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Abstract

The majority of goods transportation vehicles’ power is consumed in overcoming aero-

dynamic drag which arises due to vortex shedding over the bluff rear end of the vehicle.

As such, a reduction in pressure drag via feedback control could have significant eco-

nomic and environmental effects on CO2 emissions, as well as reducing fatigue acting

on the body.

The difficulty in designing such controllers lies in obtaining models suited to modern

control design methods, which are necessarily of much lesser complexity than typical

Computational Fluid Dynamics models, or models derived from immediate spatial dis-

cretisation of the equations governing fluid flows. It is with obtaining such low-order

models that the work presented in this thesis is concerned.

A computationally efficient modelling approach which is suited to obtaining low-

order models of complex geometry fluid flows is described, whereby the system’s overall

input-output frequency response is built up by connecting together the frequency re-

sponses of a large number of computational node subsystems in an efficient manner,

exploiting the inherent structure of spatially discretised PDAEs.

In order to choose a suitable formulation of the governing equations – the Navier-

Stokes equations – a rigorous analysis of several of the formulations suggested in the

literature is presented, whereby the dynamics of different formulations are compared

both at the nodal level, and at the full system level for a 2D channel flow (for which a

well studied benchmark model exists).

In the penultimate chapter, the work of previous chapters is consolidated by apply-

ing the modelling technique to a 2D backward facing step flow. Slot jet actuation on

the rear edge is assumed, and two separate output configurations are considered. The

resulting models are compared to models obtained in a computational system iden-

tification study, which prompts an interesting investigation into the dynamics of the

common PISO Computational Fluid Dynamics algorithm.
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Chapter 1

Introduction

1.1 Motivation

The ability to control the flow of a fluid can be of great benefit in a number of situations;

from those where turbulent flow is desirable – such as in combustion chambers, in order

to increase the mixing of fuel and air – to those where steady, laminar flow is desired –

such as that around the hull of a ship, in order to reduce skin-friction drag.

This work is motivated by the need to design feedback control systems to reduce

the pressure drag acting on road vehicles, which within the UK accounted for 28% of

total annual energy consumption in 2014 [2], and whose CO2 emissions rose by 26%

between 1990 and 2004 [1]. At motorway speeds, aerodynamic drag arising from vortex

shedding over the bluff rear end of the vehicle is responsible for up to two thirds of this

energy consumption [71, 51, 23, 7], compared to just 20–30% consumed overcoming

rolling friction [71]. Figure 1.1 depicts this vortex shedding phenomenon.

The heavy goods transportation industry alone consumes approximately 1.2 billion

barrels of oil per year [58], and as such successful drag reduction could result in fuel

savings worth billion of dollars annually [35, 15], as well as having significant beneficial

effects on CO2 production.

1.1.1 Classification of bluff body flow control strategies

Different bluff body flow control strategies are divided here into three groups as in Choi

et al. [22]:

1. Passive control – no additional energy is required to control the flow.

2. Active open-loop control – additional energy is supplied to some actuator(s) which

1
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Figure 1.1: Vortex shedding phenomenon behind a bluff body: 2D backward facing
step. Free-stream velocity is denoted u∞.

operates according to some predefined control signal.

3. Active closed-loop (or feedback) control – energy is supplied to some actuator(s)

which operates in response to some sensor measurement(s).

When considering bluff body flow control, the term ‘passive control’ typically refers to

geometric modifications or structural additions to the body which affect the nature of

the flow in a beneficial manner. An obvious example would be to streamline haulage

trucks during their initial design, however geometric modifications are limited as this

may reduce storage space significantly [74]. Another example is the addition of the

so-called ‘boat tail’ device to the rear end of a truck [23]. These devices have been

shown to reduce the drag acting on bluff body vehicles significantly by pushing the

recirculation region downstream of the rear face, however away from the particular

operating condition they were designed for, their performance may deteriorate [74].

The same can be said for most passive flow control devices.

Active open-loop bluff body flow control techniques comprise some sort of actuator

which operates according to a signal which has been chosen a priori. During operation

the actuator functions with no information about the system’s current state. Actu-

ators used most often in the literature include zero-net-mass-flux (ZNMF) jets (also

referred to as synthetic jets), moving surfaces, and plasma actuators [18]. Control

signal attributes, such as actuation amplitude and frequency, are often chosen after

testing different combinations in experiments in an attempt to characterise how the

flow responds to different actuation. This approach has been used successfully in many

studies – as will become apparent in Chapter 2 – but it suffers from one major downfall:

a lack of robustness. Similarly to the case with passive control devices, whilst an active

open-loop controller may perform well in the environment in which it was designed, its

performance may deteriorate as the operating conditions change.
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Active closed-loop, or feedback control techniques comprise an actuator which op-

erates according to a control signal which is computed in real-time in response to some

sensor measurement. This could be, for example, a measurement of the pressure acting

on part of the bluff body rear face, or a wall shear stress measurement. Feedback control

has the important advantage of being robust to the effects of uncertainty [9], such as

those which may arise from unmodelled external disturbances and changing operating

conditions, as is prevalent in a practical bluff body flow scenario. In addition, feedback

control is more efficient than open-loop control in that the control signals are typically

much smaller, and thus the energy required for actuation is far less. As such, the focus

of this work is on using feedback control for drag reduction of bluff body flows.

1.1.2 Difficulty in designing feedback controllers for fluid flows

The problem faced when designing feedback controllers for fluid flows is that much

of modern control theory requires linear plant models that are of low-order1. After

non-dimensionalising by appropriate length and velocity scales, h ∈ R+ and u∞ ∈ R+,

respectively, the equations governing the flow of an incompressible2, Newtonian fluid

in d ∈ {2, 3} spatial dimensions are given by:

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −∇p(x, t) +

1

Re
∇2u(x, t), ∀ (x, t) ∈ Ω× [0, tf ] , (1.1a)

∇ · u(x, t) = 0, ∀ (x, t) ∈ Ω× [0, tf ] , (1.1b)

with initial and boundary conditions:

u(x, 0) = u0(x), ∀ x ∈ Ω, (1.2a)

u(x, t) = u∂Ω(x, t), ∀ (x, t) ∈ ∂Ω× [0, tf ] , (1.2b)

where u(·, ·) : Ω × [0, tf ] → Rd is the velocity field, p(·, ·) : Ω × [0, tf ] → R is the

pressure field, Re := u∞h/ν ∈ R+ is the Reynolds number of the flow – a dimen-

sionless number defined as the ratio of inertial forces to viscous forces [106], ν ∈ R+

is the kinematic viscosity of the fluid, Ω ⊂ Rd is the spatial domain with bound-

ary ∂Ω, tf ∈ R+ is the endpoint of the time interval, x ∈ Ω is a point in the domain,

and ∇ is the del operator. Note that in this work R+ denotes the set of strictly positive

real numbers, R+ := {z ∈ R : z > 0}, whilst R+
0 denotes the set of non-negative real

numbers, R+
0 := {z ∈ R : z ≥ 0}.

These equations, separately referred to as the momentum equation (1.1a) and the

1‘Low-order’ in the sense that the state dimension is O . 102.
2Flows with velocities up to approximately Mach 0.3 may be considered incompressible – that is, the

fluid density ρ remains constant. Thus, these equations are suitable when considering the flow around
road vehicles.
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Figure 1.2: 2D complex geometries: (a) backward facing step; (b) D-shaped bluff body;
(c) circular cylinder.

continuity equation (1.1b), constitute a set of non-linear partial differential algebraic

equations (PDAEs) known as the incompressible Navier-Stokes equations. Due to the

algebraic constraint (1.1b) and the infinite-dimensional nature of the equations, obtain-

ing a model suitable for control design is non-trivial.

1.2 Overview

This thesis describes the work undertaken in an effort to develop computationally effi-

cient modelling techniques for obtaining low-order control models of complex geometry

fluid flows, such that ultimately feedback controllers can be designed. ‘Complex geome-

tries’ are defined here as backward facing steps, D-shaped bluff bodies, and cylinder

flows, as depicted in Figure 1.2, as opposed to more simple geometries such as plane

channel flow.

When designing a control system, if the objective is to suppress perturbations

around a mean flow then designing feedback controllers based on linearised approx-

imations gives rise to acceptable closed-loop performance. This has been shown in a

number of studies on the control of both complex geometry and plane channel flows

(see, e.g. [14, 59, 90, 65, 28, 67, 56, 46]). However, efficiently obtaining low-order models

that are accurate in the sense that they retain the most important dynamics of a given

flow remains an open question [56]. A typical approach relies upon the spatial discreti-

sation of the linearised Navier-Stokes equations on a computational mesh in order to

obtain finite-dimensional state-space models (see, e.g. [3, 11, 12, 46]).

The construction of state-space models of a fluid flow by directly spatially discretis-

ing the linearised Navier-Stokes equations is typically restricted to simple geometries

such as plane channel flow, whereby the assumption of periodicity in the streamwise

(and spanwise for 3D geometries) direction allows the use of Fourier transforms in space,

decoupling the flow by spatial wavenumber [14]. For more complex geometries, however,

such assumptions are less readily applicable, and hence computational fluid dynamics
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(CFD) codes used for flow simulations often use methods based on local interpolants,

such as finite-difference, finite-volume, or finite-element discretisation. Whilst these can

be used for constructing the state-space matrices describing complex geometry flows, it

is difficult in practice, and typically results in systems with extremely large (O > 106)

state dimension, giving rise to impractically large system matrices. The vast majority

of these states, however, have little influence on the actuator-to-sensor response of the

system, which means that satisfactory models for feedback control design can have state

dimension many orders of magnitude smaller. In the context of bluff body drag reduc-

tion, Dahan et al. [28] showed that the underlying input-output frequency response of

some flows actually resemble those of second -order systems.

1.2.1 Thesis layout

The work presented in the remainder of this thesis describes an efficient, computation-

ally tractable approach to obtaining the input-output frequency response of complex

geometry fluid flows, such that the low-order nature of the underlying dynamics is ex-

posed and a transfer function can be fitted for control design purposes. It is structured

as follows:

Chapter 2 discusses some of the literature relevant to the current study, considering

previous works on control of fluid flows around complex geometries.

Chapter 3 discusses in more detail the 2D backward facing step flow which will

serve as a case study for which a low-order model will eventually be obtained using the

method outlined in Chapter 4. The characteristics and features of a typical backward

facing step flow will be presented, before discussing the numerical procedure used to

simulate the flow. A linearity check will be performed in order to justify the use of

linear systems theory.

Chapter 4 explains the low-order modelling approach used in this work, along with

a domain decomposition optimisation technique which significantly reduces its com-

putational complexity. Its efficacy is proven by applying it to the 2D wave-diffusion

equation example problem, comparing results to a high-order benchmark model.

Chapter 5 discusses some of the difficulties which arise when spatially discretising

the linearised Navier-Stokes equations. The problem of choosing the ‘correct’ discreti-

sation of the governing equations is addressed by considering both the dynamics of a

single computational node, and a full order model of 2D channel flow. This reveals the

most suitable discretisation for feedback control design.

In Chapter 6 the frequency response of the 2D backward facing step with ZNMF

slot jet actuation and two different output configurations is computed using the mod-
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elling approach and insight gained in Chapters 4 and 5. With this frequency response,

low-order transfer functions are fitted, and compared to models obtained from a com-

putational fluid dynamics-based system identification study. This reveals significant

discrepancy between the two approaches, which is explained by investigating the un-

derlying dynamics of the numerical solver algorithm employed at the computational

node level and comparing these to the dynamics of a direct spatial discretisation of the

linearised Navier-Stokes equations.

Finally, conclusions and future work are presented in Chapter 7.

1.3 Publications and presentations

Some of the work presented in this thesis is based on the following publications and

conference presentations:

• O. J. Dellar and B. Ll. Jones. ‘Low-order modelling for feedback control of fluid

flows around complex geometries’, oral presentation at UKACC PhD Presentation

Showcase, London, UK, 23rd October 2014.

• O. J. Dellar and B. Ll. Jones. ‘Low-order Modelling for the Feedback Control

of Bluff Body Fluid Flows’, in proceedings of USES 2015 - The University of

Sheffield Engineering Symposium, Sheffield, UK, 24th June 2015.

• O. J. Dellar and B. Ll. Jones. ‘Low-order modelling for feedback control of fluid

flows around complex geometries’, oral presentation at APS 68th Annual Division

of Fluid Dynamics Meeting, Boston, USA, 22nd-24th November 2015.

• O. J. Dellar and B. Ll. Jones. ‘What is the ‘correct’ discretisation of the

linearised Navier-Stokes equations for feedback flow control?’, oral presentation

at UKACC PhD Presentation Showcase, London, UK, 17th May 2016.

• O. J. Dellar and B. Ll. Jones. ‘Discretising the linearised Navier-Stokes equa-

tions: A systems theory approach’, in proceedings of 11th UKACC International

Conference on Control, Belfast, UK, 30th August-2nd September 2016.

• O. J. Dellar and B. Ll. Jones. ‘What is the ‘correct’ formulation of the linearised

Navier-Stokes equations for designing feedback flow control systems?’, oral pre-

sentation at APS 69th Annual Division of Fluid Dynamics Meeting, Portland,

USA, 20th-22nd November 2016.

• O. J. Dellar and B. Ll. Jones. ‘Dynamically correct formulations of the lin-

earised Navier-Stokes equations’. International Journal for Numerical Methods

in Fluids, 2017.
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• O. J. Dellar and B. Ll. Jones. ‘Low-order modelling for control of spatially

distributed systems’, under review for International Journal of Control.

• O. J. Dellar and B. Ll. Jones. ‘An investigation into the discrepancy in the

dynamics of the PISO algorithm’, in preparation.
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Chapter 2

Relevant literature

This chapter summarises some of the key flow control techniques and ideas explored

in the literature which address the issue of control of fluids around different complex

geometries.

2.1 Bluff body and cylinder flow

Bluff body and cylinder flows arise in a range of common situations, and can result

in both drag and structural fatigue. The mechanism by which these two detrimental

effects occur is the same for both bluff bodies and cylinder flows, and is known as the

von Kármán vortex street. The von Kármán vortex street refers to the periodic shed-

ding of vortical structures behind the body. Behind a D-shaped blunt bluff body, two

shear layers separate from the body at fixed locations – the upper and lower edges –

and roll up to form symmetrical vortical structures with vorticity in opposing direc-

tions [27], whilst behind a circular cylinder the boundary layer peels away from the

cylinder’s surface at a location dependant on the Reynolds number (known as bound-

ary layer separation), before forming similar symmetrical vortical structures [70]. As

such, the size of the wake behind a circular cylinder flow is directly influenced by the

flow separation location, and can be minimised by ensuring the flow remains attached

for as long as possible. For Reynolds numbers greater than a critical value an absolute

instability in the wake, which is caused by a Hopf bifurcation in a global mode occuring

at this critical Reynolds number, causes the symmetry to break down and vortices to

be shed from the upper and lower edges/separation points alternately [52] as depicted

in Figure 2.1. This phenomenon results in a (relatively) low pressure region behind the

body which is responsible for form drag, and a lift coefficient which alternates between

positive and negative values as the vortices are shed, which can result in structural

fatigue. The collapse of the Tacoma Narrows Bridge in 1940, for example, was a direct

9
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Figure 2.1: Vortex shedding behind: (a) a 2D D-shaped bluff body; (b) a 2D circular
cylinder.

consequence of this alternating lift coefficient oscillating at a frequency similar to the

resonant frequency of the structure, due to vortex shedding of the wind [99].

For these reasons the control of the wake behind bluff body and cylinder flows has

been of interest for a long time.

2.1.1 Bluff body flow

Numerous studies have been carried out in attempts to reduce drag on bluff bodies

using open-loop actuation. Parkin et al. [74] studied numerically the flow over a 2D

D-shaped bluff body at Re = 23×103 (where Re is now defined as the Reynolds number

based on the body height h and free-stream velocity u∞). They implemented ZNMF

jets at the upper and lower trailing edges, oriented upwards (upper edge), downwards

(lower edge), and rearwards (both edges). Periodic forcing was employed at a range

of actuation Strouhal numbers (the actuation Strouhal number, Stact := facth/u∞, is

a dimensionless frequency, based on actuation frequency fact and inflow velocity u∞),

and it was found that drag was reduced most at a Stact approximately equal to half

the natural vortex shedding Strouhal number St := fh/u∞, where f is the shedding

frequency.
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Parkin et al. then carried out a wake analysis using dynamic mode decomposition

(DMD) to gain further insight into the physics of the vortex shedding. They found

that two modes coexist in all the flow simulations, the superposition of which is able to

represent the main flow features, and that by adding energy to these two modes, the

dominant of which corresponds to symmetric vortex shedding, they were able to extend

the mean recirculation region which in turn reduced drag. The optimal Stact was found

which extended this region the most, and hence increased the base pressure (pressure

acting on the rear face) the most, corresponding to drag reduction. They achieved a

drag reduction of 20%.

Kim et al. [60] considered a 3D D-shaped bluff body in both experiments and nu-

merical simulations. Large eddy simulations (LES) were carried out at Re = 4200, and

wind-tunnel experiments were carried out at Re = 20×103 and 40×103. Unlike Parkin

et al., Kim et al. implemented steady (time-invariant) slot jets oriented at 45◦ angles

to the horizontal at both the upper and lower edges, but varied the forcing’s spatial

distribution along the spanwise direction sinusoidally. Two cases were considered: the

case where the spatial distribution of forcing on the top and bottom edges was in phase,

and the case where it was out of phase. In the LES simulations a base pressure increase

of approximately 30% was achieved with in-phase forcing, whilst out of phase forcing

had little effect on the flow. Similarly, with in-phase forcing, base pressure increases

of around 36% and 18% were achieved in the experimental study for Re = 20 × 103

and 40× 103, respectively.

Chaligné et al. [20] experimentally studied the flow over a 2D D-shaped bluff body

in close ground proximity at Re ≈ 176 × 103. Locating the body close to the ground

better represents the flow physics around a road vehicle. A pulsed jet actuator was

implemented at the upper trailing edge acting at 45◦ to the horizontal, and a study was

carried out into what effect varying Stact had on the base pressure. It was found that

the periodic blowing had no beneficial effect on the base pressure, and that at some

frequencies it was actually detrimental.

A small overhanging flap was attached at the top of the rear face of the body

and this yielded much improved results. Above a certain Stact, significant increase in

base pressure was achieved which continued to increase as Stact was increased, before

eventually approaching an asymptotic value.

Pastoor et al. [75] studied the turbulent flow around a 3D D-shaped bluff body both

theoretically and experimentally, for Re of between 23× 103 and 70× 103, with ZNMF

actuators at the upper and lower trailing edges oriented at 45◦ to the horizontal. An

analytical model was proposed relating the vorticity of a summation of wake vortices

to the velocity field induced due to this vorticity, based on potential theory and Biot-

Savart’s Law. This model, which also resolves the effects of ZNMF actuation, provided
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insight into feedback controller design.

Wind tunnel experiments were carried out with periodic forcing to determine the

effects of varying Stact and the forcing amplitude, and optimal parameters which yielded

drag reduction of almost 15% were determined.

A slope-seeking adaptive feedback controller – an extension of extremum-seeking

control – was designed which used pressure sensor measurements located on the rear

face of the body, with the objective of optimally using the actuators to increase the mean

base pressure. This type of control assumes the system can be described by a state-space

model representing the input-output dynamics, and a steady-state input-output map.

The goal of the controller was to drive the system to a state with a particular slope in the

steady-state map. One advantage of this method is that neither the state-space model

nor the steady-state map must be known a priori. The controller was implemented in

an experiment where Re was continuously increased from Re = 40.5× 103 to 70× 103,

and successfully maintained drag reduction of 15%, demonstrating the robustness of

the controller to changes in Re.

Pastoor et al. then implemented phase control with the objective of synchronis-

ing the upper and lower shear layers, and hence vortex shedding, such that the vor-

tex shedding remained symmetric, therefore extending the recirculation region. This

control employed an extended Kalman filter to estimate the phase difference between

actuation and vortex shedding based on rear face pressure measurements, and with this

determined the actuation signal required to synchronise the upper and lower shear lay-

ers. In an experiment at Re = 46× 103, the phase control also achieved drag reduction

of 15%, but only required 56% of the actuation energy required by the slope-seeking

controller.

Henning and King [47] considered the flow around a 3D D-shaped bluff body in

wind tunnel experiments at Re = 40 × 103, with ZNMF actuators again located at

the trailing edges oriented at 45◦ to the horizontal. Similarly to Pastoor et al. [75]

they characterised the flow by measuring the mean base pressure coefficient for a range

of Stact. They found that with the optimal actuation frequency, drag reduction of 10%

could be achieved.

A robust feedback controller was then designed based on an identified linear black-

box model which used pressure sensors located on the rear face of the step as the system

output, and the momentum coefficient, cµ := `su
2
j,rms/hu

2
∞ (non-dimensional actuation

amplitude, where `s is the actuator slot width, and uj,rms is the rms jet velocity), as

the control input, forcing at constant Stact (set at the value found to be optimal in

the open-loop forcing experiments). In order to identify the linear model, step input

experiments were carried out for a range of cµ. Using this data a family of linear time-
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invariant (LTI) transfer function models were deduced, governed by uncertain model

parameters. A controller was then designed using loop-shaping techniques in order

to satisfy gain and phase margin requirements, and sensitivity specifications. The

controller was implemented in wind tunnel experiments and proved to not only just

increase the base pressure, but also track a reference signal very well. Robustness of

the controller was demonstrated by varying Re between 20 × 103 and 60 × 103, and

observing that the controller was still able to track a reference signal.

