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Abstract 

This thesis investigated the neural basis of different aspects of semantic cognition using 

magnetoencephalography (MEG) and chronometric transcranial magnetic stimulation (cTMS). The 

primary aim was to examine the evidence for a potential functional dissociation between ATL and 

pMTG; (i) in terms of how they support semantic retrieval, and (ii) whether they support different 

types of semantic knowledge. Chapter 2 investigated the predictions of the Controlled Semantic 

Cognition framework (CSC - Lambon Ralph et al., 2017). According to this view, ATL and pMTG 

within the temporal lobe have distinctive roles in semantic cognition: the ATL is argued to 

correspond to a semantic store and in this way shows processing advantages for patterns of 

retrieval that are highly coherent with the structure of long-term conceptual knowledge, whereas 

pMTG is implicated in more controlled aspects of retrieval that might promote the accessibility of 

weaker associations that are not dominant within the ATL representations. The brain’s oscillatory 

response to strongly- and weakly-related word pairs was characterised in left anterior temporal lobe 

(ATL) and left posterior temporal gyrus (pMTG). ATL showed a larger response to strongly-

related words, while pMTG responded more strongly to weakly-related words, suggesting these 

regions contribute to automatic/coherent and controlled semantic retrieval respectively. The chapter 

also investigated the causal role of ATL and pMTG in automatic and controlled retrieval using 

cTMS. Results showed disruption for weak associations in pMTG at an early time point, and 

slightly later disruption for strong associations in ATL. Chapter 3 further contrasted the CSC 

framework with the dual hub view, which alternatively proposes that (i) ATL and pMTG (plus 

angular gyrus; AG) represent different types of semantic information – with taxonomic links in 

ATL (e.g., DOG and RAT) and thematic relationships in pMTG/AG (e.g., DOG and BONE). 

According to the CSC framework, the functional division between these brain regions is better 

characterised by automatic/coherent retrieval in ATL/AG and more controlled retrieval in pMTG. 

Results indicated that ATL, pMTG and AG all responded to both taxonomic and thematic 

relationships; thus, I did not observe empirical support for the dual hub view. There was greater 

engagement of ATL for strong associations and pMTG for weaker associations, consistent with the 

CSC view. These findings together suggest that pMTG may play a role in maintaining a semantic 

context and detecting situations in which controlled retrieval processes may need to be engaged. In 

contrast, ATL may support patterns of coherent semantic retrieval between highly-related concepts. 

Thus, the findings of this thesis help to elucidate the specific roles of these regions in the semantic 

network.  
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Chapter 1 - Literature Review 

Semantic memory refers to our conceptual knowledge about people, places, objects, faces, 

sounds and words (Patterson, Nestor & Rogers, 2007; Pulvermüller, 2013). It is both universal and 

personal, in that the information can be widely known in the population or more personal to the 

individual. For example, we know many things about bananas – they are yellow, curved, sweet, and 

have a waxy peel which is slippery if stepped on. We may also have more personal semantic 

knowledge about bananas, such as our friend being allergic to them (Renoult, Davidson, Palombo, 

Moscovitch & Levine, 2012; Binder & Desai, 2011). Some of these semantic features are strong 

and dominant for the concept, such as the colour yellow, while other features and associations may 

be a weaker part of the concept and consequently more difficult to retrieve, such as the slipperiness 

of banana skin (Lucas, 2000; Seidenberg, Waters, Sanders & Langer, 1984). 

Semantic cognition refers to the application of conceptual knowledge to drive appropriate 

thought and behaviour (Jefferies, 2013), and it is thought to require distinct neurocognitive 

components working together: (i) the store of semantic representations, which underpins our ability 

to assign meaning and relevance to everything we hear, see, touch, taste and remember and (ii) 

semantic control processes, which are thought to be essential to our ability to retrieve and act upon 

our knowledge in a relevant way (Corbett, Jefferies, Ehsan & Lambon Ralph, 2009). Within our 

semantic store, we have a wide range of features and associations for any given concept, and only a 

subset of this information will be relevant for the current situation or task. If we see a banana peel 

on the ground, only the peel’s slippery nature is appropriate to the situation before us. However, if 

we are cooking for our previously mentioned friend, the appropriate thing to recall about bananas 

would be their allergy to them. The selection of non-dominant aspects of knowledge to suit the 

context is thought to require semantic control. In some cases, knowledge that is relevant to the task 

at hand can be retrieved in a relatively automatic, cue-driven (bottom-up) way, and is seemingly 

effortless: this type of semantic retrieval supports access to dominant aspects of concepts (e.g., 

bananas are yellow). Other times the appropriate information is not so readily available: under 

some circumstances, spreading activation must be ‘shaped’ to focus on unusual connections, or a 
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more strategic “search” of memory is needed, increasing the semantic control demands (Badre & 

Wagner, 2007; Binder, 2016). 

This thesis aims to elucidate the components of semantic cognition – in particular, their 

contribution to more automatic and controlled semantic retrieval – using convergent neuroscientific 

techniques, namely magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS). 

MEG measures magnetic fields outside the skull induced by electrical currents in the brain, while 

TMS involves applying strong but brief magnetic pulses to the scalp to interfere with the 

functioning of the underlying cortical area. The majority of previous studies investigating semantic 

cognition have used functional magnetic resonance imaging (fMRI), which can reveal the network 

of brain regions active in a task; however, the BOLD (blood oxygenation level dependent) 

response, which is used as a marker for neural activity in fMRI investigations, has low temporal 

resolution (since blood flow changes happen over a period of several seconds). This means that 

transient effects may be missed and the technique is not ideal for identifying how sites within the 

semantic network are recruited over time, in the service of a task. MEG can address this limitation, 

as it allows us to trace the time course of the neural activation (in the order of milliseconds) and to 

make inferences about the temporal recruitment of areas implicated in the semantic control 

network. As such, MEG provides a unique opportunity to answer questions about when as well as 

where semantic cognition takes place, though this method has other drawbacks, such as lower 

spatial resolution, as well as difficulty resolving sources further away from the cortical surface 

(Hansen, Kringelbach & Salmelin, 2010).  

Additionally, both MEG and fMRI are correlational methods and cannot test causal 

predictions from theoretical models: the modulation of signal strength by task conditions in 

imaging investigations does not conclusively show that these brain regions make a necessary 

contribution to the task. Causal predictions can be tested against neuropsychological data from 

patients with focal brain damage, though such patients are rare, and may not have damage in 

regions appropriate to experimental hypotheses. TMS allows us to test causal predictions in healthy 

participants in a more precise fashion, as TMS pulses create a temporary focal “lesion” (with a 

spatial resolution of a few millimetres). TMS can also be used to examine causal contributions to a 
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task over time, if disruptive pulses are applied at different time points (Walsh & Coway, 2000; 

Sliwinska, Vitello & Devlin, 2014). This method is called chronometric TMS (cTMS) and has been 

used to reveal the points in time when brain regions are critically involved in aspects of cognition, 

complementing the inferences that can be drawn from MEG studies. In an online paradigm, each 

TMS pulse has an effect lasting 10-30ms, and cTMS is thought to have a temporal specificity of 

~10-20ms (Walsh & Coway, 2000). This means that we can assess the recruitment and necessity of 

an area with great temporal specificity. 

This literature review provides an overview of studies examining the neural basis of 

semantic cognition, with a focus on how semantic memory is represented in the brain and the 

regions supporting semantic control processes. The review outlines key findings from 

neuropsychology, fMRI, MEG and TMS. Semantic representations that capture the meanings of 

words and objects are thought to draw on both modality-specific regions and heteromodal regions 

of cortex, with the latter areas potentially acting as a representational hub or hubs. A hub draws 

together information from different sensory-motor systems to form an amodal conceptual 

representation, recruited across different tasks and modalities of input (Patterson, Nestor & Rogers, 

2007; Binder, 2016). I discuss the critical role of the anterior temporal lobes (ATL) in this function. 

Next, to elucidate the brain networks crucial for more automatic and controlled forms of semantic 

retrieval, studies of control-demanding semantic tasks will be discussed. For example, within 

semantic priming paradigms, automatic spreading activation may be sufficient to uncover the link 

between strongly-linked prime and target words (such as pear-apple), but to establish a link 

between less strongly related words (such as worm-apple), controlled retrieval is necessary (Gold et 

al., 2006; Badre & Wagner, 2007; Binder, 2016). The approach taken in this thesis will be 

grounded in and motivated by this work. 

 

Semantic representation 

There is considerable debate about how conceptual knowledge about objects, people, 

sounds and words is represented in the brain. Different theoretical perspectives advocate different 
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views about whether there are amodal semantic representations, and the degree to which 

knowledge emerges directly from distributed sensory-motor processes (Meteyard, Cuadrado, 

Bahrami & Vigliocco, 2012). The “embodied” view is based on the perspective that our knowledge 

is a sum of our experiences; we learn by building associations. By this view, the conceptual 

representation of banana may be supported by synaptic connections between cell assemblies 

representing the colour yellow and its sweet taste. The most influential early model of a distributed 

semantic system is arguably Allport (1985), who proposed that any object’s semantic 

representation is located in a distributed, neural pattern of activation. Pulvermüller (1999; 2001) 

similarly proposed a system grounded in Hebbian learning, where different specialised cortical 

areas act together to achieve a representation of word meaning. For example, words tightly tied to 

distinct areas of the body (kick-leg) have been found to produce activity that overlaps with motor 

or premotor areas for the associated limb/body part (Hauk, Johnsrude & Pulvermüller, 2004), even 

in the case of idioms (Boulenger, Hauk & Pulvermüller, 2009). Intentional motor actions can affect 

the semantic processing of words involving a motor component, suggesting comprehension and 

motor execution depend on the same underlying neural population (Rueschemeyer et al., 2010). 

Furthemore, how an object is used can influence semantic representation; words describing objects 

that have a movement specifically tied to function elicit greater activation of sensimotor areas than 

objects that do not (pen and fan respectively; Rueschemeyer et al., 2009). Similarly, action areas 

(left inferior parietal lobule) show greater activity when action features of a word are relevant to the 

task (van Dam et al., 2012). More recently, however, there has been increasing consensus that 

distributed aspects of knowledge may be integrated within conceptual “hubs” (Damasio, 1989; 

Patterson, Nestor & Rogers, 2007). Despite the importance of sensorimotor areas in semantic 

cognition, it is not fully established how different aspects of knowledge encoded in these unimodal 

regions interact. For example, in Hauk et al. (2004), the words tied to specific areas of the body 

(kick-leg) produce activity in cortical area corresponding to the associated limb/body part, 

requiring a link between visual and motor cortex. This involves matching the visual symbolic input 

(i.e. the word ‘kick’) in visual cortex with corresponding body part areas (i.e. the leg) in motor 

cortex. There has been debate about how type of effect occurs – many researchers have argued that 

distant primary cortices do not link strongly and directly to one another, and therefore these long-



14 
 

range connections might recruit multimodal areas of cortex known as convergence zones or “hubs” 

in a relay-like system, bridging modality-specific areas (Damasio, Grabowski, Tranel, Hichwa & 

Damasio, 1996; Binder & Desai, 2011; Pulvermüller, 2013). Some accounts (e.g., Patterson et al., 

2007) have focused on the role of one specific region in the integration of different types of 

information to form more abstract concepts (namely, the anterior temporal lobes), while other 

researchers have discussed the possibility that information convergence might occur in multiple 

brain regions, including the angular gyrus and the posterior cingulate (Binder & Desai, 2011; 

Pulvermüller, 2013).  

The anterior temporal lobes (ATL) in particular are thought to provide an important 

convergence zone for the formation of abstract concepts, while some of the other potential 

convergence zones are implicated in cognitive integration beyond the semantic domain 

(Humphreys & Lambon Ralph, 2014; Humphreys et al., 2015). Historically the ATLs were under-

sampled in imaging methods due to magnetic susceptibility artefacts in fMRI, and it is only in 

relatively recent years that modern neuroimaging techniques have been able to successfully image 

the region (Lambon Ralph, Jefferies, Patterson & Rogers, 2017). Due to this development, the 

ATLs are increasingly recognised as important for semantic cognition, even within theories that do 

not interpret its role as an amodal hub. Some accounts emphasise its role in combinatorial 

processes, as ATL activity has been found to be greater for combinations of adjectives and nouns. 

Adjective-noun combinations increase the specificity of an item (e.g. boat vs. red boat) (Clarke, 

Taylor & Tyler, 2011; Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015). Another view 

of the ATL is that it is important for abstraction and for emotional and social concepts (Olson et al., 

2013). Abstract words are not strong grounded in sensory or motor experiences but may draw more 

strongly on emotional features (Kousta et al., 2011), and emotion is as much a modality of 

experience as sensorimotor processing (Binder & Desai, 2011). ATL may be strongly influenced 

by social and emotional content represented in ventromedial prefrontal regions and connected to 

the ATL via the uncinate fasciculus (Lambon Ralph et al., 2017).  

The first proposal of the ATL as an bilateral amodal semantic hub was in response to 

neuropsychological data from semantic dementia patients (with lesions centred on anterior ventral 
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and polar temporal regions), who showed conceptual deficits across all modalities (this will be 

discussed in greater detail in the section the Hub and spoke model below). More recently it has 

been suggested that the ATL has a graded functional specialisation, with the different subregions 

reflecting their relationship with the rest of the network in terms of functional connectivity. Major 

white-matter fasiculi with partially overlapping termination points converge in in ATL, 

underpinning this graded specialisation (Lambon Ralph et al., 2017). This is based on the idea that 

subregions of the ATL contribute to all semantic processing, but slightly more to tasks involving 

the modality-specific cortex of highest anatomical proximity to them; i.e. medial ATL responds 

more to visual concepts due to its increased connectivity to this region, and temporal pole 

contributes more to social concepts (in line with its greater connections to areas supporting affect). 

At the same time, unlike other subregions of the ATL, ventrolateral ATL is highly engaged in 

semantic tasks irrespective of input modality, suggesting this as the truly amodal subregion of the 

area (Lambon Ralph et al., 2017). 

 

The Hub-and-spokes model of semantic cognition 

The hub and spoke model (Patterson, Nestor & Rogers, 2007) suggests that both sensory-

motor areas (the “spokes”) and a convergence zone in the ATL (the “hub”) are crucial for the 

representation of semantic knowledge. The hub and spoke model is shown in Figure 1.1, and 

contrasted with a “distributed-only” view in which direct connections between regions capturing 

embodied aspects of knowledge are the basis for concepts. The ATL hub is argued to play a crucial 

role in semantic representation in several ways: (i) this region may allow translation between 

different inputs and outputs, for example, understanding the meaning of a written word may require 

connections between orthographic processes and the ATL hub, since the orthographic form of a 

word has an arbitrary relationship to its meaning. The same conceptual information can be accessed 

from objects and environmental sounds. (ii) The ATL hub may be critical to our capacity to 

understand the semantic links between items that do not share surface features in any given 

modality: for example, corgi and fox may share more visual characteristics than corgi and 

Dalmatian, yet we can readily understand the categorical similarity of the two types of dog 
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(Lambon Ralph, Sage, Jones & Mayberry, 2010). This might be possible because corgi and 

Dalmatian have greater similarity across the full range of features and associations beyond vision, 

and the ATL is able to extract these high-dimensional similarities.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Conceptual illustration of how distributed semantics differs from the hub-and-spokes 

view; taken from Patterson, Nestor & Rogers, 2007 (page 977).  

 

 The primary evidence for the hub and spoke model was provided by studies of patients 

with Semantic Dementia (SD). These individuals show a remarkably pure semantic deficit. The 

symptoms of SD present themselves as a degradation of semantic knowledge while non-verbal 

reasoning and performance on visuo-spatial tasks remain intact (Hodges, Patterson, Oxbury & 

Funnell, 1992). The disease is associated with bilateral ATL atrophy, which correlates with 

performance on semantic tasks (Mummery et al., 2000; Mion et al., 2010). Semantic dementia 

patients have a high level of consistency on semantic tasks, both across tasks and for items tested 

with different input modalities, and they show little benefit of cueing (Bozeat, Lambon Ralph, 

Patterson, Garrard & Hodges, 2000; Jefferies, Baker, Doran & Lambon Ralph, 2007). This is 
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consistent with the notion that central semantic representations within the ATL are degraded in 

patients with SD. 

More recently, studies of healthy participants have provided converging evidence for the 

contribution of the ATL to semantic processing. This work is important because the atrophy in SD 

progressively extends beyond the ATL to more posterior temporal and inferior frontal areas 

(Martin, 2007), and it is difficult to rule out the contribution of abnormalities in these regions to the 

behavioural profile in these patients. However, fMRI does not always reveal a contribution of ATL 

to semantic cognition in healthy individuals, and this has contributed to controversy about the brain 

regions that store semantic information (with some researchers arguing that posterior temporal 

regions provide the key site for conceptual representation; Martin, 2007). It is increasingly 

recognised that magnetic susceptibility artefacts in fMRI studies produce signal loss and distortion 

in the ventral ATL, and therefore this method may not always reveal responses in this region 

during semantic tasks. Devlin et al. (2000) examined activation to the same semantic task using 

both fMRI and positron emission tomography (PET) (since this method is unaffected by magnetic 

susceptibility artefacts), to see if any differences emerged from the two different techniques. PET 

showed additional activation not found using fMRI in anteromedial temporal pole. Similarly, a 

meta-analysis of 164 functional neuroimaging studies (Visser, Jefferies & Lambon Ralph, 2010), 

found that one of the key factors influencing whether ATL activation was found, was the use of 

PET vs. fMRI. In contrast, task or stimuli type were not influencing factors in the likelihood of 

significant ATL activation in semantic tasks, in line with the proposal that this site is a ‘hub’ 

supporting central semantic representations. Convergent evidence for the engagement of ATL in 

synonym judgement was obtained from distortion-corrected fMRI, semantic dementia and TMS 

(Binney, Embleton, Jefferies, Parker & Lambon Ralph, 2010). The role of this region has since 

been supported by another fMRI meta-analysis which concluded that ATL activation in semantic 

processing is bilateral, but with stronger responses in left ATL for written word stimuli (Rice, 

Lambon Ralph & Hoffman, 2015).  

Support for a causal contribution of the ATL to conceptual processing is provided by TMS 

studies of healthy participants, as inhibitory TMS creates a temporary focal “lesion” in the 



18 
 

underlying brain area (with a spatial resolution of a few millimetres) (Walsh & Cowey, 2000). 

TMS to ATL slows naming, synonym judgements and semantic matching tasks involving words 

and pictures, with similar results for TMS to left or right ATL (Lambon Ralph, Pobric & Jefferies, 

2009; Pobric et al., 2007; 2010a; 2010b; 2009). These studies are consistent with the proposal that 

the ATL provides a “semantic hub” – i.e., a point of convergence across different modality-specific 

inputs, to allow the formation of amodal semantic representations (Patterson et al., 2007). A recent 

chronometric TMS study found that the critical time point for ATL involvement in semantic 

processing was ~400ms post stimulus onset (Jackson, Lambon Ralph & Pobric; 2015), which fits 

well with M/EEG studies that have repeatedly found a negative potential around 250-550ms called 

the N400 (discussed later in this chapter). Indeed the authors postulate that ATL could be one of 

the neural generators of the N400.  

While these methods converge to implicate ATL as a semantic hub, the hub and spoke 

model also recognises the importance of the spokes (Patterson et al., 2007). Spokes in this account 

are neural populations specialised for certain kinds of processing (colour, shape, motion, language, 

action etc.). Like the embodied approach, this account stipulates that these modality-specific 

representations are necessary for conceptual knowledge, but differs in that it suggests that the ATL 

also plays an essential role in their integration and connection. Evidence for this viewpoint is also 

provided by TMS: Pobric, Jefferies & Lambon Ralph (2010a) showed that inhibitory stimulation to 

the hand praxis area in inferior parietal cortex produced a specific deficit in naming manipulable 

tools, while stimulation to the ATL hub elicited disruption across all semantic categories. 

 

How many semantic hubs? 

The work reviewed above has focussed on the role of the ATL as a conceptual hub 

bringing together distributed sensory and motor knowledge to form amodal semantic 

representations. However, there is considerable debate about whether the ATL uniquely serves this 

function, or if there are multiple hubs that can act as convergence zones across modalities (Kiefer 

& Pulvermüller, 2012; Pulvermüller, 2013; Schwartz et al. 2011). If there are multiple hubs 

contributing to conceptual representation, these may serve different functions since they are likely 
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to preferentially receive different aspects of knowledge. It has been suggested that taxonomic and 

thematic associations depend on different cortical areas, with thematic associations (representations 

of relations based items being found or used together – e.g., banana-slip) grounded in the temporo-

parietal junction (TPJ), while taxonomic associations (similarity based on shared physical features - 

i.e., banana-tomato) are extracted in the ATL (Schwartz et al., 2011). This viewpoint is broadly 

consistent with the idea that the ATL lies at the end of the ventral visual stream, allowing it to 

integrate concrete features of objects (which are important for conceptual similarity – e.g., a banana 

is a fruit that is curved and yellow). In contrast, the TPJ may be better placed to integrate 

information about how objects are used and the contexts in which they are found. 

Schwartz et al. (2011) analysed the type of errors produced by patients with patients with 

aphasia in relation to lesion location (voxel-based lesion-symptom mapping), and found that 

thematic errors were associated with TPJ lesions, while taxonomic errors were associated with 

ATL lesions. Neuroimaging studies have started to investigate the relationship between the type of 

conceptual link required by specific trials or semantic tasks and the activation of TPJ and ATL 

(Sass et al., 2009; de Zubricay et al., 2013;  Kalénine et al., 2009), to assess the possibility that TPJ 

(particularly angular gyrus and posterior middle temporal gyrus) provides a second semantic hub 

supplying relations and situational similarities for event processing, in addition to the ATL 

supporting knowledge of featural overlap for object classification. 

 

Semantic control 

The section above focussed on the representation of semantic information; however a 

component process view of semantic cognition suggests that representations on their own are not 

sufficient to explain conceptually-driven behaviours and thoughts. We also need a mechanism to 

explain how the semantic system can produce flexible behaviour depending on the context. While, 

in some cases, automatic spreading activation to dominant features and associations would be 

sufficient for successful semantic processing (e.g., linking the words salt and pepper), other 

situations might require the recruitment of additional processes that control semantic retrieval 

(Badre & Wagner, 2007; Binder, 2016). An example would be identifying the link between salt and 
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grain, when dominant links like ‘pepper’ are irrelevant (Whitney et al., 2011). Weaker associations 

may require more semantic control in order to focus retrieval on relevant non-dominant features of 

the concept (Badre et al., 2005; Jefferies, 2013). Semantic control may also be required to process 

ambiguous words with multiple meanings, such as bank, which refers to both a place of monetary 

exchange (dominant meaning) and the side of a river (subordinate meaning). If the context is 

unclear, this creates competition between possible interpretations and it is necessary to inhibit non-

relevant yet dominant associations (Vitello, Warren, Devlin & Rodd, 2014; Vitello & Rodd, 2015).  

Therefore, semantic control is thought to modulate semantic activation such that it is 

appropriate to the task or context (Wagner, Pare-Blagoev, Clark & Poldrack, 2001; Badre & 

Wagner, 2007; Badre et al., 2005; Ye & Zhou, 2009). This process involves selecting between 

competing alternatives held in working memory, inhibiting non-relevant semantic activation, and 

controlled retrieval of knowledge that cannot be generated through automatic, spreading activation. 

Furthermore, semantic control may be required when we drive semantic retrieval from goals in a 

top-down fashion, as well as for switching or updating the semantic focus when the task changes 

(Whitney, Kirk, O'Sullivan, Lambon Ralph & Jefferies, 2011; Moss, Abdallah, Fletcher, Bright, 

Pilgrim, Acres & Tyler, 2005).  

Neuropsychological studies comparing patients with multimodal semantic deficits 

following semantic dementia (SD) and stroke (semantic aphasia; SA) indicate that semantic control 

is dissociable from semantic representations within the ATL (Jefferies & Lambon Ralph, 2006). 

SA patients have damage to left inferior frontal and temporoparietal areas, and show difficulty with 

tasks requiring semantic control (Noonan, Jefferies, Corbett & Lambon Ralph, 2010). While SA 

and SD patients fail the same range of word and picture tasks, SD patients have a high level of 

consistency in the items they can comprehend across tasks and input modalities, and show little to 

no benefit of cueing, while SA patients perform more poorly on difficult association-matching 

tasks, relative to simple word-picture matching tasks, and benefit greatly from cues (Corbett, 

Jefferies & Lambon Ralph, 2011; Jefferies & Lambon Ralph; Jefferies, Patterson & Lambon Ralph, 

2007; Noonan, Jefferies, Corbett & Lambon Ralph, 2010). In picture naming, SD patients 

predominantly make superordinate and high-frequency co-ordinate errors (such as cat-animal, or 
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cat-dog), while SA patients produce more associative errors outside the relevant category (such as 

squirrel-nuts), suggesting they retain associations that they fail to supress when they are irrelevant 

to the task (Jefferies & Lambon Ralph; 2006). SA patients also show difficulty in inhibiting 

strongly associated distractors and accessing less dominant associations between items (Jefferies, 

Baker, Doran & Lambon Ralph, 2007; Noonan, Jefferies, Corbett & Lambon Ralph, 2010). Thus, 

central semantic representations may be degrading in SD while SA cases retain a lot of conceptual 

information that they fail to retrieve appropriately. Similarly, patients with LIFG lesions have 

difficulty on semantic tasks where there is strong competition between response options 

(Thompson-Schill, Swick, Farah, D’Esposito, Kan & Knight, 1998). 

 

Semantic control in the brain 

Patients with SA demonstrate that semantic control may draw on different brain areas from 

those that support the conceptual store (i.e., ATL is largely preserved in these patients); however, 

the large frontotemporal lesions in these cases do not permit strong inferences about the crucial 

brain regions for semantic control. In functional neuroimaging studies, the most consistently 

implicated region in diverse manipulations of semantic control demands is the left inferior frontal 

gyrus (LIFG; see Noonan et al., 2013 for a meta-analysis), and this brain region is typically 

damaged in SA (Jefferies & Lambon Ralph; 2006; Jefferies, 2013). The response in LIFG increases 

when participants have to select targets in the face of strong distracters, retrieve weak associations 

or process words with ambiguous meanings (Vitello et al., 2014; Thompson-Schill, D’Esposito, 

Aguirre & Farah, 1997; Zempleni, Renken, Hoeks, Hoogduin & Stowe, 2007; Wagner, Maril, 

Bjork & Schacter, 2001; Bedny, McGill & Thompson-Schill, 2008). LIFG responds semantic 

information across word and picture tasks (Wagner, Desmond, Demb, Glover & Gabrieli, 1997; 

Krieger-Redwood, Teige, Davey, Hymers & Jefferies, 2015), consistent with the multimodal 

impairment of semantic control seen in patients with SA (Corbett et al., 2009).  

There may be functional subdivisions within LIFG. First, studies show that anterior LIFG 

(pars orbitalis) is relatively specialised for semantic processing, while more posterior LIFG (pars 

opercularis) contributes to controlled phonological and semantic processing (Gold & Buckner, 
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2002; Gold, Balota, Kirchhoff & Buckner, 2005; Poldrack et al., 1999). This anterior-posterior 

distinction between semantics and phonology has also been demonstrated using TMS (Gouch, 

Nobre & Devlin, 2005; Devlin, Matthews & Rushworth, 2003). Secondly, it has been suggested 

that LIFG has sub-regions specialised for specific aspects of semantic control. Wagner et al. (2001) 

found increased activity in anterior parts of LIFG to the controlled retrieval of weak associations, 

while Thompson-Schill, D’Esposito, Aguirre & Farah (1997) found that dorsal and posterior LIFG 

activity was sensitive to selection demands – and this response fell within the area activated by 

lexical, phonological and semantic processing (Poldrack et al., 1999). While these responses were 

across studies, Badre et al. (2005) demonstrated a within-study dissociation between 

anterior/ventral and posterior/dorsal aspects of LIFG, using task contrasts that loaded on 

“controlled retrieval” (i.e., the recovery of weaker associations) and “selection” (i.e., overcoming 

competition from strong distractors). A related view emphasises the role of posterior LIFG in top-

down goal-driven selection processes (Wagner, Pare-Blagolev, Clark & Poldrack, 2001; Miller, 

2000). These top-down processes are involved in resolving interference from competing non-

relevant representations, thus driving task-appropriate selection (Cardillo, Aydelott, Matthews & 

Devlin, 2004). This study also found that related semantic cues elicited little LIFG engagement 

compared to incongruent cues, suggesting that when automatic spreading activation is sufficient for 

retrieval, recruitment of top-down processes from LIFG may not be necessary(see also Gold et al., 

2006). 

 

Beyond LIFG: A distributed network for semantic control 

SA patients have damage to left inferior frontal and/or temporoparietal cortex, with similar 

behavioural results following lesions in these different areas (Berthier, 2001; Jefferies & Lambon 

Ralph, 2006; Noonan, Jefferies, Corbett & Lambon Ralph, 2010). While the role of LIFG has been 

the focus of the neuroimaging literature, these patient studies suggest an involvement of areas 

beyond LIFG in semantic control, consistent with current perspectives in cognitive neuroscience 

that link aspects of cognition to distributed cortical networks. A recent meta-analysis contrasting 

semantic tasks with high > low executive requirements found that, alongside LIFG, right IFG, 
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posterior middle and inferior temporal gyrus (pMTG; pITG) and dorsal angular gyrus were 

consistently activated by this comparison (Noonan, Jefferies, Visser & Lambon Ralph, 2013; see 

also Whitney, Jefferies & Kircher, 2011; Vitello, Warren, Devlin & Rodd, 2014). In fact, many of 

the studies reporting a response in LIFG to semantic control manipulations have also seen similar 

activity in posterior temporal and/or inferior parietal areas, although they have not always 

highlighted this fact (Thompson-Schill, D'Esposito, Aguirre, & Farah, 1997; Wagner, Maril, Bjork 

& Schacter, 2001; Bedny, McGill, & Thompson-Schill, 2008). Further evidence is provided by 

TMS: studies have shown comparable effects of inhibitory stimulation to LIFG and pMTG, with no 

effect of TMS on easy semantic judgements based on strong associations, but disruption of harder 

semantic judgements based on weak associations and feature matching when global semantic 

similarity must be disregarded (Whitney, Kirk, O'Sullivan, Lambon Ralph & Jefferies, 2011; 2012; 

see also Davey et al., 2015 and Hoffman et al., 2010). Thus, the brain regions supporting semantic 

control appear to be distributed, and extend to areas beyond left prefrontal cortex.  

