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ABSTRACT 
The funerary practices of many past cultures in Northwestern Europe involve the burial of the 

deceased in clothing and in wooden coffins. Although objects made from wood, textiles and 

leather that exhibit exceptional levels of preservation, or that hold great significance, are 

commonly analysed by a wide range of analytical techniques, fragments of degraded coffin wood 

and funerary clothing materials have not, to date, been chemically analysed. This material 

therefore represents a wealth of potential information that has yet to be investigated.  

By identifying and examining the preservation state of wood, textiles and leather placed in 

archaeological human burials, this research sought to explore the information that could be 

gained from analysing these degraded materials, and to develop an understanding of the long 

term decomposition trajectories of different archaeological materials buried in a range of burial 

environments. This analysis was complemented with data obtained from relatively shorter term 

burial experiments, aimed at investigating the short term diagenetic processes. 

A suite of appropriate analytical chemistry techniques were employed to assess the degradation 

that had occurred in wood, textiles and leather by comparison with undegraded modern 

analogues. Using this approach, it has been shown that by examining the component 

biopolymers, not only can their preservation state be assessed, but a greater depth of information 

regarding their provenance may be gained in comparison to traditional archaeological methods. 

The degradation modifications that have occurred within the burial environments were shown to 

be attributable to a range of fungal, microbial and chemical factors. The type and extent of the 

degradation allow conditions within the burial environments to be elucidated. These findings 

have potential implications for the understanding, interpretation and conservation of buried 

archaeological and forensic materials.  

This study found that well drained, sandy soils and permanently waterlogged environments are 

most conducive to the preservation of wood, textile, and leather fragments, while other 

environments lead to advanced states of decomposition. The data also indicate that conditions 

needed for inhibition of microbial decay are not immediately present, the burial environment 

changing as a result of decompositional, geological or hydrological processes. Evidence of 

proximity to copper altering the decay of wood by white rot fungus was found. Finding that the 

colour of a woollen textile is due to degradation rather than intentional dyeing and the chemical 

identification of lignin in soil stains thought to be due to heavily decayed wood are important 

findings that could guide future interpretation of archaeology and prevent incorrect conclusions 

from being arrived at. The removal of conservation treatments from wood sampled from a Bronze 

Age logboat allows for the future analysis of artefacts conserved using similar techniques.  
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‘The Brothers Grimm. Lovely fellas. 

They’re on my darts team. 

According to them, there’s this 

Emperor and he asks this shepherd’s boy, 

 “How many seconds in eternity?”. 

 And the shepherd’s boy says,  

“there’s this mountain of pure diamond,  

it takes an hour to climb it,  

and an hour to go around it. 

Every hundred years a little bird comes  

and sharpens its beak on the diamond mountain.  

And when the entire mountain is chiselled away,  

the first second of eternity will have passed”. 

You might think that’s a hell of a long time. 

Personally, I think that’s a hell of a bird.’ 

… 

‘And if they ask you who I am, 

tell them, “I came the long way round”.’ 

 

The Doctor 

(Steven Moffat) 

 

 

 

Enjoy my mound of diamond dust. I’m off to find another mountain. 
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CHAPTER 1 
 

 

1 INTRODUCTION 
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1.1 Information contained within human burials 

 

For human beings death is an unavoidable fact of life. Eloquently put by one of our greatest and 

most revered wordsmiths, “Well, we were born to die” (Shakespeare, 1599). Unsurprisingly, 

societies have developed practices for dealing with death: the remains of the deceased are 

variously treated according to legal requirements, spiritual and religious beliefs, to ease the grief 

of the family and to prevent odour and the spread of disease (de Goyet, 2004). The earliest 

undisputed evidence of intentional burial comes from the remains of early Homo sapiens in Skhul 

Cave, Israel, and is thought to have occurred around 100 thousand years ago (Lieberman, 1991). 

As our ancestors evolved, formed communities and began to hold shared beliefs, a range of burial 

practices developed. High status individuals in ancient Egyptian civilisations were mummified and 

placed within tombs, Viking age Norse leaders were burned in their ships, and Catholics (until 

relatively recently; Jupp, 1992) believed they had to be buried to ensure their resurrection 

(Taylor, 2000). 

The predominance of the Christian faith in Europe during the last millennium ensured that the 

most common form of mortuary sequestration was burial (Latourette, 1978; Jupp, 1992). The 

excavation of archaeological burials has long been of interest as they can provide a wealth of 

information about both the individual and the wider community. This hidden archive can serve as 

a record of past cultures and civilisations, giving information on health and disease, culture, 

society and religious beliefs (Brothwell, 1958; Brothwell, 1981; Kelley and Angel, 1987; Huisman, 

2009). 
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1.1.1 Skeletal remains 

The most obvious and some of the most widely studied objects found during the excavation of 

archaeological burials are the osseous remains. Grave goods, such as coffins, clothing and 

personal effects, often degrade entirely, leaving the skeleton as the only surviving record 

(MacKinnon, 2007). Bone is a composite material, consisting of both organic and inorganic 

components, enabling it to survive in conditions where wholly organic or inorganic materials have 

completely decayed (Collins et al., 2002).  

The earliest analyses of bone recovered at archaeological sites focussed on observation and 

dimensional measurements of individual bones and skeletal features (Virchow, 1882; MacKinnon, 

2007). The focus of the field was on information such as the size, gender and ethnicity of the 

individual (Jacobsen and Cullen, 1990). Little advance in the analysis of human remains was made 

until the 1980s, at which point their potential became fully realised (MacKinnon, 2007). Thus, 

more comprehensive examinations of individual bones and their features became widespread, 

enabling interpretations of premortem injuries, disease and cause of death (Brothwell, 1981). 

The modern study of archaeological osseous remains is a diverse and active area of research 

involving both physical and chemical analysis (Brothwell, 1981). Isotope analysis is used to infer 

diet and geographical movements (Sealy et al., 1991) and radiocarbon dating is used to estimate 

the temporal range in which an individual died (Arneborg et al., 1999). Analysis of DNA recovered 

from bones has been used to suggest death due to disease (Abbott, 2001), determine the lineage 

(Hagelberg et al., 2015) and even the identity of a skeleton (a recent and high profile example 

being the identification of the remains of Richard III; King et al., 2014). 
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1.1.2 Grave goods 

Early excavations of archaeological burials were often performed in the interests of financial gain, 

with burial goods fetching high prices from collectors of antiquities (MacKinnon, 2007). As the 

field of archaeology developed, the non osseous contents of inhumations began to be studied, in 

order to improve the understanding of social structures, beliefs, customs, movement and trade 

relating to the individual and their wider community (Pearson, 1999; Łucejko et al., 2015; Pearce, 

2016). The presence of a coffin, burial clothing and objects placed in the grave with the deceased 

can all be vastly significant (Kim and Singh, 2016) and are deserving of explicit consideration. 

1.1.2.1 Coffin remains 

The shape, methods and quality of construction, and adornments or fastenings of a coffin may 

give an indication as to the person’s status (Bell, 1990). The religion of the deceased may also be 

inferred from the coffin, an example being the strict construction methods and lack of any metal 

parts on coffins used by followers of Judaism (Cutter, 1992). The type of wood used in the 

construction of coffins can also be indicative of past ecological conditions; the predominance of 

one type of wood being used for the construction of coffins in a cemetery can indicate a readily 

available source of that wood to a community (Cevasco and Moreno, 2015). An incongruous 

wood, on the other hand, can indicate a person of high status and provide evidence for trade links 

(El Hadidi, 2016).  

For all but the most high profile or well preserved coffins, chemical analysis on coffin wood is rare 

(for example: Blanchette and Simpson, 1992; Blanchette, 1991; Crestini et al., 2009). However, 

the analysis of fragments of coffins wood recovered from archaeological burials has the potential 

to reveal information about the individual and their society, as well as the conditions and 

degradation processes that occurred within the burial environment.  

1.1.2.2 Clothing remains 

In addition to coffins, textiles and animal skins have also been found in human burials (Good, 

2001). In many cases, however, the component polymers that make up these materials decay 

rapidly when buried, which results in them being uncommon in excavations from all but the most 

recent burials (Janaway, 2001). Examples that do survive can be extremely informative, a recent 

example being the analysis of the clothes and possessions of ‘Ötzi the Iceman’. The naturally 

mummified and exceptionally preserved individual, discovered frozen in an Alpine glacier in Italy 

in 1991, was estimated to have lived around 3300 BC by 14C dating (Bonani et al., 1994). O’Sullivan 

et al. (2016) analysed mitochondrial DNA from his clothing and hide arrow quiver, concluding that 

his coat was made from the hides of two goats and two sheep, his loincloth and leggings were 

goat hide, his shoelaces were cow leather, his hat was the fur of a brown bear and his arrow 

quiver came from a roe deer. These analyses provided evidence for the hunting and 
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domestication of these animals, while earlier analyses of the items provided insight into the 

tailoring techniques of the period (Dickson et al., 2003).  

1.1.3 The grave and burial soils 

The earliest recordings of grave morphology were in the form of rough plans and sketches done 

to mark out the locations where finds were recovered; detailed and systematic recording of 

excavations of human burials did not become commonplace until the 1960s (MacKinnon, 2007). 

Modern archaeological excavation practice is far more methodical, with every aspect of the site 

recorded in detail. Accurate recording of grave dimensions using surveying techniques and precise 

location mapping using global positioning technology are commonplace, allowing greater detail of 

the site and individual burials to be elucidated (Grant et al., 2015; Fagan, 2016). Features such as 

the orientation of the burial often infer religious practices (Pearson, 1999; Mackinnon, 2007). 

Mass graves can be related to the location and outcome of historic battles, or the outbreak and 

mortality rate of communicable disease (Loe et al., 2014a; Frisk, 2015; Pearce, 2016). 

The analysis of soil from archaeological contexts is a well established field, with soil 

micromorphology (Courty, 1992; Grave and Kealhofer, 1999) and inorganic elemental 

compositions (Parnell et al., 2002; Wilson et al., 2008) being routinely studied as part of many 

archaeological investigations. The analysis of the organic residues found in archaeological soils is 

also widely applied and has been used to detect sites of human habitation, infer land use and hint 

at historical agricultural processes (Bull et al., 1999; Evershed, 2008). By contrast, little work has 

been reported on the soils from archaeological human burials (Usai et al., 2014). Notably, 

however, analyses of soils from modern graves (Forbes et al., 2003) and during forensic 

investigations (Bull et al., 1999) have shown the potential for biomarkers of cadaver degradation 

to be retained by the burial environment. This work on modern human burials led to the 

question: what chemical and micromorphological signatures remain in the burial matrices of 

archaeological graves? 
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1.2 The InterArChive project 

 

A pilot study carried out by Tongue and Keely (2008) examined the potential for organic residues 

from decayed human remains to be retained in the soils of archaeological burials. Based on this 

work the project titled “’Interred with their bones’ – linking soil micromorphology and chemistry 

to unlock the hidden archive of archaeological human burials”, or InterArChive for short, was 

funded by the European Research Council (European Community's Seventh Framework 

Programme (FP7/2007-2013) / ERC grant agreement no. 230193). 

The InterArChive project aimed to investigate the information contained within the burial soils of 

graves, using a combination of analytical chemistry techniques (including carbon, nitrogen, 

hydrogen, sulphur, oxygen (CHNSO) and total organic carbon (TOC) elemental analysis and gas 

chromatography – mass spectrometry analysis of solvent extracts) and soil micromorphology 

carried out on thin sections of resin impregnated soil samples (Usai et al., 2014).  

A high intensity sampling strategy was developed to collect soil samples from 17 positions 

associated with each grave studied for chemical analysis, and four positions for 

micromorphological analysis, in order to maximise the information that could be obtained (Figure 

2). Additional samples of any other soils perceived to be of potential value were also taken into 

account in the strategy.  

 

Figure 2. The sampling strategy for collection of soils from archaeological human burials. C1, C2 and C3 are 
soil control samples used to establish background chemistry and soil features. Circles with dots are soil 
samples taken for micromorphology analysis from the head, pelvis, hand and foot. The numbered circles are 
soil samples taken for chemical analysis. Image credit: Matt Pickering, University of York. 
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During the sampling of burial soils from sites across Northwestern Europe, fragments of surviving 

wood and clothing materials were also collected. The vast amounts of these wood (primarily from 

coffin remains) and clothing fragments presented a unique opportunity to compare preservation 

states and postulate the decomposition trajectories of grave goods from a range of different 

burial environments.  

  



 
37 

 

1.3 Archaeological wood 

 

Since our primate ancestors first learned to use rudimentary implements, wood has played a 

crucial role in human history and development (Perlin, 2005). Heat, tools, shelter, weapons and 

transport aids have all been provided by the shed branches and fallen trunks of native trees. 

Wood is still intrinsic to modern day societies, prized for its strength, renewability and ease of 

processing. Many currently available building materials are stronger and more resistant to 

degradation, yet wood is still chosen over many materials due to its sustainability, aesthetics, and 

links to our past. 

The oldest worked wooden object to be discovered is the Clacton Spear, found in Clacton-on-Sea 

in Essex, UK in 1911 and has been dated to 400,000 years ago (Allington-Jones, 2015). A set of 

hunting spears found in Schöningen, Germany, have survived for 300,000 years (Thieme, 1997; 

Barham, 2013) and the Shigir Idol found in Russia is the oldest wooden sculpture, the 14C date 

indicating an age of 11,000 BP (Liesowska, 2015). Physical and chemical analysis of such materials 

can provide a wealth of information regarding the environment and the societies from which they 

originated.  
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1.3.1 The chemical composition of wood 

1.3.1.1 Lignin 

Lignin is a large, cross-linked phenylpropanoid biopolymer contained within the plant cell wall. It 

is one of the most abundant plant biopolymers – second only to cellulose – and is the largest 

biological source of aromatic hydrocarbons (Calvo‐Flores and Dobado, 2010). The main lignin 

monomers are three phenylpropanoid alcohols (or monolignols): para-coumaryl alcohol (4-[(E)-3-

hydroxyprop-1-enyl]phenol), coniferyl alcohol (4-(3-hydroxy-1-propenyl)-2-methoxyphenol) and 

sinapyl alcohol (4-(3-hydroxyprop-1-enyl)-2,6-dimethoxyphenol). The exact composition of lignin 

and ratio of the phenylpropanoid subunits in the structure is dependent on the type of tree. The 

lignin of ‘softwood’ gymnosperm trees comprises exclusively guaiacyl (2-methoxyphenol) 

subunits, whereas that of ‘hardwood’ angiosperm trees contains both guaiacyl and syringyl (2,6-

dimethoxyphenol) subunits (Figure 3 and Figure 4; Obst, 1982; Boerjan et al., 2003). 

Lignin is a highly complex and heterogeneous polymer that has thus far confounded definitive 

characterisation of its three dimensional structure, despite the application of a wide array of 

analytical techniques (Vanholme et al., 2010). Although it will differ slightly to the intact polymer 

(Alves, et al., 2006), the alkaline soluble lignin content of angiosperm wood has an approximate 

molecular formula of C31H34O11 (King and Solomon, 1983). 

 

Figure 3. The structure of a typical lignin subunit, showing the numbering of the phenolic ring carbon atoms 
and the propenyl carbon chain. In guaiacyl lignin subunits, R1 = H and R2 = OMe; in syringyl lignin subunits 
both R1 and R2 = OMe. 
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Figure 4. A structural representation of a typical fragment of a larger lignin polymer, showing the structure 
of guaiacyl (blue) and syringyl subunits (pink) and some common interunit linkages (Leonowicz et al.,1999).  

 

1.3.1.2 Cellulose 

The structure of cellulose, the dominant biopolymer of wood, comprises chains of D-glucose 

molecules linked by β(1-4) glycosidic bonds (Figure 5; Updegraff, 1969), the repeat unit having the 

formula C6H10O5 (Payen, 1838). The sugar rings of cellulose all occupy the same orientation and 

the resulting polymer has a straight chain with no branching (Fengel and Wegener, 1984). The 

number of glucose molecules in each cellulose polymer in wood varies from 7000 to 10,000 

(Goring and Timell, 1962). 

 

Figure 5. The structure of the repeat unit of cellulose. 
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1.3.1.3 Hemicellulose 

Hemicellulose has shorter chain lengths and a more varied structure than cellulose, incorporating 

both five and six membered heteroatomic rings and containing many saccharide side chains 

(Bauer et aI., 1973; Fengel and Wegener, 1984). As with lignin, hemicellulose biosynthesis exhibits 

a degree of phylogenic specificity. The hemicellulose of softwoods contains more mannose and 

galactose units, whereas that of hardwoods has a higher proportion of xylose and contains more 

acetyl functional groups (Fengel and Wegener, 1984; Hoch, 2007; Scheller and Ulvskov, 2010). 

1.3.1.4 Variation in biopolymer composition  

The proportions of the three biopolymers in any given sample of wood is dependent on the tree 

species, age, the location the sample is taken from within the tree, and the soil and environmental 

conditions in which the tree is rooted (Pandey and Pitman, 2003). The approximate compositional 

ranges of softwoods and hardwoods are shown in Table 1. 

Table 1. Ranges of the relative amounts of cellulose, hemicellulose and lignin that have been observed in 
wood from softwood and hardwood trees (Fengel and Grosser, 1975). 

Wood type Cellulose content Hemicellulose content Lignin content 

Softwood 40-60% 5-15% 25-40% 

Hardwood 35-50% 20-35% 15-30% 
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1.3.2 The structure of wood 

1.3.2.1 Macrostructure 

A generalised cross section of a tree trunk is shown in Figure 6. The outer layers of the bark serve 

a similar purpose to that of skin in animals, offering protection to the tree from microbial attack 

and damage from external factors (Salisbury and Ross, 1992; Silvester, 2013). The inner layers of 

the bark and the underlying vascular cambium are responsible for the biosynthesis of new wood 

cells. Each growth season (typically the local spring and summer months) results in the addition of 

a new layer of growth to the wood beneath the bark, leading to the addition of another annual 

growth ring and an increased diameter of the tree trunk (Salisbury and Ross, 1992; Silvester, 

2013). 

Sapwood is tissue of the tree where the wood cells are still living and playing a biologically active 

role in the tree and is responsible for the transport and storage of water (Silvester, 2013). When a 

tree grows to dimensions that necessitate a greater degree of structural integrity and strength the 

sapwood nearest the centre of the tree undergoes conversion to heartwood (Silvester, 2013). 

Heartwood differs from sapwood in that it is stronger, no longer living and has a greatly reduced 

water content due to it not being used for water transport and storage (Silvester, 2013). Due to its 

superior strength and reduced propensity to shrink and warp when dried, heartwood is 

commonly favoured for use in woodworking and construction (Taylor et al., 2002). 

 

Figure 6. The structure of a tree trunk, showing the key tissues and features. 
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1.3.2.2 Microstructure 

On the microscopic scale, the wood of gymnosperm trees is profoundly different to that of their 

broadleaved angiosperm cousins (Fengel and Wegener, 1984). Gymnosperm wood – commonly 

referred to as softwood – has a relatively simple structure composed chiefly of tracheid cells 

(Figure 7; Hoffmann and Jones, 1990). The tracheid cells produced during the earlier part of the 

annual growth season are typically larger in diameter and more thinly walled than those grown 

during the later growing months, these being smaller but have thicker walls (Fengel and Wegener, 

1984). The different cells are termed earlywood and latewood, respectively. In many gymnosperm 

woods the early and latewoods occur in distinct bands (Fengel and Wegener, 1984; Blanchette, 

2000). 

 

Figure 7. The microstructure of softwoods from gymnosperm trees. Adapted from Fengel and Wegener 
(1984). 

In comparison to those found in gymnosperm trees, the tracheid cells of angiosperm woods 

(Figure 8) are smaller and have relatively thicker walls; the difference between early and 

latewood is also less distinguishable (Fengel and Wegener, 1984). Hardwoods contain many vessel 

elements that are not present in softwoods, which are responsible for the transport of water 

within the wood (Wilson, 1986). The vessels are typically several times larger than the tracheid 

cells and contain tyloses, which act as valves that can halt the transpiration stream during times of 

drought (Fengel and Wegener, 1984). 
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Figure 8. The microstructure of hardwoods, from angiosperm trees. Adapted from Fengel and Wegener 
(1984). 

Although the size and density of tracheid cells of softwoods and hardwoods differ, the structure 

of the cells in both wood types is similar (Figure 9). Each cell is essentially a long tube made up of 

several layers: the primary cell wall layer; the secondary cell wall S1 layer; the secondary cell wall 

S2 layer; and the secondary cell wall S3 layer (Hoffmann and Jones, 1990). Some species of tree 

have an additional warty layer that sits atop the S3 layer, inside the lumen (Fengel and Wegener, 

1984). Each cell wall layer consists of fibrils, made up of the three major component biopolymers 

of wood (lignin, cellulose and hemicellulose). All the fibrils in a particular cell wall layer have the 

same orientation and each cell wall layer has a different fibril orientation (Fengel and Wegener, 

1984; Figure 9). Each cell is attached to the neighbouring cells by the middle lamella.  

The different layers within each wood tracheid cell contain different proportions of biopolymer. 

The middle lamellae are almost entirely lignin, giving them a high degree of strength and acting as 

a structural scaffold which supports the embedded tracheids (Fengel and Grosser, 1975). The 

primary cell wall layer also has a high lignin content, but it is comparatively lower than that of the 

middle lamella. The proportion of lignin decreases and that of holocellulose increases in 

successive secondary cell wall layers, with the S3 layer being almost completely cellulose (Fengel 

and Grosser, 1975). 
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Figure 9. The generalised microstructure of wood tracheid cells, showing the composition and packing of 
individual cell wall layers (Fengel and Wegener, 1984; Eriksson et al., 1990).  
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1.3.3 Wood degradation 

Although wooden objects that have survived for hundreds of thousands of years have been 

recovered during archaeological excavations (Thieme, 1997), the survival of wooden objects for 

such extended periods of time is atypical: when cut from the parent tree wood is readily degraded 

by fungi or bacteria. The cellulose and hemicellulose components of wood decay relatively quickly 

on the archaeological timescale due, in part, to the ability of microorganisms to metabolise these 

polysaccharides using a range of hydrolysing and oxidising enzymes (Blanchette et al., 1990; 

Sánchez, 2009). Brown rot and soft rot fungi are the most commonly observed holocellulose 

fungal degraders in wood, and a wide range of bacteria are known to be capable of metabolising 

holocellulose (Blanchette, 2000; Martinez et al., 2005). Extremes of pH can also lead to the 

breakdown of holocellulose, although the damage caused by the chemistry of the burial 

environment is typically negligible compared with that attributable to microbes (Fengel & 

Wegener, 1984; Jones & Eaton, 2006).  

Lignin, on the other hand, is far more recalcitrant, being found in prehistoric samples of wood 

(albeit in a modified form) where all of the carbohydrates have been degraded (Blanchette, 2000; 

Blanchette et al., 2013). The polysaccharide degrading activity of microbes that are not capable of 

metabolising lignin – including brown rot fungi, soft rot fungi and a range of bacteria – do 

however lead to modification of lignin (Blanchette, 2000; Martinez et al., 2005). These changes 

are typified by the demethylation and demethoxylation of the methoxy groups attached to 

guaiacyl and syringyl lignin phenols (Martinez et al., 2005).  

There are two currently acknowledged classes of lignin degradation; those performed by bacteria, 

and those by fungi. Bacterial lignin degradation has only been successfully probed relatively 

recently. Although it is less well understood, it has been shown to be performed by a range of 

microorganisms; including Streptomyces viridosporus (Bugg et al., 2011a). It must be noted that 

the observed activity of bacterial lignin modifiers is far less than that of fungi, which are thought 

to be the most common degraders of lignin (Blanchette et al., 1990; Kim & Singh, 2000).  

Fungal degradation has been studied very extensively and has been shown most commonly to be 

caused by white rot fungi (Schwarze et al., 2000). Two distinct types of white rot mediated wood 

degradation are known; simultaneous rot and selective delignification. Simultaneous rot sees the 

degradation of both lignin and holocellulose, destroying all cell wall components (Eriksson et al., 

1990; Blanchette, 2000; Schwarze et al., 2000). Selective delignification attacks only the lignin rich 

middle lamellae and primary cell wall layers, leaving disconnected tubes of the remaining 

holocellulose rich secondary cell wall layers (Eriksson et al., 1990; Schwarze et al., 2000; Martinez 

et al., 2005). 
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The mechanisms of action of white rot lignolytic enzymes are well characterised (Bugg et al., 

2011b; Martinez et al., 2005; Sánchez, 2009). The lignin is depolymerised by a range of enzymes 

having transition metal containing active sites, including lignin peroxidase (LiP), manganese 

peroxidase (MnP) and laccase. A comprehensive scheme for the biodegradation of lignin indicates 

that these enzymes lead to the cleavage of Cα-Cβ bonds of the three carbon side chains of lignin 

subunits (D, K and R in Figure 10) and result in the oxidation of the attached hydroxyl groups. The 

peroxidase enzymes are hydrogen peroxide dependant, and oxidize lignin via two consecutive 

one-electron oxidation steps, with the formation of an intermediate radical cation and 

subsequent bond cleavage or ring opening (Leonowicz et al., 1999; Martinez et al., 2005). Laccase 

is an oxygenase (requiring oxygen as a co factor) that catalyses single electron oxidation. 
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Figure 10. Scheme showing the enzymatic degradation of lignin. AAO = aryl-alcohol oxidase; AAD = aryl-
alcohol dehydrogenases Adapted from Martinez et al., (2005) using Tien and Kirk (1984), Tien (1987) and 
Rencoret et al., (2010). 
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1.3.4 Wood preservation 

The first evidence of a solution to the degradation of wood used in construction comes from the 

Egyptians over 4000 years ago, who coated wood with natural oils (Graham, 1973). Early Roman 

records document the use of cedar oil to prevent microbial or insect damage, and pitch to 

waterproof wooden boats and ships (Rackham, 1945). Until the beginning of the 20th century, 

wood preservatives were relatively expensive and reserved for more important construction 

projects (Graham, 1973; Schultz et al., 2007), with the coffins of even the Egyptian pharaohs being 

made from untreated wood (Weiss, 1916). Due to leaching or breakdown of the applied 

substances, rudimentary preservative treatments often required periodic reapplication to 

maintain their protective effects (Schultz et al., 2007). Thus, either with or without such 

treatment, for a wooden object to have survived in the burial environment for any considerable 

length of time the actions of degrading microorganisms must have been either slowed or 

arrested.  

The endurance of the Schöningen spears and the Shigir Idol was due to their burial in waterlogged 

peat bogs, the environments being anoxic and limiting microbial degradation (Ajuong and 

Redington, 2004). The survival of wooden objects from burials depends on a narrow range of 

conditions. The majority of wood processing fungi require moist, oxic environments to metabolise 

and decay wood (Boer et al., 2005). Conditions in which the amounts of water or oxygen are 

insufficient may well lead to the survival of lignocellulosic materials. These conditions occur 

relatively rarely, and the survival of objects is dependent on the conditions remaining unchanged 

until discovery. A change in the burial environment may lead to the destruction of the object. 

Despite the dependence on static burial environmental conditions, some wooden objects do 

survive. A unique and fascinating example is the Bronze Age settlement at Must Farm in 

Cambridgeshire, where logboats and wooden houses and their contents have been preserved in 

the silt of a former river (Malim, et al., 2015; www.mustfarm.com).  

Although rare and often heavily degraded, coffin woods can be found when the remains of buried 

individuals are excavated (Henderson, 1987; Hunter et al., 1996). As the focus of the InterArChive 

Project was to examine the residues remaining in archaeological graves, fragments of coffin wood 

were the main source of archaeological wood samples analysed during this investigation. 
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1.3.5 Analysis of wood 

1.3.5.1 Optical microscopy and SEM 

The preservation state of wood can be assessed by means of microscopy, by examining the 

physical condition of the remaining cellular structure (Hoffmann and Jones, 1990; Blanchette, et 

al., 2013). Optical microscopy is of limited use, as the resolution limit of visible light and the need 

to produce and stain thin sections of fragile archaeological woods is difficult and time consuming 

(Schwarze, 2007). Scanning electron microscopy (SEM) provides nanometre resolution using 

incident and reflected photons, negating the need for the production of thin sections (Blanchette 

et al., 2004). The sample preparation and imaging is time consuming and expensive, but the 

amount of detail in insight provided far outweigh the investments. 

Chemical analysis of wood can provide similar information to that of microscopy, as well as much 

more detailed information regarding the preservation state of the component biopolymers. 

Instrument based techniques such as elemental analysis (EA), Fourier transform infrared 

spectroscopy (FTIR), nuclear magnetic resonance (NMR) and pyrolysis – gas chromatography (Py-

GC) as well as an array of wet chemical techniques can be used to make detailed studies of 

modifications to archaeological wood in comparison to modern, undegraded woods. 

1.3.5.2 Wet chemical analysis 

Given that the holocellulose and lignin components of wood are often degraded by different 

microorganisms and conditions (see Section 1.3.3), wet chemical techniques can be used to 

investigate the content of different cellulose fractions and lignin. Such methods are routinely used 

in the paper production industry, where a high cellulose content is often desired. Raw wood 

starting materials, as well as paper that is being recycled, are analysed to assess the cellulose and 

lignin contents, and hence their suitability for different paper applications (TAPPI standards). 

These methods have been adapted for use in the analysis of archaeological wood (Hoffman, 

1981).  

There are, however, considerable drawbacks with using these adapted methods in the analysis of 

archaeological wood. The methods have inherent inaccuracies, which can lead to inaccurate 

quantitation of the different components, illustrated by total compositions of the various 

components that are in excess of 100% being reported (Fengel and Wegener, 1984). When 

analysing precious archaeological objects, one of the key compromises is minimising destruction 

to the artefact while maximising the information gained from the investigation. Wet chemical 

techniques (such as lignin and cellulose extraction) often require large amounts of material for 

accurate and conclusive results, making them less applicable when smaller objects (such as 

fragments of coffin wood) need to be studied (Hoffman, 1981).  
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1.3.5.3 EA 

Compared to other techniques, EA provides very basic information on the atomic composition of 

woods, losing much data on the higher order of composition. It is, however, useful to analyse 

woods that may contain materials other than the native lignocellulose. For example, the sulfur 

content of waterlogged archaeological woods is known to lead to problems with decay after 

excavation (Ghisalberti et al., 2002; Sandström et al., 2005). Analysis of materials by EA to 

determine their carbon, hydrogen, nitrogen oxygen and sulfur contents is useful in cases where 

organic and inorganic contamination is expected. 

1.3.5.4 FTIR 

When used with an attenuated total reflectance attachment, FTIR is non destructive and can be 

used to analyse objects without the need to remove subsamples. The analysis of 

lignin:holocellulose is often performed using FTIR (Pandey, 1998; Pandey and Pitman, 2003; 

Gelbrich et al., 2008). The main drawback with FTIR is that molecules with small variations in 

structure can produce little difference in the wavenumber of resonant bonds, making it difficult to 

gain more detailed structural information. There is also a lack of quantitation of the observed 

bonds, meaning that the data is less informative than other techniques. 

1.3.5.5 NMR 

Solid state 13C NMR analysis gives detailed information about both the two and three dimensional 

structure of the biopolymers of wood (Wilson et al., 1993; Almkvist, 2008). The loss or 

modification of polymer subunits or functional groups that result from the degradation of wood 

lead to differences in the peak intensities and chemical shift values in comparison with 

undegraded wood, thus allowing the degradational modifications to be investigated (Wilson et al., 

1993). Solid state NMR has the potential to be a powerful tool in the analysis of wood, but 

technical, computational and financial limitations prevent the technique from being widely 

applied (Almkvist, 2008). The analysis must be performed using specialist solid state NMR 

instrumentation, which is expensive and not widely available to researchers studying 

archaeological wood. In addition, solid state NMR has lower resolution and broader linewidth 

than solution phase NMR, leading to the need for the data to be digitally reprocessed prior to 

analysis (Vogt, 2010). The variation contained within the polymers that constitute wood result in 

very complex spectra, which require significant computing power to process. In combination, 

these factors limit the application of solid state NMR analysis to archaeological wood, and mean 

that it is not often used (Hedges, 1990, Almkvist, 2008). 
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1.3.5.6 Analytical pyrolysis 

Analytical pyrolysis techniques are widely used for the study of archaeological materials made 

from wood (Bonaduce et al., 2016). Studies of modern and of archaeological woods have 

illustrated the suitability of sequential thermal desorption, pyrolysis, and gas chromatography 

(TD/Py-GC) to the characterisation of the lignin component; examples include the ancient ships of 

Pisa San Rossore in Pisa, Italy and several Indian Ocean shipwrecks (Wilson et al., 1993; Colombini 

et al., 2003; Łucejko et al., 2009). Thermal desorption - using temperatures less than 300°C - 

removes any volatile and semi-volatile organic molecules from materials, including degraded 

polymer subunits that are loosely bound or no longer bonded to the remaining structure. This 

allows a clearer picture of the remaining polymer to be gained. The pyrolysis step involves heating 

material to temperatures typically in excess of 500°C, resulting in the breaking of bonds between 

monomeric units. The liberated species are subsequently separated by gas chromatography and 

detected by either mass spectrometry (MS) or a flame ionisation detector (FID). MS provides the 

mass and fragmentation pattern of the resolved species but, due to the differences in ionisability, 

the quantitation of each molecule is variable. FID, on the other hand, allows for better 

quantitation of each resolved compound but provides no definitive identification. Each peak must 

instead be identified by use of retention order and peak patterns in comparison with those of 

standards and data acquired using MS detection. Despite the complexity of the data analysis, Py-

GC techniques have many advantages. Small samples of material are required (less than 1 mg), 

sample preparation is minimal (due to removal of non-polymeric materials by TD) and the 

resulting data is extremely informative as to the state of the polymers of the wood. 

1.3.5.7 Techniques applied in this study to analyse wood  

This investigation employed a combination of TD/Py-GC with FID and MS detection to assess the 

chemical state of the holocellulose and lignin of the buried archaeological woods, together with 

SEM to aid in the interpretation of results and to provide an assessment of the preservation state 

of the physical microstructure of the woods. EA was used to analyse materials from waterlogged 

environments to assess the sulfur content in order to ascertain if there had been any 

accumulation of sulfur from the burial environment. 
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1.4 Archaeological textiles and leathers 

 

All extant animals have adapted to the climate in which they survive. The selection pressures of 

cold local climates have led to many different solutions to the problem of heat loss, whether it be 

fur, feather or fat. Humans are unique in their use of clothing to control the rate of heat loss from 

the body, a behaviour which has enabled Homo sapiens (and other extinct hominins) to spread to 

a vast range of environments. 

The earliest evidence of hominins wearing clothing is the genetic divergence of clothing lice from 

head lice, which occurred between 83,000 and 170,000 years BP (Toups et al., 2011). The earliest 

forms of artificial insulation probably came in the form of the furs and hides obtained from prey 

animals (Gilligan, 2010). As the methods of fashioning these raw materials into more suitable 

clothing progressed, the use of plant material or animal connective tissues as cordage and 

rudimentary stitching developed (Barber, 1991). The skills needed to perform these tasks 

probably evolved into the origins of weaving fibres into textiles (Gilligan, 2010). 

The oldest known textile materials are dyed flax fibres from Dzudzuana Cave, Georgia, which date 

from between 35,500 and 37,500 years BP (Kvavadze et al., 2009). Other examples of textile finds 

from prehistory are 8500 year old linen recovered from Namal Hemar, Israel (Schick, 1986), and 

8000 year old textiles from Çatal Hüyük, Turkey (Burnham, 1965). The routine use of sheep wool 

came about after the domestication of goats and the subsequent selective breeding to produce 

modern sheep, with the use of wool in Europe emerging between 3650-3100 BC (Pipes et al., 

2014). 
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1.4.1 Plant derived textiles  

1.4.1.1 Structure and composition 

Different structures and tissues from a range of plants can be used to create textiles. The most 

common plant textile in use in modern Europe is cotton (Smith and Cothren, 1999). Made from 

the seed pods of plants in the genus Gossypium (found in tropical and subtropical regions across 

the globe), cotton is almost entirely made of cellulose (95.5 – 99.9%), with very small quantities of 

lignin (0.3 – 0.5%) and hemicellulose (0.1 – 0.9%; de Morais Teixeira et al., 2010). The strong, yet 

fine, fibres of cotton enable it to be weaved into thin, comfortable materials. 

Before the modern dominance of cotton, textiles produced from the bast fibres of plants 

including flax (Linum usitatissimum) and hemp (Cannabis sativa) were commonly used for clothing 

as well as other domestic and commercial applications (Mohanty et al., 2005). Bast fibres (layer 5 

in Figure 11) run the entire length of the stem and have a higher lignin content than cotton (≈ 

2.2% for flax and 3.7 – 13.0% for hemp; Li et al., 2007), allowing them to impart structural 

strength to the stems of many plants. When harvested, the stems are beaten and the outer layers 

stripped away, allowing the bast fibres to be isolated. Bast fibres from flax are used to produce 

linen, a fabric which is still in use and was a major part of the economy on northern Europe before 

mass imports of cotton from Asia (Van der Wee and Aerts, 1978). 

 

Figure 11. A light microscopy cross section of a flax stem, showing the interior structure. Image key: 1 = pith; 
2 = protoxylem; 3 = xylem; 4 = phloem; 5 = bast fibres (sclerenchyma cells); 6 = cortex; 7 = epidermis. Image 
by McKenzie (2006) from the Wikimedia Commons. 
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1.4.2 Animal derived textiles and leathers 

1.4.2.1 The structure and composition of wool 

Textiles produced from the wool or hairs of animals are primarily made up of keratin proteins 

(Robbins, 2012). Proteins are long chains of amino acids linked by peptide bonds (Figure 12). 

There are 22 different amino acids that are incorporated into mammalian proteins, each having a 

different R group attached to the carbon adjacent to the nitrogen atom (Jakubke and Sewald, 

2008; Popescu and Wortmann, 2010). The R groups of the different amino acids lead to different 

intermolecular interactions, which then dictate the three dimensional folding and shape of the 

protein. Slight variations in the amino acid sequence of a protein can lead to vast differences in 

shape and geometry. The amino acids incorporated into proteins by biological systems are 

exclusively L-stereoisomers (Michal and Schomburg, 1999). 

 

Figure 12. The basic structure of a peptide, showing a chain of five amino acids. The R groups are the 
location of amino acid side chains, of which there are 22 different variants in biological systems.  

The structure of wool fibres is shown in Figure 13. The proteins of the cuticular layers have 

hydrophobic surface residues and a waxy coating which give wool and hair a water repellent 

quality and also enhances their resistance to microbial attack. The cells of the cortex are 

surrounded by the cell membrane complex which binds the cells together. Each cortical cell is 

made up of many macrofibrils, which in turn are composed of microfibrils. The microfibrils are 

bundles of protein chains that have a helical conformation (Robbins, 2012).  

Wool is very similar to hair, likely having evolved from the fur of the mouflon forbearers (Ovis 

orientalis orientalis) of modern sheep during selective breeding and domestication (Hiendleder et 

al., 2002). The hair from mammals other than sheep (including humans) has very similar fibre 

morphology, physical properties and chemical composition to wool, with some variation in the 

fibre diameter and component proteins (Menkart et al., 1966; Hearle, 2000; Adelson et al., 2004).  
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Figure 13. The structure and composition of wool fibres. Modified from Textile and Fibre Technology, CSIRO. 

When sheared from the host animal, wool is typically washed and mechanically agitated to 

remove dirt (Australian Wool Exchange, 2010). The overlapping cuticular scales of wool act like 

barbs, each fibre having much more friction when rubbed in the direction of the root than 

towards the tip of the shaft (Gupta, 2008). This enables wool fibres to be spun into yarn of a range 

of thicknesses, which can then be woven or knitted to form textiles. 

Felt is also produced from wool. Unlike spun woollen textiles, the raw wool is processed directly 

into sheets of material. As with wool spinning, felting relies on the friction of overlapping cuticles. 

The felting process involves the mechanical and chemical ‘roughing’ of the cuticular scales of wool 

fibres in order to create microscopic barbs that hold the material together (Schroeder et al., 

2004).   
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1.4.2.2 The structure and composition of leathers 

Leather is a material that is manufactured from the skins of animals, typically ruminants such as 

cattle and sheep, but can also be made from the skins of fish and other animals (Bienkiewicz, 

1983). The skin is a complex organ made up of many layers. For the purposes of the analysis of 

leather, a simplified cross section can be seen in Figure 14. The majority of skin is collagen, a 

protein in which three peptide chains interact by hydrogen bonding to form a triple helix (Rich 

and Crick, 1961). Bundles of triple helices stack to form a collagen fibril, which in turn forms layers 

of collagen fibres (Figure 14). Leather is produced from layers split from the dermis which have 

been processed to prevent the degradation of the native collagen (Haines, 2006). 

 

Figure 14. The composition of mammalian skin, showing the layers of collagen fibres that exist between the 
hair and the underlying flesh (Haines, 2006). 

Once the hide is removed from the animal it must be treated to prevent putrefaction. Liming 

involves soaking the skins in high pH solutions of calcium hydroxide and sodium sulfide, which 

degrades glycosaminoglycans, triglyceride fats and hair keratins (Covington, 1997). This leads to 

more supple leather and causes the collagen fibres to swell, allowing subsequent treatments to 

penetrate into the skin. The pH is reduced before treatment with proteolytic enzymes to degrade 

non collagenous proteins (such as globulins and elastin) which further softens the skin, a process 

carried out historically by the application of dog faeces (Covington, 1997).  

Once the skins have been pretreated the process of tanning begins. Until the discovery of 

chromium tanning processes in 1858, all leather was tanned by the application of plant extracts 

(Sreeram and Ramasami, 2003). These ‘vegetable tanning’ methods employ polyphenols that 

were typically extracted from the bark of trees (Covington and Covington, 2009). These 

polyphenols attach to the peptides of the collagen via hydrogen bonding and electrostatic 

interactions, which protect the protein from microbial attack (Covington, 1997). The tanned 

leather can then be split to give different exterior textures. Finishes such as dyes, polishes, waxes 

and oils are then applied depending on the intended purpose of the material. 
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1.4.3 Degradation of textiles and leathers 

The recovery of textiles and tanned skins from all but the most recent archaeological burials is 

rare. Both animal and plant derived materials are readily degraded by microfauna and 

unfavourable soil chemistry (Janaway, 2001). Biota present in burial environments secrete 

enzymes that cleave the peptide and disulfide linkages of proteinaceous materials. Bacterial and 

fungal cellulases readily degrade the cellulose of plant based materials by converting it into 

glucose (Schlegel, 1986). Any material that does remain does so due to a very specific range of 

conditions existing within the particular burial environment (Janaway, 1983). The conditions most 

noted for producing such preservation are typically extremes of moisture levels and temperature, 

which limit the growth of microorganisms (Janaway, 1983).  

Strongly acidic or basic conditions lead to the chemical hydrolysis of protein based clothing 

materials. Extremely high or low pH hydrolyses peptide bonds and some amino functional groups, 

and disrupts the disulfide bridges of cysteine that are integral to the structure of wool (Janaway, 

2001). Proteins are also susceptible to degradation in weak alkaline conditions (Cook, 1988). 

Mildly alkaline pH can lead to deprotonation, disrupting the ion-ion interactions and hydrogen 

bonds which define the three dimensional structures of the proteins. By contrast, proteinaceous 

materials are resistant to acid induced degradation when the pH is above 2, leading to their 

preservation in acidic soils (Sibley and Jakes, 1984; Janaway, 2001). Conversely, plant derived 

materials made of primarily cellulose will rapidly degrade in acidic environments, due to the 

susceptibility of the β-1,4 glycosidic bonds to acid hydrolysis (Cardamone et al., 1991). Plant 

textiles with lower cellulose contents and higher amounts of incorporated hemicellulose and 

lignin are marginally more resistant to acidic conditions, with a proportional increase in lability in 

alkaline conditions (Cook, 1988; Janaway, 2001). The preservation of cellulosic materials is 

therefore more favoured in alkaline environments. Lower temperatures slow the chemical 

modification of all materials (Janaway, 2001).   
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1.4.4 Analysis of textiles and leathers 

Methods of analysis differ depending on whether the material is derived from plant or animal 

tissues. In cases where the provenance of the material is not known, optical light microscopy and 

elemental analysis may be of use in differentiating between lignocellulose and protein based 

matter. 

1.4.4.1 EA 

EA is a relatively cheap bulk analytical technique that is widely available, making it an appropriate 

method for screening archaeological samples. Minimal sample preparation, automated running of 

large batches of samples and the ease of data analysis make the technique quick, easy and 

reliable. In all but the most heavily degraded materials there is sufficient difference in the 

elemental composition of plant and animal derived materials to differentiate between those 

composed of protein and those of lignocellulose composition. Based on the indications from the 

EA data, further analyses using more informative, polymer specific techniques can then be carried 

out. 

1.4.4.2 Py-GC 

Py-GC is widely regarded as one of the most suitable techniques for analysing plant polymers 

(Crighton, 1977; Hardin and Wang, 1989; Zhu et al., 2004; Sobeih et al., 2008). Unlike animal 

derived materials such as wools and skins – which are composed predominantly of proteins – 

plant based textiles are made up of a range of different polymers, with lignin and polysaccharides 

in the form of celluloses being the dominant species. These biopolymers are readily amenable to 

analysis by Py-GC. 

Detection of resolved species resulting from the pyrolysis of a material by MS is expensive, both in 

terms of the substantial initial cost of the instrumentation and in the costs of consumables and 

maintenance. Py-GC with more affordable means of detection (such as a flame ionisation detector 

(FID), nitrogen-phosphorus detector (NPD) or an electron capture detector (ECD)) make the 

technique more appealing and accessible. Without the benefit of compound identification by MS, 

Py-GC must rely on the use of standards to indicate the retention times and elution order of the 

chromatographed pyrolysis products. Comparison of the peak patterns (or ‘fingerprint’) with 

published Py-GC-MS data can also aid assignment (Sobeih et al., 2008). 

The Py-GC facilities at the University of York do not currently include MS detection capability; FID 

is used to detect but not directly identify the species resolved by GC. Py-GC-MS facilities at 

Newcastle University’s School of Civil Engineering and Geosciences were used to analyse selected 

samples of plant based materials. To aid in the interpretation of data produced using FID, the 

same method and a similar GC column were employed in both facilities.  
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1.4.4.3 RP-HPLC 

Many proteomic methods are available to study the component proteins of materials such as 

wool and leather. These generally involve enzymatic digestion of wool proteins to smaller peptide 

fragments, followed by analysis by mass spectrometric techniques (Solazzo et al., 2014). The 

peptide sequences are elucidated from their mass spectral fragmentation patterns, focusing on 

ions relating to losses of individual amino acids (Brandt et al., 2014). Such techniques require 

specialist and expensive equipment as well as complex data analysis.  

RP-HPLC analysis of the constituent amino acids can offer a cheaper and faster method of 

identifying changes to the compositions of certain proteins and to establishing degradation 

pathways (Marte, 2003; Demarchi et al., 2011).  

Amino acid analysis techniques are much more accessible to the archaeological community than 

other methods of analysis. Peptide analysis may be more informative but it is more costly to run, 

both in terms of the high cost of the equipment and in the consumables used per sample 

analysed. Peptide analysis is more challenging than amino acid analysis and takes a substantial 

amount of time in terms of sample preparation and data analysis. The ability to analyse a greater 

number of samples from a wider range of burial environments may allow more relevant and 

accurate conclusions to be drawn about the decompositions of organic clothing materials in 

archaeological burial environments.  

Amino acid composition data can be useful to determine the identity of unknown, amorphous 

materials that have no discernible weave or fibre structure (Tridico, 2009). This must, however, 

take account of alterations to the composition of materials by biologically mediated decay, as 

microorganisms can preferentially degrade certain tissues and substructures (Wilson et al., 2007a, 

Wilson et al., 2010). Hence, it is also important to gain an understanding of the degradation 

pathways and how they may affect the analysis. The modification or loss of the proteins that are 

attacked is detectable by a change in the amino acid composition of the remaining material. 

Peptides and proteins are cleaved during both biological and chemical deterioration of 

proteinaceous material. Cleavage of the polypeptide chain produces a greater number of terminal 

residues, most of which are vulnerable to racemisation (Bada, 1985a). With the exception of Asp 

and Ser, which have been shown to racemise in chain (Stephenson and Clarke, 1989; Demarchi et 

al, 2013), the racemisation of L form amino acids to a racemic mixture of D and L occurs 

predominantly in amino acids bound at the N-terminal position or free amino acids (Mitterer et 

al., 1984). Thus, increases in the D/L ratio of the amino acids that are not capable of in chain 

racemisation indicates that there has been some degree of cleavage of the component proteins. 

An increase in the D/L ratio with no observed change in the amino acid composition would 
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indicate a chemically induced decay of material, involving processes such as oxidation or 

hydrolysis.  

The total amino acid content per unit of mass of a protein based material decreases as it is 

degraded (von Holstein et al., 2014). Materials from the burial environment replace the lost 

structure or become incorporated into the voids created. This adds mass, leading to a measurable 

decrease in the amino acid content per unit of mass analysed. Samples that display a low total 

amino acid content are therefore likely to have undergone degradative processes. 

