason behind the on average lower EDTs calculated from the multiplane

RIRs compared to the 3D FDTD RIRs which is particularly apparent for RIR Case 1.

Given the observed differences between T30 and EDT values calculated from each acous-

tic model, which are larger when comparing ODEON and FDTD RIRs, it is expected

that Clarity, C80, measurements will also differ. Figure 5.29 displays the C80 values

calculated from the ODEON (black), 3D FDTD (blue) and multiplane (red) RIRs for

the three source/receiver arrangements. In terms of the ODEON C80 values, it is ob-

served that the Clarity of each RIR is consistently less than that of the FDTD RIRs.

This result is due to the greater level of late arriving energy inherent to the ODEON

model demonstrated by the comparatively longer T30 values as previously discussed.
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Figure 5.29: C80 (dB) values calculated from 3D FDTD (blue), 2D multiplane FDTD (red)
and ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000 Hz octave bands. The
error bars display the range of one JND (1 dB, after [17]) above and below the C80 value
calculated from the 3D FDTD RIRs in each octave band.

Again, this difference in acoustic parameter measurement results from the application

of random-incidence absorption coefficients to both geometric and SRL FDTD mod-

els. Referring to the Clarity measures calculated from the 2D multiplane FDTD RIRs,

there is no discernible trend to the agreement of these values and those recorded from

the 3D FDTD RIRs across all RIR cases. However, the EDCs previously presented

for RIR Case 1 (Figure 5.28) demonstrate that more energy is concentrated in the

direct sound component of the 2D multiplane RIR compared to the 3D RIR. This is

observed by the large decrease in the multiplane EDC that occurs just after the pas-

sage of the direct sound component suggesting that a notable portion of the overall

RIR energy is contained in this initial pressure fluctuation. The consequent effect on

C80 measures is clear for RIR Case 1 in which the values for the multiplane RIR are,

in general, greater than those calculated from the 3D RIR owing to a comparatively

larger direct-to-diffuse sound energy ratio (as per (2.81)). Hence, the agreement of

C80 measures recorded from multiplane and 3D FDTD RIRs is, as with EDT, shown

to be sensitive to the inherent differences in early stage RIR characteristics previously

discussed. This claim is further supported by the fact that the T30 values calculated

from multiplane and 3D FDTD RIRs are in reasonable agreement and, therefore, the

cause of differences in the early-to-late energy index C80 cannot be attributed to the

nature of diffuse field energy decay characteristics.

It is apparent from this comparative examination of multiplane and 3D FDTD RIR

acoustic parameters that agreement in objective T30 measures does not guarantee sim-

ilar agreement in EDT and C80 values. Furthermore, variances in EDT and C80 result

from differences in the simulation of early RIR characteristics inherent to the multi-

plane and 3D FDTD modelling methods. These findings suggest that a solution for
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resolving these parametric differences will involve manipulation of the energy decay

characteristics of the early stages of multiplane RIRs.

5.2.4.2 Low Frequency Analysis

As per the low frequency spectral analysis process applied in the pilot study, the live

room acoustic model RIRs are examined here in terms of agreement of overall spectra

magnitude levels, FRAC values (5.11) and magnitude similarity index, MI, (5.15).

Analysis is performed over two different frequency regions. The first is defined as

the modal region, fr1, with the upper frequency limit set equal to the approximate

Schroeder frequency Fc ≈ 280 Hz, as per (2.77), giving fr1 = [0:280] Hz. The second

frequency analysis region is defined as fr2 = [0:1000] Hz which is consistent with the

value used in the pilot study in order to provide a basis of comparison between the

results produced for the simple cuboid modelling scenario and the live room simulations.

To provide initial validation of the 3D FDTD model, the spectra of RIR Cases 1-3 are

examined using Figure 5.30 (blue line) to investigate low order modal values. Referring

to Figure 5.20, the major dimensions of the live room model are given as 4.11 x 3.35

x 2.6 m corresponding to length x width x height. Using these measurements, the

theoretical 1st-order axial modal frequencies occurring in the x-, y- and z-directions

may be calculated using (2.77) for simulated wave speed c = 344 ms-1 yielding 41.85,

51.34 and 66.15 Hz respectively (as denoted in Figure 5.30 by the green vertical lines).

Distinct resonant frequency peaks are observed at these frequencies in the spectra of the

RIRs simulated for Cases 1 and 2. The agreement between theoretical and simulated

resonant frequency values for RIR Case 3 is less pronounced due to the locations of

sound source and receiver. The agreement between theoretical modal values and those

simulated using the 3D FDTD model demonstrates that the simulation of the live room

is operating as required.

Also shown in Figure 5.30 are the magnitude spectra of RIRs simulated using ODEON

which are denoted by the black line. As detailed in previous analysis of acoustic

parameters, the ODEON RIRs possess longer energy decay times than those recorded

for the corresponding 3D FDTD RIRs. This is reflected in the resulting magnitude

spectra by the fact that the ODEON low frequency RIR energy levels are higher (post-

energy calibration) than those observed in the pilot study (see e.g. Figure 5.13) relative

to the 3D FDTD RIRs. Hence, it is demonstrated that differences in energy decay

rates impact on the agreement of resulting RIR spectra magnitude levels. This finding

is given further consideration in the final modelling scenario documented in section

5.3. Nonetheless, for the purposes of visual comparison of geometric and 3D FDTD
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Figure 5.30: (Top to Bottom) Low frequency spectra of 3D FDTD (blue line) and ODEON
RIR (black line) Cases 1-3. The frequency range shown includes the modal region of fr1 =
(0:280) Hz.

RIR spectra, it is sufficient to conclude from Figure 5.30 that little agreement exists

between the low frequency characteristics inherent to each model. In particular, overall

magnitude level trends observed in the 3D FDTD RIRs are not represented in the

ODEON spectra. This is most apparent when considering the notable dips in 3D

FDTD spectra magnitude in the following regions: Case 1 - f ≈ [100:180] Hz; Case 2 -

f ≈ [70:110] Hz; Case 3 - f ≈ [190:240] Hz. In each RIR case, these magnitude trends

are not represented in the ODEON spectra. Furthermore, the positioning of magnitude

peaks observed in ODEON RIR spectra for all RIR cases is observed as largely sporadic

when compared to the 3D FDTD spectra. This is particularly apparent in the lower

half of the modal region (f = [0:140] Hz) in which the modal frequencies simulated by

the 3D FDTD model are not distinctly represented by the geometric modelling method

due to the inherent limitations of ray-based simulation techniques.
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Figure 5.31: Low frequency spectra of recorded (‘REAL’ - black dashed line), 3D FDTD
(blue line) and 2D multiplane (red line) Case 1 RIRs. The frequency range shown includes the
modal region of fr1 = (0:280) Hz.

The examination of low frequency analysis continues here by considering the modal

region of the RIRs generated for each RIR case in turn. FRAC and MI values relating

to the ODEON model are provided throughout for completeness while noting that

these values are affected by the differences in energy decay characteristics observed

between ODEON and FDTD RIRs, as previously discussed. Figure 5.31 displays the

measured (‘Real’ - black dashed line) and simulated 3D (blue) and 2D multiplane

(red) FDTD spectra for RIR Case 1. As shown, the ‘Real’ RIR obtained through

practical measurement of the live room exhibits greater magnitude levels than the

simulated RIRs. This is due to the differences between the sound source strength

applied in practice and that used to excite the virtual acoustic field of each acoustic

model. The low frequency energy enhancement of the practical omnidirectional sound

source approximation also contributes to the magnitude offset. However, the purpose of

this analysis is to display and examine the agreement between positioning of resonant

peaks and overall magnitude level trends from both measurements and simulations.

Hence, the spectra are presented as they are to make clear these aspects of comparison.

Comparison of both 3D and multiplane FDTD RIR spectra with the measured response

spectrum demonstrates that both modelling approaches accurately simulate the first

three axial modes (f ≈ [40:70] Hz). However, the magnitude levels of the correspond-

ing peaks are lower in the multiplane spectrum compared to the 3D RIR. This level

difference is also apparent over the range f ≈ [80:150] Hz. Nonetheless, the multiplane

spectra is shown to contain modal peaks that are coincident with those present in the

3D model and measured RIRs in this range. This further demonstrates the capabil-

ity of the multiplane model to emulate low frequency wave phenomena occurring in

the 3D geometry. Furthermore, the decreasing magnitude level trend observed in the

measured RIR for f = [100:160] Hz is followed to a similar extent by both 3D and 2D

multiplane models. In the region f = [160:200] Hz, there is a notable reduction in the
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agreement between simulated and measured RIRs whereby spectral notches observed

in the measured RIR are not sufficiently represented by the FDTD models. Also, the

positioning of spectral notches in the multiplane and 3D RIRs in this region are not

coincident indicating that the cross-sectional representation of 3D wave propagation is

not accurately emulating wave cancellation effects that are arising in the 3D FDTD

model. However, as frequency increases towards the upper limit of the modal range,

the coincidence of resonant peaks observed in the measured and 3D FDTD simulation

RIRs regains stronger agreement. This is also the case for the 2D multiplane RIR

spectra which contains magnitude peaks that are coincident with those present in the

3D RIR spectra (f ≈ [240:300] Hz), although for a subset of these peaks a notable

difference in magnitude level is observed.

Overall, it is shown that both 3D and 2D multiplane FDTD share similar magnitude

level trends to those present in the measured RIR spectra over the modal region. Low

order modal frequencies are well represented in both simulated RIRs and magnitude

peaks present in the 3D RIR are, on the most part, observed in the multiplane RIR

spectra.

Model (vs. Real) Case FRAC MI

3D FDTD Model 1 0.145 0.753
2D Multiplane FDTD 1 0.069 0.706

ODEON 1 0.061 0.659

Model (vs. 3D FDTD) Case FRAC MI

2D Multiplane FDTD 1 0.744 0.839
ODEON 1 0.050 0.748

Table 5.13: (Top) FRAC and MI values calculated to compare the agreement of 3D FDTD,
2D multiplane FDTD and ODEON RIR spectra with the measured (‘Real’) RIR spectrum
(Case 1) in the modal region fr1. (Bottom) FRAC and MI values calculated to compare the
agreement of 2D multiplane and ODEON RIRs with the 3D FDTD RIR (Case 1) in the modal
region fr1.

In order to quantify the agreement of RIR spectral characteristics, both FRAC and

MI values are calculated using the measured and simulated RIRs. Table 5.13 displays

the FRAC and MI values derived when comparing each simulated RIR spectra to the

measured response (‘vs. Real’) spectra for the modal region fr1. Note that prior to

FRAC and MI analysis, the measured RIRs are calibrated to the corresponding 3D

FDTD RIR in terms of energy by means of the energy matching procedure applied

to the multiplane RIR. This is to ensure that the large difference in recorded energy

levels observed through visual inspection of RIR spectra has less impact on calculated
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results. It is observed that the FRAC values calculated for each simulated RIR are

significantly lower than the MI values which, by way of contrast, suggest reasonable

levels of agreement between real and modelled RIR spectra.