Dahan [27] studied the flow around a 3D D-shaped bluff body numerically, at Re =

10 × 103. ZNMF actuators were implemented at the upper and lower trailing edges

oriented at 45◦ to the horizontal. Dahan used a system identification approach to

modelling the input-output behaviour of the flow (where the output was the pressure

coefficient on the body’s rear face), forcing the flow periodically at a range of Stact

and plotting both the gain and phase (with respect to actuation) of the system output

on Bode plots. This was repeated for a range of different forcing amplitudes in order

to determine the significance of the nonlinearity. It was found that the differences

in gain and phase recorded for different forcing amplitudes were minimal, justifying

Dahan’s linear system assumption. After averaging the gain and phase data over the

different forcing amplitudes, an 8th-order transfer function model was fitted to the

identified frequency response. A H∞ loop-shaping robust controller was designed,

which when implemented in simulation successfully increased the mean base pressure

by 15%, corresponding to drag reduction.

Flinois and Morgans [38] considered numerically the 2D flow around a D-shaped

bluff body at Re = 80, with actuation taking the form of horizontal body forcing located

just above and below the top and bottom trailing edges, respectively. Two sensor

configurations were considered: a vertical velocity measurement at a point in the wake

of the body, and a rear face mounted distributed sensor measuring the antisymmetric

component of the force acting on the base. The eigensystem realisation algorithm

(ERA) was used to obtain linear reduced order models of the flow from open-loop

linearised impulse response data, and the authors showed that similar models can be

obtained from the nonlinear impulse response. H∞ loop-shaping feedback controllers

were designed which successfully suppressed vortex shedding in the wake, corresponding

to drag reduction.

2.1.2 Cylinder flow

Similarly to bluff body geometries, controlling the wake flow behind a cylinder has been

the focus of many studies. Weller et al. [104] considered numerically the 2D laminar

flow past a square cylinder, at Re = 150. They implemented out of phase suction and

blowing actuation located at the upper and lower trailing edges, oriented upwards and
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downwards, respectively. Assuming transverse velocity measurements in the cylinder

wake, a proportional gain feedback control law was implemented.

A database of flow-field snapshots was recorded for a range of different control sig-

nals, with which a set of proper orthogonal decomposition (POD) modes was deduced.

The linearised Navier-Stokes equations were projected onto a low-order subspace of

modes, yielding a reduced order state-space model of the input-output behaviour. The

objective of the controller was to minimise the difference between the steady, unstable

flow-field solution and the actuated flow, such that vortex shedding was suppressed

and drag was reduced. This was done using an optimisation algorithm to determine

the optimal feedback gains for the control law. The controller successfully stabilised the

flow when implemented in a CFD simulation, and yielded significant drag reduction.

Akhtar et al. [6] studied numerically the 2D flow past a circular cylinder at Re = 200

(where Re is defined here as the Reynolds number based on the cylinder diameter D

and free-stream velocity u∞). Flow-field snapshots were obtained and, similarly to

Weller et al. [104], POD modes were computed. This was done both without control,

and with control that assumed a pair of suction actuators located on the cylinder

surface, 75◦ clockwise and counter-clockwise from the rear. It was found that the first

12 POD modes contained 99% of the system energy, and so were considered sufficient

for modelling the system’s behaviour.

The Navier-Stokes equations, linearised around the time averaged flow-field, were

projected onto these POD modes, and an optimal linear quadratic Gaussian (LQG)

controller was designed. This assumed that only the temporal coefficient of the domi-

nant POD mode could be measured. When implemented in a full Navier-Stokes CFD

simulation, a reduction in vortex shedding was achieved, resulting in drag reduction.

Mathelin et al. [66] considered numerically the 2D flow around a circular cylinder

at Re ≈ 200. The study assumed the ability to prescribe a wall-normal velocity on the

cylinder boundary. CFD simulations with the implementation of a range of different

open-loop control signals were carried out, and the data produced was used to determine

POD modes. Further simulations were carried out in order to determine the ‘optimal

trajectory’ of the system model in phase space; that is, the phase trajectory which

resulted in the minimising of a cost function comprising a sum of the cylinder drag

force and the control effort.

Assuming full state feedback, a linear parameter varying (LPV) robust controller

was designed based on the reduced order model after it was linearised around a set of

points in the optimal phase space trajectory. The controller was shown to be robust to

perturbations in Re by implementation in a Navier-Stokes CFD simulation where Re

was modelled as a Gaussian stochastic process with a mean value of 200 and a variance
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of 3.8. The authors claim that good attenuation of drag was achieved.

Milano et al. [69] studied numerically the 2D flow around a circular cylinder at Re =

500 and 1000, and used evolutionary computing approaches to optimising active control

parameters for drag reduction. They assumed that the surface of the cylinder was split

into 16 equal sized sections whose tangential velocity could be prescribed, simulating a

set of 16 actuator belts.

Firstly, for the case where Re = 500, an offline genetic algorithm was used to

optimise the choice of actuator belt velocities given a cost function comprising the total

drag experienced by the cylinder, and when the control law was implemented in a full

Navier-Stokes CFD simulation it quickly suppressed vortex shedding, which resulted in

a reduction in drag of approximately 60%.

Next, for the case where Re = 1000, it was assumed that all 16 actuator belts

moved with the same velocity; that is, the cylinder could only rotate as a whole. An

online optimisation was implemented to deduce the optimal actuation parameters –

oscillation amplitude and frequency – and it was found that the algorithm quickly

discovered parameters which resulted in the suppression of vortex shedding, and again

achieved a decrease in drag of around 60%.

Milovanovic and Aamo [70] studied numerically the 2D flow around a circular cylin-

der at Re = 60, and used Ginzburg-Landau theory to develop an observer based con-

troller. It was assumed that the mechanism of actuation was cylinder rotation, and

that shear measurements were available from the rearmost point of the cylinder. Using

data recorded from CFD simulations, parameters for the Ginzburg-Landau equation

were determined such that it accurately described the von Kármán vortex shedding

phenomenon. This equation was used to deduce an observer to estimate flow velocities

downstream of the cylinder, and a full-state feedback control law. When implemented

in a Navier-Stokes CFD simulation, the observer estimated states with good accuracy,

and the controller fully suppressed vortex shedding, resulting in a decrease in drag.

Illingworth [53] considered numerically the 2D circular cylinder flow. Two blowing

and suction actuators were located at ±70◦ from the cylinder’s downstream pointing

horizontal, and vertical velocity component sensors were placed in the cylinder wake.

Using the ERA, low-dimensional linear models were obtained from impulse response

simulations for a number of different Reynolds numbers between 45 and 110, and used

to design H∞ loop-shaping controllers. These controllers were shown to perform well

in simulation, both for the case where only a single wake velocity measurement was

available, and when multiple measurements were available. The controllers also proved

to be robust across a range of Reynolds numbers, but it was highlighted that the

maximum stability margin achievable during the H∞ design process diminished with
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Figure 2.2: Vortex shedding behind 2D backward facing step.

increasing Reynolds number.

2.2 Backward facing step flow

Neglecting the effects of flow underneath a vehicle, backward facing step flows serve as

a rudimentary model of the flow behind a bluff body vehicle, such as a lorry. They have

been the subject of many past studies, and act as the test case for which a low-order

model will be obtained in this work.

When the flow detaches at the edge of a backward facing step, a Kelvin-Helmholtz

type instability in the shear layer causes the formation of vortical structures to shed

from the body [40] as depicted in Figure 2.2. These vortices result in a low-pressure

region in what is known as the ‘recirculation zone’ aft of the step, and it is this low-

pressure region which is responsible for pressure drag. The objective of flushing the

recirculation zone further downstream in order to raise the average base pressure, and

therefore reduce drag, has been the focus of a number of studies.

Dahan et al. [28] studied numerically both 2D and 3D backward facing step flows

at Reynolds numbers of Re = 2000 and 2× 104, respectively, corresponding to laminar

and turbulent flow (where Re is defined now as the Reynolds number based on the step

height h and free-stream velocity u∞). Two actuator placements were considered for

each case; the first implemented ZNMF actuation immediately before the step trailing

edge oriented at 45◦ to the horizontal, and the second implemented ZNMF actuation

at the very bottom of the step rear face oriented rearwards. In a similar fashion to the

D-shaped bluff body work, system identification methods were used for both actuator

placements in both the 2D and 3D cases, in order to model the input-output behaviour

of the flow (where again the output was the base pressure coefficient), forcing the

flow periodically at a range of Stact, and plotting the gain and phase of the output

on Bode plots. It was again found that the differences in gain and phase observed

when actuating with different forcing amplitudes were sufficiently small for the linear

systems assumption to hold. For the 3D case, in addition to this harmonic forcing
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system identification, the ERA was used with a sum-of-sines excitation signal. This

yielded frequency responses that were in excellent agreement.

For the 2D, laminar case, second-order linear feedback controllers were implemented,

with resonant frequency equal to that of the dominant vortex shedding frequency, and

damping ratios chosen such that the actuation signal did not deviate much from the

linear range of forcing amplitudes, and that the sensitivity function was shaped in a

desirable fashion. When implemented in a Navier-Stokes CFD simulation both con-

trollers completely suppressed vortex shedding and achieved a significant base pressure

increase of approximately 70%, resulting in a large drag reduction.

For the 3D, turbulent case, H∞ loop-shaping controllers were designed in order

to shape the loop and sensitivity transfer functions. When implemented in a CFD

simulation it was found that the controller with actuator located on the step edge

outperformed that with the actuator located at the bottom of the rear face, achieving

a base pressure increase of approximately 20%, whilst the controller with the actuator

located at the bottom of the rear face only achieved an increase of around 10%.

Hervé et al. [48] considered numerically a 2D backward facing step flow. They

suggested that a data driven system identification approach towards the modelling of

the flow avoids some of the disadvantages of model-based approaches, namely that in

model-based control design a priori assumptions on system noise must be made, whilst

a data driven model directly incorporates noise influences.

A flow scenario was studied in which skin-friction measurements were available at a

location immediately before the step edge, and on the bottom wall further downstream

around the end of the recirculation zone. A single ZNMF actuator was located on

the step edge oriented upwards. External forcing (representing noise) was applied up-

stream of the step, taking a Gaussian shape. For flow with Re = 500, an auto-regressive

moving-average with exogenous inputs (ARMAX) model was employed, the construc-

tion of which involved running simulations with broadband open-loop forcing being

applied by the actuator in the presence of the external forcing noise term, and fitting

suitable ARMAX coefficients from the data. A feedforward controller was designed us-

ing the ARMAX identified model. To demonstrate the robustness and performance of

the controller, it was implemented in a CFD simulation with high noise levels applied,

and achieved a reduction of almost 50% of the total turbulent kinetic energy of the

flow.

Pastoor et al. [76] studied numerically a 2D backward facing step flow at Re = 4000,

with a ZNMF actuator located on the step edge oriented at 45◦ to the horizontal. They

deduced vortex models of the flow, with the simplest models comprising just one vortex,

and more complex models comprising up to one hundred vortices. The main features
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of the backward facing step flow were described well by the vortex models, with a

close link between the number of vortices present in the model and the accuracy of the

predictions.

A higher order ‘vortex blob’ model comprising several hundred vortices was deduced,

and this proved to describe the vortex shedding phenomenon and recirculation region

dynamics well for both the unforced and the open-loop harmonically forced cases.

Gautier and Aider [40] studied experimentally the 3D backward facing step flow

at Re = 2070 and 2900, subjected to open-loop harmonic forcing. Unlike most previous

studies which located fluid actuators on or near the step edge, Gautier and Aider

implemented a pulsed jet upstream of the step edge oriented vertically upwards, with

a square wave control signal. They studied the effects of varying the jet amplitude,

frequency, and duty cycle on the recirculation zone area aft of the step. For a range of

actuation parameters they were able to significantly reduce the area of recirculation.

Gautier and Aider highlight that whilst recirculation region length might be a rea-

sonable criterion to consider in some situations, in others a different criterion, such as

the recirculation zone area as was used here, might be more important.

D’Adamo et al. [26] considered experimentally a 3D backward facing step flow

at Re = 1520 and studied the effect of implementing a dielectric barrier discharge

electrohydrodynamic actuator on the body rear face, oriented upwards. The mean

reattachment length of the flow was monitored using particle image velocimetry (PIV)

in response to varying the actuator frequency, duty cycle, and amplitude, such that opti-

mal actuation parameters could be chosen to minimise this reattachment length. It was

observed that maximum reattachment length reduction occurs for a forcing frequency

very similar to that of the natural vortex shedding frequency. Actuator amplitude and

duty cycle, however, have less effect on reattachment length.

Gautier et al. [41] presented a novel genetic programming based approach to control-

ling the recirculation region of a backward facing step flow in experments at Re = 1350,

with the particular objective of minimising the recirculation zone. 2D velocity snap-

shots were obtained in real-time using PIV and a graphics card, and slotted jets were

implemented further upstream of the step edge which functioned in response to a feed-

back control law. Genetic programming was used in order to optimise the control law

with respect to a cost function based on the recirculation area and an actuator penali-

sation term. They found that after 12 generations, each consisting of 500 individuals,

the algorithm had converged to a control law which was able to reduce the recirculation

zone by 80%. It was found that this genetic programming based feedback control ap-

proach performed similarly to periodic forcing when operating at the design conditions,

but that it outperformed periodic forcing when operating conditions were changed by
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way of altering the Reynolds number.

2.3 Summary

Much of the work available in the literature concentrates on open-loop control [60, 20,

74, 40, 26] which, whilst has been shown in some studies to perform well for fixed

operating conditions, suffers from a lack of robustness, as mentioned in Section 1.1.1.

Approaches using model-based feedback control have also been used, often based

on models identified through data driven approaches. These include system identifica-

tion [47, 28, 38, 53], and model reduction methods such as POD, balanced truncation,

and balanced POD [50, 86, 105, 8].

System identification can yield low-order models suitable for controller design, but

due to the extremely high state dimension of a typical CFD solver spatial discretisa-

tion (O > 106), numerical simulation can be very computationally expensive. Forced

simulations must be run for a long time in order to resolve the low frequency dynamics,

typically on high performance computing (HPC) clusters.

Model reduction, such as projection based methods which project the Navier-Stokes

equations onto a low-dimensional subset of modes, may yield models which are close

to the high-dimensional system in an open-loop sense, however, may not capture some

of the dynamics which arise in a closed-loop setting. This is due to the fact that

these methods were developed as model reduction techniques for open-loop simulation

models, as opposed to closed-loop control design models [56, 13], and as noted in [59],

a model which is sufficiently accurate for control design is not necessarily good enough

for numerical simulation. Similarly, a model which is good for numerical simulation is

not necessarily appropriate for control design [9]. As such, projection based methods do

not provide guarantees that the models produced will be suitable for feedback control

design purposes [25]. In addition to this, obtaining the system modes can be difficult

in itself due to the size and ill-conditioning of the system matrices involved.

The books by Gad-el-Hak [35] and Aamo and Krstić [3] provide further background

on flow control theory in general, and the review papers by Choi et al. [22] and Rashidi

et al. [82] provide more specific summaries of the different vortex shedding suppression

techniques which have been studied in the literature.
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Chapter 3

Backward facing step flow

This chapter presents a more detailed discussion of the complex geometry flow which

will serve as a test case for application of the modelling approach discussed in the

remainder of this thesis: the 2D backward facing step flow.

The main features of a backward facing step flow are first discussed, before details of

the numerical procedure used for simulation in this work are given. The implementation

of actuation is explained, and the use of linear systems theory for modelling the flow is

justified.

Note that for the remainder of this thesis since the spatial domain is 2D:

Ω ⊂ R2, x := (x, y) ∈ Ω, u := (u, v) ∈ R2, (3.1)

where quantites in the governing equations (1.1) have been non-dimensionalised by the

step height h and free-stream velocity u∞, i.e.:

t =
t?u∞
h

, x =
x?

h
, u =

u?

u∞
, p =

p?

ρu2
∞
, Re =

u∞h

ν
, (3.2)

where ρ ∈ R+ is the fluid density and the superscript ? denotes a dimensional quantity.

3.1 Flow features

The main features present in a backward facing step flow are depicted in Figure 3.1.

The boundary layer of the flow at the point of separation is denoted δBL, and is equal

to the height above the boundary at which u = 0.99u∞. Separation occurs at a fixed

location – the rear edge of the step – after which a Kelvin-Helmholtz type instability

develops in the shear layer due to the high velocity gradients. This Kelvin-Helmholtz

21
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Figure 3.1: Main features of a backward facing step flow, adapted from Driver et al. [34].

boundary velocity pressure

∂Ωin (u, v) = (u∞, 0) ∂p/∂n = 0

∂Ωout ∂u/∂n = 0 p = 0

∂Ωbottom (u, v) = (0, 0) (no-slip) ∂p/∂n = 0

∂Ωtop v = ∂u/∂n = 0 (free-slip) ∂p/∂n = 0

Table 3.1: Backward facing step numerical simulation boundary conditions.

instability then causes vortex shedding behind the step which results in a relatively

low pressure region. Two main recirculation bubbles are present: the larger primary

recirculation bubble, within which there is significant flow reversal, and the smaller sec-

ondary recirculation bubble. After the primary recirculation bubble the flow reattaches

to the boundary and starts to develop a boundary layer again.

3.2 Numerical simulation

In this work, a 2D flow was considered at Re = 2000 (based on the step height h

and free-stream velocity u∞) and simulated numerically using LES. The computational

domain depicted in Figure 3.2 was used, where the origin of the Cartesian coordinate

system is located at the step edge. The boundary conditions implemented were as

described by Table 3.1, where n ∈ R2 denotes the boundary-normal unit vector.

A uniform velocity profile was prescribed at the inlet, and a large inlet length was

used to ensure that a reasonably thick Blasius boundary layer (δBL ≈ h) had developed

once the step edge was reached.
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Figure 3.2: Backward facing step flow computational domain with boundaries ∂Ω(·).

3.2.1 Background on computational fluid dynamics

CFD is the branch of fluid dynamics concerned with the simulation of fluid flows. Given

only a few analytical solutions to the equations governing fluid dynamics (1.1) exist,

which are typically for very simple geometries, CFD techniques approximate solutions

for more complex geometries numerically.

Traditional simulation approaches are typically divided into the following three

categories1:

1. Direct numerical simulation (DNS).

2. Large eddy simulation (LES).

3. Reynolds averaged Navier-Stokes (RANS).

These categories differ in the way in which they model turbulence. DNS is conceptually

the ‘simplest’ approach to simulating a fluid flow, in that it directy solves the governing

equations (1.1) on a sufficiently fine computational mesh that all eddy length scales are

resolved – i.e. it does not use a ‘model’ for turbulence. Whilst this is the most accurate

method of simulation, it is by far the most computationally expensive approach, and de-

spite its existence for many decades now, even with today’s high performance computing

power only simulations at low Reynolds numbers are computationally tractable [30].

The LES approach is to numerically solve a spatially filtered set of governing equa-

tions to resolve the large eddy scales in the flow, and use a model to approximate the

effects of the smaller scales [30, 19]. This is acceptable as often it is the larger scales

1In addition to these traditional approaches there exists a separate class of methods developed more
recently called Lattice Boltzmann methods which, rather than numerically solving the Navier-Stokes
equations, simulate fluid flows using the discrete Boltzmann equation and particle collision models
based on kinetic theory. These methods are not considered in this work, but the interested reader is
referred to the review paper by Aidun and Clausen [5] for details.
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which dominate momentum transfer [30]. The spatial filter is usually simply the com-

putational mesh, and for this reason the model is called the sub-grid scale (SGS) model.

Whilst the computational cost of LES simulations is still significant, it is considerably

cheaper than DNS, and as such can be used for simulating complex geometry flows.

Finally, the least computationally expensive approach is RANS simulation. RANS

simulations are based on the equations which result from Reynolds-decomposition –

that is, decomposing the flow quantities into a time-averaged (or ensemble averaged)

component and a fluctuating component [37]. Upon averaging, terms are produced

which must be modelled using a turbulence model. The RANS approach is typically

employed when time-averaged properties are of interest, such as the mean force acting

on a surface.

In this work, LES simulations were employed as they achieve a good tradeoff between

computational cost and sufficient resolution of spatial and temporal scales of the flow.

3.2.2 OpenFOAM

The open-source C++ based finite volume CFD code OpenFOAM [103] was used for

the numerical simulations carried out in this work. More specifically, the pressure-

implicit method for pressure linked equations (PIMPLE)2 algorithm solver was used in

conjunction with a k-equation eddy-viscosity model for the sub-grid scale model [37]

(where k ∈ R+ is the sub-grid scale kinetic energy), with kinetic energy wall functions.

The solver uses a second-order accurate central differencing scheme in space, and a

backward Euler differencing scheme in time – the backward time centered space method

(BTCS). This scheme is unconditionally stable [49], but an adjustable time-step was

used in order to keep the Courant number small [77] such that temporal scales were

well resolved. The recent paper by Robertson et al. [85] presents a validation study of

OpenFOAM’s reliability in simulating incompressible bluff body flows, largely based

on time-averaged statistical data. The authors conclude that it is indeed reliable for

such problems.