1.4.4.4 SEM 

SEM is an imaging technique that exploits the wavelength of electrons being orders of magnitude 

shorter than those of visible light photons. This generates an image resolution which enables 

structures to be viewed that are too small to been seen by optical microscopy (Rudenberg and 

Rudenberg, 2010). SEM studies of a range of archaeological textiles and animal hide materials are 

widely reported in the literature (Janaway, 1983; Wortmann and Arns, 1986; Bergfjord and Holst, 

2010). Such analysis can provide information of the type of fibre used, manufacturing methods 

and the preservation state. 

1.4.4.5 Techniques applied in this study to analyse textiles and leathers  

The main focus of the textile analysis was to investigate the chemical modifications that occur to 

polymeric organic materials in archaeological burials. To achieve this, a combination of elemental 

analysis and analytical pyrolysis were applied to differentiate between materials made from 

animal and plant derived tissues. Materials that were identified as being of animal origins were 

analysed by RP-HPLC to examine the amino acid compositions. Materials that were indicated to 

be made from plant matter were analysed by Py-GC-FID and Py-GC-MS. 

The ‘real world’, visible changes to these materials reflect the cumulative effects of chemical 

modifications. The interpretation of the chemical data can be further evaluated by looking for the 

cumulative effects on structures visible at the micrometre and nanometre scale. SEM is the best 

and most widely available technique to achieve this. Although the time and monetary expense 

per sample are high, it was hoped that the refinement offered to the interpretation of the data 

from chemical analytical techniques would justify the cost and that the published results will aid 

in the analysis of materials by others who may lack access to SEM.  
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1.5 Aims and objectives  

 

The overall aim of this project was to analyse the preservation state of the biopolymers of 

artefacts recovered from archaeological burials; objects which represent an underexploited 

repository of information. Attempting to understand how wood, textiles and leather have 

degraded in the ground may provide information on the conditions within the burial, 

complementing the data provided from the chemical and micromorphological analyses performed 

on the grave soils and giving insights into previous soil biota and the past conditions within the 

burial environment. Understanding how objects have been degraded during their interment is 

also an important factor in understanding any changes in the archaeological data (such as tool 

marks, the provenance of any textiles, and the species of wood used). This additional information 

may be critical in ensuring that archaeological evidence is appropriately interpreted.  

A better understanding of the decay of wood, textiles and leather also has the potential to aid in 

forensic cases, complementing information gained from the examination of the human remains. 

An additional benefit of better understanding the degradation processes that organic polymeric 

artefacts have undergone prior to excavation, is that the state of preservation of remains is often 

crucial for the conservation of these objects. This is particularly imperative for wood, where the 

application of appropriate treatments and preservatives depend on an accurate preservation 

assessment, enabling the better survival of these precious objects (Unger et al., 2001). 

In order to achieve this aim, the key objectives of this project were: 

 to analyse fragments of wood (Chapter 5), textiles and leather (Chapter 6) recovered from 

archaeological burials using appropriate analytical chemistry and imaging techniques; 
 

 to identify and examine the preservation state of organic materials placed in 

archaeological burials with human remains (Chapters 5 and 6); 
 

 

 to develop an understanding of the long term decomposition trajectories of different 

archaeological materials buried in a limited range of burial environments, and to compare 

this to data obtained from relatively shorter term burial experiments (Chapter 4); 
 

 to examine the potential information available from the chemical analysis of organic 

materials from archaeological inhumations and to assess its significance (Chapters 5 and 

6).
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CHAPTER 2 
 

 

2 EXPERIMENTAL  
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2.1 General laboratory procedures 

 

2.1.1 Reagents 

Unless stated otherwise, solvents used for analytical work were HPLC or AR grade (VWR 

International). HPLC grade water was deionised and filtered using a Millipore water purifier fitted 

with a 0.2 μm filter. Carrier gas used for all gas chromatography work was analytical grade (BOC 

Gases). Unless stated otherwise, reagents were supplied by Sigma Aldrich or Fisher Scientific. 

2.1.2 Glassware and tool cleaning 

All laboratory glassware and tools used to handle samples were extensively cleaned to remove 

any potential contaminants, using methods developed by Green (2013). Equipment was soaked 

for 24 hours in an aqueous solution of DECON 90 (1%, Decon Laboratories Ltd). The cleaning 

solution was removed by rinsing, in sequence, with copious amounts of tap water, deionised 

water and laboratory grade acetone followed by drying in air for approximately 2 hours. Dried 

glassware and tools were baked in a Pyro-Clean oven at 450°C for 6 hours (Barnstead/ 

Thermolyne Pyro-Clean). 
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2.2 Sample collection and preparation 

 

2.2.1 Sample collection 

Sampling of archaeological graves was carried out according to the protocol of the InterArChive 

project. Briefly, where possible, three control samples were collected to assess: the background 

organic matter content of non-grave fill soil (C1 in Figure 15a) and the soil from within the grave 

fill above the remains (C2 and C3 in Figure 15a). Soil samples were collected from as many of the 

17 standard points around the skeletal remains (Figure 15b) as possible. The vertical relationship 

of samples to the skeletal remains at each sampling point was designated as: x (above), y 

(adjacent) or z (below). Additional samples (designated with the prefix A) of any notable materials 

found within the grave fill were collected including, but not limited to, coffin wood, coffin fixtures 

and decoration, textiles and hair. Samples of stained areas within the grave fill were also sampled.  

All samples were lifted using trowels and placed directly into aluminium foil that had been 

cleaned by baking in a Pyro-Clean oven (Barnstead/Thermolyne Pyro-Clean) at 450°C for 6 hours. 

The foil was sealed by wrapping, and placed into geological sampling bags (Whirl-Pak, Nasco). 

Packaged samples were kept cool in the field using domestic cool boxes, before being frozen at -

20°C at the earliest available opportunity.  

 

 

Figure 15. Soil sampling positions in relation to the skeletal remains. a) C1 is a site control taken away from 
the grave fill, C2 and C3 are control samples taken from the grave fill above the level of the remains; b) 
locations of the 17 standard soil sampling positions for organic residue analysis. Image courtesy of Matt 
Pickering. 
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2.2.2 Sample preparation 

2.2.2.1 Subsampling 

Frozen samples were allowed to thaw at room temperature. Once thawed, small subsamples 

were removed using cleaned tweezers and blades. The subsamples were frozen at -20°C until 

required. 

2.2.2.2 Wood subsample processing 

Subsamples of wood were dried and ground using a method modified from those published by 

van Bergen et al. (2000) and Vane et al. (2000). Frozen subsamples of wood were freeze dried in a 

low pressure environment of approximately 1 hPa for 2 hours using a Thermo Heto PowerDry 

PL3000. Dried samples were ground to a fine powder with an agate pestle and mortar before 

storage at -20°C in sealed glass vials (cleaned as described in Section 1.2). 

2.2.2.3 Textiles and leather subsample processing 

Samples of suspected textiles and animal hide were cleaned using a protocol modified from that 

published by Hedges et al. (2005). Samples were placed in pre-cleaned 7 ml glass vials and 

sonicated (using a Decon F5100b sonic water bath) for 30 minutes in 1:2 DCM:methanol. After 30 

minutes, the solvent was poured off, replaced with 2:1 DCM:methanol and sonicated for a further 

30 minutes. Each step was repeated twice. Finally, samples were sonicated in HPLC water (× 3), 

before being freeze dried and stored at -20°C. 

2.2.2.4 Accelerated solvent extraction 

Dried samples were weighed into stainless steel cells (5 ml internal volume), which had been 

previously cleaned by sonication of component parts in acetone followed by blank extraction 

(using the following method). The cells were loaded on to the sample cell carousel of a 

Dionex/Thermo Scientific ASE 350 accelerated solvent extractor system and the system 

programmed to fill the cells to 50% volume with HPLC purity grade solvent before heating the 

cells to 100°C for 5 minutes. A nitrogen purge (1 minute) was used. The solvent from the heated 

cells was transferred by an automated needle arm into pre-cleaned 90 ml ASE vials. The 

extraction process was carried out three times on each individual cell using 9:1 (v/v) 

dichloromethane/methanol. The extracted samples were allowed to dry in air before analysis. The 

solvated residues were taken to dryness using a rotary vacuum concentrator (Christ RVC; 25°C; 

1500 rpm; 40 minutes) before being transferred to pre-weighed glass vials (cleaned as described 

in Section 1.2) using DCM (3 x 0.5 ml). Extracts were dried, weighed and stored at -20°C. 
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2.3 Elemental analysis 

 

Elemental analysis was performed using a Flash 2000 (CHNS/O) elemental analyser (Thermo 

Fisher Scientific) equipped with an MAS 200 autosampler unit, using a method developed by M. 

Pickering (unpublished data). A sequence of standards was run with each set of samples to check 

and calibrate the instrument. The standards included a bypass (an aliquot of standard to check 

the instrument functions), a blank (an empty, folded capsule), calibration standards (two 

compounds to check detector responses and the accuracy of peak integration) and a drift check 

standard (run after the final analytical sample in the sequence). A typical elemental analysis 

sequence, including standards, is outlined in Table 2. 

All standards and samples were weighed accurately using a 6 figure microbalance (Mettler Toledo 

XS3DU). The weighing utensils were cleaned between samples using DCM and lint free tissue 

(Kimtech Scientific). Samples were weighed into tin or silver soil capsules (depending on the type 

of analysis). The capsules were folded, using tweezers, and loaded into the autosampler.  

Table 2. A typical sample sequence used for elemental analysis. 

 

2.3.1 Carbon, hydrogen, nitrogen and sulfur (CHNS) analysis 

Standards and samples were weighed into tin foil capsules, sealed and loaded into the 

autosampler. Samples were analysed as described in Section 3. 

2.3.2 Total organic carbon (TOC) analysis 

Standards and samples were weighed into silver foil capsules and placed in a heating block. 

Aqueous HCl (18.5% w/v, 2 drops) was added to each capsule to remove inorganic carbon. 

Samples were heated to 80°C for 6 minutes to complete the reaction and remove excess HCl. 

Sequence 
no. 

Sample type Composition Notes 
Approx. mass 

(mg) 

1 Bypass Sulfanilamide Instrument check 2-3 

2 Blank Empty capsule - - 

3 Standard Sulfanilamide Calibrant 2-3 

4 Standard Sulfanilamide Calibrant 2-3 

5 Check standard Methionine Calibrant accuracy 2-3 

6 to n Samples for analysis Unknown Material for analysis 0.5-20 

n + 1 Drift check standard Methionine Calibration of drift 2-3 



 
67 

 

Once cooled, the capsules were folded and loaded into the autosampler for analysis (following 

the procedure outlined in Section 3). 

2.3.3 Oxygen analysis 

Standards and samples were weighed into silver foil capsules, sealed and loaded into the 

autosampler. The samples were analysed as described in Section 3. 
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2.4 Pyrolysis – gas chromatography 

 

2.4.1 Sequential thermal desorption/pyrolysis gas chromatography – 

flame ionization detection 

TD/Py-GC-FID was utilised to screen all archaeological samples in order to indicate the nature of 

the organic material and preservation state. Further sample analyses were performed based upon 

the results of the TD/Py-GC-FID analysis. The following methods were adapted from those 

reported by Buckley et al. (1999), van Bergen et al. (2000) and Arias et al. (2006).  

Quartz boats for analysis of samples were cleaned by heating in the pyrolyser to 1000°C for 15 s. 

Samples of organic materials (c. 0.5-2 mg) or soil (10-20 mg) were weighed into the pre-cleaned 

quartz boat and analysed using a CDS Pyroprobe 5150 coupled to a Thermo Scientific Trace GC 

Ultra gas chromatograph. The TD/Py-GC method was adapted from that of Buckley et al, (1999). 

Samples were subjected to thermal desorption at 290°C for 15 s then analysed by pyrolysis at 

610°C for 15 s in a flow of 9 ml/minute analytical grade helium. The valve oven, transfer line and 

GC inlet were held at 310°C. Separation of the species liberated was achieved using a fused silica 

capillary column (DB-5, 60 m x 0.32 mm i.d., 0.25 mm film thickness) with the oven temperature 

programmed as follows: 50°C (5 minutes) to 320°C (20 minutes) at a rate of 4°C/minute. The 

column carrier gas used was helium at a flow rate of 2 ml/minute. Species were detected using a 

flame ionisation detector and assigned by comparison of retention times and peak patterns with 

commercially available compounds known to be produced by lignin pyrolysis (Sigma Aldrich), 

subsequently collected Py-GC/MS data (see Chapter 2.4.3 and Chapter 3.1.4) and published data 

(Ralph and Hatfield, 1991; van Bergen et al., 2000; del Rio et al., 2002; Vane et al., 2003; Arias et 

al., 2006).  

2.4.2 Pyrolysis – gas chromatography – flame ionization detection 

No thermal desorption was carried out prior to the pyrolysis. The pyrolysis temperature applied 

was dependant of the type of material being analysed (Table 2). All other Py-GC conditions and 

peak assignment methods were the same as those used for TD/Py-GC (outlined Section 4.1).  

Table 3. Pyrolysis temperatures for the various materials analysed. 

Material type Pyrolysis temperature (°C) 

Wood 610 

Plant-based textiles 750 

Soil 
Dependent on the material contained within 

the soil matrix 
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2.4.3 Pyrolysis – gas chromatography – mass spectrometry 

Samples of organic materials (c. 0.5-2 mg) or soil (10-20 mg) were weighed into quartz tubes and 

plugged with defatted glass wool. The sample tubes were placed into the filament of a CDS 

Pyroprobe 1000, which was inserted into a CDS1500 valved interface, connected to a Hewlett-

Packard 6890 gas chromatograph. Samples were subjected to pyrolysis at 610°C for 15 s in a flow 

of 9 ml/minute analytical grade helium. The valved interface and GC inlet were held at 310°C. 

Separation of the species liberated was achieved using a fused silica capillary column (HP-5, 60 m 

x 0.25 mm i.d., 0.25 mm film thickness), with the oven temperature programmed as follows: 50°C 

(5 minutes) to 320°C (20 minutes) at a rate of 4°C/minute. The column carrier gas used was 

helium at a flow rate of 1 ml/minute. Species were detected using a Hewlett-Packard 5973 mass 

selective detector with the following set values: electron voltage 70 eV, filament current 220 μA, 

source temperature 230°C, quadrupole temperature 150°C, multiplier voltage 2200 V and 

interface temperature 320°C. The acquisition was controlled by a HP kayak xa Chemstation 

computer in full scan mode (50-650 amu). Total ion chromatogram (TIC) data were assigned by 

comparison of mass spectra with the NIST 08 database and the online NIST Mass Spectrometry 

Data Center Reference Database (NIST WebBook; National Institute of Standards and Technology, 

USA), and by comparison of retention times and peak patterns with published data (Ralph and 

Hatfield, 1991; van Bergen et al., 2000; Vane et al., 2003; Arias et al., 2006). 
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2.5 Amino acid analysis 

2.5.1 Sample preparation 

Cleaned samples were accurately weighed into pre-cleaned 2 ml vials, and 7 M HCl (200 μl per mg 

of sample) was added. Sample vials were purged with nitrogen, sealed with Teflon lined lids and 

incubated at 110°C for 18 hours to hydrolyse the peptide bonds between the constituent amino 

acids. The caps were re-tightened after the vials had been in the oven for 10 minutes. After the 

hydrolysis time had elapsed, the samples were removed from the oven dried using a rotary 

vacuum concentrator (Christ RVC; 25°C; 1500 rpm). Dried, hydrolysed samples were stored at -

20°C. 

For analysis by reversed phase HPLC, samples were solvated in rehydration buffer (200 μl per 1 

mg of pre-hydrolysis sample mass) and diluted 1 in 20 with the same buffer. The rehydration 

buffer contained 0.01 M HCL, 1.5 mM sodium azide and 0.01 mM L-homoarginine (used as an 

internal standard) in HPLC water.  

2.5.2 Reversed phase high performance liquid chromatography 

The amino acid compositions of the hydrolysed samples were analysed by revered phase HPLC, 

using a modification of the method of Penkman et al. (2008) for unbleached samples. An Agilent 

1100 series HPLC fitted with a degasser, quaternary pump, autosampler unit, temperature 

controlled column compartment and a fluorescence detector was used. The fluorescence detector 

utilised a xenon-arc flash lamp at 55 Hz, with a 280 nm cut off, 230 nm excitation wavelength and 

a 445 nm emission wavelength. 

Samples were derivatised online by drawing 1.1 μl of derivatising agent (260 mM N-iso-L-butyryl 

L-cysteine, 170 mM o-phthaldialdehyde in 1 M potassium borate buffer, pH adjusted to 10.4 

(±0.01) using potassium hydroxide), 2 μl of sample and a further 1.1 μl of derivatising agent into 

the sample injection loop, and mixing 13 times using needle aspiration. Separation was achieved 

using a HyperSil BDS C18 column (250 mm x 3 mm i.d., 5 μm particle size, 120 Å pore size) held 

isothermally at 25°C. A ternary solvent gradient was used, consisting of sodium acetate buffer (23 

mM sodium acetate trihydrate, 1.5 mM sodium azide, 1.3 μM EDTA, adjusted to pH 6.00 ±0.01 

with acetic acid and sodium hydroxide), methanol, and acetonitrile (see Table 4). Fluorescence 

data was collected for the first 95 minutes, with the remaining 20 minutes being used to 

equilibrate the column for the subsequent run. Blanks and standards were analysed periodically 

throughout the analyses. 
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Table 4. The tertiary solvent gradient of sodium acetate buffer, methanol and acetonitrile used in the elution 
of derivatised amino acids. 

Run time 
(minutes) 

Flow rate 
(ml/minute) 

% A 
(sodium acetate buffer) 

% B 
(methanol) 

% C (acetonitrile) 

0 0.56 95.0 5.0 0.0 

31 0.56 76.6 23.0 0.4 

95 0.60 46.2 48.8 5.0 

95.9 0.60 0 95.0 5.0 

99 0.60 0 95.0 5.0 

100 0.60 95.0 5.0 0.0 

115 0.56 95.0 5.0 0.0 
 

Asparagine and glutamine undergo deamidation during the hydrolysis procedure, forming aspartic 

acid and glutamic acid respectively. Asparagine and aspartic acid are reported collectively as Asx, 

glutamine and glutamic acid are reported as Glx. The amino acids detected and their three letter 

abbreviation codes are shown are shown (in order of elution) in Table 5. 

Table 5. The amino acids detected using the RP-HPLC method and their abbreviation codes. The amino acid 
retention time increases down the table, with the first eluting at the top and last eluting at the bottom. 

Amino acid Amino acid abbreviation 

L-asparagine and L-aspartic acid  L Asx 

D-asparagine and D-aspartic acid D Asx 

L-glutamine and L-glutamic acid L Glx 

D-glutamine and D-glutamic acid D Glx 

L-serine L Ser 

D-serine D Ser 

L-threonine L Thr 

Glycine Gly 

L-arginine L Arg 

D-arginine D Arg 

L-alanine L Ala 

L-homoarginine L hArg 

D-alanine D Ala 

L-tyrosine L Tyr 

L-valine L Val 

L-methionine L Met 

D-methionine D Met 

D-valine D Val 

L-phenylalanine L Phe 

L-isoleucine L Ile 

D-phenylalanine D Phe 

L-leucine L Leu 

D-alloisoleucine D AIle 

D-leucine D Leu 
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2.6 Scanning electron microscopy 

 

Subsamples for SEM were cleaned by washing with three portions of deionised water in 7 ml glass 

vials. Samples were immersed in water, agitated by gentle shaking to remove surface debris and 

the water was decanted. This procedure was repeated two more times with fresh portions of 

deionised water. Textile samples were placed in watch glasses, covered with loose fitting lids and 

allowed to air dry for 24 hours at room temperature and pressure. Wood samples were prepared 

using a general method under the supervision of M. Stark (personal communication, September 

2015). Samples were immersed in a fixative solution of 4% paraformaldehyde and 2.5% 

glutaraldehyde in 100 mM phosphate buffer at pH 7 for 3 hours, after which the liquid was 

decanted and replaced with fresh 100 mM phosphate buffer and left to stand for 30 minutes. The 

buffer was decanted and replaced a total of two times. The samples were dehydrated using 

solutions of increasing concentration of acetone: 25%, 50%, 70%, 90% and 100% (v/v in deionised 

water). Thus, samples were covered in each acetone solution for and left for 15 minutes. The 

acetone solution was decanted and the next, more concentrated, acetone solution was added. 

The final 100% acetone soak was repeated a total of 3 times. The dehydrated samples were dried 

using an E3000 carbon dioxide critical point dryer (Quorum Technologies). The acetone immersed 

samples were held at 10°C under 8 MPa of CO2 for 1 hour. The samples were then heated to 32°C 

before the CO2 was vented. 

Dried samples were cut with razor blades and mounted to aluminium stubs using epoxy resin. 

Surface imaging samples were mounted horizontally and adhered directly to the stub. Cross 

sectional samples were stuck to the vertical face of copper tape that was bent at a 90 degree 

angle into an L shape, the bottom of the tape was attached to the stub. Samples were earthed 

using Acheson Silver DAG glue (Agar Scientific). A 7 nm layer of gold/palladium was applied to the 

mounted samples using a Quorum SC7640 sputter coater (Quorum Technologies). Images were 

obtained under vacuum using a JSM-6490LV scanning electron microscope (JEOL Incorporated).
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CHAPTER 3 
 

 

3 METHOD DEVELOPMENT  
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3.1 Pyrolysis – gas chromatography 

 

3.1.1 Selection of pyrolysis temperatures for the analysis of wood and 

plant based textiles 

Pyrolysis temperatures of 450°C to 800°C are widely reported in the analysis of woods (Shedrinsky 

et al., 1989; Alves et al., 2006; Łucejko et al., 2009). Temperatures below 500°C have been 

reported to give poor yields of guaiacyl type subunits, which would lead to an overestimation the 

abundance of syringyl subunits (Shedrinsky et al., 1989). Temperatures above 750°C give the best 

yields of cellulose whereas temperatures in excess of 800°C result in excessive fragmentation of 

the lignin subunits, reducing their diagnostic value and limiting the information available 

(Shedrinsky et al., 1989). A balance between maximising pyrolytic yields of holocellulose and 

lignin whilst minimising further thermal degradation of compounds was therefore sought.  

Analyses of buried, degraded and archaeological lignocellulose materials using temperatures of 

610°C were reported to give representative yields of all wood biopolymers whilst limiting the 

thermal breakdown on the released subunits (Saiz-Jimenez et al., 1987; van Bergen et al., 2000; 

del Rio et al., 2001). As a result, analytical pyrolysis of woods in this study was performed at 

610°C.  

The predominance of cellulose in textiles made from plant fibres requires a higher pyrolysis 

temperature than wood to provide an accurate assessment of the cellulose content. The pyrolysis 

of these materials is commonly carried out at 750°C (Hardin, 1996; Morrison and Archibald, 1998; 

Wampler, 2006). A pyrolysis temperature of 750°C was used for the analysis of all plant derived 

textiles. 
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3.1.2 Removal of non-polymeric components from wood prior to Py-GC 

analysis 

The non polymeric, extractable compounds commonly found in fresh woods include lipids (fats, 

fatty acids and alcohols, waxes), terpenoids, flavonoids as well as the phenolic precursors of lignin 

polymers (Fiebach and Grimm, 2000). These non-polymeric compounds account for 

approximately 1% of the mass of fresh wood (Todaro et al., 2013; Kebbi-Benkeder et al., 2015). 

The porous nature of wood makes it highly like that a significant amount of non-polymeric 

residues from the burial environment will have been incorporated into archaeological wood 

samples collected during the InterArChive project. The polymer breakdown and subsequent 

thermal transformations that occur during analytical pyrolysis lead to highly complex pyrograms 

with large numbers of peaks (Moldoveanu, 1998; Wampler, 2006). The presence of non-polymeric 

components further convolute the data, with the possibility of coelution of peaks that are key to 

the analysis of preservation state of the wood polymers. To avoid such issues, non-polymeric 

components are removed from samples prior to analysis (Wampler, 2006). 

Thermal desorption (TD) is used to liberate volatile or loosely bound compounds, allowing for 

their analysis by gas chromatography. In the analysis of wood samples, TD can be used to remove 

volatile, non-polymeric compounds from the material prior to analysis of the structural polymers 

by pyrolysis (Pe´rez-Coello et al., 1997). Removal of the volatile compounds is necessary as they 

can compromise data analysis due to coelution and increased complexity in the pyrograms. This is 

of particular concern in the archaeological materials where a wide range of unknown compounds 

may have been transferred into the wood from the burial environment.  

A substantial proportion of the wood fragments recovered as part of the InterArChive project’s 

sampling were very small (less than one gram). Testing with solvent extraction techniques 

demonstrated that such small samples often yielded insufficient material for analysis by analytical 

pyrolysis. The suitability of sequential thermal desorption – pyrolysis – gas chromatography 

(TD/Py-GC) techniques in the analysis of milligram scale archaeological lignocellulose samples 

using TD at 290°C has been demonstrated in previous studies (Wilson et al., 1993; Buckley et al., 

1999; Colombini et al., 2003; Łucejko et al., 2009; see Chapter 1.3.5.6). Compared with other 

methods (such as solvent extraction) TD is rapid (taking 15 to 30 seconds) and requires no 

additional sample pretreatments that are costly in terms of time and consumables. Temperatures 

greater than 350°C are typically avoided to prevent pyrolytic degradation of the sample; 

temperatures below this will desorb any volatiles or loosely bound residues – such as degraded 

polymer fragments which would erroneously contribute to quantitation of the remaining intact 

polymer – that are not fully incorporated into the polymer. (Saiz-Jimenez, 1994; Hays et al., 2003; 

Yokoi et al., 2003; High, 2014). As a result of this, it was decided that all archaeological wood 
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samples would need to be pre-treated by thermal desorption to remove the extractable 

components. 

One of the approaches employed in the InterArChive project involved the analysis of organic 

residues contained within burial soils. This is achieved by accelerated solvent extraction, followed 

by derivatisation and analysis of the extracts by GC-MS (Pickering et al., unpublished). In certain 

cases, the non-polymeric components of the woods needed to be analysed by other InterArChive 

project team members to identify compounds that may have leached into the coffin woods from 

the burial matrices. In addition to the analysis of the archaeological materials, the InterArChive 

project conducted a series of burial experiments that used piglets as human proxies. The majority 

of these burials featured a wooden box, which enclosed the piglet and replicated the conditions 

experienced in coffined human burials. The analysis of the wood from these coffins was one of 

the objectives of this thesis (see Chapter 4). Concomitant with these analyses, other members of 

the InterArChive team analysed the solvent extractable components of the materials sampled 

from the experimental burials, among which was the wood from the coffins. The removal of 

modern wood treatments and adhesives from the experimental piglet burial coffins was also of 

concern, as was the removal of conservation treatments applied to wood samples from the 

Hanson Logboat (see Chapter 5.8). These requirements meant that solvent extraction by ASE had 

to be carried out on the piglet coffins and wood from the Hanson Logboat.  

Given that the archaeological woods had to be cleaned using TD and the piglet coffins had to be 

solvent extracted with ASE, the question was posed: will treating some woods with TD and others 

with ASE lead to sufficient differences in the analytical pyrolysis data to prevent comparison of 

the two datasets? As a result of this, the analytical pyrolysis data following pre-treatment with TD 

and ASE was evaluated.  

Samples of modern pine and modern oak were pyrolysed after pre-treatment with TD and ASE, 

according to the procedures outline in Chapter 2.4. Pyrograms and lignin subunit compositional 

data for the analyses of modern pine are shown in Figure 16 and Figure 17 respectively. The data 

for modern oak are not shown but display similar trends to those observed in the modern pine.  
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Figure 16. Partial Py-GC-FID pyrograms of modern pine, showing the differences with no sample pre-
treatment, pre-treatment with TD at 290°C and pre-treatment with ASE. LG = levoglucosan, a pyrolysis 
product of cellulose. 
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Figure 17. Lignin subunit percentage compositions for modern pine pyrolysed after no pre-treatment, after 
TD at 290°C and after ASE. The values were calculated from the pyrograms shown in Figure 16, by 
normalising the peak areas of individual lignin subunits to the sum of the peak areas for all G lignin derived 
peaks. Error bars represent +/- 1 standard deviation from n=2 replicate analyses. 

Both TD and ASE remove the majority of the non-polymeric compounds from the modern pine, 

with ASE removing slightly fewer extractable compounds than TD. The pyrograms obtained 

following TD at 290°C and ASE show differences in the relative amounts of some of the lignin 

peaks compared with the material analysed without pre-treatment. For modern pine that had 

been subjected to thermal desorption, the relative abundances of peaks corresponding to 

guaiacyl compounds 1 (4-methylguaiacol), 4 (4-vinylguaiacol), 7 (4-propenylguaiacol) and 12 

(guaiacylpropanol) are statistically lower than in the pyrogram of pine that had not been 

thermally desorbed (Student’s t tests; all p values <0.05). ASE extraction of the modern pine also 

reduced the relative amounts of 1 (4-methylguaiacol) and 12 (guaiacylpropanol) that were 

recovered. Although low temperature pyrolysis of lignocellulose materials has been reported to 

occur at temperatures as low as 350°C (Arias et al., 2006), the lower yields of 1 (4-methylguaiacol) 

and 12 (guaiacylpropanol) after ASE extraction suggests that these components are lignin 

precursors, not structural polymers. Thus they are not incorporated into the polymer and are 

removed by both solvent extraction and TD at 290°C. The lower abundances of 4 (4-vinylguaiacol) 

and 7 (4-propenylguaiacol) on the pyrogram following TD are likely due to the losses of non-

structural lignin residues that are loosely bound to the lignin polymer being removed by the TD 

and not the ASE (Arias et al., 2006). The increases of the abundances of some guaiacyl compounds 

in the ASE and TD treated woods are likely due to the large decreases in G1 altering the overall 

percentage compositions of other compounds.  

The use of TD at 290°C and ASE to remove volatile compounds prior to pyrolysis seems to have 

little detrimental effect on the structural wood polymers. Some differences are apparent in the 
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compositions of the lignin pyrolysis products when the two methods of pre-treatment are 

employed, although the differences are small in comparison to the values of the relative 

abundances. As a result of these analyses it was decided that using ASE to remove residues from 

the wood of the piglet coffins and TD in the archaeological materials may have some impact on 

the comparison between the two data sets; although the differences are small, comparisons using 

multivariate statistical methods should be interpreted with caution. 
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3.1.3 Analysis of pyrolysis – gas chromatography data 

Since the advent of FID in the 1950s it has become the most widely used detection method for 

compounds resolved by GC (Crockford et al., 2006). FID is cheap by comparison with other 

detection methods and offers an excellent lower limit of detection, good reproducibility and 

detects all organic compounds in a predictable manner (Pacchiarotta et al., 2010). The universal 

detection of organic molecules makes FID an excellent technique for quantitative analysis of 

complex mixtures. The primary limitation of FID is that it offers no structural information on the 

analytes, with peak identification relying on the comparison of retention times and peak profiles 

with those of standards and published data (Harris, 1999).  

MS detection allows for the identification of analytes based on their masses and the masses of 

fragment ions as a result of ionisation (Higson, 2004). Hence, MS detection is invaluable in 

determination of the molecular structures of unknown components (Higson, 2004). The benefits 

of compound identification are offset by the lower limit of detection, lower reproducibility and 

differences in ionisation efficiency (Pacchiarotta et al., 2010). Resolved compounds that are not 

readily ionised are detected in lower abundance or not detected at all, leading to inaccurate 

quantitation. MS detectors are also expensive, with basic mass selective detector (MSD) units 

typically costing more than the accompanying GC. 

The primary Py-GC system used during this project was fitted with an FID. To aid with the 

identification of the peaks in the FID generated pyrograms, a sample of wood from each 

archaeological site, as well as a series of modern gymnosperm and angiosperm woods were 

analysed by Py-GC-MS using the same instrument settings and column type (Figure 18a). The 

individual peaks of the Py-GC-MS total ion chromatograms (TICs) were identified by comparison 

with data from the NIST 08 mass spectral library (NIST, 2008) and the online NIST Mass 

Spectrometry Data Center Reference Database (NIST WebBook). Selected mass spectra of peaks 

from the TIC of modern oak are shown in Figure 19. 

Each day that Py-GC-FID data was acquired, 5 µl of a solution of hexane containing phenol (P), 

guaiacol (G), 4-methylguaiacol (G1), 4-ethylguaiacol (G2), 4-vinylguaiacol (G3), syringol (S), cis-4-

propenylguaiacol (G6), 4-methylsyringol (S1) and trans-4-propenylguaiacol (G7) was pyrolysed. All 

of these compounds are known to be produced by the pyrolysis of lignin (Vane et al., 2003). This 

standard mixture (Figure 18b) allowed for the retention times of seven lignin peaks to be 

accurately identified. The remaining peaks in the FID pyrograms were identified by comparison of 

the retention times and peak order with those in the MS data.  
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Figure 18. Partial pyrograms of a – modern oak acquired using Py-GC-MS, b – the pyrolysis standard mixture 
acquired using Py-GC-FID and c – modern oak acquired using Py-GC-FID. 
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Figure 19. Selected mass spectra from the total ion chromatogram of pyrolysed modern oak.  
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3.1.4 Modern analogues for archaeological woods 

The identification of woods is typically performed by preparation of thin sections and examining 

the microfeatures using transmission light microscopy. There is often difficulty in determining the 

exact species, genus and even family of tree a wood has come from using microscopic techniques, 

as cellular structure varies in response to a range of environmental stresses (Blanchette et al., 

1994; Yeh et al., 2006; Foston et al., 2011; Cartwright, 2015). Processes that affect wood in 

archaeological burial environments include shrinkage, swelling and collapse of the cellular 

structure due to decay or compression, further complicating the identification of wood (Florian, 

1990; Schoch, 2011). As a result of this, the identifications provided by such analyses can be 

unreliable. Preparation of the samples is also very difficult, especially for archaeological woods 

which are often heavily degraded and too fragile to produce the thin sections required 

(Cartwright, 2015; Braovac et al., 2016).  

Small variations in S:G ratios have been found between different Eucalyptus globulus trees and in 

wood taken from different sites within the same tree. Such differences are, however, very limited 

compared with the changes in S:G ratios that occur during wood decay (Rodrigues et al., 1999; 

van Bergen et al., 2000). The differences in the relative abundances of long chain, short chain, 

carbonyl, demethylated and demethoxylated subunits in lignin between wood from trees of the 

same genus (gymnosperm or angiosperm) is very small compared to the changes that are the 

result of degradation within burial environments (Braovac et al., 2016). The lack of chemical 

variation is most likely due to the different species of tree of the same genus having evolved from 

a common ancestor, resulting in them possessing very similar lignin biosynthetic pathways 

(Higuchi, 1990; Bojeran et al., 2003).  

Braovac et al. (2016) found that comparison of pyrolysis data from unidentified archaeological 

woods with a range of modern angiosperm woods provided a sufficient level of certainty to draw 

conclusions regarding the degradation of the wood. The analysis of lignin derived pyrolysis 

products, individually or as groups, indicated that the variations caused by degradation far 

outweighed species variation. 

The chemical variation within the holocellulose content of woods is, like that of lignin, very 

limited. There is, however, clear variation in the holocellulose to lignin ratio (H:L; Fengel and 

Wegener, 1983; Braovac et al., 2016). The percentage composition of lignin and holocellulose in 

woods has been shown to vary between trees of the same type grown in different locations 

(Campbell et al., 2007). Variation in the biopolymer percentages also exists across the diameter of 

a tree trunk: in the heartwood and sapwood, in normal, tension and compression wood and at 

different heights within the same tree (Yeh et al., 2006; Campbell et al., 2007; Foston et al., 2011). 

These variations in composition indicate that care must be taken when comparing the 
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holocellulose and lignin contents of wood. As a result of this, only qualitative assessment of the 

holocellulose fraction in the archaeological wood samples was carried out, with comment only 

being made when the peaks in the carbohydrate region (due to cellulose and hemicellulose) and 

the levoglucosan peak (from cellulose) were significantly different in intensity to those in the 

modern comparator of the same genus. 

To summarise, modern angiosperm or gymnosperm wood of any species will provide a sufficient 

comparison for archaeological wood of the same type. The chemical lignin variation between 

species is negligible compared with the changes brought about by degradation processes, 

allowing semiquantitative analysis to be carried out. The variation in cellulose and hemicellulose 

contents of woods are such that only large changes in the relative compositions of holocellulose 

and lignin should be interpreted as being due to degradation processes. As a result of this, only 

large differences between the holocellulose contents of archaeological woods and their the 

modern analogues were interpreted as being due to decay. 
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3.1.5 Definition of error in TD/Py-GC analysis of archaeological woods 

The small size of the wood fragments recovered from the majority of archaeological burials, 

combined with limitations of time and resources meant that replicate analyses were not possible 

for the majority of archaeological wood samples analysed by Py-GC. Replicate analyses of each 

sample of archaeological material would be the best method of investigation, as it would have 

enabled an understanding of the accuracy of the data collected from each sample and for more 

robust statistical comparisons to be employed. Lack of repeat analyses mean that no exact 

confidence interval can be defined for the analysis of each sample and no exact error limits can be 

calculated. To mitigate against this, samples of modern and archaeological gymnosperm wood 

(Figure 20), as well as modern and archaeological angiosperm wood (Figure 21) were subjected to 

repeat analysis by TD/Py-GC-FID (using the methods outline in Chapter 2.4.1), in order to examine 

the potential variation and to establish a set of standard errors that could be applied to the data 

from other samples of archaeological wood for which replicate analyses were not possible. 

The standard deviations for respective subunit composition means are similar in the modern and 

archaeological material for both gymnosperm and angiosperm woods. This suggests that the 

variation in TD/Py-GC analyses of the other archaeological woods (Chapter 5) may also be similar. 

Clear differences are apparent between the compositions of the modern and archaeological 

materials for both wood types, all the differences being statistically significant to a confidence 

level of at least 95% (Student’s t tests; all p values <0.05). The +/- 1 standard deviation error bars 

are very small by comparison with the differences seen between both modern and the 

archaeological woods. Although the error bars applied based on these repeat analyses will likely 

not reflect the exact error that would have been observed if repeat analyses were performed for 

each individual archaeological wood sample, the large difference between modern and 

archaeological materials likely mean that errors calculated for these materials will be sufficient to 

characterise the within-sample variation for the majority of archaeological woods where such 

large differences are apparent. This approach is far from ideal. It will, however, account for any 

variation that occurs due to systematic errors inherent to the instrumentation and methods used. 

Results will therefore be interpreted with caution, especially in cases where there is little 

difference between the archaeological material and the modern comparator. Any hypotheses 

made based on the analytical pyrolysis data will also be tested using SEM. 
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Figure 20. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds detected in three replicate Py-GC-FID analyses of an archaeological gymnosperm wood from 
grave 7464 in Sala, Sweden (see chapter 5.6) and modern pine. Lignin pyrolysate compound classifications 
are given in Table 6. Values are calculated as a percentage of the total area of lignin derived peaks in the 
pyrograms. Error bars represent +/- standard deviation. 

 

Table 6. Classifications of the detected compounds resulting from the pyrolysis of gymnosperm woods. 

Compound Classification 

Toluene (T) Demethoxylated/short 

Phenol (P) Demethoxylated/short 

2-Methylphenol Demethoxylated/short 

3-Methylphenol Demethoxylated/short 

Guaiacol (G) Short 

4-Methylguaiacol (G1) Short 

Catechol (C) Demethylated/short 

4-Ethylguaiacol (G2) Short 

4-Vinylguaiacol (G3) Short 

4-Allylguaiacol (G4) Long 

4-Propylguaiacol (G5) Long 

4-Formylguaiacol (G6) Carbonyl 

trans-Isoeugenol (G7) Long  

4-Acetylguaiacol (G8) Carbonyl 

Vanillic acid-methyl ester (G9) Ester/long 

Guaiacylacetone (G10) Carbonyl/long 

cis-Coniferyl alcohol (G11) Long 

Guaiacylpropanol (G12) Long 

trans-Coniferyl alcohol (G13) Long 

Coniferyl aldehyde (G14) Carbonyl/long 
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Figure 21. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds detected in three replicate Py-GC-FID analyses of an archaeological angiosperm wood from 
grave 421 in Thaon, France (see chapter 5.7) and modern oak. Lignin pyrolysate compound classifications 
are given in Table 7. Values are calculated as a percentage of the total area of lignin derived peaks in the 
pyrograms. Error bars represent +/- standard deviation. 

Table 7. Classifications of the detected compounds resulting from the pyrolysis of angiosperm woods. 

Compound Classification 

Toluene (T) Short/Demethoxylated 

Phenol (P) Short/Demethoxylated 

2-Methylphenol Short/Demethoxylated 

3-Methylphenol Short/Demethoxylated 

Guaiacol (G) Short 

(G1) 4-Methylguaiacol Short 

(MC) Methoxycatechol Demethylated 

(G2) 4-Ethylguaiacol Short 

(G3) 4-Vinylguaiacol Short 

(S) Syringol Short 

(G4) 4-Allylguaiacol Long 

(MC1) 4-Methylmethoxycatechol Demethylated 

(G5) 4-Formylguaiacol Carbonyl 

(G6) cis-Isoeugenol Long 

(S1) 4-Methylsyringol Short 

(G7) trans-Isoeugenol Long 

(G8) Acetoguaiacone Carbonyl 

(MC3) 4-Vinylmethoxycatechol Demethylated 

(S2) 4-Ethylsyringol Short 

(S3) 4-Vinylsyringol Short 

(S4) 4-Allylsyringol Long 

(S5) Syringaldehyde Carbonyl 

(S6) cis-4-Propenylsyringol Long 

(S7) trans-4-Propenylsyringol Long 

(S8) Acetosyringone Carbonyl 

(S9) Syringylacetone Long/carbonyl 

(S10) Propiosyringone Long/carbonyl 
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3.2 Amino acid analysis 

 

3.2.1 Wool protein hydrolysis: evaluation of the time required 

Whilst Py-GC and EA can give indications as to whether an unidentified material is of plant or 

animal origin, as well as limited data on degradation relative to modern materials, a method to 

accurately quantify the amino acid content of proteinaceous materials was required. The North 

East Amino Acid Racemisation Laboratory (NEaar) based in York has developed a method to 

analyse the amino acid content of hydrolysed protein samples (Penkman et al., 2008). The 

method allows both the amino acid composition and the relative ratios of the D and L forms of 

most of the amino acids to be determined. Racemisation of the biological configuration (L form) 

amino acids to produce a racemic mixture of D and L amino acids occurs naturally over time. For 

the majority of the constituent amino acids in proteins, racemisation can only occur when the 

residue is in the C or N terminal position, with N- terminal residues racemising faster than their C-

terminal counterparts (Bada, 1985b). The racemisation half lives of many amino acids are too long 

to be of use for samples from the most recent archaeological time periods. For example, the 

racemisation of Ile in bone collagen is approximately 100 ka at 20°C (Bada et al., 1973). Asp, Asn 

and Ser have been shown to undergo in-chain racemisation (Demarchi et al., 2013) at rates that 

would be appropriate for dating archaeological materials. Comparison of the D/L values of amino 

acids liberated by hydrolysis of modern materials with those obtained from analogous 

archaeological materials allows the extent of peptide bond hydrolysis to be assessed. Degradation 

by hydrolysis of peptide bonds would lead to a greater number of N-terminal residues being 

generated, increasing the number of amino acids able to undergo racemisation and generating 

higher D/L ratios than those of modern standards.  

The method outlined by Penkman et al. (2008), involving hydrolysis for 24 hours at 110°C in 7M 

HCl, was established for materials with significantly lower protein contents than textiles, hair and 

hide products. In theory, longer hydrolysis times break more peptide bonds, releasing more of the 

amino acids that comprise the material (Fountoulakis and Lahm, 1998). In particular, peptide 

linkages between the hydrophobic residue Val and Ile are difficult to cleave, giving only 50 – 70% 

recovery when a 24 hour hydrolysis at 110°C is employed (Hirs et al., 1954). Amino acids racemise 

rapidly during hydrolysis at 110°C (Kaiser and Benner, 2005) and acid labile amino acids such as 

Ser, Thr and Tyr are partially destroyed, incurring increasing losses as the hydrolysis time is 

extended (Hunt, 1985; Fountoulakis and Lahm, 1998; Darragh and Moughan, 2005). The ideal 

hydrolysis time for the archaeological materials examined in this study would maximise amino 

acid yield whilst minimising racemisation and destruction of amino acids. 
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An investigation into a suitable hydrolysis time (TH) for protein based materials was carried out 

using modern sheep wool from a single breed (Herdwick Tops) and a sample of archaeological 

wool that had been buried for approximately one hundred years in a First World War mass grave 

at Fromelles, Northern France (Chapter 6.2). Samples were incubated in an oven maintained at 

110°C for 6, 18, 24 and 48 hours. The percentage compositions of the amino acids liberated 

during the hydrolysis treatments of modern wool and the archaeological material are broadly 

similar, though some small differences in the relative abundances of particular amino acids are 

apparent and the error bars are greater for the archaeological material (Figure 22 and Figure 23). 

 

Figure 22. Percentage amino acid compositions of modern Herdwick Tops sheep’s wool hydrolysed at 6, 18, 
24 and 48 hours. The data are expressed as percentages of the sum of all amino acid peak areas. Error bars 
represent +/- 1 standard deviation; n=3. 

Prolonging the hydrolysis time from 6 to 48 hours gives increasing yields of Val and Ile and 

progressively lower amounts of Ser, Gly and Tyr. The error in the Ser measurement from both 

modern and archaeological wools is higher than for the other amino acids, though a general 

decrease is evident. The increase in hydrolysis time from 6 to 18 hours causes the greatest 

proportional increases in Val and Ile in both modern and archaeological wool samples. This 

indicates that an 18 hour hydrolysis time leads to a more complete hydrolysis of keratin and that 

a 6 hour hydrolysis would be insufficient for obtaining an accurate assessment of the 

archaeological materials. The losses of the acid labile species (Ser and L Thr) are minimal for 18 

hours hydrolysis, with the exception of Tyr which shows a much larger decrease between 6 and 18 

hours than for 18 to 24 hours. Hydrolysis for 48 hours leads to the greatest losses of all acid labile 

amino acids and the largest recovery of the aliphatic amino acids (Val and Ile). The resultant 

skewing of the composition indicates 48 hour hydrolysis to be unsuitable for the analysis of 

archaeological samples. 
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Figure 23. Percentage amino acid compositions of archaeological wool (Fromelles SK 1527 pelvis material) 
hydrolysed at 6, 18, 24 and 48 hours. The data are expressed as percentages of the sum of all amino acid 
peak areas. Error bars represent +/- 1 standard deviation; n=3. 

 

The increase in time that the wool is subjected to hydrolysis also increases the extent of 

racemisation of the amino acids that are liberated, as has been observed with other proteins 

(Kaiser and Benner, 2005). Thus, the D/L ratios of the amino acids recovered from wool keratin 

show increasing, though different, values with increasing TH (Figure 24 and Figure 25).  

 

Figure 24. Amino acid D/L peak area ratios of Herdwick Tops wool hydrolysed at 6, 18, 24 and 48 hours. 
Error bars represent +/- 1 standard deviation; n=3. 
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Figure 25. Amino acid D/L peak area ratios of archaeological wool (Fromelles SK 1527 pelvis material) 
hydrolysed at 6, 18, 24 and 48 hours. Error bars represent +/- 1 standard deviation; n=3. 

In an effort to maximise keratin hydrolysis while minimising amino acid degradation and 

racemisation, a hydrolysis time of 18 hours was selected for use in the analyses of protein based 

materials recovered from archaeological burial environments.  
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3.2.2 Modern analogues for archaeological wool, hair and leather 

Many different methods are used to study amino acid compositions of proteinaceous materials 

commonly recovered from archaeological burials (Robbins, 2012). The range of sample 

preparation, hydrolysis and chromatographic techniques employed is much more diverse than 

those used in the analysis of woods, resulting in a wider variation in the amino acid compositions 

reported in the literature (Block, 1939; Bowes and Kenten, 1948; Corfield and Robson, 1955; 

Eastoe, 1955; Ward et al., 1955; Felix et al., 1963; Chapman and Bradbury, 1968; Robbins, 2012). 

Consequently, it was deemed necessary to assess the variability in amino acid compositions of 

typical archaeological materials likely to be recovered from burial environments, using the 

hydrolysis and analytical methods to be employed in the study. Samples of modern human hair, 

leather, suede, silk and sheep wool (Table 8) were cleaned, hydrolysed and analysed using the 

methods outlined in Chapter 2.5.  

Table 8. Protein based modern materials analysed to establish the extent of variability in amino acid 
composition using the hydrolysis and analysis methods employed in the study. 

Material type Source No. of repeat analyses 

Human hair British male, age 23, light brown hair 2 

 Greek female, age 24, black hair 2 

 British male, age 25, blonde hair 2 

 British male, age 32, black hair 2 

 British male, age 83, white hair 2 

   

Leather Tanned South American cow hide 3 

 Tanned British cow hide 3 

   

Suede Lamb hide, unknown provenance 3 

   

Silk Cultivated Bombyx mori moth cocoons 3 

   

Wool Herdwick Tops, sheep, female 2 

 Jacob, sheep, female 2 

 Lincoln Longwool, sheep, female 2 

 Shetland, sheep, female 2 

 Whitefaced Woodland, sheep, female 2 

 

The total amino acid contents of all of the modern materials (Figure 26) show large variations, 

suggesting that this parameter may be of limited use in the analysis of archaeological materials. 