As previously discussed in relation to the RIRs examined in the pilot study, this result

suggests a disagreement in the phase and temporal characteristics of real and modelled

RIRs, to which the MI calculation is less sensitive than FRAC analysis. However,

for the purposes of this analysis it is sufficient to compare the resulting FRAC and

MI values calculated from each modelling approach. In doing so, it is observed that

the 3D FDTD model produces the most accurate representation of the measured RIR

given that both FRAC and MI values are higher than those calculated from multiplane

and ODEON RIRs. This is as expected given the higher level of accuracy inherent to

the 3D numerical model at low simulation frequencies. Additionally, the multiplane

MI value, although notably less than that calculated for the 3D RIR, constitutes an

encouraging result in light of the reduction in computation achieved by this modelling

approach compared to full 3D FDTD simulations.

Also provided in Table 5.13 (bottom half) are the FRAC and MI values calculated

by comparing ODEON and multiplane Case 1 RIRs to the 3D RIR in the modal

region. Note that the MI recorded for the multiplane RIR is consistent with the

high values presented in the pilot study (MI ≥ 0.83) for the case of a cuboid room

geometry. This indicates that the extended three plane model applied in this case

study is capable of simulating low frequency sound propagation in a more complex 3D

space, providing good agreement with 3D FDTD RIR results. This claim is further

supported by the associated FRAC value which, at a level of 0.744, is notably greater

than those produced using the two plane modelling approach in the pilot study (FRAC

= [0.260:0.445]). Finally, the 2D multiplane RIR is shown to produce a higher level

of agreement with the measured and 3D FDTD RIRs than the ODEON RIR. This is

particularly apparent when comparing MI values and the FRAC values resulting from

comparison with the 3D FDTD RIR.

The low frequency magnitude spectra of measured and simulated RIRs for RIR Case

2 are provided in Figure 5.32. From visual inspection of the magnitude curves it

is again observed that low order modal resonances are correctly simulated by both

FDTD models (f ≈ [40:85] Hz). However, differences between the magnitude levels of

the corresponding peaks in the 3D and 2D multiplane RIR spectra are also evident. As

with the analysis of RIR Case 1, the multiplane model is shown to simulate a subset

of resonant frequencies that are observed in the 3D FDTD RIR spectrum across the

modal frequency range. It is also noted that, due to the change in source and receiver

locations compared to RIR Case 1, the overall magnitude level trends in the presented
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Figure 5.32: Low frequency spectra of recorded (‘REAL’ - black dashed line), 3D FDTD
(blue line) and 2D multiplane (red line) Case 2 RIRs. The frequency range shown includes the
modal region of fr1 = (0:280) Hz.

spectra differ from those displayed in Figure 5.31. Notable differences include dips in

the magnitude levels of all RIR spectra in the regions f ≈ [75:120] Hz and f ≈ [210:240]

Hz. Examination of these spectral features supports the claim made previously (see

section 5.1.4) that the multiplane model is capable of representing the changes in the

nature of the low frequency soundfield as the source and receiver positions are varied.

This result is consistent with the findings drawn from analysis of multiplane RIRs

presented in the pilot study (see section 5.1.4).

FRAC and MI values derived through comparison of each simulated RIR with the

measured response are provided in Table 5.14 (top - ‘vs. Real’). These results are not

entirely consistent with those recorded for RIR Case 1. For example, the 2D multiplane

RIR achieves a higher FRAC value than the 3D RIR. This result is unexpected since

the 3D FDTD model is assumed to provide higher accuracy than the multiplane model

as it preserves a complete representation of 3D wave motion. However, given that both

3D and multiplane FRAC values are reasonably low (FRAC < 0.26) it is not possible

to conclude that the multiplane RIR is significantly more accurate than the 3D RIR

in terms of low frequency sound simulation. This reasoning is further supported by

the MI values which demonstrate that the 3D FDTD RIR spectrum shares greater

similarity with the measured response than the multiplane RIR spectrum.

A further interesting result is observed from the MI value calculated when comparing

the ODEON and measured RIRs. As shown, this value is higher than the MI derived

from the multiplane RIR which suggests that the ODEON RIR spectrum shares a

higher level of similarity with the measured response spectrum. However, this result

is not supported by visual inspection of the ODEON RIR spectra (see Figure 5.30)

which demonstrates a lack of consistency with simulated 3D FDTD RIR magnitude

trends. Additionally, the associated ODEON FRAC value (FRAC = 0.089) is notably

less than that given for the multiplane RIR. Hence, the ODEON MI value alone is
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Model (vs. Real) Case FRAC MI

3D FDTD Model 2 0.181 0.775
2D Multiplane FDTD 2 0.256 0.714

ODEON 2 0.089 0.766

Model (vs. 3D FDTD) Case FRAC MI

2D Multiplane FDTD 2 0.531 0.848
ODEON 2 0.024 0.748

Table 5.14: (Top) FRAC and MI values calculated to compare the agreement of 3D FDTD,
2D multiplane FDTD and ODEON RIR spectra with the measured (‘Real’) RIR spectrum
(Case 2) in the modal region fr1. (Bottom) FRAC and MI values calculated to compare the
agreement of 2D multiplane and ODEON RIRs with the 3D FDTD RIR (Case 2) in the modal
region fr1.

not evidence enough to support the claim that the representation of the low frequency

measured response provided by the geometric model is, in this instance, more accurate

than that simulated in the multiplane model.

FRAC and MI values pertaining to the comparison of multiplane and ODEON RIRs

with the 3D FDTD RIR in the modal region are provided in the lower half of Table

5.14. As shown, the MI value calculated for the multiplane RIR demonstrates good

agreement between 3D and multiplane RIR spectra (MI = 0.848). Furthermore, the

FRAC value obtained by comparing multiplane and 3D RIRs, while less than that

recorded for RIR Case 1, is still higher than those presented in the pilot study. This

again demonstrates the improvement in multiplane model accuracy provided by the

incorporation of an additional cross-sectional plane.

Referring to Figure 5.33, the agreement between modal values simulated by 3D (blue)

and multiplane (red) FDTD models for RIR Case 3 is shown to be high up to f ≈ 110

Hz. In turn, the positioning of the corresponding magnitude peaks are is in reasonable

agreement with those present in the measured RIR spectrum in this frequency range.

However, the level of similarity between modelled and measured RIR spectra decrease

as frequency increases towards the upper limit of the modal region. In particular, the

the multiplane model simulates a notable magnitude notch at f ≈ 175 Hz which is

not represented in 3D FDTD or measured RIRs. This suggests that wave cancellation

effects, which are not consistent with the simulated and measured 3D soundfield, are

occurring in the multiplane model at this frequency. Additionally, the multiplane RIR

spectrum demonstrates omission of the defined magnitude peaks observed in the 3D

FDTD and measured RIRs in the range f = [200:250] Hz. However, the overall mag-

nitude trends of both multiplane and 3D FDTD RIRs are shown to be in reasonable
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Figure 5.33: Low frequency spectra of recorded (‘REAL’ - black dashed line), 3D FDTD
(blue line) and 2D multiplane (red line) Case 3 RIRs. The frequency range shown includes the
modal region of fr1 = (0:280) Hz.

agreement for f > 250 Hz. Hence, for the majority of the modal region, the multi-

plane model is again demonstrated to be capable of emulating 3D low frequency wave

phenomena. This claim is supported by the associated FRAC and MI values listed in

Table 5.15.

Model (vs. Real) Case FRAC MI

3D FDTD Model 3 0.062 0.737
2D Multiplane FDTD 3 0.044 0.800

ODEON 3 0.007 0.679

Model (vs. 3D FDTD) Case FRAC MI

2D Multiplane FDTD 3 0.509 0.834
ODEON 3 0.030 0.748

Table 5.15: (Top) FRAC and MI values calculated to compare the agreement of 3D FDTD,
2D multiplane FDTD and ODEON RIR spectra with the measured (‘Real’) RIR spectrum
(Case 3) in the modal region fr1. (Bottom) FRAC and MI values calculated to compare the
agreement of 2D multiplane and ODEON RIRs with the 3D FDTD RIR (Case 3) in the modal
region fr1.

The MI values calculated by comparing simulated Case 3 RIRs with the measured

RIR show that the multiplane model, in this instance, achieves the highest similar-

ity with the measured RIR in terms of spectral characteristics in the modal region.

FRAC values calculated for all simulated RIRs demonstrate poor correlation between

model results and those obtained from practical measurements. Hence, in light of

these findings, in combination with those presented for RIR Cases 1 and 2, it may be

concluded that MI and FRAC analysis comparing measured and simulated RIRs has

yielded variable results throughout this case study and this is considered further in the

concluding remarks in section 5.2.5. Referring to the MI and FRAC values calculated
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from comparison of 2D multiplane and 3D FDTD RIRs, indicate an encouraging agree-

ment between the spectra simulated by each model in the modal region. This result is

consistent with those observed for RIR Cases 1 and 2 (MI > 0.83, FRAC > 0.5).

Model (vs. 3D FDTD) Case FRAC MI

2D Multiplane FDTD 1 0.204 0.832
ODEON 1 0.013 0.739

2D Multiplane FDTD 2 0.288 0.848
ODEON 2 0.022 0.823

2D Multiplane FDTD 3 0.064 0.827
ODEON 3 0.005 0.750

Table 5.16: FRAC and MI values calculated to compare the agreement of 2D multiplane and
ODEON RIRs with the 3D FDTD RIRs (Cases 1 - 3) in the simulated low frequency region
fr2.

As a final stage of low frequency analysis, the MI and FRAC values calculated by

comparing 2D multiplane and ODEON RIRs with the 3D FDTD RIRs (Cases 1 - 3)

over the frequency range fr2 are provided in Table 5.16. These results indicate that

the multiplane RIRs provide a higher level of agreement with 3D FDTD RIRs than the

ODEON RIRs in the low frequency simulation region.

5.2.5 Concluding Remarks and Considerations

The results and discussion presented in this case study provide insight into the capa-

bility of the extended three plane multiplane FDTD model as a means of simulating

low-to-mid frequency sound propagation in a realistic acoustic environment. Three

practical RIR measurements taken from a recording studio live room have been simu-

lated by means of ODEON, 3D FDTD and 2D multiplane acoustic models. Acoustic

parameters and spectral characteristics derived from each simulated RIR have been

examined by comparative means leading to the following findings and considerations:

• The application of random-angle-of-incidence absorption coefficients to both ge-

ometric and FDTD acoustic models gives rise to large differences in the energy

decay characteristics simulated by each modelling approach. Incorporation of

normal-incidence absorption coefficients in FDTD models is investigated in the

next section in order to remedy the consequent differences observed in T30 mea-

sures.
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• T30 measures derived from 3D and 2D multiplane models indicate that the ap-

proach to multiplane reflection coefficient calibration applied in this study has

been successful. This claim is supported by the fact that multiplane T30 times

are within one JND of those derived from the 3D FDTD model for all RIR cases.