Semantic vs. executive control in the brain 

The regions that support semantic control overlap with brain areas that contribute to 

executive control more widely (e.g., Davey et al., 2016; Noonan et al., 2013). Duncan and Owen 

(2000) showed that a similar network was recruited for a wide variety of executively-demanding 

tasks (see Figure 1.2, taken from Duncan & Owen, 2000, page 477). Thus, inferior frontal sulcus 

(IFS), pre-supplementary motor area on the medial surface, and inferior parietal sulcus (IPS) may 

work together as a “multiple-demand network”, which is engaged by high executive load across 

domains (including the semantic domain, see Figure 1.3, taken from Duncan, 2010, page 173). 
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Figure 1.2: Showing prefrontal activations from six experiments; auditory discrimination (green), 

visual divided attention (blue), self-paced response production (yellow), task switching (orange), 

spatial problem solving (pink), and semantic processing of words (red). Figure taken from Duncan 

& Owen (2000), page 477. 
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Figure 1.3: Brain regions in the multiple-demand network recruited by diverse executive tasks. 

Left hemisphere results are projected onto the right hemisphere surface. Taken from Duncan, 2010, 

page 173. 

Posterior and dorsal aspects of LIFG have been implicated in phonological as well as 

semantic processing (Wheat, Cornelissen, Frost & Hansen, 2010; Poldrack et al., 1999; Snyder, 

Feigenson & Thompson-Schill, 2007; Hagoort, 2005), consistent with the proposal that these 

regions contribute to language processing across domains. LIFG also supports syntax (Friederici, 

Ruschemeyer, Hahne & Fiedbach, 2003; Dapretto & Bookheimer, 1999; Moro, Tettamanti, Perani, 

Donati, Cappa & Fazio, 2001) and responds to pitch in languages where pitch carries meaning for 

the interpretation, in comparison to languages where it does not (Gandour, Wong & Hutchins, 

1998; Gandor, Wong, Hsieh, Weinzapfel, Van Lancker & Hutchins, 2000; Klei, Zatorre, Milner & 

Zhao, 2001). Posterior and dorsal IFG bordering IFS shows a stronger response in people with 

higher general fluid intelligence in response to greater attentional demands (see Figure 1.4; Gray, 

Chabris & Braver, 2003), suggesting that this region overlaps with or lies adjacent to the multiple-

demand executive network.  

 

 

 



26 
 

 

 

 

Figure 1.4:  Regions in which general fluid intelligence predicted trials with high attentional 

demands, using a priori (red) and whole-brain (yellow) search criteria, in the following order; left 

lateral, left medial, right medial, right lateral cortical surface. Left and right cerebellums are shown 

under their respective cortical hemispheres. Taken from Gray, Chabris & Beaver, 2003 (p 318) 

 

LIFG has extensive connectivity throughout the brain, with functionally specialised 

subdivisions of connectivity (Croxson et al., 2005). Perhaps most notably for semantic cognition, 

the more anterior parts of left PFC (BA47) show greatest connectivity to ATL through the uncinate 

fasciculus (Croxson et al., 2005; Petrides & Pandaya, 2002; Catani, Howard, Pajevic & Jones, 

2002), which fits well with the hypothesised graded functional specialisation of LIFG with more 

posterior parts being specialised for phonology, and anterior parts being specialised for semantic 

processing (Gold, Balota, Kirchhoff & Buckner, 2005; Bodke, Tagamets, Friedman & Horwitz, 

2001). Anterior IFG and ATL also both show strong connectivity to pMTG, consistent with the 

view that this brain region participates in a distributed network for semantic control (Davey et al., 

2016). 

Shalom & Poeppel (2008) postulate that LIFG is involved in the synthesis of aspects of 

language (creating combinations of stored representations), and that more dorsal areas are involved 

in phonological processing, middle areas in morpho-syntactic processing, and ventral/anterior areas 

in semantic processing. Haagort (2005) similarly proposes that LIFG supports binding processes, 

with a similar subdivision of functions: phonological processing in more posterior-dorsal areas 

(~BA44), syntactic processing in mid-LIFG (~BA45), and semantic processing in anterior regions 

(~BA47). According to Haagort, this binding (or unification) involves the integration of lexically-

retrieved information into a representation of multi-word utterances, i.e. sentences or context. 

While an extension of these theories may be necessary to account for multimodal semantic control 

(beyond language to encompass non-verbal aspects of semantic cognition), these accounts all 
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converge on the idea that anterior LIFG plays a specific role in semantic control, while posterior 

LIFG contributes to other aspects of language processing and executive control more widely. 

Moreover, anterior-to-posterior regions of IFG show differential connectivity and the areas that 

they are connected to form large-scale functional networks that support different aspects of 

controlled behaviour – with the semantic control network including pMTG and dorsal AG, while 

the executive control network includes IPS and potentially more ventral posterior temporal lobe 

(pITG). 

Recent work has considered how these networks may interact in the service of memory 

tasks. The default mode network shows activity that is correlated through time with memory stores 

including the hippocampus and the ATL; however, the activity of these systems is anti-correlated 

with that of the dorsal attention system (Vincent et al., 2006; Vincent, Kahn, Snyder, Raichle & 

Buckner, 2008): i.e. when activity increases in one system, the other will decrease (Fox et al., 

2005). The dorsal attention system supports externally directed cognition; shifting spatial attention, 

hand-eye-coordination, and searching/detection of external targets (Vincent et al., 2008), and it 

spatially overlaps with the multiple-demand network which responds to executively-demanding 

task states (Duncan, 2010). In contrast, the default mode/memory system has been linked to 

internally directed cognition; thinking about the past and the future, conceiving the perspectives of 

others, and episodic memory (Buckner, Andrews-Hanna & Schacter, 2008). In light of these two 

networks’ anti-correlated activity, Vincent et al. (2008) postulated a third, executive network, 

which can direct activation between (and integrate information from) these two networks, as well 

as maintaining task objectives and supporting working memory. This network (the frontoparietal 

control system) is left lateralised, and includes anterior cingulate, lateral parietal and prefrontal 

cortex. It appears to overlap with areas implicated in semantic control by Noonan et al. (2013) and 

is spatially interposed between the two previously mentioned networks. By this view, semantic 

cognition is likely to involve the default mode network interacting with executive areas, potentially 

via the left-hemisphere network identified by Vincent et al. (2008; see also Davey et al., 2016).  
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Semantic vs. executive control summary: 

 As reviewed above, some areas implicated in the semantic control network overlap with 

the executive control network, perhaps most notably in posterior and dorsal aspects of LIFG. 

However, there are also regions in the semantic control network that do not overlap with the 

executive network. A recent meta-analysis by Noonan et al. (2013), contrasted executive and 

semantic control demands, and pMTG and anterior IFG were implicated to a greater extent in 

semantic-only control. These regions lie outside the multiple-demand network implicated in 

domain-general executive control. It is not surprising that semantic control mechanisms draw on 

similar neural resources as domain-general executive control, as demanding semantic tasks no 

doubt draw on executive processes (such as applying a goal to a task, or selection processes to deal 

with competition). However, some demands associated with challenging semantic judgements are 

to do with the structure of knowledge itself; if there is not a specific goal for retrieval, but rather, 

the high semantic control demands are due to difficulty integrating a concept into a context (as in 

the case of weakly related associations), pMTG shows an increased response. This highlights the 

importance of investigating this region and its contribution to semantic control (Gold et al., 2006; 

Davey et al., 2016). Recent work showed that the semantic control network (pMTG and anterior 

IFG) lies in between the domain-general executive system and the default mode network, a 

typically task-negative network implicated in coherent and automatic memory retrieval – both in 

terms of its location on the cortical surface and its pattern of connectivity at rest (Davey et al., 

2016). 

Temporally sensitive methods of exploring semantic cognition 

Normal speech has a rate of ~three to five words per second (normal reading proceeds at an 

even faster rate): consequently, matching, integration and comprehension operations must be 

carried out very quickly during language processing. Semantic cognition must also guide visual 

processing at rapid speeds (within 250ms of stimulus presentation) to facilitate object recognition 

(Clarke et al., 2011; 2012). Since semantic cognition involves the interaction of several large-scale 

cortical networks, neuroimaging methods with high temporal resolution, such as MEG or EEG, 
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may be very informative with respect to how dynamic processes support semantic cognition in the 

brain.  

Semantic priming 

Semantic priming methods are often used to examine the time-course of processes that 

support semantic retrieval. In semantic priming, a word such as pepper is processed more quickly 

when preceded by a related word, such as salt. The priming effect can be thought of as facilitated 

spreading activation through the semantic system (Binder, 2016), which speeds up semantic access 

from vision and increases the richness of semantic retrieval by pre-activating relevant features and 

associations. Semantic priming studies have examined different kinds of relationships between 

prime and target words. Taxonomic relationships are based on shared features of objects. In this 

way, dog and bear have a strong semantic relationship, as they share many features like “big teeth”, 

“furry” and “four legs”. Thematic relationships are based on strong associations between concepts 

that do not necessarily share any physical features; their relatedness is based on a purely associative 

link because the objects are often found or used together, i.e. dog and collar (Hutchison, 2003; 

Kalénine et al., 2012). Priming occurs for both thematically and taxonomically related words; for 

thematically related words, this reflects the frequency of co-occurrence, while for taxonomically 

related words, this is thought to reflect shared features of items within the same category (McRae 

& Boisvert, 1998; Hutchinson, 2003). 

It has been proposed that automatic priming is based on spreading activation between highly-linked 

words, and that this mechanism is distinct from strategic, effortful search for an association (Lucas, 

2000), underpinned by the application of situational constraints (i.e., top-down and bottom-up 

processing respectively). Automatic semantic priming is thought to reflect the structural 

organisation of the semantic network, while strategic search does not (Seidenberg, Waters, Sanders 

& Langer, 1984).  

However, it has been shown that this facilitation is mediated by many factors, such as the 

inter-stimulus interval (ISI) between the target and prime, the type of task utilised, and proportion 

of related trials (as compared with unrelated) (Neely, 1977; 1991). Firstly, the ISI can be short 

when no response is required to the prime, without affecting priming results, and priming 
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facilitation occurs at both long and short ISIs. Furthermore, when the ISI is 250ms or less, 

facilitatory priming effects remain similar to longer ISIs, but the negative priming yielded by 

unrelated/unexpected primes is greatly reduced. Shorter ISIs are also more automatic in nature; the 

participant is not given enough time to engage conscious attentional processes. Normally word 

naming or lexical decision tasks are utilised in priming experiments, and type of task has been 

shown to influence priming effects; using the same items, mediated priming (in which the target is 

related to the prime indirectly via a mediator) has been found in word naming but not lexical 

decision, while backward associative priming (which slows down processing of the target) has been 

found in lexical decision tasks, but not word naming. Interestingly, the priming is larger for low 

frequency targets in both task types. The proportion of related trials (as compared with unrelated) 

can affect amount of facilitation; typically an increased proportion of related trials increases the 

priming effect, though this is mainly true for long ISIs (Neely, 1977; 1991). In conclusion, the 

extent to which non-semantic tasks, including word naming and lexical decision are influenced by 

semantic information, in an automatic way, depends on a variety of experimental factors. 

 

Electromagnetism and Semantic Priming 

The neural correlates of priming have been reported as a decreased neural activity in 

response to a stimulus (Düzel, Richardson-Klavehn, Neufang, Schott, Scholz & Heinze, 2005; 

Kujala, Vartiainen, Laaksonen & Salmelin, 2012), and semantic priming occurs whether the 

stimulus is attended to or not (Relander, Rämä & Kujala,, 2013). On the other hand, semantically-

related (as compared with unrelated) word pairs can elicit stronger activation in areas known to be 

involved in semantic processing (Graves, Binder, Desai, Conant & Seidenberg, 2010; Mechelli, 

Josephs, Lambon Ralph, McClelland & Price, 2007; Binder, 2016). Thus, there are potentially two 

distinct neural consequences of priming: more efficient access to conceptual knowledge from 

inputs (reduced activation, for example in the visual-to-semantic pathway in the ventral visual 

stream), and richer semantic retrieval within the same time period (increased activation, for 

example, in the anterior temporal lobes).  
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Furthermore, while decreased neural activation is often seen in response to primed 

stimulus, increased coherence (greater neural synchrony between critical regions) may be critical to 

the behavioural effects seen in response to priming (Ghuman, Bar, Dobbins, & Schnyer, 2008). 

Prefrontal-temporal interactions have been shown to be stronger at stimulus onset for words that 

showed subsequent behavioural facilitation (Düzel et al., 2005), and greater neural synchrony 

between prefrontal and temporal areas was seen in response to repetition, accompanying the 

decreased neural response (see Figure 1.5) (Ghuman et al., 2008; p 8406). 

 

 

 

 

 

 

 

 

Figure 1.5: Peak synchrony between a single reference ROI and the entire brain relative to 

prestimulus baseline synchrony. Images on the left side of the figure are lateral views of the left 

hemisphere, and the images on the right side are ventral views. Taken from Ghuman et al., 2008; p 

8406. 

 

The causal role of prefrontal areas in priming effects was shown by Wig, Grafton, Demos 

& Kelley (2005), who found that left frontal TMS significantly reduced the behavioural facilitation 

that normally accompanies follows priming, and attenuated the reduced neural response following 

priming in semantic control regions – both LIFG and left pMTG (BA21/37). Thus, priming can be 

seen as reflecting an economical neural system, supported by spreading activation and/or top-down 

expectations increasing processing efficiency for a primed stimulus. The increase in synchrony 
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between prefrontal and temporal areas could reflect a preparation effect; priming could lead to 

‘setting up the system’, with prefrontal areas already communicating with temporal areas to 

retrieve and select situation- relevant information. This could also explain the speeded response in 

response to primed stimuli, as this would be an example of facilitated semantic retrieval, with low 

semantic control demands.  

 

The N400 and N400m 

In 1980 Kutas & Hillyard published EEG results indicating a difference in event related 

potentials (ERPs) to semantically unexpected and physically unexpected words. While physically 

unexpected stimuli elicited late positive potentials, semantically unexpected stimuli elicited late 

negative potentials between 250-550ms after stimulus presentation. This is referred to the N400 

effect (or N400m, when observed in MEG rather than EEG), and it has been found in a great 

number of studies on language, reading and semantics (Kutas & Hillyard, 1980; Lazslo & 

Federmeier, 2008; Van Petten, Coulson, Rubin, Plante & Parks, 1999). The N400 effect is larger 

when a semantic violation is present, as opposed to when not. When the stimulus fits the context 

(given by a preceding word or sentence – e.g., a strong prime), the effect is small, and thus the 

N400 might reflect controlled retrieval or integration demands (Nobre & McCarthy, 1995), though 

it is also interpreted as semantic access; i.e. a smaller N400 reflects facilitated access, which can 

also be seen in response to plausible but less common endings to sentences (Lau, Almeida, Hines & 

Poeppel, 2009). The N400 is smaller for within-category than between-category violations, i.e. for 

the sentence “they wanted to make the hotel look more like a tropical resort, so along the driveway 

they planted rows of ...” the word ‘pine’ elicits a smaller N400 than ‘tulip’ (Federmeier & Kutas, 

1999): although both words are unexpected, “pine” shares more features with “palm”. This 

suggests features of the expected sentence ending are pre-activated and unexpected endings that 

share more features with the expected ending elicit a smaller N400.  

Using intracranial electrodes, one of the sources an N400 effect has been localised to is the 

anterior medial temporal lobe (McCarthy, Nobre, Bentin & Spencer, 1995), and it has also been 

shown that semantic priming diminishes the amplitude of these field potentials (Nobre & 
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McCarthy, 1995), presumably because priming pre-activates relevant features. Furthermore, the 

N400 is not restricted to the language domain: a similar effect is sensitive to the congruence 

between linguistic context and visual stimuli (Hirschfeld, Zwitserlood & Dobel, 2011). This means 

that the N400 effect is robust across modalities, i.e. an expectation set up in the auditory/verbal 

modality elicits an effect to unexpected stimulus in visual form, which could indicate an amodal 

priming effect in this time window (Kutas & Federmeier, 2000).  

MEG and semantics 

Electroencephalography (EEG) records electrical potentials from the scalp, produced 

by the electrical currents produced by active populations of neurons. This gives EEG a much 

higher temporal resolution than hemodynamic methods such as the BOLD response in fMRI. 

However, due to the low conductivity of the skull (1/80–1/100 that of the brain), the electrical 

potentials measured by EEG are prone to distortion, leading to much lower spatial resolution 

(Hämäläinen & Hari, 2002). In contrast, the magnetic fields recorded by 

magnetoencephalography (MEG) pass through tissue largely undistorted, and thus this 

method has good spatial resolution - at least for regions near the brain’s surface, as well as 

excellent temporal (ms) resolution, though these measures depend on the cortical depth of 

the generating source, and the sampling rate used when collecting data respectively (Hari 

& Salmelin, 1997; Hansen, Kringelbach & Salmelin, 2010).  

We know a lot about the brain areas associated with semantic processing from fMRI and 

neuropsychology, but the temporal dynamics of semantic cognition within these areas is less well-

characterised. The N400 effect has been localised to bilateral ATL and LIFG irrespective of 

auditory or visual input domain using MEG (Marincovic et al., 2003). However, many MEG 

studies have reported effects earlier than this time window: a clear semantic response has been 

observed 250-300ms after stimulus presentation in ATL (Yvert, Perrone-Bertolotti, Baciu & David, 

2012) and middle superior temporal cortex bilaterally, (Vartiainen, Parviainen & Salmelin, 2009), 

and there is evidence that semantic information modulates visual processing even earlier 

(Pulvermuller et al., 2001; Clarke et al., 2012). Mismatches between linguistic and visual stimuli 

have been found to influence the response in occipital cortex at around 100-120 ms (Hirschfeld, 
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Zwitserlood & Dobel, 2011; Dikker & Pylkkänen, 2011). Explaining these effects from a purely 

bottom-up processing view is challenging, because the integration of linguistic and visual 

information is necessary for differences between these conditions. Thus, these effects may reflect 

the influence of top-down contextual signals on the processing on new visual inputs.  

The task being performed also modulates the semantic response in visual and semantic 

areas. In object naming, activity in ATL is increased when objects must be identified at a specific 

rather than a general level, and this response in ATL modulates early (120-220ms) activity in visual 

cortex when finer grained visual processing is needed to identify objects at a more specific level 

(Clarke, Taylor & Tyler, 2011). Ventral temporal cortex shows a sensitivity to shared semantic 

features (i.e. has eyes) by ~120ms, and to distinctive features (i.e. has a hump) by 200ms, 

demonstrating how the semantic system may first perform broad object identification based on 

shared features, followed by later differentiation of similar concepts (Clarke, Taylor, Devereux, 

Randall & Tyler, 2012). This result of early shared and later specific feature identification, is in 

line with predictions by the hub and spoke model about how the amodal store may underpin 

identification, considering that in order to successfully identify specific concepts such as ‘robin’, it 

is necessary to activate the distinctive features such as ‘red chest’, as opposed to general features of 

birds, such as ‘wings’ and ‘beak’ (Patterson, Nestor & Rogers, 2007). Similarly, words tightly tied 

to distinct areas of the body (kick-leg) have been found to produce early activity that overlaps with 

motor or premotor areas for the associated limb/body part (Hauk, Johnsrude & Pulvermüller, 

2004). Furthermore, in addition to the specificity of a word being an influencing factor, 

combinations of adjectives and nouns also enhanced ATL activity, suggesting that this region may 

also be important in combinatorial processes (Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 

2015). Combinations of words have richer and more specific meanings than individual words and 

the response in ATL may reflect these factors. 

Measures of oscillatory power and their relationship to memory 

 Traditionally, power increases are thought to reflect neural populations firing in synchrony 

(for example, in response to an input) and thus it might be assumed that power decreases, relative 

to a resting baseline, reflect reduced neural activation. However, the oscillatory synchronisation 
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and desynchronization framework suggests that decreases in total oscillatory power reflect active 

engagement of the neocortex in the encoding and retrieval of memories (Hanslmayr, Staresina & 

Bowman, 2016). These decreases in total power are thought to reflect an increase in neural activity 

that is not synchronised in time and/or phase (Hanslmayr et al., 2012). This proposal comes from 

principles from mathematical models of information theory, which show that increased synchrony 

reduces the richness of information that can be represented. When applied to the firing of neurons, 

information theory indicates that there is an inverse relationship between the richness of 

information encoded in the firing rate of a neural population and the synchrony of firing (illustrated 

in Figure 1.6, taken from Hanslmayr et al., 2012, page 8). Furthermore, reductions in power also 

correlate with an increased BOLD response in fMRI (Hanslmayr et al., 2011; Singh et al., 2002; 

Hall et al., 2014), in line with this hypothesis.  
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Figure 1.6: Illustration of the relationship between synchrony and informational content; A shows 

a simulation of firing rates of a neural population from no to high synchrony, B illustrates that 

power increases as a function of synchrony, C shows a graph of information in relation to firing 

rates of the different degrees of synchrony, and D plots the relationship between power and 

information for varying degrees of synchrony. Taken from Hanslmayr et al., 2012, p. 8. 

 

This theoretical framework has two important implications: first, it motivates examination 

of total oscillatory power in semantic cognition (which often shows task-related reductions relative 

to baseline), as well as evoked power increases following a stimulus. Secondly, the framework 

raises the possibility that these two dependent measures may be sensitive to different 

neurocognitive processes. Evoked power only includes the component of oscillatory power that is 

aligned both in time and phase, whereas total power includes signals that are not aligned in phase 

(i.e., both evoked and induced power changes). A strong evoked response to salient visual inputs 

soon after stimulus presentation would be expected, since their onset is likely to re-set oscillatory 
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activity such that it is aligned. In contrast, spreading semantic activation implies ongoing cognitive 

activity focussed on internal memory retrieval, and under these circumstances, phase-alignment 

may be less likely, potentially explaining why decreases in total power have been previously linked 

to memory processes (see Hanslmayr et al., 2016 for a review). Moreover, in semantic priming 

paradigms where one stimulus (prime) precedes and often predicts a second stimulus (target), it 

might be that the onset of the prime word is characterised by a strong evoked response, since this 

time point is characterised by a marked visual change. In contrast, the response to the target word 

might be seen more strongly in total power, since the onset of this second word reflects a less 

dramatic visual change but makes it possible to establish semantic retrieval processes that identify a 

connection between the two items. I would expect semantic priming to facilitate richer semantic 

retrieval (i.e., to make available more features and associations over a short duration, by pre-

activating some of these aspects of knowledge), and according to Hanslmayr et al.’s theory, this 

rich information would be reflected in desynchronised neural activity and consequently reductions 

in total oscillatory power.  

Summary 

The aim of this thesis was to elucidate the components of semantic cognition using MEG 

and TMS. Key theories of semantic representation were considered, with focus on the degree of 

embodiment. The anterior temporal lobes have been highlighted as a potential amodal semantic 

store, working in unison with an embodied, distributed representational system across the cortex. 

Evidence for a distributed semantic control network was also reviewed, particularly the 

contributions of left inferior frontal gyrus and posterior middle temporal gyrus to this function. 

These brain regions may act together in a left-lateralised network that lies between the default 

mode network and the executive network, both in terms of its position on the cortical surface and in 

its pattern of resting-state connectivity. Finally, I considered temporally sensitive measures of 

semantic cognition, and the effects of semantic priming: memory allows the use of contextual cues 

in a predictive manner, reducing controlled retrieval demands.  
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Key findings 

 Semantic representation is likely supported by ATL bilaterally as an amodal hub, 

interacting with a network of distributed interconnected nodes that is embodied in nature. 

 Semantic control is likely supported by a distributed network with main contributors being 

LIFG and pMTG 

 Priming has an effect on the response amplitude; it can both decrease and augment the 

neural response, as well as increase coherence (greater neural synchrony between critical 

regions) - and this increased synchrony is correlated with subsequent behavioural 

facilitation 

 The N400 effect is not only variable with ease of integration in context, but could also 

reflect the fact that we use context to predict possible future events. 

 MEG has found an effect of context on cortical response in visual cortex as early as 100ms, 

including a greater cortical response to words with stronger multimodal associations. 

 Findings indicate a distributed semantic network with nodes working together, interacting 

and exchanging information in a continuous manner. Some of these nodes have also been 

implicated in other cognitive functions, possibly reflecting the similarity in processes, and 

that not only the spatial nature of the network, but the temporal interplay between regions 

could be crucial in elucidating the dynamics of the network 
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Questions addressed in the thesis 

As reviewed above, the temporal recruitment of semantic processes is unclear, with 

conflicting evidence of both when and where semantic access is achieved, and there has been little 

empirical work investigating the temporal engagement of semantic control processes during 

retrieval and how different brain regions show dissociations through time that can linked to the 

difference between automatic and controlled semantic retrieval. Therefore, the primary aims of this 

thesis were: 

 To investigate how automatic and controlled semantic retrieval are reflected 

in oscillatory activity within the semantic network, recorded using MEG. 

The thesis focuses on the left temporal lobe and left angular gyrus, since 

these brain regions are strongly implicated in semantic processing, and yet 

controversial since alternative theoretical perspectives have made 

alternative predictions about the contribution of anterior temporal, posterior 

temporal and angular gyrus regions to semantic representation and 

controlled retrieval processes. 

 To determine the causal engagement of brain areas implicated in automatic 

and controlled semantic retrieval over time, using an online inhibitory TMS 

paradigm 

 To contrast the retrieval of taxonomic and thematic relationships in 

oscillatory activity in MEG 

In this way, the thesis work examines the evidence for a potential functional dissociation between 

ATL and pMTG. According to the Controlled Semantic Cognition framework (Lambon Ralph et 

al., 2017), these two temporal lobe sites have distinctive roles in semantic cognition. The ATL is 

argued to correspond to a semantic store; consequently when meaningful inputs are predicted by 

the structure of long-term conceptual knowledge in this store, facilitation of retrieval might be 

expected (giving rise to more automatic semantic processing). In contrast, pMTG is implicated in 

more controlled aspects of retrieval that might promote the accessibility of weaker associations that 
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are not dominant within the ATL representations, yet that are required for the current trial in a 

semantic task. This framework therefore sets up predictions for the response of ATL and pMTG 

over time in MEG experiments and for the effect of chronometric TMS applied to these sites. I 

contrast these predictions with an alternative theoretical perspective which argues that ATL and 

temporoparietal areas (pMTG and/or AG) maintain different aspects of our semantic knowledge 

(Schwartz et al., 2011). 

In Chapter 2, two experiments are presented, using MEG and online chronometric TMS 

(cTMS) to characterise the brain’s oscillatory response and the critical engagement of ATL and 

pMTG to judgements about semantic associations between a pair of words. The relationship 

between these words is either highly coherent with the structure of long-term conceptual 

knowledge (i.e., the words are strongly associated) or less coherent with the structure of knowledge 

acquired over the lifespan (i.e., weakly associated). The focus was on how the semantic 

relationship between two successive items changes retrieval, in order to explore the time-course of 

changes in oscillatory power that support relatively automatic and controlled retrieval states 

(Binder, 2016; Lucas, 2000; Gold et al., 2006). ATL and pMTG were stimulated using an 

inhibitory TMS paradigm at four time points, during the retrieval of strong (largely automatic) and 

weaker (more controlled) associations, allowing assessment of when these sites showed critical 

engagement. 

Chapter 3 contrasts predictions by the hub-and-spoke model (in which one semantic hub is 

proposed), with the view that ATL is one of two conceptual hubs, underpinning taxonomic or 

category-level knowledge, whereas the TPJ (including AG and pMTG) extracts event associations 

and thematic knowledge (Schwartz et al., 2011; de Zubicaray, Hansen & McMahon, 2013). This 

viewpoint is broadly consistent with the idea that the ATL lies at the end of the ventral visual 

stream, allowing it to integrate concrete features of objects (which are important for conceptual 

similarity – e.g., a bear is an animal that has fur and claws). In contrast, Schwartz et al. argue that 

the TPJ may be better placed to integrate information about how objects are used and the contexts 

in which they are found (e.g. bears are good at fishing and like to eat honey). However, an 

alternative organisational framework has linked AG in conjunction with ATL to relatively 
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automatic patterns of retrieval, while pMTG in conjunction with LIFG may support controlled 

aspects of retrieval (Humphreys & Lambon Ralph, 2014; Davey et al., 2015; Whitney et al., 2011; 

Noonan, et al., 2013; Badre et al., 2005). Chapter 3 investigated this issue by contrasting both 

taxonomic and thematic relationships, and strong and weak thematic relationships to explore the 

merits of both proposed frameworks. In addition to the regions examined in Chapter 2 (ATL and 

pMTG), I included AG, due to its relevance to the dual-hub theory. The task format was the same 

as for the MEG part of Chapter 2: characterising the brain’s oscillatory response to the presentation 

of written words that were preceded by taxonomically related words, strongly related thematic 

concepts, and weakly related thematic concepts. In both empirical chapter the terms “prime” and 

“target” are used to refer to the 1st and 2nd word respectively. Chapter 4 discusses results, 

conclusions and limitations of the thesis. 
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Chapter 2: Dynamic semantic cognition: Using 

magnetoencephalography and chronometric brain 

stimulation to examine the time-course of 

automatic and controlled semantic retrieval 

Abstract 

Semantic cognition depends on both (i) a store of concepts and ideas, which can identify 

dominant aspects of knowledge relatively automatically, and (ii) controlled retrieval processes that 

allow non-dominant but task-relevant aspects of this knowledge to be the focus of processing. 