3.2.3 Mesh generation

A structured, graded mesh with increased cell density in the region aft of the step (as

depicted in Figure 3.3) was used for all numerical simulations. Before deciding on a

suitable mesh, simulations were run using six different meshes of increasing cell density

2The PIMPLE algorithm is a variation of the standard pressure-implicit with splitting of operator
(PISO) algorithm first described by Issa [54] which incorporates outer correction loops, and allows the
use of a larger timestep.
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Figure 3.3: Final backward facing step computational mesh with approximately 1 in
50 cells shown for clarity.

mesh ID nc

Mesh 1 6× 103

Mesh 2 25× 103

Mesh 3 119× 103

Mesh 4 217× 103

Mesh 5 309× 103

Mesh 6 529× 103

Table 3.2: Total number of computational cells nc for increasingly fine backward facing
step computational meshes.

in order to ensure convergence. The total number of computational cells in each mesh

are given in Table 3.2.

Several characteristics of the flow were considered in order to ensure the simulations’

convergence upon mesh refinement. Firstly, time-averaged velocity profiles ū(y) at

several locations in the wake of the step were considered (note that ·̄ denotes temporal

averaging of a quantity). These are shown in Figure 3.4, and it is clear that the time-

averaged flowfield has converged by Mesh 4, capturing the flow reversal present in the

recirculation region.

The magnitude spectra of a pressure measurement on the bottom wall at (x, y) =

(0.1,−1) were computed and are plotted in Figure 3.5. Note that the spectra obtained

for Mesh 1 and Mesh 2 are not plotted, as these were too coarse to capture any vortex

shedding. The spectra obtained for the higher fidelity meshes converged to show the

largest peak at St = Stshed = 0.064 (see Table 3.3), with smaller peaks at harmonics

of this frequency, i.e. at 2Stshed, 3Stshed, etc. The largest peak corresponds to the

dominant shedding mode, and is in excellent agreement with Dahan et al. [28].
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Figure 3.4: Time averaged velocity profiles ū(y) at x = 0.5, 1.5, and 2.5: Mesh 1 (−),
Mesh 2 (−), Mesh 3 (−), Mesh 4 (−−), Mesh 5 (−−), Mesh 6 (−−).

mesh ID shedding frequency Stshed

Mesh 1 n/a

Mesh 2 n/a

Mesh 3 0.070

Mesh 4 0.063

Mesh 5 0.064

Mesh 6 0.064

Table 3.3: Shedding frequency Stshed observed for different computational meshes.

It was found that the reattachment length – the point at which the time-averaged

wall shear stress is equal to zero – converged to xr = 6.3, which is also in good agreement

with Dahan et al. [28].

Figure 3.6 shows the time-averaged flowfield. The low pressure region responsible

for pressure drag immediately aft of the step is evident in Figure 3.6(c). Figure 3.7

displays time-averaged streamlines which clearly depict the characteristic primary and

secondary recirculation bubbles discussed in Section 3.1.

For the remainder of the work in this thesis, Mesh 5 was selected for numerical

simulations.
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Figure 3.5: Magnitude spectra of y(t) = p(0.1,−1, t): Mesh 3 (−), Mesh 4 (−), Mesh
5 (−), Mesh 6 (−−).

3.2.4 Parallelisation

OpenFOAM uses the message passing interface (MPI) system for parallel computation.

The spatial domain is decomposed into np subdomains, and at each computational

timestep the calculation for each subdomain is computed on one of the np processing

cores allocated to the job. Between timesteps, MPI is used for communication between

cores.

The benefit of running a simulation in parallel is typically measured by the job’s

speedup Snp ∈ R+ [37], where linear speedup, Snp = np, is the ideal case3. Speedup is

defined as:

Snp =
Ts

Tnp

, (3.3)

where Ts is the wall-clock time taken to complete a particular job in serial (one pro-

cessing core), and Tnp is the wall-clock time taken to complete the same job using np

processing cores.

The University of Sheffield’s HPC cluster Iceberg was used for all backward facing

step flow simulations presented in this work, and the speedup achievable was studied by

running simulations of a fixed number of non-dimensional time units on varying numbers

3‘Superlinear speedup’ (Snp > np) is occasionally observed and is usually the result of a particularly
efficient use of cache memory in the parallel processing environment, however this is atypical [4].
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Figure 3.6: Backward facing step time-averaged flow: (a) ū(x); (b) v̄(x); (c) p̄(x).

of cores. Results are depicted in Figure 3.8. Reasonable speedup (albeit less than

linear) was achieved up to 32 processing cores – the maximum number of cores allowed

per job on the Iceberg cluster. It should be noted that the the achievable speedup

is dependent on the particular problem and solution algorithms used. Robertson et

al. [85], for example, achieved much greater speedup up to 192 procesing cores when

performing OpenFOAM RANS simulations of bluff body flows.
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Figure 3.7: Backward facing step time-averaged streamlines.
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Figure 3.8: Speedup Snp achieved when backward facing step simulation was run on np

processing cores of Iceberg. Dashed line represents linear (ideal) speedup.

3.3 Actuation

As became evident in Chapter 2, a number of different actuator types have been imple-

mented in previous flow control studies. The most common was ZNMF actuation, and

this has been used in the present work. For a thorough discussion of different actuator

options for flow control, the reader is referred to the review paper by Cattafesta and

Sheplak [18].
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Figure 3.9: Backward facing step ZNMF actuator location.

Actuation, of slot width `s = 0.03, was located on top of the step immediately

before the edge at an angle of 45◦ to the horizontal, as depicted in Figure 3.9. In

numerical simulations the actuation was modelled as a simple modified boundary con-

dition (MBC) [79] with a top-hat spatial profile. As such, for the actuator slot region

boundary ∂Ωslot := {x ∈ Ω : −`s ≤ x ≤ 0, y = 0}, the velocity is given by:

u(x, t) =

uact(x, t)

vact(x, t)

 =

 1√
2

1√
2

 uj(t), ∀ (x, t) ∈ ∂Ωslot × [0, tf ] , (3.4)

where uj(t) is the actuator velocity.

Whilst other actuator slot spatial profiles could be employed, it was found in Kral et

al [61] that modelling ZNMF actuation with a top-hat spatial profile yielded simulation

results which best agreed with experiments when compared to several other profiles.

3.4 Linear system assumption

Whilst many linear control approaches to bluff body flow control have successfully been

used in previous studies (many of which were discussed in Chapter 2), in order to fully

justify the use of such methods in the present work, an output was defined and the

linearity of the response to harmonic forcing (sinusoidal signals) at a number of forcing

frequencies and amplitudes was analysed.

The output y(t) was defined as the vertical velocity component at a point in the

wake:

y(t) = v(1,−0.5, t), (3.5)

and the actuation velocity followed a sinusoidal signal:

uj(t) = Aj sin (2π · Stact · t) , (3.6)

where Aj is the actuation amplitude, and Stact is the forcing frequency.
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Simulations for a range of forcing frequencies Stact ∈ {0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 1}
and amplitudes Aj ∈ {0.01, 0.1, 0.2, 0.3, 0.4} were run, and the output spectra were

computed. Figures 3.10–3.12 show these spectra.

It is immediately clear that at low amplitudes the system does indeed behave lin-

early. For forcing amplitude Aj = 0.01 the spectra were largely unchanged by the

forcing, and the natural vortex shedding continued unperturbed. However, as the am-

plitude is increased, the effect of the nonlinearity becomes evident, and the forcing

alters the output spectra not only just at the forcing frequency, but across many other

frequencies too. For forcing amplitudes greater than Aj = 0.2, the actuation starts to

dominate the flow, and, depending on forcing frequency, the natural vortex shedding

at St = 0.064 is no longer always present. This suggests that as the magnitude of

control signals increases, the baseline flow – around which linear models capture the

dynamics of flow perturbations – changes significantly. As such, careful consideration

into what baseline flow is used to construct models around is important.

A scalar measure ϑ ∈ R+
0 is defined here to quantify the difference in energy between

forced and unforced output signals:

ϑ :=

∣∣∣∣∫ ∞
−∞
|ŷunforced(i · St)|2 dSt−

∫ ∞
−∞

∣∣ˇ̂yforced(i · St)
∣∣2 dSt

∣∣∣∣∫ ∞
−∞
|ŷunforced(i · St)|2 dSt

, (3.7)

where ˇ̂yforced(i · St) denotes the forced system’s output spectra after removing the peak

corresponding to input forcing – i.e. removing the energy content attributed to the

input forcing. Therefore, ϑ = 0 means that the energy content of the forced system

output signal is the same as that of the unforced system output signal, suggesting that

the system behaves perfectly linearly. Conversely, ϑ � 0 suggests a larger difference

in energy, due to the nonlinearity moving energy from the forcing frequency to other

frequencies. Figure 3.13 depicts the value of ϑ computed for each of the test cases.

As one would expect from analysing Figures 3.10–3.12, ϑ is smallest for the smaller

forcing amplitudes, and increases as the forcing amplitudes are increased. This confirms

that the system behaves in a linear fashion for small control signals. Since in feedback

control the required signals are typically small, the linear control approach employed

in this work is justified.

3.5 Summary

The main features of the backward facing step flow, which serves as the complex ge-

ometry flow test case in this work, have been presented in this chapter.
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Details of the numerical simulation procedure employed in this work have been

discussed, including details of the solution algorithm used, a study of the convergence

of properties of the solution upon mesh refinement, and aspects of parallelisation of the

simulations.

The numerical implementation of ZNMF actuation has been explained, and the

assumption that linear systems theory is valid for describing the flow dynamics was

justified.
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Figure 3.10: Output magnitude spectra |ŷ(i · St)| of harmonically forced flow (−) with
various forcing frequencies Stact and amplitudes Aj . Unforced flow (−) is shown for
comparison.
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|ŷ
(i
·
S
t)
|

(f) Aj = 0.3, Stact = 0.1

10
−5

(g) Aj = 0.2, Stact = 0.2

|ŷ
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Figure 3.11: Output magnitude spectra |ŷ(i · St)| of harmonically forced flow (−) with
various forcing frequencies Stact and amplitudes Aj . Unforced flow (−) is shown for
comparison.
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Figure 3.12: Output magnitude spectra |ŷ(i · St)| of harmonically forced flow (−) with
various forcing frequencies Stact and amplitudes Aj . Unforced flow (−) is shown for
comparison.
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Chapter 4

Low-order modelling of PDAEs

This chapter introduces the low-order modelling technique which is employed in this

work. The methodology – which is a generalisation of the modelling approach used by

Baramov et al. [10, 11], who used a similar technique to obtain models of a 2D channel

flow – avoids some of the difficulties associated with other approaches (as discussed

in Chapter 2), chiefly that expensive and time-consuming simulations and/or exper-

iments required by system identification procedures are unnecessary, and that large,

ill-conditioned system matrices are never explicitly constructed. The methodology can

readily be applied to complex geometry flows in order to obtain input-output frequency

response.

The modelling technique is presented, along with a spatial domain decomposition

optimisation which greatly reduces the computational complexity of the method. The

method’s efficacy is demonstrated by application to a wave-diffusion equation exam-

ple for which a benchmark model can easily be constructed. Results are presented

which confirm that this modelling approach produces identical frequency response data

to the benchmark model, at a lessened computational cost, and with more desirable

computational properties.

4.1 Modelling technique overview

The aim of this modelling approach is to obtain low-dimensional models of PDAE sys-

tems which are suitable for feedback control, whilst avoiding the necessity to construct,

store, or invert extremely large state-space matrices, or run numerous computation-

ally expensive simulations. The overall frequency response of a system is built up

by connecting together the frequency responses of a large number of computational

node subsystems in an efficient manner by exploiting the inherent structure of spatially

37
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Figure 4.1: Interconnection of neighbouring subsystems after spatial discretisation of a
linear PDAE.

discretised PDAEs. This exposes what can be very low-order behaviour, despite the

high-dimensionality of the original plant [28].

In addition, the approach lends itself to using the gap metric bound construction

theory presented in [55], which, by designing a suitable H∞ robust controller, can

guarantee closed-loop stability of the infinite-dimensional plant.

4.1.1 Spatial discretisation and formulation of nodal subsystems

If the underlying dynamics of the system are governed by a nonlinear PDAE, the first

step is to linearise the PDAE around the desired operating condition (assuming the use

of linear control is justifiable) and discretise in space using centred finite-differences,

yielding simple interconnections between adjacent nodes. For every node on the com-

putational mesh, a low-dimensional descriptor1 state-space model can be deduced, and

treated as an individual subsystem Pi,j whose inputs and outputs correspond to the

flow of state information from and to its neighbouring nodes, respectively (with addi-

tional control inputs and measured outputs in the case of nodes representing actuation

or sensing). This is depicted in Figure 4.1 for the two spatial dimension case, where i

and j are node indices in the x and y directions, respectively.

1For PDE (as opposed to PDAE) systems these will be standard state-space (as opposed to descrip-
tor) systems.
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Each of these subsystems has a descriptor state-space representation of the form:

Ei,j
d

dt
xi,j(t) = Ai,jxi,j(t) +Bi,jξi,j(t) +Bui,jui,j(t), (4.1a)

zi,j(t) = Ci,jxi,j(t), (4.1b)

yi,j(t) = Cyi,jxi,j(t), (4.1c)

where, for a PDAE in d ∈ {1, 2, 3} spatial dimensions, xi,j(t) ∈ Rn is the node’s

state vector, ξi,j(t) ∈ R2dn is a vector of state information flowing in from neighbouring

nodes – in the two spatial dimension case for example:

ξi,j(t) =
[
x>i,j−1(t) x>i+1,j(t) x>i,j+1(t) x>i−1,j(t)

]>
∈ R4n,

ui,j(t) ∈ Rq is a vector of control inputs, yi,j(t) ∈ Rp is a vector of measured out-

puts, zi,j(t) ∈ R2dn is the output of the node’s state information to neighbouring

nodes, Ei,j , Ai,j ∈ Rn×n and Bi,j ∈ Rn×2dn are matrices which arise in the spatial

discretisation,

Ci,j :=
[
I I · · · I

]>
∈ R2dn×d,

and Bui,j ∈ Rn×q and Cyi,j ∈ Rp×n are matrices which describe how control inputs

affect the states, and how measured outputs are defined as linear combinations of the

states, respectively. Note that for many systems of interest the majority of computa-

tional nodes’ subsystems do not have control inputs or measured outputs, only nodes

corresponding to actuation or sensing locations will possess these inputs and outputs.

Taking Laplace transforms of (4.1), and prescribing initial conditions xi,j(0) = 0

yields: z̃i,j(s)

ỹi,j(s)

 =

 Ci,j
Cyi,j

 (sEi,j −Ai,j)−1
[
Bi,j Bui,j

]
︸ ︷︷ ︸

Pi,j(s)

ξ̃i,j(s)
ũi,j(s)

 , (4.2)

where Pi,j(s) ∈ R(2dn+p)×(2dn+q) is a real-rational transfer function matrix, ·̃ denotes a

Laplace transformed quantity, and s ∈ C.

The subsystem (4.2) is defined as a computational ‘atom’. For each and every

atom on the domain, the frequency response Pi,j(iω) ∈ C(2dn+p)×(2dn+q) for a particular

frequency ω ∈ R is computed by evaluating Pi,j(s) with s = iω, where i :=
√
−1. Whilst

matrix inversion is a costly operation (in big-O notation, O
(
n3
)

flops2), evaluating an

2Floating point operations, defined as a single addition, subtraction, multiplication or division be-
tween two floating point numbers [42].
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Figure 4.2: Redheffer star product between two systems.

atom’s frequency response is cheap as the most expensive operation is the inversion

of (iωEi,j −Ai,j), which for fluids problems is small (4× 4 or smaller).

Neighbouring atoms’ frequency responses can be connected together using the Red-

heffer star product (RHSP) operation, also known as the generalised linear fractional

transformation [33].

4.1.2 Redheffer star product

The RHSP describes the interconnection of two multi-input multi-output (MIMO) sys-

tems. The block diagram of the RHSP between two systems Q(s) and M(s) is depicted

in Figure 4.2. Assuming Q(s) and M(s) are partitioned (compatibly) as such:ỹQ1(s)

ỹQ2(s)

 =

Q11(s) Q12(s)

Q21(s) Q22(s)


︸ ︷︷ ︸

Q(s)

ũQ1(s)

ũQ2(s)

 , (4.3a)

ỹM1(s)

ỹM2(s)

 =

M11(s) M12(s)

M21(s) M22(s)


︸ ︷︷ ︸

M(s)

ũM1(s)

ũM2(s)

 , (4.3b)

where Q(s) ∈ R(aQ1
+aQ2)×(bQ1

+bQ2), M(s) ∈ R(aM1
+aM2)×(bM1

+bM2), aQ2 = bM1 ,

and aM1 = bQ2 , the Redheffer star product · ? · : R(aQ1
+aQ2)×(bQ1

+bQ2)×
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R(aM1
+aM2)×(bM1

+bM2) → R(aQ1
+aM2)×(bQ1

+bM2) is defined as [39]:

R(s) = Q(s) ? M(s)

:=

Q11 +Q12M11 (I −Q22M11)−1Q21 Q12M11 (I −Q22M11)−1Q22M12 +Q12M12

M21 (I −Q22M11)−1Q21 M21 (I −Q22M11)−1Q22M12 +M22

 ,
(4.4)

which yields the overall interconnection:ỹQ1(s)

ỹM2(s)

 = R(s)

ũQ1(s)

ũM2(s)

 . (4.5)

In order to compute the frequency response from
[
ũ∗Q1

(s) ũ∗M2
(s)
]∗

to[
ỹ∗Q1

(s) ỹ∗M2
(s)
]∗

, Q(s) and M(s) are simply evaluated on the imaginary axis s = iω.

The overall frequency response of the PDAE system G(iω), from control inputs ũ(s)

to measured outputs ỹ(s), is thus obtained by ‘chaining’ the individual atoms’ frequency

responses together with the RHSP:

G(iω) = P1,1(iω) ? P1,2(iω) ? · · · ? Pi,j(iω) ? · · · ? Pni,nj (iω). (4.6)

The ordering of the chaining is depicted in Figure 4.3. As such, this modelling approach

is referred to as the RHSP-based construction method in this work.

This procedure is completed for a number of frequencies of interest, before a low-

order transfer function is fitted to the frequency response using, for example, least

squares regression. By performing these steps a number of times on successively

finer computational meshes, an upper bound on the ν-gap [97, 98] between the finite-

dimensional approximation and the original infinite-dimensional plant may be ob-

tained [55], such that H∞ robust controllers can be designed which guarantee closed-

loop stability. Note that since the frequency response obtained at one frequency is

completely independent of that obtained at other frequencies, the problem is embar-

rassingly parallel. This can be exploited by performing the computations on a HPC

cluster, dedicating a single processing core to each frequency point of interest.

4.1.3 Computational cost

Here, (linear) PDAE systems in two spatial dimensions are considered, although anal-

ogous results could be deduced for the three spatial dimension case. Whilst the mod-

elling approach described above is well suited to complex geometries, in the following
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∂ΩΩ
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Figure 4.3: Connecting computational atoms together to obtain overall PDAE system
frequency response.

matrix operation big-O cost (flops)

addition, A+B, where A,B ∈ Ca×b O(ab)

multiplication, AB, where A ∈ Ca×b, B ∈ Cb×c O(abc)

inversion, A−1, where A ∈ Ca×a O
(
a3
)

Table 4.1: Computational cost of matrix operations.

a rectangular domain Ω := [−`x/2, `x/2]× [−`y/2, `y/2] ⊂ R2 is assumed with uniform

computational mesh density % ∈ N (nodes per unit length) in both directions, resulting

in nx ∈ N and ny ∈ N computational nodes in the x and y directions, respectively.

Noting the cost of typical matrix operations as presented in Table 4.1, summing all

the operations required to construct all ntotal = nxny atoms and evaluate (4.6) yields

the overall computational cost C ∈ R+:

C = O
(
n3
xny (1 + n)n2 + 2n2

xny (1 + 6n)n2 + 52nxnyn
3
)
, (4.7)

where n ∈ N is the state dimension of each subsystem.

Since nx = %`x and ny = %`y, for given %, `x, and `y, (4.7) can be written:

C = c1`
3
x`y (1 + n)n2%4 + 2c2`

2
x`y (1 + 6n)n2%3 + 52c3`x`yn

3%2, (4.8)

where c1, ..., c3 ∈ R+ are unknown constants. Hence the cost is O
(
%4
)

to leading order.
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Figure 4.4: Connecting computational atoms together via domain decomposition to
obtain overall PDAE system frequency response.

4.2 Optimisation by domain decomposition

The complexity of the above modelling approach can be reduced further by employing

a domain decomposition optimisation. The computational mesh is first split into nΩ =

nΩxnΩy ∈ N subdomains, defined here as computational ‘molecules’, with nΩx ∈ N
and nΩy ∈ N molecules in the x and y directions, respectively. For each molecule, the

individual atom frequency responses within the molecule are connected together using

the RHSP resulting in the molecule frequency response:

PΩi,j (iω) = P1,1(iω) ? P2,1(iω) ? · · · ? Pni,nj (iω). (4.9)

The overall PDAE system frequency response G(iω) is then obtained by connecting

each of the molecules together:

G(iω) = PΩ1,1(iω) ? PΩ2,1(iω) ? · · · ? PΩnΩx
,nΩy

(iω). (4.10)

This is depicted in Figure 4.4.