• Examination of EDT values derived from multiplane and 3D FDTD RIRs demon-

strate that there are notable differences in the early-time energy decay charac-

teristics inherent to each model. This, in turn, leads to notable differences in

C80 values calculated for each model. Hence, it is postulated that manipulation

of the early-time multiplane RIR amplitude may provide a means of reducing

the observed differences in energy decay characteristics in the initial stages of

simulated 3D and multiplane FDTD RIRs.

• Analysis of FRAC and MI measures calculated by comparing 2D multiplane and

3D FDTD RIRs in the modal region fr1 show that the extended three plane

multiplane model is capable of producing a higher correlation to the 3D model,

in terms of spectral characteristics, than the two plane implementation applied

in the pilot study.

• Visual inspection of simulated and measured RIR spectra provides further evi-

dence that the 2D multiplane FDTD acoustic model is capable of representing a

subset of the spectral characteristics observed in 3D FDTD RIRs.

The FRAC and MI values which compare geometric and multiplane RIRs against 3D

FDTD RIRs show that the multiplane model consistently provides a closer approxi-

mation to the 3D model than the geometric model. However, low frequency analysis

conducted through examination of FRAC and MI values obtained by comparing simu-

lated and measured RIRs does not lead to such a conclusion given the varied nature of

the results presented. It is assumed that this variation in these simulation vs. measured

RIR FRAC and MI values is due to the fact that the case study acoustic models are

not equipped to represent the following aspects of real enclosed sound propagation:

• The frequency response and, therefore, frequency-dependent directivity of the

loudspeaker and microphone used to record practical RIRs.

• The phase response of boundary surfaces and the consequent effects on the phase

of reflected sound components.

• Strong vibrations of boundary surfaces due to strong modal resonances at low

frequencies.
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• The frequency-dependent absorption characteristics associated with real surface

materials.

In light of this, the assessment of 2D multiplane FDTD acoustic modelling through

comparison of measured and simulated RIR data is not extended to the final study

presented in this chapter. However, a range of considerations revealed through com-

pletion of this case study are taken forward to the final study in order to inform the

refinement of multiplane modelling aspects including RT60 calibration and appropriate

sound source modelling.

5.3 Final Study: The PTB Room

The acoustic environment selected for this third and final study is a complex recording

studio live room located in the Physikalisch-Technische Bundesanstalt in Braunschweig,

Germany. For brevity this live room is referred to as the PTB room in the following.

This space, which presents a complex room acoustic modelling scenario due to its

geometric features, has been used in related research as a means of benchmarking

virtual acoustic modelling methods [161]. As such, it is considered appropriate for

the purposes of further testing the capabilities of 2D FDTD multiplane modelling as

a means of low frequency RIR synthesis. By way of introducing the geometry of the

PTB room, graphical depictions of the major boundary surfaces are provided in Figure

5.34. As shown, this space incorporates diffusing surfaces located on one of the walls

and also on the ceiling. Further features include windows, skylights, flat fibreboard

roof sections and indented wooden panelling. Hence, in comparison to the previous

two acoustic modelling scenarios presented in this research, the PTB room is by far

the most complex in terms of geometry. Additional details of overall room dimensions

are provided in the following in relation to the geometric, 3D FDTD and 2D FDTD

multiplane models created to synthesise RIRs for this space.

5.3.1 Geometric Model

CATT-Acoustic v. 8.0 acoustic prediction and auralisation software [19] is used to

simulate the soundfield of the PTB room by means of geometric modelling techniques.

This software is widely regarded to be of industry standard and is incorporated into

this work to ensure that comparative analysis of simulated RIR data is not limited to

a only one geometric acoustic modelling program. As with ODEON [21], CATT uses a

hybrid geometric acoustic modelling technique that applies the ISM to early reflections

and a ray-tracing algorithm to high-order reflections for diffuse soundfield simulation.
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Figure 5.34: The 3D PTB Room geometry as viewed in Sketchup Make [18] (left) and CATT-
Acoustic v. 8.0 [19] (right). Major features of the room geometry are highlighted.

However, the “Full Detailed Calculation” option (see e.g. [162]) applied in CATT-

Acoustic to simulate the PTB geometric RIRs incorporates a randomised tail-corrected

cone-tracing (RTC) modelling algorithm.

RTC uses the ISM to trace 1st- and 2st-order specular reflection paths that exist be-

tween source and receiver via each surface incorporated in the room geometry. Sim-

ulation of diffusely reflecting components is then handled by combining two different

ray-based approaches. Initial (or “1st-order”) diffuse reflections from diffusing surfaces

are modelled by representing the radiation of scattered rays as a number of secondary

sources positioned on each surface. In this way, a large number of low energy diffuse

reflections are cast into the space in order to emulate attributes of the transition from

early-to late-time RIRs as occurs in practice [163]. High-order reflections are simulated

using a randomised cone tracing technique. As with beam-tracing approaches, cone-

tracing seeks to establish valid reflection paths between source and receiver by tracing

a volume rather than a 1D ray-path. However, as opposed to beam-tracing in which

a single specular reflection path is established, cone-tracing allows rays to propagate

freely within the traced volume providing a similar result to that generated by means

of standard ray-tracing techniques.

The geometry of the PTB room is sourced from an existing ODEON Auditorium 10.1

model [21] which includes a .par file defining the surfaces of the detailed room model,

after [161]. This .par file is exported to the .geo format required by CATT-Acoustic.

The .geo is then updated to include the frequency-dependent absorption characteristics

of the surface materials incorporated in the PTB model. These coefficients, which are

provided in Table 5.17, are also sourced from the ODEON model as per [161]. Note, αi
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Figure 5.35: Plan (left) and profile (right) view of source (S1, S2) and receiver (R1, R2)
locations defined in the PTB room acoustic model (see also, Table 5.18). Major dimensions of
model geometry are also shown.

Surface α63 α125 α250 α500 α1k α2k α4k

Floor 0.04 0.04 0.04 0.07 0.06 0.06 0.07
Walls 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Windows 0.10 0.10 0.04 0.03 0.02 0.02 0.02
Wooden Panels 0.20 0.20 0.05 0.03 0.01 0.01 0.01

Ceiling 0.30 0.30 0.20 0.06 0.02 0.02 0.02
Fibreboard Panels 0.42 0.42 0.28 0.49 0.78 0.58 0.62

Diffusing Wall Panels 0.40 0.40 0.33 0.21 0.16 0.15 0.16

Table 5.17: Octave band absorption coefficients for each material type incorporated in the
CATT-Acoustic PTB room model, as sourced from ODEON 10.1 Auditorium [21].

corresponds to the random-angle-of-incidence absorption coefficient of a material for

the i Hz octave band.

Three RIR cases, corresponding to source/receiver locations given in [161], are defined

for this study. These are listed in Table 5.18 and displayed in Figure 5.35. As shown,

two sources (S1 and S2) and two receivers (R1 and R2) are used to simulate the three

RIR cases with the following source/receiver combinations: S1R1; S1R2; S2R2. For

consistency with the FDTD simulations, source and receiver directivity characteristics

are defined as omnidirectional. Each RIR is simulated using ∼16000 ray paths as set

by CATT-Acoustic for the detailed calculation option previously described. Simula-

tion run-times are recorded as approximately 1500 s per RIR, noting that the entire

simulation bandwidth (all octave bands) is rendered in this time with Fs = 44.1 kHz.
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Case Source
Source Location

(x,y,z) m Receiver
Receiver Location

(x,y,z) m

1 S1 (3.85, 5.93, 1.5) m R1 (3.35, 2.43, 1.2) m
2 S1 (3.85, 5.93, 1.5) m R2 (7.85, 4.43, 1.2) m
3 S2 (5.85, 2.93, 1.2) m R2 (7.85, 4.43, 1.2) m

Table 5.18: Sound source (S) and receiver (R) locations defined for three RIR measurement
cases in the PTB room model.

5.3.2 3D FDTD Model and Hybrid RIR Synthesis

The three RIR cases detailed in the previous section are simulated using a 3D SRL

FDTD model created by voxelising the PTB room geometry as defined in ODEON

[21]. This process is conducted in two stages. Firstly, a Sketchup Make [18] 3D CAD

model of the PTB room geometry, created by Dr. Alex Southern [164] as part of the

research conducted on hybrid acoustic modelling [81] (see section 3.3), is checked for

consistency with the ODEON .par geometry and exported as a .vtk file using [165].

This .vtk geometry file is then voxelised using the WaveModeller spatial discretiser

[166] to produce an SRL lattice of pressure nodes with a spatial sampling index of h3D

= 0.0105 m, corresponding to wave speed c = 343.42 ms-1 and temporal sampling rate

Fs = 56800 Hz. The selected temporal sampling rate ensures that the 3D FDTD model

simulations possess a usable bandwidth up to and including the 2 kHz octave band with

an upper cut-off frequency of fu = 2.84 kHz while maintaining isotropy error of <2%

and so minimising dispersion error. This follows from the condition fu ≤ 0.075Fs as

detailed in section 4.2. Additionally, the internodal distance between pressure nodes

in the SRL lattice imposes a maximum deviation from the geometric acoustic model

dimensions of
√

3h2
3D/2 = 0.0091 (m) provided dimensions are rounded to the nearest

spatial sampling instance. The same error is also applicable to source and receiver

locations compared to the geometric model and is considered negligible.

The resulting SRL lattice for the PTB room is very complex compared with the pilot

and case study models and includes a large number of re-entrant edges and corners.

Hence, in accordance with the investigation into the numerical stability of 3D SRL

FDTD models with LRS boundaries (see section 4.4.4), the PTB room simulations

are unstable when applying pressure-centered LRS boundaries to model surfaces. In

contrast, implementation of velocity-centered boundaries, using the formulation docu-

mented in [130], yields stable simulations for this modelling scenario. Furthermore, in

light of the large differences between energy decay characteristics of the geometric and

FDTD models documented in the case study, the reflection coefficients applied to each

surface of the 3D FDTD model are defined by converting the random-angle-of-incidence
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absorption coefficients listed in Table 5.17 to normal-incidence coefficients. This process

is carried out using the following relationship between random- and normal-angle-of-

incidence reflection coefficients, developed by Siltanen [22] as used in [81]:

RNorm = −0.22897R2
Rand + 0.99298RRand + 0.23769 (5.18)

which is derived by interpolating the range of normal-incidence coefficients RNorm =

[0:1] resulting from the normal- to random-incidence absorption coefficient conversion

equation given in [3] for RRand = [0:1]. Table 5.19 provides the boundary impedance

ζi values applied for each surface material type as derived from RNorm:

ζi =
1 +RNorm
1−RNorm

(5.19)

where subscript i refers to the i Hz octave band.

