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Abstract

Civil Engineering and fluid mechanics are two fields that are not usually put

into the same category. In reality however, many of the problems faced in Civil

Engineering are caused by fluids. For example: the mixing of pollutants; the

scouring of riverbanks; and the undesired oscillations of bridges and buildings

caused by wind. Whilst it is possible to simulate the interactions of fluids and

structures, it is computationally expensive and as a consequence experiments are

needed to validate simplified models. Undertaking these experiments is not trivial,

and unavoidably, the data collected can contain outlier / anomalous data points.

There have been many attempts to create algorithms to automatically remove

and or replace these outliers, the most effective or which are based on modal

decomposition techniques. In fluid mechanics there are two prominent modal

decomposition techniques. These are Proper Orthogonal Decomposition (POD),

which can be use to determine modes that are spatially independent, and Dynamic

Mode Decomposition (DMD) which can be used to determine modes that are

temporally independent.

The majority of the previous POD and DMD applications have been have been

applied to mechanical and aerospace engineering problems. However, the focus

of this thesis is the application of modal decomposition techniques solely in Civil

Engineering. First, the modal decomposition technique POD, is used to create a

novel computationally efficient method for filtering spurious points from experi-

mental data. Second a method of combining POD and DMD to attain regions of

spatial and temporal independence is proposed. Third, these methods are applied

to a river groyne problem to explain the spatio-temporal mechanisms leading to

the sudden expansion of a mixing layer. Finally, these methods are applied to a



group of multi-scale square cylinders, resembling the layout of a city, to describe

the spatio-temporal behaviour of the wake.

This thesis creates a suite of tools which can be applied by Civil Engineers to

understand complex mechanisms, for instance, in environmental fluid mechanics.
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This thesis is a ‘thesis by papers’ created from papers either published or submit-

ted:

P1 Higham J.E., Brevis, W., Keylock, C.J. A rapid filtering and reconstruction
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Chapter 1

Introduction

1.1 Environmental flows: a stochastic process

The natural environment surrounds us with fluids. In the context of Civil Engi-

neering, the large scale turbulent motions of these fluids are extremely important

as it is their complex motions that are responsible for the mixing of pollutants,

the erosion of river banks, and the oscillations of bridges and buildings. The mo-

tion of any incompressible fluid is governed by the Navier-Stokes and continuity

equations:

Du

Dt
= −1

ρ
∇p+ ν∇2u + ~g (1.1)

∇ · u = 0 (1.2)

where u and p are velocity and pressure fields, ~g is the acceleration of gravity, t

is time, ρ is density, ν is the kinematic viscosity, ∇ is the gradient operator, ∇2

is the Laplacian operator and ∇· is the divergence operator. Eq. 1.1 is derived

1
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from Newton’s second law applied to a infinitesimal volume of fluid. On the left

hand side of the equation, is the advective term, which governs the rate of change

of the velocity of the volume of fluid as it moves along its trajectory. The right

hand side represents the viscous forces and pressure gradient that act upon the

advected volume. In short, the state of a fluid is constantly changing in space

and time therefore its spatio-temporal characteristics are stochastic. By using the

bulk velocity U0 and a characteristic length scale L the terms of Eq. 1.1 can be

non-dimensionalised:

u? =
u

U0

, t? =
t U0

L
, p? =

p

ρU2
0

(1.3)

where (·)? denotes non-dimensionalised . When these terms are substituted in the

Eq. 1.1 the equation becomes:

Du?

Dt?
= −∇p? +

1

Re
∇2u? (1.4)

Re =
L U0

ν
(1.5)

where Re is a dimensionless parameter. As demonstrated by Eq. 1.5, Re relates

the viscous to the inertial forces. This single parameter, the Reynolds number, is

extremely important across all scales of fluid mechanics as it defines the transition

of a flow from a laminar to a turbulent state. Whilst this was not mathematically

proven by Reynolds rather by Stokes (1851). The Reynolds number was name after

Reynolds by Sommerfeld (1908) for his experimental investigations (see Fig. 1.1)

and his mathematical decomposition (Reynolds 1885):

ui = 〈ui〉+ u′i, (1.6)
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Figure 1.1: A sketch from Reynolds’ 1883 paper (Reynolds 1883) of his ex-
perimental investigations of the transition of a fluid from a Laminar state to a

Turbulent state.

The decomposition separates the fluctuating part of the flow, u′i, from the mean

flow 〈ui〉, where ui is the velocity vector in each direction. By applying this

decomposition to the steady-state incompressible Navier-Stokes equations Eq. 1.1:

ρ〈uj〉
∂〈ui〉
∂xj

= ρg +
∂

∂xj

[
−〈p〉δij + µ

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− ρ〈u′iu′j〉

]
, (1.7)

One can attain the Reynolds Averaged Navier-Stokes equation (RANS), where µ is

the dynamic viscosity, δij is the Kronecker delta. As shown on the right hand side

of the equation the fluctuation components are a stress term: The Reynolds stress

tensor (Rij = −ρ〈u′iu′j〉). This term is extremely important as it is a measure of

momentum flux and as a consequence, from a Civil Engineering perspective, is

pivotal for understanding turbulent processes such as bed scouring and pollutant

mixing.

While Reynolds should rightly be credited for this decomposition, plaudits must

also be given to da Vinci and his early of sketches of turbulence, who 400 years

before Reynolds, qualitatively described the Reynolds decomposition (see Fig. 1.2).

In the text accompanying the sketches da Vinci likening a turbulent flow to hair

with two motions: one due to the weight of the hair; the other due to the curls.

Throughout this thesis there is much reference to these curls, which are formally

defined as vortices or eddies. Where vorticity Ω(x, t) is defined by ∇× u(x, t).
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Figure 1.2: A drawing from the notebooks of Leonardo da Vinci. “A study
of turbulent water flow” (da Vinci et al. 1970).

1.2 The different scales of turbulence

The Reynolds decomposition shows that the stochastic part of a turbulent flow is

associated with the fluctuations. These fluctuations can be related to the turbulent

structures that make up the flow (as shown by da Vinci). Richardson (1922)

proposed a space filling picture of these turbulent structures (see Fig. 1.3) where

the largest scales remove energy from the mean flow. The interaction amongst

the turbulent structures, of various scales, passes energy sequentially from the

larger turbulent structures gradually to the smaller ones until finally viscosity

dominates and the energy is dissipated. This process is known as the turbulent

energy cascade. Taylor (1938) later statistically described this cascade using an

energy spectrum to describe the different scales. Within this spectrum there are

three classifications of turbulent length scales:

• The integral length scales, which are a measure of the large scale turbulent

structures in the production range.

• The Taylor micro-scales, which define length scales at which the turbulent

structures begin to cascade down their energy.
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Injection

of energy

Flux of 

energy

Dissipation 

of energy

Figure 1.3: The energy cascade of turbulence modified from (Frisch & Don-
nelly 1996)

• The Kolmogorov micro-scales, which define the smallest turbulent structures

within the flow.

Both Richardson & Taylor suggested that the rate of energy dissipation was uni-

versal and for certain cases this was proven by Kolmogorov (Kolmogorov 1941,

1962). However, there is still much debate surrounding the universality of this

solution (e.g. Belchov & Yaglom (1971), Kraichnan (1967), Batchelor (1969)).

This energy cascade and the smaller length scales are extremely interesting and

the focus of much theoretical research such as in physics and maths. However,

as the focus of this thesis is on environmental flows in Civil Engineering, only

the largest scales, the integral scales, are considered as it is these scales which

contain the most turbulent kinetic energy and are responsible for large changes in

momentum.
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1.3 Coherent structures

In the last decade, a large part of the research in fluid dynamics has moved away

from the development of statistical models and has concentrated on the identifica-

tion and description of the dynamics of the so-called coherent structures. Whilst

there is no fixed definition a number of authors have proposed their own def-

initions. Hussain (1983) first described a coherent structure as, “a connected,

large-scale turbulent fluid mass with a phase-correlated vorticity over its spatial

extent,”. More recently Adrian (2007), Adrian & Marusic (2012) defined coherent

structures to be coherent motions of individual entities, which significantly con-

tribute to the mean flow and momentum fluxes, but are not exclusively spatially

coherent. Whilst there still may not be a universal definition, it is agreed that

coherent structures are spatially and temporally coherent and are the building

blocks of turbulent flows.

In fluid mechanics there are several ways to identify these coherent structures.

Some of them are based on the identification of invariants of the velocity gradient

tensor (Hunt et al. 1988, Hussain 1983, Chakraborty et al. 2005), which is defined

in terms of the spatial derivatives of the velocity field. In this context, some of

the most used techniques to identify vortical structure are swirling strength (Zhou

et al. 1999), Q-criterion, and lambda2 (Jeong & Hussain 1995). Other alterna-

tives, based on a Lagrangian frame of reference, can be found for instance in the

case of Lyapunov exponents (Green et al. 2007). Most of these methods allow

the identification of instantaneous vortical structures, allowing their tracking and

the extraction of important characteristics such as trajectories and lifetime. How-

ever, these methods are only based on instantaneous spatial statistics and do not
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take into consideration the temporal evolution of the coherent structures. An al-

ternative to these methods is based on the identification of the structures that

statistically contribute the most to the variance of the signal under analysis, these

methods are referred to as modal decomposition techniques. A classical fluid me-

chanics approach is the Proper Orthogonal Decomposition (Lumley et al. 1996)

(POD). In the case of a velocity signal, the POD technique is able to identify

those flow-structures that contribute the most to the turbulent kinetic energy, re-

vealing their spatial structure (modes) and temporal dynamics (coefficients). The

flexibility of the POD technique is highly recognised within the fluid mechanics

community (Berkooz et al. 1993a) and previously has achieved great successes in:

describing the large scale turbulent processes in shallow flows (Brevis & Garćıa-

Villalba 2011); the use in modelling and control (Ly & Tran 2001); and has been

used to describe the complex flow mechanisms associate to a cross jet Meyer et al.

(2007). However, as highlighted by Schmid et al. (2009) one limitation of the

POD technique is that it assumes that the turbulent mechanisms are linear, this

is normally fulfilled by the dynamics of large–scale structures, but is generally not

true in the global analysis of smaller scales of a turbulent field. A recent alterna-

tive that assumes a temporal orthogonality, different than the POD that assumes

a spatial one, is the Dynamic Mode Decomposition (DMD) (Schmid et al. 2009,

Rowley et al. 2009). DMD allows a better identification of coherent structures

in a highly non-linear turbulent mechanisms, however one limitation is that it is

not able to rank the resulting modes in terms of their contribution to a certain

magnitude, as the POD does with the variance. To this authors knowledge, even

though DMD may offer the key to describing coherent structures of temporal sig-

nificance, it has only been successfully applied to highly theoretical works such as
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lid driven cavities (Schmid et al. 2009), flames Schmid (2010) and simple geome-

tries (Tu et al. 2014). If one to is assume the arguments of Adrian (2007), Hussain

& Clark (1981) are correct, then clearly neither of these methods alone satisfy the

definition of spatial and temporal coherence, but however, when combined they

might.
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1.4 Thesis structure

This thesis consists of seven chapters. The main results of this thesis are also

presented in either accepted or submitted journal papers as highlighted in the

preface.

• Chapter 1 has outlined the area of study.

• Chapter 2 presents a literature review relating to the aims of the thesis.

• Chapter 3 presents a novel filtering technique based on POD.

• Chapter 4 focuses on the integration of the POD and DMD, suggesting a

means to extract turbulent structures with both spatio-temporal significance.

• Chapter 5 applies the POD & DMD to a river groyne case.

• Chapter 6 applies the POD & DMD to a multi-scale arrangement of square

cylinders relating to a city layout.

• Chapter 7 concludes.



Chapter 2

Literature Review

As previously outlined this thesis is a ‘thesis by papers’. The focus of this thesis

is on the application of modal decompositions to two-dimensional Particle Image

Velocimetry vector fields.

Each of the following chapters relate to the findings presented in four different,

either submitted or accepted, papers. In this chapter the literature is divided into

four sections, relating to the following chapters respectively:

• In section 2.1 the literature associated to experimental methods, data acqui-

sition and outliers is presented.

• In section 2.2 the literature and methodology of modal decomposition tech-

niques is outlined.

• In section 2.3 the literature associated to a turbulent shallow flows obstructed

by to a single lateral groynes is presented.

• In section 2.4 the literature associated to fully three-dimensional turbulent

flows obstructed by square cylinders is presented.

10
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Whilst the different chapters may address different research topics, there are con-

nected themes throughout the chapters.

2.1 Experimental methods

In fluid mechanics it is theoretically possible to simulate a turbulent flow us-

ing Direct Numerical Simulations (DNS), i.e. the direct numerical solution of the

Navier-Stokes equations. However the computational resources required to calcu-

late even the smallest of domains is very high and as a result the use of DNS for

practical applications is very limited. If DNS is not practical the Navier-Stokes

equations can be filtered and only the largest scales solved, for example in Large

Eddy Simulations (LES) (Smagorinsky 1963), however, the effects and assump-

tions relating this filtering need to be taken into consideration when analysing

the data. Instead of using DNS / LES, Reynolds Averaging can be applied to

the Navier-Stokes equations and turbulence modelling can be used to close the

resulting RANS equations, thereby reducing the computational effort required to

simulate fluid flow. Although by time averaging, the dynamics of the fluids mo-

tions are lost. There are several popular closure methods, e.g. the k−ε turbulence

model, which assume isotropic turbulence as well as several empirically calibrated

coefficients. So therefore, while it is technically possible to conduct experiments

numerically, in practice such simulations require physical experimental data to

validate the results and to derive empirical constants.
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2.1.1 Particle Image Velocimetry

Particle Image Velocimetry (PIV) is a non-intrusive optical based technique which

can be used to obtain instantaneous velocity measurements. Typically a flow is

seeded with tracer particles, which respond to but do not affect the flow structures

(Adrian et al. 2000). In some cases, but not all cases, illumination is required to

highlight the particles located in a specific plane. Although in the case of shallow

flows floating particles can be used (Safarzadeh & Brevis 2016). The motions

of the particles are captured using digital cameras, and the displacement of the

particles are calculated using correlations.

In standard two-dimensional PIV only two velocity components are attained. How-

ever, with the addition of a second camera it is also possible to use stereo recon-

structions to attain a third component. Recent advances in experimental tech-

niques have shown that further increasing the number of cameras it is possible

to attain a three-dimensional volume of all three velocity components, however,

typically these applications are limited to small volumes and are extremely heavily

computational. For a deeper insight into flow measurement techniques the reader

is directed to Scarano (2012).

2.1.2 PIV outliers

Any minor error, such as flaws in the image acquisition, or inhomogeneities of

the flow seeding, can lead to poor correlations between image pairs resulting in

errors within the vector fields: these errors are often referred to as outliers. Ide-

ally one should try to mitigate against all of these problems, but they are often

unavoidable. As PIV sequences can contain thousands of vector fields, numerous



Literature Review 13

contributions have suggested approaches to automatically reduce the influence of

outliers. Typically, these methods fall into three categories:

1. Methods which use local spatial statistics of the vector fields to separately

detect and estimate outliers.

2. Methods which spread or smooth the influence of outliers within the data

fields.

3. Methods which use spatio-temporal features obtained from statistical ap-

proaches, such as POD, to detect and or estimate outliers.