While the spatial distribution of the semantic system is well documented, the time course of 

automatic and controlled semantic retrieval remains unclear. This study used 

magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation 

(cTMS) in separate experiments to examine the temporal dynamics of automatic and controlled 

semantic retrieval. In both experiments, participants made judgements about semantic relatedness 

to word targets preceded by a strongly or weakly related prime. MEG beamforming analysis 

revealed a functional dissociation within left temporal cortex: anterior temporal lobe (ATL), a key 

site for semantic representation, showed greater oscillatory response for strong than weak 

associations, while posterior middle temporal gyrus (pMTG), an area implicated in controlled 

semantic retrieval, showed the reverse pattern. This difference between conditions emerged at an 

early time-point in pMTG and was sustained throughout the analysis window, while the effect in 

ATL emerged more slowly following target onset. In the cTMS experiment, the effect of pulses at 

four time points (0-40ms; 125-165ms; 250-290ms; 450-490ms) was assessed, and demonstrated 

that stimulation at~150ms following a strong prime disrupted behaviour; this suggests a necessary 

role for ATL in relatively automatic semantic retrieval as a coherent pattern of conceptual 

activation is becoming established. In contrast, stimulation to pMTG at the earliest time point 

following a weak prime disrupted performance. This strikingly early effect of stimulation may be 

disruption of context brought from the prime, and may have disrupted the efficient engagement of 

semantic control when expectations from stable conceptual representations are violated by the input 

– i.e. a weakly related target. Together these studies provide converging evidence for a functional 

dissociation within the semantic domain in the temporal lobe, across both tasks and time. 
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Introduction 

Semantic cognition allows us to understand the meaning of our environment to drive 

appropriate thoughts and behaviour. It comprises several distinct yet interacting components 

(Jefferies, 2013; Jefferies & Lambon Ralph, 2006; Lambon Ralph, Jefferies, Patterson & Rogers, 

2017). Semantic representations capture the meanings of words and objects across contexts, 

allowing access stable conceptual knowledge from fragmentary inputs and generalisation across 

situations. However, the retrieval of specific aspects of our knowledge in a context dependent 

fashion requires control mechanisms that shape evolving retrieval towards semantic features, and 

away from dominant yet irrelevant associations. The Controlled Semantic Cognition framework 

suggests that while patterns of activation within the semantic store may be sufficient to uncover 

links between items that share multiple features or are frequently associated, such as pear-apple or 

tree-apple, engagement of control is required to recover non-dominant aspects of knowledge, such 

as worm-apple, since strong but currently-irrelevant associations (e.g., worm-soil) must be 

disregarded – and thus semantic activation must be ‘shaped’ to suit the demands of the task 

(Lambon Ralph, Jefferies, Patterson & Rogers, 2017; Gold et al., 2006). Although the spatial 

distribution of automatic and controlled elements of semantic processing are reasonably well 

described, the temporal dynamics through which these processes operate are less well understood: 

in particular, little is known about the temporal engagement of control processes when non-

dominant aspects of knowledge to be brought to the fore. 

 Neuroimaging studies have highlighted the importance of a distributed left-dominant 

network underpinning semantic cognition, including anterior temporal lobe (ATL), posterior 

middle temporal gyrus (pMTG) and inferior frontal gyrus (LIFG) (Jefferies, 2013; Vandenberghe 

et al., 1996). These brain regions are recognised to make dissociable contributions to semantic 

cognition, although their specific roles remain controversial. The ventral ATL is proposed to form a 

store of amodal conceptual knowledge extracted from multiple inputs (e.g., vision, audition, smell): 

these representations are capture the conceptual similarity of apple and banana, even though these 

items have different sizes, shapes, colours and associated actions (Patterson, Nestor & Rogers, 

2007; Lambon Ralph, Sage, Jones & Mayberry, 2010). Evidence for the contribution of ATL to 

conceptual representation is provided by patients with semantic dementia (SD), who show 
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progressive degradation of knowledge following atrophy and hypometabolism in ATL (Binney et 

al., 2010; Mion et al., 2010; Rogers et al., 2006). Convergent evidence for the role of this region in 

multimodal conceptual processing is also provided by PET (e.g. Bright et al., 2004; Crinion et al., 

2003; Devlin et al., 2000; Noppeney & Price, 2002; Rogers et al., 2006; Scott et al., 2000), fMRI 

(Visser et al.,2010a; 2010b) – particularly when magnetic susceptibility artefacts within ATL are 

minimised, MEG (Lau et al, 2013; Clarke et al., 2011; Marinković et al., 2003; Fujimaki et al., 

2009), intracranial electrode arrays (Chan et al., 2011) and TMS (Lambon Ralph et al., 2009; 

Pobric et al., 2009, 2010a; 2010b). 

Furthermore, ATL (as well as angular gyrus) is allied to the default mode 

network (DMN) (Binder et al., 2003; Davey et al., 2015; Wirth et al., 2016; Jackson et al., 2016). 

The DMN’s core regions are distant from regions serving primary sensory and motor functions, 

both in terms of patterns of connectivity and across the cortical surface (Margulies et al., 2016), 

consistent with the hub and spokes account of ATL. Although the maximal semantic response in 

ATL and angular gyrus is not identical to the site of peak DMN connectivity (Humphreys & 

Lambon Ralph, 2015; Jackson et al., 2016; Seghier & Price, 2012), these regions resemble other 

parts of DMN in terms of connectivity and function: they show a larger response to easy or 

automatic aspects of semantic retrieval, such as identifying dominant aspects of knowledge (e.g., 

linking DOG with CAT; Davey et al., 2016) and are implicated in spontaneous semantic retrieval 

during mind-wandering (Binder et al., 2005; Smallwood et al., 2016). This research suggests that 

the parts of the semantic system that fall within the DMN show a strong response when patterns of 

semantic retrieval are consistent with the structure of long-term knowledge, and consequently 

relatively little constraint needs to be applied from additional control systems. 

  Brain regions distinct from ATL are implicated in the control of semantic cognition. fMRI 

studies have emphasised the recruitment of LIFG in control-demanding semantic judgements 

(Thompson-Schill, D’Esposito, Aguirre &Farah, 1997; Badre, Poldrack, Pare-Blagoev, Insler & 

Wagner, 2005; Noppeney, Phillips & Price, 2004; Bedny, McGill & Thompson-Schill, 2008), 

while evidence for a causal contribution of LIFG to semantic control has been provided by 

transcranial magnetic stimulation (TMS, Hoffman, Jefferies & Lambon Ralph, 2010; Whitney et 

al., 2011) and neuropsychology: patients with damage to LIFG have difficulty flexibly tailoring 
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their semantic retrieval to suit the circumstances (Jefferies & Lambon Ralph, 2006; Corbett, 

Jefferies & Lambon Ralph, 2009). While the contributions of ATL and LIFG align well with the 

predictions of the Controlled Semantic Cognition framework, the contribution of pMTG remains 

controversial: some accounts have proposed that posterior temporal areas provide an important 

store of conceptual representations (Martin, 2007), with pMTG specifically implicated in 

knowledge of actions and events (Chao, Haxby & Martin, 1999; Martin et al., 1995). Alternatively, 

a growing literature supports the view that pMTG forms a distributed network with LIFG and other 

regions to support semantic control (Jefferies, 2013; Davey et al., 2016; Noonan et al., 2013; Gold 

et al., 2006). A recent meta-analysis showed that a widely distributed set of cortical regions is 

reliably activated across diverse manipulations of semantic control demands, with pMTG showing 

the second most consistent response after LIFG (Noonan et al., 2013). Semantic control deficits can 

follow from either left prefrontal or posterior temporal lesions (Jefferies & Lambon Ralph, 2006; 

Noonan et al., 2009). In addition, inhibitory TMS to pMTG and LIFG produces equivalent 

disruption of semantic judgements that require controlled but not automatic retrieval (Whitney et 

al., 2011; Davey et al., 2015). 

Together these findings suggest a functional dissociation within the temporal lobe, with 

ATL supporting the efficient retrieval of dominant aspects of knowledge, and pMTG allowing non-

dominant knowledge to be the focus of semantic retrieval. By this view, there are many forms of 

semantic representation; some are stable over time (like semantic long-term memory, hypothesised 

to be located in ATL), whereas others may be more adaptive, and may depend on semantic control 

regions that are flexibly able to focus on what is currently relevant.  One might hypothesise that 

ATL will show a strong response in conditions in which the pattern of retrieval required by a task is 

consistent with the structure of long-term knowledge, whereas when a task requires more unusual 

aspects of knowledge to become the focus of semantic cognition, the response within ATL might 

need to be constrained by additional control processes and the overall response within ATL might 

be lower in these circumstances. In contrast, one might predict that pMTG will play a particularly 

greater role in situations in which the required pattern of retrieval is not consistent with long-term 

conceptual representations.  
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To explore this hypothesis two experiments were performed to examine the temporal 

dynamics of the contribution of these regions during automatic and controlled semantic 

judgements. In particular two questions were examined (i) Does semantic retrieval in ATL precede 

the application of control processes in pMTG? and (ii)  Does the early engagement of pMTG allow 

the establishment of controlled retrieval? Existing studies have identified both early semantic 

responses (within 200ms of stimulus onset) and later effects (around 400ms) in the temporal lobe. 

The most robust temporal semantic effect is a negative potential between 250-550ms of stimulus 

presentation, referred to as the N400 (first reported by Kutas & Hillyard, 1980): this effect 

responds to semantic manipulations across modalities (Kutas & Federmeier, 2011; Marincovic et 

al., 2003) and has been localised to both ATL (McCarthy, Nobre, Bentin & Spencer, 1995; Lau et 

al., 2013) and pMTG (Helenius, Salmelin, Service & Connolly, 1998; Halgren et al., 2002). 

Moreover, a recent chronometric TMS study by Jackson et al. (2015) found that the critical time 

point of involvement for ATL was around 400ms. The N400 is greater for unexpected meanings 

(Brown & Hagoort, 1993; Maess et al., 2006), although it also responds to a wide variety of 

semantic and lexical manipulations (Halgren et al., 2002; Lau, Phillips & Poeppel, 2008) – and it 

remains unclear whether this effect differs between temporal lobe regions. In addition, emerging 

work suggests that preliminary semantic processing starts in ATL much earlier than 400ms post-

stimulus (Hirschfeld, Zwitserlood & Dobel, 2011; Dikker & Pylkkänen, 2011; Clarke et al., 2012): 

there is strong early interaction between visual cortex and ATL during the identification of 

specific-level concepts (Clarke et al., 2011). Thus, there may be early and late semantic effects in 

the temporal lobe, with later effects related to coherent patterns of conceptual retrieval across 

modalities and successive items (Marincovic et al., 2003; Bemis &Pylkkänen, 2011) while early 

effects reflect the engagement of an appropriate neural network reflecting the demands of the task.  

 

Two experiments were conducted to understand the temporal dynamics of controlled and 

automatic semantic processing in the temporal lobe. In Experiment 1 magnetoencephalography 

(MEG) was used to describe the rapid changes in neural processing that occur when participants 

process items following a prime whose association with a subsequent target is either strong or 

weak. The task required participants to make a decision about the relationship between the prime 
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and target in an MEG-compatible adaptation of a task commonly used in semantic control 

paradigms (such as in Badre et al., 2005), in which the two items are presented sequentially. The 

Controlled Semantic Cognition framework (Lambon Ralph et al., 2017) predicts a dissociation 

between ATL and pMTG: ATL should show greater changes in oscillatory power for strong 

associations, while pMTG is expected to show a larger response for weak associations. In 

Experiment 2, chronometric TMS was used to determine the causal role that anterior and posterior 

regions of the temporal lobe play in semantic cognition when the relevant meaning was either 

highly or weakly constrained by the preceding stimulus. The Controlled Semantic Cognition 

framework expects a causal role for pMTG in the retrieval of weak associations which are not well-

supported by experiences over the lifetime, while inhibitory stimulation to ATL might reduce the 

efficiency of semantic retrieval when inputs are aligned with experience. Together these two 

experiments, using different neuroimaging techniques, allow the characterization of how the neural 

basis of relatively automatic and more controlled retrieval within the temporal lobe emerges over 

time. 

 

Experiment 1: MEG 

Methods 

Participants:  

Participants were 20 right-handed native English speakers, with normal or corrected-to-

normal vision, and no history of language disorders (14 female, mean age 23.3 years, range 20-35). 

Data from one participant was excluded because of low accuracy on the behavioural task (a 

minimum of 75% accuracy was required to ensure participants were performing the task 

successfully). Written consent was obtained from all participants and the study was approved by 

the York Neuroimaging Centre Research Ethics Committee. 

Materials:  

The task and stimuli were adapted from Badre et al. (2005). Word pairs were presented, 

one word at a time, with varying associative strength between the prime and target, and participants 
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were asked to decide if the two words were related in meaning. Participants were presented with 

440 target words, paired with either a strong association (n=110), a low association (n=110), or an 

unrelated prime (n=220). Target words were nouns with a concreteness rating of > 500 (selected 

using the MRC psycholinguistic database; Wilson, 1988), and were the same across conditions. 

Strong and weak association primes were created for these words using free association data from 

the Edinburgh Associative Thesaurus (EAT), by selecting words that were produced relatively 

frequently by participants (23%) or more rarely (1%); giving a highly significant difference in an 

associative strength between conditions, t(188)=16.053, p<.001 (see Table 2.1 & Table 2.2).  

Conditions were matched for frequency, length and imageability, with were no significant 

differences between them. Unrelated primes were created by randomly assigning these words to 

targets and manually excluding any semantic links when these arose by chance. Each target word 

appeared twice for each participant, in either the strong or weak association condition (not both) 

and the unrelated condition. All three conditions (strong association, weak association and 

unrelated) were examined for each target word. The order of items was counterbalanced across 

participants. 

 

Table 2.1: Measures of frequency, length and imageability for individual conditions 

 Measure Condition Mean SD 

 Frequency 

 

Length (letters) 

 

 

Imageability 

Strong 26.6 64.3 

 Weak 29.1 38 

 Strong 5.5 1.8 

 Weak 5 1.5 

 Strong 567.2 60.6 

 Weak 577.2 47.9 

 Association strength (with 

target) 

Strong 0.23 0.189 

 Weak 0.01 0.005 
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Table 2.2: T-tests of frequency, length and imageability between conditions 

Measure Contrast T Sig (2-tailed) 

Frequency Strong/Weak -0.548 0.585 

Length (letters) Strong/Weak 1.417 0.158 

Imageability Strong/Weak -1.887 0.061 

Association strength (with target) Strong/Weak 16.05 0.001 

 

Procedure:  

An illustration of the procedure can be seen in Figure 2.1. Nonius lines (acting as a fixation 

cross) were present at all times. Before each trial, there was a rest period of 800 ms, plus an 

unpredictable jittered interval from 0 to 1000 ms, designed to reduce anticipatory responses. Prime 

words were presented for 200 ms, there was an inter-stimulus interval (ISI) of 150 ms, and then the 

target appeared for 200 ms followed by a 1000 ms interval. After each trial, the nonius lines 

changed to a dimmer red (for 1200 ms) and participants were encouraged to confine blinking to this 

period. The task required participants to make a decision about the relationship between the two 

words; an MEG-compatible adaptation of the task in Badre et al. (2005). While this format closely 

resembles priming experiments, traditional priming experiments generally utilise lexical decision 

or pronunciation tasks (which crucially does not require participants to make any judgement on the 

relationship between the two words), and behavioural measures vary substantially across these 

tasks (and are furthermore mainly an issue at longer ISIs). From the priming literature you would 

expect most facilitation for strongly related primes, less (but significant) facilitation for weakly 

related primes, and no facilitation (but possibly inhibition) for unrelated primes (Neely, J. 1977; 

1991). However, these results are for traditional priming tasks that do not require participants to 

make a judgement of the relationship between the two words. Given that this experiment was 

concerned with the difference between automatic and controlled semantic retrieval, an overt 

judgement on whether the words were associated was necessary.  
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On 10% of the trials, participants were cued to make an overt response by the presence of a 

question mark (on screen for 1000ms). They pressed one of two buttons with their left hand to 

indicate if the two words were related. These ‘catch trials’ were used to monitor performance in the 

task, and were disregarded from the analysis. Because of this small number of trials (designed only 

to keep participants attending to the task), a behavioural experiment was run out of the scanner, 

with the same participants, a minimum of 4 weeks before MEG data collection. This experiment 

was identical to that in the MEG scanner, except the pairings of stimuli – if target word was paired 

with a strong association prime in the behavioural experiment, the same target would be paired 

with a weak association prime in the MEG experiment (and vice versa). For data from the 

behavioural experiment and the catch-trials collected during scanning, see Figure 2.2. 

Stimulus presentation:  

The experiment was carried out in a dark, magnetically shielded room. Presentation version 

16.1 (Neurobehavioral Systems) was used to present the stimuli and to record responses on catch 

trials. Stimuli were back-projected onto a screen with a viewing distance of ~75 cm, so that letter 

strings subtended ~1˚ vertically and ~5˚ horizontally at the retina. Light grey letters on a dark grey 

background were used, such that the screen luminance was in the mesopic range, and a neutral 

density filter was used to reduce glare. 

Data collection:  

Before MEG data acquisition, participants’ head shape and the location of five head coils 

were recorded with a 3D digitizer (Fastrak Polhemus). The signal from the head coils was used to 

localise participant’s head position within the helmet before and after the experiment. For each 

participant, a high-resolution structural T1-weighted anatomical volume was acquired in a GE 3.0 

T Signa Excite HDx system (General Electric, USA) at the York Neuroimaging Centre, University 

of York, with an 8-channel head coil and a sagittal-isotropic 3-D fast spoiled gradient-recalled 

sequence. The 3D digitized head shape of each participant was used for the co-registration of 

individual MEG data onto the participant’s structural MRI image using a surface-based alignment 

procedure from Kozinska, Carducci, and Nowinski (2001).Participants were seated in an upright 

position, with the magnetometers arranged in a helmet shaped array, using a whole-head 248-
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channel, Magnes 3600 system (4D Neuroimaging, San Diego, California). Data were recorded in 

continuous mode, with a sampling rate of 678.17 Hz and pass-band filtered between 1-200 Hz. 

MEG signals were subjected to a global field noise filter subtracting external, non-biological noise 

detected by the MEG reference channels, and converted into epochs of 1500 ms length, starting 

800 ms before the target onset. All channels from all trials were inspected visually in an artefact 

rejection process. Data from three malfunctioning channels were automatically rejected for all 

participants; these channels were the same for all participants. Additional trials were rejected if eye 

blinks, movement artefacts or external magnetic noise sources were evident. Statistical analyses 

included only datasets with at least 75% of trials retained after artefact rejection. This cut-off was 

chosen to ensure quality of data; if the rejected trials reached a proportion higher than 25%, the 

data would be compromised, either due to participant movements or electrical artefacts, or 

alternatively, under-powered because of a lack of trials. 20 datasets reached this criterion. On 

average, 17% of the trials were rejected from these datasets (min 7.3% - max 25%). 
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Figure 2.1: Example trials for each condition (text scaled up for visibility; A), and timeline of the stimuli presentation for MEG (B) and TMS (C). 
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MEG analysis:  

The spatial and temporal resolution of the MEG recordings was exploited in a two-step 

analysis. First, whole-brain analyses examined the neural response to all the related trials (strong 

and weak) at a coarse frequency and time resolution. Secondly, the activity of specific cortical 

regions engaged by each condition was interrogated at a finer frequency and temporal scale. In 

these analyses, Points of Interest (POI) were defined within the temporal lobe (ATL and pMTG), 

selected on the basis of their importance to theories of semantic processing and defined with 

reference to local peaks in the whole-brain beamforming data. This analysis strategy allows the 

roles of specific regions with particular theoretical relevance to the Controlled Semantic Cognition 

hypothesis (ATL, pMTG) to be examined, using whole-brain beamforming only to select a site for 

analysis within each of these regions with relatively strong signal (i.e., a local peak).  

For both whole-brain and POI analyses, the neural sources of the brain activity were 

reconstructed with a modified version of the vectorised, linearly-constrained minimum-variance 

(LCMV) beamformer described by Van Veen et al, 1997, and referred by Huang et al., 2004 as 

Type I beamformer, implemented in the Neuroimaging Analysis Framework pipeline (NAF, York 

Neuroimaging Centre), using a multiple spheres head model (Huang et al., 1999), with co-

registrations checked manually. An MEG beamformer (spatial filter) allows an estimation of the 

signal coming from a location of interest while attenuating the signal coming from other points in 

the brain. This is achieved by constructing the neuronal signal at a given point in the brain as the 

weighted sum of the signals recorded by the MEG sensors. The sensor weights were determined 

using an optimisation algorithm, whereby the signal was maximised from the location of interest, 

and minimised for other locations. Independent beamformers were reconstructed for each point in 

the brain, in each of three orthogonal current directions. The covariance matrix used to generate the 

weights of each beamformer was regularized using an estimate of noise covariance as described in 

Prendergast et al. (2011) and Hymers et al. (2010). This procedure was performed separately for 

each condition and/or analysis window, in order to obtain an optimal sensitivity to the effect of 

interest (Brookes et al., 2008; 2011). The outputs of the three spatial filters at each point in the 

brain (referred to as a Virtual Electrode) were summed to generate estimates of oscillatory power. 

For the whole-brain analysis, a noise normalised volumetric map of total oscillatory power (i.e., 
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including both the evoked and non-phase locked components) was produced over a given temporal 

window and within pre-specified frequency bands. For the point of interest analysis, the time 

course information at the location specified was reconstructed and the time-frequency 

decomposition was computed using Stockwell Transforms (Stockwell et al., 1999), to obtain higher 

resolution in time and frequency. This analysis strategy and the parameters used for the current 

study were similar to those used in recent MEG studies of visual word recognition and object 

naming (Wheat et al., 2010; Klein et al., 2014; Urooj, 2014). All information necessary to 

reproduce these analyses is stated below and the analysis pipeline is also in the public domain 

(http://vcs.ynic.york.ac.uk/docs/naf/index.html). 

Whole brain beamforming:  

The brain’s response to the task (collapsing the strong and weak trials) was characterised within 

broad frequency ranges and averaging across 200ms time periods. The purpose of this analysis was 

to identify brain regions important for the onset of the target in general terms, so these sites could 

be investigated in more detail in a points-of-interest analysis (see below). The main research 

question concerned how the brain’s response to the second word (i.e., the target) changed as a 

function of its relationship to the first word (the prime). Therefore, “active” and “passive” time 

windows of 200ms duration were contrasted. Active windows were from target onset (0-200ms, 

200-400ms, and 400-600ms) until 600ms after target onset. In the passive time window (-700 to -

500ms relative to target onset), participants observed the (always present) nonius (fixation) lines. A 

3D lattice of points was constructed across the whole brain with 5-mm spacing, and beamformers 

were used to compute the total power at each point using the Neural Activity Index (NAI; Van 

Veen et al., 1997) – an estimate of oscillatory power that takes account of spatially-inhomogeneous 

noise – at each point independently, within the following frequency pass-bands: 5-15 Hz, 15-25 

Hz, 25-35 Hz and 35-50 Hz. These frequency ranges were taken from previous MEG studies of 

reading (Klein et al., 2014; Wheat et al., 2010).  

For each individual participant and each frequency band, this analysis produced an NAI 

volumetric map for the two time-windows or conditions being compared. A paired-samples t-

statistic was used to characterise the difference between these maps at each point in space (see 



55 
 

Figure 2.3). Individual participant's t-maps were transformed into standardized space and 

superimposed on the MNI template brain with the cerebellum removed using MRIcroN software 

(Rorden, Karnath & Bonhila, 2007). In order to determine whether the difference between 

conditions or time-windows was statistically significant for each point on the lattice, a null 

distribution was built up by randomly relabelling the two time points for each participant and each 

voxel, using the permutation procedure developed by Holmes et al., 1996. The maximum t-value 

obtained with random relabelling across 10000 permutations was established. I then compared the 

real distribution of t-values in the data with the maximum t-value obtained from the permuted data. 

Maximum statistics can be used to overcome the issue of multiple comparisons (i.e. controlling 

experiment-wise type I error), since the approach uses the highest permuted t value across the brain 

to provide a statistical threshold for the whole lattice of points, over which the null hypothesis can 

be rejected (Holmes et al., 1996). Figure 2.3 shows those voxels in the brain with t-values equal or 

higher than the top 5% t-values present in the null distribution.  

Time-Frequency Analysis: Point of Interest (POI):  

Separate beamformers were used to reconstruct the neural activity for points of interest 

(POI) in ATL and pMTG, characterising the response of these regions over time and frequency 

with greater precision. The focus is on these two sites for comparison with Experiment 2 (cTMS). 

MNI coordinates for these POIs were local peaks of maximum activation in the group level, whole 

brain analysis in the 200-400ms time window – allowing the capture of stimulus-driven effects, 

while still retaining confidence that semantic processing would be ongoing (Pulvermüller, 

Assadollahi, & Elbert, 2001; Kutas & Hillyard, 1980; Clarke et al., 2011; Yvert et al., 2012). The 

data supported placement of VEs at the following locations: left ATL (MNI coordinates -48,8,-18) 

and pMTG (MNI coordinates -50,-52,8; the VE coordinate for pMTG was projected laterally 

towards the surface as the local peak was medial (actual peak location at MNI coordinates -42, -46, 

4). It was also elected to examine left-hemisphere sites only since (i) stimuli used in experiments 

were written words only; (ii) fMRI and patient studies reveal a greater contribution of the left 

hemisphere to semantic processing in general (Binder et al., 2009); and (iii) right motor cortex was 

expected to show irrelevant responses related to the preparation of button presses with the left 
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hand, even though button presses were only required on catch trials, given that the presence of a 

catch-trial was indicated by a question mark after the two words were presented).  

After the time-series of each POI was reconstructed epoch by epoch, for each subject, by 

means of separate beamformers (Huang et al., 2004), time-frequency plots were computed using 

Stockwell transforms (Stockwell, Mansinha, & Lowe, 1996) over a time window from -800 to 700 

ms (to avoid edge effects) and a frequency range from 5-50 Hz. The Stockwell transform, 

implemented in the NAF software, uses a variable window length for the analysis which is 

automatically adapted along the frequency range according to the sample rate and the trial length 

(4th order Butterworth filters with automatic padding).  

  To compare the time frequency representations between experimental conditions, 

generalized linear mixed models (GLMM) were computed using PROC MIXED in SAS (SAS 

Institute Inc., North Carolina, US). Time-frequency plots of percentage signal change were treated 

as two dimensional arrays of small time-frequency tiles, indexed in the model by three main 

effects, each of which is defined as a class variable: time, frequency and the interaction between 

time and frequency. Therefore, random effects were included in each GLMM to account for the 

fact that each participant’s time-frequency plot is made up of multiple time-frequency tiles. Time-

frequency (or spatial) co-variance in the spectrogram was controlled for by assuming the estimates 

of power followed a Gaussian distribution: consequently a Gaussian link function was used in the 

model. The time-frequency (spatial) variability was integrated into the model by specifying an 

exponential spatial correlation model for the model residuals (Littel et al., 2006). Finally, the data 

were resampled at a frequency resolution of 2.5Hz and time resolution of 25ms, the smallest time 

and frequency bin consistent with model convergence. This time-frequency resolution proved 

optimal in other similar published studies (Klein et al., 2014; Urooj et al., 2014; Wheat et al., 

2010). PROC MIXED constructs an approximate t test to examine the null hypothesis that the LS-

Mean for percentage signal change between conditions was equal zero in each time-frequency tile, 

and the procedure automatically controls for multiple comparisons (i.e. controlling experiment-

wise type I error). This method has been used in multiple peer-reviewed papers (Klein et al., 2014; 

Urooj et al., 2014; Wheat et al., 2010). 
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The time-frequency representations of total power were normalized, separately for each 

condition and for each participant, with respect to the mean power per frequency bin in a baseline 

period prior to the start of trials in that condition (-700 to -500 ms). This window length was also 

used in earlier studies (Wheat et al., 2010; Klein et al., 2014), since it provides a compromise 

between the minimum length sufficient to estimate power at the lowest frequency reported here 

(i.e., 5Hz) and the requirement to characterise the state of the brain immediately before the onset of 

each trial. The statistical contours on the percentage signal change figures for total power 

encompass time-frequency tiles fulfilling both of the following criteria: a) the difference between 

conditions reached p < 0.05; b) any region in the time-frequency plot defined by (a) also showed a 

response that was significantly different from zero in at least one of the two contributing 

conditions. 

 

Results 

Behavioural experiment  

Results from the behavioural experiment revealed faster reaction times in the strong compared with 

both the weak and unrelated conditions (t(19)=-6.80, p<.001 and t(19)=-5.46, p<.001 respectively), 

see Figure 2.2. Accuracy was lower in the weak condition compared with both the strong and 

unrelated conditions (t(19)=7.77, p<.001 and t(19)=-5.359, p<.001), but no significant difference 

between the strong and unrelated condition (see Table 2.3). While traditional priming experiments 

would normally show facilitation priming for weakly related concepts (as well as strongly) 

compared with unrelated primes, this is not found here. Traditional priming experiments measure 

the behavioural effect on the processing of a word preceded by a related word (like the task here), 

but does not require participants to make any judgement on the relationship between them 

(generally a lexical decision or word naming task is used). This is likely what is driving the longer 

reaction time in the weak condition; while weak associations may facilitate reaction time when the 

semantic relationship is not explicitly probed, it would seem that the weakly related concepts have 

a processing cost in semantic decisions – when required to respond in this condition, participants 

must reject the incorrect judgement that the two words are unrelated. Though reaction times are 
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generally longer in the experiment during MEG acquisition, the data follow the same pattern, with 

a significant difference between strong and weak conditions (t(19)=-4.11, p<.001), and very near 

significant difference between both strong and unrelated trials (t(19)=-1.961, p=0.057), and weak 

and unrelated trials 

(t(19)=1.946,p=0.059).