Surface ζ63 ζ125 ζ250 ζ500 ζ1k ζ2k

Floor 216 216 216 112 134 134
Walls 539 539 539 539 539 539

Windows 75 75 216 310 539 539
Wooden Panels 34 34 166 310 2023 2023

Ceiling 21 21 24 134 539 539
Fibreboard Panels 13 13 23 11 5 8

Diffusing Wall Panels 14 14 18 32 44 47

Table 5.19: Octave band normal-incidence impedance coefficients for each material type
incorporated in the 3D FDTD PTB room model (rounded to the nearest whole number).
These coefficients are derived from absorption data defined in ODEON 10.1 Auditorium [21]
by means of random- to normal-angle-of-incidence absorption coefficient conversion [22].

The 3D FDTD RIRs are simulated by means of the constant Fs octave band procedure

detailed in section 4.5.2.1 to facilitate frequency-dependent LRS boundary conditions.

This approach is selected to avoid both the prohibitive memory requirements of DIF-

based LRS implementations and the energy matching process as needed for the variable

Fs method (see section 4.5.4.4). As such, one full bandwidth simulation is required per

octave band per RIR case with the impedance values given in Table 5.19 applied to

surface pressure nodes as appropriate. For each simulation, two instances of a 977 x

824 x 488 lattice of pressure nodes is needed to store the target acoustic field for Fs

= 56.8 kHz. This corresponds to a memory requirement of ∼5.86 GB which leads to

prohibitive simulation run-times for CPU-based computation. For this reason, the 3D

FDTD RTB room model is simulated by Dr. Craig J. Webb of the NESS Project [125]

at Edinburgh University (European Research Council Grant: StG-2011-279068-NESS)

using a parallel GPU. Note that the code required to parallelise the 3D SRL FDTD
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update scheme such that it could be run on this GPU is authored by Dr. Craig J. Webb

as listed on the accompanying CD. This process facilitates simulation of the PTB room

at reduced run-time, compared to that which would be required when using a single

CPU only. Recorded simulation run-times are in the region of 2800 s per second of

RIR output (Fs = 56.8 kHz).

Upon simulation of each octave band for the three RIR cases, the octave band RIRs

are isolated using a 3rd-order zero-phase bandpass IIR filter bank with Butterworth

characteristics. Cut-on and cut-off frequencies of the filters applied are defined using

the lower and upper frequencies of the octave bands (see Table 4.2). The filtered octave

band RIR contributions for each RIR case are then summed to produce the spectrally

complete FDTD RIR. Finally, these complete RIRs are calibrated and combined with

the CATT-Acoustic RIRs following the procedure defined in section 5.1.2.1 (see Figure

5.5 for reference).

5.3.3 2D Multiplane FDTD Model and Hybrid RIR Synthesis

Having voxelised the PTB room geometry into a 3D SRL lattice of pressure nodes, the

multiplane model is defined by selecting the cross-sections of the lattice which contain

the receiver location and are orientated in the x-y, x-z and y-z Cartesian planes. This

is carried out for both receiver locations detailed in Table 5.18 resulting in two different

multiplane models for simulating the acoustics of the PTB room. In order to maintain

consistency between FDTD model geometries, the 2D multiplane model is simulated

at a lower Fs to compensate for the inter-nodal distance h3D used in the 3D lattice.

To this end, the relationship h2D =
√

2ck is rearranged to yield:

Fs =

√
2c

h2D
(5.20)

giving Fs = 46377 Hz for h2D = h3D and c = 343.42 ms-1. As such, the multiplane

model is simulated at the Courant limit for a wave speed and domain geometry that

are exactly equal to those of the 3D FDTD model. Note that the calculated Fs is

in accordance with the condition fu = 2840 ≤ 0.1 Fs, as defined in section 4.2, that

ensures minimal isotropy and dispersion error in the simulation bandwidth used in

this study. Moreover, the maximum difference between the PTB room dimensions and

those of the multiplane model is calculated as
√

2h2
2D/2 = 0.0074 m which also applies

to discrete source/receiver locations and is considered negligible.

The target acoustic field of each 2D FDTD cross section is excited using a Kronecker

delta function applied via the soft source excitation method. As with the multiplane
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simulations previously discussed, RIR outputs produced by recording the pressure fluc-

tuations at the receiver node are filtered to remove both DC offset and afterglow ef-

fects. Each RIR simulation requires 3367872 pressure nodes to store the cross-sectional

acoustic field which corresponds to a memory requirement of ∼ 0.025 GB. As such,

the multiplane simulations achieve a reduction in memory requirement of ∼ 99.5%

compared to the 3D FDTD model. However, this statistic must account for the fact

that the multiplane model is simulated at a lower temporal sampling rate than the

3D model. To better quantify the difference in memory requirements, the number of

sampling instances required by the 2D multiplane model for Fs = 56.8 kHz may be

calculated for simulations operating at the Courant limit. In this case, h2D = 0.0086

m for c = 343.42 ms−1 giving three cross sections of 1197 x 1009, 1197 x 598 and

1009 x 598 pressure nodes. This gives a total of 5050332 nodes required to store two

instances of the target acoustic field as needed. In turn, this corresponds to a mem-

ory requirement of ∼ 0.038 GB which still provides a substantial memory reduction

of 99.36% against the 3D FDTD model. Additionally, CPU-based simulations of the

PTB multiplane model record run-times of approximately 230 seconds per 1 second

of RIR output. Hence, even without the benefits of accelerated simulations realised

through use of GPUs, the multiplane model attains significant reductions in run-times

compared to parallelised 3D FDTD simulations. The C source code file scripted to

simulate the 2D multiplane FDTD PTB room model is provided on the accompanying

CD.

In accordance with the findings of the case study, further refinements to the multiplane

modelling approach are incorporated into the PTB multiplane model. Specifically,

approaches to calibrating reverberation times and achieving an appropriate means of

source excitation for arbitrary sound source/receiver locations are discussed in the

following.

5.3.3.1 Control of RT60 in the Multiplane Model

The investigation of 2D multiplane FDTD modelling presented in the case study con-

siders the evaluation of an approach to absorption coefficient calibration that facilitates

the emulation of 3D FDTD temporal energy decay characteristics in resulting RIRs.

This approach is shown to be successful in producing multiplane RIR T30 values that

are consistent with those derived from corresponding 3D FDTD RIRs simulated for

the case study acoustic modelling scenario. However, in order to enable this outcome,

the calibration of each multiplane absorption coefficient involves the simulation of a

cubic 3D FDTD acoustic model (see section 5.2.3.3 for reference). For the purposes of

the case study, in which only seven frequency-independent surface material types are
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incorporated into the modelled environment, this approach is considered feasible. With

regards to the PTB room, which incorporates a much greater number of coefficients in

order to represent frequency-dependent surface material absorption properties, such an

approach is deemed cumbersome and inefficient. Instead, a more direct and effective

means of matching the RT60 of multiplane and 3D FDTD RIRs is used in this final

study as described here. In order to provide a concise overview of this RT60 matching

process, it is assumed that the following description refers to the process as applied to

each octave band RIR simulated for each RIR case.

Upon simulation of the contributing cross-sectional planar responses in the PTB multi-

plane model, the RT60 of each planar response is calculated. Each contributing response

is then manipulated to produce the RT60 measured from the corresponding 3D FDTD

model RIR through application of the following scaling factor, following [167]:

4G =
60

Fs

(
1

RT60,2D
− 1

RT60,3D

)
(5.21)

where RT60,2D is the reverberation time calculated for a given contributing planar

response and RT60,3D is the reverberation time of the corresponding 3D FDTD RIR.

Following [167], the term 4G yields the required change in planar response amplitude

(dB per sample) that must be applied in order to scale the response over time to attain

an amplitude value of -60 dB below the initial direct sound component amplitude at

t = RT60,3D. Having scaled all contributing planar responses using (5.21), it is then

assumed that the combination of these responses will produce a total multiplane RIR

that possesses an RT60 consistent with that of the corresponding 3D FDTD RIR.

However, it is essential to note that the results referring to T30 documented in section

5.3.4.1 are realised by applying this procedure twice to each contributing cross-sectional

response.

5.3.3.2 Refinement of the Multiplane Sound Source Model

The case study, as documented previously, reveals that the method of projected sound

sources applied in the 2D multiplane FDTD model leads to an imbalance of energy con-

tributed by each cross-sectional response under certain conditions. As demonstrated

in section 5.2.3.3, a projected sound source that excites a cross-sectional plane in close

proximity to the defined receiver location may give rise to an imbalance in the level

to which each planar response contributes to the final multiplane RIR. This is shown

to be the case when applying the direct sound matching approach (5.17) in such cir-

cumstances. Therefore, the use of this planar response matching procedure cannot be

considered valid for arbitrary source and receiver combinations.
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Direct sound component scaling is shown to provide a solution to this problem facili-

tating appropriate combination of planar responses such that each contributes a similar

amount of energy to the total multiplane RIR (see Figure 5.24 for reference). This pro-

cess is revisited here in order to establish an approach to projected source excitation

that is suitable for any source/receiver arrangement in multiplane acoustic models.

Upon simulation and filtering of the contributing cross-sectional responses, the direct

sound components present in each are time-aligned. The cross-sectional plane on which

the direct path distance between projected sound source and receiver locations is most

consistent with the 3D coordinate positions of source/receiver is then identified. It

is assumed that the direct sound component peak pressure amplitude simulated in

this plane best matches that which would arise for 3D sound propagation. The direct

sound components of the remaining two planes are then isolated and scaled up or down

to this peak amplitude. This step ensures that direct sound components captured in

cross-sectional planes on which the projected sound source is located at, or in close

proximity to, the receiver location are reduced in amplitude. Upon application of this

direct sound scaling procedure, the initial peak amplitude of the response from each

contributing plane is equal.

The final stage of the refined projected source model involves calibrating the response

from each cross-section in terms of energy levels. This is carried out by calculating the

total acoustic energy present in one of the contributing responses and then matching the

energy of the remaining two planar responses to this value. Hence, summation of the

calibrated planar responses ensures that the resulting multiplane RIR possesses equal

contributions from each cross-section in terms of direct sound pressure and response

energy levels. This process is conducted as described for all octave band multiplane

simulations. Resulting octave band RIRs are combined to produce the final simulation

output for each source/receiver case by means of the IIR bandpass filter bank operation

described in relation to the 3D FDTD model (see section 5.3.2).

