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Abstract	

	

Processing	of	precursor	microRNAs	by	Dicer	is	a	key	step	in	microRNA	biogenesis.	

This	process	is	assisted	by	the	homologous	proteins	PACT	and	TRBP,	which	bind	

to	the	helicase	domain	of	Dicer.	The	mechanism	by	which	they	assist	microRNA	

biogenesis	is	poorly	understood,	but	could	include	facilitating	substrate	

positioning,	assisting	Argonaute	loading,	or	discriminating	between	different	

classes	of	pre-miRNA.	

PACT	also	regulates	innate	immune	pathways	that	respond	to	viral	double-

stranded	RNA,	including	via	the	kinase	PKR.	Mutations	in	PACT	lead	to	early	onset	

dystonia	in	humans,	while	depletion	of	PACT	in	mice	results	in	both	growth	and	

fertility	defects:	both	have	been	linked	to	inappropriate	or	altered	activation	of	

PKR.	Homodimerisation	of	PACT	via	its	C-terminal	domain	(PACT-D3)	is	thought	

to	be	necessary	for	it	to	induce	PKR	activation.		

Homodimerisation	of	wild-type	and	mutant	constructs	of	PACT-D3	was	assayed	

using	biophysical	techniques.	SEC-MALLS	and	analytical	ultracentrifugation	data	

demonstrate	that	PACT-D3	homodimerises	via	a	different	mechanism	to	a	

previously	reported	dsRBD	homodimer,	dsRBD-5	of	Staufen1.	Instead,	NMR	

analyses	show	that	PACT-D3	forms	an	asymmetric	homodimer	similar	to	that	

observed	in	the	Drosophila	melanogaster	homologue	Loquacious.	Dimerisation	

could	be	abolished	by	the	L273R	mutation,	while	phospho-mimic	mutations	did	

not	appear	to	significantly	affect	dimerisation.	TRBP	domain	3	also	forms	

asymmetric	dimers,	but	with	weaker	affinity	due	to	sequence	differences	in	its	C-

terminal	-helix.	Asymmetry	is	caused	by	a	register	shift	between	intermolecular	

parallel	-strands,	but	the	functional	significance	of	asymmetric	homodimerisation	

remains	unclear.		

The	data	presented	in	this	thesis	supports	a	model	in	which	the	homodimerisation	

interface	of	PACT-D3	overlaps	with	the	surface	that	binds	to	Dicer,	and	suggests	

that	PACT	homodimerisation	and	the	formation	of	a	Dicer-PACT	complex	are	

incompatible.		
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1. Roles	of	PACT	and	TRBP	in	
double-stranded	RNA	recognition	and	

processing	of	non-coding	RNAs	

Double-stranded	RNA	(dsRNA)	is	a	vital	part	of	normal	cellular	function.	Any	

structured	RNA,	such	as	the	ribosome,	contains	regions	of	dsRNA,	which	are	often	

part	of	higher	order	tertiary	structure.	In	addition,	dsRNA	is	an	intermediate	in	the	

biogenesis	of	short	regulatory	RNA	such	as	microRNAs	(miRNAs),	endogenous	

short	interfering	RNAs	(siRNAs)	and	Piwi-interacting	RNAs	(piRNAs)	(Kim,	Han	

and	Siomi,	2009).	

However,	dsRNA	is	also	an	important	replication	intermediate	for	RNA	viruses,	

such	as	SARS	coronavirus,	poliovirus	and	hepatitis	C.	It	is	crucial	for	cells	to	

distinguish	cellular	dsRNA	from	viral	dsRNA	and	to	respond	appropriately.	In	

mammals,	this	is	achieved	by	proteins	that	have	evolved	to	recognise	chemical	

features	specific	to	viral	dsRNA,	such	as	terminal	5’	triphosphate	groups.	These	

proteins	are	termed	pattern	recognition	receptors,	and	include	TLRs	(Toll-like	

receptors)	3,	7	and	8,	RIG-I	(Retinoic	acid-inducible	gene	I),	and	MDA5	(Melanoma	

differentiation	associated	protein	5)	(Gantier	and	Williams,	2007).	

The	closely	related	mammalian	proteins	PACT	(Protein	Activator	of	PKR;	PRKRA)	

and	TRBP	(HIV	Trans-activation	responsive	RNA	binding	protein;	HGNC	symbol,	

TARBP2)	bridge	several	of	these	pathways.	TRBP	was	initially	identified	through	

its	interaction	with	the	HIV	TAR	element,	and	both	proteins	were	found	to	

regulate	the	response	to	viral	dsRNA	through	the	protein	PKR	(double-stranded	

RNA-activated	protein	kinase;	EIF2AK2)	(Park	et	al.,	1994;	Patel	and	Sen,	1998).	

Subsequently,	PACT	and	TRBP	were	shown	to	interact	with	Dicer	(DICER1),	the	

ribonuclease	responsible	for	processing	the	precursors	of	miRNAs	and	siRNAs	

(Chendrimada	et	al.,	2005;	Haase	et	al.,	2005).	More	recently,	PACT	has	been	

shown	to	activate	RIG-I,	another	innate	immune	sensor	of	viral	RNA	(Kok	et	al.,	

2011).	However,	these	different	roles	are	often	studied	independently,	and	the	

links	between	them	remain	largely	unexplored.	

I	will	begin	by	providing	brief	overviews	of	miRNA	biogenesis	and	the	innate	

immune	pathways	which	detect	and	respond	to	dsRNA	in	mammalian	somatic	
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cells.	I	will	then	discuss	PACT	and	TRBP	in	more	detail,	including	their	structure,	

their	roles	in	miRNA	and	antiviral	pathways,	and	their	evolutionary	history.	

1.1 Overview	of	the	miRNA	biogenesis	pathway	

RNA	interference	(RNAi)	is	a	highly	conserved	process	in	which	small	RNA	

molecules	cause	post-	transcriptional	silencing	of	complementary	messenger	

RNAs	(Figure	1.1)	(Malone	and	Hannon,	2009;	Liu	and	Paroo,	2010).	Somatic	cells	

contain	2	major	classes	of	small	regulatory	RNA:	miRNA	and	siRNA	(Kim,	Han	and	

Siomi,	2009).	Both	are	approximately	22	nt	long,	but	differ	in	their	biogenesis	and	

target	recognition.	miRNAs	are	derived	from	RNA	hairpins	which	usually	contain	

several	mismatched	bases,	while	siRNAs	are	processed	from	longer	dsRNA	

molecules.	siRNAs	are	typically	highly	complementary	to	their	targets,	whereas	

miRNAs	only	require	a	6-8	nt	‘seed’	region	to	be	perfectly	matched,	with	other	

positions	contributing	only	weakly	to	target	specificity	(Brennecke	et	al.,	2005;	

Grimson	et	al.,	2007).	Recent	crystal	structures	of	Argonaute-RNA	complexes	

show	that	the	seed	region	of	the	miRNA	or	siRNA	is	initially	presented	for	binding,	

and	that	supplemental	binding	at	other	positions	(as	in	siRNAs)	favours	cleavage	

of	the	target	RNA	(Schirle,	Sheu-Gruttadauria	and	MacRae,	2014).		Although	there	

are	relatively	few	reports	of	endogenous	mammalian	siRNAs,	dsRNA	can	be	

introduced	exogenously	either	as	RNA	hairpins	(shRNA)	or	short	siRNA	duplexes	

(Silva	et	al.,	2005).		

In	the	canonical	miRNA	biogenesis	pathway,	miRNAs	are	transcribed	as	long	

primary	(pri-)	miRNAs	that	contain	a	60-80	nucleotide	hairpin	structure	(Kim,	

2005).	The	pri-miRNA	is	processed	in	the	nucleus	by	Drosha/DGCR8	(the	

‘microprocessor’	complex)	to	a	shorter	precursor	(pre-)	miRNA	(Lee	et	al.,	2003;	

Han,	2004).	The	pre-miRNA	is	exported	from	the	nucleus	by	Exportin	5,	and	

further	cleaved	by	a	protein	complex	containing	the	ribonuclease	Dicer,	an	

Argonaute	protein,	and	either	TRBP	or	PACT	(Bernstein	et	al.,	2001;	Hutvagner,	

2001;	Chendrimada	et	al.,	2005;	Haase	et	al.,	2005;	Lee	et	al.,	2006).	This	second	

processing	step	removes	the	terminal	hairpin	loop,	leaving	an	RNA	duplex	~22	bp	

in	length.	

One	strand	of	the	dsRNA	Dicer	product	is	removed,	while	the	other	(the	guide	

strand)	is	loaded	into	one	of	the	four	Argonaute	proteins	(Ago1-4)	(Martinez	et	al.,	

2002;	Liu,	2004).	This	Ago:miRNA	complex,	together	with	its	protein	partners,	is	
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referred	to	as	the	RNA	induced	silencing	complex	(RISC).	Despite	recent	progress,	

the	mechanism	of	strand-selective	RISC	loading	remains	to	be	determined	(Gredell	

et	al.,	2010;	Noland	and	Doudna,	2013);	however,	many	miRNAs	can	contribute	

either	strand	to	RISC	(Yang	et	al.,	2011).		

Once	loaded,	the	guide	strand	targets	RISC	to	complementary	mRNAs,	which	

results	in	either	suppression	of	translation,	enhanced	degradation	(via	decapping	

and	polyA	tail	removal),	and/or	site-specific	cleavage	of	the	mRNA	(Jonas	and	

Izaurralde,	2015).	In	cultured	mammalian	cells	at	steady	state,	degradation	via	the	

5’-to-3’	mRNA	decay	pathway	is	most	significant	(Guo	et	al.,	2010;	Eichhorn	et	al.,	

2014).	Target	mRNAs	are	first	deadenylated	by	the	PAN2-PAN3	or	CCR4-NOT	

complexes,	decapped	by	DCP2,	and	finally	degraded	by	XRN1	(Behm-Ansmant,	

2006;	Wahle	and	Winkler,	2013).	These	processes	are	coordinated	by	the	scaffold	

proteins	TNRC6A-C,	which	link	the	deadenylation	complexes	to	Argonaute	(Liu	et	

al.,	2005;	Eulalio,	Tritschler	and	Izaurralde,	2009;	Pfaff	and	Meister,	2013).	

Translational	repression	is	less	well	understood,	but	was	found	to	account	for	at	

most	a	quarter	of	miRNA-mediated	silencing	(Eichhorn	et	al.,	2014).	Although	only	

Ago2	has	the	ability	to	cleave	mRNAs,	miRNAs	and	siRNAs	appear	to	distribute	

among	all	4	Argonautes	with	little	specificity	(Meister	et	al.,	2004;	Burroughs	et	al.,	

2011).		

	

Figure	1.1	Overview	of	miRNA	biogenesis	

Precursor	(pre-)miRNAs	are	RNA	hairpins	that	are	produced	in	the	nucleus,	and	

exported	to	the	cytoplasm.	They	contain	the	~22	nt	sequence	of	the	mature	miRNA,	

indicated	in	red.	The	endonuclease	Dicer	removes	the	terminal	loop	to	give	an	RNA	

duplex,	one	strand	of	which	is	loaded	into	an	Argonaut	(Ago)	protein	to	form	RISC.	

TRBP	and	PACT	are	implicated	in	both	Dicing	and	RISC	loading,	as	discussed	in	

section	1.4.	
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1.2 Overview	of	antiviral	responses	mediated	by	RIG-I	and	PKR			

1.2.1 RIG-I	

RIG-I	is	an	early	response	pattern	recognition	receptor	that	recognises	dsRNA	

with	a	5’	triphosphate	group	(5’ppp-dsRNA)	(Yoneyama	et	al.,	2005;	Takeuchi	and	

Akira,	2008;	Schlee	and	Hartmann,	2010).	RIG-I	is	ubiquitously	expressed,	and	is	

one	of	the	main	viral	RNA	sensors	in	non-immune	cells	(Gantier	and	Williams,	

2007).	It	is	part	of	a	family	of	related	cytoplasmic	viral	sensors	alongside	MDA-5	

and	LGP2,	which	act	cooperatively	to	recognise	longer	dsRNA	molecules	(>200	

bp)	(Peisley	et	al.,	2011;	Bruns	et	al.,	2014).		

The	mechanism	of	RIG-I	activation	has	been	characterised	at	the	structural	level	

(Figure	1.2B)	(Kowalinski	et	al.,	2011;	Luo	et	al.,	2011;	Kolakofsky,	Kowalinski	and	

Cusack,	2012).	RIG-I	consists	of	two	caspase	recruitment	domains	(CARDs),	a	

DExD/H	helicase	domain	and	a	C-terminal	domain	(CTD).	In	the	absence	of	5’ppp-

dsRNA,	the	tandem	CARDs	are	bound	to	the	helicase	domain,	and	are	inactive.	If	

5’ppp-dsRNA	is	present,	RIG-I	binds	using	both	its	helicase	and	C-terminal	

domain,	displacing	the	CARDs	in	an	ATP-dependent	manner.	The	CARDs	are	then	

poly-ubiquitinated	by	TRIM25,	which	encourages	RIG-I	multimerisation	and	

interaction	with	the	Mitochondrial	Antiviral	Signalling	protein	(MAVS)	at	the	

mitochondrial	membrane	(Meylan	et	al.,	2005;	Seth	et	al.,	2005;	Gack	et	al.,	2007;	

Jiang	et	al.,	2012).	This	stimulates	the	production	of	type	I	interferons	and	pro-

inflammatory	cytokines	via	IRF3/7	and	NF-kB,	alerting	nearby	cells	and	the	

adaptive	immune	system	of	the	viral	threat	(Figure	1.2A).	Interferon	can	also	act	

on	the	original	cell,	upregulating	the	production	of	antiviral	effectors	such	as	PKR	

(Gantier	and	Williams,	2007).	

1.2.2 PKR	

PKR	is	a	kinase	that	acts	to	block	translation	in	response	to	viral	dsRNA,	or	to	

other	cellular	stresses	such	as	oxidative	stress,	accumulation	of	misfolded	proteins	

in	the	ER,	or	external	signals	from	cytokines	and	growth	factors	(Donnelly	et	al.,	

2013).	It	has	low	basal	expression,	but	is	strongly	induced	by	interferon,	making	it	

a	‘late’	responder	to	viruses	(Figure	1.2A)	(Meurs	et	al.,	1990).		

PKR	has	two	N-terminal	type	A	double-stranded	RNA-binding	domains	(dsRBDs,	

discussed	further	in	Section	1.3),	and	a	kinase	domain	(Figure	1.2C).	Related	
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kinase	domains	are	found	in	other	proteins	that	regulate	translation	in	response	

to	various	cellular	stresses,	including	PERK,	GCN2	and	HRI	(Donnelly	et	al.,	2013).	

Initial	studies	suggested	that	the	dsRBDs	exerted	an	autoinhibitory	effect	on	the	

kinase	in	the	absence	of	dsRNA	(Wu	and	Kaufman,	1997).	However,	this	model	

was	unable	to	account	for	inhibition	of	PKR	upon	transfection	of	very	high	dsRNA	

loads,	and	it	is	now	accepted	that	dimerisation	of	the	kinase	domain	is	the	trigger	

for	activation	(Ung	et	al.,	2001;	Vattem,	Staschke	and	Wek,	2001).	The	first	two	

domains	bind	dsRNA	and	act	as	a	scaffold	to	bring	PKR	molecules	close	together,	

and	increase	the	likelihood	of	dimerization	of	the	kinase	domain	(Cole,	2007).		

After	dimerization,	the	kinase	domain	autophosphorylates,	dissociates	from	

dsRNA	and	phosphorylates	eIF2α	(eukaryotic	translation	initiation	factor	2α)	

(Vattem,	Staschke	and	Wek,	2001).	This	prevents	eIF2	from	passing	Met-tRNA	to	

the	ribosome,	thereby	inhibiting	translation	(Kimball,	1999).	PKR	also	directly	or	

indirectly	phosphorylates	several	other	targets,	including	pro-apoptotic	p53,	and	

the	STAT1	transcription	factor	(Cuddihy	et	al.,	1999;	Ramana	et	al.,	2000).	

Although	eIF2a	phosphorylation	leads	to	general	translational	repression,	a	

number	of	transcription	factors	are	specifically	upregulated,	including	ATF4	

(Harding	et	al.,	2000).	ATF4	controls	amino	acid	metabolism	and	redox	

homeostasis,	and	promotes	expression	of	the	pro-apoptotic	factors	BIM	and	DR5,	

while	downregulating	anti-apoptotic	BCL-2	(McCullough	et	al.,	2001;	Yamaguchi,	

2004;	Puthalakath	et	al.,	2007).	Through	this	mechanism,	prolonged	activation	of	

PKR	leads	to	apoptosis.	
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Figure	1.2.	Overview	of	RIG-I	and	PKR	antiviral	pathways	

A)	PACT	and	TRBP	have	roles	in	at	least	two	viral	response	pathways.	Firstly,	PACT	

can	facilitate	activation	of	RIG-I	by	viral	dsRNA	(distinguished	from	cellular	dsRNA	

by	distinct	molecular	features,	discussed	in	section	1.5).	This	begins	a	signalling	

cascade	that	results	in	the	production	of	interferon	and	other	antiviral	genes.	PACT	

and	TRBP	also	regulate	PKR,	a	kinase	which	targets	the	translation	initiation	factor	

eIF2α	to	inhibit	protein	production	and	promote	apoptosis.	B)	In	the	absence	of	

appropriate	ligands,	RIG-I	has	an	inactive	conformation,	in	which	the	helicase	

domain	binds	to	the	CARDs.	5’-triphosphate	dsRNA	binds	to	the	CTD	and	helicase	

domain,	which	displaces	the	CARDs	and	results	in	signalling.	C)	PKR	can	bind	to	long	

dsRNA	through	two	N-terminal	dsRBDs.	This	brings	the	kinase	domains	together	to	

form	dimers,	which	can	then	autophosphorylate	and	become	active.	
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1.3 Multi-domain	structure	of	PACT	and	TRBP	

PACT	and	TRBP	each	contain	three	double-stranded	RNA	binding	domains	

(dsRBDs)	that	are	separated	by	linker	regions	which	are	predicted	to	be	

unstructured	(St	Johnston	et	al.,	1992;	Peters	et	al.,	2001)	(Figure	1.3).	Many	RNA	

binding	proteins	contain	multiple	dsRBDs:	PKR,	ADAR2	and	DGCR8	all	have	

tandem	dsRBDs,	while	human	Staufen	has	five	(Nanduri	et	al.,	1998;	Marión	et	al.,	

1999;	Stefl	et	al.,	2006;	Sohn	et	al.,	2007).	The	presence	of	multiple	dsRBDs	in	the	

same	protein	is	thought	to	allow	greater	affinity	and	specificity,	and	to	allow	

functional	divergence	of	individual	domains	(Chang	and	Ramos,	2005;	Lunde,	

Moore	and	Varani,	2007).	

Although	all	dsRBDs	share	the	core	α-β-β-β-α	fold	(Figure	1.4B),	they	can	be	

divided	into	two	subgroups	depending	on	sequence	conservation.	The	type	A	

dsRBD	is	the	canonical	form,	which	shows	amino	acid	conservation	in	three	

regions	involved	in	dsRNA	binding	(Figure	1.4A).	Type	B	dsRBDs	only	show	

conservation	at	the	C-terminal	end	of	the	domain,	and	are	generally	unable	to	bind	

dsRNA,	despite	retaining	the	same	overall	three-dimensional	(3D)	structure	(St	

Johnston	et	al.,	1992;	Masliah,	Barraud	and	Allain,	2013).	PACT	and	TRBP	contain	

both	classes	of	dsRBD	(Figure	1.4A).	

Some	dsRBDs	have	additional	structural	elements	that	contribute	to	their	

function:	for	example,	Rnt1p	dsRBD	from	Saccaromyces	cerevisiae	has	an	

additional	α-helix	that	contributes	to	domain	stability	and	RNA	binding	(Wu	et	al.,	

2004),	while	dsRBDs	from	the	Caenorhabditis	elegans	TRBP	homologue,	RDE-4,	

have	recently	been	shown	to	contain	numerous	additional	helices	and	extended	

loops	regions	(Chiliveri	and	Deshmukh,	2014).	
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Figure	1.3.	Domain	structure	and	interactions	of	PACT	and	TRBP	

Both	PACT	and	TRBP	contain	3	double-stranded	RNA	binding	domains	(dsRBDs).	

The	first	two	domains	can	bind	dsRNA,	while	the	third	cannot.	The	interdomain	

linkers	are	longer	in	TRBP	then	in	PACT.	Interactions	with	many	other	proteins	have	

been	documented,	particularly	for	the	third	domain.	Solid	lines	indicate	direct	

protein/protein	interactions,	while	dashed	lines	indicate	interactions	that	may	be	

mediated	via	dsRNA.	It	is	not	known	which	domain	of	PACT	interacts	with	RIG-I,	

shown	as	a	solid	bracket.	The	third	dsRBD	potentially	has	an	N-terminal	extension,	

based	on	sequence	conservation.	Each	protein	has	a	number	of	phosphorylation	sites	

(yellow	triangles)	that	regulate	function	under	certain	conditions.	A	region	of	TRBP	

implicated	in	cancers	exhibiting	microsatellite	instability	is	indicated	in	red.	

1.3.1 TRBP	and	PACT	domains	1	and	2	bind	dsRNA	

Domains	1	and	2	of	both	PACT	and	TRBP	are	type	A	dsRBDs,	and	all	bind	dsRNA	

(Benoit	et	al.,	2013;	Takahashi	et	al.,	2013).	In	type	A	dsRBDs,	three	distinct	

regions	participate	in	dsRNA	binding	(Figure	1.4A,B).	Unlike	double-stranded	

DNA,	dsRNA	adopts	an	A	form	helix	in	which	the	major	groove	is	deep	and	narrow,	

limiting	access	to	the	bases	and	therefore	to	sequence	specific	information.	

dsRBDs	bind	across	two	adjacent	minor	grooves	and	the	intervening	phosphate	

backbone,	burying	~780Å2	of	the	domain	surface	(Yang	et	al.,	2010).	Generally	

dsRBDs	bind	non-specifically	to	dsRNA.	On	discovery,	TRBP	was	thought	to	

specifically	recognise	certain	structured	RNAs,	such	as	HIV-1	trans-activation	

responsive	(TAR)	RNA	(Gatignol	et	al.,	1991;	Dorin	et	al.,	2003).	However,	later	
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evidence	has	shown	that	TRBP	and	PACT	interact	with	a	broad	range	of	targets	

(Yamashita	et	al.,	2011;	Benoit	et	al.,	2013).	

Several	well-studied	dsRBD-containing	proteins	do	act	on	specific	targets.	For	

example,	Staufen	can	regulate	translation	and	decay	of	certain	mRNAs,	while	

ADAR	proteins	can	convert	adenosine	to	inosine	at	specific	positions	in	a	variety	

of	dsRNAs	(Bass,	2002;	Ricci	et	al.,	2014).	In	both	cases,	RNA	recognition	is	

believed	to	occur	through	tertiary	structures,	such	as	bulges	and	loops	(Ramos	et	

al.,	2000;	Wu	et	al.,	2004).	Some	specificity	may	also	arise	through	contact	with	

the	edges	of	bases	in	the	minor	groove,	and	through	the	combination	of	dsRBDs	

with	weak	sequence	or	secondary	structure	preferences	(Lunde,	Moore	and	

Varani,	2007;	Masliah,	Barraud	and	Allain,	2013).	Current	evidence	does	not	rule	

out	PACT	and	TRBP	having	a	degree	of	substrate	specificity.	

Figure	1.4	dsRBD	sequence	and	structure	in	PACT	and	TRBP	

A)	Sequence	alignment	of	the	dsRBDs	of	human	TRBP	and	PACT.	The	top	line	shows	

the	secondary	structure	of	a	‘typical’	dsRBD,	taken	from	the	3D	structure	of	TRBP	

domain	2	(PDB	accession:	3ADL).	Residues	conserved	between	all	domains	are	

highlighted	in	black;	those	conserved	between	domains	1	and	2	are	highlighted	in	

dark	grey;	while	those	conserved	in	the	third	C-terminal	domain	are	shown	in	light	

grey.	The	regions	of	domain	1	and	2	which	bind	RNA	(located	in	helix	α1,	the	loop	

between	β	strands	1	and	2	(loop-β12),	and	helix	α2)	are	boxed,	as	is	a	conserved	

region	upstream	of	domain	3.	On	the	right,	the	%	identity	(%	similarity)	shows	that	

equivalent	dsRBDs	between	TRBP	and	PACT	are	more	similar	than	dsRBDs	within	

the	same	protein.	The	sequences	were	aligned	using	Multalin	(Corpet,	1988),	and	

rendered	using	ESPript	(Gouet,	2003)	(http://espript.ibcp.fr).	B)	Two	views	of	TRBP-

D2	bound	to	two	molecules	of	10	bp	dsRNA	(PDB	accession	3ADL).	The	RNA-

interacting	regions	shown	in	part	A	are	highlighted.	Several	parts	of	the	dsRNA	

binding	interface	are	flexible,	most	notably	loop-β12	in	the	second	RNA-interacting	

region,	which	contains	a	highly	conserved	histidine	residue.	C)	Structure	of	a	

Staufen-D5	dimer	(PDB	accession	4DKK).	The	N-terminal	extension	(consisting	of	

two	α-helixes)	is	thought	to	interact	with	the	dsRBD	core	of	a	second	molecule.	The	

linker	between	the	dsRBD	core	and	the	extended	region	is	not	visible	in	the	crystal	

structure,	and	is	indicated	here	with	dashed	lines.	D)	Structure	of	a	Loqs-D3	dimer	

(PDB	accession	4X8W).	 	
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1.3.2 PACT	and	TRBP	bind	protein	partners	via	their	third	domain	

The	C-terminal	dsRBDs	of	both	PACT	and	TRBP	(hereafter	referred	to	as	PACT-D3	

or	TRBP-D3)	are	type	B	dsRBDs.	They	do	not	bind	RNA,	but	are	instead	required	

for	interaction	with	other	proteins.	It	is	thought	that	many	type	B	dsRBDs	mediate	

protein-protein	interactions:	for	example,	Drosophila	Staufen	domain	5	binds	to	

Miranda	to	enable	mRNA	localisation	(Gleghorn	et	al.,	2013;	Gleghorn	and	Maquat,	

2014).	Structural	information	about	how	dsRBDs	interact	with	other	proteins	has	

only	recently	become	available,	and	is	discussed	further	below	and	in	section	1.4.2	

(Wilson	et	al.,	2015;	Jakob	et	al.,	2016).		

Both	PACT-D3	and	TRBP-D3	bind	to	Dicer	(Chendrimada	et	al.,	2005;	Haase	et	al.,	

2005;	MacRae	et	al.,	2008;	Daniels	et	al.,	2009;	Wilson	et	al.,	2015),	while	PACT-D3	

has	also	been	shown	to	interact	with	PKR	(Peters	et	al.,	2001;	Huang,	Hutchins	and	

Patel,	2002).	TRBP-D3	is	not	thought	to	interact	with	PKR	(Gupta,	Huang	and	

Patel,	2003),	suggesting	that	binding	to	Dicer	and	PKR	are	mediated	by	different	

regions	of	PACT-D3.	These	interactions	are	discussed	further	in	sections	1.4	and	

1.5	below.	Other	binding	partners	have	been	suggested	for	TRBP	and	PACT,	such	

as	the	tumour	suppressor	Merlin	(Lee	et	al.,	2004),	but	the	nature	of	their	

interactions	has	not	yet	been	studied	in	detail.	

Although	several	dsRBDs	have	been	reported	to	dimerise	(for	example,	the	

dsRBDs	from	PKR	(Patel	et	al.,	1995)	and	ADAR2	(Poulsen	et	al.,	2006)),	it	has	

been	difficult	to	distinguish	between	direct	binding	and	indirect	association	via	

dsRNA	(Zhang	et	al.,	2001).	There	is	substantial	biochemical	evidence	that	PACT-

D3	can	homodimerise,	or	heterodimerise	with	TRBP-D3	(Laraki	et	al.,	2008;	Singh	

et	al.,	2011;	Singh	and	Patel,	2012).	While	there	is	no	direct	biophysical	evidence	

that	TRBP-D3	homodimerises,	full	length	TRBP	can	form	dimers	(Yamashita	et	al.,	

2011),	but	a	construct	lacking	TRBP-D3	does	not	dimerise	(Benoit	et	al.,	2013).	It	

has	been	suggested	that	dimerisation	of	PACT	and	TRBP	could	modulate	

activation	of	PKR	(Singh	and	Patel,	2012),	but	it	could	also	increase	their	avidity	

for	dsRNA,	by	bringing	together	four	type	A	dsRBDs	(Takahashi	et	al.,	2013).	

The	3D	structures	of	domain	5	of	Staufen	(Staufen-D5)	and	domain	3	of	

Loquacious	(Loqs-D3)	have	given	the	first	high-resolution	information	about	type-

B	dsRBD	dimers	(Gleghorn	et	al.,	2013;	Jakob	et	al.,	2016).	These	reveal	that	the	

overall	fold	is	not	substantially	different	from	type	A	dsRBDs,	but	also	that	the	
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charge	on	the	canonical	dsRNA	binding	surface	is	different,	with	type-B	dsRBDs	

being	more	negatively	charged.	The	two	structures	demonstrate	different	

dimerisation	mechanisms.	Staufen-D5	includes	a	region	of	extra-dsRBD	structure,	

which	interacts	with	the	two	a-helices	of	the	dsRBD	core,	and	is	required	for	

dimerisation.	As	the	linker	between	the	core	domain	and	the	extended	region	is	

flexible,	dimerization	can	occur	via	a	domain-swapping	mechanism	(Figure	1.4C)	

(Gleghorn	et	al.,	2013).	In	contrast,	Loqs-D3	dimerises	via	an	interface	on	the	

dsRBD	itself,	including	the	b-sheet	and	second	a-helix	(Figure	1.4D)	(Jakob	et	al.,	

2016).	Loqs-D3	dimerisation	will	be	discussed	in	more	detail	in	Chapters	8	and	11.		

PACT-D3	and	TRBP-D3	both	lack	the	key	histidine	residue	and	have	negatively	

charged	residues	at	sites	that	would	correspond	to	the	dsRNA	binding	surface.	In	

addition,	both	domains	are	preceded	by	a	highly	conserved	20	amino	acid	

sequence,	which	could	be	consistent	with	a	similar	dsRBD/dsRBD	interaction	as	

that	seen	in	Staufen-D5.	On	the	other	hand,	neither	the	N-terminal	extension	nor	

helix	a-1	are	well	conserved	with	Staufen-D5,	while	the	b-sheet	and	helix	a-2	are	

highly	conserved	with	Loqs-D3	(discussed	further	in	section	1.7).	

There	is	some	evidence	that	the	type	A	dsRBDs	of	PACT	and	TRBP	can	also	

mediate	protein-protein	interactions.	Domains	1	and	2	of	PACT	are	reported	to	

directly	interact	with	the	dsRBDs	of	PKR	(Daher	et	al.,	2001;	Peters	et	al.,	2001).	

PKR	also	dimerises	partly	through	its	dsRBDs	(Patel	et	al.,	1995),	and	PACT	can	

still	activate	PKR	if	its	first	two	domains	are	replaced	with	those	from	PKR	(Peters	

et	al.,	2001).	The	first	two	dsRBDs	of	PACT	and	TRBP	have	also	been	reported	to	

homo-	and	heterodimerise	(Laraki	et	al.,	2008;	Singh	and	Patel,	2012),	although	

we	have	seen	no	evidence	of	this	using	recombinant	proteins	in	the	absence	of	

dsRNA	(Benoit	et	al.,	2013;	Heyam	et	al.,	(in	preparation)).	Overall,	current	

evidence	is	consistent	with	these	reported	interactions	between	type	A	dsRBDs	

being	indirect	and	mediated	by	dsRNA.		
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1.4 PACT	and	TRBP	form	part	of	the	small	RNA	biogenesis	
pathway	

1.4.1 How	do	PACT	and	TRBP	affect	processing	by	Dicer	and	the	formation	
of	active	RISC?	

There	is	now	clear	evidence	that	PACT	and	TRBP	can	associate	with	Dicer,	both	

from	immunoprecipitation	experiments	(Chendrimada	et	al.,	2005;	Gregory	et	al.,	

2005;	Haase	et	al.,	2005;	Lee	et	al.,	2006;	Daniels	et	al.,	2009)	and	from	in	vitro	

reconstitution	of	the	complex	from	the	individually	purified	components	(Macrae	

et	al.,	2006;	Chakravarthy	et	al.,	2010).	Furthermore,	there	is	strong	support	for	

the	idea	that	PACT	and	TRBP	are	involved	in	the	processing	of	pre-miRNAs	and	

RISC-loading	(Chendrimada	et	al.,	2005;	Lee	et	al.,	2006).	However,	the	molecular	

mechanism	by	which	PACT	and	TRBP	facilitate	miRNA	and	siRNA	processing	

remains	unclear.	It	has	long	been	established	that	Dicer	alone	is	able	to	cleave	pre-

miRNA	to	mature	miRNA	in	vitro	(Provost,	2002),	and	there	is	evidence	that	some	

substrates	can	be	loaded	into	Ago2	in	vitro	in	the	absence	of	PACT	and	TRBP	

(Kawamata,	Seitz	and	Tomari,	2009;	Yoda	et	al.,	2010;	Noland	and	Doudna,	2013).	

The	importance	of	tackling	this	question	is	underscored	by	the	evidence	linking	

miRNA	biogenesis	in	general,	and	TRBP	in	particular,	to	a	number	of	different	

cancers	(Gregory	and	Shiekhattar,	2005;	Melo	et	al.,	2009;	Fu	et	al.,	2010;	

Caramuta	et	al.,	2013;	Lin	et	al.,	2014).	In	particular,	tumours	exhibiting	

microsatellite	instability	are	prone	to	frameshift	mutations	in	TRBP	(see	Figure	

1.3),	leading	to	impaired	miRNA	production	(Melo	et	al.,	2009).	The	drug	enoxacin	

has	recently	been	investigated	as	a	cancer	therapeutic	due	to	its	effect	on	miRNA	

biogenesis,	and	is	believed	to	act	through	TRBP	(Melo	et	al.,	2011;	Sousa	et	al.,	

2013).	Although	several	studies	have	linked	PACT	expression	to	cancer,	the	effect	

is	not	as	well	documented	as	for	TRBP	(Chiosea	et	al.,	2008;	Sand	et	al.,	2012).	

There	are	several	points	along	the	miRNA	biogenesis	and	RISC	loading	pathway	at	

which	TRBP	and	PACT	could	act	(Figure	1.5):	

1) Recruitment	of	substrates	to	Dicer	
a) PACT	and/or	TRBP	may	increase	the	affinity	of	the	Dicer	complex	for	dsRNA	

substrates,	or	
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b) more	specifically	increase	Dicing	rate	through	favouring	binding	of	

substrates	over	products	

2) Facilitating	efficient	substrate	cleavage	by	Dicer	
PACT	and/or	TRBP	could	ensure	that	the	substrate	dsRNA	or	pre-miRNA	has	the	

optimum	orientation	for	Dicer	cleavage.	

3) Removing	the	Dicer	product	
a) PACT	and/or	TRBP	may	aid	unloading	of	Dicer	or	loading	of	Dicer	products	

into	Argonaute	proteins,	

b) in	particular	affecting	which	strand	is	loaded.	

4) Controlling	which	type	of	dsRNA	is	loaded	into	Argonaute	
PACT	and/or	TRBP	may	preferentially	recognise	different	subsets	of	miRNA	or	

siRNA	(or	their	precursors),	resulting	in	differences	in	processing	or	RISC	loading.	

	

Figure	1.5	Potential	roles	of	PACT	and	TRBP	in	the	Dicer	complex	

At	least	4	possible	roles	for	PACT/TRBP	can	be	envisaged	(see	section	1.4.1).	The	

RNA	substrates	shown	for	role	4	are	illustrative	only.		
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I	will	now	discuss	evidence	from	structural,	biochemical,	biophysical	and	

molecular	cell	biology	studies	in	the	context	of	these	possible	mechanisms.	

1.4.2 Evidence	from	structural	studies	

As	described	above,	PACT	and	TRBP	have	been	shown	to	interact	with	Dicer,	a	

1922	amino	acid	type-III	ribonuclease	(Figure	1.6).	The	mechanism	by	which	

Dicer	controls	the	length	of	small	RNAs	was	elegantly	resolved	in	an	early	

crystallographic	study	(Macrae	et	al.,	2006;	MacRae,	Zhou	and	Doudna,	2007).	The	

Dicer	PAZ	domain	binds	one	end	of	the	pre-miRNA,	while	a	‘ruler’	domain	

positions	the	PAZ	domain	at	a	distance	from	the	RNase	III	site	that	corresponds	to	

roughly	22	base	pairs	of	dsRNA.	This	simple	structural	mechanism	seems	to	

function	independently	of	binding	partners	as	isolated	Dicer	can	still	cleave	dsRNA	

targets.		

While	a	considerable	amount	is	known	about	the	structure-function	relationship	

of	the	RNase	III/PAZ	region	of	Dicer,	much	less	is	known	about	the	N-terminal	

DExD/H	helicase	domain.	The	helicase	domain	consists	of	Hel1	and	Hel2	regions	

separated	by	a	100	amino	acid	insert	region	(Figure	1.6A),	which	has	no	close	

sequence	homologues	outside	of	the	Dicer	family.	This	domain	does	not	appear	

necessary	for	dsRNA	cleavage	in	vitro	(Ma	et	al.,	2008),	nor	does	processing	of	pre-

miRNAs	require	ATP	(Zhang,	2002).	The	helicase	domain	has	however	been	

shown	to	restrict	processing	of	long	dsRNA	substrates	(Kennedy	et	al.,	2015),	and	

the	insert	region	was	first	identified	as	the	site	of	TRBP	(and	presumably	PACT)	

binding	through	yeast-2-hybrid	screening	(Daniels	et	al.,	2009).	

20-30	Å	resolution	cyro-electron	microscopy	studies	of	a	Dicer	alone	(Lau	et	al.,	

2012),	in	complex	with	TRBP	(Lau	et	al.,	2009),	or	TRBP	and	Ago2	(a	minimal	RISC	

loading	complex)	(Wang	et	al.,	2009)	have	been	reported.	They	reveal	an	L-shaped	

overall	structure	with	the	helicase	located	in	the	base,	and	the	RNase	III	and	PAZ	

domains	located	in	the	long	arm	(Figure	1.6C).	More	recently,	the	crystal	structure	

of	TRBP	domain	3	in	complex	with	the	Dicer	helicase	insert	region	was	solved,	and	

reveals	several	interesting	features	(Wilson	et	al.,	2015).		

Firstly,	the	helicase	insert	has	a	broadly	similar	structure	to	the	equivalent	regions	

of	RIG-I	and	MDA5	helicases,	despite	having	only	low	sequence	similarity	(<10%)	

(Figure	1.6B).	Secondly,	the	N-terminal	extension	of	TRBP	was	found	to	form	a	

helix	that	interacted	with	the	core	dsRBD,	fitting	into	a	cleft	between	the	two	a-
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helices	and	the	loop	b-2,3.	This	differs	from	the	location	seen	in	Staufen-D5,	where	

the	additional	N-terminal	helices	contacted	only	the	a-helices	of	the	dsRBD	core	

(Gleghorn	et	al.,	2013).	Unfortunately,	the	electron	density	in	this	region	was	poor,	

so	the	amino	acid	sequence	of	the	helix	could	not	be	identified.		

The	structure	shows	that	TRBP-D3	interacts	with	Dicer	via	its	b-sheet	and	the	C-

terminal	end	of	helix	a-2.	These	regions	are	highly	conserved	with	PACT-D3,	

which	is	expected	to	bind	to	Dicer	using	the	same	interface,	but	are	not	conserved	

in	domains	1	and	2	of	either	protein.	No	direct	contact	was	observed	between	

Dicer	and	the	additional	helix	of	TRBP.	The	Dicer-binding	surface	is	also	highly	

conserved	with	TRBP-D3	and	Loqs-D3	(discussed	in	section	1.7).		

By	combining	crystallographic	and	electron	microscopy	data,	Doudna	and	

coworkers	were	able	to	construct	a	model	of	the	Dicer/TRBP	complex,	which	

suggests	that	domains	1	and	2	of	TRBP	have	considerable	freedom	of	movement,	

consistent	with	roles	1-3	outlined	above	(Figure	1.6D)	(Wilson	et	al.,	2015).	

Presumably	the	first	two	domains	of	PACT	would	have	less	freedom	of	movement,	

due	to	the	shorter	inter-domain	linkers.	This	is	potentially	an	important	structural	

difference	between	PACT	and	TRBP,	given	the	high	conservation	of	the	RNA-	and	

Dicer-binding	surfaces	(see	section	1.7),	and	could	plausibly	lead	to	differences	in	

function.	It	is	worth	noting	that	several	papers	have	suggested	that	Dicer	and/or	

associated	proteins	undergo	conformational	shifts	(Wang	et	al.,	2009;	Taylor	et	al.,	

2013)	and	that	these	complexes	contain	multiple	dsRNA	binding	sites	(Noland,	Ma	

and	Doudna,	2011).	This	raises	the	possibility	that	the	role	of	TRBP	may	be	more	

complex	than	is	currently	believed.	
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Figure	1.6.	Structure	of	the	Dicer	complex	

A)	Layout	of	domains	within	Dicer.	B)	Structural	alignment	of	the	helicase	insert	

regions	of	Dicer	(purple,	4WYQ),	RIG-I	(orange,	4A2W)	and	MDA-5	(green,	4I1S).	

Alignments	were	performed	using	the	DALI	server	(Holm	and	Rosenström,	2010).	C)	

Reconstruction	of	the	Dicer-TRBP	complex	from	cryo-electron	microscopy	(EM)	data,	

with	~15Å	resolution	(EM	data	bank	accession	EMD-1646)	(Lau	et	al.,	2009).	The	

locations	of	the	RNAse	III	and	helicase	domains	are	inferred	from	epitope	tagged	

Dicer	(Lau	et	al.,	2012).	The	position	of	TRBP	is	not	resolved.	D)	A	schematic	of	a	

minimal	RISC-loading	complex	of	Dicer,	Ago2	and	TRBP/PACT	based	on	cryo-EM	

data	(Wang	et	al.,	2009).	All	components	are	approximately	to	scale.	It	is	unknown	

whether	all	three	components	assemble	prior	to	dsRNA	binding,	or	if	the	complex	is	

more	dynamic.	In	vivo,	it	is	likely	that	other	proteins	associate	with	the	RISC-loading	

complex	(Robb	and	Rana,	2007;	Pare	et	al.,	2009).	
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1.4.3 Evidence	from	biochemical	and	biophysical	studies	

A	number	of	in	vitro	studies	have	shown	that	the	complex	of	Dicer	with	PACT	or	

TRBP	has	a	higher	affinity	for	dsRNA	than	Dicer	alone	by	several	orders	of	

magnitude(Chakravarthy	et	al.,	2010;	Lee	and	Doudna,	2012;	Lee	et	al.,	2013;	

Fareh	et	al.,	2015).	However,	these	studies	report	a	more	modest	effect	on	small	

RNA	processing	rate,	ranging	from	a	5-fold	increase	in	rate,	to	a	5-fold	reduction.	

Furthermore,	TRBP	has	been	reported	to	bind	a	pre-miRNA	and	the	duplex	

produced	by	Dicer	with	similar	affinities	(Chakravarthy	et	al.,	2010;	Benoit	et	al.,	

2013),	which	is	inconsistent	with	a	role	in	modulating	Dicer	processing	rate	due	to	

preferential	binding	of	substrate	over	product.	With	the	caveat	that	the	reaction	

conditions	may	differ	considerably	from	those	present	in	vivo,	this	suggests	that	

PACT	and	TRBP	fulfil	role	1a	above,	but	not	1b.		

In	an	attempt	to	more	closely	replicate	crowded,	heterogeneous	cellular	

conditions,	Fareh	and	coworkers	recently	studied	pre-miRNA	processing	by	Dicer	

complexes	in	the	presence	of	excess	tRNA	molecules	(Fareh	et	al.,	2016).	They	

found	that	Dicer/TRBP	cleaved	the	pre-miRNA	more	efficiently	than	Dicer	alone,	

suggesting	TRBP	and	PACT	may	play	a	role	in	discriminating	between	proper	and	

improper	substrates	(role	1a/4).	

The	measured	affinity	of	TRBP	(without	Dicer)	for	short	dsRNA	has	varied	

considerably	between	different	studies	(Chakravarthy	et	al.,	2010;	Yamashita	et	

al.,	2011;	Benoit	et	al.,	2013;	Acevedo	et	al.,	2015).	While	this	may	simply	

represent	variation	in	sample	preparation	and	technique,	it	could	also	be	due	to	

the	different	RNAs	studied,	which	would	be	consistent	with	TRBP	and	PACT	

showing	a	degree	of	specificity	for	different	small	RNAs	(role	4).	Additional	

evidence	comes	from	studies	of	reconstituted	complexes	of	Dicer.	Dicer/TRBP	

complexes	show	different	affinities	for	pre-miRNAs	and	siRNAs,	although	Dicer	is	

at	least	partially	responsible	for	this	specificity	(Chakravarthy	et	al.,	2010;	Lee	and	

Doudna,	2012).	A	complex	containing	Dicer	and	PACT	showed	considerably	

slower	processing	of	pre-siRNA	substrates	than	a	Dicer/TRBP	complex,	even	

though	they	seemed	to	have	similar	processing	rates	for	pre-miRNAs	(Lee	et	al.,	

2013).	This	potentially	conflicts	with	an	earlier	study,	which	concluded	that	both	

PACT	and	TRBP	increase	processing	of	long	dsRNA	by	Dicer	(Kok	et	al.,	2007).	

This	discrepancy	could	reflect	a	genuine	difference	in	how	Dicer	complexes	
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process	dsRNAs	of	different	lengths:	further	experiments	using	matched	reaction	

conditions	will	be	required	to	resolve	this	issue.		

Both	in	vitro	and	in	vivo,	cleavage	of	pre-miRNAs	by	Dicer	may	give	a	range	of	

products	with	different	lengths,	termed	iso-miRs	(Koscianska,	Starega-Roslan	and	

Krzyzosiak,	2011;	Neilsen,	Goodall	and	Bracken,	2012).	The	size	distribution	of	

iso-miRs	varies	depending	on	the	pre-miRNA.	One	observation	that	supports	the	

idea	that	TRBP	helps	position	RNA	for	cleavage	by	Dicer	(role	2)	is	that	the	

Dicer/TRBP	complex	produces	different	length	products	compared	to	Dicer	alone	

(Koscianska,	Starega-Roslan	and	Krzyzosiak,	2011;	Fukunaga	et	al.,	2012;	Lee	and	

Doudna,	2012;	Lee	et	al.,	2013;	Kim	et	al.,	2014;	Wilson	et	al.,	2015),	although	

PACT	has	not	been	observed	to	affect	iso-miR	distribution.	It	is	not	yet	clear	what	

causes	the	change	in	cleavage	site:	possibilities	include	altering	the	length	of	the	

pre-miRNA	(for	example,	by	inducing	a	change	in	helical	pitch),	or	changing	the	

position	in	which	the	pre-miRNA	binds	to	Dicer.	Moving	the	cleavage	site	can	

affect	strand-specific	loading	of	Argonaute	proteins	(Kim	et	al.,	2014),	and	can	

alter	the	seed	sequence	of	the	5’	strand.	

In	Drosophila,	current	models	suggest	that	the	TRBP	homologue	R2D2	plays	a	

significant	role	in	selecting	which	strand	of	the	miRNA/siRNA	is	loaded	into	

Argonaute.	There	is	some	evidence	that	this	is	also	the	case	in	humans.	The	

thermodynamic	stability	of	the	miRNA-	or	siRNA-duplex	produced	by	Dicer	is	

dependent	on	the	nucleotide	sequence.	Experiments	with	photo-crosslinking	

dsRNA	concluded	that	TRBP	has	some	propensity	to	bind	to	the	most	

thermodynamically	stable	end	of	the	siRNA	(Gredell	et	al.,	2010).	Furthermore,	

strand	specific	crosslinking	to	the	helicase	domain	of	Dicer	required	TRBP	or	

PACT	and	depended	on	thermodynamic	stability,	terminal	nucleotides	and	

mismatched	bases	(Noland,	Ma	and	Doudna,	2011).	However,	strand	selectivity	is	

not	solely	determined	at	this	step:	a	study	that	measured	which	strand	was	loaded	

into	RISC	concluded	that	Ago2	alone	had	some	strand	selectivity	(dependent	on	

substrate),	though	TRBP	and	PACT	could	enhance	this	(Noland	and	Doudna,	

2013).	

Lastly,	it	has	recently	been	shown	that	TRBP	can	diffuse	along	dsRNA	(Koh	et	al.,	

2013).	This	behaviour	has	been	observed	in	a	number	of	other	proteins	which	

contain	multiple	dsRBDs,	including	PACT,	and	is	dependent	upon	inter-domain	
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linker	length	(Wang	et	al.,	2015;	Koh	et	al.,	2016).	Although	it	is	not	yet	clear	what	

effect	this	would	have	on	the	Dicer	complex,	one-dimensional	diffusion	may	allow	

the	dsRNA	to	explore	a	greater	range	of	positions	and	orientations,	potentially	

facilitating	RNA	positioning	for	Dicer	processing	or	RISC	loading.	

1.4.4 Evidence	from	molecular	cell	biology	studies	

The	initial	evidence	that	TRBP	and	PACT	bound	Dicer	came	from	

immunoprecipitation	experiments	using	HEK293	cells	(Chendrimada	et	al.,	2005;	

Haase	et	al.,	2005;	Lee	et	al.,	2006).	In	one	case,	epitope-tagged	Dicer	was	used	to	

recover	a	complex	containing	TRBP	and	Ago2	that	was	able	to	process	pre-let-7	to	

mature	let-7,	and	cleave	target	mRNAs	(Gregory	et	al.,	2005).	The	same	studies	

used	RNA	interference	to	investigate	the	function	of	TRBP	and	PACT,	but	gave	

somewhat	contradictory	results.	However,	one	common	feature	is	that	knocking	

down	any	of	the	4	components	(Dicer,	Ago2,	TRBP	or	PACT)	resulted	in	a	decrease	

in	levels	of	mature	miRNA	(Haase	et	al.,	2005;	Lee	et	al.,	2006;	Koscianska,	

Starega-Roslan	and	Krzyzosiak,	2011).		

There	are	some	hints	that	PACT	and	TRBP	may	act	on	different	sets	of	miRNAs	

and/or	siRNAs	(role	4).	In	one	study,	knocking	down	TRBP	dramatically	reduced	

the	effectiveness	of	exogenous	siRNA	while	having	a	small	effect	on	levels	of	an	

inducible	miRNA,	whereas	targeting	PACT	had	the	opposite	effect	(Lee	et	al.,	

2006).	It	is	currently	unclear	whether	knockdown	of	PACT	or	TRBP	differentially	

affects	a	certain	subset	of	miRNAs.		

To	determine	whether	PACT	and	TRBP	aid	Dicer	processing	(roles	1	and	2)	or	

RISC	loading	(role	3),	several	studies	have	examined	how	depletion	of	these	

proteins	affects	silencing	mediated	by	shRNA	(which	requires	processing	by	

Dicer)	or	duplex	siRNA	(which	can	in	principle	be	incorporated	directly	into	RISC).	

The	consensus	is	that	both	are	affected,	implying	an	important	role	in	RISC	

loading,	while	not	ruling	out	a	supporting	contribution	to	Dicer	processing	

(Chendrimada	et	al.,	2005;	Lee	et	al.,	2006;	Kok	et	al.,	2007).	Although	one	of	these	

studies	reports	siRNA-mediated	silencing	to	be	unaffected	by	depletion	of	TRBP	or	

PACT	(Kok	et	al.,	2007)	the	effectiveness	of	PACT/TRBP	knockdown	was	not	

measured.	It	is	therefore	possible	that	PACT	and	TRBP	were	not	effectively	

depleted	due	to	saturation	of	the	RNAi	machinery	with	siRNA.				
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It	is	worth	noting	that	it	can	be	challenging	to	use	RNAi	to	knock	down	proteins	

involved	in	small	RNA	processing,	as	the	effectiveness	of	RNAi	is	itself	dependent	

on	the	presence	and	activity	of	these	proteins.	To	avoid	this	problem,	a	recent	

study	used	TALENs	(Transcription	activator-like	effector	nucleases)	to	delete	

PACT	and	TRBP	in	HeLa	cells	(Kim	et	al.,	2014).	Surprisingly,	no	difference	in	

overall	miRNA	levels	was	observed	in	single	or	double	knockout	lines,	not	even	in	

a	subset	of	miRNAs	that	had	previously	been	observed	to	be	TRBP	dependent	

(Paroo	et	al.,	2009;	Wilson	et	al.,	2015),	although	changes	in	strand-selectivity	and	

iso-miR	distribution	were	seen	for	some	miRNAs	.	Although	this	casts	doubt	on	a	

critical	role	for	PACT	and	TRBP	in	miRNA	biogenesis,	a	separate	study	confirmed	

that	TRBP	is	necessary	for	production	of	specific	miRNAs	in	cardiac	tissue	(Ding	et	

al.,	2015).	Cardiac-specific	deletion	of	TRBP	(via	Cre-Lox	recombination)	was	

found	to	cause	a	reduction	of	miR-208a	levels	in	the	heart,	resulting	in	

misregulated	gene	expression	due	to	overexpression	of	the	miR-208a	target	SOX6.	

Taken	together,	these	studies	suggest	that	TRBP	and	PACT	play	important	roles	in	

the	production	of	particular	miRNAs	in	some	cells,	but	are	unlikely	to	be	necessary	

for	miRNA	biogenesis	in	general.	

TRBP	can	be	phosphorylated	at	a	number	of	sites	by	ERK	and	downstream	kinases	

(Figure	1.3)	(Paroo	et	al.,	2009;	Warner	et	al.,	2016).	When	TRBP	with	phospho-

mimic	mutations	at	S142,	S152,	S283	and	S286	was	transfected	into	human	cell	

lines,	miRNA	production	was	shown	to	increase	relative	to	controls	(Paroo	et	al.,	

2009).	This	effect	was	due	to	increased	stability	of	the	phospho-mimic	TRBP	

protein,	since	in	vitro	tests	showed	negligible	differences	in	Dicer	processing	

between	complexes	containing	wild-type	and	phospho-mimic	TRBP	

(Chakravarthy	et	al.,	2010).	A	separate	set	of	JNK-mediated	phosphorylation	

events	were	observed	to	occur	specifically	in	M	phase	of	the	cell	cycle	(discussed	

further	in	section	1.5.2)	(Kim	et	al.,	2014).	Although	PACT	also	undergoes	

phosphorylation	at	several	sites,	the	effects	have	never	been	studied	in	the	context	

of	miRNA	biogenesis.	TRBP	domain	1	was	recently	suggested	to	undergo	

SUMOylation:	however,	the	somewhat	artificial	conditions	used	in	this	study	leave	

questions	about	whether	this	process	occurs	naturally	(Chen	et	al.,	2015).	Post-

translational	modification	of	TRBP	and	PACT	is	consistent	with	the	idea	that	their	

functions	are	context	dependent,	and	are	not	constitutively	required.	
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The	interpretation	of	experimental	data	is	complicated	by	the	possibility	that	

TRBP	and	Dicer	may	stabilise	one	another.	Several	studies	have	reported	that	

knocking	down	TRBP	also	reduces	Dicer	levels,	confounding	interpretation	in	

terms	of	TRBP	alone	(Chendrimada	et	al.,	2005;	Melo	et	al.,	2009;	Paroo	et	al.,	

2009;	Matsui	et	al.,	2015),	especially	since	this	effect	has	not	been	unanimously	

reported	(Haase	et	al.,	2005).	A	similar	stabilising	effect	on	Dicer	was	seen	for	

PACT	–	but	not	for	TRBP	–	in	a	separate	study	(Lee	et	al.,	2006).	

The	majority	of	both	TRBP	and	PACT	is	found	in	the	cytoplasm,	particularly	in	the	

perinuclear	space,	though	a	smaller	amount	is	present	in	the	nucleus	(Kok	et	al.,	

2007;	Laraki	et	al.,	2008;	Ohrt	et	al.,	2012).	Förster	resonance	energy	transfer	

(FRET)	experiments	using	fluorescently-tagged	TRBP	and	PACT	provide	evidence	

they	interact	in	vivo	(Kok	et	al.,	2007).	The	distribution	of	TRBP	and	PACT	mirrors	

that	of	Dicer	and	Ago2,	which	are	also	predominantly	cytoplasmic	with	a	small	

nuclear	fraction.	Nuclear	Dicer	has	been	proposed	to	regulate	gene	transcription	

via	Argonaute1,	and	to	prevent	accumulation	of	endogenous	dsRNA	(White	et	al.,	

2014).	