Given the ranges indicated by the standard deviations, only very large differences in the values in 

the archaeological materials would be statistically significant.  
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Figure 26. Mean total amino acid concentrations of modern hair and clothing materials. Error bars represent 
+/- 1 standard deviation; n=10 for modern hair and wool, n=3 for modern silk and suede, n=6 for modern 
leather and n=9 for modern hide products. 

The standard deviations for the individual amino acids of all of the modern materials are low, the 

greatest values being for Gly in the two leathers, indicating that the biosynthetic pathways in 

different organisms of the same species are very similar (Figure 27). Microbially mediated 

enzymatic digestion of protein based materials often leads to a change in amino acid composition 

(Wilson et al. 2007a, Wilson et al. 2010). Thus, the limited variation in the compositions of the 

modern materials may allow detection of changes in the archaeological materials. 

 

Figure 27. Mean amino acid compositions of the modern materials analysed. The data are expressed as 
percentages of the sum of all amino acid peak areas. Error bars represent +/- 1 standard deviation; n=10 for 
modern hair and wool, n=3 for modern silk and suede, n=6 for modern leather and n=9 for modern hide 
products. 
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The amino acid D/L ratios exhibit larger error bars than the amino acid composition data, 

indicating a greater degree of variability between samples of the same material (Figure 10). The 

extent of racemisation that can occur in degraded protein based materials is typically greater than 

that determined for the modern materials (von Holstein et al., 2014). Thus, the control materials 

and methods of analysis were deemed suitable for assessing the racemisation of the amino acids 

in archaeological materials.  

 

Figure 28. Selected mean amino acid D/L values of the modern materials analysed. Error bars represent +/- 1 
standard deviation; n=10 for modern hair and wool, n=3 for modern silk and suede, n=6 for modern leather 
and n=9 for modern hide products.
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CHAPTER 4 
 

 

4 BURIAL EXPERIMENTS  
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4.1 Introduction 
 

In order to complement the archaeological data and to look at short term diagenetic processes 

that occur within burials, in situ experiments were conducted to replicate the burial environments 

and materials commonly found in archaeological graves. Using a range of different burial 

environments and by analysing known buried materials alongside unburied controls as a means to 

assess any short term alterations, this chapter aims to further advance the overall goals of the 

InterArChive project: to study the information contained within the soils of archaeological 

inhumations. The InterArChive project had a total research timescale of five years and the 

experimental burials were started early in the investigation to allow time for the excavations, 

sample analysis and data interpretation. The experiments were therefore planned and executed 

before the commencement of this PhD project. 

Due to the legal restrictions surrounding the disposal of human remains and the control of 

disease, cadavers cannot currently be used for decomposition studies in the UK (Public Health Act, 

1984; Peachey, 2015). Pigs have a similar skin structure, hair coverage and fat content to that of 

humans and are commonly used as substitutes for human cadavers in experimental burials 

(Turner and Wiltshire, 1999; Wilson et al., 2007b; Janaway et al., 2009). Ten piglets were sourced 

from a pig farm in North Yorkshire; the majority of the animals were stillborn, whilst some died 

not long after birth from natural causes. The piglets were buried at five locations in the North 

Yorkshire area (Figure 29) which represent a range of different soil types (Table 9). 

 

Figure 29. A map showing the locations of sites where experimental piglet burials were carried out.  
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Each piglet was buried with a range of grave goods. As the majority of the piglets had never 

suckled and had empty digestive tracts, a fibre bag containing foodstuffs was sewn into the 

abdominal cavity to simulate the gut contents. A second bag containing simulated burial offerings 

(such as tobacco, cloves and beeswax) was deposited by the snout of each animal, to investigate if 

the signatures relating to these materials could be detected in the burial soils. Some piglets wore 

leather shoes and all had human hair scattered on their heads, to simulate the scalp hair of 

humans. Five piglets were buried in wooden boxes to simulate coffins. In the majority of 

archaeological coffined burials, the action of water or structural collapse allows sediment to 

accumulate in the base of the coffin (Pokines and Baker, 2013). As the burials were only planned 

to be for a period of three years (insufficient time to allow such an accumulation to occur) the 

base of each coffin was therefore filled with sediment matching that of the burial environment. 

Images of typical piglet burials are shown in Figure 30 and the inventory and burial soil type of 

each piglet grave is shown in Table 9. 

 

Figure 30. Images of the experimental piglet burials at West Heslerton. The top image shows the three 
piglets, one of which was in a coffin. The bottom image shows piglet 6 before burial. The positions of both 
‘muslin’ bags and the leather shoes were similar in all other burials. 
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Table 9. Details of the location, burial soil type, coffin fill (where relevant) and grave goods of each of the ten 
experimentally buried piglets. Soil information provided by Carol Lang. 

Location  
(including latitude  
and longitude) 

Soil type Piglet Coffin Coffin fill 
Leather 
shoes 

Human 
hair 

Hovingham Sandy/loam 1 Yes Sand N Y 

(54.170043, -0.980173)  2 Yes 
Limestone 
chips 

N Y 

Folkton Peat bog 3 Yes Burial soil N Y 

(54.20797, -0.38202)  4 No - N Y 

Heslington East 
Extremely 
aggregated clay 

5 No - N Y 

(53.95232, -1.0213)  6 Yes Burial soil Y Y 

  7 No - Y Y 

West Heslerton Sandy 8 No - N Y 

(54.171765, -0.60794)  9 Yes Burial soil Y Y 

Kings Manor 
Urban soil 
(technosol) 

10 No - Y Y 

(53.96251, -1.08727)       

 

Samples of all materials were retained to act as unburied controls. Once buried in their respective 

locations, the piglets were left for a period of approximately three years, after which they were 

excavated. Samples of the burial soil were taken following the sampling strategy for human 

burials that is outlined in Chapter 2.2.1. Any remaining textiles, leather, hair and the coffins were 

taken in their entirety. Soil micromorphology and soil extractable organic matter were studied by 

other members of the InterArChive team (Hicks, 2017). This thesis focused on the analysis of the 

materials buried alongside the piglet, specifically the coffin wood, human hair, textiles and 

leather.  
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4.2 Analysis of buried coffin woods 

4.2.1 Sampling information 

Two samples were collected from the same positions from each of the five experimentally buried 

coffins and from an unburied control coffin; a 10 cm by 6 cm section from the centre of the front 

panel, and the wood directly underneath the right hinge were cut out using a band saw (shown by 

the blue areas in Figure 31). The wood from the front panels was chosen as representative of the 

overall condition of the wood at all five of the sites, and to allow for comparisons to be made 

between the different burial environments. The brass from which the hinges were made contains 

copper, which is known to have antimicrobial properties (Ramsay et al., 1999; Levin et al., 2002). 

Organic materials that have survived due to their association with metal are often recovered from 

archaeological burials (Beukens et al., 1992; Chen et al., 1998; Janaway, 2001). With the exception 

of the coffin recovered from Folkton (which was not fitted with hinges) the wood in proximity to 

the hinges was therefore sampled to examine any differences in preservation state compared to 

the wood from the front panels.  

Several of the coffins exhibited areas where the wood was of a different texture and visibly more 

degraded than the rest. Others had fungal growth on specific parts of the wood. These areas are 

shown in Figure 31 and detailed in Table 10. Samples of the degraded wood and of the wood 

beneath the fungal growths were taken for analysis and comparison with the wood that was not 

in proximity to these features. 

 

Figure 31. Diagram showing the wood sampling strategy of the excavated piglet burial coffins. The blue 
areas represent samples that were taken from all coffins (wood from the front panel and from the right 
hinge). Other colours show samples taken from individual coffins in areas where the wood looked to be 
more degraded or was beneath fungal growth. Light brown = Hovingham piglet 1, grey = Hovingham piglet 
2 and red = West Heslerton. See Table 10 for sample descriptions. No obvious areas of degradation were 
noted for the coffins from Folkton and Heslington East. 
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Table 10. Descriptions of the samples taken from areas of the piglet coffins that exhibited degradation or 
were in proximity to fungal growth. 

Piglet coffin Sample/feature location Description 

 

Hovingham piglet 1 
 

A1: back/bottom left corner of coffin lid 
 

Spongy and compressible wood 
beneath an area of white fungus 

 A2: back panel, down from left hinge Wood beneath black ‘fuzzy’ mould 

 A3: back panel, down from right hinge Wood beneath white fungus 

Hovingham piglet 2 A1: bottom of right side panel The entire lower third of the coffin 
was flaky and very soft, this sample 
was from the most degraded area 

West Heslerton piglet 9 A1: above left handle hole Spongy and compressible wood 

 

All samples of piglet coffin wood were solvent extracted using the methods outlined in Chapter 

2.2.2.4. The solvent extracts were retained for GC-MS analysis by other members of the 

InterArChive team. Samples were then analysed using Py-GC-FID and the results discussed in 

Chapter 4.2.2.  
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4.2.2 Analysis by Py-GC 

4.2.2.1 Issues discovered following Py-GC analysis 

The presence of syringyl lignin compounds in the majority of the Py-GC data obtained from the 

piglet coffins shows that they are constructed of wood from both gymnosperm and angiosperm 

trees; examples of pyrograms from both gymnosperm and angiosperm wood samples are shown 

in Figure 32 and Figure 33 respectively. This is contrary to what was believed at the time of burial, 

as the coffins were purchased on the understanding that they were all made from wood from 

pine trees, which are gymnosperms. Of the 16 wood samples from the piglet coffins that were 

analysed, four are from gymnosperm trees, including that from the unburied control coffin. The 

different panels of the coffins being constructed with different types of wood with no discernible 

pattern indicates that they were made from offcuts of wood, likely from large scale 

manufacturing of larger wooden products.  

Comparison of the coffin wood pyrograms and the lignin subunit data with those of freshly cut 

modern pine and oak reveals differences in the lignin content. Both the gymnosperm woods 

(Figure 34) and the angiosperm woods (Figure 35) that were buried with the piglets have more 

demethoxylated and short chain lignin components, and fewer long chain and carbonyl lignin 

components than the fresh modern gymnosperm and angiosperm comparisons. However, these 

differences are also apparent in the control sample, implying that the burial of these woods was 

not the cause of the lignin modifications. The modern wood industry employs a range of 

techniques to modify the physical and chemical properties of the raw materials. Some aim to 

increase the lifetime of the wood by limiting microbial attack, others impart fire retardant 

properties while some modify softer woods for use in applications which the native wood would 

not be suitable (Tjeerdsma et al., 1998; Weiland and Guyonnet, 2003; Tame et al., 2007). The 

most common methods of treating fresh wood for commercial applications are impregnation with 

metal-containing inorganic compounds and thermal modification by heat treating. Both of these 

processes could account for the differences between the lignin of the piglet coffins and the 

untreated modern woods.  

Ions of the metals K, Cu, Fe, Mn and Co are commonly used in wood preservatives and have been 

shown to have catalytic effects during the pyrolysis of woods, altering the pyrolysis products 

(DiCosimo and Szabo, 1988; Wu et al., 1994; Richards and Zheng, 1991; Fu et al., 2008). The 

presence of such compounds could therefore explain the differences in the lignin of the piglet 

coffin woods (including the unburied controls) compared to fresh woods.  

Thermal modification typically involves the exposure of woods to temperatures ranging from 150 

to 200°C, first in an atmosphere of steam followed by heating under gaseous nitrogen, for 

durations of up to ten hours (Yildiz et al., 2006). These treatments improve the dimension stability 
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and durability of the wood whilst making the wood less hydroscopic, reducing the water content 

and thus the habitability toward potential microbial degraders (Tjeerdsma et al., 1998; Tjeerdsma 

and Militz, 2005). These changes are a result of modification of the component biopolymers. The 

cellulose and hemicellulose are degraded to liberate volatile compounds, and the lignin structure 

is modified by cleavage of β-O-4 linkages, oxidation of Cγ and autocondensation at Cα, which 

forms linkages with surrounding lignin subunits (Tjeerdsma et al., 1998; Tjeerdsma and Militz, 

2005; Brosse et al., 2010). Such modifications could also be an explanation for the observed 

differences in the piglet coffin control and the untreated modern woods.  

 

Figure 32. Assigned partial Py-GC-FID pyrograms of a – untreated modern pine wood, b – wood from the 
front panel of an unburied control coffin, c – wood from the front panel of the coffin buried with piglet 1 at 
Hovingham. P = phenol, MeP = methoxyphenol, G = guaiacol and C = catechol. The identities of the 
numbered peaks are shown in the key to the right of the pyrograms. 
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Figure 33. Assigned partial Py-GC-FID pyrograms of a – untreated modern oak wood, b – wood from the 
front panel of the coffin buried with piglet 3 at Folkton and c – wood from the hinge of the coffin buried with 
piglet 2 at Hovingham. P = phenol, MeP = methoxyphenol, G = guaiacol, C = catechol and LG = levoglucosan 
(a cellulose pyrolysis product). The identities of the numbered peaks are shown in the key to the right of the 
pyrograms. 
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Figure 34. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in untreated modern pine, the unburied control coffin, coffins buried containing piglets 1, 6 and 
9 and archaeological woods degraded by white rot and brown rot fungi (see chapter 5). Values are 
calculated as a percentage of the total area of lignin derived peaks in Py-GC-FID pyrograms. Error bars 
represent +/- standard deviation and are the standard analytical error calculated in Chapter 3, based on n=3 
replicates of an archaeological gymnosperm wood. 

 

Figure 35 . Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in untreated modern oak, wood from the front panels of the coffins buried containing piglets 2 
and 3, wood from the right hinge of the piglet 2 coffin (used as a pseudo control) and a degraded 
archaeological wood (see chapter 5). Values are calculated as a percentage of the total area of lignin 
derived peaks in Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the standard 
analytical error calculated in Chapter 3, based on n=3 replicates of an archaeological angiosperm wood. 
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Due to a lack of -20 °C storage space, only the coffin subsamples detailed in Section 2.1 were 

retained, meaning that further subsamples could not be taken. The only sample of the unburied 

control coffin being gymnosperm greatly complicates the analyses of the 12 experimentally buried 

angiosperm samples, as there is no unburied control that has been treated using the same 

preservative techniques. The differences in the lignin subunit data of the fresh modern wood that 

has not been treated and the buried woods show that the fresh woods are unsuitable for use as 

undegraded comparators. 

Comparison of all the pyrolysis data from the angiosperm piglet coffins shows that the wood from 

the hinge of the Hovingham piglet 2 coffin is the least chemically different from untreated 

modern oak, which suggests that this material has been least affected by degradation within the 

burial environment. This wood showed no physical or mechanical signs of decay during the 

subsampling. Using this wood as a pseudo control, by setting it as a baseline from which to assess 

the degradation of all other buried samples allows for a better assessment of preservation state 

than the use of fresh modern oak.  

All of the hinge wood samples are from angiosperm trees and (with the exception of the coffin 

front from Hovingham piglet 2) the coffin fronts are from gymnosperm trees. The result of this is 

that the planned comparison between the two, to investigate metal fittings retarding decay, is not 

possible. 
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4.2.2.2 Overall preservation state of the piglet coffins 

The proportions of different categories of lignin pyrolysis products from the gymnosperm coffin 

fronts were compared with archaeological gymnosperm woods from Mechelen and Hofstadir that 

have been interpreted to be degraded by brown rot and white rot fungi (Figure 34; Chapter 5) 

None of the buried coffin woods show higher abundance of short chain lignin pyrolysis products 

than the unburied control, suggesting that the three carbon lignin side chains have not been 

shortened as occurs during depolymerisation of wood through the actions of fungi . Similarly, no 

demethylation or demethoxylation is apparent, and there is no difference in the proportion of 

lignin subunits with carbonyl groups, changes that are seen in the archaeological wood that has 

been attacked by biological degraders. Curiously, increases in the abundances of the long chain 

lignin subunits are apparent in the buried woods. This could be due to these treated woods 

having greater variation in the lignin composition or less reproducible pyrolysis products in 

comparison to native, untreated woods. 

The only gymnosperm coffin front to show any alteration of the holocellulose component is that 

from Hovingham piglet 1. Figure 32c shows peaks in the carbohydrate region with significantly 

lower abundances than those in the unburied control, pointing to degradation of the 

holocellulose fraction of the wood. The peaks that correspond to 2-methylphenol, 3-

methylphenol and guaiacol also show lower relative abundances than those of the control. None 

of the other gymnosperm pyrograms exhibited the same features, implying a cause of 

degradation that was unique to the Hovingham burial, possibly as a consequence of the nature of 

the burial matrix or the burial environment. 

The lignin pyrolysis product compositions of the two angiosperm coffin fronts reveal observable 

signatures of decay when the hinge wood from the coffin of Hovingham piglet 2 is used as a 

pseudo control (Figure 35). The material from the front of the Hovingham piglet 2 coffin shows 

lower amounts of long chain lignin compounds, and an increase in demethylated units (Figure 35). 

The decrease of long chain lignin phenols would be expected to be accompanied by an increase in 

those with short chains, as the three carbon chains are broken down to form shorter chain 

derivatives. The disparity between the short and long chain components could either reflect a 

larger error in the measurement of the former or, perhaps more likely, that the longer chain 

compounds were broken down and lost to the burial environment rather than being converted to 

short chain components retained within the remaining polymer. 

The wood buried at Folkton produced higher proportions of short chain and demethoxylated 

lignin products and lower proportions of long chain lignin products than the pseudo control. 

These differences are also seen in degraded archaeological materials (Figure 35). The differences 

in the proportions of the short and long chain lignin products are typically much larger in 

archaeological wood than those observed for the material from Folkton, suggesting that the 
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Folkton material represents an early stage of decay. The differences in the lignin structure 

compositions of the Folkton and Hovingham piglet 2 coffins suggest that the two have been 

modified by different decay agents within the burial environments. Similar consideration suggests 

that the wood from Folkton is more degraded than that from the Hovingham piglet 2 burial.  

The Folkton burials took place in boggy, waterlogged soil. On excavation in late June of 2013, the 

water level was found to be above that of the burials. The decision was made to rebury the piglets 

and return at the end of the summer. This was done to allow for pumping equipment to be 

sourced and in the hope that the hot, dry months to follow would reduce the water level below 

that of the burials. On re-excavation in early October of the same year, the water level had indeed 

dropped below the level of the burials. Combined with the deterioration seen in the Folkton 

coffin, it is unlikely that the burials were waterlogged for the duration of the three year burial 

period. Permanent waterlogging would have generated anoxic conditions, which are known to 

limit microbial growth, leading to better preservation of wood (Rowell and Barbour, 1990; Björdal 

et al., 1999). 

The lignin of the angiosperm coffin fronts is more degraded than that of the gymnosperm 

counterparts. Syringyl methoxy groups have been shown to be preferentially demethylated over 

those of guaiacyl subunits, possibly due to the lower degree of condensation found in guaiacyl 

lignin (van Bergen et al., 2000). The lack of a methoxy group at C6 of guaiacyl aromatic ring allows 

for the formation of cross links at this position (del Rio et al., 2002; Vane et al., 2003). Another 

theorised reason for the increased resistance of guaiacyl subunits is that many microbes 

preferentially attack the secondary cell wall layers which are richer in syringyl lignin, leaving the 

middle lamella (which is richer in guaiacyl lignin) intact (Backa et al., 2001). It has also been 

suggested that syringyl lignin moieties can be demethylated in the early stages of wood 

diagenesis (van Bergen et al., 2000). The higher abundance of demethylated lignin phenols in the 

Hovingham piglet 2 coffin wood combined with the relative brevity of these burials suggests this 

may indeed be the case.  

  



 
108 

 

4.2.2.3 Areas of the coffins exhibiting signs of degradation 

Several areas of the buried piglet coffins exhibited clear signs of degradation (Table 10 and Figure 

31). Of all the piglet coffins that were excavated, that buried with Hovingham piglet 1 had the 

greatest number of areas where decay was apparent. Three distinct areas were colonised by fungi 

and the structural integrity the wood was affected. The proportions of different categories of 

lignin pyrolysis products calculated from the Py-GC-FID data show distinct differences between 

modern oak and the Hovingham coffin wood samples (Figure 36). 

 

Figure 36. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in untreated modern oak, wood from the right hinge of the piglet 2 coffin (used as a pseudo 
control), wood from the front panel of the coffin buried containing piglet 1 and three additional wood 
samples from the coffin of piglet 1 which showed visible signs of degradation. Values are calculated as a 
percentage of the total area of lignin derived peaks in Py-GC-FID pyrograms. Error bars represent +/- 
standard deviation and are the standard analytical error calculated in Chapter 3, based on n=3 replicates of 
an archaeological angiosperm wood. 

The samples A1 and A3 were both collected from areas affected by a white fungus. Both woods 

have higher relative abundances of demethylated and short chain lignin phenols and lower 

relative abundances of long chain phenols than the hinge wood from the same coffin and from 

the pseudo control wood. Carbohydrate components and levoglucosan were less abundant in the 

material from A3 than in the pseudo control wood, suggesting that the hemicellulose and 

cellulose of this part of the coffin had been degraded. By contrast, the holocellulose fraction of A1 

appeared unaffected, being very similar to the pseudo control. The larger extent of damage to the 

lignin in sample A1 and lack of evidence for alteration of the carbohydrate suggest that the wood 

from this area of the coffin was degraded by a fungus capable of selective degradation of lignin. 

The only fungi known to degrade wood in this way are preferential lignin degrading white rot 

fungi, making them the most likely candidates for the degradation of the wood of sample A1 
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(Blanchette, 1991; Blanchette, 2000). The lesser modification of the lignin in sample A3 combined 

with the observed holocellulose degradation suggests that the modification to the lignin may have 

occurred indirectly, as a result of the fungus directly attacking the carbohydrate component. 

Brown and soft rot fungi both lead to limited lignin modification and a loss of a large proportion of 

the carbohydrate component of wood. Based on these decay signatures being identified from the 

pyrolysis data, brown and soft rot fungi are more likely candidates for the decay than white rots 

(Blanchette, 1991; Blanchette, 2000; Blanchette et al., 2004).  

The black fungus that had colonised the wood represented by sample A2 has produced similar 

modifications the carbohydrate and levoglucosan peaks as that seen in sample A3, but, the 

changes to the lignin profile seen in Figure 36 are similar to that of sample A1. This suggests that 

both the holocellulose and the lignin may have undergone direct microbial attack, a feature 

commonly seen in white rot fungi that do not preferentially attack lignin (Blanchette, 1991; 

Blanchette, 2000).  

The entire lower third of the coffin buried with Hovingham piglet 2 was heavily degraded, the 

wood having little structural integrity and bundles of tracheid cells easily flaked away. The 

decayed material was much lighter in colour than the unaffected wood. The pyrogram (not 

shown) exhibits a significant attrition of peaks that correspond to cellulose and hemicellulose. The 

lignin subunit compositions are shown in Figure 37. The degraded wood contains larger amounts 

of short chain and demethoxylated lignin phenols and fewer long chain and carbonyl containing 

lignin phenols than the pseudo control wood.  

 

Figure 37. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in untreated modern oak, wood from the right hinge of the piglet 2 coffin (used as a pseudo 
control) and the degraded, flaky wood that made up the entire lower third of the piglet 2 coffin. Values are 
calculated as a percentage of the total area of lignin derived peaks in Py-GC-FID pyrograms. Error bars 
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represent +/- standard deviation and are the standard analytical error calculated in Chapter 3, based on n=3 
replicates of an archaeological angiosperm wood. 

Prior to burial, the bottom of the coffin was layered with limestone chips, the piglet placed on top 

and the remaining space filled with the limestone. Limestone, primarily CaCO3, is known to impart 

high alkalinity to soils (Obreza et al., 1993). Alkali treatment of wood removes hemicellulose and 

lignin and modifies the crystalline cellulose (Jackson, 1977; Borysiak and Doczekalska, 2005). 

These effects are exploited in wood pulping, which uses strong alkaline solutions to break down 

wood and solubilise the modified lignin, cellulose and hemicellulose (Patt et al., 2002). Blanchette 

(1991) reported the analysis of wood from a reagent shelf in the historic Thomas Edison Research 

Laboratory, Fort Myers, Florida. The wood was found to have been degraded by “… a spill of a 

concentrated caustic material such as potassium hydroxide” (p8). The description of the physical 

condition of the wood is essentially identical to that of the lower part of the Hovingham piglet 2 

coffin. Blanchette’s analysis of the shelf wood shows a depletion of lignin and hemicellulose. 

Given the limestone burial matrix and the similarity in degradation to that reported in the 

literature, it is likely that the coffin from Hovingham piglet 2 was affected mainly by chemical 

rather than microbial degradation. 

The wood above the left hand hole of the West Heslerton coffin (West Hes. A1) was very soft and 

easily compressed, indicating deterioration of the wood biopolymers. Analysis by Py-GC-FID 

shows that the holocellulose of the wood is no different from that of the pseudo control or wood 

from the hinge of the coffin. There are, however, differences in the lignin content of the wood 

above the hand hole (Figure 38). With the exception of a higher short to long chain lignin phenol 

ratio, the wood from the hinge has a very similar lignin composition to that of the pseudo control. 

The handle wood, on the other hand, contains higher proportions of demethylated, 

demethoxylated and short chain lignin subunits, and lower proportions of long chain and carbonyl 

subunits. The degradation of the lignin without alteration to the holocellulose component reflects 

a selective process. Fungal colonisation was not observed on either the surface or cut sections of 

the wood. Fungi grow from spores which attach to a surface and grow by the spreading of 

hyphae. Hence, the absence of fungal bodies suggests that the degradation was mediated by 

bacteria. Although the understanding of bacterial degradation of lignin is far less well developed 

than that of fungi, it has been shown that soil bacteria, including Amycolatopsis sp. 75iv2, digest 

lignin by secreting heme peroxidases (Brown et al., 2011; Brown and Chang, 2014). Therefore, it is 

likely that the degradation of the A1 wood sample was caused by bacteria. 
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Figure 38. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in untreated modern oak, wood from the right hinge of the piglet 2 coffin (used as a pseudo 
control) and the degraded, wood from the hinge of the coffin buried with piglet 9 at West Heslerton and the 
spongy wood from the piglet 9 coffin. Values are calculated as a percentage of the total area of lignin 
derived peaks in Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the standard 
analytical error calculated in Chapter 3, based on n=3 replicates of an archaeological angiosperm wood. 
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4.2.3 Summary and conclusions 

The analysis of the buried piglet coffins was complicated and limited by the wood being from a 

range of gymnosperm and angiosperm trees and not exclusively the pine that was intended. The 

apparent use of preservative treatments on the wood also caused issues with the analysis of the 

coffins, preventing the use of modern, untreated woods as undegraded comparators. Such 

treatments can be expected to have altered the degradation of the coffins owing to the wood 

being more resistant to attack from the majority of microbial wood degraders. Hence, the 

experimental results may differ to those from archaeological coffins. 

Despite the limitations, degradation of the buried woods can be observed. Information about the 

individual burial conditions, the observed physical characteristics and the modification of the 

lignin and holocellulose biopolymers revealed by Py-GC enable likely causal agents to be 

identified. The observation of chemically induced decay and biologically mediated decomposition 

due to a range of different burial fauna show that the degradation of the wood in the burial 

environments studied is diverse and variable.  

Overall, the coffins buried with the piglets have undergone relatively little degradation, with the 

majority of the wood being little different from that of the controls. This is likely due to the short 

timescale of the burial experiment. The most severely degraded was that which enclosed piglet 2 

at Hovingham, where corrosion by the alkaline limestone burial matrix is the likely cause of the 

observed damage. The coffin of piglet 1 at Hovingham featured the most areas of biologically 

induced decay. The fact that the damage was caused by at least three different microorganisms 

illustrates the diverse microbial populations that can exist within burial soils. The burial soil at 

Hovingham was a sandy loam, which likely allowed the burial to remain oxic. The grave was at the 

bottom of a hill, which would have allowed water to run off the slope and keep the burial soil 

moist but not waterlogged. The localised nature of the degradation for all of the coffins suggests 

that the activity of wood degrading microorganisms is a relatively slow process and that the 

complete mineralisation of a buried coffin would need far longer than the three years for which 

these burial experiments were conducted. Nevertheless, clear evidence for degradation has been 

revealed and the results show that the Py-GC enables condition assessment of the wood polymers 

and provides evidence of different degradation mechanisms.  
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4.3 Analysis of buried hair samples 

 

4.3.1 Sampling information 

Each of the piglets were buried with human hair scattered about the head, as an analogue for the 

scalp hair of humans. During the excavation of the piglet remains, hair was only recovered from 

piglets 8 and 9 at West Heslerton. The hair buried with the other piglets had either completely 

degraded in the burial environment, leaving no detectable remnants, or the consistency of these 

soils made the hair very difficult to find, resulting in the hair being missed during the excavations. 

Given the extreme care and precision with which the piglets were excavated, the latter is far less 

likely than the former. Samples of the hair were cleaned, subjected to hydrolysis and 

derivatisation and the amino acid content analysed by RP-HPLC, following the procedures 

described in Chapter 2.5.  
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4.3.2 Analysis by RP-HPLC 

4.3.2.1 Amino acid composition 

The amino acid compositions of the buried hair samples from the piglets at West Heslerton 

(piglets 8 and 9) are very similar to that of the unburied control (Figure 39), demonstrating that 

the samples were not contaminated by amino acid or non-keratin protein  

 

Figure 39. Amino acid compositions for the human hair recovered from the piglet burial experiments 
compared with an unburied sample of the same hair. Error bars represent +/- 1 standard deviation; n=3 for 
the control hair and n=2 for the experimental samples. 

Both buried hair samples exhibit small but statistically significant amino acid compositional 

differences with respect to the unburied control (Student’s t tests; all p values = <0.014), 

suggesting that they have both undergone degradative processes. Although a sample size of two 

is the smallest possible on which a t test can be performed, the low p value obtained likely 

indicates that the result is statistically significant. Ideally, a sample size of at least four would have 

been used, but the amount of material available for analysis in the majority of cases precluded 

this. Increases in the L Thr and Met content of the hair buried with piglet 8 are opposed to the 

decreases seen for the same amino acids in the material from piglet 9, suggesting they have likely 

been decayed in different ways.  

In addition to the increases in the L Thr and Met content, the lower amounts of Asx, Ser and Ala 

seen in the hair from piglet 8 are small but statistically significant differences (Student’s t tests; all 

p values = <0.022). The individual structures within hairs have slightly different amino acid 

sequences (Robbins, 2012). A large change in amino acid composition would suggest that certain 

tissues within the hair have been degraded more than others. As this is not the case it either 
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indicates very limited degradation by attack of a single hair substructure or it means that the hair 

has been decayed uniformly, with all hair tissues being damaged. 

In contrast with the small changes in the hair from piglet 8, that from piglet 9 shows larger 

statistically significant changes in the amino acid composition; increases in Gly, Ala, Val, Ile and 

Leu, and decreases in Ser, L Thr and Met (Student’s t tests; all p values = <0.018). Such changes 

are likely due to the attack of one or more specific hair substructures by bacteria of fungi, leading 

to a large change in the overall amino acid composition of the remaining material (Wilson et al. 

2007a, Wilson et al. 2010). The proteins of the hair cuticle have a larger proportion of Ser than 

other hair tissues (Wolfram and Lindemann, 1971; Swift and Bews, 1976). The large decrease in 

Ser seen here likely reflects damage to the cuticle layers. The intercellular δ-layer is the cuticle 

component that has least resistance to microbial attack; the loss of this material leads to 

delamination and flaking of the cuticular scales (Wilson et al., 2007a). This hypothesis could be 

investigated using SEM, which was unfortunately not possible during the analysis of this material. 
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4.3.2.2 Amino acid D/L values 

The hair buried with both West Heslerton piglets shows increased racemisation of selected amino 

acids (Figure 40). The hair from Piglet 8 shows repeatable increases in the D/L values of Ser, Val, 

Phe and Leu (Student’s t tests; all p values = <0.049). The reproducibility of these changes in both 

hair samples that were analysed (indicated by the error bars) implies that there has been uniform 

degradation throughout the hair, giving rise to new terminal residues in all hair tissues, which 

were able to racemise. Microbial decay is the major route of decomposition for buried hair, 

especially when buried with decomposing animal remains (Wilson et al., 2007a). A range of fungi 

are known to degraded hair by ‘tunnelling’ across hair shafts, creating uniform voids by degrading 

all tissues in the path of the hyphae by keratinase enzyme secretion (DeGaetano et al., 1992; 

Wilson et al., 2007a). The observed increase in racemisation of the amino acids from the piglet 8 

hair could be indicative of keratinase enzymes cleaving at predictable amino acid sequences in all 

proteins, supporting the postulated fungal tunnelling activity. The fact that the increase in 

racemisation is small could either reflect that there has been a small amount of damage, or that 

the rates of racemisation were slow enough to prevent much conversion between the two chiral 

amino acid forms.  

The hair recovered from piglet 9 has large variations in the recorded Ser and Ala D/L values. 

Analysis of the two individual samples used to produce the mean and standard deviations 

revealed that one hair sample has Ala and Ser D/L values similar to that of the modern material 

and the other sample has large increases in the racemisation of these amino acids (data not 

shown). Ser and Ala are two of the most abundant amino acids in the cuticle proteins of hair, 

implying that attack was focussed on the outer layers of the hair that has increased racemisation 

of these amino acids (Wolfram and Lindemann, 1971). The large deviation in the measurements 

of the D/L values could be due to one hair strand being decayed well in advance of the other, the 

earlier degraded hair having more time for the newly generated terminal residues to racemise. 

The standard deviations for the Ala and Ser values in the compositional data for this material 

(Figure 39) do not show the large deviations seen in the D/L data, being similar to those for the 

other amino acids and for the other materials. This fits with the hypothesis of both hairs being 

degraded but one being more racemised than the other. 
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Figure 40. Selected amino acid D/L values for the human hair recovered from the piglet burial experiments 
compared with an unburied sample of the same hair. Error bars represent +/- 1 standard deviation; n=3 for 
the control hair and n=2 for the experimental samples. 
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4.3.3 Summary and conclusions 

Of the human hair buried with each of the 10 piglets, excavation only recovered this material 

from two of the burials: piglets 8 and 9, both buried at West Heslerton. Either the hair completely 

degraded in all of the other burials or was missed during the excavations. The soil at the West 

Heslerton site was extremely sandy and likely offered excellent drainage. Low moisture levels are 

conditions that are known to preserve protein based textile materials (Janaway, 2001). Sandy soils 

often have a low pH and acidic conditions are known to retard the growth of a range of soil biota 

(Day and Ludeke, 1993; Rousk et al., 2010). As a result of this, archaeological protein based 

materials commonly survive when buried in acidic soils (Sibley and Jakes, 1984; Janaway, 2001). A 

combination of the low water content and low pH of the West Heslerton burial matrix was 

therefore probably responsible for the survival of hair. 

Despite the hair still being physically present at the West Heslerton burials, both materials 

exhibited changes in their amino acid compositions and D/L values that indicate degradation may 

have occurred, likely by microbial attack. The piglet 8 hair shows evidence of attack by tunnelling 

fungi while that buried with piglet 9 shows erosion of the cuticle, likely by attack on the 

intercellular δ-layer. SEM imaging of these materials was not performed during this study but 

could be used to further test these conclusions. Degradation experiments in which samples of hair 

are exposed to microorganisms known to cause degradation similar to those hypothesised in this 

section could be useful in determining the underlying causes of any change in the amino acid 

compositions or racemisation values.  
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4.4 Analysis of buried leather samples 

 

4.4.1 Sampling information 

Piglets 6 and 7 at Heslington East, piglet 9 at West Heslerton and piglet 10 at Kings Manor were 

buried with a leather shoe placed on each hind leg (Figure 30). All eight of the shoes were 

recovered on excavation. A shoe from each of the West Heslerton and Kings Manor piglets was 

taken for analysis by the micromorphology team. The remaining shoes were cleaned, subsamples 

of the material were hydrolysed and the amino acid content analysed by RP-HPLC, following the 

procedures described in Chapter 2.5.  

 

4.4.2 Analysis by RP-HPLC 

4.4.2.1 Amino acid composition 

The amino acid compositions of six leather shoes recovered from the piglet burials are shown in 

Figure 41. The vast majority of the buried leathers do not have amino acid compositions that are 

statistically different from those of the unburied control (Student’s t tests; all p values = >0.05). 

However, there are statistically significant differences in the Gly content of the leathers buried 

with piglets 9 and 10, which are considerably lower in comparison with the unburied control 

(Student’s t tests; all p values = <0.047). The piglet 9 leather also shows a significantly decreased 

Ala content, whereas the piglet 10 leather shows an increase in Ala (Student’s t tests; all p values 

= <0.05). The degree of change in composition of these materials suggests they are more 

degraded than the other buried leathers, with the chemical or biological degraders specifically 

acting upon different tissues or proteins to different extents. The fact that the changes in amino 

acid composition are different suggests that the degradation in each had a different causal agent.  
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Figure 41. Amino acid compositions for the leather shoes recovered from the piglet burial experiments 
compared with an unburied sample of the same leather. Error bars represent +/- 1 standard deviation; n=3 
for theunburied control leather and n=2 for the experimental samples. 
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4.4.2.2 Amino acid D/L values 

The D/L values for the buried leather samples are shown in Figure 42. With the exception of Val, 

Heslington East Piglet 6 leather A shows consistent increases in D/L values that are greater than 

all of the other buried leathers. This suggests that this burial environment may have led to faster 

rates of racemisation or that many more terminal amino acids were generated, leading to more 

sites at which the amino acids can racemise. Chemical hydrolysis could have resulted in the 

scission of the amino acid chains of the constituent proteins and is a reported pathway for the 

decomposition of archaeological leathers (Larsen, 2008). There is little difference in the amino 

acid compositions of this material and that of the unburied leather. If biologically mediated 

degradation is the cause it must have degraded all tissues and proteins uniformly and in a similar 

fashion to the fungal tunnelling mentioned in the analysis of the buried hair (Section 3). The fact 

that the D/L values are increased for one of the leather samples from piglet 6 and not the other is 

an interesting observation. It implies either that an isolated microbial colony lived in the area of 

shoe A and did not spread to shoe B, or that there were minor fluctuations in the chemistry or 

hydrology of the burial, allowing one shoe to be chemically degraded and not the other. 

Whereas differences in the amino acid compositions of the leather buried with piglets 9 and 10 

from that of the control were observed (Section 4.2.1) the D/L values only differ for the piglet 9 

material. The similarity of the extent of racemisation in piglet 10 leather to the material from the 

other burials suggests that either the burial environment limited racemisation of newly generated 

terminal residues or that degradation occurred shortly prior to the material being excavated; the -

20°C storage temperature would have effectively arrested any further conversion of L form amino 

acids to D form.  
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Figure 42. Selected amino acid D/L values for the leather shoes recovered from the piglet burial experiments 
compared with an unburied sample of the same leather. Error bars represent +/- 1 standard deviation; n=3 
for the unburied control leather and n=2 for the experimental samples. 
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4.4.3 Summary and conclusions 

From a chemistry perspective, the degradation of leather is far less well understood than that of 

wood and hair, hence the interpretation of the RP-HPLC data is limited. The data do, however, 

suggest that the leathers recovered from piglets 6, 9 and 10 have undergone limited extents of 

decay. The substantial increases in the D/L values of only one of the Heslington East piglet 6 shoes 

suggests that acute differences existed in the burial matrix that allowed one leather item to be 

preferentially degraded.  

It is well documented that modern leather items buried in forensic contexts undergo very little 

degradation; the chromium tanning methods impart an increased resistance to decay compared 

with tanning with plant extracts as was common of antiquity (Strzelczyk et al., 1987; Janaway, 

2001). The results from the leather buried with the piglets substantiates the reported findings as 

the three year burial period resulted in little decomposition of these materials.   
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4.5 Limitations of the burial experiments 

 

Woollen textiles were the most abundant form of textile found by the InterArChive team during 

the collection of archaeological samples. The piglet burials were conducted prior to the sampling 

of archaeological grave soils and, as a result of this, no woollen materials were buried with the 

piglets. The lack of any buried wool highlights the need for extensive literature research when 

planning experimental burials, as their lengthy duration often precludes further or repeat burials 

based on the results of post excavation analyses.  

Bags in which foodstuffs and grave goods were buried were believed to be made from muslin (D. 

Brothwell, personal communication, 2014). When analysed by Py-GC-MS following their 

excavation, none of the pyrograms were found to contain any compounds produced by cellulose, 

the dominant biopolymer found in cotton from which muslin is made (Riello and Parthasarathi, 

2011). Instead, a range of synthetic compounds were present, the most intense signatures were 

from benzoic acid, vinyl benzoate, biphenyl and ethylene glycol dibenzoate. These pyrolysis 

products are characteristic of polyethylene terephthalate (PET), a man made polymer which is 

commonly referred to as polyester when used in textile applications (Rosato et al., 2004; Tsuge et 

al., 2011). Given the fact that no unburied control ‘muslin’ was retained, it cannot be ascertained 

as to whether the buried material was wholly man made or a blend of cotton and synthetic fibres, 

the former having degraded during the period of burial. As a result of this, conclusions cannot be 

drawn on the degradation of this material in the burial experiments, and the analysis of this 

material was discontinued. This issue draws attention to the vital need for certainty of the identity 

of the materials buried. Ideally, any buried materials should be analysed prior to burial to confirm 

their composition in order to prevent such problems arising. At the time that the burial 

experiments were set up however, the analytical instrumentation required for any preburial 

analysis of the textile was not in place. 
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4.6 Conclusions 
 

Although the piglet burial experiments have provided insights into the early stages of degradation 

of wood, hair and leather in different burial environments, the usefulness of this data has been 

limited by several factors. These include: different wood types being used for the construction of 

the piglet coffins, which resulted in not having an unburied control for the majority of the buried 

wood samples; no wool being included in the burial inventories; and a synthetic material being 

buried in place of cotton, or ‘muslin’. The extractable residues remaining in the soils from the 

degradation of the piglets, however, did give useful insights into the degradation of mammalian 

tissue and the resultant chemical signatures imparted on the burial matrix (Hicks, 2017).  

A major lesson learned from the analysis of the materials buried with the piglets is, therefore, the 

need for careful research and planning prior to conducting experimental burials. The inclusion of 

woollen textiles in the piglet burials would have complemented the analyses of textiles recovered 

from the archaeological inhumations. Whilst the human hair served as a useful proxy to wool, the 

subtle differences in the chemical and physical composition makes detecting any minute changes 

over the relatively short burial period difficult, and means that the observed changes may not be 

transferable to the archaeological textiles analysed in the later chapters of this thesis. 

The issues of the ‘muslin’ being polyester, and the wood being a mix of varieties and being 

modified by modern treatment methods could be avoided in future burial experiments by 

analysing the materials using the analytical techniques intended for the post excavation analysis 

of the objects. Future burial experiments must have a much clearer understanding of the 

materials being buried to maximise the information that will be gained from such a large 

investment of time and resources.  

Modifying these burial experiments to make them more relevant to the archaeological materials 

would involve burying materials that have been processed using methods similar to those 

employed in antiquity. Leather tanned with a range of plant derived tanning agents (such as 

vegetable and oak bark extracts) would be better than those used in the burial experiments, 

which were treated with chromium compounds. Wooden coffins for future burials should be 

made using historically accurate building techniques and incorporate both angiosperm and 

gymnosperm woods of known species, with the identity of each wood face known and unburied 

controls kept in suitable conditions for each wood. This will enable the decay of both angiosperm 

and gymnosperm woods in all of the planned burial environments to be studied, with 

comparisons made between the two types. The woods should be treated in a similar manner to 

those found in the burial record and not using modern methods, which will undoubtedly lead to 

different degradation trajectories to the coffin woods excavated from archaeological burials. A 

range of different burial times would also be prudent, with the longest period of interment being 
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more than the three years of the study discussed in this chapter. All of these issues highlight the 

difficulty of conducting burial experiments on a research-project timescale. Lab-based 

degradation experiments may have, in hindsight, been more appropriate. Previous studies have 

employed microcosm burial experiments conducted in the laboratory to regulate and monitor 

variables including soil type, mineral and oxygen content, temperature, hydrology and pH within 

the burial environment (Lillie and Smith, 2007; Gelbrich et al., 2012; High et al., 2016). 

The recovery of human hair from only the West Heslerton site could suggest that of the burial 

environments studied, dry, sandy soils hold the most potential for preserving keratin based 

materials. It could also be interpreted to indicate that recovery of such fine materials from 

archaeological burials is unlikely in soils that are not sandy, with more loam or clay rich soils 

adhering to the material and preventing it from being detected during excavation. If either of 

these theories are correct, finding traces of human hair (and possibly woollen textiles) from 

archaeological sites with soils that are highly aggregated may be less likely than in looser soils. 

The pyrolysis analysis of the piglet coffins revealed that limited but observable degradation 

occurred within the three year burial period. The chemically induced degradation of the piglet 2 

coffin demonstrates that burial environments with extremely high pH can lead to rapid and severe 

damage to buried wood. Overall, the limited biological degradation indicates that the complete 

mineralisation of a buried coffin takes far longer than three years; this is unsurprising given that 

coffins are often found during the excavation of recent archaeological burials (see Chapter 1.1.2.1 

and Chapter 5). The observation of multiple organisms decaying the Hovingham piglet 1 coffin 

highlights the diversity of soil biota. Through its pH, oxygen levels, mineral concentrations and 

water content, the chemistry of the burial environment can prevent, facilitate or directly cause 

the decay of buried woods. 
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CHAPTER 5 
 

 

5 ANALYSIS OF ARCHAEOLOGICAL 

WOOD  
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5.1 Introduction 

 

The focus of this chapter is the analysis of wood fragments recovered from archaeological burials, 

obtained from seven sites across Northwestern Europe (see map in Figure 43), with burial 

matrices ranging from predominantly well drained sand to completely waterlogged environments. 

One aim of analysing these materials was to identify the woods, with the hopes of providing 

information that would aid in the interpretation of the archaeological sites. The chemical and 

physical preservation states were also investigated, the aim being to examine what information 

regarding degradation modifications, degradation agents and the conditions within the burial 

environments could be deduced.

 

Figure 43. A map of Northwest Europe showing the sites from which archaeological woods were sampled as 
part of the InterArChive project. 

The wood samples were prepared and analysed using a range of appropriate techniques (detailed 

in Chapter 3), including: analytical pyrolysis (Py-GC with FID and MS detection) to examine the 

cellulose, hemicellulose and lignin components of the wood; SEM to study the microstructure of 

the wood; and EA in a limited number of cases where it was though that this technique would 
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complement the data already obtained using pyrolysis, or where it was reasoned that materials 

other than holocellulose and lignin were present. 

Several ‘coffin stains’, soil that is commonly believed by archaeologists to be the site of degraded 

wooden coffins, were also analysed. Postholes are a similar cut feature, often interpreted as sites 

where wooden posts were buried to support a larger aboveground structure (Drewett, 2011). 

Oonk et al. (2009) provide the only report of any previous analyses being performed on soil stains 

thought to be derived from the decomposition of wooden objects. Their investigation (focussed 

on inorganic analyses) found no lignocellulose components. The aim of analysing these soil stains 

was to examine the widely held belief that such soil features are caused by the remains of 

decayed wood. The presence of chemical signatures that are definitively relatable to wood would 

provide the first chemical evidence to contribute toward the understanding of the provenance of 

‘coffin stains’.  
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5.2 Edinburgh 

5.2.1 Site and sampling information 

In the summer of 2009, during the construction of a new tram system in Edinburgh, groundworks 

in Constitution Street, Leith (latitude: 55.971814, longitude: -3.169501) uncovered human 

remains that lay within the original boundary of the graveyard of South Leith Parish Church. The 

graveyard dates back to the first half of the 15th century. Constitution Street was built in 1790 to 

give improved access to Leith harbour. The building of the road led to the contraction of the 

graveyard boundary to that seen in Figure 44 and the remains outside the new footprint were 

built over. The area is built on an ancient dune system, the burial matrix at the site being free 

draining sand (Spanou, 2012). 

The InterArChive team collected samples from the remains of three coffined burials at the Leith 

excavation. SK434 lay supine in area 6 (Figure 44) with the head facing north east. The skull, 

cervical vertebrae and part of left shoulder were exposed; the rest of skeleton was beyond the 

limit of excavation to the south east and was left buried (Spanou, 2012). The remains of the sides 

and the lid of the coffin were present but very fragile and only traces of the coffin base had 

survived. The wood was notably thin, suggesting a low status or low cost burial. SK749 was a 

supine inhumation in area 8 with the skull facing south. Much of the coffin was present although 

in places only stained soil remained. The age of the individual was determined to be ‘adult’ but no 

definite sexing was possible. SK758 was a supine burial also in area 8. The skull and right arm were 

missing and only the left humerus was present. The bone was in an advanced state of decay and 

was very fragile. Osteological analysis indicates that the remains are of a juvenile, the estimated 

age being 2 years. Very little of the coffin remained; the few fragments that were found were 

extremely fragile. Samples of the remaining coffin wood were taken from each of the three 

burials. SK749 also presented several areas of stained soil, the locations of which suggested them 

to be the remains of a coffin that had mostly decayed during the period of burial. A sample of this 

material was also taken for analysis.   
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Figure 44. A map showing the area surrounding the excavation site in Edinburgh (top) and a plan of the 
excavation on Constitution Street in Leith, showing the location of graves 434, 749 and 758 (bottom; 
adapted from Spanou, 2012). 
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5.2.2 Analysis of archaeological material 

5.2.2.1 Py-GC 

The thin wood sampled from grave 434 produced a pyrogram with no syringyl subunits, indicating 

that it is softwood, from a gymnosperm tree. The profile showed a complete absence of 

components resulting from the pyrolysis of holocellulose, suggesting its complete decay. The 

guaiacyl lignin sub units were significantly defunctionalised with a higher proportion of 

demethoxylated lignin subunits and a larger predominance of short compared with long chain 

subunits than in the modern pine analogue (Figure 45). White rot fungi as well as several strains 

of bacteria native to soil environments are known to degrade both lignin and holocellulose in 

woods by demethoxylation and hydrolysis, respectively (Blanchette, 1991; Blanchette, 2000; 

Martínez et al, 2005). 