This development of sound source implementation in the multiplane model is guar-

anteed to circumvent the issue of imbalanced contributions each cross-sectional re-

sponse. Furthermore, the application of this projected sound source model to the PTB

room multiplane model RIRs is shown to produce simulation results that are in good

agreement with those obtained from the 3D FDTD PTB model in terms of spectral

characteristics. These results are presented in section 5.3.4.2.
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Figure 5.36: T30 values calculated from 3D FDTD (blue), 2D multiplane FDTD (red) and
ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000, 2000 Hz octave bands.
The error bars display the range of one JND (24.5%, after [16]) above and below the T30 value
calculated from the 3D FDTD RIRs in each octave band.

5.3.4 Results and Discussion

The results presented in this section pertain to the objective analysis of RIRs simulated

by means of the PTB room acoustic models previously described. Findings are drawn

from comparative examination of the geometric, 3D FDTD and multiplane FDTD RIRs

synthesised for each source/receiver arrangement defined for this final study. To this

end, the means of analysis detailed in the case study is again applied here. As such,

both acoustic parameter values and spectral properties obtained from simulated RIRs

are considered in order to evaluate the capabilities of 2D multiplane FDTD acoustic

modelling. Note that the multiplane and 3D FDTD RIRs are down-sampled to Fs =

44.1 kHz prior to analysis.

5.3.4.1 Acoustic Parameters

Frequency-dependent analysis of the T30, EDT and C80 acoustic parameters derived

from all RIRs simulated in this study is provided here. Parameter values are calculated

for the 63, 125, 250, 500, 1000 and 2000 Hz octave bands using the MATLAB Acoustic

Parameter Toolbox [160]. JND ranges for each acoustic parameter are also provided in

order to quantify the perceptual agreement of simulated RIRs.

Figure 5.36 presents the T30 as simulated by each PTB room acoustic model for RIR

Cases 1-3. In the charts displayed the 3D FDTD, 2D multiplane and geometric model

T30 values are denoted by the blue, red and black bars respectively. A single JND range

of 24.5% of the 3D FDTD model T30 is provided by the blue bar in each octave band

for all RIR cases. As expected, the T30 values calculated for all 3D FDTD and 2D
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multiplane RIRs are shown to be in consistent agreement due to the RT60 calibration

process applied to each multiplane octave band RIR (see section 5.3.3.1). This demon-

strates that it is possible to simulate predefined frequency-dependent reverberation

times in the multiplane model to a high degree of accuracy (i.e. within 1 JND of the

prescribed T30). As such, the multiplane model T30 can be matched to those calculated

through use of alternative acoustic modelling techniques (i.e. efficient ray-tracing) or

related mathematical expressions (i.e. the Norris-Eyring equation) for any given sonic

environment.

It is also shown in Figure 5.36 that the incorporation of normal-incidence reflection

coefficients in the 3D FDTD model has led to a significantly higher level of agreement

between the T30 values obtained from the FDTD and geometric models than that

observed in the case study. This claim is supported by the fact that T30 measures

obtained from the geometric model RIRs are within 1 JND of those simulated in the

3D FDTD model for all analysis frequency ranges with the exception of the 63 Hz octave

band. With reference to the case study findings, it is shown that large differences in RIR

energy decay characteristics simulated by geometric and FDTD models can adversely

affect the process of spectral analysis. Due to the level of agreement of energy decay

times observed here, it is assumed that a suitable basis for subsequent comparative low

frequency analysis has been established in this study.

Comparing RIR EDT values calculated for Case 1 RIRs simulated by each acoustic

model, as presented in Figure 5.37, it is apparent that the initial energy decay charac-

teristics of multiplane and 3D FDTD RIRs are, on the most part, well matched. While

there is a clear difference between EDT values calculated in the 250 Hz octave band,

the multiplane and 3D FDTD RIR EDTs are consistent to within 1 JND range of +/-

5% (as denoted by the blue error bar) in the 63, 125, 500 and 2000 Hz octave bands.

This, in turn suggests a high level of perceptual similarity of these RIRs in terms of

perceived reverberation. In relation to the EDT values calculated for RIR Cases 2 and

3 (also shown in Figure 5.37) it is evident that reasonable agreement exists between

multiplane and 3D FDTD models in terms of early energy decay properties over the

simulated bandwidth. These findings suggest that the refinements implemented in the

multiplane model in terms of projected sound source and RT60 calibration procedures

have had the effect of increasing the extent to which this acoustic modelling approach

is able to represent 3D acoustic soundfields. Moreover, as with the T30 values previ-

ously detailed, the EDTs derived from the geometric RIRs are indicative of improved

agreement between FDTD and geometric model energy decay characteristics. This re-

sults from the incorporation of normal-incidence absorption coefficients in the FDTD

models.
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Figure 5.37: EDT values calculated from 3D FDTD (blue), 2D multiplane FDTD (red) and
ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000, 2000 Hz octave bands.
The error bars display the range of one JND (5%, after [17]) above and below the EDT value
calculated from the 3D FDTD RIRs in each octave band.

Results pertaining to the Clarity (C80) measures derived from each simulated RIR are

displayed in Figure 5.38. From visual inspection of these results, it is readily apparent

that multiplane RIR Case 3 matches well with the corresponding 3D FDTD RIR for

C80 across the simulation bandwidth. This claim is supported by the fact that, with

the noted exception of the 125 Hz octave band, the C80 measures derived from the

multiplane Case 3 RIR are within the JND range of +/-1 dB of the 3D FDTD model

results. This high level of agreement for C80 is not maintained for the remaining two

RIR Cases. For example, the multiplane Case 2 RIR C80 values are observed to be

consistently outside the JND range centered on the C80 measures derived from the

3D FDTD model for all octave bands. Furthermore, referring back to the trends of

similarity observed between 3D and multiplane FDTD RIRs in terms of T30 and EDT

measures over the simulation bandwidth, it is not possible to detect an apparent trend

between the measurement of energy decay time and early-to-late energy for this RIR

case. By way of contrast, the large difference previously detailed between the EDT

derived from multiplane and 3D FDTD RIRs (RIR Case 1, 250 Hz octave band) is also

demonstrated by the corresponding C80 measure. In this single instance, the longer

EDT derived from the 3D FDTD model is shown to result in a C80 value that is less

than that measured for the multiplane model. Hence, in review of the comparative

examination of Clarity index measures presented here (and previously), it is concluded

that the matching of early-to-late energy ratios arising in multiplane and 3D FDTD

models constitutes a challenge in terms of further refining the multiplane RIR synthesis

solution.
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Figure 5.38: C80 (dB) values calculated from 3D FDTD (blue), 2D multiplane FDTD (red)
and ODEON (black) RIRs (Cases 1 - 3) for the 63, 125, 250, 500, 1000, 2000 Hz octave bands.
The error bars display the range of one JND (1 dB, after [17]) above and below the C80 value
calculated from the 3D FDTD RIRs in each octave band.

5.3.4.2 Low Frequency Analysis

The following results pertain to the low frequency spectral analysis of RIRs obtained

from CATT-Acoustic, 2D multiplane FDTD and 3D FDTD room acoustic simulations

of the PTB room. This analysis follows the same format as that used for the purposes of

the pilot and case studies. As such, the agreement between overall spectra magnitude

characteristics derived from each simulated RIR is inspected firstly through visual

comparison. This examination is conducted for frequencies in the region fr1 = [0:150]

Hz. This is followed by examination of FRAC (5.11) and MI (5.15) values calculated

through comparison of both geometric and multiplane RIRs against 3D FDTD RIRs

for fr1, which includes the modal region, and a wider analysis bandwidth fr2. The

second frequency range, fr2 = [0:1000] Hz, is consistent with that used for the pilot

and case study low frequency analysis.

The low frequency spectra of RIRs simulated by the 3D FDTD (blue), 2D multiplane

(red) and geometric (black) PTB room acoustic models for RIR Case 1 are presented

in Figure 5.39. Referring to the top most diagram, it is observed that the multiplane

model is representing low-order modal resonances that are indicated in the 3D FDTD

RIR (f ≈ [20:40] Hz). However, the first two modal peaks in the multiplane spectrum

are not completely coincident with those simulated in the 3D model in terms of fre-

quency value. This is in contrast to the results presented for the more simple pilot and

case study modelling in which the agreement between 1st-order mode values simulated

by both FDTD models is indicated. Hence, this finding is assumed to result from

applying the multiplane model to a more complex target acoustic field. As frequency

increases, the agreement between multiplane and 3D RIR spectra becomes increasingly
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Figure 5.39: Low frequency spectra of 3D (blue), 2D multiplane (red) and CATT-Acoustic
(black) RIRs simulated for the PTB room (Case 1). The frequency range displayed includes
the modal region fr1.

variable. For example, coincident magnitude peaks are indicated in the regions of f

= 50 Hz and f ≈ [70:80] Hz. Conversely, the agreement of magnitude level trends in

3D and multiplane RIR spectra for f ≈ [55:70], [80:120] Hz is relatively low in terms

of coincident magnitude peaks and notches. However, towards the upper limit of fr1

(f > 120 Hz), the correlation of both spectra is shown to improve in terms of overall

magnitude trends.

The level of similarity between geometric and 3D FDTD Case 1 RIR spectra is negligible

in the range f = [0:50] Hz, indicating that the geometric model is incapable of correctly

simulating low-order modal resonances as expected. Moreover, it may be observed

from visual comparison of these two spectra in the range f > 50 Hz, that only a few

instances of coincident resonant frequencies exist. The most apparent of these are

indicated at frequencies f ≈ [55:60] Hz and f ≈ 80 Hz. However, reasonable agreement

between overall magnitude levels present in geometric and 3D FDTD RIR spectra is

shown across the majority of the displayed frequency range (f > 55 Hz). This is

representative of the successful implementation of the energy matching procedure, as

described in section 5.3.2. As displayed in Figure 5.40 (top diagram), the similarity

of 3D and multiplane Case 2 RIR spectra is notably greater than that observed for

RIR Case 1 for frequencies up to f = 60 Hz. However, again it is indicated that the

multiplane model does not fully represent the low-order modal resonances simulated

in the 3D FDTD model. This is particularly apparent for the second and third modal

peaks observed in the 3D RIR spectrum. Moreover, variable trends of magnitude level

correlation, similar to those previously detailed for RIR Case 1, are also displayed in

this case (f ≈ [55:120] Hz). Towards the upper frequency limit of fr1 (f = [100:130]
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Figure 5.40: Low frequency spectra of 3D (blue), 2D multiplane (red) and CATT-Acoustic
(black) RIRs simulated for the PTB room (Case 2). The frequency range displayed includes
the modal region fr1.