For the two spatial dimension case, the overall computational complexity of the

modelling approach can be reduced from O
(
%4
)

to O
(
%2
)

by employing the domain

decomposition optimisation. The following Lemma establishes existence and uniqueness

of values of nΩx and nΩy which minimise the computational cost:

Lemma 1. For a given mesh density %, there exist unique values nΩx = nΩx,opt and nΩy =

nΩy,opt which minimise the overall cost of evaluating (4.9) for each molecule, and finally

evaluating (4.10).

Proof. Summing the cost of all the computational operations required to evaluate (4.9)
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for each molecule, and finally evaluate (4.10) yields the overall computational cost:

C = O
(
n3
xn
−2
Ωx
ny(1 + 2n)n2 + 2nxn

−1
Ωx
ny(1 + 6n)n2 + 32nxnyn

3 + 4nxnyn
2

+ 8nxnyn+ 16
(
nxn

−1
Ωx

+ nyn
−1
Ωy

)3
nΩxnΩyn

3

+ 5nΩxnΩy

(
nxn

−1
Ωx

+ nyn
−1
Ωy

)2 (
nx − nxn−1

Ωx

)
n3

+ nΩxnΩy

(
nxn

−1
Ωx

+ nyn
−1
Ωy

)2
n2 + nΩxnΩy

(
nx − nxn−1

Ωx

)2
n2

+ nΩxnΩy

(
nxn

−1
Ωx

+ nyn
−1
Ωy

) (
nx − nxn−1

Ωx

)
n2

)
.

(4.11)

The optimal values of nΩx and nΩy which achieve the complexity reduction discussed

above are those which satisfy:

∂C
∂nΩx

= 0 = −2c1`
3
x`y (1 + n)n2n−3

Ωx
%4 − 48c6`

2
x`yn

3n−2
Ωx
%3

− 32c6`
3
xnΩyn

3n−3
Ωx
%3 + 16c6`

3
yn

3n−2
Ωy
%3 + 10c7`

2
x`yn

3n−2
Ωx
%3

− 5c7`
3
xnΩyn

3n−2
Ωx
%3 + 5c7`x`

2
yn

3n−1
Ωy
%3 − c8nΩy`

2
xn

2n−2
Ωx
%2

+ 10c7`
3
xnΩyn

3n−3
Ωx
%3 + c8`

2
yn

2n−1
Ωy
%2 + c9`

2
xnΩyn

2n−2
Ωx
%2

+ c9`x`yn
2%2 − c10`

2
xnΩyn

2n−2
Ωx
%2 + c10`

2
xnΩyn

2%2

− 2c2`x`y (1 + 6n)n2n−2
Ωx
%2,

(4.12)

and

∂C
∂nΩy

= 0 = −48c6`x`
2
yn

3n−2
Ωy
%3 + 16c6`

3
xn

3n−2
Ωx
%3 + 5c7`

3
xn

3n−1
Ωx
%3

− 32c6`
3
ynΩxn

3n−3
Ωy
%3 + 5c7`x`

2
yn

3n−2
Ωy
%3 + c8`

2
xn

2n−1
Ωx
%2

− 5c7`x`
2
ynΩxn

3n−2
Ωy
%3 − 5c7`

3
xn

3n−2
Ωx
%3 − c8nΩx`

2
yn

2n−2
Ωy
%2

+ c9`
2
xn

2%2 − c9`
2
xn

2n−1
Ωx
%2 + c10`

2
xn

2n−1
Ωx
%2

− 2c10`
2
xn

2%2 + c10`
2
xnΩxn

2%2,

(4.13)

which can be written:

an3
Ωx

+ bnΩx + c = 0, (4.14)

and

dn3
Ωy

+ enΩy + f = 0, (4.15)
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respectively, where:

a := 16c6`
3
yn

3n−2
Ωy
%3 + 5c7`x`

2
yn

3n−1
Ωy
%3 + c8`

2
yn

2n−1
Ωy
%2 + c9`x`yn

2%2

+ c10`
2
xnΩyn

2%2,
(4.16a)

b := 10c7`
2
x`yn

3%3 − 48c6`
2
x`yn

3%3 − 5c7`
3
xnΩyn

3%3 − c8nΩy`
2
xn

2%2

+ c9`
2
xnΩyn

2%2 − c10`
2
xnΩyn

2%2 − 2c2`x`y (1 + 6n)n2%2,
(4.16b)

c := 10c7`
3
xnΩyn

3%3 − 32c6`
3
xnΩyn

3%3, (4.16c)

and:

d := 16c6`
3
xn

3n−2
Ωx
%3 + 5c7`

3
xn

3n−1
Ωx
%3 − 5c7`

3
xn

3n−2
Ωx
%3 + c8`

2
xn

2n−1
Ωx
%2

+ c9`
2
xn

2%2 − c9`
2
xn

2n−1
Ωx
%2 − 2c10`

2
xn

2%2 + c10`
2
xn

2n−1
Ωx
%2 + c10`

2
xnΩxn

2%2,
(4.17a)

e := 5c7`x`
2
yn

3%3 − 48c6`x`
2
yn

3%3 − 5c7`x`
2
ynΩxn

3%3 − c8nΩx`
2
yn

2%2, (4.17b)

f := −32c6`
3
ynΩxn

3%3. (4.17c)

For % > 0, polynomials of the form (4.14) and (4.15) have a single global minimum,

and hence the cost (4.11) is convex. �

The proposed reduction in cost is proven in the following theorem:

Theorem 1. For the optimal choice of nΩx = nΩx,opt and nΩy = nΩy,opt, the cost of

obtaining the overall frequency response using (4.9) and (4.10) reduces to O
(
%2
)
.

Proof. The cost of evaluating (4.9) for each molecule, and finally evaluating (4.10) is

given by the expression (4.11). Since nx = %`x and ny = %`y, for given %, `x and `y, (4.11)

can be written as a polynomial in %:

C = c1`
3
x`y (1 + n)n2n−2

Ωx
%4 +

(
48c6`

2
x`yn

3n−1
Ωx

+ 48c6`x`
2
yn

3n−1
Ωy

+ 16c6`
3
xnΩyn

3n−2
Ωx

+ 10c7`
2
x`yn

3 + 16c6`
3
ynΩxn

3n−2
Ωy
− 10c7`

2
x`yn

3n−1
Ωx

− 5c7`x`
2
yn

3n−1
Ωy

+ 5c7`
3
xnΩyn

3n−1
Ωx

+ 5c7`x`
2
ynΩxn

3n−1
Ωy
− 5c7`

3
xnΩyn

3n−2
Ωx

)
%3

+
(
c8nΩy`

2
xn

2n−1
Ωx

+ 2c8`x`yn
2 + c8nΩx`

2
yn

2n−1
Ωy

+ c9`
2
xnΩyn

2 − c9`x`yn
2

− c9`
2
xnΩyn

2n−1
Ωx

+ c9`x`ynΩxn
2 + c10`

2
xnΩyn

2n−1
Ωx
− 2c10`

2
xnΩyn

2 + 32c3`x`yn
3

+ c10`
2
xnΩxnΩyn

2 + 2c2`x`y (1 + 6n)n2n−1
Ωx

+ 4c4`x`yn
2 + 8c5`x`yn

)
%2,

(4.18)

which is of the form:

C = %2
(
a%2 + b%+ c

)
, (4.19)
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subject to the constraint that C ≥ 0 ∀ % ≥ 0, where:

a := c1`
3
x`y (1 + n)n2n−2

Ωx
, (4.20a)

b := 48c6`
2
x`yn

3n−1
Ωx

+ 48c6`x`
2
yn

3n−1
Ωy

+ 16c6`
3
xnΩyn

3n−2
Ωx

+ 10c7`
2
x`yn

3

+ 16c6`
3
ynΩxn

3n−2
Ωy
− 10c7`

2
x`yn

3n−1
Ωx
− 5c7`x`

2
yn

3n−1
Ωy

+ 5c7`
3
xnΩyn

3n−1
Ωx

+ 5c7`x`
2
ynΩxn

3n−1
Ωy
− 5c7`

3
xnΩyn

3n−2
Ωx
,

(4.20b)

c := c8nΩy`
2
xn

2n−1
Ωx

+ 2c8`x`yn
2 + c8nΩx`

2
yn

2n−1
Ωy

+ c9`
2
xnΩyn

2 − c9`x`yn
2

− c9`
2
xnΩyn

2n−1
Ωx

+ c9`x`ynΩxn
2 + c10`

2
xnΩyn

2n−1
Ωx
− 2c10`

2
xnΩyn

2

+ 32c3`x`yn
3 + c10`

2
xnΩxnΩyn

2 + 2c2`x`y (1 + 6n)n2n−1
Ωx

+ 4c4`x`yn
2

+ 8c5`x`yn,

(4.20c)

and c1, ..., c10 ∈ R+ are unknown constants.

The minimum cost is achieved when:

∂C
∂%

= %
(
4a%2 + 3b%+ 2c

)
= 0, (4.21)

which has solutions:

%1 = − 3b

8a
+

√
9b2 − 32ac

8a
, (4.22a)

%2 = − 3b

8a
−
√

9b2 − 32ac

8a
, (4.22b)

%3 = 0. (4.22c)

Since:

∂2C
∂%2

= 12a%2 + 6b%+ 2c, (4.23)

and C must be increasing when % = 0,

∂2C(0)

∂%2
= 2c > 0

∴ c > 0. (4.24)

Given a, c > 0, for the non-trivial roots of (4.21) to be physical, i.e. %1, %2 > 0, the

following must be true:

b < 0. (4.25)

Analysis of (4.23), evaluated at the non-trivial roots, shows that the local minimum

lies at %opt = %1.
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Substituting %opt into (4.19) yields:

C (%opt) =
9b2c

32a2
− c2

4a
− 27b4

512a3
+

9b3
√

9b2 − 32ac

512a3
− 2bc

√
9b2 − 32ac

32a2

= c%2
opt +

9b3

64a2
%opt +

c

4

(
c

a
+
b
√

9b2 − 32ac

8a2

)
= ǎ%2

opt + b̌%opt + č, (4.26)

where:

ǎ := c, (4.27a)

b̌ :=
9b3

64a2
, (4.27b)

č :=
c

4

(
c

a
+
b
√

9b2 − 32ac

8a2

)
. (4.27c)

Therefore for % = %opt, the cost (4.19) reduces to (4.26), which is O
(
%2
)

to leading

order. �

4.3 Application to 2D wave-diffusion equation

In order to demonstrate the efficacy of the approach outlined above, it is applied to a

2D wave-diffusion equation example, and compared to a full-order state-space repre-

sentation obtained by directly spatially discretising the governing equation.

The governing equation reads:

∂2ϕ(x, t)

∂t2
= c2

(
1 + k

∂

∂t

)
ϕ(x, t), ∀ (x, t) ∈ Ω× [0, tf ] , (4.28)

where ϕ(·, ·) : Ω × [0, tf ] → R is the height of the surface, c, k ∈ R+ are constants

which dictate the wave propogation speed and rate of diffusion, respectively, Ω :=

[−2, 2]× [−1, 1] ⊂ R2 is a rectangular spatial domain with boundary ∂Ω, tf ∈ R+ is the

endpoint of the time inverval, and x ∈ Ω is a point in the domain. Periodic boundary

conditions are assumed on all boundaries, i.e.:

ϕ(2, y, t) = ϕ(−2, y, t), ∀ (y, t) ∈ [−1, 1]× [0, tf ] , (4.29a)

ϕ(x, 1, t) = ϕ(x,−1, t), ∀ (x, t) ∈ [−2, 2]× [0, tf ] , (4.29b)
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actuation takes the form of direct control of the surface height at (x, y) = (1.5, 0):

u(t) = ϕ(1.5, 0, t), (4.30)

and sensing is a measurement of the surface height in the centre of the domain:

y(t) = ϕ(0, 0, t). (4.31)

4.3.1 Full-order model

In order to derive a full-order model, the spatial domain was first discretised on a

uniform computational mesh with mesh density % ∈ N in both the x and y directions.

As such, there were nx = 4(% − 1) + 1 and ny = 2(% − 1) + 1 computational nodes in

the x and y directions, respectively, yielding a total of ntotal = nxny nodes.

Second-order spatial derivatives in both directions were implemented using second-

order accurate centred finite-differences. Finite-difference matrices were constructed as:

D2,x :=
1

δ2
x



−2 1 0 · · · 0

1 −2 1

0 1 −2 1
...

. . .

... 1 −2 1 0

1 −2 1

0 · · · 0 1 −2


∈ Rnx×nx , (4.32a)

D2,y :=
1

δ2
y



−2 1 0 · · · 0

1 −2 1

0 1 −2 1
...

. . .

... 1 −2 1 0

1 −2 1

0 · · · 0 1 −2


∈ Rny×ny , (4.32b)

where δx = δy = δ is the (uniform) mesh spacing in both the x and y directions. Periodic

boundary conditions were implemented by simply setting the (1, nx) and (nx, 1) elements

of D2,x equal to one, and similarly for D2,y; i.e. making the matrices circulant [42].
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The Laplacian operator was approximated as [94]:

∇2 ≈ L := Inx ⊗D2,y +D2,x ⊗ Iny ∈ Rntotal×ntotal , (4.33)

where · ⊗ · : Rn1×n1 × Rn3×n4 → Rn1n3×n2n4 is the Kronecker product.

The overall system can be represented by the following descriptor state-space sys-

tem: E11 0

0 Intotal


︸ ︷︷ ︸

E

d

dt

~ϕ(t)

~̇ϕ(t)

 =

A11 A12

c2L c2kL


︸ ︷︷ ︸

A

~ϕ(t)

~̇ϕ(t)


︸ ︷︷ ︸

x(t)

+Bu(t), (4.34a)

y(t) = Cx(t), (4.34b)

where ~ϕ(t) ∈ Rntotal is a vector of the values of ϕ(x, t) at the computational nodes, x(t) ∈
R2ntotal is the state vector, E11, A12 ∈ Rntotal×ntotal are identity matrices, except that

the element on the diagonal corresponding to the ϕ(t) state in the actuation location

has been set equal to 0, A11 ∈ Rntotal×ntotal is a matrix of zeros except for the element

on the diagonal corresponding to the ϕ(t) state in the actuation location, which is set

equal to 1, E,A ∈ R2ntotal×2ntotal , B ∈ R2ntotal×1 is a matrix of zeros except for the

row corresponding to the ϕ(t) state in the actuation location, which is set equal to −1,

and C ∈ R1×2ntotal is a matrix of zeros except for the column corresponding to the ϕ(t)

state at the sensor location, which is set equal to 1.

Whilst this full-order model is a dynamically correct representation of the wave-

diffusion system, the system matrices quickly become large and ill-conditioned as the

computational mesh density is increased. The frequency response of (4.34) can be

computed for frequencies of interest ω ∈ R as:

G(iω) = C (iωE −A)−1B. (4.35)

Inverting the matrix (iωE −A) ∈ Cntotaln×ntotaln here is particularly costly as ntotal =

nx×ny = %`x× %`y, and so the cost of this operation is O
(
%6
)
. Whilst this is tractable

for the simple wave-diffusion equation example on a relatively coarse computational

mesh, and serves as a means of providing a benchmark model, it would be infeasible

for a typical complex geometry fluid dynamics modelling problem.
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4.3.2 Obtaining frequency response using RHSP-based construction

method

Discretising (4.28) on the same compututational mesh as the full-order model, again

using second-order accurate centred finite-differences yields the following state-space

representation for each individual computational atom Pi,j :

d

dt

ϕi,j(t)
ϕ̇i,j(t)

 =

 0 1

−4c2

δ2 −4c2k
δ2


︸ ︷︷ ︸

Ai,j

ϕi,j(t)
ϕ̇i,j(t)


︸ ︷︷ ︸

xi,j(t)

+
[
B̌i,j B̌i,j B̌i,j B̌i,j

]
︸ ︷︷ ︸

Bi,j

ξi,j(t), (4.36a)

zi,j(t) =
[
I I I I

]>
︸ ︷︷ ︸

Ci,j

xi,j(t), (4.36b)

where ϕi,j(t) ∈ R is the value of ϕ(x, t) at the location of the subsystem, ξi,j(t) ∈ R8

and zi,j(t) ∈ R8 are defined as in Section 4.1.1,

B̌i,j :=

 0 0

c2

δ2
c2k
δ2

 ,
Ai,j ∈ R2×2, Bi,j ∈ R2×8, and Ci,j ∈ R8×2. The atom has corresponding frequency

response:

Pi,j(iω) = Ci,j (iωI −Ai,j)−1Bi,j ∈ C8×8. (4.37)

The atoms describing boundary nodes, the node with actuation, and the node with

sensing are altered as required.

The overall system frequency response G(iω) was obtained using the RHSP-based

construction method that was outlined above, both with and without the use of do-

main decomposition optimisation. The results are presented in Figure 4.5 for mesh

density % = 25 and physical parameters chosen arbitrarily as c = 0.5 and k = 0.1. The

frequency response obtained from the full-order model is plotted for comparison.

The RHSP-based construction method produces identical frequency response data

to those obtained from the full-order model, both with and without the domain decom-

position optimisation, hence confirming the modelling approach’s validity.
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Figure 4.5: Frequency response of 2D wave-diffusion system: from full-order system (•),
using RHSP-based construction method without domain decomposition optimisation
(©), using RHSP-based construction method with domain decomposition optimisation
(�).

4.3.3 Computational aspects of RHSP-based construction method

The modelling exercise described above was repeated for a single frequency on increas-

ingly fine computational meshes in order to analyse some computational aspects of

the RHSP-based construction method. Firstly, Figure 4.6 shows the (log of) wall-

clock time T (seconds) required to compute G(iω) for a single frequency3 as a function

of log10 %. It should be noted that the frequency response could not be computed from

a full-order state-space system model for mesh resolutions as high as those considered

for the RHSP-based construction method as the memory requirements quickly became

too high.

Since the computational cost is quantified in big-O notation asO
(
%b
)

for some b ∈ R+,

it is fair to assume that for large %:

T = a%b,

∴ log10 T = log10 a+ b log10 %,

where a ∈ R+ is some unknown constant.

The gradients of the plots in Figure 4.6 confirm that the computational cost of

3All computations were carried out using IEEE standard 754 double-precision floating point arith-
metic on a 3.40GHz Intel Core i7 (quad core) machine with relative machine precision ε = 2.2× 10−16.
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Figure 4.6: log of wall-clock time T (seconds) required to obtain G(iω) for a sin-
gle frequency as a function of log10 %: from full-order state-space system (•), using
RHSP-based construction method without domain decomposition optimisation (�),
using RHSP-based construction method with domain decomposition optimisation (©).

obtaining the frequency response of a two spatial dimension PDAE system from the full-

order state-space system, via the RHSP-based construction method, and via the RHSP-

based construction method with domain decomposition optimisation areO
(
%6
)
,O
(
%4
)
,

and O
(
%2
)
, respectively, as predicted in Sections 4.1.3–4.3.1.

Other factors which should be considered when analysing numerical modelling meth-

ods are the memory requirements of the approach, and the numerical conditioning of

the algorithms used within the method. These factors were analysed by considering

the memoryM∈ N (bytes) required to store the largest matrix which was constructed

during computation, and the condition number κp ∈ R+ of the most ill-conditioned

matrix which required inversion during computation, where the condition number of a

matrix A is defined as [42]:

κp(A) := ‖A‖p ·
∥∥A−1

∥∥
p
, (4.38)

for some appropriate norm ‖ · ‖p, and indicates how likely numerical errors are when

computing A−1. The values of M and κ2 are plotted for increasing values of % in

Figures 4.7(a) and 4.7(b), respectively. BothM and κ2 are orders of magnitude smaller

for all % considered when using the RHSP-based construction approach with domain

decomposition optimisation than computing the frequency response from the full order

state-space system.



4.4. SUMMARY 53

0 20 40 60
10

0

10
1

10
2

10
3

10
4

10
5

̺
κ
2

(b)

0 20 40 60
10

4

10
5

10
6

10
7

10
8

10
9

10
10

̺

M
/
b
y
te
s

(a)

Figure 4.7: (a) memoryM required to store largest matrix constructed during compu-
tation of frequency response; (b) 2-norm condition number κ2 of most ill-conditioned
matrix which required inversion during computation of frequency response: from full-
order state-space system (•), using RHSP-based construction method with domain
decomposition optimisation (©).

Of course, one could improve on the performance of the simplest approach (directly

computing the frequency response from the full-order state-space system) by using

sparse matrices and methods [31]. Numerical tests revealed a cost of ∼ O
(
%2.4
)
, but

this has to be balanced by the difficulty in forming the full-scale system matrices in the

first place, and still suffers from large condition numbers of system matrices.

4.4 Summary

In this chapter, the low-order modelling approach used in this work has been presented.

Step-by-step details of obtaining PDAE system input-output frequency response were

given, including a description of the important numerical operation – the Redheffer star

product – which lies at the heart of the method.

For the two spatial dimension case, it was shown that the computational cost of

the method is O
(
%4
)

(whilst obtaining the same frequency response by directly com-

puting C(iωE − A)−1B of the equivalent full-order state-space system costs O
(
%6
)
).

By introducing a domain decomposition optimisation, however, it was proven that by

choosing the optimal number of subdomains in each spatial direction, the cost reduces

to O
(
%2
)
.
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The validity of the modelling approach was demonstrated by application to the

2D wave-diffusion equation, and the resulting frequency response was in exact agree-

ment with that obtained from a full-order state-space model. Results were presented

which showed the computational complexity scaled as predicted, and that the modelling

methodology used in this work was better conditioned and required less memory than

a traditional approach.