The pyrograms of the fragile and scattered remnants of coffin wood from grave 758 contained 

few peaks that were identifiable as being from wood polymers. Only phenol, 2-methoxyphenol, 3-

methoxyphenol and toluene were detected, albeit in very small amounts. Given the lack of any 

other lignin derived peaks no quantitation was performed of these data sets, and no taxonomic 

assignment can be made.  

In previously reported cases sandy soils have resulted in the excellent preservation of buried 

organic materials, possibly due to the acidic conditions and the free drainage offered by the 

matrix that allows the exfiltration of water and inhibits microbial growth (Day and Ludeke, 1993; 

Rousk et al., 2010). The fact that the burials at Constitution Street had been built over may have 

compacted the grave soils, altering the hydrodynamics of the sediments and resulting in an 

increased propensity for degradation of organic materials. Human input to the soils is also a factor 

that must be considered. The presence of water containing increased amounts of nitrogen 

containing inorganic compounds has been shown previously to increase the rate of degradation of 

lignocellulosic materials buried in soils (Scott et al., 1996). 

Both the coffin wood and the stained soil from grave 749 display pyrogram peak profiles 

consistent with that of degraded gymnosperm wood (Figure 46). The coffin wood shows no peaks 

which indicate that any of the holocellulose remains. The soil stain pyrogram, on the other hand, 

does contain peaks in the carbohydrate region that match the retention times of those 

corresponding to furan containing molecules in modern pine, which are characteristic of the 

thermal degradation products of hemicellulose (Vane et al., 2003). Both the carbohydrate and 

lignin pyrolysis peaks are not present in the soil control pyrogram (Figure 46d), which proves that 

the signatures of wood observed in the pyrogram of the soil stain are not due to background 

components that are common throughout the grave soil. With no previous finding of wood 
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biopolymers in a suspected wood soil stain in the literature, this represents the first reported 

case. 

The compositional differences between the soil stain and the remaining coffin wood suggests the 

operation of more than one degradation mechanism. The extent of lignin degradation and the 

survival of some carbohydrate in the coffin stain may be indicative of attack by of non-lignin 

preferring white rot fungi (Blanchette, 1991; Blanchette, 2000).  

 

Figure 45. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern pine, the coffin woods from graves 434 and 749, and the soil stain in grave 749 at 
Edinburgh (see Table 11 for compound classifications). Values are calculated as a percentage of the total 
area of lignin derived peaks in Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the 
standard error calculated in Chapter 3, based on n=3 replicates of an archaeological gymnosperm wood. 
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Table 11. Classifications of the detected compounds resulting from the pyrolysis of gymnosperm woods. 

Compound Classification 

Toluene (T) Demethoxylated/short 

Phenol (P) Demethoxylated/short 

2-Methylphenol Demethoxylated/short 

3-Methylphenol Demethoxylated/short 

Guaiacol (G) Short 

4-Methylguaiacol (G1) Short 

Catechol (C) Demethylated/short 

4-Ethylguaiacol (G2) Short 

4-Vinylguaiacol (G3) Short 

4-Allylguaiacol (G4) Long 

4-Propylguaiacol (G5) Long 

4-Formylguaiacol (G6) Carbonyl 

trans-Isoeugenol (G7) Long  

4-Acetylguaiacol (G8) Carbonyl 

Vanillic acid-methyl ester (G9) Ester/long 

Guaiacylacetone (G10) Carbonyl/long 

cis-Coniferyl alcohol (G11) Long 

Guaiacylpropanol (G12) Long 

trans-Coniferyl alcohol (G13) Long 

Coniferyl aldehyde (G14) Carbonyl/long 
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Figure 46. Assigned partial Py-GC-FID pyrograms of the coffin wood and soil stain from grave 749 at the 
Edinburgh excavations. a – modern pine wood, b – a representative sample of coffin wood, c – an example 
of the soil stains analysed that were thought to be due to degraded coffin wood, d – C3 control soil from the 
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grave. T = toluene, P = phenol, G = guaiacol, C = catechol and LG = levoglucosan (a cellulose pyrolysis 
product). The identities of the numbered peaks are shown in the key to the right of the pyrograms.  

5.2.2.2 SEM 

Analysis by scanning electron microscopy (Figure 47) shows the coffin wood from grave 749 to be 

in an advanced state of decay. A large proportion of the material displays no structural 

resemblance to that of wood. Some of the cell structure is still distinguishable in the cross 

sectional cuts, but the tracheid cells that remain have undergone intensive compression into 

dense wafers of the remaining cell wall material. This may be due to compaction of the burial 

matrix by the building work of the above street. 

The secondary cell wall layers are no longer present (Rowell and Barbour, 1990), which fits with 

there being no detectable holocellulose in the analytical pyrolysis. What remains is a lignin rich 

skeleton of middle lamellae and primary cell wall layers. The lignin rich middle lamella observed 

under SEM appear relatively intact, despite the lignin component differing chemically from that of 

modern pine. This suggests that the decay agent was primarily able to degrade the holocellulose 

and the modification of the lignin component is a secondary effect. Many microorganisms (such 

as soft rots, brown rots and a wide range of bacteria) are able to degrade the cellulose 

component of wood but are not capable of producing lignolytic enzymes; their attack of the 

carbohydrate results in modification but not complete decomposition of the lignin (Blanchette et 

al., 1991; Blanchette, 2000; Martinez et al., 2005; Sánchez, 2009).  

The coffin wood and the soil stain from grave 749 both have different degrees of lignin 

modification and the stain still contains residual hemicellulose. It was reasoned on the basis of the 

Py-GC data (in Section 2.2.1) that the two materials were degraded by different types of grave 

microfauna. If this is indeed the case then – based on the SEM evidence – lignin degrading 

microorganisms were far less prevalent in the wood, the carbohydrate degrading microfauna 

being much more active and mediating the complete attrition of the holocellulose to leave a lignin 

rich skeleton (Blanchette, 1991; Blanchette, 2000). 
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Figure 47. SEM images of modern pine wood (a – image from Radboud University, Dept. of Biology online 
reference collection; b – image from Hori et al., 2014) and coffin wood from grave 749 at the Constitution 
Street excavation in Edinburgh (c and d). The left image (a) shows a cross sectional slice of the wood. The 
right image (b) is a closer view of the cross section, showing attrition of secondary cell wall components and 
subsequent structural collapse. 
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5.2.3 Summary and conclusions 

The wood from grave 434 is softwood, showing no presence of syringyl lignin subunits. The 

holocellulose polymers are completely decayed and the lignin is heavily modified by 

demethoxylation and depolymerisation. This damage to both the holocellulose and the lignin is 

likely the result of the action of white rot fungi or a range of soil bacteria (Blanchette, 1991; 

Blanchette, 2000; Martínez et al, 2005). 

The fragments of wood from grave 758 produced only peaks characteristic of phenol, methylated 

phenols and toluene on pyrolysis, most likely to be the result of extreme modification and 

depolymerisation of the original lignin. As a result, no taxonomic assignment could be made. 

Congruent with the physical condition, the wood is chemically very degraded.  

The coffin wood from grave 749 has a lignin profile consistent with that of degraded gymnosperm 

derived wood and has no remnant holocellulose. SEM reveals advanced physical decay; the 

majority of the tracheids being crushed and wafer like. The secondary cell wall layers are 

completely decayed, concordant with the lack of cellulose and hemicellulose derived peaks 

observed during pyrolytic analysis. The intact middle lamellae suggest that the holocellulose 

digestion was accompanied by limited modification of the lignin, suggesting the microorganisms 

responsible were not capable of direct lignin metabolism.  

The soil stain from grave 749 has a detectable lignin content that is similar to that of the coffin 

wood, indicating that a gymnosperm wood once occupied the space now filled by the stained 

earth. The wood and the stain have different degrees of lignin modification and – unlike the coffin 

wood – the stain still contains residual hemicellulose. The differences in chemical and physical 

preservation state between the two materials suggest that the decay was mediated by two 

different types of microbes. The preferential lignin degradation with limited holocellulose 

degradation seen in the stain is characteristic of some white rot fungi (Blanchette, 2000). 

With no previous reports in the literature, the finding of wood biopolymers in a soil stain is the 

first reported case. This demonstrates that Py-GC can be used to aid with the interpretation of soil 

colouration when the cause of staining is suspected to be the degradation of wooden objects. 

The advanced decay of the wood is unusual, given that sandy soils typically aid in the preservation 

of organic materials (Day and Ludeke, 1993; Rousk et al., 2010). Given the compression of the 

decayed wood tracheids seen in the SEM of wood from grave 749, compaction of the burial 

matrix is likely to have contributed, altering the hydrodynamics of the matrix and producing 

conditions that better support microbial growth. The decomposing human remains combined 

with the human activity in the street above may have increased the inorganic nitrogen content of 

the soil, conditions which enhance decay of buried lignocellulosic materials (Scott et al., 1996).  
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5.3 Fewston 

5.3.1 Site and sampling information 

During March and April of 2010 an excavation was carried out to recover buried remains from 

graves in the construction footprint of a new Heritage Centre attached to the church of St Michael 

and St Lawrence at Fewston, North Yorkshire (latitude: 53.982745, longitude: -1.704312; Figure 

48). A total of 163 sets of human remains were found and removed from graves in the churchyard 

(Buglass, 2010). The temporal range of the burials was from the church’s founding in the 14th 

century through to the last recorded burial in 1921. The burial soils are well drained coarse loamy 

soils that lie atop Namurian millstone grit of the Upper Carboniferous period (Buglass, 2010).  

The InterArChive team collected wood samples from the remains of two coffined burials. Wood 

was collected from the grave of SK271, heavily degraded skeletal remains on the western boarder 

of the cemetery excavation. Neither the age nor the sex of the individual were able to be 

determined. The burial was relatively shallow at 172.84 cm in depth. Very little remained of the 

coffin; only very fragile wood remnants persisted and were collected for analysis by TD/Py-GC.  

SK310 was the remains of an elderly female, identified by parish records as Mary Dickinson who 

died on the 6th March 1886, aged 66 years. The skeleton was very well preserved and in the 

remains of a wooden coffin. The depth of the burial was not recorded. Several copper alloy nails 

that formed part of the coffin fixtures were still embedded in large fragments of wood. A section 

of wood with one of the copper pins still embedded was taken for analysis. The wood surrounding 

the coffin nail was soft and spongey at the top of the nail and firm at the bottom of the nail. 

Subsamples of material from both the top and bottom were taken for analysis by TD/Py-GC and 

SEM. A small sample of the coffin wood not in proximity to the nail was also analysed by TD/Py-

GC. 
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Figure 48. A map showing the area surrounding Fewston (top) and a plan of the excavation at showing the 
location of graves 271 and 310 (bottom; adapted from Buglass, 2010). 
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5.3.2 Analysis of archaeological material 

5.3.2.1 Py-GC 

Despite the materials from grave 271 having the physical appearance of wood none of the 

samples contain any peaks that could be assigned to compounds resulting from the pyrolysis of 

holocellulose or lignin biopolymers. The wood has completely degraded, leaving behind a 

mineralised pseudostructure. Interestingly, the osseous remains were also very heavily decayed 

(Caffel and Holst, 2010), which indicates that conditions within the burial environment were 

conducive to the extensive decay of organic materials. The conditions that led to the damage of 

the skeletal components could have also induced extensive degradation in the wood of the coffin.  

The pyrogram of the wood from the base of the coffin in grave 310 (Figure 50b) shows only peaks 

corresponding to guaiacyl lignin, indicating that the wood used in the construction of the coffin is 

of wood from a gymnosperm tree. The presence of a levoglucosan peak and peaks with similar 

retention times to those found in the carbohydrate region of the modern pine indicate that there 

is significant cellulose and hemicellulose still present in the wood. The lignin of the wood is 

chemically different from that of the modern pine comparator, evidenced by the predominance of 

short chain lignin compounds over those with long chains, a lower abundance of carbonyl 

functionalities and an increase in the amount of demethoxylated lignin phenols (Figure 49). The 

preferential degradation of lignin, leaving some residual holocellulose, suggests that the wood has 

been metabolised by a white rot fungus (Blanchette, 1991; Blanchette, 2000). 

The two samples from the wood surrounding the copper coffin nail are in very different states of 

preservation. When compared to the Py-GC data of modern pine (Figure 50a) the spongey wood 

taken from the top of the nail has fewer carbohydrate peaks, no levoglucosan peak and a very 

different lignin profile (Figure 50c). No carbonyl and catechol containing compounds were present 

and very few long chain lignin guaiacols remain: 97.1% short chain to 2.9% long chain, compared 

with 63.5% to 25.3% found in modern pine. The analysis shows the wood to be in a much more 

advanced state of decay than the wood from the base of the coffin.  

In contrast, the wood from the around the bottom of the nail is in a better state of preservation 

than both the wood from the top of the nail and from the base of the coffin. Considerable 

amounts of cellulose and hemicellulose remain (evidenced by the carbohydrate and levoglucosan 

peaks in Figure 50d) and the sub unit type profile is the most similar to that of the modern pine 

standard (Figure 49). 

The differences in preservation state of the three samples may relate to their relative proximities 

to the copper nail. The growth and activity of white rot fungi have been demonstrated to be 

dependent on copper concentration (Levin et al., 2002). Concentrations of up to 1 mM copper 



 

 
142 

 

increase the rates of biosynthesis and secretion of key lignolytic enzymes in the white rot species 

Trametes trogii, including manganese peroxidase (MnP), laccase, and glyoxal oxidase (which 

produces hydrogen peroxide necessary for the function of lignin peroxidase (LiP)). Copper has also 

been demonstrated to have a strong effect on laccase induction in species including 

Phanerochaete chrysosporium (Dittmer et al., 1997) and Pleurotus eryngii (Palmieri et al, 2000). 

Copper concentrations exceeding 1 mM inhibit fungal growth and drastically reduce the 

production of manganese peroxidase, as well as inhibiting enzymes crucial to many metabolic 

pathways (Ramsay et al., 1999). The wood from the bottom of the nail, which is least degraded, 

may have been in close enough proximity to the nail to provide sufficient copper concentrations 

to retard fungal growth and lignolytic enzyme production and activity. The preservation of 

perishable organic materials in archaeological burials due to their proximity to copper objects is 

well documented (Beukens et al., 1992; Chen, 1998; Janaway, 2001). The more heavily degraded 

wood from the top of the nail may have been in an environment with copper concentrations that 

were not toxic to the fungus, but were sufficient to enhance the growth and lignin metabolism 

above that of the fungus which degraded the wood from the base, which was not close enough to 

the nail to experience a higher level of copper ions. 

 

Figure 49. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern pine, and the coffin woods from grave 310 at Fewston (see Table 11 for compound 
classifications). Values are calculated as a percentage of the total area of lignin derived peaks in Py-GC-FID 
pyrograms. Error bars represent +/- standard deviation and are the standard error calculated in Chapter 3, 
based on n=3 replicates of an archaeological gymnosperm wood. 
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Figure 50 Assigned partial Py-GC-FID pyrograms of the coffin woods from grave 310 at the Fewston 
excavations. a - modern pine wood, b – wood from the coffin base, c – wood from the top of the coffin nail 
and d - wood from the bottom of the coffin nail. T = toluene, P = phenol, G = guaiacol, C = catechol and LG = 
levoglucosan (a cellulose pyrolysis product). The identities of the numbered peaks are shown in the key to 
the right of the pyrograms. 
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5.3.2.2 SEM 

The wood from the top of the coffin nail in grave 310 appears heavily degraded under SEM ( 

Figure 51a and b). All cell wall layers are damaged, resulting in the separation of individual 

tracheid cells following the destruction of the lignin rich middle lamellae. There are many fungal 

bodies within the wood structure (labelled as F), indicating that the damage to the wood is due to 

a fungal microorganism. Coupled with the loss of both holocellulose and lignin revealed in the 

pyrolysis analysis, it is likely that the observed fungal features are the remnants of a white rot 

fungus that simultaneously degraded all components of the wood. 

The wood from the bottom of the coffin nail is in much better condition than that analysed from the top of 
the coffin nail. The majority of the wood cells appear as those of modern, undegraded pine. Some distortion 
of the cell shape in the earlywood cells is evident (top right of  

Figure 51c) and some swelling of the latewood cells with visible degradation to some of the S3 cell 

wall layers. Such features have previously been attributed to attrition of hemicellulose (Hoffman 

and Jones, 1990). 

The variation in preservation state and the prevalence of fungal features between the two wood 

samples that were only 15 cm from each other indicates that there was a factor involved in the 

protection of one and not the other. As mentioned in Section 3.2.2 the most likely candidate is 

the proximity to the copper coffin nail, copper concentration having been shown to enhance or 

retard the growth and activity of white rot fungi (Levin et al., 2002). The large population of fungal 

bodies in the wood from the top of the coffin nail indicates that fungal growth was highly 

favoured in this location, with low enough copper concentrations to support or even enhance 

fungal activity, whereas the wood at the bottom of the nail was not supportive to the growth of 

microorganisms, likely due to toxic levels of copper.  
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Figure 51. SEM images of coffin wood surrounding the top (a and b) and the bottom (c and d) of the copper 
coffin nail from grave 310 at the Fewston cemetery excavation. The top images (a and b) show heavily 
degraded tracheid cells with damage to all cell wall layers and the presence of fungal bodies (F). The bottom 
images (c and d) show that the wood is in a better state of preservation, with some swelling and damage to 
the cellulose rich secondary cell wall layers. 
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5.3.3 Summary and conclusions 

Despite its appearance, the material from grave 271 does not contain any of the biopolymers 

(modified or otherwise) typically found in wood; the wood has completely decayed, leaving 

behind a mineralised pseudostructure made up of unknown inorganic components. The 

accumulation of the minerals is likely due to the hydrology of the grave, which has led to mineral 

rich water flow through and depositing inorganic salts within the burial matrix. The skeleton was 

also heavily degraded, suggesting that whatever conditions were present in the burial 

environments were able to facilitate the degradation of a range of materials. 

The coffin wood from grave 310 provides strong evidence that proximity to a copper alloy alters 

the decomposition rates of lignin and cellulose by retarding or accelerating the growth and 

activity of white rot fungi. Wood from the base of the coffin (not in proximity to the copper nail) 

shows significant degradation of lignin but still retains the majority of the cellulose and 

hemicellulose components, preferential lignin degradation being characteristic of certain white 

rot fungi. Wood near the top of a copper coffin nail has undergone more extensive fungally 

mediated degradation of both lignin and cellulose, whereas wood from the bottom of the nail is in 

better condition than that from the coffin base. Copper concentrations up to 1 mM are known to 

increase the rates of biosynthesis and secretion of key lignolytic enzymes in white rots (Levin et 

al., 2002), whereas concentrations exceeding 1 mM are mycotoxic, inhibiting metabolic pathways, 

fungal growth and lignolytic enzyme production and activity (Ramsay et al., 1999). The wood from 

the top of the nail is likely to have been exposed to sufficient copper concentrations to enhance 

the degradation by white rot, the material at the bottom of the nail receiving much higher 

concentrations that severely restricted the activity of the fungus that thrived several centimetres 

away. 
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5.4 Hofstaðir 

5.4.1 Site and sampling information 

The remains of a church and the associated human burials at a site in Hofstaðir, Iceland have been 

under excavation by a volunteer led project during consecutive summer periods since 1999. The 

site lies on the banks of the River Laxá at latitude: 65.608613, longitude: -17.162163, 5 km west of 

Lake Mývatn and 80 km north east of Akureyri, the second largest city in Iceland. The earliest 

recorded activity at the site is in the late 9th century (Sayle et al, 2016). All of the burials are sealed 

by a tephra layer deposited by the eruption of Mount Hekla around 1300 BC, indicating that the 

site had become disused before that date. The soil at the site was a histic andosol, rich in basaltic 

glass from volcanic ash (Sigfusson et al., 2008). These soils are acidic, with pH values ranging from 

4 to 6, have a fine grain size and are easily compacted, leading to a propensity for water retention 

and poor drainage (Arnalds, 2004).  

The InterArChive team collected samples from several burials during the 2011 summer 

excavations. Alongside the remains of an adult female, grave 116 contained the remains of 

several fragments of wood believed to be from the remains of a coffin. Three samples of this 

wood as well as stained soil believed to be the decayed remains of coffin wood were taken and 

subjected to TD before analysis by Py-GC. A sample of the wood was also analysed by SEM. 
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Figure 52. A map showing the area surrounding the excavation site in Hofstaðir (top), a plan of the 
excavation showing the location of grave 116 (middle left; adapted from Gestsdóttir, unpublished), a 
photograph of the 2011 excavation showing grave 116 (bottom left) and a photograph of the excavated 
grave 116, showing the skeletal remains and the locations from which samples were taken (bottom right).  
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5.4.2 Analysis of archaeological material 

5.4.2.1 Py-GC 

All of the coffin woods were identified as being from gymnosperm trees; the pyrolysis peaks 

matching those of modern pine (see Figure 55). This is consistent with the finding of pimaric acid 

and abietic acid degradation products (dehydroabietic acid and didehydroabietic acid) in the soils 

of burial 116 (Green, 2013). These compounds are characteristic of resins found in woods of the 

Pinaceae family (Robinson et al., 1987; Colombini et al., 2003). The absence of aromatised 

terpenoids such as retene is evidence that the compounds were not derived from pine pitch 

produced by heating and are indeed from pine wood (Serpico and White, 2000; Colombini et al., 

2003). This corroborates the findings from the TD/Py-GC analyses that the wood is pine and was 

not treated with pitch as a preservative.  

According to historical records and archaeological evidence the only tree species native to Iceland 

at the time of Norse settlement in 874 AD were downy birch (Betula pubescens), rowan (Sorbus 

aucuparia), and aspen (Populus tremula), all of which are angiosperms (Eysteinsson, 2004). 

Therefore, the wood used in the burial of this individual was either from an isolated or 

undocumented pine forest, was from driftwood, or was imported. These potential sources of the 

wood suggest that the individual was of high enough status to warrant a burial in a type of wood 

that would have been a scarce commodity.  

The absence of any peaks that correspond to cellulose or hemicellulose pyrolysates indicates that 

the holocellulose fraction of the wood has been completely degraded within the burial matrix. 

Clear differences between the lignin component and that of modern pine wood are also apparent. 

Guaiacol (G), 4-formylguaiacol (G6) and 4-acetylguaiacol (G8) were all produced in greater relative 

abundance during the pyrolysis of the archaeological woods (shown in Table 12); all other 

guaiacyl subunits showed a lower relative abundance. 

Table 12. Percentage compositions of guaiacol (G), 4-formylguaiacol (G6) and 4-acetylguaiacol (G8) in 
modern pine and Hofstaðir grave 116 coffin wood sample A3 (base of coffin between the femurs). Values 
are calculated as a percentage of the total area of lignin derived peaks in Py-GC-FID pyrograms. 

Pyrolysis product % abundance in modern pine  % abundance in 116 coffin wood 

Guaiacol (G) 15.6 24.1 

4-Formylguaiacol (G6) 4.3 8.6 

4-Acetylguaiacol (G8) 3.9 8.1 
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The metabolism of lignin sub units by Cα-Cβ cleavage of the propyl side chain is widely reported in 

the literature as a feature of lignin peroxidase metabolism, a lignolytic enzyme found exclusively 

in white rot fungi such as Phanerochaete chrysposporium (Umezawa et al., 1982; Tien and Kirk, 

1984; Tien, 1987; Geib et al., 2008; Bugg et al., 2011a). These reactions (illustrated in Figure 53) 

lead to the depolymerisation and subsequent oxidation of lignin sub unit side chains, resulting in 

the production of guaiacol, 4-formylguaiacol and 4-acetyl guaiacol residues bound to the 

remaining structure (Tien and Kirk, 1984; Tien, 1987; Rencoret et al., 2010). The high contents of 

short chain and carbonyl containing guaiacyl moieties in the archaeological woods, demonstrated 

in Figure 54, suggest that such degradation reactions have taken place. Micromorphological 

analysis of soils from grave 116 also found evidence for fungal activity that was identified to be a 

white rot fungus (Burns, 2015). 

 

Figure 53. Lignin degradation reactions that proceed by Cα-Cβ cleavage (blue lines) of β-O-4 ether (top) and 
β-1 (bottom) sub unit linkages with simultaneous hydroxylation of Cβ followed by oxidation. The red lines 
represent bonds broken during pyrolysis (Tien and Kirk, 1984; Tien, 1987; Rencoret et al,, 2010). 

The coffin woods from Hofstaðir also have a higher relative abundance of demethoxylated 

guaiacyl sub units than the modern pine standard (Figure 54). These phenols have been shown to 

be produced as a result of microbially mediated enzyme catalysed demethoxylation of guaiacyl 

subunits (Martínez et al,, 2005), another marker of lignin degradation.  
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Figure 54. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern pine and coffin wood sample A3 from grave 116 at the Hofstaðir excavations (see 
Table 11 for compound classifications). Values are calculated as a percentage of the total area of lignin 
derived peaks in Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the standard 
error calculated in Chapter 3, based on n=3 replicates of an archaeological gymnosperm wood. 

 

The pyrograms of the soil stains from grave 116 display higher proportions of phenol than the C2 

soil control (Figure 55 c and d). The elevated phenol content is indicative of the presence of a 

polymeric material that is not present in the soil control. As has been seen in the coffin wood, 

phenolic lignin derived compounds are produced by the defunctionalisation of guaiacyl lignins. 

The fact that the phenol liberated from the soil control is less than that from the soil stain may 

indicate the presence of heavily decayed wood in the latter. Analysis of the soil stain by Py-GC 

without TD and by Py-GC after solvent extraction with 9:1 DCM:methanol (see Chapter 2.2.2.4) 

showed no change in the pyrogram, indicating that depolymerised lignin metabolites were not 

present. Given the lack of peaks directly attributable to wood polymers, the source of the phenol 

cannot be identified definitively as a wood degradation product.  
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Figure 55. Assigned partial Py-GC-FID pyrograms of the coffin wood and soil stain compared with the C2 soil 
control from grave 116 at the Hofstaðir excavations. a – modern pine wood, b – a representative sample of 
coffin wood, c – an example of the soil stains analysed that were thought to be due to degraded coffin 
wood, and d – the C2 soil control for grave 116 that serves as a background measurement of any polymeric 
compounds present within the grave fill. T = toluene, P = phenol, G = guaiacol, C = catechol and LG = 
levoglucosan (a cellulose pyrolysis product). The identities of the numbered peaks are shown in the key to 
the right of the pyrograms. 



 

 
153 

 

5.4.2.2 SEM 

Examination of the wood under SEM in cross section (Figure 56a) reveals that it is simple in 

structure, lacks vessels and show clear bands of earlywood and latewood, characteristics 

attributed to coniferous woods. Thinning of the inner layers of tracheids and localised areas 

where the cells have completely split open are evident. The cells of the wood are damaged in 

many areas, with degradation apparent in all cell wall layers. The cellulose rich secondary cell wall 

layers show signs of flaking and degradation, while the middle lamellae also exhibit symptoms of 

decay. The damage to both holocellulose and lignin rich layers of the wood structure bears a 

strong resemblance to that caused by white rot (Blanchette et al., 1990). Fungal spores that 

appear similar to those produced by the white rot Phanerochaete chrysosporium (Rice et al., 

2006) are also present. 

Surface analysis by SEM (Figure 56b) reveals the presence of a fungal body embedded in the 

subsample, similar to those reported by Blanchette (2000). The fungal feature is approximately 

100 µm in diameter, penetrates the wood at both ends and has produced numerous fungal 

hyphae that are adhering to the wood. In the immediate vicinity of the fungal hyphae the wood 

cells are heavily damaged and have separated into individual tracheids or bundles of tracheids. 

The presence of fungus and spores which appear similar to those of a white rot fungus, combined 

with degradation of both lignin and cellulose suggests that the wood has been degraded by a non-

lignin preferential white rot fungus (Blanchette, 2000).  

 

Figure 56. SEM images of coffin wood sample A3 from grave 116 at the Hofstaðir cemetery excavation. The 
left image (a) shows a cross sectional cut of degraded tracheid cells with damage to all cell wall layers and 
the presence of fungal spores (S). The right image (b) shows a fungal body (FB) approximately 100 µm in 
diameter adhered to the surface of the wood by fungal hyphae (FH) which have penetrated in to the wood. 
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5.4.3 Summary and conclusions 

Pyrolysis data reveal that the coffin woods from grave 116 are from gymnosperm trees and have 

undergone decay of both lignin and holocellulose. This is confirmed by the damage revealed by 

SEM imaging. The presence of fungal bodies in the wood tissue allow for the identification of the 

degrading microorganism as a type of non-lignin preferential white rot. The lignin has underdone 

Cα-Cβ cleavage of both β-O-4 ether and β-1 lignin sub unit linkages and oxidation of the resultant 

hydroxylated products.  

The soil stains, thought to be due the presence of heavily decayed wood, show higher phenol 

content than the soil control, though no other compounds attributable to lignin were observed. 

As a result of this, the stain cannot be attributed definitively as resulting from degradation of 

wood.  



 

 
155 

 

5.5 Mechelen 

5.5.1 Site and sampling information 

Samples of coffin wood were collected from graves 26 and 423 during the excavations at St 

Rumbold’s cathedral, Mechelen, latitude: 51.028858, longitude: 4.479221. (See Chapter 6.4.1 for 

a description of the Mechelen excavations, including soil analyses and historical information.) 

Both materials were fragile and easily fragmented when handled. The wood from grave 26 was 

noticeably lighter in colour than that from grave 423. All materials were subjected to TD before 

analysis by Py-GC. The coffin wood from grave 423 was also analysed by SEM. 

 

Figure 57. A map showing the area surrounding Mechelen (top) and a plan of the excavation at the 
cathedral in Mechelen, showing the location of graves 26 and 423 (bottom; image adapted from Depuydt et 
al., 2013). 
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5.5.2 Analysis of archaeological material 

5.5.2.1 Py-GC 

The coffin wood from grave 26 shows intensive modification and almost complete degradation of 

the lignin component of the wood by comparison with modern pine. The key characteristics are: a 

dominance of shorter chain lignin pyrolysis products over those with long chains, a lack of guaiacyl 

compounds with carbonyl functionalities, and an increased proportion of demethoxylated lignin 

phenols (Figure 58). The absence of compounds derived from syringyl lignin in the pyrogram 

suggests that the wood is from a gymnosperm tree, though due to the severe degradation of the 

lignin this conclusion is only tentative. 

The pyrogram displays intense peaks in the region where carbohydrate pyrolysis products 

typically elute (5-25 min) that match the peak pattern of carbohydrate derived compounds in the 

modern pine (Figure 59). Levoglucosan, a characteristic of indicator of cellulose in pyrograms of 

wood (Mohan et al., 2006), is absent. This suggests that the peaks in the carbohydrate region are 

due to the presence of only hemicellulose and not cellulose remaining in the coffin wood. 

Selective delignification is a phenomenon that has been previously been attributed to certain 

strains of white rot fungus (Blanchette, 1991; Blanchette, 2000), but selective microbial 

degradation of cellulose over hemicellulose is not reported to occur by any known 

microorganism. Although Iiyama et al. (1988) reported finding cellulose to be more heavily 

attrited than hemicellulose in heavily degraded buried woods, the degradation of hemicelluloses 

is typically more pronounced than that of cellulose in buried archaeological woods (Kim and 

Singh, 2000). Therefore, either an as yet unknown microorganism could be responsible for the 

degradation of the cellulose (and possibly the lignin), or the degradation is due to chemical factors 

within the burial environment.  

The coffin wood from grave 423 contains only gymnosperm lignin derived compounds and no 

compounds from any carbohydrates (Figure 59). Figure 58 shows intensive demethoxylation of 

the guaiacyl subunits. While there is a larger ratio of short chain to long chain lignin sub units 

when compared to modern pine, there is no increase in the content of oxidised, carbonyl 

containing compounds. This would suggest that the lignin has been modified by demethoxylation 

but not broken down to any great extent. Combined with the holocellulose loss, these 

degradation signatures are consistent with a range of wood decaying microorganisms including 

brown rot and soft rot fungi, and wood decay bacteria including erosion, tunnelling and cavitation 

bacteria (Blanchette, 2000). 
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Figure 58. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern pine and the coffin woods from graves 26 and 423 at Mechelen (see Table 11 for 
compound classifications). Values are calculated as a percentage of the total area of lignin derived peaks in 
Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the standard error calculated in 
Chapter 3, based on n=3 replicates of an archaeological gymnosperm wood. 
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Figure 59. Assigned partial Py-GC-FID pyrograms of modern pine (a) and coffin wood from graves 26 (b) and 
423 (c) at the Mechelen excavations. H = holocellulose pyrolysis products, T = toluene, P = phenol, G = 
guaiacol, C = catechol and LG = levoglucosan (a cellulose pyrolysis product). The identities of the numbered 
peaks are shown in the key to the right of the pyrograms.   
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5.5.2.2 SEM 

The tracheid shape, absence of vessels, and the presence of resin ducts evident in the SEM images 

of wood from grave 423 indicate that the material is softwood (Figure 60). There are two distinct 

regions of the wood that show differing levels of degradation. One region shows less advanced 

deterioration of the cell walls, with evidence of flaking and attrition of the cellulose rich 

secondary cell wall components (Figure 60a and b). In this case, the overall shape of the cells is 

relatively undistorted and the structure of the wood is similar to that of undegraded softwood. 

The other region shows more complete destruction of the secondary cell wall material with 

significant thinning of the tracheid walls, leaving only a skeleton of the middle lamellae and 

primary cell wall layers (which are rich in lignin; Fengel and Grosser, 1975) that is warped and 

more heavily damaged (Figure 60c and d). Given that little holocellulose was observed in the 

pyrolysis data of this sample, it is likely that that there are very few areas where the tracheids are 

well preserved, those with heavily decayed secondary cell walls being the major component.  

The two regions of differing preservation state both contain tube-like features that are 

approximately 2 µm in diameter within the lumen space of many of the cells. The tracheids in 

areas with more cellulose material remaining have features on the inner surfaces that appear to 

be very fine fungal hyphae. The pyrolysis data shows complete loss of holocellulose and 

modification of lignin by demethoxylation, but limited lignin depolymerisation. This kind of 

damage is known to be the result of brown rot and soft rot fungi (Blanchette, 2000). The SEM 

images do not show the cavities in the secondary cell wall layers that are typical of soft rot attack 

(Filley et al., 2001; Blanchette et al., 2004), the degradation instead appearing similar to that 

carried out by brown rot fungus reported by Bouslimi et al. (2014). 

There are several possible explanations as to why there are two regions with different levels of 

degradation. Proximity to metal objects may have limited the growth or metabolic activity of the 

fungus, impeding its ability to degrade the holocellulose in the more preserved areas. The 

depletion of oxygen within the burial environment is also a likely candidate for the arrest of the 

fungal decay. A change in the conditions from oxic to anoxic would have halted the metabolism of 

holocellulose, as brown rot fungi are not capable of degrading celluloses in anoxic environments 

(Boer et al., 2005). 
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Figure 60. SEM images of coffin wood from grave 423 at the Mechelen cemetery excavation. The top images 
(a and b) show flaking and attrition of the cellulose rich secondary cell wall components and the presence of 
fungal bodies (F). The bottom images (c and d) show that the wood is more heavily degraded, with complete 
losses of all holocellulose components, structural collapse and apparent fungal bodies (F). 
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5.5.3 Summary and conclusions 

Pyrolysis data of wood from grave 26 shows that the lignin component of the wood is heavily 

degraded but there is a large amount of hemicellulose still present. This is consistent with wood 

being selectively delignified, which is mediated by white rot fungus. All wood analysed was in this 

condition, suggesting similar conditions existed within all parts of the burial environment.  

No cellulose or hemicellulose components are present in the pyrogram of the wood from grave 

423. Some modification of the lignin is apparent (in the form of demethoxylation) but there was 

not a large amount of depolymerisation, suggesting that the wood was not attacked by 

microorganisms capable of metabolising lignin. The SEM shows two distinct areas of different 

preservation state, with one presenting more advanced decay of the cellulose rich secondary cell 

wall layers. Both areas have fungal bodies present in the cell lumen. The damage is consistent 

with that carried out by brown rot fungus, an interpretation that also fits with the damage to the 

biopolymers observed in the Py-GC analysis. 

The presence of fungus in both woods and the differing levels of degradation indicates that the 

fungus was prevented from attacking the wood in one microenvironment more than the other, 

possible due to a change in the oxygen levels within the burial environment or the presence of a 

mycotoxin in one wood fragment and not the other.  
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5.6 Sala 

 

5.6.1 Site and sampling information 

Sala is a town in the Västmanland county of Sweden, approximately 60 km west of Uppsala. The 

town in best known for its silver mine that dates back to medieval times and closed in 1908. 

Periodic excavations at the town’s cemetery have been ongoing since 2004 (latitude: 59.906881, 

longitude: 16.574256; Bäckström & Sundström, 2014). 14C dating of bones together with coin 

finds suggest the cemetery was in use from the early 1400s to the late 1500s (Bäckström & 

Sundström, 2014). The burial matrix consisted of podzol, a soil typically found around coniferous 

forests. Podzols are most often sandy, well drained and have a low pH (Chesworth, 2008).  

The InterArChive team collected samples of grave soil and wood during the third and final series 

of excavations at the Sala mining cemetery in August 2011. Grave 7464 was a supine burial that 

was at a depth of 0.17 m. It contained the remains of an older individual, at least 50 years of age, 

of an undetermined sex (Bäckström & Sundström, 2014). Parts of the coffin were still present and 

samples of the wood were taken for analysis.  

A large sample of wood from the side of the coffin was trisected, to give three slices of wood that 

1) had been exposed directly to the grave fill; 2) exposed to the interior of the coffin; 3) in 

between the two. Each was then processed as described in Chapter 2.2.2.2 before analysis by 

TD/Py-GC. A sample of the wood was also analysed by SEM. 
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Figure 61. A map of the area surrounding the archaeological excavation at Sala silver mine (top) a 
photograph of grave 7464 (bottom left) and a plan of the 2009 excavation showing the position of grave 
7464 (bottom right; image adapted from Bäckström & Sundström, 2014).  
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5.6.2 Analysis of archaeological material 

5.6.2.1 Py-GC 

The pyrograms of the coffin wood are similar to those of modern pine (Figure 62), and exhibit 

peaks attributed to guaiacyl units only, lacking any syringyl peaks. This is strongly indicative of the 

wood being gymnosperm in origin (Lewis and Yamamoto, 1990). Compared to the fresh pine, the 

coffin woods display several key differences. The most noticeable difference is in the region 

where carbohydrate pyrolysis products elute; the peaks in the archaeological wood being much 

smaller or absent compared those of modern pine. The levoglucosan peak present in the modern 

pine pyrogram is absent in those of the archaeological woods. The lack of any substantial peaks 

that are due to the pyrolysis of carbohydrates indicates that the holocellulose component 

(cellulose and hemicellulose) of the coffin woods is heavily degraded. 

Figure 62 and Figure 63 show a high relative abundance of phenol, 2-methylphenol and 3-

methylphenol which are likely the result of demethoxylated lignin compounds in the 

archaeological woods. These phenols have been shown to be produced as a result of microbially 

mediated enzyme catalysed demethoxylation of guaiacyl subunits, which leads to them being 

liberated as phenol on pyrolysis (Figure 68; Martínez et al., 2005).  

Unlike the wood analysed from other sites, the proportions of long and short chain lignin products 

are only slightly different than in modern pine, and the relative amounts of carbonyl containing 

lignin products are very similar to the modern wood (Figure 63). Combined with the evident 

removal of all the holocellulose, the damage is typical of that caused by fungi and bacteria that 

are not capable of extensively degrading lignin. 

The preservation state of the wood is uniform in all of the samples from all parts of the coffin. 

Outer, centre and inner subsamples all show the same absence of holocellulose pyrolysis products 

and the same products attributed to transformation of lignin. 



 

 
165 

 

 

Figure 62. Assigned partial Py-GC-FID pyrograms of the trisected coffin wood from grave 7646 at the Sala 
silver mine excavations. a - modern pine wood, b - the outer layer of coffin wood (exposed to the grave fill), c 
- the inner ‘sandwiched’ layer of coffin wood and d - the inner layer of coffin wood (exposed to the inside of 
the coffin). T = toluene, P = phenol, G = guaiacol, C = catechol and LG = levoglucosan (a cellulose pyrolysis 
product). The identities of the numbered peaks are shown in the key to the right of the pyrograms. 
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Figure 63. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern pine and the trisected coffin wood sample A4 from grave 7646 at the Sala silver mine 
excavations (see Table 11 for compound classifications). Values are calculated as a percentage of the total 
area of lignin derived peaks in Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the 
standard error calculated in Chapter 3, based on n=3 replicates of an archaeological gymnosperm wood. 
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5.6.2.2 SEM 

On first inspection of the SEM images (Figure 64), the wood appears to have vessels (labelled V), 

features that are not found in gymnosperm wood tissue (Salisbury and Ross, 1992). The pyrolysis 

data indicate that the material is from a gymnosperm tree, as does the simple structure apparent 

in the SEM images and the clear transition from earlywood cell to latewoods cells, which is less 

evident in angiosperms. Closer analysis however, shows the holes have poorly defined edges, with 

no structural linings typical of vessels. The edges of the voids appear to be made up of crushed 

and heavily degraded cells, which would be consistent with objects pushing though the wood, 

degrading the surrounding cells as they progressed, leading to compression and collapse of the 

cells. Several of the holes are over 1 mm in diameter, and have led to the splitting of the wood 

into distinct sections. 

Several of the tunnels contain round, tubular features (labelled F) that have the same appearance 

as fungal bodies reported in SEM of wood reported by Blanchette et al. (1994) and Schwarze 

(2000). The fungus has penetrated the wood, leading to the observed damage. Whilst 

gymnosperm woods do not contain vessels, they do incorporate resin ducts. The resin ducts are 

normally much smaller than the features seen in the electron micrographs; the action of fungi, 

however, may have widened the resin ducts whilst using them to infiltrate the wood in its quest 

for nutrients. Bouslimi et al. (2014) degraded gymnosperm wood from white cedar (Thuja 

occidentalis) using brown rot fungus, producing similar damage to that observed in the SEM of the 

coffin wood.  

The earlywood tracheid cells are distorted and less thick that those observed in undegraded 

gymnosperms (Meylan and Butterfield, 1972). This is likely to be due to the attrition of the 

holocellulose rich S1, S2 and S3 secondary cell wall components (Asunmaa and Lange, 1953; 

1954). Cellulose and hemicellulose are of greater abundance in earlywood cells, leading to them 

being preferentially degraded and the decay being more likely to lead to structural collapse than 

the more intact latewood cells (Schwarze, 2007). The loss of the cellulose compromises the 

structural integrity and strength of the tracheids, leading to distortion of the cells. The distortion 

is much more apparent in the earlywood cells, whose wider lumen and thinner walls make them 

more susceptible to structural collapse when individual cell wall layers are degraded. Many of the 

earlywood tracheids contain thin fungal strands that have been observed previously in the decay 

processes of archaeological woods (Blanchette et al., 1994; Schwarze, 2007). Fungal appendages 

of brown rot fungi are known to attack the holocellulose rich secondary cell wall layers, leaving 

behind a weakened skeleton of lignin in the middle lamella (ML), primary cell walls (P) and, 

occasionally, intact or partially degraded S1 material. The lower proportion of holocellulose in the 

ML, P and S1 cell wall layers makes them more resistant to fungal degradation (Schwarze, 2007). 
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The action of brown rot fungi would explain the observed thinning of the cell walls and structural 

deformation. 

 

Figure 64. SEM images of coffin wood from grave 7467 at the Sala silver mine excavation (a and b), and SEM 
of white cedar that has been degraded by treatment with brown rot fungus, taken from Bouslimi et al (2014; 
c and d). The top left image (a) shows large voids (V) that are not consistent with the morphology of 
undegraded gymnosperm woods, fungal bodies filling one of the voids (F) and thinned, distorted tracheid 
cells of the earlywood layers (EW). The top right image (b) is a closer view of the decayed earlywood cells, 
showing significant losses to the secondary cell wall layers. The damage seen in the coffin wood from Sala 
grave 7464 is similar to that seen in c and d, suggesting that the damage to the archaeological material may 
be due to a brown rot fungus. 
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5.6.3 Summary and conclusions 

Py-GC and SEM analysis both indicate that the coffin in grave 7464 is made from softwood. All 

cellulose and hemicellulose has been degraded, with some modification of the lignin by 

demethoxylation and limited depolymerisation. Fungal bodies are present within large voids that 

are atypical of undegraded gymnosperm wood and likely caused by the fungus (Salisbury and 

Ross, 1992; Schwarze, 2007). The secondary cell wall layers have been stripped away, accounting 

for the loss of holocellulose seen in the pyrolysis data. The middle lamellae remain, indicating that 

the lignin was modified as a result of the removal of the carbohydrates and not due to directed 

attack on the lignin. The degradation apparent in the chemical and morphological data suggests 

that the culprit is highly likely to be a brown rot fungus. 

The preservation state was the same throughout the thickness of the side of the coffin wood and 

in all parts of the coffin, demonstrating the ability of brown rot fungi to permeate and proliferate 

within the burial environment. 
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5.7 Thaon 

5.7.1 Site and sampling information 

L'église Saint-Pierre de Thaon is a disused church in the Calvados region of Northern France, 

approximately 13 km from Caen and 20 km from Bayeux, latitude: 49.265572, longitude: -

0.450441. The Romanesque tower of the church dates back to the 11th century, the remainder of 

the 11th century construction was demolished and the current nave and chancel added in the late 

12th century. The church was finally closed in 1840. A ten year archaeological study of the church 

led by the University of Caen involved extensive excavations inside the church. Several hundred 

burials were uncovered below the floor of the church. The InterArChive team sampled coffin 

wood from the remains of two individuals (SEP 360 and SEP421) in the lowest levels of the burials 

within the nave of the church in the tenth and final season of excavation in 2009. The depth of the 

burials below the level of the original floor was in excess of one metre, below the water table of 

the site. Consequently, the burials were waterlogged at the time of excavation. The variability of 

the water level over time is not known, hence the duration of the waterlogging at the time of 

excavation was not determined. 

Material from SEP360 and SEP421 was analysed by both TD/Py-GC-FID and TD/Py-GC-MS (to aid 

with peak assignment and data analysis). A sample of the material from SEP 360 also was 

analysed by SEM. 
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Figure 65. A map of the area surrounding the archaeological excavation at Thaon (top) a photograph of 
L'église Saint-Pierre de Thaon (middle) and a photograph of grave 420. 
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5.7.2 Analysis of archaeological material 

5.7.2.1 Py-GC 

Neither of the coffin wood samples from SEP360 and SEP421 yielded holocellulose derived 

compounds on pyrolysis, indicating that the carbohydrate components have completely degraded 

within the burial environment. Both materials produced pyrolysis products that correspond to 

guaiacyl and syringyl lignin sub units, indicating that the coffins were made with wood from 

angiosperm trees. The burials being under the floor of the church suggests that the individuals 

were of high status within the community; the coffins being made of expensive hardwoods 

indicates that they were of substantial wealth.  

When analysed alongside modern oak the lignin of both archaeological woods have compositional 

differences (Figure 66). Larger ratios of short chain to long chain subunits and a higher 

predominance of demethoxylated subunits were detected, both parameters differing more in the 

wood from SEP360 than in that from SEP421. The wood from SEP360 also shows a measurably 

lower abundance of lignin components with oxidised side chains with respect to the amounts 

found in the modern oak. The greater difference in lignin composition in SEP360 samples suggest 

that this wood is more heavily degraded than that recovered from SEP421.  

 

 

Figure 66. Percentage compositions of demethoxylated, demethylated, carbonyl, long chain and short chain 
compounds in modern oak and the coffin woods from graves 360 and 421 at Thaon (see Table 11 for 
compound classifications). Values are calculated as a percentage of the total area of lignin derived peaks in 
Py-GC-FID pyrograms. Error bars represent +/- standard deviation and are the standard error calculated in 
Chapter 3, based on n=3 replicates of an archaeological angiosperm wood. 
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Table 13. Ratios for corresponding syringyl, guaiacyl, phenol and methoxycatechol subunits from modern 
oak, SEP360 and SEP421 2003 coffin woods. ^ denotes an increase in the S:G ratio compared to modern oak. 