Hz), the coincidence of magnitude peaks in each spectrum improves while, at the same

time, the agreement of overall magnitude level trends is low when compared to that

shown for f < 55 Hz.

In terms of the comparison of geometric and 3D FDTD Case 2 RIR spectra, similar

findings to those described for RIR Case 1 may be derived through visual inspection.

Firstly, it is again shown that the geometric model does not represent significant low fre-

quency spectral peaks observed in the 3D FDTD RIR spectrum (f < 60 Hz). Secondly,

only a small number of resonant frequencies present in the 3D FDTD RIR spectrum

are simulated by the geometric model for f > 60 Hz. The most apparent of these are

observed in the regions of f ≈ [60:70] Hz and f = 125 Hz. Finally, good agreement

between overall magnitude levels present in geometric and 3D FDTD RIR spectra over

the region fr1 is again observed for this RIR case.

Visual examination of the spectra of RIRs simulated for RIR Case 3, as presented in

Figure 5.41, yields findings that are, in the most part, consistent with those documented

for analysis of RIR Cases 1 and 2. The geometric Case 3 RIR again exhibits a lack

of low-order modal resonances for f < 55 Hz which are represented in the 3D FDTD

model. Additionally, the geometric RIR spectrum magnitude levels are shown to be

in agreement with those of the 3D FDTD RIR spectrum in the region of f = [50:110]

Hz. Towards the upper limit of fr1 this agreement diminishes. In terms of the 2D

multiplane Case 3 RIR spectrum, as displayed in the top diagram of Figure 5.41, a

strong agreement with the magnitude levels observed in the 3D FDTD RIR spectrum

is apparent over the region fr1. As with the findings drawn from analysis of RIR Cases

1 and 2, the multiplane model is demonstrated as capable of representing resonant
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Figure 5.41: Low frequency spectra of 3D (blue), 2D multiplane (red) and CATT-Acoustic
(black) RIRs simulated for the PTB room (Case 3). The frequency range displayed includes
the modal region fr1.

sound behaviour resulting in the simulated 3D soundfield to good extent. However,

the omission of notable low-order modes simulated by the 3D FDTD model is again

noted from inspection of the 2D multiplane RIR spectrum. Additionally, in review of

the visual inspection conducted for all PTB RIR cases, it may be concluded that the

2D multiplane model is emulating the variation in magnitude trends that arise in the

3D FDTD RIR spectra as the source and receiver locations are altered. This result is

consistent with the findings of the pilot study as detailed in section 5.1.4.

Model Case FRAC MI

2D Multiplane FDTD 1 0.719 0.857
CATT-Acoustic 1 0.612 0.748

2D Multiplane FDTD 2 0.701 0.859
CATT-Acoustic 2 0.490 0.700

2D Multiplane FDTD 3 0.790 0.897
CATT-Acoustic 3 0.459 0.712

Table 5.20: FRAC and MI values calculated to compare the agreement of 2D multiplane
and CATT-Acoustic RIRs with the 3D FDTD RIRs (Cases 1 - 3) in the modal region fr1.

The final stage of objective analysis conducted in this study is the examination of

FRAC and MI values as calculated through comparison of geometric and multiplane

RIRs with 3D FDTD RIRs. These values are displayed in Tables 5.20 and 5.21 for

the analysis of frequency ranges fr1 and fr2 respectively. The results pertaining to
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the spectral similarity of 2D multiplane and 3D FDTD RIRs in the frequency region

fr1 indicate a consistently high correlation between the soundfields simulated in each

model. Furthermore, the FRAC and MI values calculated through comparison of

geometric and 3D FDTD RIRs are notably lower than those relating to the multiplane

model for all RIR cases examined. This finding is particularly apparent for RIR Cases

2 and 3. Hence, in accordance with the findings of the comparative visual examination

of RIR spectra presented previously, it has been determined that the multiplane model

is capable of providing a better approximation to low frequency soundfield simulation

than that achieved by alternative geometric approaches. Moreover, in terms of this

final study, this conclusion has been reached through examination of objective results

derived from multiplane simulations of a complex 3D room geometry.

Model Case FRAC MI

2D Multiplane FDTD 1 0.626 0.848
CATT-Acoustic 1 0.646 0.836

2D Multiplane FDTD 2 0.624 0.840
CATT-Acoustic 2 0.602 0.819

-
2D Multiplane FDTD 3 0.623 0.845

CATT-Acoustic 3 0.627 0.823

Table 5.21: FRAC and MI values calculated to compare the agreement of 2D multiplane
and CATT-Acoustic RIRs with the 3D FDTD RIRs (Cases 1 - 3) in frequency range fr2.

With regards to FRAC and MI values calculated using the larger analysis frequency

range fr2 = [0:1000] Hz, the results presented in Table 5.21 demonstrate that both

geometric and multiplane models are comparable in terms of their representation of

the soundfield simulated by 3D FDTD modelling. This interesting finding provides

support to the claim that the multiplane model is capable of representing complex 3D

soundfields up to the lower-mid frequency range to a level of accuracy that is consistent

with industry standard geometric acoustic modelling software.

5.4 Review of Multiplane RIR Synthesis

Throughout the studies presented in this chapter, elements of the low frequency multi-

plane RIR synthesis strategy are refined to accommodate increasingly complex acoustic

modelling scenarios. These refinements also have the effect of improving the accuracy

of synthesised RIRs. Of particular note are the energy calibration processes devised to
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model impulsive sound source excitations and match the energy levels present in the

low frequency multiplane and mid-high frequency geometric model RIRs. Additionally,

several approaches to the control of frequency-dependent reverberation characteristics

in the multiplane acoustic models have been used. This section provides an overview of

the current recommended approaches to energy calibration and RT60 control strategies

in multiplane RIR synthesis.

Multiplane Sound Source Model and Energy Calibration:

The initial pilot study applies a two-plane multiplane model to simulate the low fre-

quency soundfield in a cuboid. In this particular model, the source and receiver are

defined to be co-planar in the x-y and y-z planes sharing a common vector parallel to

the y-axis. To render the multiplane RIR, this arrangement allows a straightforward

summation of impulse responses recorded on each contributing plane as the impulsive

source on each plane is received with the same direct sound component amplitude and

time of arrival. However, this approach to combining the contributions from each plane

cannot be extended to cases where source and receiver are not coplanar and/or when

there are more than two planes used in the model. Furthermore, the energy calibra-

tion between multiplane and geometric RIR contributions relies on the derivation of

an appropriate energy level for an equivalent 3D FDTD model following [81].

The case study focuses on developing the former issue with the initial sound source

implementation through experimentation with projected sound sources for multiplane

models consisting of three contributing cross-sectional planes. For such cases, the

three cross-sectional planes are defined to have a common point of intersection given

by the receiver location. Each plane is then put into motion by defining a projected

source point on each with reference to the 3D Cartesian position of the sound source

location. In this way, the restrictive source/receiver positioning criterion imposed on

the multiplane model in the pilot study is removed and both source and receiver may

be positioned at will. The method of combining responses recorded on each plane is

based on that used for the pilot study. The amplitudes of the direct sound components

of contributing responses are made equal by weighting each response as necessary. The

resulting weighted contributions are then summed to derive the overall multiplane RIR.

A particular source/receiver combination used in this study reveals the inability of

this source excitation method to correctly combine responses when the sound source is

projected on or in the region of the receiver position on one plane. This is shown to

create a large imbalance between the contribution of each planar response to the total

multiplane RIR. In order to overcome this imbalance, the direct sound component of

the planar response for which the projected source is defined on the receiver location

is scaled to match the amplitude of the direct sound component recorded on another
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plane. This process begins the generalised approach to sound source modelling in the

multiplane model used in the final study. As with the pilot study, the method of

calibrating multiplane and geometric RIR energy levels requires the calculation of the

energy levels recorded in an equivalent 3D FDTD model.

During the final study, a generalised method of sound source modelling and energy

calibration is defined. This method provides the facility of arbitrary sound source and

receiver placements by applying a standard post-processing procedure to the planar

response contributions generated in a three plane multiplane model. The procedure

may be defined in stages as follows:

• Having simulated the three planar responses, the direct sound component of

each is isolated and scaled (see e.g. 5.2.3.3) to the direct sound amplitude value

occurring on the plane whose receiver is positioned at a distance that is most

representative of the 3D Cartesian source/receiver distance.

• The planar responses are then time aligned such that the time-of-arrival of the

direct sound component is consistent in each.

• Appropriate low-pass, DC blocking and afterglow removal filtering is applied to

each planar response.

• The total energy of a filtered planar response is calculated and matched to the low

frequency energy present in the calculated geometric RIR (in the low frequency

bandwidth defined for the multiplane model).

• Each planar response is calibrated to possess the same low frequency energy level

using a matching coefficient derived in the previous stage.

• The planar responses are then summed to produce the total multiplane RIR. The

resulting signal must be divided by three in order to compensate for the fact that

each separate planar response is calibrated to match the low frequency energy

levels of the geometric RIR.

A further point to be made on this sound source model and energy calibration process

is that it inherently maintains an equal energy contribution from each planar response.

As such, the wave behaviour modelled in each cross-section of the domain is equally

represented in the final result. However, it is evident that the energy calibration stage

still requires a predetermined reference energy level (in this case calculated from the

geometric RIR). Given the successful studies on 3D FDTD / Geometric RIR calibration

presented in [81], it is reasonable to assume that a generic calculation for the sound
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source energy level in each cross-sectional plane (2D FDTD scheme) may also be de-

fined. In doing so, the multiplane model would then comprise a self sufficient approach

to low frequency RIR synthesis.

Control of RT60 in Multiplane Models:

As noted throughout this chapter, the nature of energy decay characteristics in 2D

domains are incompatible with those of 3D environments in absence of appropriate

calibration. The multiplane model implementations devised for the pilot and case

studies take into account the energy decay times of 2D FDTD wave equation schemes

which are, generally, longer than those of equivalent 3D schemes. In particular, the

case study multiplane RIR synthesis strategy includes a means of equating absorption

coefficients applied in both 3D and 2D domains by means of the Norris-Eyring equa-

tion for RT60. Each absorption coefficient is applied consistently to the surfaces of a

small cuboid 3D FDTD simulation. The reverberation times are then derived from

the simulated RIRs for each case of absorption coefficient. These RT60 values are then

used to calculate an equivalent absorption coefficient using the Norris-Eyring equa-

tion for energy decay in 2D domains. These calibrated coefficients are then applied

as appropriate to the boundaries of the mutliplane model. Results returned from this

approximate approach have been demonstrated as varying in accuracy and, moreover,

only frequency-independent absorption values are investigated in these studies.