The most common of these methods are based on spatial statistics. Westerweel

(1994) suggested three methods for outlier detection by comparison of local statis-

tics: ‘local-mean’; ‘local-median’; and ‘global-mean’. The ‘local-median’ method

was found to be most accurate, but not practical, as ad hoc thresholds are required

for different flow regimes. By normalising the residuals of the local medians with

respect to a robust estimate of the local variation of the velocity, the ‘local me-

dian’ method was improved, resulting in the ‘Universal Outlier Detection’ (UOD)

approach (Westerweel & Scarano 2005a). This method is popular, but struggles

to detect groups of outliers due to their influences on the local statistics. As a

consequence, the ‘Adaptive Weighted Angle and Magnitude Threshold method’

(AWAMT) (Masullo & Theunissen 2016) was developed to improve the UOD ap-

proach. As in the UOD method, AWAMT detects outliers by comparing local

statistics in the local neighbourhood. However, the AWAMT dynamically adapts

the size of the neighbourhood to account for larger clusters. Furthermore, AWAMT

normalises residuals with respect to a vector’s magnitude and angle, adopting a

modified Gaussian weighted distance-based averaging median. Masullo & The-

unissen (2016) found AWAMT to improve on the UOD method for the detection
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of clusters of outliers and in the overall accuracy of detection. A more complex

method of outlier detection uses Cellular Neural Networks (CNN) to create a

detection scheme by obtaining stable states of neurons. However, the robustness

and accuracy of the method was found to be comparable only to the ‘local-median’

method (Liang et al. 2003).

These methods described above only detect outliers which means that an inter-

polation scheme is still required. As these methods calculate outliers locally i.e.

in single vector fields, it is intuitive to use simple local statistical methods such

as linear, bi-linear, spline or more complex mathematical models, such as Krig-

ing (Gunes et al. 2006). Consequently, these local methods are dependent on

the characteristic length scales of the flow and on the resolution of the acquired

images. Alternatively, if outliers in several vector fields of the sequence are de-

tected, an iterative POD based method such as ‘Gappy POD’ (Everson & Sirovich

1995) can be used. Gappy-POD and Kriging are comparable in effectiveness and

Gappy-POD has been further developed with the Adaptive Gappy-POD formula-

tion (Raben et al. 2012). However, these methods are computationally expensive

and impractical for the long vector field sequences found in some PIV measure-

ments (Gunes et al. 2006). An alternative method recently proposed in fluid

mechanics is the ‘All-in-one’ method (Garcia 2010, 2011), based on the combi-

nation of penalised least squares techniques, discrete cosine transforms and the

generalised cross-validation method. Whilst the aim of the method is to reduce

the influence of the outliers, Wang et al. (2015) notes this method can weaken

instantaneous velocity fluctuations and gradients.

A recent iterative, spatio-temporal statistical method, which couples the detection

and estimation of outliers using a POD, is the POD-Outlier Correction method or

POD-OC (Wang et al. 2015) . This method assumes that outliers do not perturb
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into the low-order POD spatial modes of a flow decomposition. It detects outliers

by comparing each vector field to a residual calculated from the mean, standard

deviation and a ‘robust parameter’ (a=3). The detected points are replaced using

a low-order reconstruction and a second residual, this process is repeated until

convergence of the POD spectrum based on user defined convergence criterion.

2.2 Modal decomposition techniques

As previously discussed the term coherent structure has no fixed definition. Modal

decomposition techniques can be used to attain spatial or temporal coherences

from a velocity signal (such as those attained from PIV). Two popular methods in

fluid mechanics are the spatially orthogonal POD and the more recent temporally

orthogonal DMD.

2.2.1 Proper Orthogonal Decomposition

The POD is a statistical method commonly used in fluid mechanics for the extrac-

tion and analysis of energy meaningful turbulent structures (Aubry 1991, Berkooz

et al. 1993b). POD was independently derived by a number of individuals, conse-

quently acquiring a variety of names in different fields including Karhunen-Loève

Decomposition, Singular Value Decomposition (SVD) (Golub & Reinsch 1970)

and Principal Components Analysis (PCA) (Kosambi 1943, Loève 1945, Karhunen

1946, Pougachev 1953, Obukbov 1954). POD extracts energy relevant structures

(modes) from set of a stochastic, statistically steady-state turbulent fields, within

a finite time domain, ordering them by their contribution to the total variance

of the physical property being analysed, e.g. velocity (Brevis & Garćıa-Villalba



Literature Review 16

2011). A set of t = 1, 2, . . . , T temporally ordered vector fields,u(x, y; t), is con-

sidered, each of which is of size X × Y . The method requires the construction

of a N × T matrix W from T columns w(t) of length N = XY , each column

corresponding to a column-vector version of a transformed snapshot u(x, y; t). A

POD is obtained by:

W ≡ Φ S CT (2.1)

where S is a matrix of size η×η, (η are the number of modes of the decomposition,

and (·)T represents a transpose matrix operation). The λ = diag(S)2/(N − 1) is

the vector containing the contribution to the total variance of each η. The elements

in λ are ordered in descending rank order, i.e. (λ1 ≥ λ2 ≥ . . . λη ≥ 0). In practical

terms the matrix Φ of size N × η contains the spatial structure of each of the

modes and the matrix C of size η × η contains the coefficients representing the

time evolution of the modes.

2.2.2 Dynamic Mode Decomposition

The DMD algorithm was introduced into fluid mechanics by Schmid (2010) &

Rowley et al. (2009), based on a Arnoldi Eigenvalue algorithm suggested by Ruhe

(1984). However the use of this method, up until now, has been focused on solving

highly theoretical problems e.g. ((Schmid 2010, 2011, Schmid et al. 2009)). Unlike

POD, which is based upon a co-variance matrix, the DMD algorithm approximates

the temporal dynamics by fitting a high-degree polynomial to a Krylov sequence of

flow fields (Mezić 2005, Schmid et al. 2009). For complex flow systems containing

superpositions of turbulent structures and mechanisms, the DMD algorithm can

be used to extract spatial modes with single ‘pure’ frequencies. There are currently

a number of methods by which one can compute a DMD, and the method used in
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this thesis is the popular SVD based method; this approach has been shown to be

less susceptible to experimental noise (Schmid 2010). The algorithm is outlined

below, although the reader is directed to Schmid (2010), Jovanović et al. (2014),

Tu et al. (2014) for the full mathematical description. The DMD algorithm begins

with a similar transformation as POD:

WA = {wt=1, wt=2, . . . , wt=τ}, & WB = {wt=2, wt=3, . . . , wt=T} (2.2)

where τ = (T − 1), and the super-scripts A & B denote the two W matrices of

size N × τ . A SVD of WA is computed, such that:

WA ≡ Φ̃S̃C̃T . (2.3)

where Φ̃, S̃ & C̃ are the POD modes (Eigenvectors), the Eigenvalues and the

temporal coefficients of WA respectively. The matrix F, of size (τ × τ), is created

by:

F = Φ̃WBC̃S̃−1 (2.4)

and its complex Eigenvalues, µi, and Eigenvectors, zi, are computed where i =

1 . . . τ . At this point the method of Jovanović et al. (2014) is used, as this creates

a set of amplitudes for each spatial mode. Following Jovanović et al. (2014) a

Vandermonde matrix is created from the complex eigenvalues:

Qi,j = µ
(j−1)
i (2.5)

where i = 1 . . . τ & j = 1 . . . τ , and the spatial modes are created by Ψ = Φ̃Z,

where Z is the set of complex Eigenvectors previously computed. Furthermore, a

set of amplitudes, Dα, are created and the original input, WA, can be expressed
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as:

WA ≡ ΨDαQ (2.6)

where Dα is of size τ × τ . Similar to a POD Ψ, the spatial are modes of size

N × τ relating to the spatial structure, α = diag(Dα) relates to amplitude of the

temporal coefficients, but not the variance of the DMD mode, and Q contains

the coefficients representing the time evolution of the modes. In practical terms,

the angle between the real and imaginary part of, zi, can be used to describe the

frequency relating to each Ψ and expressed as a frequency (fi) or Strouhal number

(Sti) by:

fi = 2πf0 arg{zi} & Sti = (2πU0f0 arg{zi})/L (2.7)

where, i = 1 . . . τ , L is characteristic length scale, U0 is the bulk velocity and f0

is the sampling frequency.

2.3 Shallow flows and river groynes

The main effect caused by the forcing of a topographical obstruction in a turbulent

shallow flow is the generation of highly energetic coherent structures (Jirka 2001).

Due to the constraints imposed by the water depth on the vertical vortex stretching

process, these coherent structures grow sidewise, developing a mainly horizontal

dynamics. This means that their structure is almost two-dimensional everywhere

on depth, except near the bottom where the boundary layer governs the flow char-

acteristics, i.e they behave as quasi-two-dimensional coherent structures (Q2CS)

(Jirka 2004). Besides the Reynolds number, Q2CS are mainly characterised by

the Shallowness number Sn = CfD/H, where Cf is the friction coefficient, D a

characteristics length scale and H the water depth (Chen & Jirka 1997, Uijttewaal
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2014, Constantinescu et al. 2009). Due to the high energy of Q2CS, their dynam-

ics can be crucial to understand important process such as momentum and mass

exchange, and the dynamic loads exerted by a flow over hydraulics infrastructure.

It is because of this that the description of their spatial characteristics and tempo-

ral dynamics is paramount in the context of environmental process and hydraulic

engineering.

In natural flows such as rivers and estuaries, groynes are installed to prevent bank

scouring (Kuhnle et al. 1999, Koken & Constantinescu 2008), create and enhance

fish habitats (Grift et al. 2003) and to improve navigation (Brevis et al. 2014).

The majority of these natural flows are bounded flows in a domain for which

two dimensions, namely that in the direction of the flow, as well as one traverse

dimension, greatly exceed the third dimension, consequently they fulfil definition

of a shallow flow (Jirka 2004).

Dependent upon the magnitude of the transversal velocity gradient, a topographi-

cal obstruction of any flow can lead to the formation of a mixing layer. In contrast

to in deep flows, the large-scale coherent turbulent structures which populate the

far field of a shallow mixing layer, can almost extend the whole depth of the

flow. As a consequence Q2CS, and their spatio-temporal dynamics, are easily in-

fluenced by bed-friction (Nadaoka & Yagi 1998, Uijttewaal & Tukker 1998, Chu

& Babarutsi 1988, Socolofsky & Jirka 2004). From an environmental perspective

these Q2CS are of great significance, as their spatio-temporal behaviour governs

mass and momentum exchange. Some examples of this can be found in their key

role to predict the concentration of pollutants, nutrients and the rates of sediment

transport (Rhoads & Sukhodolov 2004, Boyer et al. 2006, Sukhodolov & Rhoads

2001, Cheng & Constantinescu 2014).
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Many previous works have investigated the spatio-temporal dynamics of Q2CS

created by plane shear instabilities e.g. (Chu & Babarutsi 1988, Uijttewaal &

Tukker 1998, Rhoads & Sukhodolov 2004), and have shown that due to the effects

of bed-friction the spread/growth rate of a shallow mixing layer is modified. In an

experimental study to investigate the effect of topographical forcing on a shallow

flow, Talstra et al. (2006) found that unlike in a deep flow, (Armaly et al. 1983),

the shallow flow mixing layer bound a second counter rotating recirculation cell.

They also found at the downstream edge of the first recirculation cell there was a

sudden expansion in the mixing layer, which they hypothesised to be associated

to the shearing interface between the two counter rotating cells. In a recent study,

this sudden expansion was also found to occur when a shallow flow was obstructed

by a single lateral groyne, it was also observed that the length of reattachment

of the mixing layer with the wall was protracted compared with the a deep case

(Safarzadeh & Brevis 2016, Safarzadeh et al. 2016). A number of time-averaged

experimental studies have previously investigated this case, but have neither ob-

served or explained this phenomena (Duan et al. 2009, Ahmed et al. 2010, Kadota

& Suzuki 2010, Francis et al. 1968). RANS (k-ω) simulations of Chrisohoides

et al. (2003) observed the dual cell system and found that it was stable but peri-

odically horizontally expanding and contracting. They further found that eddies

from upstream and shed from the tip of the obstacle were engulfed by the second

downstream recirculation cell, and as the mixing layer reattached with the lateral

wall, vorticity was injected back upstream; however they did not observe a sudden

expansion the mixing layer. Safarzadeh & Brevis (2016) recently explained that

due to the anisotropy associated to the flow system, RANS simulations, based on

isotropic closure models, will not be able to simulate the expansion of the mixing

layer or predict the length of reattachment. Other Computational Fluid Dynamics
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(CFD) studies relating to a single groyne have only focused on the turbulent mech-

anisms upstream and in the near wake of the groyne e.g. (Garde et al. 1961, Koken

& Constantinescu 2009, 2008, Paik & Sotiropoulos 2005, Koken 2011), whilst not

directly related to this study it is inferred that these complexities have implica-

tions on the dynamics of the mixing layer downstream. From all of these findings

it is clear that the dynamics of a shallow mixing layer produced in the downstream

wake of a single groyne are complex and non-linear.

2.4 Urban morphology: multi-scale arrays of square

cylinders

Urban morphology presents descriptive and analytical challenges for researchers

in many different disciplines. Even considered only in terms of their physical

structure, cities are very complex systems, teeming with detail and variation; this

makes the modelling of urban morphology not only difficult but computationally

resource-intensive.

The turbulent wake produced by a single square cylinder is a well known fluid

mechanics problem, but it is still of much interest today, especially in the built

environment due to the direct applicability to high-rise buildings (Huber 1988,

Huber et al. 1991). For a square cylinder, unlike a circular one, the separation

points of the flow are fixed, meaning the properties of the wake in a turbulent

flow are relatively insensitive to changes of the Reynolds number (Okajima 1982,

Dutta et al. 2003), ReD=U0D/ν, D is the side length of the square cylinder.

However there are a number other parameters which modify the wake properties.

Significant effects can be caused by changes of the incoming turbulent intensities,
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u′rms/〈u〉. A higher u′rms/〈u〉 induces a rise in the base pressure, leading to a

reduction in the mean drag (Lee 1975). In addition, an increase of the base

pressure can cause a protracted position of the reattachment point of the separated

shear layers (Bearman & Trueman 1972). Another effect of an increased u′rms/〈u〉

is an expansion of the thickness of the separated shear layers (Lee 1975) and a

decrease of the vortex shedding frequency (Batham 1973, Gerrard 1966, Bearman

1967). This evidence suggest that for a constant ReD, the lower the drag, the

furthest downstream the position of the reattachment point, thus the larger the

recirculation bubble.

Another important parameter controlling the properties of the wake is the confine-

ment or blockage ratio, BR=D/B , where B is the width of the channel. Richter

& Naudascher (1976), Mukhopadhyay et al. (1992), Davis et al. (1984) concluded

that the confinement of a cylinder can increase the drag and the vortex shedding

frequency. Based on the reduction of drag, this could imply a decreased size of

the recirculation bubble.

In the context of the flow around two twin square cylinders separated in the span-

wise flow direction, Kolar et al. (1997) found that positioning two square cylinders

close to each other could have an important effect on the properties of the in-

dividuals and combined wake. They found when the cylinders are separated by

spacing SD . 1.1D, they acted as a single bluff body, but with a reduced drag.