Dicer,	Ago2,	TRBP	and	PACT	have	lower	diffusion	rates	in	the	cytoplasm	than	in	

the	nucleus	(Ohrt	et	al.,	2008,	2012).	This	observation	has	been	interpreted	either	

as	evidence	for	a	large	cytoplasmic	complex	which	is	disassembled	in	the	nucleus;	

or	as	suggesting	that	these	proteins	are	anchored	to	a	larger	cellular	feature,	such	

as	P-bodies	or	the	rough	endoplasmic	reticulum.	This	latter	possibility	is	

consistent	with	reports	of	co-localisation	of	RISC	components	with	ribosomes	or	

the	endoplasmic	reticulum	(Chendrimada	et	al.,	2007;	Stalder	et	al.,	2013;	Kim,	

Maizel	and	Chen,	2014;	Suzuki	and	Yokota,	2014).	

1.5 TRBP	and	PACT	mediate	innate	immune	surveillance	of	
dsRNA		

RNA	viruses	produce	dsRNA	in	the	course	of	their	lifecycle,	either	as	genomic	

material	or	as	a	replication	intermediate.	Viral	dsRNA	has	features	that	distinguish	

it	from	cellular	dsRNA,	which	may	include	its	longer	length,	lack	of	the	5’	cap	

characteristic	of	eukaryotic	mRNAs,	and	absence	of	mismatches.	The	innate	

immune	system	can	recognise	these	features	through	pattern	recognition	

receptors,	including	RIG-I,	MDA5	and	TLR3.	
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The	PRRs	used	by	mammalian	cells	can	be	divided	into	‘early’	responders,	which	

stimulate	production	of	interferons	and	pro-inflammatory	cytokines,	and	‘late’	

responders,	which	directly	block	viral	proliferation	through	translation	inhibition	

and	RNA	degradation	(Figure	1.2A).	These	pathways	have	been	reviewed	in	more	

detail	elsewhere	(Gantier	and	Williams,	2007).	PACT	and	TRBP	have	roles	in	

several	of	these	pathways,	and	have	been	implicated	in	the	response	to	a	number	

of	viruses	(summarised	in	Table	1.1).	

1.5.1 PACT	can	stimulate	RIG-I	activation	

Evidence	has	emerged	that	PACT	can	activate	RIG-I	in	response	to	a	number	of	

viruses	(Kok	et	al.,	2011;	Luthra	et	al.,	2013;	Siu	et	al.,	2014)	(Table	1.1).	Although	

the	helicase	domains	of	RIG-I	and	Dicer	are	part	of	the	same	subfamily	(Fairman-

Williams,	Guenther	and	Jankowsky,	2010),	it	is	unlikely	that	PACT	binds	these	two	

proteins	in	the	same	manner	as	there	is	low	sequence	homology	in	the	helicase	

insert	domain	(Daniels	et	al.,	2009;	Wilson	et	al.,	2015).	This	is	consistent	with	a	

report	that	PACT	binds	to	the	C-terminal	domain	of	RIG-I	(Kok	et	al.,	2011).	TRBP	

has	not	been	reported	to	interact	with	RIG-I,	but	has	recently	been	shown	to	

interact	with	the	RIG-I	homologue	LGP2,	and	to	play	a	role	in	the	interferon	

response	to	several	cardioviruses	(Komuro	et	al.,	2016).	

	

Figure	1.7	PACT-mediated	activation	of	RIG-I	

As	described	in	section	1.2.1,	the	mechanism	of	RIG-I	activation	by	5’ppp-dsRNA	is	

well	understood.	It	is	less	clear	how	PACT	enables	RIG-I	activation:	one	possibility	is	

that	it	increases	RIG-I	binding	to	additional	ligands	such	as	long	dsRNA	which	lacks	

a	5’-triphosphate.	
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Many	unanswered	questions	surround	the	role	of	PACT	in	RIG-I	activation.	It	is	

unclear	under	which	conditions	PACT	activates	RIG-I,	and	the	mechanism	is	not	

known.	To	date,	the	interaction	has	been	most	studied	in	the	context	of	Sendai	

virus	(Kok	et	al.,	2011;	Luthra	et	al.,	2013),	a	negative	sense	single-stranded	RNA	

(ssRNA)	virus	that	infects	rodents.	In	this	case,	PACT	can	act	to	enhance	activation	

of	IRF3	and	transcription	of	genes	under	the	control	of	IFN-β.	A	similar	effect	was	

seen	for	Ebola	virus	(also	a	negative	sense	ssRNA	virus),	and	overexpressing	PACT	

was	able	to	slow	viral	replication	(Luthra	et	al.,	2013).	To	counter	this	effect,	Ebola	

virus	encodes	a	protein	that	is	reported	to	disrupt	the	interaction	between	PACT	

and	both	Dicer	and	RIG-I	(Fabozzi	et	al.,	2011;	Luthra	et	al.,	2013).	An	earlier	study	

found	that	PACT	increased	type	1	interferon	production	in	response	to	Newcastle	

disease	virus,	which	also	has	a	negative	sense	ssRNA	genome	(Iwamura	et	al.,	

2001).	It	now	seems	plausible	that	this	effect	was	mediated	by	RIG-I.				

One	hypothesis	is	that	PACT	can	extend	the	range	of	ligands	that	can	activate	RIG-

I.	Overexpression	of	PACT	did	not	enhance	RIG-I	activation	by	5’-triphosphate	

dsRNA,	but	did	enhance	the	response	to	the	dsRNA	analogue	poly-I:C	(Kok	et	al.,	

2011).	However,	further	work	will	be	needed	to	confirm	this,	and	to	disentangle	

the	effects	of	the	other	RIG-I	(and	Dicer)	related	helicases,	MDA5	and	LGP2.	MDA5	

functions	similarly	to	RIG-I,	but	is	activated	by	longer	dsRNA,	while	LGP2	lacks	the	

CARD	signalling	domains,	and	is	thought	to	have	an	inhibitory	effect	(Yoneyama	

and	Fujita,	2009).	The	C-terminal	domains	of	RIG-I,	MDA5	and	LGP2	are	well	

conserved	and	so	it	is	plausible	that	PACT	could	interact	with	all	of	them.	

1.5.2 PACT	activates	PKR,	while	TRBP	inhibits	it	

TRBP	and	PACT	can	regulate	PKR:	TRBP	has	an	inhibitory	effect,	while	PACT	is	a	

conditional	activator	(Park	et	al.,	1994;	Patel	and	Sen,	1998;	Peters,	Li	and	Sen,	

2006).	The	current	model	is	summarised	in	Figure	1.8.	Domain	swap	and	

mutational	analyses	indicate	that	the	first	two	dsRBDs	of	PACT	and	TRBP	are	

functionally	interchangeable,	and	interact	with	the	dsRBDs	of	PKR	(Benkirane	et	

al.,	1997;	Peters	et	al.,	2001;	Gupta,	Huang	and	Patel,	2003).	There	is	some	

evidence	that	this	interaction	is	independent	of	dsRNA,	indicating	the	dsRBDs	bind	

one	another	directly	(Benkirane	et	al.,	1997).	However,	there	is	some	

disagreement	on	this	issue	(Cosentino	et	al.,	1995),	and	it	has	never	been	explicitly	

examined	biophysically.	
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The	differences	between	PACT	and	TRBP	stem	from	their	C-terminal	dsRBD.	In	

response	to	cellular	stresses,	PACT-D3	is	phosphorylated	at	S246	and	S287	by	an	

unknown	kinase	(or	kinases),	leading	to	activation	of	PKR	(Peters,	Li	and	Sen,	

2006).	The	crystal	structures	of	TRBP-D3	reveals	that	these	residues	are	on	

opposite	faces	of	the	domain,	and	that	S287	is	on	the	edge	of	the	Dicer-binding	

interface	(Wilson	et	al.,	2015).	Two	models	have	been	proposed	to	explain	PACT-

induced	PKR	activation.	Firstly,	binding	of	phosphorylated	PACT-D3	to	PKR	could	

cause	a	conformational	change	that	promotes	activation	(Peters	et	al.,	2001).	

Supporting	this	model,	PACT-D3	alone	has	been	reported	to	interact	weakly	with	

PKR	(Peters	et	al.,	2001;	Li	et	al.,	2006).	Alternatively,	PACT	dimers	might	bind	

two	molecules	of	PKR,	enhancing	PKR	dimerization	(Singh	and	Patel,	2012).	This	

is	consistent	with	evidence	that	PACT-D3	phosphorylation	promotes	

homodimerisation	and	disfavours	heterodimerisation	with	TRBP	(Singh	et	al.,	

2011;	Singh	and	Patel,	2012).	

In	contrast,	TRBP-D3	has	an	inhibitory	effect	on	PKR,	which	appears	to	be	

important	for	preventing	inappropriate	activation	(Gupta,	Huang	and	Patel,	2003;	

Daher	et	al.,	2009).	A	similar	inhibitory	effect	is	also	observed	for	truncated	PKR	

or	PACT	constructs	containing	only	the	first	two	dsRBDs	(Peters	et	al.,	2001;	

Huang,	Hutchins	and	Patel,	2002),	which	suggests	that	rather	than	a	specific	effect	

of	TRBP-D3,	anything	that	binds	to	the	dsRBDs	of	PKR	and	disrupts	PKR	

dimerization	will	cause	inhibition.	Hyper-phosphorylation	of	TRBP	by	JNK	

increases	binding	of	PKR	by	TRBP,	leading	to	a	greater	inhibitory	effect	(Kim	et	al.,	

2014).	This	occurs	during	M	phase	of	the	cell	cycle,	and	is	thought	to	prevent	PKR	

activation	by	endogenous	dsRNAs	during	cell	division.		
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Figure	1.8.	Regulation	of	PKR	by	PACT	and	TRBP	

As	described	in	section	1.2.2,	dimerisation	of	the	kinase	domain	on	dsRNA	triggers	

PKR	activation.	PACT	(when	phosphorylated	during	cellular	stress)	can	also	activate	

PKR,	although	the	mechanism	is	unclear.	The	two	main	hypotheses	are:	PACT-D3	

contacts	the	kinase	domain,	somehow	favouring	activation;	or,	PACT	dimers	can	

bind	2	molecules	of	PKR,	promoting	their	dimerisation	and	activation.	TRBP	acts	as	

an	inhibitor	of	PKR,	either	because	its	third	domain	cannot	interact	with	PKR’s	

kinase	domain,	or	because	its	third	domain	exhibits	weaker	dimerisation.	

It	is	worth	noting	that	many	studies	prior	to	2009	used	PACT	constructs	

containing	a	frameshift	mutation	that	replaces	the	last	13	amino	acids	(including	

part	of	the	C-terminal	helix)	with	5	unrelated	amino	acids	(Patel	and	Sen,	1998;	

Peters	et	al.,	2001;	Huang,	Hutchins	and	Patel,	2002;	Gupta,	Huang	and	Patel,	

2003;	Li	and	Sen,	2003;	Li	et	al.,	2006;	Laraki	et	al.,	2008;	Peters,	Dickerman	and	

Sen,	2009).	This	mutant	constitutively	activated	PKR	and	disrupted	PACT-D3	

dimerisation	(Daher	et	al.,	2009).	The	experiments	which	originally	identified	

PACT	phosphorylation	were	performed	on	the	frameshifted	PACT	(Peters,	Li	and	

Sen,	2006),	and	have	not	been	repeated	on	the	native	sequence.			
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Table	1.1	Summary	of	viruses	linked	to	TRBP	or	PACT	

Virus	 Reference	 Details	

Viruses	linked	to	TRBP	and	PACT	

Newcastle	disease	
virus	(NDV)	

(Iwamura	et	
al.,	2001)	

Overexpressing	PACT	increased	type	1	
interferon	production	from	NDV	
infection,	potentially	due	to	interaction	
with	RIG-I.	

Sendai	virus	 (Kok	et	al.,	
2011)	

RIG-I	activation	was	enhanced	by	PACT	
(note	conflict	with	(Marques	et	al.,	
2008)).	

Herpes	simplex	virus	
1	(HSV-1)	

(Peters	et	
al.,	2002;	
Kew	et	al.,	
2013)	

HSV-1	protein	Us11	reduces	type	1	
interferon	production	due	to	PACT.	
Blocks	PACT	interaction	with	PKR	
and/or	RIG-I	

Ebola	virus	 (Fabozzi	et	
al.,	2011;	
Luthra	et	al.,	
2013)	

Viral	proteins	VP30	and	VP35	interfere	
with	RNAi	and	interact	with	TRBP,	PACT	
and/or	Dicer.	PACT	overexpression	
inhibits	viral	replication,	while	VP35	
prevents	PACT	from	activating	RIG-I.		

Influenza	 (Tafforeau	
et	al.,	2011)	

Viral	proteins	interact	with	PACT,	
resulting	in	increased	viral	replication.	

MERS-CoV	 (Siu	et	al.,	
2014)	

Viral	protein	4a	inhibited	PACT	
activation	of	RIG-I,	resulting	in	reduced	
interferon	production.		

HIV-1	 (Bennasser,	
Yeung	and	
Jeang,	2006;	
Sanghvi	and	
Steel,	2011a,	
2011b)	

TRBP	blocks	PKR	activation	by	HIV	
transcripts.	HIV	was	suggested	to	
disrupt	RNAi	by	sequestering	TRBP,	but	
this	is	disputed.	

Encephalomyocarditis	
virus	(EMCV);	
Theiler's	murine	
encephalitis	virus	
(TMEV)	

(Komuro	et	
al.,	2016)	

Knockdown	of	TRBP	reduced	interferon	
b	production	in	infected	cells.	

Viruses	found	not	to	depend	on	PACT	

Sindbis	virus;	EMCV	 (Iwamura	et	
al.,	2001)	

Overexpressing	PACT	had	no	effect	on	
type	I	interferon	response.	

EMCV;	vesicular	
stomatitis	virus	
(VSV);	Sendai	virus	

(Marques	et	
al.,	2008)	

Found	no	difference	between	PACT	
knockout	cells	vs	wild-type.	
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1.5.3 Links	between	RNA	interference	and	viral	sensing	in	mammals	

In	response	to	infection	with	RNA	viruses,	invertebrates	and	plants	are	capable	of	

producing	antiviral	siRNA	targeting	the	viral	genome	or	RNA	products	(Voinnet,	

2005;	Ding,	2010).	In	contrast,	mammals	do	not	generally	produce	detectable	

levels	of	siRNA	during	viral	infection,	and	siRNA	is	not	thought	to	form	a	major	

part	of	the	antiviral	response	in	most	cell	types	(Cullen,	2006;	Backes	et	al.,	2014).	

Instead	of	processing	viral	dsRNA	into	siRNA,	it	triggers	the	interferon	system	

through	RIG-I	or	other	pattern	recognition	receptors,	as	described	above.	

Recently,	several	studies	have	observed	siRNA	production	in	mammalian	cells	

with	artificially	inactivated	interferon	systems	(Benitez	et	al.,	2015;	Maillard	et	al.,	

2016),	or	in	undifferentiated	cells	with	naturally	attenuated	interferon	responses	

(Flemr	et	al.,	2013;	Maillard	et	al.,	2013).	This	suggests	that	the	interferon	system	

is	incompatible	with	siRNA	biogenesis,	and	may	have	supplanted	it	in	

differentiated	cells	(tenOever,	2016).	

1.6 Other	functions	of	PACT	and	TRBP	

1.6.1 Fertility	and	development	

Several	mouse	models	of	PACT	and	TRBP	depletion	have	exhibited	fertility	and	

developmental	defects,	but	interpretation	of	their	phenotypes	has	proven	

challenging	to	date.	Complete	PACT	deletion	resulted	in	embryonic	lethality	for	

homozygous	null	mice	(Bennett	et	al.,	2008),	while	deletion	of	TRBP	caused	a	

reduction	in	size,	and	a	severe	male	fertility	defect	(Zhong	et	al.,	1999).	Two	

further	mouse	models	of	PACT	disruption	(a	truncation	after	domain	2	that	

produced	no	detectable	protein	expression,	and	a	mutation	in	domain	2)	resulted	

in	a	similar	phenotype	to	TRBP	deletion,	exhibiting	slow	growth,	reduced	fertility,	

and	defects	in	ear	and	face	development	(Rowe	et	al.,	2006;	Dickerman	et	al.,	

2011).	These	could	be	attributed	(at	least	in	part)	to	problems	in	hormone	

production	caused	by	reduced	growth	of	the	anterior	pituitary	gland	(Peters	et	al.,	

2009).		

Surprisingly,	the	development	and	fertility	defects	of	these	PACT	depletion	mouse	

models	could	be	rescued	by	additionally	knocking	out	PKR	function,	suggesting	

that	PACT	disruption	leads	to	inappropriate	activation	of	PKR,	at	least	in	the	

anterior	pituitary	gland	(Dickerman	et	al.,	2015).	This	implies	that	PACT	plays	
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only	a	minor	role	in	miRNA	biogenesis,	consistent	with	results	from	PACT	

knockout	cell	lines	(Kim	et	al.,	2014),	but	conflicting	with	many	other	cell	biology	

studies	(see	section	1.3.4).	The	complete	rescue	of	the	fertility	defect	is	perhaps	

unexpected,	as	a	number	of	studies	have	found	TRBP	and	PACT	to	be	highly	

expressed	in	the	testis	(Lee,	Fajardo	and	Braun,	1996;	Siffroi	et	al.,	2001;	Suzuki	

and	Yokota,	2014).	Additionally,	the	Drosophila	homologue	Loqs	has	been	shown	

to	be	important	for	fertility	and	the	maintenance	of	germline	stem	cells,	despite	

the	lack	of	PKR	in	insects	(Bennett	et	al.,	2008).	

1.6.2 Early	onset	dystonia-parkinsonism	

In	humans,	point	mutations	in	PACT	have	been	implicated	in	numerous	cases	of	

heritable	dystonia-parkinsonism	(Camargos	et	al.,	2008,	2012;	Zech	et	al.,	2014).	

Presentation	varies,	but	generally	patients	experience	progressively	worsening	

dystonia	starting	in	childhood	or	early	adulthood,	sometimes	together	with	the	

features	of	Parkinson’s	disease.	Other	than	this,	patients	appear	neurologically	

normal.	

The	original	study	designated	the	locus	responsible	as	DYT16,	and	identified	PACT	

P222L	as	the	causative	mutation	(Camargos	et	al.,	2008).	This	falls	in	the	centre	of	

the	highly	conserved	region	in	the	N-terminal	extension	of	PACT	domain	3	(Figure	

1.4A).	Although	the	residues	surrounding	it	are	highly	conserved,	P222	is	not	well	

conserved	among	PACT	homologues	in	other	species,	and	is	replaced	by	valine	in	

TRBP.	Other	causative	mutations	in	PACT	domains	1	and	2	have	since	been	

identified	(Zech	et	al.,	2014;	de	Carvalho	Aguiar	et	al.,	2015).	

A	recent	study	has	reported	that	PACT	P222L	mutation	alters	the	kinetics	of	PKR	

activation	in	patient	cells,	and	potentially	alters	PACT’s	affinity	for	PKR	and	TRBP	

(Vaughn	et	al.,	2015).	This	suggests	that	PACT-associated	dystonia	may	be	caused	

by	improper	activation	of	PKR,	similar	to	the	developmental	defects	seen	for	PACT	

depletion	(section	1.6.1).	The	symptoms	of	these	two	disruptions	of	PACT	are	

quite	different,	perhaps	due	to	the	stronger	PKR/PACT	P222L	interaction	in	one	

case,	and	the	absence	of	PACT/PKR	interactions	in	the	other.	Alternatively,	PACT	

function	may	be	impaired	in	different	cell	types	in	these	two	conditions.		
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1.7 General	features	and	evolutionary	history	of	PACT	and	TRBP	
homologues	

Recent	advances	in	next-generation	sequencing	have	vastly	reduced	the	amount	of	

time	and	effort	to	sequence	an	entire	genome	(Goodwin,	McPherson	and	

McCombie,	2016).	As	a	result,	there	has	been	an	explosion	in	the	number	of	

organisms	for	which	genomes	are	available,	albeit	often	in	draft	form.	This	allows	

the	evolutionary	relationships,	conservation	and	divergence	of	PACT	and	TRBP	to	

be	examined	across	a	broad	range	of	species.	

In	the	phylogenetic	tree,	distinct	clades	can	be	identified	for	PACT,	TRBP	and	Loqs	

(shown	by	coloured	boxes	in	Figure	1.9).	Interestingly,	the	PACT	and	TRBP	clades	

are	more	closely	related	to	one	another	than	to	the	Loqs	clade.	This	implies	that	

PACT	and	TRBP	diverged	from	one	another	after	the	split	from	Loqs,	but	before	

the	divergence	of	ray-finned	fishes	(represented	by	Danio	rerio)	and	vertebrates.	

This	is	supported	by	the	presence	of	only	a	single	PACT	homologue	in	the	model	

chordate	Branchiostoma	floridae.	Note	however	that	the	bootstrap	confidence	

values	for	the	nodes	between	PACT,	TRBP	and	Loqs	are	all	substantially	below	1,	

indicating	that	the	tree	architecture	here	is	slightly	ambiguous.	

R2D2	and	RDE-4	are	dsRBD-containing	proteins	from	D.	melanogaster	and	C.	

elegans	respectively	which	have	been	shown	to	interact	with	Dicer	proteins	to	

assist	small	RNA-mediated	silencing	(Liu	et	al.,	2003;	Tomari	et	al.,	2004;	Parker,	

Eckert	and	Bass,	2006).	Examination	of	the	sequence	alignment	shows	that	while	

these	proteins	show	weak	sequence	similarity	in	the	first	two	domains,	

conservation	of	domain	3	is	extremely	poor,	and	lacks	residues	conserved	in	

almost	all	other	known	dsRBDs	(Masliah,	Barraud	and	Allain,	2013).		
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Drosophila_melanogaster_Loqs

Felis_catus_TRBP

Xenopus_laevis_TRBP

Rattus_norvegicus_PACT

Danio_rerio_TRBP

Homo_sapiens_Staufen

Danaus_plexippus_Loqs

Felis_catus_PACT

Rattus_norvegicus_TRBP

Mus_musculus_TRBP

Daphnia_pulex_Loqs

Drosophila_melanogaster_R2D2

Crassostrea_gigas_PACT/TRBP

Caenorhabditis_elegans_RDE-4

Danio_rerio_PACT

Apis_mellifera_R2D2-like

Crassostrea_gigas_Staufen

Bos_taurus_PACT

Homo_sapiens_PACT

Apis_mellifera_Loqs

Anolis_carolinensis_PACT

Branchiostomata_floridae_PACT/TRBP

Anolis_carolinensis_TRBP

Homo_sapiens_TRBP

Xenopus_laevis_PACT

Bos_taurus_TRBP

Mus_musculus_PACT

1.0

0.997

0.733

0.621

0.786

1.0

0.651

0.932

0.942

0.76

0.999

1 Homo_sapiens_PACT 201 LL TW SLRNS GEKI L L........................IS TNVVGHSLGC H P NL KRSL ...SIPNTDYIQL S
Bos_taurus_PACT 201 LL TW SLRNS GEKI L L........................IS TNMVGHSLGC H P NL KRSL ...SIPNTDYIQL S
Mus_musculus_PACT 201 LL TW SLRNS GEKI L L........................IS TNVVGHSLGC H P NL KRSL ...SLPNTDYIQL S
Rattus_norvegicus_PACT 201 LL TW SLRNS GEKI L L........................IS TNVVGHSLGC H P NL KRSL ...SLPNTDYIQL S
Felis_catus_PACT 176 LL TW SLRNS GEKI L L........................IS TNVVGHSLGC H P NL KRSL ...SIPNTDYIQL S
Anolis_carolinensis_PACT 392 LL TW LRNS EKI L L........................IS N..LSRNLGC DT SR TL KMSP ...SIPNTDYVHL R
Xenopus_laevis_PACT 197 LL TW S RNS GEKI L L........................IP NKLIGNKMGC D M S SM KRSP ...SIPNTDYVKM K
Danio_rerio_PACT 180 LSLRNS GEK L L...........................EITWSPPSRVYVE T VSL KRTP ...SLPNTDYIQM L

2 Homo_sapiens_TRBP 247 LL TW SLRNS GEKI L L.IGVG...................SR DGLRNRGPGC D V LS RSCS GSLGALGPACCRV S
Bos_taurus_TRBP 247 LL TW SLRNS GEKI L L.IGVG...................SR DGLRNRGPGC D V LS RSCS GSLGALGPACCSV S
Felis_catus_TRBP 247 LL TW SLRNS GEKI L L.IGVG...................SR DGLRNRGPGC D V LS RSCS GALGALGPACCSV S
Mus_musculus_TRBP 246 LL TW SLRNS GEKI L.IGVS...................SR DGLRNRGPGC D V LS RSCSVGSLGALGSACCSV S
Rattus_norvegicus_TRBP 246 LL TW SLRNS GEKI L.IGVS...................SR DGLRNRGPGC D V LS RNCSVGSLGSLGSACCSI S
Xenopus_laevis_TRBP 238 LL TW SLRNS GEKI L L.V......................GK DGSRSRGTAC D S LH RSNP ...TILSSGFCSL Q
Anolis_carolinensis_TRBP 245 LTW SLRNS GEKI L L.ITAG...................NKMDGVKGRGSGC D A LH KSNP ...GVLNAGFCSL E
Danio_rerio_TRBP 227 LL TW SLRNS GEKI L L.MQIG...................GR EGGKSKGLGC D A LQ RCHP GQSDSIDSNFCSL R

3 Branchiostomata_floridae_PACT/TRBP 207 LTW LRNS GEKI L L........................TGVKPMHAARIGI AT A TR KSTS ...STPNSNYCQL Q
Crassostrea_gigas_PACT/TRBP 197 LN LLNAS....EIRASYTALKEGKVKLPIPSPQQNKEIQQFYQKIK N.....HKIKNSK ...TAPATNYCQM Q

4 Drosophila_melanogaster_Loqs 340 LL L N G K L LSSE........NYYGELKDI..SVPT TTQHSNKVSQFHKT K AT K LLK QKTC ...KNNKIDYIKL G
Danaus_plexippus_Loqs 277 LL L S G L LAR...........YADLKDS..KITT TTSHSHKVSQFHKH KQ V PNLVK QVTP ...NNKDFNFVQF Q
Apis_mellifera_Loqs 259 LL SL S G K L LAR...........YADLK..GSKIST TTIHSLKVSQFHK KS T V LFE QNTC N...DGDVNLVQF Q
Daphnia_pulex_Loqs 167 LL.....LED...........................................EDEEVA ...KDPCLDYFQL R

1 Homo_sapiens_PACT 247 F Y DI E QCL P V G A AA AL YE EQ L S G ELST T CH S N Q LKIIAK G NIT D L AN QY A S I GISCGN QSD H IAERK
Bos_taurus_PACT 247 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S N Q LKIIAK G NIT L AN QY A S I GISCSS QSD H IAERK
Mus_musculus_PACT 247 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S N Q LKIIAS G NIT L AN QY A S I GISCGN QSD H IAERK
Rattus_norvegicus_PACT 247 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S N Q LKIIAK G SIT L AN QY A S I GISCGN QSD H IAERK
Felis_catus_PACT 222 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S N Q LKIIAK G NIT L AN QY A S I GISCGN QSD H IAERK
Anolis_carolinensis_PACT 436 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH N Q LKIMIAQ G HAT L VN QF A H I TGISWGN HND H AGRK
Xenopus_laevis_PACT 243 F Y DI E QCL P V G A AA AL YE L S G ELST T CH N Q LKIMDVAE LD NLT D L VN QY A N I TGISCGN HND H CIKK
Danio_rerio_PACT 223 F Y DI E QCL P V G A AA AL YE E G ELST T CH S N Q KISL LG QVT I D LTVN QY V R V GVTSSN HNA H I MVASKH

2 Homo_sapiens_TRBP 300 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S Q LKIMLSE A HVS L LS LC V Q A ATTREA RGE RR AGSK
Bos_taurus_TRBP 300 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S Q LKIMLSE A HVS L LS LC V Q A AATREA RGE RR AGSK
Felis_catus_TRBP 300 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH S Q LKIMLSE A HVS L LS LC V Q A AATREA RGE CR AGSK
Mus_musculus_TRBP 299 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T C S Q L IMLSE A HVS L LS LC V Q A Y ATTREA RGD HR R AGSK
Rattus_norvegicus_TRBP 299 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T C S Q L IMLSA A HVS L LS LC V Q A Y ATTREA RGD RR R AGSK
Xenopus_laevis_TRBP 285 F Y DI E QCL P V G A AA AL YEQ L S G ELST T CH S N Q LKIMDLSE S QIS D R LS LC V Q T ATTRDA RAN H AGGK
Anolis_carolinensis_TRBP 295 F Y DI E QCL P V G A AA AL YE EQ L S G ELST T CH S N Q LKIMLSE S DIS D M LS LY V Q T ATSRHA RVD R AGGK
Danio_rerio_TRBP 280 F Y DI E QCL P V G A AA AL YE EQ L E S G ELST T CH N Q LKIMLSE R GVS R LS LY V Q I FASSLDA RAS H AGGK

3 Branchiostomata_floridae_PACT/TRBP 253 F Y DI E QCL P V G A AA AL YE EQ L E S L T T CH N Q LK MLAE N EVE L ASSLH VQ T Q V QGHTRDE HAH H L VRRA
Crassostrea_gigas_PACT/TRBP 258 F Y DI E QCL P V G A AA AL YE Q S G LST CH N Q LK MISEV R EVS M A I TK QR VQ L VA TGQTVDE HAH H L TKT.

4 Drosophila_melanogaster_Loqs 400 F Y DI E QCL P V G A AA AL YE E E G LST CH S N LKIMIAT NQ EVT V KTFS QF VQ L VG GPTAAD QRH Q E TKK.
Danaus_plexippus_Loqs 334 F Y DI E QCL P V G A AA AL YE EQ E G LST C S N LKIMIAS S EVT V KTMT RS VQ L VA Y GLTSKD QSS Q E TKK.
Apis_mellifera_Loqs 316 F Y DI E QCL P V G A AA AL YE EQ E S G LST C N LKIMIAS Q EVT V K IS KC VQ L VA Y CGVTSKD QAS Q E TKK.
Daphnia_pulex_Loqs 189 F Y DI E QCL P V G A AA AL YE EQ E G S S LK MISA K DAT V KTHS RY LTM LT IA VC GSSYEE QKE FS H L TKK.

A

B
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Figure	1.9.	Phylogenetic	analysis	of	PACT,	TRBP	and	Loqs	homologues	

The	amino	acid	sequences	of	PACT,	TRBP	and	Loqs	homologues	were	retrieved	from	

NCBI,	supplemented	in	some	cases	with	organism-specific	databases	(Table	1.2).	

These	were	aligned	using	ClustalX	with	default	settings,	and	a	phylogenetic	tree	

constructed	from	ungapped	positions.	A)	Phylogenetic	tree	of	PACT,	TRBP,	Loqs	and	

R2D	sequences.	Staufen	sequences	were	used	as	an	outgroup,	as	3	of	their	5	dsRBDs	

can	be	aligned	to	PACT,	but	their	different	domain	structure	implies	they	diverged	

prior	to	all	PACT,	TRBP	and	Loqs	homologues	examined	here.	Selected	nodes	are	

labelled	with	the	bootstrap	value	from	1000	resamplings.	B)	A	subset	of	the	main	

alignment	showing	domain	3	of	PACT,	TRBP	and	Loqs	sequences.	

	

The	third	domain	of	RDE-4	has	been	shown	to	be	required	for	its	effect	on	miRNA	

biogenesis,	so	it	is	possible	that	this	domain	is	still	responsible	for	interacting	with	

Dicer,	perhaps	through	a	different	interface	(Parker,	Eckert	and	Bass,	2006).	As	

the	third	domains	of	R2D2	and	RDE-4	are	so	divergent	from	PACT,	TRBP	and	Loqs,	

they	are	excluded	from	the	following	discussion.	

1.7.1 Similarities	between	PACT	homologues	

There	are	a	number	of	sequence	features	common	to	all	the	PACT,	TRBP	and	Loqs	

sequences	examined.	The	presence	of	these	features	in	both	mammalian	and	

insect	sequences	implies	that	they	have	been	conserved	for	at	least	500-600	

million	years,	and	are	therefore	crucial	to	the	common	function	of	these	proteins	

(Wray,	2015).	

Firstly,	the	majority	of	the	motifs	previously	identified	as	required	for	the	dsRBD	

fold	are	conserved	in	all	three	domains	(Masliah,	Barraud	and	Allain,	2013).	

Similarly,	the	residues	required	for	dsRNA	binding	(in	particular,	the	histidine	in	

loop	b-12	and	the	lysines	in	helix	a-2)	are	conserved	in	domains	1	and	2,	but	not	

in	domain	3.	Together,	these	two	considerations	account	for	almost	all	the	

perfectly	conserved	residues	in	domains	1	and	2.	

The	third	domain	contains	a	number	of	highly	conserved	residues	that	cannot	be	

explained	by	dsRBD	structure	alone.		Examples	include	the	YLDIEE	motif	in	strand	

b-1,	the	QCL	motif	in	strand	b-2	and	the	VC[H/Y]	in	strand	b-3.	The	majority	of	
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these	conserved	residues	fall	within	the	b-sheet	region,	which	was	recently	shown	

to	form	the	Dicer-binding	interface	(Wilson	et	al.,	2015).		

	
Table	1.2.	PACT	and	TRBP	homologue	sequences	
Species	 Protein	 Accession	

Homo	sapiens	 PACT	 O75569	

Felis	catus	 PACT	 XP_006935445	

Rattus	norvegicus	 PACT	 EDL79230	

Mus	musculus	 PACT	 EDL27212	

Bos	taurus	 PACT	 NP_001039335	

Anolis	carolinensis	 PACT	 XP_008116415	

Xenopus	laevis	 PACT	 Q7ZYA5	

Danio	rerio	 PACT	 XP_005172565	

Homo	sapiens	 TRBP	 NP_599150	

Bos	taurus	 TRBP	 NP_001069146	

Felis	catus	 TRBP	 XP_003988820	

Rattus	norvegicus	 TRBP	 NP_001030113	

Mus	musculus	 TRBP	 NP_033345	

Xenopus	laevis	 TRBP	 XP_018100523	

Anolis	carolinensis	 TRBP	 XP_008101858	

Danio	rerio	 TRBP	 NP_956291	

Branchiostoma	floridae	 PACT/TRBP	 XP_002587993	

Crassostrea	gigas	 PACT/TRBP	 XP_011456094	

Drosophila	melanogaster	 Loqs	 AAF53295	

Danaus	plexippus	 Loqs	 EHJ63609	

Apis	mellifera	*	 Loqs	 gnl|Amel_4.5|GB47214-PA	

Daphnia	pulex	 Loqs	 EFX79291	

Drosophila	melanogaster	 R2D2	 AAF52561	

Apis	mellifera	 R2D2-like	 XP_006560091	

Caenorhabditis	elegans	 RDE-4	 AAL61544	

Homo	sapiens	 Staufen	 CAB40082	

Crassostrea	gigas	 Staufen	 XP_011432604	

*	The	accession	is	for	the	Amel_4.5_OGSv3.2_pep	database	of	predicted	protein	

sequences	based	on	the	Apis	mellifera	genome	assembly	4.5,	not	for	NCBI.	
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1.7.2 Differences	between	PACT	homologues	

The	maintenance	of	both	PACT	and	TRBP	in	vertebrates	suggests	they	have	

distinct	functions,	while	the	differences	in	small	RNA	biogenesis	and	function	

between	vertebrates	and	arthropods	suggests	that	the	function	of	Loqs	will	be	

somewhat	different	again.	Sequence	comparison	can	shed	light	on	which	parts	of	

the	protein	are	differentially	selected	in	these	different	lineages.	

A	particularly	striking	difference	is	the	length	of	the	inter-domain	linkers.	The	

linker	between	the	first	two	domains	of	PACT	is	approximately	25	residues	long,	

while	the	equivalent	region	of	TRBP	is	approximately	67	residues	long.	The	

specific	sequence	of	the	linker	is	not	well	conserved,	but	in	both	cases	contains	a	

high	proportion	of	proline	residues.	These	features	are	consistent	with	this	region	

being	unstructured	as	was	previously	found	for	human	TRBP	(Benoit	et	al.,	2013),	

and	suggest	that	the	main	function	of	this	linker	is	to	determine	the	spatial	

separation	between	domains	1	and	2.	Linker	length	has	been	found	to	tune	RNA-

binding	affinity	of	other	multidomain	proteins,	and	could	plausibly	perform	a	

similar	role	in	PACT	and	TRBP	(Shamoo,	Abdul-Manan	and	Williams,	1995).	The	

length	of	the	linker	between	TRBP	domains	1	and	2	has	recently	been	shown	to	

influence	1	dimensional	diffusion	of	the	protein	along	dsRNA	(Koh	et	al.,	2016).	

While	the	function	of	this	diffusion	is	unknown,	it	could	be	speculated	that	

differences	in	diffusion	between	TRBP	and	PACT	would	affect	the	mobility	of	

miRNAs	and	pre-miRNAs	within	the	Dicer	complex.	

The	linker	between	the	second	and	third	domains	also	differs	in	length,	being	

approximately	47	residues	long	in	PACT	and	67	residues	long	in	TRBP.	This	linker	

does	contain	a	15	amino	acid	region	that	is	extremely	highly	conserved	among	

vertebrate	PACT	and	TRBP	sequences,	and	which	is	thought	to	form	an	a-helix	

that	docks	onto	the	third	dsRBD	(Wilson	et	al.,	2015).	This	region	is	not	conserved	

with	Loqs,	suggesting	it	may	function	in	a	vertebrate-specific	role	of	PACT	and	

TRBP,	such	as	in	interferon-mediated	immune	responses.	The	remainder	of	the	

linker	is	not	well	conserved	and	contains	a	high	proportion	of	charged	and	

hydrophilic	residues,	so	likely	acts	mainly	to	determine	the	distance	between	the	

second	and	third	domains.	This	distance	will	affect	the	positioning	of	the	dsRNA-

binding	domains,	and	any	associated	RNA	molecules,	within	the	Dicer	complex.	
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Neither	linker	sequence	nor	length	is	well	conserved	among	the	Loqs	sequences	

examined	here,	so	no	conclusions	can	be	drawn	about	their	function.	There	are	

also	numerous	sequence	differences	within	the	dsRBDs	of	all	three	proteins,	but	

these	are	very	difficult	to	interpret	without	experimental	data.		

1.8 Summary	

PACT	and	TRBP	each	have	two	canonical	dsRBDs	and	one	non-canonical	dsRBD,	

separated	by	linker	regions	that	are	predicted	to	be	flexible.	There	is	about	50%	

sequence	identity	between	equivalent	domains,	but	much	poorer	conservation	in	

the	linkers,	which	are	substantially	longer	in	TRBP.	The	first	two	domains	interact	

non-specifically	with	RNA,	while	the	third	is	thought	to	mainly	mediate	protein-

protein	interactions.	

PACT	and	TRBP	have	been	conclusively	shown	to	associate	with	the	Dicer	

complex,	and	almost	certainly	increase	its	affinity	for	dsRNA.	TRBP	can	alter	iso-

miR	distribution,	and	this	can	affect	which	strand	is	loaded	into	Argonaute.	

Beyond	this,	the	functions	of	PACT	and	TRBP	in	miRNA	biogenesis	are	unclear,	

due	to	conflicts	between	the	results	of	different	studies.	

PACT	can	likely	increase	activation	of	RIG-I	in	response	to	viral	RNA,	but	the	

mechanism	is	unclear.	Both	PACT	and	TRBP	can	inhibit	PKR,	while	

phosphorylated	PACT	can	also	activate	it,	with	the	caveat	that	these	experiments	

were	conducted	with	a	truncated	version	of	PACT.	The	mechanism	by	which	PACT	

and	TRBP	regulate	PKR	has	not	been	resolved,	but	is	dependent	on	the	third	

domain.	

PACT	is	important	for	the	development	of	the	anterior	pituitary	gland,	potentially	

by	preventing	inappropriate	PKR	activation.	Mutations	in	PACT	can	cause	early	

onset	dystonia/Parkinsonism,	again	potentially	through	regulation	of	PKR.	Both	

TRBP	and	PACT	are	important	for	fertility	and	are	expressed	in	germ	cells,	but	this	

are	remains	poorly	understood.	Overall,	there	is	a	disconnect	in	our	

understanding	of	PACT	and	TRBP	between	the	molecular	and	whole	organism	

levels,	especially	their	role	in	miRNA	biogenesis.	
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1.9 Aims	of	this	study	

It	is	clear	that	the	third	domains	of	PACT	and	TRBP	are	important	both	for	binding	

to	Dicer	in	the	miRNA	biogenesis	pathway,	and	for	their	different	effects	on	PKR	in	

response	to	viral	infection	and	cellular	stress.	However,	no	structural	information	

about	these	domains	was	available	at	the	outset	of	this	project,	and	very	little	was	

known	about	the	structure	of	class	B	dsRBDs	more	generally,	let	alone	how	they	

interact	with	protein	binding	partners.	Biochemical	data	had	shown	that	PACT	

domain	3	could	homodimerise,	and	that	this	may	be	regulated	by	phosphorylation,	

but	this	dimerisation	had	not	been	studied	in	the	context	of	miRNA	biogenesis.	

The	stoichiometry	and	organisation	of	the	Dicer	complex	depends	on	whether	

PACT	homodimerisation	and	Dicer-binding	can	occur	simultaneously.	

Therefore,	this	study	has	three	major	aims:	

1) Investigate	the	structure	of	PACT-D3,	to	determine	whether	it	

deviates	from	the	canonical	dsRBD	fold.	

2) Characterise	the	dimerisation	mechanism	of	PACT-D3	and	TRBP-D3,	

to	establish	whether	it	is	compatible	with	Dicer-binding.	

3) Explore	whether	phosphorylation	alters	dimerisation	behaviour.	
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2. Protein	Production	Methods	
2.1 Protein	expression	in	E.	coli	

2.1.1 Preparation	of	vectors	

Codon-optimised	DNA	sequences	were	ordered	from	Eurofins	Genomics	(see	

Appendix	1).	These	were	then	cloned	into	pETFPP	expression	vectors	developed	

by	the	University	of	York	Technology	Facility,	which	are	based	on	the	commonly	

used	pET-28a	plasmid	(Figure	2.1).	These	vectors	contain	a	gene	conferring	

resistance	to	kanamycin,	and	an	open	reading	frame	(ORF)	containing	a	6xHis	tag	

(MGSSHHHHHHSS),	a	solubility	tag,	and	a	human	rhinovirus	(HRV)	3C	protease	

cleavage	site	(GLEVLFQ^GPAM).	Four	solubility	tags	were	tested:	Maltose	Binding	

Protein	(MBP),	Glutathione-S-transferase	(GST),	Escherichia	coli	immunity	protein	

9	(Im9)	(James,	Kleanthous	and	Moore,	1996)	and	Green	Fluorescent	Protein	

(GFP).	In	some	cases,	a	construct	was	tested	with	a	6xHis	tag	and	HRV	3C	cleavage	

site,	but	no	solubility	tag	(His).	

The	protein	of	interest	was	cloned	directly	after	the	3C	cleavage	site	using	an	

InFusion	cloning	strategy,	eliminating	the	need	for	specific	restriction	sites	

(cloning	was	performed	by	the	University	of	York	Technology	Facility).	Upstream	

of	the	ORF	is	a	T7	promoter,	and	a	lac	operator	element	which	allows	protein	

expression	only	when	induced	by	isopropyl	β-D-1-thiogalactopyranoside	(IPTG).	

All	constructs	were	sequenced	before	use	to	ensure	no	errors	had	been	introduced	

during	cloning.	Note	that	because	HRV	3C	protease	cleaves	between	glutamine	

and	glycine,	the	non-native	sequence	GPAM	remain	at	the	N-terminus	of	the	

protein	of	interest.	
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Figure	2.1.	Schematic	of	the	pETFPP	expression	vector	

2.1.2 Transformation	into	E.	coli	strain	BL21	(DE3)	

The	BL21	(DE3)	strain	of	E.	coli	was	used	for	protein	expression	for	two	reasons.	

Firstly,	many	of	the	genes	encoding	proteases	have	been	deleted,	which	helps	

prevent	degradation	of	the	overexpressed	protein.	Secondly,	it	expresses	the	T7	

polymerase	under	the	control	of	a	lac	operator,	which	is	necessary	for	

transcription	of	the	mRNA	encoding	the	protein	of	interest.	

For	the	transformation,	50	µL	of	chemically	competent	E.	coli	was	incubated	on	ice	

with	2	µL	of	plasmid	(>100	ng/µL)	for	30	minutes	in	a	1.5	mL	tube.	The	mixture	

was	then	incubated	at	42	˚C	for	45	seconds	followed	by	incubation	on	ice	for	2	

minutes.	450	µL	of	LB	media	was	added,	and	the	mixture	was	incubated	at	37	˚C	

for	30-40	minutes,	with	agitation.	The	cells	were	then	grown	overnight	at	37	˚C	on	

LB/agar	plates	supplemented	with	50	µg/mL	kanamycin.		

2.1.3 Site-directed	mutagenesis	

PrimerX	(http://www.bioinformatics.org/primerx/)	was	used	to	design	

mutagenesis	primers	with	a	length	of	25-45	nt,	with	a	melting	temperature	of	at	

least	78˚C,	and	terminating	in	at	least	one	C	or	G.	Where	possible,	the	CG	content	

was	kept	between	40%	and	60%.	The	mutagenesis	reaction	was	carried	out	on	

100	ng	of	freshly	prepared	plasmid	DNA	using	the	QuikChange	Lightning	

Solubility tag

T7 promoter &
Lac operator

6His

HRV 3C 
cleavage site

Protein of 
interest KanR

Ori

LacI

T7 terminator

pETFPP
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mutagenesis	kit	(Agilent),	according	to	the	manufacturer’s	instructions.	An	

extension	period	of	3	m	30	s	was	used	in	the	thermocycle.	The	original,	

methylated	plasmid	was	digested	with	DpnI,	and	the	product	transformed	into	

XL10-Gold	supercompetent	cells.	All	mutants	were	verified	by	sequencing.		

2.1.4 Culture	and	overexpression	

10	mL	Luria	Broth	(LB)/kanamycin	was	inoculated	with	a	single	colony,	and	

grown	for	6	hours	at	37	˚C	with	shaking	at	120-180	rpm	(media	and	buffer	recipes	

are	given	in	section	4	below).	The	optical	density	at	600	nm	(OD600)	was	

measured,	then	a	volume	Vin	was	centrifuged	and	resuspended	in	50	mL	

M9/kanamycin	minimal	media,	such	that	the	new	OD600	was	0.05.	
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This	M9	preculture	was	grown	for	16	hours	at	37	˚C.	Then	the	OD600	was	

measured,	and	a	volume	resuspended	in	1	L	M9/kanamycin	to	give	a	starting	

OD600	of	0.05.		This	culture	was	grown	at	37	˚C	until	it	reached	an	OD600	of	0.6-0.8,	

at	which	point	it	was	supplemented	with	IPTG	to	a	final	concentration	of	1	mM.	It	

was	then	grown	for	14-16	hours	at	20	˚C,	and	then	centrifuged	for	20	mins	at	5000	

RCF		to	pellet	the	cells.	The	cell	pellet	was	then	lysed	immediately	(as	described	

below),	or	stored	at	-20	˚C	until	ready	for	use.	

2.2 Protein	purification	

2.2.1 Assessing	solubility	of	constructs	

To	determine	whether	the	constructs	were	expressed	and	soluble,	cultures	were	

grown	as	above,	but	were	induced	and	harvested	after	the	50	mL	M9	culture.	Cell	

pellets	were	resuspended	in	a	volume	of	lysis	buffer	supplemented	with	1	mg/mL	

hen	egg	lysozyme	(Sigma)	and	0.5%	(v/v)	Triton	X-100,	to	give	a	final	OD600	of	40.	
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The	cell	suspension	was	then	agitated	at	30˚C	for	40	minutes,	then	centrifuged	for	

5	minutes	at	20000	relative	centrifugal	force	(RCF).	The	insoluble	pellet	was	then	

resuspended	in	the	same	volume	of	lysis	buffer,	and	samples	of	total	protein	

(before	centrifugation),	supernatant	and	pellet	were	examined	by	SDS-PAGE	

(sodium	dodecyl	sulphate	polyacrylamide	gel	electrophoresis).	
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2.2.2 Large-scale	purification	

1	litre	cultures	of	the	MBP-tagged	constructs	were	grown	as	described	above,	and	

lysed	using	either	continuous	flow	French	press	or	sonication.	These	methods	

were	chosen	over	chemical	lysis	for	two	reasons:	firstly,	chemical	lysis	efficiency	

was	quite	variable	when	the	reaction	was	scaled	up	to	larger	volumes,	possibly	

due	to	less	effective	sample	mixing;	secondly,	the	high	concentration	of	lysozyme	

used	proved	difficult	to	separate	using	nickel	affinity	chromatography.	Lysis	by	

French	press	or	sonication	was	more	reproducible,	and	avoided	the	need	to	

separate	exogenous	lysozyme.	

Cell	pellets	were	resuspended	in	35	mL	of	lysis	buffer,	and	lysed	by	continuous	

flow	French	press	cooled	to	4	˚C	(Constant	Systems)	or	by	sonication.	In	the	latter	

case,	a	Sonicator	3000	(Misonix)	was	used	to	sonicate	samples	on	ice	in	two	

stages,	with	3	minutes	total	on	time	each	(3	s	on,	3	s	off,	power	level	6),	and	

separated	by	a	10	minute	cool-down	period.	The	lysate	was	then	centrifuged	at	

40000	RCF	for	45	minutes,	and	the	supernatant	passed	over	a	nickel	affinity	

column	equilibrated	in	Ni-IMAC	binding	buffer	at	2	mL/min.	Bound	protein	was	

eluted	with	Ni-IMAC	elution	buffer,	and	concentration	assessed	by	UV	

spectrophotometry	(using	hypothetical	extinction	coefficients	calculated	by	the	

ProtParam	server	(web.expasy.org/protparam/)).	

Table	2.1.	UV	extinction	coefficients	of	PACT	and	TRBP	constructs	

Protein	construct	 Molecular	weight	
(kDa)	

e280	(cm-1	M-1)	

PACT-D3	 8.1	 6000	

PACT-Ext-D3	 11.6	 11600	

TRBP-D3	 8.5	 3100	

TRBP-Ext-D3	 11.9	 8650	

Loqs-D3	 8.1	 4500	
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To	remove	the	solubility	tag	from	the	eluted	protein,	His-tagged	HRV	3C	protease	

(produced	by	the	University	of	York	Technology	Facility)	was	added	in	a	ratio	of	1	

mg	protease	per	50	mg	eluted	protein.	This	mixture	was	dialysed	at	4	˚C	for	14	

hours	against	a	>50-fold	larger	volume	of	20	mM	Tris,	0.5	M	NaCl,	0.5	mM	

dithiothreitol	(DTT),	pH	7.5,	using	a	dialysis	membrane	with	a	molecular	weight	

cut-off	(MWCO)	of	3.5	kDa	(Spectrum	Labs).	DTT	was	necessary	for	efficient	

cleavage,	possibly	by	preventing	oxidation	of	a	catalytic	cysteine	residue	

(Matthews	et	al.,	1994).	A	second	nickel	affinity	purification	was	then	carried	out	

to	separate	the	cleaved	protein	of	interest	(found	in	the	column	flow	through)	

from	the	His-solubility	tag	and	3C	protease.	

To	remove	remaining	impurities	(mostly	MBP	and	uncleaved	protein),	the	protein	

was	first	concentrated	using	spin	columns	with	a	5	kDa	MWCO	(VivaSpin)	to	a	

volume	of	approximately	500	µL.	This	was	then	passed	over	a	S75	Superdex	

16/60	column	(GE	Healthcare)	equilibrated	in	size	exclusion	buffer	(see	Chapter	

6,	section	6.3),	at	a	flow	rate	of	1	mL/min.	Fractions	were	visualised	by	SDS-PAGE,	

and	fractions	containing	the	protein	of	interest	were	pooled	and	concentrated.	For	

samples	requiring	TCEP,	an	additional	dialysis	step	against	50	mL	of	the	TCEP-

containing	buffer	was	performed.	

2.3 SDS-PAGE	

15%	SDS-PAGE	were	hand-cast	using	the	recipes	in	section	2.4.3	below.	Protein	

samples	were	prepared	by	mixing	30	µL	protein,	20	µL	SDS-PAGE	sample	buffer	

and	10	µL	1	M	DTT	and	boiling	for	5	minutes.	10	µL	of	sample	was	loaded	per	lane,	

and	gels	run	at	180-200	V	for	approximately	50	minutes	using	a	mini-PROTEAN	

tetra	cell	system	(BioRad).	Gels	were	then	stained	for	approximately	30	minutes	in	

Coomassie	stain,	then	destained	until	the	bands	were	visible.	Gels	were	imaged	

using	a GeneGenius	Bio	Imaging	System	(Syngene).	
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2.4 Media	and	buffer	compositions	

2.4.1 Media	

LB	media	

Component	 Concentration	(g/L)	

Tryptone	 10	

Yeast	Extract	 5	

NaCl	 10	

Agar	(only	if	making	plates)	 15	

Autoclave.	Optionally	add	50	µg/mL	kanamycin	before	use.	

	

M9	base	

Component	 Concentration	(g/L)	

Na2HPO4	(anhydrous)	 6	

KH2PO4	(anhydrous)	 3	

NaCl	 0.5	

NH4Cl	*	 1	

Adjust	pH	to	6.8-7.2,	then	autoclave.	

*	For	50	mL	cultures,	14NH4Cl	was	used.	For	1	L	cultures,	15NH4Cl	was	used	
(Cambridge	Isotope	Laboratories,	Inc.)	

	

1	L	M9	

Component	 Volume	

M9	base	 1	L	

20%	D-Glucose	*	 10	mL	

1	M	MgSO4	 1	mL	

100	mM	CaCl2	 1	mL	

100	mM	MnCl2	 1	mL	
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50	mM	ZnSO4	 1	mL	

100	mM	FeCl3	 0.5	mL	

500x	Vitamin	Cocktail	 2	mL	

50	mg/mL	Kanamycin	 1	mL	

Nb.	All	components	except	the	M9	base	are	passed	through	a	0.22	µm	filter	before	
use.	

*	When	producing	samples	for	3D	NMR	experiments,	99%	[U-13C]-labelled	D-
glucose	was	used	(Cambridge	Isotope	Laboratories,	Ltd.)	