 

Figure 2.2 Reaction time data from the behavioural experiment (left) and the catch-trials collected 

during scanning (right).  

Table 2.3: Accuracy data for the behavioural experiment and catch-trials.  

 

Mean SD 

Behavioural experiment   

Strong  0.946 0.048 

Weak  0.826 0.095 

Unrelated  0.948 0.028 

Catch-trials   

Strong  0.948 0.029 

Weak  0.777 0.071 

Unrelated  0.946 0.047 

Whole-brain results  

The response to the task as a whole (i.e., the response to the second word of the pair, when 

the semantic judgement commenced, versus a period prior to the start of the trial), is shown in 

Figure 2.3. The most extensive changes in total power in response to the task were power 

decreases, relative to the resting passive period, in the 25-35Hz frequency band (shown below), 
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although other frequency bands showed similar effects. These decreases in total oscillatory power 

were focussed on temporal, occipital and inferior frontal and parietal lobe regions implicated in 

visual and semantic processing (ATL, pMTG, LIFG), starting within the first 200ms and lasting for 

at least 600 ms after target presentation. Decreases in total power are commonly interpreted as 

reflecting an increase in neural activity that is not phase-locked to stimulus presentation 

(Hanslmayr et al., 2012): reductions in power have been shown to correlate with an increased 

BOLD response in fMRI (Hanslmayr et al., 2011; Singh et al., 2002; Hall et al., 2014), and a recent 

review proposed that decreases in total power reflect active engagement of neocortex in the 

encoding and retrieval of memories (Hanslmayr, Staresina & Bowman, 2016). Thus, the whole-

brain beamforming results are consistent with an increase in visual and semantic processing.
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Figure 2.3: Whole-brain beamforming results for the 25-35 Hz frequency band, showing 

differences in total oscillatory power between an active period following target onset and a passive 

period prior to each trial. The first 600ms following presentation of target word are displayed, in 

200ms windows. Task effects were decreases in total power in all cases. The images show a t-value 

map, thresholded at p<.05. Images were generated using MRICron (Rorden, Karnath & Bonhila, 

2007).  

 

Points of interest results 

Whole epoch data for each site 

Total power time-frequency plots of the whole epoch were examined for each POI. Figure 

2.4 shows the response to the prime (1st word) and target (2nd word) in each semantically-related 

pair. Yellow-red colours indicate power increases, whereas cyan-blue colours indicate power 

decreases relative to the passive baseline period. Green indicates ‘no change from baseline’. In 

both sites, there was a subtle increase in oscillatory power in response to the first word, while the 

presentation of the second word was characterised by a large reduction in total oscillatory power 

relative to the passive period – this effect followed the offset of the first word (with slight timing 
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variations across the three sites), and became stronger and encompassed more frequency bands in 

response to the onset of the second word.  

 

 

 

 

 

 

 

Figure 2.4:  Total oscillatory power across the whole epoch for related trials, including both words 

presented in the relatedness judgement task. Presentation of the prime word (first word of the pair) 

is shown with white vertical lines, while presentation of target word (second word of the pair) is 

illustrated with black vertical lines. Yellow-red indicates regions of power increase relative to the 

baseline, while cyan-blue indicates power decreases relative to the baseline, and green indicates no 

change from baseline 

 

Differences between conditions in POIs  

ATL showed a greater change from baseline to strongly than weakly-related targets, from 

400ms post-target onset until the end of the epoch at 7-12 Hz (see Figure 2.5). PMTG, in contrast, 

showed stronger changes in oscillatory power for weakly-related targets. This effect of the reverse 

contrast started within 50ms of target onset and lasted throughout the epoch (50-550ms, 12-33Hz). 

In addition, there was a significant response to both conditions of the task, relative to the passive 

period, throughout the epoch, in beta and low gamma, at both sites. 

Summary of MEG results 

The results suggested a temporal dissociation in the temporal lobe that depended on the 

ease with which the target stimuli could be associated with the prime. ATL showed a strong 

response to both conditions early but showed greater oscillatory power for strong than weak 

associations 400ms after target onset. This effect might reflect evolving patterns of activation 

within ATL that are strengthened by semantic priming (Feng et al., 2016; Binder, 2016). In 

contrast, pMTG showed greater oscillatory power for weak than strong associations immediately 

ATL pMTG 
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after target onset and throughout the epoch, suggesting this site might be critical for detecting when 

inputs are not consistent with the anticipated meaning, and then maintaining this information to 

bias ongoing retrieval in ATL, as anticipated by the Controlled Semantic Cognition model 

(Lambon Ralph et al., 2017). ATL showed a greater response to strongly related semantic concepts, 

consistent with this region’s hypothesised involvement in automatic semantic retrieval. PMTG on 

the other hand, showed a greater response to weakly related word pairs, consistent with this 

region’s hypothesised contribution to controlled semantic retrieval. In addition, the sites showed a 

dissociation in terms of the time-course of their differential response during the retrieval of strong 

vs. weak associations. 
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Figure 2.5: A) Difference TF plot: Percentage difference between strong and weak conditions for ATL and pMTG. Black lines on the plots indicate p<.05 statistical 

threshold fulfilling two criteria: i) conditions are significantly different from each other and ii) this also reflects a significant change from baseline in at least one of the two 

conditions. Yellow-red colours in this plot indicates regions of time-frequency where oscillatory power levels were higher for strong associations, while cyan-blue colours 

indicate the reverse, i.e. higher values for weak associations (note that since the effects are in power reductions, yellow-red colours actually means the weak condition is 

driving the effect). B) Strong associations TF plot: Percentage signal change in the strong condition (relative to baseline). C) Weak associations TF plot: Percentage signal 

change in the weak condition (relative to baseline). In both B and C plots, yellow-red colours indicate regions of power increase relative to the baseline, while cyan-blue 

indicates power decreases relative to the baseline, and green indicates no change from baseline. 
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Experiment 2: Chronometric TMS 

Experiment One demonstrated that the temporal dynamics of neural processing across different 

regions of the temporal lobe depended on the ease with which a stimulus could be associated with a 

prime. Anterior regions of the ATL showed a pattern of activation that began early following 

stimulus and was subsequently reduced in trials when the association between stimulus and prime 

was relatively weak. By contrast, in pMTG a pattern of consistent neural activation was observed 

when the association between the target and the stimulus was harder to determine. To determine the 

causal role that these temporal dynamics play in semantic association, Experiment Two used 

chronometric TMS to disrupt processing in these two regions at different points during semantic 

cognition in order to identify whether (a) disrupting the pMTG at the moment of onset for a 

stimulus with only weak associations with the prime impaired semantic processing, consistent with 

a role of this region as inhibiting the spreading activation associated with dominant, and irrelevant, 

associations  and (b) whether disrupting the ATL later during stimulus presentation impaired 

performance in strong trials consistent with a role of this regions as supporting the convergence on 

a dominant meaning through a pattern of spreading activation. 

Methods 

Participants: 

Participants were 15 right-handed native English speakers, with normal or corrected-to-

normal vision, and no history of language disorders (8 males, mean age 23, age range 20-32 years). 

Written consent was obtained from all participants and the study was approved by the York 

Neuroimaging Centre Research Ethics Committee.  

Design 

 The experiment employed a 3x2x4 repeated measure design, with site (ATL, pMTG and 

sham mid-MTG, stimulated at 30%), task (semantic association task and digit parity judgement 

task), and TMS timings (0ms; 125ms; 250ms and 450ms) as the three within-subject factors. Sham 

stimulation at 30% was chosen because this intensity is thought to be too weak to produce a neural 

effect, but it still mimics the sound and scalp sensations of TMS stimulation (Duecker et al., 2013). 

At each time point, a pair of pulses 40ms apart were applied, since this dual-pulse method is 
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thought to generate more significant behavioural disruption than single pulses (Gagnon, Schneider, 

Grondin & Blanchet, 2011; Strafella & Paus, 2001; Chen, 2000). Thus, pulse timings were 0-40ms; 

125-165ms; 250-290ms; 450-490ms. The anticipation was that these stimulation times would allow 

me to explore very early effects (occurring before or around the onset of the target), effects linked 

to visual-ATL interactions at around 150ms (such as those characterised by Clarke et al., 2011), 

and early and later N400 effects. Unlike other chronometric TMS experiments, here the effect of 

online stimulation was examined from the onset of a second word in a pair (presented sequentially). 

Consequently, relatively early disruption might be expected – for example, effects within the first 

200ms at ATL, corresponding to the time period when Clarke et al. observed interactions between 

visual and semantic processes, as opposed to late effects such as those observed by Jackson et al. 

(2015). Very early disruption following stimulation of pMTG might also be expected, given 

findings from Experiment 1 that pointed to rapid sensitivity to weak associations at this site, which 

could correspond to detection of the need to engage controlled retrieval processes.   

Materials 

The semantic task was the same as for Experiment 1. Word pairs were presented 

sequentially, and participants decided whether the two words were related or not. The pairs were 

either strongly or weakly associated, or were unrelated. Each session had 70% related trials (which 

were the focus of this analysis) and 30% unrelated trials (to maintain attention to the task). The 

same target words were presented across conditions, though each target was only presented once 

per session. The strong and weak conditions were matched for frequency, length and imageability 

with no significant differences between them (see Table 2.4 and 2.5).  
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Table 2.4: Measures of frequency, length and imageability for individual conditions 

 Measure Condition Mean SD 

 Frequency 

 

Length (letters) 

 

Imageability 

Strong 17.43 32.38 

 Weak 19.28 32.91 

 Strong 5.62 1.81 

 Weak 5.48 1.51 

 Strong 560.22 69.54 

 Weak 554.79 70.37 

 Association strength (with 

target) 

Strong 0.43 0.19 

 Weak 0.03 0.06 

 

Table 2.5: T-tests of frequency, length and imageability for individual conditions 

Measure Contrast T Sig (2-tailed) 

Frequency Strong/Weak -0.44 0.66 

Length (letters) Strong/Weak 0.68 0.49 

Imageability Strong/Weak 0.52 0.61 

Association strength (with target) Strong/Weak 22.78 0.001 

 

 

A non-semantic task involving numerical judgements was also used, which was designed 

to match the semantic task in overall difficulty. Two three-digit numbers were presented 

sequentially, and subjects were asked to decide whether both numbers were odd or even numbers. 

The proportion of yes/no trials was identical to the semantic task (i.e., 70% match trials; 30% non-

match trials). One participant was tested on the same semantic tasks but a different number 

judgement task and is excluded from the statistical comparisons of semantic vs. digit task 

performance.  
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There were 25 trials per site and TMS time (25*3*4), for each condition (strongly related, 

weakly related and unrelated). For the digit task, 100 pairs of three-digit numbers were used; 25 for 

each TMS timing.  

Stimulus presentation 

 The three experimental sessions were divided into 5 runs, each lasting approximately 12 

minutes. TMS was delivered in 4 of the 5 runs, and a block without TMS was placed in the middle 

of the 5 runs for safety reasons. Each run was made up of 6 blocks for each task (numerical or 

semantic), each with 16 trials, lasting around 60 seconds. Blocks were arranged in pseudorandom 

order to minimise task switching costs. When switching between tasks, a short instruction screen 

informed the participant which task would be presented next. The first trial after the task switch 

was a dummy trial which was discarded from further analysis. Primes were presented for 200ms, 

followed by an inter-stimulus interval (ISI) of 150ms, and then the target appeared for 500ms. The 

nonius lines remained on screen for 1000ms, and were then dimmed for 1150ms after the 

participant’s response, to signal the end of the trial. Following this, the bright nonius lines returned, 

to cue the onset of the next trial, for a randomly variable interval of 0-1000ms (500ms on average) 

before the onset of the first word. Each trial lasted on average 3500ms. Participants responded with 

their right hand. Before starting the experiment, participants performed a practice session with 10 

trials of both tasks (without TMS), and three practice trials with stimulation. Participants took self-

paced breaks between the runs. 

Stimulation sites 

 TMS was applied to left ATL, left pMTG, and a sham site in the mid-temporal lobe 

(halfway between these two sites). Stimulation sites were taken from published studies and were 

similar to the peak responses in the temporal lobe from whole-brain beamforming in Experiment 1. 

The left ATL site was in anterior ventrolateral temporal cortex (MNI -51,6,-39; coordinates from 

Binney et al., 2010). This site showed greater activation for synonym judgement vs. numerical 

magnitude judgement in fMRI, and was located close to the region of peak atrophy in semantic 

dementia. The left pMTG site was taken from a meta-analysis of imaging studies of semantic 

control by Noonan et al. (2013; MNI -58,-50,-6). This site activates across a wide range of 
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manipulations of semantic control, including showing a stronger response to weak than strong 

associations (Davey et al., 2016; Gold et al., 2006). The sham control site was selected by finding 

the midpoint on the y-axis between the two experimental sites, varying the z coordinate to deliver 

stimulation to the middle temporal gyrus, and varying the x coordinate to maintain the stimulation 

target near the cortical surface area. 

TMS stimulation protocol 

Chronometric TMS was delivered using a Magstim Rapid2 stimulator and a 50 mm 

diameter figure-eight coil. Stimulation intensity for ATL and pMTG was 60% of the maximum 

output of the stimulator. Stimulation for the sham site was 30% of the maximum output of the 

stimulator. Dual-pulse TMS was delivered at 25Hz, with the two pulses 40 ms apart in each trial 

(see Figure 2.1 for illustration). Trials in the different timing conditions were arranged in an 

ascending or descending staircase of 4 trials (four trials with stimulation at 0ms followed by four 

trials of stimulation at 125ms etc.). This was done to limit the subjects’ awareness of the different 

TMS timings, and reduce the tendency of participants to wait until stimulation has been delivered 

before responding (Sliwinska et al., 2012). Following safety guidelines (Rossi et al., 2009), an 

inter-train interval of 5000ms was added after 24 subsequent pulses. Where possible this interval 

corresponded to the task switching instruction screen, in other cases it was added after the 

response.  

Analysis 

The key research question considered the effect of TMS on judgements about strong and 

weak semantic relationships between a prime and a target word. A generalised linear mixed models 

(GLMM) was used to examine the effects of task condition (e.g., strong vs. weak association with 

the preceding prime word), site (ATL, pMTG), time of TMS (i.e., pulses at 0-40ms; 125-165ms; 

250-290ms; 450-490ms after the onset of the second word), and their interactions, on the 

magnitude of the TMS effect (by computing the difference in response time between the post-TMS 

and the sham sessions, trial-by-trial), while controlling for effects of the structure of the experiment 

(session and block order). This model allowed the comparison of the effect of TMS for strong and 

weak words at each time point using pairwise contrasts, controlled for multiple comparisons. The 
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key dependent measure was response time (RT), since previous TMS studies have reported 

consistent slowing for semantic decisions following inhibitory stimulation, and little effect on 

accuracy (Walsh & Cowey, 2000; Pasqual-Leone, Walsh & Rothwell, 2000; Devlin, Matthews & 

Rushworth, 2003). Supplementary analyses, characterising (1) the effect of TMS on accuracy for 

strong and weakly-related targets and (2) the effect of TMS on semantic judgements overall (vs. 

numerical judgements) highlighting non-specific effects of TMS on RT and accuracy, are reported 

in the Supplementary Materials. In the analysis of RT below, it was confirmed that the key results 

were unchanged when accuracy was controlled for in each block, and when performance on the 

numerical task was controlled for, by including these measures as covariates. This was an item-by-

item analysis, which allows the inclusion of many more data points in the analysis. Though the 

study has 15 subjects, this analysis means that each condition is not the average per participant, but 

all trials within the condition for each participant; the total number of observations included in the 

analysis was 5041.  

 

Results 

Reaction time and accuracy data for each site and stimulation time can be seen in 

Supplementary Table 2.1 in Supplementary Materials. The TMS effect on high vs. low associations 

was examined using a generalised linear mixed model (GLMM) examining trial-by-trial RT data, 

implemented using PROC MIXED in SAS. Incorrect responses and outlying data points that fell 

more than 2 SD from each participant’s mean RT were removed, for each session, prior to analysis. 

The fixed effects were site (ATL, pMTG), TMS time, condition (strong vs. weak) and their two- 

and three-way interactions using a fully-factorial design. In this analysis, it was possible to 

compute the trial-by-trial difference between RT in the ATL or pMTG session and the 

corresponding trial in the sham session, and these difference scores (which reflect the TMS effect) 

were used as the dependent measure. The model also included covariates controlling for effects of 

block and session order as above, as well as mean accuracy per block, and RT on the number 

control task to account for non-specific effects of TMS (see supplementary materials). The per-

subject intercept was included as a random effect.  
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The results of this analysis are shown in Table 2.6. There were significant main effects of 

TMS time and site on the magnitude of the TMS effect, with a significant interaction between 

condition (strong vs. weak) and TMS time, and an interaction between site and TMS time that was 

approaching significance. The covariates of block and session order, and number RT (i.e., non-

specific effects of TMS) were also significant. Pairwise t-tests, controlled for multiple 

comparisons, were used to examine the time-course of the involvement of ATL and pMTG in 

semantic decisions to strong and weak associates. Of the eight comparisons that compared the size 

of the TMS effect for strong and weak associations at each site and at each time, two were 

significant. There was a larger TMS effect for strongly-related than for weakly-related pairs 

following stimulation of ATL, when pulses were applied at 125-165ms after the onset of the second 

word (t(5026) = 2.26, p = .024; see Figure 2.6). At the other time points, the magnitude of the TMS 

effect was equivalent for the strong and weak associations (t < 1). Thus, these results suggest that 

around 150ms post-presentation of the second word, ATL makes a critical contribution to the 

efficient retrieval of strong semantic relationships: these trials are expected to be supported by 

unconstrained spreading activation within the conceptual store.  

There was also a larger TMS effect for weakly-related than for strongly-related pairs 

following stimulation of pMTG when pulses were applied at 0-40ms post-onset of the second word 

(t(5025) = -2.08, p = .037; see Figure 2.6). At the other time points, the magnitude of the TMS 

effect was equivalent for the strong and weak associations: t < 1 at 125-165ms and 250-290ms; t = 

-1.45, p = .15 at 450-490ms. This very early differential response suggests that pMTG may make a 

critical contribution to the capacity to engage controlled retrieval when it is needed. Stimulation at 

this early point may disrupt the maintenance of current contextual information generated by the 

prime word. This could disproportionately affect weak associations if, for example, pMTG plays a 

critical role in detecting the need to employ controlled retrieval. 
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Table 2.6: Effect of TMS on RT for strong and weak associations 

 

d.f. F p 

Fixed effects    

TMS time 3, 5018 7.69 <.001 

Condition (strong vs. weak) 1, 5030 <1 > .1 

Site (ATL vs. pMTG) 1, 4957 13.44 <.001 

Condition by TMS time 3, 5025 2.92 0.03 

Site by TMS time 3, 5025 2.29 0.08 

Condition by site 1, 5025 2.68 0.10 

3-way interaction 3, 5024 <1 > .1 

Covariates 

   Block order 3, 5024 15.83 <.0001 

Session order 2, 4638 4.36 0.01 

Mean task accuracy per mini-block 1, 5037 <1 > .1 

Number RT per mini-block 1, 1972 190.63 <.0001 
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Figure 2.6: Effect of TMS on RT for strong and weak associations. TOP ROW: RT (in ms) for the 

strong and weak conditions for ATL (left) and pMTG (right). RT data for the strong and weak 

condition for the sham site is showed in dashed lines. These plots show the raw (un-modelled) 

means. BOTTOM ROW: A comparison of LSMeans differences for strong and weak conditions, 

comparing the experimental sites (ATL and pMTG) with sham stimulation trial-by-trial. Data 

points above the red line indicate greater disruption for the strong condition, while data points 

below the red line indicate greater disruption for the weak condition. Significant differences 

between strong and weak trials are marked with asterisks. 

 

Discussion 

A significant body of research has characterised the brain regions that support semantic 

processing but less is known about the temporal evolution of semantic retrieval across these 

regions. While studies have examined the time course of semantic access from written words and 

pictures (Dikker & Pylkkänen, 2013; Halgren et al., 2002), the focus here was on how the strength 

of the semantic relationship between two successive items is reflected in (i) changes in oscillatory 

power over time, as measured by MEG; and (ii) vulnerability to inhibitory online brain stimulation, 
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using chronometric TMS. In both studies, the same behavioural paradigm was used to explore the 

functional and temporal organisation of semantic processing in the anterior and posterior temporal 

lobe (ATL and pMTG). Previous work has associated ATL with the retrieval of strong associations, 

in conjunction with other regions in the default mode network (Davey et al., 2016; Jackson et al., 

2015; Humphreys et al., 2015), while controlled retrieval is thought to engage semantic control 

processes in pMTG, in conjunction with LIFG, to allow non-dominant aspects of meaning to come 

to the fore. In line with predictions, stronger task-induced changes in oscillatory power for strong > 

weak associations were found in ATL, plus weak > strong associations in pMTG using MEG, and 

confirmed a causal role for these sites in the retrieval of strong and weak associations respectively 

using cTMS. Strong semantic priming might facilitate access to semantic features and associations 

and increase the richness of semantic retrieval in ATL (Feng et al., 2016), while a strong response 

to weak associations might reflect the application of controlled retrieval processes (Gold et al., 

2006). Timing differences between the sites were also found: ATL showed stronger oscillatory 

power for the strong associations around 400ms post-target onset, while pMTG responded more 

strongly to weak associations, throughout the analysis window, from the onset of the target. 

Moreover, TMS delivered to pMTG at the point of target onset impaired the efficient retrieval of 

weak associations, while TMS to ATL disrupted performance for strong associations at 150ms, at 

the point when a strong task-related response was observed in the MEG data (even though the 

difference between strong and weak conditions was not significant until later). Thus, the MEG and 

TMS results followed the same temporal sequence across sites, although the critical time for 

disruption preceded the emerge of condition differences in MEG. Below, the contributions of ATL 

and pMTG to semantic cognition in light of these findings are discussed: 

 

Anterior temporal lobe: The ATL is proposed to form an amodal semantic hub, which 

represents conceptual information (alongside modality-specific ‘spokes’; Patterson, Nestor & 

Rogers, 2007; Rogers et al., 2006; Coutanche & Thompson-Schill, 2014). ATL is important for 

accessing conceptual knowledge from visual inputs – a process that activates the ventral visual 

stream which terminates in ATL (Visser, Jefferies, Embleton & Lambon Ralph, 2012; Visser, 

Jefferies & Lambon Ralph, 2009). MEG studies have already examined this aspect of ATL 
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processing and have identified responses in this region within 120ms of stimulus onset (Clarke et 

al., 2013; Fujimaki et al., 2009; Yvert et al., 2012). In resting-state fMRI, this site also shows 

strong connectivity to regions of the default mode (Davey et al., 2015; Jackson et al., 2015), and it 

is implicated in automatic semantic access and retrieval (Lau et al., 2013; Davey et al., 2016). 

These findings are highly consistent with this emerging story about the contribution of the ATL to 

semantic processing but add several important elements:  

Here beamforming was used to characterise the response in ATL to strong and weak 

associations in total oscillatory power. In contrast, other MEG studies localising semantic effects to 

ATL have largely used measures maximally-sensitive to evoked power (Halgren et al., 2002; 

Bemis & Pylkkänen, 2011; Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015; Lau et al., 

2014; Fujimaki et al., 2009). Total power includes both phase-locked components and signals that 

are not phase-locked to the onset of the stimulus. Since the emergence of coherent semantic 

activation over time draws on long-term knowledge of the meanings of words across contexts, one 

might expect this process to generate neural oscillations that are not directly linked to stimulus 

onset. In line with these considerations, strong task-induced decreases in total power to the target 

were found in both ATL and pMTG. Power reductions relative to a no-task baseline were not seen 

in response to the presentation of the prime word, and therefore this response to the target could be 

a marker of the retrieval of meaning at least partly decoupled from the stimulus itself. This 

interpretation of effects draws on the view that power decreases are not necessarily associated with 

a decrease in neural activity (Hanslmayr et al., 2012; Hanslmayr, Staresina & Bowman, 2016): 

according to Hanslmayr et al. (2012), decreases in total power can reflect an increase in 

desynchronised neural activity that allows the representation of richer informational content, and 

results may be interpreted within this framework – strong associations allow participants to recover 

richer semantic information within ATL, and this is associated with a stronger task-related decrease 

in total oscillatory power at 400ms post-target.  

It was found that TMS to ATL disrupts the efficient retrieval of strong more than weak 

associations at 150ms post-stimulus onset – i.e., at the point when interactions between visual 

cortex and ATL are thought to become established (Clarke et al., 2011; 2012). In the MEG data, 

there was a strong task-related response in ATL by 150ms, although there was not yet a significant 
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difference between the strong and weak conditions. Thus, the emergence of stronger coherent 

semantic activation for the strongly-linked items may have been vulnerable to perturbation from 

TMS at an early time point before the pattern of response within the ATL was well-established. 

Although a previous cTMS study found disruption when TMS pulses were applied to ATL at 

400ms post-trial onset (Jackson et al., 2015), this study did not examine differential disruption of 

strong vs. weak associations, and used simultaneous rather than successive presentation of probe 

and target – thus the timings are unlikely to be comparable. 

 

Posterior middle temporal gyrus: While the importance of ATL for conceptual 

representation is relatively widely accepted, there is considerable controversy about the role of 

pMTG in semantic cognition, since dominant theoretical frameworks have suggested that this site 

(i) represents particular aspects of lexical or semantic knowledge – such as event representations; 

or (ii) supports controlled semantic cognition as part of a large-scale network that includes LIFG. 

Studies have shown a common response in pMTG and LIFG using a wide range of manipulations 

of semantic control – including contrasts of ambiguous over non-ambiguous words, decisions with 

strong vs. weak distracters, and the retrieval of weaker vs. stronger semantic links, in paradigms 

similar to the one adopted here (Noonan et al., 2013). pMTG is functionally connected to both 

LIFG and ATL, suggesting this region may be well-placed to control retrieval from the semantic 

store (Davey et al., 2016). TMS studies have convergently shown disruption of weak but not strong 

semantic association judgements when inhibitory stimulation is applied to pMTG (Whitney et al., 

2011; Davey et al., 2015). When the relationship between probe and target is weak, the probe will 

tend to activate features and associations that are irrelevant to the decision that has to be made, and 

consequently semantic retrieval may have to be shaped to suit the task demands – irrelevant 

information must be suppressed while non-dominant aspects of knowledge are brought to the fore. 

The current data support the role of pMTG in controlled aspects of semantic retrieval: moreover, 

while previous studies have commonly focussed on showing similarities between LIFG and pMTG 

(Noonan et al., 2013; Whitney et al., 2011a and 2011b), these findings show an important 

functional dissociation for the retrieval of weak and strong associations between different sites 

within the temporal lobe.  
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The temporal aspects of these results place important constraints on theories of controlled 

semantic retrieval: pMTG might show a relatively late response to the weak > strong contrast, if 

controlled retrieval takes time to become established, and reflects a re-interpretation or re-shaping 

of semantic activation following initial semantic retrieval driven by the written input. Alternatively, 

pMTG might show an early response to the weak > strong contrast, if this site is important for 

maintaining information that is currently relevant and triggering the recruitment of the semantic 

control network when incoming information is not strongly coherent with ongoing semantic 

retrieval. pMTG may be able to reduce the propagation of dominant features and associations 

recovered from ATL into the DMN when initial processing of new inputs suggests that these 

aspects of knowledge may be insufficient for comprehension.  

The current data support the second of these two alternatives. In MEG, the weak > strong 

effect commenced within 50ms of target-onset and continued throughout the analysis window. 

Using cTMS, evidence for an early role of pMTG was found in the efficient retrieval of weak 

associations, since there was greater disruption of weak trials when TMS was applied at target 

onset. The experimental design presented words sequentially (not concurrently), and consequently 

the findings are consistent with the hypothesis that pMTG maintains currently relevant features or 

interpretations and detects situations in which incoming information is not well-aligned with these 

interpretations. This effect appears to occur prior to semantic processing for the second word, when 

the contribution of pMTG to “context maintenance” should be equivalent for the strong and weak 

conditions. However, disruption of this maintenance process might only disrupt the efficiency of 

semantic judgements when the associations being retrieved do not align with the structure of long-

term conceptual representations (i.e., the weak associations). In contrast, for strong associations, 

information about the current context might not be required since the pattern of retrieval required 

by the task is well-supported by long-term semantic representations. The disruptive effect of 

stimulating pMTG might be greatest very early on, before semantic retrieval has been established 

for the second word, as at later points in the paradigm, the pattern of retrieval to the second item is 

expected to be already consistent with the requirements of the task. To confirm this interpretation, 

further research could assess the effect of inhibitory TMS delivered prior to the start of the second 

word.    
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The analysis of total power across the whole epoch also revealed task-related decreases in 

power in pMTG that were marked by the offset of the prime and sustained throughout the interval 

between the two words. This observation is consistent with the interpretation offered above; that 

pMTG may maintain currently-relevant semantic information determined by the context, allowing 

controlled retrieval processes to be engaged at an early stage when inputs are not readily coherent 

with features that are being maintained. This perspective is further consistent with studies showing 

that pMTG is not crucial for all forms of semantic control – for example, it does not show strong 

effects when a goal provided by the task instructions has to be applied to semantic retrieval in an 

effortful way: instead, it shows strong engagement when the inputs themselves determine a context 

that requires semantic retrieval to be shaped in a particular way (Davey et al., 2016; Badre et al., 

2005).  