At a greater spacing 1.1D . SD . 2.2D the individual wakes were bi-modal, and

directed towards one of the cylinders. Finally when the spacing was SD & 2.2D,

in the near field, the wake of both cylinders acted independently. Analogously,

but in the context of the flow around square cylinders in a longitudinal tandem

arrangement, Liu & Chen (2002), Zhou & Yiu (2006) observed that if two cylin-

ders were placed in a streamwise tandem, the separation affects the properties of
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the furthest downstream wake. At SD . 2.0D the cylinders acted as a single body

and the frequency of vortex shedding spectrum was broadband around the peak

frequency. Increasing the spacing, 2.0D . SD. 3.0D, a recirculation region was

created between the two cylinders. This region intermittently injects vorticity, also

changing the properties of the wake (Lin et al. 2002). Finally SD & 8.0D the two

cylinder acted independently, however the vorticity of the structures shed down-

stream was reduced by the influence of the wake developed upstream. This means

that, in an array, the distribution of elements should produce different resulting

flow structures which should be a function of the gaps between the obstacles, and

also the length scale of the cylinders involved. As a matter of fact previous work

on the interaction between cylinders arranged in a stream- or spanwise orientation

has shown that the wake generated by the largest cylinder dominates the flow,

and that the characteristics of the resulting flow field are a function of the ratio

between the cylinder sizes and the spacing between them (Chen & Shao 2013,

Zhang et al. 2005, Kumar & Vengadesan 2009, Gao et al. 2010, Islam et al. 2017).

Furthermore, even though it is possible to find in the literature studies character-

ising the arrays of square cylinders of uniform scales (Zong & Nepf 2012, Nicolle

& Eames 2011), to the best of these authors knowledge there has been no reported

research on the flow interactions produced by multi-scale arrays.
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2.5 Summary

As discussed in Section 2.1 even for state-of-the-art experimental techniques it is

still possible to acquire images which contain outlier data points. As typically

large amounts of images are collected in a PIV investigation, it is not feasible

to remove the outliers manually. As a consequence there have been a number

of different methods proposed to remove these and replace these outlier. The

most effective are based on a POD, however these techniques are only based on

computationally expensive iterative methods which construct low-order models of

the data to remove detect and remove the outliers.

Section 2.2 derives two modal decomposition techniques, the POD and the DMD.

These methods can be used to determine spatially orthogonal (POD) and tempo-

rally orthogonal (DMD) turbulent structures. In flow cases containing complex

spatial and temporal regions the POD is unable to determine regions of spatial

and temporal coherence. The section also shows that the DMD is not able to

rank resulting modes in terms of their contribution to the total turbulent kinetic

energy, as in a POD.

Section 2.3 describes a spatio-temporal event occurring in the mixing layer of

a shallow flow. Previous works have shown that the two dimensional turbulent

structures relating to this region are extremely important as they govern mass and

momentum exchange and the dynamic loads on hydraulic structures.

Finally, Section 2.4 shows that there has been little or no work investigating groups

of multi-scale square cylinders, which directly relate to the built environment.

Those works which have investigated small groups of square cylinders have found
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that the spatio-temporal behaviours of the downstream wakes are heavily affected

by the spacing and confinement of the cylinders.
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2.6 Aims of the thesis

In this thesis the main concern is the general use of modal decompositions tech-

niques to solve large scale problems associated to Civil Engineering. The general

aim of this thesis is four-fold:

1. Development of experimental methods: Development of a novel POD tech-

nique to accurately remove and replace outliers with increased computational

performance.

2. Application of modal decomposition techniques: Integration of POD and

DMD techniques to improve the identification of shallow flow regions of high

temporal and spatial importance.

3. Improved understanding of the dynamics of shallow flow structures: Inves-

tigation of the spatio-temporal mechanism leading to the sudden expansion

of a mixing layer created by topographical forcing in a shallow flow.

4. Investigation of wakes in the built environment: Characterisation of the

modal changes induced by surrounding elements of the wake of a square

cylinder.



Chapter 3

A rapid non-iterative proper

orthogonal decomposition based

outlier detection and correction

for PIV data

This chapter proposes a novel method of detection and estimation of outliers in

PIV measurements by the modification of the temporal coefficients associated

with a POD of an experimental time series. Using synthetic outliers applied to

two datasets obtained from the John Hopkins Turbulence Database (JHTDB)

(Li et al. 2008) and real PIV vector fields obtained from (Hain & Kähler 2007)

the method is benchmarked against state-of-the-art approaches recently proposed

to remove the influence of outliers. Compared with these methods, the proposed

approach offers an increase in accuracy and robustness for the detection of outliers

and comparable accuracy for their estimation.

27
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3.1 POD outlier Detection & Estimation Method

(PODDEM)

A methodology for the detection and estimation of outliers in every vector field of

a dataset, through the modification of the results of a POD is proposed. In Ap-

pendix A the mathematical reasoning for which is given. Unlike other POD-based

methods, the proposed method is non-iterative, and hence less computationally

expensive. Alternative POD-based methods are built on modifications of Φ, while

the present one relies on changes to C. The present method is based on the obser-

vation that outliers in every vector field in a time series can produce spikes or a

noisy evolution of C (see Fig. 3.2). The hypothesis of this work is that a suitable

correction of C can be used to reduce the influence of outliers in the time series.

As summarised in algorithm 3.1, this is achieved as follows:

(a) A POD, as shown in Eq. (2.1), is performed on the input matrix W (in this

study only two velocity components are used).

(b) A moving average filter is applied to each POD coefficient vector cn, where

n = 1 . . . η. These vectors correspond to column components of C. In this

work a convolution kernel size of 0.01 of the spatially averaged integral time

scale, 0.01τI , was used during the moving averaging procedure. 0.01τI for a

kernel size was found to be effective in the test cases presented in the present

study, as the kernel was large enough to remove the smaller scale noise, but not

large enough to affect the temporal evolution of C, a sensitivity analysis can

be found in the Appendix A (Figs. A.1 & A.2), in which multiple factors the of

τI were investigated on all cases to find an optimum value for both detection
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and estimation. The resulting vectors are stored in CE, an estimated version

of C.

(c) A new WE is created, using Eq. (2.1), WE = ΦS(CE)T .

(d) A matrix W′ is created from |W −WE|, where | · | represents the absolute

value operation.

(e) Similar to previous approaches, a mask matrix M of the same size as W is

introduced, in which each element is assigned the value 1.

(f) The columns of W′ are sorted in descending order. The locations of W′

corresponding to the first tr% (user defined percentage, relating to the ratio of

the number of outliers to total number of vectors in the dataset) of the sorted

W′ are assigned a 0 in M.

(g) Using a simple operation a corrected version Wc of W is obtained: Wc =

W ·M + WE · (1−M), where · corresponds to the inner product operation.

More simply: the valid data, i.e. those with elements of M with value 1, are

retained, while the detected outliers are replaced by those calculated in WE.

3.1.1 Selection of test cases

In this study two datasets from the JHTDB are used for a quantitive assessment.

These data are chosen due to the availability of long time series. 1000 vector fields

are selected for each case, each of them containing 64 × 64 grid points. The first

dataset selected is a subset of a DNS of a channel flow (Graham et al. 2016). The

origin of the selected section is located at x = 18.2, y = −0.99, and z = 6.6. From

that point, 64 points are taken in the x and y positive direction, at a spacing of
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Require: A sequence of T vector fields trans-
formed into a matrix W and a user defined per-
centage tr%.
Output: A matrix Wc with outliers removed.
The columns of Wc can be reshaped to obtain a
filtered version of the sequence of vector fields.

W← {w1, w2 . . . wT},
[Φ,S,C]← SVD(W).
CE ← cEn ← movingaverage(cn, 0.01τI); where n = 1 . . . η,

WE ← ΦSCET ,
W′ ← |W −WE|,
Mij ← 1,
Mij ← 0, corresponding to locations of top tr% of sort(Wij),
Wc ←W ·M + WE · (1−M).

Algorithm 3.1: PODDEM

0.01. The selected domain size is equal to 8π × 2π × 3π. For the construction of

the time series, this region was sampled with a δt = 0.012; on average the dataset

contains 9 integral time scales, τI = 9. The second dataset is a subset from the

DNS of a forced homogenous isotropic turbulence. The origin of the selected region

was located at x = 0, y = 0, and z = 0. From the origin, 64 points are taken in

the x and z positive direction, at a spacing of 0.015. The total size of the sampled

region is 2π × 2π × 2π. The temporal sampling is performed with a δt = 0.012

and on average 6 integral time scales τI = 6.

According to Shinneeb et al. (2004), PIV measurements can contain two types of

outliers: single spurious vectors, and clusters of spurious vectors, the latter of the

two being more common. As the datasets obtained from JHTDB are outlier-free,

synthetic outliers were introduced in the time series. As the synthetic data is added

to the data it is possible to quantify the accuracy of the detection and estimation

methods. For comparison purposes the same method of synthesising outliers de-

veloped by Wang et al. (2015) is used to benchmark the proposed method. An
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outlier rate is introduced, Q, defined as the percentage of outliers in each vector

field. In the case of single distributed outliers, a random location is obtained from

a uniform random function. Similarly to previous works, the magnitude of the x

and y components of these outlier vectors are drawn independently from a uniform

distribution [−umax, umax], where umax is the maximum magnitude of velocity in

the entire data. In the case of clusters of outliers, an analogous approach to the

one presented by Shinneeb et al. (2004) is adopted, in which, a parameter Nc is

also introduced. This parameter defines the number of vectors involved in a cer-

tain cluster of size G(Nc); however, the total number of outlier vectors in each

snapshot remains defined by Q. A distribution similar to the one used by Garcia

(2011) is adopted for the determination of the size of the clusters:

G(Nc) = A · exp(−N2
c /σ

2) (3.1)

where σ is the standard deviation of the size distribution, and A is a parameter

defining the size of a cluster corresponding to the mean number of elements. Dif-

ferent sizes of outliers are distributed throughout the datasets. As in Wang et al.

(2015), the vectors within a cluster also are of a similar magnitude and values

of A = 0.4 and σ = 2.8 are used. Several cases are tested in this work, involv-

ing Q = 5% and Q = 15%. For these outlier rates, outlier clusters in the range

1 ≤ Nc ≤ 7 are analysed. In Fig. 3.1, an example of a generated synthetic vector

field is presented, where Q = 5% and Nc = 1.

Fig. 3.2 shows the spatial and temporal structure of the two leading POD modes

for both test cases. It also shows the changes introduced by the outliers on the

modes structure when Q = 5% and Nc = 3 are introduced. In both cases, the

general patterns in the leading spatial modes remain as in the original time series,
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Figure 3.1: Synthetic vector fields from JHTDB numerical time series. Syn-
thetic outliers are highlighted in red. Q = 5% and Nc = 1 have been used for
these examples. (a) & (b) Two-dimensional vector fields and longitudinal veloc-
ity magnitude for channel flow, respectively. (c) & (d) Two-dimensional vector
fields and longitudinal velocity magnitude for isotropic turbulence, where U is

the streamwise component. The 500th vector field in the sequence is shown.
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but with a grainier structure. Qualitatively speaking, a more obvious effect of the

outliers in the POD can be observed in the temporal POD coefficients. In both

time series, it is observed that temporal behaviour can be effected by noise. While

it is clear that, noise reduction in the two-dimensional spatial structure is possible,

the strategy of correcting the temporal behaviour of the modes is followed in this

work, leading to the development of PODDEM .

To supplement the quantitive assessment, a third ‘real’ experimental dataset is

used, namely that of of the turbulent flow over periodic hills Hain & Kähler (2007).

This data set contains single frame particle images acquired in the central plane

of the channel, using hollow glass particles of d = 10µm illuminated with a 5W

Nd:YAG laser and recorded by means of a Phantom v12 camera. PIV processing is

undertaken on 1000 sequential images using PIVLab (Thielicke & Stamhuis 2014);

analogous to Hain & Kähler (2007) two passes are undertaken using interrogation

windows of size 64 × 64 and 32 × 32 respectively, each with a 50% overlap. It is

found that, on average, the data set contains τI = 6. No synthetic outliers are

introduced to the dataset.

3.1.2 Quantification of algorithm performance

An assessment of the algorithm’s performance requires the introduction of criteria

for error quantification. All elements are considered to establish the effect of false

positive detections and following estimations on the error statistics. Following the

criteria defined by Wang et al. (2015), the relative error εi between an unmodified

element (obtained prior to the application of synthetic outliers) of the matrix W,
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wi, and its estimated value w′i, can be defined as:

εi =
|w′i − wi|
|wi|

, (3.2)

where the sub-index i = 1...NT represents individual elements of W. This means

that the double-averaged error, i.e. spatial and temporal averaged relative error,

εi, can be calculated as:

εi =
1

NT

NT∑
i=1

εi, (3.3)

Using this definition the spatio-temporal root mean square (RMS) of the relative

error can be calculated as:

εRMS =

√√√√ 1

NT

NT∑
i=1

(εi − εi)2. (3.4)

Hence Eq. (3.3) is a means of characterising the accuracy of the various methods,

whilst Eq. (3.4) is a measure of precision. A number of methods are chosen in

order to benchmark the estimation functionality of PODDEM. The first method

is the so-called POD-OC (Wang et al. 2015). As POD-OC has shown an increased

accuracy in comparison with standard statistical methods, e.g. global-mean and

linear interpolation, these latter methods are omitted from further consideration.

The second comparative method is the All-in-one smoothing function of Garcia

(2010), which is implemented using the MATLAB function ‘smoothn’. Kriging

has also been used for benchmarking, as this method has shown good performance

in some of the tests presented by Wang et al. (2015) and Gunes et al. (2006). This

method has been implemented in the DACE toolbox for MATLAB (Nielsen et al.

2002), with a second-order polynomial regression and a Gaussian correlation model
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(Raben et al. 2012). The detection performance of the PODDEM is quantified by

benchmarking the result with the POD-OC method (Wang et al. 2015) and with

the AWAMT method introduced by Masullo & Theunissen (2016). As Kriging is

solely an interpolation method and AWAMT is purely a detection method, these

two methods are coupled when examining estimation and detection.

N.B. the comparisons of POD-OC and AWAMT are computed using algorithms

obtained from the authors. For AWAMT the user defined for the coherence thresh-

old, background error and averaging interval are set to the default settings, as

outlined in Masullo & Theunissen (2016) (2, 0.1 and 0.3 respectively.)

3.2 Results

3.2.1 Detection ability

Figure 3.3 shows a comparison of the methods outlined above when used to identify

the location of the synthetic outliers introduced in the time series. In this work,

a correct detection is defined as the detection of a velocity vector belonging to

the introduced list of synthetic outliers, while the performance is measured as a

percentage of the total number of introduced outliers. A false positive is defined

as a velocity vector detected as outlier, but not belonging to the original outlier

list; similarly, the performance is measured as a percentage of the total number

of introduced synthetic outliers. Only a subset of the estimation methods also

have the capability to detect outliers, and thus only PODDEM, POD-OC and

the AWAMT methods are benchmarked in this section. As shown in Fig. 3.3 &

Fig. 3.4, PODDEM performs similarly to the POD-OC for the detection of correct

outliers positions. However PODDEM shows a higher reliability as it has a lower
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rate of detection of false positives. Of all the benchmarked algorithms, AWAMT

detects the least false positives, but as the size of Nc (the size of the cluster),

is increased AWAMT becomes less effective in detection. A noticeable benefit of

PODDEM is its constant performance in detection, as only a minor difference in

its detection ability is seen between outlier rates and test cases.