	

50	mL	M9	500x	vitamin	cocktail	

Component	 Mass	(mg)	

Pyridoxine	 25	

Biotin	 25	

D-pantothenic	acid	hemicalcium	salt	 25	

Folic	acid	 25	

Choline	Chloride	 25	

Niacinamide	 25	

Riboflavin	 2.5	

Thiamine	 125	

Adjust	pH	to	7	to	solubilise,	then	pass	through	0.22	µm	filter.	Adjust	to	pH	5	for	
storage.	
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2.4.2 Lysis	and	purification	

Lysis	buffer	

Component	 Concentration	

Tris	 20	mM	

NaCl	 150	mM	

CaCl	 10	mM	

MgCl	 10	mM	

DNase	I	 20	µg/µL	

RNase	A	 20	µg/µL	

Leupeptin	 1	µg/µL	

	

Nickel	affinity	purification	buffers	

Component	 Ni-IMAC	binding	buffer	 Ni-IMAC	elution	buffer	

Tris	 20	mM	 20	mM	

NaCl	 0.5	M	 0.5	M	

Imidazole	 20	mM	 0.5	M	

Adjust	pH	to	7.5,	then	pass	through	0.22	µm	filter	

	

SEC-MALLS	buffer	

Component	 Concentration	

MES	 20	mM	

NaCl	 150	mM	

Adjust	pH	to	6.5,	then	pass	through	0.22	µm	filter	
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2.4.3 SDS-PAGE	

Acrylamide	gel	recipes	

Component	 15%	resolving	gel	(10	mL)	 4%	Stacking	gel	(5mL)	

30%	Acrylamide	 4.9	mL	 650	µL	

1.5	M	Tris,	pH8.8	 2.5	mL	 -	

0.5	M	Tris	pH	6.8		 -	 1.25	mL	

10%	SDS	 100	µL	 50	µL	

Distilled	H2O	 2.5	mL	 3.05	mL	

10%	APS*	 100	µL	 50	µL	

TEMED*	 10	µL	 5µL	

*	Add	just	before	pouring	

	

SDS-PAGE	Running	buffer	

Component	 Concentration	

Tris	 3	g/L	

Glycine	 14	g/L	

SDS	 1	g/L	

	

SDS-PAGE	sample	buffer	

Component	 	

1	M	Tris	pH	7.2	 1	mL	

Distilled	H2O	 3	mL	

10%	SDS	 10	mL	

Bromophenol	blue	 0.06	g	

Glycerol	 12	g	
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1	L	Coomassie	stain	

Component	 	

Ethanol	 450	mL	

Acetic	acid	 100	mL	

Distilled	H2O	 450	mL	

Brilliant	Blue	R	 2.5	g	

	

1	L	Destain	

Component	 	

Ethanol	 100	mL	

Acetic	acid	 100	mL	

Distilled	H2O	 800	mL	
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3. Biophysical	Methods	
This	chapter	describes	the	theoretical	basis	and	experimental	details	for	the	

biophysical	techniques	used	in	this	thesis:	SEC-MALLS	(Size	Exclusion	

Chromatography	coupled	to	Multi-Angle	Laser	Light	Scattering),	sedimentation	

equilibrium	AUC	(Analytical	Ultracentrifugation),	and	differential	scanning	

fluorimetry.	

3.1 SEC-MALLS	

SEC-MALLS	is	a	technique	for	measuring	the	masses	of	polymers	in	solution,	using	

light	scattering	and	refractive	index	measurements.	This	allows	protein	oligomeric	

state	to	be	determined,	by	comparing	the	measured	mass	to	the	monomer	

molecular	weight	predicted	from	sequence.	In	this	section,	I	will	describe	the	

theoretical	basis	of	MALLS,	the	principles	of	the	MALLS	detectors,	and	practical	

aspects	of	the	technique	as	applied	in	this	thesis.	

3.1.1 Theoretical	basis	for	molecular	weight	measurement	using	MALLS	

MALLS	exploits	the	fact	that	both	the	degree	of	light	scattering	and	the	refractive	

index	of	a	polymer	solution	vary	with	concentration	and	molecular	weight,	but	

with	different	dependencies.	The	refractive	index	depends	only	on	the	mass	

concentration	of	the	polymer,	and	is	given	by	the	equation	

D E = D:*27/#3 +
9#
90

E		 	 	 	 	 	 	 	 [3.1]	

where	n	is	the	refractive	index,	c	is	the	protein	mass	concentration,	and	dn/dc	is	

the	difference	in	refractive	index	per	concentration	unit	of	protein.		

For	proteins,	 9#
90

	lies	in	a	fairly	narrow	range	between	0.18	and	0.20	mL	g-1,	and	

is	generally	not	measured	directly	(Zhao,	Brown	and	Schuck,	2011).	
9#
90

	does	also	

depend	on	the	refractive	index	of	the	solvent,	but	this	is	usually	neglected,	despite	

the	strong	dependence	of	n	on	salt	concentration	(Tan	and	Huang,	2015).	

The	light	scattered	by	a	sample	of	(possibly	oligomeric)	protein	is	proportional	to	

both	the	mass	concentration	and	the	molecular	weight.	I	will	first	give	a	physical	

explanation,	then	briefly	describe	a	more	mathematical	derivation.	
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Consider	two	solutions	of	a	particular	protein	with	the	same	concentration,	but	

different	oligomeric	states:	one	is	dimeric,	while	the	other	is	monomeric	(perhaps	

because	it	has	a	mutation	on	its	dimerisation	interface).	As	a	light	wave	passes	

through	the	solution	of	monomers,	it	will	induce	charge	polarisation	in	each	

protein	molecule,	causing	it	to	act	as	a	driven	oscillating	dipole.		

In	the	monomeric	protein	solution,	each	dipole	will	give	rise	to	a	wave	with	

amplitude	GH 9#
90

,	where	M	is	the	protein	molecular	weight,	and	a	is	a	constant.	

The	waves	from	each	dipole	add	together,	but	because	the	proteins	are	randomly	

distributed	through	space,	the	waves	are	not	in	phase	with	one	another	and	the	

overall	amplitude	is	proportional	to	 EGH 9#
90

.	The	intensity	is	the	square	of	the	

amplitude,	so	the	overall	intensity	of	scattered	light	is	proportional	to	EGIHI 9#
90

I
	

In	the	dimeric	sample,	each	protomer	will	again	generate	a	wave	with	amplitude	

GH 9#
90

.	But	this	time,	the	waves	from	the	two	halves	of	each	dimer	will	interfere	

constructively,	so	each	dimer	gives	rise	to	a	wave	of	amplitude	2GH 9#
90

.	The	

molar	concentration	of	dimer	is	half	the	monomer	concentration,	so	these	sum	to	

a	total	amplitude	of	
0
I
2GH 9#

90
,	giving	a	final	intensity	of	2EGIHI 9#

90

I
.	So,	the	

dimeric	solution	scatters	twice	as	much	light	as	the	monomeric	solution,	despite	

having	the	same	protein	concentration.			

A	full	mathematical	treatment	of	light	scattering	from	a	polymer	is	given	by	Zimm	

(Zimm,	1948),	and	summarised	by	Wyatt	(Wyatt,	1993).	Briefly,	we	start	by	

assuming	a	polymer	is	made	up	of	n	identical	scattering	segments,	which	are	

distributed	relative	to	one	another	according	to	a	function	K(L).	This	distribution	

function	accounts	both	for	the	probability	of	finding	a	segment	within	the	same	

polymer	chain	at	a	distance	r,	and	the	probability	of	finding	a	segment	from	a	

different	polymer	chain.	The	scattering	from	a	solution	with	N	polymer	molecules	

in	a	volume	V	is	then	given	by	the	Raleigh-Gans-Debye	approximation:	

M N = O∗#QRQ

SQ
K L exp IW"X∙Y

Z
[L	 	 	 	 	 	 	 [3.2]	

where	M(N)	is	the	excess	Raleigh	scattering	at	an	angle	theta	between	the	incident	

and	scattered	rays,	K*	is	a	constant	determined	by	the	refractive	indexes	of	the	
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solvent	and	polymer	(Wyatt,	1993),	s	is	the	vector	difference	between	the	incident	

and	scattered	ray	direction	vectors,	and	\	is	the	wavelength	of	incident	light.	

By	separately	considering	the	parts	of	the	distribution	function	representing	intra-	

and	intermolecular	distances,	and	assuming	the	radial	distribution	function	for	a	

random	coil,	Zimm	derives	

M N = O∗#QR
S

] N + R#Q^
S

]I(N) 		 	 	 	 	 	 	 [3.3]	

where	](N)	is	an	integral	of	the	random	coil	radial	distribution	funtion,	and	_	is	a	

constant	integral	(Zimm,	1948).	This	is	more	commonly	expressed	as	

M N = `∗HE] N [1 − 2dIHE](N)]	 	 	 	 	 	 [3.4]	

where	dI	is	the	second	Virial	coefficient	(Wyatt,	1993).	This	makes	clear	that	the	

scattered	intensity	is	proportional	to	both	the	molecular	weight	and	the	mass	

concentration,	provided	that	neither	is	high	enough	for	the	second	term	to	become	

significant.	

A	number	of	approximations	and	assumptions	are	made	in	this	derivation.	

The	Raleigh-Gans-Debye	approximation	only	holds	when		 	

#fghijkl
#mhnojli

− 1 ≪ 1	 	 	 	 	 	 	 	 	 [3.5]	

and	

2Gq\
#fghijkl
#mhnojli

− 1 ≪ 1	 	 	 	 	 	 	 	 [3.6]	

where	nprotein	is	the	refractive	index	of	the	protein	molecules,	nsolvent	is	the	

refractive	index	of	the	solvent,	and	2a	is	the	characteristic	diameter	of	the	protein.	

Respectively,	these	mean	the	protein	must	not	significantly	slow	the	light	wave	as	

it	passes	through	the	solution,	and	the	protein	must	not	significantly	affect	the	

phase	of	the	propagating	light	wave.	These	conditions	are	both	met	because	the	

refractive	index	of	the	protein	is	similar	to	that	of	the	solvent	(
9#
90

	~	0.18	mL	g-1),	

and	the	protein	is	much	smaller	than	the	wavelength	of	light	used	(658	nm).		

The	protein	is	assumed	to	be	made	up	of	identical	segments	with	a	random	coil	

distribution.	This	is	clearly	not	the	case	for	folded	proteins,	but	is	a	reasonable	

approximation	considering	that	the	scattered	light	is	an	average	over	all	

orientations	of	the	protein,	and	that	the	scattering	depends	only	on	the	locations	
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of	scattering	segments,	not	their	connectivity.	It	is	possible	that	this	assumption	

could	break	down	for	rod-like	or	other	non-globular	proteins:	however,	this	does	

not	apply	to	the	domains	studied	in	this	thesis,	which	are	expected	to	adopt	a	

globular	dsRBD	fold.	

In	order	to	account	for	interactions	between	nearby	molecules,	the	derivation	

assumes	that	they	touch	only	at	a	single	point.	This	appears	to	be	a	reasonable	

model	for	transient	non-specific	interactions	between	proteins	in	close	proximity.	

In	any	case,	this	assumption	only	affects	the	second	term	in	the	formula	for	

scattering.	Although	protein	oligomers	interact	via	a	surface	and	not	a	single	point,	

that	is	unimportant	here	because	the	entire	oligomer	acts	as	a	single	‘molecule’	

over	the	timescale	of	each	scattering	measurement.	

3.1.2 Practical	aspects	of	data	collection	and	analysis	

100	µL	of	protein	sample	at	3	mg/mL	was	passed	over	a	Superdex	75	10/30	

analytical	gel	filtration	column	(GE	Healthcare)	pre-equilibrated	in	20	mM	MES,	

200	mM	NaCl,	1	mM	DTT,	pH	6.5,	at	a	flow	rate	of	0.5	mL/min.	Light	scattering	and	

refractive	index	measurements	were	recorded	using	in-line	Wyatt	Dawn	HELEOS-

II	and	Wyatt	rEX	Optilab	detectors,	and	analysed	using	ASTRA	software	version	

5.3.4.14	(Wyatt	Technology).	

Refractive	index	detectors	work	by	passing	a	beam	through	a	flow	cell	at	an	angle,	

so	that	refraction	causes	a	change	in	direction.	The	displacement	of	the	beam	

relative	to	a	reference	beam	can	then	be	used	to	calculate	the	refractive	index.	The	

Wyatt	rEX	Optilab	elaborates	on	this	by	passing	the	beam	through	a	diffraction	

grating,	and	inferring	the	displacement	from	the	resulting	diffraction	pattern	as	

measured	by	a	photodiode	array.	This	is	claimed	to	result	in	higher	accuracy	

through	combining	the	signals	from	multiple	photodiodes,	as	well	as	an	increased	

range	of	refractive	indexes	(Wyatt	Technology,	2005).		

The	Wyatt	Dawn	HELEOS-II	instrument	consists	of	18	detectors	arranged	around	

a	cylindrical	flow	cell,	as	shown	in	Figure	3.1.	Each	detects	light	scattered	in	a	

particular	direction	from	a	volume	of	the	flow	cell.	Depending	on	the	exact	

positioning,	the	volume	‘seen’	by	each	detector	can	vary,	which	would	lead	to	

systematic	errors	in	the	measured	scattering	intensity	per	unit	volume.	This	was	

corrected	for	by	performing	SEC-MALLS	on	a	sample	of	bovine	serum	albumin	

(BSA,	Fisher	Scientific),	and	normalising	the	signals	of	the	different	detectors	to	
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counteract	any	differences.	BSA	is	sufficiently	small	that	the	scattering	should	

have	no	angular	dependence.	

	

Figure	3.1.	Schematic	of	the	Wyatt	Dawn	HELEOS-II	light	scattering	detector.	

The	sample	flows	perpendicular	to	the	page	through	a	cylindrical	flow	cell	(shown	in	

blue).	A	laser	beam	(polarised	perpendicular	to	the	page)	is	incident	on	the	cuvette:	

the	intensity	of	scattered	light	is	measured	by	a	series	of	photodiode	detectors	(grey)	

arranged	around	the	flow	cell.	

As	previously	mentioned,	fitting	the	molecular	mass	requires	knowledge	of	
9#
90

.	I	

did	not	make	direct	measurements	of	
9#
90

:	instead,	I	found	the	value	of	
9#
90

	that	

gave	the	expected	molecular	weight	of	BSA	(66	kDa),	after	normalisation	of	the	

light	scattering	detectors	as	described	above.	This	value	and	normalisation	was	

then	used	for	all	subsequent	samples	run	on	that	day.	Normalisation	and	

9#
90

	estimation	was	performed	every	time	the	instrument	was	used.	 9#
90

	was	

found	to	be	between	0.176	and	0.184.	

As	each	peak	elutes	from	the	column	and	passes	through	the	detectors,	multiple	

measurements	of	the	refractive	index	and	light	scattering	are	made.	The	calculated	

mass	varied	continuously	over	the	width	of	the	peak,	but	generally	plateaued	near	

the	centre.	The	deviations	at	the	edges	of	the	peak	are	likely	due	to	systematic	
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errors	that	become	more	significant	when	the	signal	is	low,	although	in	some	

cases	deviations	can	be	attributed	to	sample	impurities.	Therefore,	only	the	

central	region	of	the	peak	was	used	to	estimate	the	molar	mass.		

Both	the	light	scattering	and	refractive	index	detectors	have	high	precision,	so	

random	measurement	errors	do	not	contribute	significantly	to	the	error	in	

calculated	molecular	weight.	Instead,	errors	are	mostly	caused	by	violations	of	the	

assumptions	used	to	derive	the	expression	for	the	intensity	of	scattered	light.	Of	

these,	the	assumption	that	
9#
90

	is	similar	across	all	proteins	and	the	assumption	of	

a	single	species	contributing	to	scattering	seem	most	likely	to	be	violated.	The	

overall	error	in	calculated	molecular	weight	has	been	estimated	empirically	to	be	

5-10%	for	the	SEC-MALLS	system	used	in	this	thesis	(Andrew	Leech,	personal	

communication).		

3.2 Sedimentation	equilibrium	analytical	ultracentrifugation	
(seAUC)	

Sedimentation	equilibrium	analytical	ultracentrifugation	is	a	method	of	

determining	molecular	weight	and	equilibrium	association	properties	of	proteins	

based	on	their	sedimentation	properties.	During	centrifugation,	molecules	

experience	a	force		

{ = H 1 − 7
|
}IL	 	 	 	 	 	 	 	 	 [3.7]	

where	M	is	the	protein	molar	mass,	~	is	the	partial	specific	volume	of	the	protein,	

K	is	the	solvent	density,	}	is	the	angular	speed	and	r	is	the	radial	distance	from	the	

rotor	axis.	This	force	causes	them	to	move	towards	the	outer	edge	of	the	rotor	

until	the	centrifugal	force	is	balanced	by	diffusion,	forming	a	concentration	

gradient.	The	analytical	ultracentrifuge	is	equipped	with	a	spectrophotometer	that	

allows	the	absorbance	to	be	measured	at	different	radii,	allowing	the	radial	

distribution	of	protein	to	be	calculated.	This	data	can	then	be	used	to	calculate	

molecular	weight	and	association	constants,	and	additionally	detect	the	presence	

of	aggregates	or	non-ideality.	

When	a	protein	sample	is	centrifuged,	it	distributes	itself	in	accordance	with	the	

Boltzmann	distribution,	with	higher	concentrations	in	regions	with	lower	(more	
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negative)	potential	energy	(Brautigam,	2011).	It	can	be	shown	that	the	

equilibrium	distribution	of	protein	is	given	by:	

�Ä 0 .
.Q

= 	H 1 − 7
|

ÅQ	
IÇÉ

	 	 	 	 	 	 	 	 [3.8]	

where	c(r)	is	the	mass	concentration	at	r,	R	is	the	gas	constant	and	T	the	

temperature.	Of	the	variable	parameters,	}	and	T	are	controlled	by	the	

experimenter,	while	~	and	K	can	be	estimated	accurately	with	knowledge	of	the	

protein	sequence	and	buffer	composition	respectively.	This	allows	the	molar	mass	

to	be	calculated	for	a	single	species	in	solution	simply	by	plotting	ln(c(r))	against	

r2.	

For	solutions	containing	a	mixture	of	oligomeric	states,	or	with	a	mixture	of	

different	proteins,	more	complicated	data	analysis	is	required.	For	analysing	a	

mixture	of	monomer	and	dimer,	the	full	equation	for	the	radial	concentration	

distribution	is	given	by:	

E L = 	 E8*#*8/. L< Ñ
Ö Üáoà

âQ(gQäg)
Q)	

Qãå + E9"8/. L< Ñ
IÖ Üáoà

âQ(gQäg)
Q)	

Qãå + ç			 [3.9]	

where	B	corrects	for	any	baseline	offset	in	the	data.	This	equation	is	fitted	to	the	

data	using	non-linear	least-squares	fitting	methods,	in	this	case	using	a	modified	

version	of	the	Gauss-Newton	method	(Johnson	et	al.,	1981).	

Accurately	fitting	a	sum	of	exponentials	is	in	general	an	ill	conditioned	problem,	

meaning	that	small	changes	in	the	input	data	can	lead	to	large	changes	in	the	

optimal	fit.	To	counteract	this	problem,	the	experiment	is	repeated	at	different	

rotor	speeds	and	with	different	protein	concentrations.	The	latter	of	these	is	

particularly	important	when	estimating	dissociation	constants.		

3.2.1 Practical	aspects	of	data	collection	and	analysis	

A	dilution	series	of	PACT-D3	was	prepared	in	20	mM	MES,	200	mM	NaCl,	pH	6.5,	

giving	concentrations	of	3,	1.5,	0.75,	0.38,	0.19	and	0.09	mg/mL.	118	µL	of	each	

sample	was	loaded	into	each	well	of	a	seAUC	cell,	with	120	µL	of	buffer	in	a	

matched	reference	well.	Unfortunately,	the	buffer	used	for	dilution	and	reference	

was	from	a	different	batch	from	the	buffer	in	the	protein	sample,	leading	to	

baseline	offsets	in	the	data.	This	was	accounted	for	during	data	analysis	by	

including	a	baseline	offset	term	in	the	fitted	model,	but	the	extra	degrees	of	

freedom	from	this	term	would	be	expected	to	degrade	the	accuracy	of	the	fit.	
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A	Beckman	Optima	XL/I	ultracentrifuge	was	used	to	spin	samples	at	velocities	of	

22,000,	24,000,	26,000,	33,000,	38,000	and	42000	rpm,	while	recording	

absorption	profiles	at	250	and	280	nm.	Measurements	were	taken	every	4	hours,	

and	each	velocity	was	maintained	for	20	hours	to	ensure	time	to	reach	

equilibrium.	The	temperature	was	maintained	at	20˚C.	

Data	pre-processing	was	carried	out	using	custom	R	scripts,	to	determine	whether	

equilibrium	had	been	reached,	and	to	remove	regions	where	the	absorbance	was	

too	high	to	measure	accurately.	Non-linear	least-squares	fitting	to	a	single	species	

model	(refer	to	previous	equation	number)	was	then	performed	using	Origin	

software.	The	program	SEDNTERP	was	used	to	calculate	the	partial	specific	

volume	and	buffer	density,	giving	values	of	0.7285	mL	g-1	and	1.00742	g	mL-1	

respectively.	

3.3 Differential	Scanning	Fluorimetry	

Differential	scanning	fluorimetry	measures	the	stability	of	a	protein	sample,	by	

monitoring	the	fluorescence	of	SYPRO	orange	dye	as	the	sample	is	heated	

(Reinhard	et	al.,	2013).	As	the	protein	denatures,	newly	exposed	hydrophobic	

regions	interact	with	the	dye,	generating	a	fluorescent	signal	with	maximum	

emission	intensity	at	a	wavelength	of	570	nm	(Simpson,	2010).	The	melting	

temperature	(Tm)	is	calculated	by	fitting	a	sigmoidal	curve	to	the	fluorescence	vs	

temperature	data,	and	taking	the	temperature	of	half-maximum	intensity.		

Melting	temperature	is	used	here	as	a	proxy	for	the	less	well-defined	“protein	

stability”,	under	the	assumption	that	a	higher	melting	temperature	indicates	a	

structure	that	is	less	prone	to	deviations	from	the	native	fold.	The	melting	

temperature	clearly	depends	upon	both	protein	sequence	and	structure,	but	the	

relationship	is	insufficiently	well	understood	to	make	accurate	melting	

temperature	predictions	(Franzosa,	Lynagh	and	Xia,	2010).	The	difficulty	in	

predicting	melting	temperature	may	stem	from	the	need	to	account	for	both	

enthalpic	and	entropic	contributions	from	the	solvent,	and	from	the	ensemble	of	

unfolded	states.		

Protein	oligomerisation	is	also	known	to	increase	protein	stability	(Goodsell	and	

Olson,	2000;	Tanakai	et	al.,	2004;	Hashimoto	and	Panchenko,	2010),		but	the	

magnitude	of	the	effect	on	melting	temperature	is	again	unpredictable	(Pollegioni	
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et	al.,	2003;	Shallom	et	al.,	2004).	That	said,	it	is	clear	than	the	effect	depends	on	

the	dimer	dissociation	constant,	and	that	no	stabilisation	will	be	seen	at	

concentrations	significantly	below	this.		

Proteins	were	purified	as	described	in	Chapter	2,	using	20	mM	Tris,	200	mM	NaCl,	

pH	7.5	as	the	size	exclusion	buffer,	and	1:400	SYPRO	orange	dye	(ThermoFisher	

Scientific)	added.	Stock	solutions	of	the	trial	buffers	were	prepared,	each	

containing	100	mM	buffering	agent	and	sufficient	NaCl	so	that	the	final	

concentration	(once	mixed	with	protein)	would	be	50	mM,	100	mM,	200	mM	or	

500	mM.	Then,	6	µL	of	1	mg/mL	protein	stock	was	mixed	with	24	µL	buffer	stock	

in	a	96	well	PCR	plate,	with	three	replicates	of	each	condition.	Using	a	Stratagene	

Mx3005P	thermocycler	(Agilent),	the	plate	was	then	heated	from	25˚C	to	95˚C	at	a	

rate	of	2˚C/min,	with	fluorescence	measurements	taken	every	30	s.	

The	fluorescence	data	was	then	exported	and	analysed	with	a	custom	R	script,	

based	on	the	previously	reported	MTSA	program	(Schulz,	Landström	and	

Hubbard,	2013).	Briefly,	the	script	extracts	the	region	of	the	fluorescence	curve	

which	represents	the	protein	unfolding	transition,	and	fits	a	function	of	the	form:	

{ é = {8"# +	
è

Üê/
å∗äå
ë

í	 	 	 	 	 	 	 [3.10]	

where	F	is	fluorescence	intensity,	T	is	the	temperature	and	Fmin,	b,	c	and	T*	are	

constants.	Fmin	and	(Fmin	+	∆)	are	constrained	to	lie	within	2%	of	the	maximum	

and	minimum	values	of	the	raw	data.	The	melting	temperature	is	calculated	as	the	

temperature	at	which	the	fluorescence	is	at	half	maximum	(see	Figure	3.2).	
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Figure	3.2.	Example	differential	scanning	fluorimetry	curve	

Fluorescence	measurements	are	shown	as	points,	while	the	fitted	curve	is	shown	in	

blue.	∆	is	the	difference	between	the	fitted	maxima	and	minima.	The	melting	

temperature	is	the	point	at	which	the	fluorescence	is	halfway	between	the	fitted	

minimum	and	maximum.	

There	are	several	confounding	factors	that	affect	the	shape	of	the	fluorescence	

curve.	Firstly,	in	some	cases	there	is	a	high	level	of	background	fluorescence	from	

the	SYPRO	orange,	which	reduces	as	the	temperature	is	increased.	This	can	occur	

if	the	protein	has	hydrophobic	surface	patches	or	if	it	is	already	partially	unfolded	

(Reinhard	et	al.,	2013).	Secondly,	after	reaching	a	maximum,	the	fluorescence	

intensity	decreases	again	at	higher	temperatures.	It	has	been	suggested	that	this	is	

due	to	aggregation	of	the	unfolded	protein,	or	perhaps	because	of	increased	

thermal	motion	of	the	dye	(Reinhard	et	al.,	2013).	These	factors	make	it	difficult	to	

accurately	determine	the	start	and	end	points	of	the	transition,	preventing	a	

reliable	determination	of	melting	temperature.	However,	it	is	sufficient	for	

determining	whether	there	is	a	difference	in	melting	temperature	between	two	

conditions,	providing	the	size	of	the	confounders	is	not	too	great.	
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4. NMR	Methods	
4.1 Introduction	

This	chapter	describes	the	basic	principles	of	NMR	spectroscopy,	then	gives	a	brief	

summary	of	the	experiments	used	in	this	thesis.	So	far	as	possible,	these	are	

described	in	physical	terms,	without	giving	detailed	formulae:	a	more	

mathematical	description	can	be	found	elsewhere	(Cavanagh	et	al.,	2006;	Levitt,	

2008).	A	more	detailed	description	is	then	given	of	the	experimental	setup	and	

parameters,	and	of	subsequent	data	processing	and	analysis.		

4.2 Basic	principles	of	NMR	spectroscopy	

4.2.1 Physical	basis	of	the	NMR	signal	

All	nuclei	have	a	quantum-mechanical	property	called	spin,	which	is	determined	

by	the	arrangement	of	protons	and	neutrons	within	the	nucleus.	Nuclei	of	a	given	

isotope	have	either	zero	(12C,	16O),	½	(1H,	15N,	13C,	19F),	or	higher	order	spin	

quantum	numbers.	Nuclei	with	spin	½	act	as	magnetic	dipoles,	so	can	interact	

with	electromagnetic	fields.	In	particular,	a	nuclear	dipole	oriented	perpendicular	

to	an	external	magnetic	field	will	precess	at	its	Larmor	frequency:		

} = −ìç	

where	ì	is	the	gyromagnetic	ratio	for	that	nucleus,	and	ç	is	the	magnetic	field	

strength.		

In	the	absence	of	an	external	magnetic	field,	the	energy	of	each	nuclear	dipole	is	

independent	of	its	orientation.	Therefore,	the	dipoles	in	a	sample	will	be	

distributed	isotropically,	leading	to	zero	net	magnetisation.	When	an	external	field	

is	applied,	the	energy	becomes	dependent	on	the	angle	between	the	dipole	and	the	

field:	spins	oriented	parallel	to	the	magnetic	field	have	a	lower	energy	than	those	

oriented	antiparallel,	resulting	in	a	net	magnetisation	parallel	to	the	field	at	

thermal	equilibrium.	

In	the	simplest	form	of	Fourier-transform	NMR	spectroscopy,	a	radio-frequency	

(r.f.)	pulse	at	the	Larmor	frequency	causes	all	spins	to	rotate	by	90°,	leading	also	

to	a	rotation	of	net	magnetisation	into	a	plane	perpendicular	to	the	external	field.	

As	the	spins	precess,	the	net	magnetisation	precesses	with	them,	and	can	be	
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detected	by	a	receiver	coil	within	the	probe.	Other	experiments	utilise	a	more	

complex	initial	series	of	pulses	and	delays,	but	detect	the	final	signal	in	the	same	

way.	Over	time,	the	precessing	spins	lose	coherence	(transverse	relaxation)	and	

return	to	thermal	equilibrium	(longitudinal	relaxation).	These	processes	are	

discussed	further	in	the	sections	below.	

4.2.2 Intramolecular	contributions	to	the	magnetic	field	

The	above	description	neglects	several	crucial	factors	that	affect	the	overall	

magnetic	field	experienced	by	each	nucleus,	which	allow	different	sites	within	a	

molecule	to	be	distinguished,	and	enable	the	system	to	return	to	thermal	

equilibrium	after	a	perturbation.	I	have	chosen	to	discuss	the	effects	of	these	

factors	in	terms	of	magnetic	fields;	for	a	more	complete	description	in	terms	of	the	

spin	Hamiltonian,	see	(Levitt,	2008).	

The	first	of	these	factors	is	the	chemical	shift	effect:	the	external	magnetic	field	

sets	up	currents	in	the	electrons	of	the	molecule,	which	then	create	an	additional	

induced	magnetic	field.	The	magnitude	(and	direction)	of	the	induced	field	

depends	on	the	local	electronic	configuration,	and	is	proportional	to	the	external	

field.	The	induced	field	is	therefore	different	for	each	chemically	distinct	nucleus	

in	a	molecule.	A	tensor	is	required	to	fully	describe	the	chemical	shift,	but	often	

only	the	isotropic	chemical	shift	is	reported.	Chemical	shift	effects	are	generally	

larger	for	nuclei	surrounded	by	more	electrons,	such	as	heavier	or	more	

electronegative	atoms,	or	chemical	groups	with	delocalised	electrons.	

The	second	factor	is	direct	dipole-dipole	coupling,	whereby	each	nucleus	is	

affected	by	the	dipole	fields	of	nearby	spin	½	nuclei.	These	fields	depend	on	the	

orientation	of	the	internuclear	vector	with	respect	to	the	external	field,	and	the	

magnitude	of	the	interaction	between	spins	i	and	j	is	given	by	the	dipole-dipole	

coupling	constant:		

îïñ = −ó)ℏ
ôW

öõöú
.ù
	 	 	 	 	 	 	 	 	 [4.1]	

where	ìï 	and	ìñ 	are	the	gyromagnetic	ratios	of	the	two	spins,	L	is	the	separation	

between	them,	and	û<	and	ℏ	are	physical	constants.	

A	third	factor	is	indirect	dipole-dipole	coupling,	also	known	as	scalar	coupling	or	J	

coupling.	This	occurs	due	to	the	interaction	of	nuclear	spins	with	the	spins	of	the	

electrons	in	chemical	bonds.	Consider	a	pair	of	identical	nuclei	separated	by	a	
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single	bond.	In	the	absence	of	the	nuclear	spins,	the	antiparallel	bonding	electrons	

will	have	identical	distributions.	If	we	introduce	a	nuclear	spin	at	one	site,	one	of	

the	electrons	will	be	aligned	so	as	to	interact	favourably	with	the	nucleus,	while	

the	other	will	interact	unfavourably.	As	a	result,	the	electron	distributions	change	

so	that	the	favourably	aligned	electron	is	closer	to	the	nuclear	spin,	while	the	

unfavourably	aligned	one	is	further	away.	The	second	site	therefore	feels	uneven	

effects	from	the	two	electrons,	resulting	in	a	net	magnetic	field	whose	direction	

depends	on	the	orientation	of	the	nuclear	spin	at	the	first	site.	The	strength	of	the	

scalar	coupling	is	independent	of	the	external	field,	and	is	usually	measured	in	

terms	of	the	difference	in	Larmor	frequency	between	the	favourably	and	

unfavourably	aligned	states.	Scalar	couplings	are	exploited	to	transfer	

magnetisation	between	bonded	nuclei,	as	in	the	Heteronuclear	Single	Quantum	

Coherence	(HSQC)	experiment	described	in	Section	4.3.1.	

4.2.3 Relaxation	and	the	effects	of	molecular	tumbling	

All	three	of	these	contributions	to	the	overall	magnetic	field	vary	as	the	molecule	

tumbles	in	solution.	In	isotropic	liquids,	the	rotational	correlation	time	is	generally	

much	faster	than	the	sampling	timescale	of	the	NMR	experiment	(on	the	orders	of	

10-9	s	and	10-4	s	respectively).	Therefore,	in	many	cases	we	can	treat	the	nuclear	

spins	as	experiencing	a	constant	field	that	is	the	average	over	all	possible	

molecular	orientations.	It	can	be	shown	that	the	rotational	average	direct	dipole-

dipole	interaction	is	zero,	but	that	chemical	shift	and	J-coupling	do	have	isotropic	

components	(Levitt,	2008).	This	averaged	field	alters	the	Larmor	frequency	for	

each	nucleus,	allowing	different	sites	in	the	molecule	to	be	distinguished.	

Although	the	effects	of	chemical	shift	and	dipole-dipole	coupling	are	averaged	on	

long	timescales,	at	shorter	timescales	they	result	in	each	nucleus	experiencing	a	

fluctuating	magnetic	field.	This	fluctuating	field	is	responsible	for	both	transverse	

and	longitudinal	relaxation.	The	timescale,	or	correlation	time,	of	the	fluctuations	

is	determined	by	the	rotational	diffusion	coefficient	of	the	molecule,	and	thus	

increases	with	molecular	weight.	More	precisely,	the	fluctuations	can	be	

decomposed	into	components	with	different	frequencies,	described	by	a	spectral	

density	function.	Intramolecular	motions	can	introduce	fluctuations	on	additional	

timescales:	these	can	be	described	using	the	model-free	approach	(Lipari	and	

Szabo,	1982).	In	this	method,	the	correlation	function	is	divided	into	two	
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independent	parts,	representing	overall	molecular	motion	and	internal	motions.	

The	internal	part	is	characterised	by	the	timescale	of	motions	ü/ ,	and	by	the	S2	

order	parameter.	S2	measures	the	long-term	correlation	of	the	magnetic	field	

fluctuations	due	to	local	motion,	and	represents	how	restricted	that	motion	is	

(with	a	completely	rigid	region	having	S2	=	1,	and	a	completely	flexible	region	

having	S2	=	0).		

Transverse	relaxation	(also	known	as	T2	or	spin-spin	relaxation)	is	due	to	

fluctuations	parallel	to	the	external	field.	These	cause	the	total	field	at	each	

nucleus	to	vary,	resulting	in	slightly	different	precession	rates.	Therefore	the	

nuclei	do	not	precess	synchronously,	but	instead	gradually	lose	coherence	

(dephase),	resulting	in	a	reduction	in	net	magnetisation.	The	rate	of	transverse	

relaxation	is	strongly	dependent	on	the	correlation	time	of	the	fluctuations:	rapid	

changes	in	field	tend	to	cancel	each	other	out,	while	slower	ones	lead	to	a	greater	

degree	of	dephasing.	Therefore,	the	transverse	relaxation	rate	(T2)	increases	as	

molecules	become	larger	and	tumble	more	slowly	(Figure	4.1).	

In	contrast,	longitudinal	relaxation	(T1	or	spin-lattice	relaxation)	occurs	due	to	

fluctuations	in	any	direction.	These	fluctuations	can	act	in	a	similar	way	to	the	

applied	r.f.	field,	rotating	the	nuclear	spins	by	small	amounts.	These	random	

perturbations	tend	to	return	the	spins	to	thermal	equilibrium,	restoring	net	

magnetisation	parallel	to	the	external	field.	Only	fluctuations	with	timescales	

similar	to	the	Larmor	frequency	are	effective	at	rotating	the	spins,	while	

fluctuations	on	faster	or	slower	timescales	do	not	effectively	contribute	to	

longitudinal	relaxation.	Therefore,	the	longitudinal	relaxation	rate	(T1)	is	low	for	

small	molecules,	increases	for	molecules	around	the	size	of	a	small	protein,	and	

decreases	for	larger	macromolecules	(Figure	4.1).	
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Figure	4.1	Relaxation	rates	depend	on	rotational	correlation	time	

As	molecules	increase	in	size,	their	rotational	correlation	time	increases.	This	leads	

to	a	steady	decrease	in	T2,	while	T1	initially	decreases	before	rising	again.	The	curve	

is	plotted	for	amide	N-H	bonds,	assuming	that	dipolar	coupling	is	the	only	

contribution	to	relaxation	(Levitt,	2008,	p.	564).	Fortuitously,	the	minimum	in	T1	is	

similar	to	the	rotational	correlation	time	of	small	proteins	(5-20	ns)	(Garcıá	de	la	

Torre,	Huertas	and	Carrasco,	2000).	

4.2.4 The	Nuclear	Overhauser	Effect	

The	Nuclear	Overhauser	Effect	(NOE)	is	a	manifestation	of	direct	dipole-dipole	

coupling,	and	affects	how	the	net	magnetisation	parallel	to	the	external	field	

evolves	following	perturbations.	The	details	are	challenging	to	explain	in	terms	of	

the	vector	model	used	so	far,	and	are	perhaps	better	understood	in	the	more	

abstract	terminology	of	energy	levels	and	spin	flips	(Levitt,	2008,	p.	566).	

Consider	a	pair	of	nuclei,	I	and	S,	coupled	only	by	the	direct	dipole-dipole	

interaction.	This	system	has	4	states	(both	spin	down,	both	spin	up,	and	two	mixed	

states),	with	equilibrium	populations	determined	by	the	energy	differences	

between	them.	Now	suppose	that	a	selective	pulse	is	used	to	invert	spin	I	(this	is	

the	basis	of	the	transient	NOE	experiment).	The	populations	are	now	out	of	

equilibrium,	and	will	relax	via	a	number	of	possible	transitions.		
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If	the	spins	were	not	coupled,	the	only	pathway	would	be	via	single-quantum	

transitions	corresponding	to	flipping	of	spin	I	–	the	net	magnetisation	of	spin	S	

would	remain	unaffected.	However,	the	direct	dipole-dipole	coupling	means	that	

the	magnetic	field	fluctuations	experienced	by	the	two	nuclei	are	correlated,	

allowing	the	possibility	of	zero-order	transitions	(where	antiparallel	I	and	S	spins	

flip	simultaneously)	and	second-order	transitions	(where	parallel	I	and	S	spins	flip	

simultaneously).	These	transitions	do	affect	the	net	magnetisation	of	spin	S,	

leading	to	an	increase	of	magnetisation	for	large	molecules,	and	a	decrease	for	

small	ones.	Importantly,	the	probability	of	these	cross-relaxation	transitions	is	

proportional	to	LáA,	so	the	NOE	is	restricted	to	nuclei	in	close	proximity	to	one	

another.	This	can	be	exploited	to	generate	short-range	(<5	Å)	distance	restraints	

by	systematically	measuring	the	NOE	between	pairs	of	nuclei	using	NOESY	

experiments.		

4.3 Overview	of	NMR	experiments	

4.3.1 (1H,	15N)	heteronuclear	single	quantum	coherence	(HSQC)	experiment	

The	(1H,	15N)-HSQC	is	one	of	the	most	important	experiments	for	the	study	of	

proteins	by	solution	state	NMR	spectroscopy,	because	it	allows	the	proton	and	

nitrogen	chemical	shifts	of	the	backbone	amide	groups	to	be	correlated	

(Bodenhausen	and	Ruben,	1980;	Cavanagh	et	al.,	1991;	Kay,	Keifer	and	Saarinen,	

1992).	Provided	the	amino	acid	sequence	does	not	have	a	high	proline	content,	

these	backbone	amides	are	evenly	distributed	throughout	the	entire	protein,	and	

can	be	used	as	a	basis	for	backbone	assignment,	characterisation	of	relaxation	and	

exchange,	and	determination	of	secondary	structure.	A	wide	variety	of	important	

NMR	experiments	are	based	on	the	(1H,	15N)-HSQC,	including	the	3D	HNCO,	

CBCANH,	CBCA(CO)NH,	H(CCO)NH-TOCSY,	15N-NOESY-HSQC	experiments	used	in	

this	thesis.	

A	simplified	schematic	of	the	overall	(1H,	15N)-HSQC	pulse	sequence	is	shown	in	

Figure	4.2A.	The	sequence	begins	with	transfer	of	magnetisation	from	the	amide	

proton	to	the	nitrogen	using	an	INEPT	(Insensitive	Nuclei	Enhanced	by	

Polarisation	Transfer)	pulse	element	(Morris	and	Freeman,	1979).	The	one-bond	

scalar	couplings	of	backbone	amide	groups	fall	in	a	narrow	range	around	-90	Hz,	

so	it	is	possible	to	achieve	near	optimal	magnetisation	transfer	to	almost	all	

backbone	nitrogen	spins	(Rule	and	Hitchens,	2006,	p.	137).	Following	a	period	of	
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nitrogen	chemical	shift	evolution,	polarisation	is	transferred	back	to	the	amide	

proton	through	a	reverse	INEPT	element,	and	the	proton	free	induction	decay	is	

directly	detected.		

	

Figure	4.2.	Overview	of	NMR	pulse	sequences	

The	main	functional	blocks	are	shown	for	each	pulse	sequence.	INEPT	polarisation	

transfers	are	depicted	in	blue,	variable	delays	for	chemical	shift	evolution	of	the	

indirect	dimension	in	green,	periods	of	pure	z	magnetisation	in	purple,	and	other	

elements	in	orange.	Acquisition	of	the	free	induction	decay	is	displayed	as	a	zigzag.	

A)	(1H,	15N)-HSQC.	B)	15N	longitudinal	relaxation	measurement.	C)	15N	EXSY.	D)	
13C/15N-NOESY-HSQC.	E)	13C-filtered	NOESY-HSQC.		 	
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If	magnetisation	was	completely	transferred	without	losses,	the	volume	of	each	

peak	in	the	resulting	(1H,	15N)-HSQC	spectrum	would	be	directly	proportional	to	

the	abundance	of	that	amide	group.	However,	each	amide	group	has	different	

relaxation	properties,	disrupting	the	proportionality.	Firstly,	transverse	relaxation	

causes	magnetisation	to	be	lost	during	the	INEPT	transfers,	resulting	in	an	

approximately	7%	reduction	in	signal	for	a	typical	10	kDa	protein	(Rule	and	

Hitchens,	2006,	p.	210).	This	reduction	will	be	larger	in	residues	with	fast	

transverse	relaxation	rates.	

Secondly,	incomplete	longitudinal	relaxation	reduces	the	initial	polarisation	of	

each	spin.	Generally	the	delay	between	scans	is	1-1.5	s,	which	is	too	short	for	

equilibrium	to	be	reached.	This	reduces	the	initial	magnetization	available	for	

transfer	and	hence	the	peak	intensity	in	the	spectrum.	Globally,	this	loss	of	

intensity	is	more	than	offset	by	the	increased	signal	to	noise	ratio	from	the	higher	

scan	rate,	but	differences	in	longitudinal	relaxation	rate	still	cause	relative	

reductions	in	the	intensity	of	peaks	from	slowly	relaxing	amides.	

4.3.2 15N	longitudinal	relaxation	measurements	and	Exchange	

Spectroscopy	(EXSY)	

The	(1H,	15N)-HSQC	experiment	can	be	extended	to	measure	the	15N	longitudinal	

relaxation	rate	by	adding	an	additional	delay	(∆)	before	the	nitrogen	evolution	

period	t2	(Figure	4.2B,C).	To	remove	the	influence	of	the	amide	proton,	refocused	

INEPT	elements	are	used	to	generate	pure	15N	polarisation	along	the	z-axis	during	

∆.	The	15N	nucleus	is	used	because	it	does	not	exchange	with	the	solvent,	and	

because	Nuclear	Overhauser	Effects	(NOEs)	between	15N	nuclei	are	negligible	(due	

to	its	small	gyromagnetic	ratio).	

In	the	absence	of	slow	chemical	exchange,	the	only	factor	affecting	the	15N	spins	

will	be	longitudinal	relaxation.	To	determine	the	longitudinal	relaxation	rate,	a	

series	of	spectra	are	recorded	with	different	relaxation	delays	(typically	up	to	

about	1	second),	and	an	exponential	model	fitted	to	the	peak	height.	To	ensure	an	

accurate	measure	of	the	relaxation	rate,	it	is	critical	that	the	delay	between	scans	

is	sufficiently	long	that	all	spins	can	return	to	equilibrium	(generally	3-5	times	T1).	

If	this	is	not	done,	the	initial	magnetisation	will	be	different	for	each	delay,	causing	

systematic	errors	in	the	peak	height	and	hence	the	estimate	of	T1.	Note	that	both	
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the	longitudinal	relaxation	and	15N	EXSY	experiments	should	give	identical	spectra	

in	this	case.	

If	the	protein	is	in	slow	exchange	(†/° ≪	~50	s-1	(Mittermaier	and	Kay,	2009)),	

transitions	between	states	can	occur	during	the	relaxation	delay.	This	means	that	

a	more	complicated	model	is	required	to	fit	the	data	(described	in	section	4.4.2	

below),	although	simplifications	are	possible	if	the	two	states	can	be	assumed	to	

have	equal	relaxation	rates.	Attempting	to	fit	exchange	rates	from	the	15N	

longitudinal	relaxation	experiment	alone	is	an	ill-conditioned	problem,	as	was	

encountered	for	the	seAUC	data	fitting	in	Chapter	3.	The	advantage	of	the	EXSY	

experiment	is	that	the	nitrogen	evolution	period	is	before	∆,	so	signals	from	

exchanged	and	non-exchanged	spins	appear	at	different	positions	in	the	spectrum.	

This	helps	separate	the	effects	of	relaxation	and	exchange,	allowing	their	rates	to	

be	fitted	more	accurately.	

4.3.3 Isotope-filtered	NOESY	

NOESY	experiments	exploit	dipolar	coupling	to	transfer	polarisation	between	

spins	separated	by	less	than	approximately	5	Å	via	the	Nuclear	Overhauser	Effect,	

described	above	(Wüthrich,	1990).	The	variants	most	commonly	used	for	protein	

structural	characterisation	are	the	13C-	and	15N-NOESY-HSQC	experiments	(Figure	

4.2	D,E).	Again,	these	are	extensions	of	the	HSQC	experiment,	but	include	an	

additional	evolution	and	transfer	period	to	measure	the	chemical	shifts	of	nearby	

protons.	

The	NOE	transfer	occurs	during	the	period	tNOE,	in	which	the	proton	magnetization	

is	aligned	with	the	z-axis.	This	arrangement	is	similar	to	that	of	the	EXSY	

experiment,	and	as	a	result,	chemical	exchange	can	also	be	detected	in	the	

spectrum	(Rule	and	Hitchens,	2006,	p.	411).	This	is	important	to	consider	when	

analysing	NOESY	data	of	proteins	in	slow	exchange	between	two	or	more	states,	as	

misinterpretation	of	exchange	peaks	as	NOE	peaks	will	lead	to	erroneous	distance	

restraints.	

13C-filtered	NOESY	is	an	extension	of	standard	NOESY	experiments	that	enables	

identification	of	intermolecular	contacts	(Otting	and	Wüthrich,	1989).	In	its	

standard	form,	a	[15N,	13C]-labelled	protein	and	its	unlabelled	binding	partner	are	

mixed.	In	this	system,	intramolecular	NOEs	always	occur	between	protons	bound	

to	the	same	isotope	(that	is,	1H13C	to	1H13C	or	1H12C	to	1H12C).	In	contrast,	proton	
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pairs	linked	by	intermolecular	NOEs	are	always	bound	to	different	isotopes	(ie.	

1H12C	to	1H13C	or	1H13C	to	1H12C).	These	intermolecular	NOEs	can	be	picked	out	by	

pulse	sequence	elements	that	filter	out	all	NOE	donors	bound	to	13C,	and	select	

(edit)	only	for	NOE	acceptors	bound	to	13C.		

The	editing	step	is	achieved	effectively	by	the	13C	evolution	period	t2,	but	the	

initial	13C	filtering	is	more	difficult,	due	to	the	wide	range	of	chemical	shifts	and	

scalar	coupling	constants	of	aliphatic	groups.	The	approach	used	here	selectively	

purges	protons	bonded	to	13C	using	an	adiabatic	wideband	inversion	pulse	

(Zwahlen	et	al.,	1997),	while	leaving	protons	bonded	to	12C	unaffected.	This	is	not	

completely	effective,	as	it	relies	on	an	empirical	correlation	between	the	carbon	

chemical	shift	and	one-bond	C-H	scalar	coupling:	aliphatic	groups	which	deviate	

from	this	relationship	are	not	fully	suppressed.	Fortunately,	these	residual	NOEs	

originating	from	1H13C	pairs	can	be	identified	due	to	the	evolution	of	scalar	

coupling	during	t1,	which	causes	them	to	appear	as	doublets	with	a	splitting	of	

approximately	140	Hz.	

4.4 Details	of	NMR	data	collection	

4.4.1 Sample	preparation	

Unless	otherwise	stated,	NMR	samples	were	prepared	as	follows.	Purified	protein	

samples	were	dialysed	overnight	against	20	mM	MES,	50	mM	NaCl,	10	mM	TCEP,	

pH	6.5.	A	600	µL	NMR	sample	was	prepared	by	mixing	540	µL	protein	solution,	60	

µL	D2O	and	0.6	µL	50	mM	4,4-dimethyl-4-silapentane-1-sulfonic	acid	(DSS),	and	

loaded	into	a	5	mm	thin	wall	NMR	tube	(Wilmad).	This	gives	a	final	buffer	

composition	of	18	mM	MES,	45	mM	NaCl,	9	mM	TCEP,	10%	D2O,	50	µM	DSS,	pH	

6.5,	and	is	referred	to	as	“standard	NMR	buffer”	throughout	this	thesis.	
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Spectrometers	

Five	spectrometers	were	used	for	data	collection,	and	are	summarised	in	Table	

4.1:	

Table	4.1.	NMR	spectrometer	details	

Spectrometer	 Field	(MHz)	 Probe	 Abbreviation	

Bruker	Avance	II	 700	 triple-resonance	room	
temperature	probe	

York_700	

Bruker	Avance	II+	 600	 triple-resonance	
cryoprobe	

MRC_600	

Bruker	Avance	III	HD	 700	 quadruple-resonance	
cryoprobe	

MRC_700	

Bruker	Avance	III	HD	 800	 triple-resonance	
cryoprobe	

MRC_800	

Bruker	Avance	I	 800	 triple-resonance	room	
temperature	probe	

Shef_800	

Unless	otherwise	stated,	all	NMR	experiments	were	performed	at	25˚C,	with	a	

recycle	delay	of	1	second.	

4.4.2 (1H,	15N)	HSQC	spectra	

All	(1H,	15N)	HSQC	spectra	(with	the	exception	of	those	recorded	at	high	pressure)	

were	recorded	on	the	York_700	spectrometer	with	a	triple-resonance	room	

temperature	probe,	using	pulse	sequence	hsqcetf3gpsi.	The	nitrogen	and	proton	

offsets	were	118	ppm	and	approximately	4.7	ppm	respectively;	spectral	widths	of	

either	28	ppm	or	32	ppm	were	used	for	nitrogen,	and	16	ppm	for	proton.	2048	

real	and	imaginary	points	were	collected	in	the	proton	dimension,	and	128	real	

and	imaginary	points	in	the	nitrogen	dimension.		

4.4.3 Assignment	of	PACT-D3	L273R	

A	1.1	mM	sample	of	[15N,	13C]-labelled	PACT-D3	L273R	in	18	mM	MES,	45	mM	

NaCl,	5	mM	TCEP,	10%	D2O,	50	µM	DSS,	pH	6.5	was	used	for	backbone	assignment.	

CBCANH	(cbcanhgpwg3d),	CBCA(CO)NH	(cbcaconhgpwg3d)	and	HNCO	

(hncogpwg3d)	spectra	were	recorded	using	the	York_700	spectrometer.		
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Table	4.2.	Experimental	parameters	for	assignment	of	PACT-D3	L273R	

Pulse	sequence	 	 Offset	
(ppm)	

Spectral	width	
(ppm)	

#	points	(real	+	
imaginary)	

cbcanhgpwg3d	 1H	 4.68	 14	 2048	

15N	 118	 28	 64	

13C	 39	 75	 128	

cbcaconhgpwg3d	 1H	 4.68	 14	 2048	

15N	 118	 28	 64	

13C	 39	 75	 128	

hncogpwg3d	 1H	 4.68	 14	 2048	

15N	 118	 28	 64	

13C	 173	 12	 32	

	

4.4.4 Assignment	of	wild-type	PACT-D3	

Experimental	data	for	backbone	assignment	of	wild-type	PACT-D3	was	collected	

using	the	MRC_600	spectrometer,	on	a	1.3	mM	[15N,	13C]-labelled	protein	sample	

in	standard	NMR	buffer.	HNCACB	(hncacbgpwg3d)	and	CBCA(CO)NH	

(cbcaconhgpwg3d)	spectra	were	recorded	with	the	parameters	given	in	Table	4.3	

below.		

For	side	chain	assignment,	a	[15N,	13C]-labelled	sample	at	2.4	mM	was	used.	The	

York_700	spectrometer	was	used	to	record	HNCO	(b_hncogp3d),	H(CCO)NH	

(hccconhgpwg3d2)	and	C(CO)NH	(ccconhgp3d)	spectra,	while	the	MRC_800	

spectrometer	was	used	to	record	constant-time	13C-HSQC	(hsqcctetgpsp)	and	

HC(C)H-TOCSY	(hcchdigp3d)	spectra,	using	the	parameters	given	in	Table	4.3	

below.	For	the	b_hncogp3d,	an	offset	of	8.3	ppm	was	used	for	the	band-selective	

pulse,	with	a	bandwidth	of	3.5	ppm.	Non-uniform	sampling	(NUS)	was	used	for	the	

HC(C)H-TOCSY:	25%	of	the	points	were	collected,	distributed	so	that	the	earlier	

times	were	sampled	more	frequently	(exponentially	weighted,	with	time	constants	

of	10	ms	for	the	indirect	proton	dimension	and	20	ms	for	the	indirect	carbon	

dimension).		
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Table	4.3.	Experimental	parameters	for	assignment	of	PACT-D3	

Pulse	sequence	 	 Offset	
(ppm)	

Spectral	
width	(ppm)	

#	points	(real	
+	imaginary)	

hncacbgpwg3d,	

cbcaconhgpwg3d	

1H	 4.7	 14	 2048	

15N	 118	 28	 80	

13C	 39	 75	 200	

b_hncogp3d	 1H	 4.70	 14	 2048	

15N	 118	 28	 56	

13C	 176	 16	 32	

hccconhgpwg3d2	 1H	 4.69	 14	 2048	

15N	 118	 28	 56	

1H	 4.69	 14	 128	

ccconhgp3d	 1H	 4.69	 14	 2048	

15N	 118	 28	 56	

13C	 40	 70	 128	

hsqcctetgpsp	 1H	 4.73	 14	 2048	

13C	 39	 70	 400	

hcchdigp3d	 1H	 4.75	 14	 2048	

13C	 39	 70	 256	

1H	 2.9	 7.5	 256	

	

4.4.5 T1	relaxation	and	EXSY	spectra	

T1	relaxation	data	was	recorded	using	the	York_700	spectrometer,	on	a	2.2	mM	

[15N]-labelled	sample	of	PACT-D3	in	standard	NMR	buffer.	The	pulse	sequence	

hsqct1etf3gpsi3d	was	used,	with	randomly-ordered	relaxation	delays	of	0.01,	

0.05,	0.1,	0.2,	0.25,	0.3,	0.4,	0.5,	0.51,	0.6,	0.7,	0.8,	0.9,	1.0,	1.5	and	2.0	seconds.	A	

series	of	EXSY	spectra	were	recorded	of	a	1.4	mM	[15N]-labelled	sample	of	PACT-
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D3,	with	10	equally-spaced,	randomly-ordered	exchange	delays	between	0.1	and	

1.0	seconds.	The	York_700	spectrometer	was	used	with	pulse	sequence	

hsqcetexf3gp.	All	other	parameters	were	kept	the	same	as	for	(1H,	15N)	HSQC	

spectra,	except	that	a	recycle	delay	of	3	seconds	was	used.		

4.4.6 NOESY	spectra	

The	MRC_800	spectrometer	was	used	to	record	15N-NOESY-HSQC	

(noesyhsqcf3gpwg3d)	and	13C-NOESY-HSQC	(noesyhsqcetgp3d)	spectra	of	PACT-

D3.	The	15N-NOESY-HSQC	sample	had	a	concentration	of	1.1	mM,	while	the	13C-

NOESY-HSQC	sample	was	at	2.4	mM;	both	samples	were	[15N,	13C]-labelled,	and	in	

standard	NMR	buffer.	The	NOESY	mixing	time	was	set	to	120	ms.	21%	NUS	was	

used	for	the	15N-NOESY-HSQC,	and	25%	NUS	for	the	13C-NOESY-HSQC.	

The	MRC_700	spectrometer	was	used	to	record	a	13C-filtered	NOESY-HSQC	

spectrum	(Zwahlen	et	al.,	1997)	of	a	sample	containing	700	µM	[15N,	13C]-labelled	

and	700	µM	15N-labelled	PACT-D3	in	standard	NMR	buffer.		