Chapter 5

Discretising the Navier-Stokes

equations

Whilst the previous chapter demonstrated that the RHSP-based construction method

correctly produces the frequency response of systems governed by linear PDAEs, the

correct choice of formulation and discretisation of the Navier-Stokes equations is not

straightforward. This chapter considers some of the issues associated with the governing

equations, and investigates the effect on system dynamics of basing plant models on

different formulations of the linearised equations.

Firstly, the dynamics of an individual computational node subsystem formed by

spatial discretisation of the linearised governing equations in both primitive variables

(momentum and continuity equations) and pressure Poisson equation (PPE) formula-

tions are considered. This reveals fundamental numerical differences at the nodal level,

whose effects on the linearised system dynamics at the full system level are then exem-

plified by considering the corresponding formulations of a 2D channel flow, subjected

to a variety of different boundary conditions.

5.1 Issues with the Navier-Stokes equations

As was discussed in Chapter 4, for the purpose of the RHSP-based construction method,

second-order accurate centred finite-difference discretisation of the governing equations

is attractive as it results in simple connections between neighbouring subsystems. It is

well known, however, that directly discretising the Navier-Stokes equations in their stan-

dard primitive variables formulation (1.1) on a co-located mesh using finite-differences

can lead to the so-called ‘checkerboard instability’, whereby non-physical sawtooth

shaped pressure fields can satisfy the discretised equations [37, 77, 24, 36]. Figure 5.1

55



56 CHAPTER 5. DISCRETISING THE NAVIER-STOKES EQUATIONS
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Figure 5.1: Example of checkerboard instability; non-physical pressure field satisfy-
ing discretised incompressible Navier-Stokes equations (discretised using centred finite-
differences), since ∂p/∂x = 0 at all computational nodes (black dots).

shows an example of such a pressure field.

The checkerboard instability issue is a result of the fact that after any spatial dis-

cretisation the incompressible Navier-Stokes equations constitute a system of differen-

tial algebraic equations (DAEs) of ‘higher index’ [101], with only the pressure gradient

appearing in the equations, and not pressure itself. The nonlinear system is of dif-

ferentiation index two [16], or strangeness index one [101, 62], since at least part of

the equations must be differentiated a minimum of two times with respect to the time

variable in order to obtain a system of ordinary differential equations (ODEs). One

way of circumventing the checkerboard instability issue is by reformulating the set of

equations as a strangeness free system [101]. This can be achieved by reformulating

the system in, for example, velocity and vorticity variables, which results in a system

of ODEs (of differentiation index zero [101]), or supplementing the original equations

with a PPE which results in a strangeness free DAE system (of differentiation index

one).

Whilst supplementing the original system of equations with the PPE avoids the

checkerboard instability, it poses the additional problem of choosing a correct pres-

sure boundary condition. For the case of the nonlinear incompressible Navier-Stokes

equations, there seems to be some disagreement in the literature regarding this mat-

ter [44, 43, 87, 84, 91, 100], and so several different boundary conditions were considered

in this work, and their effects on system dynamics were studied.

Another way of circumventing the issue of checkerboard instability, which avoids

the need to reformulate the governing equations as a strangeness free system, is by

discretising the original formulation of the equations on a staggered mesh, such as the

‘marker and cell’ method [45]. This method does, however, come with its own difficul-

ties. Namely that one typically obtains discretisations where pressure nodes do not lie

on the domain boundaries, which is inconvenient from a control design perspective if

pressure on a surface is the measured signal, as may be the case for bluff-body drag
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reduction.

For the purpose of simulation, the various formulations of the Navier-Stokes equa-

tions have received much attention in the literature, however for the purpose of feedback

control design this is not the case. In particular, for simulation purposes the equations

can be formulated in such a way that a ‘pseudopressure’ which requires only simple

boundary conditions is used rather than actual thermodynamic pressure, for example

in fractional step/projection methods [93, 84]. This allows efficient simulation by first

computing an intermediate velocity field at each timestep which does not, in general,

satisfy the divergence-free requirement of the governing equations, before correcting

this velocity field using the pseudopressure, yielding a divergence-free field [84]. In the

context of simulation, the validity of numerical schemes is typically assessed by compar-

ing certain time averaged properties, such as mean velocity profiles, to benchmark data

from other simulations or experiments (see, e.g. [21, 80, 81, 28, 74]). On the other hand,

models derived for control design must correctly capture the continuous time dynamics

of both velocity and pressure fields in a single set of differential algebraic equations,

and in particular must exhibit the correct frequency response in the frequency band of

interest.

5.2 Linearised Navier-Stokes equations

Since this work assumes that the use of linear systems theory is justified, the linearised

incompressible Navier-Stokes equations were considered. By decomposing each flow

variable into a temporally averaged mean part and a time dependent fluctuating part

as such: u(x, t)

p(x, t)

 :=

ū(x)

p̄(x)


︸ ︷︷ ︸

mean part

+

u′(x, t)
p′(x, t)


︸ ︷︷ ︸

fluctuating part

, (5.1)

substituting these into the original nonlinear equations (1.1), and finally neglecting

second-order in fluctuation terms, one obtains the linearised Navier-Stokes equations:

∂u′(x, t)

∂t
+ u′(x, t) · ∇ū(x) + ū(x) · ∇u′(x, t) =

−∇p′(x, t) +
1

Re
∇2u′(x, t), ∀ (x, t) ∈ Ω× [0, tf ] ,

(5.2a)

∇ · u′(x, t) = 0, ∀ (x, t) ∈ Ω× [0, tf ] . (5.2b)

The remainder of this chapter considers 2D flows, i.e. Ω ⊂ R2, x := (x, y) ∈ Ω, u′ :=

(u′, v′) ∈ R2, and ū := (ū, v̄) ∈ R2, but the theory readily extends to the 3D case.
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Two formulations of the linearised Navier-Stokes equations were considered in this

work. The first of these, the primitive variables formulation, is given by the momen-

tum (5.2a) and continuity (5.2b) equations [84]. The presence of the algebraic constraint

in the form of the continuity equation makes this a set of PDAEs. As was discussed

in Section 5.1, this PDAE system of differentiation index two can be reformulated as

a strangeness-free system by introducing the PPE. The linearised PPE is obtained by

substituting (5.2b) into the divergence of (5.2a) [77], yielding:

∇2p′(x, t) = −∇ ·
(
u′(x, t) · ∇ū(x)

)
−∇ ·

(
ū(x) · ∇u′(x, t)

)
, ∀ (x, t) ∈ Ω× [0, tf ] .

(5.2c)

The system of equations comprising (5.2a) and (5.2c) is known as the PPE formula-

tion [84] and represents the second formulation employed in this work.

Boundary and initial conditions for the primitive variables formulation are given

by:

ū(x) = ū∂Ω(x), ∀ x ∈ ∂Ω, (5.3a)

u′(x, t) = u′∂Ω(x, t), ∀ (x, t) ∈ ∂Ω× [0, tf ] , (5.3b)

u′(x, 0) = u′0(x), ∀ x ∈ Ω. (5.3c)

Discussion of the boundary conditions for the PPE formulation is deferred until Sec-

tion 5.4.

5.3 Individual computational node subsystem

Several formulations of the linearised Navier-Stokes equations were considered when ob-

taining individual computational node subsystems: the primitive variables formulation

was discretised on both a co-located mesh and a staggered mesh, and the PPE formu-

lation was discretised on a co-located mesh only. The co-located mesh, in which both

velocity and pressure values are stored on the cell vertices, is depicted in Figure 5.2(a).

The staggered mesh is shown in Figure 5.2(b), in which the velocity components u

and v are stored on the vertical and horizontal cell boundaries, respectively, whilst the

pressure is stored in the cell centre.

State-space models of the following form are considered:

E
d

dt
x(t) = Ax(t) +Bξ(t), (5.4a)

z(t) = Cx(t), (5.4b)



5.3. INDIVIDUAL COMPUTATIONAL NODE SUBSYSTEM 59

(a) (b)

(u, v, p)i−1,j−1

(u, v, p)i−1,j

(u, v, p)i−1,j+1

(u, v, p)i,j−1

(u, v, p)i,j

(u, v, p)i,j+1

(u, v, p)i+1,j−1

(u, v, p)i+1,j

(u, v, p)i+1,j+1

pi−1,j

ui− 1
2 ,j

pi,j

ui+ 1
2 ,j

vi,j− 1
2

vi,j+ 1
2

pi,j+1

pi,j−1

pi+1,j

Figure 5.2: Computational meshes: (a) co-located computational mesh; (b) staggered
mesh.

where x(t) ∈ Rn, z(t) ∈ Rp, ξ(t) ∈ Rq, E,A ∈ Rn×n, B ∈ Rn×q, and C ∈ Rp×n, with

corresponding transfer functions:

G(s) = C (sE −A)−1B ∈ Rp×q. (5.5)

The poles of a linear dynamical system determine its asymptotic behaviour and are

defined as:

P (G(s)) := {s ∈ C : det (sE −A) = 0} . (5.6)

The zeros are the values of s ∈ C at which the system output drops to zero despite the

input and states being non-zero [32, 92]. The set of zeros is thus defined as:

Z (G(s)) := {s ∈ C : y(t) = 0, ξ(t),x(t) 6= 0} . (5.7)

The presence and locations of the zeros are dependent on sensor and actuation arrange-

ment, and can impose fundamental limitations on the performance achievable through

feedback control [92]. For single-input single-output systems, the poles and zeros are

simply equal to the roots of the denominator and numerator of the transfer function,

respectively.

The different formulations of the governing equations were discretised in space using

second-order accurate centred finite-differences on computational meshes with uniform

grid spacing δ in both the x and y directions.

For the case of co-located mesh discretisations, u′i,j(t), v
′
i,j(t), and p′i,j(t) are grouped
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as a single subsystem, and are referred to as the (i, j)th node, whilst for staggered

mesh discretisations, u′i+1/2,j(t), v
′
i,j+1/2(t), and p′i,j(t) are grouped together as a single

subsystem, and are also referred to as the (i, j)th node (where the indices of the pressure

node are used to label the subsystem).

The dynamics of the (i, j)th computational node subsystem can therefore be de-

scribed by the following state-space model:

Ei,j
d

dt
xi,j(t) = Ai,jxi,j(t) +Bi,jξi,j(t), (5.8a)

zi,j(t) = Ci,jxi,j(t), (5.8b)

where xi,j :=
[
u′i,j v′i,j p′i,j

]>
∈ R3 is the subsystem’s state vector in the co-located

case, and xi,j :=
[
u′i+1/2,j v′i,j+1/2 p′i,j

]>
∈ R3 is the subsystem’s state vector in the

staggered case. The vector of state values flowing in from the neighbouring subsystems

is ξi,j :=
[
x>i,j−1 x>i+1,j x>i,j+1 x>i−1,j

]>
∈ R12, and zi,j ∈ R12 is the subsystem’s

output. The matrices Ei,j , Ai,j ∈ R3×3, Bi,j ∈ R3×12 and Ci,j ∈ R12×3, which arise from

the spatial discretisation of the governing equations, have different structure depending

on the particular formulation/discretisation.

The structure of the state-space matrices describing a single computational node

subsystem are presented for three different cases.

5.3.1 Case 1: primitive variables on co-located mesh

Upon discretising the standard primitive variables formulation using finite-differences

on a co-located mesh, the Ei,j and Ai,j matrices were found to have the following

structure:

Ei,j :=


1 0 0

0 1 0

0 0 0

 , Ai,j :=


a11 a12 0

a21 a22 0

0 0 0

 , (5.9)

where:

a11 := −0.5δ−1 (ūi+1,j − ūi−1,j)− 4δ−2Re−1, (5.10a)

a12 := −0.5δ−1 (ūi,j+1 − ūi,j−1) , (5.10b)

a21 := −0.5δ−1 (v̄i+1,j − v̄i−1,j) , (5.10c)

a22 := −0.5δ−1 (v̄i,j+1 − v̄i,j−1)− 4δ−2Re−1. (5.10d)
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When attempting to compute the node’s transfer function as in (5.5), it is immediately

clear that (sEi,j −Ai,j) is singular (rank deficient) for all s ∈ C, and so the resol-

vent (sEi,j −Ai,j)−1 and transfer function Gi,j(s) do not exist. This lack of uniqueness

is the source of the checkerboard instability.

5.3.2 Case 2: primitive variables on staggered mesh

Discretising the same primitive variables formulation on a staggered mesh yields Ei,j

and Ai,j matrices with the following structure:

Ei,j :=


1 0 0

0 1 0

0 0 0

 , Ai,j :=


a11 0 a13

0 a22 a23

a31 a32 0

 , (5.11)

where:

a11 := −0.5δ−1
(
ūi+3/2,j − ūi−1/2,j

)
− 4δ−2Re−1, (5.12a)

a13 := δ−1, (5.12b)

a22 := −0.5δ−1
(
v̄i,j−1/2 − v̄i,j+3/2

)
− 4δ−2Re−1, (5.12c)

a23 := −δ−1, (5.12d)

a31 := 1, (5.12e)

a32 := −1. (5.12f)

In this case, the matrix pair (Ei,j , Ai,j) is regular (in that there exists s ∈ C such

that (sEi,j −Ai,j) is non-singular [29]), and so the resolvent (sEi,j −Ai,j)−1, and hence

transfer function Gi,j(s), exist and are uniquely defined.

5.3.3 Case 3: PPE on co-located mesh

Finally, discretising the PPE formulation on a co-located mesh yields Ei,j and Ai,j

matrices with the following structure:

Ei,j :=


1 0 0

0 1 0

0 0 0

 , Ai,j :=


a11 a12 0

a21 a22 0

a31 a32 a33

 , (5.13)
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where:

a11 := −0.5δ−1 (ūi+1,j − ūi−1,j)− 4δ−2Re−1, (5.14a)

a12 := −0.5δ−1 (ūi,j+1 − ūi,j−1) , (5.14b)

a21 := −0.5δ−1 (v̄i+1,j − v̄i−1,j) , (5.14c)

a22 := −0.5δ−1 (v̄i,j+1 − v̄i,j−1)− 4δ−2Re−1, (5.14d)

a31 := δ−1 (ūi+1,j − 2ūi,j + ūi−1,j)

+ 0.25δ−2 (v̄i+1,j+1 − v̄i+1,j−1 − v̄i−1,j+1 + v̄i−1,j−1) ,
(5.14e)

a32 := δ−2 (v̄i,j+1 − 2v̄i,j + v̄i,j−1)

+ 0.25δ−2 (ūi+1,j+1 − ūi+1,j−1 − ūi−1,j+1 + ūi−1,j−1) ,
(5.14f)

a33 := −4δ−2. (5.14g)

This again yields a regular matrix pair (Ei,j , Ai,j), resulting in the existence and unique-

ness of both the resolvent (sEi,j −Ai,j)−1, and transfer function Gi,j(s).

The existence of subsystem transfer functions for the cases of the primitive variables

formulation discretised on a staggered mesh and the PPE formulation discretised on

a co-located mesh shows that these formulations are well posed, whilst the contrary

applies for the case of the primitive variables formulation discretised on a co-located

mesh.

5.4 PPE pressure boundary conditions

Although the PPE formulation discretised on a co-located mesh is well posed, the

main difficulty with such a formulation lies in the correct choice of pressure boundary

conditions. Several different pressure boundary conditions present in the literature are

now considered.

The first, and simplest pressure boundary condition considered is the Neumann type

condition:

∂p′(x, t)

∂n
= 0, ∀ (x, t) ∈ ∂Ω× [0, tf ] , (5.15)

where n ∈ R2 is the normal outward pointing unit vector. As stated in [84], the wall-

normal gradient of the pressure at the boundary in incompressible flow is, in general,

non-zero, however if treated with care it can be used as part of fractional step meth-

ods [93] for the purposes of simulation.

For the case of the incompressible nonlinear Navier-Stokes equations, it was sug-

gested by Gresho and Sani [44] that the correct pressure boundary condition for a PPE
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formulation is a Neumann type condition obtained by projecting the momentum equa-

tion onto the boundary in the normal direction. Applying this idea to the linearised

equations yields the boundary condition:

n · ∇p′(x, t) = n ·
(

1

Re
∇2u′(x, t)− u′(x, t) · ∇ū(x, t)

−ū(x, t) · ∇u′(x, t)− ∂

∂t
u′(x, t)

)
, ∀ (x, t) ∈ ∂Ω× [0, tf ] .

(5.16)

For the common case of a no-slip boundary this condition reduces to:

n · ∇p′(x, t) = n · 1

Re
∇2u′(x, t), ∀ (x, t) ∈ ∂Ω× [0, tf ] . (5.17)

Whilst this seems a more logical approach to deducing a valid pressure boundary con-

dition than that discussed above, Rempfer [83, 84] points out that using the PPE in

conjunction with this condition yields a system of equations where the divergence free

condition (5.2b) appears nowhere. For the nonlinear case, Rempfer [84] shows that

substituting the PPE into the divergence of the momentum equation yields a heat

equation. For the case of the linearised equations, this amounts to substituting (5.2c)

into the divergence of (5.2a), yielding:

∂

∂t
Θ(x, t) =

1

Re
∇2Θ(x, t), ∀ (x, t) ∈ Ω× [0, tf ] , (5.18)

where Θ(x, t) := ∇ · u′(x, t) is the divergence of the fluctuating part of the velocity

field. This shows that the combination of (5.2a) and (5.2c) does not enforce the incom-

pressibility of the velocity field, it just specifies that the divergence of the velocity field

satisfies a heat equation, and is a harmonic funtion in the steady-state case. According

to the extremum theorems for harmonic functions [78], the extremal values of harmonic

functions are reached on the boundary ∂Ω, which led to Rempfer’s theorem regarding

the nonlinear case [84, Thm.1], stating that the solution to the incompressible Navier-

Stokes equations in primitive variables formulation is equivalent to the solution of the

PPE formulation if and only if the boundary conditions for the PPE are chosen such

that ∇ · u(x, t) = 0, ∀ (x, t) ∈ ∂Ω × [0, tf ]. This was described by Rempfer [83, 84] as

an ‘indirect boundary condition’, since the boundary condition for one variable, in this

case pressure, must be chosen such that some condition for another variable, in this

case velocity, is met on the boundary.

In more recent work, Shirokoff and Rosales [91] took a new approach to choosing

not only the PPE pressure boundary condition, but also the corresponding velocity

boundary conditions for a no-slip boundary. Rather than enforcing all d components of

the no-slip boundary condition on the nonlinear momentum equation (where d ∈ {2, 3}
is the number of spatial dimensions), only the d−1 tangential components are enforced,
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and the set of boundary conditions for the momentum equation is completed with the

divergence free condition (5.2b). In practice, this results in specifying that the d − 1

tangential velocity components are equal to zero on the boundary, and that the normal

gradient of the normal velocity component is also equal to zero, hence satisfying (5.2b).

For the linearised equations this becomes:

τ · u′(x, t) = 0, ∀ (x, t) ∈ ∂Ω× [0, tf ] , (5.19a)

n ·
(
∇
(
n · u′(x, t)

))
= 0, ∀ (x, t) ∈ ∂Ω× [0, tf ] , (5.19b)

where τ ∈ R2 is the wall-tangential unit vector. As for the pressure boundary condition,

the momentum equation is projected in the normal direction onto the boundary yielding

the Neumann type condition (5.15).

5.5 Investigating dynamics of 2D channel flow

Analysis of the structure of the system matrices describing a single computational

node subsystem revealed, from a systems theory perspective, the unsuitability of the

standard primitive variables formulation on a co-located mesh discretised using finite-

differences. However, such analysis revealed little concerning the suitability for feedback

control system design, based on models obtained from different formulations employing

various boundary conditions. In order to gain insight into this, the dynamics of a full

fluid flow system must be considered.

In the following, the benchmark example of a fully developed flow between two flat

plates, otherwise known as channel flow or plane Poiseuille flow is considered. This

is one of very few fluid flows for which an analytical solution to the Navier-Stokes

equations is known, and for which the flow dynamics have been studied extensively

(see, e.g. [72, 17, 89, 88]).

After non-dimensionalising length scales by the channel half-height h, velocity scales

by the maximum laminar centreline velocity ū0, and pressure by ρū2
0, the upper walls

of the channel are located at y = ±1, and the streamwise (x) channel length is l = 2π,

as depicted in Figure 5.3. It can be shown that the the baseline velocity is independent

of x, and is equal to ū(y) = 1 − y2. Hence, the linearised Navier-Stokes equations in



5.5. INVESTIGATING DYNAMICS OF 2D CHANNEL FLOW 65

+1

−1

l = 2π
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Figure 5.3: Schematic of 2D channel flow geometry.

primitive variables formulation reduce to:

∂u′(x, t)

∂t
+
(
1− y2

) ∂u′(x, t)
∂x

− 2yv′(x, t) =

−∂p
′(x, t)

∂x
+

1

Re

(
∂2u′(x, t)

∂x2
+
∂2u′(x, t)

∂y2

)
,

(5.20a)

∂v′(x, t)

∂t
+
(
1− y2

) ∂v′(x, t)
∂x

=

−∂p
′(x, t)

∂y
+

1

Re

(
∂2v′(x, t)

∂x2
+
∂2v′(x, t)

∂y2

)
,

(5.20b)

∂u′(x, t)

∂x
+
∂v′(x, t)

∂y
= 0, (5.20c)

where the Reynolds number is defined as Re := ū0h/ν.