Some limitations of the data are worth noting. First, this study focuses on the role of two 

key locations predicted to show a functional dissociation in the Controlled Semantic Cognition 

framework (ATL and pMTG). By combining targeted analysis of MEG data (examining local 

peaks within these regions) with chronometric TMS delivered to these sites, strong conclusions can 

be drawn about the nature of this dissociation, although the study is uninformative about other 

regions in the brain that might show a similar dissociation. Secondly, there is increasing evidence 

of functional subdivisions within ATL and pMTG (e.g., temporal pole, ventral ATL and aSTG 

appear to have different functional profiles – Lambon Ralph et al., 2017). The limited spatial 

resolution of MEG, and practical limits on the number of TMS sessions does not permit the 

separation of these regions.  

Taken together, these results indicate dissociable roles of ATL and pMTG in semantic 

retrieval. ATL and pMTG showed opposite effects of the task contrast in both the MEG and cTMS 

experiments, supporting the proposal that these sites make a differential contribution to more 

automatic and controlled aspects of semantic retrieval. While both sites showed a response that 

included the N400 time-window, N400 effects are typically found to be strengthened by weak 

primes and unexpected completions (Kutas & Hillyard, 1984; Lau, Phillips & Poeppel, 2008). This 

pattern was observed in pMTG, yet the opposite pattern for ATL. There was also a temporal 

distinction between the sites: ATL showed stronger changes in oscillatory power for strong vs. 
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weak associations around 400ms post-target, and there was disruption of the efficient retrieval of 

these dominant associations when TMS was applied to ATL at around 150ms post-target onset, at a 

time-point when sustained semantic retrieval is thought to be initiated by visual input. In contrast, 

there was early and continued engagement of pMTG for weak associations, and disruption of the 

retrieval of these associations when TMS was applied at target onset, consistent with the view that 

pMTG plays a role in maintaining a semantic context elicited by the prime, and in detecting 

situations in which controlled retrieval processes may need to be engaged. 
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Measurement Site 

 

Condition 0-40ms 

125-

165ms 

250-

290ms 

450-

490ms 

NO 

TMS 

 

0-40ms 

125-

165ms 

250-

290ms 

450-

490ms 

NO 

TMS 

   Mean  SD 

RT 

ATL strong 539.53 559.05 584.54 616.85 573.43 

 

120.50 138.41 156.16 195.46 143.09 

ATL weak 601.16 613.62 641.42 704.06 630.98 167.37 174.36 192.62 214.26 163.98 

ATL number 535.45 565.54 576.62 616.55 571.87 144.29 163.49 187.26 210.41 165.70 

pMTG strong 616.55 506.63 527.08 516.72 534.54 210.41 132.87 145.15 130.08 119.15 

pMTG weak 498.46 512.79 529.29 543.91 595.16 105.49 100.93 116.69 141.97 123.20 

pMTG number 578.90 590.26 585.17 610.58 531.61 156.50 142.16 139.25 164.37 129.47 

SHAM strong 510.81 499.79 531.80 550.76 551.33 113.94 119.35 119.68 147.79 130.21 

SHAM weak 559.64 573.55 588.73 617.25 606.62 133.06 144.95 145.19 158.97 125.16 

SHAM number 492.95 512.32 513.29 524.02 517.83 126.25 132.99 127.71 145.03 127.27 

Supplementary analysis - Experiment 2: 

 
Supplementary Table 2.1: Reaction time and accuracy means and standard deviations for all sites, conditions and times 
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Measurement Site 

 

Condition 0-40ms 

125-

165ms 

250-

290ms 

450-

490ms 

NO 

TMS 0-40ms 

125-

165ms 

250-

290ms 

450-

490ms 

NO 

TMS 

   Mean  SD 

Accuracy 

ATL strong 0.96 0.95 0.96 0.96 0.94 

 

0.04 0.06 0.04 0.05 0.05 

ATL weak 0.82 0.76 0.83 0.78 0.83 0.13 0.17 0.11 0.18 0.08 

ATL number 0.92 0.92 0.95 0.95 0.92 0.05 0.05 0.06 0.05 0.04 

pMTG strong 0.97 0.97 0.97 0.97 0.95 0.05 0.03 0.04 0.03 0.06 

pMTG weak 0.84 0.83 0.82 0.80 0.85 0.09 0.15 0.11 0.09 0.10 

pMTG number 0.89 0.94 0.93 0.94 0.93 0.12 0.04 0.06 0.06 0.04 

SHAM strong 0.97 0.97 0.97 0.97 0.95 0.04 0.04 0.04 0.04 0.06 

SHAM weak 0.82 0.78 0.78 0.77 0.85 0.11 0.09 0.15 0.14 0.11 

SHAM number 0.95 0.95 0.96 0.94 0.94 0.07 0.04 0.05 0.05 0.05 
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Additional TMS analyses 

The supplementary analyses below encompass 1: the effect of TMS on accuracy for strong 

and weak associations, and 2: characterise the effects of TMS on the semantic and number tasks 

overall. In these analyses, there are 14 as opposed to 15 participants, since data for the even/odd 

digit task were not recorded for one participant. The results of analysis 1 motivated the inclusion of 

accuracy as a covariate in the analysis of response time above. Results from analysis 2 reveal non-

specific effects of TMS and therefore motivated the inclusion of the number control task as a 

covariate in the main analyses reported above.  

Effect of TMS on accuracy for strong and weak associations 

The data were analysed using a generalised linear mixed model (GLMM), implemented in 

PROC GLIMMIX in SAS. The trial-by-trial accuracy data have a binomial distribution (where an 

accurate event equals 1 and an inaccurate event equals 0), and therefore a logistic link function was 

used in the model for the outcome. The fixed effects were site (ATL, pMTG, sham), TMS time, 

condition (strong vs. weak) and their two- and three-way interactions using a fully-factorial design. 

The model also included covariates controlling for effects of block number and session number 

(without interactions), and included the per-subject intercept as a random effect. The generalised 

chi-square per degree of freedom was 1.05, suggesting a well-fitting model with no over-

dispersion.  

This analysis revealed a main effect of condition, reflecting higher accuracy for strong vs. 

weak associations (F(1,1397) = 405,66, p < .0001), as well as an effect of block order (F(3.1397) = 

3.91, p = 0.008) and session order (F(2,1397) = 3.23, p = 0.04), which were included as covariates. 

Additionally, the effect of site approached significance (F(2,1397) = 2.70, p = 0.07) (see Table 

2.2). Paired t-tests between experimental sites and sham stimulation, controlled for multiple 

comparisons, revealed a significant difference between sham and ATL stimulation for weak 

associations at ~250ms (t(1397) = 2.49, p = 0.01 and between sham and pMTG stimulation for 

strong associations at ~125ms (t(1397) = 2.20, p = 0.03) (see Supplementary Figure 2.1). These 

results reflect facilitation of performance, potentially following increases in alertness or motivation 

(Devlin & Watkins, 2007). 



82 
 

Supplementary Table 2.2: Effect of TMS on accuracy for strong and weak associations 

 

d.f. F P 

Fixed effects    

TMS time 3, 1397 1.00     0.39 

Condition (strong vs. weak) 1, 1397 405.66     <.0001 

Site 2, 1397 2.70     0.07 

Condition by TMS time 3, 1397 2.81     0.39 

Site by TMS time 6, 1397 1.52 0.17 

Condition by site 2, 1397 0.12     0.89 

3-way interaction 6, 1397 0.46 0.84 

Covariates 

   

Block order 3, 1397 3.91 0.0085 

Session order 2, 1397 3.23     0.0400 
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Supplementary Figure 2.1: Effect of TMS on accuracy for strong and weak associations; TOP 

ROW: Accuracy for strong and weak association for ATL (left) and pMTG (right) relative to sham 

data. BOTTOM ROW: LSMeans difference in accuracy for ATL (left) and pMTG (right) relative 

to sham site. Points above the red line indicates higher accuracy relative to sham, whereas point 

below the red line indicates lower accuracy relative to sham. Significant results are marked with 

asterisks. 

 

Effect of TMS on response times in the semantic word vs. number control task 

The data were analysed using a generalised linear mixed model (GLMM) examining trial-

by-trial RT data, implemented using PROC MIXED in SAS. Incorrect responses and outlying data 

points that fell more than 2 SD from each participant’s mean RT were removed, for each session, 

prior to analysis. The fixed effects were site (ATL, pMTG, sham), TMS time, condition (semantic 

words vs. numbers) and their two- and three-way interactions using a fully-factorial design. The 

model also included covariates controlling for effects of block number and session number as 

above, and also mean accuracy per block. The per-subject intercept was also included as a random 
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effect. The model showed a good fit, with a change in Log likelihood from the empty model of 

1313.7, p<.00001.  

The results of this analysis are shown in Supplementary Table 2.3. There were significant 

main effects of TMS time, condition (numbers vs. words) and site, with no significant interactions. 

The covariates of block and session order were also significant. 

 

Supplementary Table 2.3: Effect of TMS on RT for semantic and digit parity task 

 

d.f. F P 

Fixed effects    

TMS time 3, 1331 53.80   <.0001 

Condition (semantic vs. digit) 1, 1331 331.32         <.0001 

Site 2, 1331 122.78         <.0001 

Condition by TMS time 3, 1331 0.88            0.4517 

Site by TMS time 6, 1331 1.47     0.1851 

Condition by site 2, 1331 1.86             0.1556 

3-way interaction 6, 1331 0.77         0.5936 

Covariates    

Block order 3, 1331 41.10     <.0001 

Session order 

Mean accuracy 

2, 1331 

1, 1331 

178.80         

3.78 

<.0001 

0.052 

 

 

Paired contrasts for the semantic task, corrected for multiple comparisons, showed 

differences in LS means between RT for the ATL stimulation vs. sham session at all four time 

points (0ms: t(1331) = 4.38, p <.0001; 125ms: t(1331) = 5.72, p <.0001; 250ms: t(1331) = 5.38, p 

<.0001; 450ms: t(1331) = 6.90, p <.0001), with no significant differences with sham for pMTG. 

Paired t tests for the number task showed differences in LS means between RT for the ATL 
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stimulation vs. sham session at all four time points (0ms: t(1331) = 4.50, p <.0001; 125ms: t(1331) 

= 4.10, p <.0001; 250ms: t(1331) = 5.25, p <.0001; 450ms: t(1331) = 6.97, p <.0001), as well as for 

pMTG relative to sham at 450ms (t(1331) = 3.25, p = 0.0012) (see Supplementary Figure 2.2). 

These results indicate that despite the use of a staircase procedure (Sliwinska et al., 2012), designed 

to reduce sensitivity to the variability in TMS onset time (see methods), RT increased with later 

pulse timings, which could reflect expectancy effects (waiting for the pulse before responding).  

 

Supplementary Figure 2.2: Effect of TMS on RT for semantic and digit parity tasks; TOP ROW: 

Showing RT (in ms) for three sites for semantic (left) and digit task (right). BOTTOM ROW: 

LSMeans difference in RT for ATL and pMTG relative to sham site for semantic (left) and digit 

(right) task. Points above the red line indicate higher RT relative to sham, whereas points below the 

red line indicate lower RT relative to sham. Significant results marked with asterisks. 

 

Discussion of supplementary TMS analysis: 

Subtle facilitation in accuracy for weak associations was found at 250ms for ATL and for 

strong associations at 125ms for pMTG. TMS may reduce error rates due increases in alertness or 

motivation (although these effects were statistically controlled for in the main analysis of RT). In 
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addition, the supplementary analyses demonstrate that, despite the use of a staircase procedure 

(Sliwinska et al., 2012; see Methods), there was a linear increase in RT with pulse time. This 

pattern could reflect expectancy effects (i.e., the tendency of participants to wait for the pulses to 

be delivered before responding). A similar trend was seen following sham stimulation at 30% of 

stimulator output, which is not thought to produce a neural effect (Duecker et al., 2013), although 

does produce scalp sensations, making this interpretation especially plausible. The increase in RT, 

relative to sham, was more marked for ATL than for pMTG, which could reflect the stronger scalp 

sensations associated with ATL stimulation. An increase in RT with time was also found for ATL 

stimulation by Jackson et al. (2015). However, unlike their study, this experiment also found an 

effect for the number control task in ATL, and thus these effects cannot be interpreted as specific 

disruption of semantic processes.  
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Chapter 3: Oscillatory dynamics of taxonomic and 

thematic relationships in the semantic network: 

Evidence from MEG 

Abstract 

 

Semantic relationships can be based on (i) conceptual similarity, i.e. taxonomic 

relationships, and (ii) contextual co-occurrence, i.e. thematic associations. A key question in 

semantic cognition is how the brain represents the relationship between items with high featural 

overlap (i.e. mole and cat) and relationships between items formed through contextual co-

occurrence, but with low physical similarity (i.e. milk and cat). Two views of semantic cognition 

yield different predictions: 1) the dual-hub view postulates that taxonomic relationships are 

underpinned by perceptual feature similarity in ATL, and TPJ extracts thematic associations for 

event-related processing, and 2) the hub and spoke model, which predicts that both types of 

relationships are represented in ATL, with TPJ areas (namely AG and pMTG) recruited for 

automatic or controlled retrieval respectively. Here MEG was used to contrast the two views, 

exploring how taxonomic and thematic relationships, as well as strong and weak thematic 

associations, are reflected in oscillatory power changes over time. I examined the brain’s response 

to a word preceded by a related prime word, either taxonomically, or thematically related (strongly 

or weakly) to the target. Virtual electrodes were placed in ATL, pMTG, LIFG and AG, to 

characterise the response of each site in the frequency domain, in both evoked power (phase-locked 

to the stimulus) and total power (which combines both phase-locked and non-phase locked 

components). While evoked power analyses showed taxonomic-only effects in ATL and LIFG, 

predominantly thematic effects in pMTG, and both taxonomic and thematic effects in AG, total 

power analyses revealed that all sites responded significantly to both types of relationships, with 

some variation in timing and frequency of the oscillatory response. The contrast of strong and weak 

associations implicates ATL and AG in automatic retrieval, with pMTG supporting controlled 

retrieval of weak associations. The MEG data provided here shows a recruitment of known sites 

within the hub-and-spoke model of semantic cognition for all conditions, with a qualitative 

difference in the form of the response.  
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Introduction 

Semantic memory encompasses our knowledge of the meanings of words, objects, sounds and 

people (Visser et al., 2012; Patterson, Nestor & Rogers, 2007; Pulvermüller, 2013). This includes 

our ability to identify objects and the categories that they belong to (taxonomic relationships), as 

well our knowledge about how objects are related in time and space, in an event or context 

(thematic relationships). Items that are taxonomically related, such as ‘dog’ and ‘mouse’, fall 

within the same superordinate category, and share attributes such as fur, tail and four legs (i.e., they 

have featural overlap). Thematically-associated items do not necessarily share physical features but 

are used or found together: for example, ‘dog’ and ‘leash’ co-occur within the context of dog 

walking (Lin & Murphy, 2001; Kalénine et al., 2012; Barsalou, 2013).  

There is considerable debate about the cognitive and neural basis of these different aspects 

of knowledge – with some accounts proposing a single semantic store encompassing all aspects of 

knowledge (e.g., the hub & spokes model of Patterson et al., 2007), and others suggesting that 

distinct neurocognitive mechanisms support categorical and thematic knowledge (Schwartz et al., 

2011; de Zubricaray, Hansen & McMahon, 2013). The hub and spoke model of semantic cognition 

postulates that an anterior temporal lobe (ATL) ‘hub’ integrates different sources of modality-

specific information (colour, shape, praxis, movement etc.) captured by sensory-motor ‘spokes’ 

(Patterson, Nestor & Rogers, 2007; Rogers et al., 2006) to form amodal concepts. This view was 

originally proposed to explain the pattern of multimodal semantic deficits shown across tasks by 

patients with semantic dementia (SD) following atrophy and hypometabolism in the ATL, and is 

consistent with neuroimaging and TMS evidence implicating ATL in semantic representation in 

healthy participants (Pobric et al., 2007; 2010a; 2010b). Computational instantiations of the hub 

and spoke model show more similar patterns of activity across the hub units for related concepts 

that share more features (McClelland & Rogers, 2003). However, it is not fully articulated how this 

approach might capture thematic knowledge, since the ‘spokes’ are simple sensory and motor 

features, and computational modelling has focussed on taxonomic relationships.  

Information about where objects are typically found and how they are used could be 

integrated in ATL along with their physical properties – by this view, the ATL would support the 
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processing of both taxonomic and thematic relationships. This view is supported by studies of 

semantic dementia patients showing degradation of both aspects of knowledge (Bozeat et al., 2000; 

Hoffman, Jones & Lambon Ralph, 2013). Alternatively, a dual hub framework proposes that ATL 

underpins taxonomic knowledge while temporoparietal areas, such as angular gyrus and posterior 

middle temporal gyrus, extract event associations and thematic knowledge (Schwartz et al., 2011; 

de Zubicaray, Hansen & McMahon, 2013). This perspective was originally motivated by 

neuropsychological research showing that patients with lesions in temporoparietal areas make more 

thematic errors in picture naming (e.g., dog  bone), while those with lesions in ATL produce 

more categorical errors (e.g., dog  cat; Schwartz et al., 2011). A similar observation was reported 

by Jefferies and Lambon Ralph (2006), yet explained in a different way. SD patients with ATL 

atrophy were compared with semantic aphasia (SA) patients, who had left hemisphere strokes 

affecting prefrontal and/or temporoparietal cortex. Patients with SD produced more superordinate 

taxonomic responses (e.g., dog  animal), following degradation of fine-grained conceptual 

information (Patterson, Nestor & Rogers, 2007). In contrast, SA patients produced more thematic 

responses and showed a pattern of impairment on semantic tasks which suggested deficient control 

of semantic retrieval: unlike SD cases, they were inconsistent when the same concepts were probed 

in tasks with different control demands and they showed strong effects of cues and miscues on 

semantic retrieval. Jefferies and Lambon Ralph (2006) noted that these thematic errors (such as 

responding ‘leash’ to a picture of a dog) imply the preservation of semantic information – since to 

produce these errors, it is necessary to retain information that leash is associated with dogs. They 

instead proposed that SA patients have difficulty controlling retrieval to focus on the picture name 

as opposed to strong but irrelevant associations. Thus neuropsychological dissociations have been 

interpreted in terms of either damage to distinct semantic stores for thematic and taxonomic 

knowledge, or in terms of loss of knowledge vs. damage to control systems. 

Neuroimaging evidence has also implicated temporoparietal areas in thematic processing, 

though there is some diversity in the specific areas identified, with studies reporting activation in 

angular gyrus, pMTG and superior temporal sulcus (Kalenine et al., 2009; Schwartz et al., 2011; 

Sass et al., 2009). Nevertheless, this reported distinction remains controversial, with recent fMRI 

(Jackson et al., 2015), MEG (Lewis, Poeppel and Murphy, 2015) and TMS studies (Davey et al., 
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2015) showing common recruitment of temporoparietal cortex (AG and pMTG) for taxonomic and 

thematic decisions. Lewis et al. (2015) also found greater engagement of left ATL in taxonomic 

processing, and thus their results were partially consistent with Schwartz et al.’s proposal, as was 

an eye-tracking and lesion mapping study of taxonomic and thematic processing, finding that TPJ 

lesions lead to reduced and delayed processing of thematic associations (Mirman & Graziano, 

2012). Studies have also found stronger recruitment of visual and executive control areas for 

taxonomic knowledge: this may reflect the visual similarity of objects belonging to the same 

category (Kalénine et al., 2009; Kotz et al., 2002), and increased cognitive demands (Sachs et al., 

2008a; Sachs et al., 2008b; Sass et al., 2009) – consistent with behavioural work showing that 

people preferentially select thematic links over taxonomic ones (Barsalou, 2013).  These 

neuroimaging studies have not commonly observed activation in ATL. Standard fMRI acquisition 

has a low signal-to-noise ratio in this region, due to magnetic susceptibility artefacts which produce 

signal loss and distortion (Visser, Jefferies & Lambon Ralph, 2009). However, a recent study using 

fMRI parameters optimised for preserving signal in ATL identified a common response to both 

categorical and thematic relationships in this region, consistent with the predictions of the single 

hub theory, in which the ATL supports semantic representation and links irrespective of 

relationships, and parts of temporoparietal areas (namely pMTG) supports controlled retrieval 

(Jackson et al. (2015).  

These studies implicate a common set of cortical regions – including ATL, AG, pMTG and 

LIFG – in multimodal conceptual processing but there remains little consensus about whether 

functional divisions are best understood in terms of differences in representational content or 

process. In additional to the proposed distinction between ATL and temporoparietal areas for 

taxonomic and thematic knowledge, an alternative organisational framework has linked AG in 

conjunction with ATL to relatively automatic patterns of retrieval, such as spreading activation 

between highly related concepts (Davey et al., 2016; Humphreys & Lambon Ralph, 2014). A recent 

TMS study demonstrated a dissociation between AG and pMTG in the processing of strong and 

weak thematic relationships, with TMS to AG impairing retrieval of strong thematic associations, 

and stimulation of pMTG leading to impaired performance on weakly related thematic associations 

(Davey et al., 2015). PMTG’s involvement in controlled semantic retrieval is further supported by 



91 
 

it being co-activated with LIFG in situations with greater semantic control demands (Badre et al., 

2005; Noonan et al., 2013), that TMS to both pMTG and LIFG produce similar deficits on 

processing of weakly related semantic relationships (Whitney et al., 2010), and neuropsychology 

data from SA patients who show deficits in controlled, but not more automatic aspects of semantic 

retrieval (Jefferies & Lambon Ralph, 2006). AG’s role in automatic aspects of retrieval was 

demonstrated by the same TMS study that implicated pMTG in controlled retrieval (Davey et al., 

2015), and has also been shown to have overlapping activation for automatic semantics, episodic 

retrieval, numerical fact retrieval, and overlaps with the default mode network (DMN) (Humphreys 

& Lambon Ralph, 2014). 

These observations potentially provide an alternative way of thinking about the 

neuropsychological findings of Schwartz et al., and fMRI studies dissociating taxonomic and 

thematic judgements. Many taxonomic relationships also share a thematic relationship; e.g., cat and 

dog are both pets, found in similar places and contexts, and this makes these items easy to process. 

When taxonomic relationships do not also share thematic links (e.g., ‘mole’ and ‘cat’), the task 

becomes much harder. Thus, in studies eliminating thematic associations for taxonomic trials, 

stronger recruitment may be seen in temporoparietal regions linked to semantic control, such as 

pMTG (along with LIFG). In studies that fail to remove thematic links for taxonomically-linked 

items (e.g., dog-cat), there may be recruitment of AG in the taxonomic condition due to automatic 

retrieval. Indeed, Jackson et al. (2015) found that differences between taxonomic (mole-cat) and 

thematic judgments were eliminated when adding reaction time as a covariate (Jackson et al., 

2015).  

To overcome these issues, this study was designed with one taxonomic condition and two 

thematic conditions (high and low association strength). The thematic condition with low 

association strength was matched in difficulty to the taxonomic condition, while the comparison 

with a thematic condition with strong associations allowed me to consider influence of control 

demands. I used magnetoencephalography (MEG) which has high sensitivity to transient effects, 

and can characterise power differences in time and frequency to provide a clearer image of how 

areas are recruited. There have been very few MEG studies of this issue (cf. Lewis, Poeppel & 

Murphy (2015)), and none that have previously characterised effects of semantic content and 
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controlled processing requirements in time-frequency space. Here beamforming was used to 

identify the neural source of changes in total oscillatory power. Thus I was able to examine both 

evoked responses (phase locked to the onset of the stimulus) and the induced power (which is not 

phase-locked and might be sensitive to memory retrieval effects).  

I used this method to test contrasting predictions about the functional roles of ATL, pMTG 

and AG, and to compare the responses of two sites implicated in automatic semantic retrieval 

(ATL, AG) with a site postulated to be engaged in controlled semantic retrieval (pMTG). The dual-

hub theory of semantic cognition predicts that ATL is important for taxonomic relationships while 

left pMTG and AG support thematic knowledge. Alternatively, the Controlled Semantic Cognition 

framework (Lambon Ralph et al., 2017), postulates one representational hub (ATL) underpinning 

knowledge of all types of relationship, with pMTG supporting controlled retrieval for more 

difficult judgements.  

 

Methods 

Participants:  

Participants were 19 right-handed native English speakers, with normal or corrected-to-

normal vision, and no history of language disorders (6 males, mean age 26.7, range 18-37). The 

study was conducted in accordance with the Research Ethics and Governance Committee of the 

York Neuroimaging Centre, University of York, UK, and written informed consent was obtained. 

20 participants were scanned, but one participant was excluded because of low accuracy (a 

minimum of 75% accuracy was required). 

Materials:  

There were three experimental conditions, strong thematic associations, weak thematic 

associations, and taxonomically related. To generate item pairs of comparable difficulty, 

participants who did not take part in the MEG experiment (n=30) rated word pairs on three 

questions relating to 1: Contextual co-occurrence (thematic association): “How associated are these 
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items? For example, are they found or used together regularly?”; 2: Physical similarity 

(taxonomic): “Do these items share similar physical features? For example, do they have similar 

physical (visual/textural) characteristics?”; and 3: Ease of making the judgement (for both thematic 

and taxonomic decisions): “How easy is it to identify a connection between the words (either in 

terms of them being associated as in Q1, or sharing features, as in Q2)?”. Ratings were made on a 

Likert scale from 1 to 7 (1 = Not at all, 7 = Very), results can be seen in Table 3.1. Word pairs were 

selected if they were rated highly on one type of relationship and not the other. The conditions also 

differed on difficulty (rating 3): taxonomic and weak thematic association decisions were difficult, 

while strong thematic associations were easier to identify. There was a significant difference on 

question 3 between the strong and weak thematic conditions, and between the strong thematic and 

taxonomic conditions, but not between the taxonomic and weak thematic conditions (see Table 

3.1). 95 target words were presented (these were the same across conditions), with 95 

taxonomically-related primes, 95 strongly thematically associated primes and 95 weakly 

thematically associated primes. There were also 100 unrelated trials, which presented the same 95 

target words, plus 5 additional targets. Primes for this condition were randomised prime words 

from the other conditions (removing unintended associations/similarity and repetitions). Stimuli 

were matched for frequency, length and imageability, and no significant differences were found 

between experimental conditions or targets (see Table 3.2). 
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Table 3.1: TOP: showing means and standard deviations for question 1, 2 and 3 (explained in 

Materials above). BOTTOM: Showing t-tests between conditions of scores on each question. 

 

Condition Measure Q1 Q2 Q3 

Taxonomic Mean 2.73 4.79 5.51 

SD 0.98 1.05 0.95 

Strong thematic Mean 6.48 1.46 6.01 

SD 0.58 0.85 0.77 

Weak thematic Mean 6.00 1.83 5.76 

SD 0.97 1.24 1.03 

T-tests     

Taxonomic vs. strong thematic p<.001 p<.001 p<.001 

Taxonomic vs. weak thematic p<.001 p<.01 p<.05 

Strong thematic vs. weak thematic p<.001 p<.001 P=0.09 
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Table 3.2: Frequency, length and imageability values for each condition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.3: T-tests of Frequency, length and imageability values for each condition 

 

 

 

 

Measure Condition Mean SD 

Frequency 

 

 

 

 

Length (letters 

 

 

 

Imageability 

Taxonomic 21.854 43.496 

Strong thematic 37.999 71.115 

Weak thematic 29.927 40.103 

Taxonomic 5.400 1.789 

Strong thematic 5.537 1.668 

Weak thematic 5.500 1.740 

Taxonomic 569.029 61.420 

Strong thematic 575.698 53.145 

Weak thematic 560.977 60.072 

Measure Contrast T Sig (2-tailed) 

Frequency Taxonomic/strong -1.757 0.083 

 Taxonomic/weak -1.326 0.187 

 Strong/weak 1.724 0.071 

Length (letters) Taxonomic/strong -0.545 0.557 

 Taxonomic/weak -0.390 0.611 

 Strong/weak 0.149 0.965 

Imageability Taxonomic/strong -0.715 0.617 

 Taxonomic/weak 0.769 

 

0.466 

 Strong/weak 1.569 

 

0.132 
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In order to ensure the taxonomic and weak thematic conditions were successfully matched for 

difficulty, 5 participants were piloted outside the scanner (these did not take part in the main 

experiment). Though this does not allow statistical power to do contrasts at the group level, the 

conditions were contrasted within each participant, and found no difference between taxonomic 

and weak thematic associations in RT (t = -0.84183 to 0.36412; p > .4). Figure 3.1 shows RT data 

for these five participants. Two participants showed a difference in accuracy between the 

taxonomic and weak thematic condition, details can be seen in Tables 3.4 and 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Reaction time data from 5 participants, with RT in ms on the y-axis and condition on 

the x-axis. Error bars display standard error of the mean. 
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Table 3.4: Accuracy data for 5 participants

 

 

 

 

Table 3.5: Chi-square tests of accuracy differences between conditions for 5 participants 

 

 

 

 

 

 

Participant Taxonomic Strong thematic Weak thematic 

 Mean SD Mean SD Mean SD 

1 0.94 0.22 0.96 0.17 0.91 0.33 

2 0.86 0.34 0.86 0.25 0.82 0.37 

3 0.89 0.30 0.93 0.21 0.87 0.32 

4 0.94 0.27 0.94 0.19 0.76 0.27 

5 0.92 0.16 0.90 0.22 0.90 0.30 

Participant Taxonomic vs. 

Strong thematic 

Strong thematic vs. 