Table	4.4.	Experimental	parameters	for	NOESY	experiments	on	PACT-D3	

Pulse	sequence	 	 Offset	
(ppm)	

Spectral	
width	(ppm)	

#	points	(real	+	
imaginary)	

noesyhsqcf3gpwg3d	 1H	 4.73	 14	 2048	

15N	 118	 32	 128	

1H	 4.73	 14	 512	

noesyhsqcetgp3d	 1H	 4.69	 14	 2048	

13C	 39	 39	 128	

1H	 4.69	 14	 460	

13C-filtered	NOESY-
HSQC	

1H	 4.7	 16	 2048	

13C	 39	 39	 52	

1H	 47	 13	 192	
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4.4.7 NMR	experiments	at	high	pressure	

300	µL	samples	of	0.5	mM	wild-type	PACT-D3	or	0.75	mM	PACT-D3	L273R	were	

loaded	into	a	5	mm	ceramic	pressure	cell,	overlaid	with	paraffin	oil	and	

pressurised	using	an	Xtreme-60	syringe	pump	(Daedalus	Innovations).	(1H,	15N)-

HSQC	spectra	were	then	recorded	at	pressures	of	1	bar,	0.5	kbar,	1.0	kbar,	1.5	

kbar,	2.0	kbar	and	2.5	kbar	on	the	Shef_800	spectrometer.	Offsets	were	(4.70	ppm,	

118	ppm),	spectral	widths	were	(12.5	ppm,	28	ppm)	and	the	number	of	real	and	

imaginary	points	collected	were	(2048,	128)	for	the	proton	and	nitrogen	

dimensions	respectively.		

4.5 NMR	data	analysis	

4.5.1 (1H,	15N)	HSQC	processing	

NMR	data	was	processed	either	using	NMRpipe	(Delaglio	et	al.,	1995),	or	in	some	

cases	using	TopSpin	version	3	(Bruker	Biospin).	For	(1H,	15N)-HSQC	spectra,	the	

following	processing	scheme	was	used:	

1) Direct	dimension	

a. High	pass	filtering	to	remove	residual	solvent	signal.	

b. Apodisation	with	a	quadratic	sine	function	to	reduce	influence	of	

noise	at	later	timepoints.	

c. Fourier	transformation.	

d. Polynomial	baseline	correction.	

2) Indirect	dimension	

a. Apodisation	with	a	sine	bell	function.	

b. Zero-filling	to	512	points,	to	enhance	the	digital	resolution.	

c. Fourier	transformation.	

d. Polynomial	baseline	correction.	

CCPN	Analysis	version	2	was	used	for	all	peak	picking	and	assignment	(Vranken	et	

al.,	2005).		

4.5.2 Fitting	of	longitudinal	relaxation	and	exchange	data	

Peaks	were	picked	and	assigned	manually	using	CCPN	Analysis	version	2,	and	

peak	heights	estimated	using	a	parabolic	model.	Only	residues	with	4	well-

resolved,	non-overlapping	cross	peaks	in	the	EXSY	spectra	were	analysed.	

Exchange	rates	for	individual	residues	were	determined	by	nonlinear	least-
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squares	fitting,	using	a	Gauss-Newton	algorithm.	The	equations	describing	the	

exchange	model	are	given	below	(Farrow,	Zhang,	et	al.,	1994;	3rd,	Kroenke	and	

Loria,	2001):	
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Where:	

	 IAA	and	IBB	are	the	heights	of	the	auto	peaks	for	states	A	and	B	in	the	EXSY	

spectra;	

	 IAB	and	IBA	are	the	heights	of	the	exchange	peaks	in	the	EXSY	spectra;	

	 IA	and	IB	are	the	peak	heights	for	states	A	and	B	in	the	T1	relaxation	spectra;	

	 I0	and	I1	are	scaling	factors	for	the	EXSY	and	T1	relaxation	spectra	

respectively;	

	 CA	and	CB	are	account	for	initial	differences	in	intensity	of	states	A	and	B;	

	 RA	and	RB	are	the	longitudinal	relaxation	rates	of	states	A	and	B;	

	 kex	is	the	exchange	rate	between	states	A	and	B;	

	 tmix	is	the	mixing	time	allowed	for	relaxation	and	exchange.	

Note	that	the	model	as	given	above	assumes	that	the	rate	of	conversion	from	A	to	

B	and	from	B	to	A	are	equal,	and	only	accounts	for	relaxation	that	occurs	during	

the	mixing	time,	not	during	other	parts	of	the	pulse	sequence.	This	would	be	

expected	to	give	equal	populations	to	each,	but	in	practice	deviations	occur,	
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presumably	due	to	relaxation	in	other	parts	of	the	pulse	sequence.	The	parameters	

CA	and	CB	account	for	this	difference	in	initial	population.	

The	model	is	also	intended	to	describe	peak	volumes,	not	peak	heights.	In	practice,	

the	estimates	of	peak	height	and	peak	volume	produced	by	CCPN	Analysis	are	

highly	correlated	for	non-overlapping	peaks;	therefore,	either	can	be	used.	The	

high	correlation	suggests	that	peak	volumes	are	not	being	accurately	calculated	

within	CCPN	Analysis,	as	height	to	volume	ratios	should	vary	with	peak	width.	

To	calculate	the	global	exchange	rate,	peak	heights	from	the	EXSY	spectra	were	fit	

to	the	following	model	(Miloushev	et	al.,	2008)	using	least-squares	in	R:	

Æ £ = ¨•´ 3 	¨´• 3
¨•• 3 ¨´´ 3 á¨•´ 3 ¨´• 3

≅ †/°I £I      [4.10] 

The	calculation	was	restricted	to	the	data	used	for	the	per-residue	fitting	above.	

The	95%	confidence	interval	was	calculated	using	bootstrapping.	Note	that	the	

quadratic	relationship	between	Æ £ 	and	t	breaks	down	at	longer	time	points,	as	

higher	order	terms	become	significant.		

4.5.3 Fitting	of	pressure-induced	chemical	shift	changes	

The	reference	frequencies	of	the	(1H,	15N)	HSQC	spectra	were	first	corrected	using	

the	chemical	shift	of	the	internal	DSS	standard	in	a	proton	spectrum	recorded	at	

each	pressure.	Peaks	were	manually	assigned	using	CCPN	analysis	using	a	

spectrum	recorded	at	ambient	pressure	as	a	reference.	Peaks	which	could	not	be	

unambiguously	assigned,	due	to	overlap	with	other	peaks,	were	excluded	from	

further	analysis.	Chemical	shift	values	were	exported,	and	fit	to	either	a	linear	or	

quadratic	model	using	least-squares	in	R.	The	two	fitting	methods	did	not	result	in	

significantly	different	linear	coefficients.	
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5. Cell	and	Molecular	Biology	
Methods	

5.1 Mammalian	cell	culture	

All	cells	were	grown	in	Dulbecco’s	modified	Eagle	medium	(Gibco)	supplemented	

with	10%	Foetal	Bovine	Serum	(Hyclone),	2mM	L-Glutamine,	50	U/ml	penicillin	

and	50	µg/ml	streptomycin	(henceforth	referred	to	as	“full	media”),	at	37˚C	and	

5%	CO2.	Cells	were	split	every	3-4	days,	and	reseeded	at	an	approximate	density	of	

2x106	(for	a	10cm	plate).		

5.2 Knockdown	of	PACT	by	siRNA	

ON-TARGET	plus	SMART	pool	against	human	PRKRA	(Dharmacon)	was	used	to	

target	PACT,	while	ON-TARGET	plus	control	siRNA	pool	(Dharmacon)	was	used	as	

a	control.	Cells	were	seeded	in	6	well	plates	at	a	density	of	5-8	x104	cells	per	well	

16	hours	prior	to	transfection.	2	µL	siQuest	reagent	(Mirus	Bio)	and	siRNA	

(Dharmacon)	were	separately	mixed	with	Opti-MEM+Gluta-MAX	medium;	the	two	

solutions	were	then	mixed	so	as	to	give	a	total	volume	of	160	µL	for	each	well	to	

be	transfected	(containing	1.25	%	(v/v)	transfection	reagent	and	250	nM	siRNA),	

and	incubated	at	room	temperature	for	20	minutes.	The	media	in	each	well	was	

replaced	with	640	µL	Opti-MEM,	then	160	µL	of	siRNA	transfection	mix	was	added	

dropwise.	After	6	hours,	the	transfection	mixture	was	replaced	with	full	media,	

and	cells	were	harvested	48	hours	later.	

5.3 Construction	of	vectors	for	PACT	overexpression	

5.3.1 Cloning	PACT	constructs	into	pGEM-T	

Full-length	PACT,	PACT-Ext-D3	and	PACT-D3	were	amplified	from	pOTB7	

lentiviral	expression	vectors	using	the	GoTaq	G2	Flexi	kit	(Promega)	according	to	

the	manufacturer’s	instructions,	with	2	mM	MgCl2	included	in	the	reaction	buffer.	

The	thermal	cycle	was	2	min	at	95˚C;	29	cycles	of	30	s	57˚C,	1	min	72˚C,	30	s	95˚C;	

and	finishing	with	30	s	at	57˚C	and	5	mins	at	72˚C.	Primers	are	shown	in	table	1,	

and	were	designed	to	introduce	a	Bsp119I	site	at	the	5’	end,	and	an	XbaI	site	at	the	

3’	of	the	PCR	product.	Regions	matching/complementary	to	PACT	are	shown	as	

uppercase,	restriction	sites	and	extensions	in	lowercase.	The	PCR	products	were	
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then	ligated	into	pGEM-T	vectors	(Promega)	using	T4	DNA	ligase,	and	verified	by	

sequencing.	

Table	5.1.	Primers	used	for	cloning	PACT	into	pGEM-T	vector	

Name	 Sequence	 Tm/˚C	

PACT	forward	 aatgaattcgaacATGTCCCAGAGCAGGCACC	 64.8	

PACT-D3	forward	 aatgaattcgaacACAGATTACATCCAGCTGC	

TTAGTGAAATTG	

63.1	

PACT-Ext-D3	forward	 aatgaattcgaacGGACATTCTTTAGGATGTA	

CTTGGCATTCCTTG	

64.6	

PACT	reverse	 acaacttctagaTTACTTTCTTTCTGCTATTA	

TCTTTAAATACTGCAAAGCA	

62.1	

	

5.3.2 Construction	of	c-myc	tag	expression	vectors	

Oligonucleotides	encoding	c-myc	and	flanking	sticky-ended	NotI	and	BSP199I	

restriction	sites	(see	table	two)	were	annealed	by	heating	to	95˚C	for	5	minutes,	

followed	by	a	slow	cooling	to	room	temperature.	pSF-CMV-PURO-NH2-FLAG	

vector	(OG3213,	Oxford	Genetics)	was	then	cleaved	using	NotI	and	Bsp199I,	and	

purified	using	a	Wizard	SV	Gel	and	PCR	Cleanup	Kit	(Promega).	The	annealed	

oligos	and	linearized	vector	were	then	ligated	using	T4	DNA	ligase,	and	verified	by	

sequencing.	

Table	5.2.	Oligonucleotides	used	in	construction	of	c-myc	expression	vector	

Name	 Sequence	 Tm/˚C	

c-myc	forward	 GGCCGCAGGAGGTACTCACGATGGCGGAACAG	

AAACTGATTAGCGAAGAAGACCTGATGAATT	

64.8	

c-myc	reverse	 CGAATTCATCAGGTCTTCTTCGCTAATCAGTT	

TCTGTTCCGCCATCGTGAGTACCTCCTGC	

63.1	
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5.3.3 Subcloning	of	PACT	constructs	into	mammalian	expression	vectors	

The	pGEM-T/PACT	plasmids	(from	section	5.3.1)	and	the	FLAG	and	c-myc	

expression	vectors	(from	section	5.3.2)	were	both	digested	with	Bsp119I	and	XbaI,	

and	purified	from	a	1%	agarose	gel.	The	linear	vectors	and	PACT	constructs	were	

then	mixed,	ligated	with	T4	DNA	ligase	and	transformed	into	XL10-Gold	cells	

(Agilent).	Colony	PCR	was	used	to	screen	colonies	for	the	insert,	using	the	same	

primers	and	thermocycle	as	in	section	5.3.1.	Plasmids	from	positive	colonies	were	

then	verified	by	sequencing.	

5.4 PACT	overexpression	in	mammalian	cells	

5.4.1 Optimisation	of	GeneJuice	transfection	

HEK293	cells	were	seeded	in	a	black-walled,	clear-bottomed	96	well	plate,	with	

densities	of	either	1.0x104,	1.5x104,	2.0x104	or	2.5x104	cells	per	well,	and	grown	in	

full	media	for	24	hours.	

Transfection	mix	was	prepared	using	GeneJuice	(Novagen),	Opti-MEM	serum-free	

medium	with	Gluta-MAX	(Gibco)	and	mKate2	plasmid	(Evrogen)	according	to	the	

manufacturer’s	instructions,	in	various	ratios	(either	60	ng	or	120	ng	plasmid	per	

30	µL,	with	between	0	and	6	µL	GeneJuice	per	µL	DNA).	30	µL	of	transfection	mix	

was	added	dropwise	to	each	well	(with	three	replicates	per	condition),	and	

incubated	for	48	hours.	Fluorescence	was	then	measured	using	a	BMG	Labtech	

POLARstar	OPTIMA	plate	reader,	with	excitation	at	584	nm	and	detection	at	620	

nm.	

5.4.2 Overexpression	in	HEK293	and	HeLa	cells	

1.5x105	HEK293	cells	per	well	were	seeded	into	a	12	well	plate,	and	grown	for	24	

hours	in	full	media.	GeneJuice	transfection	mix	was	prepared	for	each	FLAG-	or	c-

myc-tagged	PACT	construct	according	to	the	manufacturer’s	instructions,	to	give	

0.5	µg	plasmid	and	1.5	µL	GeneJuice	in	a	total	volume	of	50	µL.	This	was	added	

dropwise	to	each	well.	Cells	were	grown	for	72	hours,	after	which	cells	were	

cultured	for	14	days	in	full	media	supplemented	with	3µg/ml	puromycin.	

5.5 Extraction	of	protein	and	Western	blotting	

For	a	6	well	plate,	each	well	was	washed	with	1	ml	ice-old	PBS,	then	cells	were	

lysed	with	35	uL	RIPA	buffer	(25	mM	Tris	pH	7.5,	150	mM	NaCl,	1%	sodium	
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deoxycholate,	0.5%	Triton	X-100,	0.1	%	SDS,	0.1%	EDTA.	The	lysate	was	incubated	

on	ice	for	15	minutes,	centrifuged	at	10,000	RCF	for	15	minutes	at	4˚C,	and	the	

supernatant	extracted.	

The	protein	concentration	was	measured	using	a	Pierce	BCA	Protein	Assay	Kit	

(Thermo	Scientific).	A	series	of	BSA	solutions	with	concentrations	equally	spaced	

between	0	and	2	mg/ml	was	prepared	as	a	reference.	5	µL	of	the	BSA	standards	

and	protein	extracts	were	loaded	in	duplicate	into	a	96	well	plate:	200	µL	of	BCA	

reagent	was	added	to	each	well,	and	the	plate	incubated	at	37˚C	for	1	hour.		The	

absorbance	at	562	nm	was	then	measured,	and	the	protein	concentration	

calculated	according	to	a	linear	regression	on	the	BSA	standards.	

Protein	samples	were	diluted	to	1	mg/ml,	mixed	with	SDS-PAGE	loading	buffer,	

and	run	on	a	15%	SDS-PAGE	gel	as	described	previously	in	Chapter	2.	Proteins	

were	then	transferred	to	a	PVDF	membrane	(Millipore):	the	membrane	was	first	

washed	in	methanol	for	1	minute,	distilled	water	for	1	minute,	and	transfer	buffer	

(20	mM	Tris,	150	mM	glycine,	20%	methanol)	for	3	minutes,	then	a	Trans-Blot	SD	

semi-dry	transfer	cell	(BioRad)	was	used,	with	a	transfer	time	of	90	minutes	at	25	

volts.	The	PVDF	membrane	was	then	blocked	with	5%	Marvel	milk	powder	in	

TBS/T	(10	mM	Tris,	150	mM	NaCl,	0.1%	Tween-20,	pH	8.0)	for	1	hour,	rinsed	with	

TBS/T	three	times,	then	incubated	for	16	hours	at	4˚C	in	10	ml	primary	antibody	

solution.	Following	this,	the	membrane	was	washed	three	times	for	5	minutes	in	

TBS/T,	then	incubated	with	6	ml	secondary	antibody	solution	for	1	hour,	then	

again	washed	three	times	for	5	minutes	in	TBS/T.	All	wash/incubation	steps	were	

performed	on	a	tube	rotator/rocker.		

To	visualise	the	stained	protein,	the	PVDF	membrane	was	soaked	in	4	ml	ECL	

Western	Blotting	reagent	(GE	Healthcare)	for	5	minutes,	then	visualised	with	

Amersham	Hyperfilm	ECL	(GE	Healthcare).	The	film	was	then	developed	using	a	

Compact	X4	film	processor	(Xograph).		

For	re-probing	with	a-beta-actin,	the	membrane	was	stripped	using	Restore™	

Western	Blot	Stripping	Buffer	(Thermo	Scientific),	then	re-blocked	and	probed	as	

above,	except	the	incubation	with	primary	antibody	was	1	hour	at	room	

temperature.	
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Table	5.3.	Antibodies	used	for	Western	blotting	

Antibody	 Description	 Dilution	 Manufacturer,	
catalogue	number	

a-hsPACT	 Rabbit	polyclonal	 1:1000*	 Abcam,	ab31967	

a-c-myc	 Mouse	monoclonal	
(9E10)	IgG1		

1:500*	 Sigma-Aldrich,	
M4439	

a-FLAG	 Mouse	monoclonal	
(M2)	IgG1	

1:5000*	 Sigma-Aldrich,	
F3165	

a-beta	Actin	 Mouse	monoclonal	
(AC-15)	IgG1	

1:50000*	 Abcam,	ab6276	

a-rabbit	IgG	 Goat	polyclonal	
coupled	to	HRP	

1:5000**	 Dakocytomation,	
P0448	

a-mouse	IgG	 Goat	polyclonal	
coupled	to	HRP	

1:5000**	 Dakocytomation,	
P0447	

*	diluted	with	4%	BSA	in	TBS/T.	**	diluted	with	5%	Marvel	milk	powder	in	TBS/T.	

5.6 Extraction	of	RNA	and	qPCR	

RNA	was	extracted	using	miRNeasy	kits	(Qiagen)	according	to	the	manufacturer’s	

instructions.	The	concentration	of	the	eluted	RNA,	as	well	as	its	260/280	and	

260/230	absorbance	ratios,	was	quantified	using	a	Nanodrop	ND	1000	(Thermo	

Scientific).	

cDNA	of	messenger	RNAs	was	synthesised	using	a	SuperScript	II	reverse	

transcriptase	kit	(Invitrogen).	1	µL	of	RNA	(100	ng/µL),	0.5	µL	oligo-dT	(5	µM),	1	

µL	dNTP	(10	µM)	and	9.5	µL	distilled	water	were	mixed,	heated	to	70˚C	for	6	

minutes,	then	cooled	to	4˚C.	To	each	sample,	4	µL	5x	reaction	buffer,	2	µL	DTT	(0.1	

M),	1	µL	RNase	Out	and	1µL	SuperScript	II	reverse	transcriptase	was	added.	

Samples	were	then	heated	to	42˚C	for	1	hour,	followed	by	70˚C	for	10	minutes.	To	

synthesise	miRNA	cDNAs,	25	ng	of	RNA	was	reverse	transcribed	using	TaqMan®	

Small	RNA	Assay	kits	(Life	Technologies)	for	human	miR-21	and	U6,	according	to	

the	manufacturer’s	instructions.		

qPCR	was	performed	on	1	µL	of	cDNA	in	a	total	volume	of	20	µL.	For	all	genes	

except	GAPDH,	primers	and	quenched	fluorescent	reporters	from	the	appropriate	

TaqMan	Small	RNA	Assay	kit	were	used.	For	GAPDH,	the	primer	pair	5’-

GGAGTCAACGGATTTGGTCGTA-3’	and	5’-GGCAACAATATCCACTTTACCAGAGT-3’	
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were	used	at	a	concentration	of	300	nM,	and	SYBR	Green	(Applied	Biosystems)	

was	used	for	quantification.	All	samples	were	loaded	in	triplicate	into	a	MicroAmp	

Fast	Optical	96-well	reaction	plate	(Applied	Biosystems).	The	amplification	

reaction	was	performed	on	a	StepOnePlus	Real-Time	PCR	System	(Applied	

Biosystems),	with	a	thermocycle	consisting	of	50˚C	for	2	minutes,	95˚C	for	10	

minutes,	then	40	cycles	of	95˚C	for	15	seconds,	60˚C	for	60	seconds.	A	common	

fluorescence	threshold	was	set	for	all	genes	in	the	exponential	part	of	the	

amplification	curve,	and	used	to	calculate	a	Ct	value	for	each	well.	The	

concentration	was	calculated	as	ÑI∞i ,	and	normalised	to	the	value	of	U6	(for	miR-

21)	or	GAPDH	(for	PACT,	TRBP	and	Dicer).	

Table	5.4.	Primers	used	for	qRT-PCR	

Gene	 Type	 Catalogue	number	

PACT	 TaqMan	 Hs00269379_m1	

TRBP	 TaqMan	 Hs00998379_m1	

Dicer	 TaqMan	 Hs00229023_m1	

Hsa-miR-21	 TaqMan	 000397	

U6	snRNA	 TaqMan	 001973	
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6. Production	of	recombinant	PACT	
and	TRBP	domains	

6.1 Introduction	

There	are	a	number	of	common	methods	for	expressing	proteins	for	use	in	

structural	and	biophysical	studies,	including	in	E.	coli,	Pichia	pastoris,	insect	cells,	

mammalian	cells	or	using	cell	free	expression	systems.	Each	has	its	own	strengths	

and	weaknesses	(see	Table	6.2):	for	example,	mammalian	cells	provide	the	most	

‘native’	environment	for	protein	expression	and	folding,	but	are	expensive	due	to	

the	specific	media	requirements,	and	typically	produce	a	lower	yield	of	protein.	

Structural	and	biophysical	studies	typically	require	milligram	quantities	of	highly	

purified	protein,	and	may	require	isotope	labelling.	As	both	PACT	and	TRBP	

domain	3	are	relatively	small	(approximately	75	residues	for	the	core	dsRBD,	or	

110	residues	including	the	N-terminal	extension),	initial	expression	and	solubility	

tests	were	carried	out	in	E.	coli.	Two	different	construct	lengths	were	tested:	D3	

covers	only	the	predicted	dsRBD,	while	Ext-D3	includes	the	conserved	N-terminal	

region	(see	Chapter	1	section	1.3.2).	Two	phosphorylation	sites	have	been	

identified	in	the	N-terminal	region	of	TRBP	domain	3	(see	Chapter	1	section	1.4.4),	

so	a	phospho-mimic	construct	was	also	tested.	

Table	6.1.	PACT	and	TRBP	Domain	3	Constructs	

	 Residues	 Length	

Predicted	molecular	

weight	(kDa)	

PACT-D3	 239-313	 75	 8.1	

PACT-Ext-D3	 208-313	 106	 11.6	

TRBP-D3	 293-366	 74	 8.0	

TRBP-Ext-D3	 258-366	 109	 11.6	

TRBP-ExtDD-D3	*	 258-366	 109	 11.6	

*	This	construct	contains	S283D	and	S286D	mutations.	
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Table	6.2.	Overview	of	protein	expression	systems	

Expression	

host	

Advantages	 Disadvantages	

E.	coli	 Fast	growth	

Potential	for	high	yields	

Simple,	inexpensive	media	

Isotope	labelling	is	efficient	
and	inexpensive	

Many	vectors	available	

Long	proteins	may	not	express	

Proteins	requiring	additional	
folding	factors	(e.g.	chaperones)	
may	fold	incorrectly	

No	mammalian	post-translational	
modifications	

Codon	frequency	differs	from	
mammals	

Pichia	
pastoris	

Fast	growth	

Potential	for	high	yields	

Simple,	inexpensive	media	

Simple	to	target	expressed	
protein	for	secretion	

Proteins	may	fold	incorrectly	

Missing	or	incorrect	post-
translational	modifications	

Codon	frequency	differs	from	
mammals	

Fewer	vectors	available	compared	
to	E.	coli	

Insect	cells	
(e.g.	Sf9	or	
Sf21	
derived	
from	
Spodoptera	
frugiperda)	

Cellular	environment	
closer	to	mammalian	cells,	
allowing	correct	folding	of	
more	complex	proteins	

Some	post-translational	
modifications	available	

Simpler/higher	yield	than	
mammalian	expression	

Post-translational	modification	
may	differ	from	mammals	

Expression	requires	several	weeks	

Yields	are	lower	than	for	E.	coli	

Media	and	facilities	are	expensive,	
especially	for	isotope	labelling	

Codon	frequency	differs	from	
mammals	

Mammalian	
cells	(e.g.	
HEK293T)	

‘Native’	cellular	
environment	promotes	
correct	protein	folding	

Codon	optimisation	not	
required	

Native	post-translational	
modifications	

Expression	requires	several	weeks	

Yields	are	lower	than	for	E.	coli	

Media	and	facilities	are	expensive,	
especially	for	isotope	labelling	

Cell-free	
expression	
(e.g.	rabbit	
reticulocyte	
cell	lysate)	

Easy	to	add	unnatural	or	
modified	amino	acids	

Fewer	impurities	to	
separate	from	protein	of	
interest	

Raw	materials	are	expensive	
(especially	if	isotope	labelled)		

Challenging	to	set	up,	if	not	using	
commercial	kits	
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6.2 Protein	expression	in	E.	coli	

6.2.1 Solubility	tests	of	protein	constructs	

To	determine	whether	the	constructs	were	expressed	and	soluble,	50	mL	cultures	

of	E.	coli	BL21	(DE3)	were	grown	as	described	in	Chapter	2.	The	cultures	were	

then	centrifuged,	and	the	cell	pellets	lysed	using	a	buffer	containing	lysozyme	and	

Triton	X-100	as	previously	described	(Benoit	and	Plevin,	2013).	This	allowed	the	

lysis	of	all	samples	to	be	performed	in	parallel,	minimising	differences	between	

samples,	and	reducing	the	amount	of	time	cell	pellets	were	stored	on	ice.	

	

Figure	6.1.	Solubility	tests	of	PACT	and	TRBP	domain	3	constructs	

15	%	SDS-PAGE	gels	showing	the	results	of	solubility	tests	for	A)	PACT-D3,	B)	PACT-

Ext-D3,	C)	TRBP-D3,	and	D)	TRBP-Ext-D3.	For	each	tag,	3	lanes	were	run:	total	

protein	before	centrifugation	(T),	supernatant	after	centrifugation	(S),	and	pellet	

after	centrifugation	(P).	Lane	L	contains	the	protein	ladder,	with	masses	given	in	

kDa.	The	tags	are	Maltose	Binding	Protein	(MBP),	Glutathione-S-transferase	(GST),	

E.	coli	Immunity	Protein	9	(Im9)	(James,	Kleanthous	and	Moore,	1996),	Green	

Fluorescent	Protein	(GFP)	or	His-tag	only	(His).	The	band	just	below	15	kDa	in	all	

lanes	is	lysozyme.	
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The	solubility	tests	shown	in	Figure	6.1A,B	demonstrate	that	both	PACT-D3	and	

PACT-Ext-D3	constructs	are	soluble	and	highly	expressed	when	tagged	with	either	

MBP	or	Im9.	To	a	lesser	extent,	they	are	also	soluble	when	GST-tagged.	PACT-Ext-

D3	appears	to	be	soluble	with	only	a	His	tag,	but	PACT-D3	is	insoluble	when	GFP-

tagged.	Figure	6.1C,D	show	that	TRBP-D3	and	TRBP-Ext-D3	are	soluble	when	

fused	to	an	MBP	tag,	but	not	to	any	of	the	other	tags.	TRBP-ExtDD-D3	was	not	

tested,	but	would	be	expected	to	behave	similarly	to	wild-type	TRBP-Ext-D3.	

6.2.2 Scale	up	and	purification	

As	described	in	Chapter	2,	1	L	cultures	of	the	MBP-tagged	constructs	were	then	

grown	in	M9	minimal	media	containing	[15N]-labelled	ammonium	chloride.	Cell	

pellets	were	lysed	using	either	continuous	flow	French	press	or	sonication.	Two	

nickel	immobilised	metal	affinity	purification	steps	were	used	to	separate	the	

tagged	protein	from	endogenous	E.	coli	proteins	(Figure	6.2A),	and	to	separate	the	

tag	from	the	domain	of	interest	after	3C	cleavage	(Figure	6.2B).	Finally,	size	

exclusion	chromatography	(SEC)	was	used	to	remove	any	remaining	contaminants	

(Figure	6.2C,D).	

Following	SEC,	only	very	minor	contaminants	can	be	seen	by	SDS-PAGE	(Figure	

6.2D,E).	Per	litre	of	M9	media,	typical	yields	were	15	mg	PACT-D3,	10	mg	PACT-

Ext-D3,	1	mg	TRBP-Ext-D3	and	5	mg	TRBP-ExtDD-D3.	It	was	not	possible	to	

accurately	measure	the	concentration	of	TRBP-D3	due	to	its	small	number	of	

aromatic	residues	(Pace	et	al.,	1995)	.	However,	the	yield	appeared	to	be	lower	

than	for	the	other	constructs,	based	on	both	Coomassie-stained	SDS-PAGE	gels	

(data	not	shown)	and	the	NMR	signal	strength	(see	section	6.4).	This	is	consistent	

with	attempts	to	produce	TRBP-D3	by	Doudna	and	coworkers,	who	found	that	the	

N-terminal	extension	was	necessary	for	TRBP	domain	3	stability	(Wilson	et	al.,	

2015).	Both	TRBP-D3	and	TRBP-Ext-D3	showed	signs	of	aggregation	during	

purification,	such	as	white	precipitate	after	centrifugation,	and	multiple	peaks	on	

the	size	exclusion	chromatogram	(data	not	shown).	
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Figure	6.2.	Large	scale	purification	of	PACT	and	TRBP	domains	

A)	SDS-PAGE	analysis	of	the	lysis	and	first	nickel	affinity	purification	of	PACT-D3.	1:	

Total	cell	lysate;	2:	Soluble	fraction;	3:	Ni-IMAC	eluate;	4:	Eluate	after	dialysis	with	

3C	protease;	5:	Ni-IMAC	flow	through.	L	is	the	protein	ladder,	with	masses	in	kDa.	B)	

Second	nickel	affinity	purification	of	PACT-D3.	6:	First	Ni-IMAC	eluate;	7:	Eluate	

after	dialysis	with	3C;	8:	Second	Ni-IMAC	flow	through;	9:	Ni-IMAC	eluate.	C)	Size	

exclusion	profile	of	PACT-D3	passed	over	Superdex	S75	16/60	column	at	a	flow	rate	

of	1	ml/min.	D)	SDS-PAGE	analysis	of	size	exclusion	fractions	of	PACT-D3.	L	is	the	

protein	ladder;	In	is	the	input,	diluted	1:5	E)	SDS-PAGE	analysis	of	concentrated	

samples	of	PACT-Ext-D3,	TRBP-Ext-D3	and	TRBP-ExtDD-D3	following	size	exclusion	

chromatography.	
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6.3 Optimisation	of	size	exclusion	buffer	for	protein	stability	

Because	there	were	signs	of	aggregation	for	several	of	the	domains,	differential	

scanning	fluorimetry	(DSF)	was	used	to	examine	the	stability	of	each	protein	in	

different	buffers.	Two	main	variables	were	tested:	pH	(between	5.5	and	8.5)	and	

NaCl	concentration	(between	50	mM	and	500	mM).	In	addition,	various	additives	

were	examined	(5%	glycerol,	1	mM	DTT,	0.5%	(v/v)	beta-mercaptoethanol	and	1	

mM	tris(2-carboxyethyl)phosphine	(TCEP)).	Glycerol	is	frequently	used	to	prevent	

protein	aggregation,	while	DTT,	beta-mercaptoethanol	and	TCEP	are	all	reducing	

agents	which	prevent	the	formation	of	disulphide	bonds.	As	PACT	and	TRBP	are	

intracellular	proteins,	they	are	not	expected	to	form	intramolecular	disulphide	

bonds	in	vivo,	despite	the	extended	third	domains	containing	4	and	7	cysteines	

respectively.	

6.3.1 Differential	scanning	fluorimetry	results	

For	PACT-D3	(Figure	6.3A,B),	pH	was	found	to	have	a	large	influence	on	stability,	

with	the	melting	temperature	at	pH	5.5	almost	10˚C	higher	than	at	pH	8.5.	In	

contrast,	salt	concentration	made	very	little	difference	to	melting	temperature.	

Both	DTT	and	TCEP	increased	the	melting	temperature	slightly,	while	glycerol	

either	had	no	effect	or	slightly	reduced	it.		

For	PACT-Ext-D3	(Figure	6.3C,D),	low	pH	was	again	found	to	increase	melting	

temperature,	while	salt	concentration	had	very	little	effect.	DTT	and	TCEP	were	

also	found	to	increase	melting	temperature.	This	suggested	that	PACT-Ext-D3	

would	be	stable	in	the	same	buffer	as	PACT-D3.	

Figure	6.3.	Differential	Scanning	Fluorimetry	(DSF)	to	optimise	buffer	for	
protein	stability.	

A,C,E,G)	Melting	temperatures	for	each	domain	when	pH	and	salt	concentration	are	

varied.	B,D,F,H	I)	Melting	temperatures	when	various	cosolvents	are	added	to	either	

MES	pH	6.5	or	Na/K	PO4	pH	7.5,	each	with	200	mM	NaCl.	Points	are	the	individual	

replicates,	while	bars	show	the	average.	Points	are	coloured	red	if	the	R2	correlation	

between	the	data	and	fitted	model	is	less	than	0.999,	indicating	that	the	fit	may	be	

unreliable,	and	that	the	calculated	melting	temperature	should	be	treated	with	

caution.		
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It	proved	too	difficult	to	produce	sufficient	TRBP-D3	to	perform	DSF,	due	to	

aggregation	during	the	purification.	When	DSF	was	performed	for	TRBP-Ext-D3	

and	TRBP-ExtDD-D3	(Figure	6.3E-H),	several	differences	were	apparent.	Firstly,	

melting	temperatures	were	in	the	range	40-45	˚C,	below	the	45-55	˚C	range	found	

for	PACT-D3	and	PACT-Ext-D3,	indicating	that	the	structure	of	TRBP-Ext-D3	is	less	

stable.	Secondly,	many	of	the	plots	of	fluorescence	against	temperature	did	not	

have	the	expected	sigmoidal	shape,	instead	showing	additional	‘shoulders’.	This	is	

reflected	in	the	larger	number	of	results	marked	as	having	a	poor-quality	fit.	

Therefore,	a	single-step	unfolding	transition	is	not	a	good	fit	to	the	data,	

suggesting	that	a	more	complex	process	is	occurring.	This	could	be	interpreted	as	

a	two-step	unfolding	process,	or	could	be	due	to	the	presence	of	multiple	folded	or	

partially-folded	states.	In	either	case,	the	melting	temperatures	calculated	from	

this	experiment	should	be	treated	with	caution.	Bearing	this	in	mind,	the	melting	

temperature	of	TRBP-ExtDD-D3	appears	to	be	slightly	higher	than	that	of	wild-type	

TRBP-Ext-D3.	

Based	on	the	data	for	PACT-D3	and	PACT-Ext-D3,	20	mM	MES,	200	mM	NaCl,	10	

mM	TCEP,	pH	6.5	was	chosen	as	the	working	buffer	for	biophysical	experiments.	

pH	6.5	was	used	rather	than	pH	5.5	because	it	is	closer	to	the	physiological	pH	

range,	and	200	mM	NaCl	was	chosen	to	remain	close	to	the	physiological	salt	

concentration	of	150	mM.	For	many	NMR	experiments,	the	NaCl	concentration	

was	reduced	to	50	mM	to	reduce	sample	conductivity,	thereby	increasing	

sensitivity	(Kelly	et	al.,	2002).	10	mM	TCEP	was	chosen	to	ensure	that	there	was	

always	a	molar	excess	over	the	3	cysteines	of	PACT-D3,	even	for	highly	

concentrated	samples.	Because	TCEP	is	relatively	expensive,	it	was	omitted	from	

the	size	exclusion	buffer,	and	the	concentrated	size	exclusion	fractions	were	

dialysed	against	a	smaller	volume	of	buffer	containing	TCEP.	While	the	DSF	data	

suggests	that	TRBP-Ext-D3	is	less	stable	than	PACT-D3	in	all	the	buffers	examined,	

the	buffer	described	above	does	not	appear	to	be	significantly	worse	than	the	

others.	Therefore,	the	same	buffer	was	used	for	TRBP-Ext-D3	and	TRBP-ExtDD-D3.	

6.4 NMR	spectroscopy	indicates	folding	state	of	PACT-D3	and	
TRBP-D3	constructs	

To	assess	whether	the	domains	were	folded,	1D	proton	spectra	were	recorded	of	

[15N]-labelled	samples.	The	amide	and	methyl	regions	are	particularly	useful	for	
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assessing	folding	state.	In	an	unfolded	protein,	amide	protons	rapidly	switch	

between	different	environments	with	a	range	of	chemical	shifts:	the	rapid	

exchange	leads	to	observation	only	of	the	average	frequency,	resulting	in	peaks	

tightly	clustered	around	8	ppm.	In	a	folded	protein,	the	chemical	environments	of	

the	amide	protons	are	relatively	fixed,	and	vary	substantially	between	different	

sites,	leading	to	peaks	dispersed	between	approximately	6	and	10	ppm.	Methyl	

protons	in	an	unfolded	protein	typically	have	chemical	shifts	close	to	1	ppm	

(Sahakyan	et	al.,	2011),	but	methyl	groups	in	folded	proteins	can	resonate	at	lower	

chemical	shifts	if	in	close	proximity	to	an	aromatic	side	chain.		

	

		

	

Figure	6.4.	1D	1H	spectra	of	[15N]-labelled	purified	protein	domains.	

Data	was	recorded	using	Bruker	pulse	sequence	zgesgp	at	25˚C	on	a	Bruker	AVANCE	

II	700	MHz	spectrometer	equipped	with	a	triple-resonance	room	temperature	probe.	

The	spectra	were	then	processed	using	TopSpin	3.2,	using	5	Hz	exponential	line	

broadening.	Protein	concentration,	determined	by	UV	absorbance	spectroscopy,	is	

given	at	the	top	left	of	each	spectrum.	The	concentration	of	TRBP-D3	was	

determined	to	be	300	µM	but	the	intensity	of	the	NMR	spectrum	suggests	the	true	

concentration	is	much	lower.	Note	that	15N	decoupling	was	not	used,	so	each	amide	

resonates	as	a	doublet.	
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For	both	PACT-D3	and	PACT-Ext-D3	(Figure	6.4A,B),	signals	in	the	amide	region	

are	dispersed	between	approximately	6.5	and	10	ppm,	indicating	that	both	

constructs	are	folded.	In	addition,	both	spectra	contain	signals	with	chemical	shifts	

below	0	ppm,	which	are	likely	to	represent	methyl	groups	experiencing	ring-

current	effects	from	aromatic	groups.	Taken	together,	these	spectra	provide	

strong	evidence	that	both	PACT-D3	and	PACT-Ext-D3	are	folded	under	these	

conditions.	However,	the	spectra	do	not	prove	that	the	proteins	have	adopted	the	

native	fold,	or	that	the	sample	is	homogenous.	

The	1D	spectrum	of	TRBP-D3	(Figure	6.4C)	has	a	lower	signal	to	noise	ratio	than	

the	other	spectra,	despite	having	significantly	more	scans	(80,	compared	to	16	for	

the	others).	This	is	due	to	the	low	protein	concentration,	which	is	a	consequence	

of	the	aggregation	that	occurred	during	purification.	Signals	in	the	amide	region	

are	weak,	but	appear	to	be	clustered	between	7.5	and	8.5	ppm,	and	there	are	no	

methyl	signals	below	0.5	ppm.	The	linewidths	are	broad,	suggesting	that	the	

domain	is	forming	aggregates	with	a	long	rotational	correlation	time.	

The	amide	region	of	the	TRBP-ExtDD-D3	1D	spectrum	(Figure	6.5D)	shows	a	broad	

peak	between	approximately	7	and	9	ppm,	with	a	number	of	sharper	peaks	visible	

in	the	central	region	(the	doublet	at	approximately	10	ppm	most	likely	

corresponds	to	the	NeH	amide	group	of	the	tryptophan	side	chain,	and	does	not	

provide	information	about	folding	state).	There	is	a	methyl	peak	just	above	0	ppm,	

but	it	is	considerably	broader	than	the	methyl	peaks	of	PACT-Ext-D3.	Overall,	

these	spectra	suggest	that	TRBP-	ExtDD-D3	is	folded,	but	experiences	either	

aggregation	or	an	intermediate	exchange	process	that	leads	to	considerable	line	

broadening.	The	narrow,	high	intensity	peaks	in	the	centre	of	the	amide	region	

may	suggest	that	part	of	the	domain	is	flexible.	
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7. Biophysical	Characterisation	of	
PACT	Domain	3	

7.1 Introduction	

PACT-D3	has	previously	been	reported	to	homodimerise,	and	to	heterodimerise	

with	TRBP-D3,	in	Yeast-2-Hybrid	and	pull-down	experiments	(Laraki	et	al.,	2008;	

Singh	et	al.,	2011).	Heterodimerisation	between	full-length	PACT	and	TRBP	has	

also	been	demonstrated	in	cells	using	FRET	microscopy	(Kok	et	al.,	2007).	

However,	the	interaction	has	never	been	demonstrated	using	purified	protein,	

leaving	open	the	possibility	that	this	interaction	is	not	direct,	but	is	mediated	via	

another	protein	or	via	RNA.	The	exact	region	required	for	PACT-D3	dimerisation	

has	not	been	defined	–	the	non-canonical	dsRBD	Staufen	domain	5	dimerises	via	a	

pair	of	N-terminal	helixes,	but	this	region	is	not	conserved	in	PACT	and	TRBP	

(Gleghorn	et	al.,	2013).	By	contrast,	the	recently	solved	structure	of	Loquacious	

domain	3	(Loqs-D3)	shows	dimerisation	mediated	by	the	b-sheet	region	of	the	

dsRBD,	a	region	which	shows	considerable	conservation	with	PACT	and	TRBP	

(Jakob	et	al.,	2016).	In	this	chapter,	wild-type	and	mutant	forms	of	PACT	domain	3	

is	investigated	using	SEC-MALLS	and	analytical	ultracentrifugation	in	order	to	

determine	their	oligomeric	state	and	identify	important	residues	for	dimerisation.	

7.2 Both	PACT-D3	and	PACT-Ext-D3	homodimerise	

PACT-D3	and	PACT-Ext-D3	were	purified	as	described	in	Chapter	2,	and	examined	

by	SEC-MALLS.	In	each	case,	100	µL	of	protein	at	3	mg/mL	was	injected	onto	the	

column.	Chromatograms	are	shown	in	Figure	7.1,	and	show	a	single	dominant	

peak	in	each	case.	The	calculated	molecular	weights	are	16.6	kDa	for	PACT-D3,	

and	23.7	kDa	for	PACT-Ext-D3.	These	are	very	close	to	twice	the	expected	

molecular	weights	based	on	their	amino	acid	sequence	(8.5	kDa	and	11.9	kDa,	

respectively).	This	shows	that	both	constructs	are	almost	entirely	dimeric	at	this	

concentration.	Both	PACT-D3	and	PACT-Ext-D3	eluted	at	a	volume	of	12.3	mL,	

suggesting	that	the	N-terminal	extension	does	not	significantly	increase	the	

hydrodynamic	radius	of	the	dimer.	
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For	PACT-Ext-D3,	a	small	but	wide	peak	elutes	prior	to	the	main	peak,	with	an	

estimated	mass	of	50	kDa	(Figure	7.1,	lower).	This	is	likely	to	represent	a	small	

amount	of	aggregated	protein,	as	the	molar	mass	estimate	continues	to	increase	

towards	the	start	of	the	peak.	For	both	proteins,	a	number	of	peaks	elute	between	

15	ml	and	20	ml,	but	do	not	produce	a	light	scattering	signal	.	These	are	due	to	a	

mismatch	between	the	running	and	sample	buffers,	and	do	not	provide	

information	about	protein	oligomeric	state.	

That	PACT-D3	is	able	to	dimerise	in	the	absence	of	the	N-terminal	extension	

demonstrates	that	it	must	dimerise	via	a	different	mechanism	to	that	shown	for	

Staufen-D5.	This	is	consistent	with	the	lack	of	sequence	conservation	between	the	

N-terminal	regions	of	these	two	domains.	

	

Figure	7.1.	SEC-MALLS	of	wild-type	PACT-D3	and	PACT-Ext-D3	

Differential	refractive	index	is	displayed	as	a	solid	line;	the	Rayleigh	ratio	(a	measure	

of	light	scattering)	is	shown	as	a	dotted	line.	The	weight-averaged	molar	mass	

calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	peak.	SDS-PAGE	

analysis	of	the	input	is	shown	on	the	right.		
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7.3 Sedimentation	equilibrium	AUC	confirms	that	PACT-D3	is	
dimeric	

To	further	validate	the	oligomeric	state,	I	examined	PACT-D3	using	sedimentation	

equilibrium	analytical	ultracentrifugation	(seAUC).	As	described	in	Chapter	3,	

different	concentrations	of	PACT-D3	were	loaded	into	an	An-50	Ti	rotor,	and	

centrifuged	at	speeds	between	22,000	and	42,000	rpm	until	equilibrium	was	

achieved.	If	only	a	single	molecular	species	is	present,	a	plot	of	ln(absorbance)	

against	r2	should	show	a	straight	line.	Therefore,	this	type	of	plot	is	commonly	

used	to	assess	the	overall	data	quality,	and	check	for	aggregation	and	non-ideal	

behaviour,	such	as	that	resulting	from	non-specific	electrostatic	interactions.	

Figure	7.2	shows	a	selection	of	these	plots	for	PACT-D3.		

	

Figure	7.2.	Diagnostic	plots	of	sedimentation	equilibrium	AUC	of	wild-type	
PACT-D3	

A)	0.75	mg/ml	(88	µM),	22,000	rpm.	B)	0.75	mg/ml	(88	µM),	42,000	rpm.	C)	0.19	

mg/ml	(22	µM),	42,000	rpm.	
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The	majority	of	plots	for	lower	speeds	(below	approximately	38,000	rpm)	appear	

similar	to	Figure	7.2A,	with	an	approximately	linear	relationship	between	ln(A280)	

and	r2	(see	Appendix	2).	This	shows	that	a	single	species	predominates,	and	that	

there	are	no	serious	problems	with	aggregation	or	non-ideality.	However,	at	

higher	speeds	many	of	the	plots	show	a	distinct	curve	at	smaller	radii,	as	in	Figure	

7.2B.	The	gradient	is	proportional	to	buoyant	molecular	mass,	so	this	indicates	

that	a	mixture	of	species	with	different	molecular	weights	is	present,	perhaps	a	

monomer	and	a	dimer.	If	this	is	the	case,	the	monomer	would	be	expected	to	be	

relatively	more	abundant	in	the	samples	with	a	lower	protein	concentration.	

Unfortunately,	these	samples	also	necessarily	have	lower	absorbance,	which	

means	the	signal	from	the	smaller	component	becomes	lost	in	the	noise,	as	in	

Figure	7.2C.	PACT-D3	contains	no	tryptophan	residues,	and	its	extinction	

coefficient	at	280	nm	is	predicted	to	be	only	6000	M-1	cm-1.	

Although	the	buoyant	mass	can	be	determined	approximately	from	the	gradient	of	

the	diagnostic	plots	above,	this	does	not	account	for	the	fact	that	the	error	is	not	

constant	across	all	data	points.	A	more	accurate	method	is	to	use	non-linear	least-

squares	methods	to	fit	the	raw	data	directly	to	a	model.	Initially,	a	model	of	a	

single	species	was	fit	to	all	well-equilibrated	data,	giving	a	mass	of	16.9	kDa	(16.7,	

17.1)	(fits	and	residuals	are	provided	in	Appendix	2).	This	is	consistent	with	the	

predicted	mass	of	a	PACT-D3	dimer	of	17.1	kDa.		

An	attempt	was	made	to	fit	a	two-species	model	of	an	8.5	kDa	monomer	and	a	17	

kDa	dimer	in	equilibrium,	but	this	did	not	consistently	converge.	This	is	likely	due	

to	the	low	concentration	of	monomer,	resulting	in	its	signal	being	obscured	by	

noise,	and	by	the	more	intense	dimer	signal.	To	increase	the	relative	population	of	

monomer	would	require	a	lower	overall	protein	concentration;	however,	the	

absorbance	would	then	be	too	weak	to	detect.	Therefore,	this	seAUC	data	shows	

that	PACT-D3	is	predominantly	dimeric	at	concentrations	above	approximately	10	

µM	(the	lowest	concentration	used	here),	but	is	not	sufficient	to	determine	the	

dissociation	constant.	

7.4 Phospho-mimic	mutations	do	not	appear	to	alter	
homodimerisation	behaviour	

Phosphorylation	of	PACT-D3	at	positions	S246	and	S287	has	been	reported	in	

response	to	cellular	stress,	although	the	kinase(s)	responsible	is	unknown	(Peters,	
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Li	and	Sen,	2006).	It	has	been	proposed	that	these	phosphorylation	events	

promote	homodimerisation,	while	disrupting	heterodimerisation	with	TRBP	

(Singh	et	al.,	2011;	Singh	and	Patel,	2012).	To	test	the	first	part	of	this	hypothesis,	I	

introduced	S246D	and	S287D	phospho-mimic	mutations	into	PACT-D3,	both	

individually	and	in	combination,	and	examined	the	mutant	domains	by	SEC-

MALLS	(Figure	7.3).		

	

	

Figure	7.3.	SEC-MALLS	of	PACT-D3	with	phospho-mimic	mutations	

Differential	refractive	index	is	displayed	as	a	solid	line;	the	Rayleigh	ratio	(a	measure	

of	light	scattering)	is	shown	as	a	dotted	line.	The	weight-averaged	molar	mass	

calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	peak.	SDS-PAGE	

analysis	of	the	input	is	shown	on	the	right	(where	available).		
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All	three	variants	eluted	at	a	similar	volume	to	wild-type	PACT-D3	(at	

approximately	12.0	mL),	and	were	calculated	to	have	similar	masses.	The	fitted	

masses	were	slightly	higher	than	for	the	wild-type	(17-18.2	kDa	compared	to	16.6	

kDa),	but	still	more	consistent	with	a	dimer	than	with	any	other	oligomeric	state.	

Therefore,	phospho-mimic	mutations	do	not	affect	dimerisation	at	this	

concentration	(3	mg/mL,	350	µM).	It	remains	possible	that	some	of	the	phospho-

mimic	forms	dimerise	with	higher	affinity,	but	that	this	can	only	be	observed	at	

lower,	more	physiologically	relevant	concentrations.	It	is	also	possible	that	the	

phospho-mimic	mutations	studied	here	behave	differently	to	true	

phosphorylation:	if	this	is	the	case,	it	would	also	affect	a	number	of	previous	

studies	(Peters	2006,	Singh	2011,	Singh	2012).		

7.5 The	L273R	mutation	disrupts	PACT-D3	dimerisation	

Conserved	surface	residues	of	PACT-D3	were	identified	using	a	structural	model	

of	the	domain	generated	using	the	I-TASSER	server	(Roy,	Kucukural	and	Zhang,	

2010),	and	the	sequence	alignment	of	PACT	and	TRBP	homologues	(Figure	1.9).	

Several	of	these	residues	were	then	mutated	to	test	whether	they	were	required	

for	dimerisation:	

-	E275	is	conserved	between	TRBP	and	PACT,	and	is	surrounded	by	other	

conserved	residues	(Figure	1.9).	It	was	mutated	to	lysine	to	reverse	the	charge.	

-	H285,	C284	and	Y305	are	highly	conserved,	not	just	between	PACT	and	TRBP	but	

also	in	the	more	distantly	related	Loqs	(Figure	1.9).	H285	and	Y305	were	mutated	

to	alanine	to	effectively	remove	the	sidechains,	while	C284	was	mutated	to	serine,	

which	is	of	similar	size,	but	cannot	form	disulphide	bonds.	

-	L273	is	completely	conserved	between	PACT,	TRBP	and	Loqs	(Figure	1.9),	and	it	

has	recently	been	shown	that	mutating	it	to	arginine	disrupts	dimerisation	in	

Loqs-D3	(Jakob	et	al.,	2016).	The	L273R	mutation	was	introduced	into	both	PACT-

D3	and	PACT-Ext-D3.	

All	constructs	were	expressed	and	purified	as	described	previously,	and	examined	

by	SEC-MALLS.	1	and	2	dimensional	NMR	spectroscopy	was	used	to	check	protein	

misfolding	(data	not	shown):	these	spectra	suggested	that	Y305A	might	be	

partially	unfolded/misfolded,	but	that	all	other	mutants	were	correctly	folded.	
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E275K	had	no	discernible	effect	on	dimerisation,	having	an	elution	volume	and	

calculated	mass	very	similar	to	that	of	the	wild-type.	PACT-D3	C284S	also	eluted	

at	the	expected	volume,	but	has	a	mass	slightly	below	that	expected	for	a	dimer.	

PACT-D3	H285A	eluted	slightly	earlier	than	wild-type	PACT-D3,	and	with	a	higher	

calculated	mass.	This	suggests	it	may	have	a	tendency	to	aggregate,	although	it	is	

still	predominantly	dimeric.	The	slight	shoulder	is	likely	due	to	a	small	amount	of	

contaminating	MBP	(see	associated	gel	in	Figure	7.4).	The	masses	of	the	C284S	

and	H285A	mutants	deviate	from	the	expected	dimer	mass	by	approximately	10%,	

but	are	still	closer	to	the	dimer	mass	than	to	a	monomer	or	trimer.	

PACT-D3	Y305A	elutes	later,	and	has	a	calculated	mass	of	9.7	kDa.	This	is	more	

than	10%	higher	than	the	monomer	mass	of	8.5	kDa,	which	suggests	the	peak	

contains	a	small	proportion	of	higher	molecular	weight	particles,	potentially	a	

dimer.	The	small	early-eluting	peak	has	a	mass	of	approximately	40	kDa,	and	is	

likely	to	be	contaminating	MBP	(see	inset	gel	in	Figure	7.4).		

The	L273R	mutation	disrupts	dimerisation	in	both	PACT-D3	and	PACT-Ext-D3	

constructs.	This	is	apparent	both	in	their	calculated	masses	(8.8	kDa	and	12.3	kDa	

respectively),	and	from	their	significantly	later	elution	time.	No	dimer	appears	to	

be	present	for	either	state.	This	suggests	that	PACT-D3	dimerises	using	a	similar	

interface	to	that	reported	for	Loqs-D3.	

Jakob	and	coworkers	demonstrated	dimerisation	of	Loqs-D3	by	crystallisation	and	

cross-linking	assays	(Jakob	et	al.,	2016).	To	validate	their	results	by	a	different	

method,	I	purified	both	wild-type	and	L426R	forms	of	Loqs-D3,	and	examined	

them	using	SEC-MALLS	(Figure	7.5).	Wild	type	Loqs	had	a	mass	of	15.3	kDa,	while	

the	mutant	domain	had	mass	8.0	kDa,	consistent	with	dimer	and	monomer	

respectively	(the	expected	monomer	mass	based	on	sequence	is	8.1	kDa).	An	early	

eluting	peak	with	a	mass	of	15.3	kDa	was	seen	for	Loqs-D3	L426R,	which	may	

correspond	to	a	small	population	of	homodimer.	Alternatively,	this	peak	may	

represent	non-specific	aggregation:	both	Loqs-D3	samples	were	stored	for	

approximately	4	weeks	at	4˚C	between	purification	and	SEC-MALLS,	considerably	

longer	than	for	the	other	proteins	shown.	
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Figure	7.4.	SEC-MALLS	of	PACT-D3	and	PACT-Ext-D3	mutants	

Differential	refractive	index	is	displayed	as	a	solid	line;	the	Rayleigh	ratio	(a	measure	

of	light	scattering)	is	shown	as	a	dotted	line.	The	weight-averaged	molar	mass	

calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	peak.	SDS-PAGE	

analysis	of	the	input	is	shown	on	the	right	(where	available).		
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Figure	7.5.	SEC-MALLS	of	Loqs-D3a	and	L426R	mutants	

Differential	refractive	index	is	displayed	as	a	solid	line;	the	Rayleigh	ratio	(a	measure	

of	light	scattering)	is	shown	as	a	dotted	line.	The	weight-averaged	molar	mass	

calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	peak.	SDS-PAGE	

analysis	of	the	input	is	shown	on	the	right.		