3.2.2 Estimation ability

To fully scrutinise the different methods they are all examined twice. Firstly, the

methods are examined purely on the basis of their estimation ability i.e where all

of locations of the outlier points are known. Secondly, the methods are examined

on their coupled estimation and detection ability i.e. where the locations of the

outlier points are unknown. The accuracy (ε) and precision (εRMS) of the methods

are presented in Fig. 3.5 & Fig. 3.6. Fig. 3.5 shows that when all of the locations of

outliers are known and the methods are used solely for interpolation, POD-OC and

Kriging for clusters Nc ≤ 4, are the most accurate and precise methods. However,

with a higher outlier rate (Q = 15%), for clusters i.e. Nc > 4, PODDEM is

the more accurate and precise. For detection, the accuracy of PODDEM remains

constant, regardless of the size of Nc. Fig. 3.6 demonstrates that, even when

coupled with the detection functionality the PODDEM’s error remains constant.

Between the test cases the results for PODDEM are similar, unlike any of the other

methods; this suggests that the accuracy of PODDEM could be independent of the

test case, and only dependent on the outlier rate Q. A qualitative comparison of

the spatial characteristics of the estimation by the different methods is presented

in Fig. 3.7. It is clear from the figure that the small scale details of the flow

are retained by both POD based methods. The AWAMT method has struggled to
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Figure 3.4: Example of the detection on a single vector field using the bench-
marked detection methods. For this, a Q = 5%, Nc = 3 have been used. (a)
Channel flow (b) isotropic flow. The black vectors show the original flow, blue
show the applied synthetic outliers, green show the correct detections and red
show the false positive detections. The 500th vector field in the sequence is

shown.
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detect all of the outlier clusters, resulting in a the vector field which still contains a

number of errors. The All-in-one method clearly filters small scale structures thus

producing a blurred estimation of the vector field. (N.B. the All-in-one method

can be used to interpolate missing values, as shown or to remove influences of

outliers making a new estimate of the whole field, as shown in Fig. 3.7.)

An estimated computational efficiency of the calculation under the current im-

plementation is shown in Table 3.1. Of course, a computational performance

assessment depends on many factors, such as the programming technique and

programming language. So as to exclude such variables, the computations were

all undertaken on the same computer, using MATLAB R2015b, and restricted to a

single core. The results are normalised with respect to the PODDEM method. It

is found that under these conditions, the PODDEM’s time efficiency is comparable

to that for the All-in-one method and far superior to that for other methods.

PODDEM POD-OC AWAMT & Krig All-in-one
Channel 1.0 55 4073.6 1.1
Isotropic 1.0 68 2905.8 0.8

Table 3.1: Comparison of computing time between PODDEM and benchmark
algorithms. The values are normalised with respect to the PODDEM calculation

time.

The SVD which is at the core of the PODDEM and POD-OC methods is mem-

ory intensive. As illustrated by the test cases where only between 6 - 9 integral

time scales are used, the dataset could be temporally partitioned (assuming it is

statically converged) if memory is limited. PODDEM offers a substantial time

benefit compared with POD-OC, which requires a minimum of two SVDs while

PODDEM only ever requires one.
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Figure 3.7: Example of the estimated instantaneous longitudinal velocity com-
ponent after the application of the benchmarked estimation methods. For this,
a Q = 5%, Nc = 3 have been used. (a) Channel flow (b) isotropic flow. The
original snapshot, with no outliers, i.e. Q = 0%, and with Q = 5% are shown
in the top row for reference, where U is the streamwise component. The 500th

vector field in the sequence is shown.
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3.2.3 Detection and estimation on a single vector field

In this section the detection and estimation capabilities of the proposed algorithm

are tested not for a sequence of vector fields, but instead for a single contaminated

field. This case has been selected to demonstrate that PODDEM can still be

used if time resolute data is not available. PODDEM is benchmarked in a manner

analogous to the benchmark performed by Wang et al. (2015). A single vector field

(500th) is sub-divided into multiple sub-fields, which are used to build an ensemble

of observations. Wang et al. (2015) showed that the size of the number of sub-fields

is critical: a larger size of the sub-fields will offer more spatial information, but

will reduce the number of ensemble components. This means the total number of

modes involved in the decomposition of the ensemble will be reduced. According

to Wang et al. (2015), the ensemble construction is more effective for filtering

when the ratio between the sub-fields size, (nb ×mb), and the size of the original

snapshot (N×M), RB, is between 0.2 and 0.5. Wang et al. (2015) also recommends

creating the ensemble for overlapping sub-fields i.e. a one vector element shift along

both x and y, thereby increasing number of fields; accordingly, a sub-field of size

nb ×mb = 16× 16 was chosen.

The results of the detection assessment are shown in Fig. 3.8. Much as in the

results in previous section, PODDEM shows a better detection performance than

POD-OC in terms of the percentage of correct outliers identified. Whilst the

AWAMT method does not detect many false positives, its detection ability de-

creases as the cluster size increases again. Between the POD-based methods, a

difference can be observed when the percentages of false positives are compared.

The higher reliability of PODDEM in this regard is evident from the results for

both channel and isotropic case flow.
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The errors in estimating the detected outliers for the single contaminated vector

field are shown in Fig. 3.9. It is observed from the figure that PODDEM offers

the most robust, accurate and precise estimation of the vector field. In particular,

the improvement in the precision statistics when using PODDEM are clear. A

qualitative comparison of the spatial characteristics is presented in Fig. 3.10.

The results of the estimation highlight some of the limitations of the POD based

methods for the estimation of a single frame. However, the quantitative and

qualitative results show that PODDEM improves estimates compared to those

obtained using POD-OC, AWAMT & Kriging and the All-in-one method.

3.2.4 PIV data

To supplement the quantitative analysis, the same methods are applied to real PIV

data containing real outliers. As the locations of outlier vectors are not known,

a formal analysis is not possible. As shown in Fig. 3.11, qualitatively speaking

all of the methods perform well apart from the All-in-one method, which again

removes/blurs the smaller spatial scale. Unfortunately, the PIV data contained

no large clusters of outliers which may have highlighted PODDEM’s ability. From

Fig 3.11 it is clear that the AWAMT method and Kriging is favourable. However,

PODDEM detects all of the outlier points, especially those which could have a

statistical impact, which POD-OC does not. If the data had contained large

groups of outlier points, as demonstrated earlier, the results for AWAMT method

and Kriging may not have been as favourable.

To further qualitatively demonstrate the detection and estimation capabilities of

the PODDEM on a single field, it is applied to the real PIV data. In Fig. 3.12

vector field (500th) of the real PIV data is selected and the PODDEM is compared
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Figure 3.10: Estimation of the vector field associated to a single contaminated
snapshot. The top rows show the original frame, Q = 0% and the contaminated
frames with Q = 5% of outliers and Nc = 3. The bottom row shows the
estimation obtained using the PODDEM and POD-OC. (a) Results for channel
flow. (b) Results for the isotropic flow. The vector field has been transformed
in an ensemble by using sub-fields of size nb × mb = 16 × 16, where U is the

streamwise component. The 500th vector field in the sequence is shown.
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Figure 3.11: An example of the application of PODDEM, POD-OC, All-in-
one and AWAMT & Kriging to real PIV data to a time series of data. Where
U∗ is defined at the velocity magnitude. As previous the 500th vector field is

presented.
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with POD-OC, where nb × mb = 16 × 16. From Fig. 3.12 it is clear that the

PODDEM out performs the POD-OC in both detection and estimation.

3.3 Discussions

The results show that there are clear advantages to using spatio-temporal informa-

tion for the detection and estimation of outliers. As demonstrated by the present

study, a POD-based technique can be approached using either a modification of

the spatial modes (POD-OC) or a modification of the temporal coefficients (POD-

DEM). Figures. 3.3 & 3.4 in section 3 further demonstrates that there are clear

benefits to modifying the temporal coefficients (PODDEM) for detection, espe-

cially in the case of large clusters of outliers. Figures 3.5, 3.6 & 3.7, show the

estimation ability of PODDEM may not always be the optimal choice for smaller

clusters of outliers, a user could opt to use a hybrid of a Kriging based method for

small scale estimations and PODDEM for large scale estimations. This may be

especially beneficial in the case of single vector fields. Furthermore, if time is not

a limiting factor as user may opt to use the Adaptive Gappy-POD formulation

Raben et al. (2012), however this method is extremely computationally expensive

and impractical for large datasets.

3.3.1 POD-OC modifications

From the authors’ investigations, it is found that the ‘robust parameter’, a = 3,

which is proposed by Wang et al. (2015) for the POD-OC algorithm is not optimal,

and that changes to a can improve the performance of POD-OC. A sensitivity

analysis of a is shown in Fig. 3.13. As PODDEM also requires a user defined
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Figure 3.12: An example of the application of PODDEM, POD-OC, single
frame of real PIV data (vector field 500th). Where U∗ is defined at the velocity
magnitude. The vector field has been transformed in an ensemble by using

sub-fields of size nb ×mb = 16× 16.
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tives. Bottom panels show ε (accuracy) and εRMS (precision).
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percentage, tr, which was previously introduced as dependent on the outlier rate,

Q, a sensitivity analysis of tr is also shown on the same figure, but on different

axes. For the sensitivity analysis, a subset of four test cases are selected, two

from each dataset (channel flow and isotropic turbulence), using two outlier rates

Q = 5% and Q = 15%, with an Nc = 5. Fig. 3.13 demonstrated that POD-OC

has an optimal performance for a ≈ 4.5. If this parameter is used, the correct rate

of detection is increased, and rate of false detection minimised. The dependence

of tr with Q is also clear in the results. The optimum value of tr in PODDEM is

defined only by Q, which is a parameter that can be estimated based on a visual

inspection of the PIV snapshots. However a user may adopt a value of Q = 5% as

suggested by Westerweel & Scarano (2005b).

3.3.2 Further advancements to the PODDEM algorithm

The proposed PODDEM algorithm is based on the premise of ‘smoothing’ outliers

within the temporal coefficients. This is ideal when every vector field contains an

outlier; realistically however, not all vector fields will contain outliers. As shown

in Fig. 3.14 when only 100 random frames contain outliers (i.e. 10% Nc = 3 &

Q = 5%), at the temporal locations relating to the vector fields containing outliers,

spikes are perturbed in to the temporal coefficients. By imposing a spike detec-

tion algorithm, instead of a moving average, such as the ‘Nikora-Goring method’,

typically used to remove spikes from acoustic doppler velocimetry data, Goring

& Nikora (2002), the spikes can be removed without effecting other vector fields

devoid of outliers. This is particularly beneficial where the temporal resolution of

the dataset it low.
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Figure 3.14: An example of outliers, Nc = 3 & Q = 5%, applied to 100
random frames within the time series (vector field 18 shown). It is seen their

locations perturb into the temporal coefficients.



A rapid non-iterative proper orthogonal decomposition based outlier detection and
correction for PIV data 55

3.4 Chapter conclusions

This chapter proposes a novel, rapid and non-iterative POD method for the

detection and estimation of outliers (PODDEM) based on modifications of the

temporal coefficients. By introducing synthetic outliers to time series extracted

from the John Hopkins Turbulence Database, and to real PIV data, the detec-

tion and estimation abilities of PODDEM are benchmarked against state-of-the-

art spatial/spatio-temporal methods, including POD-OC. From the results it is

observed that there are clear advantages from using the POD (spatio-temporal)

methods for the detection and estimation of outliers. Whilst the PODDEM is not

always the most the accurate the robustness and time benefits clearly outperform

other state-of-the-art methods. A sensitivity analysis reveals that a modification

of the temporal coefficients is beneficial in robustness for the detection of outliers

compared with modifications of spatial modes, as in POD-OC. Furthermore, for

cases which are not time resolved, PODDEM can be applied to a single vector

field. Compared with state-of-the-art spatial estimation and detection methods,

PODDEM is able to improve the detection of outliers for single frames without

decreasing the estimation accuracy.



Chapter 4

Implications of the selection of a

particular modal decomposition

technique for the analysis of

shallow flows

This chapter deals with the capabilities of two synoptic modal decomposition

techniques for the identification of the spatial patterns and temporal dynamics of

coherent structures in shallow flows. Using two different experimental datasets it

is shown that due to the linear behaviour of large-scale, quasi-two-dimensional flow

structures, there is almost no differences in the identification of dominant modes

between the results obtained from a traditional Proper Orthogonal Decomposition

and the more recently developed Dynamic Mode Decomposition. However, it is

also shown that non-linear dynamics can arise in the transition of these structures

to a quasi-two-dimensional behaviour, which can result in the Proper Orthogonal

Decomposition identifying structures composed of multi-frequencies, a sign of a

56
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convoluted dynamics. Thus Dynamic Mode Decomposition is recommended in-

stead for the analysis of such phenomena. In addition, this chapter introduces

a simple ranking methodology for the use of the Dynamic Mode Decomposition

technique in shallow flows, which is based on the results of the Proper Orthogonal

Decomposition.

4.1 Introduction

The aim of this chapter is to not only demonstrate the potential utility of DMD

in hydraulics research, but also to show how it can be complemented, and the

interpretation of its results enhanced, through the use of information from POD.

Overviews of these two techniques are provided in Chapter 2. Results where DMD

and POD largely return the same behaviours are then presented, before considering

a case in greater detail where more complex flow dynamics requires the use of the

two techniques in parallel.

From Eq. 2.7, it is clear that each of the modes obtained by DMD relates to a

unique peak frequency. If the Fourier spectrum of the POD coefficients is used to

identify the frequency of dominant but intertwined structures, these frequencies

can be used to identify their spatial structure from the DMD results. There is a

main restriction for this methodology. The technique can be applied only for the

identification of POD modes in shallow flows or in cases where a flow structure

clearly governs the dynamics. In these flows, peak frequencies are expected to

be clearly identified from the Fourier spectrum of the temporal POD coefficients.

These conditions do not hold, for instance, in three-dimensional turbulent flows,

where the contribution of low order modes can be of a similar magnitude to the

contribution of higher order ones. Thus, any frequency extracted from the Fourier
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spectrum might be misleading due to the lack of capabilities of POD to separate

non-linear interactions of structures with similar contributions to the variance of

the signal. It is because of this that the link between POD and DMD introduced

here, is only presented in the context of shallow flows.

4.2 Flow visualisations of a shallow cylinder wake

A first experimental dataset was selected to showcase hydrodynamic conditions

where the DMD does not improve the identification of Q2CS in the low order

modes, obtained by POD. The dataset was obtained from the experimental work

of Brevis & Garćıa-Villalba (2011), in which the POD of a flow visualisation was

used to identify dominant frequencies in the wake of a cylinder in a shallow flow.

All experimental details can be found in the work of Brevis & Garćıa-Villalba

(2011). Fig. 4.1 shows the results obtained from the POD analysis. In this case

modes Φ1&2 were paired indicating a periodic shedding behaviour with a different

phase in these two modes. Fig. 4.1 only shows Φ1 as reference. The modes

reveal the advection of patches of dye transported by vortical structures. Modes

Φ3&4 show a different structure, although also paired, which according to Brevis

& Garćıa-Villalba (2011), corresponds to the spanwise alternated motion of the

vortex behind the cylinder. The evolution of the temporal coefficients is clearly

sinusoidal, thus a peak at f={0.2Hz & 0.4Hz} can be observed in the Fourier

spectra for modes Φ1&2 and Φ3&4. As shown by Brevis & Garćıa-Villalba (2011)

these two frequencies also relate to two peaks found in the Fourier Spectrum of

Laser Doppler Anemometer (LDA) measurements of the same case. Due to the

size of the region analysed, it is expected that the Q2CS will govern most for

the spatial flow features. In addition Sn=0.06, thus it is expected to see a highly
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linear dynamic of the dominant modes. This can be seen in the results of the DMD

analysis shown in Fig. 4.2, where the spatial structure of the modes is very similar

to that obtained by the POD. In both cases the coefficients show a sinusoidal

shape, although the most noticeable difference is the sharper peak in the Fourier

spectra in Fig. 4.2, highlighting the better localisation of the DMD method.