The final study improves upon the accuracy of the multiplane FDTD model RT60 val-

ues, with respect to those produced in the equivalent 3D FDTD models, using the

frequency-dependent constant Fs absorbing boundary implementation in conjunction

with a filtering process documented in [167] (see section 5.3.3.1). This procedure en-

sures that the decay characteristics of the 2D cross-sectional responses match that

of the 3D FDTD model through direct use of the RT60 derived from simulated 3D

FDTD RIRs. While this approach requires knowledge of the 3D model energy decay

characteristics in its application in this study, the procedure may equally be applied

to control the RT60 of the multiplane RIRs in absence of a 3D FDTD model. From

the results documented in section 5.3.4.1, it is evident that the post-filtering approach

facilitates accurate representation of RT60 regardless of how the prescribed RT60 value

is derived. For instance, a value for reverberation time may be derived from theory,

practical RIR measurement or a geometric approach thus removing the reliance of this

element of multiplane modelling on computationally expensive 3D FDTD modelling.

However, it is noted that such an approach will only be capable of providing approxi-

mate results when applying the multiplane RIR sythesis strategy without reference to

otherwise measured or simulated RIRs (i.e. relies on theoretical calculation of energy

decay times).
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In summary, this section provides clarification of critical developments that the mul-

tiplane model has undergone during the course of the three studies presented in this

chapter. Furthermore, insight on how the multiplane model may be utilised in absence

of data derived from 3D FDTD acoustic modelling is given. The refined procedures

noted above, which enable the multiplane modelling system to better simulate complex

room topologies, form the basis of the current implementation of the novel RIR synthe-

sis strategy. The final conception of this modelling approach remains to be evaluated

in further acoustic modelling scenarios.

5.5 Summary

This chapter documents the processes followed in order to develop and evaluate the 2D

multiplane FDTD RIR synthesis solution as a means of representing 3D sound wave

propagation in enclosed acoustic environments. Findings pertaining to the accuracy

and efficiency of this novel approach to virtual acoustic simulations are presented in

relation to three room acoustic modelling scenarios of increasing complexity. These

studies have led to the definition of an efficient means of simulating low frequency

RIRs which may be utilised as part of a hybrid acoustic modelling strategy. On review

of the multiplane FDTD acoustic model, it is apparent that this novel RIR synthesis

strategy may be implemented as a standalone system in future implementations. An

overview of the conclusions drawn from these studies is provided in the next chapter

in which the support of the research hypothesis investigated in this work is discussed.
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Conclusion

This thesis begins with presentation and discussion of aspects of acoustic theory in order

to provide a basis of understanding and evaluating the virtual acoustic models reviewed

and implemented in this work. The mathematical principles underlying sound wave

motion have been presented and described in the context of room acoustics. Particular

attention has been given to the characteristics of enclosed sound propagation which

include sound reflection, absorption, scattering, diffraction, interference and resonance.

It is demonstrated that all of these characteristics are represented by a measured or

simulated RIR. In turn, a primary means of examining real or modelled room acoustic

properties results from the examination of acoustic parameters derived from RIRs.

Examples of such parameters, including reverberation time, early decay time and early-

to-late energy index have been presented and discussed.

The properties of human hearing have been detailed giving insight on perceptual au-

ditory cues and providing context for the discussion of auralisation and approaches to

spatial sound reproduction. The auralisation process has been introduced and detailed

in relation to both static and dynamic (walkthrough) soundfield reproduction meth-

ods. Additionally, the concept of just noticeable differences have been introduced and

discussed in relation to acoustic parameters to provide a means of objectively quanti-

fying and evaluating the perceptual similarity of RIRs synthesised by different virtual

acoustic modelling methods.

A range of virtual acoustic modelling approaches have been reviewed and evaluated in

terms of the strengths and weaknesses inherent to each. Particular attention has been

given to the comparative efficiency and accuracy of geometric and numerical acous-

tic simulation methods. It is demonstrated that while FDTD wave-based acoustic

modelling is well suited to the problem of low frequency RIR synthesis, prohibitive

253
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computational costs are incurred for 3D modelling scenarios in which the target acous-

tic field is large or discretised with high resolution. Additionally, ray-based geometric

algorithms have been shown to a provide more efficient solution to acoustic modelling in

mid-to-high frequency ranges compared to alternative numerical techniques. However,

such geometric models are inaccurate when seeking to represent low frequency sound

attributes. These findings serve to highlight the advantages of using numerical/geomet-

ric hybrid acoustic modelling strategies in order to achieve efficient, yet accurate RIR

simulation. In such hybrid solutions, numerical and geometric approaches are applied

to low and high frequency RIR simulation respectively.

In light of the evaluation of numerical acoustic modelling methods, the FDTD ap-

proach has been selected for use in this work. As such, thorough investigation of this

modelling approach, as applied to 2D and 3D sound simulation in discrete rectilinear

spatial domains, has been conducted. Aspects including sound source excitation strate-

gies, RIR capture and the implementation of absorbing boundary conditions as applied

in FDTD acoustic models have been examined and evaluated. Investigation of velocity-

centered and pressure-centered implementations of locally reacting surface boundary

conditions has confirmed that the pressure-centered formulation is prone to numerical

instability issues when applied to complex model geometries. Further examination of

the pressure- and velocity-centered boundaries has been documented comparing the

absorption characteristics of each implementation in 1D FDTD discrete wave equation

simulations. The findings of this examination demonstrate that the pressure-centered

formulation provides closer agreement with theoretical results in terms of simulated ab-

sorption rates. Frequency-dependent boundary conditions have been shown to better

represent the absorption characteristics of surface materials encountered in practice. A

case study has been presented which examines three different approaches to implement-

ing such boundaries in 3D FDTD acoustic models in terms of resulting RIR accuracy

and computational efficiency. Moreover, a reformulated velocity-centered implementa-

tion of frequency-dependent LRS boundary conditions has been developed to provide

a means of realistic surface absorption characteristics within complex 3D SRL FDTD

models that is robust against numerical instability issues.

This study culminates in the development and evaluation of a computationally efficient

2D multiplane FDTD hybrid RIR synthesis solution. The motivation for this research

stems from both the computational cost associated with 3D numerical acoustic mod-

elling strategies and the inherent inaccuracy of geometric algorithms when applied to

low frequency sound simulation. Prior examination of aspects of FDTD SRL acoustic

modelling influences the design and implementation of the multiplane models and the

3D FDTD models created to provide a basis of comparative analysis. The capability

of the multiplane model to emulate 3D low frequency soundfields is assessed through
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the application of the model to three acoustic modelling scenarios of increasing levels

of complexity. Throughout this work, refinements have been made to the multiplane

acoustic modelling solution, each of which are demonstrated as successful in enhancing

the resulting accuracy of low frequency RIRs. Such refinements include: the extension

of the multiplane model to three cross-sectional planes; the definition of a projected

sound source model that facilitates arbitrary source and receiver positioning within the

model; the implementation of methods to control sound energy absorption rates. Ma-

jor findings drawn from comparative analysis of objective simulation results obtained

from 2D multiplane FDTD, 3D FDTD and geometric acoustic models created for each

modelling scenario investigated are summarised below:

• The multiplane model is capable of representing resonant low frequency wave

behaviour to a level of accuracy that is unachievable through use of industry

standard geometric modelling methods.

• Multiplane FDTD RIR synthesis provides a solution for analysis of low frequency

enclosed sound propagation that maintains a comparable level of agreement with

3D FDTD RIR synthesis in terms of spectral response characteristics.

• Significant reductions in computational cost are achieved by the multiplane model

when compared to alternative 3D FDTD simulations. Through comparison of

CPU based implementations of both 3D and multiplane FDTD models, this re-

duction is in the region of 99% in terms of both memory and run-time require-

ments.

• Multiplane models are demonstrated to maintain a higher level of agreement with

3D FDTD models than geometric simulations in terms of simulated RIR spec-

tral attributes. This has been confirmed using two industry standard geometric

acoustic modelling programs.

• Analysis of RIR acoustic parameters derived from simulated multiplane RIRs

demonstrate that the multiplane approach is capable of modelling reverberation

times which are consistent with those simulated using 3D FDTD models.

6.1 Concluding Remarks on Multiplane FDTD RIR Syn-

thesis

The main objective of this study is to define, evaluate and develop a means of virtual

acoustic modelling that overcomes the known shortcomings of geometric algorithms at
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low frequencies, while reducing required computational effort compared to 3D numeri-

cal RIR simulation. Multiplane FDTD RIR synthesis provides an alternative strategy

to virtual acoustic modelling that represents low frequency sound propagation to a

level of accuracy that surpasses geometric modelling methods such as ray-tracing and

image source method. Moreover, a high level of agreement between the results calcu-

lated through use of 3D FDTD and multiplane modelling approaches is possible. This

demonstrates that multiplane acoustic models are capable of approaching the level of

accuracy commonly associated with 3D numerical acoustic models.

However, from the studies and discussion thereof presented in the previous chapter,

the following drawbacks of the multiplane acoustic modelling strategy are apparent:

• The use of cross-sectional planes allows for the omission of internal structures/ge-

ometric features of a given enclosure topology. This would occur if such structures

do not coincide with the cross-sectional planes which are defined to possess a com-

mon point of intersection at the receiver location. As such, consideration must

be given to the modelling scenarios to which the multiplane model is applied.

For instance, the multiplane model can be considered appropriate for the acous-

tics modelling of large, mostly concave enclosures and less appropriate for RIR

synthesis for spatial domains that feature significant re-entrant surfaces.

• The time-of-arrival of prominent early reflections synthesised using the multiplane

model do not match those that would occur in reality for arbitrary source/receiver

placement. This is due to the mapping of reflection paths to 2D cross-sections

rather than a 3D volume. This issue is somewhat somewhat compensated by the

fact that early reflection paths lengths are correct in mid-high frequency ISM

with which the multiplane model may be combined to produce a hybrid acoustic

model.

• The agreement of acoustic parameter values (e.g. EDT and C80) derived from the

2D multiplane and 3D FDTD RIRs is demonstrated as variable. From the analysis

of results, this has been shown to be partly due to the difference in the nature of

the early decay characteristics simulated in each numerical modelling approach.

However, accurate control of frequency-dependent RT60 in the multiplane model

is shown to be possible given a prescribed expected value for this parameter.

The above drawbacks must be considered prior to applying the multiplane modelling

strategy to the simulation of RIRs and auralisations. This consideration should be

weighed against the considerable, proven improvement of the accuracy of low frequency

sound characteristics compared to that provided by purely geometric acoustic models.
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Furthermore, the significant computational savings in terms of both memory require-

ments and run-time achieved by the multiplane model compared to 3D FDTD mod-

elling make the multiplane model an attractive means of emulating sound propagation

as part of a hybrid RIR synthesis solution.