7.6 Discussion	

7.6.1 The	N-terminal	extension	is	neither	necessary	nor	sufficient	for	
dimerisation	

The	structures	of	two	dsRBD	homodimers	have	been	previously	reported,	for	

Staufen	domain	5	and	for	Loqs	domain	3	(Gleghorn	et	al.,	2013;	Jakob	et	al.,	2016).	

Staufen	domain	5	was	found	to	dimerise	via	domain	swapping	of	an	N-terminal	

helical	region,	while	Loqs	domain	3	dimerised	via	its	beta	sheet	region.	The	data	

presented	in	this	chapter	is	sufficient	to	conclusively	rule	out	the	former	

mechanism,	as	removal	of	the	N-terminal	region	does	not	prevent	dimerisation,	as	

measured	either	by	SEC-MALLS	or	by	equilibrium	AUC	(Figure	7.1).	Furthermore,	

inclusion	of	the	N-terminal	region	does	not	compensate	for	mutations	on	the	

dsRBD	core	that	block	dimerisation,	since	PACT-Ext-D3	L273R	remains	

monomeric	(Figure	7.4).	Therefore,	the	N-terminal	region	of	PACT-D3	is	neither	

necessary	nor	sufficient	for	homodimerisation.	The	fact	that	mutations	in	this	

region	(such	as	P222L)	can	cause	heritable	disease	suggests	that	it	plays	an	
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important	role	unrelated	to	dimerisation,	perhaps	through	increased	PKR	

activation	(Camargos	et	al.,	2008;	Vaughn	et	al.,	2015).	

It	is	possible	to	rationalise	the	effects	of	the	different	mutations	on	dimerisation	

with	reference	to	the	structure	of	Loqs	domain	3	(Figure	7.6)	(Jakob	et	al.,	2016).	

Q428	in	Loqs	(E275	in	PACT)	is	completely	exposed	in	one	protomer,	and	is	at	the	

very	edge	of	the	interface	in	the	other	protomer	(Figure	7.6A),	so	mutating	it	to	

lysine	does	not	affect	the	interface.	The	side	chain	of	C437	(C284)	points	into	the	

domain	and	does	not	form	a	disulphide	bond,	so	is	relatively	unaffected	by	the	

mutation	to	similarly-sized	serine	(Figure	7.6B).		H438	(H285)	is	directly	at	the	

interface	of	both	protomers,	but	does	not	appear	to	make	any	cross-interface	

interactions	beyond	standard	van	der	Waals	forces	(Figure	7.6B):	therefore,	

replacement	with	alanine	does	not	drastically	weaken	the	dimer.		

	

	

Figure	7.6.	Positions	of	mutated	residues	with	reference	to	Loqs-D3	

Loqs-D3	(4X8W)	chain	A	is	shown	in	red,	chain	D/F	in	blue.	The	labels	give	the	

residue	number	in	Loqs,	followed	by	the	equivalent	PACT	residue	number	in	

brackets.	A)	Q428	(E275);	B)	C437	(C284)	and	H438	(H285);	C)	Y458	(Y305);	D)	

L426	(L273).	
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Y458	(Y305)	is	at	the	interface	on	both	protomers,	but	also	fills	a	gap	between	the	

third	b-strand	and	the	C-terminal	a-helix	(Figure	7.6C)	–	it	seems	plausible	that	

losing	both	these	functions	would	destabilise	the	interface	through	loss	of	direct	

contact,	and	perhaps	through	destabilisation	of	the	domain	structure.	There	is	

some	evidence	for	this	in	the	NMR	spectrum	of	this	domain,	which	shows	

increased	signals	in	the	central	region	of	the	spectrum,	although	this	may	be	partly	

attributable	to	sample	degradation	(data	not	shown).		

L426	(L273)	is	buried	well	within	the	binding	surface	of	one	protomer,	and	is	

partially	exposed	in	the	other	(Figure	7.6D).	Replacing	the	first	of	these	two	side	

chains	with	arginine	causes	a	steric	clash	with	the	backbone	of	the	C-terminal	

alpha	helix	of	the	second	protomer,	preventing	dimerisation.	Interestingly,	

modelling	suggests	that	the	leucine	on	the	second	protomer	could	be	replaced	

with	arginine	with	only	minor	steric	clashes,	possibly	allowing	the	formation	of	

heterodimers	between	wild-type	and	L273R	forms	of	PACT-D3.	

7.6.2 Implications	for	NMR	studies	

For	both	wild-type	PACT-D3	and	PACT-D3	L273R,	a	single	oligomeric	state	was	

found	to	be	present	at	the	concentrations	studied	here.	This	is	ideal	for	NMR	

studies,	which	operate	in	a	similar	or	slightly	higher	concentration	range	to	SEC-

MALLS.	The	presence	of	multiple	states	complicates	interpretation	of	NMR	

spectra,	through	the	appearance	of	additional	peaks	or	through	exchange	

broadening	of	some	or	all	signals.	Oligomeric	state	(or	more	specifically,	overall	

complex	mass)	also	affects	the	rotational	correlation	time,	which	heavily	

influences	the	relaxation	rate.	Larger	oligomeric	states	result	in	slower	rotational	

averaging	and	faster	relaxation,	reducing	the	intensity	of	all	NMR	signals,	

especially	for	longer	pulse	sequences.	The	monomer	and	dimer	states	have	masses	

of	8.5	kDa	and	17	kDa	respectively,	putting	them	within	the	range	of	masses	that	

can	usually	be	studied	with	standard	NMR	methods.	Finally,	oligomeric	state	can	

affect	the	structure	calculation	process:	a	symmetric	dimer	will	have	

intermolecular	NOEs	that	are	not	easily	distinguishable	from	intramolecular	NOEs.	

If	a	structure	is	calculated	assuming	a	monomer,	when	the	true	oligomeric	state	is	

a	dimer	or	higher,	these	restraints	based	on	the	intermolecular	NOEs	will	be	

applied	between	the	wrong	atoms,	leading	to	a	distorted	structure	(Nabuurs	et	al.,	

2006).	 	
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8. Characterisation	of	PACT	Domain	
3	by	NMR	Spectroscopy	

8.1 Introduction	

The	first	section	of	this	chapter	presents	the	backbone	assignment	of	PACT-D3	

L273R,	together	with	some	preliminary	data	on	PACT-Ext-D3	L273R.	The	later	

sections	detail	work	on	wild-type	PACT-D3,	and	present	clear	evidence	that	PACT-

D3	homodimers	are	asymmetric,	and	that	the	asymmetry	is	focused	on	the	third	b-

strand.	The	dimer	interface	involves	the	third	b-strand	and	second	a-helix,	and	is	

very	similar	to	that	recently	observed	in	Loqs-D3	(Jakob	et	al.,	2016).	

8.2 Characterisation	of	PACT-D3	L273R	by	NMR	

Following	initial	tests,	[15N,	13C]-labelled	PACT-D3	L273R	was	prepared	at	a	

concentration	of	1	mM	and	a	standard	set	of	triple-resonance	backbone	

assignment	experiments	was	recorded,	namely	CBCANH,	CBCA(CO)NH	and	HNCO.	

Sequence-specific	assignment	was	carried	out	using	the	Ca	and	Cb	chemical	shifts	

to	link	neighbouring	residues.	

Figure	8.1	shows	an	assigned	(1H,	15N)	HSQC	of	PACT-D3	L273R.	It	contains	103	

peaks	(including	sidechain	amides),	close	to	the	98	peaks	predicted	from	its	

sequence	(several	low	intensity	peaks	were	observed	that	could	not	be	assigned	to	

the	PACT-D3	L273R	sequence).	98%	of	backbone	amide	resonances	were	

assigned,	together	with	96%	of	CO	spins,	99%	of	Ca	spins	and	100%	of	Cb	spins.	It	

was	also	possible	to	assign	all	4	asparagine	side	chains,	and	4	out	of	6	glutamine	

side	chains,	using	the	CBCA(CO)NH	to	link	the	NHD	signals	from	the	side	chain	

amides	to	known	Ca	and	Cb	chemical	shifts.	Full	assignment	data	is	provided	in	

Appendix	3.	
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Figure	8.1.	Assigned	(1H,	15N)	HSQC	of	PACT-D3	L273R	

Experiments	were	performed	on	a	sample	in	standard	NMR	buffer,	except	that	the	

TCEP	concentration	was	only	4.5	mM.	The	unassigned	peaks	in	the	top	left	of	the	

spectrum	correspond	to	Q252	and	Q304,	which	have	similar	Cb	chemical	shifts.	The	

nearby	peak	labelled	295Q	appears	broader	than	the	other	side	chain	peaks	and	

lacks	the	NHD	signal.	However,	the	CBCA(CO)NH	spectrum	strongly	supports	this	

assignment	(data	not	shown),	suggesting	that	this	amide	proton	is	likely	broadened	

by	a	dynamic	process.	

The	secondary	structure	can	be	predicted	from	the	backbone	chemical	shifts	using	

TALOS-N	(Shen	and	Bax,	2013).	This	is	an	updated	version	of	the	popular	TALOS	

program,	which	predicts	dihedral	angles	from	chemical	shifts	using	a	database	of	

X-ray	structures	for	which	chemical	shifts	have	been	measured	or	predicted,	

together	with	a	trained	neural	network.		

Figure	8.2	shows	the	TALOS-N	secondary	structure	prediction,	together	with	the	

secondary	structures	of	TRBP-D3	and	Loqs-D3	based	on	crystallographic	data	

(Wilson	et	al.,	2015;	Jakob	et	al.,	2016).	The	TALOS-N	predictions	for	PACT-D3	

L273R	are	in	very	good	agreement	with	the	TRBP-D3	and	Loqs-D3	secondary	

structures,	strongly	suggesting	that	it	adopts	the	same	fold.		
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Figure	8.2.	TALOS-N	analysis	of	PACT-D3	L273R	

HN,	N,	Ca,	Cb	and	CO	chemical	shifts	were	used	for	the	prediction.	Coloured	bars	show	

the	prediction	confidence	for	each	secondary	structure	type;	the	solid	line	shows	the	

predicted	S2	order	parameter.	Below,	the	secondary	structures	of	TRBP	domain	3	

(from	PDB	accession	4WYQ)	and	Loqs	domain	3	(PDB	accession	4X8W)	are	

displayed.		

TALOS-N	also	predicts	the	S2	order	parameter	for	each	residue,	which	describes	

how	restricted	internal	molecular	motions	are	at	each	site	(see	Chapter	4,	Section	

4.2.3).	It	can	be	estimated	by	combining	the	deviations	of	the	backbone	chemical	

shifts	from	their	random	coil	values	into	a	single	Random	Coil	Index	(RCI)	

(Berjanskii	and	Wishart,	2005).	The	predicted	S2	parameters	from	this	method	

are	in	good	agreement	with	known	features	of	dsRBD	structure,	such	as	the	

increased	flexibility	of	loop	b-1,2	(Nanduri	et	al.,	2000;	Benoit	and	Plevin,	2013).		

There	is	some	crystallographic	evidence	that	the	conserved	N-terminal	extension	

of	TRBP	contains	an	a-helix	that	docks	onto	the	core	domain	(Wilson	et	al.,	2015).	

However,	the	poor	quality	of	the	electron	density	did	not	allow	sequence	specific	

assignment	of	this	helix,	and	the	length	of	the	helix	did	not	account	for	the	entire	

N-terminal	region,	suggesting	other	residues	are	disordered.	To	investigate	the	

equivalent	region	of	PACT,	preliminary	NMR	data	was	recorded	for	PACT-Ext-D3	

L273R.		
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Figure	8.3.	(1H,	15N)	HSQC	of	PACT-Ext-D3	L273R	

A)	Overlaid	(1H,	15N)	HSQC	spectra	of	PACT-D3	L273R	(red)	and	PACT-Ext-D3	L273R	

(grey).	The	PACT-	D3	L273	sample	was	in	standard	NMR	buffer,	while	the	buffer	for	

PACT-Ext-D3	L273R	was	9	mM	sodium	phosphate,	45	mM	NaCl,	4.5	mM	DTT,	10%	

D2O,	50	μM	DSS,	pH	6.5.	B)	Structure	of	TRBP	domain	3	(4WYQ),	showing	the	

location	of	the	N-terminal	extension	a-helix	(Wilson	et	al.,	2015).	C)	Boxplot	showing	

the	distribution	of	peak	heights	in	the	(1H,	15N)	HSQC	spectra	shown	in	part	A.	Peaks	

heights	have	been	normalised	to	the	median	height	for	each	protein.	Diamonds	show	

the	mean	peak	height.	
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Figure	8.3A	shows	superimposed	HSQCs	of	PACT	domain	3	with	and	without	the	

N-terminal	extension.	There	is	reasonable	overlay	of	many	peaks,	which	is	

expected	given	that	they	should	share	the	same	core	structure.	A	number	of	new	

peaks	have	appeared,	mostly	in	the	central	part	of	the	spectrum,	suggesting	that	

the	N-terminal	extension	is	either	unfolded	or	a-helical.	A	relatively	small	number	

of	peaks	seem	to	have	moved	significantly	–	these	include	N-terminal	residues	

such	as	D240	and	Y241,	but	also	C-terminal	residues	such	as	I309	and	A310.	This	

is	consistent	with	the	crystal	structure	of	TRBP	domain	3	in	complex	with	Dicer,	

which	suggests	that	the	N-terminal	extension	docks	into	a	space	between	the	two	

a-helixes	and	loop	b-1,2	(Figure	8.3B).Overall,	there	are	around	159	peaks,	

slightly	more	than	the	139	expected	from	the	sequence.	However,	it	is	difficult	to	

accurately	determine	the	number	of	peaks	due	to	the	wide	range	of	peak	

intensities	present	(Figure	8.3C).	This	suggests	either	that	different	parts	of	the	

protein	have	different	correlation	times	(for	example,	if	one	part	is	unfolded),	or	

that	some	peaks	are	being	broadened	by	exchange	processes,	such	as	transient	

interactions	between	the	N-terminus	and	the	core	domain.	

8.3 Characterisation	of	PACT-D3	dimers	by	NMR	

8.3.1 Backbone	assignment	of	PACT-D3	

Backbone	assignment	of	PACT-D3	was	performed	using	the	same	strategy	as	for	

PACT-D3	L273R,	on	a	1.3	mM	protein	sample	in	standard	NMR	buffer.	For	side	

chain	assignment,	H(CCCO)NH-TOCSY,	CC(CO)NH-TOCSY	HC(C)H-TOCSY	and	13C-

NOESY-HSQC	spectra	were	recorded	of	a	2.5	mM	sample,	and	15N-NOESY-HSQC	

data	was	collected	for	a	1.1	mM	sample,	both	in	standard	NMR	buffer.	An	assigned	

(1H,	15N)	SOFAST-HMQC	spectrum	is	shown	in	Figure	8.4.		

The	most	striking	feature	of	Figure	8.4	is	the	presence	of	approximately	twice	the	

expected	number	of	peaks	(186,	compared	to	the	97	predicted	from	the	

sequence).	This	complicated	the	assignment	process,	but	it	was	still	possible	in	

most	cases	to	link	peaks	unambiguously	through	the	CBCANH	and	CBCA(CO)NH	

spectra.	There	were	however	a	number	of	spin	systems	which	had	identical	Ca	

and	Cb	shifts,	which	were	initially	left	unlinked.	This	led	to	a	series	of	fragments	

that	could	be	assigned	to	the	PACT-D3	sequence	based	on	the	characteristic	Ca	

and	Cb	chemical	shifts	of	glycine,	alanine,	serine	and	threonine.	At	this	stage,	it		
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Figure	8.4.	Assigned	(1H,	15N)	SOFAST-HMQC	of	PACT-D3	

Peaks	are	labelled	with	the	protein	state	they	originate	from	(A/B),	the	residue	

number,	then	the	amino	acid	type.	See	Chapter	4,	section	4.3.5	for	experimental	

details,	and	Appendix	3	for	full	assignments.	
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became	clear	that	there	are	two	resonances	associated	with	each	nucleus,	

indicating	that	two	distinct	states	are	present.	(The	nature	of	the	two	states	is	

investigated	in	section	8.4	below.)		

With	this	in	mind,	it	was	possible	to	assign	the	remainder	of	the	peaks.	95%	of	

backbone	amides	could	be	assigned,	together	with	99%	of	Ca	spins.	In	addition,	

93%	of	side	chain	protons	were	assigned,	together	with	80%	of	side	chain	carbons	

(Cb	outwards).	Ambiguous	Ca	and	Cb	chemical	shifts	were	typically	found	

towards	the	N-terminus,	in	loops,	or	for	glycine	residues	(due	to	the	lack	of	Cb).	In	

many	cases,	spin	systems	with	similar	Ca	and	Cb	chemical	shifts	also	had	similar	N	

and	HN	chemical	shifts,	such	as	D262,	I289.		

In	order	to	correctly	link	fragments	belonging	to	the	same	state,	backbone	and	

side	chain	NOEs	from	the	15N-	and	13C-NOESY-HSQC	experiments	were	used.	This	

approach	allowed	states	to	be	consistently	assigned	to	residues	255-313,	but	was	

unable	to	unambiguously	allocate	states	to	239-254,	due	to	the	similar	backbone	

and	side	chain	chemical	shifts	of	these	residues.	For	most	practical	purposes,	the	

exact	assignment	of	states	in	this	region	is	unimportant,	since	the	NMR	

parameters	are	so	similar	(see	section	8.7.1	for	further	discussion).	

Secondary	structure	predictions	for	each	state	were	made	using	TALOS-N,	using	N,	

HN,	Ha,	Ca,	Cb	and	CO	chemical	shifts	(Figure	8.5).	The	two	states	of	PACT-D3	have	

almost	identical	secondary	structures,	which	are	also	very	similar	to	the	

secondary	structures	of	TRBP-D3	and	Loqs-D3.	The	secondary	structures	of	wild-

type	PACT-D3	and	PACT-D3	L273R	appear	identical	across	most	of	the	sequence,	

but	differ	slightly	at	the	C-terminus,	which	has	a	slightly	shorter	a-helix	in	the	

L273R	mutant	(cf	Figure	8.2).	The	predicted	S2	order	parameter	is	again	very	

similar	across	most	of	the	two	states	of	wild-type	PACT-D3,	but	differs	slightly	in	

loop	b-1,2,	which	is	predicted	to	be	more	flexible	in	state	B.	Examining	the	

predicted	dihedral	angles	(Figure	8.5B),	it	can	be	seen	that	there	are	slightly	larger	

differences	in	the	b-strands	than	in	the	a-helices,	but	also	that	the	b-strand	

predictions	have	greater	associated	uncertainties.		

	



	 121	

	

Figure	8.5.	TALOS-N	analysis	of	PACT-D3	

A)	Secondary	structure	was	predicted	by	TALOS-N	using	predictions	HN,	N,	Ca,	Cb	

and	CO	chemical	shifts.	Coloured	bars	show	the	prediction	confidence	for	each	

secondary	structure	type;	the	solid	line	shows	the	predicted	S2	order	parameter.	

Below,	the	secondary	structures	of	TRBP	domain	3	(from	PDB	accession	4WYQ)	and	

Loqs	domain	3	(PDB	accession	4X8W)	are	displayed.	B)	Dihedral	angle	predictions	

for	each	dimer	state,	and	for	monomeric	PACT-D3	L273R.	
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8.3.2 Investigation	of	phospho-mimic	mutants	of	PACT-D3	

As	discussed	in	Chapter	1,	phosphorylation	of	PACT-D3	at	serines	246	and	287	has	

been	suggested	to	control	its	ability	to	form	homo-	and	heterodimers,	and	to	

activate	PKR.	Much	previous	work	has	used	serine-to-aspartate	mutations	to	

mimic	the	effects	of	phosphorylation:	this	approach	has	also	been	adopted	here.	In	

Chapter	7,	SEC-MALLS	data	demonstrated	that	introduction	of	phospho-mimic	

mutations	into	PACT-D3	does	not	alter	the	oligomeric	state	at	concentrations	on	

the	order	of	100	µM.	Here,	NMR	is	used	to	examine	the	effects	of	the	mutations	in	

more	detail.		

Figure	8.6	shows	(1H,	15N)	HSQCs	of	PACT-D3	S246D,	PACT-D3	S287D	and	PACT-

D3	S246D	S287D.	The	spectrum	of	the	S246D	mutant	(Figure	8.6A)	suggests	that	

the	majority	of	residues	are	largely	unaffected	by	the	mutation,	since	most	peaks	

overlay	well	with	the	spectrum	of	wild-type	PACT-D3.	A	few	residues	in	the	

neighbourhood	of	the	mutation	show	larger	shifts:	for	example,	T239,	Y241,	L245,	

A249	and	F254	all	show	moderate	shifts.	The	two	states	behaviour	is	still	present,	

and	peaks	from	both	states	seem	to	be	affected	by	the	mutation	in	the	same	way	

(for	example,	the	peaks	from	Y241A	and	Y241B	are	both	shifted	by	the	same	

amount).	

The	spectrum	of	PACT-D3	S287D	(Figure	8.6B)	shows	slightly	larger	changes,	with	

chemical	shift	changes	for	a	larger	number	of	residues.	Some	of	these	are	from	

residues	near	the	mutation	site	(for	example	H285,	G288),	but	others	are	expected	

to	be	quite	distant,	based	on	the	structural	model	of	the	domain	(for	example	

A310A,	S265).	This	could	suggest	a	larger	change	in	structure.	Again,	the	two	

states	behaviour	is	unaffected	by	the	phospho-mimic	mutation.	

The	(1H,	15N)	HSQC	of	PACT-D3	S246D	S287D	shows	numerous	changes	from	the	

wild-type	domain.	However,	when	superimposed	on	the	spectra	of	the	two	single	

mutants	(as	in	Figure	8.6C),	it	appears	that	almost	all	peaks	overlay	well	on	at	

least	one	of	the	two	single	mutants.	This	suggests	that	the	effects	of	the	two	

mutations	are	purely	additive,	and	that	there	are	no	cooperative	effects	on	protein	

structure.	Additionally,	the	PACT-D3	S246D	S287D	spectrum	contains	a	number	of	

weaker	peaks	that	appear	characteristic	of	degraded	protein,	suggesting	this	

mutant	may	be	less	stable	than	the	others.	
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Figure	8.6.	(1H,	15N)	HSQC	spectra	of	PACT-D3	phosphomimic	mutants	

Overlaid	(1H,	15N)	HSQC	spectra	of	PACT-D3:	A)	Wild-type	(grey)	and	S246D	(blue);	

B)	Wild-type	(grey)	and	S287D	(green):	C)	S246D	(blue),	S287D	(green)	and	S246D	

S287D	(purple).	Note	that	the	two	peaks	of	G288	are	aliased	in	the	S287D	and	S246D	

S287D	spectra.	

8.3.3 (1H,	15N)	HSQC	of	PACT-Ext-D3	

A	(1H,	15N)	HSQC	was	also	recorded	of	wild-type	PACT-Ext-D3	(Figure	8.7).	This	

spectrum	contains	approximately	200	peaks,	about	50%	more	than	the	139	

expected	from	its	sequence.	This	suggests	peak	doubling	is	occurring,	but	perhaps	

that	some	peaks	are	being	lost	due	to	exchange	broadening	or	signal	overlap.	

There	are	substantial	shifts	in	the	positions	of	many	peaks,	whether	the	spectrum	

is	compared	to	wild-type	PACT-D3	(Figure	8.7A)	or	PACT-Ext-D3	L273R	(Figure	

8.7B).	As	with	PACT-Ext-D3	L273R,	a	wide	range	of	peak	intensities	are	present,	

also	consistent	with	the	presence	of	an	intermediate	exchange	process	(data	not	

shown).	Given	the	difficulties	encountered	for	the	monomeric	mutant	form	of	this	
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domain,	and	the	additional	complication	of	peak	doubling,	it	was	decided	that	

wild-type	PACT-Ext-D3	is	too	complicated	to	analyse	further	at	this	time.	

	

Figure	8.7.	(1H,	15N)	HSQC	of	PACT-Ext-D3	

Overlaid	(1H,	15N)	HSQC	spectra	of	PACT-Ext-D3	(blue)	with	A)	PACT-D3	(grey)	or	B)	

PACT-Ext-D3	L273R	(dark	grey).	All	samples	were	in	standard	NMR	buffer	except	for	

PACT-Ext-D3	L273R,	which	contained	4.5	mM	DTT	instead	of	TCEP.	
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8.4 Investigations	into	the	two	states	of	PACT-D3	

The	data	presented	in	the	previous	section	shows	that	two	states	of	PACT-D3	are	

present	in	solution.	It	was	important	to	work	out	the	reason	for	the	presence	of	

two	states,	to	determine	whether	they	are	a	genuine	feature	of	the	protein,	or	an	

artefact	of	the	conditions	it	is	studied	under.		

Several	possibilities	can	be	immediately	ruled	out.	Firstly,	the	two	states	cannot	

represent	monomeric	and	dimeric	PACT-D3.	This	is	because	the	SEC-MALLS	data	

demonstrates	that	the	protein	is	entirely	dimeric	at	the	concentration	studied,	

while	the	two	states	have	approximately	equal	intensities	(as	discussed	in	section	

8.4.1.	below).	

Secondly,	the	two	states	cannot	represent	folded	and	misfolded	protein,	as	TALOS-

N	shows	both	states	to	have	the	same	secondary	structure.	While	there	is	a	

possibility	that	the	tertiary	structures	could	be	different	despite	the	identical	

secondary	structure,	this	would	require	differences	in	the	loops	between	

secondary	structure	elements,	which	is	not	supported	by	the	TALOS-N	predictions	

(Figure	8.5B).		

The	following	sections	investigate	other	potential	explanations	for	the	two	states	

behaviour.	

8.4.1 Two-state	behaviour	is	maintained	across	a	range	of	buffers	and	
conditions	

The	first	question	is	whether	the	two-state	behaviour	is	intrinsic	to	the	protein,	or	

is	instead	caused	by	particular	experimental	conditions.	To	test	this,	NMR	spectra	

of	PACT-D3	were	recorded	in	a	range	of	buffers	(varying	buffering	compound,	pH	

and	denaturant	concentration)	and	conditions	(varying	temperature	and	

pressure).	The	intensity	of	each	well-resolved	peak	was	extracted,	and	the	relative	

population	of	state	A	calculated.	Figure	8.8A	shows	the	data	for	denaturant	

concentration,	temperature	and	pressure.	
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Figure	8.8.	Distribution	of	HSQC	peak	heights	under	different	conditions	

A)	Population	distribution	of	the	two	states	of	PACT-D3	under	various	conditions.	

The	x	axis	is	the	proportion	of	each	residue	in	state	A	(calculated	as	±Ñ≤≥ℎ£¢/

(±Ñ≤≥ℎ£¢ + ±Ñ≤≥ℎ£™)).	B)	1D	proton	spectra	showing	the	upfield	methyl	region	of	

PACT-D3	in	standard	NMR	buffer,	with	or	without	the	inclusion	of	10	mM	EDTA.	
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The	first	observation	is	that	two	states	were	still	present	under	all	the	conditions	

studied.	More	specifically,	the	relative	intensities	of	the	two	states	remained	

approximately	equal,	suggesting	that	the	two	states	are	equally	populated.	This	

strongly	argues	that	the	two-state	behaviour	is	an	intrinsic	property	of	PACT-D3.	

(More	details	of	the	high	pressure	NMR	are	given	in	section	8.6.)	

The	above	experiments	do	not	explicitly	test	for	possible	sub-stoichiometric	

binding	of	contaminating	nickel	ions	carried	through	from	the	nickel	affinity	

purification.	To	rule	out	this	as	an	explanation	for	the	two	states,	proton	NMR	

spectra	of	PACT-D3	were	recorded	in	the	presence	or	absence	of	10	mM	EDTA	

(Figure	8.8B).	The	peak	at	-0.2	ppm	corresponds	to	one	of	the	methyl	groups	of	

V283A,	and	is	diagnostic	of	two-state	behaviour.	Additionally,	two	peaks	are	

visible	for	L264	Hd1,	again	showing	that	two-state	behaviour	is	maintained	in	the	

presence	of	EDTA,	and	indicating	that	contaminating	ions	are	unlikely	to	be	the	

cause	of	the	two-state	behaviour.	

8.4.2 Chemical	shift	analysis	suggests	differences	between	the	two	states	

are	focused	on	the	third	b-strand.	

To	examine	the	regions	of	the	protein	with	the	greatest	differences	between	the	

two	states,	the	compound	chemical	shift	between	the	amides	of	the	two	states	was	

plotted	(Figure	8.9A).	This	shows	that	the	two	states	differ	most	in	the	third	b-

strand,	and	least	in	the	N-terminal	helix.	When	this	data	is	plotted	on	a	structural	

model	of	PACT-D3,	it	can	be	seen	that	the	residues	with	the	largest	compound	

chemical	shifts	are	clustered	on	one	face	of	the	protein.	This	strongly	suggests	that	

this	region,	focused	around	the	third	b-strand,	differs	significantly	between	the	

two	states.	
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Figure	8.9.	Chemical	shift	differences	between	the	two	states	of	PACT-D3	

A)	Compound	chemical	shifts	calculated	between	the	two	states	of	PACT-D3,	

according	to	the	formula	∂0*8-*1#9 = ∂∑I +
∏π
A.;

I
.	Below,	the	secondary	structure	

of	PACT-D3	is	shown,	as	calculated	by	TALOS-N	above.	B)	Structural	model	of	PACT-

D3	(generated	using	the	I-TASSER	server	(Roy,	Kucukural	and	Zhang,	2010))	

coloured	according	to	compound	chemical	shift.	

8.4.3 Proline	isomerisation	does	not	explain	the	two	states	

The	differences	between	the	two	states	might	be	due	to	different	proline	

isomerisation	states.	PACT-D3	contains	a	proline	at	position	280,	just	before	the	

start	of	the	third	b-strand,	and	thus	in	the	same	region	as	the	largest	compound	

chemical	shifts.	(There	is	also	the	non-native	proline	P236,	but	this	is	far	from	the	

region	which	differs	between	the	two	states.)	It	has	been	shown	previously	that	

carbon	chemical	shifts	can	be	used	to	determine	which	proline	isomer	is	present,	

based	on	the	difference	between	Cb	and	Cg	chemical	shifts	(Schubert	et	al.,	2002).	

A	difference	in	chemical	shifts	of	less	than	4.8	ppm	indicates	the	trans	isomer,	

while	a	difference	of	greater	than	9.15	ppm	indicates	the	cis	isomer.	

Figure	8.10A	shows	strips	from	the	CBCA(CO)NH	and	CC(CO)NH-TOCSY,	focusing	

on	P280	in	each	state.	The	carbon	chemical	shifts	are	similar	in	both	states	A	and	
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B:	in	particular,	the	difference	between	the	Cb	and	Cg	chemical	shifts	is	

approximately	10	ppm	in	each	case,	which	is	characteristic	of	the	cis	isomer.	This	

is	also	consistent	with	the	crystal	structure	of	Loqs-D3.	Therefore,	proline	

isomerisation	is	not	responsible	for	the	two-state	behaviour.	

8.4.4 The	two-state	behaviour	is	not	due	to	disulphide	bond	formation	

PACT-D3	contains	3	cysteine	residues,	so	it	was	possible	that	the	two	states	are	

caused	by	alternative	disulphide	bond	configurations.	The	likelihood	of	this	is	

reduced	due	to	the	inclusion	of	TCEP	in	the	NMR	buffer,	but	there	is	a	possibility	

that	disulphide	bonds	could	form	in	a	location	that	is	inaccessible	to	TCEP.	This	

can	be	tested	by	NMR,	because	the	cysteine	Cb	chemical	shift	has	been	shown	to	

be	predictive	of	redox	state	(Sharma	and	Rajarathnam,	2000;	Mielke	and	

Krishnan,	2009).	As	shown	in	Figure	8.10B,	all	three	cysteines	in	both	states	have	

Cb	chemical	shifts	between	26	and	32	ppm,	implying	that	they	are	all	in	the	

reduced	state.	The	only	cysteine	to	show	significant	Cb	chemical	shift	differences	

between	the	two	states	is	C284.	This	residue	is	in	the	third	b-strand,	and	all	

neighbouring	residues	also	have	large	chemical	shift	differences	between	the	two	

states.	Therefore,	the	Cb	chemical	shift	difference	can	likely	be	attributed	to	a	

more	general	difference	between	the	two	states,	rather	than	being	related	to	redox	

state.	

8.4.5 The	two	states	do	not	represent	different	protonation	states	

The	histidine	at	position	285	has	the	largest	compound	chemical	shift	between	the	

two	states	(Figure	8.9A),	raising	the	possibility	that	the	two	states	differ	in	

histidine	protonation.	The	pKa	of	histidine	varies	considerably	depending	on	local	

structure	and	nearby	residues,	but	is	generally	close	to	pH	6.	This	is	close	to	the	

buffer	pH,	so	it	is	plausible	that	a	mix	of	protonation	states	could	exist.	To	test	this,	

the	Ca	and	Cb	chemical	shifts	of	each	histidine	were	examined	(Figure	8.10C).	For	

H285,	there	is	a	1-2	ppm	chemical	shift	difference	between	the	two	states,	

whereas	for	H300,	there	is	no	difference	in	chemical	shift.	While	this	is	potentially	

consistent	with	a	difference	in	protonation	state	at	H285,	a	separate	experiment	

shows	that	it	is	not	responsible	for	the	two-state	behaviour:	peak	doubling	is	still	

present	in	the	(1H,	15N)	HSQC	of	PACT-D3	H285A	(Figure	8.10D),	showing	that	

protonation	of	H285	is	not	responsible	for	the	presence	of	the	two	states.	
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Figure	8.10.	NMR	spectra	of	PACT-D3	proline,	cysteine	and	histidine	residues	

A)	Strips	from	the	CBCA(CO)NH	spectrum	showing	P280	in	each	state.	B)	Strips	from	

the	CC(CO)NH-TOCSY	spectrum	showing	all	cysteine	Cb	peaks.	C)	Strips	from	the	

CBCA(CO)NH	spectrum	showing	all	histidine	Ca	and	Cb	peaks.	D)	Overlay	of	HSQC	

spectra	of	PACT-D3	H285A	(red)	on	the	wild-type	domain	(grey).	See	Chapter	4	for	

sample	and	data	acquisition	details.	
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8.4.6 The	two	states	exchange	at	a	rate	inconsistent	with	domain	swapping	

The	fact	that	two	distinct	peaks	are	observed	for	each	residue	in	the	(1H,	15N)	

HSQC	shows	that	the	two	states	of	PACT	exchange	slowly	with	respect	to	the	NMR	

timescale,	if	at	all.	This	is	potentially	consistent	with	a	phenomenon	called	domain	

swapping,	where	secondary	structure	elements	become	interchanged	between	the	

two	dimer	subunits	(Bennet,	Schlunegger	and	Eisenberg,	1995).	The	crystal	

structure	of	Loqs-D3	contains	a	domain	swap	of	the	third b-strand	and	C-terminal	

helix,	so	it	is	possible	that	PACT-D3	could	also	be	swapped	at	this	position.	One	

feature	of	domain	swapping	is	that	it	is	a	very	slow	process,	taking	on	the	order	of	

days	to	weeks	(Bennet,	Schlunegger	and	Eisenberg,	1995;	Rousseau	et	al.,	2001;	

Ghasriani	et	al.,	2014).	If	the	two	states	of	PACT-D3	also	exchange	on	this	

timescale,	it	would	suggest	domain	swapping	is	occurring.	

The	stability	of	domain	swapped	dimers	arises	because	there	is	a	high	energy	

barrier	between	the	native	and	domain	swapped	states	(Liu	and	Eisenberg,	2002;	

Rousseau,	Schymkowitz	and	Itzhaki,	2003).	The	domain	swapped	dimer	has	

similar	energy	to	the	native	state,	because	the	domain	swapped	part	forms	native-

like	interactions	with	the	other	subunit.	A	significant	degree	of	unfolding	must	

occur	to	convert	between	the	native	and	misfolded	states,	including	the	breaking	

of	multiple	native	or	native-like	interactions.	It	is	this	unfolding	that	is	primarily	

responsible	for	the	slow	rate	of	domain	swapping,	although	a	slow	folding	

pathway	can	also	increase	the	likelihood	of	domain	swapping,	by	increasing	the	

chance	of	contact	between	partially	folded	proteins	(Rousseau,	Schymkowitz	and	

Itzhaki,	2003).	

To	test	whether	the	two	states	of	PACT-D3	are	in	exchange,	EXSY	spectra	were	

recorded	with	mixing	times	between	0.1	and	1	second	(Farrow,	Zhang,	et	al.,	

1994).	The	appearance	and	positions	of	new	exchange	peaks	in	Figure	8.11A	

shows	that	substantial	exchange	takes	place	within	0.5	seconds.	Exchange	cross	

peaks	can	be	observed	for	all	residues	for	which	the	two	states	have	distinct	

proton	and	nitrogen	chemical	shifts.	If	either	nucleus	has	the	same	chemical	shift	

in	both	states,	the	exchange	peaks	overlap	with	the	auto	peaks	(i.e.	the	peaks	

representing	non-exchanged	protein,	which	appear	at	the	same	positions	as	in	the	

(1H,	15N)	HSQC),	and	therefore	cannot	be	resolved.	
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To	calculate	the	exchange	rate	for	individual	residues,	intensities	of	well-resolved	

cross	peaks	were	fit	to	a	two-state	exchange	model	(Farrow,	Zhang,	et	al.,	1994).	

To	increase	the	data	available	for	fitting,	T1	relaxation	experiments	were	

performed	with	delay	times	up	to	2	seconds,	and	included	in	the	fit	(Farrow,	

Muhandiram,	et	al.,	1994).	This	is	possible	because	the	T1	and	EXSY	pulse	

sequences	are	almost	identical:	the	only	difference	is	that	the	positions	of	t1	and	

the	relaxation/exchange	delay	are	swapped.	The	peak	intensities	in	the	T1	

experiment	are	the	sum	of	the	auto	and	exchange	peak	intensities	in	the	EXSY.	In	

principle,	this	approach	allows	exchange	peak	intensity	to	be	inferred	from	the	

difference	between	the	T1	and	EXSY	auto	peaks,	even	if	the	exchange	peaks	are	not	

resolvable	in	the	EXSY	spectra	due	to	overlap.	In	practice,	exchange	rates	

calculated	for	residues	with	overlapped	cross	peaks	tended	to	fall	outside	the	

range	observed	for	residues	with	well-resolved	cross	peaks,	suggesting	the	fit	is	

less	accurate.	Therefore,	the	analysis	below	was	restricted	to	residues	with	four	

well-resolved	EXSY	peaks.		

The	fit	results,	along	with	their	95%	confidence	intervals,	are	shown	in	Figure	

8.11B,C.	All	residues	shown	have	exchange	rate	constants	(kex)	between	0.5	and	1	

s-1.	The	similar	exchange	rates	support	the	idea	that	PACT-D3	undergoes	a	global	

transition	between	the	two	states.	Most	residues	have	similar	exchange	rates,	but	

S265,	S279	and	G286	show	significant	differences.	

Figure	8.11.	Chemical	exchange	in	PACT-D3	

A)	Overlay	of	the	(1H,	15N)	HSQC	(black)	with	a	(1H,	15N)	EXSY	spectrum	(blue)	with	

a	mixing	time	of	0.5	s.	The	auto-	and	exchange	peaks	from	individual	residues	are	

linked	in	red,	where	resolvable.	B)	Exchange	rate	constants	(kex)	and	C)	longitudinal	

relaxation	rates,	calculated	by	fitting	a	two-state	exchange	model	(allowing	for	

differential	relaxation)	to	EXSY	and	T1	relaxation	data	for	PACT-D3.	Error	bars	

denote	95%	confidence	intervals.	D)	Plot	of	the	parameter X	calculated	for	each	

residue	with	different	EXSY	mixing	times.	The	quadratic	fit	is	shown	as	a	solid	line	

(kex	=	0.71	s-1),	while	the	grey	area	shows	the	region	bounded	by	the	95%	confidence	

interval	(0.65	s-1,	0.86	s-1).	The	script	used	to	perform	the	fitting	and	plotting	is	

available	as	Appendix	4.	
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To	capture	the	global	exchange	rates,	well-resolved	EXSY	crosspeaks	were	

analysed	using	a	method	which	extracts	the	exchange	rate	while	accounting	for	

the	possibility	of	different	relaxation	rates	in	the	two	states	(Miloushev	et	al.,	

2008).	Least-squares	fitting	of	the	data	gave	a	global	exchange	rate	of	0.71	s-1,	

with	a	95%	confidence	interval	of	(0.65	s-1,0.86	s-1)	(Figure	8.11D).	At	later	time	

points,	there	are	large	discrepancies	between	the	data	and	the	fit:	this	probably	

occurs	because	the	quadratic	relationship	between	Æ	and	time	breaks	down	as	

cubic	terms	in	the	series	expansion	of	Æ	become	significant.	However,	restricting	

the	fit	to	time	points	less	than	or	equal	to	0.5	s	did	not	substantially	change	the	

fitted	exchange	rate	(kex	=0.70	s-1).		

The	global	exchange	rate	is	consistent	with	the	exchange	rates	calculated	for	

individual	residues.	By	either	method,	the	exchange	rate	is	much	faster	than	has	

been	reported	for	domain	swapping,	and	does	not	provide	sufficient	time	for	the	

degree	of	unfolding	and	refolding	that	would	need	to	occur	(Barrientos	et	al.,	

2002;	Rousseau,	Schymkowitz	and	Itzhaki,	2003;	Ghasriani	et	al.,	2014).	

Additionally,	if	PACT-D3	unfolding	was	fast	enough	to	for	domain	swapping	to	

occur	on	this	timescale,	we	would	expect	to	see	some	evidence	for	this	in	PACT-D3	

L273R	in	the	form	of	exchange	broadening:	this	is	not	the	case.	Therefore,	the	

second	state	of	PACT-D3	is	unlikely	to	represent	a	domain-swapped	dimer.	

8.4.7 NOESY	experiments	show	that	PACT-D3	forms	asymmetric	dimers	

Having	ruled	out	the	possibilities	above,	only	two	potential	explanations	remained	

for	the	two-state	behaviour.	Firstly,	the	two	states	could	represent	two	different	

symmetric	conformations	of	the	PACT-D3	dimer,	with	similar	free	energy	and	with	

a	low	enough	energy	barrier	to	allow	exchange.	Alternatively,	PACT-D3	could	form	

asymmetric	homodimers,	with	each	half	of	the	dimer	giving	rise	to	a	separate	set	

of	peaks	in	NMR	spectra.		

To	distinguish	between	these	two	possibilities,	a	13C-filtered	NOESY-HSQC	was	

recorded	on	a	mixed	sample	of	isotope-labelled	PACT-D3,	with	50%	[13C,	15N]-

labelled	protein	and	50%	[15N]-labelled	protein	(Figure	8.12).	In	this	experiment,	

NOE	cross	peaks	are	only	detected	if	the	NOE	donor	is	[12C]-labelled,	and	the	NOE	

acceptor	is	[13C]-labelled.	Since	half	of	the	protein	molecules	are	uniformly	
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labelled	with	13C,	the	spectrum	will	contain	only	NOE	cross	peaks	from	dimers	

containing	one	[13C,15N]-labelled	and	one	[15N]-labelled	subunit.	

	

Figure	8.12.	13C	-filtered	NOESY	spectra	of	PACT-D3	

A)	Strips	from	the	13C-filtered	NOESY-HSQC	(green)	of	PACT-D3,	showing	the	NOE	

between	methyl	groups	of	V283A	and	T282B.	The	upper	panel	shows	(1H,	13C)	planes	

overlaid	with	the	assigned	(1H,	13C)	constant-time	HSQC	(grey).	The	lower	panel	

shows	the	(1H,	1H)	planes	of	the	same	peaks.	B)	(1H,	1H)	strips	from	the	13C-filtered	

NOESY-HSQC	showing	NOEs	between	L273A,	Q304B	and	Y305B.		
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If	PACT-D3	forms	symmetric	homodimers,	then	NOE	cross	peaks	should	appear	

only	between	protons	from	the	same	state.	Alternatively,	if	PACT	forms	

asymmetric	homodimers,	then	NOE	cross	peaks	should	only	be	observed	between	

protons	from	different	states.	As	shown	in	Figure	8.12,	the	13C-filtered	NOESY-

HSQC	demonstrates	that	the	latter	possibility	is	correct.	Figure	8.12A	shows	the	

NOE	between	one	of	the	methyl	groups	of	V283A,	and	the	methyl	group	of	T282B.	

In	Figure	8.12B,	NOE	cross	peaks	can	be	seen	between	L273A	and	the	Ha	and	Hb	

protons	of	Q304B	and	Y305B.	These	prove	that	PACT-D3	forms	asymmetric	

dimers.		

These	interactions	are	also	consistent	with	PACT-D3	dimers	adopting	the	same	

structure	as	Loqs-D3	dimers	(Figure	8.13).	They	also	allow	the	two	NMR	states	to	

be	assigned	to	specific	chains	of	the	dimer	structure:	state	A	observed	by	NMR	

correspond	to	chain	A	of	the	Loqs-D3	dimer,	while	NMR	state	B	corresponds	to	the	

domain-swapped	protomer	formed	from	chains	D	and	F.	To	maintain	a	consistent	

nomenclature	between	PACT	and	Loqs,	the	two	Loqs	domains	will	also	be	referred	

to	as	protomers	A	and	B.	

	

Figure	8.13.	Intermolecular	NOEs	identified	by	13C-filtered	NOESY		

The	NOEs	from	the	13C-filtered	NOESY-HSQC	displayed	on	the	equivalent	residues	of	

Loqs-D3	(4WYQ).	Loqs-D3	chain	A	is	coloured	red,	while	chain	D/F	is	coloured	blue.	
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8.4.8 The	third	b-strands	form	an	intermolecular	parallel	b-sheet.	

As	shown	in	Figure	8.9,	the	largest	difference	between	the	two	states	occur	in	the	

third	b-strand.	In	the	crystal	structure	of	Loqs-D3,	it	can	be	seen	that	the	third	b-

strands	form	an	intermolecular	parallel	b-sheet	(Figure	8.14A).	Notably,	this	

arrangement	is	not	possible	in	a	symmetric	homodimer,	as	the	symmetry	would	

prevent	alignment	of	hydrogen	bond	donors	and	acceptors	(Figure	8.14B,C).	To	

test	whether	the	same	geometry	occurs	in	PACT-D3,	NOESY	data	of	residues	in	the	

third	b-strand	was	examined.	Figure	8.14D	shows	strips	of	V283	and	H285	from	

the	15N-NOESY-HSQC	spectrum.	An	NOE	is	observed	between	V283A	and	H285B,	

while	no	NOE	occurs	between	V283B	and	H285A.	This	is	entirely	consistent	with	

the	Loqs-D3	structure,	where	V436A	HN	is	4	Å	from	H438B	HN,	but	V436B	HN	is	

greater	than	10	Å	from	H438A	HN.	

Note	that	during	the	NOESY	mixing	time,	approximately	10%	of	molecules	will	

exchange	between	states.	This	results	in	the	appearance	of	exchange	cross	peaks	

linking	different	states	of	the	same	spin	(marked	with	asterisks	in	Figure	8.14D)	

regardless	of	spatial	proximity.	NOE	cross	peaks	may	also	appear	in	these	

positions,	but	they	cannot	be	distinguished	from	the	exchange	contributions.	

The	same	pattern	can	be	seen	in	the	13C-	and	15N-NOESY-HSQCs	for	the	C284	Ha	

protons	(Figure	8.14E,F).	NOEs	are	observed	between	C284A	Ha	and	H285B	HN,	

and	also	between	C284B	Ha	and	V283A	HN.	This	is	equivalent	to	the	Loqs-D3	

structure,	where	there	C437A	Ha	is	3	Å	from	H438D/F	HN,	and	C437D/F	Ha	is	2.8	Å	

from	V436A	HN.	The	15N-	and	13C-	NOESY-HSQCs	were	recorded	on	different	

samples,	which	explains	the	slight	differences	in	the	Ha	chemical	shifts	between	

these	two	spectra.		
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Figure	8.14.	NOESY	spectra	provide	evidence	for	asymmetry	in	strand	b-3	

A)	Structure	of	the b-3	strands	of	the	Loqs-D3	dimer,	taken	from	chains	A	and	D/F	of	

PDB	accession	4X8W.	Intermolecular	hydrogen	bonds	are	displayed	as	blue	dashed	

lines,	while	short	intermolecular	proton-proton	distances	are	shown	as	black	dotted	

lines.	B)	In	a	symmetric	dimer,	intermolecular	parallel	b-strands	are	forced	to	adopt	

a	symmetric	arrangement,	preventing	formation	of	hydrogen	bonds.	The	dotted	line	

shows	the	symmetry	axis.	C)	If	a	register	shift	is	introduced	between	the	strands,	the	

backbone	amide	and	carboxyl	groups	are	correctly	positioned	for	hydrogen	bond	

formation.	However,	no	symmetry	axis	is	possible.	D)	Strips	from	the	15N	NOESY-

HSQC	showing	the	amide	protons	of	V283	and	H285.	Cross	peaks	caused	by	chemical	

exchange	between	states	A	and	B	are	marked	with	asterisks.	E)	Strips	from	the	13C	

HSQC-NOESY	showing	NOEs	between	Ha	of	C284	and	the	amide	region.	F)	Strips	

from	the	15N	HSQC-NOESY	showing	NOEs	between	the	amide	protons	of	V283	and	

H285,	and	the	Ha	region.	

8.4.9 Loqs-D3	also	forms	asymmetric	dimers	in	solution	

If	PACT-D3	forms	asymmetric	dimers	and	has	the	same	structure	as	Loqs-D3,	that	

implies	that	Loqs-D3	should	also	form	asymmetric	dimers	in	solution.	To	test	this,	

(1H,	15N)	HSQCs	were	recorded	of	wild-type	Loqs-D3	(residues	392-463)	and	

Loqs-D3	L426R	(Figure	8.15).	Expression	vectors	were	kindly	provided	by	

Leonhard	Jakob	and	Gunter	Meister.	The	Loqs-D3	L426R	spectrum	has	100	peaks,	

close	to	the	90	expected	based	on	sequence.	The	wild-type	Loqs-D3	spectrum	

contains	around	207	peaks,	more	than	twice	the	expected	number.	As	with	PACT-

D3,	the	peaks	in	the	L426R	spectrum	do	not	overlay	well	with	the	wild-type	

spectrum.	Although	the	spectra	have	not	been	assigned,	and	all	alternative	

explanations	have	not	been	ruled	out,	it	seems	probable	that	this	peak	doubling	is	

due	to	asymmetric	dimerisation.		
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Figure	8.15.	(1H,	15N)	HSQC	spectra	of	Loqs-D3	and	Loqs-D3	L426R		

(1H,	15N)	HSQC	spectra	of	A)	120	µM	wild-type	Loqs-D3	and	B)	110	µM	Loqs-D3	

L426R.	The	buffer	was	standard	NMR	buffer,	except	with	only	4.5	mM	TCEP.	
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B

207 peaks

100 peaks
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8.5 Evidence	for	the	appearance	of	a	monomeric	state	at	low	
concentrations	

As	discussed	in	Chapter	7,	sedimentation	equilibrium	AUC	showed	that	PACT-D3	

was	predominantly	dimeric	at	concentrations	above	10	µM.	To	test	whether	it	

remained	dimeric	below	this	concentration,	a	SOFAST-HMQC	spectrum	of	a	5	µM	

sample	of	PACT-D3	was	recorded.	To	allow	detection	of	such	a	low	protein	

concentration,	data	was	acquired	on	a	700	MHz	spectrometer	equipped	with	a	

cryoprobe,	and	a	large	number	of	scans	(2400)	were	recorded.	If	the	protein	

remains	dimeric,	the	spectrum	should	be	the	same	as	for	high	concentration	

PACT-D3.	If	monomeric	protein	is	present,	peaks	should	appear	in	positions	

similar	to	the	L273R	mutant	form	of	PACT-D3.	

The	NMR	spectrum	of	5	µM	PACT-D3	is	shown	in	Figure	8.16A,	together	with	

spectra	of	wild	type	and	L273R	mutant	at	high	concentration.	The	majority	of	

peaks	in	the	5	µM	spectrum	overlay	well	with	high	concentration	wild-type	PACT-

D3,	showing	that	the	protein	remains	predominantly	dimeric	even	at	very	low	

concentrations.	A	number	of	additional	peaks	appear	in	the	5	µM	spectrum,	mostly	

on	or	close	to	the	positions	of	peaks	in	PACT-D3	L273R	(Figure	8.16B-D).	Because	

the	SOFAST-HMQC	uses	a	very	short	recycle	delay	of	0.2	s,	peak	intensity	is	not	

directly	proportional	to	population	(Schanda,	Kupĉe	and	Brutscher,	2005).	Despite	

this,	a	number	of	well-resolved	peaks	were	quantified,	and	were	found	to	have	

fairly	consistent	intensities	relative	to	the	dimer	state	peaks	(Figure	8.16E).	This	

suggests	the	dimeric	state	of	PACT-D3	is	still	more	prevalent	than	the	monomer	at	

5	µM,	implying	that	the	dissociation	constant	is	on	the	order	of	1	µM	or	lower.	

It	is	not	entirely	clear	why	monomer	peaks	are	observed	for	some	residues	but	not	

others.	The	peaks	that	are	present	originate	mostly	from	the	a-helixes;	only	C272	

and	G288	are	visible	from	the	b-sheet.	This	raises	the	possibility	that	peaks	at	the	

interface	are	being	broadened,	perhaps	due	to	an	exchange	process	with	the	dimer	

state.	
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Figure	8.16.	(1H,	15N)	SOFAST-HMQC	of	low	concentration	PACT-D3	

A)	Overlay	of	(1H,	15N)	SOFAST-HMQCs	of	5	µM	PACT-D3	(black)	and	1.3	mM	PACT-

D3	(blue),	and	a	(1H,	15N)	HSQC	of	1.1	mM	PACT-D3	L273R	(green).	All	spectra	were	

recorded	at	25˚C	in	standard	NMR	buffer.	The	1.3	mM	PACT-D3	spectrum	was	

recorded	on	a	600	MHz	instrument,	the	other	two	at	700	MHz.	B-D)	Magnified	

regions	from	the	spectra	in	part	(A).	E)	Quantification	of	the	relative	peak	heights	

for	various	residues	in	the	5	µM	PACT-D3	SOFAST-HMQC.	The	Y	axis	shows	the	height	

of	the	monomer	peak	as	a	percentage	of	the	sum	of	all	three	peaks	from	that	residue.	
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8.6 NMR	spectroscopy	of	PACT-D3	at	high	pressure	

High	pressure	NMR	was	performed	on	PACT-D3	and	PACT-D3	L273R	with	two	

aims.	Firstly,	high	pressure	has	been	reported	to	increase	the	dissociation	

constants	of	oligomers,	allowing	monomer	to	be	observed	at	higher	

concentrations	(Ingr	2016).	Secondly,	pressure-dependent	chemical	shifts	

indirectly	encode	information	about	solvent	exposure,	providing	complementary	

evidence	for	the	dimer	interface	found	using	NOESY	experiments	in	section	8.4.7.		

As	discussed	by	Kitahara	and	coworkers,	the	amide	proton	chemical	shift	depends	

mostly	on	the	length	and	angles	of	hydrogen	bonds:	these	will	differ	depending	on	

whether	the	hydrogen	bond	is	to	the	protein	backbone,	to	a	side	chain,	or	to	the	

solvent(Wagner,	Pardi	and	Wuethrich,	1983;	Asakura	et	al.,	1995).	Applying	high	

pressure	can	cause	compression	of	protein	structure,	so	will	alter	intra-protein	

hydrogen	bond	lengths	and	angles	(Weber	and	Drickamer,	1983;	Nisius	and	

Grzesiek,	2012).	High	pressure	can	also	cause	changes	to	the	water	packing	at	the	

protein	surface,	and	favour	the	formation	of	unfolded	states	(which	may	have	a	

lower	volume	due	to	imperfect	side	chain	packing	in	the	core	of	the	folded	

protein).	For	solvent	exposed	amides,	proton	chemical	shift	tends	to	increase	

consistently	with	pressure,	while	amides	forming	hydrogen	bonds	within	the	

protein	generally	show	smaller	or	negative	pressure-induced	chemical	shift	

changes.		