4.3 Shallow flow obstructed by a groyne

A shallow turbulent flow obstructed by a single groyne is a common occurrence in

fluvial shallow flow hydraulics. The selected case corresponds to a flow topology

similar to the one described by Talstra (2011). The flow that developed down-

stream of the obstacle is characterised by the formation of a shear layer bounding

a low velocity recirculation region formed by a primary clockwise gyre, located in

the downstream part of the recirculation zone, and an anti-clockwise secondary

gyre, of smaller size, located immediately downstream the obstacle. The struc-

tures populating the shear layer in the near field, are expected to be generated

by both vortex shedding from the tip of the obstacle, and by the strong velocity

gradient produced between the main channel and the secondary gyre interface.

From a general observation of the derived vorticity fields sequence, it is expected

that the vortices associated with the velocity gradient are of a larger size as the

mechanism of generation seems to be more energetic than vortex shedding. Even

though Sn ≤ 0.6, the region analysed here is the near field, where vortices are

not expected to behave as a Q2CS, but are in a transitional stage, still governed

by quasi two-dimensional features, but also influenced by three dimensional ones.

It is in this region that one compares the POD and DMD performance and to

introduce their integration.
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Figure 4.1: POD results of flow visualisations of a shallow cylinder wake.
The top row shows the spatial modes Φ1 & Φ3. The central row shows the
temporal coefficients C1 & C3, where the grey line denotes the mode which
forms the conjugate pair. The bottom row shows Fourier Power Spectrum of
the temporal coefficients C1 & C3 (grey). The red dashed lines highlight the

frequencies extracted using the DMD.
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Figure 4.2: DMD results of flow visualisations of a shallow cylinder wake.
The top row shows the spatial modes Ψf=0.2Hz & Ψf=0.4Hz. The central row
shows the real part of the temporal coefficients Qf=0.2Hz & Qf=0.4Hz, where
the dashed lines denotes the imaginary part. The bottom row shows the Fourier

spectrum of the temporal coefficients Qf=0.2Hz & Qf=0.4Hz (grey).

x
yFlow Camera

Primary Gyre Secondary Gyre

Figure 4.3: Illustration of the experimental setup of the single groyne. Mea-
surement section highlighted in white. (Not to scale.)
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The experiments were carried out in a tilting shallow flume of 18 m × 1.82 m

located at the Institute for Hydromechanics, Karlsruhe Institute of Technology,

Germany. A single rectangular obstacle of length D= 0.25 m and cross section

0.05 × 0.05 m was placed perpendicular to the main flow direction, at the side-

wall of the flume, and at 12 m downstream from the channel entrance. The

flow rate Q0 was set to 0.0135 m3s−1, and the flume slope was inclined to 0.001

m/m resulting in a water depth H=0.04 m (see Fig. 4.3). The Reynolds number

was, Re =U0H/ν=29680. These conditions gave a low Froude number, Fr =

U0/
√
gH = 0.29 , where g is the acceleration of gravity, which ensured minimal

surface disturbances (Uijttewaal 2005). Using the method of Zigrang & Sylvester

(1982), the friction factor was estimated to be 0.03, thus Sc = 0.18 the dynamic

of the Q2CS was quantified by means of Large Scale Particle Image Velocimetry

(LSPIV) measurement. The PIV system consisted of a camera with a 1200×1200

pixel CCD-sensor and 12 bit resolution. The flow was seeded with floating 2.5 mm

particles using a pneumatic particle dispenser. It has been previously shown that

the use of these tracer particles is effective in capturing the large scale turbulent

motions (Weitbrecht et al. 2002). The camera was mounted directly above the

water surface at a height of 1.5 m and was set to capture an area of 0.5× 0.45 m

downstream of the obstacle. A total of 700 Snapshots were recorded with an

acquisition frequency of 7.5 Hz, relating to a spatial average of 15 integral time

scales, to ensure the statistics were fully converged. The image sequence was

analysed using the PIV package for Linux GPIV (van der Graaf 2010), using

multi-pass and image deformation techniques (Scarano 2002), and the raw PIV

results were filtered using the PODDEM algorithm (Higham et al. 2016).

Both the POD and DMD calculations were undertaken on all 700 snapshots. The

POD was calculated over the snapshots of the fluctuating velocity field, while
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the DMD was performed over the instantaneous velocity snapshots, for reasons

discussed in Chapter 2.

In Fig. 4.5 the first two POD modes, Φ1&2, of the vorticity field are presented.

These two modes have similar energy, contributing to ∼35% of the total variance.

As shown by Rempfer & Fasel (1994) and Brevis & Garćıa-Villalba (2011), two

modes of similar energy can show analogous, but shifted, spatial and temporal

features. In this particular case, these shifted features appear to be related, as

expected, to the advection of vortices resulting from a Kelvin-Helmholtz instabil-

ity. Also in Fig. 4.5 the temporal coefficients, C1&2, of the first two modes are

presented. The evolution of the coefficients appears to correspond to the presence

of multiple dynamical processes. This is further revealed by the Fourier spec-

trum of C1&2, which shows the presence of a broad band of frequencies but with

clear peaks, at different energy levels, and frequencies of f={0.21Hz, 0.32Hz &

0.39Hz}. After performing the DMD analysis on the data, the modes associated

to these peak frequencies were identified. The properties of these modes are shown

in Fig. 4.6, where the upper panels show the real part of each spatial mode, and

the real (solid line) and imaginary (grey line) temporal coefficients are shown in

the panels underneath. The bottom panel highlights how sharply the identified

frequencies are expressed in the DMD modes. In Fig. 4.6 the first spatial DMD

mode, Ψf=0.21Hz, resembles the structures seen in the two first POD modes, and

as shown in subsequent work, not presented here, that this is related to a flapping

motion of the shear layer. The second mode Ψf=0.32Hz reveals the presence of an

advecting motion along the shear layer. Finally the third mode Ψf=0.39Hz shows

structures of smaller size but with about twice the frequency of the first mode

which are shed from the tip of the obstacle. These mechanisms are summarised

in Fig. 4.4. This example highlights the advantages of the presented approach
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Figure 4.4: Schematic of groyne mechanism. Grey circles denote structures
shed from the tip of the obstacle (f=0.39Hz), black circles denote the advection
of structures along the shear layer (f=0.32Hz) and the red arrow denotes the

flapping motion (f=0.21Hz).

of combining the DMD algorithm with a POD based search criterion. Because

turbulent shear layer formulation and eddy shedding are typically complex and

nonlinear, a mixing of frequencies is clear in the POD temporal coefficients. Using

DMD, one can seek these frequencies and discern the flow processes that drive this

dynamic behaviour.

4.4 Chapter conclusions

In this chapter a methodology has been introduced for enhancing understanding

of fluvial and hydraulic processes in shallow flows using two modal decomposition

methods. The physical basis for the approach derives from the fact that the POD

undertakes a decomposition that is proportional to the variance in the data and,

consequently, is related to energy or enstrophy in the measurements. However, for

complex flows, POD mixes together multiple frequencies. The Fourier spectrum

of a POD mode provides the information to search through the DMD to find the

relevant frequencies. The spatial DMD modes corresponding to these frequencies

can then be used to elucidate the relevant mechanisms. The application of the

method is discussed in terms of flows where the low order modes which make a
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Figure 4.5: POD results of the vorticity field of the shear layer generated
by a lateral groyne in a shallow flow (groyne highlighted in white). The top
row shows the time averaged vorticity field and the spatial modes, Φ1 & Φ2

. The central row shows the temporal coefficients C1 & C2, where the grey
line denotes the mode which forms the conjugate pair. The bottom row shows
Fourier Power Spectrum of the temporal coefficients C1 & C2 (grey). The red

dashed lines highlight the frequencies extracted using the DMD.
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Figure 4.6: DMD results of the vorticity field of the shear layer generated
by a lateral groyne in a shallow flow. The top row shows the spatial modes
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part and the grey line is the imaginary part. The bottom row shows the Fourier

spectrum of the temporal coefficients
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very large contribution to the total variance. The results of the test cases agree

with the expected performance of the decomposition methods. POD shows great

potential to explain the dynamics of Q2CS as their behaviour is linear in the far

field. However it is shown that in the near field, where vortices are in transition

towards a Q2CS behaviour, POD has the potential to convolve the dynamics of

different flow structures. Although their spatial structure can be extracted from

the signal if their associated frequencies are identified and then extracted from

the DMD results. The search criteria proposed here is not expected to be valid

for three-dimensional flows because of the linear nature of the additive separation.

However, for shallow flows, it improves existing methods for extracting physically

significant turbulence behaviour from experimental or numerical datasets based

on modal decompositions.



Chapter 5

Using modal decompositions to

explain the sudden expansion of

the mixing layer in the wake of a

groyne in a shallow flow

The sudden expansion of the mixing layer created in the wake of a single groyne

is investigated using Particle Image Velocimetry. In the region of the sudden ex-

pansion a patch of high Reynolds shear stresses are observed. Using low-order

representations, created from a Dynamic Mode Decomposition and a search crite-

ria based on a Proper Orthogonal Decomposition, the spatio-temporal mechanism

of the sudden expansion is investigated. This chapter demonstrates the sudden

expansion is created by the periodic coalescence of eddies. These eddies originate

from the upstream separation and the tip of the groyne and merge with recirculat-

ing eddies created, downstream of the groyne, at the interface of the mixing layer

and the lateral wall.

68
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5.1 Introduction

The main goal of this chapter is to investigate the spatio-temporal mechanisms

and Q2CS (quasi-two-dimensional coherent structures) relating to the sudden ex-

pansion of the shallow mixing layer. Whilst, the occurrence of this has been

previously observed, the physics leading to it has not. Such an interpretation of

the physics is important, as this understanding will help one to hypothesise how

different flow and boundary conditions will affect the formation and dynamics of

the sudden expansion. This is particularly important from an environmental per-

spective as the increased moment fluxes relating to this phenomenon can lead to

enhanced scouring / mixing processes. To investigate these mechanisms an ex-

perimental PIV study is undertaken. To describe the spatio-temporal mechanism

a low-order reconstruction of the flow is made from a DMD based on the search

criteria outlined in the in Chapter 4.

5.2 Experimental setup

The experimental flow conditions in this chapter is the same as in Chapter 4. To

capture the large-scale turbulent structures, a planar Particle Image Velocimetry

(PIV) measurement system was used. The PIV system consisted of an industrial

grade camera with a 1200×1200 CCD-sensor with 12 bit resolution. The flow

was seeded with floating 2.5 mm hexagonal polyester particles using a pneumatic

particle dispenser. In a shallow flow floating particles have previously been shown

to be effective in capturing the large scale turbulent motions by (Weitbrecht et al.

2002). The camera was mounted directly above the water surface at a height

of 1.5 m and was set to capture an area of 150 × 45 cm with 5 cm overlapping
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between upstream and downstream images. Measurements were conducted in

eight consecutive planes, one upstream of the obstacle and seven downstream.In

each position snapshots were recorded at an acquisition frequency of 37 Hz. The

image sequence was analysed using the PIV package for Linux GPIV van der

Graaf (2010), using multi-pass and image deformation techniques. As discussed

by Huang et al. (1997) digital PIV often has an associated error, this error can

be associated to the seeding distribution. The work of (Higham et al. 2016) also

shows outlier vectors can increase this error. In the present study it is estimated

these errors are approximately 4%. To reduce the influence of the outlier error the

PODDEM algorithm (Higham et al. 2016) was implemented (see Fig. 5.1).

Measurment 

Planes

x
y

Flow

Groyne

Camera

1 2 3 4 5 6 7 8
Figure 5.1: Sketch of the experimental setup (not to scale)

5.3 Results

5.3.1 Time-averaged statistics

As previously outlined, the emphasis of this chapter is to describe the mechanisms

underpinning the sudden expansion of the mixing layer. Before investigating the

spatio-temporal mechanisms, time-averaged statistics are used to find its location

and investigate any related turbulent properties. Time-averaged statistics are

created separately from 8 PIV planes, each obtained from 21,000 velocity fields.
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The co-ordinate system is normalised by the length of the groyne, L, and the

axes are termed x/L and y/L. The co-ordinate system originates in the x-direction

at the centre of the groyne and in the y-direction where the groyne meets the

wall. The data obtained are two component velocity fields u (x-direction) and

v (y-direction), see Fig. 5.1. Fig. 5.2 presents a time-averaged overview of the

flow system, where (a) shows the time averaged streamwise velocity component

normalised by the bulk velocity U0, (b) shows the time averaged spanwise velocity

component normalised by U0 and (c) Ω normalised by its spatial-temporal average,

Ω0. All figures are overlaid by the mean streamlines.

As shown in Fig. 5.2 as the flow approaches the groyne it separates. The separa-

tion of the flow creates a mixing layer bounding two counter rotating recirculation

zones, which reattaches with the lateral wall at x/L∼ 11. The first counter-

clockwise rotating recirculation cell extends the whole spanwise length of the ob-

stacle (y/L= 1) and three obstacle lengths downstream (x/L= 3). The second

downstream recirculation cell is clockwise rotating and originates from the tip of

the obstacle. Due to the first downstream recirculation cell, this cell does not meet

the lateral wall until x/L= 3. The interface between these two recirculation cells

and the mixing layer is located around the same point as the sudden expansion

(highlighted in Fig. 5.2(a) by a white circle). The sudden expansion is further

shown to occur in the streamwise autocorrelation function in Fig. 5.3 (the loca-

tions of the two chosen points are highlighted in Fig. 5.2(a)). From the streamwise

autocorrelation function the sudden expansion is highlighted by a increase in size

of the integral time scale, before and after the sudden expansion (the two chosen

points are highlighted in Fig 5.2(a)). As shown Fig. 5.2 (c), eddies shed from the

tip of the obstacle create a region of high vorticity. In this region the vorticity

reaches a maximum at x/L= 1.2 and is sustained up until x/L= 3. At this point
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Figure 5.2: Mean statistics created from eight overlapping planes. (a) Shows
the time averaged streamwise velocity, (b) shows the time averaged spanwise
velocity, (c) shows the time averaged vorticity. The white dashed circle in (a)
highlights the location of the sudden expansion of the mixing layer. All contour

plots have mean streamlines overlaid.

Figure 5.3: Streamwise autocorrelation function, G(γ), taken at two points,
before and after sudden expansion. The location of the points chosen are plotted
on Fig. 5.2(a). Black line relates to (1) (before expansion) and (2) grey line

relates to 2 (after expansion).
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the intensity of the vorticity reducues, and finally by x/L∼ 4 the region of high

vorticity is no longer visible.