Ratio Modern oak Thaon SEP360 Thaon SEP421 

SH:GH 1.70 0.18 0.94 

S1:G1 0.98 0.25 0.77 

S2:G2 3.88 0.30 0.31 

S3:G3 1.76 0.20 0.33 

S4:G4 2.17 0.02 1.34 

S5:G5 0.29 - 0.58 

S6:G6 11.89 - 37.89^ 

S7:G7 2.57 0.26 0.98 

S8:G8 1.22 0.05 0.10 

Σ S:G  2.00 0.20 0.98 

Σ S:MC  15.03 3.14 12.41 

Σ G:P 23.26 1.16 1.15 

 

A key parameter often used in assessing degradation of the lignin in hardwoods is the ratio of 

syringyl to guaiacyl lignin subunits (Faix et al., 1991; del Rio et al., 2001; Martıńez et al., 2001; 

Łucejko et al., 2009). It is commonly observed that syringyl units are selectively degraded, either 

by being chemically modified in chain or by their complete removal from the lignin polymer, 

leading to a lower S:G ratio than in undegraded angiosperm wood. Side chain specific and total (Σ) 

S:G ratios for modern oak and the archaeological materials are shown in Table 13. With the 

exception of side chain 6 in SEP421 wood, all of the side chain specific and total S:G ratios for the 

archaeological woods are lower than the corresponding values from modern oak. This suggests 

that the degradation of the lignin was more focused on the syringyl subunits. The greater degree 

of variation observed among the SEP360 S:G ratios indicates that the attrition of syringyl moieties 

was more aggressive than for the wood from SEP421.  

Several theories currently stand as to why the syringyl moieties of angiosperm lignin are more 

readily degraded than their guaiacyl counterparts. One possible reason is the fact that guaiacyl 

units can cross link by both β–O4 aryl ether linkages and by carbon–carbon bonds at the C6 

position of the aromatic ring, whereas syringyl units have an extra methoxy group at C6 and 

therefore cannot form intermonomer carbon–carbon bonds. This leads to an increased degree of 

polymerisation of guaiacyl units, potentially making them more resistant to enzymatic attack (del 

Rio et al., 2002; Vane et al., 2003). Another plausible explanation is that the mode of attack of 

many lignolytic microbes may be to preferentially attack the secondary cell wall layers that are 

richer in S lignin, leaving the G lignin rich inner lamella intact, leading to greater overall 

modification of syringyl units when compared to guaiacyl units (Backa et al., 2001).  
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Figure 67. Assigned partial Py-GC-FID pyrograms of modern oak (a) and coffin wood from SEP360 (b) and 
SEP421 (c) at the Thaon church excavations. T = toluene, P = phenol, G = guaiacol, MC = methoxycatechol, S 
= syringol and LG = levoglucosan (a cellulose pyrolysis product). The identities of the numbered peaks are 
shown in the key to the right of the pyrograms. 

Several mechanisms associated with the attrition of syringyl moieties have been proposed; two 

that are most often postulated being demethoxylation and demethylation. Demethoxylation 

(Figure 68) would result in an increase in mono-methoxylated guaiacyl units, contributing to an 

observed decrease in the S:G ratio (Saiz-Jiminez et al., 1987). One of the most characteristic 

pyrolysis signatures of heavily degraded lignin in archaeological wood is the increase in para-

hydroxyphenyl with respect to guaiacyl and syringyl subunits. The increase is typically a result of 



 

 
175 

 

the complete demethoxylation of guaiacyl and syringyl subunits, leading to the liberation of large 

amounts of phenol on pyrolysis (Figure 68; Saiz-Jiminez et al., 1987; Martıńez et al., 2001). The 

reaction scheme for the increase in phenol detected by Py-GC is shown in Figure 68. Larger 

amounts of phenol and smaller G:P ratios are evident in both coffins from Thaon, suggesting that 

demethoxylation of guaiacyl subunits or di-demethoxylation of syringyl subunits has occurred.  

 

Figure 68. Postulated pathway for the demethoxylation of syringyl and guaiacyl lignin subunits, leading to 
the formation of phenol. Adapted from Schoemaker, 1990. 

 

Demethylation of lignin phenols leads to the production of a range of benzenediol compounds. 

The demethylation of guaiacyl units yields catechol compounds (C; Figure 69a) whereas syringyl 

units can be mono-demethylated to produce methoxycatechol compounds (MC; Figure 69b). The 

pyrograms of both archaeological samples from Thaon reveal higher amounts of both C and MC 

species than for modern oak (Table 13). Demethylation of lignin phenol is commonly observed as 

a result of the action of the laccase enzymes of several fungi, including brown rot fungi (Martıńez 

et al., 2005; Sánchez, 2009). Recent work characterising the emerging role of bacteria in lignin 

degradation has demonstrated that several species of soil bacteria (including species from the 

genera Pseudomonas and Actinomycetes) can also modify lignin by demethylation (Vicuña, 1988; 

Zimmermann, 1990; Bugg et al., 2011b).  
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Figure 69. a) Postulated pathway for the demethylation of guaiacyl lignin subunits, leading to catechol 
formation, b) postulated demethylation of syringyl lignin subunits, leading to the formation of 
methoxycatechol derivatives.  
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5.7.2.2 SEM 

 

Figure 70. SEM images of coffin wood from SEP360 at the Thaon church excavation. The left image (a) 
shows that the cellular structure of the wood has been heavily distorted. The right image (b) shows that all 
holocellulose has been removed, leaving a weakened lignin skeleton. 

Structurally, the wood from SEP360 at Thaon is heavily compromised. Figure 70a shows little of 

the cell structure that is typically observed in angiosperm woods at similar levels of magnification. 

The cell features that are present are very thin, suggesting a complete removal of cellulose to 

leave behind a lignin rich skeleton of middle lamellae (Rowell and Barbour, 1990). Other sections 

of the wood (seen in Figure 70b) show that the majority of the wood cells have collapsed and 

been compressed. Such damage is attributable to loss of secondary cell wall layers due to removal 

of holocellulose components (Blanchette, 2000). The fact that the cell walls are thinner than those 

of undegraded angiosperms wood also suggests that cellulose attrition has taken place. This 

finding fits with the lack of peaks in the carbohydrate region and an absence of levoglucosan 

(from cellulose) in the pyrograms of the coffin wood. 

The physical damage to the wood structure is in excess of that expected given the levels of lignin 

still present in the material. Woods that are more heavily chemically modified still show a high 

degree of order; an example being the wood from the top of the coffin nail from grave 310 at 

Fewston (see Section 3.2.2). The disparity between the chemical and physical preservation of the 

wood may be due to the water levels at the site. During excavation, grave 360 was partially 

submerged in water. It is unknown if the water table fluctuates or whether the coffin was 

waterlogged continuously. Collapse and shrinkage similar to that observed in the SEM of the 

Thaon coffin wood has been reported in previous studies of waterlogged woods; the damage is 

attributed to the loss of the water when the wood is dried in an uncontrolled manner, leading to 

the collapse of the tracheid cells (Florian, 1990). A repeated change in the water level could have 

led to the wood from grave 360 experiencing periodic cycles of wetting and drying.  
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5.7.3 Summary and conclusions 

The coffins from the graves at Thaon, SEP360 and SEP421, are both made from angiosperm wood, 

as indicated by the presence of both guaiacyl and syringyl lignin subunits. Burial in a hardwood 

coffin indicates that the individuals were of appreciable wealth. Neither wood yielded any 

carbohydrate derived pyrolysis products, indicating that the holocellulose has been completely 

degraded. In comparison with modern oak, both archaeological woods show degradation of the 

lignin component, exhibiting a smaller long:short chain lignin subunit ratio and evident 

demethoxylation (smaller S:G and G:P ratios) and demethylation (smaller S:MC ratio) of the lignin 

methoxyphenols. The wood from SEP360 also contained fewer oxidised lignin side chains. All of 

these metrics indicate that the archaeological materials are more degraded than the modern oak 

and that the wood from SEP360 is significantly more degraded than that from SEP421. 

The SEM of wood from SEP360 reveals a complete loss of all secondary cell wall layers and a high 

degree of physical deformation, possibly due to fluctuations in the water table affecting the burial 

environment.   



 

 
179 

 

5.8 Hanson Logboat 

 

5.8.1 Site and sampling information 

The Hanson Logboat was discovered in the Hanson Gravel Pit in the village of Shardlow, 

Derbyshire, in 1998 (latitude: 52.860235, longitude: -1.368392). The boat was discovered when a 

quarrying machine uncovered and destroyed the stern (British Archaeology Magazine, 2003). 

Carved from the trunk of a single 300 year old oak tree (Quercus robur), the vessel still contained 

its cargo of Bromsgrove sandstone, suggesting that its sinking was not intentional (Crawshaw et 

al., 2013). Radio carbon dating indicates that the tree from which the boat was constructed was 

felled between 1440 and 1310 BC, in the Middle Bronze Age (Crawshaw et al., 2013). Its 

preservation for approximately 3400 years was undoubtedly facilitated by the waterlogged 

environment in which it resided. Waterlogged environments are often anoxic or anaerobic, 

conditions that retard microbial decay of wood and can result in wooden objects surviving for 

thousands of years (Blanchette, 1991). Such conditions do not, however, always prevent 

deterioration of wood; biological or chemical modification can still occur (Florian, 1990). 

The surviving 11 metres of the logboat was cut into sections to enable its removal from the site 

and each section was conserved by York Archaeological Trust (Crawshaw et al., 2013). The 

conservation process involved the replacement of water in the structure of the wood with two 

grades of the polymer polyethylene glycol (PEG); initially impregnating with PEG 200, followed by 

PEG 3400 (Crawshaw et al., 2013). PEG is commonly used to impregnate wooden archaeological 

artefacts recovered from waterlogged environments during conservation (Graves, 2004). The 

polymer impregnates the wood, as water (which can constitute a large proportion of the mass of 

the artefact) is slowly removed. The PEG acts as a cell wall bulking agent and a consolidant, 

preventing the wood from cracking and deforming. Following impregnation with PEG the boat 

was freeze dried to remove any remaining water. 

Whilst on display at Derby Museum and Art Gallery, the Hanson Logboat began to display signs of 

deterioration. Parts of the wood appeared to take on a darker colour and became brittle. Owing 

to concerns about the condition of the boat, samples were taken for analysis. In order to assess 

the preservation state of the boat, samples of the deteriorated wood (labelled HL 2011) were 

analysed alongside samples kept in refrigerated storage from after the conservation treatments 

were applied that did not exhibit the same changes in morphology (labelled HL 2003), and 

modern English Oak (Quercus robur). The polyethylene glycol conserving agents were removed by 

solvent extraction (Chapter 2.2.2.4) to enable degradation of the holocellulose and lignin 

components of the woods to be assessed. Materials were analysed by EA (CHNS and O), Py-GC-

FID, Py-GC-MS and SEM.  
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Figure 71. A map of the region surrounding Shardlow, Derbyshire, with the location that the boat was found 
marked by a red star (top) and an image of the Hanson Logboat on display in Derby Museum and Art 
Gallery, showing the sandstone blocks found in the vessel and several other artefacts found in context with 
the boat (bottom). 
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5.8.2 Analysis of archaeological material 

5.8.2.1 EA 

The TOC content for modern oak was measured as 37.1% (Figure 72 and Table 14). The overall 

elemental composition from the CHO data accords to the formula C22H38O8, with trace levels of N. 

The higher TOC content of HL 2003 (44.0%) is consistent with depletion of holocellulose and 

enrichment of the lignin component of the wood, lignin having a considerably higher proportion 

of carbon (57.7% ± 1.4) than holocellulose (41.4% ± 1.6) (Eglin et al., 2008). The elemental 

abundances of C, H, N and S are higher in the HL 2003 material than in fresh oak, and the oxygen 

content is similar (Figure 72 and Table 14). The calculated molecular formula for the sample is 

C20H44O8, with traces of N and S. An enrichment in lignin, via attrition of cellulose, would be 

accompanied by a small decrease in hydrogen content, a larger decrease in oxygen content and 

an increase in the carbon content. The similarity in oxygen content together with higher levels of 

H, N and S indicates the presence of other organic matter contaminating the archaeological wood. 

The TOC content of the 2011 sample (2.2%) is considerably less than both fresh oak and the 2003 

sample. The low TOC content indicates that the sample is predominantly inorganic in 

composition, which signifies severe attrition of the organic components of the wood. The 

elemental abundances similarly reflect the low abundance of organic matter. The sulfur content 

(27.4%) is considerably higher than would be consistent with organic sulfur containing 

compounds; hence it is apparent that the wood contains high levels of inorganic sulfur species. 

 

Figure 72. Mean element atomic abundances (n = 3) of fresh oak and wood from the two Hanson Logboat 
samples HL 2003 and HL 2011. Error bars show ± 1 standard deviation. 
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Table 14. Mean element atomic abundances (n = 3) of fresh oak and wood from the two Hanson Logboat 
samples HL 2003 and HL 2011 (%Δ represents the percentage difference in elemental composition compared 
with fresh oak). 

Wood 
TOC / 

% (%Δ) 
SD 

C / % 
(%Δ) 

SD 
H / % 
(%Δ) 

SD 
N / % 
(%Δ) 

SD 
S / % 
(%Δ) 

SD 
O / % 
(%Δ) 

SD 

Modern 
oak 
C22H38O9 

37.1 1.9 44.8 0.4 6.3 0.1 0.2 0.1 0.0 --- 22.3 0.1 

HL 2003 
C20H44O8 

44.0 
(18. 8) 

1.9 
48.5 
(9.7) 

1.2 
7.4 

(26.9) 
0.1 

0.41 
(122) 

0.4 1.5 0.2 
22.1 
(4.1) 

0.2 

HL 2011 
C2H11O2 

2.2  
(-94.1) 

0.2 
4.0  

(-91.0) 
1.1 

1.9  
(-67.5) 

0.4 
0.1  

(-58.5) 
0.1 27.4 2.4 

6.1 
(71.4) 

0.1 
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5.8.2.2 Py-GC 

Contrasting with the typical profile of monomer units from fresh oak (Figure 73a), the pyrogram 

of HL 2003 comprises a complex sequence of peaks eluting between 20 and 50 min (Figure 73b). 

The similarities in the elution times between peak clusters in the archaeological sample are typical 

of a large polymer with only a few unique monomeric units. Comparison with literature data 

suggested that the unknown polymer was polyethylene glycol (PEG), the pyrogram of PEG 

exhibiting very similar complex peak profiles (Voorhees et al., 1994). Combined with the 

knowledge that PEG was used in the conservation of the wood, the peaks in the conserved wood 

pyrogram can be attributed to PEG with confidence. The presence of PEG compromises the 

interpretation of the Py-GC chromatogram as it masks key signatures from the thermal 

breakdown of the wood polymers; for example, many of the lignin-derived peaks are obscured. 

Identification and assessment of the chemical integrity of the wood polymers cannot be 

performed on the wood without the PEG contaminant being removed. 

The presence of PEG would be reflected in the elemental composition of the sample, partly 

explaining the atypical CHO values obtained. PEG impregnation would not, however, account for 

the observed increase in sulfur content (PEG does not contain any sulfur). A range of different 

molecular weights of PEG are used in conservation of wooden objects. PEG has the average 

formula C8H18O4, which can be written as C20H40O10 to aid comparison with wood formulae (Merck 

Index, 11th Ed). The presence of PEG in the 2003 sample would account for the elevated oxygen 

and hydrogen content, which would be expected to be depleted significantly in an archaeological 

wood sample due to the attrition of cellulose.  

The pyrogram of 2011 (Figure 73c) reveals very extensive degradation of both the cellulose and 

lignin biopolymers. The pyrogram represents a signal strength one order of magnitude less than 

for the 2003 sample, obtained from an order of magnitude more material. The only identifiable 

peak in the pyrogram is that of phenol and no PEG was detected. These data combined with the 

EA data indicate that the material is very heavily decayed and – from a chemical perspective – is 

no longer recognisable as wood. 
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Figure 73. Partial Py-GC pyrograms of a) fresh oak, b) HL 2003, c) HL 2011 and d) HL 2003 after solvent 
extraction. P = phenol, G = guaiacol, C = catechol, MC = methoxycatechol, S = syringol and LG = levoglucosan 
(a cellulose pyrolysis product). The identities of the numbered peaks are shown in the key to the right of the 
pyrograms. 
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5.8.2.3 SEM 

Under SEM the PEG can clearly be seen covering many of the interior surfaces of the HB 2003 

wood (labelled as PEG in Figure 74a – d). The PEG is filling a large proportion of the tracheid cells 

and some of the lumen, which would suggest that the conservation treatment was successful in 

replacing water and incorporating the PEG consolidant into the wood. There is, however, 

substantial distortion of the wood structure, the majority of the cells appearing compressed. This 

is a feature typically observed when waterlogged wood is dried during conservation treatments 

(Florian, 1990). Despite the compression the substructure appears relatively intact, suggesting 

that the incorporation of the PEG is successfully preventing collapse of the dried wood. Although 

the tracheid cells appear to be thinner than those of modern oak (Fengel and Wegener, 1984; 

Florian, 1990), there is still evidence of secondary cell wall material (which is rich in holocellulose), 

indicating a reasonable level of preservation. No conclusive signs of microbial attack (such as 

pitting or fungal hyphae) are present. 

The 2011 material bears little resemblance to the 2003 material or to modern oak, having a 

similar appearance to mineral or soil material (Figure 74e – h). There are several features which 

could be interpreted as being wood-like structures (labelled as PWT in Figure 74g). A crystalline 

material is visible on the surfaces of the sample, irregular polyhedra composed of 4, 5 and 6 sided 

polygons (labelled as CM in Figure 74e – h). The crystalline material is an inorganic mineral 

component. A crystal of the mineral (approximately 2 mm in diameter) was observed to have a 

golden colour during the preparation of samples for SEM, prior to the sputter coating. The 

geometry, colouration and high sulfur content of the wood are consistent with the material being 

pyrite (FeS2). 
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Figure 74. SEM images of HL 2003 (a to d), showing PEG imbedded in the voids of the woods substructure, 
and HL 2011 (e to h), showing crystalline material (CM) and possible woody tissues (PWT).  
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5.8.2.4 Accelerated solvent extraction 

In an attempt to remove the PEG from HL 2003, the material was extracted sequentially with 9:1 

DCM-methanol and acetone (see Chapter 2.2.2.4). Samples of modern oak and HL 2011 were also 

extracted to remove any non-polymeric materials that may have been contributing to the 

elemental composition. 

The masses of each extract, percentage of the total extract mass and the percentage yields with 

respect to the mass of the HL 2003 wood extracted for each of the 9:1 DCM:methanol and 

acetone extractions are shown in Table 15. 59.7% of the mass of the 2003 material was removed 

by the applied solvents. Comparatively, samples of modern oak wood yield approximately 1% of 

their mass by extraction with similar solvents (Todaro et al., 2013; Kebbi-Benkeder et al., 2015). 

Assuming that a large proportion of the material extracted from the 2003 sample is PEG, the 

massive increase compared to modern wood demonstrates that – at the time sample was taken – 

PEG was a large constituent of the preserved wood. The removal of 91.7% of the total extractable 

material by the first DCM:methanol extraction suggests that a single extraction with this solvent 

mixture would remove sufficient PEG to allow for analysis by Py-GC.  

 

Table 15. Mass and yield data for the solvent extraction of the 2003 Hanson Logboat material 

 

  
Extract Mass of extract / g % of total extract mass % yield of sample mass 

DCM:MeOH 1 238.04 91.7% 54.8% 

DCM:MeOH 2 12.03 4.6% 2.8% 

DCM:MeOH 3 4.91 1.9% 1.1% 

Acetone 1 2.34 0.9% 0.5% 

Acetone 2 1.26 0.5% 0.3% 

Acetone 3 0.88 0.3% 0.2% 

Σ DCM:MeOH 254.98 98.3% 58.7% 

Σ Acetone 4.48 1.7% 1.0% 

Σ all extracts 259.46 100.0% 59.7% 
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5.8.2.5 EA after accelerated solvent extraction 

The TOC content of the solvent extracted modern oak was the same as the unextracted sample 

(37.0%; Table 16 and Figure 75). The overall elemental composition accords to the formula 

C22H35O8, with traces of N, very similar to that calculated before extraction (C22H38O8). By contrast, 

the extracted HL 2003 sample gave a molecular formula of C23H32O7, statistically distinguishable 

from the extracted oak and reflecting an appreciable difference in elemental composition. Thus, 

the extracted HL 2003 sample has a higher carbon content, and lower hydrogen and oxygen 

contents than the modern oak standard. Such changes are consistent with the attrition of the 

holocellulose fraction, which would be expected for an archaeological wood sample. Coupled with 

the observed differences between the TOC content before and after extraction, it is probable that 

a large quantity of the PEG has been removed by the extraction process, and that the elemental 

composition of HL 2003 after extraction reflects only the wood component. 

Sulfur was absent from the solvent extracted wood from HL 2003 indicating that the sulfur in the 

unextracted sample represented elemental or organic sulfur species that are amenable to solvent 

extraction. The low TOC content of the solvent extracted wood from HL 2011 (2.1%) was the same 

as that of the unextracted wood (2.1%). The total carbon content (2.2%) is lower than in the 

unextracted material (4.0%) whereas the values for the sulfur contents of the native (27.4%) and 

solvent extracted woods (27.3%) are essentially identical. The resistance of the sulfurous material 

to extraction by organic solvents suggests it to comprise inorganic sulfur such as pyrite (FeS2). 

 

Figure 75. Mean element atomic abundances (n = 3) of fresh oak and wood from the two Hanson Logboat 
samples HL 2003 and HL 2011 after accelerated solvent extraction with 9:1 DCM-methanol and acetone. 
Error bars show ± 1 standard deviation. 
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Table 16. Mean element atomic abundances (n = 3) of fresh oak and wood from the two Hanson Logboat 
samples HL 2003 and HL 2011 after accelerated solvent extraction with 9:1 DCM-methanol and acetone (%Δ 
represents the percentage difference in elemental composition compared with fresh oak). 

 

  

Wood 
%TOC 
(%Δ) 

SD 
%C 

(%Δ) 
SD 

%H 
(%Δ) 

SD 
%N 

(%Δ) 
SD 

%S 
(%Δ) 

SD 
%O 

(%Δ) 
SD 

Modern 
Oak 
C22H38O9 

37.1 2.7 44.0 0.7 5.9 0.1 0.2 0.2 0.0 --- 21.2 0.2 

HL 2003 
C23H32O7 

44.9 
(21.2) 

1.5 
46.3 
(4.7) 

0.0 
5.4 

(-7.8) 
0.2 0.0 --- 0.0 --- 

19.6 
(-7.9) 

0.2 

HL 2011  
C1H5O2 

2.1 
(94.4) 

0.3 
2.2 

(-95.1) 
0.0 

0.9 
(-85.2) 

0.0 0.0 --- 27.3 0.8 
4.2 

(-80.0) 
0.3 
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5.8.2.6 Py-GC after solvent extraction 

The absence of PEG signatures in the pyrogram of HL 2003 after solvent extraction (Figure 73d) 

indicates its complete removal from the wood. Pyrograms of the solvent extracts contained 

abundant signatures of PEG, consistent with it being removed by the DCM:methanol solvent (data 

not shown). The profile of the pyrolytic breakdown products from the extracted 2003 wood 

sample is very similar to that of modern oak (Figure 73a), but with several key differences. The 

lower relative abundance of carbohydrate pyrolysis products in the pyrogram of the 

archaeological wood is attributable to the degradation of cellulose and hemicellulose. The species 

eluting before 26 min are furan based aldehydes and ketones produced by thermally induced 

degradation reactions of 6-membered ring sugars from both cellulose and hemicellulose. As a 

result, the compounds cannot be assigned specifically to either polymer. A decrease in the peak 

area of levoglucosan, a product of the thermal degradation of cellulose, suggests that the 

cellulose component of the wood has certainly been degraded. The most commonly observed 

biological degraders of wood in waterlogged or aquatic environments are bacteria, fungi playing a 

subordinate role than is typically observed in other burial environments (Björdal et al., 1999; 

Blanchette, 1995). Typical bacterial wood degraders preferentially attack the carbohydrate 

components, with limited modification of the lignin component (Blanchette 1991; Blanchette, 

1995; Blanchette and Hoffmann, 1994; Kim, 1990). The presence of only residual amounts of 

holocellulose in the 2003 sample indicates limited preservation of the more labile component of 

the original wood polymer composition. 

Percentages of the individual lignin derived compounds produced upon pyrolysis of both 

materials were calculated with respect to the sum of all lignin phenol peak areas (shown in Table 

17). The pyrograms of modern wood and HL 2003 material show clear differences in the lignin 

content.  

Microbially mediated decay of lignin subunits typically results in a measurable decrease to the S:G 

ratio (Saiz-Jiminez et al., 1987; Martıńez et al., 2001). Previous studies of archaeological wood 

recovered from waterlogged environments has suggested that the syringyl units are selectively 

degraded, either by being chemically modified in chain or involving their complete removal from 

the lignin polymer, leading to a lower S:G ratio than for undegraded wood of the same species (van 

Bergen et al., 2000). S:G ratios for corresponding guaiacyl and syringyl pyrolysis products are shown in 

Table 18. The total S:G ratio and those for the majority of corresponding guaiacyl and syringyl 

compounds are lower in the HL 2003 wood than in modern oak, suggesting a preferential loss of 

syringyl lignin components from the HL 2003 wood. This indicates that there has been some 

modification of the HL 2003 wood lignin component.  



 

 
191 

 

Table 17. Semiquantitative analysis of lignin derived phenols produced upon pyrolysis of solvent extracted 
modern oak and Hanson Logboat 2003 wood. Values are expressed as percentages of the sum of all lignin 
phenol peak areas. 

Compound Modern oak Hanson Logboat 2003 

(P) Phenol 5.45 3.39 

(G) Guaiacol 3.44 7.61 

(G1) 4-Methylguaiacol 6.15 2.28 

(C) Catechol 3.09 7.36 

(MC) Methoxycatechol 6.65 11.24 

(G2) 4-Ethylguaiacol 6.22 1.44 

(G3) 4-Vinylguaiacol 7.94 6.18 

(S) Syringol 5.56 7.15 

(G4) 4-Allylguaiacol 1.97 1.37 

(MC1) 4-Methylmethoxycatechol 1.73 2.00 

(G5) Vanillin 1.81 2.29 

(G6) cis-Isoeugenol 1.08 0.85 

(S1) 4-Methylsyringol 4.52 5.65 

(G7) trans-Isoeugenol 4.59 4.02 

(G8) Acetoguaiacone 2.19 1.67 

(S2) 4-Ethylsyringol 1.33 0.31 

(MC3) 4-Vinylmethoxycatechol 1.49 9.60 

(S3) 4-Vinylsyringol 9.70 5.60 

(S4) 4-Allylsyringol 2.75 1.01 

(S5) Syringaldehyde 2.24 2.90 

(S6) cis-4-Propenylsyringol 4.62 3.55 

(S7) trans-4-Propenylsyringol 8.02 2.70 

(S8) Acetosyringone 1.16 1.22 

(S9) Syringylacetone 4.62 2.83 

(S10) Propiosyringone 1.69 5.79 

 

Table 18. Ratios for corresponding syringyl, guaiacyl, phenol and methoxycatechol subunits from solvent 
extracted modern oak and Hanson Logboat 2003 wood. ^ denotes an increase in the S:G ratio. 

Ratio Modern oak Hanson Logboat 2003 

SH:GH 1.62  0.94 

S1:G1 0.74 ^2.48 

S2:G2 0.21  0.21 

S3:G3 1.22  0.91 

S4:G4 1.39  0.73 

S5:G5 1.24 ^1.27 

S6:G6 4.28  4.19 

S7:G7 1.75  0.67 

S8:G8 0.53 ^0.73 

Σ S:G 1.13  1.09 

Σ S:MC 4.68  1.69 

Σ G:C 11.44  3.76 
 



 

 
192 

 

Several mechanisms for the direct attrition of syringyl moieties have been proposed, the two 

most often postulated being demethoxylation and demethylation. Demethoxylation would result 

in an increase in mono-methoxylated guaiacyl units, contributing to an observed decrease in the 

S:G ratio (Saiz-Jiminez et al., 1987). One of the most characteristic pyrolysis signatures of heavily 

degraded lignin in archaeological wood is the increase in para-hydroxyphenyl with respect to 

guaiacyl and syringyl subunits. The increase is typically a result of the complete demethoxylation 

of guaiacyl and syringyl subunits, leading to the liberation of large amounts of phenol on pyrolysis 

(Figure 68). An increase in the amount of phenol is not evident in the Hanson Logboat pyrolysis 

results, suggesting that complete demethoxylation of syringyl to para-hydroxyphenyl lignin 

subunits has not occurred.  

Demethylation of lignin phenols leads to the production of a range of benzenediol-related 

compounds. The demethylation of guaiacyl units yields catechols (C; Figure 69a) whereas syringyl 

units can be mono-demethylated to produce methoxycatechols (MC; Figure 69b). The pyrogram 

of solvent extracted wood from the 2003 sample reveals a marked increase in both C and MC 

species, the G:C and S:MC ratios both being approximately three times smaller in the HL 2003 

wood than in modern oak (Table 18). Demethylation of lignin phenols is commonly observed as a 

result of the action of the laccase enzymes of fungi including brown rot fungi (Martıńez et al., 

2005; Sánchez, 2009). Recent work characterising the emerging role of bacteria in lignin 

degradation has demonstrated that several species of soil bacteria (including species from the 

genera Pseudomonas and Actinomycetes) can also modify lignin by demethylation (Vicuña, 1988; 

Zimmermann, 1990; Bugg et al., 2011a). Low levels of methoxycatechols have also been identified 

in modern wood standards and suggested to result from demethylation of syringyl subunits in the 

earliest stages of wood diagenesis (van Bergen et al., 2000). Alternatively, the methoxycatechols 

may be residual lignin precursors (such as 5-hydroxy-coniferaldehyde; Boerjan et al., 2003). 

In comparison with modern oak, the abundance of lignin phenols with shorter side chains is 

higher and the prevalence of longer side chains is lower in the HL 2003 wood. Higher levels of 

guaiacol, syringol, 4-methylsyringol (S1) and 4-ethylsyringol (S2) in the HL 2003 wood suggest that 

some modification to the three carbon linkages between the phenolic moieties has occurred, 

leading to depolymerisation of the lignin. Cleavage of the Cα–Cβ linkages of the lignin polymer 

(generating 4-methylsyringol) and demethoxylation (producing guaiacol) both occur following 

aromatic radical formation induced by microbial lignolytic peroxidases (Eriksson et al., 1990; 

Martínez et al., 2005). Similar changes are reported by del Rio et al. (2002) when angiosperm 

wood is exposed to a range of delignifying basidiomycetes. Contrary to the overall reduction in 

molecular weight of HL 2003 pyrolysis products, is the substantially large amount of 

propiosyringone (10), containing a ketone functionality. Two other oxidised lignin compounds 

occurring in high relative abundance are vanillin (G5) and acetosyringone (S8). Such oxidative 
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alteration to lignin side chains has been previously reported when wood is treated with white rot 

fungi and is also attributed to the cascade of depolymerisation reactions that follow enzymatic 

radical generation (Faix et al., 1991; del Rio et al., 2002). Whether this reflects degradation of the 

wood prior to its burial or degradation during the time between excavation and the 

commencement of conservation treatments is not known. Such oxidative degradation processes 

may have been limited in situ as the conditions rapidly become anoxic in waterlogged 

environments (McGrail, 2014).  

The pyrogram of solvent extracted 2011 wood showed no differences to the unextracted material 

(Figure 73c), suggesting that what little organic material remaining in the sample is not amenable 

to solvent extraction and is therefore probably polymeric. The lack of peaks in the carbohydrate 

region of the pyrogram, and the simplicity of the peak patterns compared with those from fresh 

oak, implies that none of the holocellulose remains and any remaining lignin is in an extremely 

degraded form. The heavily degraded lignin has lost much of its peripheral functionality, the 

defunctionalised remnants producing phenol upon pyrolysis (as in the final step in Figure 68). 

Recent experimental work produced very similar pyrograms by treating modern angiosperm 

wood with sulfuric acid (pH 1 for 16 weeks at 80 °C; High, 2014). Inorganic sulfurous species such 

as pyrite have been shown to aggregate in the microstructures of wood, originating either directly 

from the environment or being produced by the reaction of iron(III) oxide (Fe2O3) with dissolved 

sulfides (H2S, HS- or S2-) (Macleod and Kenna , 1990; Sandström et al., 2005). Reduced sulfur-

containing species are known to degrade by oxidation in the presence of atmospheric oxygen, 

producing various oxides of iron as well as sulfate anions, as shown in Equation 1 (Ghisalberti et 

al., 2002; Jerz and Rimstidt, 2004; Sandström et al., 2005).  

Sulfates react with moisture in the air (the attraction to conserved archaeological materials being 

facilitated by the hygroscopic properties of PEG) to produce sulfuric acid, which has been shown 

to damage archaeological woods (Macleod and Kenna, 1990; Sandström et al., 2002; Sandström 

et al., 2005). Acidification of the wood due to the generation of acidic species is likely the cause of 

the damage seen in the Hanson Logboat after its period of museum display. 

 

Equation 1. The reaction of pyrite with water and oxygen, producing hydrated iron sulfates and sulfuric acid 
(Jerz and Rimstidt, 2004). 

 

Further work on this material, to identify the type of inorganic sulfur compounds present, could 

be carried out. Possible methods of analysis include X-ray diffraction (either by isolation of the 

sulfurous material or in conjunction with scanning electron microscopy) and sulfur and iron K-

edge XANES (Fors et al., 2011). 
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5.8.3 Summary and conclusions 

The two logboat samples are in very different states of preservation. HL 2003 displays some 

attrition of the holocellulose fraction. The lignin component has also been degraded, measurable 

by a decrease in the lignin S:G ratio, partial modification of the lignin by demethylation producing 

substituted aromatic phenols, and higher amounts of short chain and oxidised lignin compounds 

as a result of oxidative depolymerisation. Degradation of celluloses and demethylation of lignin 

both occur early during the decomposition of wood in archaeological burials, whereas 

depolymerisation and oxidation of the aryl three carbon linkages typically occur in oxic 

environments as a direct result of microbial decay. It is uncertain if the decay to the biopolymers 

occurred preburial, within the burial environment, or post excavation. SEM imaging suggests that 

the microstructure of the wood is relatively well preserved, owing to the successful impregnation 

by PEG. By contrast, HL 2011 is very heavily degraded, with no cellulose and only very little, 

heavily modified lignin remaining. The high level of inorganic sulfur-containing mineral in the 

material indicates a likely route to enhanced degradation of the wood, through oxidation to 

generate sulfuric acid and lower the pH of microenvironments within the wood. Finding a solution 

to the ‘sulfur problem’ is a major focus of current research in the conservation community (Fors 

et al., 2014; Chaumat, 2016; Pearson et al., 2016; Sandström and Schofield, 2016).  

A particularly novel and interesting aspect of this study of archaeological wood samples is the 

ability to perform a comprehensive set of analyses following the removal of PEG conservation 

treatments that accurately and directly reflect the preservation state of the constituent 

biopolymers. Previous work on the analysis of woods conserved with PEG have either used 

expensive solid state NMR techniques combined with data manipulation to remove the responses 

from the PEG (Bardet et al., 2007; Fors et al., 2011) or have analysed the wood using Py-GC-MS 

without the removal of the PEG, giving limited data on the condition of the wood (Tamburini et 

al., 2016).The ability to remove chemical contaminants easily and completely from materials that 

have undergone similar conservation processes and their subsequent analysis by readily available, 

highly informative techniques potentially allows for the future analysis of precious artefacts in 

collections. This is an exciting prospect as it could facilitate the analysis and assessment of objects 

that hold vast cultural, social and historical significance. 
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5.9 Analysis of intersite trends 

 

The number of lignin derived compounds analysed for each sample and the large number of 

samples analysed resulted in a large, multidimensional dataset. In order to assess any patterns 

and trends present across all of the experimental and archaeological burial environments, 

principal component analysis (PCA) using PAST v3.15 (Hammer et al., 2001) was used to interpret 

the relative lignin phenol compositions of both the gymnosperm (Chapter 5.7.1) and the 

angiosperm (Chapter 5.7.2) datasets. Missing values in individual data rows were filled using 

iterative imputation; blanks were initially replaced by the column mean, then the data was 

subjected to subsequent PCA runs until convergence (Ilin and Raiko, 2010). 

5.9.1 PCA of gymnosperm wood lignin phenol data 

The PCA scatter plot for lignin phenol composition data of all experimentally buried and 

archaeological gymnosperm wood samples is shown in Figure 76. A simplified biplot, showing the 

weighting of each lignin phenol variable on PC1 and PC2 is shown in Figure 77. The first two 

principal components (PC1 and PC2) account for 61.9% and 29.5% of the variation, a total of 

91.4%. PC1 is positively correlated to G1 (0.23), G3 (0.37) and G12 (0.31), and negatively 

correlated to T (0.41), P (-0.68) and G (-0.18). PC2 is positively correlated to T (0.41). G3 (0.19) and 

G14 (0.36), and negatively correlated to G (0.72). 

Using the PCA data points in combination with the data presented in the site specific sections of 

this chapter, three general trends are apparent. The green arrow in Figure 76 indicates wood 

samples where preferential lignin degradation has occurred, with extensive modification of the 

lignin components of the wood leading to a much larger predominance of short chain, 

defunctionalised lignin subunits (T and P; see Figure 77), and relatively little damage to the 

holocellulose. From the analytical pyrolysis data and SEM images in Chapter 5.3, it was reasoned 

that the wood samples from SK310 at Fewston were likely degraded by lignin-preferring white rot 

fungus, and that the wood from the bottom of the copper coffin nail is the least degraded, the 

wood from the top of the nail is the most degraded and that the coffin wood away from the nail 

has a preservation state that is in between the two. The wood from SK26 at Mechelen was also 

postulated to have been modified by a lignin-specific decay agent, although there was no clear 

evidence to determine if the cause was fungal, bacterial or chemical. This wood has a lignin 

pyrolysis profile that is very different from that of the modern pine, suggesting it to be very 

degraded. The trend highlighted in green in the PCA supports that these materials were all 

degraded in a similar manner, and that the wood from SK26 at Mechelen and the top of the coffin 

nail of SK310 at Fewston are the most degraded in this trend line. It is, therefore, reasonable to 
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conclude that the green arrow represents the decomposition trajectory for gymnosperm woods 

that are degraded by microfauna with similar lignin-specific degradation capabilities.  

 

Figure 76. PCA scatter plot of PC1 and PC2 for gymnosperm wood lignin phenol composition data, 
accounting for 91.4% of total variance. 

 

 

Figure 77. PCA loadings plot of gymnosperm wood lignin phenol composition data, showing the major 
contributions of each compound to PC1 and PC2. 
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The red arrow in Figure 76 correlates with increasing difference in the lignin pyrolysis profile from 

modern pine, with increasing percentage composition of G down the trend. These materials were 

all postulated to have been degraded by factors that affect both the holocellulose and lignin 

components of the wood, such as brown rot or non-lignin-specific white rot fungus, with the 

material from the soil stain at Edinburgh having a lignin compound profile most different to that 

of the modern pine. The trend seen in this case is less well defined than that seen for lignin-

specific white rot (green arrow), with the points around the red arrow being more disperse. 

Whilst far less convincing and less certain than that seen for lignin-specific degradation, this trend 

may represent the decomposition trajectory of gymnosperm wood when subjected to microfauna 

that do not selectively degrade lignin, or degrade both lignin and holocellulose in the burial 

environment. 

The third evident trend in Figure 76 is that for the coffins from the burial experiments, 

represented by the orange arrow. The lowest point of the trend is that of the unburied control 

wood, which is obviously the least degraded. The point that is most distant to the control point is 

wood from the Hovingham Piglet 1 coffin, which, on the basis of the pyrolysis data in Chapter 4.2, 

the Piglet 1 coffin was concluded to be the most degraded gymnosperm piglet coffin wood. The 

other two gymnosperm piglet coffin samples lie between the control and that fore Hovingham 

Piglet 1, which suggests that these are in an intermediate state of preservation. This trend shown 

in the PCA is in agreement with the conclusions reasoned in Chapter 4.2. This is, however, a very 

small dataset as the majority of the wood from the experimental burials was angiosperm. The fact 

that the trend is moving away from the two trends for the archaeological gymnosperm materials 

is likely due to the wood being treated with modern preservation techniques (see Chapter 

4.2.2.1). 
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5.9.2 PCA of angiosperm wood lignin phenol data 

The PCA scatter plot for lignin phenol composition data of all experimentally buried and 

archaeological angiosperm wood samples is shown in Figure 78. A simplified biplot, showing the 

weighting of each lignin phenol variable on PC1 and PC2 is shown in Figure 79. The first two 

principal components (PC1 and PC2) account for 42.4% and 29.9% of the variation, a total of 

72.3%. PC1 is positively correlated to P (0.71) and G (0.30), and negatively correlated to G1 (-0.44) 

and G7 (-0.24). PC2 is positively correlated to G1 (0.39), S3 (0.37) and S10 (0.22), and negatively 

correlated to P (-0.40).  

In comparison with the archaeological gymnosperm PCA presented in section 5.9.1, the 

archaeological angiosperm wood dataset is far smaller, with angiosperm wood only being 

recovered from two archaeological sites. Despite this, all three of the archaeological angiosperm 

data points and that for modern oak form a well correlated, linear trend, shown by the brown 

arrow in Figure 78. Following the arrow away from the modern oak, samples of archaeological 

angiosperm wood are increasingly degraded, the pyrograms showing higher proportions of P and 

G, and lower proportions of syringyl derived compounds and long chain guaiacyl compounds. 

Analytical pyrolysis and SEM data indicate that the wood from the Hanson Logboat directly after 

conservation is in a relatively good state of preservation (Chapter 5.8). The analyses of wood from 

Thaon (Chapter 5.7) indicate that the two wood samples are relatively heavily degraded, with the 

material from SEP360 being in a more advanced state of decomposition than that from SEP421. 

The trend seen in the PCA plot agrees with the independent findings from the respective 

subsections of this chapter, and allows for the materials to be accurately ranked in terms of their 

lignin degradation. The trend may represent a degradation trajectory for angiosperm woods 

within archaeological burial environments, although the data set is far too small to make such a 

conclusion with any degree of certainty.  

The angiosperm woods from the experimental burials are all loosely clustered away from the 

archaeological wood samples, highlighted in green in Figure 78. Due to the pre-treatment of the 

piglet coffin wood using unknown methods (see Chapter 4.2.2), the lignin profile of these 

materials is very different to untreated modern wood or any of the archaeological wood samples. 

As a result, the piglet coffin wood data points are not directly comparable with the modern or 

archaeological wood. Two of the more degraded wood samples from the burial experiments – 

those from Piglet 2 at Hovingham and Piglet 9 at West Heslerton – are in the lower right quadrant 

of the plot, the region where the most degraded angiosperm coffin wood is located. Whilst the 

pre-treatment of the piglet coffin woods prevents any direct comparison with the archaeological 

data set, the wood from the Hovingham Piglet 2 coffin was is the most advanced state of decay of 

all the experimentally buried woods, having an increased proportion of shorter chain and 
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defunctionalised lignin subunits. As a result of this, the location of the data point in a region of the 

PCA plot that corresponds to increased abundance of P and G is unsurprising. As this piglet burial 

wood is compositionally different from untreated and archaeological wood, further investigation 

as to the degradation trajectories of these materials is not warranted.  

 

Figure 78. PCA scatter plot of PC1 and PC2 for angiosperm wood lignin phenol composition data, accounting 
for 72.3% of total variance. 

 

 

Figure 79. PCA loadings plot of angiosperm wood lignin phenol composition data, showing the major 
contributions of each compound to PC1 and PC2. 
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5.10 Conclusions 
 

 

5.10.1  Decomposition of wood in archaeological burials 

Table 19 presents the burial conditions and estimated dates of burial for the archaeological 

woods from the 7 excavation sites in Northwestern Europe and outlines some of the key findings 

from the analyses by Py-GC and SEM.  

Table 19. Summary of findings from the analyses performed on the archaeological woods. 

Site Burial matrix Burial date Wood type Preservation state 
Suspected cause of 
decay 

Edinburgh Sand 
1500 – 
1700 AD 

Gymnosperm 

G434: no holocellulose and 
heavily modified lignin 
G758: only heavily modified 
lignin metabolites remain. 
G749: extreme degradation 
of holocellulose and decay of 
lignin. 

G434: Non-selective 
white rot or lignolytic 
bacteria 
 
G758: Not known 
 
G749: Two different 
unknown causes 

Fewston 
Well drained 
coarse loamy 
soils 

G271:  
not known 
 
G310: 
March 
1886 

Gymnosperm 

G271: complete loss of 
organic polymers, 
mineralised. 
G310: varying with distance 
from copper nail, from 
extensive degradation of all 
polymers to excellent 
preservation. Evident fungal 
bodies. 

G271: not known 
 
G310: lignin preferring 
white rot fungus 

Hofstaðir 
Histic 
andosol,  
pH 4 – 6 

900 – 
1300 AD 

Gymnosperm 

Loss of holocellulose and 
oxidative depolymerisation 
of lignin. Evident fungal 
bodies. 

Non-selective  
white rot fungus 

Mechelen 
Sandy, likely 
acidic pH 

Not known Gymnosperm 

G26: selective 
delignification, leading to 
extensive depolymerisation. 
Holocellulose intact. 
G423: loss of holocellulose, 
some lignin modification. 
Evident fungal bodies. 

G26: lignin preferring 
white rot fungus 
 
G423: brown rot 
fungus 

Sala 
Sandy podzol, 
likely acidic 
pH 

1400 – 
1600 AD 

Gymnosperm 

Loss of holocellulose and 
secondary cell wall layers, 
demethoxylation and limited 
depolymerisation of lignin. 
Evident fungal bodies. 

Brown rot fungus 

Thaon Waterlogged 
1300 – 
1840 AD 

Angiosperm 

Loss of all holocellulose and 
secondary cell wall layers, 
varying lignin degradation. 
Cell structure distorted. 

Not known 

Hanson 
Logboat 

Waterlogged 
gravel pit 

1440 – 
1310 BC 

Angiosperm, 
European oak 

2003: preservation of 
cellulose and hemicellulose 
and some lignin 
modification. Cell distortion 
due to conservation.  
2011: complete destruction 
of all organic polymers. 

2003: possible 
bacterial in burial 
environment.  
2011: inorganic iron 
sulfur compounds 
form sulfuric acid in 
humid air, producing 
sulfuric acid. 
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The majority of the materials analysed were identified as softwoods from gymnosperm trees. 

Wood from gymnosperms is often cheaper than that of angiosperms, the faster growth rates 

making the wood more readily available and less valuable than hardwood. The lower density and 

mechanical strength of softwoods makes them easier to fell, transport and work, reducing the 

labour required and, as a result, the cost. The lower cost and labour demand of softwoods make 

them a more common material for coffin construction. The hardwood coffins from Thaon 

therefore indicate that their occupants were of sufficient status to afford the luxury of sought 

after wood for their caskets; possibly indicating nobility or a high ranking member of the clergy. 

The exception to the lower value of softwoods is that of the coffin from Hofstaðir. Around the 

time of burial, the majority of trees in Iceland were angiosperms (downy birch, rowan and aspen; 

Eysteinsson, 2004) indicating that the wood used was a rarity. The use of a sought after 

commodity in the construction of a coffin is a strong indication that this individual was of high 

status.  

Only two of the woods sampled showed exceptional levels of preservation; the coffin wood in 

close proximity to a copper nail from G310 at Fewston, and the Hanson Logboat. The wood in 

close proximity to the copper coffin nail illustrates the presence of a toxic substance that retarded 

microbial activity. Wood from the same grave that is in much poorer condition illustrates the 

unique microenvironments that can exist within burial matrices. The Hanson Logboat was 

preserved due to a waterlogged burial environment that led to anoxic, anaerobic conditions that 

were not supportive of microbial growth. This wood was interred for nearly 3500 years, making it 

the oldest wood analysed and yet it is the least degraded. This indicates that the conditions within 

the burial environment can play a greater role than time in the decay of woods. These two cases 

highlight the key role that microorganisms play in degrading buried wood. The remarkable 

preservation of the Hanson Logboat due to anoxia highlights the propensity for anoxic 

environments to preserve buried wood. Hence, less well preserved woods may imply less 

persistent anoxia or a generally more variable environment.  

The degradation of wood by microfauna that specifically target lignin (such as white rot fungi) is 

identifiable by both Py-GC and SEM, the specificity of their enzyme action in metabolising lignin 

make their degradation signatures readily detectable by both techniques. Brown rot is more 

difficult to detect by Py-GC alone as it can lead to some modification of lignin, meaning that 

differentiating between brown rot induced degradation and limited decay by white rots can be 

difficult. A combination of Py-GC analysis with SEM imaging provides a clearer picture on which to 

interpret the results. Elimination of soft rots and a range of lignocellulose degrading bacteria as 

possible culprits of decay is more easily achieved from SEM evidence as the characteristic pits and 

cavities they form in the cell walls of wood are distinctive and easily visible under SEM (Eriksson et 

al., 1990; Blanchette et al., 2004). Although these types of microbe were not implicated as agents 
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of wood decay in this study, their presence was easily ruled out by the absence of their decay 

signatures.  