Amide	nitrogen	chemical	shifts	also	vary	with	pressure.	However,	the	relationship	

is	complex,	and	depends	on	hydrogen	bonding,	backbone	dihedral	angles	and	side	

chain	conformation	in	roughly	equal	measure	(Xu	and	Case,	2002).	It	is	hard	to	

predict	confidently	how	these	factors	will	vary	with	pressure,	so	less	information	

can	be	extracted	from	the	pressure-induced	chemical	shift	changes	of	nitrogen	

nuclei.	
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Figure	8.17.	NMR	of	PACT-D3	and	PACT-D3	L273R	at	high	pressure	

A)	Overlay	of	(1H,	15N)	HSQCs	of	wild-type	PACT-D3	at	different	pressures.	B)	

Difference	in	pressure-induced	proton	chemical	shift	change	for	PACT-D3	state	A	

relative	to	PACT-D3	L273R,	displayed	on	a	model	of	PACT-D3.	Dark	grey	indicates	

missing	data.	C)	Difference	in	pressure-induced	proton	chemical	shift	change	for	

PACT-D3	state	B	relative	to	PACT-D3	L273R.	D-F)	Statistical	significance	of	

quadratic	coefficient	of	pressure-induced	chemical	shift	change	for	(D)	PACT-D3	

L273R,	(E)	wild-type	PACT-D3	state	A,	and	(F)	wild-type	PACT-D3	state	B.	Low	

statistical	significance	is	shown	in	blue,	high	significance	is	shown	in	red.	
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Away	from	the	dimer	interface,	there	is	no	difference	in	solvent	exposure	between	

the	monomeric	and	dimeric	forms	of	PACT-D3,	so	pressure-induced	proton	

chemical	shift	changes	should	be	similar	between	the	wild-type	and	L273R	mutant	

of	PACT-D3.	At	the	interface,	dimerization	will	cause	some	protons	to	switch	from	

being	hydrogen	bonded	to	water,	to	being	bonded	to	protein	or	to	nothing.	This	

will	cause	a	change	in	pressure-induced	chemical	shift	change	between	the	wild-

type	and	L273R	mutant,	and	so	provides	an	NOE-independent	method	of	

evaluating	the	dimer	interface.		

In	Figure	8.17A,	(1H,	15N)	HSQCs	of	PACT-D3	at	different	pressures	are	overlaid	in	

order	to	show	the	changes	in	chemical	shift	that	occur.	For	all	residues,	peak	

doubling	remains	throughout	the	entire	pressure	series,	showing	that	PACT-D3	

dimers	are	not	disrupted	over	this	pressure	range.	A	range	of	behaviours	can	be	

seen:	for	example,	both	peaks	of	L276	show	the	expected	increase	of	chemical	

shift	with	pressure.	The	proton	chemical	shift	of	H285A	has	a	negative	pressure	

dependence;	in	contrast,	the	proton	pressure-induced	chemical	shift	of	V283	is	

small	but	positive	in	both	states,	but	the	nitrogen	chemical	shift	decreases	as	the	

pressure	is	increased.	

To	quantify	this	behaviour,	peaks	were	assigned	in	all	spectra,	and	their	chemical	

shifts	(referenced	to	DSS)	were	extracted.	Linear	models	were	then	fitted	to	the	

proton	chemical	shifts	for	each	state	of	wild-type	PACT-D3,	and	for	PACT-D3	

L273R:	the	linear	coefficient	will	be	referred	to	as	E-^ ,	where	X	can	be	L273R,	or	

dimer	states	A	or	B.	The	differences	between	the	dimer	states	and	the	monomer	

are	referred	to	as	∫E-
¢/™ = E-

¢/™ − E-ªIºΩÇ .	Figures	8.17B	and	8.17C	displays	

these	differences	in	pressure-induced	chemical	shift	change	on	a	structural	model	

of	the	domain.		

In	both	states,	the	b-sheet	and	C-terminus	of	the	protein	show	large	changes	in	

pressure-induced	chemical	shift	coefficient,	while	the	opposite	face	of	the	domain	

has	only	minor	changes.	In	dimer	state	B	(Figure	8.17C),	most	residues	in	the	b-

sheet	have	negative	∫E-™ 	values,	consistent	with	this	region	being	buried	in	the	

dimer.	In	dimer	state	A,	some	residues	again	have	negative	∫E-¢	values,	

particularly	V283	and	H285:	V283	likely	forms	hydrogen	bonds	as	part	of	the	

intermolecular	b-sheet,	while	H285	is	close	enough	to	the	dimer	interface	to	
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restrict	its	interaction	with	solvent	(see	Figure	8.14A).	Other	residues	have	more	

positive	∫E-¢	values,	which	would	at	first	appear	to	contradict	the	idea	that	this	

area	is	more	buried	in	the	dimer	than	the	monomer.	However,	it	can	be	reconciled	

if	dimerization	also	induces	a	bending	in	the	b-sheet,	altering	the	degree	of	

hydrogen	bonding	of	these	residues.		

As	mentioned	above,	high	pressure	acts	to	compress	protein	structure.	If	multiple	

states	are	present	in	fast	exchange	(†/° ≫ ∫}),	high	pressure	favours	states	with	

smaller	volumes,	leading	to	a	change	in	the	relative	populations.	This	can	be	

detected	in	high	pressure	datasets	as	a	non-linear	dependence	of	chemical	shift	on	

pressure.	For	each	peak,	a	quadratic	model	was	fitted	using	R,	and	the	statistical	

significance	of	the	quadratic	term	calculated	(Figure	8.17D-F).		

For	PACT-D3	L273R	(Figure	8.17D),	the	proton	chemical	shifts	of	most	residues	do	

not	have	a	significant	quadratic	pressure	dependence,	indicating	that	there	is	

minimal	fast	exchange	between	states,	or	at	least	that	any	exchanging	states	have	

similar	chemical	shifts	or	volumes.	For	both	states	of	wild-type	PACT-D3,	a	

number	of	residues	in	helix	a-2	and	the	b-sheet	have	statistically	significant	

quadratic	terms	(p<0.01)	(Figure	8.17E,F).	It	is	plausible	that	this	is	due	to	fast	

conformational	exchange	at	the	C-terminus	of	helix	a-2,	as	TALOS-N	predicts	that	

the	length	of	this	helix	differs	between	the	monomeric	and	dimeric	states	(Figures	

8.2	and	8.5).	This	also	explains	the	quadratic	pressure	dependence	of	the	start	of	

strand	b-1,	as	dimerisation	brings	this	strand	in	close	proximity	to	the	C-terminus	

of	the	other	protomer.	

8.7 Discussion	

8.7.1 State-specific	assignment	of	PACT-D3	

In	order	to	prove	that	asymmetric	dimerization	was	occurring,	it	was	necessary	to	

show	NOE	cross	peaks	between	residues	in	different	states.	This	is	only	possible	if	

NMR	signals	have	been	correctly	assigned	to	each	state.	As	discussed	earlier,	state-

specific	assignment	was	performed	in	two	stages:	firstly	by	linking	residues	into	

fragments	using	Ca	and	Cb	chemical	shifts,	and	then	by	linking	these	fragments	

using	NOESY	data.	

After	the	first	stage,	there	were	5	fragments	of	7	residues	or	more	with	internally	

consistent	states,	and	a	number	of	smaller	fragments	of	1-4	residues.	Each	



	 147	

fragment	was	separated	from	its	neighbours	by	a	residue	with	very	similar	Ca	and	

Cb	chemical	shifts.	Three	of	the	large	fragments	corresponded	to	the	three	b-

strands,	while	the	other	two	covered	helix	a-2.	These	could	be	fairly	simply	linked	

using	NOEs	between	residues	in	the	centre	of	the	fragments,	where	the	chemical	

shift	differences	between	the	two	states	are	greater.	This	resulted	in	an	internally	

consistent	state	assignment	for	residues	256-288	and	294-313,	which	includes	all	

the	residues	used	in	Figures	8.12	and	8.14	to	show	asymmetric	dimerisation	(273,	

282-285,	304,	305).	

The	shorter	fragments	corresponding	to	helix	a-1	and	the	loop	between	b-3	and	

a-2	could	not	be	linked	using	this	method.	This	was	because	chemical	shifts	were	

similar	between	states	throughout	the	whole	fragment,	and	the	short	length	

meant	there	were	fewer	NOEs	between	fragments.	Therefore,	the	state	

assignments	of	these	residues	should	be	considered	arbitrary.	The	small	chemical	

shift	differences	between	the	states	suggests	these	regions	have	similar	structures.	

Indeed,	the	crystal	structure	of	Loqs-D3	shows	that	these	areas	are	distant	from	

the	dimer	interface.	The	lack	of	accurate	state	assignments	does	not	affect	

calculation	of	the	compound	chemical	shift.	

8.7.2 Phosphorylation	of	PACT-D3	

Several	phospho-mimic	mutants	of	PACT-D3	(S246D,	S287D	and	S246D	S287D)	

were	studied	both	by	SEC-MALLS	(Chapter	7,	section	7.4)	and	by	NMR	(section	

8.3.2).	The	results	of	these	investigations	have	been	somewhat	inconclusive.	The	

SEC-MALLS	data	shows	that	they	do	not	affect	oligomeric	state	at	high	

concentrations	(350	µM):	however,	the	literature	suggests	phosphorylation	

should	increase	dimerisation	affinity,	an	effect	that	cannot	be	detected	when	

dimerisation	is	already	saturated.	The	cellular	concentration	of	PACT	is	unknown	

and	likely	context	dependent.	However,	it	is	almost	certainly	lower	than	that	used	

for	SEC-MALLS,	so	it	is	possible	that	a	change	in	affinity	could	affect	the	formation	

of	dimers	in	vivo.		

The	simplest	approach	to	investigate	this	further	would	be	to	measure	the	dimer	

dissociation	constants	of	the	different	constructs.	This	is	somewhat	challenging,	

because	homodimers	will	already	be	present	at	any	concentration	above	at	least	5	

µM.	Microscale	thermophoresis	(MST)	appears	to	be	a	promising	approach,	as	this	

can	detect	fluorescently-labelled	protein	at	nanomolar	concentrations.	Given	the	
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evidence	that	PACT-D3	is	partially	monomeric	at	5	µM	(Section	8.5),	a	nanomolar	

solution	of	PACT-D3	should	be	entirely	monomeric.	

NMR	data	shows	that	the	S246D	mutation	only	changes	the	chemical	environment	

of	local	residues,	while	S287D	has	an	effect	on	distant	residues.	This	can	be	

explained	with	reference	to	the	structure	of	Loqs-D3:	the	serine	equivalent	to	

S287	(S440)	is	close	to	the	dimer	interface,	allowing	it	to	affect	helix	a-2	on	the	

other	protomer.	By	contrast,	the	residue	equivalent	to	S246	(G399)	is	on	the	

opposite	face	of	the	protein	from	the	dimer	interface.	This	large	separation	also	

explains	why	the	effects	of	the	two	mutations	do	not	appear	to	be	cooperative.	

It	has	been	reported	that	S246	phosphorylation	is	required	before	S287	can	be	

phosphorylated	(Peters,	Li	and	Sen,	2006).	It	is	not	clear	how	this	is	compatible	

with	their	distant	positioning,	and	the	lack	of	communication	between	the	two	

sites.	There	are	a	number	of	possible	explanations	for	this	discrepancy.		

Firstly,	the	requirement	for	a	specific	ordering	of	phosphorylation	could	be	

imposed	by	the	binding	of	other	proteins.	For	example,	phosphorylation	of	S246	

may	cause	PACT	to	dissociate	from	one	complex,	and	expose	S287	for	

phosphorylation,	perhaps	as	part	of	a	separate	complex.		

Secondly,	aspartate	may	not	be	a	good	model	for	phosphorylation	in	this	case:	the	

greater	bulk	or	charge	of	a	phosphate	group	might	lead	to	a	significant	difference	

in	behaviour.	The	two	S287	serines	are	positioned	relatively	close	to	the	dimer	

interface	and	to	one	another:	it	may	be	that	phosphate	groups	are	large	enough	to	

cause	steric	clashes,	while	aspartate	is	too	small.	This	could	perhaps	be	tested	by	

using	glutamate	instead	of	aspartate	to	mimic	phosphorylation,	since	it	is	slightly	

larger,	although	still	only	has	a	single	negative	charge.	If	there	is	a	significant	

difference	in	behaviour	between	aspartate	and	phosphoserine	at	this	position,	it	

would	cast	doubt	on	the	conclusions	of	other	papers	which	use	aspartate	

phospho-mimic	mutations	to	investigate	PACT	phosphorylation	(Singh	et	al.,	

2011;	Singh	and	Patel,	2012).	

Thirdly,	the	original	evidence	for	phosphorylation	may	be	misleading.	The	

experiments	in	the	paper	by	Peters	and	coworkers	use	a	truncated	version	of	

PACT	in	which	residues	301-313	are	replaced	with	5	unrelated	amino	acids	due	to	

a	frameshift	mutation	(Peters,	Li	and	Sen,	2006;	Daher	et	al.,	2009),	severely	

altering	helix	a-2.	All	subsequent	studies	have	used	aspartate	and	alanine	



	 149	

mutations	to	mimic	or	block	phosphorylation,	and	there	is	no	published	direct	

detection	of	phosphorylation	of	PACT	with	the	correct	sequence.	In	addition,	both	

S246	and	to	a	lesser	extent	S287	are	in	relatively	rigid	regions	of	the	protein,	while	

phosphorylation	sites	are	usually	in	flexible	loops.	These	considerations	suggest	

that	phosphorylation	has	not	yet	been	adequately	demonstrated	in	vivo,	and	that	

further	biochemical	and	biophysical	investigations	may	be	premature	until	the	

experiments	of	Peters	and	coworkers	are	replicated	with	the	correct	PACT	

sequence.	
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9. Biophysical	Characterisation	of	
TRBP	Domain	3	

9.1 Introduction	

TRBP	domain	3	has	approximately	50%	sequence	identity	with	PACT	domain	3,	

and	the	residues	which	form	the	dimer	interface	in	PACT	and	Loqs	are	very	well	

conserved	in	TRBP	(Figure	1.9).	However,	the	evidence	for	TRBP	dimerisation	in	

the	literature	is	somewhat	ambiguous:	full-length	TRBP	was	found	to	form	dimers	

with	a	Kd	of	approximately	54	µM	using	analytical	ultracentrifugation	(Yamashita	

2011).	In	contrast,	no	homo-interaction	was	detected	for	TRBP	domain	3	by	yeast	

two-hybrid,	despite	the	same	assay	readily	detecting	PACT	homodimerisation	

(Laraki	2008).	This	chapter	attempts	to	answer	two	questions:	whether	TRBP	

domain	3	homodimerises,	and	whether	its	behaviour	differs	from	that	of	PACT	

domain	3,	given	their	sequence	similarity.			

9.2 NMR	spectra	of	TRBP-ExtDD-D3	show	fewer	peaks	than	
expected	

As	described	in	Chapter	6,	it	was	not	possible	to	produce	a	construct	of	TRBP	

domain	3	containing	only	the	dsRBD	in	sufficient	quantities	for	biophysical	

characterisation,	and	appeared	to	be	aggregated	by	1D	NMR	(Figure	6.4).	TRBP-

Ext-D3,	containing	an	additional	N-terminal	region	conserved	between	TRBP	and	

PACT,	was	somewhat	more	soluble,	but	significant	improvements	in	yield	and	

stability	were	achieved	by	adding	the	phospho-mimic	mutation	S283D	and	S286D	

(dubbed	TRBP-ExtDD-D3).	These	mutations	were	previously	shown	to	enhance	

protein	expression/stability	in	vivo	(Paroo	2009),	although	the	mechanism	for	this	

stabilisation	is	unknown.		

The	(1H,	15N)	HSQC	spectrum	of	TRBP-ExtDD-D3	suggests	that	the	domain	is	folded,	

as	judged	by	the	distribution	of	peaks	between	7	and	9	ppm.	The	sidechain	amides	

also	give	rise	to	a	number	of	discrete	signals	centred	around	approximately	(7.2,	

113)	ppm,	whereas	an	unfolded	protein	would	be	expected	to	have	poorly	

dispersed	overlapping	peaks	in	this	region.	However,	there	are	considerably	fewer	

NH	and	NH2	signals	in	the	spectrum	than	expected:	only	66,	compared	to	the	129	
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predicted	based	on	the	sequence.	This	suggests	that	some	peaks	are	broadened	

beyond	detection	by	fast	T2	relaxation	or	by	intermediate	exchange	(i.e.	where	

†/°~∫},	the	exchange	rate	is	similar	to	the	frequency	difference	between	the	two	

chemical	shifts).	Several	different	exchange	processes	could	potentially	be	

responsible,	including	a	change	in	conformation,	a	change	in	oligomeric	state,	or	

binding	of	a	buffer	component.	

	

Figure	9.1.	(1H,	15N)	HSQC	of	TRBP-ExtDD-D3	

The	sample	concentration	was	350	µM,	in	18	mM	Tris,	180	mM	NaCl,	1	mM	DTT,	

10%	D2O,	50	µM	DSS,	pH	7.5.	Peaks	were	picked	and	curated	manually.	

9.3 SEC-MALLS	shows	that	TRBP-Ext-D3	is	in	equilibrium	
between	monomer	and	dimer		

Both	TRBP-Ext-D3	and	TRBP-ExtDD-D3	were	examined	by	SEC-MALLS,	using	the	

method	described	previously	(Figure	9.2).	Both	constructs	eluted	with	similar	

volumes	(13.0	ml	and	12.8	ml	respectively)	and	were	calculated	to	have	similar	
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masses	(16.9	kDa,	16.7	kDa).	This	is	approximately	1.4	times	the	predicted	

monomer	molecular	mass	of	12.0	kDa:	since	SDS-PAGE	shows	a	single	species	of	

the	correct	molecular	weight,	this	means	the	peak	contains	a	mixture	of	oligomeric	

states.	In	principle	this	could	include	trimers,	tetramers	and	other	higher	order	

oligomers,	but	the	simplest	assumption	is	that	it	contains	a	mixture	of	monomers	

and	dimers.	

Dimeric	PACT-Ext-D3	eluted	at	12.3	ml,	while	monomeric	PACT-Ext-D3	L273R	

eluted	at	13.5	ml	(Figures	7.1	and	7.4).	If	we	assume	that	TRBP-Ext-D3	behaves	

similarly,	this	difference	in	elution	volume	should	be	sufficient	to	resolve	

monomer	and	dimer	peaks,	provided	the	lifetime	of	each	oligomeric	state	is	longer	

than	the	elution	time.	The	fact	that	we	see	a	single	intermediate	peak	indicates	

that	the	monomer	and	dimer	states	must	exchange	over	the	course	of	the	

experiment.	This	does	not	put	a	very	strong	bound	on	the	lifetime	of	the	dimer	

state,	only	telling	us	that	it	is	less	than	approximately	30	minutes.	

	

Figure	9.2.	SEC-MALLS	of	TRBP-Ext-D3	and	TRBP-ExtDD-D3	

Differential	refractive	index	is	displayed	as	a	solid	black	line;	Rayleigh	ratio	(a	

measure	of	light	scattering)	is	shown	as	a	dotted	line.	The	weight-averaged	molar	

mass	calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	peak.	SDS-PAGE	

analysis	of	the	input	is	shown	to	the	right.	

0.0

0.2

0.4

0.6

0.8

1.0

R
ef

ra
ct

iv
e 

in
de

x,
 li

gh
t s

ca
tte

rin
g 

(a
rb

itr
ar

y 
un

its
)

)

TRBP-Ext -D3

0

5

10

15

20

25

30

C
a

lc
u

la
te

d
 m

o
le

cu
la

r 
m

a
ss

 (
k

D
a

)Refract ive index

Light  scat tering

Molar m ass

0 5 10 15 20

Elut ion volum e (m l)

0.0

0.2

0.4

0.6

0.8

1.0 TRBP-ExtDD-D3

0

5

10

15

20

25

30

16.9 kDa

16.7 kDa

Input

10

15

10

15



	 153	

9.4 Mutations	in	TRBP-Ext-D3	can	inhibit	or	enhance	
dimerisation	

The	SEC-MALLS	data	presented	above	demonstrates	that	TRBP	domain	3	self-

association	is	weaker	than	in	PACT	and	Loqs	domain	3,	despite	the	high	sequence	

similarity.	The	change	in	affinity	is	presumably	due	to	differences	in	amino	acids	

at	the	dimerisation	interface.	A	sequence	alignment	of	the	three	domains	is	shown	

in	Figure	9.3A;	residues	that	are	buried	by	dimerisation	in	the	Loqs-D3	dimer	(as	

calculated	by	PISA	(Krissinel	and	Henrick,	2007))	are	indicated	below	the	

consensus	sequence.	The	majority	of	these	residues	(19/26)	are	conserved	

between	TRBP	and	at	least	one	of	the	dimeric	proteins,	so	are	unlikely	to	be	

responsible	for	weakening	dimerisation.	Of	the	7	residues	which	do	not	match,	

A334	and	E350	have	similar	chemical	properties	to	the	equivalent	residues	in	

PACT,	and	A292,	C294	and	L319	are	part	of	an	N-terminus/loop	b-1,2	interaction	

that	may	be	a	crystal	artefact.	In	contrast,	R353	and	R354	have	bulkier,	more	

charged	side	chains	than	the	residues	they	replace,	and	could	cause	steric	clashes	

upon	dimer	formation.	Intriguingly,	the	equivalent	residues	in	Loqs-D3	(Q453,	

N454)	experience	significantly	different	environments	in	the	two	halves	of	the	

dimer	(Figures	9.3B,C),	being	partially	exposed	in	one	protomer	and	buried	in	the	

other.	

To	test	whether	these	residues	are	responsible	for	the	weaker	dimerisation	

affinity	of	TRBP,	the	mutations	R353H	and	R354HN	were	introduced,	replacing	

both	arginines	with	the	equivalent	residues	from	PACT.	Separately,	L326	was	

mutated	to	arginine,	to	test	whether	this	blocked	dimerisation	as	in	PACT	and	

Loqs.	During	purification,	the	L326R	mutant	appeared	to	be	less	stable	than	the	

RR353,354HN	mutant	and	more	prone	to	aggregation,	resulting	in	a	significantly	

lower	overall	yield	(L326R:	2	mg;	RR353,354HN:	20.6	mg).	When	examined	by	

SEC-MALLS	(Figure	9.3D),	TRBP-ExtDD-D3	L326R	eluted	at	13.5	ml	and	had	a	mass	

of	12.5	kDa,	consistent	with	a	monomer	and	comparable	to	PACT-Ext-D3	L273R.	

TRBP-ExtDD-D3	RR353,354HN	eluted	at	12.2	ml,	with	an	estimated	mass	of	22.4	

kDa,	consistent	with	a	dimer	and	similar	to	wild-type	PACT-Ext-D3.	This	

demonstrates	that	that	the	TRBP	domain	3	dimer	interface	is	the	same	as	that	in	

PACT	and	Loqs,	and	that	R353	and	R354	are	the	main	residues	responsible	for	the	

weaker	dimerisation	of	TRBP	domain	3.	
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Figure	9.3.	SEC-MALLS	of	TRBP-ExtDD-D3	L326R	and	RR353,354HN	

A)	Sequence	alignment	of	the	third	domains	of	PACT,	TRBP	and	Loqs,	with	Loqs-D3	

secondary	structure	shown	above.	The	circles	below	the	alignment	show	the	residues	

which	are	buried	by	dimerisation	in	protomer	A	(blue)	or	protomer	B	(green)	of	the	

Loqs-D3	crystal	structure	(4X8W)	(Jakob	et	al.,	2016).	Open	circles	are	<	30%	buried,	

filled	circles	are	>	30%	buried.	Calculations	were	performed	using	the	PDBePISA	

server	(Krissinel	and	Henrick,	2007).	B,C)	Residues	Q453	and	N454	in	the	Loqs-D3	

crystal	structure,	in	B)	protomer	A,	or	C)	protomer	B.	D)	SEC-MALLS	traces	of	TRBP-

ExtDD-D3	with	either	L326R	or	RR453,354HN	mutations.	Differential	refractive	index	

is	displayed	as	a	solid	black	line;	Rayleigh	ratio	is	shown	as	a	dotted	line.	The	weight-

averaged	molar	mass	calculated	over	the	centre	of	the	peak	is	displayed	next	to	each	

peak.	SDS-PAGE	analysis	of	the	input	is	shown	on	the	right.		

	
9.5 NMR	suggests	that	TRBP-ExtDD-D3	RR353,354HN	forms	

asymmetric	dimers	

(1H,	15N)-HSQC	spectra	were	recorded	of	the	L326R	and	RR353,354HN	mutants	of	

TRBP-ExtDD-D3.	Both	spectra	are	well	dispersed	with	generally	well-resolved	

peaks,	indicating	that	both	constructs	are	folded.	The	largest	difference	between	

them	is	in	the	number	of	observable	signals:	123	peaks	are	visible	for	TRBP-ExtDD-

D3	L326R,	while	the	RR353,354HN	spectrum	contains	211	peaks.	Since	the	

number	of	signals	based	on	sequence	should	be	129,	the	L326R	mutant	has	the	

expected	number	of	peaks,	while	the	RR353,354HN	mutant	gives	rise	to	close	to	

twice	the	expected	number	of	peaks.	This	is	exactly	the	same	behaviour	as	was	

seen	for	monomeric	and	dimeric	forms	of	PACT	and	Loqs	domain	3,	suggesting	

that	TRBP-ExtDD-D3	RR353,354HN	also	forms	asymmetric	homodimers.	The	weak	

dimers	formed	by	TRBP-ExtDD-D3	are	presumably	also	asymmetric,	since	they	

utilise	the	same	interface	as	the	RR353,354HN	mutant.	However,	peak	doubling	is	

not	observed	in	that	case	because	too	many	of	the	peaks	are	broadened	beyond	

detection	by	intermediate	exchange.	
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Figure	9.4.	(1H,	15N)	HSQC	spectra	of	TRBP-ExtDD-D3	L326R	and	RR353,354HN	

A)	50	µM	TRBP-ExtDD-D3	L326R,	or	B)	1	mM	TRBP-ExtDD-D3	RR353,354HN,	in	18	

mM	MES,	45	mM	NaCl,	5	mM	DTT,	10%	D2O,	50	µM	DSS,	pH	6.5.	Peaks	were	picked	

and	curated	manually.	
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9.6 Discussion	

9.6.1 Factors	affecting	the	stability	of	TRBP	domain	3	

Qualitatively,	TRBP	domain	3	appears	to	be	less	stable	in	vitro	than	PACT	domain	

3.	The	stability	appears	to	be	affected	by	both	the	presence	of	the	N-terminal	

extended	region	and	by	dimerisation.	It	was	not	possible	to	produce	the	dsRBD	

alone	in	sufficient	amounts	for	study;	adding	the	N-terminal	extension	increased	

solubility	somewhat,	while	adding	phospho-mimic	mutations	to	the	extension	

increased	stability	further.	These	additions	enhanced	the	yield	of	protein	that	

could	be	purified	from	a	given	culture	volume,	and	also	the	melting	temperature	

calculated	by	differential	scanning	fluorimetry	(Figure	6.3).	This	effect	on	stability	

can	be	explained	with	reference	to	the	structure	of	TRBP	in	complex	with	Dicer,	

which	shows	part	of	the	N-terminal	region	forming	a	helix	against	the	dsRBD	

(Figure	8.3B)	(Wilson	et	al.,	2015).	The	N-terminal	extension	presumably	forms	

additional	attractive	interactions	with	the	core	dsRBD,	stabilising	the	overall	

structure.	It	is	unclear	whether	this	is	a	genuine	part	of	its	function	in	vivo,	

although	the	report	that	S283D	and	S286D	mutations	stabilise	TRBP	in	cells	

suggests	that	it	might	be	(Paroo	et	al.,	2009).	The	exact	residues	responsible	for	

the	stabilisation	effect	remain	to	be	defined.		

Dimeric	TRBP-ExtDD-D3	RR353,354HN	also	appeared	to	be	more	stable	than	the	

monomeric	or	partially	dimeric	versions	of	the	domain.	This	can	again	be	

explained	through	the	formation	of	attractive	interactions	upon	dimerisation,	

forming	a	greater	free	energy	barrier	to	unfolding	and	subsequent	misfolding	or	

degradation.	It	is	unclear	whether	the	difference	in	stability	is	functionally	

relevant.		

9.6.2 Possible	causes	for	intermediate	exchange	in	TRBP-ExtDD-D3	NMR	
spectra	

The	clearest	difference	between	the	NMR	spectra	of	TRBP-ExtDD-D3	and	the	

equivalent	region	of	PACT	is	in	the	number	of	observable	signals:	instead	of	the	

peak	doubling	seen	for	PACT,	TRBP-ExtDD-D3	has	fewer	signals	than	expected.	

This	phenomena	was	also	observed	in	a	previous	study	of	TRBP-D3	(Wilson	et	al.,	

2015).	The	reduced	number	of	signals	is	most	likely	due	to	intermediate	exchange	

between	monomer	and	dimer	states.	SEC-MALLS	shows	that	a	mix	of	oligomeric	

states	are	present	at	this	concentration,	and	mutagenesis	shows	that	blocking	
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dimerisation	completely	(by	introducing	L326R)	results	in	the	expected	number	of	

peaks	in	the	(1H,	15N)	HSQC	spectrum.	The	other	possible	causes	of	exchange	

(conformational	changes	in	the	N-terminal	extension,	binding	of	buffer	

components)	can	be	ruled	out,	as	they	would	be	expected	to	equally	affect	the	

wild-type	and	L326R	mutants.	Further	evidence	in	support	of	this	hypothesis	is	

that	the	majority	of	peaks	in	the	TRBP-ExtDD-D3	spectrum	overlay	well	on	peaks	in	

both	L326R	and	RR353,354HN	spectra	(data	not	shown).	To	be	the	same	in	both	

of	these	spectra,	the	residue	must	be	relatively	unaffected	by	dimerisation,	so	

would	also	not	be	affected	by	exchange	between	oligomeric	states.	Given	that	the	

line	broadening	is	due	to	exchange,	the	exchange	rate	must	be	similar	to	the	

difference	in	chemical	shifts	between	monomeric	and	dimeric	states.	For	PACT-

D3,	the	mean	frequency	difference	between	monomer	and	dimer	was	

approximately	100	Hz	for	amide	protons	on	a	700	MHz	spectrometer,	implying	

that	TRBP-ExtDD-D3	exchange	rate	is	also	on	the	order	of	100	s-1.	
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10. Development	of	Tools	for	
Characterisation	of	PACT	

Dimerisation	in	Mammalian	Cells	

10.1 Introduction	

All	the	experiments	described	so	far	were	carried	out	on	purified	recombinant	

protein	samples.	While	this	approach	is	useful	for	studying	molecular	

mechanisms,	one	must	be	careful	when	extrapolating	conclusions	found	in	vitro	to	

the	more	complex	crowded	environment	inside	living	cells.	Functional	studies	in	

cells	are	therefore	necessary	to	validate	and	further	characterize	the	behaviours	

observed	in	biophysical	experiments.	This	chapter	does	not	present	the	results	of	

such	experiments,	but	does	present	initial	steps	towards	setting	up	the	tools	and	

systems	that	would	be	needed	to	perform	them.	

10.2 Knockdown	of	PACT	by	siRNA	

One	strategy	to	validate	hypotheses	about	protein	function	is	to	deplete	the	

protein	in	cells,	and	observe	how	gene	expression	and	cell	behaviour	change.	A	

common	approach	is	to	transfect	cells	with	siRNA	targeting	that	gene	–	this	

generally	results	in	partial	downregulation	at	the	protein	level,	although	the	

magnitude	of	the	effect	size	can	vary	significantly	between	different	targets.	

Knockdown	can	be	less	effective	on	stable	proteins	with	low	turnover	rates,	where	

the	experiment	is	too	short	for	substantial	degradation	of	protein	to	occur.	In	

other	cases,	other	transcriptional	or	post-transcriptional	mechanisms	may	

counteract	the	siRNA-mediated	knockdown.	

Three	cell	types	were	transfected	with	siRNA	targeting	PACT	according	to	the	

protocol	described	in	Chapter	5.	HeLa	and	HEK293	cells	were	chosen	due	to	their	

ease	of	growth	and	transfection.	Primary	human	foreskin	fibroblasts	(Hff	cells)	

were	used	because	they	are	a	better	model	of	‘real’	cells	in	their	native	context,	

compared	to	transformed	cells	containing	multiple	mutations	and	genome	

rearrangements.	

qRT-PCR	was	performed	on	RNA	extracted	from	Hff	cells	(Figure	10.1).	This	

shows	a	large	reduction	in	PACT	at	the	mRNA	level,	without	affecting	the	mRNA	
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levels	of	other	genes	involved	in	miRNA	processing,	or	affecting	the	levels	of	miR-

21,	a	miRNA	highly	expressed	in	Hff	cells.	A	drop	of	this	magnitude	would	be	

expected	to	result	in	reduced	protein	expression,	but	this	would	need	to	be	

confirmed	by	Western	blot.	

	

Figure	10.1.	qRT-PCR	of	miRNA-related	genes	after	treatment	with	siPACT	

All	results	were	first	normalized	to	a	housekeeping	gene	(HPRT	for	Dicer,	TRBP	and	

PACT;	U6	for	miR-21),	then	normalized	to	the	non-targeting	siRNA	condition.	Error	

bars	show	the	standard	deviation	of	three	technical	replicates.	

The	levels	of	PACT	following	siRNA	transfection	of	HeLa	and	HEK293	cells	were	

examined	by	Western	blotting	(Figure	10.2).	In	both	cell	lines,	the	levels	of	the	

PACT	band	(at	approximately	34	kDa)	are	decreased	in	the	siPACT	condition	

relative	to	the	controls,	showing	that	the	knockdown	was	successful.	

Unfortunately,	no	staining	for	a	loading	control	was	performed	for	this	blot.	

Multiple	bands	are	observed	in	addition	to	the	expected	band	at	34	kDa.	The	lower	

molecular	weight	band	probably	represents	either	an	isoform	or	a	degradation	

product	of	PACT,	consistent	with	the	drop	in	intensity	in	the	siPACT	condition.	The	

higher	molecular	weight	band	is	presumably	due	to	non-specific	staining	(as	no	
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larger	isoforms	of	PACT	are	known),	although	this	does	not	explain	the	apparent	

drop	in	intensity	of	this	band	in	HeLa	cells	treated	with	siPACT.	

	

	

Figure	10.2.	Test	of	siRNA	targeting	PACT	

HeLa	and	HEK293	cells	were	transfected	with	siRNA	as	described	in	Chapter	5,	

Section	5.2.	10	µg	of	cell	lysate	per	lane	was	then	run	on	a	15%	SDS-PAGE	gel,	and	

blotted	with	an	α-PACT	antibody	as	described	in	Section	5.5.	

10.3 Overexpression	of	PACT	

While	siRNA	knockdown	would	allow	us	to	see	how	the	function	of	the	cell	is	

perturbed	when	PACT	levels	are	reduced,	overexpression	of	PACT	would	allow	

hypotheses	about	dimerisation	and	the	role	of	individual	domains	to	be	tested	

more	explicitly.	The	approach	taken	here	was	to	clone	various	PACT	constructs	

into	a	plasmid	with	a	cytomegalovirus	(CMV)	promoter,	and	encoding	for	

puromycin	resistance	(pSF-CMV-Puro-NH2-FLAG/Cmyc,	Oxford	Genetics;	Figure	

10.3).	This	method	offers	a	number	of	favourable	properties:	

1)	Overexpression	can	be	transient,	or	stable	cell	lines	can	be	generated	(if	

integrated	plasmids	are	selected	for	with	puromycin).	

2)	Plasmids	can	be	transfected	into	stable	cell	lines,	allowing	the	expression	of	

multiple	constructs	in	the	same	cell.	
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3)	The	plasmid	can	be	transfected	directly,	and	does	not	require	a	separate	virus	

production	stage	(as	in	lentiviral	overexpression).	

4)	Plasmid	construction	and	cloning	can	be	carried	out	in	E.	coli.	

5)	The	CMV	promoter	allows	expression	in	a	broad	range	of	cell	types.	

	

Figure	10.3.	Major	elements	of	the	pSF-CMV-Puro-NH2-FLAG	plasmid	

Promoters	are	shown	in	red,	resistance	markers	in	green,	and	all	other	features	in	

grey.	

This	system	would	allow	several	different	types	of	experiment	to	be	performed.	

Firstly,	the	effect	of	PACT	overexpression	on	the	levels	of	mature	miRNA,	or	on	

sensitivity	to	cellular	stress,	could	be	measured,	allowing	probing	of	the	biological	

function	of	PACT.	Secondly,	the	interactions	of	PACT	with	endogenous	proteins	

could	be	examined	by	immunoprecipitation.	Thirdly,	FLAG	and	C-myc	tagged	

PACT	constructs	could	be	overexpressed	in	the	same	cell,	and	homodimerisation	

assessed	using	immunoprecipitation	or	proximity	ligation	assay.	Finally,	any	of	the	

above	experiments	could	be	repeated	with	mutant	forms	of	PACT,	to	test	the	

contributions	of	specific	residues	to	binding	or	function.		

Unfortunately,	developments	in	the	wider	research	field	led	me	to	focus	on	

biophysical	studies	at	the	expense	of	the	cell	biology	component	of	this	project,	

and	meant	that	I	was	unable	to	perform	the	above	experiments.	However,	I	have	
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prepared	the	expression	plasmids,	and	carried	out	initial	tests	of	the	expression	

system.	

Full-length	PACT,	PACT-Ext-D3	and	PACT-D3	were	cloned	into	pSF-CMV-Puro-

NH2-FLAG	and	pSF-CMV-Puro-NH2-Cmyc	vectors	as	described	in	Chapter	5.	This	

results	in	the	fusion	of	an	N-terminal	epitope	tag	(FLAG	or	C-myc	respectively)	to	

each	construct.		

To	optimise	transfection	conditions,	a	reporter	plasmid	containing	the	red-

fluorescent	protein	mKate	was	transfected	into	HEK293	cells,	varying	the	cell	

density,	the	volume	of	transfection	reagent,	and	the	amount	of	DNA	used	(Figure	

10.4)	(Shcherbo	et	al.,	2007).	Lower	cell	densities	were	found	to	result	in	higher	

overall	expression	of	mKate,	while	the	volume	of	transfection	reagent	made	no	

difference	in	the	range	studied.	The	transfection	was	slightly	more	effective	with	

the	lower	concentration	of	DNA.	These	values	agree	well	with	the	‘typical’	values	

provided	by	the	manufacturer,	so	were	used	in	the	subsequent	experiment.	

	

Figure	10.4.	Optimisation	of	transfection	in	HEK293	cells	

Results	of	transfection	optimization	in	HEK293	cells,	using	GeneJuice	transfection	

reagent	(Novagen)	and	a	plasmid	coding	for	the	fluorescent	protein	mKate.	The	

experiment	was	carried	out	in	a	96	well	plate	format,	with	three	replicates	for	each	

condition.	Error	bars	show	the	standard	deviation.	

Each	of	the	PACT	constructs,	together	with	corresponding	empty	vectors,	was	

transfected	into	HeLa	and	HEK293	cells.	Cells	with	integrated	plasmids	were	then	
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selected	using	media	supplemented	with	puromycin.	No	HeLa	cells	survived	the	

selection	(perhaps	because	the	transfection	was	ineffective),	but	some	cells	

survived	for	all	HEK293	transfections.	Lysates	from	these	new	mixed	cell	lines	

were	then	examined	by	Western	blot	(Figure	10.5).		

In	all	cases,	a	high	degree	of	background	signal	was	seen,	showing	that	further	

optimisation	of	the	antibody	concentrations	and	blocking	procedures	is	required.	

However,	some	specific	staining	is	visible.	In	Figure	10.5A,	a	band	can	be	seen	in	

the	FLAG-PACT	lane,	just	above	35	kDa.	This	is	the	expected	weight	for	full-length	

PACT	with	the	FLAG	epitope	tag,	showing	that	the	overexpression	has	been	

successful.	This	is	confirmed	in	Figure	10.5C,	as	a	second,	slightly	larger	band	

appears	above	endogenous	PACT	in	the	FLAG-PACT	lane.	Among	the	myc-tagged	

constructs,	only	myc-PACT-Ext-D3	appears	to	be	expressed	(Figure	10.5B).	It	is	

unfortunately	not	possible	to	confirm	this	in	the	same	way	as	for	FLAG-PACT,	

because	the	a-PACT	antibody	recognises	a	region	in	domain	2	that	is	not	included	

in	this	construct.	

Four	of	the	six	constructs	did	not	appear	to	be	expressed.	To	test	whether	this	was	

due	to	lack	of	plasmid	integration,	or	a	problem	with	expression	from	an	

integrated	plasmid,	each	line	was	grown	in	media	with	puromycin	concentrations	

up	to	3	µg/µL	(Figure	10.5D).	If	cells	survive	and	grow,	they	alter	the	pH	of	the	

media,	causing	a	colour	change	from	pink	to	yellow.	In	this	way,	it	can	be	seen	that	

all	cell	lines	were	resistant	to	puromycin,	while	HeLa	and	HEK293	cells	which	

were	not	transfected	were	not	resistant.	This	shows	that	the	plasmid	integrated	

successfully,	but	does	not	always	express	the	desired	construct.	This	may	be	due	

to	integration	into	sites	where	expression	is	disfavoured	(for	example,	in	regions	

of	heterochromatin),	but	could	also	be	due	to	disruption	of	the	PACT	sequence	

when	the	plasmid	is	linearised	during	integration.		
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Figure	10.5.	Stable	overexpression	of	FLAG-	and	myc-tagged	PACT	constructs	
in	HEK293	cells.	

Cells	were	transfected	with	PACT	constructs,	and	cells	with	stably	integrated	

plasmids	were	selected	for	using	puromycin	as	described	in	Section	5.4.2.	Cell	lysates	

were	then	examined	by	Western	blotting,	with	primary	antibodies	against	(A)	FLAG	

or	(B)	myc.	C)	For	selected	cell	lines,	Western	blots	were	stained	with	primary	

antibodies	against	PACT.	D)	Puromycin	resistance	tests	of	all	cell	lines. 
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10.4 Future	directions	

The	preliminary	results	presented	above	show	that	it	is	possible	to	both	

knockdown	and	overexpress	PACT,	at	least	in	HEK293	cells.	There	are	several	

clear	ways	in	which	this	work	could	be	extended	to	allow	insight	into	PACT	

function	within	cells.	

Firstly,	transfection	of	the	PACT	overexpression	vectors	into	HEK293	cells	should	

be	repeated	to	generate	the	remaining	overexpression	lines.	The	fact	that	some	

constructs	expressed	successfully	shows	that	this	expression	strategy	can	work,	

but	that	the	probability	of	successful	integration	and	expression	is	less	than	100%.	

It	would	also	be	beneficial	to	generate	monoclonal	lines	from	the	mixed	

populations,	so	that	the	site	of	integration	can	be	checked	to	ensure	important	

cellular	functions	have	not	been	disrupted.	In	addition,	the	effectiveness	of	

transient	transfection	of	PACT	constructs	into	Hff	cells	could	be	tested,	to	examine	

the	effects	in	a	more	physiologically	relevant	system.	As	mentioned	previously,	

optimisation	of	the	Western	blot	blocking	and	staining	protocol	is	required	in	

order	to	reduce	the	non-specific	signal.	

Once	the	cell	lines	have	been	generated,	homodimerisation	of	PACT	within	cells	

can	be	tested	by	transfecting	a	second	PACT	construct	into	the	cell	lines,	with	a	

different	epitope	tag.	Having	two	separate	tags	allows	one	to	be	used	for	

immunoprecipitation,	and	the	other	to	be	used	for	detection,	and	would	also	

permit	the	use	of	proximity	ligation	assays	to	detect	homodimers	in	cells.	For	the	

full-length	PACT	constructs,	immunoprecipitations	would	need	to	be	performed	

with	and	without	the	presence	of	an	RNase	that	can	degrade	dsRNA	(such	as	

RNase	III	or	RNase	V1),	to	distinguish	direct	dimerisation	via	domain	3	from	

indirect	dimerisation	via	dsRNA.	Alternatively,	mutations	could	be	introduced	into	

domains	1	and	2	to	abolish	dsRNA-binding.	The	necessity	of	PACT	domain	3	for	

dimerisation	could	be	tested	by	introducing	the	L273R	mutation,	or	by	truncating	

PACT	after	domain	2.	

Further	work	is	required	to	optimise	siRNA-mediated	knockdown	of	PACT	in	Hff	

cells	to	ensure	that	expression	is	reduced	at	the	protein	level.	Once	this	is	

achieved,	the	levels	of	individual	miRNAs,	and	of	Dicer	and	TRBP,	can	be	examined	

by	qRT-PCR	and	Western	blotting	in	both	PACT	knockdown	and	overexpression	
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conditions.	The	same	system	could	be	used	to	probe	the	effects	of	PACT	on	PKR	

activation	in	response	to	cellular	stresses.	

The	availability	of	CRISPR	tools	offers	the	possibility	of	creating	cell	lines	where	

PACT	expression	is	completely	abolished.	This	provides	an	alternative	strategy	if	

problems	are	found	with	the	optimisation	of	siRNA-mediated	knockdown	of	PACT,	

as	might	be	expected	if	PACT	plays	a	significant	role	in	the	RNA	interference	

pathway.	CRISPR	also	offers	two	approaches	for	studying	mutant	forms	in	the	

absence	of	wild	type	PACT:	either	PACT	mutants	can	be	overexpressed	in	PACT-/-	

cells,	or	the	endogenous	copy	of	PACT	can	be	edited	directly.		
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11. Conclusions	and	Discussion	
11.1 Summary	of	results	from	this	thesis	

Prior	to	this	study,	the	homodimerisation	of	PACT-D3	and	TRBP-D3	had	been	

established	using	yeast-2-hybrid	assays	(Laraki	et	al.,	2008),	but	the	structural	

basis	of	this	dimerisation	was	unknown.	Indeed,	no	structures	of	type	B	dsRBDs	

were	publicly	available	at	that	time,	and	it	was	unclear	to	what	degree	their	

structure	diverged	from	that	of	canonical	dsRBDs.	Since	then,	the	field	has	

developed	considerably,	with	recent	structures	of	Loqs-D3	homodimers	and	of	the	

TRBP/Dicer	complex,	together	with	the	application	of	genome	editing	techniques	

to	study	PACT	and	TRBP	function	(Kim	et	al.,	2014;	Wilson	et	al.,	2015;	Jakob	et	al.,	

2016).	The	main	contributions	of	this	thesis	are	summarised	below.	

11.1.1 PACT-D3	forms	homodimers	

Recombinant	PACT-D3	was	shown	to	dimerise	in	vitro	using	both	SEC-MALLS	

(Figure	7.1A)	and	sedimentation	equilibrium	AUC	(Figure	7.2).	The	conserved	N-

terminal	region	was	found	to	be	unnecessary	for	dimerisation	(Figure	7.1B),	in	

marked	contrast	to	Staufen-D5	(Gleghorn	et	al.,	2013).	Phosphorylation	(modelled	

by	phospho-mimic	mutations)	was	found	to	be	unnecessary	for	dimerisation	at	

concentrations	above	approximately	100	µM	(Figure	7.3),	but	might	still	play	a	

role	at	lower	concentrations.	Dimerisation	of	PACT-D3	can	be	disrupted	by	

mutation	of	leucine	273	to	arginine,	without	disrupting	the	structure	of	the	

domain	(Figure	7.4).	NMR	data	collected	at	5	µM	appears	to	show	the	presence	of	

monomeric	PACT-D3,	implying	the	dimer	dissociation	constant	on	the	order	of	1	

µM	(Figure	8.15).		

11.1.2 PACT-D3	homodimers	are	asymmetric,	and	similar	in	structure	to	
Loqs-D3	dimers	

NMR	spectroscopy	was	used	to	show	that	PACT-D3	adopts	two	states	in	solution	

(Figure	8.5);	that	these	states	undergo	chemical	exchange	(Figure	8.11);	and	that	

they	represent	the	two	protomers	of	an	asymmetric	dimer	(Figure	8.12).	A	

number	of	intermolecular	NOEs	were	identified	(Figures	8.12,	8.13	and	8.14),	all	

of	which	are	consistent	with	PACT-D3	homodimers	adopting	the	same	structure	as	

Loqs-D3	homodimers	(Jakob	et	al.,	2016).	In	particular,	the	NOE	data	supports	the	



	 169	

b-3	strands	of	the	two	subunits	lying	parallel	to	one	another,	but	with	a	register	

shift	to	allow	for	intermolecular	hydrogen	bond	formation	(Figure	8.14).	

11.1.3 TRBP	domain	3	homodimerises	with	lower	affinity	than	PACT	domain	
3	

TRBP-D3	was	not	stable	in	vitro,	but	a	longer	construct	containing	two	

phosphomimic	mutations	(TRBP-ExtDD-D3)	could	be	produced	(Figures	6.2	and	

6.4).	Despite	extensive	sequence	conservation	with	PACT	and	Loqs	at	the	dimer	

interface	(Figure	9.3A),	TRBP-ExtDD-D3	was	found	to	only	weakly	dimerise	in	the	

concentration	range	studied	(Figure	9.2).	The	weak	dimerisation	is	primarily	due	

to	R353	and	R354:	mutating	these	to	match	the	equivalent	residues	in	PACT	

restored	asymmetric	homodimerisation	of	TRBP-ExtDD-D3	(Figures	9.3	and	9.4).	

By	contrast,	dimerisation	was	completely	abolished	by	the	mutation	L326R,	

further	confirming	that	TRBP	domain	3	homodimerises,	albeit	weakly,	using	the	

same	interface	as	PACT	and	Loqs	(Figure	9.3).	

11.2 Discussion	

11.2.1 Incompatibility	of	PACT	homodimerisation	and	Dicer/PACT	complex	
formation	

The	crystal	structures	of	TRBP-D3	in	complex	with	the	Dicer	helicase	insert	and	of	

Loqs-D3	homodimers	suggested	that	Dicer	binding	and	dimerisation	use	the	same	

interface	(Wilson	et	al.,	2015;	Jakob	et	al.,	2016).	PACT-D3	homodimerisation	via	

the	same	interface	is	supported	both	by	mutagenesis	(Figure	7.4)	and	NMR	data	

(Figures	8.12,	8.13	and	8.16).	Given	the	strong	conservation	with	TRBP	at	the	

Dicer-binding	surface,	it	is	reasonable	to	conclude	that	PACT	also	binds	Dicer	

using	the	same	interface,	and	therefore	that	PACT	homodimerisation	is	

incompatible	with	formation	of	PACT/Dicer	complexes	(Figure	11.1).	

It	has	previously	been	suggested	that	the	specialisation	required	to	form	a	specific	

protein-protein	interface	means	that	interactions	with	different	proteins	will	

utilise	separate	protein	surfaces	(Kundrotas	and	Vakser,	2013).	This	is	clearly	not	

the	case	for	PACT-D3,	whose	Dicer	binding	and	homodimerisation	interfaces	are	

almost	completely	coincident	despite	the	lack	of	any	structural	homology	between	

the	Dicer	helicase	insert	and	PACT-D3.	Close	examination	of	the	Loqs-D3	

homodimer	and	TRBP/Dicer	complex	reveals	that	these	two	interactions	are	
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possible	partly	because	conserved	TRBP/Loqs	residues	mediate	similar	

interactions	in	the	two	complexes,	and	partly	through	rearrangement	of	side	

chains	at	the	interface.		

	

Figure	11.1.	Overlap	of	the	PACT-D3	homodimerisation	and	Dicer-binding	
interfaces	

A)	Model	of	a	PACT-D3	homodimer	created	by	aligning	the	I-TASSER	model	of	PACT-

D3	to	each	protomer	of	the	Loqs-D3	dimer	(4X8W).	B)	Model	of	the	Dicer/PACT-D3	

complex	created	by	aligning	the	I-TASSER	model	of	PACT-D3	to	the	Dicer/TRBP-D3	

structure	(4WYQ).	PACT-D3	is	in	blue,	Dicer	is	in	purple.	

To	identify	the	Dicer	residues	which	contribute	most	to	the	interaction	with	TRBP,	

it	is	helpful	to	examine	sequence	conservation	at	the	interface,	especially	between	

the	distantly	related	mammalian	and	insect	homologues	(Figure	11.2A).	There	is	

significant	variability	at	many	positions,	especially	in	helix	a-4,	in	contrast	to	the	

much	higher	conservation	between	PACT,	TRBP	and	Loqs.	The	best	conserved	

interface	residues	are	F280	and	D283	in	helix	a-1,	and	T350	and	L358	in	helix	a-2.		

In	the	TRBP/Dicer	complex,	Dicer	T350	forms	a	hydrogen	bond	to	the	backbone	

amide	of	TRBP	V336	(Figure	11.2B).	The	methyl	group	of	T350	is	also	positioned	

so	that	it	can	interact	weakly	with	the p	electrons	of	TRBP	Y358.	In	the	Loqs-D3	

homodimer,	similar	interactions	are	formed,	but	to	the	other	Loqs-D3	protomer:	

the	backbone	amide	of	V436B	hydrogen	bonds	to	the	backbone	oxygen	of	V434A,	

while	the	ring	of	Y458B	interacts	with	the	methyl	of	V436A	(Figure	11.2C).	All	

these	residues	are	highly	conserved	between	all	the	vertebrate	and	insect	PACT	

homologues	examined	in	Figure	1.9.	There	is	direct	evidence	that	these	

BA
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interactions	also	occur	in	PACT-D3	homodimers:	NOESY	data	supports	a	similar	b-

sheet	arrangement	around	V283B	(Figure	8.14),	and	the	upfield	shift	of	V283A	Hg1	

(-0.17	ppm;	see	Figure	8.12)	is	consistent	with	ring	current	effects	due	to	a	

location	above	the	plane	of	an	aromatic	ring	(Haigh	and	Mallion,	1979).			

Figure	11.2D	shows	that	Dicer	F280	inserts	into	a	shallow	pocket	formed	by	TRBP	

I314,	Q324,	L326	and	H338.	All	five	of	these	residues	are	extremely	well	

conserved	among	vertebrates	and	arthropods,	suggesting	that	this	is	a	key	part	of	

the	interface	(with	the	only	common	variant	being	replacement	of	the	histidine	

with	tyrosine).	In	both	subunits	of	the	Loqs-D3	homodimer	(Figure	11.2E),	the	

conserved	residues	are	rearranged,	with	the	H438	side	chain	rotating	to	fill	the	

pocket.	This	also	prevents	the	histidine	sidechain	from	clashing	with	the	b-3	

strand	of	the	other	Loqs-D3	subunit.	

The	incompatibility	of	PACT	homodimerisation	and	PACT/Dicer	interaction	

implies	that	these	two	complexes	compete	inside	the	cell.	The	extent	to	which	this	

is	significant	depends	both	on	the	relative	affinities	of	the	interactions,	and	the	

relative	concentrations	of	PACT,	TRBP	and	Dicer.	The	affinity	of	TRBP	for	Dicer	is	

reportedly	in	the	low	nanomolar	range	(Wilson	et	al.,	2015),	while	NMR	of	low	

concentration	PACT-D3	suggests	that	the	homodimerisation	affinity	of	PACT	is	on	

the	order	of	1	µM	(Chapter	8	section	8.5).	Unfortunately,	information	on	the	

relative	abundance	of	PACT,	TRBP	and	Dicer	is	not	currently	available.	If	the	

affinity	of	PACT	for	Dicer	is	similar	to	that	of	TRBP,	then	homodimers	will	only	

form	if	PACT	is	in	excess	of	Dicer.	However,	dimerisation	could	only	have	been	

selected	for	if	functional	dimers	are	present.	Ultimately,	this	question	is	unlikely	to	

be	resolved	except	through	affinity	measurements	of	PACT	homodimerisation	and	

PACT/Dicer	complex	formation,	and	in-cell	tests	such	as	Proximity	Ligation	Assays	

to	detect	which	complexes	are	present.	
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Figure	11.2.	Comparison	of	the	Dicer/TRBP	and	Loqs	homodimer	interfaces	

A)	Alignment	of	Dicer-1	helicase	insert	sequences	from	a	range	of	animal	species.	