0

R1 R2

R3

1 32-1 4

Figure 5.4: Nomenclature of recirculation zones

The focus now concentrates on the first four planes, as this corresponds to the

location of the sudden expansion. A nomenclature for the recirculation cells is also

introduced, as shown in Fig. 5.4. The upstream recirculation zone is termed R1,

the first downstream recirculation zone is termed R2 and the second downstream

recirculation zone is termed R3. In Fig. 5.5 (a-c) contour plots of the Reynolds

stresses 〈u′u′〉, 〈v′v′〉 & 〈u′v′〉 normalised by U2
0, and (d) contour plots of the

turbulent kinetic energy, TKE=(〈u′2〉 + 〈v′2〉)/2 by U2
0 are plotted. The 〈u′v′〉

contour plots show along the mixing layer, between x/L= 2 and x/L= 4 an intense

patch of momentum fluxes. The centre of this intense region x/L∼ 3, y/L∼ 1.7,

coincides with the point at which the concentration of TKE begins to decrease.

From the 〈u′u′〉 and 〈v′v′〉 contour plots, it is evident that the patch seen in 〈u′v′〉

relates the change in direction of the momentum fluxes. From these plots it can be

concluded that in this region a process is occurring leading to the sudden expansion

of the mixing layer. To investigate the spatio-temporal mechanism responsible for

this phenomenon, the modal decompositions described earlier are used to extract

the primary features of interest from the complex dynamics observed in this region.
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Figure 5.6: POD spectra where λ = diag(S), these values represent each
spatial modes Φi contribution to the total variance.
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5.3.2 Modal decompositions

A POD is computed using 7,000 velocity fields. Only a subset is chosen due

to computational limitations (which is equivalent to 30 integral time scales in

the streamwise direction). The computation was undertaken on each of the four

PIV planes independently. As shown in Fig. 5.6, the singular value, λ, which is

computed as part of the POD can be used as a descriptor of a modes contribution

to the total variance (i.e. turbulent kinetic energy). It is observed that on average

the top four modes (Φ1 & Φ2) account for about 35% of the total variance of the

flow. As a consequence it is a reasonable assumption that these four modes are

likely to contain the most relevant information regarding the Q2CS structures.

In the top planes of Figs. 5.7 & 5.8 the spatial modes Φ1...4 are presented. The

modes alone present a coherent picture of the turbulent structures. As shown by

Rempfer & Fasel (1994) and Brevis & Garćıa-Villalba (2011) paired modes show

spatial and temporal shifted features. From Φ1 and Φ2 a of number observations

made by Chrisohoides et al. (2003) can be verified. Φ1 & Φ2 show eddies being shed

from the tip of the obstacle and being advected along the mixing layer before being

engulfed by R3. Furthermore, in Φ3 & Φ4 it is evident that there is entrainment

of eddies back upstream from the reattachment of the mixing layer. However, the

poor suitability of the POD for this particular case, i.e. a complex non-linear flow,

is highlighted in the middle panes of Figs. 5.7 & 5.8. As shown in the previous

chapter it is possible to elucidate the structures shown in the POD by finding the

DMD spatial modes relating to the peak frequencies. As shown in the bottom

panes of Figs. 5.7 & 5.8 there are a number of peak frequencies relating to modes

1 & 2 St={0.10, 0.19, 0.22, 0.31}, (these frequencies are highlighted by red dashed

lines).
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Figure 5.9: The DMD spectra, based on the method of Jovanović et al. (2014).
The x-axis relates to the Strouhal number of each spatial mode. The y-axis re-
lates to the amplitudes, Dα, calculated in Eq. 2.6. The red circles highlight the
spatial modes identified from the power spectrum of the POD temporal coeffi-
cients (St=0.10, 0.19, 0.22, 0.31). For the readers reference, the high frequency,
high amplitude peaks in the spectra relate to experimental/background noise.
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Figure 5.10: DMD modes ΨSt, where St relates to the modes Strouhal num-
ber. The left hand column shows the imaginary component and the right hand
column the real component. The time averaged streamlines are plotted beneath

as a reference. (St=0.10, 0.19, 0.22, 0.31).
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Figure 5.12: Schematic of the turbulent mechanism underpinning the scale
jump.
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Similar to the POD, the DMD was computed independently on the four separate

planes each containing a smaller number of velocity fields (700), separated at a

greater δt, relating to an acquisition frequency of 7.4 Hz (relating to 15 integral

time scale). Only 700 velocity field are selected here to mitigate against prob-

lems of rank deficiency as discussed by Tu et al. (2014). The spectra associated

to each DMD calculation are shown in Fig. 5.9, where the frequencies relating

to the extracted POD modes are highlighted in red. For the reader’s reference,

whilst in these spectra it is apparent that they are higher frequencies with high

amplitudes, from investigations not presented, it was found the majority of these

modes relate to noise, originating from the experimental data. Consequently high-

lighting that using a Fourier description based on a POD’s temporal coefficients

to select the spatial modes will mitigate against incorrectly choosing insignificant

DMD modes with a high Dα, created by experimental/background noise. As in

a POD where paired modes represent a spatio-temporal shift, in a DMD, this

shift is seen between the real and imaginary parts of Ψ. As shown in Fig. 5.10

the DMD modes offer a clean description of turbulence processes related to single

frequencies, although it is difficult to deduce mechanisms regarding the sudden ex-

pansion of the mixing layer solely from the spatial modes. Nonetheless, as shown

in Eq. 2.6 it is very simple to construct a low-order representation of the flow,

because each reconstruction contains the same frequencies, it is also possible to

create a time evolving coherent picture of the whole system. For illustration pur-

poses the subsequent low-order planes are concatenated, but it is reiterated that

the decompositions were reconstructed independently for each plane.

As shown by the reconstruction of the velocity vectors and velocity magnitude

in Fig. 5.11 the size, dynamic and number of the recirculation cells is not static.

Initially there are three recirculation cells, with R3 comprised of two cells, termed
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RC3a and RC3b as shown schematically in Fig. 5.12. As time progresses R3b

expands and R2 simultaneously begins to stretch and split in two (R2a and R2b).

The expansion of R3b causes the angle of the shear interface between the recircu-

lation cells to periodically oscillate and the point of incidence of the shear layer

and mixing layer to change. The region where the point of incidence moves about

coincides with the high Reynolds stresses as seen in Fig. 5.5. This suggests that

this mechanism of oscillation is associated with the sudden expansion of the mix-

ing layer, as hypothesised by Talstra et al. (2006). To investigate the turbulent

structures associated with this mechanism, Fig. 5.13 shows a low-order reconstruc-

tion based upon the fluctuating vorticity, where dark grey is positive vorticity and

light grey is negative vorticity. This figure demonstrates that it is the coalescence

of two eddies that leads to the sudden expansion of the mixing layer. To highlight

the pairing as shown in Fig. 5.13, the two eddies are numbered (1) & (2). The

first eddy (1) originates from upstream and the tip of the obstacle, the second (2)

originates from vorticity injected upstream from the interaction of the mixing layer

and the lateral wall. It is the constant injection of vorticity from upstream that

leads to the formation of (2). Once this forms, it causes R3b to expand (explaining

the periodic horizontal motion observed by Chrisohoides et al. (2003)). When (2)

is sufficiently large enough it merges with (1) and advects along the mixing layer

causing R3b to contract. This basic mechanism repeats itself periodically, leading

to the observed dynamics, which have been documented for some time, but not

previously explained satisfactorily.
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5.4 Discussion

From the low-order reconstructions it is clear that the sudden expansion of the

mixing layer is created by the pairing of two eddies, one created from the sepa-

ration upstream and the tip of the obstacle and the other from the entrainment

of vorticity, generated by impingement of the mixing layer and the wall. How-

ever, it is the interface between the two counter rotating recirculation cells that

transports the second eddy into the mixing layer leading to the sudden expan-

sion. It has previously been shown by Talstra (2011), Talstra et al. (2006) and

Safarzadeh & Brevis (2016) that the shallowness of the flow leads to the produc-

tion of the dual recirculation cell. The occurrence of the sudden expansion of the

mixing layer is a function of the flow depth. Furthermore, previous works have

shown how the effects of bed friction and the shallowness of the flow can affect the

spatio-temporal dynamics of the turbulent structures / eddies (Chu & Babarutsi

1988, Uijttewaal & Tukker 1998). If the shallowness of the flow is decreased or

the roughness is increased there will be an increase in the the size of eddies and

the point of reattachment with the wall will change, which will affect the location

of the sudden expansion. Therefore the location of the sudden expansion of the

mixing layer, and its occurrence, is a function of the shallowness of the flow and

the roughness of the bed. The natural environment provides both shallowness and

bed roughness, meaning that, in nature, the sudden expansion of the mixing layer

is likely to occur. Whilst this chapter is based upon laboratory experimental work,

previous work has shown laboratory studies can be directly related to real flows

Le Coz et al. (2006). However, the determination of the degree of roughness or

shallowness leading the occurrence and location of the sudden expansion of the

mixing layer is beyond the scope of the present study.
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Whilst the occurrence of this phenomenon would seem to be problematic due to

the increased momentum fluxes at the point of impingement, in fact there are

a number of benefits associated with this mechanism. For example, in the first

downstream recirculation cell there are no large scale turbulent structures (see

Fig. 5.13), i.e. a region in which momentum fluxes are minimal and a region

not susceptible to erosion, sediment transport or mixing. This region therefore

protects the near upstream region of the groyne and could offer a zone which

could be beneficial for fish habitats and river restoration projects.

As shown in the present study the POD and DMD methods can easily extract the

large scale turbulent dynamics which govern a flow system. Whilst these methods

may seem abstract, the processes which they are able to describe explain events

which are of great significance in the mixing of pollutants, erosion and sediment

transport. Furthermore, as shown in the present study, for complex systems with

many intertwined turbulent processes, the Dynamic Mode Decomposition is able

to describe these processes individually, something which could be used to create

simplistic models of highly complex systems. Although the present study is based

on a highly accurate PIV technique, as shown by Brevis & Garćıa-Villalba (2011)

this is not a requirement, and presented techniques could easily be applied data

obtained from dye tracers / flow visualisations (Constantinescu et al. 2009).

5.5 Chapter conclusions

Using a reconstruction of modes from a DMD and a selection criteria based on

power spectrum obtained from the temporal coefficients of a POD the mechanism

of the sudden expansion of the mixing layer is explained. The low-order repre-

sentation, derived from the modes, reveals that eddies shed from the tip of the
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obstacle and those created upstream of the obstacle merge with eddies recircu-

lated from the interaction of the mixing layer with the lateral wall, leading to the

sudden expansion, something previously only previously hypothesised.
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Chapter 6

Modification of the modal

characteristics of a square

cylinder wake obstructed by a

multi-scale

An experimental study was undertaken to investigate the changes on the turbulent

wake of a confined square cylinder, caused by the introduction of three multi-scale

arrays of obstacles. The arrays were introduced upstream, downstream and around

the square cylinder, using the same obstacles in all cases. The results show that

changes on the confinement caused by the introduced elements produce an in-

crease of the shedding frequencies and on the energy contribution of the leading

modes obtained by a Proper Orthogonal Decomposition. The results also show

that different modifications of the wake properties are observed if the obstacles are

located either upstream or downstream of the square cylinder. When the obstacles

89
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are mainly located upstream it is possible to observe an increase in the peak mag-

nitude of Turbulent Kinetic Energy in the wake. These changes are associated to

a redistribution of the energy contribution of the POD modes. For larger regions

obstructed upstream, the leading modes reduce their energy contribution, while

the higher order modes increase it. To further elucidate the turbulent structures

the method from Chapter 4 is used. It is also observed that an increased reat-

tachment length can be obtained by locating most of the array downstream of

the square cylinder. All these observations are discussed in terms of the expected

interactions of flow structures. From the results it is possible to conclude that

the general spatial patterns of the Proper Orthogonal Decompositions modes are

not changed importantly by the introduction of the arrangements compared with

the unconfined case and previously reported confined cases with lower Reynolds

number. The most relevant changes for the confined obstructed case analysed here

can be found in the shedding frequency and the modal energy distribution.

6.1 Introduction

In this chapter an experimental study is undertaken to quantify the modifications

of the wake generated by a confined square cylinder, when it is surrounded by

smaller multi-scale square elements. The aim of this work is two fold: First to

investigate how surrounding a confined square cylinder with smaller elements can

modify the wake, and second to investigate how different arrangements of these

elements can change its properties. As previous research has shown that real world

distributions of buildings within cities can be well represented by fractal geometry

(Batty & Longley 1994), this work reproduces a self-similar situation deriving the

arrangement of the smaller elements from a Sierpinski Carpet (Sierpinski 1916).
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To elucidate the flow regions of high spatial coherence, a POD is used. As there

is no modal decomposition available in the literature for the flow around a con-

fined square cylinder for a high ReD, this research also expands the observations

obtained for a confined flow at low ReD (Rehimi et al. 2008). Furthermore to

elucidate complex intertwined structures the modes relating to the peaks of the

higher-order modes are extracted using the method outlined in Chapter 4.

6.2 Experimental setup

Four experimental cases are examined in this work. The first one corresponds to

the benchmark and will be termed case I. This case is a single confined square

cylinder, with a length scale of a third of the channel width. Case II, corresponds

to a deterministic Sierpinski carpet (Sierpinski 1916), with three iterations, where

iteration I is of the same dimension and position as the cylinder used in case I.

In this work iteration I represents the cylinder of interest while iteration II & III

correspond to the length scales of the elements surrounding iteration I. Following

the rules for the Sierpinski carpet generation, iteration II has a length scale equal

to one third of the length scale of iteration I. Analogously, iteration III has a length

scale of one third of iteration II. Cases III & IV contain the same elements as case

II, however the position of the largest element have changed longitudinally (see

Fig. 6.1).

The experiments were carried out in a recirculating open channel water flume at

the University of Sheffield, UK. The flume is 18 m long and B=0.49 m wide, with

bottom and side glass walls thus allowing full optical access. The depth of the

water was set to 0.30 m, U0 = 0.07 m/s, ReD=11,000 and the Froude number

Fr=0.04. The dynamics of the flow was captured using PIV measurements. The
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Case I Case II Case III Case IV

Figure 6.1: Plan view of experimental cases.

array was located 8 m downstream of the inlet and all measurements were carried

out downstream of the array. Each element within the arrays was constructed out

of 6 mm acrylic sheet cut to 0.1 mm precision using a laser cutter. The flow was

seeded with Polyamide 12 particles with a mean diameter of 100 µm and density

of 1.016 gcm−3. These particles were illuminated using a laser plane generated

from a double pulsed Nd:YAG 200mJ laser at 40% of the flow depth (0.12 m).

The movement of the illuminated particles was recorded using two synchronised

Imager MX 4MP cameras mounted below the flume bed, and capturing an area of

0.44 m × 0.72 m (with an overlap of 0.05m). Image pairs were captured at 77 Hz.