The detection of lignin and holocellulose derived compounds in the Py-GC analysis of the soil stain 

from Edinburgh has a potential significance for the archaeological community. Features 

uncovered during excavations are often attributed to the decay of wood; ‘post holes’ are a good 

example of this (Reynolds, 1994; Andrews et al., 2000). If the technique can be applied to these 

materials and detect lignocellulosic residues, the interpretation of the soil features can be more 

guided and the conclusions more certain. 

Aside from the PEG applied to the Hanson Logboat during its conservation, no evidence of 

preservative treatments was found in any of the coffin woods. The removal of the PEG from the 

preserved Hanson Logboat and the subsequent analysis by a range of chemical techniques is the 

first reported instance of conserved wood being analysed by EA and Py-GC. The option to employ 

these techniques to wooden objects and gain more meaningful data than before gives rise to the 

prospect of analysing materials in private and museum collections – the majority of which are 

conserved with PEG treatments – in ways previously thought not to be possible (Hocker et al., 

2012). The wealth of potential information that may be available cannot be overstated. The 

successful employment of the solvent extraction and chemical analysis is also of use to 

conservators, who currently face similar issues with sulfur accumulation and the concomitant 

degradation of archaeological woods recovered from waterlogged environments. 

The use of PCA (Chapter 5.9) to compare all lignin pyrolysis product data of the same type 

(gymnosperm or angiosperm) allowed for wood samples to be ranked in terms of their 

degradation and also highlighted trends in the change of the lignin compound profile resulting 

from different types of degradation. The trends noticed in the PCA of the gymnosperm wood data 

add confidence to the hypothesised type and cause of degradation of the wood in the burial 

environment, and suggest that the lignin modifications resulting from lignin-specific and non-

lignin-specific degradation are different. One trend suggests that the wood from the top of the 

coffin nail of Fewston SK310 and the coffin wood from SK26 at Mechelen are the most heavily 

modified by lignin-specific decay agents. The other gymnosperm degradation trend is less certain 

(due to lower correlation of data points) but it does agree with the findings from the respective 

subsection of this chapter, that the coffin wood from SK434 and the soil stain from SK749 at 

Edinburgh, and the wood from Mechelen SK423 are the most heavily degraded materials that 

have seen modification to both their lignin and holocellulose components. The lignin pyrolysis 

dataset for archaeological angiosperm wood is much smaller, but a degradation trend is apparent 

in the analysed data that enables the materials to be ranked in terms of their lignin modification 

and, hence, their preservation state.   
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5.10.2  Appraisal of techniques employed 

5.10.2.1 EA 

Compared with the amount of structural information provided by Py-GC, EA is less informative on 

the chemical preservation state of archaeological wood. It can, however, be useful in analysing 

waterlogged archaeological woods. An accumulation of sulfur containing species from the burial 

environment can often lead to the generation of sulfuric acid, which leads to extensive damage to 

the component biopolymers (Sandström et al., 2002; Sandström et al., 2005). Detecting high 

levels of sulfurous compounds before the damage is apparent may well be vital to preventing the 

loss of objects of cultural and historical significance. 

5.10.2.2 Py-GC 

Compared with other techniques commonly employed to study the polymers of wood, Py-GC 

provides more compositional and structural information than FTIR, with far less data analysis than 

is required for NMR methods. The use of TD to remove bound volatiles makes sample cleaning 

rapid. It also has the benefit of removing degraded holocellulose and lignin subunits that may be 

loosely bound within the remaining polymer, which would otherwise be counted in the analysis, 

biasing the result and giving a false impression of the preservation state. 

The need for MS data is vital to establish the identities of the compounds detected by FID. The 

number of compounds generated by pyrolysis of woods produces results in pyrograms that are 

highly complex. Comparison with literature data that were acquired using methods which vary 

only slightly can make the assignment of all relevant peaks difficult and inaccurate. The differing 

responses of FID and MS for each compound also make the assignment of peaks difficult, even 

when the data are collected using the same experimental conditions. The use of daily retention 

time standards was crucial is enabling accurate identification of peaks in the FID pyrograms. The 

more accurate quantitation of FID over MS outweighs the effort required for reliable peak 

assignment.  

Crucially, the hypotheses made based on the analytical pyrolysis data were largely confirmed by 

the SEM imaging. This shows that although the use of a standard error, (see Chapter 3.1.5) 

instead of replicate Py-GC analyses for each wood sample, is far from perfect, it is accurate 

enough to allow for valid observations to be made in the analysis of the archaeological materials. 

5.10.2.3 ASE 

This study highlights the use of solvent extraction techniques in the removal of compounds not 

native to wood. As well as the removal of volatile compounds, solvent extraction was able to 

remove the PEG impregnated into the Hanson Logboat wood, allowing for a comprehensive suite 

of chemical analyses to be performed. The automation of solvent extraction by ASE enables 
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materials to be extracted rapidly, allowing large batches of samples to be extracted in the time it 

would take to extract a single sample by Soxhlet extraction techniques (Mortensen et al., 2007). 

ASE also uses far less solvent than Soxhlet extractions (10 ml of solvent per ASE extraction 

compared to 50 ml per Soxhlet extraction; Mortensen et al., 2007), which has financial, safety and 

environmental benefits. 

5.10.2.4 SEM 

Unlike published Py-GC data of modern and degraded woods, SEM images are not affected by 

variation in the method and conditions used, making the images ‘universal’ and identification of 

decay patterns easier. Due to the features of interest only being visible in cross section, one 

disadvantage of SEM is that the data is only for a single point and axis in the wood, whereas Py-GC 

data gives an average of the whole homogenised sample. Nevertheless, given that the 

archaeological woods studied had all been buried for at least a hundred years, it would appear 

that in most cases (with the exception of the coffin nail preserving wood in grave 310 at Fewston) 

the degradation had progressed uniformly throughout the wood. The correlation between the 

SEM and Py-GC results is evidence of this.  

The other key drawback of SEM is the drying process required for archaeological woods. The 

solvent replacement and critical point drying are time intensive and can lead to fragile samples 

being destroyed in the process. However, the majority of the wood samples analysed by SEM in 

this study were prepared without issue. 

Despite these caveats, the use of SEM in conjunction with data from chemical analyses has been 

invaluable in assessing the preservation state of the wood samples, by allowing for the 

interpretations of the chemical data to be tested by visualising the changes to the microstructures 

of the wood. 
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CHAPTER 6 
 

 

6 ANALYSIS OF ARCHAEOLOGICAL 

TEXTILE AND LEATHER  
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6.1 Introduction 

 

Textiles and animal hide materials recovered from burials of the deceased are an excellent 

repository of data about the technological capabilities and social practices of the period. In cases 

where no similar objects have been inherited or their knowledge lost, burial artefacts allow 

modern society to rediscover part of the past. The funerary customs of many cultures involve 

burial of the dead in their finest clothing or in ceremonial garments, the composition and 

constructions of which can be hugely informative (Lieberman, 1991; Scarre and Fagan, 2008). The 

burial environment can enable clothing materials to survive for thousands of years, albeit in a 

modified form. 

The focus of this chapter is the analysis of textile and hide material fragments recovered from 

archaeological burials across Western Europe. The locations of the five sites from which these 

materials were collected are shown in Figure 80. As with the woods analysed in the previous 

chapter, one of the aims of analysing these materials was to identify the material from which they 

were made, which could potentially provide information that could aid in the interpretation of the 

archaeology. These analyses also set out to examine the preservation state of the materials, in 

order to assess modes of degradation and conditions that existed within the burial environments, 

allowing a clearer picture of how textiles and leathers degraded when placed into human burials 

in a limited number of conditions.  

The samples were prepared and analysed using a range of appropriate techniques (detailed in 

Chapter 3). Elemental analysis (C, H, N, S and O) was used to distinguish between plant derived 

and animal derived materials, allowing for more informative, polymer specific analyses to be 

performed. Materials with elemental compositions similar to those of modern plant based textiles 

were analysed by analytical pyrolysis (Py-GC with FID and MS detection), to examine the 

remaining holocellulose and lignin. Samples that had elevated nitrogen contents, or elemental 

compositions similar to modern animal based materials, were analysed by RP-HPLC, to determine 

the amino acid contents, compositions, and racemisation values. Following the chemical analyses 

of these materials, SEM was performed to visualise the microscopic features of the materials, to 

look for macromolecular signs of degradation, and to test the hypotheses made on the basis if the 

chemical data. 
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Figure 80. A map of Northwest Europe showing the archaeological sites from which the InterArChive Project 
team collected samples of textile and leather materials. 
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6.2 Fromelles 

6.2.1 Site and sampling information  

Eight First World War mass graves located on the southern border of Pheasant Wood, Fromelles, 

Northern France (15 km east of Lille at latitude: 50.609850, longitude: 2.854541) were identified 

in 2007. The location and positioning of the graves is shown in Figure 81. 

 

Figure 81. The location of Grave 4, on the south border of Pheasant Wood, Fromelles, Northern France in 
relation to Northwest Europe (top), the Allied and German front lines in July 1916 (middle; adapted from 
Pollard et al., 2008) and the excavation of all 8 mass graves in 2009 (bottom; adapted from Loe et al., 
2014a). 

Adapted from Loe et al., 2014

Grave 1

Grave 2

Grave 3 Grave 4

Grave 6 Grave 5

Grave 7 Grave 8Pheasant 
Wood

Allied front line

German front line

Fromelles

Pheasant 
Wood

Adapted from Pollard et al., 2008
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The burial pits were dug by men from the 21st Bavarian Infantry Reserve Regiment in late July 

1916 for the interment of the dead from the Australian 5th Division and British 61st Division who 

had been killed in and around the overrun German positions during The Battle of Fromelles, 

fought on 19th and 20th July (see Figure 82; Barton, 2007). Each grave was investigated in 2007 by 

the excavation of a small trench, after which the remains were covered with geotextile and the 

trenches backfilled with sand, vermiculite and clay (Pollard et al., 2008). The site was completely 

excavated in 2009 by Oxford Archaeology, during which each individual and their associated finds 

were extensively catalogued. The remains were subjected to osteological analysis and DNA testing 

in order to identify the individuals. All of the 250 bodies were subsequently reburied in the newly 

built Fromelles Military Cemetery, and many of the finds are on display in the adjoining Museum 

of the Battle of Fromelles.  

 

Figure 82. Men of the 53rd Battalion, 5th Australian Division at the Battle of Fromelles. Several minutes after 
this photograph was taken the order was given for the men to break from the cover of their trench and 
advance on the German positions across ‘no man’s land’. It is not known what happened to the individuals in 
this photograph. Photograph taken by Charles Henry Lorking (Australian War Memorial ID: H16396). 
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Soil analyses carried out by McKenzie (in Pollard et al., 2008) concluded that the burial matrix was 

primarily silt and fine grained Ypresian (Flanders) clay, which is known for its low water 

permeability and tendency to create bodies of standing surface water (Doyle et al., 2002; Doyle, 

2014). The site was noted to be waterlogged during the excavation, and iron hydromorphism in 

the sediment (reddish, oxidised iron deposits at the surface giving way to grey, reduced iron 

deposits; Duchaufour, 2012) demonstrated that the lower levels of the matrix were waterlogged 

and anaerobic. Grave 4 was noted to be the most waterlogged of the eight. The average pH of soil 

at the site was neutral to mildly alkaline (pH 7 to pH 8). By contrast, the pH at the level of the 

burials in Grave 4 was measured to be 4.7 (Pollard et al., 2008). 

The InterArChive team collected organic material finds from 4 sets of remains from Grave 4 

(Figure 81a). The grave measured 9.60 m by 2.20 m, and was approximately 1.51 m deep (Pollard 

et al., 2008). The individuals were all arranged in an approximate north-south orientation in two 

layers, one directly on top of the other (Loe et al., 2014a). The materials sampled were related to 

SK1523, SK1525, SK1527 and SK1750, individuals lying on the bottom layer of the burial in contact 

with the base of the grave (see Table 20 for a list of samples). The majority of the materials have 

an obvious weave and are readily identifiable as fragments of textile from the uniforms worn by 

the deceased. One textile find, from the feet of SK1750, was red in colour and interpreted by the 

archaeological excavation team to be a red sock. The exceptions to the above are material from 

the feet of SK1525 and the pelvis of SK1527, which have no observable features typical of woven 

materials. One of the aims for the analysis of these samples was to assess their chemical 

composition and deduce the identity of the material, as well as assessing the preservation state of 

all samples. 
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6.2.2 Analysis of archaeological materials 

Samples of material finds unearthed alongside the buried skeletal remains were collected by the 

InterArChive team. These samples were named to denote the identity of the skeleton and 

approximate anatomical location of the find. Analyses of the 12 samples were carried out 

according to methods detailed in Chapter 2.2.1. 

6.2.2.1  Py-GC analysis 

The organic material samples from Grave 4 were all analysed by Py-GC. An example of the Py-GC 

data is shown in Figure 83 and the results for all of the samples outlined in Table 20. All of the 

material finds analysed were determined to be protein based, their pyrograms being similar to 

those of modern wool and silk. 

 

Table 20. The samples collected from Grave 4 at Fromelles and the summarised results of Py-GC analysis. 
Samples are marked with an asterisk (*) to indicate materials that have no observable weave or physical 
features to indicate they are textiles or fibres from clothing. 

 

Pyrolysis of proteins leads to thermally induced modification reactions to the constituent amino 

acids (Takekoshi et al., 1997; Hendricker and Voorhees, 1998). Several amino acids can produce 

the same thermal degradation product; Table 21 outlines typical protein pyrolysis products 

detected and the amino acids they are derived from (Takekoshi et al., 1997). The thermal 

degradation of amino acids induced by this technique results in potentially valuable information 

being lost. In order to gather more comprehensive data on the composition and levels of 

preservation of the protein based textiles, the amino acid compositions of the samples were 

analysed by RP-HPLC, following hydrolysis at 110°C for 18 hours (see Chapter 2.5).  

Skeleton no. Sample name Py-GC results 

SK1523 Pelvis textile Protein based 

SK1525 

Head textile A Protein based 

Head textile B Protein based 

Pelvis fibres  Protein based 

Pelvis textile Protein based 

Foot textile Protein based 

Foot material * Protein based 

SK1527 

Head textile  Protein based 

Pelvis textile Protein based 

Pelvis material * Protein based 

Foot textile Protein based 

SK1750 Foot textile Protein based 
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Figure 83. Partial pyrolysis – GC traces of textile from the feet of SK1750 at Fromelles (a), compared with 
modern wool (b), silk (c), cotton (d), flax (e) and hemp (f). LG = levoglucosan, a cellulose pyrolysis product. 1 
to 14 are thermal decomposition products of amino acids and peptides (Table 21). 
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Table 21. The identities of peaks 1 to 14 in Figure 83, detailing the pyrolysis products detected and the 
amino acids or peptides from which they are produced by thermal decomposition. DKP = 2,5-
diketopiperazine. (Takekoshi et al., 1997; Kurata and Ichikawa, 2008).  

  
Peak Protein pyrolysis product Origin 

1 Acetonitrile Alanine, proline 

2 3-Methylbutanal Leucine 

3 Isovaleronitrile Leucine 

4 Pyrrole Proline 

5 Toluene Phenylalanine 

6 Phenol Tryptophan 

7 p-Creosol Tyrosine 

8 Indole Tryptophan 

9 Gly-Ala DKP Glycine-Alanine 

10 & 11 Pro-Ala DKP Proline-Alanine 

12 Pro-Gly DKP Proline-Glycine 

13 & 14 Pro-Val DKP Proline-Valine 



 

214 
 

6.2.2.2 Chiral AA content analysis by RP-HPLC 

The majority of samples from Fromelles have total amino acid contents that are within the range 

of variability seen in modern wools (see Figure 84). The textiles from the head of SK1525, the 

pelvis of SK1527 and the feet of SK1750 display measurably lower amino acid contents than the 

modern analogues (Student’s t tests; all p values = <0.041). This may well be indicative of 

degradation; inorganic materials from the burial matrix replacing the degraded proteins would 

account for the observed lower amino acid content per unit of sample mass. 

 

Figure 84. Total amino acid concentrations of the Fromelles wool materials compared with the mean value 
calculated for the 6 types of modern wool analysed. Error bars represent +/- 1 standard deviation; n=10 for 
modern wool and n=2 for archaeological materials. 

The amino acid compositions of selected materials from SK1523, SK1525, for SK1527 and SK1750 

are shown in Figure 85. The data displayed are a representative sample of all the material 

analysed. All of the textile samples collected from Grave 4 at Fromelles have very similar amino 

acid compositions to that of modern wools, and as such can be identified as being woollen textiles 

with confidence. There are, however, some differences between the profiles of modern wool and 

the archaeological materials, these being higher amounts of Ser and Gly and lower amounts of 

Asx, Arg, Ile and Leu in the archaeological materials (Student’s t tests; all p values = <0.05). The 

differences are outside of the range of amino acid composition values for all of the modern wools 

studied and are apparent across all of the samples studied. This suggests that the cause is not due 

to a difference in the wool that the textiles were made from, as it is highly unlikely that all of the 

wool was obtained from a single breed of sheep that has a vastly different wool amino acid 

composition.  



 

215 
 

 

 

Figure 85. Amino acid compositions for selected materials recovered from grave 4 at the Fromelles mass 
burial. The data are expressed as percentages of the sum of all amino acid peak areas. Error bars represent 
+/- 1 standard deviation; n=10 for modern wool and n=2 for archaeological materials. 

The variation is likely to be due to a specific form of biological attack that leads to preferential 

degradation of particular substructures of the wool fibres over others. Notably, the proteins that 

comprise the cuticular scales have a different amino acid composition to the proteins that 

constitute the inner cortex (see Table 22). The preferential degradation of one type of protein 

would alter the overall amino acid composition of the remaining material. Table 22 shows the 
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amino acid compositions of whole wool fibres, wool cuticle proteins, and wool cortex proteins. 

With the exception of Thr – which is marginally higher in proportion than in modern wool – the 

samples from Fromelles appear to have an amino acid profile consistent with an increased 

proportion of cuticle material. This suggests that the cortex components of the wool have been 

degraded, while the outer cuticle remains in a better state of preservation. Certain microbes are 

known to cause loss of cortex spindle cells whilst leaving the outer cuticle untouched, producing 

hollow tubes of degraded wool fibres (Gabriel, 1932; Kidd, 1977; Janaway, 2001; Mahall, 2003). As 

a result of the amino acid compositions suggesting preferential degradation of the wool cortex 

material, SEM was carried out to assess the physical damage to the fibres and to see if the 

predicted hollowing had indeed occurred. SEM analysis is presented in Section 2.2.3. 

 Table 22. Amino acid compositions of whole wool fibres, proteins of the wool cuticle and proteins that 
compose the wool cortex (Church et al., 1997). 

Amino acid 
 

Whole wool fibre 
 

Bradbury et al., 1967; 
Leeder & Marshall, 1982 

Wool cuticle 
 

Bradbury & Ley, 1972 
 

Wool cortex 
 

Bradbury, 1973 
 

Alanine 5.4 5.8 5.5 

Arginine 6.9 4.3 6.7 

Aspartate 6.5 3.5 6.5 

Glutamate 11.9 8.7 12.4 

Glycine 8.4 8.2 8.1 

Histidine 0.9 0.8 0.7 

Isoleucine 3.1 2.7 3.3 

Leucine 7.7 6.1 7.9 

Lysine 2.9 2.7 2.6 

Methionine 0.5 0.3 0.4 

Phenylalanine 2.9 1.7 2.5 

Serine 10.4 14.3 10.3 

Threonine 6.4 4.4 6.5 

Tyrosine 3.8 2.8 2.9 

Valine 5.6 7.5 5.7 

 

The ratios of measured D and L form amino acids for selected materials sampled from SK1523, 

SK1525, SK1527 and SK1750 at the Fromelles excavation are shown in Figure 86. The data 

displayed are a representative sample of all the material analysed. With the exceptions of Asx and 

Ser, amino acids only racemise when terminally bound. All samples from grave 4 at Fromelles 

exhibit greater extents of racemisation of Asx and Ser than modern materials (Mann-Whitney u 

tests; all p values = <0.027). Other amino acids (which require terminal sequence locations for 

racemisation to occur) show increased racemisation, which most likely indicates that hydrolysis of 
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the wool proteins produced a greater number of terminal residues. This finding is in agreement 

with the amino acid composition data that suggests degradation of the wool structure.  

Textile sample A from the head of SK1525 exhibits larger D/L values for many amino acids than all 

other material recovered from grave 4 (with a notably large Leu D/L value). The difference in the 

D/L values and the amino acid composition of this material combined with the significantly 

depleted overall amino acid content suggest that textile A from the head of SK1525 is the most 

degraded material recovered from the site.  

 

Figure 86. Selected amino acid D/L values for several materials recovered from the four skeletons sampled in 
grave 4 at the Fromelles mass burial. Error bars represent +/- 1 standard deviation; n=10 for modern wool 
and n=2 for archaeological materials. 
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6.2.2.3 SEM 

To assess the physical state of the microstructures of the wool and test the hypothesis of fibre 

hollowing reasoned on the basis of the amino acid data, SEM analysis was performed on two 

separate subsamples of material taken from the SK1750 ‘red sock’ (Figure 14 c to h). In 

comparison with modern wool (Figure 87a and b), the archaeological material shows signs of 

extensive damage, with most wool fibres appearing to have been affected. Many fibres exhibit 

damage to only one half, the other side remaining less affected, a pattern of deterioration that is 

characteristic of bacterial attack (Mahall, 2003). The individual wool strands are hollow and straw-

like; many have been pressed flat due to the loss of the interior material. The cuticular layers 

remain intact and much of the inner cortex and medulla material is not present. The cuticular 

scales exhibit no lifting but do show some smoothing of their edges. Visible penetration and 

pitting of the outer structure of the fibres is limited. The damage to the cuticles could have been 

caused by mechanical processes within the burial environment, during excavation or cleaning, 

which have resulted in the snapping of the hollow structures, parting the cuticular scales in the 

process.  

The evidence from the SEM images confirms the interpretation from the amino acid composition 

data that the cortex had been preferentially degraded. Thus, the high relative abundance of Ser 

reflects the greater proportion of this amino acid in the proteins that constitute the cuticle than in 

the cortex. A higher proportion of cuticular protein relative to cortex protein than in undegraded 

wool fibres can account for the elevated Ser content of the archaeological material.  

Pink rot (Bacillus subtilis), a bacterium found in soil and the human digestive tract, has been 

shown to degrade keratinaceous material including wool (Hong et al., 2009; Zaghloul et al., 2011; 

Pekhtasheva et al., 2012). The deterioration of wool fibres to produce hollowed tubes of cortical 

cells has been observed in previous studies (Gabriel, 1932; Molyneux, 1959). In a case reported by 

Gabriel (1932), a sample of Romney wool inoculated with B. subtilis was shown to release the 

individual cortical cells into solution, leaving “an empty tube of [cuticular] scale cells”. B. subtilis 

disrupts the adhesion of cortical cells, releasing them from the fibre to leave a hollow structure 

composed of cuticular material. It is a facultative anaerobe, capable of respiring aerobically in 

oxygen rich environments and also producing ATP by anaerobic respiration (fermentation) in 

anoxic conditions, such as those found in Grave 4 (Nakano and Zuber, 1998). 

On excavation of the find the red colour of the material was assumed to be attributable to an 

intentional dyeing of the wool during its manufacture. The location by the foot of the remains 

combined with the course weave, indicative of a knitted garment and not the woven cloth that 

made up the uniform trousers or puttees (Tynan, 2013), strongly imply that the material is part of 

a sock. Military regulations at the time prohibited the wearing of clothing that was not khaki or 
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‘drab’ coloured (Chappell, 2000). Despite extensive literature searching no reference can be found 

to any of the Allied divisions at Fromelles wearing red socks.  

 

Figure 87. SEM images of modern wool (a and b; adapted from Chakraborty and Madān, 2014) and two 
wool samples taken from the SK1750 ‘red sock’ (c to h). The archaeological wool fibres are hollowed; a result 
of the destruction of cortex material whilst the outer cuticular scales remain in good condition. 
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A subsample of the material was solvent extracted by another member of the InterArChive 

research team using 9:1 DCM:methanol solvent (see Chapter 2.2.2.4) and the extract was 

analysed by UV spectroscopy. No absorption due to an organic dye material was observed. 

Subsequent GC-MS analysis of the extract did not reveal the presence of any compounds 

commonly used in the colouration of textiles (Hicks, 2017). B. subtilis is known to sometimes 

impart a pink colouration to wools and fleece that is extremely difficult to remove by washing, 

hence the common name for the bacteria being pink rot (Nay and Watts, 1977; D’Arcy, 1990). 

Therefore, the colour of the archaeological wool may be due to the exposure to B. subtilis or 

similar microorganisms in the burial environment. Some soil microorganisms can produce 

chromophore containing compounds (such as carotenoids) through metabolic processes (Khaneja 

et al., 2010). Many wool pretreatment methods in the textile industry rely on exposing fibres to 

enzymatic and chemical agents in order to increase the colour fastness of the dyes applied, the 

current consensus being that the enzyme mediated hydrolysis of the wool proteins produces 

more binding sites for the applied dye molecules (Kim et al., 2005; Kang et al., 2006; Araujo et al., 

2008a; Araujo et al., 2008b). Thus, the activity of keratinolytic enzymes may have facilitated 

covalent crosslinking of microbially produced ‘natural’ dyes to the modified wool fibres, leading to 

the fastness of the colouration of the material. Alternatively, the loss of the cortex material may 

have changed the way that the material interacts with light, resulting in the perceived change in 

colour.  

Thr is reportedly found in lower abundance in the cuticular proteins of undegraded wools when 

compared to the average values of whole wool fibres (Table 22; Church et al., 1997). The Thr 

content is slightly higher in the hollowed wools from Fromelles, indicating a discrepancy between 

the experimental and literature data. It is likely that the differences are due to this study 

employing different analytical techniques than those used in the literature work. The techniques 

used in this investigation differentiate between D and L forms of the amino acids detected, with 

good reproducibility and accuracy. This enables a more precise amino acid composition to be 

determined, implying that the composition detected is an accurate representation of the 

materials analysed. 
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6.2.3 Summary and conclusions 

Based on the amino acid composition data all archaeological materials sampled during the 

excavation at Fromelles were determined to be made from woven or felted wool. All of the 

archaeological samples exhibit very similar amino acid distributions to modern wools and they 

also exhibit a characteristic difference in amino acid compositions. The increase in the relative 

abundances of particular amino acids, including Ser which is found in higher abundance in the 

cuticular scales, suggests that the cores of a significant proportion of the wool have been 

preferentially degraded, most likely by microbial attack. This suggestion was confirmed by SEM 

imaging, which shows that the majority of the wool fibres are hollow, having been stripped of the 

cortex materials.  

A range of preservation states are evident among the samples, though there does not appear to 

be an obvious pattern relating to conditions in the burial matrix that would account for the 

variation in preservation. It is likely that the acidic, waterlogged conditions found at the bottom of 

grave 4 contributed to preservation of the material for nearly 100 years without more extensive 

degradation. 

The wool from the pelvis of SK1527 has a low total amino acid content, but, the amino acid 

composition and the D/L values for this material are no more dissimilar to modern wool than the 

other archaeological samples that have higher amino acid contents. It is possible that the 

anomalous value is due to a non-proteinaceous component of the textile sample that persisted 

through the cleaning procedures. If so, the lower amino acid content would not be indicative of 

the preservation state of the material.  

Textile sample A from the head of SK1525 also exhibits a lower amino acid content but does show 

significant variation in the other amino acid values. The sample has a higher percentage 

composition of Ser and larger D/L values for many amino acids than all other material recovered 

from grave 4, suggesting that this material is the most degraded of all samples recovered from the 

site.  
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6.3 Fewston 

6.3.1 Site and sampling information 

During March and April of 2010 excavation was carried out to recover buried remains from graves 

in the construction footprint of a new Heritage Centre attached to the church of St Michael and St 

Lawrence at Fewston, North Yorkshire (latitude: 53.982745, longitude: -1.704312; Figure 88). A 

total of 163 sets of human remains were found and removed from graves in the churchyard. The 

temporal range of the burials was from the church’s founding in the 14th century and extended 

after the last recorded burial in 1896 to a burial in 1921 (Buglass, 2010). The burial soils are well 

drained coarse loamy soils that lie atop Namurian millstone grit of the Upper Carboniferous 

period (Buglass, 2010).  

Members of the InterArChive team collected textile fragments from two sets of remains at the 

Fewston site. SK408 was identified as Richard Gill who died in May 1883 at the age of 78. Mr Gill 

was buried in a wooden coffin that had leather adornments and a copper alloy breastplate 

(Buglass, 2010). Samples of textile from around the feet of the remains were sampled. The 

material had a course weave and was thought by the excavating archaeologists to be the part of 

socks or long johns. SK289 was an unidentified individual, the sex was tentatively identified as 

female although less than 60% of the skeleton remained and what was left was in poor condition 

(Caffell and Holst, 2010). The individual was estimated to be between 35 and 45 years of age and 

the date of burial was undetermined. The hair of the individual remained, detached from the skull 

(as the scalp had completely decomposed) and still bound by a hair tie made from a woven 

material. The locations of both SK289 and SK408 within the church grounds are given in Figure 88 

(bottom). 

Both samples of textile were initially analysed by Py-GC-FID (Chapter 2.4.2) with the intention of 

conducting further analysis of the amino acid content of any materials found to be protein based 

(Chapter 2.5). 
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Figure 88. A map of the area surrounding the church of St Michael and St Lawrence at Fewston (top) and a 
site plan from the 2009 archaeological excavations, highlighting the positions of SK289 and SK408 (bottom). 
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6.3.2 Analysis of archaeological material 

6.3.2.1 Py-GC analysis 

Both samples of textile from the Fewston excavations had similar pyrograms to modern protein 

based materials, the pyrograms containing peaks attributable to amino acid thermal degradation 

products (see Figure 89). Amino acid analysis was therefore performed to examine amino acid 

concentrations, D/L values, and the overall protein content of the materials (Section 3.2.2). 

 

Figure 89. Partial pyrolysis – GC traces of the SK289 hair tie (a) and the SK408 foot textile (b) from Fewston 
compared with a range of modern materials (c – f). LG = levoglucosan, a cellulose pyrolysis product. 1 to 14 
are thermal decomposition products of amino acids and peptides (Table 21). 



 

225 
 

6.3.2.2 Chiral AA content analysis by RP-HPLC 

The total amino acid contents of the textiles from SK289 and SK408 are within the range of 

variability of the modern wools analysed (see Figure 90), suggesting that both materials are in an 

excellent state of preservation. 

 

Figure 90. Total amino acid concentrations of the Fewston wool materials compared with the mean value 
calculated for the 6 types of modern wool analysed. Error bars represent +/- 1 standard deviation; n=10 for 
modern wool and n=2 for archaeological materials. 

The amino acid compositions of the textiles recovered from SK289 and SK408 are shown in Figure 

91. The material from the head of SK289 and that from the feet of SK408 both have amino acid 

compositions that are very similar to modern wool. Given the physical appearance of the textiles 

and the amino acid profiles, it is safe to conclude that both samples of textile are made from 

woven wool. The percentage abundance of the majority of the amino acids from both samples fall 

within the range demonstrated by modern wool, those that lie outside this range only differ 

marginally (Student’s t tests; all p values = <0.024). Thus, it is unlikely that these materials have 

undergone any significant microbially mediated decomposition.  

The D/L values of selected amino acids (Figure 92) reveal statistically significant increases in the 

racemisation of Asx and Ser for both materials (Mann-Whitney u tests; all p values = <0.027). 

None of the other amino acids analysed exhibited significant racemisation. The magnitude of the 

increase in the Asx and Ser D/L values is small by comparison with materials from other sites 

where definite signs of degradation are evident (such as Fromelles, see section 6.2.2.2). These 

observations suggest that the racemisation of Asx and Ser has most likely occurred in chain. 

Consequently, new terminal residues generated by hydrolysis of the peptides of the wool would 

be limited, giving further evidence of good preservation for both textiles. 
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Figure 91. Amino acid compositions for the material recovered from SK289 and SK408 during the Fewston 
excavation. The data are expressed as percentages of the sum of all amino acid peak areas. Error bars 
represent +/- 1 standard deviation, n=10 for modern wool and n=2 for archaeological materials.  

 

Figure 92. Amino acid D/L values for the material recovered from SK289 and SK408 during the Fewston 
excavation. Error bars represent +/- 1 standard deviation; n=10 for modern wool and n=2 for archaeological 
materials. 

6.3.3 Summary and conclusions 

The amino acid compositions of both of the materials recovered from Fewston enabled their 

identification of their compositions as wool. The material from the hair of SK289 is a hair tie used 

to keep the hair from falling in the face. The appearance of the material from the feet of SK408 

would suggest that it is part of a knitted sock or garment covering the legs. The amino acid 

compositions, the amino acid D/L values and the total amino acid contents of the wools from both 

materials suggest they are in a reasonably good state of preservation, with neither having 

experienced any measurable deterioration during their periods of internment.  
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6.4 Mechelen 

6.4.1 Site and sampling information 

In 2009 members of the InterArChive team sampled from a former churchyard next to the 

Cathedral of Saint Rumbold in Mechelen, Belgium, approximately 23 miles north east of Brussels 

in the Flanders Region (latitude: 51.028858, longitude: 4.479221; Figure 93). The site was used 

from the early 12th century until 1785 as the sole burial site for the deceased of the parish of 

Mechelen. Records show the site to contain the remains of at least 4200 individuals. From a total 

of 3675 burials the excavation located and removed 4166 articulated skeletons and 100 

collections of disarticulated bones resulting from secondary burials (reburial of the remnant 

bones following an initial phase of decomposition elsewhere; Depuydt et al., 2013). The site 

comprised four distinct layer of sediment. The uppermost two layers (dated to the 17th and 18th 

century AD) were a “dark brown, greyish sandy soil” (Depuydt et al., 2013). The third layer (dated 

to the 15 and 16th century AD) was “a brownish soil of light loamy sand” and the fourth layer 

being “yellow – brown sand” (Depuydt et al., 2013). 

 

Figure 93. A map of the region surrounding Mechelen (top) and a plan of the 2009 archaeological 
excavation of the former churchyard next to Saint Rumbold’s Cathedral in Mechelen, Belgium showing the 
locations of GR423 and the mass grave – GR1651 (bottom). 
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Along with the more typical burials found at the site, GR1651 contained over 41 individuals 

occupying a single rectangular pit, measuring 2.28 m by 3.16 m (Figure 94). The remains are of 

those executed on 23rd October 1798 by French soldiers (Van de Vijver and Kinnaer, 2014) at the 

time of the French occupation of parts of Flanders and Brabant. Local people who were opposed 

to the French rule took up arms against the French in what became known as The Peasants’ War. 

The deceased in GR1651 had been found guilty and sentenced to death (Figure 95). Most were 

prone or supine, and those that were sexed by an osteologist were identified as males. Several 

sets of silver cuff or collar links were found, three in context with one skeleton. Markings on one 

of the links were used to date the production of the object to 1780.  

Many textile fragments were recovered from the burial and conserved by Artesis University 

College of Antwerp. Visual assessment of the textiles by the conservation team concluded that 

most of the textile was wool based, with some incidences of surviving leather. Prior to their 

conservation the InterArChive team collected samples of material from SK2, SK3 and SK40; the 

materials having been visually identified as leather, wool and felt, in turn. The sample from SK3 

was taken adjacent to a green stain surrounding a copper button. A large sample of dark 

blue/black, finely woven textile and the surrounding dark, stained soil was also recovered from 

the remains of SK14. The textile was very fragile and brittle; handling fragments of the sample 

with tweezers resulted in unravelling of the weave and shedding of threads. Woollen textiles 

recovered from the site were much thicker and more pliable by comparison.  

The strategy for analysis of the set of samples was to establish if the materials were derived from 

animal materials (being protein based) or from plant materials by the implementation of EA. 

Detection of a significant nitrogen content would distinguish a material as being predominantly 

protein based, leading to subsequent analysis of the amino acid content by RP-HPLC. Samples 

found to be lacking a substantial nitrogen component would suggest that the material is plant 

based, prompting their analysis by Py-GC-MS. 
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Figure 94. GR1651 mass grave uncovered during the excavation of the churchyard adjacent to Saint 
Rombold’s Cathedral in Mechelen. 

 

 

Figure 95. “De gefusilleerden van Mechelen tijdens de Boerenkrijg” painted by Léon Rotthier (1897), 
depicting the execution of brigands who rebelled against the French rule of Flanders in October 1798. The 
painting is of those shot by French troops on 23

rd
 October 1798 in the cemetery of St Rombold, who were 

buried in the mass grave (GR1651). © Stedelijke Musea Mechelen. 
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6.4.2 Analysis of archaeological material 

6.4.2.1 EA 

EA was carried out using the methods outlined in Chapter 2.3. As elemental analysis was only 

being employed to distinguish between animal and plant material based primarily on the nitrogen 

content, no TOC or O analyses were performed. The results from the CHNS analyses are shown in 

Table 23. 

Table 23. CHNS contents of the samples obtained from Mechelen compared with a range of modern 
materials. Either AA or Py-GC were then carried out based on the nitrogen content.  

Sample C H N S 
AA% 

analysis 
Py-GC-MS 
analysis 

Modern cotton 42.11 6.13 0.67 0.00   

Modern flax 41.94 6.17 0.00 0.00 
  

Modern hemp 42.41 6.41 0.00 0.00 
  

Modern human hair 46.16 6.83 14.56 4.93   

Modern sheep wool 45.34 6.86 15.49 3.91   

Modern silk 45.09 6.19 17.79 0.00   

Modern cow leather 43.41 5.94 11.05 1.23   

Modern suede 41.56 6.61 14.34 0.46   

GR1651 SK14 black textile 49.86 3.05 0.10 0.18  
 

GR1651 SK2 leather 33.10 4.39 6.73 0.17   

GR1651 SK3 brown textile 41.18 5.93 13.20 3.11   

GR1651 SK40 felt 28.79 4.05 6.96 1.35   

  

The black textile from SK14 exhibited a low nitrogen content (0.10), within the range of the three 

modern plant derived textiles analysed (0.00 to 0.67). This indicates that the material has a very 

low amino acid content and is likely to be a plant based textile. Further analyses of this material 

using Py-GC and SEM are presented in Section 6.4.2.2 and Section 6.4.2.4 respectively. The three 

samples of material from SK2, SK3 and SK40 all have nitrogen contents that suggest their 

structural composition to contain a high percentage of protein. The EA data fits with the tentative 

identification by the on-site conservation team. Further analyses of these materials by RP-HPLC 

and SEM are presented in Chapter 6.4.2.3 and Chapter 6.4.2.4 respectively. 
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6.4.2.2 Py-GC-MS analysis 

The pyrogram of the plant based textile from GR1651 SK14 is dissimilar to any of the modern 

analogues that were analysed alongside the sample. No pyrolysis products that are typically 

attributable to carbohydrate or lignin were detected by MS. All of the modern plant materials 

studied contain high proportions of polysaccharides in the form of cellulose and hemicellulose, 

with small amounts of lignin (Table 24). As has been shown in previous work (Perez-Ceollo et al., 

1997) the celluloses in materials in buried materials are readily degraded. 

Table 24. The cellulose, hemicellulose and lignin percentage compositions of the modern plant textiles 
analysed by Py-GC-MS as standards with which to compare the archaeological material from SK14, GR1651, 
Mechelen.  

Material Cellulose % Hemicellulose % Lignin % 

Cotton  
de Morais Teixeira et al., 2010) 

95.5 – 99.9 0.1 – 0.9 0.3 – 0.5 

Flax  
(Li et al., 2007) 

71 18.6 – 20.6 2.2 

Hemp  
(Li et al., 2007) 

57 - 77 14.0 – 22.4 3.7–13.0 

  

From a chemical perspective, the material from SK14 cannot be definitively classified as being 

from a plant or an animal source, despite indications from the EA data that it is unlikely to be 

animal derived. The complete lack of any peaks derived from organic polymers found in textiles 

must be rationalised with the physical presence of the textile.  

Preservation of the physical structure of textiles by partial or complete mineralisation has been 

studied previously (Sibley and Jakes, 1982; Gillard et al., 1994; Chen et al., 1998; Janaway, 2001; 

Solazzo et al., 2014). The organic matrix of polymers is degraded and replaced with inorganic 

minerals present in the burial environment, the latter often being derived from metal objects 

buried in close proximity. The mineralisation can be limited to an exterior shell of inorganic 

materials with surviving biopolymers within, or can involve complete replacement of the organic 

components, producing a wholly inorganic replica known as a pseudomorph (Sibley and Jakes, 

1982). The complete mineralisation of the textile is a likely explanation for the lack of detectable 

biopolymer signatures in the Py-GC data of the sample from SK14. To test this hypothesis, SEM 

imaging of the textile was carried out to examine the microstructure of the material (see Chapter 

6.2.6). 
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6.4.2.3 Chiral AA content analysis by RP-HPLC 

The three samples of material from the mass burial that had significant nitrogen contents were 

prepared and analysed by RP-HPLC as described in Chapter 2.5. The total amino acid contents of 

all three materials are shown in Figure 96. 

The total amino acid content of the leather recovered from GR1651 SK2 is within the range of the 

modern hide materials analysed, indicating that it has undergone little observable degradation. 

The brown wool from SK3 also has an amino acid content that is well within the range of the 

modern wools analysed. The felt from SK40 has a total amino acid content slightly below that 

observed for modern wools (Mann-Whitney u test; p value = 0.041). Although this may be due to 

degradation, it could also be due to the manufacturing processes used in producing felt 

(Schroeder et al., 2004). The felting processes employed may have had some impact on the wool 

fibres before the material entered the burial environment. The issue of cleaning the felted 

material must also be discussed. Due to the density and close knitting of the fibres in the material, 

microscopic particles of sediment trapped within may not have been removed by the cleaning 

process. This would conceivably increase the mass of the material and decrease the amount of 

detected amino acids per mg of sample.  

 

 

Figure 96. Total amino acid concentrations of the three animal derived materials samples from the mass 
burial at Mechelen compared with a range of modern materials. Error bars represent +/- 1 standard 
deviation; n=10 for modern hair and wool, n=3 for modern silk and suede, n=6 for modern leather and n=2 
for archaeological materials. 
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The amino acid compositions of the nitrogen rich textiles are shown in Figure 97. The SK3 brown 

textile and the material from SK40 have amino acid compositions similar to that of modern wools. 

This data, combined with the assessment by the conservators from the Artesis University College 

of Antwerp establish the brown textile from SK3 as a woven or knitted wool garment and the 

matted material from SK40 is a felted material, produced from wool fibres. The amino acid 

composition of the material from SK2 matches that of modern leather. As with the previous two 

samples this finding is in agreement with the observations made by the conservation team. 

 

 

Figure 97. Amino acid compositions of the materials recovered from SK2, SK3 and SK40 in grave 1651 at 
Mechelen. The data are expressed as percentages of the sum of all amino acid peak areas. Error bars 
represent +/- 1 standard deviation; n=10 for modern wool, n=6 from modern leather and n=2 for 
archaeological materials. 
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The amino acid compositions of the SK2 leather and the SK3 brown textile closely match those of 

their modern counterparts, with no differences in amino acid compositions (no statistical 

differences when subjected to Student’s t tests; all p values >0.05). Any degradation that has 

taken place has therefore occurred uniformly, in all tissues of the materials and probably reflects 

chemical and not microbially mediated mechanisms. Attack by proteolytic enzymes produced by 

microfauna in the burial environment would most likely cleave at specific amino acid sequences 

and preferentially attack different substructures within the materials; such degradation would 

produce an evident change in the amino acid compositions (Wilson et al., 2007a, Wilson et al., 

2010). Degradation of woollen materials that affects fibres uniformly and non-preferentially is 

typically characterised by amino acid ratios being unchanged from those of the unaltered wool 

(Wilson et al., 2007a, Wilson et al., 2010). No evidence of microbially induced degradation was 

found during subsequent SEM analysis (see Section 4.2.4). 

Slight differences in the amino acid composition of the felt from SK40 are evident by comparison 

with modern wools. The archaeological felt exhibits higher levels of Ser, L Thr and Ala, and lower 

levels of Asx, Phe and Leu than the ranges exhibited by the modern wools (Student’s t tests; all p 

values = <0.038). As with the textiles analysed from Fromelles (Section 2.2.2) higher Ser content 

than modern wool can reflect preferential loss of wool fibre cortex proteins, leaving an increased 

abundance of the Ser rich cuticular layers. Degradation of this kind is almost certainly microbially 

mediated, signatures of which were found during subsequent SEM analysis (see Section 4.2.4).  

The D/L values of selected amino acids from the wool recovered from SK3 show little difference to 

those of modern wools. The only amino acid that does show any substantial increase in 

racemisation is Ser (Mann-Whitney u test; p value <0.001), but as racemisation has been shown to 

occur in chain as well as when terminally bound it is not necessarily indicative of any significant 

breakdown of the wool keratin. For the felt from SK40, on the other hand, increased levels of D 

Asx and D Ala provide (Mann-Whitney u tests; p values <0.027), which may be evidence of 

modification to the component wool during the felt making process or degradation within the 

burial environment.  

 



 

235 
 

 

Figure 98. Selected amino acid D/L values for the material recovered from SK3 and SK40 in grave 1651 at 
Mechelen. Error bars represent +/- 1 standard deviation; n=10 for modern wool and n=2 for archaeological 
materials. 

A small increase in Asx racemisation in the leather from SK2 (Mann-Whitney u test; p <0.001) 

indicates that there has been little degradation. Given that the material had been buried for 

around 200 years, any substantial damage by hydrolysis would lead to a greater difference in the 

D/L values. Thus, the amino acid ratio provides further evidence that the leather from SK2 is well 

preserved.  

 

Figure 99. Selected amino acid D/L values for the material recovered from SK2 in grave 1651 at Mechelen. 
Error bars represent +/- 1 standard deviation; n=6 for modern leather and n=2 for archaeological materials. 
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6.4.2.4 SEM 

The diameters of the fibres that make up the black textile from GR423 (Figure 100) were 

measured between 5 and 10 µm using SEM, smaller than is typical of individual wool strands (20 - 

50 µm). The hollow structure and angular shape is the same as that of bast fibres, harvested from 

the phloem tissue of dicot plants (Dusenbury, 1992; Ferrero et al., 1998; El-Gaoudy et al., 2011). 

This confirms that the material was originally a plant based textile. An in depth examination of the 

geometry and dimensions of the fibres by Serchisu (2014) indicate them to be flax, the raw 

material used to produce linen. In the 18th century the Flanders region was a major producer and 

consumer of linen, making it likely that the material found in context with the occupant of grave 

423 was once linen (Van der Wee and Aerts, 1978; Spufford, 2006; Gray, 2003; Ronsijn, 2015). 

Given the absence of biopolymers in the pyrolysis analyses, it is evident that the material has 

survived as a totally mineralised pseudomorph. 

 

Figure 100. Selected SEM images of the black textile recovered from GR423 at Mechelen. 

The black textile from GR423 represents the only example of plant based textile collected from 

the five sites in this study. In comparison with wool based textiles, plant based materials have a 

much lower incidence of recovery from archaeological sites (Wild, 1988). There are, however, 

examples of such textiles surviving for thousands of years (Burnham, 1965; Schick, 1986). 

Typically, the survival of plant textiles is limited to dry and arid conditions; the two previously 

mentioned examples are both desert environments, where microbial growth is not supported.  
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The burial environment at Mechelen was extremely sandy, giving excellent drainage and 

minimising the water content of the soils. These conditions may have slowed microbial 

degradation of the textile sufficiently as to allow mineralisation to occur at a comparable rate, 

and the pseudomorphic textile to be formed. The coarse grain structure of the matrix may also 

have played a part in the recovery of the textile by archaeologists. Unlike more loamy or clay rich 

soils the sand would not have adhered to the material, resulting in its detection upon excavation. 

Given the fragility of the material, a burial matrix that would have adhered to the textile may have 

resulted in it being missed or destroyed during excavation. 

Another possible factor enabling the survival of this textile surviving is the low pH often attributed 

to sandy soils. The excellent drainage leads to the rapid removal of pH increasing calcium ions 

from the matrix, leading to a lowered pH (Day and Ludeke, 1993). The acidic conditions may have 

slowed the progress of decay, resulting in the material surviving, albeit in a heavily modified form. 

Lower pH soils are known to inhibit microbial growth significantly and to severely limit the 

biodiversity of the microfauna (Rousk et al., 2010). 

The woven wool textile from SK3 (Figure 101) in the mass burial exhibits a rough surface coating 

that covers a large proportion of the wool fibres. The cuticular scales that are visible though the 

detrital coating appear intact, with little erosion or smoothing. The structural integrity of the 

fibres suggests that they were undamaged before they were covered. 

 

Figure 101. Selected SEM images of the woven wool textile recovered from SK3 in the mass burial at 
Mechelen. 
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The cross sections of the wool fibres reveal the cortex and medulla to be intact with no 

observable deterioration. In some strands of the spun wool thread the fibres are tightly wound 

and appear cracked. This may be a result of mechanical stress applied in the burial environment 

or during preparation for SEM. The textile exhibits none of the characteristic signs of microbial or 

insect degradation. The observations made by SEM analysis concur with the finding of the amino 

acid analysis in Section 6.4.2.3. 