The	secondary	structure	of	human	Dicer	insert	(4WYQ)	is	shown	above;	cyan	

highlights	indicate	residues	that	interact	with	TRBP;	asterisks	indicate	residues	

which	can	be	mutated	to	disrupt	the	interaction	with	TRBP	and	PACT	(Wilson	et	al.,	

2015).	B)	Interactions	of	Dicer	T350.	Interactions	described	in	the	text	are	marked	

in	yellow.	C)	Similar	interactions	are	formed	by	Loqs	V434A	and	V436A.	Protomer	A	

here	corresponds	to	chain	A	in	PDB	accession	4X8W,	while	protomer	B	corresponds	

to	chains	D/F.	D)	Interactions	of	Dicer	F280	with	a	surface	pocket	of	TRBP.	E)	

Overlay	of	the	surface	pocket	in	TRBP	and	Loqs,	showing	rotation	of	the	histidine	

side	chain.	(Colours	are	consistent	throughout.)	
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11.2.2 Homo-	and	heterodimerisation	of	dsRBDs	

11.2.2.1 Potential	functions	of	PACT	homodimerisation	

Because	both	PACT-D3	and	Loqs-D3	homodimerise,	and	the	sequence	of	other	

distant	homologues	appears	compatible	with	dimerisation,	it	is	likely	that	the	

ancestral	version	of	PACT-D3	could	dimerise.	This	conservation	suggests	that	

dimerisation	is	functional.	There	are	several	possible	ways	in	which	PACT	

dimerisation	might	be	beneficial	to	the	cell,	but	current	evidence	does	not	

conclusively	prove	which,	if	any,	are	driving	conservation	of	this	property.	

Dimerisation	via	domain	3	may	alter	the	RNA-binding	behaviour	of	full-length	

PACT	by	bringing	4	type	A	dsRBDs	into	a	single	complex.	This	would	be	expected	

to	lead	to	increased	avidity	for	dsRNA	(Shamoo,	Abdul-Manan	and	Williams,	

1995),	and	indeed	full-length	PACT	has	up	to	10-fold	higher	apparent	affinity	for	

siRNA	than	a	PACT	construct	which	lacks	the	third	domain	(Takahashi	et	al.,	

2013).	However,	the	same	study	found	that	full-length	TRBP	had	a	higher	affinity	

still,	despite	its	weaker	dimerisation,	demonstrating	that	differences	in	other	

regions	of	the	protein	can	exert	a	greater	effect.	4	dsRBDs	is	also	the	maximum	

number	that	can	bind	to	miRNA-length	substrates,	suggesting	a	PACT	dimer	

bound	to	miRNA	would	cover	most	of	the	RNA	surface	(Benoit	et	al.,	2013;	

Acevedo	et	al.,	2015,	2016).	However,	it	is	unclear	what	the	effects	of	these	

properties	would	be	in	vivo.	It	is	also	unknown	whether	PACT	dimers	assemble	on	

(pre-)miRNAs,	or	are	pre-formed	prior	to	RNA	binding.	

PACT	dimerisation	is	reportedly	required	for	PKR	activation	in	response	to	

cellular	stress.	While	this	may	be	true	in	mammals	(subject	to	the	caveats	given	in	

Chapter	8,	section	8.7.2	regarding	phosphorylation),	PACT	homologues	can	

dimerise	even	in	organisms	that	lack	an	interferon	pathway.	For	example,	

Drosophila	Loqs-D3	has	been	shown	to	dimerise	using	SEC-MALLS	(Figure	7.5),	

and	other	insects	and	molluscs	have	highly	conserved	dimer	interfaces	(Figure	

1.9).	Therefore,	dimerisation	of	the	ancestral	PACT/Loqs	protein	must	have	

served	a	different	function,	presumably	related	to	miRNA	or	siRNA	biogenesis.		

PACT	dimerisation	may	function	to	increase	protein	stability.	dsRBDs	are	fairly	

small	domains,	and	the	Dicer-binding	interface	takes	20%	of	their	surface	

(calculated	from	4WYQ,	excluding	the	poorly	resolved	N-terminal	helix).	There	is	a	

trade-off	between	being	optimised	for	protein-interaction	and	optimisation	for	
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solvent	exposure.	Dimerisation	may	provide	a	way	to	‘hide’	the	exposed	

interaction	surface	from	the	solvent,	until	a	Dicer	molecule	can	be	found.	This	is	

consistent	with	trends	in	in	vitro	stability	of	monomeric	and	dimeric	PACT	and	

TRBP	constructs	observed	in	this	thesis.	However,	further	work	is	clearly	needed	

to	quantify	the	difference	in	stability,	and	determine	whether	it	is	significant	in	

vivo.	

11.2.2.2 Lack	of	homodimerisation	in	TRBP	

TRBP-D3	homodimerises	with	lower	affinity	than	PACT-D3,	largely	because	of	two	

arginines	at	positions	353	and	354	(Figure	9.3),	which	replace	an	[H/Q]N	motif	

that	is	conserved	in	almost	all	PACT	and	Loqs	sequences.	They	are	relatively	

recent	additions	to	TRBP:	they	appear	in	human,	rat	and	bovine	TRBP,	but	not	in	

Xenopus	laevis	or	Danio	rerio	(Figure	1.9).	The	evidence	presented	here	clearly	

shows	that	R353	and	R354	are	the	cause	of	weaker	TRBP	homodimerisation,	but	

does	not	directly	address	the	reason	these	substitutions	have	evolved.		

As	discussed	above	and	in	Chapter	9,	weakening	homodimerisation	seems	to	

decrease	the	stability	of	the	domain,	but	it	is	not	clear	why	this	would	be	desirable.	

An	alternative	possibility	is	that	weaker	dimerisation	of	TRBP-D3	might	liberate	it	

for	interactions	with	other	binding	partners,	notably	Dicer.	The	Dicer	binding	

interface	identified	by	Wilson	and	coworkers	is	incompatible	with	the	

homodimerisation	interface	(Wilson	et	al.,	2015),	so	these	two	interactions	will	

compete	–	reducing	the	affinity	of	one	complex	will	increase	formation	of	the	

other.	In	further	support	of	the	hypothesis	that	the	function	of	these	substitutions	

favours	Dicer	binding,	the	crystal	structure	of	the	complex	shows	that	TRBP	R354	

lies	at	the	interface	with	Dicer,	forming	a	salt	bridge	to	Dicer	E278.	

11.2.2.3 Possibility	of	PACT/TRBP	heterodimerisation	

The	structure	of	Loqs-D3	shows	that	R353	and	R354	are	buried	in	one	half	of	the	

dimer	but	exposed	on	the	other	(Figure	9.3).	Therefore,	dimers	may	be	able	to	

tolerate	substitution	of	bulkier	amino	acids	in	one	half	of	the	dimer,	but	clashes	

would	occur	if	both	halves	of	the	dimer	had	such	substitutions.	This	is	consistent	

with	Yeast-2-hybrid	experiments	showing	that	TRBP	domain	3	can	

heterodimerise	with	PACT	domain	3,	but	not	form	homodimers	(Laraki	et	al.,	

2008).	PACT/TRBP	heterodimers	would	presumably	have	a	different	dsRNA	
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binding	mode	to	either	PACT	homodimers	or	TRBP	monomers,	and	have	been	

suggested	to	prevent	activation	of	PKR	(Singh	et	al.,	2011).	

However,	heterodimerisation	remains	to	be	validated	in	vitro	using	purified	

proteins.	Several	approaches	have	been	tried	in	our	lab,	including	pull-down	

assays,	analytical	size	exclusion	and	chemical	cross-linking.	However,	the	results	

of	these	studies	are	inconclusive	(data	not	shown).	Part	of	the	problem	may	be	the	

strength	of	PACT-D3	homodimerisation,	which	will	always	compete	with	PACT-

D3/TRBP-D3	heterodimerisation.	A	promising	approach	may	be	to	use	microscale	

thermophoresis	(MST),	as	this	technique	is	sufficiently	sensitive	to	work	at	

nanomolar	concentrations	of	PACT-D3,	where	the	domain	would	be	expected	to	be	

monomeric.		

Only	one	of	the	two	L426	sidechains	is	buried	in	the	Loqs-D3	homodimer,	while	

the	other	remains	partially	solvent	exposed.	The	structure	suggests	that	a	

heterodimer	may	be	able	to	form	between	Loqs-D3	L426R,	and	Loqs-D3	

QN453,454RR.	If	this	is	true,	it	implies	that	PACT-D3	L273R	may	retain	the	ability	

to	heterodimerise	with	TRBP-D3.	This	would	provide	an	alternative	method	to	

test	heterodimerisation	between	PACT	and	TRBP,	while	removing	the	competing	

effects	of	PACT	homodimerisation.	

The	possibility	of	post-translational	modification	in	PACT	adds	an	additional	layer.	

Based	on	the	Loqs-D3	crystal	structure,	TRBP	R353	and	R354	would	be	positioned	

near	PACT	S287D	in	a	heterodimer.	If	S287	is	phosphorylated,	there	would	likely	

be	a	steric	clash	between	the	arginines	and	the	phosphate	group,	which	could	

plausibly	prevent	dimerisation	as	previously	reported	(Singh	et	al.,	2011).	It	

would	be	possible	to	test	this	idea	using	an	assay	for	heterodimerisation	(such	as	

MST),	and	replacement	of	S287	with	bulky	amino	acids.	

11.2.3 Asymmetric	dimerisation	of	PACT	

11.2.3.1 Asymmetry	in	Loqs-D3	homodimers	

In	Chapter	8,	NMR	data	was	used	to	show	that	PACT-D3	homodimers	are	

asymmetric,	and	adopt	a	structure	similar	to	that	of	Loqs-D3	homodimers.	It	was	

also	shown	that	Loqs-D3	forms	asymmetric	homodimers	in	solution,	and	that	

asymmetric	dimerisation	is	not	merely	an	artefact	of	crystal	packing.	With	this	

established,	we	can	examine	the	Loqs-D3	structure	(4X8W)	for	clues	as	to	how	
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and	why	asymmetric	dimerisation	occurs	(Jakob	et	al.,	2016).	The	unit	cell	for	this	

crystal	contained	6	well-resolved	molecules,	some	of	which	exhibited	domain	

swapping	of	strand	b-3	and	helix	a-2.	The	discussion	below	is	based	on	the	dimer	

formed	by	chain	A	(protomer	A),	and	b-3	and	a-2	of	chain	D	together	with	a-1,	b-1	

and	b-2	of	chain	F	(protomer	B).	Similar	results	hold	for	the	other	two	dimers	in	

the	unit	cell.	

A	protein	complex	is	symmetric	if	the	positions	of	its	subunits	are	related	by	a	

symmetry	operator.	Since	reflection	is	not	allowed,	the	possible	operators	are	

translation	and	rotation.	Translational	symmetry	occurs	in	protein	crystals	and	

fibres:	since	translation	can	be	repeatedly	applied,	complexes	with	translational	

symmetry	operators	are	not	naturally	bounded,	and	can	form	infinite	arrays	or	

fibrils.	In	contrast,	repeatedly	applying	a	rotational	symmetry	operator	to	a	

protein	will	eventually	return	it	to	its	original	position,	resulting	in	a	complex	of	a	

defined	size.	Subunits	of	a	protein	complex	can	be	related	by	multiple	symmetry	

operators:	in	these	cases,	all	axes	of	rotation	must	intersect	at	a	common	point,	

and	the	complex	is	said	to	exhibit	point	group	symmetry.	All	symmetric	

homodimers	fall	into	the	C2	symmetry	group,	meaning	that	the	two	subunits	are	

related	by	a	single	180˚	rotation.	

Given	this	definition	of	symmetry,	two	types	of	asymmetric	dimer	can	be	

distinguished.	Firstly,	a	dimer	could	be	asymmetric	because	the	two	protomers	

have	different	structures,	meaning	there	is	no	possible	rigid	transformation	that	

relates	them.	Alternatively,	the	two	protomers	could	have	the	same	structure,	but	

their	positions	may	not	be	related	by	a	rotational	symmetry	operator.	In	this	case,	

superposition	of	the	two	subunits	requires	either	multiple	rotations	along	non-

intersecting	axes,	or	a	combination	of	rotation	and	translation.	

Figure	11.3.	Asymmetry	in	Loqs-D3	homodimers	

A)	Overlay	of	the	two	dimer	subunits	reveals	only	small	changes	in	conformation.	B)	

Rotating	the	dimer	such	that	opposite	protomers	are	superposed	demonstrates	the	

asymmetry.	The	Ca	RMSD	is	calculated	only	between	the	blue	and	green	protomers.	

C-E)	Location	of	the	dimer	interface	in	Loqs-D3	protomer	A	(D)	and	protomer	B	(E).	

The	surface	is	coloured	according	to	solvent	exposure	in	the	dimer	(calculated	using	

the	POPSCOMP	server	(Kleinjung	and	Fraternali,	2005)).	



	 177	

	

	 	



	 178	

	

Loqs-D3	can	be	seen	to	exhibit	the	latter	form	of	asymmetry.	As	shown	in	Figure	

11.3A,	the	two	halves	of	the	homodimer	have	very	similar	structures,	with	a	Ca	

root	mean	square	displacement	(RMSD)	of	1.0	Å.	However,	there	does	not	exist	a	

180˚	rotation	that	maps	one	subunit	onto	the	other.	If	instead	the	homodimer	is	

partially	aligned	with	itself	so	that	protomer	A	of	one	dimer	superposes	onto	

protomer	B	of	the	other	dimer	(Figure	11.3B),	the	nonaligned	subunits	are	found	

to	have	a	Ca	RMSD	of	8.4	Å	(for	a	symmetric	dimer,	this	procedure	would	result	in	

perfect	superposition).		

In	an	asymmetric	dimer,	the	two	subunits	use	different	interfaces	to	bind	their	

partner.	Figures	11.3D,E	show	that	these	interfaces	overlap	significantly.	

Examining	the	interface	closely,	the	main	difference	between	the	two	binding	

modes	is	a	register	shift	between	the	parallel	b-3	strands	(Figure	8.14).	As	

discussed	in	Chapter	8,	section	8.4.8,	identical	b-strands	require	a	register	shift	to	

interact	in	parallel,	because	if	they	were	aligned	symmetrically,	the	amide	and	

carbonyl	groups	would	not	be	correctly	positioned	for	hydrogen	bond	formation.	

Therefore,	the	presence	of	an	intermolecular	parallel	b-sheet	between	equivalent	

b-strands	in	the	two	halves	of	a	dimer	always	causes	asymmetry.		

A	quantitative	measure	of	asymmetry	was	proposed	by	Andre	and	coworkers	

(Andre	et	al.,	2008):		

¿9/7 =
d"çï − ç"dïï"

¡×¡
	

where	d"çï 	is	the	distance	between	the	Ca	atoms	of	residue	i	in	protomer	A	and	

residue	j	in	protomer	B,	and	N	is	the	protein	length.	For	a	symmetric	dimer,	¿9/7	

equals	0,	as	d"çï = ç"dï 	for	all	i	and	j.	There	is	no	maximum	possible	value	for	

¿9/7 ,	nor	intrinsic	thresholds	to	distinguish	degrees	of	asymmetry,	but	Swapna	et	

al.	suggest	that	¿9/7	values		greater	than	3	represent	clear	asymmetry,	while	¿9/7	

values	between	1	and	3	represent	limited	asymmetry	(Swapna,	Srikeerthana	and	

Srinivasan,	2012).	For	Loqs-D3,	¿9/7	is	equal	to	2.3,	consistent	with	the	fact	that	

the	structures	of	the	individual	protomers	are	similar,	and	that	the	two	possible	

dimer	interfaces	overlap.	
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11.2.3.2 Evidence	for	similar	asymmetry	in	PACT-D3	homodimers	

Do	PACT-D3	homodimers	also	exhibit	this	form	of	asymmetry,	and	have	the	same	

structure	as	Loqs-D3	dimers?	Several	pieces	of	NMR	data	suggest	that	they	do.	

Firstly,	secondary	structure	predictions	from	the	TALOS-N	program	(based	on	

comparison	of	backbone	chemical	shifts	to	a	database	of	matched	shifts	and	

structures)	match	well	to	Loqs-D3,	and	suggest	that	there	are	no	significant	

differences	in	secondary	structure	between	the	two	halves	of	the	PACT-D3	

homodimer	(Figure	8.5).	Comparison	of	the	predicted	dihedral	angles	of	PACT-D3	

also	reveals	no	significant	differences	between	the	two	states.	There	are	some	

small	differences	in	predicted	dihedral	angles	for	residues	in	the	b-sheet,	but	these	

could	be	due	to	the	larger	prediction	error	in	this	region.	Alternatively,	the	

differences	might	be	consistent	with	a	slight	bending	of	the	b-sheet,	as	suggested	

by	the	proton	pressure-induced	chemical	shift	changes	Chapter	8,	section	8.6.		

Secondly,	both	NOESY	and	high	pressure	experiments	suggest	that	PACT-D3	uses	

the	same	dimer	interface	as	Loqs-D3,	including	strands	b-2	and	b-3	and	the	C-

terminal	half	of	helix	a-2	(Figures	8.12	and	8.17).	Compound	chemical	shift	

differences	between	the	two	states	are	largest	on	the	third	b-strand	and	second	a-

helix,	showing	that	the	residues	in	these	regions	experience	the	most	pronounced	

difference	in	chemical	environment	(Figure	8.9).	NOESY	data	shows	that	the	b-3	

strands	of	the	two	subunits	form	a	parallel	b-sheet,	and	that	there	is	a	register	

shift	between	the	two	strands	(Figure	8.14).	Taken	together,	this	confirms	that	all	

the	main	features	of	asymmetric	Loqs-D3	dimerisation	also	occur	in	PACT-D3	

homodimers.	

11.2.3.3 General	arguments	for	the	prevalence	of	symmetry	

Asymmetric	homodimers	are	relatively	rare,	with	a	recent	study	finding	that	only	

5-10%	of	homodimers	in	the	PDB	show	significant	asymmetry	(Swapna,	

Srikeerthana	and	Srinivasan,	2012).	To	explain	why	PACT-D3	homodimers	might	

be	asymmetric,	it	is	necessary	to	understand	why	symmetry	is	so	prevalent	in	

protein	complexes.	

One	argument	is	that	symmetry	ensures	that	the	protein	will	assemble	into	a	finite	

complex.	In	general,	because	asymmetric	dimerisation	uses	different	interfaces	on	

each	protomer,	a	single	molecule	could	bind	to	two	other	molecules	
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simultaneously,	and	each	of	those	could	bind	two	molecules,	leading	to	formation	

of	long	fibrils.	Fibril	formation	is	useful	for	forming	large	scale	structures	such	as	

microtubules	and	actin	filaments,	but	would	not	be	useful	for	most	proteins.	In	

practice	however,	fibril	formation	of	this	kind	requires	that	the	two	possible	

interfaces	are	well	separated.	In	PACT-D3	and	Loqs-D3,	the	two	interfaces	overlap,	

and	so	steric	clashes	prevent	fibril	formation.	

A	second	argument	is	that	strong	symmetric	dimers	can	evolve	more	easily	than	

strong	asymmetric	dimers.	A	symmetric	dimer	interface	contains	two	copies	of	

each	possible	interaction,	so	mutations	at	the	interface	cause	twice	the	change	in	

interaction	free	energy	(Monod,	Wyman	and	Changeux,	1965).	This	is	partially	

offset	by	the	smaller	number	of	residues	involved	in	a	symmetric	interface,	

reducing	the	mutation	rate	compared	to	an	asymmetric	interface	of	equivalent	

area,	resulting	overall	in	a	 2-fold	greater	variation	in	interaction	free	energy	

(Andre	et	al.,	2008).	The	greater	variation	in	interaction	free	energy	leads	to	faster	

emergence	of	stable	complexes,	which	can	then	be	selected	for.	The	same	result	

can	be	arrived	at	by	considering	the	energies	of	randomly	chosen	interfaces	

(Andre	et	al.,	2008).	

Several	computational	studies	into	simplified	models	of	dimer	evolution	have	

been	published,	with	results	consistent	with	the	argument	above.	Schulz	found	

that	in	the	case	of	a	defined	interface	with	fixed	orientation,	symmetric	dimers	

have	on	average	approximately	equal	interaction	energies	to	asymmetric	dimers,	

but	a	wider	distribution	of	energies.	This	led	to	the	formation	of	strong	symmetric	

dimer	interfaces	with	significantly	fewer	mutations	than	for	asymmetric	dimers	

(Schulz,	2010).	Lukatsky	and	coworkers	studied	a	dimer	model	which	allowed	

rotation	of	the	two	subunits,	finding	that	randomly	generated	symmetric	dimer	

interfaces	had	both	larger	variance	and	lower	average	energy	than	asymmetric	

interfaces	(Lukatsky	et	al.,	2007).	The	lower	energy	can	be	explained	by	the	

freedom	of	the	subunits	to	rotate	and	sample	a	range	of	possible	interfaces:	the	

greater	variance	of	symmetric	interface	energy	means	the	best	orientation	will	on	

average	have	a	lower	energy	than	for	an	asymmetric	interface.	Andre	and	

coworkers	performed	random	docking	of	protein	structures,	and	found	that	

symmetric	complexes	had	a	greater	variance	in	interaction	energy,	and	were	

heavily	over-represented	among	low	energy	dimers	(Andre	et	al.,	2008).	Taken	
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together,	these	studies	provide	compelling	theoretical	reasons	for	the	

predominance	of	symmetric	dimers.	

11.2.3.4 Cause	of	asymmetry	in	PACT-D3	and	Loqs-D3	

Several	explanations	have	been	put	forward	to	explain	symmetry	breaking	within	

homodimers.	Local	asymmetry	can	allow	optimisation	of	sidechain	packing,	

especially	near	a	symmetry	axis	(Goodsell	and	Olson,	2000).	Slightly	larger	scale	

asymmetry	can	occur	due	to	register	slips	between	antiparallel	intermolecular	b-

strands	or	coiled	coils	(Brown,	2006).	Reported	cases	of	gross	asymmetry	are	

usually	caused	by	symmetry	mismatch	between	the	dimer	and	a	single	ligand,	

which	can	be	either	a	small	molecule,	another	protein	or	an	asymmetric	nucleic	

acid	sequence	(Swapna,	Srikeerthana	and	Srinivasan,	2012).	As	stated	above,	

Loqs-D3	and	PACT-D3	break	symmetry	in	a	different	and	(to	our	knowledge)	

novel	manner,	via	interaction	of	offset	parallel	b-strands.	

However,	the	functional	significance	of	asymmetry	of	PACT-D3	and	Loqs-D3	

remains	unclear.	Asymmetry	has	been	reported	to	play	a	role	in	transporter	

function	(Morrison	et	al.,	2011),	to	introduce	bends	into	large	fibril	forming	

proteins	(Brown	et	al.,	2001;	Madrazo	et	al.,	2001),	to	occur	in	enzymes	with	half-

of-sites	reactivity	(Renatus	et	al.,	2001)	and	to	allow	a	dimer	to	interact	with	a	

monomeric	partner.	However,	none	of	these	apply	to	PACT-D3	and	Loqs-D3	

homodimers.	Although	PACT	and	Loqs	do	bind	to	asymmetric	RNA	molecules,	

binding	is	mediated	through	the	first	two	domains.	Since	these	are	believed	to	be	

flexibly	linked	to	the	third	domain,	the	asymmetry	of	the	RNA	should	not	impose	

asymmetry	on	the	dimerisation	domain.		

I	believe	two	hypotheses	are	consistent	with	the	data.	Firstly,	the	interaction	

between	the	parallel	b-strands	contributes	at	least	three	hydrogen	bonds	to	the	

dimer	interface.	The	stabilising	effect	of	these	bonds	may	provide	a	sufficient	

advantage	to	overcome	the	disadvantages	associated	with	asymmetry.	It	is	

perhaps	notable	that	the	simulation	studies	cited	above	only	include	side	chain	

interactions,	and	do	not	account	for	the	possibility	of	intermolecular	contacts	with	

the	protein	backbone	(Lukatsky	et	al.,	2007;	Schulz,	2010).			

Alternatively,	the	evolutionary	advantages	of	symmetry	may	be	partially	negated	

by	selection	for	Dicer	binding.	This	places	a	competing	evolutionary	pressure	on	

the	interface,	preventing	it	from	freely	exploring	some	mutations	that	might	lead	
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to	symmetric	dimers.	It	may	also	disfavour	formation	of	a	strong	homodimer,	as	it	

is	necessary	for	the	dimer	to	dissociate	for	PACT	and	Loqs	to	bind	Dicer.		

The	conservation	of	asymmetry	in	PACT	and	Loqs	suggests	that	asymmetry	was	

present	before	the	divergence	of	PACT	and	TRBP.	Therefore,	asymmetry	cannot	

have	evolved	to	allow	selective	blocking	of	TRBP	homodimerisation	while	still	

allowing	heterodimer	formation.	In	any	case,	this	can	be	achieved	without	

asymmetry:	even	pseudosymmetric	heterodimers	can	minimise	

homodimerisation	by	adding	complementary	charged	residues	to	each	

heterodimer	subunit	(Lukatsky	et	al.,	2007)	

11.2.4 Suggestions	for	future	research	

The	new	structural	data	available	on	PACT-D3,	TRBP-D3	and	Loqs-D3	provide	a	

strong	base	for	further	investigations	of	the	protein-protein	interactions	of	these	

domains.	The	peak	doubling	and	chemical	exchange	in	PACT-D3	poses	challenges	

for	directly	determining	the	dimer	structure	using	traditional	NMR	structural	

methods.	However,	the	availability	of	monomeric	PACT-D3	L273R	will	allow	the	

monomer	structure	to	be	solved	using	standard	NOESY	methods,	and	restraints	

from	wild-type	PACT-D3	used	to	reconstruct	the	dimer	by	computational	docking.		

The	conserved	N-terminal	region	of	PACT-D3	has	been	implicated	in	improper	

PKR	activation,	but	little	is	known	about	its	structure.	Further	NMR	studies	of	

PACT-Ext-D3	L273R	are	likely	the	only	way	to	investigate	this,	as	there	appears	to	

be	a	degree	of	flexibility	in	this	region	(Wilson	et	al.,	2015).	Backbone	assignment	

would	allow	the	secondary	structure	to	be	defined	using	TALOS-N,	and	the	effects	

of	the	P222L	mutation	studied.	It	may	also	be	possible	to	determine	the	structure	

of	the	entire	domain	with	extension,	provided	the	effects	of	intermediate	chemical	

exchange	are	not	too	severe	(Figure	8.3).	

The	line	broadening	in	TRBP-ExtDD-D3	means	that	little	additional	progress	can	be	

made	by	NMR,	unless	conditions	can	be	found	which	favour	a	single	oligomeric	

state,	or	significantly	speed	or	slow	the	exchange	rate.	The	monomeric	mutant	

form	produces	the	cleanest	spectra,	but	the	low	yield	may	be	a	challenge:	if	

conditions	can	be	found	which	confer	greater	stability,	backbone	assignment	may	

be	possible,	especially	with	a	sensitive	probe.	The	dimeric	mutant	is	stable,	but	its	

spectra	are	complicated	by	peak	doubling,	and	attempts	to	study	it	by	NMR	are	

likely	to	run	into	the	same	problems	as	for	PACT-Ext-D3.	If	TRBP-D3	
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RR353,354HN	is	found	to	be	stable	and	dimeric,	it	may	be	a	promising	target	for	

further	NMR	studies.		

The	dimerisation	affinity	for	PACT-D3	is	currently	unknown,	and	has	proved	

challenging	to	measure	using	traditional	biophysical	methods.	As	noted	above,	

MST	may	provide	a	solution,	as	the	fluorescently-labelled	protein	can	be	detected	

even	at	nanomolar	concentrations,	well	below	the	expected	homodimerisation	

affinity.	MST	would	also	allow	interaction	measurements	with	other	partner	

proteins	(such	as	Dicer,	TRBP	or	even	PKR)	without	the	confounding	factor	of	

homodimerisation.	

More	broadly,	the	conflicting	reports	of	PACT	and	TRBP	function	in	the	literature	

indicate	the	need	for	the	functions	of	PACT	and	TRBP	to	be	more	clearly	defined	in	

vivo.	The	preliminary	work	presented	in	Chapter	10	provides	a	set	of	tools	for	

investigating	PACT-D3	function,	allowing	for	overexpression	of	various	PACT	

constructs.	Mutations	can	be	easily	introduced	into	this	system,	facilitating	testing	

of	hypotheses	based	on	structural	data.	The	system	could	be	further	enhanced	by	

the	generation	of	PACT	knock-out	cell	lines	using	CRISPR	technology,	so	that	

endogenous	PACT	could	be	completely	replaced.	

The	relatively	minor	effects	of	PACT	and	TRBP	knockout	in	HeLa	cells	have	cast	

doubt	on	the	results	of	many	earlier	studies	which	used	siRNA-mediated	

knockdown	(Kim	et	al.,	2014).	However,	HeLa	cells	are	in	many	ways	non-

physiological,	and	it	is	possible	that	other	alterations	in	miRNA	biogenesis	in	this	

cell	line	mask	the	effects	of	PACT	and	TRBP.	Validation	in	a	different	cell	type	

would	greatly	increase	the	confidence	in	this	result.	

The	interaction	mechanisms	of	PACT	with	PKR	and	RIG-I	remain	to	be	defined.	

Yeast-2-hybrid	methods	have	proved	successful	in	the	past	for	locating	interaction	

sites	in	these	proteins,	provided	the	domains	do	not	have	intrinsic	dsRNA-binding	

activity.	This	means	it	may	be	preferable	to	work	with	versions	of	domains	1	and	2	

with	mutations	in	the	RNA	binding	regions.	The	method	of	interaction	with	PKR	is	

particularly	important,	as	it	is	becoming	clear	that	PACT	and	TRBP	mediated	

inhibition	of	PKR	is	crucial	for	proper	development.	
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Appendix	1:	Sequences	of	PACT,	

TRBP	and	Loqs	constructs	

6x	His	with	MBP	tag	and	3C	cleavage	site:	

ATGGGCAGCA GCCATCATCA TCATCATCAC AGCAGCATGA AAATCGAAGA 
AGGTAAACTG GTAATCTGGA TTAACGGCGA TAAAGGCTAT AACGGTCTCG 
CTGAAGTCGG TAAGAAATTC GAGAAAGATA CCGGAATTAA AGTCACCGTT 
GAGCATCCGG ATAAACTGGA AGAGAAATTC CCACAGGTTG CGGCAACTGG 
CGATGGCCCT GACATTATCT TCTGGGCACA CGACCGCTTT GGTGGCTACG 
CTCAATCTGG CCTGTTGGCT GAAATCACCC CGGACAAAGC GTTCCAGGAC 
AAGCTGTATC CGTTTACCTG GGATGCCGTA CGTTACAACG GCAAGCTGAT 
TGCTTACCCG ATCGCTGTTG AAGCGTTATC GCTGATTTAT AACAAAGATC 
TGCTGCCGAA CCCGCCAAAA ACCTGGGAAG AGATCCCGGC GCTGGATAAA 
GAACTGAAAG CGAAAGGTAA GAGCGCGCTG ATGTTCAACC TGCAAGAACC 
GTACTTCACC TGGCCGCTGA TTGCTGCTGA CGGGGGTTAT GCGTTCAAGT 
ATGAAAACGG CAAGTACGAC ATTAAAGACG TGGGCGTGGA TAACGCTGGC 
GCGAAAGCGG GTCTGACCTT CCTGGTTGAC CTGATTAAAA ACAAACACAT 
GAATGCAGAC ACCGATTACT CCATCGCAGA AGCTGCCTTT AATAAAGGCG 
AAACAGCGAT GACCATCAAC GGCCCGTGGG CATGGTCCAA CATCGACACC 
AGCAAAGTGA ATTATGGTGT AACGGTACTG CCGACCTTCA AGGGTCAACC 
ATCCAAACCG TTCGTTGGCG TGCTGAGCGC AGGTATTAAC GCCGCCAGTC 
CGAACAAAGA GCTGGCGAAA GAGTTCCTCG AAAACTATCT GCTGACTGAT 
GAAGGTCTGG AAGCGGTTAA TAAAGACAAA CCGCTGGGTG CCGTAGCGCT 
GAAGTCTTAC GAGGAAGAGT TGGCGAAAGA TCCACGTATT GCCGCCACCA 
TGGAAAACGC CCAGAAAGGT GAAATCATGC CGAACATCCC GCAGATGTCC 
GCTTTCTGGT ATGCCGTGCG TACTGCGGTG ATCAACGCCG CCAGCGGTCG 
TCAGACTGTC GATGAAGCCC TGAAAGACGC GCAGACTCGT ATCACCAAGG 
GCCTGGAAGT TCTGTTCCAG GGACCAGCAA TG 
 
MGSSHHHHHH SSMKIEEGKL VIWINGDKGY NGLAEVGKKF EKDTGIKVTV 
EHPDKLEEKF PQVAATGDGP DIIFWAHDRF GGYAQSGLLA EITPDKAFQD 
KLYPFTWDAV RYNGKLIAYP IAVEALSLIY NKDLLPNPPK TWEEIPALDK 
ELKAKGKSAL MFNLQEPYFT WPLIAADGGY AFKYENGKYD IKDVGVDNAG 
AKAGLTFLVD LIKNKHMNAD TDYSIAEAAF NKGETAMTIN GPWAWSNIDT 
SKVNYGVTVL PTFKGQPSKP FVGVLSAGIN AASPNKELAK EFLENYLLTD 
EGLEAVNKDK PLGAVALKSY EEELAKDPRI AATMENAQKG EIMPNIPQMS 
AFWYAVRTAV INAASGRQTV DEALKDAQTR ITKGLEVLFQ^GPAM 
 
The	cleavage	site	is	marked	by	^.	

	

PACT-D3	(239-313):	

ACCGATTATA TTCAGCTGCT GTCTGAAATT GCGAAAGAAC AGGGCTTTAA 
CATCACCTAT CTGGATATTG ATGAACTGAG CGCGAACGGC CAGTATCAGT 
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GCCTGGCCGA ACTGAGCACC AGCCCGATTA CCGTGTGCCA TGGCAGCGGC 
ATTAGCTGCG GCAACGCGCA GTCTGATGCG GCGCATAACG CGCTGCAGTA 
TCTGAAAATT ATCGCGGAAC GCAAA 
 
TDYIQLLSEI AKEQGFNITY LDIDELSANG QYQCLAELST SPITVCHGSG 
ISCGNAQSDA AHNALQYLKI IAERK 
	

PACT-Ext-D3	(208-313):	

GGCCATAGCC TGGGCTGCAC CTGGCATAGC CTGCGTAACA GCCCGGGTGA 
AAAAATTAAC CTGCTGAAAC GTAGCCTGCT GTCTATTCCG AACACCGATT 
ATATTCAGCT GCTGTCTGAA ATTGCGAAAG AACAGGGCTT TAACATCACC 
TATCTGGATA TTGATGAACT GAGCGCGAAC GGCCAGTATC AGTGCCTGGC 
CGAACTGAGC ACCAGCCCGA TTACCGTGTG CCATGGCAGC GGCATTAGCT 
GCGGCAACGC GCAGTCTGAT GCGGCGCATA ACGCGCTGCA GTATCTGAAA 
ATTATCGCGG AACGCAAA 
 
GHSLGCTWHS LRNSPGEKIN LLKRSLLSIP NTDYIQLLSE IAKEQGFNIT 
YLDIDELSAN GQYQCLAELS TSPITVCHGS GISCGNAQSD AAHNALQYLK 
IIAERK 
	

TRBP-D3	(293-366):	

GCGTGTTGCC GTGTTCTGTC TGAACTGAGC GAAGAACAGG CGTTTCATGT 
GAGCTATCTG GATATTGAAG AACTGAGCCT GAGCGGCCTG TGCCAGTGCC 
TGGTGGAACT GAGCACCCAG CCGGCGACCG TGTGTCATGG TAGCGCGACC 
ACCCGTGAAG CGGCGCGTGG TGAAGCGGCC CGTCGTGCGC TGCAGTATCT 
GAAAATTATG GCGGGCAGCA AA 
 
ACCRVLSELS EEQAFHVSYL DIEELSLSGL CQCLVELSTQ PATVCHGSAT 
TREAARGEAA RRALQYLKIM AGSK 
	

TRBP-Ext-D3	(258-366):	

AATCGTGGCC CTGGTTGCAC CTGGGATAGC TTACGCAACA GCGTGGGTGA 
GAAAATTCTG AGTCTGCGCA GCTGCAGCCT GGGTAGCTTA GGTGCATTAG 
GCCCGGCATG TTGTCGTGTG CTGAGCGAGC TGAGCGAAGA ACAGGCCTTC 
CACGTGAGTT ACCTGGACAT CGAAGAGCTG AGTCTGAGCG GCCTGTGCCA 
GTGCCTGGTG GAGCTGAGCA CACAACCGGC AACAGTGTGT CACGGCAGTG 
CAACCACCCG CGAAGCAGCA CGCGGTGAAG CAGCACGTCG CGCACTGCAG 
TACCTGAAGA TTATGGCCGG CAGCAAG 
 
NRGPGCTWDS LRNSVGEKIL SLRSCSLGSL GALGPACCRV LSELSEEQAF 
HVSYLDIEEL SLSGLCQCLV ELSTQPATVC HGSATTREAA RGEAARRALQ 
YLKIMAGSK 
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Loqs-D3	(392-463):	

IDYIKLLGEI ATENQFEVTY VDIEEKTFSG QFQCLVQLST LPVGVCHGSG 
PTAADAQRHA AQNALEYLKI MT 
 

Note	that	after	TEV	cleavage,	3	non-native	glycines	remain	at	the	N-terminus.	
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12. Appendix	2:	Analytical	

Ultracentrifugation	fitted	data	

	

Raw	data	and	fitted	curves	for	PACT-D3	sedimentation	equilibrium	AUC	data	(see	

Section	7.3)	

	

11 uM, 22000 rpm 11 uM, 24000 rpm 11 uM, 42000 rpm

22 uM, 22000 rpm 22 uM, 24000 rpm 22 uM, 26000 rpm 22 uM, 33000 rpm

44 uM, 24000 rpm 44 uM, 26000 rpm 44 uM, 33000 rpm 44 uM, 42000 rpm

175 uM, 22000 rpm 175 uM, 33000 rpm 88 uM, 22000 rpm 88 uM, 33000 rpm
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Residuals	from	fitting	the	sedimentation	equilibrium	AUC	data	of	PACT-D3.	

Systematic	deviations	at	larger	radii	are	apparent	in	most	measurements,	with	

several	cases	(mostly	at	higher	speeds)	showing	extremely	poor	fits	to	the	data.	This	

is	most	likely	due	to	problems	fitting	the	baseline	offset	term,	as	other	possible	

sources	of	error	(failure	to	reach	equilibrium,	presence	of	a	small	fraction	of	

monomer,	protein	aggregation)	were	either	checked	or	would	give	rise	to	a	different	

pattern	of	errors.	Due	to	limitations	of	the	fitting	software,	offset	terms	could	not	be	

fit	at	the	same	time	as	the	overall	mass	and	concentrations,	and	had	to	be	set	

separately	on	a	more	restricted	dataset.	Although	these	systematic	errors	cast	doubt	

on	the	accuracy	of	the	mass	estimate	from	AUC,	this	data	is	sufficient	to	support	the	

dimeric	PACT-D3	being	the	predominant	oligomeric	state	in	solution.	
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Appendix	3:	Resonance	assignments	

of	PACT-D3	and	PACT-D3	L273R	
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Appendix	4:	R	code	for	simultaneous	

fitting	of	longitudinal	relaxation	and	

exchange	rates		

The	following	code	was	executed	using	R	version	3.3.3,	and	used	to	generate	the	

individual	parts	of	Figure	8.11.	

# Script to fit T1 and EXSY data of wild-type PACT-D3  
 
setwd("~/Dropbox/Phd/Data/Analysis/P3a")  # For Mac 
 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  # Multiplot function written by Winston Chang, and available from 
www.cookbook-r.com 
  require(grid) 
   
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
   
  numPlots = length(plots) 
   
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                     ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
   
  if (numPlots==1) { 
    print(plots[[1]]) 
     
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), 
ncol(layout)))) 
     
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this 
subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
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options = theme_bw() + theme(axis.text.x  = element_text(angle=90, 
vjust=0.5)) 
colours = scale_colour_brewer(palette="Set1")  
fills = scale_fill_brewer(palette="Set1") 
 
#### First, import, tidy and filter data #### 
# First import the raw T1 data 
t1_peaks.raw = read.delim("Peak lists/P3a_T1_relaxation_raw_data.txt", 
as.is=TRUE, 
col.names=c("Dim.1","Dim.2","10","600","250","700","100","510","300","
500","200","1500","1000","10.001","400","2000","800","900","50","10.00
2","Fit.Error","Fit.A","Fit.B")) 
 
t1_peaks = cbind(t1_peaks.raw[,1],stack(t1_peaks.raw[,3:20]))  # 
Convert to long format 
names(t1_peaks)=c("Assign","Height","t_mix") 
t1_peaks$t_mix = as.numeric(substring(t1_peaks$t_mix,2))/1000 
     # Convert text labels into times in s 
t1_peaks = cbind(parse_analysis_assignments(t1_peaks$Assign)[,-4], 
t1_peaks[,2:3]) 
t1_peaks$Height = t1_peaks$Height*100 # This just scales the heights 
from the t1 experiment to make them comparable to the EXSY 
t1_peaks = t1_peaks[!is.na(t1_peaks$Res.N),] 
names(t1_peaks)[1]="type" 
 
# Now import EXSY data 
exsy = rbind(cbind(read.delim("EXSY peak 
lists/EXSY_11.txt",na.strings="None", as.is=TRUE), t_mix=0.9), 
             cbind(read.delim("EXSY peak 
lists/EXSY_12.txt",na.strings="None", as.is=TRUE), t_mix=0.4), 
             cbind(read.delim("EXSY peak 
lists/EXSY_13.txt",na.strings="None", as.is=TRUE), t_mix=0.1), 
             cbind(read.delim("EXSY peak 
lists/EXSY_14.txt",na.strings="None", as.is=TRUE), t_mix=0.5), 
             cbind(read.delim("EXSY peak 
lists/EXSY_15.txt",na.strings="None", as.is=TRUE), t_mix=0.2), 
             cbind(read.delim("EXSY peak 
lists/EXSY_16.txt",na.strings="None", as.is=TRUE), t_mix=1.0), 
             cbind(read.delim("EXSY peak 
lists/EXSY_17.txt",na.strings="None", as.is=TRUE), t_mix=0.8), 
             cbind(read.delim("EXSY peak 
lists/EXSY_18.txt",na.strings="None", as.is=TRUE), t_mix=0.3), 
             cbind(read.delim("EXSY peak 
lists/EXSY_19.txt",na.strings="None", as.is=TRUE), t_mix=0.7), 
             cbind(read.delim("EXSY peak 
lists/EXSY_20.txt",na.strings="None", as.is=TRUE), t_mix=0.6)) 
 
exsy = cbind(parse_analysis_assignments(exsy$Assign.F1)[,c(1,2,5)], 
Chain.2=parse_analysis_assignments(exsy$Assign.F2)[,1], exsy[,c(-3,-
4)]) 
exsy$type = paste0(exsy$Chain.2, exsy$Chain) # Determine whether 
it's an auto peak (AA, BB) or an exchange peak (AB, BA) 
# Note that Chain.2 (the nitrogen assignment) is first, because the N 
frequency is measured before the mixing time 
 
#Make a dataframe containg the T1 and EXSY data 
names(t1_peaks)[1]="type" 
comb_data = rbind(exsy[,c(2,3,7,11,12)],t1_peaks[, c(2,4,5,6,1)]) 
comb_data = comb_data[!is.na(comb_data$Res.N),] # Remove NAs 
 
# Remove data which is affected by peak overlap 
exclude.1 = c(237, 240, 243, 244, 250, 256, 262,  
       266, 267, 269, 278, 290, 
293, 296, 300) # Peaks where neither auto- or cross-peaks are distinct 
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exclude.2 = c(239, 241, 242, 245, 246, 247, 248, 249, 
       251, 252, 253, 255, 259, 
263, 268, 271, 
       277, 289, 291, 292, 294, 
295, 297, 298, 
       303, 304, 307, 309) # Peaks 
where cross-peaks overlap auto-peaks 
comb_data = comb_data[!comb_data$Res.N %in% c(exclude.1, exclude.2),] 
 
exclude.3 = data.frame(Res.N=c(257, 265,275,283,284,286,299,308),  
       type.ex= 
c('BA','AB','AB','BA','AB','BA','BA','BA')) # Individual cross-peaks 
with overlaps 
tmp = merge(comb_data, exclude.3, by="Res.N", all.x=TRUE) 
comb_data = comb_data[tmp$type!=tmp$type.ex | is.na(tmp$type.ex),] 
 
exclude.4a = data.frame(Res.N=c(261,272,305,312), 
type.ex=c('A','A','B','A')) 
exclude.4b = data.frame(Res.N=c(261,272,305,312), 
type.ex=c('AA','AA','BB','AA')) # Individual auto-peaks with overlaps 
tmpa = merge(comb_data, exclude.4a, by="Res.N", all.x=TRUE) 
tmpb = merge(comb_data, exclude.4b, by="Res.N", all.x=TRUE) 
comb_data = comb_data[(tmpa$type!=tmpa$type.ex & 
tmpb$type!=tmpb$type.ex) | is.na(tmpa$type.ex),] 
 
exclude.5 = c(238, 270, 273, 301, 311) # Residues with no clear cross-
peaks 
comb_data=comb_data[!(comb_data$Res.N %in% exclude.5 & comb_data$type 
%in% c('AB','BA')),] 
 
exclude.6a = data.frame(Res.N=c(260,281,282,302,310), 
type.ex=c('A','B','B','A','A')) 
exclude.6b = data.frame(Res.N=c(260,281,282,302,310), 
type.ex=c('AB','AB','BA','AB','BA')) # Individual auto-peaks with 
overlaps 
tmpa = merge(comb_data, exclude.6a, by="Res.N", all.x=TRUE) 
tmpb = merge(comb_data, exclude.6b, by="Res.N", all.x=TRUE) 
comb_data = comb_data[(tmpa$type!=tmpa$type.ex & 
tmpb$type!=tmpb$type.ex) | is.na(tmpa$type.ex),] 
 
#### Test the fitting on a single residue #### 
active_residue = 313 
 
red_data = comb_data[comb_data$Res.N==active_residue,]  
ggplot(data=red_data[red_data$Res.N==active_residue,]) +  
 geom_point(aes(x=t_mix, y=Height, colour=type)) 
 
# First fit the case where R1_A = R1_B 
# According to Rule & Hitchens, peak intensities are given by: 
# I_AA(t) =  p_A * (p_A + p_B*exp(-k_ex*t)) * exp(-R1*t) 
# I_BB(t) =  p_B * (p_B + p_A*exp(-k_ex*t)) * exp(-R1*t) 
# I_AB(t) = I_BA(t) =  p_A * p_B * (1 - exp(-k_ex*t)) * exp(-R1*t) 
model1 <- nls(Height ~  (type=="AA")*I0*pA*(pA+(1-pA)*exp(-
k_ex*t_mix))*exp(-R1*t_mix) + 
        (type=="BB")*I0*(1-
pA)*((1-pA)+pA*exp(-k_ex*t_mix))*exp(-R1*t_mix) + 
        (type=="AB")*I0*pA*(1-
pA)*(1-exp(-k_ex*t_mix))*exp(-R1*t_mix) + 
        (type=="BA")*I0*pA*(1-
pA)*(1-exp(-k_ex*t_mix))*exp(-R1*t_mix) + 
       
 (type=="A")*I1*(pA*(pA+(1-pA)*exp(-k_ex*t_mix))*exp(-R1*t_mix) + 
           
   pA*(1-pA)*(1-exp(-k_ex*t_mix))*exp(-R1*t_mix)) + 
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        (type=="B")*I1*((1-
pA)*((1-pA)+pA*exp(-k_ex*t_mix))*exp(-R1*t_mix) +  
           
   pA*(1-pA)*(1-exp(-k_ex*t_mix))*exp(-R1*t_mix)), 
       data = 
red_data[red_data$Res.N==active_residue,],  
       start = list(I0=7e8, I1=5e8 
,pA=0.5, k_ex=0.6, R1=1.25), 
       algorithm="port",  # This 
algorithm allows setting upper and lower bounds 
       lower=c(1e8, 5e7, 0.3, 0.01, 
0.1), 
       upper=c(12e8, 5e9, 0.7, 5, 
2), 
      
 control=nls.control(warnOnly=TRUE), # setting warnOnly means 
that if a good fit can't be found, a fit will be returned anyway. 
       trace=FALSE) 
summary(model1) 
 
ggplot(data=cbind(red_data[red_data$Res.N==active_residue,], 
fit=fitted(model1))) +  
 geom_point(aes(x=t_mix, y=Height, colour=type)) + 
 geom_line(aes(x=t_mix, y=fit, group=type, colour=type)) 
 
# And now the case where R1_A != R1_B 
# The below equations are from Farrow, Zhang, Forman-Kay, Kay (1994) J 
Bio NMR 
L1 = function(pA, rA, rB, k_ex) { 
  return( 0.5*(rA+rB+2*k_ex + sqrt((rA-rB)^2 + 4*k_ex^2)) ) 
} 
L2 = function(pA, rA, rB, k_ex) { 
  return( 0.5*(rA+rB+2*k_ex - sqrt( (rA-rB)^2 + 4*k_ex^2 )) ) 
} 
denom = function(pA, rA, rB, k_ex) { 
  return( L1(pA, rA, rB, k_ex) - L2(pA, rA, rB, k_ex) ) 
} 
I_AA = function(I0, pA, rA, rB, k_ex, t_mix) { 
  return( 
    I0*pA*(-(L2(pA, rA, rB, k_ex)-rA-k_ex)*exp(-L1(pA, rA, rB, 
k_ex)*t_mix) + 
             (L1(pA, rA, rB, k_ex)-rA-k_ex)*exp(-L2(pA, rA, rB, 
k_ex)*t_mix))/denom(pA, rA, rB, k_ex) 
  ) 
} 
I_BB = function(I0, pA, rA, rB, k_ex, t_mix) { 
  return( 
    I0*(1-pA)*(-(L2(pA, rA, rB, k_ex)-rB-k_ex)*exp(-L1(pA, rA, rB, 
k_ex)*t_mix) + 
             (L1(pA, rA, rB, k_ex)-rB-k_ex)*exp(-L2(pA, rA, rB, 
k_ex)*t_mix))/denom(pA, rA, rB, k_ex) 
  ) 
} 
I_AB = function(I0, pA, rA, rB, k_ex, t_mix) { 
  return ( 
    I0*pA*-k_ex*(exp(-L1(pA, rA, rB, k_ex)*t_mix) - exp(-L2(pA, rA, 
rB, k_ex)*t_mix))/denom(pA, rA, rB, k_ex) 
  ) 
} 
I_BA = function(I0, pA, rA, rB, k_ex, t_mix) { 
  return ( 
    I0*(1-pA)*-k_ex*(exp(-L1(pA, rA, rB, k_ex)*t_mix) - exp(-L2(pA, 
rA, rB, k_ex)*t_mix))/denom(pA, rA, rB, k_ex) 
  ) 
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} 
# Guess starting parameters 
I0_start = sum(red_data[red_data$Res.N==active_residue & red_data$type 
%in% c("AA","BB") & red_data$t_mix==0.1,"Height"]) 
I1_start = sum(red_data[red_data$Res.N==active_residue & red_data$type 
%in% c("A","B") & red_data$t_mix==0.01,"Height"]) 
pA_start = red_data[red_data$Res.N==active_residue & 
red_data$type=="A" & red_data$t_mix==0.01,"Height"]/I1_start 
#pA_start=0.6 
model2 <- nls(Height ~  (type=="AA")*I_AA(I0, pA, rA, rB, k_ex, t_mix) 
+ 
        (type=="BB")*I_BB(I0, 
pA, rA, rB, k_ex, t_mix) + 
        (type=="AB")*I_AB(I0, 
pA, rA, rB, k_ex, t_mix) + 
        (type=="BA")*I_BA(I0, 
pA, rA, rB, k_ex, t_mix) + 
        (type=="A")*(I_AA(I1, 
pA, rA, rB, k_ex, t_mix) + I_BA(I1, pA, rA, rB, k_ex, t_mix))+ 
        (type=="B")*(I_BB(I1, 
pA, rA, rB, k_ex, t_mix) + I_AB(I1, pA, rA, rB, k_ex, t_mix)), 
       data = 
red_data[red_data$Res.N==active_residue,],  
       start = list(I0=I0_start, 
I1=I1_start, pA=pA_start, k_ex=1.0, rA=0.8, rB=0.8), 
       #algorithm="port",  # This 
algorithm allows setting upper and lower bounds 
       #lower=c(1e6, 1e6, 0, 0.1, 
0.1, 0.1), 
       #upper=c(1e10, 1e10, 1, 10, 
10,10), 
      
 control=nls.control(warnOnly=TRUE), # setting warnOnly means 
that if a good fit can't be found, a fit will be returned anyway. 
       trace=FALSE) 
summary(model2) 
 
# Guess starting parameters 
I0_start = sum(red_data[red_data$Res.N==active_residue & red_data$type 
%in% c("AA","BB") & red_data$t_mix==0.1,"Height"]) 
I1_start = sum(red_data[red_data$Res.N==active_residue & red_data$type 
%in% c("A","B") & red_data$t_mix==0.01,"Height"]) 
pA_start = red_data[red_data$Res.N==active_residue & 
red_data$type=="A" & red_data$t_mix==0.01,"Height"]/I1_start 
#pA_start=0.6 
model3 <- nls(Height ~  (type=="AA")*I_AA(I0, pA, rA, rB, k_ex, t_mix) 
+ 
        (type=="BB")*I_BB(I0, 
pA, rA, rB, k_ex, t_mix) + 
        (type=="AB")*I_AB(I0, 
pA, rA, rB, k_ex, t_mix) + 
        (type=="BA")*I_BA(I0, 
pA, rA, rB, k_ex, t_mix), # + 
#        (type=="A")*(I_AA(I1, 
pA, rA, rB, k_ex, t_mix) + I_BA(I1, pA, rA, rB, k_ex, t_mix))+ 
#        (type=="B")*(I_BB(I1, 
pA, rA, rB, k_ex, t_mix) + I_AB(I1, pA, rA, rB, k_ex, t_mix)), 
       data = 
red_data[red_data$Res.N==active_residue,],  
       start = list(I0=I0_start, 
pA=pA_start, k_ex=1, rA=1, rB=1), 
#       algorithm="port",  # This 
algorithm allows setting upper and lower bounds 
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#       lower=c(1e6, 0, 0.1, 0.1, 
0.1), 
#       upper=c(1e10, 1, 10, 10,10), 
      
 control=nls.control(warnOnly=TRUE), # setting warnOnly means 
that if a good fit can't be found, a fit will be returned anyway. 
       trace=FALSE) 
summary(model3) 
 
ggplot(data=cbind(red_data[red_data$Res.N==active_residue,], 
fit=fitted(model3))) +  
 geom_point(aes(x=t_mix, y=Height*(type %in% 
c("AA","BB","AB","BA"))+Height*(type %in% c("A","B")), colour=type)) + 
 geom_line(aes(x=t_mix, y=fit*(type %in% c("AA","BB","AB","BA")), 
group=type, colour=type)) 
 
#### Fit all residues where data is available #### 
models = list() 
fit_results = data.frame() 
 
# Exclude residues which have less than three EXSY cross peaks (on 
average) 
tmp = table(comb_data[comb_data$type %in% 
c('AA','BB','AB','BA'),c(1,4)]) 
tmp_list = unique(comb_data$Res.N) 
exclusions = tmp_list[rowMeans(tmp)<3] 
 
exclusions = c(exclusions, 285, 305, 312) # Also exclude residues 305 
and 312 due to peak overlap 
 
residue_list = setdiff(comb_data$Res.N, exclusions) 
 
starting_values = data.frame(Res.N=residue_list, I0=NA, I1=NA, pA=NA, 
rA=1, rB=1, k_ex=1) 
 
for (i in residue_list){ # For each residue 
 print(paste0("Fitting residue ",i,"...")) 
 # fit the model, catching any errors 
 # Guess starting parameters 
 I0_start = sum(comb_data[comb_data$Res.N==i & comb_data$type 
%in% c("AA","BB") & comb_data$t_mix==0.1,"Height"]) 
 I1_start = sum(comb_data[comb_data$Res.N==i & comb_data$type 
%in% c("A","B") & comb_data$t_mix==0.01,"Height"]) 
 pA_start = comb_data[comb_data$Res.N==i & comb_data$type=="A" & 
comb_data$t_mix==0.01,"Height"]/I1_start 
  
 if(length(c(I0_start, I1_start, pA_start))==3) { 
 starting_values[starting_values$Res.N==i, c("I0","I1","pA")] = 
c(I0_start, I1_start, pA_start) 
 } 
  
 m <- try(nls(Height ~  (type=="AA")*I_AA(I0, pA, rA, rB, k_ex, 
t_mix) + 
        (type=="BB")*I_BB(I0, pA, 
rA, rB, k_ex, t_mix) + 
        (type=="AB")*I_AB(I0, pA, 
rA, rB, k_ex, t_mix) + 
        (type=="BA")*I_BA(I0, pA, 
rA, rB, k_ex, t_mix) + 
        (type=="A")*(I_AA(I1, pA, 
rA, rB, k_ex, t_mix) + I_BA(I1, pA, rA, rB, k_ex, t_mix))+ 
        (type=="B")*(I_BB(I1, pA, 
rA, rB, k_ex, t_mix) + I_AB(I1, pA, rA, rB, k_ex, t_mix)), 



	 211	

       data = 
comb_data[comb_data$Res.N==i,],  
       start = list(I0=I0_start, 
I1=I1_start, pA=pA_start, k_ex=1, rA=1, rB=1), 
       #algorithm="port",  # This 
algorithm allows setting upper and lower bounds 
       lower=c(1e6, 1e6, 0, 0.1, 0.1, 
0.1), 
       upper=c(1e10, 1e10, 1, 10, 
10,10), 
       
control=nls.control(warnOnly=TRUE), # setting warnOnly means that if a 
good fit can't be found, a fit will be returned anyway. 
       trace=FALSE), silent=TRUE) 
 if (class(m)=="try-error"){ 
  # If there was an error, set all stored values to NA and 
move onto next residue 
  models=c(models,NA) 
  result = data.frame(Res.N=i, I0=NA, I1=NA, pA=NA,  
          rA=NA, rB=NA, 
k_ex=NA, 
          I0.lo=NA, 
I0.hi=NA,I1.lo=NA, I1.hi=NA, 
          pA.lo=NA, 
pA.hi=NA,rA.lo=NA, rA.hi=NA, 
          rB.lo=NA, 
rB.hi=NA,k_ex.lo=NA, k_ex.hi=NA, 
          
message1=geterrmessage(), message2=NA) 
  fit_results=rbind(fit_results, result) 
  next   
 } 
 # Calculate 95% confidence intervals, catching any errors 
 ci = try(confint(m), silent=TRUE) 
 if(class(ci)=="try-error") { 
  result = data.frame(Res.N=i, I0=coef(m)[["I0"]], 
I1=coef(m)[["I1"]], pA=coef(m)[["pA"]],  
          
rA=coef(m)[["rA"]], rB=coef(m)[["rB"]], k_ex=coef(m)[["k_ex"]], 
          I0.lo=NA, 
I0.hi=NA,I1.lo=NA, I1.hi=NA, 
          pA.lo=NA, 
pA.hi=NA,rA.lo=NA, rA.hi=NA, 
          rB.lo=NA, 
rB.hi=NA,k_ex.lo=NA, k_ex.hi=NA, 
          
message1=m$convInfo$stopMessage, message2=geterrmessage()) 
 } 
 else { 
  result = data.frame(Res.N=i, I0=coef(m)[["I0"]], 
I1=coef(m)[["I1"]], pA=coef(m)[["pA"]],  
        
 rA=coef(m)[["rA"]], rB=coef(m)[["rB"]], k_ex=coef(m)[["k_ex"]], 
        
 I0.lo=ci["I0",1], I0.hi=ci["I0",2],I1.lo=ci["I1",1], 
I1.hi=ci["I1",2], 
        
 pA.lo=ci["pA",1], pA.hi=ci["pA",2],rA.lo=ci["rA",1], 
rA.hi=ci["rA",2], 
        
 rB.lo=ci["rB",1], rB.hi=ci["rB",2],k_ex.lo=ci["k_ex",1], 
k_ex.hi=ci["k_ex",2], 
        
 message1=m$convInfo$stopMessage, message2=NA) 
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 } 
 # Store the model results 
 models=c(models,list(m)) 
 fit_results=rbind(fit_results, result) 
} 
 
# Export the fitted data 
write.table(fit_results, "Relaxation and EXSY/exported fits/full 
fit.txt", sep="\t", row.names=FALSE) 
 
#### Plot the results #### 
# Exclude residues where the model doesn't appear to fit the data well 
fit_results.filtered = fit_results[fit_results$message1%in%c("relative 
convergence (4)","converged"),] 
excluded_residues = c(238, 270, 273, 301, 311, 283, 284, 285) 
fit_results.filtered = 
fit_results.filtered[!fit_results.filtered$Res.N %in% 
excluded_residues,] 
 
 
#### Try fitting a single exchange constant to all residues 
simultaneously #### 
# Based on a method from Miloushev et. al. (2008), Structure  
# This uses an approximation to remove the effects of differential 
relaxation rates for 1st and 2nd order in t. 
# Equation is Xi = (I_AB*I_BA)/(I_AA*I_BB - I_AB*I_BA) 
 
# Make an appropriate data frame 
global_data = comb_data[comb_data$type %in% c('AA','AB','BA','BB') & 
comb_data$Res.N %in% residue_list,] 
library(reshape2) 
tmp = melt(global_data, id.vars=c('Res.N','Res.name','t_mix','type'))  
# Puts the data into long format 
global_data = dcast(tmp, Res.N+Res.name+t_mix ~ type, 
value.var="value") # Put it back into wide format, with separate 
columns for AA,AB,BA and BB heights 
 
# Calculate Xi for each residue 
global_data$Xi = NA 
attach(global_data) 
global_data$Xi = (AB*BA)/(AA*BB-AB*BA) 
detach(global_data) 
global_data = global_data[!is.na(global_data$Xi),]  # Get rid of NA 
values 
global_data = global_data[global_data$Res.N %in% residue_list,]  # 
Restrict to the same residues used in the residue-by-residue analysis 
#global_data = global_data[global_data$t_mix<=0.5,] # Test restricting 
to early timepoints. This only marginally affects the exchange rate. 
 