In light of the drawbacks and notable improvements on alternative virtual acoustic

modelling approaches highlighted above, the application of the devised hybrid multi-

plane RIR synthesis strategy is intended to find application in industry and creative

technologies. The industry applications include rapid prototyping and rendering of

auralisations for the purposes of acoustic consultancy. Auralisations rendered using

this approach will benefit from increased accuracy in the low frequency portions of

resulting reproduced sound (against geometric approaches). Furthermore, given the

efficiency of this strategy documented throughout the previous chapter, it is assumed

that such a strategy would achieve real-time simulation when utilising GPU architec-

tures for simulation. In creative technologies, the acoustic modelling approach may be

applied to efficiently render virtual soundscapes for use in virtual/augmented reality

systems providing a realistic and accurate representation of low frequency soundfields

for immersive sound reproduction. Ultimately, the use of the multiplane FDTD model

is well suited to the definition of a quick, computationally inexpensive augmentation

of simulated and reproduced soundfields as part of a hybrid modelling/auralisation

solution.

6.2 Restatement of Hypothesis

The primary concern of this thesis has been to investigate the following research hy-

pothesis:

2D multiplane FDTD acoustic modelling facilitates efficient simulation of

low frequency soundfields to a level of accuracy higher than geometric mod-

els and comparable to 3D FDTD simulations as part of a hybrid modelling

solution.

The following research has been conducted in order to prove this hypothesis:

1) A range of virtual room acoustic modelling techniques have been reviewed and as-

sessed in terms of advantages and disadvantages with emphasis placed on the efficiency

and accuracy of RIR simulation inherent to each method.

2) Analysis of SRL FDTD acoustic modelling approaches has been conducted in or-

der to inform the implementation of 2D multiplane and 3D FDTD acoustic models.
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This included consideration of numerical stability issues and realistic boundary surface

modelling methods.

3) A 2D multiplane FDTD hybrid acoustic modelling approach, which applies 2D

cross-sectional FDTD discrete wave equation simulations to the modelling of low fre-

quency enclosed sound propagation in combination with mid-to-high frequency geo-

metric acoustic simulations, has been developed and refined.

4) The 2D multiplane model has been used to simulate a range of acoustic environments

which possess increasing levels of complexity in terms of model geometry and boundary

surface absorption characteristics.

5) Comparative analysis of objective RIR measures simulated by 2D multiplane FDTD

with those simulated by 3D FDTD and geometric acoustic models was conducted in

order to examine the agreement between simulation results. Particular attention was

given to observed characteristics of resulting low frequency RIR spectra.

6) For each model/case study, a broad assessment of the computational resources (in

terms of computation time and memory use) required to simulate 3D and 2D multiplane

FDTD acoustic models has been provided.

6.3 Contributions

Through the completion of the research outlined above that has confirmed the stated

hypothesis, the following novel contributions to the field have been identified:

1) Comparative investigation of three frequency-dependent absorbing boundary con-

dition implementations as applied in 3D SRL FDTD acoustic simulations providing

results pertaining to the performance of each in terms of accuracy and computational

efficiency.

2) An investigation into the numerical stability of frequency-independent and frequency-

dependent absorbing LRS boundary modelling techniques for 3D SRL FDTD acoustic

modelling simulations concludes with a reformulation of frequency-dependent bound-

ary conditions that is demonstrated as robust against numerical instability issues which

arise for complex acoustic model geometries.

3) The introduction, development and evaluation of a novel 2D multiplane FDTD

hybrid acoustic modelling solution which is demonstrated as capable of simulating RIRs

with increased accuracy at low frequencies compared to that achieved using geometric
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methods only, while attaining significant reductions in computational cost compared

to alternative 3D numerical acoustic modelling.

6.4 Future Research

Reflection on the novel research presented in this thesis provides a basis for informing

future work towards the development of efficient virtual acoustic modelling and au-

ralisation procedures. The following considerations for further research are based on

elements of the work detailed and discussed throughout this thesis.

6.4.1 Refining Variable Fs Octave Band LRS Boundary Modelling

Investigation of frequency-dependent LRS boundary implementations demonstrated

that the variable Fs octave band modelling approach is computationally less expensive

than alternative constant Fs and DIF-based approaches both in terms of simulation

run-times and memory requirements. At the same time, the more efficient variable

Fs octave band model has been shown as capable of simulating frequency-dependent

acoustic parameters to a level of accuracy that is comparable to that produced using

the alternative boundary models. However, the energy calibration method applied in

this work to combine contributing octave band RIRs simulated using the variable Fs

approach is shown to produce frequency-dependent RIR energy levels that are inconsis-

tent with those simulated by the alternative modelling methods. As such, it is proposed

that this aspect of the variable Fs octave band modelling solution be revisited and im-

proved. In doing so, it will then be possible to capitalise on the low computational cost

inherent to this method while achieving accurate RIR simulation.

6.4.2 FDTD Boundary Modelling using Measured Surface Phase Re-

sponse Data

An area of numerical room acoustic modelling that has yet to be examined in de-

tail is the evaluation of surface boundary modelling which incorporates material phase

response characteristics. While processes that facilitate this outcome have been devel-

oped, there is little evidence to support or refute the claim that the incorporation of

surface phase properties in room acoustic models leads to a higher level of objective

accuracy in simulated RIRs. This potential route of research would involve comparison

of measured RIRs with those simulated using numerical acoustic models with and with-

out the application material phase response properties to boundary surfaces. Objective
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comparative analysis could then be conducted on collected RIRs to ascertain whether

it is appropriate to include such properties in acoustic models in order to obtain an

accurate representation of a target acoustic environment.

6.4.3 Comparison of Octave Band 2D Multiplane and Measured RIRs

This study has focused primarily on the comparison of objective results pertaining to

2D multiplane and 3D FDTD RIR synthesis. Further investigation of the multiplane

acoustic model could seek to extend the evaluation of this approach through comparison

of simulated and measured RIRs collected for a range of real soundfields. In turn,

the applicability of the multiplane approach as an acoustic prediction and analysis

procedure would be further assessed.

6.4.4 Acceleration of 2D Multiplane FDTD Hybrid Acoustic Mod-

elling Simulations

It has been demonstrated in this work and related literature that parallelised GPU

implementations of 3D FDTD acoustic models provides a means of significantly reduc-

ing simulation run-times. As such, it is assumed that the 2D multiplane FDTD model

developed in this work will also benefit from the acceleration in processing speeds

gained through GPU use. It is expected that low frequency soundfield simulation will

be possible for large scale acoustic environments at interactive rates by GPU based

implementations of multiplane acoustic models. Furthermore, parallel computation

procedures and refined variable Fs octave band boundary condition modelling may be

combined and applied to the multiplane model in order to efficiently synthesise realistic

RIRs.



Abbreviations

AR Acoustic Radiosity

ARD Adaptive Rectangular Decomposition

BEM Boundary Element Method

DCT Discrete Cosine Transform

DIF Digital Impedance Filter

DWG Digital Waveguide

DWM Digital Waveguide Mesh

FDTD Finite Difference Time Domain

FEM Finite Element Method

FTM Finite Transform Method

HAM Hybrid Acoustic Model

GPGPU General Purpose Graphics Processing Unit

ILD Interaural Level Difference

ITD Interaural Time Difference

ISM Image Source Method

JND Just Noticeable Difference

LRS Locally Reacting Surface

RIR Room Impulse Response
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Symbols

c wave speed ms-1

d distance m

EDC energy decay curve dB

F Force N

Fc Schroeder frequency Hz

fl lower cut-on frequency Hz

fr1 modal frequency region Hz

fr2 low-mid simulation frequency region Hz

Fs temporal sampling frequency Hz

fu upper cut-off frequency Hz

FRAC Frequency Response Assurance Criterion

h discrete inter-nodal distance m

H Heaviside unit step function

I sound intensity W
m2

K spring constant kg
s2

k wavenumber rad
m

l discrete spatial index (x-axis)

m discrete spatial index (y-axis)

MI Magnitude Similarity Index

MS Magnitude Similarity

n discrete time index

p pressure Pa

P power W (Js−1)

q discrete spatial index (z-axis)

R Reflection Coefficient
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SIL sound intensity level dB

SPL sound pressure level dB

t time s

T discrete time step s

u velocity ms-1

Zair characteristic impedance of air kg
m2s

α absorption coefficient

δ(t) Dirac delta function

ζω surface impedance

λ Courant number

ω angular frequency rads−1

ρ density kg
m2
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[79] Dirk Schröder and Tobias Lentz. Real-Time Processing of Image Sources Using

Binary Space Partitioning. Journal of the Audio Engineering Society (JAES), 54

(7–8):604–619, 2006.

[80] Alex Southern, Samuel Siltanen, and Lauri Savioja. Spatial room impulse re-

sponses with a hybrid modelling method. In Audio Engineering Society Con-

vention 130, May 2011. URL http://www.aes.org/e-lib/browse.cfm?elib=

15852.

[81] Alex Southern, Samuel Siltanen, Damian T. Murphy, and Lauri Savioja. Room

Impulse Response Synthesis and Validation Using a Hybrid Acoustic Model.

IEEE Transactions on Audio, Speech and Language Processing, 21(9):1940–1952,

2013.

[82] I. A. Drumm. The Application of Adaptive Beam Tracing and Managed Di-

rectX for the Visualisation and Auralisation of Virtual Environments. In 9th

International Conference on Information Visualisation (IV ‘05), pages 961–965,

2005.

[83] I. A. Drumm and Y. W. Lam. The adaptive beam-tracing algorithm. Journal of

the Acoustical Society of America, 107(3):1405–1412, 2000.

[84] Cindy M. Goral, Kenneth E. Torrance, Donal P. Greenberg, and Bennett Battaile.

Modeling the Interaction of Light Between Diffuse Surfaces. ACM SIGGRAPH

Computer Graphics, 18(3):213–222, 1984.

[85] Heinrich Kuttruff. A simple iteration scheme for the computation of decay con-

stants in enclosures with diffusely reflecting boundaries. Journal of the Acoustical

Society of America, 98:288–293, 1995.

[86] Eva-Marie Nosal. Room sound field prediction by acoustical radiosity. Master’s

thesis, University of British Columbia, Canada, 2003.

[87] Kane Yee. Numerical solution of initial boundary value problems involving

Maxwell’s equations in isotropic media. IEEE Transactions on Antennas and

Propagation, 14:463–466, 1966.

http://www.aes.org/e-lib/browse.cfm?elib=15852
http://www.aes.org/e-lib/browse.cfm?elib=15852


References 272

[88] Lauri Savioja, Timo Rinne, and Tapio Takala. Simulation of room acoustics with

a 3-D finite difference mesh. In Proc. of the Int. Computer Music Conference,

pages 463–466, 1999.

[89] D. Botteldooren. Acoustic finite-difference time-domain simulation of low-

frequency room acoustic problems. J. Acoust. Soc. Am., 95(5):2313–2319, 1994.
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