The proximity of this woollen material to the copper staining most likely accounts for its 

remarkable preservation. Copper is known to have antimicrobial properties that aid in the 

preservation of grave goods; fragments of textile are often found close to copper artefacts 

despite the remainder of the article having been destroyed by decomposition (Chen et al., 1998).  

The leather from SK2 (Figure 102) exhibits signs of unravelling of the dermal fibres, a trait that 

often occurs due to mechanical stresses and prolonged immersion in water (Dempsey, 1974; 

Spangenberg et al., 2010). The overall structure, however, seems intact with no evidence of 

microbial or insect attack. This supports the evidence for good preservation of the material 

provided by the amino acid analysis.  

 

Figure 102. Selected SEM images of the animal hide material recovered from SK2 in the mass burial at 
Mechelen. 

Figure 103 shows some key features observed during the SEM analysis of the felted wool material 

from SK40 in GR1561. The individual wool strands are interlocked and meshed together in a 

manner consistent with that of felt. Many of the individual fibres show signs of deterioration 



 

239 
 

which appear to be concentrated on degradation of the cortex material. Some areas of the cuticle 

are damaged, with erosion of the cuticular scales. In other areas the scales appear well defined 

and undamaged. Many strands have holes in the outer cuticles, which expose areas of cortex 

removal and attrition. Many fibres also appear to be longitudinally split; the visible inner surfaces 

are heavily pitted and damaged.  

Several of the features in Figure 103b may be remains of fungal bodies that contributed to the 

decay of the felted wool. Figure 103c shows clear evidence of fungal spores adhering to the wool 

strands. The fact that a fungal organism has sporulated suggest that it had been in a supportive 

environment with sufficient material to metabolise. The proximity of the spores to the degraded 

wool fibres in Figure 103c make the parent fungal organism a likely suspect in the decay of this 

material. 

 

Figure 103. Selected SEM images of the felted wool material recovered from SK40 in the mass burial at 
Mechelen. F indicates possible fungal bodies. S indicates fungal spores. 

It is evident that the felted material from SK40 is more degraded than the woven wool from SK3, 

suggesting differences in the decay processes affecting these two materials. This would indicate 

that at least two distinct microenvironments existed within the mass burial pit at some point 

during the period of interment. Given the presence of copper in proximity to the woven wool 

from SK3, there is therefore a strong likelihood that the copper did indeed have an antimicrobial 

effect, protecting the wool from the damage evident in the SK40 felt. 
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6.4.3 Summary and conclusions 

EA indicates that three of the four samples from the mass grave at Mechelen are protein based 

materials. Amino acid analysis identifies two as woollen textiles, the morphology suggesting that 

one is a woven textile and the other a felted material. The third material was identified as a 

remnant of an animal hide similar to modern leather. The amino acid data suggest that the woven 

wool and the leather are in excellent states of preservation, which is confirmed by SEM imaging. 

The felted wool has significant differences in its amino acid composition, suggesting that some 

microbially induced decay has occurred. Damage to the wool, possible fungal structures and 

fungal spores can all be observed in the SEM images. 

The fourth material, a woven textile that has no appreciable nitrogen content, contained no 

detectable compounds in the Py-GC profiles that relate to known textile biopolymers. SEM 

revealed that the material was made from bast fibres from flax, hence the textile was a linen 

fabric. The absence of any biopolymers implies that the textile is a pseudomorph, a material in 

which all of the organic components have been replaced by inorganic materials. The now 

mineralised textile is a fragile remnant that bears no chemical similarity to the original material.  

The preservation of the protein based materials may well be due to the well drained, and most 

likely acidic, burial matrix features known to inhibit the growth of the majority of potential 

microbial degraders. 
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6.5 Lincoln Castle 

6.5.1 Site and sampling information 

In 2013 renovation work at Lincoln Castle in Lincolnshire (latitude: 53.234604, longitude: -

0.540714) unearthed nine sets of remains buried 3 metres below ground level within the 

footprint of an ancient church (Figure 104, top). One of the skeletons was enclosed in a limestone 

sarcophagus (Norton, 2014). One set of remains found in close proximity to the sarcophagus were 

radiocarbon dated to between 1035 and 1070 AD (Isles, 2015). The mortar seal between the body 

and the lid of the sarcophagus was not intact at the time of excavation and had presumably been 

degraded for some time, given the amount of sediment that had accumulated around the 

remains. It is unknown when the seal was broken or if the seal created a closed system.  

Members of the InterArChive team collected 4 samples of what were believed to be clothing 

materials from the remains in the sarcophagus; three from the chest and one from a mass of dark 

material by the feet (Figure 104, bottom). All of the samples were flat, amorphous masses, with 

no discernible weave or stranded structures. The sample from the area surrounding the feet had a 

small hole in the material, which was suspected as being an eyelet as would typically be found in 

leather clothing or footwear. The samples available for analysis were very small. Given that one of 

the four samples was suspected of being protein based (leather), amino acid content assessment 

by hydrolysis and RP-HPLC was the sole method of analysis performed on this sample set. 

 

Figure 104. The location of Lincoln Castle in Lincolnshire (top), and a composite image of the remains within 
the sarcophagus, showing the locations from which the samples were taken (bottom). 
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6.5.2 Analysis of archaeological material 

6.5.2.1 Chiral AA content analysis by RP-HPLC 

The total amino acid contents of all four archaeological samples (Figure 105) are significantly 

lower than for modern materials, suggesting that they are all heavily degraded. All three samples 

from the chest area of the remains have similar amino acid contents, suggesting that the samples 

are all from the same type of material, possibly from the same item of clothing. The ‘leather’ from 

the feet of the remains has a much lower amino acid content than the samples from the chest, 

indicating that this material is much more degraded.  

 

Figure 105. Total amino acid concentrations of the materials sampled from the Lincoln Castle sarcophagus 
compared with a range of modern materials. Error bars represent +/- 1 standard deviation; n=10 for modern 
hair and wool, n=3 for modern silk and suede, n=6 for modern leather and n=9 for modern hide products 
(the mean averages of leather from 2 sources and modern suede) and n=2 for archaeological materials. 

The amino acid compositions of the four samples from the sarcophagus are shown in Figure 106. 

The material from the foot end of the coffin is most similar to modern materials made from 

animal skins (suede and leather), with large proportions of Gly and Ala that are typical of skin 

tissues. This similarity combined with the location in which the sample was found and the 

observation of a hole, consistent with an eyelet, led to the conclusion that the material is most 

likely part of footwear that the individual was wearing at the time of burial. Despite the similarity 

in amino acid composition there are significant differences. The majority of the amino acid 

percentages show significant variation from those of modern hides, suggesting that the material 

has been significantly degraded.  
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Figure 106. Amino acid compositions of the materials recovered from the remains in the sarcophagus at 
Lincoln Castle. The data are expressed as percentages of the sum of all amino acid peak areas. Error bars 
represent +/- 1 standard deviation; n=10 for modern wool, n=6 from modern leather and n=2 for 
archaeological materials. NB. Mat. is an abbreviation of material. 

The decomposition of the body tissues strongly suggests that microbes capable of digesting 

collagen had colonised the remains, most likely within the sarcophagus. Thus, it is plausible that 

the types of microbe that degraded the collagen of the corpse also played a role in the observed 

decomposition of the leather artefact. Non biological degradation of the leather, such as 

chemically induced hydrolysis and oxidative degradation are also a possibility (Larsen, 1994). 

Elevated Asx content has been reported in previous studies of degraded leathers to be due to 

oxidation, although it is commonly accompanied by an increase in Glx which is not seen in this 

case (Florian, 2007). 

The three samples from the chest area all have very similar AA compositions. This suggests that 

they are made from the same type of material, possibly even from the same piece of clothing. The 

AA profiles of the archaeological materials are markedly different to any of the modern materials 
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but are most similar to those composed of hard α-keratin (sheep wool and animal hairs). The 

Glx:Ser ratio suggests that the material is wool and not human hair, although degradation may 

well have altered this ratio. The most likely materials used in clothing during the period of burial 

are woollen textiles, animal skins or tanned hides. Given that the amino acid compositions do not 

closely match any of the modern analogues of these materials it is highly likely that these three 

samples of textile from the sarcophagus are heavily degraded. 

All of the D/L values for the amino acids studied are higher in the archaeological samples than the 

mean values obtained from modern leathers (Figure 107). This suggests that the proteins that the 

materials are made from are in a more fragmented state, producing more terminal residues that 

have undergone racemisation. The most distinctive feature of the data set is the higher value of 

the Ile D/L value for modern leather and the material from the foot of the sarcophagus than for 

modern wool and the other three archaeological samples. The data for modern leather is a mean 

average based on triplicate analysis of material from two different leather sources. Samples of 

modern suede also show a very similar Ile D/L value (0.1401, SD: 0.0007, n=3). Since D-amino 

acids are rarely found in living tissues (Barker and Hopkinson, 1977) this increase in Ile D/L value 

of the modern hide products is almost certainly due to the conditions applied during the tanning 

process, which is known to lead to racemisation of amino acids (Maxwell et al., 2006; Covington 

and Covington, 2009). Despite this acknowledgement in the literature of increased racemisation 

upon tanning, there is no previous report of the specific predominance of Ile racemisation over 

other amino acids. Possible explanations for this level of selectivity may be the specific location of 

Ile in collagen peptides or the fact that Ile has two stereocenters, whereas most other amino acids 

only have one. The observation that both the modern animal hide materials and the sample from 

the foot end of the sarcophagus both display this elevated Ile D/L value is further evidence that 

the material is indeed a tanned animal hide. 
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Figure 107. Selected amino acid D/L values for the material recovered from the sarcophagus at Lincoln 
Castle. Error bars represent +/- 1 standard deviation; n=10 for modern wool, n=6 for modern leather and 
n=2 for archaeological materials. NB. Mat. is an abbreviation of material. 
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6.5.3 Summary and conclusions 

The material recovered from the feet of the remains in the sarcophagus has an amino acid 

composition that more closely resembles that of modern animal hide materials than any of the 

other modern comparators. Given the substantial difference from modern leathers, the amino 

acid composition is of limited use in identifying the material. The higher levels of racemisation of 

Ile found in both the modern tanned animal hides and the suspected archaeological leather 

provides more certainty in the identity of the material as leather.  

The three samples from the chest all have similar amino acid compositions, suggesting that they 

probably originate from the same garment. They are most similar to modern wool, but as with the 

material from the feet, there are substantial differences that preclude identification of the 

material based on the amino acid composition with any degree of certainty.  

All three of the amino acid parameters measured provide strong evidence that all four samples of 

material are heavily degraded. This is not surprising given that the materials are approximately 

1000 years old. The mechanisms of decay cannot be determined based on the data collected. 
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6.6 Jaunay-Clan 

6.6.1 Site and sampling information 

During 2012 a rescue excavation to discover, record and remove all burials and materials of 

archaeological interest was carried out at the site of a disused cemetery in the town of Jaunay-

Clan (latitude: 46.684867, longitude: 0.376976). The town lies in the west of France approximately 

170 km south east of Nantes and 12 km north of Poitiers (Figure 108, top). The cemetery occupied 

an area of 6690 m² and was used for the burial of the dead since Neolithic times (Segard, 2013). 

During the archaeological excavations two limestone sarcophagi were discovered in the 

subsurface remains of a mausoleum building (Figure 108, bottom). When the sarcophagi were 

opened it was found that the occupants were sealed within lead coffins. A team of experts in the 

fields of palaeopathology, palynology, parasitology, textiles, chemistry and DNA residues was 

assembled to analyse the contents of the sealed coffins. The InterArChive team were part of the 

interdisciplinary panel invited to study the burials.  

 

Figure 108. The location of the Jaunay-Clan excavation, in the mid-west of France (top), a plan of the site 
showing the location of the mausoleum remains containing the sarcophagi (bottom left) and a diagram 
showing the locations and burial depths of the two sarcophagi within the mausoleum (bottom right). 
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The sarcophagus labelled F293 contained the remains of an older male, judged to be more than 

60 years of age. Radiocarbon dating of bone samples estimated the year of death to be 70 - 230 

AD. The base of the lead coffin was damaged near the head and the feet, resulting in holes that 

exposed the outer limestone sarcophagus. The bone in close proximity to these areas was very 

heavily degraded. A total of 13 samples of material were taken for analysis within the 

InterArChive project (Figure 109 and Table 25).  

The sarcophagus labelled F294 contained the remains of a 9 to 14 year old child. The sex was not 

determined due to the undeveloped skeletal features typically used to infer gender. Radiocarbon 

dating of the bones places the year of death between 240 and 390 AD. A total of eight samples of 

material were taken for analysis within the InterArChive project (Figure 109 and Table 25).  

All of the samples resembling textile materials were very fragile and readily disintegrated when 

manipulated. It was clear that if any of the samples were indeed the remnants of textile materials 

they were in an advanced state of decomposition. EA was performed on these samples in order to 

assess if any had similar elemental compositions to modern textile materials (see Chapter 2.3). 

 

Figure 109. Images of the remains inside the two lead coffins found within the limestone sarcophagi at 
Jaunay-Clan, France. The red ovals show the approximate positions from which samples were collected for 
analysis (see Table 25). 
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6.6.2 Analysis of archaeological material 

6.6.2.1 EA 

CHNS and TOC analyses of suspected organic material finds were carried out. Several samples 

exhibited elemental compositions that differed from those of the controls (samples of modern 

textiles) and of the majority of soils collected from the burial matrix. The most notable and 

characteristic features was an elevated nitrogen component, often seen in protein based 

materials (see Table 25). The samples displaying high nitrogen contents were subsequently 

cleaned, hydrolysed and analysed by RP-HPLC to assess their amino acid compositions compared 

with modern materials (Chapter 2.5). 

Table 25. CHNS and TOC contents of the samples from Jaunay-Clan compared with a range of modern 
materials.Samples displaying an elevated nitrogen content were then analysed by RP-HPLC 

Burial Sample C H N S TOC 
AA% 

analysis 

Modern Cotton 42.11 6.13 0.67 0.00 -  

Modern Flax 41.94 6.17 0.00 0.00 -  

Modern Hemp 42.41 6.41 0.00 0.00 -  

Modern Human hair 46.16 6.83 14.56 4.93 -  

Modern  Sheep wool 45.34 6.86 15.49 3.91 -  

Modern Silk 45.09 6.19 17.79 0.00 -  

Modern Cow leather 43.41 5.94 11.05 1.23 -  

Modern Suede 41.56 6.61 14.34 0.46 -  

F293 265 – R. of skull, fragmented material 13.41 1.33 0.25 0.41 2.50  

 266 – R. of skull, more intact material 33.10 4.36 1.96 0.34 5.73  

 267 – R. ribcage 46.14 6.00 5.26 0.59 7.01  

 268 – L. ribcage 50.37 5.43 4.73 0.52 6.21  

 280 – R. humerus 5.58 0.16 0.07 0.00 0.53  

 281 – R. Ulna 5.21 0.11 0.00 0.00 0.96  

 282 – R. radius 14.30 2.76 0.00 0.00 2.89  

 283 – Pelvis symphysis  39.55 4.72 4.68 0.55 7.00  

 284 – Inside R. femur 7.66 0.79 0.00 0.00 3.11  

 285 – Outside R. femur 6.17 0.34 0.00 0.00 1.21  

 286 – Dark material from R. patella  39.08 5.27 6.03 0.61 7.18  

 287 – L. of L. tib/fib 4.95 0.06 0.00 0.00 0.41  

 288 – L. foot 4.13 0.07 0.00 0.00 0.66  

F294 087 – under skull 4.30 0.39 0.00 0.00 2.29  

 088 – Fibrous material from the left of C1 5.05 0.35 0.00 0.00 1.07  

 110 – Below pelvis, inside L. femur 5.51 0.73 0.00 0.00 2.12  

 111 – Below pelvis, between femurs 14.69 1.73 1.90 0.56 5.10  

 112 – Below pelvis, L. of L. femur 5.61 0.61 0.00 3.07 1.90  

 113 – Below pelvis, L. of L. knee 7.56 0.74 0.00 0.00 1.95  

 184 – above skull 3.90 0.37 0.00 0.00 1.41  

 175 – under R. scapula 5.23 0.21 0.00 0.00 1.26  
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All of the material sampled around the head, ribcage and pelvis of F293 have elemental nitrogen 

contents that suggest they could be protein based. The distribution of these samples would be 

consistent with a woollen/leather tunic, covering the torso of the deceased. At the time of burial 

the grave site was in Aquitania, a region of the Roman Empire. Short tunics worn to cover the 

torso and extending to the thighs were the accepted style of dress for the period (Bunson, 2014). 

The shoulders, vertebrae, ribs and pelvis all exhibit a red-brown staining that is absent from the 

bones of the arms and upper legs. The staining of the bones would also be consistent with the 

presence of a tunic worn by the deceased at the time of entombment. Clothing could conceivably 

have altered the decay environment of the adjacent tissues in these areas or the dyes may have 

leached out of the fabric, staining the bone and resulting in the discolouration.  

The samples that exhibited no detectable nitrogen also contained very little carbon, hydrogen and 

sulfur. This indicates that the samples collected are either inorganic residues resulting from the 

decomposition of the body or heavily degraded textiles with little or no remaining biopolymer. As 

with the nitrogen rich samples discussed above, the locations of the nitrogen deficient samples 

could also indicate the presence of fabric or clothing in relation to the body. The proximity of 

these materials to the arms and legs could be due to the individual being buried in a cloak or toga. 

The advanced attrition of these materials by comparison with those around the torso could be 

indicative of the two garments having different textile compositions. 

Only one of the samples from F294 exhibited a nitrogen content consistent with proteinaceous 

organic matter. As with the samples containing no nitrogen in F293, the majority of those in F294 

contained little carbon, hydrogen or sulfur. The lack of nitrogen rich material in F294 could be due 

to many factors, including differing burial dress, methods of preparing the deceased, as well as 

unique populations of microbes that colonised each set of the buried remains. The issue of the 

F293 lead coffin being breached may also be a key factor. The holes in the coffin of F293 may well 

have allowed the fluids rendered from the decaying remains to leak out into the surrounding 

sarcophagus, removing with it vast quantities of microfauna that would be capable of digesting a 

range of biopolymers that make up many textiles and clothing materials. The loss of these 

microorganisms would have likely altered the rate and possibly trajectories of the degradation 

within the burial. 

Sample 112 exhibits a higher sulfur content than all of the other samples from the F294 

sarcophagus. Given that the non-sulfur elemental values are similar to the majority of samples 

analysed from the burial, the high levels of sulfur point to an inorganic source. Sulfur had many 

uses within the cultures of the Roman Empire. Being synonymous with purification and regarded 

as cleansing, sulfur was used as a disinfectant to treat wounds and was also burned to ward off 

illness and plague and to purify the home after the death of a loved one (Block, 2001). It is 
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possible that sulfur was placed in the sarcophagus with the deceased as a symbolic gesture. 

Another possible source of inorganic sulfur is the clothing worn by individual. Textiles were 

cleaned (or fulled) using elemental sulfur (Bradley, 2002); remnants of this process may have 

persisted in the textile at the time of burial, resulting in the elevated sulfur content of the 

material thought to be textile remnants.  
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6.6.2.2 Chiral AA content analysis by RP-HPLC 

The total amino acid contents of the materials recovered from the sarcophagi at Jaunay-Clan are 

lower than in all of the modern comparators (Figure 110). This is evidence of advanced 

degradation of the materials during their many hundreds of years of burial.  

 

Figure 110. Total amino acid concentrations of the materials sampled from the sarcophagi discovered at 
Jaunay-Clan compared with a range of modern materials. Error bars represent +/- 1 standard deviation; 
n=10 for modern hair and wool, n=3 for modern silk and suede, n=6 for modern leather and n=9 for modern 
hide products (the mean averages of leather from 2 sources and modern suede) and n=2 for archaeological 
materials. 

The amino acid compositions of the materials recovered from the sarcophagi at Jaunay-Clan are 

shown in Figure 111 and Figure 112. Many of the materials recovered from F293 and F294 show 

very little similarity to the range of modern materials examined, including literature data for 

human dermal tissue (data not shown). Several of the samples do show similarities to modern 

materials, JCF265 and JCF111 having similar AA compositions to those of modern wool and 

human hair. 

The amino acid compositions of samples 266, 267, 268, 283 and 286 are all similar to each other, 

with 265 having a distinctly different amino acid composition. This could indicate that the samples 

are from two different sets of material within sarcophagus F293. Given that sample 265 was taken 

from beneath the head the material could be the degraded remains of hair from the scalp, the 

remaining samples being from another source. Analysis of the skeleton suggested that the skull 

has rolled back, away from the neck vertebrae during the period of burial (Segard, 2013). An 

explanation put forward for this is that the head of the deceased was resting on a pillow which 

decomposed allowing the skull to roll. A pillow of a different material to that covering the torso of 
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the remains (such as fur or feathers) could also explain the distinct amino acid composition of 

sample 265 from F293.  

The similarity in the amino acid compositions of the samples covering the torso, together with the 

similarities in the elemental abundances are consistent with a single piece of material, such as a 

tunic, covering these areas. If the garment was indeed woollen, the vastly different amino acid 

composition to modern wool would be indicative of significant degradation of the fibres. The 

absence of any visible hair along with the remains may indicate the presence of conditions or 

microorganisms capable of metabolising keratin based matter. The degradation of woollen 

materials by proteolytic enzymes is often found to be accompanied by an alteration in amino acid 

composition. The specific sites at which the enzymes cleave proteins render some tissues more 

liable to modification than others and also results in a range of different peptide products being 

produced. Some of the peptides are metabolised and lost in the burial environment whereas 

others are retained and contribute the overall amino acid composition of the sample (Wilson et 

al., 2007a, Wilson et al., 2010). 

All archaeological materials show increased extents of racemisation of the amino acids (Figure 

113). This is indicative of a breakdown of the proteins that compose the materials, suggesting 

degradation.  
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Figure 113. Selected amino acid D/L values for the material recovered from the sarcophagi at Jaunay-Clan. 
Error bars represent +/- 1 standard deviation; n=3 for modern silk and suede, n=10 for modern wool, n=6 for 
modern leather and n=2 for archaeological materials. 
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6.6.3 Summary and conclusions 

Based on the EA data, the materials that showed no appreciable nitrogen content (and therefore 

no amino acid and protein content) are either inorganic residues remaining from the 

decomposition of the human remains or heavily degraded plant materials that have no elemental 

compositional similarity with modern materials. The sample with an elevated sulfur content is 

most likely an inorganic sulfur containing material. The C, H and N content is similar to that of the 

other materials found within the grave, meaning that the sulfur content is due to a compound 

containing none of these elements and therefore cannot be organic. It may well be due to an item 

placed in the grave with the deceased. 

All of the protein based material samples from the two sarcophagi at Jaunay-Clan are also heavily 

degraded, as shown by the amino acid compositions being different to any of the modern 

materials, by the high degree of racemisation of the amino acids, and by the low overall amino 

acid contents. 

There are differences in the amino acid compositions of the materials from around the torso of 

F293 from that sampled from under the skull of 265. The most likely explanation for this is that 

265 is hair or material from a pillow under the head, and the remaining samples are of clothing 

that covered the torso. The staining of the torso, pelvis and upper arms may also be indicative of 

fabric covering these areas; the discolouration being a result of either textile dyes or due to 

differing decompositional processes caused by the textile. 
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6.7 Analysis of intersite trends 
 

The number of amino acids analysed for each sample and the large number of samples analysed 

resulted in a large, multidimensional dataset. In order to assess any patterns and trends present 

across all of the experimental and archaeological burial environments, principal component 

analysis (PCA) using PAST v3.15 (Hammer et al., 2001) was used to interpret both the amino acid 

composition (Chapter 6.7.1) and the D/L value (Chapter 6.7.2) datasets. Missing values in 

individual data rows were filled using iterative imputation; blanks were initially replaced by the 

column mean, then the data was subjected to subsequent PCA runs until convergence (Ilin and 

Raiko, 2010). 

6.7.1 PCA of amino acid composition data 

The PCA scatter plot for the amino acid composition data of all experimentally buried and 

archaeological textile and leather samples is shown in Figure 114. A simplified biplot, showing the 

weighting of each amino acid variable on PC1 and PC2 is shown in Figure 115. The first two 

principal components (PC1 and PC2) account for 87.3% and 7.6% of the variation, a total of 94.9%. 

PC1 is positively correlated to Gly% (0.75) and Ala% (0.44), and negatively correlated to Ser% (-

0.33). PC2 is positively correlated to Ser% (0.41) and Glx% (0.38), and negatively correlated to 

Asx% (-0.60), Val% (-0.35) and Ile% (-0.30). 

Several distinct clusters of data points are apparent in Figure 114. The cluster highlighted in red 

contains data points for all of the wool samples analysed. Modern, undegraded wool is at the 

bottom of the cluster, with the more degraded samples appearing higher up in the cluster. The 

literature data for the composition of wool cuticle material (Bradbury and Ley, 1972) lies above 

the cluster. The linearity of the cluster enables the wool materials recovered to be ranked by the 

difference in amino acid composition from that of modern wool, and thus establish a scale of 

degradation. The woven wool from Mechelen SK3 is the least chemically degraded archaeological 

wool, followed by the hair tie from SK289 at Fewston and then the textile from the feet of SK408 

at Fewston. As was reasoned on the basis of chemical and SEM data (Chapter 6.4.2), the PCA 

indicates that the felt from SK40 at Mechelen is more degraded than the woven wool from SK3 at 

the same site, the felt having a similar amino acid composition to woollen textile from the feet of 

SK1525 at Fromelles. The remaining samples from Fromelles are all tightly grouped, indicating 

that these wool materials all have similar amino acid compositions and are, therefore, are in a 

similar state of preservation. Their position at the top of the cluster indicates that this group of 

samples are the most chemically different to modern wool and are the most degraded samples of 

wool that can be confidently identified as such. The data point for sample 265 from beneath the 

skull of SK293 at Jaunay-Clan lies close to the red wool cluster, which may indicate that this 
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material is keratin based, and is either degraded wool or hair. The data point for sample 265 is 

also very far away from that of sample 266. Both of these observations add further support to the 

hypothesis derived in Chapter 6.6, which indicates that samples 265 and 266 may be two different 

types of material. 

 

Figure 114. PCA scatter plot of PC1 and PC2 for textile and leather amino acid composition data, accounting 
for 94.9% of total variance. The data points and cluster highlighted in red are the wool, those in green are 
leathers and those in purple are human hair. 

 

Figure 115. PCA loadings plot of amino acid composition data, showing the major contributions of each 
amino acid to PC1 and PC2. The data points and cluster highlighted in red are the wool, those in green are 
leathers and those in purple are human hair. 
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Three of the four data points for human hair are tightly grouped and highlighted in purple. The 

proximity to the hair data point cluster to the wool cluster is likely due to their similar amino 

composition (Robbins, 2012). The fact that both of these clusters are well resolved from each 

other demonstrates that there is a measurable difference between the two, and illustrates the 

suitability of the chemical and statistical methods employed during this investigation. The hair 

buried with Piglet 8 at West Heslerton lies between those of the unburied hair control and the 

mean value for modern hair, suggesting that these materials all have very similar amino acid 

compositions. This implies that the hair from Piglet 8 has undergone little compositional change in 

the burial environment. The remaining human hair sample is that recovered from the West 

Heslerton Piglet 9 burial experiment, which does not lie with the other three hair samples, it is 

instead in the red wool cluster. This indicates that the piglet 9 hair is significantly compositionally 

different from the modern, unburied human hairs, which supports the findings in Chapter 4.3.  

The data points for all animal hide samples analysed also group into a distinct, linear cluster, 

highlighted in green in Figure 114. Modern hide materials (leather and suede) occupy the top of 

the cluster, the only positively identified archaeological leather – that from SK2 at Mechelen – 

being below the modern materials, and the piglet leathers forming the lower portions of the 

cluster. The piglet leather control is in the lower half of the cluster, along with the experimentally 

buried leathers. This suggests that the leather used in the experimental burials is compositionally 

different from the other modern leathers analysed as part of the InterArChive project. As a result 

of the leather data subset being smaller than that of wool, no firm conclusions can be drawn 

about decomposition trajectories based on this data. However, the material sampled from the 

feet of the remains in the sarcophagus uncovered at Lincoln Castle (Chapter 6.6) could not be 

definitively identified as leather based upon the amino acid composition, but it was tentatively 

assigned as such. In the amino acid composition PCA plot, the data point for this sample is outside 

the leather cluster, but if a best fit line were drawn using the points in the leather cluster and 

extrapolated towards the y axis, the line would come very close to the Lincoln feet material. This 

may be further evidence of this material being highly degraded leather. 

The remaining, more heavily degraded samples from Lincoln Castle and Jaunay-Clan are scattered 

in the lower half of the plot, where higher percentage compositions of the more hydrophobic 

residues Ile and Val are more prevalent. The three samples from the chest area of the Lincoln 

Castle remains all lie close to one another. This grouping reinforces the hypothesis made in 

Chapter 6.5, which suggest that these samples may all be from the same piece of textile or item of 

clothing. Samples 268, 283 and 286 from Jaunay-Clan form their own small cluster, which also 

supports the idea that these samples are from the same materials source (Chapter 6.6). The 

remaining data points do not show any trend or correlation.   
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6.7.2 PCA of amino acid D/L value data 

The PCA scatter plot for the D/L values of all experimentally buried and archaeological textile and 

leather samples is shown in Figure 116. A simplified biplot, showing the weighting of each amino 

acid variable on PC1 and PC2 is shown in Figure 117. The first two principal components (PC1 and 

PC2) account for 79.7% and 11.9% of the variation, a total of 91.6%. PC1 is positively correlated to 

Asx D/L value (0.96), Ser D/L value (0.57) and Leu (0.31). PC2 is positively correlated to Val D/L 

value (0.39) and Glx D/L value (0.34), and negatively correlated to Ser D/L value (-0.77). 

As with the amino acid composition PCA plot, several distinct groupings of data points are 

apparent. All four of the hair samples form a cluster (highlighted in purple), with modern hair, the 

unburied piglet control hair and the hair buried with West Heslerton Piglet 8 all being very close 

together. This indicates that the Piglet 8 hair has undergone little racemisation. The hair from 

Piglet 9 has a lower y value than the other three hairs, indicating that this material may have 

undergone the most racemisation of the hair samples. 

The data point for modern wool is close to the hair cluster, likely due to the similarity of their 

chemical composition and low amount of D amino acids observed in undegraded mammalian 

proteins (Michal and Schomburg, 1999). All of the Fromelles wool data points are grouped 

together, shown in the red oval in Figure 116. The woollen textile from the feet of Fewston SK408 

also lies close to this grouping. The data points for these wool samples are furthest from that of 

modern wool, indicating that these materials are most different in terms of their D and L amino 

acid compositions. Looking at the PCA loading plot in Figure 117, data points that have more 

negative PC2 values are more likely to have a higher Ser D/L value, indicating that these have 

undergone more Ser racemisation. Between this cluster and the modern wool are the remaining 

archaeological wood samples; their increasing distance from the modern wool data point 

indicating an increase in Ser racemisation, shown by the red arrow. Using this trend it can be 

inferred that the wools from Mechelen have undergone the least amount of Ser racemisation, 

and that the wool sample from Fewston SK289 has undergone comparatively more L-Ser to D-Ser 

conversion, with the Fromelles and Fewston SK408 wool experiencing the most Ser racemisation. 

If the red arrow were extended, it would intersect with the data points for samples from the left 

chest area of the Lincoln Castle remains (Chapter 6.5) and sample 265 from under the skull of 

F293 from Jaunay-Clan (Chapter 6.6). Both these samples have been hypothesised to be heavily 

degraded keratinaceous materials. The extension of this line, with its origin near the data points 

for modern wool and hair, would add further weight to these ideas.  
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Figure 116. PCA scatter plot of PC1 and PC2 for textile and leather D/L values, accounting for 91.6% of total 
variance. The data points and cluster highlighted in red are the wool, those in green are leathers and those 
in purple are human hair. 

 

 

Figure 117. PCA loadings plot of amino acid D/L values, showing the major contributions of each amino acid 
to PC1 and PC2. The data points and cluster highlighted in red are the wool, those in green are leathers and 
those in purple are human hair. 
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All of the modern and experimentally buried leather data points group together, highlighted in 

green. The close grouping of the unburied and experimentally buried materials is likely due to 

their relatively brief burial duration leading to limited racemisation. The only archaeological 

sample that can be confidently identified as leather, from SK3 at Mechelen, is away from this 

grouping (near the positive y axis). Due to this being the only leather point away from the main 

cluster, no conclusions can be drawn about decomposition trajectories based on this data.  

The remaining data points are scattered at positive x values, both above and below the x axis. As 

all of the undegraded materials have negative x values, all materials with positive x values are 

more racemised (see the loading plot in Figure 117). Other than this, no further conclusions can 

be drawn about these data points. 
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6.8 Conclusions 

 

6.8.1 Decomposition of textile and leather in archaeological burials 

Table 26 provides a summary of the findings from the analyses of the archaeological clothing 

materials. With the exception of the material from Fromelles, there is a trend of increasing 

degradation with longer burial time. This is to be expected, as the more time a material is exposed 

to the conditions within the burial environment the more likely they are to be subject to chemical 

and microbial modifying agents.  

Table 26. A summary of the findings from the analyses performed on the entire set or archaeological textiles 
collected. 

Site Coffin Burial matrix Burial date Material type Preservation state 

Fromelles No 
Clay, waterlogged, 
anoxic, pH 4.7 

July 1916 
12 samples of woven 
or felted wool 

Extensive degradation of wool 
fibre cortex, leaving hollow 
tubes of cuticular scales 

Fewston Yes 
Well drained course 
loamy soil 

Late 1800 
2 samples of woven 
wool 

Good preservation, with some 
measurable degradation 

Mechelen No Sandy October 1798 
1 woven and 1 felted 
wool, 1 leather and 1 
linen 

Excellent preservation of 
woven wool and leather, 
some fungal attack on felt and 
complete mineralisation of 
linen 

Lincoln  Yes Not known Early 1000 AD 
1 leather, 3 possibly 
wool 

Extreme degradation 

Jaunay-Clan Yes Not known 70 – 390 AD 
Too degraded for 
identification, 265 
possibly keratin based 

Extreme degradation 

 

The use of principal component analysis in Chapter 6.7 allowed for the comparison of all 

experimentally buried and archaeological textile and leather data. Using the amino acid 

composition and D/L value data sets it was possible to rank the degradation of samples based on 

their distance from the data points for the unburied, modern materials. It was noted that, 

unsurprisingly, the archaeological materials are more degraded than those from the relatively 

short term burial experiments. Both the wool amino acid composition and D/L PCA indicated that 

the wool from Mechelen was the least degraded, the wool from Fewston was more degraded and 

the wool from Fromelles was the most degraded. 

The woollen textiles recovered from Fromelles are the youngest materials that have spent least 

time in the burial matrix, yet they are extensively degraded. Conversely, older materials – such as 

those from Fewston – are in a much better state of preservation. The clay rich makeup of the 

burial matrix of the Fromelles mass graves likely led to a retention of liquid, both from the burial 



 

265 
 

environment and from the decaying remains. The moisture levels combined with nutrients 

released from the mass of decomposing bodies may have allowed many strains of bacteria and 

fungi to proliferate, leading to an initial period of decay of the clothing materials before sufficient 

water entered the grave to cause waterlogged, anoxic conditions that prevented further 

degeneration. 

The fast draining soil at Fewston combined with the fact that both sets of remains were in 

wooden coffins are likely the cause of the excellent preservation of the organic materials 

recovered from the burials. The bases of the wooden coffins were probably not watertight, 

allowing the fluids evolved from the decomposition of the remains to escape by gravity. The lids 

of the coffins would have diverted any surface water percolating down through the sediment, 

preventing the vast majority of the downflowing water from entering the coffin. The result of 

these processes would have created a relatively dry environment within the coffins, which would 

have retarded the growth of any microfauna capable of degrading the textiles. 

The preservation of the leather at Mechelen is likely due to the sandy soil that was well drained 

and acidic (Day and Ludeke, 1993; Depuydt et al., 2013). Such conditions are known to restrict the 

growth of microorganisms, leading to excellent preservation. There is a disparity between the 

preservation states of the woven and felted wools recovered from the site. The excellent 

condition of the woven materials is likely due to its proximity to a copper button, a metal that is 

known to be toxic to potential microbial degraders (Chen et al., 1998). There is evident 

degradation of the felt by fungi, but the extent is limited. The felt has numerous deposits of fungal 

spores. Many types of fungus only engage in sporulation when the environment is hostile and the 

survival of the organism is unlikely, which suggests that the conditions within the burial matrix 

limited the fungal activity (Sheaffer and Moncada, 2012). The felting process of wools leads to 

abrasion of the cuticular scales, which undoubtedly produced exposed areas of protein that were 

more vulnerable to fungal attack.  

Lincoln and Jaunay-Clan are the two oldest burials and represent an extreme period of interment. 

The amino acid compositions of the materials recovered from these sites are vastly different from 

those of the modern controls, implying that they are heavily degraded. The deterioration of the 

materials suggests that none of the conditions required for the preservation of organic materials 

(anoxia, waterlogging or low humidity) could have been present in these burials, lest the materials 

would likely have survived in better condition. Such condition would only have been possible if 

the sarcophagi were airtight. It is, however, possible that the sealed bases of the sarcophagi 

concentrated the decompositional fluids of the bodies, aiding in the degradation of the clothing 

materials. Although all of the materials from these two sites were extremely degraded, the 

application of suitable analytical techniques has allowed information to be obtained from the 
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samples. The ability to differentiate between different types of materials and, hence, different 

articles of clothing and the detection of an inorganic sulfur residue allow for additional 

interpretation of the archaeology. The use of PCA has provided evidence that the sample 

recovered from the feet of the Lincoln Castle sarcophagus may be an extremely degraded animal 

hide material, and that sample 265 from under the skull of SK293 at Jaunay-Clan is different from 

sample 266, the former possibly being a heavily degraded keratin-based material.  
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6.8.2 Appraisal of methods of analysis 

6.8.2.1 EA 

EA is a useful tool that can be used to screen compounds to detect elemental compositions that 

may indicate an organic content. When archaeological materials are analysed alongside modern 

reference materials the technique can give some indication of the material being from a plant or 

an animal source. Given that the samples need only be weighed into the appropriate crucible and 

folded, sample preparation is rapid. The automated sampling and data acquisition systems that 

come with most elemental analysers lead to quick and easy data collection.  

The method employed requires 2-3 mg of material for a reliable data set, which is more than for 

Py-GC (0.1-1 mg) and RP-HPLC analysis (approximately 0.5 mg). With smaller samples this can 

limit the number of analyses or render it not possible (as was the case for the material recovered 

from the sarcophagus at Lincoln Castle). Given the limited value of the elemental composition 

data compared against the more informative polymer subunit quantitation that can be elucidated 

using Py-GC and RP-HPLC, EA is less informative and should only be used as a preliminary to 

further analysis.  

6.8.2.2 Py-GC(MS) 

Py-GC is an excellent tool for analysing plant based textiles to assess holocellulose and lignin 

content and composition. Using a sample as small as 0.1 mg a material can be identified and its 

preservation state assessed by comparison of the peak profiles and the relative peak areas with 

those of modern materials. When used to analysed protein based materials, thermal degradation 

reactions occur, with some amino acids producing the same degradation product, resulting in a 

loss of information that would be retained by the use of other techniques. The analysis and data 

interpretation times for Py-GC are another drawback. Each sample takes 2 hours to run and 

pyrolysers typically do not have an automated sample carousel. Depending on the material being 

analysed the resulting pyrogram can be complex, with each peak having to be identified in turn. 

The use of MS to identify the compounds eluting from the GC vastly improves the accuracy and 

reliability of the peak assignments. Whether as the primary means of detection, or as a 

complementary technique whereby selected samples are used to aid the interpretation of those 

analysed without MS, attempting to interpret data without definite identification of peaks is 

extremely difficult. 

6.8.2.3 RP-HPLC 

RP-HPLC analysis of hydrolysed protein based materials is far superior to any of the other 

methods used in this investigation. Accurate quantitation of D and L forms of a wide range of 

amino acids allows for reliable identification and preservation state assessment with all but the 
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most heavily degraded materials. Correct interpretation of the data has been shown to reveal 

structural damage to woollen materials (samples from Fromelles and felt from Mechelen) that 

was confirmed by SEM analysis. The sample preparation steps are longer than for EA and Py-GC, 

but less than for whole peptide analysis techniques, and the quality and usefulness of the data 

outweigh the time costs. 

6.8.2.4 SEM 

SEM imaging provides a useful overview of the preservation state of materials. Features such as 

fungal bodies and spores, areas of damage and foreign bodies can be key to supporting 

interpretations and theories reasoned using data from chemical analyses. The preparation 

techniques can be destructive to fragile materials, making the technique unsuitable for samples 

that are mechanically weak or heavily degraded. 

6.8.2.5 PCA 

The application of PCA to the combined experimental burial and archaeological dataset has 

provided further evidence in support of many of the hypotheses and conclusions reasoned on the 

basis of the amino acid and SEM evidence. By resolving the complex, multivariate data into key 

variables that account for the majority of the variability between samples, PCA has allowed for 

the comparison of samples between sites, and allow for degradation tends to be examined. 
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CHAPTER 7 
 

 

7 CONCLUSIONS AND FUTURE 

WORK  



 

270 
 

7.1 Overall conclusions 
 

The aim of this thesis was to investigate the state of preservation of a range of organic materials 

excavated from archaeological graves during the InterArChive project, in order to gain a better 

insight into what information this currently under exploited archive may hold.  

7.1.1 Appraisal of analytical techniques  

The application of a range of analytical techniques has been shown to allow information on the 

identity, preservation state and likely causes of decay to be gained from fragments of wood, 

textiles and leather buried with human remains. Py-GC techniques provide detailed information 

on the biopolymer composition of wood and plant based textiles; the attrition of cellulose and 

hemicellulose, and modification of the lignin are all evident, with significant changes in 

composition compared with modern undegraded materials. The use of thermal desorption (TD) 

prior to pyrolysis eliminates lengthy sample pretreatment and reduces the levels of volatile 

compounds, which would otherwise obscure the peaks arising from the pyrolysis of the 

component biopolymers. Accelerated solvent extraction (ASE) techniques have also shown to be 

useful in removing a range of organic compounds from wood. Although incorporation of the 

extraction step is more time consuming and requires the requisite equipment, the approach 

allows for the removal of treatments that have penetrated deep into wood, including PEG in 

conserved wood from the Hanson Logboat (Chapter 5). Small differences in the amino acid 

composition and racemisation of protein based materials from archaeological burials are 

detectable by use of RP-HPLC. This has been shown to be useful in identifying degradation of 

specific substructures, enabling suggestions as to the causal agents to be made. SEM imaging has 

been valuable in testing and supporting the conclusions based on the chemical data, providing 

direct visual evidence of known microbial degraders and characteristic degradation patterns. The 

use of principal component analysis to compare the preservation state of materials between sites 

aided with the elucidation of trends and the postulation of degradation trajectories. 

7.1.2 Degradation of organic materials in archaeological graves  

The recovery of wood, textile and leather from archaeological burials indicates that these 

materials can survive over extended periods of time, if the conditions within those burial 

environments or in microenvironments in the soils are conducive to slowing their degradation by 

microorganisms. However, the modifications to these materials during even the relatively short 

burial experiments indicates that materials placed in human burials begin to decay (at different 

rates depending on their composition) within the first few years of interment.  

The observed modification of lignocellulose (in wood and plant derived textiles) and proteins (in 

animal derived textiles and animal skin products) is indicative that chemical or biological 
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degradation processes were at one time active within the archaeological burials. These 

modifications, in even the most visibly well preserved materials, may be evidence that the 

conditions needed for inhibition of microbial decay are not immediately present; instead the 

burial environment changes due to the decomposition of the cadaver or as a result of geological 

or hydrological processes, eventually supporting the long term survival of the materials.  

Proximity to metal objects was observed to alter the decomposition of coffin wood. Analysis of 

the wood polymers revealed areas of more and less severe damage inflicted by white rot fungus 

in comparison to wood from the same coffin that was not in proximity to the metal. This 

observation lends support to reports in the literature and shows that unique microenvironments 

can result in enhanced preservation of materials. 

Throughout the InterArChive project, it was noted that wood and textiles were more commonly 

recovered from the archaeological sites with soils that had good drainage. Thus, these 

environments are likely to have had conditions which are not favourable to microbial degraders, 

the key antimicrobial factors likely being low moisture levels and acidic pHs. Permanently 

waterlogged conditions also resulted in excellent preservation of wood, for example that sampled 

from the Hanson Logboat, whereas temporary or periodic waterlogging resulted in degradation, 

evident in coffin wood from Thaon and the piglet burial in the Folkton bog. The degradation of the 

piglet coffin wood buried in a bog with seasonal fluctuations in the water level after only three 

years of burial provides clear evidence that this type of hydrological regime is more conducive to 

organic degradation than a stagnant or dry environment.  

Analysis of wood both from the short term experimental graves and from archaeological burials 

provides evidence of multiple microorganisms degrading wood in the same burial. This highlights 

the diverse array of microfauna that are active in burial environments. In comparison with protein 

based materials, it is far easier to establish potential causes of wood decay, as there are far fewer, 

specialised microfauna that are able to degraded lignocellulose materials. Brown and white rot 

fungi were found to be the chief degraders of wood. These fungi require oxygen to thrive and 

degrade wood, which suggests that the burial environments in which they proliferated were not 

anoxic for the entirety of the burial period. The damage observed to fragments of wool (in the 

archaeological burials) and human hair (in the experimental burials) was likely caused by both 

bacterial and fungal degraders. The ubiquitous nature of protein in all living organisms make them 

far less recalcitrant than lignocellulose materials. As proteins are degraded by a much wider array 

of microorganisms than lignin, and mean that they can be more readily degraded by a much wider 

range of soil biota. The use of PCA to resolve large, multivariate data sets into the components 

responsible for the majority of the variation observed within the wood and amino acid textile data 

sets allowed for samples to be ranked in terms of most degraded to least degraded. PCA also 
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allowed degradation trends to be visualised, and in some cases allowed for degradation 

trajectories of some materials to be hypothesised.  

7.1.3 Identification of materials using chemical techniques  

The application of an array of analytical techniques has demonstrated the ability to identify 

different polymeric materials using chemical techniques. Py-GC has allowed the differentiation 

between gymnosperm and angiosperm woods, wood from gymnosperm trees being the most 

common wood identified from the archaeological burials. This is highly suggestive that softwoods 

were the most commonly used wood for the construction of coffins in Northwest Europe, 

probably due to the relative abundance of gymnosperm trees in the geographic regions studied 

(at the time of the burials), and the ease with which softwoods can be worked. This ability to 

distinguish between types of wood has the potential to significantly aid archaeological 

interpretation. An example is provided by the grave analysed from Hofstaðir, where the presence 

of a pine coffin may indicate a high profile burial. 

The ability to distinguish between types of animal protein using RP-HPLC has also been 

demonstrated. Even in the most degraded burial, that from Jaunay-Clan, chemical analysis was 

able to identify that two different types of materials were present, lending further evidence to the 

interpretation of the archaeologists that a pillow may have been laid under the deceased’s head. 

Use of PCA provided further evidence that this sample may be from a severely degraded keratin 

based material. PCA also suggested that the sample from the feet of the Lincoln Castle 

sarcophagus may be an extremely degraded leather or similar animal hide material. 

7.1.4 Contribution to the archaeological record  

The identification of lignin in soil stains believed to be due to the presence of heavily decayed 

wood (Chapter 5) has not been previously reported in the literature. The result confirms the 

presence of a coffin and demonstrates that even heavily degraded wood can provide recognisable 

signatures. From an archaeological perspective, the ability to detect the previous presence of 

wood is significant. Often, when wood has fully degraded the location of features such as post 

holes relies solely on the interpretation of the excavator. Confirming the former presence of wood 

has the potential to greatly enrich the interpretation in both archaeological and forensic settings.  

The removal of PEG from the Hanson Logboat wood and the subsequent chemical assessment has 

far reaching consequences, as wooden objects have been preserved using PEG worldwide for 

decades. The treatment is now widely acknowledged to be problematic in terms of carrying out 

certain chemical analysis (e.g. analytical pyrolysis and radiocarbon dating), as well as contributing 

to the acidification of wood via the formation of sulfuric acid. The application of the PEG removal 
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technique to other artefacts in museums and private collections has the potential to reveal a 

wealth of information that was previously considered to be inaccessible. 

Finally, the analysis of the ‘red sock’ from Fromelles illustrates how the application of analytical 

techniques and an understanding of degradative processes may prevent the incorrect 

interpretation of the archaeological record. Whilst the chemical analysis suggesting that the 

colour of the sock is the result of bacterial decay, and not due to it being a non regulation clothing 

item sent by the soldier’s family is less glamorous, the analysis has likely provided a more accurate 

reflection of reality.  