Weak thematic 

Taxonomic vs.Weak 

thematic 

 χ² p χ² p χ² p 

1 0.500 0.366 5.763 <.05 3.166 0.063 

2 0.001 0.572 0.367 0.343 0.405 0.332 

3 1.047 0.224 2.212 0.101 0.230 0.400 

4 0.001 0.620 13.362 <.01 13.571 <.01 

5 0.500 0.366 7.825 <.01 4.846 <.05 
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Procedure:  

Each pair was presented one word at a time. The target word was the same in each of the 

conditions, with the prime varying according to condition, ensuring that the visual and lexical 

features of the stimuli being compared were the same. Nonius lines (acting as a fixation cross) were 

present at all times. Before each trial, there was a rest period of 800 ms, plus an unpredictable 

jittered interval from 0 to 1000ms (mean 500ms), designed to reduce anticipatory responses. Prime 

words were presented for 200ms, there was an inter-stimulus interval (ISI) of 150ms, and then the 

target appeared for 200ms followed by a 1000ms interval. A short ISI has been shown to produce 

priming effects for both thematic and taxonomic associations (Jones & Golonka, 2012). After each 

trial, the nonius lines changed to a dimmer red (for 1000 ms) and participants were encouraged to 

confine blinking/swallowing to this period. An illustration of the procedure can be seen in Figure 

3.2. For analysis purposes, the time window of 700 to 500ms before target onset was chosen as the 

passive baseline. Three versions of the experiment, each with three blocks, were created. Trials 

were pseudorandomised within blocks, and block sequence was randomised between participants. 

On an added 10% of trials, participants were cued to make an overt response by the presence of a 

question mark (on screen for 1000ms) after the target presentation. They pressed one of two 

buttons with their left hand to indicate if the two words were related. These ‘catch trials’ were used 

to monitor performance in the task, and were disregarded from the MEG analysis.  

Stimulus presentation: 

The experiment was carried out in a dark, magnetically shielded room. Presentation v 16.1 

(Neurobehavioral Systems) was used to present the stimuli and to record responses on catch trials. 

Stimuli were back-projected onto a screen with a viewing distance of ~75 cm, so that letter strings 

subtended ~1˚ vertically and ~5˚ horizontally at the retina. I presented light grey letters on a dark 

grey background such that the screen luminance was in the mesopic range, and a neutron density 

filter was used to reduce glare. 

Data collection:  
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Data collection followed the same procedure as Chapter 2. Statistical analyses included 

only datasets with at least 75% of trials retained after artefact rejection. 19 datasets reached this 

criterion. On average, 10.9% of trials were rejected (min 4.6% max 25%). 

MEG analysis:  

The MEG analysis followed the same procedure as Chapter 2. Firstly, whole-brain analyses 

examined the neural response at a coarse frequency and time resolution for the related condition 

(taxonomic, strong and weak thematic conditions collapsed).  Secondly, the activity of specific 

cortical regions engaged by the task was interrogated at a finer frequency and temporal scale. In 

these analyses, Points of Interest (POI) were defined and examined with virtual electrodes (VEs) at 

these points, which were selected on the basis of their importance to theories of taxonomic and 

thematic semantic processing, and defined with reference to local peaks in the whole-brain 

beamforming data. All information necessary to reproduce these analyses is in the public domain 

(http://vcs.ynic.york.ac.uk/docs/naf/index.html).   
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Figure 3.2: Illustration of strong thematic, weak thematic and taxonomic trials, with illustrations of contrasts (TOP), and the 3000 ms around trial presentation 

(BOTTOM). The words are not to scale; for visibility they have been made larger and white, while in actual experimental settings they were a dim grey colour. 
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Catch-trial results: 

The behavioural data from catch- trials showed a significant difference in RT between the 

strong and weak thematic, as well as the weak thematic and unrelated condition. No other 

differences were found, which is particularly relevant for the taxonomic/weak thematic contrast, as 

it indicates that the difficulty matching of these conditions was successful. For accuracy there was a 

significant difference between the strong and weak thematic conditions, as well as between the 

strong and taxonomic, and the weak and unrelated conditions (see Figure 3.3 and Table 3.6).  

 

Figure 3.3: RT for catch-trial data for the taxonomic, strong thematic, weak thematic and unrelated 

conditions respectively. 
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Table 3.6: t-tests for RT and accuracy data from catch-trials collected during MEG recording. 

 

 

 

 

Whole brain beamforming:  

The brain’s response to the task was characterised within broad frequency ranges and 

averaging across 200ms time periods, in a procedure identical to Chapter 2. Here I examined the 

response of the whole brain to the related trials (i.e., the response to the onset of the second word of 

each pair, collapsing the taxonomic and strong and weak thematic association items). The purpose 

of this analysis was to identify brain regions important for the task in general terms, so that relevant 

sites could be investigated in more detail in a points-of-interest analysis (see below). The main 

research question concerned how the brain’s response to the second word (i.e., the target) changed 

as a function of its relationship to the first word (the prime). I therefore analysed the whole-brain 

beamforming data by contrasting “active” and “passive” time windows of 200ms duration from 

target onset (0-200ms, 200-400ms, and 400-600ms) until 600ms after target onset. In the passive 

time window (-700 to -500ms relative to target onset), participants observed the (always present) 

Measure Contrast T Sig (2-tailed) 

Reaction time Strong/Weak -3.183 <.01 

 Strong/ Taxonomic -2.561 <.05 

 Strong/Unrelated -0.353 0.726 

 Weak/ Taxonomic 0.593 0.557 

 Weak/Unrelated 2.259 <.05 

    

Accuracy Strong/Weak 5.440 <.001 

 Strong/ Taxonomic 4.569 <.001 

 Strong/Unrelated -0.390 0.0699 

 Weak/ Taxonomic -1.002 0.323 

 Weak/Unrelated -5.410 <.001 
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nonius (fixation) lines. The 200-400ms window was used to define points of interest for more 

detailed time-frequency analysis, the details of which are the same as in Chapter 2. 

 

Time-Frequency Analysis: Point of Interest (POI):  

Separate beamformers were used to reconstruct the neural activity for three points of 

interest (POI), characterising the response of these regions over time and frequency with greater 

precision. The MNI coordinates for these POIs were defined within pre-specified regions identified 

from the literature, using local peaks of maximum activation in the group level, whole brain 

analysis. These peaks were taken from the “Related” condition (collapsing taxonomic and strong 

and weak thematic trials) and the 200-400ms time window – allowing me to capture stimulus-

driven effects, while still retaining confidence that semantic processing would be ongoing 

(Pulvermüller, Assadollahi, & Elbert, 2001; Kutas & Hillyard, 1980; Clarke et al., 2011; Yvert et 

al., 2012).  

Brain regions for POI analysis were constrained by the literature: I searched for local 

maximum power changes in four brain regions implicated in conceptual, taxonomic and thematic 

processing by the literature – namely left anterior temporal lobe (ATL), left posterior middle 

temporal gyrus (pMTG), and angular gyrus (AG). Analysis revealed maximum power change 

within ATL, and pMTG. Though AG did not show an individual max peak, it fell within the region 

of significant activation. Therefore, VEs were placed at max peak coordinates in ATL and pMTG 

that showed maximal oscillatory power across conditions, in line with previous studies using this 

analysis pipeline (Urooj et al., 2014), while for AG, the VE site was placed at coordinates taken 

from the recent meta-analysis of parietal lobe function (Humphreys & Lambon Ralph, 2014). 

The data supported placement of VEs at the following locations: left temporopolar cortex 

(MNI coordinates -34,20,-32), pMTG (MNI coordinates -50,-46,-6), and AG (MNI coordinates -

48,-68,28). The temporopolar peak in ATL was close to coordinates reported previously for verbal 

semantic tasks (Binney et al., 2010). For pMTG, the peak was found in a more medial region, so 

was projected laterally towards the surface (actual max power change at MNI coordinates -34,-46,-

12). The more lateral coordinates correspond well to an area consistently activated by high > low 



104 
 

semantic control demands, as determined by a recent meta-analysis (Noonan et al., 2013). For an 

illustration of VE placement, see Figure 3.4.  

The analysis procedure for total power is the same as in Chapter 2, though in this chapter 

the virtual electrode analyses examined both evoked and total power. Evoked power responses are 

locked to the stimulus in both time and phase, whereas total power includes the non-phase-locked 

(induced), as well as the phase-locked (evoked) response. Both analyses are reported here since 

evoked power changes are expected to be particularly sensitive to the brain’s response to the onset 

of visual stimuli, and this response may be attenuated by semantic priming, while total power may 

be more sensitive to higher-level cognitive effects reflecting sustained patterns of semantic retrieval 

(which may be increased by semantic priming), and could potentially show qualitative differences 

in taxonomic and thematic processing. In addition, including analyses of evoked power in this 

particular experiment allows me to relate the findings to a recent MEG study that contrasted 

thematic and taxonomic decisions again in the evoked domain (Lewis, Poeppel & Murphy, 2015).  

For evoked power, covariance matrices for the whole epoch were used to generate time-

frequency plots for each condition. The evoked signal was examined by computing the average 

signal in the time domain, for each participant, for each direction separately. The time-frequency 

representation of power in each condition was then averaged, for all participants, for each direction 

(x, y and z) separately. The three directions were then summed and averaged across participants to 

compute a grand average for each condition. Statistical comparisons between time-frequency 

representations were done using PROC MIXED in SAS (SAS institute Inc., North Carolina, USA), 

computing a generalised linear mixed model including repeated measures factors (to account for 

the fact that each participant’s time-frequency plot is made up of multiple time-frequency 2D 

arrays). Time-frequency covariance was controlled for by assuming the estimates of power 

followed a Gaussian distribution and including a Gaussian link function in the model. For each ROI 

and each condition, mean power was computed in 2.5Hz and 25 ms tiles. The analysis included 

tiles from 0 to 600 ms after the onset of the second word and from 5-50Hz. Here LS means of 

signal change significantly different between conditions are reported. There are two statistical 

contours on the percentage signal change figures for evoked power; black and white. Black lines 

encompass time-frequency tiles fulfilling both of the following criteria: a) the difference between 
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conditions reached p < 0.05; and b) any region in the time-frequency plot defined by (a) that also 

showed a response that was significantly different from baseline in at least one of the two 

contributing conditions, whereas white lines mark any region in the time-frequency plot that shows 

significant change in both conditions (either in power increase or decrease). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Showing POI placement for virtual electrode for three sites; left ATL (MNI 

coordinates -34,20,-32), pMTG (MNI coordinates 50,-46,-6), and AG (MNI coordinates -48,-

68,28). 
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Results 

These analyses contrast the views of the Controlled Semantic Cognition framework and the 

dual-hub theory. Briefly summarised, if the dual-hub theory is correct, ATL would be expected to 

deal predominantly (if not exclusively) with taxonomic associations, and pMTG and AG to deal 

predominantly (if not exclusively) with thematic associations. Furthermore, pMTG and AG should 

behave similarly due to lack of differentiation between them in the dual-hub theory (where the 

thematic hub is postulated to be located in the TPJ, which encompasses both pMTG and AG).  

Alternatively, if the Controlled Semantic Cognition framework is correct, it would be expected that 

ATL and AG process all types of associations, but show greater power change in the strong as 

compared with the weak thematic condition. In contrast, pMTG would be expected to deal with all 

associations, but show greater power change in the weak as compared with the strong thematic 

condition, and a comparable response in the taxonomic and weak thematic conditions due to 

increased semantic control demands. 

 

Whole brain beamforming:  

There were extensive changes in total oscillatory power from 200-400 ms post-target onset (see 

Figure 3.5). From 5-35Hz, all three conditions were associated with reductions in total oscillatory 

power relative to the baseline period, particularly visual areas and pMTG. From 35-50 Hz, there 

was also a strong response in a more dorsal region of left lateral cortex, in inferior frontal sulcus, 

for the thematic weak condition, and a similar area responded the taxonomic condition from 25-35 

Hz. These are all cortical areas that are all known to contribute to semantic cognition. These 

decreases in power are likely to have followed disruption of strong resting rhythms following 

increases in neural activity not synchronised to the stimulus in time or phase (Hanslmayr et al., 

2012); reductions in power have also been shown to correlate with an increased BOLD response in 

fMRI (Hanslmayr et al., 2011; Singh et al., 2002; Hall et al., 2014), and a recent review proposed 

that decreases in power reflect active engagement of neocortex in the encoding and retrieval of 

memories (Hanslmayr, Staresina & Bowman, 2016).  
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Figure 3.5: Showing whole brain beamforming for three experimental conditions in the four frequency bands analysed. T-values were converted to p-values to be shown 

on the same scale (p=.05 to p=.000001). Images created using MRICroN software (Rorden, Karnath & Bonhila, 2007).  
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POI results 

Whole epoch data for each site:  

Evoked and total power time-frequency plots of the whole epoch (related condition –three 

experimental condition collapsed) were examined for each POI. Figure 3.6 shows the response to 

the prime (1st word) and related targets (2nd word) in each semantically-related pair. For the evoked 

power plots, the scale goes from white to red; with red colours indicating higher oscillatory power 

(evoked power changes only occur in a positive direction). For the total power plots, yellow-red 

colours indicate power increases, whereas cyan-blue colours indicate power decreases relative to 

the passive baseline period. Green indicates ‘no change from baseline’.  

In evoked power, a strong response following the second word was seen in all four sites. In 

total power, a low frequency (~6-12Hz) power increase, starting around target onset and lasting 

until 500-600ms (with some variation between sites) was seen in all four POIs. In pMTG and AG I 

also saw the beginning of a reduction in total power towards the end of the analysis window 

(~500ms). This is surprising in light of priming literature that predicts a reduction of power to the 

target (relative to the prime) (Düzel, Richardson-Klavehn, Neufang, Schott, Scholz & Heinze, 

2005; Kujala, Vartiainen, Laaksonen & Salmelin, 2012). On the other hand, semantically-related 

(as compared with unrelated) word pairs can elicit stronger activation in areas known to be 

involved in semantic processing, and it is possible that it is these effects driving these results 

(Binder, 2016). 
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Figure 3.6: TOP ROW: Evoked (i.e., phase-locked) and BOTTOM ROW: Total oscillatory power (i.e., non-phase locked) across the whole epoch for related trials 

only. Presentation of the prime word (first word of the pair) is shown with white vertical lines, while presentation of target word (second word of the pair) is 

illustrated with black vertical lines. The three columns show time-frequency plots for three points of interest in the left hemisphere, ATL, pMTG, and AG. The TF 

plots of evoked power for each condition show raw power change multiplied by 10^11; TF plots of total power for each condition show percentage signal change 

relative to a passive baseline taken 500-700 ms prior to target onset. Total power plots can be in the form of increase or decrease in power, evoked plots for each 

condition show only increase. For this reason, I display TF plots of evoked power in each condition in a different colour scale to the total power plots. 
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ATL: 

Taxonomic vs. thematic relationships 

The evoked plots (Figure 3.7) show an early significant difference (50-150 ms) and a later 

component (~450-600ms), both effects driven by greater oscillatory power in the taxonomic 

condition. The earliest difference in total power between conditions can be seen from 0-50ms, 

centred around 35Hz, reflecting a small power increase to the taxonomic condition, immediately 

followed by a sustained power decrease. Additionally I saw a power increase to the thematic 

condition, reaching significance at ~300ms (see black significance lines), sustained until around 

550 ms. There is also a power increase in both conditions between 6-8 Hz from 50-450 ms, denoted 

by white significance lines.  

Strong vs. weak thematic relationships 

The strongest evoked response to both strong and weak thematic conditions in ATL 

is sustained from 200-600ms at 15Hz (see Figure 3.8). This peak response is stronger in 

the strong thematic trials, relative to the weak thematic trials, but there are also some 

regions of the evoked response that are stronger for weaker associations. The total power 

contrasts support the view that ATL largely shows a stronger response to strong thematic 

than low trials. The peak response at 15Hz, again from 200-600ms was stronger for the 

strong thematic trials. However, there was a higher frequency response (around 25Hz) that 

was briefly stronger for thematic weak trials, around 300ms after the onset of the target 

word. Though the area of significant difference is brief in duration, this is due to there 

being a similar response of power increase in the high condition (see white significance 

lines at ~500ms), though it starts earlier and is stronger in the weak thematic condition. 

Given that the ATL arguably plays a role in automatic retrieval, this is expected since this 

is likely the process involved in the strong condition. There is also a low frequency (6-

9Hz) power increase in both conditions at 225-425ms (see white significance lines).  
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Summary: 

Early activation of ATL fits well with literature describing ATL activation within 120ms 

(Clarke et al., 2013; Fujimaki et al., 2009; Yvert, Perrone-Bertolotti, Baciu & David, 2012), and 

research finding ATL activation in the N400 time window (McCarthy, Nobre, Bentin & Spencer, 

1995; Marincovic et al., 2003). Taking the two contrasts together, two conclusions can be made, 

namely i) Though there is a difference in the direction of power change (increase to thematic and 

decrease to taxonomic), ATL responds significantly to both conditions, inconsistent with the idea 

of this region as a taxonomic-only hub, and ii) the strong/weak contrast elicited more effects driven 

by the strong condition, consistent with the idea of this region being involved in automatic 

semantic retrieval.  
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Figure 3.7: Evoked power: Difference TF plot: Signal change in taxonomic and thematic conditions relative to each other. Black lines on the plots indicate a 

statistical threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Taxonomic TF plot (middle panel): Oscillatory 

power plot of grand average of the taxonomic condition, multiplied by 10^11. Thematic TF plot: Oscillatory power plot of grand average of the thematic condition, 

multiplied by 10^11. Scale from white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between 

taxonomic and thematic conditions. Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and 

ii) a significant change from baseline in at least one of the two conditions. Taxonomic TF plot: Percentage signal change in the taxonomic condition (relative to 

baseline). Thematic TF plot: Percentage signal change in the thematic condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: 

stars indicate stronger effects in the taxonomic condition, while triangles indicate stronger effects in the thematic condition.   
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Figure 3.7: Evoked power: Difference TF plot: Signal change in strong and weak conditions relative to each other. Black lines on the plots indicate a statistical 

threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Strong TF plot (middle panel): Oscillatory power plot of grand 

average of the strong condition, multiplied by 10^11. Weak TF plot: Oscillatory power plot of grand average of the weak condition, multiplied by 10^11. Scale from 

white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between strong and weak conditions. 

Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and ii) a significant change from baseline 

in at least one of the two conditions. Strong TF plot: Percentage signal change in the strong condition (relative to baseline). Weak TF plot: Percentage signal change in 

the weak condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: stars indicate stronger effects in the strong condition, while 

triangles indicate stronger effects in the weak condition.   
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PMTG:  

Taxonomic vs. thematic relationships 

In the evoked analysis, pMTG showed a broadband and sustained response in both 

conditions, which was stronger for thematic decisions, consistent with the purported role 

for this site in event semantics. However, the total power plot showed a strong reduction in 

oscillatory power in response to taxonomic decisions relative to baseline from 200-400ms 

at 20Hz: this type of response is thought to reflect an increase neural activity that is not 

synchronised in time and phase (Hanslmayr et al., 2012; 2016), as well as power increase 

to the thematic pairs in the same time window. Furthermore, both conditions also showed 

an early and sustained difference from baseline in the same region of time-frequency 

space, both in power increase (white significance lines in Figure 3.9). These data do not 

strongly support the view that pMTG plays a selective role in thematic, but not taxonomic 

retrieval. 

Strong vs. weak thematic relationships 

Evoked shows similar response sustained for both conditions which is significantly 

stronger in thematic strong trials (see Figure 3.10). However, total power plots show that much of 

the response in pMTG is not aligned in time and phase, and these effects at a low frequency in the 

theta band, and around 20 and 40Hz, are stronger for the thematic weak trials, consistent with the 

purported role of pMTG in controlled semantic retrieval.  PMTG also showed the earliest 

difference between conditions out of all the POIs, in the form of greater power increase to the weak 

condition. The general TF response is furthermore similar between the two conditions, and the 

differences are expressed as earlier and greater power change in the low condition, rather than a 

different response altogether (see white significance lines). 

Summary 

This site showed early and sustained power increase to both taxonomic and thematic 

conditions, as well as an overlapping area of significant activation in the form of power decrease to 

taxonomic pairs and power increase to thematic pairs. Though the strong/weak contrast showed 
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stronger evoked power in the strong condition, total power analyses showed earlier and greater 

power increase to the weak condition. Taken together, these results do not support pMTG as a 

thematic-only site, but rather one that responds with greater power change when conditions require 

higher control demands, possibly with a qualitatively different response depending on relationship 

type. 
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Figure 3.7: Evoked power: Difference TF plot: Signal change in taxonomic and thematic conditions relative to each other. Black lines on the plots indicate a 

statistical threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Taxonomic TF plot (middle panel): Oscillatory 

power plot of grand average of the taxonomic condition, multiplied by 10^11. Thematic TF plot: Oscillatory power plot of grand average of the thematic condition, 

multiplied by 10^11. Scale from white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between 

taxonomic and thematic conditions. Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and 

ii) a significant change from baseline in at least one of the two conditions. Taxonomic TF plot: Percentage signal change in the taxonomic condition (relative to 

baseline). Thematic TF plot: Percentage signal change in the thematic condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: 

stars indicate stronger effects in the taxonomic condition, while triangles indicate stronger effects in the thematic condition.   
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Figure 3.7: Evoked power: Difference TF plot: Signal change in strong and weak conditions relative to each other. Black lines on the plots indicate a statistical 

threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Strong TF plot (middle panel): Oscillatory power plot of grand 

average of the strong condition, multiplied by 10^11. Weak TF plot: Oscillatory power plot of grand average of the weak condition, multiplied by 10^11. Scale from 

white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between strong and weak conditions. 

Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and ii) a significant change from baseline 

in at least one of the two conditions. Strong TF plot: Percentage signal change in the strong condition (relative to baseline). Weak TF plot: Percentage signal change in 

the weak condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: stars indicate stronger effects in the strong condition, while 

triangles indicate stronger effects in the weak condition.   
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AG: 

Taxonomic vs. thematic relationships 

 AG showed stronger changes in oscillatory power for the taxonomic decisions 

across both analyses, inconsistent with the view that this region is a “thematic hub”. This 

difference was apparent soon after stimulus presentation in both evoked and total power, 

although subsequent effects in both analyses did show the pattern of greater power changes 

for the thematic trials (by 300ms in the evoked response, and by 400ms in total power). 

The low-frequency response seen in the other ROIs is present here also, though is delayed 

compared to the other sites, starting at ~200ms and lasting throughout the analysis window 

(see white significance lines in Figure 3.11). 

Strong vs. weak thematic relationships 

In evoked power analyses AG shows effects predominantly driven by the strongly related 

trials, with one effect centred around ~200ms driven by the weakly related condition. Total power 

analyses also revealed early effects driven by the strong thematic pairs, with a later component 

driven by the weakly related condition, in the form of power increase and power decrease 

respectively. Additionally, a sustained low frequency power increase was seen throughout the 

analysis window in both conditions (see white significance lines in Figure 3.12). 

Summary 

 Angular gyrus showed effect driven by both taxonomic and thematic stimuli, though unlike 

the other sites, this was in the form of power increase to the taxonomic condition and power 

decrease to thematic relationships. The strong/weak contrast revealed an early power increase to 

strong thematic links, and a later power decrease to weakly related pairs. Taken together, these 

results do not support AG as a thematic-only site, but rather one that responds rapidly to strong 

associations, consistent with its postulated role in automatic retrieval (Humphreys and Lambon 

Ralph, 2014).  
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Figure 3.7: Evoked power: Difference TF plot: Signal change in taxonomic and thematic conditions relative to each other. Black lines on the plots indicate a 

statistical threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Taxonomic TF plot (middle panel): Oscillatory 

power plot of grand average of the taxonomic condition, multiplied by 10^11. Thematic TF plot: Oscillatory power plot of grand average of the thematic condition, 

multiplied by 10^11. Scale from white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between 

taxonomic and thematic conditions. Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and 

ii) a significant change from baseline in at least one of the two conditions. Taxonomic TF plot: Percentage signal change in the taxonomic condition (relative to 

baseline). Thematic TF plot: Percentage signal change in the thematic condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: 

stars indicate stronger effects in the taxonomic condition, while triangles indicate stronger effects in the thematic condition.   
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Figure 3.7: Evoked power: Difference TF plot: Signal change in strong and weak conditions relative to each other. Black lines on the plots indicate a statistical 

threshold (p<.05 ) which encloses regions where conditions are significantly different from each other. Strong TF plot (middle panel): Oscillatory power plot of grand 

average of the strong condition, multiplied by 10^11. Weak TF plot: Oscillatory power plot of grand average of the weak condition, multiplied by 10^11. Scale from 

white to red, with red colours indicating greater oscillatory power. Total power: Difference TF plot: Percentage difference between strong and weak conditions. 

Black lines indicate p<.05 statistical threshold fulfilling two criteria: i) conditions are significantly different from each other and ii) a significant change from baseline 

in at least one of the two conditions. Strong TF plot: Percentage signal change in the strong condition (relative to baseline). Weak TF plot: Percentage signal change in 

the weak condition (relative to baseline). Both difference plots are annotated with symbols in fuchsia: stars indicate stronger effects in the strong condition, while 

triangles indicate stronger effects in the weak condition.   
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Discussion 

This study used MEG to explore two separate views of semantic cognition, namely the 

dual-hub theory of semantic cognition, and the Controlled Semantic Cognition framework. In a two 

word association judgement, comparing either taxonomically and thematically associated word 

pairs (mole-cat vs cushion-cat), or thematically associated word pairs of different levels of 

association strength (high semantic association (milk-cat) and low semantic association (cushion-

cat)). This method was used to test contrasting predictions about the functional roles of ATL, AG, 

and pMTG, and to compare the responses of two sites implicated in automatic semantic retrieval 

(ATL, AG) with a site postulated to be engaged in controlled semantic retrieval (pMTG). The dual-

hub theory of semantic cognition predicts that ATL is important for taxonomic relationships while 

left pMTG and AG support thematic knowledge. Alternatively, the Controlled Semantic Cognition 

framework postulates one representational hub (ATL) underpinning knowledge of all types of 

relationship, with pMTG supporting controlled retrieval for more difficult judgements. Thus, if the 

dual-hub theory is correct, ATL would be expected to deal predominantly (if not exclusively) with 

taxonomic associations, and pMTG and AG would process predominantly (if not exclusively) 

thematic associations. Furthermore, pMTG and AG should behave similarly due to lack of 

differentiation between them in the dual-hub theory (where the thematic hub is postulated to be 

located in the TPJ, which encompasses both pMTG and AG). Alternatively, if the Controlled 

Semantic Cognition framework is correct, it would be expected ATL and AG to process all types of 

associations, but show greater power change in the strong as compared with the weak thematic 

condition. Similarly, pMTG would be expected to deal with all associations, but show greater 

power change in the weak as compared with the strong thematic condition, and (if the difficulty 

manipulation was successful) comparable response in the taxonomic and weak thematic conditions. 

 

ATL 

 Whole brain results show particular recruitment of this region to taxonomic and 

weakly related thematic trials in the same time window, in different frequency bins (25-35Hz and 

35-50Hz respectively. The POI analysis showed significant response to both taxonomic and 
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thematic stimuli, first to taxonomic (within 100ms of target onset), then to thematic (within 300ms 

of target onset). While the frequency range and timing of the response was very similar, it took the 

form of power decrease to taxonomic stimuli, and power increase to the thematic condition. When 

looking at the evoked power analysis, the significant differences are driven by more evoked power 

in the taxonomic condition. This could go some way to explain why other research has found 

predominantly taxonomic effects in ATL. While somewhat speculative, it is possible that the 

taxonomic condition’s reliance on perceptual (visual) aspects of semantic information, means 

stimuli is inherently more phase-locked in this area, due to ATL’s position at the end of the ventral 

visual stream. Clarke et al. (2011) showed increased phase-locking between left anterior temporal 

and fusiform both for basic > domain level naming around 120-220ms, as well as two periods of 

greater phase-locking for living compared to non-living items around 176 -202ms and 296-340ms. 

They take their data to indicate that greater semantic integration demands increase phase-locked 

recurrent interactions between cortical areas. This has implications for the results, as taxonomic 

decisions require an abstract representation of category to be applied, and may pose similar 

increased demands as the ones tested in Clarke et al. (2011). If taxonomic associations are 

inherently more phase locked in ATL because of this, only analyses that incorporate the induced 

component would be able to show greater oscillatory power to thematic stimuli here. Crucially, the 

analysis shows ATL responding to both conditions, which is inconsistent with the idea of this area 

as a taxonomic-only hub. 

 The strong/weak thematic contrast revealed qualitatively similar time-frequency responses 

to the strongly and weakly related trials in the form of power increase. Differences were driven by 

both conditions from around 225ms, though the strongest response is to the strong thematic 

condition, consistent with this site’s postulated role in automatic retrieval (Davey et al., 2016). 

ATL responds significantly to both conditions, inconsistent with the idea of this region as a 

taxonomic-only hub, and furthermore, the strong/weak contrast elicited more effects driven by the 

strong condition, consistent with the idea of this region being involved in automatic semantic 

retrieval.  

In this analysis, effects in ATL are present from the onset of the second word. More 

traditional views suggest semantic access around 400ms, and recent MEG experiments have 
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presented results in support of this view (Vartainen, Parvainen & Salmelin, 2009), also locating the 

effect to ATL (Lau et al., 2014). However, recent studies utilising temporally sensitive imaging 

methods have indicated that visual and verbal semantic tasks can elicit effects more rapidly than 

this in ATL (Marincovic et al., 2003; Clarke et al., 2011; 2012; Bemis & Pylkkanen, 2011; 2012; 

Chan et al., 2011), with stronger effects from the relationship between two words (as opposed to 

single word/object processing), particularly if the first word increases the specificity of the second 

(Zhang & Pylkkanen, 2015; Westerlund & Pylkkanen, 2014). Given the sequential presentation, 

this provides further support for the early effects seen in this region. 