The PPE (5.2c) reduces to:

∂2p′(x, t)

∂x2
+
∂2p′(x, t)

∂y2
= 4y

∂v′(x, t)

∂x
. (5.21)

No-slip boundary conditions were assumed on the upper and lower walls, u′(x,±1, t) =

v′(x,±1, t) = 0, and boundary conditions in the streamwise direction were assumed

periodic, u′(0, y, t) = u′(l, y, t), v′(0, y, t) = v′(l, y, t), and p′(0, y, t) = p′(l, y, t).

With these equations, finite-dimensional state-space models were constructed which

describe the dynamics of the fluctuation variables about the baseline flow.

5.5.1 Orr-Sommerfeld state-space model

Firstly, the well known Orr-Sommerfeld formulation [89, 14, 68] was used to obtain a

benchmark state-space model of the flow, against which other formulations could be

compared.

Substituting (5.20c) along with the divergence of (5.20a) and (5.20b) into the Lapla-

cian of (5.20b) yields the following 4th order PDE, where the pressure perturbation
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variable p′(x, t), has been analytically removed:

∇2 ∂

∂t
v′(x, t) +

(
1− y2

) ∂
∂x
∇2v′(x, t) + 2

∂

∂x
v′(x, t) =

1

Re
∇4v′(x, t). (5.22)

Exploiting the periodicity in the streamwise direction, Fourier transforms are taken

in x. This allows the y direction perturbation velocity to be written:

v′(x, t) := v̂(y, t)eiαx, (5.23)

where v̂(y, t) ∈ C is the Fourier transformed wall-normal velocity perturbation at an

individual spatial wavenumber α ∈ R. Spatial derivatives with respect to x in (5.22)

simply become multiplication by iα, and (5.22) can be written:

E ∂
∂t

v̂(y, t) = Av̂(y, t), (5.24)

where the system operators are defined as:

E := Re

(
∂2

∂y2
− α2

)
, (5.25a)

A :=
∂4

∂y4
− 2α2 ∂

2

∂y2
+ α4 − iαRe

((
1− y2

)( ∂2

∂y2
− α2

)
+ 2

)
. (5.25b)

As is standard for channel flow geometries, discretisation in the wall-normal direc-

tion was performed using Chebyshev interpolants. As such, (5.24) was discretised

upon ny ∈ N Chebyshev collocation points and the wall-normal differential opera-

tors were approximated by differentiation matrices [102], yielding the following finite-

dimensional descriptor state equation:

E
d

dt
~̂v(t) = A~̂v(t), (5.26)

where E,A ∈ Cny×ny are discrete versions of E and A, respectively, and ~̂v(t) ∈ Cny

is the state vector comprising the values of v̂(y, t) evaluated on the collocation points.

Finally, premultiplying (5.26) by E−1 yields the following state equation:

d

dt
~̂v(t) = AOS

~̂v(t), (5.27)

where AOS := E−1A is the system dynamics matrix.

The poles of the Orr-Sommerfeld system correspond to the eigenvalues of AOS,

and are dependent on the Reynolds number and streamwise wavenumber. For the

case (Re, α) = (5772.22, 1.02), the poles of the system are plotted in Figure 5.4(a) and

are in agreement with those originally calculated in [73]. For clarity of exposition, the

three main branches of the spectrum are labelled A, S and P, as in [64]. The pole with
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Figure 5.4: Orr-Sommerfeld system: (a) poles (•) and least stable pole (•); (b) eigen-
function corresponding to least stable mode of Orr-Sommerfeld system: < (v̂(y)) (−),
= (v̂(y)) (−−).

greatest real part (corresponding to the least stable mode) is shown in green, along

with its mode shape (eigenfunction) in Figure 5.4(b).

5.5.2 Primitive variables and PPE formulation state-space models

State-space models of 2D channel flow based on both primitive variables and PPE

formulations were then constructed. Starting with (5.20) and (5.21), once again the

periodicity in the streamwise direction was exploited and Fourier transforms were taken

in x, such that the variables can be written:

u′(x, t) := û(y, t)eiαx, v′(x, t) := v̂(y, t)eiαx, p′(x, t) := p̂(y, t)eiαx. (5.28)

Evaluating the derivatives with respect to x in (5.20) and (5.21) yields two systems of

PDAEs. The first of these is the following primitive variables formulation:
I 0 0

0 I 0

0 0 0


︸ ︷︷ ︸
EPr ∈ R3×3

∂

∂t


û(y, t)

v̂(y, t)

p̂(y, t)


︸ ︷︷ ︸

χ(y, t) ∈ C3

=


A11 A12 A13

0 A22 A23

A31 A32 0


︸ ︷︷ ︸
APr ∈ C3×3


û(y, t)

v̂(y, t)

p̂(y, t)

 , (5.29)
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where the system operators in APr are defined as:

A11 = A22 := −iα
(
1− y2

)
+

1

Re

(
∂2

∂y2
− α2

)
, (5.30a)

A12 := 2y, (5.30b)

A13 := −iα, (5.30c)

A23 := − ∂

∂y
, (5.30d)

A31 := iα, (5.30e)

A32 :=
∂

∂y
, (5.30f)

and I is the identity operator.

The second system of PDAEs is the following PPE formulation:
I 0 0

0 I 0

0 0 0


︸ ︷︷ ︸
EPPE ∈ R3×3

∂

∂t


û(y, t)

v̂(y, t)

p̂(y, t)


︸ ︷︷ ︸

χ(y, t) ∈ C3

=


A11 A12 A13

0 A22 A23

0 A32 A33


︸ ︷︷ ︸
APPE ∈ C3×3


û(y, t)

v̂(y, t)

p̂(y, t)

 , (5.31)

where the system operators A11, A12, A13, A21, and A22 in APPE are the same as those

in APr, but A32 and A33 are defined as:

A32 := −4iαy, (5.32a)

A33 :=
∂2

∂y2
− α2. (5.32b)

The wall-normal derivatives in (5.29) and (5.31) were then approximated either using

Chebyshev methods, or using finite-differences on co-located or staggered meshes. In

the PPE case different pressure boundary conditions were then enforced in order to

see how these differences affected the models. This yields finite-dimensional descriptor

state-space systems of the form:

EPr
d

dt
x(t) = APrx(t), (5.33)

and:

EPPE
d

dt
x(t) = APPEx(t), (5.34)

where x(t) :=
[
~̂u∗(t) ~̂v∗(t) ~̂p∗(t)

]∗
∈ Cnu+nv+np is the state vector comprising the

values of Fourier tansformed (in x) flow variables at the discretisation points. The
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Figure 5.5: Channel flow computational meshes (in y direction): (a) co-located compu-
tational mesh; (b) staggered mesh.

discrete versions of EPr and APr are EPr, APr ∈ C(nu+nv+np)×(nu+nv+np), respectively,

and EPPE, APPE ∈ C(nu+nv+np)×(nu+nv+np) are the discrete versions of EPPE and APPE.

In the co-located mesh case, nu = nv = np, where nu, nv, np ∈ N are the respective

number of û, v̂, and p̂ discretisation points. However in the staggered mesh case, nu =

nv = np + 1.

5.5.3 Channel flow formulations

A number of formulations of the linearised incompressible Navier-Stokes equations were

used to deduce descriptor state-space models of 2D channel flow of the form (5.33) and

(5.34). In the case of primitive variables formulations, both co-located and staggered

mesh arrangements were considered. It should be noted that due to the use of Fourier

transforms in the x direction, the problem is simplified to essentially a problem in one

spatial dimension, with the corresponding meshes shown in Figure 5.5. For the PPE

formulation case a number of different pressure boundary conditions were enforced. Ta-

ble 5.1 summarises the different models constructed. The Orr-Sommerfeld model (5.27)

is denoted [OS], whilst [Pr1]–[Pr3] are models based on the primitive variables formu-

lation (5.33), discretised in different fashions according to their identifiers in Table 5.1.

Models [PPE1]–[PPE4] are based on the PPE formulation (5.34) all discretised

on co-located meshes. [PPE1] implements the simple ∂p̂/∂y = 0 Neumann boundary
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Model Primitive co-located or discretisation y = ±1 boundary

identifier variables or staggered technique conditions

PPE mesh in y direction

[OS] - co-located Chebyshev v̂ = ∂v̂
∂y = 0

[Pr1] primitive co-located Chebyshev û = v̂ = 0

[Pr2] primitive co-located finite-difference û = v̂ = 0

[Pr3] primitive staggered finite-difference û = v̂ = 0

[PPE1] PPE co-located Chebyshev û = v̂ = ∂p̂
∂y = 0

[PPE2] PPE co-located Chebyshev û = v̂ = ∇ · û = 0

[PPE3] PPE co-located Chebyshev û = ∂v̂
∂y = ∂p̂

∂y − 1
Re

∂2v̂
∂y2 = 0

[PPE4] PPE co-located finite-difference û = ∂v̂
∂y = ∂p̂

∂y − 1
Re

∂2v̂
∂y2 = 0

Table 5.1: Summary of different 2D channel flow models.

condition. [PPE2] implements the divergence free velocity boundary condition in an

attempt to satisfy the conditions stated by Rempfer [84]. Finally, [PPE3] (Chebyshev)

and [PPE4] (finite-differences) implement the Neumann pressure boundary condition

discussed in both [44] and [91], with the additional Neumann condition on the nor-

mal component of the velocity in order to satisfy the divergence free condition on the

boundary, as suggested in [91].

Imposing boundary conditions in models of the form (5.33) and (5.34) is simply a

matter of altering the rows of the E and A matrices corresponding to the boundary node

states. In the following, the dynamics of each formulation are compared in a variety of

ways. Firstly, the asymptotic behaviour of the systems is studied through comparison of

the system poles and corresponding eigenfunctions. Secondly, differences in transient

behaviour are explored through comparison of energy weighted pseudospectra. The

various frequency responses of the systems for a particular system input and output

are computed and compared, and finally the ν-gaps between different model formula-

tions and the benchmark Orr-Sommerfeld model are computed in order to quantify the

differences in the models from a closed-loop dynamics perspective.

5.5.4 System poles and eigenfunctions

Figure 5.6 shows the poles of all three primitive variables models, [Pr1]–[Pr3], and

both the v̂ and p̂ parts of the eigenfunction corresponding to the least stable mode.

The poles of all three formulations lie in the same locations as those of [OS]. In all

three cases the v̂ parts of the eigenfunction agree well with that of [OS]. The p̂ parts

of the eigenfunctions of [Pr1] and [Pr3] are in agreement, however whilst the general

shape of the p̂ part of [Pr2] is similar, a non-physical sawtooth shape is clearly evident.
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With respect to [Pr2], the use Fourier transforms in the x direction alters the structure

of the A matrix in (5.9) in such a way as to ensure that its transfer function exists,

and so the eigenfunctions are unique (to within an arbitrary scaling). However, the

use of centred finite-differences in the wall-normal direction contributes to a loss of

coupling between the pressure and velocity variables, hence giving rise to the non-

physical pressure mode shape.

Figure 5.7 shows the poles of the four PPE formulations, [PPE1]–[PPE4], and both

the v̂ and p̂ parts of the eigenfunction corresponding to the least stable mode. Whilst

the poles of all four systems lie in three characteristic branches, the exact pole locations

do not completely agree with those of [OS]. The poles of [PPE1] in the S branch agree

well, however in the A branch there is significant difference, not least in the failure to

agree in the location of the least stable pole. There are also extra spurious poles in the

P branch. The failure of this formulation to accurately match the dynamics of [OS] is

unsurprising, since as was mentioned in Section 5.4, the Neumann condition (5.15) is

unphysical and its use is primarily for the separate purpose of time-marching, as part

of a predictor-corrector scheme.

In the cases of [PPE2]–[PPE4], whilst the A branches contain all the poles present

in that of [OS], the branch is contaminated by additional spurious poles. Similarly

to [PPE1], additional spurious poles exist in the P branch. Despite the differences in

pole locations in [PPE2]–[PPE4], the v̂ parts of the eigenfunctions agree well with that

of [OS], and all three p̂ parts match. The same cannot be said for [PPE1], however,

since neither the v̂ nor p̂ parts agree exactly with the other models.
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Figure 5.6: Left: poles of [OS] (•), poles of [Pr(·)] (•), and least stable pole (•);
Right: < (v̂(y)) (−), = (v̂(y)) (−−), < (p̂(y)) (−), = (p̂(y)) (−−), where v̂(y) and p̂(y)
are parts of the eigenfunction corresponding to the least stable pole. (a) [Pr1]; (b) [Pr2]
- inset (right) is close-up of part of < (p̂(y)); (c) [Pr3].

5.5.5 System psuedospectra

Whilst the poles of a system dictate its asymptotic behaviour, the transient response is

influenced by the non-orthogonality of the system eigenfunctions, as is well understood

in the area of non-modal stability theory [17, 96, 88]. The psuedospectra Λε, of a

system provide a means of visualising this non-orthogonality in the complex plane. For

a standard state-space system (E = I in (5.4)), pseudospectra are defined as [94, 95]:

Λε :=
{
s ∈ C :

∥∥C(sI −A)−1B
∥∥

2
≥ ε−1 ∈ R+

}
, (5.35)

where C and B represent weights required to convert a measure of energy to the stan-

dard L2–norm [88]. This is accomplished by first defining the kinetic energy density of
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Figure 5.7: Left: poles of [OS] (•), poles of [PPE(·)] (•), and least stable pole (•);
Right: < (v̂(y)) (−), = (v̂(y)) (−−), < (p̂(y)) (−), = (p̂(y)) (−−), where v̂(y) and p̂(y) are
parts of the eigenfunction corresponding to the least stable pole. (a) [PPE1]; (b) [PPE2];
(c) [PPE3]; (d) [PPE4].

the flow perturbations E (t) ∈ R+
0 , as in [17], as:

E (t) :=
1

2V

∫ 1

−1

∫ 2π
α

0
u′

2
(x, t) + v′

2
(x, t)dxdy, (5.36)
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where V = 4π/α is the integration volume. In terms of Fourier transformed velocities,

this reduces to:

E (t) =
1

8

∫ 1

−1
û∗(y, t)û(y, t) + v̂∗(y, t)v̂(y, t)dy. (5.37)

This integral is evaluated numerically, and can be written

E (t) =
[
~̂u∗(t) ~̂v∗(t) ~̂p∗(t)

]
1
8Wû 0 0

0 1
8Wv̂ 0

0 0 0


︸ ︷︷ ︸

Q


~̂u(t)

~̂v(t)

~̂p(t)

 (5.38a)

= x∗(t)Qx(t), (5.38b)

where Wû ∈ Rnu×nu and Wv̂ ∈ Rnv×nv are diagonal matrices of quadrature weights.

For the case of [OS], ~̂u(t) does not appear in the state vector, but can be derived

from the continuity equation as follows:

~̂u(t) =
i

α
Dy
~̂v(t), (5.39)

where Dy ∈ Rny×ny is the first order Chebyshev differentiation matrix. For [OS] (5.38)

can then be written:

E (t) = ~̂v∗(t)

(
1

8α2
D>y Wv̂Dy +

1

8
Wv̂

)
︸ ︷︷ ︸

QOS

~̂v(t), (5.40)

where QOS can be factored as QOS = C>OSCOS. Hence, the weighting matrices for

computing the pseudospectra in (5.35) for [OS] are B = C−1
OS and C = COS.

To compute the pseudospectra of the primitive variables and PPE formulations,

it is convenient to convert from descriptor to standard state-space systems. This is

accomplished using the numerical algorithm outlined in [57], yielding systems of the

form:

d

dt
x(t) = ǍPrx(t), (5.41)

and:

d

dt
x(t) = ǍPPEx(t). (5.42)

In doing so, state transformation matrices SPr and SPPE are computed, and are subse-
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Figure 5.8: Energy weighted pseudospectra contour plots: (a) [OS]; (b) [Pr1]; (c) [Pr2];
(d) [Pr3].

quently used to redefine Q in (5.38) for use with (5.41) and (5.42) accordingly:

QPr = S>PrQSPr, (5.43)

and

QPPE = S>PPEQSPPE. (5.44)

From (5.43) and (5.44), the matrices CPr and CPPE are computed and employed in a

similar fashion to COS in forming appropriate energy weighting matrices.

Having constructed input and output matrices B and C, such that the models

are appropriately energy weighted, pseudospectra were computed and are displayed

as contour plots in Figures 5.8 and 5.9. Figure 5.8 shows that all three primitive
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Figure 5.9: Energy weighted pseudospectra contour plots: (a) [PPE1]; (b) [PPE2];
(c) [PPE3]; (d) [PPE4].

variables models, [Pr1]–[Pr3], have the same pseudospectra as the Orr-Sommerfeld

model [OS], implying similar transient behaviour. On the other hand, Figure 5.9 shows

that all four PPE formulations [PPE1]–[PPE4] exhibit pseudospectra that not only dif-

fer markedly from [OS], but also differ from one another. This is understandable in the

cases of [PPE1] and [PPE2], owing to their differing pole locations. However, [PPE3]

and [PPE4] share the same set of poles and only differ with respect to method of spa-

tial discretisation, and so one would expect their pseudospectra to converge upon grid

refinement. This is not the case however, owing to numerical ill-conditioning of the

system matrices, particularly with respect to [PPE3]. For example, and with respect

to (5.35), the condition number of
(
sI − Ǎ

)
for [PPE3] with s = 0.1 (a region where

significant discrepancy exists) is O
(
107
)

greater than that for [PPE4].

In summary, the poles, eigenfunctions, and pseudospectra reveal significant differ-

ences in the dynamics of different system formulations, pointing to significantly different



5.5. INVESTIGATING DYNAMICS OF 2D CHANNEL FLOW 77

open-loop behaviour. However, the question remains, what effect do these differences

have when using the system formulations for feedback control design? At this point it is

stressed again that models that are suitable for simulation are not necessarily suitable

for control, and vice-versa [59, 9, 56]. In order to gain insight into this, actuation and

sensing were defined for the 2D channel flow in order to determine the system zeros,

and compare the frequency responses from actuation to sensing.

5.5.6 Applying actuation and sensing

In what follows, the choice of system actuation and measurement is somewhat arbitrary

but serves to illustrate some of the subtleties of model selection for the purposes of

feedback control design. As in many previous studies (see, e.g. [68, 56, 46]), actuation

in the form of wall transpiration was assumed, in this case at the upper (y = +1) wall.

The actuator was modelled as a first-order system:

∂

∂t
v̂(+1, t) = −1

τ
v̂(+1, t) +

1

τ
u(t), (5.45)

where u(t) ∈ R is the control input signal, and a time constant τ = 1 was assumed for

convenience. Including wall transpiration in each of the primitive variables and PPE

formulations simply amounts to altering the rows, corresponding to the v̂(+1, t) state,

of the system matrices A and E, and defining an input matrix B ∈ Rnu+nv+np . For the

Orr-Sommerfeld formulation, however, owing to the 4th-order spatial derivatives present

in (5.22) a lifting procedure based on that presented in [68] was used to incorporate the

effects of actuation. The first step to employing this lifting procedure was to write the

Fourier transformed wall-normal velocity as:

v̂(y, t) := v̂h(y, t)︸ ︷︷ ︸
homogeneous part

+ v̂+1(t)fu(y)︸ ︷︷ ︸
inhomogeneous part

, (5.46)

where v̂h(y, t) is the Fourier transformed wall-normal velocity for y ∈ [−1, 1), v̂+1(t) :=

v̂(+1, t), and fu(y) is a lifting function. A lifting function is any polynomial satisfying

the boundary conditions:

fu(+1) = 1, (5.47a)

fu(−1) =
dfu (±1)

dy
= 0. (5.47b)

In this work, the following lifting function was chosen:

fu(y) =
1

4

(
2y4 − y3 − 4y2 + 3y + 4

)
. (5.48)
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From (5.24) and (5.46) one then obtains the expression:

Eh
∂

∂t
v̂h(y, t) + E+1fu(y)

d

dt
v̂+1(t) = Ahv̂h(y, t) +A+1fu(y)v̂+1(t), (5.49)

where Eh and E+1 are, respectively, the homogeneous Dirichlet and inhomogeneous

versions of E , and Ah and A+1 are, respectively, the homogeneous Dirichlet and inho-

mogeneous versions of A.

Inserting (5.45) yields:

Eh
∂

∂t
v̂h(y, t)− 1

τ
E+1fu(y)v̂+1(t) +

1

τ
E+1fu(y)u(t)

= Ahv̂h(y, t) +A+1fu(y)v̂+1(t),

(5.50)

and therefore:

∂

∂t
v̂h(y, t) =E−1

h Ah︸ ︷︷ ︸
Ξ̌11

v̂h(y, t)

+ E−1
h

(
A+1fu(y) +

1

τ
E+1fu(y)

)
︸ ︷︷ ︸

Ξ̌12

v̂+1(t)−1

τ
E−1

h E+1fu(y)︸ ︷︷ ︸
Γ̌1

u(t).
(5.51)

After spatially discretising in y using Chebyshev interpolants, this can be written in

the following matrix form, which serves as the final model state equation:

d

dt

 ~̂vh(t)

v̂+1(t)


︸ ︷︷ ︸

x(t)

=

Ξ11 Ξ12

0 − 1
τ


︸ ︷︷ ︸

AOS

 ~̂vh(t)

v̂+1(t)

+

Γ1

0


︸ ︷︷ ︸
BOS

u(t), (5.52)

where Ξ11 ∈ Cny×ny , Ξ12 ∈ Cny×1, and Γ1 ∈ Cny are spatially discretised versions

of Ξ̌11, Ξ̌12, and Γ̌1, respectively. The state vector is denoted x(t) ∈ Cny+1.