The PIV calculations were undertaken in the software Davis 8.0, using multi-pass

and image deformation techniques (Scarano 2002). The multipass interrogation

windows ranged from 64 to 16 px, with an overlap of 75%. From the measurements,

and along the centreline of the flow, it was determined that u′rms/〈u〉 was 7.8% and

the spanwise turbulence intensities, v′rms/〈u〉, was 5.8%, were u′ and v′ are the root-

mean-square values of the streamwise and spanwise fluctuating components. The

outlier vectors were detected and removed using the PODDEM algorithm (Higham

et al. 2016). The experimental parameters are summarised in Table 6.1 and a

schematic of the experimental set-up is shown in Fig. 6.2. For all measurements

the origin of the coordinate system is located at the centre of the largest square

cylinder.
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Seeding Type Polyamide powder
Specific gravity 1.016 gcm−1

Diameter 100 µm
Light sheet Laser type Double pulsed Nd:YAG

Maximum energy 200 mJ
Wave length 532 nm
Thickness 2mm

Camera Type Imager MX 4M
Resolution 2048 × 2048 px
Pixel size 0.21 mm
Lens focal length 24 mm

Imaging Viewing area 440 mm × 440 mm
PIV Analysis Interrogation area integration window size 16 × 16 px

Overlap 75%
Approximate resolution 3.5 mm × 3.5 mm × 3.5 mm

Table 6.1: PIV experimental parameters

0
.3

0
 m

0.49 m

Camera 1

Laser

Camera 2

0.49 m ~ 0.70 m

8.00 m

Flow

0
.1

2
m

Figure 6.2: View of the measurement section and experimental setup (not to
scale)

6.3 Results

Time-averaged statistics were calculated from 15,000 snapshots. For reference,

Figs. 6.3 & 6.4(a-c) show the contour plots of the streamwise velocity component

and time-averaged statistics at the centre-line, respectively. A POD was computed

on the 15,000 fluctuating velocity fields. In Fig. 6.5 the POD spectrum is presented
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Figure 6.3: Contour plots of the streamwise mean velocity, U , normalised by
the bulk velocity, U0, with streamlines overlaid
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II – ©, case III – × & case IV – 4.
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Figure 6.6: Top: POD modes Φ1. Middle: POD temporal coefficients C1&C2

(grey). Bottom: Fourier power spectrum of C1. (Φ2 is not plotted as it is a
conjugate pair of Φ1.)
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Figure 6.9: Power spectrum of the wake generated by iteration I (back line),
iteration II (dark grey), iteration III (light grey) respectively. Peak St is St =

{0.43, 0.82, 2.48} for iterations I, II & III respectively.
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for the first 30 modes of each case. The points show the energy contribution of

each mode relative to the total number of modes present in the signal i.e. the

turbulent kinetic energy (TKE) of the flow. Fig. 6.6, 6.7, & 6.8 show the vorticity

derived from the spatial velocity modes Φi, a subregion of the temporal coefficients

Ci and the power spectra of the temporal coefficients, P{Ci}. Finally a DMD was

calculated from 5,000 velocity fields. Fig. 6.10, & 6.11 show the vorticity derived

from the spatial velocity modes Ψi a subregion of the temporal coefficients Qi and

the power spectra of the temporal coefficients, P{C1&4} respectively. In the DMD

figures the modes, i extracted relate to the peak frequencies highlighted in red.

6.3.1 Confined single square cylinder

The quantification of the effects of the surrounding small element on the wake

developed by the largest square cylinder, implies the characterisation of a baseline

for comparison, in this case the wake produced by the largest cylinder alone (case

I). Also as a baseline reference, Fig. 6.9 shows the peak frequency associated to

the wake of each iteration when they are individually placed in the flow. The peak

frequencies were obtained at St=0.43, 0.82 and 2.48, for iteration I, II and III,

respectively. As previously discussed, the blockage ratio, BR, of a cylinder can

have important effects on the frequency of vortex shedding and on the location

of the reattachment point of the separated shear layers. In the present work the

cylinder is confined with BR=0.33. As discussed by Durao et al. (1988) significant

features of the square cylinder wake can be obtained from the streamlines of the

mean flow, and from the longitudinal profile of the TKE at the centreline. The

streamlines of the mean flow can be used to identify the recirculation bubble,

while the peak of the TKE can be used to identify the location of the point of
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reattachment. The reattachment length is defined here as the distance between the

origin of the coordinate system and the reattachment point. In the study of Durao

et al. (1988) an unconfined cylinder with a similar Reynolds number (ReD=14,000)

and u′rms/〈u〉=6% was investigated. Compared to the results of Durao et al. (1988)

and as shown in Figs. 6.3 & 6.4(c) the point of reattachment is protracted in the

present case ∼ 1.4 times further downstream, however the peak TKE is reduced

by a factor of ∼ 0.8. A similar study of an unconfined cylinder was presented by

Wang & Zhou (2009). The ReD=9,600 was similar to the present study, but with

a lower u′rms/〈u〉 ∼ 0.4%. The reattachment length extracted from the results of

(Wang & Zhou 2009) was ∼ 1.1 the magnitude of the one obtained in the present

study. Since the ReD have been shown to have small effects on the reattachment

length, these observations highlight the effect of u′rms/〈u〉 on the wake.

In a recent study, Wang et al. (2014) presented the characteristics of the top two

spatial POD modes, which are associated to the advection of the vortices shed

from the cylinder. The modes are very similar to those observed in Φ1&2, although

their frequency is ∼ 0.5 times that of the frequency observed in this chapter (see

Fig 6.6). Furthermore, the results of Wang et al. (2014) and the results shown

in Fig. 6.5 demonstrate how the BR and u′rms/〈u〉 can affect the contribution of

the large scales to the TKE. The POD spectra of the current study shows that

the confinement affects the contribution of the modes to the TKE. The results

show that the top two modes contain about half the energy of the contribution

found by Wang et al. (2014) for the unconfined case. However the contribution of

Φ3, a mode representing the dynamics of the separated shear layers, is similar in

both cases. The lower energy found in the current results for the top two modes,

is reflected on higher energy contributions of Φi>14 (see Fig. 6.5). Therefore the

POD spectra suggest that the increase of TKE associated to the confinement is
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not associated to an increase of the energetic large scale vortices but to the smaller

scale ones.

6.3.2 Confined obstructed single square cylinder

From the previous section it was shown that the BR can have important influences

on the formation of the wake. In this part of the study, smaller multi-scale elements

are introduced around the cylinder. By introducing these elements, a large BR

of the incoming flow is obtained, thus the effect of the smaller cylinders could

be considered as an equivalent BR. In the obstructed cases (cases II-IV) the BR

is defined as the ratio between the sum of the spanwise length of the cylinders

located at the cross-section at x=0, and the width of the channel. For all of

the obstructed cases, BR=0.7. As shown previously, increasing the BR decreases

the length of reattachment and may increase the shedding frequency. As shown

in Fig. 6.3 & 6.4, counter-intuitively and compared with case I, in cases II, III

& IV the reattachment point is protracted further downstream by ∼ 1.68, ∼

1.1 and ∼ 2.4 times respectively. This observation seems to be a function of

the geometrical layout of the arrangement, i.e the size of the region formed by

smaller cylinders upstream or downstream of iteration I. The increase of the TKE

is inversely proportional to the number of downstream elements and proportional

to the number of upstream elements. For example, in case III where there are no

downstream elements the peak TKE is increased by a factor of ∼ 1.6 the peak

of case I. In case II, the peak TKE is approximately equal to case I. In case IV,

where most of the element are located downstream of the large cylinder the TKE

is decreased by a factor of ∼ 0.6 of case I. These results suggest that the upstream



Modification of the modal characteristics of a square cylinder wake obstructed by
a multi-scale 102

elements may have an effect increasing the TKE, whilst the downstream elements

reduce it.

From a Fourier Power Spectrum of the POD coefficients, it is shown that in all

of the obstructed cases, the frequency of vortex shedding is ∼ 3 times that of

case I, St = {0.74, 0.63, 0.69}. This suggests that the higher BR is still causing

an increase in the shedding frequency, and different arrangements are causing a

frequency difference between the arrangements, but smaller to those related to

BR. Furthermore, as shown in the POD spectra in Fig. 6.5, on average the top

two modes of case I contribute to ∼ 1.4 times more than the other cases to the

total TKE. Cases II, III and IV, contribute to ∼ 22%, ∼ 21% & ∼ 24%, whilst

case I contributes to ∼ 30%. As previously shown, the higher BR is causing a

redistribution of energy at the lower modes, and different arrangements seems to be

related to different distributions of energy in higher modes. As shown in Fig. 6.6,

despite the introduction of the surrounding elements, in all of the cases, Φ1&2

describe the vortex shedding process. As highlighted in the POD spectra, the BR

does not affect importantly the contribution of TKE of Φ3, representing the shear

interface surrounding the recirculation bubble. The spatial modes show that the

larger the region perturbed downstream of iteration I, the longer the reattachment

length (see Fig. 6.4(c)). From the POD spectra of the higher order Φi>14, it is

possible to observe that, the larger the region perturbed upstream there is an

increased contribution of higher order modes to the TKE. From a spatial point of

view, Φ4 shows a number of spatial differences between the cases, however it shows

also clear temporal differences, which are captured by the coefficients. In case III

there is a clear peak in the Fourier spectra of the temporal coefficients. In case II

the shedding from smaller elements can be identified, however a different spectrum

is formed revealing the presence of two broadband peaks. Finally in case IV it is
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not possible to observe a clear shedding frequency, revealing the superposition of

multiple processes and the development of a broadband spectrum.

6.3.3 Selecting frequencies using a DMD

Fig. 6.10 & 6.11 show the DMD spatial modes Ψ determined from the peak fre-

quencies of P{C1}. From Fig. 6.10 it is possible to observe that the general

spatio-temporal patterns relating to Ψ are similar to Φ1. This is expected due to

the sinusoidal behaviour of each of the C1, as discussed in Chapter 4. Next the

DMD modes relating to Φ4 are determined. The DMD modes associated to Φ3 are

omitted as the frequencies of the largest peaks are too low for the DMD algorithm.

As shown in Fig. 6.11 apart from case III, in all of the P{C4}, there is no single

peak that is well defined. In case I the ΨSt=0.82 connected with the highest peak in

P{C4} is determined. This peak frequency is approximately twice the magnitude

of the well defined peak in P{C1}. From the spatial structures it is observed that

compared with the POD, the DMD mode is spatially different. ΨSt=0.82 resembles

the advection of a vortex created along the mixing layer. In case II the largest

peak in P{C4} is not selected. From investigations not presented here, it is shown

that the Ψ linked to this peak has a poorly defined spatial-temporal structure.

Therefore, another peak frequency was selected, if the larger peak of the highest

frequency group is selected. As the ΨSt=0.82 is spatially similar to Φ4 it can be

concluded that this frequency is related to the vortex shedding of the second iter-

ation. In case III in P{C4}, there is a well defined peak. The ΨSt=3.4 relating to

this mode has a similar spatial picture to that presented in Φ4. Finally in case IV

the Ψi relating to the largest peak, is twice the frequency obtained from P{C1}.

The spatial structure of this ΨSt=1.35 is very similar to that connected to P{C1},
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Figure 6.10: Top: The real component of the DMD modes Φ where each
extracted mode represents the peak frequencies highlighted in red. Middle:
DMD temporal coefficients Q, where the black line is the real part and the grey
line is the imaginary part. Bottom: Fourier power spectrum of C1, with DMD

spatial modes frequency highlighted in red.

this suggests that this mode is a harmonic of the peak shedding frequency of the

largest iteration.
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6.4 Discussion

In case III, where there is no downstream obstruction, the change in the point of

reattachment is very small compared to case I. As previously shown, an increase

in the BR causes the point of reattachment to be retracted upstream. Whilst the

confinement is causing the retraction of the reattachment, the upstream elements

are causing the protraction, maybe as a consequence of a reduced drag on the

largest cylinder caused by the upstream smaller ones (Igarashi 1997, Zhang et al.

2005). In case II, both the upstream and downstream region are obstructed.

Since the reattachment length is increased, this suggests further effects caused

by the downstream elements. It is not clear at this stage if this is due to drag

modifications or due to enhanced advection speeds in the near field.

In all of the cases the smaller elements are positioned on either side of the large

cylinder. As shown by Kumar & Vengadesan (2009) when a small square cylinder

is positioned next to a large square cylinder, there is no effect on the shedding

frequency associated to the largest one, but the frequency of vortex shedding

associated to the smaller cylinder is increased. In case II & III, Φ4 represents

the spatial patterns of the flow structures associated to iteration II. As previously

shown the unperturbed wake of a cylinder with a length scale of iteration II has a

St=0.82. This frequency has been modified to St=2.8 and St = 3.4 for case II &

III respectively. Since case III shows a clean peak in the Fourier spectrum of the

coefficients, and the St has been increased, this could be linked to the observations

to Kumar & Vengadesan (2009). A similar process could be taking place in case

II, however from the broadband of frequencies present in the spectrum, and due

to the lower spectral peak, the shift in St could be due to several processes.
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In case III the larger scale wake is not obstructed by iterations II & III. This

observation could offer an explanation for the increase of the energy contribution

of Φ3−14 in the POD spectra (see Fig. 6.6). Due to the size associated to iteration

III, it is expected that any flow structure they might generate, has a small size

and low energy, and as a consequence their signature should be difficult to identify

in the region of measurement. Due to the different length scales of iteration II,

and the lack of direct interaction with the wake of iteration I, it is expected to

see flow structures generated by iteration II in the region of interest. Therefore,

this could offer an explanation for the increase in energy in the spectra. This

observation is in agreement with the fact that no important increase in energy

was observed for case II & IV for Φ3−14, however case II shows a slightly higher

energy than case IV due to the fact that some structures do avoid the interaction

with the wake of iteration I. As a result of the interaction of the wake generated by

iteration I with the flow structures generated by the smaller cylinders, the break

down of these flow structures might occur (no local interactions), thus an increase

of the energy associated to higher order modes for case II & III is expected. A

closer observation of Fig. 6.5 reveals that in-fact, for Φi<14, an increase of energy

is developed. This increase of energy for Φi<14 is not developed in case III as a

consequence of the ideas presented earlier. The validation of these observations

requires measurements or numerical simulations within the porous media formed

by all of the cylinders.

From the results the advantage of the use of DMD is also highlighted. From the

POD the DMD allows the elucidation of spatio-temporal structures which are not

revealed by the POD alone. This further promotes the benefits on the use of the

DMD coupled with a POD search criteria, at least for the larger scales.
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6.5 Chapter conclusions

Even though a characterisation of the flow within the channels formed between

elements was not possible, the result clearly show that the interactions of iteration

I with iterations II & III affect its wake properties. The results show the influence

of the arrangement of obstacles on the sides of the cylinder, which modify the BR

producing a clear change of the vortex shedding frequency and a reorganisation of

the energy of the leading modes. This is further highlighted in the DMD modes

where it is demonstrated there is a clear change in the spatial structures relating to

the higher order dominant frequencies. The results also show the effect of the size of

the perturbed region upstream and downstream of the cylinder. The influence can

be observed on the magnitude of the peak of TKE. The larger the upstream region

the higher the peak of TKE, however the lower the energy of the leading modes,

the higher the energy of higher order modes. The larger the obstruction in the

region downstream the cylinder, the longer the reattachment length. From the first

four POD and DMD modes of all cases, it was possible to observe similar spatial

patterns to those found in the unconfined and low Reynolds confined cylinder

flows. This means that most of the issues caused by the introduction of the smaller

cylinders are related to shedding frequencies and energy redistribution. From an

environmental prospective these results show the layout of a city is related to

the wake it produced. The understanding of this is important to understand the

mixing of pollutants.



Chapter 7

Conclusions

In this thesis at the end of each chapter conclusions are made. These conclusions

are summarised below:

1. Unavoidably, data collected using Particle Image Velocimetry, or other sim-

ilar techniques, can contain outlier data points. Whilst it is possible to

remove and replace these points manually, it is often not feasible, due to

the large number of vector field typical to these methods. In the thesis a

novel approach to remove and replace outliers using a correction of the tem-

poral coefficients relating to a Proper Orthogonal Decomposition (POD) is

proposed. Unlike previous POD based methods the method is non-iterative

and as a consequence less computationally intensive. The presented method,

(PODDEM), when benchmarked against state of the art methods, is found

to be the most efficient in the detection of outliers and comparable in the

accuracy of replacement.