 

pMTG 

 Whole brain analyses showed posterior temporal activation in pMTG/AG regions for all 

conditions. In the total power POI analysis, the first significant difference between taxonomic and 

thematic stimuli starts  around 50ms driven by an increase in power to the thematic condition, and 

is followed by a response with overlapping time windows, in the form of power decrease to the 

taxonomic condition, and power increase to thematic associations. Additionally there is a 

significant power increase to both conditions from the onset of the target word, continuing 

throughout the analysis window. This is similar to results reported in Chapter 2, where associations 

requiring greater semantic control processes yielded stronger recruitment of this area from the 

onset of the target word - consistent with the hypothesis that pMTG maintains currently relevant 

features or interpretations and detects situations in which incoming information is not well-aligned 

with these interpretations. Because executive demands are high in both the taxonomic and thematic 

conditions, pMTG’s involvement in both is not surprising, as the information that is being 

maintained needs to be broader to support more difficult associations. However, these results do 

not fit with the idea of posterior temporal (TPJ) areas being part of a thematic-only hub. The 

evoked analysis showed much larger effects to thematic stimuli, and only a later, brief effect of the 

taxonomic condition. Again, it is possible that this region’s response to taxonomic stimuli is shown 

to a much greater extent by analyses that incorporate the induced component, and that this is why 

previous research has reported this region as thematic-specific. 



124 
 

 Though the strong/weak contrast showed stronger evoked power in the strongly related 

condition, total power analyses showed earlier and greater power increase to the weak condition. In 

this contrast, this site showed the earliest difference between conditions, and all significant 

differences are driven by a greater increase in power to the weak thematic condition, consistent 

with this area’s postulated involvement in controlled retrieval (Whitney et al., 2011). 

 

AG 

Whole brain analyses showed posterior temporal activation in pMTG/AG regions for all 

conditions. In the POI analysis, angular gyrus showed the earliest significant difference between 

taxonomic and thematic relationships. In this region, all significant differences until ~425ms are 

driven by power increase to the taxonomic condition, inconsistent with the idea of TPJ areas being 

part of thematic-only hub. Similarly, the evoked analysis shows significant effects driven by both 

conditions; an early component driven by greater oscillatory power in the taxonomic condition, and 

a later component driven by the thematic condition, further supporting the view that this region is 

not thematic-specific.  

In the strong/weak contrast, AG shows differences from 275ms, driven by power increase in the 

strong thematic condition, consistent with automatic retrieval. Around 400ms there is a significant 

power decrease to the weakly related condition, so AG is unlikely to be a completely automatic 

retrieval site, and may play a role in allocating attention to activated concepts, as recently argued 

by Humphreys and Lambon Ralph (2014). Importantly, according to the dual-hub theory, pMTG 

and AG should behave similarly due to lack of differentiation between them (in this framework the 

thematic hub is postulated to be located in the TPJ, which encompasses both pMTG and AG), and 

they do not behave similarly – in fact AG’s response profile is very different from the other sites in 

general, and more in line with the Controlled Semantic Cognition framework given its’ response to 

both thematic and taxonomic stimuli. 
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Results across sites 

 In whole brain analyses I saw significant activation of the semantic network in the form of 

power decrease. As the whole-brain beamforming reflects total power results, this fits well with the 

power reduction effects seen in the POI analyses. Power decrease has been hypothesised to be 

linked to richer informational content (Hanslmayr et al., 2012), as well as having been linked to 

successful memory encoding and retrieval in EEG results (Burgess and Gruzelier, 2000; Khader 

and Rösler, 2011; Waldhauser et al., 2012). Results from 5-50Hz are reported, as the short-duration 

analysis windows are not optimal for effects below 5Hz. As such I cannot make claims for power 

increases below this frequency, though in the POI analyses there are power increases between ~5-

8Hz across all sites and conditions, though particularly to conditions with higher control demands 

(taxonomic and weakly related thematic trials). For example, in pMTG the low frequency power 

increase to the weak thematic condition is greater than for the strong thematic condition, AG has a 

strong power increase to all conditions, and ATL shows greatest power increase for taxonomic 

pairs, followed by weak thematic and the least for strong thematic pairs. These results taken 

together indicate that these power increases are more associated with condition than site. The 

whole-brain analysis predominantly shows effects between 25-50Hz, which closely resembles the 

frequency band thought of as “gamma” band. The amplitude of gamma oscillations are thought to 

be influenced by theta (4-8Hz) phase, which is particularly prominent in hippocampal, prefrontal 

cortices, amygdala and visual cortex (Roux & Uhlhaas, 2014), and in the rat hippocampus it has 

been shown that the same cell populations are influenced by both oscillations (Lisman & Buzsáki, 

2008). 

 Furthermore, it has been argued that low and high frequency oscillations may reflect 

different underlying processes, with high frequency oscillations (>30Hz) reflecting local 

interactions within a neural population, and low frequency oscillations (<30Hz) underpinning 

coordination of distributed neural populations (Donner and Siegel, 2011). Taxonomic associations 

are thought to be based on overlapping features, which arguably is reflected in overlapping 

representations (cell populations). In line with this, Clarke et al. (2012) found that increased shared 

features lead to decreased MEG response. It seems plausible that the thematic conditions - not 
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sharing physical features - require greater integration between distributed neural populations, and 

cortical areas. The results seen in the whole-brain analysis with higher frequency (35-50Hz) results 

to the weakly related thematic trials compared with the taxonomic (25-35Hz) could reflect the 

hypothesis of Donner & Siegel (2011), in that the thematic condition (in addition to needing more 

distributed cortical areas working together, reflected in the low frequency power increase), the 

concepts themselves also need richer retrieval in order to make the connection between them. 

 When viewing the time-frequency plots of each area to each condition, there is more 

similarity in the form of the response between strong and weak thematic conditions than there is 

between the taxonomic and the thematic conditions, with taxonomic associations eliciting 

predominantly decreases in oscillatory power and thematic conditions eliciting predominantly 

increases in oscillatory power. The reason for the form of the response, with general power 

decrease across sites to the taxonomic condition (except AG), is unclear, though Clarke et al. 

(2012) found that increased overlapping features lead to a decrease in the MEG response. 

According to Hanslmayr, Staudigl and Fellner (2012), power decrease may have a greater 

informational content than power increase. As such, the different response profiles could reflect 

that taxonomic priming may represent activation at the conceptual level, whereas thematic priming 

reflects activation of concepts at the lexical form level. In addition to occurring together in the 

natural world, thematic relationships are also more likely to co-occur in text, which the purely 

taxonomic relationships are certainly less likely to do. While this inference goes beyond the scope 

of the presented data, it is possible that the decrease vs. increase in power in the two different types 

of processing reflects recruitment of these areas in different ways, namely the decrease in power in 

the taxonomic condition reflecting richer retrieval, and thematic associations might rely on 

comparatively shallow activation of distributed neural populations. Crucially, though there are 

some differences in how these areas are recruited in terms of oscillatory power, the whole-brain 

results support a single semantic network supporting both thematic and taxonomic relationships. 
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Conclusion 

The results provide evidence in line with the representation vs. retrieval view of semantic 

cognition, as ATL responds to both taxonomic and thematic associations, as does pMTG and AG, 

making the dual-hub view an unlikely explanation of the results. The MEG data provided here 

shows a recruitment of known sites within the hub-and-spoke model of semantic cognition for all 

conditions, with a qualitative difference in the form of the response. The results are taken to show a 

unified semantic system for taxonomic and thematic associations, with differences in the 

oscillatory form and timing of the response within an area, rather than different types of association 

relying on different cortical areas. 
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Chapter 4 - General discussion 

This thesis examined the neural basis of different aspects of semantic cognition using time-

resolved methods – namely magnetoencephalography (MEG) and chronometric transcranial 

magnetic stimulation (cTMS). Semantic cognition allows us to understand the significance of items 

and situations that we encounter daily, and to drive appropriate thoughts and behaviour 

accordingly. It encompasses our knowledge of meanings of words, objects, sounds and people, and 

the application of this knowledge to drive appropriate behaviour and thought (Patterson, Nestor & 

Rogers, 2007; Pulvermüller, 2013; Jefferies, 2013). These processes are thought to require distinct 

neurocognitive components working together: First, semantic representations capture the meanings 

of words and objects. Secondly, since we have stored knowledge of many features and associations 

for any given concept, semantic control processes are thought to be essential to our ability to 

retrieve and act upon this wide variety of knowledge in a relevant way, through the selection and 

retrieval of situation-relevant knowledge, and the suppression of information irrelevant to the 

task/situation (Hodges, Patterson, Oxbury & Funnell, 1992; Corbett, Jefferies, Ehsan & Lambon 

Ralph, 2009). Thus, time-resolved methods in cognitive neuroscience are useful for examining how 

the brain systems that support these components of semantic cognition cooperate to support 

different tasks. 

One controversial issue in the field, addressed by this thesis, concerns the nature of 

semantic representation, and whether different types of information are stored and processed in 

different brain regions (see Chapter 3). There are different theoretical perspectives which differ in 

the degree to which semantic representations are considered to be abstract, amodal and cortically 

localist, or to emerge from distributed and embodied sensory-motor processes. The influential hub 

and spoke model of semantic cognition occupies a middle position in this debate: it suggests that 

both sensory-motor areas (the “spokes”) and an amodal convergence zone in the ATL (the “hub”) 

are crucial for the representation of semantic knowledge (Patterson, Nestor & Rogers, 2007). 

Consequently, all of the empirical chapters examined the contribution of the ATL to semantic 

tasks. However, there is debate about whether the ATL is the only site that acts as a semantic hub. 

For example, it has been suggested that the ATL is one of two conceptual hubs, underpinning 
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taxonomic or category-level knowledge, whereas the temporoparietal junction (TPJ; such as 

angular gyrus and posterior middle temporal gyrus) extracts event associations and thematic 

knowledge (Schwartz et al., 2011; de Zubicaray, Hansen & McMahon, 2013). 

The brain regions that support the retrieval of conceptual information are a second focus of 

the empirical work presented in this thesis. Considering the wealth of information available to us at 

any given time, semantic control processes are engaged to retrieve relevant information and 

suppress irrelevant features and associations. In some cases, knowledge that is relevant to the task 

at hand can be retrieved in a relatively automatic, cue-driven (bottom-up) way, and is seemingly 

effortless: this type of semantic retrieval is thought to support access to dominant aspects of 

concepts (e.g., banana  yellow) without strong engagement of control processes. Other times the 

appropriate information is not so readily available, and a more strategic “search” of our memory is 

needed, increasing the semantic control demands (Gold et al., 2006; Badre & Wagner, 2007; 

Binder, 2016). Semantic control processes are thought to modulate semantic activation such that it 

is appropriate to the task or context. This involves selecting between competing alternatives held in 

working memory, inhibiting non-relevant semantic activation, and the retrieval of knowledge when 

automatic, spreading activation is not sufficient. Furthermore, semantic control involves extracting 

and applying the goals relevant to the task, as well as switching or updating the semantic focus 

when the tasks changes (Whitney, Kirk, O'Sullivan, Lambon Ralph & Jefferies, 2011; Moss, 

Abdallah, Fletcher, Bright, Pilgrim, Acres & Tyler, 2005).  

An extensive fMRI literature has linked conceptual control processes to left inferior frontal 

gyrus (Thompson-Schill, D’Esposito, Aguirre &Farah, 1997; Badre, Poldrack, Pare-Blagoev, Insler 

& Wagner, 2005; Noppeney, Phillips & Price, 2004; Bedny, McGill & Thompson-Schill, 2008) but 

manipulations of executive-semantic demands activate a widely distributed set of cortical regions, 

including pMTG (Noonan et al., 2013; Davey et al., 2016). Furthermore, inhibitory TMS to pMTG 

and LIFG produces equivalent disruption of semantic judgements that require controlled but not 

automatic retrieval (Whitney et al., 2011; Davey et al., 2015).  

Consequently, the MEG studies in Chapters 2 and 3 manipulated strength of association 

between the probe and target to modulate the engagement of controlled retrieval processes, and 
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examined the response to this manipulation in pMTG. Moreover, in all of the empirical studies, the 

anterior temporal lobes and posterior middle temporal gyrus were expected to show an opposite 

response to this manipulation, since strongly-associated words should facilitate a stronger pattern 

of spreading activation within semantic representations in ATL, while weakly-associated words 

should engage controlled retrieval processes more strongly in pMTG. However, the temporal 

recruitment of semantic processes is unclear, with conflicting evidence of both when and where 

semantic access is achieved, and there has been little empirical work investigating the temporal 

engagement of semantic control processes during retrieval and how different brain regions show 

dissociations through time that can linked to the difference between automatic and controlled 

semantic retrieval. Therefore, the primary aims of this thesis were: 

 To investigate how automatic and controlled patterns of semantic retrieval 

shape oscillatory activity within the semantic network  

 To determine the causal temporal engagement of brain areas implicated in 

automatic and controlled semantic retrieval 

 To explore the existence of one or two semantic hubs by contrasting 

taxonomic and thematic relationships 

To this end, a series of neuroimaging experiments were employed, using MEG analysis of total and 

evoked oscillatory activity, and cTMS to assess the causal contribution of areas in the semantic 

network over time. MEG has the potential to be a very elucidating method to use in this regard; 

most studies investigating semantic retrieval use fMRI, which can reveal the network of brain 

regions active in a task, however, the BOLD response has low temporal resolution (since blood 

flow changes happen over a period of several seconds). This means that transient effects may be 

missed and the technique is not ideal for identifying how sites within the semantic network are 

recruited over time, in the service of a task. Furthermore, fMRI suffers from magnetic 

susceptibility artefacts that produce signal loss and distortion around air-filled sinuses, and 

therefore this method may not always reveal responses in regions like ATL, that have consistently 

been implicated in semantic tasks (Devlin et al., 2000). MEG on the other hand, has temporal 

resolution in the order of milliseconds, and offers different insights into neural activity since it is 
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possible to characterise responses at specific frequency bands and to separate phase-locked and 

non-phase locked components of the signal, which may show different cognitive effects (Hansen, 

Kringelbach & Slamelin, 2010). The use of different methodologies gives the possibility of 

converging evidence across methods, bringing greater confidence in results. Total oscillatory 

power was therefore examined in key regions for semantic cognition – ATL and pMTG – using 

MEG in Chapters 2 and 3 (Chapter 3 also included analysis of AG). Compared with fMRI, MEG 

has relatively poor spatial resolution, and difficulty resolving and detecting deeper sources. 

Moreover, fMRI and MEG are both correlational methods; the modulation of signal strength by 

task conditions in imaging investigations does not conclusively show that these brain regions make 

a necessary contribution to the task. The thesis therefore included a TMS study to test causal 

predictions about the engagement of ATL and pMTG in automatic and controlled semantic 

retrieval over time (Chapter 2, Experiment 2). 

 

Automatic and controlled semantic retrieval in the brain 

Chapter 2 focused on the contributions of two sites in the semantic network: ATL, and 

pMTG. These sites are consistently activated in fMRI investigations, and are accessible for 

methods like TMS and MEG (ATL: Devlin et al., 2000; Visser, Jefferies & Lambon Ralph, 2010; 

Binney, Embleton, Jefferies, Parker & Lambon Ralph, 2010; Lau, Gramfort, Hämäläinen & 

Kuperberg, 2013; Martin, 1999. PMTG: Thompson-Schill, D'Esposito, Aguirre, & Farah, 1997; 

Wagner, Maril, Bjork & Schacter, 2001; Bedny, McGill, & Thompson-Schill, 2008; Noonan et al., 

2013; Davey et al., 2016). If ATL is a store of conceptual information extracted over a lifetime’s 

experiences, then patterns of semantic retrieval that are highly consistent with these experiences 

should be facilitated within this region: consequently, stronger responses might be seen in ATL in 

tasks probing strong associations or coherent conceptual combinations (Lau, Gramfort, Hämäläinen 

& Kuperberg, 2013; Davey et al., 2016). In other words, the structure of representations in ATL 

might be able to support the retrieval of dominant aspects of knowledge relatively automatically. In 

contrast, when the pattern of semantic retrieval required in a particular situation is not strongly 

supported by representations in ATL, processing within the semantic store may need to be 
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constrained by additional control processes, which are thought to engage pMTG as part of a larger 

distributed network (Noonan et al., 2013; Davey et al., 2016). This suggests there should be clear 

functional dissociation within the temporal lobe for tasks tapping relatively automatic and more 

controlled patterns of semantic retrieval; however, the oscillatory response in these regions and and 

the timing of their contribution to semantic cognition is unclear.  

Chapter 2 presented two experiments using MEG and cTMS. In Experiment 1, MEG was 

used to characterise the brain’s oscillatory response to the presentation of written words that were 

preceded by strongly related primes, weakly related primes and unrelated words. However, with 

correlational methods like fMRI or MEG, it cannot be ascertained whether these effects reflect 

necessary processes. The second experiment attempted to address this issue by using online 

chronometric TMS (cTMS). In Experiment 2, ATL and pMTG were stimulated at four time points, 

during the retrieval of strong (largely automatic) and weaker (more controlled) associations, 

allowing assessment of when these sites showed critical engagement. 

 

Experiment 1: Neural processes underlying automatic and controlled semantic 

retrieval revealed by MEG 

This experiment investigated the brain’s oscillatory response to automatic or controlled 

retrieval situations. Studies have examined the time course of semantic access from a single written 

word, while the focus here was on how the semantic relationship between two successive items 

changes retrieval, in order to explore the time-course of changes in oscillatory power that support 

relatively automatic (i.e., strongly primed) semantic retrieval, and more controlled retrieval states 

in which it is necessary to discern a link between two weakly related words (Binder, 2016; Lucas, 

2000; Gold et al., 2006). The sequential presentation of prime and target words also conforms to 

methodological constraints of MEG; this method is highly susceptible to movement artifacts 

(including eye-movement and saccades), so to minimise participant eye movement, stimuli were 

presented one word at a time. The analysis examined total power (which incorporates both evoked 

power - oscillations locked to the stimulus both in time and phase - as well as oscillations locked to 

the stimulus in time, but not phase; induced power). Total power is likely to be sensitive to 
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evolving semantic retrieval driven by the relationship between two words, which is not likely to be 

phase-locked to the onset of either stimulus.  

The response to the second word in the pair was characterised by event-related decreases in 

total power relative to baseline. These decreases are thought to be explained by an increase in 

oscillatory power that is not phase-locked (Hanslmayr et al., 2011). Visual-to-semantic access is 

more demanding for the first word in the pair, while for the second word the relationship between 

the two concepts is pertinent. It is also worth noting that one of the constraints of the analyses 

presented is that I discuss time points at which the two conditions are significantly different from 

each other (not significant change from a baseline for each condition), meaning that the underlying 

cognitive process could (and probably did) start earlier than the times discussed. 

The pattern of oscillatory activity observed for each site elucidates their roles in automatic 

and controlled semantic retrieval: In ATL, when examining total power analyses, strong > weak 

effects were observed (around 400ms post-stimulus), consistent with a potential contribution of 

ATL to the capacity of relatively automatic spreading activation between associated concepts, 

which facilitates ongoing semantic retrieval. Conversely, in pMTG, a clear weak > strong effect 

was observed within 50ms of target-onset that continued throughout the trial, consistent with the 

view that this region plays a crucial role in supporting and potentially triggering controlled retrieval 

processes (since the stronger response to less anticipated concepts started soon after the onset of the 

second word). These findings are consistent with the hypothesis that pMTG maintains currently 

relevant features or interpretations and detects situations in which incoming information is not 

well-aligned with these interpretations – consistent with the early effects of strength of association 

that were observed. Furthermore, this measure shows a clear dissociation with the response in 

ATL, since ATL showed a strong > weak association difference, at a later point in time (when 

patterns of coherent semantic retrieval, as opposed to input recognition processes, might be 

established). These findings suggest that pMTG could be crucial for semantic control is situations 

in which the task requires a pattern of retrieval that is not strongly supported by the structure of 

long-term conceptual representations, in line with fMRI data using a similar paradigm (Davey et 

al., 2016; Badre et al., 2005), and adds temporal information to this literature.  
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This interpretation is consistent with the proposal that ATL is important to combinatorial 

semantics (Feng et al., 2016). Combinations of words have richer and more specific meanings than 

individual words, and priming paradigms have revealed an augmented response in ATL to words 

preceded by adjectives and nouns, and further, that the more specific the noun, the greater the 

response in ATL (Westerlund & Pylkkänen, 2014; Zhang & Pylkkänen, 2015). I further suggest 

that this might be most readily detected in total power analyses, since this measure includes the 

component of oscillatory power that is not aligned in time and phase (as well as phase-locked 

components), and it is not clear that neural signals linked to spreading activation within the 

semantic system would be phase-locked to the onset of a visual stimulus.  

 

Experiment 2: The causal engagement of ATL and pMTG in automatic and 

controlled semantic retrieval, tested using transcranial magnetic stimulation 

The results of Experiment 1 implicated early engagement of pMTG in controlled retrieval, 

and a later effect in ATL associated with automatic retrieval. In Experiment 2 ATL and pMTG 

were stimulated at four time points, during the retrieval of strong (largely automatic) and weaker 

(more controlled) associations, using an inhibitory chronometric TMS paradigm, allowing the 

assessment of when these sites showed critical engagement. A recent cTMS study of the ATL by 

Jackson et al. (2015) found disruption to semantic retrieval when pulses were delivered around 

400ms after stimulus presentation. This study utilised a synonym judgment task, with three words 

presented concurrently on screen; a probe, a related synonym, and an unrelated foil, and 

participants were asked to select the related word. However, here the effect of online stimulation 

from the onset of the second word in a pair was examined (presented sequentially), since the focus 

was how the semantic relationship between two successive items changes retrieval. Dual pulses 

were applied at 0-40ms; 125-165ms; 250-290ms and 450-490ms after target onset: these times 

corresponded to effects in both sites in Experiment 1, as well as literature showing early 

engagement of ATL (Clarke et al., 2011), as well as later N400 effects. It was anticipated that this 

format of sequential presentation would elicit relatively early disruption in ATL, corresponding to 
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the effects described by Clarke et al. (2011), rather than late effects observed by Jackson et al. 

(2015).  

Given literature suggesting that ATL is a key store of semantic knowledge, it was also 

hypothesised that TMS to this region might disrupt the pattern of automatic spreading activation 

between related concepts that is thought to underpin strong associations. In contrast, fMRI and 

TMS studies have pointed to a role of pMTG in controlled retrieval, and I therefore predicted 

greater disruption for weakly related word pairs at this site. Furthermore, I cautiously predicted 

disruption within the first 50ms at pMTG, given the findings from Experiment 1 that pointed to an 

early sensitivity to weak associations at this time point for pMTG, which could correspond to 

detection of the need to engage controlled retrieval processes.  

The current data are in line with these hypotheses, and critically show disruption for the 

weak condition at an early (0-40ms) time point for pMTG, and disruption for the strong condition 

somewhat later for ATL (125-165ms). A recent meta-analysis by Noonan et al. (2013) 

demonstrated that pMTG is consistently activated alongside LIFG by increasing semantic control 

demands. Offline TMS studies also show that stimulation to both LIFG and pMTG disrupts 

performance on semantic tasks that require controlled retrieval (Whitney et al., 2011; Davey et al., 

2015). The strikingly early result for pMTG further suggests that this site may contribute to the 

maintenance of information elicited by the prime word, and that this maintenance may be critical 

for establishing a pattern of controlled semantic retrieval when spreading semantic activation is 

likely to be insufficient. Importantly, the latency of the response suggests that this site is not 

involved in resolving competition following retrieval (which would occur at a later time point), but 

rather in detecting the need to engage more controlled retrieval processes, when stimuli need to be 

integrated into a meaningful context by biasing retrieval to focus on only a subset of features. 

Following this, a novel hypothesis is proposed, whereby pMTG maintains currently-relevant 

conceptual information allowing this site to detect when inputs are unexpected, and potentially to 

interact with ATL to shape ongoing semantic retrieval within the long-term semantic store. 

Furthermore, the disruption to the efficient retrieval of strong associations following TMS 

to ATL around 150ms after the target was presented (pulses at 125-165ms) corresponds well to the 
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findings of Clarke et al. (2011). Although other studies have pointed to later engagement of ATL in 

semantic retrieval (around 400ms post-target onset), including time-resolved imaging methods 

(Kutas & Federmeier, 2011, McCarthy, Nobre, Bentin & Spencer, 1995; Marincovic et al., 2003) 

and previous cTMS results (Jackson et al., 2015), the rapid sequential presentation in this paradigm 

is likely to elicit spreading activation from the prime – and thus, in the case of strong associations, 

the target will already be “activated” by the onset of the second word. Although in Experiment 1, 

the MEG findings show preferential processing of strong semantic associations around 400ms in 

ATL, the MEG analyses detect time points at which two conditions are significantly different from 

each other, not necessarily when the cognitive processes started. Thus, it is plausible that retrieval 

processes common to both weak and strong associations start earlier.  

Taken as a whole, the current results indicate dissociable roles of ATL and pMTG in 

semantic retrieval. ATL has a critical, early involvement in the recovery of automatic associations, 

while pMTG may play a role in maintaining a semantic context and in detecting situations in which 

controlled retrieval processes may need to be engaged to understand the link between this context 

and new inputs. 

 

How many semantic hubs? 

In Chapter 2, the oscillatory response and the causal engagement of ATL and pMTG to the 

processing of written words preceded by semantically associated words, however, the type of 

relationship was not manipulated, and all words were globally associated: stimuli were taken from 

free association data to generate the strong and weak conditions. While strong and weak 

relationships are thought to engage automatic and controlled semantic retrieval respectively, this 

experiment did not address the view that different types of semantic relationships may depend on 

different cortical areas for their representation. Some research proposes that ATL is one of two 

conceptual hubs, underpinning taxonomic or category-level knowledge, whereas the TPJ (including 

AG and pMTG) extracts event associations and thematic knowledge (Schwartz et al., 2011; de 

Zubicaray, Hansen & McMahon, 2013). This viewpoint is broadly consistent with the idea that the 

ATL lies at the end of the ventral visual stream, allowing it to integrate concrete features of objects 
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(which are important for conceptual similarity – e.g., a bear is an animal that has fur and claws). In 

contrast, the TPJ may be better placed to integrate information about how objects are used and the 

contexts in which they are found (e.g. bears are good at fishing and like to eat honey). However, an 

alternative organisational framework has linked AG in conjunction with ATL to relatively 

automatic patterns of retrieval, while pMTG in conjunction with LIFG may support controlled 

aspects of retrieval (Humphreys & Lambon Ralph, 2014; Davey et al., 2015; Whitney et al., 2011; 

Noonan, et al., 2013; Badre et al., 2005).  

Chapter 3 investigated this issue by contrasting both taxonomic and thematic relationships, 

and strong and weak thematic relationships to explore the merits of both proposed frameworks. In 

addition to the regions examined in Chapter 2 (ATL and pMTG), AG was included due to its 

relevance to the dual-hub theory. The task format was the same as for Chapter 2’s Experiment 1, 

with one added element: analyses of both total and evoked power were included, and characterised 

the brain’s oscillatory response to the presentation of written words that were preceded by 

taxonomically related primes, strongly related thematic primes, and weakly related thematic 

primes. The two levels of thematic primes served two purposes:  Firstly, this manipulation allowed 

me to equalise the executive demands across conditions, as eliminating thematic associations from 

taxonomic relationships made the task relatively difficult. For example, dog – cat is not an 

exclusively taxonomic relationship – they are both pets, are found in similar situations, there are 

expressions linking them (“they were fighting like cats and dogs”). Thus, to explore purely 

taxonomic relationships, stimuli that share a category-level relationship, but do not share such a 

thematic link must be presented (such as mole – cat). To equate task difficulty, it was necessary to 

compare these stimuli with weakly-related thematic links (such as cushion – cat) that are difficult 

to retrieve. Secondly, by comparing weakly related thematic trials with strong thematic links (such 

as milk – cat), an additional contrast of automatic and controlled semantic retrieval could be made, 

and this allowed opposing predictions from the two theoretical frameworks to be examined: the 

dual-hub theory suggests that functional differences between sites should be characterised in terms 

of the response to categorical vs. thematic trials, while the controlled semantic cognition 

framework suggests that these differences should reflect difficulty and strength of association. 
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One key task difference between the experiments described in Chapter 2 and 3 is that while 

Chapter 2 simply required participants to covertly answer the question “Are the two words 

related?”, Chapter 3 added a qualification to the question; “Are the two words related; either by 

sharing features, or by being found or used together?”. Consequently, participants were naïve to the 

type of relationship they were looking for until the second word appeared on the screen. Since not 

all of the pairs were linked by a global semantic relationship, it would not have been an effective 

strategy to drive spreading activation from the first word.  

In ATL, a significant response to both taxonomic and thematic stimuli were observed 

within 100ms of target onset, and while the frequency range and timing of the response was very 

similar; other than an initial, transient power increase to the taxonomic condition, it took the form 

of power decreases to taxonomically-related stimuli, and power increases in the thematically-

related condition. In the evoked power analysis, the significant differences were driven by more 

evoked power in the taxonomic condition. This could go some way to explain why other research 

has found predominantly taxonomic effects in ATL. Further research is needed to understand this 

difference in the response between conditions: one possibility is that the taxonomic condition’s 

reliance on concrete features of objects resulted in inherently more phase-locked activity in this 

area, due to ATL’s position at the end of the ventral visual stream. Clarke et al. (2011) showed 

increased phase-locking between left anterior temporal and fusiform both for basic > domain level 

naming around 120-220ms, as well as two periods of greater phase-locking for living compared to 

non-living items around 176 -202ms and 296-340ms. They propose that greater semantic 

integration demands increase phase-locked recurrent interactions between cortical areas. In 

contrast, analyses that incorporate induced power might be more sensitive to thematic relationships, 

which could be recovered through spreading activation within the semantic representations in ATL. 

Crucially with respect to the two-hub framework, ATL responded above baseline in both 

conditions, which is inconsistent with the idea of this area as a taxonomic-only hub.  

Additional analyses examined strongly- and weakly-related thematic trials, providing a 

near-replication of the contrast used in Chapter 2. The peak response in the evoked domain for 

ATL, from 200-600ms, was more pronounced for strongly than weakly-related words, although 
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some regions in the time-frequency plot showed the reverse pattern. Contrasts of total power also 

supported the view that ATL showed a greater response to strongly- than weakly-related thematic 

trials, with all condition differences in ATL (except one) driven by the strongly-related condition, 

consistent with a role for this site in automatic retrieval. 