The measured output y(t) ∈ C was chosen to be the Fourier transformed pressure

at the lower wall:

y(t) = p̂(−1, t). (5.53)

For the primitive variables and PPE formulations discretised on a co-located mesh, the

corresponding output matrices C ∈ C1×(nu+nv+np) are simply all zeros except for a one

in the element corresponding to the p̂(−1, t) state.

For staggered mesh discretisations, since pressure nodes do not sit on the domain

boundaries, linear extrapolation was used to approximate p̂(−1, t) based on the values
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of p̂(y, t) and ∂
∂y p̂(y, t) at the closest node to the wall. With respect to Figure 5.5(b),

this approximation is as follows:

p̂(−1, t) ≈ 3

2
p̂n− 1

2
(t)− 1

2
p̂n−1− 1

2
(t). (5.54)

Therefore, the output matrices C ∈ C1×(nu+nv+np) are simply all zeros except for the

elements corresponding to the p̂
(
−1 + δ

2 , t
)

and p̂
(
−1 + 3δ

2 , t
)

states.

Finally, for the Orr-Sommerfeld system, pressure must be written as a function

of v̂(y, t), since it does not appear in the state vector. Considering the Fourier trans-

formed in x version of (5.20a) which reads as:

∂

∂t
û(y, t) + iα

(
1− y2

)
û(y, t)− 2yv̂(y, t) =

− iαp̂(y, t) +
1

Re

(
−α2 +

∂2

∂y2

)
û(y, t),

(5.55)

and using the fact that û(−1, t) = v̂(−1, t) = 0 due to the no-slip boundary condition,

this reduces to:

p̂(−1, t) =
1

iα

1

Re

∂2

∂y2
û(−1, t). (5.56)

Finally, using the continuity equation (5.20c), this can be written:

p̂(−1, t) =
1

α2

1

Re

∂3

∂y3
v̂(−1, t). (5.57)

Hence, the output matrix C ∈ C1×(ny+1) is defined as:

C =
1

α2

1

Re

[
Dyyy[ny,1:ny]

d3fu(−1)

dy3

]
, (5.58)

where Dyyy[ny,1:ny]
denotes the bottom row of the third order Chebyshev differentiation

matrix.

The overall single-input single-output (SISO) systems then have the following forms

d

dt
~̂v(t) = AOS

~̂v(t) +BOSu(t), (5.59a)

y(t) = COS
~̂v(t), (5.59b)
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EPr
d

dt
x(t) = APrx(t) +BPru(t), (5.60a)

y(t) = CPrx(t), (5.60b)

EPPE
d

dt
x(t) = APPEx(t) +BPPEu(t), (5.61a)

y(t) = CPPEx(t), (5.61b)

with respective transfer functions

GOS(s) = COS (sI −AOS)−1BOS, (5.62)

GPr(s) = CPr (sEPr −APr)
−1BPr, (5.63)

GPPE(s) = CPPE (sEPPE −APPE)−1BPPE. (5.64)

Poles and zeros

The poles and zeros of all model formulations are plotted in Figures 5.10 and 5.11.

One should note the addition of a pole located at s = −1/τ in all cases owing to

the presence of actuator dynamics (5.45). As can be seen in Figure 5.10, the zeros

are in the same locations for the Orr-Sommerfeld model [OS], and primitive variables

formulations [Pr1] and [Pr3], suggesting that these three models will exhibit the same

input-output behaviour. However, whilst the majority of the zeros of [Pr2] match those

of [OS], the single right half plane zero (located at approximately s = 0.03− 1.1i) does

not match that of [OS]. This immediately suggests that their input-output behaviour

differs.

As can be seen in Figure 5.11, the zeros of [PPE1] and [PPE2] do not agree with

those of [OS]. One would therefore expect different input-output behaviour from the

two systems. It should be noted that when spatially discretising the system models

upon successively finer computational meshes, the matrix (sEPPE −APPE) of [PPE2]

becomes increasingly ill-conditioned, and the computed zeros fail to converge. This was

not the case for any other formulation considered, suggesting that directly enforcing

the divergence free velocity condition (5.20c) yields inherently ill-conditioned system

matrices.

In the cases of [PPE3] and [PPE4], the zeros lie largely in the same locations as
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Figure 5.10: Poles (•) and zeros (©) of primitive variables formulations with poles (•)
and zeros (©) of [OS] shown for comparison: (a) [OS]; (b) [Pr1]; (c) [Pr2]; (d) [Pr3].

those of [OS], but with additional zeros lying in the same locations as the spurious poles

(discussed in Section 5.5.4). This results in pole/zero cancellation of the spurious poles

in the corresponding transfer functions and so the overall effect is that one obtains a

transfer function the same as that of [OS] after computing a minimal realisation [92].

This suggests, therefore, that the two systems will exhibit the same input-output be-

haviour.

Frequency response

Another way of comparing input-output behaviour between systems is by comparing

their frequency responses. Bode plots for each model are shown in Figures 5.12 and 5.13,

where the frequency response of the Orr-Sommerfeld formulation [OS] is also plotted for

comparison. As can be seen in Figure 5.12, the frequency responses of [Pr1] and [Pr3]
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Figure 5.11: Poles (•) and zeros (©) of PPE formulations with poles (•) and zeros (©)
of [OS] shown for comparison: (a) [PPE1]; (b) [PPE2]; (c) [PPE3]; (d) [PPE4].

match that of [OS] exactly, whilst there is an offset at low frequencies for [Pr2] due

to the different location of the right half plane zero. This again exposes the problems

associated with using finite-difference discretisation on a co-located mesh, and also

confirms that such a formulation and discretisation does not yield a model suitable

for controller design as the frequency response is incorrect. The use of a staggered

mesh with finite-differences does indeed solve this problem. Figure 5.13 shows that

both [PPE3] and [PPE4] have frequency response identical to that of [OS], suggesting

that the PPE formulation along with pressure boundary conditions based on those

discussed in [91] can produce models suitable for controller design, even when using

finite-difference discretisation on a co-located mesh.

The frequency response of [PPE1] shows very little agreement with that of [OS],

suggesting that the PPE formulation in conjunction with the simple Neumann pres-

sure boundary condition (5.15) does not yield a model that is at all representative of
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Figure 5.12: Bode plots of primitive variables formulation systems (−) with frequency
response of GOS(s) shown for comparison (−): (a) [Pr1]; (b) [Pr2]; (c) [Pr3]. Note that
in (a) and (c) the red line is not visible as the frequency responses agree exactly.

the actual system dynamics. Finally, whilst the frequency response of [PPE2] follows

the general shape of that of [OS], it is unphysical owing to the occurrence of spurious

poles and zeros. This suggests that simply enforcing the divergence free velocity con-
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Figure 5.13: Bode plots of PPE formulation systems (−) with frequency response
of GOS(s) shown for comparison (−): (a) [PPE1]; (b) [PPE2]; (c) [PPE3]; (d) [PPE4].
Note that in (c) and (d) the red line is not visible as the frequency responses agree
exactly.

dition (5.20c) on the boundary does not necessarily result in a suitable control model.
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[Pr1] [Pr2] [Pr3] [PP1] [PPE2] [PPE3] [PPE4]

0.0002 0.0112 0.0005 0.3404 0.2596 0.0002 0.0007

Table 5.2: ν-gap between different 2D channel flow model formulations and the bench-
mark Orr-Sommerfeld model.

ν-gap metric

A final way of comparing the suitability of the different models for feedback control

design is by considering the ν-gap metric between each of the different formulations and

the benchmark Orr-Sommerfeld model. The ν-gap metric δν (·, ·) : Rm×n ×Rm×n →
[0, 1] is a measure of the ‘distance’ between two systems in a closed-loop sense, where

a value of 0 indicates identical closed-loop behaviour, and a value of 1 indicates the

opposite [98]. In terms of frequency response, the ν-gap between two systems G1(s)

and G2(s) is defined as [97]:

δν (G1(s), G2(s)) :=



‖Υ (G1(s), G2(s))‖∞ if det (I +G∗2(iω)G1(iω)) 6= 0, ∀ω ∈ R

and wno det (I +G∗2(s)G1(s))

+ η (G1(s))− η (G2(s)) = 0,

1 otherwise,

(5.65)

where Υ(·, ·) : Rm×n ×Rm×n → Rm×n is defined as:

Υ (G1(s), G2(s)) = (I +G2(iω)G∗2(iω))−1/2

× (G2(iω)−G1(iω)) (I +G∗1(iω)G1(iω))−1/2 ,
(5.66)

the H∞-norm is denoted ‖·‖∞, η (G(s)) ∈ N denotes the number of open right-half-

plane poles of G(s), and wno (g(s)) ∈ N denotes the winding number of the scalar

transfer frunction g(s) evaluated on the standard Nyquist contour.

The ν-gaps between each model formulation and the benchmark Orr-Sommerfeld

model were computed, and results are presented in Table 5.2.

For models [Pr1], [Pr3], [PPE3], and [PPE4], the ν-gaps were very close to 0, and

were significantly larger for [Pr2], [PPE1], and [PPE2]. It is interesting to note that

whilst the frequency response of [Pr2] is broadly similar to that of the Orr-Sommerfeld

model, the offset at low frequencies results in a ν-gap that is orders of magnitude greater

than that of the models which agreed exactly. This is due to the differing location of

the right half plane zero, and models arising from spatial discretisations that produce

such spurious right half plane zeros are not suitable for feedback control design. This
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confirms our previous analyses.

5.6 Summary

In this chapter, a number of different formulations of the linearised Navier-Stokes equa-

tions have been compared to one another in terms of their dynamic response, with a view

towards identifying formulations that are suitable for designing feedback controllers.

Models of a 2D channel flow were constructed, and the dynamics and input-output

behaviour compared to a benchmark Orr-Sommerfeld model. This showed that when

using centred finite-differences, the only formulation which was dynamically identical

to the Orr-Sommerfeld model was the primitive variables formulation discretised on a

staggered mesh. This yielded the same poles, zeros, psuedospectra, and frequency re-

sponse, and is thus a recommended choice as the basis for designing feedback controllers,

particularly for flows around complex geometries.

On the other hand, none of the models based on PPE formulations yielded the same

underlying dynamics, which was clearly exposed by their differing poles and pseudospec-

tra. However, in some cases the frequency response obtained upon defining an input

and output to the system agreed with that of the Orr-Sommerfeld model, since the

zeros caused pole/zero cancellation of spurious poles. This implies that some PPE-

based formulations may be suitable for feedback control design. However, as the zero

locations are dependent on how the inputs and outputs are defined, there is no guar-

antee that such pole/zero cancellation would occur for different sensing and actuation

configurations, and so considerable care is advised.



Chapter 6

Modelling backward facing step

flow

In this chapter, the RHSP-based construction method presented in Chapter 4 is used,

along with insight gained in Chapter 5, to construct the frequency response of the 2D

backward facing step flow that was introduced in Chapter 3.

Details of the spatial domain used for the model, how actuation and sensing was

defined, and the specific formulation and spatial discretisation of the governing equa-

tions used are discussed, before the frequency response obtained using the RHSP-based

construction method is presented, and low-order transfer functions are fitted.

Results are compared with those obtained using a CFD-based system identification

study, which reveals discrepancies. These discrepancies are explained by investigation

of the underlying dynamics of the CFD solver algorithm employed.

6.1 Formulating the model

6.1.1 Model spatial domain

The computational domain used here was much the same as that used for simulation

purposes (see Figure 3.2), but with a shorter inlet length. Much of the inlet was

discarded since, due to the convective nature of the flow, it was assumed that ZNMF

actuation located on the step rear edge would have no effect on the upstream flow. As

such, including this region in the model would add unnecessary computational cost.

The domain used is depicted in Figure 6.1.

Boundary conditions for the fluctuating parts of flow variables were based on those

87
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∂Ωtop

∂Ωin

∂Ωout

∂Ωbottom
x

y

8

1

202

Figure 6.1: Backward facing step flow RHSP-based construction method computational
domain with boundaries ∂Ω(·).

boundary velocity

∂Ωin (u′, v′) = (0, 0)

∂Ωout ∂u′/∂n = 0

∂Ωbottom (u′, v′) = (0, 0) (no-slip)

∂Ωtop v′ = ∂u′/∂n = 0 (free-slip)

Table 6.1: Backward facing step flow RHSP-based construction method fluctuating
variables boundary conditions.

used for simulations, and are described in Table 6.1.

6.1.2 Individual computational node subsystem

Informed by the analysis presented in Chapter 5, the primitive variables formulation

of the linearised Navier-Stokes equations discretised on a staggered mesh was chosen

for modelling the backward facing step flow. Upon spatially discretising the linearised

momentum (5.2a) and continuity (5.2b) equations using centred finite-differences, the

following descriptor state-space representation was obtained for each individual com-

putational node:
1 0 0

0 1 0

0 0 0


︸ ︷︷ ︸

Ei,j

d

dt


u′i+1/2,j(t)

v′i,j+1/2(t)

p′i,j(t)

 = Ai,j


u′i+1/2,j(t)

v′i,j+1/2(t)

p′i,j(t)


︸ ︷︷ ︸

xi,j(t)

+Bi,jξi,j(t), (6.1a)

zi,j(t) =
[
I I I I

]>
︸ ︷︷ ︸

Ci,j

xi,j(t), (6.1b)
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v′ = 0

u′1 u′2

u′g,1 u′g,2

fluid side

outside domain

real velocity nodes

ghost point velocity nodes

Figure 6.2: Location of ghost points on computational domain boundary.

where ξi,j(t) ∈ R12and zi,j(t) ∈ R12 are defined as in Section 4.1.1, the state vec-

tor xi,j(t) ∈ R3 is defined as in Section 5.3, Ai,j ∈ R3×3, Ci,j ∈ R12×3, and:

Bi,j :=
[
B1i,j B2i,j B3i,j B4i,j

]
∈ R3×12. (6.2)

The elements of Ai,j and Bi,j are defined in Appendix A. The mean flowfield (ū(x), p̄(x))

was obtained by time-averaging an unforced LES simulation of the flow, however this

could be obtained at a lesser computational cost using RANS simulations.

As in the case of the 2D wave-diffusion equation, the subsystems describing bound-

ary nodes were altered as required in order to enforce the boundary conditions. Due

to the use of a staggered mesh arrangement, the use of ghost points – ficticious compu-

tational nodes outside the computational domain – was required for some boundaries

in order to enforce velocity boundary conditions [45]. With respect to the example

boundary in Figure 6.2, for a no-slip boundary the ghost point velocities must be set

such that u′g,1 = −u′1, u′g,2 = −u′2, etc, whilst for a free-slip boundary they must be set

such that u′g,1 = +u′1, u′g,2 = +u′2, etc. Analogous conditions can easily be derived for

vertical boundaries.

6.1.3 Actuation and sensing

Actuation was defined as the same ZNMF slot jet used in Section 3.3, and implemented

in the model by altering the matrices of the subsystems corresponding to the actuation

slot. Appropriate Bui,j matrices were defined as required.

Two different sensing configurations were considered in this work; a pressure fluc-

tuation measurement in the centre of the step’s rear face:

y1(t) = p′(0,−0.5, t), (6.3a)



90 CHAPTER 6. MODELLING BACKWARD FACING STEP FLOW

−40

−20

0
2
0
lo
g 1

0
|G

1
(i
·
S
t)
|/

d
B

10
−2

10
−1

10
0

10
1

10
2

−280

−260

−240

−220

−200

St

6
G

1
(i
·
S
t)

/
d
eg

re
es

Figure 6.3: Frequency response G1(i · St) of backward facing step flow with out-
put y1(t): % = 41 (−), % = 61 (−), % = 81 (−), % = 101 (−−), % = 121 (−−), % = 141
(−−), % = 161 (− • −).

and a wall-normal velocity fluctuation measurement in the wake:

y2(t) = v′(1,−0.5, t). (6.3b)

These outputs were defined by constructing appropriate Cyi,j matrices for the rele-

vant subsystems. It should be noted that since a staggered mesh was used for spatial

discretisation, pressure nodes did not lie on the step face boundary. As such, the pres-

sure measurement was estimated using linear extrapolation based on the nearest two

pressure nodes, similar to that employed in Section 5.5.6

6.2 Results

6.2.1 Frequency response

Frequency responses for each sensing configuration were computed using the RHSP-

based construction method using the Iceberg HPC cluster in order to parallelise over

frequency points. This was carried out for a number of successively finer uniform

computational meshes (with mesh density %) in order to ensure convergence. The

frequency responses obtained for y1(t) and y2(t) are depicted in Figures 6.3 and 6.4,

respectively. The vector of frequency response values evaluated at nSt frequency points
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Figure 6.4: Frequency response G2(i · St) of backward facing step flow with out-
put y2(t): % = 41 (−), % = 61 (−), % = 81 (−), % = 101 (−−), % = 121 (−−), % = 141
(−−), % = 161 (− • −).

50 100 150 200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

̺

‖G
̺
−

G
̺
−
2
0‖

2

(a)

50 100 150 200
2

3

4

5

6

7

8
x 10

−3

̺

‖G
̺
−

G
̺
−
2
0‖

2

(b)

Figure 6.5: 2-norm of G% − G%−20 for successively finer meshes (with mesh density %):
(a) frequency response G1(i · St) for output y1(t); (b) frequency response G2(i · St) for
output y2(t).

for a mesh density % is denoted G% ∈ CnSt , i.e:

G% :=
[
G(i · St1) G(i · St2) · · · G(i · StnSt)

]>
. (6.4)
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Figure 6.6: Fitting nth-order transfer function G(s) to frequency response data G1(i·St)
obtained with RHSP-based construction method: original data (•), n = 1 fit (−), n = 2
fit (−), n = 3 fit (−), n = 4 fit (−−), n = 5 fit (−−), n = 6 fit (−−).

The convergence of G1(i ·St) and G2(i ·St) is demonstrated in Figure 6.5(a) and 6.5(b),

respectively, which shows the 2-norm of G% − G%−20 decreasing for successively finer

meshes. Based on Figures 6.3, 6.4, and 6.5, the frequency responses were deemed to

have converged sufficiently at % = 161.

6.2.2 Fitting transfer functions

Transfer functions G(s) were fitted to the frequency response data obtained for the

highest mesh density considered (% = 161) using least squares regression (implemented

in Matlab’s fitfrd() routine). The frequency responses of fitted transfer functions

of increasing order n are shown in Figures 6.6 and 6.7.

The fit error was quantified here using the root-mean-square-error (RMSE):

eRMS =

√√√√ 1

nSt

nSt∑
k=1

|GRHSP (i · Stk)−Gfit (i · Stk)|2, (6.5)

where GRHSP (i · Stk) are the frequency response values obtained via the RHSP-based

construction method, and Gfit (i · Stk) are the frequency response values of the fitted

transfer function evaluated at the same nSt frequencies. The errors of fitted models of

increasing order are shown in Figure 6.8.
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Figure 6.7: Fitting nth-order transfer function G(s) to frequency response data G2(i·St)
obtained with RHSP-based construction method: original data (•), n = 1 fit (−), n = 2
fit (−), n = 3 fit (−), n = 4 fit (−−), n = 5 fit (−−), n = 6 fit (−−).
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Figure 6.8: eRMS of nth-order transfer functions fitted to frequency response
data: G1(i · St) (•), G2(i · St) (©).

Based on Figures 6.6, 6.7, and 6.8, it was decided that 4th-order transfer functions

could be used to represent both G1(i · St) and G2(i · St) with sufficient accuracy, whilst
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avoiding over-fitting. These transfer functions are given by:

G1(s) =
−6.4× 102s4 − 4.5× 103s3 + 1.1× 105s2 − 1.1× 104s− 24

s4 − 1.6× 104s3 − 2.7× 104s2 + 2.1× 106s+ 1.9× 103
, (6.6)

and:

G2(s) =
3.8× 10−5s4 − 6.4× 10−4s3 − 2.2× 10−4s2 − 6.3× 10−5s+ 3.3× 10−5

s4 + 4.8× 10−1s3 + 3.1× 10−1s2 + 4.3× 10−2s+ 1.4× 10−3
,

(6.7)

respectively.

6.2.3 Comparison with system identification

The models obtained using the RHSP-based construction method were compared with

models obtained from a CFD-based linear system identification study. System iden-

tification was carried out using the subspace identification methods presented in [63]

in order to identify nth-order transfer functions (implemented in Matlab’s n4sid()

routine).

A number of open-loop forced simulations were run with varying excitation signals,

including random binary sequences (RBS) and sums-of-sines, with maximum ampli-

tudes corresponding to the region for which, in Section 3.4, it was shown the flow could

be modelled as a linear system. For each experiment, the excitation signal was designed

such that for the first few hundred time units there was no actuation in order for the

subspace identification algorithm to model the natural vortex shedding as an external

disturbance to the linear system.

The subspace identification method allows the analysis of the system’s Hankel sin-

gular values during the identification procedure in order to inform the choice of model

order. For both output cases y1(t) and y2(t) this suggested a 3rd-order model. The

frequency responses of the models identified for G1(s) and G2(s) by system identifi-

cation (from a number of experiments with different excitation signals) are shown in

Figures 6.9 and 6.10, respectively. It should be noted that since the simulation data

was sampled with a sampling period of 0.05 non-dimensional time units, due to the

Nyquist sampling theorem one can only expect to correctly identify frequency content

up to St = 10. This is likely the cause of the discrepency between different experiments

past St ≈ 20 in Figure 6.10.