# Fit Xi against t_mix^2, with no intercept or linear component 
global_fit = lm(Xi ~ 0 + I(t_mix^2), data=global_data) 
#[global_data$Res.N==313,]) 
k_ex.global = sqrt(coef(global_fit)) 
 
# Perform bootstrapping to find the error 
library(boot) 
stat = function(data, indices) { 
  d = data[indices,] 
  model = lm(Xi ~ 0 + I(t_mix^2), data=d) 
  return(sqrt(coef(model))) 
} 
 
boot.obj = boot(data=global_data, statistic=stat, R=1000) 
print(boot.obj) 
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plot(boot.obj) 
boot.ci(boot.obj, type='bca') 
x=seq(0,1,0.05) 
Xi.model = data.frame(t_mix=x, 
Xi.pred=boot.obj$t0^2*x^2,Xi.lo=0.64^2*x^2, Xi.hi=0.79^2*x^2) 
 
#### Output pdfs of plots #### 
# Plot the EXSY/T1 fits for each residue 
for (i in 1:length(models)) { 
  if (!is.na(models[[i]])) { 
    pdf(paste0("Relaxation and EXSY/plots/exchange 
fits/",comb_data[comb_data$Res.N==residue_list[i],]$Res.name[1],".pdf"
), width=11.69/2, height=8.27/2, useDingbats=FALSE) 
    print( 
      ggplot(data=cbind(comb_data[comb_data$Res.N==residue_list[i],], 
fit=fitted(models[[i]]))) +  
        geom_point(aes(x=t_mix, 
y=Height/coef(models[[i]])[["I0"]]*(type %in% c("AA","BB","AB","BA"))+ 
                         Height/coef(models[[i]])[["I1"]]*(type %in% 
c("A","B")),  
                       colour=substr(type,1,1), 
shape=factor(nchar(type)))) + 
        geom_line(aes(x=t_mix, y= fit/coef(models[[i]])[["I0"]]*(type 
%in% c("AA","BB","AB","BA"))+ 
                        fit/coef(models[[i]])[["I1"]]*(type %in% 
c("A","B")),  
                      group=type, colour=substr(type,1,1), 
linetype=factor(nchar(type)))) + 
        xlab("Mixing time (s)") + ylab("Relative peak height") + 
        ggtitle(paste("Raw data and fitted values for 
residue",residue_list[i])) + 
        scale_colour_brewer(name="Chain", palette="Set1") +  
        scale_linetype_discrete(name="Experiment", labels=c("T1", 
"EXSY")) + 
        scale_shape_discrete(name="Experiment", labels=c("T1", 
"EXSY")) + 
        theme_bw() 
    ) 
    dev.off() 
  } 
} 
 
# Plot various parameters from the T1/EXSY fits, with poorly fitting 
residues excluded 
pdf(paste0("Relaxation and EXSY/plots/Exchange rate plot (combined 
EXSY,T1 fit).pdf"), height=11.69/4, width=8.27/2, useDingbats=FALSE)  
print( 
  ggplot(data=fit_results.filtered, aes(x=factor(Res.N))) + 
geom_bar(aes(y=k_ex), stat="identity") +  
    geom_errorbar(aes(ymin=pmax(k_ex.lo, 0.1, na.rm=TRUE), 
ymax=pmin(k_ex.hi,10,na.rm=TRUE)), width=.5) + 
    xlab("Residue") + ylab("Exchange rate (/s)") +  
    ggtitle("Fitted exchange rate with 95% confidence intervals") + 
    coord_cartesian(ylim=c(0, 1.5)) + options 
) 
dev.off() 
 
pdf(paste0("Relaxation and EXSY/plots/T1 plot (combined EXSY,T1 
fit).pdf"), height=11.69/4, width=8.27/2, useDingbats=FALSE)  
print( 
  ggplot(data=fit_results.filtered, aes(x=factor(Res.N))) +  
    geom_point(aes(y=1/rA, colour="A"), size=3) + 
geom_point(aes(y=1/rB, colour="B"), size=3) +  
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    geom_errorbar(aes(ymin=1/pmax(rA.lo, 0.1, na.rm=TRUE), 
ymax=1/pmin(rA.hi,10,na.rm=TRUE), colour="A", width=.5)) + 
    geom_errorbar(aes(ymin=1/pmax(rB.lo, 0.1, na.rm=TRUE), 
ymax=1/pmin(rB.hi,10,na.rm=TRUE), colour="B", width=.5)) + 
    xlab("Residue") + ylab("T1 (s)") + 
    ggtitle("Fitted T1 relaxation time with 95% confidence intervals") 
+ 
    coord_cartesian(ylim=c(0, 2)) + scale_colour_brewer(name="Chain", 
palette="Set1") + options + theme(legend.position=c(0.2, 0.2)) 
) 
dev.off() 
 
pdf(paste0("Relaxation and EXSY/plots/Population plot (combined 
EXSY,T1 fit).pdf"), width=11.69, height=8.27/2, useDingbats=FALSE)  
print( 
  ggplot(data=fit_results.filtered, aes(x=factor(Res.N))) +  
    geom_bar(aes(y=pA), stat="identity") +  
    geom_errorbar(aes(ymin=pmax(pA.lo, 0, na.rm=TRUE), 
ymax=pmin(pA.hi,1,na.rm=TRUE), width=.5)) + 
    xlab("Residue") + ylab("Fractional population of state A") + 
    ggtitle("Fractional population of state A with 95% confidence 
intervals") + 
    coord_cartesian(ylim=c(0, 1)) + scale_colour_brewer(name="Chain", 
palette="Set1") + options 
) 
dev.off() 
 
# Plot results from the global fit 
pdf("Relaxation and EXSY/plots/Global fit of EXSY data.pdf", 
width=8.27/2, height=8.27/2, useDingbats=FALSE) 
print( 
  ggplot() + geom_ribbon(data=Xi.model, aes(x=t_mix, ymax=Xi.hi, 
ymin=Xi.lo), alpha=0.25) +  
    geom_point(data=global_data, aes(x=t_mix, y=Xi, colour=Res.name), 
alpha=0.75) +  
    geom_line(data=Xi.model, aes(x=t_mix, y=Xi.pred)) + xlab("Mixing 
time (s)") + ylab("Composite parameter Xi") + 
    ggtitle(paste0("Global fit of exchange rate = ", 
format(k_ex.global, digits=3)," /s")) + 
    options 
) 
dev.off() 
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Dissecting the roles of TRBP and
PACT in double-stranded RNA
recognition and processing of
noncoding RNAs
Alex Heyam,1 Dimitris Lagos2 and Michael Plevin1∗

HIV TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT)
are double-stranded (ds) RNA-binding proteins that participate in both small
regulatory RNA biogenesis and the response to viral dsRNA. Despite considerable
progress toward understanding the structure–function relationship of TRBP and
PACT, their specific roles in these seemingly distinct cellular pathways remain
unclear. Both proteins are composed of three copies of the double-stranded
RNA-binding domain, two of which interact with dsRNA, while the C-terminal
copy mediates protein–protein interactions. PACT and TRBP are found in a
complex with the endonuclease Dicer and facilitate processing of immature
microRNAs. Their precise contribution to the Dicing step has not yet been
defined: possibilities include precursor recruitment, rearrangement of dsRNA
within the complex, loading the processed microRNA into the RNA-induced
silencing complex, and distinguishing different classes of small dsRNA. TRBP and
PACT also interact with the viral dsRNA sensors retinoic acid-inducible gene I
(RIG-I) and double-stranded RNA-activated protein kinase (PKR). Current models
suggest that PACT enables RIG-I to detect a wider range of viral dsRNAs, while
TRBP and PACT exert opposing regulatory effects on PKR. Here, the evidence
that implicates TRBP and PACT in regulatory RNA processing and viral dsRNA
sensing is reviewed and discussed in the context of their molecular structure.
The broader implications of a link between microRNA biogenesis and the innate
antiviral response pathway are also considered. © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

Double-stranded (ds) RNA has a vital role in
normal cellular function. Any structured RNA,

such as the ribosome, contains regions of dsRNA,
which are often part of higher order tertiary struc-
ture. In addition, dsRNA is an intermediate in the
biogenesis of short regulatory RNAs such as micro
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RNAs (miRNAs), endogenous short interfering RNAs
(siRNAs), and Piwi-interacting RNAs (piRNAs).1

However, dsRNA is also an important replica-
tion intermediate for RNA viruses, for instance SARS
coronavirus, poliovirus, and hepatitis C virus. It is cru-
cial for cells to distinguish cellular dsRNA from viral
dsRNA, and respond appropriately. Differentiation of
self versus non-self dsRNA is achieved by proteins that
have evolved to recognize chemical features specific to
viral dsRNA, such as terminal 5′ triphosphate groups.
These proteins are termed pattern recognition recep-
tors (PRRs), and include TLRs (Toll-like receptors)
3, 7, and 8; RIG-I (retinoic acid-inducible gene I);

© 2015 John Wiley & Sons, Ltd.
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and MDA5 (melanoma differentiation associated
protein 5).2

The closely related mammalian proteins TRBP
[HIV trans-activation responsive (TAR) RNA-binding
protein; HGNC symbol, TARBP2; UniProt, Q15633]
and PACT (Protein Activator of PKR; PRKRA;
O75569) bridge several of these pathways (Figure 1(a)
and (b)). TRBP was initially identified through its
interaction with the HIV TAR RNA element, and both
proteins were found to regulate the response to viral
dsRNA through the protein PKR (double-stranded
RNA-activated protein kinase; EIF2AK2).3,4 Subse-
quently, TRBP and PACT were shown to interact with
Dicer (DICER1), the ribonuclease responsible for
processing the precursors of miRNAs and siRNAs.5,6
More recently, PACT has been shown to activate
RIG-I (DDX58), another innate immune sensor of
viral RNA.7 However, these different roles are often
studied independently, and the links between them
remain largely unexplored.

This review will summarize current knowledge
about TRBP and PACT, and how they influence small
RNA biogenesis and viral sensing.

TRBP AND PACT EACH CONTAIN
THREE DOUBLE-STRANDED
RNA-BINDING DOMAINS
TRBP and PACT each contain three double-stranded
RNA-binding domains (dsRBDs) that are separated
by unstructured linker regions8,9 (Figure 1(c)). Many
RNA-binding proteins contain multiple dsRBDs:
PKR, ADAR2, and DGCR8 all have tandem dsRBDs,
while human Staufen has five.10–13 The presence of
multiple dsRBDs in the same protein is thought to
allow greater affinity and specificity, and to allow
functional divergence of individual domains.14,15

Although all dsRBDs share the core !-"-"-"-!
fold (Figure 2), they can be divided into two sub-
groups depending on sequence conservation. The type
A dsRBD is the canonical form, which shows amino
acid conservation in three regions involved in dsRNA
binding (Figure 2(a)). Type B dsRBDs show conserva-
tion only at the C-terminal end of the domain, and
are generally unable to bind dsRNA, despite retaining
the same overall three-dimensional (3D) structure.8,18

PACT and TRBP contain both classes of dsRBD
(Figure 2(a)).

Some dsRBDs have additional structural ele-
ments that contribute to their function: for example,
Rnt1p dsRBD from Saccharomyces cerevisiae has an
additional !-helix that contributes to domain sta-
bility and RNA binding,19 while dsRBDs from the
Caenorhabditis elegans TRBP homolog, RDE-4, have

recently been shown to contain numerous additional
helixes and extended loop regions20 (see Box 1).

BOX 1

HOMOLOGS OF TRBP AND PACT:
C. elegans RDE-4

C. elegans RDE-4 forms a complex with homologs
of Dicer and Argonaute, and is required for
dsRNA-mediated RNA interference (RNAi), but
not miRNA-mediated silencing.21 RDE-4 contains
three dsRBDs and binds nonspecifically to dsRNA,
with an affinity for siRNA similar to that reported
previously for TRBP.22–24 The first two dsRBDs
appear to function independently, with the sec-
ond having a higher affinity for dsRNA, as was
shown for TRBP.20,22 RDE-4 has a higher affinity
for longer dsRNAs, which may be due to cooper-
ative binding, or an effect related to the overlap
in potential binding sites.

As in TRBP and PACT, the C-terminal dsRBD
of RDE-4 is required for interaction with Dicer,
and also mediates dimerization.24 In addition,
the linker between domains 1 and 2 is required
for dsRNA processing by Dicer.25 The first two
dsRBDs of RDE-4 have additional structural ele-
ments that extend into this linker region.20 It will
be interesting to see how these additional ele-
ments affect the function of the domains—it has
already been shown that domain 1 is required for
binding siRNAs, while having only a small influ-
ence on binding to longer dsRNA.25

TRBP and PACT Domains 1 and 2 Bind
dsRNA
Domains 1 and 2 of both TRBP and PACT are
type A dsRBDs, and all bind dsRNA.22,26 In type A
dsRBDs, three distinct regions participate in dsRNA
binding (Figure 2(a) and (b)). Unlike dsDNA, dsRNA
adopts an A form helix in which the major groove
is deep and narrow, limiting access to the bases and
therefore to sequence-specific information. dsRBDs
bind across two adjacent minor grooves and the
intervening phosphate backbone, burying ∼780 Å2 of
the domain surface. In general, it is thought that
dsRBDs bind nonspecifically to dsRNA. On discovery,
TRBP was thought to specifically recognize certain
structured RNAs, such as HIV-1 TAR RNA27,28;
however, later evidence has shown that TRBP and
PACT interact with a broad range of targets.22,23

However, several well-studied dsRBD-
containing proteins do act on specific targets. For
example, Staufen can regulate translation and decay

© 2015 John Wiley & Sons, Ltd.
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FIGURE 1 | Functions and domain composition of TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT). (a) Precursor
(pre-)microRNAs (miRNAs) are RNA hairpins that are produced in the nucleus, and exported to the cytoplasm. They contain the ∼22 nt sequence of
the mature miRNA, indicated in red. The endonuclease Dicer removes the terminal loop to give an RNA duplex, one strand of which is loaded into an
Argonaut (Ago) protein to form RNA-induced silencing complex (RISC). TRBP and PACT are implicated in both Dicing and RISC loading. (b) PACT and
TRBP have roles in at least two viral response pathways. First, PACT can facilitate activation of retinoic acid-inducible gene I (RIG-I) by viral
double-stranded RNA (dsRNA) (distinguished from cellular dsRNA by distinct molecular features, discussed in section TRBP and PACT mediate innate
immune surveillance). This begins a signaling cascade that results in the production of interferon and other antiviral genes. PACT and TRBP also
regulate PKR, a kinase that targets the translation initiation factor eIF2! to inhibit protein production and promote apoptosis. TRBP inhibits PKR,
while PACT can activate it in response to cellular stress. (c) Both PACT and TRBP contain three double-stranded RNA-binding domains (dsRBDs). The
first two domains can bind dsRNA, while the third cannot. Interactions with many other proteins have been documented, particularly for the third
domain. Solid lines indicate direct protein–protein interactions, while dashed lines indicate interactions that may be mediated via dsRNA. The third
dsRBD potentially has an N-terminal extension, based on sequence conservation. Each protein has a number of phosphorylation sites (marked by
yellow triangles) that regulate function under certain conditions. A region of TRBP implicated in cancers exhibiting microsatellite instability is
indicated in red.
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FIGURE 2 | (a) Sequence alignment of the double-stranded RNA-binding domains (dsRBDs) of TAR RNA-binding protein (TRBP) and Protein Activator of PKR (PACT). The top line shows the secondary
structure of a ‘typical’ dsRBD, taken from the three-dimensional (3D) structure of TRBP domain 2 (PDB accession: 3ADL). Residues conserved between all domains are highlighted in black; those
conserved between domains 1 and 2 are highlighted in dark gray; while those conserved in the third domain are shown in light gray. The regions of domains 1 and 2 that bind RNA [located in helix !1,
the loop between " strands 1 and 2 (loop-"12), and helix !2] are boxed, as is a conserved region upstream of domain 3, which may represent a structural element additional to the standard dsRBD fold.
On the right, the % identity (% similarity) shows that equivalent dsRBDs between TRBP and PACT are more similar than dsRBDs within the same protein. The sequences were aligned using Multalin,16

and rendered using ESPript17 (http://espript.ibcp.fr). (b) Two views of TRBP-D2 bound to two molecules of 10 bp double-stranded RNA (dsRNA) (PDB accession 3ADL). The RNA-interacting regions shown
in part (a) are highlighted. Several parts of the dsRNA-binding interface are flexible, most notably loop-"12 in the second RNA-interacting region, which contains a highly conserved histidine residue. (c)
Structure of a Staufen-D5 dimer (PDB accession 4DKK). The N-terminal extension (consisting of two !-helixes) is thought to interact with the dsRBD core of a second molecule. The linker between the
dsRBD core and the extended region is not visible in the crystal structure, and is indicated here with dashed lines.
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of specific mRNAs, while ADAR proteins can convert
adenosine to inosine at precise positions in a variety
of dsRNAs.29,30 In both cases, RNA recognition is
believed to occur through tertiary structures, such as
bulges and loops.19,31 Some specificity may also arise
through contact with the edges of bases in the minor
groove, and through the combination of dsRBDs with
weak sequence or secondary structure preferences.15,18

Current evidence does not rule out PACT and TRBP
having a degree of substrate specificity.

TRBP and PACT Bind Protein Partners
Primarily via Their Third Domain
The C-terminal dsRBDs of both TRBP and PACT
(hereafter referred to as TRBP-D3 or PACT-D3) are
type B dsRBDs. They do not bind RNA, but are
instead required for interaction with other proteins.
It is thought that many type B dsRBDs mediate
protein–protein interactions: for example, Drosophila
Staufen domain 5 binds to Miranda to enable mRNA
localization.32,33 However, currently, there is no struc-
tural information available about how dsRBDs inter-
act with other proteins.

Both PACT-D3 and TRBP-D3 bind to
Dicer,5,6,34,35 while PACT-D3 has also been shown
to interact with the virus-sensing protein PKR.7,9
TRBP-D3 is not thought to interact with PKR,36

suggesting that binding to Dicer and PKR is mediated
by different regions of PACT-D3. These interactions
are discussed further in sections TRBP and PACT
Form Part of the Small RNA Biogenesis Pathway and
TRBP and PACT Mediate Innate Immune Surveil-
lance of dsRNA below. Other binding partners have
been suggested for TRBP and PACT, such as the
tumor suppressor Merlin,37 but the nature of their
interactions has not yet been studied in detail.

Although several dsRBDs have been reported
to dimerize (e.g., the dsRBDs from PKR38 and
ADAR239), it has been difficult to distinguish
between direct binding and indirect association via
dsRNA.40 There is substantial biochemical evidence
that PACT-D3 can homodimerize or heterodimerize
with TRBP-D3.41–43 While there is no direct bio-
physical evidence that TRBP-D3 homodimerizes,
full-length TRBP can form dimers,23 though a con-
struct lacking TRBP-D3 does not.22 Dimerization
of PACT and TRBP has been suggested to modulate
PACT activation of PKR,43 but could also increase
their affinity for dsRNA, by bringing together four
type A dsRBDs.26

The recent 3D structure of dsRBD 5 of Staufen
(Staufen-D5) gave the first high-resolution informa-
tion about a dsRBD dimer32 and revealed several
features that distinguish type B dsRBDs, including

the absence of the conserved histidine residue in
loop-!1,2, the presence of large negatively charged
patches on the canonical dsRNA-binding surface,
and a region of extra-dsRBD structure, which is
required for dimerization. As the linker between
the core domain and the extended region is flexi-
ble, it was proposed that dimerization occurs via a
domain-swapping mechanism (Figure 2(c)).

TRBP-D3 and PACT-D3 both lack the key his-
tidine residue and have negatively charged residues
at sites that would correspond to the dsRNA-binding
surface. Furthermore, both domains are preceded by
a highly conserved 20 amino acid sequence, which
may suggest a similar dsRBD/dsRBD interaction to
that seen in Staufen-D5. Interestingly, the conserved
residues between TRBP-D3 and PACT-D3 are pre-
dicted to cluster on the opposite surface to the typical
dsRNA-binding face, which potentially suggests the
location of a conserved protein interaction site.

There is also evidence that the type A dsRBDs
of TRBP and PACT mediate protein–protein inter-
actions. Domains 1 and 2 of PACT are reported to
directly interact with the dsRBDs of PKR.9,44 PKR also
dimerizes partly through its dsRBDs,38 and PACT can
still activate PKR if its first two domains are replaced
with those from PKR.9 The first two dsRBDs of PACT
and TRBP have also been reported to homodimer-
ize and heterodimerize,41,43 which suggests there may
be a common dimerization mechanism between these
domains. However, current evidence does not exclude
the possibility that these interactions are indirect or
mediated by dsRNA.

TRBP AND PACT FORM PART OF THE
SMALL RNA BIOGENESIS PATHWAY
RNAi is a highly conserved process (see Figure 1(a))
in which short RNA molecules cause translational
(or transcriptional) silencing of complementary mes-
senger RNAs (mRNAs). The cellular pathways that
underpin RNAi have been discussed in detail by sev-
eral recent reviews.1,45,46 Here, we will provide only a
brief summary of RNAi in mammals.

Somatic cells contain two major classes of
small regulatory RNA: miRNA and siRNA. Both
are approximately 22 nt long, but differ in their bio-
genesis and target recognition. miRNAs are derived
from RNA hairpins that usually contain several
mismatched bases, while siRNAs are processed from
longer dsRNA molecules. siRNAs are typically highly
complementary to their targets, whereas miRNAs
require a 6–8 nt ‘seed’ region to be perfectly matched,
with other positions contributing only weakly to
target specificity. Although there are relatively few
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reports of endogenous mammalian siRNAs, dsRNA
can be introduced exogenously either as RNA hairpins
(shRNA) or as short dsRNA duplexes.

In the canonical miRNA biogenesis pathway,
miRNAs are transcribed as long primary (pri-)
miRNAs that contain a 60–80 nucleotide hairpin
structure. The pri-miRNA is processed in the nucleus
by Drosha/DGCR8 (the ‘microprocessor’ complex) to
a shorter precursor (pre-) miRNA. The pre-miRNA is
exported from the nucleus by Exportin 5, and further
cleaved by a protein complex containing the ribonu-
clease Dicer, one of four Argonaute proteins (Ago1–4),
and either TRBP or PACT (Figure 3(a)–(c)). This sec-
ond processing step removes the terminal hairpin
loop, leaving an RNA duplex of ∼22 bp in length.

One strand of the dsRNA Dicer product
is removed, while the other (the guide strand) is
loaded into Argonaute. This Ago:miRNA complex,
together with its protein partners, is referred to as
the RNA-induced silencing complex (RISC). Despite
recent progress, the mechanism of strand-selective
RISC loading remains to be determined47,48; how-
ever, many miRNAs can contribute either strand to
RISC.49 Once loaded, the guide strand targets RISC
to complementary mRNAs, which results in either
suppression of translation, enhanced degradation
and/or cleavage of the mRNA. Although only Ago2
has the ability to cleave mRNAs, miRNAs and siR-
NAs appear to distribute among all four Argonautes
with little specificity.50,51

How Do TRBP and PACT Affect Processing
by Dicer and the Formation of Active RISC?
There is now clear evidence that TRBP and PACT
can associate with Dicer, both from immunoprecipita-
tion experiments5,6,35,52,53 and from in vitro reconsti-
tution of the complex from the individually purified
components.54,55 Furthermore, there is strong sup-
port for the idea that PACT and TRBP are involved
in processing of pre-miRNAs and RISC loading.5,58

However, the molecular mechanism by which TRBP
and PACT facilitate miRNA and siRNA processing
remains unclear. It has long been established that Dicer
alone is able to cleave pre-miRNA to mature miRNA
in vitro,56 and there is evidence that some substrates
can be loaded into Ago2 in vitro in the absence of
TRBP or PACT.48,57,58

The importance of tackling this question is
underscored by the evidence linking miRNA biogen-
esis in general, and TRBP in particular, to a number of
different cancers.64–68 In particular, tumors exhibiting
microsatellite instability are prone to frameshift muta-
tions in TRBP (see Figure 1(c)), leading to impaired

FIGURE 3 | (a) Layout of domains within Dicer. (b) Reconstruction
of the Dicer–TAR RNA-binding protein (TRBP) complex from
cryo-electron microscopy (EM) data, with ∼15 Å resolution (EM data
bank accession EMD-1646).59 The locations of the RNase III and
helicase domains are inferred from epitope-tagged Dicer.60 The position
of TRBP is not resolved. (c) A schematic of a minimal RNA-induced
silencing complex (RISC)-loading complex of Dicer, Ago2, and
TRBP/PACT (Protein Activator of PKR) based on cryo-EM data.61 All
components are approximately to scale. It is unknown whether all three
components assemble prior to double-stranded RNA (dsRNA) binding,
or if the complex is more dynamic. In vivo, it is likely that other proteins
associate with the RISC-loading complex.62,63 (d) At least four possible
roles for TRBP/PACT can be envisaged (see section How Do TRBP and
PACT Affect Processing by Dicer and the Formation of Active RISC?): (1)
TRBP/PACT may help recruit dsRNA to Dicer; (2) TRBP/PACT may aid
alignment of dsRNA for cleavage by Dicer; (3) TRBP/PACT may help
dsRNA unwinding and/or loading into Argonaute proteins; or (4)
TRBP/PACT may favor processing and loading of different substrates
into RISC (the substrates shown are illustrative only).
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miRNA production.65 The drug enoxacin has recently
been investigated as a cancer therapeutic owing to
its effect on miRNA biogenesis, and is believed to
act through TRBP.69,70 Although several studies have
linked PACT expression to cancer, the effect is not as
well documented as for TRBP.71,72

There are several points along the miRNA bio-
genesis and RISC loading pathway at which TRBP and
PACT could act (see also Figure 3(d)):

(1) Recruitment of substrates to Dicer

(a) TRBP and/or PACT may increase the affin-
ity of the Dicer complex for dsRNA, or

(b) more specifically increase Dicing rate
through favoring binding of substrates
over products.

(2) Facilitating efficient substrate cleavage by Dicer

TRBP and/or PACT could ensure that the sub-
strate dsRNA or pre-miRNA has the optimum
orientation for Dicer cleavage.

(3) Removing the Dicer product

(a) TRBP and/or PACT may aid unloading of
Dicer or loading of Dicer products into
Argonaute proteins,

(b) in particular affecting which strand is
loaded.

(4) Controlling which type of dsRNA is loaded into
Argonaute

TRBP and/or PACT may preferentially recog-
nize different subsets of miRNA or siRNA (or
their precursors), resulting in differences in
processing or RISC loading.

We will now discuss evidence from structural,
biochemical, biophysical, and molecular cell biology
studies in the context of these possible mechanisms.

Evidence from Structural Studies
As described above, TRBP and PACT have been
shown to interact with Dicer, a 1922-amino acid type
III ribonuclease (Figure 3). The mechanism by which
Dicer controls the length of small RNAs was elegantly
resolved in an early crystallographic study.59,73 The
Dicer PAZ domain binds one end of the pre-miRNA,
while a ‘ruler’ domain positions the PAZ domain at
a distance from the RNase III site that corresponds to

roughly 22 base pairs of dsRNA. This simple struc-
tural mechanism appears to function independently
of binding partners as isolated Dicer can still cleave
dsRNA targets.

While a considerable amount is known about the
structure–function relationship of the RNase III/PAZ
region of Dicer, much less is known about the
N-terminal DExD/H helicase domain. The helicase
domain consists of Hel1 and Hel2 regions separated
by a 100-amino acid insert region (Figure 4(a)), which
has no sequence homologs outside of the Dicer fam-
ily. Yeast-2-hybrid screens have identified the insert
region as the site of TRBP (and presumably PACT)
binding.35 This domain does not appear necessary for
dsRNA cleavage in vitro,74 nor does processing of
pre-miRNAs require ATP.75

Atomic resolution structures of larger constructs
of human Dicer or complexes containing TRBP or
PACT are not currently available. The 20–30 Å res-
olution cryo-electron microscopy studies of a Dicer
alone,60 in complex with TRBP,59 or TRBP and
Ago2 (a minimal RISC-loading complex)61 have been
reported. They reveal an L-shaped overall structure
with the helicase located in the base, and the RNase III
and PAZ domains located in the long arm. However,
these studies have been unable to identify precisely
where and how TRBP interacts with Dicer.

Because only the C-terminal domains (CTDs)
of TRBP or PACT bind to Dicer, it appears likely
that domains 1 and 2 have considerable freedom of
movement, consistent with roles 1–3 outlined above.
To exclude proposed roles for TRBP, it will be nec-
essary to determine more precisely where it interacts
with Dicer. Similarly, a greater understanding of how
flexible TRBP remains when bound to Dicer and
dsRNA would allow possible roles to be considered
or discounted. It is worth noting that several papers
have suggested that Dicer and/or associated proteins
undergo conformational shifts61,76 and that these
complexes contain multiple dsRNA-binding sites.77

This raises the possibility that the role of TRBP may
be more complex than currently believed.

Evidence from Biochemical and Biophysical
Studies
A number of in vitro studies have shown that the
complex of Dicer with TRBP or PACT has a higher
affinity for dsRNA than Dicer alone by several orders
of magnitude.55,78,79 However, these studies report a
more modest effect on small RNA processing rate,
ranging from a fivefold increase in processing rate to
a fivefold reduction. With the caveat that the reaction
conditions may differ considerably from those present
in vivo, this suggests TRBP and PACT fulfill role
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FIGURE 4 | (a) In the absence of appropriate ligands, retinoic acid-inducible gene I (RIG-I) has an inactive conformation, in which the helicase
domain binds to the caspase recruitment domains (CARDs). 5′-Triphosphate double-stranded RNA (dsRNA) binds to the C-terminal domain (CTD) and
helicase domain, which displaces the CARDs and results in signaling. It is less clear how Protein Activator of PKR (PACT) enables RIG-I activation: one
possibility is that it increases RIG-I binding to additional ligands such as long dsRNA that lacks a 5′-triphosphate. (b) PKR can bind to long dsRNA
through two N-terminal double-stranded RNA-binding domains (dsRBDs). This brings PKR molecules together to form dimers, which can then
autophosphorylate and become active. PACT (when phosphorylated during cellular stress) can also activate PKR, although the mechanism is unclear.
The two main hypotheses are: PACT-D3 contacts the kinase domain, somehow favoring activation, or PACT dimers can bind two molecules of PKR,
promoting their dimerization and activation. TRBP acts as an inhibitor of PKR, either because its third domain cannot interact with PKR’s kinase
domain or because its third domain exhibits weaker dimerization.

1a above, but not 1b. Furthermore, TRBP has been
reported to bind a pre-miRNA and the duplex Dicer
product with similar affinities,22,55 which is inconsis-
tent with a role in modulating Dicer processing rate
due to preferential binding of substrate over product.

The measured affinity of TRBP (without Dicer)
for short dsRNA has varied considerably between
different studies.22,23,55 While this may simply repre-
sent variation in sample preparation and technique, it
could also be due to the different RNAs studied, which
would be consistent with TRBP and PACT showing a
degree of specificity for different small RNAs (role 4).

Additional evidence comes from studies of recon-
stituted complexes of Dicer. Dicer/TRBP complexes
show different affinities for different pre-miRNAs and
siRNAs, although Dicer itself is at least partially
responsible for this specificity.55,78 A complex contain-
ing Dicer and PACT showed considerably slower pro-
cessing of short dsRNA substrates than a Dicer/TRBP
complex, even though they seemed to have similar
processing rates for pre-miRNAs.79 These data poten-
tially conflict with an earlier study, which concluded
that both PACT and TRBP increase processing of long
dsRNAs by Dicer.80 This discrepancy could reflect
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a genuine difference in how Dicer complexes pro-
cess dsRNAs of different lengths; further experiments
using matched reaction conditions will be required to
resolve this issue.

Both in vitro and in vivo, cleavage of
pre-miRNAs by Dicer can give a range of prod-
ucts with different lengths, termed iso-miRs.81,82

The size distribution of iso-miRs varies depending
on the pre-miRNA. The Dicer/TRBP complex pro-
duces different length products compared with Dicer
alone,82,83,78,79 supporting the idea that TRBP helps
position RNA for cleavage by Dicer (role 2). PACT has
not yet been observed to affect iso-miR distribution.

In Drosophila, current models suggest that the
TRBP homolog R2D2 (see Box 2) plays a significant
role in selecting which strand of the miRNA/siRNA
is loaded into Argonaute. There is some evidence that
this is also the case in humans. The thermodynamic
stability of the miRNA or siRNA duplex produced

BOX 2

RNA INTERFERENCE IN D. melanogaster

Drosophila melanogaster has emerged as an
important model system for research into RNAi,
often revealing interactions and mechanisms
that are later shown to occur in humans. Unlike
mammals, Drosophila uses siRNA as an antivi-
ral defense, termed exogenous (exo-) siRNA.85

In addition, an endogenous (endo-) siRNA path-
way exists to target mobile genetic elements.86 In
general, the miRNA pathway utilizes the proteins
Dicer-1 and Ago1, while siRNA pathways rely on
Dicer-2 and Ago2.87

Several TRBP homologs have been iden-
tified in Drosophila, most notably the proteins
R2D2 and Loquacious (Loqs). R2D2 forms a
complex with Dicer-2 and assists strand-specific
loading of siRNA into Ago2,88,89 while Loqs
plays a role in processing of pre-miRNAs by
Dicer-1.90,91 At least four isoforms of Loqs have
been identified, which differentially process
specific miRNAs, lead to altered iso-miR distri-
butions, and even interact with different Dicer
proteins.83,92,93 At the whole organism level,
reduction of Loqs expression causes infertil-
ity owing to terminal differentiation of germ
cells, while complete knockout is lethal.83,94,95

While TRBP and PACT share several properties
with Drosophila dsRBPs,78,96 currently, there is
no clear evidence for a similar delineation of
function on the protein level in the mammalian
system.

by Dicer is dependent on the nucleotide sequence.
Experiments with photo-cross-linking dsRNA con-
cluded that TRBP has some propensity to bind
to the most thermodynamically stable end of the
siRNA.47 Furthermore, strand-specific crosslinking to
the helicase domain of Dicer required TRBP or PACT
and depended on thermodynamic stability, terminal
nucleotides, and mismatched bases.77 However, strand
selectivity is not solely determined at this step: a study
that measured which strand was loaded into RISC
concluded that Ago2 alone had some strand selectiv-
ity (dependent on substrate), though TRBP and PACT
could enhance this.48

Lastly, it has recently been shown that TRBP can
diffuse along dsRNA in vitro.84 Although it is not yet
clear what effect this would have on the Dicer com-
plex, one-dimensional diffusion may allow the dsRNA
to explore a greater range of positions and orienta-
tions within the complex. Together with the flexibility
of TRBP, this could potentially facilitate RNA posi-
tioning for Dicer processing or RISC loading.

Evidence from Molecular Cell Biology
Studies
The initial evidence that TRBP and PACT bound Dicer
came from immunoprecipitation experiments using
HEK293 cells.5,6,53 In one case, epitope-tagged Dicer
was used to recover a complex containing TRBP and
Ago2 that was able to process pre-let-7 to mature let-7,
and cleave target mRNAs.52 The same studies used
RNAi to investigate the function of TRBP and PACT,
but gave somewhat contradictory results. However,
one common feature is that knocking down any of
the four components (Dicer, Ago2, TRBP, or PACT)
resulted in a decrease in levels of mature miRNA.6,53,82

There are some hints that PACT and TRBP
may act on different sets of miRNAs and/or siRNAs
(role 4). In one study, knocking down TRBP dramat-
ically reduced the effectiveness of exogenous siRNA
while having a small effect on levels of an inducible
miRNA, whereas targeting PACT had the opposite
effect.53 It is currently unclear whether knockdown of
PACT or TRBP differentially affects a certain subset
of miRNAs.

It has been reported that TRBP contains multiple
phosphorylation sites (Figure 1(c)), which modulate
its stability. When TRBP with phospho-mimic muta-
tions at these sites was transfected into human cells,
miRNA production was shown to increase relative to
controls.97 The mechanism by which this occurs is
unclear, as in vitro tests showed negligible differences
in Dicer processing between complexes containing
wild-type and phospho-mimic TRBP.55 Transfection
with phospho-mimic TRBP also caused a relative
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downregulation of the let-7 miRNA family, hinting
that TRBP may differentially affect at least some miR-
NAs (role 4).97 Although PACT also undergoes phos-
phorylation at several sites, the effects have never
been studied in the context of miRNA biogenesis.
Post-translational modification of TRBP and PACT
may indicate that their functions are context depen-
dent, and are not constitutively required.

To determine whether TRBP and PACT aid Dicer
processing (roles 1 and 2) or RISC loading (role 3),
several studies have examined how depletion of these
proteins affects silencing mediated by shRNA (which
requires processing by Dicer) or duplex siRNA (which
can in principle be incorporated directly into RISC).
The consensus is that both are affected, implying an
important role in RISC loading, while not ruling out
a supporting contribution to Dicer processing.5,53,80

Although one of these studies reports siRNA-mediated
silencing to be unaffected by depletion of TRBP or
PACT, the effectiveness of TRBP/PACT knockdown
was not measured.80 It is therefore possible that TRBP
and PACT were not effectively depleted, owing to
saturation of the RNAi machinery with luciferase
siRNA.

It is worth noting that it can be challenging
to use RNAi to knock down proteins involved in
small RNA processing, as the effectiveness of RNAi is
itself dependent on the presence and activity of these
proteins. The recent development of CRISPR/Cas
genome editing may allow future studies to avoid
this problem.98 The interpretation of experimental
data is also complicated by the possibility that these
proteins may stabilize one another. Several studies
have reported that knocking down TRBP also reduces
Dicer levels, confounding interpretation in terms of
TRBP alone,5,65,97 especially because this effect has
not been unanimously reported.6 A similar stabilizing
effect on Dicer was seen for PACT—but not for
TRBP—in a separate study.53

The majority of both TRBP and PACT is found
in the cytoplasm, particularly in the perinuclear
space, though a smaller amount is present in the
nucleus.41,80,99 Förster resonance energy transfer
experiments using fluorescently tagged TRBP and
PACT provide evidence that they interact in vivo.80

The distribution of TRBP and PACT mirrors that of
Dicer and Ago2, which are also predominantly cyto-
plasmic with a small nuclear fraction. Dicer, Ago2,
TRBP, and PACT have lower diffusion rates in the
cytoplasm than in the nucleus.99,100 This observation
has been interpreted as evidence for a large cyto-
plasmic complex that is disassembled in the nucleus.
Alternatively, it is consistent with the idea that these
proteins are anchored to a larger cytoplasmic feature,

such as P-bodies or the rough endoplasmic reticu-
lum (ER). This latter possibility is consistent with
reports of co-localization of RISC components with
ribosomes or the ER.101–103

TRBP AND PACT MEDIATE INNATE
IMMUNE SURVEILLANCE OF dsRNA
RNA viruses produce dsRNA in the course of their
lifecycle, either as genomic material or as a replica-
tion intermediate. Viral dsRNA has features that dis-
tinguish it from cellular dsRNA, which may include
its longer length, lack of the 5′ cap characteristic of
eukaryotic mRNAs, and absence of mismatches. The
innate immune system can recognize these features
through PRRs, including RIG-I, MDA5, and TLR3.

The PRRs used by mammalian cells can be
divided into ‘early’ responders, which stimulate pro-
duction of interferons and proinflammatory cytokines,
and ‘late’ responders, which directly block viral pro-
liferation through translation inhibition and RNA
degradation (Figure 1(b)). These pathways have been
reviewed in more detail elsewhere.2 TRBP and PACT
have roles in several of these pathways, and have been
implicated in the response to a number of viruses (sum-
marized in Table 1).

PACT Can Stimulate RIG-I Activation
RIG-I is an early response PRR that detects dsRNA
with a 5′ triphosphate group (5′ppp-dsRNA).104

RIG-I is ubiquitously expressed, and is one of the
main viral RNA sensors in nonimmune cells.2 The
mechanism of RIG-I activation has been character-
ized at the structural level105–107 (Figure 4(a)). In the
absence of 5′ppp-dsRNA, the tandem caspase recruit-
ment domains (CARDs) responsible for signaling are
bound to a DExD/H helicase domain, and are inac-
tive. 5′ppp-dsRNA binds to the helicase and CTDs of
RIG-I, displacing the CARDs. The CARDs then initi-
ate a signaling pathway that leads to the activation of
interferon regulatory factor 3 (IRF3), increasing tran-
scription of type 1 interferon and other antiviral genes
(Figure 1(c)). Several recent reviews have described
RIG-I function in more detail.107–109

Evidence has emerged that PACT can activate
RIG-I in response to a number of viruses7,110,111

(Table 1). Although the helicase domains of RIG-I and
Dicer are part of the same subfamily,112 it is unlikely
that PACT binds these two proteins in the same
manner: there is no evident sequence homology in the
helicase insert domain, which forms the PACT-binding
site in Dicer. This is consistent with a report that
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TABLE 1 Evidence Linking TRBP and PACT to Viral Sensing.

Virus Details Reference

Viruses linked to TRBP and PACT
Newcastle disease virus

(NDV)
Overexpressing PACT increased type 1 interferon production

from NDV infection
113

Sendai virus RIG-I activation during infection was enhanced by PACT 7

Herpes simplex virus 1
(HSV-1)

HSV-1 protein Us11 reduces type 1 interferon production due
to PACT. Viral proteins block PACT interaction with PKR
and/or RIG-I

114,115

Ebolavirus Viral proteins VP30 and VP35 interfere with RNAi and interact
with TRBP, PACT, and/or Dicer. PACT overexpression inhibits
viral replication, while VP35 prevents PACT from activating
RIG-I

110,116

Influenza Viral proteins interact with PACT, resulting in increased viral
replication

117

MERS-CoV Viral protein 4a inhibited PACT activation of RIG-I, resulting in
reduced interferon production

111

HIV-1 TRBP blocks PKR activation by HIV transcripts. HIV was
suggested to disrupt RNAi by sequestering TRBP, but this is
disputed

118–120

Viruses found not to depend on TRBP or PACT
Sindbis virus;

encephalomyocarditis
virus (EMCV)

Overexpressing PACT had no effect on type I interferon
response

113

EMCV; vesicular stomatitis
virus (VSV); Sendai virus

Found no difference between PACT knockout and wild-type
cells

121

TRBP, TAR RNA-binding protein; PACT, Protein Activator of PKR; RIG-I, retinoic acid-inducible gene I; RNAi, RNA interference.

PACT binds to the CTD of RIG-I.7 There have been
no reports of TRBP interacting with RIG-I.

Many unanswered questions surround the role
of PACT in RIG-I activation. It is unclear under which
conditions PACT activates RIG-I, and the mechanism
is not known. To date, the interaction has been most
studied in the context of Sendai virus,7,110 a negative
sense single-stranded RNA (ssRNA) virus that infects
rodents. In this case, PACT can act to enhance acti-
vation of IRF3 and transcription of genes under the
control of IFN-!. A similar effect was seen for Ebola
virus (also a negative sense ssRNA virus), and overex-
pressing PACT was able to slow viral replication.110

To counter this effect, Ebola virus encodes a protein
that is reported to disrupt the interaction between
PACT and both Dicer and RIG-I.110,116 An earlier
study found that PACT increased type 1 interferon
production in response to Newcastle disease virus,
which also has a negative sense ssRNA genome.113 It
now appears plausible that this effect was mediated by
RIG-I, although it had not been identified at the time.

One hypothesis is that PACT can extend the
range of ligands that can activate RIG-I. Overexpres-
sion of PACT did not enhance RIG-I activation by

5′-ppp dsRNA, but did enhance the response to the
dsRNA analog poly-I:C.7 However, further work will
be needed to confirm this, and to disentangle the
effects of the other RIG-I (and Dicer)-related heli-
cases, MDA5 and LGP2. MDA5 functions similarly to
RIG-I, but is activated by longer dsRNA, while LGP2
lacks the CARD signaling domains, and is thought to
inhibit RNA sensing.108 The CTDs of RIG-I, MDA5,
and LGP2 are well conserved and so it is plausible that
PACT could interact with all of them.

PACT Activates PKR, While TRBP Inhibits
It
PKR is a kinase that acts to block translation in
response to viral dsRNA, or to other cellular stresses
such as oxidative stress, accumulation of misfolded
proteins in the ER, or external signals from cytokines
and growth factors.122 It has low basal expression, but
is strongly induced by interferon,123 making it a ‘late’
responder to viruses.

PKR has two N-terminal type A dsRBDs and a
kinase domain (Figure 4(b)). The first two domains
bind dsRNA and act as a scaffold to bring PKR
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molecules close together, and increase the likelihood of
dimerization of the kinase domain.124 After dimeriza-
tion the kinase domain autophosphorylates,125 then
phosphorylates eukaryotic translation initiation fac-
tor 2! (eIF2!), in turn blocking translation. The
kinase domain is present in a number of other pro-
teins that phosphorylate eIF2! in response to various
stresses.122 PKR function has been reviewed in more
detail elsewhere.122,124,126

TRBP and PACT can regulate PKR: TRBP has
an inhibitory effect, while PACT is a conditional
activator3,4,127 (Figure 4(b)). Domain swap and muta-
tional analyses indicate that the first two dsRBDs
of PACT and TRBP are functionally interchangeable,
and interact with the dsRBDs of PKR.9,36,128 There
is some evidence that this interaction is independent
of dsRNA, indicating that dsRBDs bind one another
directly.128 However, there is some disagreement on
this issue,129 and it has never been explicitly examined
biophysically.

The differences between PACT and TRBP stem
from their C-terminal dsRBD. In response to cellular
stresses, PACT-D3 is phosphorylated at S246 and
S287 by an unknown kinase (or kinases), leading to
activation of PKR.127 Two models have been pro-
posed to explain how PACT enables PKR activation.
First, binding of phosphorylated PACT-D3 to PKR
could cause a conformational change that promotes
activation.9 Supporting this model, PACT-D3 alone
has been reported to interact weakly with PKR.9,130

Alternatively, PACT dimers might bind two molecules
of PKR, enhancing PKR dimerization.43 This is
consistent with evidence that PACT-D3 phospho-
rylation promotes homodimerization and disfavors
heterodimerization with TRBP.42,43

In contrast, TRBP-D3 has an inhibitory effect
on PKR, which appears to be important for prevent-
ing inappropriate activation of PKR.36,131 A similar
inhibitory effect is also observed for truncated PKR
or PACT constructs containing only their first two
dsRBDs,9,132 which suggests that rather than a spe-
cific effect of TRBP-D3, anything that binds to the
dsRBDs of PKR and disrupts PKR dimerization will
cause inhibition. To our knowledge, TRBP phosphory-
lation (discussed in section Evidence from Biochemical
and Biophysical Studies) has not been studied in the
context of PKR inhibition.

It is worth noting that many studies prior to
2009 used PACT constructs containing a frameshift
mutation that replaces the last 13 amino acids
(including part of a predicted helix) with 5 unre-
lated amino acids.4,9,36,41,130,132–134 This mutant
constitutively activated PKR and disrupted PACT-D3
dimerization.131

CONCLUSION
It is more than 15 years since TRBP and PACT were
found to interact with PKR, and almost 10 years
since their interaction with Dicer was uncovered. It
is therefore somewhat surprising that (with a few
exceptions116,120) there has been so little crosstalk
between these two areas of study. RNAi is a key
defense against viruses in plants and invertebrates,
and while this is no longer the case in mammals,135

it is intriguing that small RNA biogenesis and viral
sensing are still linked through PACT and TRBP. It
remains to be seen whether this is an evolutionary
accident, or whether these two proteins play a genuine
linking role that has yet to be discovered. Interestingly,
the helicase domains of Dicer and RIG-I are from the
same family, termed RIG-I-like helicases, which also
hints at an evolutionary or functional link between the
two processes.112,136 A more mundane consequence is
that results from in vivo experiments must always be
interpreted with all the roles of TRBP and PACT in
mind, even if the investigation is intended to focus on
only one.

Although much has been learnt about the func-
tion of PACT and TRBP in miRNA biogenesis, two
important questions remain unanswered: why does
miRNA biogenesis utilize dsRBD-containing proteins,
and why do vertebrates have two dsRBD-containing
proteins which appear to be partially redundant?
dsRBD-containing proteins interact with Dicer pro-
teins in plants, insects, nematodes, and mammals, sug-
gesting that there is some evolutionary pressure to con-
serve them. Results from Drosophila demonstrate that
dsRBD-containing proteins may function at multiple
steps in small RNA biogenesis pathways, rather than
having a single role. While it is possible that this is also
true for PACT and TRBP, it currently appears more
likely that they function at the same step, potentially
on different substrates. To work out which sequence
or structural features lead to differential processing,
it will likely be necessary to measure the affinities
and processing rate of Dicer/TRBP and Dicer/PACT
on a wider range of small RNAs. A complementary
approach would be to examine on a genome-wide
scale which miRNAs are differentially affected when
TRBP or PACT are depleted from the cell.

Filling in the details of the role(s) of TRBP and
PACT in miRNA biogenesis will help to unravel the
diverse phenotypes associated with defective expres-
sion of these proteins and their homologs. These
range from infertility and growth defects in mice
and flies,94,96,137 to early onset dystonia/Parkinson’s
disease and cancer in humans.65,138 Biochemical
and biophysical experiments must be complemented
by cell and whole organism work to tease apart
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these complex conditions. Although misregulation
of particular microRNAs may play a large role, it
is plausible that additional functions for TRBP and
PACT will emerge.

Note Added in Press
We would like to alert the reader to two important
studies into TRBP and PACT that were published after
submission of this review: Kim and colleagues pro-
duced knock-outs of TRBP and/or PACT in HeLa

cells and found altered Dicer cleavage in a subset of
pre-miRNAs, but no effect on steady-state miRNA
levels or Dicer stability. They also showed hyper-
phosphorylation of TRBP by JNK during M phase.
Wilson et al. reported the 3D structure of a frag-
ment of Dicer in complex with TRBP domain 3. A
Dicer mutant deficient for TRBP and PACT bind-
ing was shown to alter strand selection and iso-miR
distribution for certain miRNAs. Please see Further
Reading.
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