2. In a simple flow case a POD is very effective in elucidating single turbu-

lent structures. However, in a complex flow case, where the dynamics are
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non-linear, the POD modes can become colluded with multiple structures.

Although as a POD extracts modes which are spatially significant, the tem-

poral coefficients relating to the modes contain information relating to the

colluded structures. Therefore by taking a Fourier power spectrum of the

temporal coefficients the frequencies relating to the individual structures are

revealed. As a Dynamic Mode Decomposition (DMD) is temporally orthog-

onal, it is possible obtain spatial modes relating to these single frequencies,

ergo determining turbulent structures which are spatially and temporally

significant.

3. The topographical forcing caused by a lateral obstacle in a shallow flow

generates a mixing layer, bounding a dual counter rotating recirculation

cells. This mixing layer is characterised by the sudden change in the integral

length scale of the vortical structures at the interface between the cells. The

mechanism which leads to this sudden expansion is highly-non linear and

comprised of multiple turbulent structures. Applying the method proposed

in Chapter 4 it is possible to highlight the turbulent structures responsible for

this sudden expansion. From a low-order DMD reconstruction it is possible

to reveal the vortex merging process leading to the sudden change in the

integral length scale.

4. By surrounding a confined square cylinder with smaller multi-scale elements

and after a POD and DMD analysis, it is found it is possible to modify the

properties of the developed wake. The size of upstream and downstream

perturbed region, formed by the introduced elements, is related to the shed-

ding frequency of the large square cylinder and to a redistribution of energy

among the dominant modes. It is suggested that a modification of the spatial
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layout of the surrounding elements is related to the position and magnitude

of the turbulent kinetic energy.

7.1 Summary conclusions

The objective of this thesis was to demonstrate that modal decomposition tech-

niques can be successfully applied in context of Civil Engineering. In this thesis

it is demonstrated that not only are the temporal coefficients of a POD offer a

means to remove outliers in data, but the frequencies obtained from a Fourier

Power Spectrum of them also can be used as a search criteria for a DMD.

By applying the modal decompositions to two very different cases it is clear that

both POD and DMD are techniques which are both under utilised in Civil Engi-

neering applications. As this thesis has shown, these methods can be extremely

effective in describing complex spatio-temporal mechanisms such as those leading

to the enhanced mixing of pollutants, river scouring or vortex induced vibrations

in the urban environment etc.



Appendix A

PODDEM mathematical

reasoning and sensitivity analysis

A.1 Mathematical reasoning for PODDEM

The PODDEM is based on the fact that a spatio-temporal error structure in W

is partitioned by the POD across a set of ϕ independent modes in the spatial

domain N , such that the spatial error is found in Φ and the temporal error in A.

To illustrate this, two instances of W are considered. In the first case the number

of temporal measurements outweigh the number of spatial measurements, while

in the second case the converse is true.

If the number of time measurements are larger than measurement locations, ϕ�

N , such as in the case of point-wise velocimetry techniques, the components of the

velocity signal are measured at a single spatial location. These instruments can be

used individually or several sensors can be synchronised to perform simultaneous

measurements at multiple locations. From a generic perspective, this situation
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corresponds to the case of ϕ � N . In an idealised extreme situation, a velocity

sensor can fail, introducing errors in that position at all times, i.e the signal may

occur at any time, while always occurring at the same position in space. An error

signal representing this case can be defined as follows:

W(1)(n 6= η, t) = 0, (A.1)

W(1)(n = η, t) = 1, (A.2)

where n is the spatial location within the locationsN , and η is the position at which

an outlier can be found at all times. The decomposition of the matrix representing

these measurements leads to the following results: λ
(1)
1 =

√
ϕ, A

(1)
1 = −1/

√
ϕ

Φ
(1)
1 =

 0 if (n 6= η),

−1 if (n = η).

(A.3)

Since the error is the only source of change in the variance of the error signal, it

can be expected that its signature will be found in the parameters characterising

the leading mode. For a sufficiently large duration of the measurements, i.e for

a large value of ϕ, λ
(1)
1 increases and therefore A

(1)
1 → 0. Therefore, the error

propagates into λ1 and Φ1.

As in the case of PIV measurements, in which the number of locations at which

the velocity is measured, is normally larger than the number of time samples being

analysed i.e. N � ϕ . If it is assumed that the outlier can be found everywhere

in the space but at a single time instance, an idealised error signal can be defined

as:

W(2)(n, t 6= τ) = 0, (A.4)
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W(2)(n, t = τ) = 1, (A.5)

where τ is a temporal location at which all spatial locations within a snapshot

contain outliers. Here, λ
(2)
1 =

√
N , Φ

(2)
1 = −1/

√
ϕ, and

A
(2)
1 =

 0 if (t 6= τ),

−1 if (t = τ).

(A.6)

For a sufficiently large number of spatial positions, λ
(2)
1 increases and therefore

Φ1
2 → 0. Analogously to the previous case, this means the error can be found

propagated in λ
(2)
1 and A

(2)
1 . Therefore, for PIV data, using the temporal coeffi-

cients to detect and replace data seems most logical.
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A.2 Sensitivity Analysis
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Appendix B

PODDEM MATLAB script

ffunction [U V W]=poddem(a,b,c,d,e,f);

% The PODDEM function is the same method as published in:

% Higham, J. E., W. Brevis, and C. J. Keylock.

% "A rapid non-iterative proper orthogonal decomposition

% based outlier detection and correction for PIV data."

% Measurement Science and Technology 27.12 (2016): 125303.

%

% Please email jonny.e.higham(at)gmail.com if you have any

% questions.

%

% PODDEM is an acronym of "Proper Orthogonal Decompositon

% Dectection and Estimation Method", and is currently the

% most effective rapid method of detecting an estimating

% outlier in Particle Image Velocimetry data.

%

% Please note each input is to be input as a 3D matrix.

% where U = X x Y x T; where U is the velocity component
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% and X and Y are spatial dimensions and T is the temporal

% dimension.

%

% This method can support up to three dimensions

%

% Quick usage: (Default values).

% [U]=poddem(U,thr,[],[],[]);

% [U,V]=poddem(U,V,[],[],[]);

% [U,V,V]=poddem(U,V,W,[],[],[]);

%

% "thr" is the threshold number between 0 and 1.

% The default is set to 0.05

% this number relates to 5% of outliers within the data.

%

% "ker" is the size of the kernal used in the smoothening

% of the coefficients this is set as default at 10.

%

% "fil", this can either be set to 'lin' or 'poddem',

% default is set to 'lin' this is optimum for small outliers.

% For larger outliers choose 'poddem'.

%

% Usage in 1D [U]=poddem(U,thr,ker,fill)

% Default values [U]=poddem(U,[],[],[])

%

% Usage in 2D [U,V]=poddem(U,V,thr,ker,fill)

% Default values [U,V]=poddem(U,V,[],[],[])

%

% Usage in 3D [U,V,W]=poddem(U,V,W,thr,ker,fill)

% Default values [U,V,W]=poddem(U,V,W,[],[],[])

%

%
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% At this point we create the matrix to put into the SVD,

% we use all of the components here.

%

% Example:

% [U,V,W]=poddem(U,V,W,0.05,10,'lin')

%

%

% Please note this is programmed in my own unique way of

% programming, I know there will be more efficient ways,

% feel free to implement if you want.

if nargin == 4

U = a; thr=b; ker=c; fill=d;

tmp=reshape(U,size(U,1)*size(U,2),size(U,3));

elseif nargin ==5

U = a; V=b; thr=c; ker=d; fill=e;

tmp=[reshape(U,size(U,1)*size(U,2),size(U,3));

reshape(V,size(V,1)*size(V,2),size(V,3))];

elseif nargin ==6

U = a; V=b; W=c; thr=d; ker=e; fill=f;

tmp=[reshape(U,size(U,1)*size(U,2),size(U,3));

reshape(V,size(V,1)*size(V,2),size(V,3));

reshape(W,size(W,1)*size(W,2),size(W,3))];

else

error('Error: Greater than three dimensions')

end

if exist('V');

if length(U(:))~=length(V(:));
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error('All of the data must be the same size');

end

end

if exist('W');

if length(U(:))~=length(V(:)) & length(U(:))~=length(W(:));

error('All of the data must be the same size');

end

end

if isempty(ker)==1;ker = 10;end

if isempty(thr)==1;thr = 0.05;end

if isempty(fill)==1;fill = 'lin';end

% Next we calculate the SVD (this is economy size to

% speed up the calculation)

[phi, s, a]=svd(tmp,'econ');

% Some times the SVD function flips the temporal

% coeficients, I don't know why but here there is a

% sanity check. We also pad the array here in order

% to remove outliers at the beginning and the end.

an=a;

for loop = 1:size(a,1);

tmp=smooth(padarray(an(loop,:),[0,5*ker],'symmetric'),ker);

an(loop,:)=tmp(5*ker+1:end-5*ker);

end

% we now produce a new matrix with the smoothed coefficient

recon=phi*s*an';
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% here we reshape the data back into its original form

try

rec u=reshape(recon(1:size(U,1)*size(U,2),:)...

,size(U,1),size(U,2),size(U,3));

tmp u=(abs(U(:,:,:)-rec u(:,:,:)));

rec v=reshape(recon(size(V,1)*...

size(V,2)+1:2*size(V,1)*size(V,2),:)...

,size(V,1),size(V,2),size(V,3));

tmp v=(abs(V(:,:,:)-rec v(:,:,:)));

rec w=reshape(2*recon(size(W,1)...

*size(W,2)+1:3*size(W,1)*size(W,2),:)...

,size(W,1),size(W,2),size(W,3));

tmp u=(abs(U(:,:,:)-rec u(:,:,:)));

tmp w=(abs(W(:,:,:)-rec w(:,:,:)));

end

% At this point we create the mask which is used to

% detect the outliers,this is done using this while loop,

% whilst this isnt the most efficient

% way I have found it to be the most effective.

mask=zeros(size(U));

tmp=1.1;inc=0.0;

while tmp>thr;

mask=zeros(size(U));

inc=inc+.01;

thr u=inc*std(tmp u(:));

mask(tmp u>thr u)=1;

try

thr v=inc*std(tmp v(:));

mask(tmp v>thr v)=1;

end
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try

thr w=inc*std(tmp w(:));

mask(tmp w>thr w)=1;

end

tmp=(sum(mask(:)))./length(mask(:));

mask nans=zeros(size(mask));

mask nans(mask==1)=nan;

end

try

U=(U.*(1-mask)+(mask.*(rec u)));

V=(V.*(1-mask)+(mask.*(rec v)));

W=(W.*(1-mask)+(mask.*(rec w)));

end

try

U(U>nanmean(U(:))+1*nanstd(U(:))&mask==1)=nan;

U(U<nanmean(U(:))-1*nanstd(U(:))&mask==1)=nan;

V(V>nanmean(V(:))+1*nanstd(V(:))&mask==1)=nan;

V(V<nanmean(V(:))-1*nanstd(V(:))&mask==1)=nan;

W(W>nanmean(W(:))+1*nanstd(V(:))&mask==1)=nan;

W(W<nanmean(W(:))-1*nanstd(V(:))&mask==1)=nan;

end

% At this point we can do two steps, we can either use

% a linear interpolant, or we can use the poddem hole

% filling. As shown the publication, if one is filling

% larger holes in the data PODDEM is more accurate and

% precise, however for smaller gaps a linear interpolant

% is better. Here I use inpaint nans see below:

[X, Y]=meshgrid(1:size(U,2),1:size(U,1));

if strcmp(fill,'lin')==1
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for loop = 1:size(U,3)

try

U(:,:,loop)=inpaint nans(U(:,:,loop),1);

V(:,:,loop)=inpaint nans(V(:,:,loop),1);

W(:,:,loop)=inpaint nans(W(:,:,loop),1);

end

end

elseif strcmp(fill,'poddem')==1

%this is the poddem fill mode

try

U(isnan(U))=0;

U = U+rec u.*mask;

V(isnan(V))=0;

V = V+rec v.*mask;

W(isnan(W))=0;

W = W+rec w.*mask;

end

end
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Figure C.1: Comparison of the Fourier power spectra of the top three POD
coefficients and chosen points in the velocity field. In the top row the mean
streamwise velocity field is presented with 6 chosen points highlighted. In the
middle and bottom rows the Fourier power spectra of the top three POD coef-
ficients and the spectra of the highlighted points are plotted. Where C1 - black
line, C2 - grey line and C3 - light grey line, and the middle and bottom row

correspond to the highlighted left and right columns respectively.
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POD-DMD integration MATLAB

script

clear;clf;

freq = 5; %Hz; aquisition frequency

% Transform the data into column vectors.

data=[reshape(u,size(u,1)*size(u,2),size(u,3));

reshape(v,size(u,1)*size(u,2),size(u,3))];

% Perform the POD.

[Phi ,~, C]=svd(data-repmat(mean(data,2),[1 size(data,2)]),'econ');

% Plot the figures

figure(1)

subplot(4,1,1)

mode=2; % POD mode to be plotted

imagesc(reshape(Phi(1:size(u,1)*size(u,2),mode)...

,size(u,1),size(u,2)))

title(['\Phi',sprintf(' %i (u-component)',mode)])

subplot(4,1,2)
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imagesc(reshape(Phi(size(v,1)*size(v,2)+1:end,mode)...

,size(v,1),size(v,2)))

title(['\Phi',sprintf(' %i (v-component)',mode)])

subplot(4,1,3)

plot(C(:,mode))

title(sprintf('C %i',mode))

subplot(4,1,4)

[px, fx]=pwelch(C(:,mode),round(0.9*size(u,3)),...

round(0.8*size(u,3)),2ˆ12,freq);

plot(fx,px);

title(sprintf('P(C %i)',mode))

%DMD Calculations

[Phi,S,C]=svd(data(:,1:end-1),'econ');

F=(Phi'*data(:,2:end)*C)/S;

[M,Z]=eig(F) ;% Compute eigen values and vectors

Q=zeros(size(F));

for loop1=1:679;

Q(:,loop1)=diag(Z).ˆ(loop1-1);

%creating vandermonde with increasing powers

end

% Compute the modes

Psi=data(:,1:end-1)*Q';

% Compute the frequencies

f=freq*angle(diag(Z))./(2*pi);

% Find the matching frequency from POD

[~,l]=max(px);

[~,l]=min(abs(fx(l)-f));

% Plot the DMD modes;

figure(2);

subplot(4,1,1)

imagesc(real(reshape(Psi(1:size(u,1)*size(u,2),l)...
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,size(u,1),size(u,2))))

title(['\Psi',sprintf(' {f=%0.2f Hz} (u-component)',f(l))])

subplot(4,1,2)

imagesc(real(reshape(Psi(size(v,1)*size(v,2)+1:end,l)...

,size(v,1),size(v,2))))

title(['\Psi',sprintf(' {f=%0.2f Hz} (v-component)',f(l))])

subplot(4,1,3)

plot(real(Q(l,:)))

title(['Q',sprintf(' {f=%0.2f Hz}',f(l))])

subplot(4,1,4)

[px, fx]=pwelch(real(Q(l,:)),...

round(0.9*size(u,3)),round(0.8*size(u,3)),2ˆ12,freq);

plot(fx,px);

title(['P(Q',sprintf(' {f=%0.2f Hz})',f(l))])
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