For each of the outputs, the models identified in different experiments agreed well,

however there is significant discrepancy between these identified models and the mod-

els identified using the RHSP-based construction method. To rule out this discrepancy

being associated solely with the PIMPLE algorithm, the same experiments were car-
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Figure 6.9: Frequency response of transfer function G1(s) identified using system iden-
tification for output y1(t). Different line styles represent experiments with different
excitation signals.
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Figure 6.10: Frequency response of transfer function G2(s) identified using system
identification for output y2(t). Different line styles represent experiments with different
excitation signals.

ried out using OpenFOAM’s standard PISO algorithm solver with a very small fixed

timestep. This, however, yielded almost identical results to the PIMPLE algorithm.

The results obtained using the RHSP-based construction method and system iden-



96 CHAPTER 6. MODELLING BACKWARD FACING STEP FLOW

−40

−20

0

20

40

60

80

2
0
lo
g 1

0
|G

1
(i
·
S
t)
|/

d
B

10
−2

10
−1

10
0

10
1

10
2

−400

−300

−200

St

6
G

1
(i
·
S
t)

/
d
eg

re
es

Figure 6.11: Comparison of frequency responses of G1(s): model obtained using RHSP-
based construction method (−), average of models obtained using system identification
experiments (−−).

tification method are compared in Figures 6.11 and 6.12, for outputs y1(t) and y2(t),

respectively.

For output y1(t), the difference in models is most substantial. Whilst the model

obtained using the RHSP-based construction method exhibits high-pass dynamics, the

model obtained using system identification displays low-pass dynamics, indicating con-

siderably different behaviour.

In the case of output y2(t), the differences are less severe, but are existent none-

the-less. Both models exhibit low-pass behaviour, however are quantitatively different.

These significant differences prompted an investigation into the underyling dynamics

of the PISO algorithm solver, which is presented in the following section.

6.3 PISO algorithm dynamics

The PISO algorithm, originally described by Issa [54], consists of three steps within

each timestep: an initial predictor step, followed by two corrector steps. In order to

obtain a discrete-time state-space representation of the PISO algorithm with which the

dynamics could be compared to those of the computational atom used in the RHSP-

based construction method, the linearised version of the algorithm was considered.

After backward Euler temporal discretisation (with timestep ∆t), the three steps can
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Figure 6.12: Comparison of frequency responses of G2(s): model obtained using RHSP-
based construction method (−), average of models obtained using system identification
experiments (−−).

be summarised as below, where the starting point is the kth timestep, the fluctuating

velocity and pressure fields are denoted u′k and p′k, respectively, and the superscripts †

and †† denote the values of intermediate fields. Note that the velocity and pressure

fields’ dependence on spatial location has been dropped for notational brevity.

(1) Predictor step: The pressure field at timestep k is used to predict an inter-

mediate fluctuation velocity field u′† by solving the following equation:

1

∆t

(
u′
† − u′k

)
= −u′† · ∇ū− ū · ∇u′† +

1

Re
∇2u′† −∇p′k. (6.8)

This new velocity field will not, in general, satisfy the continuity equation.

(2) Corrector step 1: New fluctuation velocity and pressure fields u′†† and p′† are

sought such that the velocity field does satisfy the continuity equation. The new pres-

sure field is first computed by solving the following PPE:

∇2p′† = −∇ ·
(
u′† · ∇ū

)
−∇ ·

(
ū · ∇u′†

)
+

1

Re
∇2
(
∇ · u′†

)
+

1

∆t
∇ · u′k. (6.9)

The new velocity field is then computed by solving the corrector momentum equation:

1

∆t

(
u′
†† − u′k

)
= −u′† · ∇ū− ū · ∇u′† +

1

Re
∇2u′† −∇p′†. (6.10)
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(3) Corrector step 2: The final velocity and pressure fields u′k+1 and p′k+1 are then

computed by first solving the second PPE:

∇2p′k+1 = −∇ ·
(
u′†† · ∇ū

)
−∇ ·

(
ū · ∇u′††

)
+

1

Re
∇2
(
∇ · u′††

)
+

1

∆t
∇ · u′k,

(6.11)

before solving the final predictor momentum equation:

1

∆t

(
u′
k+1 − u′k

)
= −u′†† · ∇ū− ū · ∇u′†† +

1

Re
∇2u′†† −∇p′k+1. (6.12)

In order to construct a discrete-time state-space model of a single computational

atom, (6.8)–(6.12) were discretised, using centred finite-differences, on a staggered mesh

with uniform mesh spacing δx = δy = δ. For the (i, j)th node, neglecting effects of sur-

rounding nodes, these steps can be written as a sequence of matrix transformations as

such:

(1) Predictor step:

The initial predictor step can be expressed as:

u′ki+1/2,j

v′ki,j+1/2

p′ki,j

u′†i+1/2,j

v′†i,j+1/2


=



1 0 0

0 1 0

0 0 1

1
a1∆t 0 1

a1δ

0 1
a2∆t − 1

a2δ


︸ ︷︷ ︸

AP ∈ R5×3


u′ki+1/2,j

v′ki,j+1/2

p′ki,j

 , (6.13)

where:

a1 :=
1

∆t
+

1

2δ

(
ūi+3/2,j − ūi−1/2,j

)
+

4

δ2Re
, (6.14a)

a2 :=
1

∆t
+

1

2δ

(
v̄i,j−1/2 − v̄i,j+3/2

)
+

4

δ2Re
. (6.14b)
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(2) Corrector step 1:

Solution of the first PPE can be expressed as:

u′ki+1/2,j

v′ki,j+1/2

u′†i+1/2,j

v′†i,j+1/2

p′†i,j


=



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

− δ
4∆t

δ
4∆t 0 a3 a4


︸ ︷︷ ︸

AC1p ∈ R5×5



u′ki+1/2,j

v′ki,j+1/2

p′ki,j

u′†i+1/2,j

v′†i,j+1/2


, (6.15)

where:

a3 :=
1

2

(
ūi+1/2,j − ūi−1/2,j

)
− 1

16

(
ūi+1/2,j + ūi−1/2,j

)
, (6.16a)

a4 :=
1

2

(
v̄i,j−1/2 − v̄i,j+1/2

)
− 1

16

(
v̄i,j+1/2 + v̄i,j−1/2

)
, (6.16b)

and solution of the first corrector momentum equation can be expressed as:

u′ki+1/2,j

v′ki,j+1/2

u′††i+1/2,j

v′††i,j+1/2

p′†i,j


=



1 0 0 0 0

0 1 0 0 0

1 0 a5 0 ∆t
δ

0 1 0 a6 −∆t
δ

0 0 0 0 1


︸ ︷︷ ︸

AC1m ∈ R5×5



u′ki+1/2,j

v′ki,j+1/2

u′†i+1/2,j

v′†i,j+1/2

p′†i,j


, (6.17)

where:

a5 := −∆t

2δ

(
ūi+3/2,j − ūi−1/2,j

)
− 4∆t

δ2Re
, (6.18a)

a6 := −∆t

2δ

(
v̄i,j−1/2 − v̄i,j+3/2

)
− 4∆t

δ2Re
. (6.18b)
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(3) Corrector step 2:

Solution of the second PPE can be expressed as:

u′ki+1/2,j

v′ki,j+1/2

u′††i+1/2,j

v′††i,j+1/2

p′k+1
i,j


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− δ
4∆t

δ
4∆t a3 a4 0


︸ ︷︷ ︸

AC2p ∈ R5×5



u′ki+1/2,j

v′ki,j+1/2

u′††i+1/2,j

v′††i,j+1/2

p′†i,j


, (6.19)

and solution of the second corrector momentum equation can be expressed as:


u′k+1
i+1/2,j

v′k+1
i,j+1/2

p′k+1
i,j

 =


1 0 a5 0 ∆t

δ

0 1 0 a6 −∆t
δ

0 0 0 0 1


︸ ︷︷ ︸

AC2m ∈ R3×5



u′ki+1/2,j

v′ki,j+1/2

u′††i+1/2,j

v′††i,j+1/2

p′k+1
i,j


. (6.20)

The overall discrete-time system which maps states from timestep k to k + 1 can

therefore be written:
u′k+1
i+1/2,j

v′k+1
i,j+1/2

p′k+1
i,j


︸ ︷︷ ︸
xi,j(k + 1)

= AC2mAC2pAC1mAC1pAP︸ ︷︷ ︸
APISOi,j ∈ R3×3


u′ki+1/2,j

v′ki,j+1/2

p′ki,j


︸ ︷︷ ︸

xi,j(k)

, (6.21)

and the poles of the system are equal to the eigenvalues of APISOi,j . In order to compare

the dynamics of this system with those of the computational atom used in the RHSP-

based construction method, the continuous-time system (6.1) was discretised in time

using the same backward Euler difference scheme. For an arbitrary spatial location in

the wake (x, y) = (2,−0.5), timestep ∆t = 0.001, and mesh spacing δ = 0.005, the poles

of both systems are plotted in Figure 6.13.

The poles of the PISO algorithm state-space representation are z ∈ {0, 0.457, 0.926},
whilst the poles of the computational atom used in the RHSP-based construction

method are z ∈ {0, 0, 0.926}. Whilst the systems have two poles in common, the

location of the third differs. The atom used for the RHSP-based construction method

has two poles located at the origin, corresponding to two poles at minus infinity in
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Figure 6.13: Discrete-time poles of PISO algorithm individual node subsystem state-
space representation (•), and discrete-time poles of individual node subsystem used in
RHSP-based construction method (©).

the continuous-time case, whilst the PISO algorithm atom has only one located at the

origin. This disagreement highlights a fundamental difference in the dynamics of a

direct spatial discretisation of the linearised Navier-Stokes equations, and the operator

splitting method of the PISO algorithm, however it is not yet clear why this difference

arises. Due to this difference at the nodal level, one cannot necessarily expect the back-

ward facing step system models obtained from linear system identification based on this

algorithm to agree with those obtained with the RHSP-based construction method.

This important result begs the question ‘when is the use of the PISO algorithm

appropriate?’, and is an area which certainly requires further investigation.

6.4 Summary

In this chapter, the RHSP-based construction method was applied to the 2D backward

facing step flow with ZNMF actuation on the step rear edge for two different output

configurations. In both cases, the RHSP-based construction method yielded frequency

responses which converged upon mesh refinement, and 4th-order transfer functions were

fitted using least squares regression. These models were compared to models obtained

from a CFD-based linear system identification study, from which significant discrepancy

was observed. In order to explain the cause of this discrepancy, a discrete-time state-
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space representation of the standard PISO algorithm was constructed (for a single

computational node), and compared to the computational atom used in the RHSP-

based construction method. This revealed differing poles, explaining the difference

between the backward facing step models obtained using the RHSP-based construction

method and those obtained using system identification based on the PISO algorithm.

This result brings into question the validity of the PISO algorithm and, as such,

when its use is appropriate requires further investigation.



Chapter 7

Conclusions and future work

In this closing chapter, a summary of the work presented in Chapters 3–6 is given,

before the main contributions of the work are listed, and avenues for future work are

suggested.

7.1 Summary

The focus of this work has been in developing a computationally efficient modelling

technique for obtaining linear, low-order models of fluid flows around complex geome-

tries, suitable for feedback control design. In the introductory chapter of this work,

the term ‘complex geometry flows’ was defined to mean backward facing step flows,

D-shaped bluff body flows, and cylinder flows, and relevant literature on the modelling

and control of such flows was discussed in Chapter 2. In Chapter 3, the 2D backwards

facing step flow which would serve as a test case later on was introduced in detail.

The main features of the flow were discussed, before details of the numerical simulation

were presented. This included details of the LES solver, how the computational mesh

was generated, scalability of the simulations on parallel HPC clusters, and how ZNMF

slot jet actuation was implemented on the step rear edge. The assumption that the

flow could be modelled as a linear system was verified by considering the input-output

behaviour whilst actuating the flow harmonically at a number of forcing frequencies

and amplitudes. Comparing the forced and unforced output spectra showed that for

small forcing amplitudes the flow indeed behaved in a linear fashion. This justifed the

use of linear systems theory for such a flow.

In Chapter 4, the modelling approach used in this work – referred to here as the

RHSP-based construction method – was presented. The technique constructs the overall

frequency response of a system governed by a linear PDAE in a fashion that avoids the

103
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necessity to construct, store, or invert extremely large state-space matrices, or run

expensive simulations. This is achieved by exploiting the inherent structure of spatially

discretised PDAEs, and building up the overall system frequency response by chaining

together the frequency responses of individual computational node subsystems.

For the two spatial dimension case, a domain decomposition optimisation was pre-

sented, and Lemma 1 established the existence of a globally minimal computational cost

which could be achieved by choosing the decomposition parameters optimally. It was

then proven in Theorem 1 that by employing this optimisation, the computational cost

of the modelling approach could be reduced from O
(
%4
)

to O
(
%2
)

(whilst obtaining

the frequency response directly from the full-scale system matrices costs O
(
%6
)
).

The effectiveness of the modelling approach was demonstrated by application to

the 2D wave-diffusion equation example. This yielded identical frequency response to

that obtained directly from the full-order state-space system, and confirmed its cost to

be O
(
%2
)
. In addition, both the computational memory requirements and conditioning

numbers of matrices involved were orders of magnitude lower than those of the direct

approach.

In order to apply the RHSP-based construction method to a fluids problem, a

suitable spatial discretisation of the linearised Navier-Stokes equations was required.

Chapter 5 addressed the issues involved with choosing such a discretisation, highlighting

the ambiguity in the literature. It was noted that that whilst some formulations of the

governing equations may be suitable for simulation purposes, they may not be for

control design.

The dynamics of a single computational node formed by spatial discretisation of

the governing equations in both primitive variables and PPE formulations were con-

sidered, revealing fundamental numerical differences at the nodal level. The effects of

these differences on the linearised system dynamics at the full system level were then

exemplified by considering the corresponding formulations of a 2D channel flow, sub-

jected to a variety of different boundary conditions, and comparing the models to the

benchmark Orr-Sommerfeld model. Anaylsis of the systems’ poles, zeros, pseudospec-

tra, eigenfunctions, and frequency responses highlighted the differences in dynamics

between the different model formulations, and suggested that the only formulation of

the governing equations which was dynamically accurate without ambiguity in choice of

boundary conditions was the primitive variables formulation discretised on a staggered

mesh. The ν-gaps between the different model formulations and the benchmark model

were computed, and these confirmed which formulations were significantly different in

a closed-loop sense.

Finally, in Chapter 6, the RHSP-based construction method was used to obtain



7.2. MAIN CONTRIBUTIONS 105

the frequency response of the 2D backward facing step flow introduced in Chapter 3.

Informed by the findings of Chapter 5, the primitive variables formulation of the lin-

earised Navier-Stokes equations was used, discretised on a staggered mesh. The same

ZNMF slot jet actuation of Chapter 3 was assumed, and two output configurations were

considered: pressure fluctuations on the rear face, and wall-normal velocity fluctuations

in the wake.

Upon refinement of the computational mesh, the frequency responses obtained for

both outputs converged. Transfer function models were fitted to each of the frequency

responses using least squares regression, and the RMS error of fitted models of increasing

order suggested that 4th-order models were sufficiently accurate.

These results were compared with those obtained from a computational system

identification study, which applied subspace identification techniques to input-output

data from a number of different open-loop forced simulation experiments in order to

fit transfer functions. Analysis of the Hankel singular values of the models produced

suggested that 3rd-order models were sufficient for both output configurations.

There was significant discrepancy between the results obtained with the RHSP-

based construction method, and those of the system identification study, suggesting that

the dynamics of the numerical solver were fundamentally different to those obtained

from a direct discretisation of the linearised Navier-Stokes equations. In order to inves-

tigate this difference, a discrete-time state-space representation of the linearised version

of the standard PISO algorithm discretised on a staggered mesh was constructed, and

compared to the computational node subsystem used in the RHSP-based construction

method. This revealed differing system poles, explaining the difference in backward

facing step flow models. As a result of this fundamental difference, the validity of

the PISO algorithm was brought into question – something of considerable importance

which should be investigated further.

7.2 Main contributions

To the best of the author’s knowledge, the following elements of this work are original

contributions:

i. Developing a generalisation of the modelling approach used by Baramov et al. [10,

11] – referred to in this work as the RHSP-based construction method – suitable

for obtaining low-order models of systems governed linear PDEs and PDAEs on

complex spatial domains.

ii. Developing a spatial domain decomposition optimisation for RHSP-based construc-
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tion method, and showing that for the two spatial dimension case there exists a

globally minimal computational cost which can be achieved by choosing the de-

composition parameters optimally.

iii. A proof that for the two spatial dimension case, using the RHSP-based construction

method in conjunction with the domain decomposition optimisation reduces the

computational cost from O
(
%4
)

to O
(
%2
)

(whilst obtaining the frequency response

directly from the full-scale system matrices costs O
(
%6
)
).

iv. A rigorous systems theoretic analysis of different formulations and discretisations

of the linearised Navier-Stokes equations, drawing conclusions about which formu-

lation and boundary condition combinations are dynamically correct and suited

to modelling fluids for the purpose of feedback control design, and which are only

appropriate for simulation purposes. This work has been published in International

Journal for Numerical Methods in Fluids.

v. Deriving a discrete-time state-space representation of the linearised PISO algorithm

(for a single computational node) and showing that the underlying dynamics differ

to those of a direct discretisation of the linearised Navier-Stokes equations.

7.3 Future work

Based on the work presented in this thesis, the following is a list of suggested avenues

for future work:

i. An extension of the results presented in Chapter 4 to the three spatial dimension

case. Ultimately, real world fluid flows (and many other physical phenomenon

governed by PDEs and PDAEs) are 3D, and as such the natural progression from

this work is to extend the modelling methodology, along with the results regarding

optimisation by domain decomposition, to the 3D case.

ii. Application of the RHSP-based construction method to a bluff body that better

represents a road vehicle, such as the Ahmed body in ground proximity.

iii. Developing a compiled C/C++ implementation of the RHSP-based construction

method for increased computational speed.

iv. Developing a framework for automating the use of the RHSP-based construction

method in conjunction with readily available meshing software in order to make it

an accessible tool for a new user.

v. Using the RHSP-based construction method to inform actuator and sensor place-

ment. For a given geometry, assuming a number of actuators and sensors in different
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locations, the RHSP-based construction method could be used to obtain MIMO

models from which controllability and observability properties could be deduced for

different actuator and sensor configurations. With this, sensible choices of actuator

and sensor placement could be made.

vi. Further investigation into the equivalency, or lack thereof, between a direct spatial

discretisation of the Navier-Stokes equations and the PISO algorithm used in many

CFD solvers. In Chapter 6 it was shown that in the linearised case, the poles

of a state-space representation of the PISO algorithm are different to those of a

direct discretisation of the governing equations, and it is unclear where/why this

discrepancy arises. This is a significant discrepancy, and as such an explanation

should be sought.
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Appendix A

Elements of Ai,j and Bi,j in (6.1)

Ai,j :=


a11 0 a13

0 a22 a23

a31 a32 0

 , (A.1)

where:

a11 := −0.5δ−1
(
ūi+3/2,j − ūi−1/2,j

)
− 4δ−2Re−1, (A.2a)

a13 := δ−1, (A.2b)

a22 := −0.5δ−1
(
v̄i,j−1/2 − v̄i,j+3/2

)
− 4δ−2Re−1, (A.2c)

a23 := −δ−1, (A.2d)

a31 := 1, (A.2e)

a32 := −1. (A.2f)

B1i,j :=


b111 b112 0

0 b122 0

0 b132 0

 , (A.3)

where:

b111 := −0.25δ−1
(
v̄i,j−1/2 + v̄i+1,j+1/2

)
+ δ−2Re−1, (A.4a)

b112 := −0.25δ−1
(
ūi+1/2,j−1 − ūi+1/2,j+1

)
, (A.4b)

b122 := −0.5δ−1v̄i,j+1/2 + δ−2Re−1, (A.4c)

b132 := 1. (A.4d)
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B2i,j :=


b211 b212 b213

0 b222 0

0 0 0

 , (A.5)

where:

b211 := −0.5δ−1ūi+1/2,j + δ−2Re−1, (A.6a)

b212 := 0.25δ−1
(
ūi+1/2,j−1 − ūi+1/2,j+1

)
, (A.6b)

b213 := −δ−1, (A.6c)

b222 := −0.25δ−1
(
ūi−1/2,j + ūi+1/2,j+1

)
+ δ−2Re−1. (A.6d)

B3i,j :=


b311 0 0

b321 b322 b323

0 0 0

 , (A.7)

where:

b311 := 0.25δ−1
(
v̄i,j−1/2 + v̄i+1,j+1/2

)
+ δ−2Re−1, (A.8a)

b321 := 0.25δ−1
(
v̄i+1,j+1/2 − v̄i−1,j+1/2

)
, (A.8b)

b322 := 0.5δ−1v̄i,j+1/2 + δ−2Re−1, (A.8c)

b323 := δ−1. (A.8d)

B4i,j :=


b411 0 0

b421 b422 0

b431 0 0

 , (A.9)

where:

b411 := 0.5δ−1ūi+1/2,j + δ−2Re−1, (A.10a)

b421 := −0.25δ−1
(
v̄i+1,j+1/2 − v̄i−1,j+1/2

)
, (A.10b)

b422 := 0.25δ−1
(
ūi−1/2,j + ūi+1/2,j+1

)
+ δ−2Re−1, (A.10c)

b431 := −1. (A.10d)
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