7.1.5 Summary 

It has been shown during this investigation that the fragments of wood, textile and leather that 

do survive in human burials contain valuable information that has yet to be accessed. The use of a 

combination of analytical techniques has demonstrated that these small fragments can yield 

information regarding the provenance of the materials, degradation trajectories, and the nature 

of the burial environment. This information has the potential to contribute significantly to the 

archaeological interpretation of a site, as well as have broader applications, such as aiding with 

forensic and conservation questions.  

By demonstrating this ability, it is hoped that this study will lead to the wider chemical analysis of 

such materials in future, leading to an increased knowledge base and the further development of 

methodologies to study a set of materials that are rarely exploited to their full potential. 
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7.2 Future work 

 

Given the information that was obtained from the burial experiments in spite of the problems 

encountered, more burial experiments, with the specific aim of studying the decomposition of 

materials buried with human remains, should be carried out. Coffins with panels of different 

untreated angiosperm and gymnosperm woods would enable the degradation of wood from 

different species of tree to be studied in the same burial experiment. The burial of leather from 

different animals which has been tanned using methods common during antiquity, as well as 

woven and felted wool, silk, cotton, hemp, and linen would allow for the study of a wider range of 

materials. The textile and leather materials should be buried both in coffins and without coffins to 

examine the differences in degradation between these two distinctly different burial styles. A 

wider range of soil types, hydrologies and burial durations would also increase the understanding 

of the diagenesis of these materials during the years immediately following their burial. Lack of 

SEM analysis of material from the burial experiments was unfortunate, and a result of time and 

financial constraints. Based on the usefulness of the data obtained by SEM of archaeological 

materials (Chapter 5 and 6), SEM of material from future experimental burials would be 

immensely worthwhile and should be factored into the planning. 

The analysis of archaeological wood, textile and leathers from a wider range of archaeological 

burial environments would enable a wider understanding of degradation of these materials, and 

to enable the trends and hypothesises degradation trajectories to be fully explored. The 

geographical area from which the samples are taken could also be extended beyond 

Northwestern Europe, allowing a wider range of climates and burial environments to be studied. 

In addition, this may provide the opportunity to examine materials that are less common within 

Europe, or more typically used in funerary practises further afield. Reaching out to the 

archaeological, conservation and forensic communities could provide a vast set of materials to be 

analysed.  

The study of wood from the Hanson Logboat represents a novel approach to the analysis of 

materials that have undergone conservation treatments. The application of the developed solvent 

extraction technique and subsequent Py-GC analysis should be expanded to other artefacts that 

have been treated in a similar manner, and possibly developed so that it is applicable to larger 

objects. A manuscript describing this work has been submitted to allow for its communication to 

the relevant communities. The identification of the inorganic minerals present in the degraded 

Hanson Logboat samples would aid in the elucidation of the decay mechanisms, contributing to a 

solution to the common problem of acidic degradation observed in wooden artefacts that have 

been treated with PEG. 
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The analysis of Py-GC data could be simplified by using a GC system fitted with both MS and FID 

detection. The column eluent could be split between both detectors, providing the desired 

quantitative FID data with simultaneous collection of MS data for compound identification. The 

data from both detectors would have the same retention times and eliminate the inherent 

variability of using two different Py-GC systems. 

The use of proteomic techniques to examine the peptide cleavage sites of degraded hair, leather 

and wool could provide more clues as to the enzymes and even the specific microbe that is 

responsible for degrading a material. Identification of the microbes found in areas of decay using 

microscopic methods or genome sequencing could also be carried out, although these analyses 

would have to be carefully planned and executed, in order to account for microorganisms present 

near areas of degradation that were responsible for causing the damage. 



 

276 
 

8 REFERENCES 
Abbott, A. (2001). Earliest malaria DNA found in Roman baby graveyard. Nature, 412(6850), 847. 

Adelson, D. L., Cam, G. R., DeSilva, U., & Franklin, I. R. (2004). Gene expression in sheep skin and wool (hair). 

Genomics, 83(1), 95-105. 

Ajuong, E. M., & Redington, M. (2004). Fourier transform infrared analyses of bog and modern oak wood 

(Quercus petraea) extractives. Wood Science and Technology, 38(3), 181-190. 

Allington-Jones, L. (2015). The Clacton spear: The last one hundred years. Archaeological Journal, 172(2), 

273-296. 

Almkvist G. (2008). The Chemistry of the Vasa – Irons, acids and degradation. PhD Thesis, Swedish 

University of Agricultural Sciences, Uppsala 

Alves, A., Schwanninger, M., Pereira, H., & Rodrigues, J. (2006). Analytical pyrolysis as a direct method to 

determine the lignin content in wood: Part 1: Comparison of pyrolysis lignin with Klason lignin. Journal of 

Analytical and Applied Pyrolysis, 76(1), 209-213. 

Ander, P., & Eriksson, K. E. (1977). Selective degradation of wood components by white‐rot fungi. 

Physiologia Plantarum, 41(4), 239-248. 

Andrews, G., Barrett, J. C., & Lewis, J. S. (2000). Interpretation not record: the practice of archaeology. 

Antiquity, 74(285), 525-530. 

Araujo, R., Casal, M., & Cavaco-Paulo, A. (2008a). Application of enzymes for textile fibres processing. 

Biocatalysis and Biotransformation, 26(5), 332-349. 

Araújo, R., Cavaco‐Paulo, A., & Casal, M. (2008b). Strategies towards the functionalization of Subtilisin E 

from Bacillus subtilis for wool finishing applications. Engineering in Life Sciences, 8(3), 238-249. 

Arias, M. E., Polvillo, O., Rodríguez, J., Hernández, M., González-Pérez, J. A., & González-Vila, F. J. (2006). 

Thermal transformations of pine wood components under pyrolysis/gas chromatography/mass 

spectrometry conditions. Journal of Analytical and Applied Pyrolysis, 77(1), 63-67. 

Arnalds, O. (2004). Volcanic soils of Iceland. Catena, 56(1), 3-20. 

Arneborg, J., Heinemeier, J., Lynnerup, N., Nielsen, H. L., Rud, N., & Sveinbjörnsdóttir, Á. E. (1999). Change of 

diet of the Greenland Vikings determined from stable carbon isotope and 14C dating of their bones. 

Radiocarbon, 41(2), 157-168. 

Asunmaa, S., & Lange, P. W. (1954). The distribution of "cellulose" and "hemicellulose" in the cell wall of 

spruce, birch and cotton. Svenska träforskningsinstitutet, träkemi och pappersteknik. 

Australian Wool Exchange. (2010). Preparation of Australian Wool Clips, Code of Practice 2010–2012.  



 

277 
 

Backa, S., Brolin, A., & Nilsson, T. (2001). Characterisation of fungal degraded birch wood by FTIR and Py-

GC. Holzforschung, 55(3), 225-232. 

Bäckström, Y., & Sundström, A.I. (2014) Sala gruvkyrkogård: Innanför och utanför vid Sala silvergruva. Etapp 

3. (Sala mining cemetery: Inside and outside the Sala silver mine. 3
rd

 Stage). Societas Archaeologica 

Upsaliensi. 

Bada, J. L., Schroeder, R. A., Protsch, R., & Berger, R. (1974). Concordance of collagen-based radiocarbon 

and aspartic-acid racemization ages. Proceedings of the National Academy of Sciences, 71(3), 914-917. 

Bada, J. L. (1985a). Amino acid racemization dating of fossil bones. Annual Review of Earth and Planetary 

Sciences, 13, 241. 

Bada, J. L. (1985b). Racemization of amino acids. In Chemistry and biochemistry of the amino acids (pp. 399-

414). Springer Netherlands. 

Barber, E. J. W. (1991). Prehistoric textiles: the development of cloth in the Neolithic and Bronze Ages with 

special reference to the Aegean. Princeton University Press, New Jersey, USA 

Bardet, M., Gerbaud, G., Trân, Q. K., & Hediger, S. (2007). Study of interactions between polyethylene glycol 

and archaeological wood components by 13 C high-resolution solid-state CP-MAS NMR. Journal of 

Archaeological Science, 34(10), 1670-1676. 

Barham, L. (2013). From hand to handle: the first industrial revolution. Oxford University Press, Oxford, UK. 

Barker, R. F., & Hopkinson, D. A. (1977). The genetic and biochemical properties of the D‐amino acid 

oxidases in human tissues. Annals of human genetics, 41(1), 27-42. 

Barton, P. (2007). Fromelles: A Report Based Upon Research in the Hauptstaatsarchiv Kriegsarchiv, Munich. 

Carried out on behalf of the Australian Army History Unit, unpublished typescript. 

Bauer, W. D., Talmadge, K. W., Keegstra, K., & Albersheim, P. (1973) The Structure of Plant Cell Walls. Plant 

Physiology, 61, 174-187. 

Bell, E. L. (1990). The historical archaeology of mortuary behavior: coffin hardware from Uxbridge, 

Massachusetts. Historical Archaeology, 54-78. 

Bergfjord, C., & Holst, B. (2010). A procedure for identifying textile bast fibres using microscopy: Flax, 

nettle/ramie, hemp and jute. Ultramicroscopy, 110(9), 1192-1197. 

Beukens, R. P., Pavlish, L. A., Hancock, R. V., Farquhar, R. M., & Wilson, G. C. (1992). Radiocarbon dating of 

copper-preserved organics. Radiocarbon, 34(3), 890-897. 

Bienkiewicz, K. J. (1983). Physical chemistry of leather making. Krieger Publishing Co. Inc.. 

Björdal, C. G., Nilsson, T., & Daniel, G. (1999). Microbial decay of waterlogged archaeological wood found in 

Sweden applicable to archaeology and conservation. International Biodeterioration & Biodegradation, 

43(1), 63-73. 



 

278 
 

Blanchette, R. A., Nilsson, T., Daniel, G., and Abad, A. (1990). Biological degradation of wood. In 

Archaeological Wood Properties, Chemistry, and Preservation. Developed from a symposium sponsored by 

the Cellulose Paper and Textile Division at the 196th National Meeting of the American Chemical Society, Los 

Angeles, California, September 25-September 30, 1988 (pp. 141-174). American Chemical Society. 

Blanchette, R. A. (1991). Delignification by wood-decay fungi. Annual Review of Phytopathology. 29:381–98. 

Blanchette, R. A., & Simpson, E. (1992). Soft rot and wood pseudomorphs in an ancient coffin (700 BC) from 

Tumulus MM at Gordion, Turkey. IAWA Journal, 13(2), 201-213. 

Blanchette, R. A., & Hoffmann, P. (1994). Degradation processes in waterlogged archaeological wood. In 

Proceedings of the fifth ICOM Group on Wet Organic Archaeological Materials conference, Portland, Maine, 

16-20 August 1993, 111-142. ICOM Committee for Conservation Working Group on Wet Organic 

Archaeological Materials; Ditzen Druck und Verlags-GmbH. 

Blanchette, R. A., Obst, J. R., & Timell, T. E. (1994). Biodegradation of compression wood and tension wood 

by white and brown rot fungi. Holzforschung – International Journal of the Biology, Chemistry, Physics and 

Technology of Wood, 48(s1), 34-42. 

Blanchette, R. A. (1995). Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 

73(S1), 999-1010. 

Blanchette, R. A. (2000). A review of microbial deterioration found in archaeological wood from different 

environments. International Biodeterioration & Biodegradation, 46(3), 189-204. 

Blanchette, R. A., Held, B. W., Jurgens, J. A., McNew, D. L., Harrington, T. C., Duncan, S. M., & Farrell, R. L. 

(2004). Wood-destroying soft rot fungi in the historic expedition huts of Antarctica. Applied and 

Environmental Microbiology, 70(3), 1328-1335. 

Blanchette, R. A., Haight, J. E., Koestler, R. J., Hatchfield, P. B., & Arnold, D. (2013). Assessment of 

deterioration in archaeological wood from ancient Egypt. Journal of the American Institute for Conservation. 

33:1, 55-70. 

Block, R. J. (1939). The composition of keratins the amino acid composition of hair, wool, horn, and other 

eukeratins. Journal of Biological Chemistry, 128(1), 181-186. 

Block, S. S. (Ed.). (2001). Disinfection, sterilization, and preservation. Lippincott Williams & Wilkins. 

Boer, W., Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal world: impact of fungi on 

soil bacterial niche development. FEMS Microbiology Reviews, 29(4), 795-811 

Boerjan, W., Ralph, J., & Baucher, M. (2003). Lignin biosynthesis. Annual Review of Plant Biology, 54(1), 519-

546. 

Bonaduce, I., Ribechini, E., Modugno, F., & Colombini, M. P. (2016). Analytical Approaches Based on Gas 

Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological 

Objects. Topics in Current Chemistry, 374(1), 1-37. 



 

279 
 

Bonani, G., Ivy, S. D., Hajdas, I., Niklaus, T. R., & Suter, M. (1994). AMS 14C age determinations of tissue, 

bone and grass samples from the Otztal ice man. Radiocarbon, 36(2), 247-250. 

Borysiak, S., & Doczekalska, B. (2005). X-ray diffraction study of pine wood treated with NaOH. Fibres and 

Textiles in Eastern Europe, 13(5), 87-89. 

Bouslimi, B., Koubaa, A., & Bergeron, Y. (2014). Effects of biodegradation by brown-rot decay on selected 

wood properties in eastern white cedar (Thuja occidentalis L.). International Biodeterioration & 

Biodegradation, 87, 87-98. 

Bowes, J. H., & Kenten, R. H. (1948). The amino-acid composition and titration curve of collagen. 

Biochemical Journal, 43(3), 358. 

Bradbury, J. H., Chapman, G. V. & King, N. L. R. (1967) in Symposium on Fibrous Proteins, W. G. Crewther, 

Ed., Butterworths, Australia, p.368. 

Bradbury, J. H. & Ley, K. F. (1972). The chemical composition of wool. XI. Separation and analysis of 

exocuticle and endocuticle. Australian Journal of Biological Sciences, 25 (6), 1235-1247 

Bradbury, J. H. (1973). The structure and chemistry of keratin fibers. Advances in Protein Chemistry, 27, 111-

211. 

Bradley, M. (2002). ‘It all comes out in the wash’: Looking harder at the Roman fullonica. Journal of Roman 

Archaeology, 15, 20-44. 

Brandt, L. Ø., Schmidt, A. L., Mannering, U., Sarret, M., Kelstrup, C. D., Olsen, J. V., & Cappellini, E. (2014). 

Species identification of archaeological skin objects from Danish bogs: Comparison between mass 

spectrometry-based peptide sequencing and microscopy-based methods. PLOS One, 9(9), e106875. 

Braovac, S., Tamburini, D., Łucejko, J. J., McQueen, C., Kutzke, H., & Colombini, M. P. (2016). Chemical 

analyses of extremely degraded wood using analytical pyrolysis and inductively coupled plasma atomic 

emission spectroscopy. Microchemical Journal, 124, 368-379. 

British Archaeology online (March 2003). Tale of the Bronze Age barge sunk in Trent. British Archaeology, 

issue 39, News. (http://www.archaeologyuk.org/ba/ba69/news.shtml) – retrieved 08/04/2014 

Brosse, N., El Hage, R., Chaouch, M., Pétrissans, M., Dumarçay, S., & Gérardin, P. (2010). Investigation of the 

chemical modifications of beech wood lignin during heat treatment. Polymer Degradation and Stability, 

95(9), 1721-1726. 

Brothwell, D. R. (1958). Evidence of leprosy in British archaeological material. Medical history, 2(04), 287-

291. 

Brothwell, D. R. (1981). Digging up bones: the excavation, treatment, and study of human skeletal remains. 

Cornell University Press. 

Brothwell, D. R. (2016). A faith in archaeological science: reflections on a life. Archaeopress Publishing, 

Oxford, UK. 



 

280 
 

Brown, M. E., & Chang, M. C. (2014). Exploring bacterial lignin degradation. Current Opinion in Chemical 

Biology, 19, 1-7. 

Brown, M. E., Walker, M. C., Nakashige, T. G., Iavarone, A. T., & Chang, M. C. (2011). Discovery and 

characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. 

Journal of the American Chemical Society, 133(45), 18006-18009. 

Buckley, S. A., Stott, A. W., & Evershed, R. P. (1999). Studies of organic residues from ancient Egyptian 

mummies using high temperature-gas chromatography-mass spectrometry and sequential thermal 

desorption-gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. 

Analyst, 124(4), 443-452. 

Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011a). The emerging role for bacteria in lignin 

degradation and bio-product formation. Current Opinion in Biotechnology, 22(3), 394-400. 

Bugg, T. D., Ahmad, M., Hardiman, E. M., & Rahmanpour, R. (2011b). Pathways for degradation of lignin in 

bacteria and fungi. Natural Product Reports, 28(12), 1883-1896. 

Buglass, J. (2010) The Church of St Michael And St Lawrence, Fewston, North Yorkshire. Final assessment 

report on the archaeological investigation. Unpublished report by John Buglass Archaeological Services, 

Northallerton. 

Bull, I. D., Simpson, I. A., Van Bergen, P.F. and Evershed R.P. (1999) Muck-’n'-molecules: Organic 

geochemical methods for detecting ancient manuring. Antiquity, 73(279), pp.86–96. 

Bunson, M. (2014). Encyclopedia of the Roman Empire. Infobase Publishing. 

Burnham, H. B. (1965). Çatal Hüyük—The Textiles and Twined Fabrics. Anatolian Studies, 15, 169-174. 

Burns, A. (2015). Post-depositional alterations across varying sediment types from archaeological 

inhumation burials - a geoarchaeological approach. PhD thesis, University of York. 

Caffel, A., & Holst, M. (2010) Osteological analysis: The Church of St Michael and St Lawrence, Fewston, 

North Yorkshire. Unpublished report by York Osteoarchaeology Ltd, York. 

Calvo‐Flores, F. G., & Dobado, J. A. (2010). Lignin as renewable raw material. ChemSusChem, 3(11), 1227-

1235. 

Campbell, A. G., Kim, W. J., & Koch, P. (2007). Chemical variation in lodgepole pine with 

sapwood/heartwood, stem height, and variety. Wood and Fiber Science, 22(1), 22-30. 

Cardamone, J. M., K. M. Keister, & A. H. Osareh. (1991). Degradation and conservation of cellulosics and 

esters. In: Polymers in Conservation, eds. Allen, N. S., Edge, M., and Horie, C. V., pp. 108–124. Royal Society 

of Chemistry, London. 

Cartwright, C. R. (2015). The principles, procedures and pitfalls in identifying archaeological and historical 

wood samples. Annals of Botany, mcv056.  

Cevasco, R., & Moreno, D. (2015). Historical Ecology in Modern Conservation in Italy. In: Europe's Changing 

Woods and Forests: From Wildwood to Managed Landscapes, eds. Kirby, K. & Watkins, C., pp. 227. CABI. 



 

281 
 

Chakraborty, J. N., & Madān, P. P. S. (2014). Imparting anti-shrink functionality to wool by individual and 

simultaneous application of keratinase and papain. Indian Journal of Fibre & Textile Research (IJFTR), 39(4), 

411-417. 

Chapman, G. V., & Bradbury, J. H. (1968). The chemical composition of wool 7. Separation and analysis of 

orthocortex and paracortex. Archives of Biochemistry and Biophysics, 127, 157-163. 

Chappell, M. (2000). British Infantry Equipments (2) 1908-2000 (Vol. 108). Osprey Publishing. 

Chaumat, G. (2016) Use of sebacate salts to cure or prevent acidification of waterlogged wood artefacts 

contaminated by iron-sulphur compounds. Conference paper presented at WOAM 2016: 13
th

 ICOM-CC Wet 

Organic Archaeological Materials Conference, 16-20 May 2016, Florence, Italy. 

Chen, H. L., Jakes, K. A., & Foreman, D. W. (1998). Preservation of archaeological textiles through fibre 

mineralization. Journal of Archaeological Science, 25(10), 1015-1021. 

Chesworth, W. (2008). Biomes and their soils. In Encyclopedia of soil science (pp. 61-68). Springer 

Netherlands. 

Church, J. S., Corino, G. L., & Woodhead, A. L. (1997). The analysis of merino wool cuticle and cortical cells 

by Fourier transform Raman spectroscopy. Biopolymers, 42(1), 7-17. 

Collins, M. J., Nielsen–Marsh, C. M., Hiller, J., Smith, C. I., Roberts, J. P., Prigodich, R. V., ... & Turner–Walker, 

G. (2002). The survival of organic matter in bone: a review. Archaeometry, 44(3), 383-394. 

Colombini, M. P., Giachi, G., Modugno, F., Pallecchi, P., & Ribechini, E. (2003). The characterization of paints 

and waterproofing materials from the shipwrecks found at the archaeological site of the Etruscan and 

Roman harbour of Pisa (Italy). Archaeometry, 45(4), 659-674. 

Cook, B. (1988). Fibre damage in archaeological textiles. In Archaeological Textiles, eds, O’Connor, S.A. & 

Brooks, M.M., pp. 5–15. UKIC Occasional Papers No. 10, United Kingdom Institute for Conservation, London. 

Corfield, M. C., & Robson, A. (1955). The amino acid composition of wool. Biochemical Journal, 59(1), 62. 

Courty, M. A. (1992). Soil micromorphology in archaeology. Proceeding of the British Academy (Vol. 77, pp. 

39-59). 

Covington, A. D. (1997). Modern tanning chemistry. Chemical Society Reviews, 26(2), 111-126. 

Covington, A. D., & Covington, T. (2009). Tanning chemistry: the science of leather. RSC Publishing, 

Cambridge, UK. 

Crawshaw, A., Panter, I., & Richardson, C. (2013). The Shardlow Boat – a conservation case study. In: 

Proceedings of the 12
th

 ICOM-CC Group on Wet Organic Archaeological Materials Conference, Istanbul, 13
th

 

– 17
th

 May 2013, 252-257. ICOM Committee for Conservation Working Group on Wet Organic 

Archaeological Materials; Eds. Grant, T., & Cook, C. 

Crestini, C., El Hadidi, N. M., & Palleschi, G. (2009). Characterisation of archaeological wood: A case study on 

the deterioration of a coffin. Microchemical Journal, 92(2), 150-154. 



 

282 
 

Crighton, J.S. (1977). Characterisation of textile materials by thermal degradation: a critique of pyrolysis GC 

and thermogravimetry. In: Analytical pyrolysis: proceedings of the Third International Symposium on 

Analytical Pyrolysis held in Amsterdam, September 7-9, 1976 (p. 337). Elsevier Science & Technology. 

Crockford, D. J., Holmes, E., Lindon, J. C., Plumb, R. S., Zirah, S., Bruce, S. J., ... & Nicholson, J. K. (2006). 

Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: 

application in metabonomic toxicology studies. Analytical Chemistry, 78(2), 363-371. 

Cutter, W. (1992). The Jewish Mourner's Handbook. Behrman House, Inc. 

D'arcy, J. B. (1990). Sheep management and wool technology. UNSW Press. 

Darragh, A. J., & Moughan, P. J. (2005). The effect of hydrolysis time on amino acid analysis. Journal of 

AOAC International, 88(3), 888-893. 

Day, A. D., & Ludeke, K. L. (1993). Soil acidity. Plant Nutrients in Desert Environments. Springer Berlin 

Heidelberg, 31 – 33. 

de Goyet, C. D. V. (2004). Epidemics caused by dead bodies: a disaster myth that does not want to die. Pan 

American Journal of Public Health, 15, 297-299. 

de Morais Teixeira, E., Corrêa, A. C., Manzoli, A., de Lima Leite, F., de Oliveira, C. R., & Mattoso, L. H. C. 

(2010). Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 17(3), 595-606. 

DeGaetano, D. H., Kempton, J. B., & Rowe, W. F. (1992). Fungal tunnelling of hair from a buried body. 

Journal of Forensic Science, 37(4), 1048-1054. 

del Rıo, J. C., Gutiérrez, A., Martınez, M. J., & Martınez, A. T. (2001). Py–GC/MS study of Eucalyptus globulus 

wood treated with different fungi. Journal of Analytical and Applied Pyrolysis, 58, 441-452. 

Del Rıo, J. C., Speranza, M., Gutiérrez, A., Martínez, M. J., & Martínez, A. T. (2002). Lignin attack during 

eucalypt wood decay by selected basidiomycetes: a Py-GC/MS study. Journal of Analytical and Applied 

Pyrolysis, 64(2), 421-431. 

Demarchi, B., Williams, M. G., Milner, N., Russell, N., Bailey, G., & Penkman, K. (2011). Amino acid 

racemization dating of marine shells: a mound of possibilities. Quaternary International, 239(1), 114-124. 

Demarchi, B., Collins, M., Bergström, E., Dowle, A., Penkman, K., Thomas-Oates, J., & Wilson, J. (2013). New 

experimental evidence for in-chain amino acid racemization of serine in a model peptide. Analytical 

chemistry, 85(12), 5835-5842. 

Dempsey, M. (1974). Scanning electron microscope studies of the grain surface of leather. Journal of 

Materials Science, 9(4), 651-657. 

Depuydt, S., Kinnaer, F., & Van de Vijver, K. (2013). In the Shadow of the Tower: Results of the 

archaeological investigation of Saint Rumbold’s Churchyard in Mechelen, Belgium. City of Mechelen 

Archaeology Service, Legal Deposit D/2013/0797/036. 

Dickson, J. H., Oeggl, K., & Handley, L. L. (2003). The iceman reconsidered. Scientific American, 288(5), 70-

79. 



 

283 
 

DiCosimo, R., & Szabo, H. C. (1988). Oxidation of lignin model compounds using single-electron-transfer 

catalysts. The Journal of Organic Chemistry, 53(8), 1673-1679. 

Dittmer, J. K., Patel, N. J., Dhawale, S. W., & Dhawale, S. S. (1997). Production of multiple laccase isoforms 

by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS microbiology letters, 149(1), 65-

70. 

Doyle, P. (2014). Geology and the War on the Western Front, 1914–1918. Geology Today, 30(5), 183-191. 

Doyle, P., Barton, P., Rosenbaum, M., Vandewalle, J., & Jacobs, K. (2002). Geo-environmental implications 

of military mining in Flanders, Belgium, 1914–1918. Environmental Geology, 43(1-2), 57-71. 

Drewett, P. (2011). Field archaeology: an introduction. Routledge, Oxon, UK. 

Duchaufour, R. (2012). Pedology: pedogenesis and classification. Springer Science & Business Media. 

Dusenbury, M. (1992). A wisteria grain bag and other tree bast fiber textiles of Japan. In: Textiles in Daily 

Life: Proceedings of the Third Biennial Symposium of the Textile Society of America, September 24–26, 1992. 

Textile Society of America.  

Eastoe, J. E. (1955). The amino acid composition of mammalian collagen and gelatin. Biochemical Journal, 

61(4), 589. 

Eglin, T., Maunoury-Danger, F., Fresneau, C., Lelarge, C., Pollet, B., Lapierre, C., Francois, C., & Damesin, C. 

(2008). Biochemical composition is not the main factor influencing variability in carbon isotope composition 

of tree rings. Tree Physiology, 28(11), 1619-1628. 

El Hadidi, N. M. (2016). Decay of softwood in archaeological wooden artifacts. Studies in Conservation, 1-13. 

El-Gaoudy, H., Kourkoumelis, N., Varella, E., & Kovala-Demertzi, D. (2011). The effect of thermal aging and 

color pigments on the Egyptian linen properties evaluated by physicochemical methods. Applied Physics A, 

105(2), 497-507. 

Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzymatic degradation of wood and 

wood components, 225-333. Springer Berlin Heidelberg. 

Evershed, R. P. (2008). Organic residue analysis in archaeology: the archaeological biomarker revolution. 

Archaeometry, 50(6), 895-924. 

Eysteinsson, T. (2004). Forestry in a treeless land. Lustgården. 

Fagan, B. M. (2016). Archaeology: a brief introduction. Routledge, Oxon, UK. 

Faix, O., Bremer, J., Schmidt, O., & Tatjana, S. J. (1991). Monitoring of chemical changes in white-rot 

degraded beech wood by pyrolysis—gas chromatography and Fourier-transform infrared 

spectroscopy. Journal of Analytical and Applied Pyrolysis, 21(1), 147-162. 

Falkovich, A. H., & Rudich, Y. (2001). Analysis of semivolatile organic compounds in atmospheric aerosols by 

direct sample introduction thermal desorption GC/MS. Environmental Science & Technology, 35(11), 2326-

2333. 



 

284 
 

Felix, W. D., McDowall, M. A., & Eyring, H. (1963). The differential thermal analysis of natural and modified 

wool and mohair. Textile Research Journal, 33(6), 465-471. 

Fengel, D. & D. Grosser (1975). Chemische zusammensetzung von Nadel- und Laubholzern. Holz roh-werkst 

33: 32-34. 

Fengel, D., & Wegener, G. (Eds.). (1984). Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, 

Berlin 

Ferrero, F., Testore, F., Malucelli, G., & Tonin, C. (1998). Thermal degradation of linen textiles: the effects of 

ageing and cleaning. Journal of the Textile Institute, 89(3), 562-569. 

Fiebach, K., & Grimm, D. (2000). Resins, Natural. Ullmann's Encyclopedia of Industrial Chemistry. 

Filley, T. R., Blanchette, R. A., Simpson, E., & Fogel, M. L. (2001). Nitrogen cycling by wood decomposing 

soft-rot fungi in the “King Midas tomb,” Gordion, Turkey. Proceedings of the National Academy of Sciences, 

98(23), 13346-13350. 

Florian, M. L. E (1990). Scope and history of archaeological wood. In: Archaeological Wood Properties, 

Chemistry, and Preservation. Developed from a symposium sponsored by the Cellulose Paper and Textile 

Division at the 196th National Meeting of the American Chemical Society, Los Angeles, California, September 

25-September 30, 1988 (pp. 141-174). American Chemical Society. 

Florian, M. L. E. (2007). Protein facts: fibrous proteins in cultural and natural history artefacts. Archetype 

Publications, London, UK 

Forbes, S. L., Keegan, J., Stuart, B. H., & Dent, B. B. (2003). A gas chromatography‐mass spectrometry 

method for the detection of adipocere in grave soils. European Journal of Lipid Science and Technology, 

105(12), 761-768. 

Fors, Y., Grudd, H., Rindby, A., Jalilehvand, F., Sandström, M., Cato, I., & Bornmalm, L. (2014). Sulfur and 

iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and 

the Sword. Nature Scientific reports, 4:4222. 

Fors, Y., Jalilehvand, F., & Sandström, M. (2011). Analytical aspects of waterlogged wood in historical 

shipwrecks. Analytical Sciences, 27(8), 785. 

Foston, M., Hubbell, C. A., Samuel, R., Jung, S., Fan, H., Ding, S. Y., ... & Gjersing, E. (2011). Chemical, 

ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate 

for reduced recalcitrance. Energy & Environmental Science, 4(12), 4962-4971. 

Fountoulakis, M., & Lahm, H. W. (1998). Hydrolysis and amino acid composition analysis of proteins. Journal 

of Chromatography A, 826(2), 109-134. 

Frisk, M. (2015). Concerning Mass Graves: The use, development and identities within mass graves during 

the Scandinavian Iron age and Middle ages. PhD thesis, Uppsala University. 

Fu, Q., Argyropoulos, D. S., Tilotta, D. C., & Lucia, L. A. (2008). Understanding the pyrolysis of CCA-treated 

wood: Part I. Effect of metal ions. Journal of Analytical and Applied Pyrolysis, 81(1), 60-64. 



 

285 
 

Gabriel, M. T. (1932). The cortical cells of Merino, Romney and Lincoln wools. Journal of the Textile Institute 

Transactions, 23(8), T171-T176. 

Geib, S. M., Filley, T. R., Hatcher, P. G., Hoover, K., Carlson, J. E., del Mar Jimenez-Gasco, M., ... & Tien, M. 

(2008). Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences, 

105(35), 12932-12937. 

Gelbrich, J., Mai, C. & Militz, H. (2008). Chemical Changes in wood degraded by Bacteria. International 

Biodeterioration & Biodegradation, 61, 24-32. 

Gelbrich, J., Kretschmar, E. I., Lamersdorf, N., & Militz, H. (2012). Laboratory experiments as support for 

development of in situ conservation methods. Conservation and Management of Archaeological Sites, 14(1-

4), 7-15. 

Ghisalberti, E. L., Godfrey, I. M., Kilminster, K., Richards, V. L., & Williams, E. (2002). The analysis of acid-

affected Batavia timbers. In: Proceedings of the 8th ICOM Group on wet organic archaeological materials 

conference, Stockholm, 11-15 June 2001, 281-307. Deutsches Schiffahrtsmuseum. 

Gillard, R. D., Hardman, S. M., Thomas, R. G., & Watkinson, D. E. (1994). The mineralization of fibres in 

burial environments. Studies in Conservation, 39(2), 132-140. 

Gilligan, I. (2010). The prehistoric development of clothing: archaeological implications of a thermal model. 

Journal of Archaeological Method and Theory, 17(1), 15-80. 

Good, I. (2001). Archaeological textiles: a review of current research. Annual Review of Anthropology, 209-

226. 

Goring, D. A. I., & Timell, T. E. (1962). Molecular weight of native celluloses. Tappi, 45(6), 454-460. 

Graham, R. D. (1973). History of wood preservation. In: Wood deterioration and its prevention by 

preservative treatments, (pp. 1 – 25), Ed, Nicholas, D. D. Syracuse University Press, Syracuse, NY. 

Grant, J., Gorin, S., & Fleming, N. (2015). The archaeology coursebook: an introduction to themes, sites, 

methods and skills. Routledge, Oxon, UK. 

Grave, P., & Kealhofer, L. (1999). Assessing bioturbation in archaeological sediments using soil morphology 

and phytolith analysis. Journal of Archaeological Science, 26(10), 1239-1248. 

Graves, D. (2004). A comparative study of consolidants for waterlogged wood: polyethylene glycol, sucrose, 

and silicone oil. SSCR Journal (Scottish Society for Conservation and Restoration), 15 (3), 13–17. 

Gray, J. (2003). The Irish, Scottish and Flemish linen industries during the long eighteenth century. In: The 

European Linen Industry in Historical Perspective. Oxford University Press, 159-186. 

Green, K. A. (2013). The fate of lipids in archaeological burials. PhD thesis, University of York. 

Gupta, B. S. (2008). Friction in textile materials. Woodhead Publishing, Cambridge, UK. 

Hagelberg, E., Hofreiter, M., & Keyser, C. (2015). Ancient DNA: the first three decades. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 370(1660). 



 

286 
 

Haines, B. M. (2006). The fibre structure of leather. In: Conservation of leather and related materials, eds. 

Kite, M., & Thomson, R., pp 11. Routledge, Oxon, UK. 

Hammer, Ø., Harper, D.A.T., Ryan, P.D. 2001. PAST: Paleontological statistics software package for 

education and data analysis. Palaeontologia Electronica 4(1): 9. 

Hardin, I. R. (1996). Investigation of textiles by analytical pyrolysis. In: Modern Textile Characterization 

Methods, ed. Raheel, M., (p 173). CRC Press, Boca Raton, USA. 

Hardin, I. R., & Wang, X. Q. (1989). The use of pyrolysis-gas chromatography in textiles as an identification 

method. Textile Chemist & Colorist, 21(1). 

Harris, D., C. (1999). Gas Chromatography. In: Quantitative chemical analysis (Chapter 24) (Fifth ed.). W. H. 

Freeman and Company. 

Hays, M. D., Smith, N. D., Kinsey, J., Dong, Y., & Kariher, P. (2003). Polycyclic aromatic hydrocarbon size 

distributions in aerosols from appliances of residential wood combustion as determined by direct thermal 

desorption—GC/MS. Journal of Aerosol Science, 34(8), 1061-1084. 

Hearle, J. W. S. (2000). A critical review of the structural mechanics of wool and hair fibres. International 

Journal of Biological Macromolecules, 27(2), 123-138. 

Hedges, R.E.M., 1990. The chemistry of archaeological wood In: Archaeological Wood Properties, Chemistry, 

and Preservation. Developed from a symposium sponsored by the Cellulose Paper and Textile Division at the 

196th National Meeting of the American Chemical Society, Los Angeles, California, September 25-September 

30, 1988 (pp. 111-141). American Chemical Society, Washington DC, USA. 

Hedges, R. E., Thompson, J., & Hull, B. D. (2005). Stable isotope variation in wool as a means to establish 

Turkish carpet provenance. Rapid Communications in Mass Spectrometry, 19(22), 3187-3191. 

Henderson, J. (1987). Factors determining the state of preservation of human remains. In: Death, decay and 

reconstruction: approaches to archaeology and forensic science, 43-54. Eds, Boddington, A., Garland A. N., 

and Janaway, R. C. Manchester University Press, Manchester, UK.  

Hendricker, A. D., & Voorhees, K. J. (1998). Amino acid and oligopeptide analysis using Curie-point pyrolysis 

mass spectrometry with in-situ thermal hydrolysis and methylation: mechanistic considerations. Journal of 

Analytical and Applied Pyrolysis, 48(1), 17-33. 

Hicks, S. A. (2017). Fate and preservation of lipids in the soils of archaeological and experimental burials. 

PhD thesis, University of York. 

Hiendleder, S., Kaupe, B., Wassmuth, R., & Janke, A. (2002). Molecular analysis of wild and domestic sheep 

questions current nomenclature and provides evidence for domestication from two different subspecies. 

Proceedings of the Royal Society of London B: Biological Sciences, 269(1494), 893-904. 

High, K. E. (2014). Fading Star: Understanding accelerated decay of organic remains at Star Carr. PhD thesis, 

University of York. 



 

287 
 

High, K., Milner, N., Panter, I., Demarchi, B., & Penkman, K. E. (2016). Lessons from Star Carr on the 

vulnerability of organic archaeological remains to environmental change. Proceedings of the National 

Academy of Sciences, 201609222. 

Higson, S. P. J. (2004) Analytical chemistry. Oxford University Press, Oxford, UK. 

Higuchi, T. (1990). Lignin biochemistry: biosynthesis and biodegradation. Wood Science and Technology, 

24(1), 23-63. 

Hirs, C. H. W., Stein, W. H., & Moore, S. (1954). The amino acid composition of ribonuclease. Journal of 

Biological Chemistry, 211(2), 941-950. 

Hoch, G. (2007). Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant tissues. 

Functional Ecology, 21, 823–834. 

Hocker, E., Almkvist, G., & Sahlstedt, M. (2012). The Vasa experience with polyethylene glycol: A 

conservator's perspective. Journal of Cultural Heritage, 13(3), S175-S182. 

Hoffman, P. (1981). Chemical wood analysis as a means of characterising archaeological wood. In: 

Proceedings of the ICOM Waterlogged Wood Working Group Conference, Ed Grattan, D.W., Ottawa, 73-83. 

Hoffmann, P., & Jones, M. A. (1990). Structure and degradation process for waterlogged archaeological 

wood. In: Archaeological Wood Properties, Chemistry, and Preservation. Developed from a symposium 

sponsored by the Cellulose Paper and Textile Division at the 196th National Meeting of the American 

Chemical Society, Los Angeles, California, September 25-September 30, 1988 (pp. 35-65). American Chemical 

Society. 

Hong, H. A., Khaneja, R., Tam, N. M., Cazzato, A., Tan, S., Urdaci, M., Brisson, A., Gasbarrini A., Barnes A., & 

Cutting, S. M. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Research in 

microbiology, 160(2), 134-143. 

Hori, C., Ishida, T., Igarashi, K., Samejima, M., Suzuki, H., Master, E., ... & Larrondo, L. F. (2014). Analysis of 

the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer 

colonization strategies of wood. Public Library of Science Genetics, 10(12), e1004759. 

Huisman, D. J. (Ed.). (2009). Degradation of archaeological remains. Sdu Uitgevers, The Hague, Netherlands. 

Hunt, S. (1985) "Degradation of amino acids accompanying in vitro protein hydrolysis." Chemistry and 

Biochemistry of the Amino Acids. Springer Netherlands, 376-398. 

Hunter, J., Roberts, C. A., & Martin, A. (1996). Studies in crime: an introduction to forensic archaeology. 

Psychology Press, Oxon, UK. 

Iiyama, K., N. Kasuya, L.T.B. Tuyet, J. Nakano & H. Sakaguchi. (1988). Chemical characterisation of ancient 

buried wood. Holzforschung 42: 5–10. 

Ilin, A. & T. Raiko. 2010. Practical approaches to Principal Component Analysis in the presence of missing 

values. Journal of Machine Learning Research 11:1957-2000. 



 

288 
 

Isles, R. (2015) Dundee experts recreate face of Saxon man at Lincoln Castle. University of Dundee Online. 

“http://www.dundee.ac.uk/news/2015/dundee-experts-recreate-face-of-saxon-man-at-lincoln-castle”. 

Retrieved on 15/04/2016. 

Jackson, M. G. (1977). Review article: the alkali treatment of straws. Animal Feed Science and Technology, 

2(2), 105-130. 

Jacobsen, T. W., & Cullen, T. (1990). The work of JL Angel in the Eastern Mediterranean. A Life in Science: 

Papers in Honor of JL Angel, Kampsville, IL: Center for American Archeology, Scientific Paper, 6, 38-51. 

Jakubke, H. D., & Sewald, N. (2008). Peptides from A to Z: a concise encyclopedia. John Wiley & Sons. 

Janaway, R. (1983). Textile fibre characteristics preserved by metal corrosion: the potential of SEM studies. 

The Conservator, 7(1), 48-52. 

Janaway, R. C. (2001). Degradation of clothing and other dress materials associated with buried bodies of 

archaeological and forensic interest. In: Advances in Forensic Taphonomy: Method, theory, and 

archaeological perspective (pp. 379-402). Eds, Haglund, W. D., & Sorg, M. H. CRC Press, Boca Raton, USA.  

Janaway, R. C., Wilson, A. S., Díaz, G. C., & Guillen, S. (2009). Taphonomic changes to the buried body in arid 

environments: an experimental case study in Peru. In: Criminal and Environmental Soil Forensics (pp. 341-

356). Eds, Ritz, K., Dawson, L., & Miller, D. Springer, Netherlands. 

Jerz, J. K., & Rimstidt, J. D. (2004). Pyrite oxidation in moist air. Geochimica et Cosmochimica Acta, 68(4), 

701-714. 

Jones, M., & Eaton, R. (2006). Conservation of Ancient Timbers from the sea. In: Conservation Science: 

Heritage Materials. Eds, May, E. & Jones, M. RSC Publishing, Cambridge. 

Jupp, P. (1992). Cremation or burial? Contemporary choice in city and village. The Sociological Review, 

40(S1), 169-197. 

Kaiser, K., & Benner, R. (2005). Hydrolysis-induced racemization of amino acids. Limnology and 

Oceanography: Methods, 3, 318-325. 

Kang, S. M., Cha, M. K., Kim, S. J., & Kwon, Y. J. (2006). The effect of quality improvement for wool and silk 

treated with protease produced by B. subtilis K-54. Fashion & Textile Research Journal, 8(2), 239-244. 

Kebbi-Benkeder, Z., Colin, F., Dumarçay, S., & Gérardin, P. (2015). Quantification and characterization of 

knotwood extractives of 12 European softwood and hardwood species. Annals of Forest Science, 72(2), 277-

284. 

Kelley, J. O., & Angel, J. L. (1987). Life stresses of slavery. American Journal of Physical Anthropology, 74(2), 

199-211. 

Khaneja, R., Perez‐Fons, L., Fakhry, S., Baccigalupi, L., Steiger, S., To, E., Sandmann, G., Dong, T.C., Ricca, E., 

Fraser, P.D., & Cutting, S. M. (2010). Carotenoids found in Bacillus. Journal of Applied Microbiology, 108(6), 

1889-1902. 



 

289 
 

Kidd, F. (1977). Other animal fibres. In: Chemistry of Natural Protein Fibers (pp 370 – 409). Ed, Asquith, R. S. 

Springer Science & Business Media.  

Kim, S. J., Cha, M. K., Oh, E. T., Kang, S. M., So, J. S., & Kwon, Y. J. (2005). Use of protease produced by 

Bacillus sp. SJ-121 for improvement of dyeing quality in wool and silk. Biotechnology and Bioprocess 

Engineering, 10(3), 186-191. 

Kim, Y. S., & Singh, A. P. (2000). Micromorphological characteristics of wood biodegradation in wet 

environments: a review. IAWA Journal, 21(2), 135-155. 

Kim, Y. S., & Singh, A. P. (2016). Wood as Cultural Heritage Material and its Deterioration by Biotic and 

Abiotic Agents. In: Secondary Xylem Biology: Origins, Functions, and Applications (pp. 233). Eds. Kim, Y.S., 

Funada, R. & Adya, P. Academic Press, Cambridge, USA. 

Kim, Y.S. (1990). Chemical characteristics of water-logged archaeological wood. Holzforschung, 44, 169-172. 

King, H. H., & Solomon, P. R. (1983). Modelling tar composition in lignin pyrolysis. Symposium on 

Mathematical Modelling of Biomass Pyrolysis Phenomena Washington, D.C. 

King, T. E., Fortes, G. G., Balaresque, P., Thomas, M. G., Balding, D., Delser, P. M., ... & Tonasso, L. (2014). 

Identification of the remains of King Richard III. Nature Communications, 5. 

Kurata, S., & Ichikawa, K. (2008). Identification of small bits of natural leather by pyrolysis gas 

chromatography/mass spectrometry. Bunseki Kagaku, 57(7), 563-569. 

Kvavadze, E., Bar-Yosef, O., Belfer-Cohen, A., Boaretto, E., Jakeli, N., Matskevich, Z., & Meshveliani, T. 

(2009). 30,000-year-old wild flax fibers. Science, 325(5946), 1359-1359. 

Larsen, R. (1994). STEP leather project: evaluation of the correlation between natural and artificial ageing of 

vegetable tanned leather and determination of parameters for standardization of an artificial ageing 

method. Royal Danish Academy of Fine Arts & European Commission. 

Larsen, R. (2008). The chemical degradation of leather. CHIMIA International Journal for Chemistry, 62(11), 

899-902. 

Latourette, K. S. (1978). A History of the Expansion of Christianity. Zondervan Publishing House, Grand 

Rapids, USA. 

Leeder, J. D., & Marshall, R. C. (1982). Readily-extracted proteins from Merino wool. Textile Research 

Journal, 52(4), 245-249. 

Leonowicz, A., Matuszewska, A., Luterek, J., Ziegenhagen, D., Wojtaś-Wasilewska, M., Cho, N. S., ... & 

Rogalski, J. (1999). Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 27(2), 175-185. 

Levin, L., Forchiassin, F., & Ramos, A. M. (2002). Copper induction of lignin-modifying enzymes in the white-

rot fungus Trametes trogii. Mycologia, 94(3), 377-383. 

Lewis, N. G., & Yamamoto, E. (1990). Lignin: occurrence, biogenesis and biodegradation. Annual Review of 

Plant Biology, 41(1), 455-496. 



 

290 
 

Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical treatments of natural fiber for use in natural fiber-

reinforced composites: a review. Journal of Polymers and the Environment, 15(1), 25-33. 

Lieberman, P. (1991). Uniquely human: The evolution of speech, thought, and selfless behavior. Harvard 

University Press, Cambridge, USA. 

Liesowska, A. (2015). Shigir Idol is oldest wooden sculpture monument in the world, say scientists. The 

Siberian Times, 26
th

 August 2015. Retrieved on 5
th

 July 2016. 

Lillie, M., & Smith, R. (2007). The in situ preservation of archaeological remains: using lysimeters to assess 

the impacts of saturation and seasonality. Journal of Archaeological Science, 34(9), 1494-1504. 

Loe L., Barker C., & Wright RV. (2014a) An osteological profile of trench warfare: peri-mortem trauma 

sustained by soldiers who fought & died in the Battle of Fromelles. The Routledge Handbook of the 

Bioarchaeology of Human Conflict (pp. 575-601). Routledge, Oxon, UK. 

Loe, L., Boyle, A., Webb, H., & David, S. (2014b). 'Given to the Ground': A Viking Age Mass Grave on 

Ridgeway Hill, Weymouth. Oxford Archaeology. 

Łucejko, J. J., Modugno, F., Ribechini, E., & José, C. (2009). Characterisation of archaeological waterlogged 

wood by pyrolytic and mass spectrometric techniques. Analytica Chimica Acta, 654(1), 26-34. 

Łucejko, J. J., Modugno, F., Ribechini, E., Tamburini, D., & Colombini, M. P. (2015). Analytical instrumental 

techniques to study archaeological wood degradation. Applied Spectroscopy Reviews, 50(7), 584-625. 

MacKinnon, M. (2007). Osteological research in classical archaeology. American Journal of Archaeology, 

473-504. 

MacLeod, I. D., & Kenna, C. (1990). Degradation of archaeological timbers by pyrite: oxidation of iron and 

sulphur species. In: Archaeological Wood Properties, Chemistry, and Preservation. Developed from a 

symposium sponsored by the Cellulose Paper and Textile Division at the 196th National Meeting of the 

American Chemical Society, Los Angeles, California, September 25-September 30, 1988 (pp. 133-142). 

American Chemical Society, Washington DC, USA. 

Mahall, K. (2003). Quality assessment of textiles: damage detection by microscopy. Springer Science & 

Business Media. 

Malim, T., Morgan, D., & Panter, I. (2015). Suspended preservation: Particular preservation conditions 

within the Must Farm–Flag Fen Bronze Age landscape. Quaternary International, 368, 19-30. 

Marte, B. (2003). Proteomics. Nature, 422(6928), 191-191. 
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