The contrast of taxonomic and thematic conditions in pMTG showed a broadband 

and sustained response to both conditions in the evoked analysis, which was stronger in the 

thematic condition. However, total power showed a response to the taxonomic as well as 

the thematic condition. As for ATL, there were event-related decreases in total power in 

the taxonomic condition, and total power increases in the thematic condition. In line with 

the ‘information via desychronisation’ hypothesis (Hanslmayr et al., 2011), power 

decreases might reflect an increase in desynchronised activity, meaning that in addition to 

the phase-locked component of the retrieval of taxonomic relationships, there is also a 

strong response not synchronised in phase, reflected in total power. When contrasting the 

strongly and weakly related thematic conditions, a difference could be seen from 50ms, 

consistently driven by a greater increase in power to the weak condition, consistent with 

this area’s postulated involvement in controlled retrieval (Whitney et al., 2011). These data 

do not strongly support the view that pMTG plays a selective role in thematic not 

taxonomic retrieval. 

There was no maximum peak in oscillatory change in angular gyrus, but this region 

did fall within the region of significant activation, and due to its relevance to the dual-hub 

theory, a virtual electrode was seeded in this area. AG showed the earliest difference 

between taxonomic and thematic conditions, with a greater response to the taxonomic 

condition 50-275ms, followed by a greater response to the thematic condition 425-525ms. 

Interestingly, all other sites responded with power decreases in the taxonomic condition 

(and power increases in the thematic condition), while in AG this pattern was reversed. 

Similarly, the evoked analysis showed significant effects driven by both conditions; an 

early component driven by greater oscillatory power in the taxonomic condition, and a 
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later component driven by the thematic condition. Both these results are inconsistent with 

the idea of TPJ areas being part of a ‘thematic hub’. When contrasting strongly and weakly 

thematic concepts, AG showed differences from 275ms, driven by power increases in the 

thematic high condition, consistent with automatic retrieval. However, around 400ms there 

was a significant power decrease for weak thematic trials, suggesting that AG is unlikely to 

only support automatic retrieval, and might support the allocation of attention to activated 

concepts, as recently argued by Davey et al. (2015). 

These results, on the whole, provide evidence in line with the Controlled Semantic 

Cognition framework (Lambon Ralph et al., 2017). ATL, pMTG and AG all responded to 

both taxonomic and thematic association trials, and thus, empirical support for the dual-

hub view was not found. There were differences in the way these sites were engaged by 

these conditions, in terms of timing and whether effects were seen in evoked or total 

power, but little evidence that different types of association rely on separate cortical areas. 

 

 

Comparisons of MEG results across Chapters 2 and 3 – timings and 

frequencies 

 Chapters 2 and 3 presented MEG data from experiments with very similar paradigms and 

analyses. Chapter 2 presented an experiment involving presentation of written words that were 

preceded by strongly associated, weakly associated and unrelated words, which required 

participants to covertly answer the question “Are the two words related?”. In Chapter 3, a qualifier 

was added to the question; “Are the two words related; either by sharing features, or by being 

found or used together?”  

When strong/weak associations in Chapter 2 are compared with thematic strong/weak 

associations in Chapter 3, some clear similarities emerge. Firstly, most effects of this manipulation 

were found between 20-35Hz, with some additional low frequency effects that were predominantly 

power increases. This is broadly consistent with the whole-brain analyses, as the most extensive 
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recruitment of the semantic network was in the 25-35Hz frequency band.  With some variations in 

timing and frequency, ATL responded preferentially to strong associations in total power, and in 

both experiments there was a greater response to the strong condition starting around 400ms (from 

8-15Hz), which fits well with literature implicating this area in the N400 (Kutas & Federmeier, 

2011, McCarthy, Nobre, Bentin & Spencer, 1995; Marincovic et al., 2003; Jackson et al., 2015). 

PMTG on the other hand, responded more strongly to weak associations in both experiments, just 

after the onset of the second word of the pair.  

Nevertheless, there were some important differences between the MEG studies: in Chapter 

2, effects were found in differential decreases in total power (sustained decreases around 10-30Hz), 

which are thought to reflect event-related neural activity not aligned in phase. In Chapter 3, on the 

other hand, many of the effects were differential power increases, particularly in the thematic 

conditions, while power decreases were largely confined to the taxonomic condition. As can be 

seen in Chapter 3, decreases in total power were found in the same regions of time-frequency space 

as increases in evoked power, lending further credence to the idea that decreases in total power 

reflect increased neural activity. A summary of all of the effects is provided in Table 4.1. 

Interestingly, ATL shows greater evoked power to taxonomic stimuli, whereas pMTG 

shows greater evoked power to the thematic condition (AG shows both; initially taxonomic, then 

thematic). At the same time, in total power the response from all regions (except AG) to taxonomic 

stimuli is in the form of power decrease.  

It is not clear why the experiment described in Chapter 2 would be characterised by strong 

event-related decreases in total power, as opposed to power increases, as seen in Chapter 3. 

However, an important possibility is suggested by plots of oscillatory power examining the whole 

epoch (see Figure 4.1) – e.g., the prime, target and following retrieval period. The structure of this 

plot looks quite different across experiments. In Chapter 2, when participants made judgements 

about whether the prime and target words were globally semantically associated, there was an 

increase in total power, followed by a decrease in total power: this pattern is largely in line with the 

literature (Düzel, Richardson-Klavehn, Neufang, Schott, Scholz & Heinze, 2005; Kujala, 

Vartiainen, Laaksonen & Salmelin, 2012). Thus, when participants knew that they had to retrieve a 
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global association (Chapter 2), there was a strong increase in power to the first word, which was 

greatly attenuated by the second word. There was also a strong power decrease following the first 

word which is maintained over the ISI and then increased by the onset of the second word. In 

Chapter 2, it was argued that the total power decreases might reflect ongoing semantic retrieval not 

strongly linked to the onset of the visual stimulus and thus the effects were in the non-phase locked 

component of the data. 

The whole-epoch plot for the MEG experiment presented in Chapter 3 had a qualitatively 

different structure, despite the surface features of the paradigm being near to identical. As 

mentioned, in Chapter 3, participants were naïve to the relationship being probed until the second 

word appeared. In this experiment, there was a negligible evoked response to the first word 

(associated with a small increase in total power), followed by a substantial increase in evoked 

power following the target word (associated with an increase in total power). Thus, if participants 

did not know whether semantic associations or shared physical features would form the basis for 

their decision, they showed little response to the first word and a greater response to the second 

word. Consequently, more of the experimental effects related to condition differences are seen in 

evoked power, and increases in total power. This pattern suggests that task instructions can have a 

large effect on the neuromagnetic response, even when stimuli are presented in a very similar 

manner. The difference between the two experiments further contributes to the interpretation of 

evoked power increases and event-related total power decreases. While evoked power increases 

might reflect visual-to-semantic access, this response is attenuated by reduced knowledge of what 

pattern of semantic retrieval is required (as in Chapter 3), at least within the semantic regions 

examined in this thesis. Moreover, while event-related total power decreases might be sensitive to a 

pattern of spreading activation within conceptual representations that supports ongoing semantic 

retrieval (as in Chapter 2), this type of response is only observed when a set of features or 

predictions have been activated in response to the prime and then the overlap with the features of 

the target is being assessed. When the relevant features are only defined by the presentation of the 

target word (Chapter 3), more of this pattern of semantic retrieval is reflected in power increases 

(see Figure 4.1 below). 
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Figure 4.1: Showing the whole epoch (-400 to 600ms) for the related conditions in  total power for 

experiments in Chapter 2 (top) and evoked and total power in Chapter 3 (bottom). White lines mark 

the time window of the prime, whereas black lines mark the time window of target words. 

 

In Figure 4.1, for pMTG in Chapter 3, the beginning of a power decrease around 550ms 

can also be seen, though the epoch window is not large enough to see whether a similar response 

would be observed for the other two sites as well. It is possible that, due to the subtle difference in 

task, the response in this experiment was shifted in time. Since, in Chapter 2, participants knew that 
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all word pairs with a relationship would be globally related, it would be useful to generate possible 

associations from the onset of the prime, whereas in Chapter 3, participants were required to decide 

which relationship type was supporting the link, and this could only be determined at target onset. 

Thus, in Chapter 3, participants may not have started to generate a pattern of spreading activation 

concerned with the link between the two words until after presentation of the target (i.e., 

considerably later in the epoch). This has implications for what is meant by “automatic spreading 

activation”: in Chapter 2, strong associations were argued to be generated “automatically”, without 

requiring conscious effort or constraint to be applied to the pattern of retrieval that would be 

generated by the long-term links within the ATL semantic store. Nevertheless, the difference in 

response to the first and second word in Chapter 3 suggests that when the task makes spreading 

activation to the first word unhelpful, this response can be supressed or delayed in a highly flexible 

way. Unfortunately the current paradigm did not allow me to extend the analysis window in time to 

see whether Chapter 3 would have had a similar structure over a longer period, due to the onset of 

the next trial. Future studies should further consider effects of task instructions and prior 

knowledge of the features that will be relevant to the task on the structure of MEG data, and 

continue to explore the relationship between response form (evoked increases or total power 

decreases) and spreading activation that can relate the features of successive words. 

The difference in the structure of the data across the experiments presented in Chapters 2 

and 3 has given rise to some hypotheses about the effect of task knowledge on the brain’s response, 

which warrant further investigation. Crucially though, the overarching conclusion that ATL, pMTG 

and AG respond to both thematic and taxonomic stimuli still holds, as does the rapid engagement 

of pMTG and ATL. These findings are largely consistent with the predictions of the Controlled 

Semantic Cognition framework (which expects ATL to support both thematic and taxonomic 

decisions), and inconsistent with the predictions of the dual hub theory of Schwartz and colleagues 

(2011), which anticipates a clear dissociation between ATL and the other two sites. 
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Comparison of TMS results to MEG results 

Chapters 2 presented MEG and chronometric TMS data from experiments with near-

identical paradigms. Both experiments involved the presentation of written words that were 

preceded by strongly related primes, weakly related primes and unrelated words, and required 

participants to covertly answer the question “Are the two words related?” The total oscillatory 

power to the target was shown to be modulated by the relatedness of the prime in Chapter 2’s 

Experiment 1, in ATL (strong > weak) and pMTG (weak > strong). In Experiment 2, I applied 

TMS to ATL and pMTG at four time points, to investigate the causal engagement of these regions. 

When comparing the two chapters, some similarities emerge:  

Firstly, the order of engagement of these sites was the same; initially pMTG, followed by 

ATL. In ATL, the time point at which TMS elicited disruption for strong more than weakly-primed 

targets coincided with a significant change from baseline (relative to the passive period) in the 

MEG data, but not the region of significant difference between the strong and weak conditions. 

One possible interpretation is that the strong association trials are identified through spreading 

activation (which is disrupted by TMS), and if pulses are applied at the point when the pattern of 

spreading activation is first established, this has the biggest impact on the efficient retrieval of 

strong associations. In addition, the disruption observed was earlier than that reported by Jackson et 

al. (2015) in a previous chronometric TMS study, but this difference is likely to reflect the different 

paradigms, especially given what is know of task-driven differences from Chapter 3. In the study 

by Jackson et al., there was no prime prior to the onset of the trial, and consequently, it was not 

possible in their investigation that relevant semantic retrieval had already occurred by 0ms. 

The timing of the contribution of pMTG is also similar across experiments, with Chapter 2 

showing greater recruitment of pMTG in response to increased semantic control demands by 

~50ms, and TMS results showing impaired performance on controlled retrieval when stimulated at 

0-40ms. In line with interpretations of pMTG’s role from Chapter 2, one might imagine that pMTG 

is maintaining information from the first word and this early TMS stimulation disrupts the capacity 

to engage controlled retrieval processes when the input is inconsistent with expectations established 

from the prime. 
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A summary table of effects across sites and conditions and how they correspond to 

predictions from the CSC framework and the dual-hub theory can be seen in Table 4.1. 
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Predictions Findings 

Site CSC prediction Dual-hub 

prediction 

MEG1 (total power) TMS MEG2 (total power) MEG2 (evoked power) 

ATL Strong > Weak Tax > Them Strong > Weak: 

400ms; 15Hz 

Strong > 

Weak: 125-

165ms 

Both:  
Strong > Weak: 200-300ms & 

400ms+, 10-40Hz  

Weak > Strong: 175-300ms; 20-

22Hz & 325-575ms; 5-7Hz 

 

Both:  
Them > Tax: 0-300ms; 23-47Hz 

Tax > Them: 300-550ms; 23-30Hz 

 

Both:  
Strong > Weak: 175-600ms; 10-40Hz 

Weak > Strong: 175-575ms; 5-22Hz 

 

 

 

 

Tax > Them: 0-150ms; 27-42Hz & 

450-600ms; 15-22Hz 

pMTG Weak > Strong Them > Tax Weak > Strong: 50-

550ms; 10-30Hz 

Weak > 

Strong: 0-

40ms 

Weak > Strong: 0-200ms, 350-

450ms; 5-7Hz 

 

Both:  

Tax > Them: 150-250ms; 15-20Hz 

Them > Tax: 

250-400ms; 15-20Hz 

Strong > Weak: 0-600ms; 8-15Hz 

 

 

 

Them > Tax: 250-500ms; 13-25Hz 

AG - Them > Tax - - Both:  
Strong > Weak: 300-400ms; 18-

25Hz 

Weak > Strong: 450ms+; 18-22Hz 

 

 

Tax>Them: 200-300 & 550ms+; 

15-20Hz 

Both:  
Strong > Weak: 0-75ms & 350-450ms 

& 550ms+; 10-35Hz 

Weak > Strong: 200-350ms; 8-10Hz 

 

Both: 

Them > Tax:0-175ms; 15-22Hz 

Tax > Them: 275-375; 10-12Hz 

 

Table 4.1: Summary of predictions and findings across experiments 
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Theoretical implications 

As summarised above, this thesis used MEG analysis of total and evoked oscillatory activity in 

areas involved in automatic and controlled semantic retrieval; processing of taxonomic and 

thematic relationships; and cTMS to assess the causal contribution of these sites to automatic and 

controlled retrieval over time. A few key findings can be taken from the results: 

1. Dissociations between ATL and pMTG 

Across both chapters and three experiments, evidence for increased involvement of pMTG in 

response to weak associations was observed, which are thought to have higher controlled retrieval 

demands, and the opposite pattern for ATL; i.e., an increased response to strong associations 

associated with automatic retrieval. These findings are informative about the organisation of 

semantic cognition in the temporal lobe and speak to the theoretical debate about where knowledge 

is stored: the hub and spoke model, which argues for a key semantic store in the anterior temporal 

cortex, contrasts with accounts such as the review by Martin (2007), which argued that knowledge 

is stored in posterior temporal regions. Although researchers increasingly recognise that ATL plays 

a crucial role in semantic representation, there is considerable debate about the role of pMTG; the 

notion that this region supports controlled retrieval processes is not universally accepted. The 

dissociation between these sites revealed in all three empirical chapters shows that while both sites 

might be involved in some way in semantic representation, they are not representing the same 

information, at the same time. Specifically, the data support the idea that ATL is crucial for 

relatively automatic spreading activation that recovers dominant features and associations encoded 

in long-term semantic memory, while pMTG is important for more controlled aspects of retrieval. 

Potentially, this site might maintain or re-represent information that is currently relevant – i.e., the 

context that must shape ongoing semantic retrieval. Consequently, there is a very early response in 

pMTG to violations of semantic expectations but also sustained engagement of pMTG in situations 

where the dominant features and associations encoded in ATL are insufficient to recover the 

relevant semantic relationships.  
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2. Representation of categorical and thematic relationships. 

The data suggest that the same semantic network is engaged by categorical and thematic 

relationships, if in qualitatively different ways. In 2011, Schwartz and colleagues presented results 

from voxel-based lesion symptom mapping showing that patients with TPJ lesions make more 

thematic errors (e.g. dog  bone), whereas ATL lesions produce more taxonomic errors (e.g. dog 

 cat; Schwartz et al., 2011). They proposed that ATL is one of two conceptual hubs, 

underpinning taxonomic or category-level knowledge, whereas the TPJ (including AG and pMTG) 

extracts event associations and thematic knowledge. However, Jefferies & Lambon Ralph (2006) 

reported similar results, but interpreted the thematic errors as preserved semantic representations, 

combined with deficient control processes that result in the production of irrelevant associations 

that are not consistent with the task requirements in picture naming. Neuroimaging literature also 

links AG in conjunction with ATL to relatively automatic patterns of retrieval, while pMTG in 

conjunction with LIFG is thought to support controlled aspects of retrieval (Humphreys & Lambon 

Ralph, 2014; Davey et al., 2015; Whitney et al., 2011; Noonan, et al., 2013; Badre et al., 2005). 

Here I present results indicating that ATL, pMTG and AG all respond to both types of 

relationships, and that differences in processing the two types of relationships may be expressed in 

the form, magnitude and latency of the oscillatory response across sites. 

3. Evidence for very early engagement of pMTG and ATL 

The results speak against a simple view of semantic cognition in which first features are activated 

and then they are controlled or selected. Here I present MEG and TMS results indicating that 

pMTG has an earlier role than ATL; in MEG effects of weak associations are seen in pMTG before 

effects of strong associations are seen in ATL. Furthermore, TMS to pMTG disrupts the retrieval of 

weak associations before TMS to ATL disrupts the retrieval of strong associations.  

One potential interpretation of these effects is that ATL is a long-term store of semantic 

knowledge, which represents associative links between semantically-linked information, while 

pMTG might maintain information in the short-term (i.e., a semantic context that shapes ongoing 

spreading activation in ATL). The ATL representations change slowly, so cannot represent 

information about what is currently relevant. In contrast, pMTG might maintain information about 
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what is currently relevant, so that when new inputs are presented, this site can play a critical role in 

detecting whether these inputs can be rapidly assimilated into the existing contest, or whether there 

is a need for controlled retrieval to constrain the pattern of spreading activation in ATL.  

 

Methodological implications 

1. Evoked and total power can respond differently to task manipulations 

In Chapter 3 I reported results in evoked and total power. Evoked power reflects oscillations locked 

to the stimulus in time and in phase, whereas total power incorporates both evoked power and 

oscillations locked to the stimulus in time, but not necessarily phase. These two analyses yielded 

different responses in time and frequency, highlighting the fact that they may reflect different 

cognitive processes. I take the results to suggest that in order to characterise ongoing semantic 

retrieval which is not tightly coupled to visual input, it may be necessary to examine total 

oscillatory power and not just the evoked component, as is done in many studies (Zhang & 

Pylkkanen, 2015; Bemis & Pylkkanen, 2012; Lau et al., 2014).  

2. Chronometric TMS is vulnerable to non-specific effects of stimulation when 

applied to sites that have peripheral nervous system effects  

In Chapter 2 I presented online cTMS results varying the time points at which pulses were 

delivered, allowing the assessment of time points of critical engagement.  ATL and pMTG were 

stimulated with dual pulses at four time points (0-40ms; 125-165ms; 250-290ms; 450-490ms), 

during the retrieval of strong and weaker associations. In the supplementary analysis in Chapter 2, I 

characterised the effect of TMS on the tasks in general, and found non-specific effects of TMS; RT 

increased with stimulation time, and this effect was particularly strong for ATL. This increased 

delay when TMS pulses were applied at a later time-point, is consistent with the suggestion that 

since participants expect to receive stimulation, this influences the timing of their response 

(Sliwinska et al., 2012). A staircase method, in which TMS pulse timings are changed gradually as 

opposed to randomly, was previously proposed as a way of minimising the saliency of differences 

in pulse timings across trials and thus ameliorating this problem (Sliwinska et al., 2012), and this 
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method was adopted in the study in Chapter 4 – however, the issue remained. This effect is likely 

to be particularly strong for the ATL site, since stimulation to this site is relatively uncomfortable 

and associated with involuntary eye-blinks, jaw contractions and strong scalp sensations. A similar 

increase in response latency was observed following sham stimulation, lending further support to 

this suggestion, since sham stimulation at 30% is thought to be too weak to produce a neural effect, 

but mimics the sound and scalp sensations of TMS stimulation (Duecker et al., 2013). A possible 

solution is to characterise these non-specific effects using a control task so that they can be 

controlled statistically when modelling the effect of TMS on the task of interest. This is the method 

utilised in the current analysis; non-specific effects of TMS were expected to be equivalent for the 

semantic task of interest and a number judgement task. Moreover, differential effects of TMS on 

strong and weak associations were examined, and since these trial types were presented in a mixed 

fashion, effects of ‘waiting’ for an anticipated TMS pulse should have been equivalent across these 

trial types. 

3. Knowledge of trial requirements may have a large impact on the overall pattern of 

brain activity in MEG 

The comparison of Chapter 2 and 3 yielded an interesting observation: When participants knew that 

they had to retrieve a global association (Chapter 2), there was a strong evoked response to the first 

word which is greatly attenuated by the second word. There was also a strong power decrease 

following the first word which was maintained over the ISI and was then increased by the onset of 

the second word. Conversely, in Chapter 3 (where participants were required to consider 

relationship type to make their response, which could only be determined at target onset), there was 

a negligible evoked response to the prime (associated with a small increase in total power), 

followed by a great increase in evoked power to (or immediately following) the target (associated 

with increase in total power). On the surface, these two experiments have nearly identical 

experimental paradigms, though one important difference is that in Chapter 2, it would be useful to 

generate possible associations from the onset of the prime. In Chapter 3 on the other hand, this 

would be likely to generate unhelpful semantic information on many trials. This highlights the 

flexibility with which elements of the semantic system can be recruited to support task 

performance, and the importance of considering task requirements and not only stimulus 
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presentation when designing and interpreting MEG experiments. The low temporal resolution of 

fMRI may reduce the sensitivity of this method to effects of task requirements, but for temporally 

sensitive imaging methods like MEG, the way in which components are recruited may depend on 

relatively subtle changes in instructions/task demands as well as stimuli.  

 

Theoretical and methodological limitations 

This thesis aimed to elucidate the components of semantic cognition – in particular, their 

contribution to more automatic and controlled semantic retrieval – using convergent neuroscientific 

techniques, namely magnetoencephalography (MEG) and transcranial magnetic stimulation (TMS). 

Both methods are highly applicable for studying changes in response over time: MEG allows us to 

trace the time course of the neural activation (in the order of milliseconds), and TMS allows us to 

test causal predictions in healthy participants. If disruptive pulses are applied at different time 

points, it can also be used to examine causal contributions to a task over time (Walsh & Coway, 

2000; Sliwinska, Vitello & Devlin, 2014). However, these methods also have associated 

limitations. MEG has lower spatial resolution than fMRI, as well as difficulty resolving sources 

further away from the cortical surface (Hansen, Kringelbach & Salmelin, 2010), which leads to a 

lack of anatomical precision. In both MEG experiments a 3D lattice of points was constructed 

across the whole brain with 5-mm spacing, and beamformers were used to compute the total power 

at each point. This means that the spatial resolution can never be better than 5mm, and sometimes 

poorer. In both MEG experiments virtual electrodes were placed in ATL and pMTG, yet their MNI 

coordinates are not identical, bringing about the question of whether this is data from one region, or 

indeed, sampling from two functionally distinct parts of a region and equating the results. This lack 

of spatial resolution is a general limitation of MEG experiments, and should be considered when 

interpreting the results from a theoretical perspective.  

This lower spatial acuity also led to the selection of TMS stimulation point based on 

previous literature rather than maximum power peak. The peak in ATL was very close to the peak 

reported by Binney et al. (2010) (ATL MNI coordinates: Binney et al., 2010: MNI -51,6,-39, MEG 

experiment 1: MNI -48,8,-18), and the peak for pMTG in Experiment 1 was quite medial for TMS 
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stimulation. For these reasons the stimulation points are different to the peaks in oscillatory power 

in the MEG experiment. Importantly, though it should be acknowledged that the spatial specificity 

of MEG is less than desired, the form of the signal in frequency over time is still informative to the 

underlying process. 

Methodologically speaking, TMS has an unfortunate drawback; that it can be 

uncomfortable for the participant. This is the most common side-effect of TMS stimulation, and the 

intensity of the pain varies depending on (among other things) scalp location (Rossi et al., 2009). In 

general, the closer stimulation is to underlying muscles, the greater the discomfort, due to 

involuntary twitches and jerks brought on by the magnetic pulses. This is important to the current 

results, as one of the most uncomfortable regions to stimulate is ATL, due to its proximity to strong 

face and jaw muscles, which is exacerbated by the sensitivity of the facial region in general. In the 

results of Chapter 2’s Experiment 2,  an effect of site is seen, in that reaction time is higher for 

ATL than both sham and pMTG stimulation. This is unfortunately an unavoidable problem with 

ATL stimulation. However, importantly for the analysis of interest (the contrast of strongly and 

weakly related word pairs), the disruption caused by discomfort should be equivalent for the two 

conditions. 

A further limitation of the empirical work presented here is that only word stimuli were 

used across all three experiments. Consequently, the data do not permit conclusions about the 

nature of semantic representations in terms of modality and do not test the prediction of the Hub 

and Spokes model (Patterson et al., 2007), which proposes that the ATL forms amodal concepts 

from the integration of modality-specific representations. 

Finally, the experiments involve explicit semantic decisions between pairs of words 

presented sequentially. They resemble priming studies in terms of stimulus presentation although 

not in the nature of the judgement being made. The thesis work focussed on examining the effect of 

changing the nature of the semantic relationship between the words presented for a semantic 

decision, and held constant various factors of the experimental design, such as presentation speed, 

repetition frequency and the proportion of trials that were related vs. unrelated. Extensive research 

on semantic priming (e.g., Neely, 1977; 1991) suggests that these factors can have an important 
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effect on the extent to which visual and phonological processing is influenced by word meaning. 

Some of the effects within the thesis might also be related to mappings between vision, phonology 

and semantics and further investigations could establish what effect changing the experimental 

design would have on these aspects of the results. 

 

Future directions 

The comparison of the two MEG experiments suggests an important next step will be to 

assess the impact of knowing what information needs to be retrieved. If the experimental paradigm 

in Chapter 3 allowed me to extend the analysis window in time, I would be able to assess whether 

the response was similar to Chapter 2 (but delayed), or whether knowledge of which features are 

relevant provokes a qualitatively different pattern of neural response. This issue would be best 

investigated in two experiments with identical stimuli and trial presentation, with the only 

difference being whether participants can anticipate the basis on which the words are related.  

 A further avenue of investigation would be to employ connectivity measures, especially 

those that are time-resolved and directional. This would allow the theoretical account above to be 

tested in a new way, since the assumption is that ATL would show different patterns of 

connectivity with semantic control regions depending on the extent to which the judgement is 

supported by the structure of semantic long-term memory. These tools are often based on 

coherence and neural synchrony of areas separated in cortical space (Friston, Frith, Liddle, 

Frackowiak, 1993; Klimesch et al., 2008). Though neural synchrony across cortical regions is not 

necessarily reflected in local changes of power (Tallon-Baudry, Bertrand & Fischer, 2001), these 

methods may be most informative when time-frequency analyses of local cortical areas are 

employed in conjunction with connectivity analyses. This is perhaps particularly important given 

the results presented in this thesis, highlighting the role of desynchronised oscillatory activity (at 

least within local neural populations). 

 A further useful follow-up study would be to apply TMS pulses during the interval 

between the two words in a pair, to test the emerging account of pMTG function which suggests 
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that this site might maintain a currently-relevant semantic context, in order to facilitate ongoing 

retrieval and detect situations in which control is required (see Chapter 2).  

Conclusion 

The primary aims of this thesis were to use time-resolve neuroscientific methods to 

investigate i) how automatic and controlled semantic retrieval shape oscillatory activity within the 

semantic network; ii) to use cTMS to assess the causal contribution of brain areas implicated in 

automatic and controlled semantic retrieval; and iii) to explore the existence of one or two semantic 

hubs by contrasting taxonomic and thematic relationships. In both MEG experiments, there was 

recruitment of pMTG before ATL, which speaks against a simple view of semantic cognition in 

which first features are activated and then they are controlled. Furthermore, the rapid recruitment of 

pMTG for weak associations preceded the response to strong associations in ATL, highlighting 

these two brain areas’ involvement in controlled or automatic retrieval respectively. This was later 

supported by a chronometric TMS experiment that showed early recruitment of pMTG was crucial 

for the successful retrieval of weak relationships, while slightly later but also rapid recruitment of 

ATL was critical to the successful retrieval of strong semantic relationships around 150ms post-

target.  

The second MEG experiment (Chapter 3) evaluated two conflicting accounts of semantic 

representation. Some research highlights the ATL as one of two conceptual hubs, underpinning 

taxonomic or category-level knowledge, while the TPJ extracts event associations and thematic 

knowledge (Schwartz et al., 2011). Alternatively, Jefferies & Lambon Ralph (2006) proposed a 

representation/retrieval account, in which TPJ lesions lead to deficient control processes. Chapter 3 

provides evidence in line with the representation vs. retrieval view of semantic cognition, as ATL, 

pMTG and AG all responded to both taxonomic and thematic associations, making the dual-hub 

view an unlikely explanation of the results.  

The results from these three experiments point to a unified semantic system for taxonomic 

and thematic associations, with both of these aspects of knowledge potentially represented in ATL. 

Spreading activation within this semantic store would then be critical for automatic retrieval. In 

contrast, pMTG may maintain a semantic context, and detect situations in which controlled 
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retrieval processes may be needed to understand the link between this context and new inputs, 

explaining this site’s rapid contribution to the retrieval of weak associations. In this view, ATL is a 

long-term store of semantic knowledge, which represents the features of concepts including their 

spatiotemporal associations, while pMTG might maintain currently-relevant semantic information 

in the short-term (i.e., a semantic context that shapes ongoing spreading activation in ATL). Given 

that long-term representations change slowly, ATL cannot represent information about what is 

currently relevant. In contrast, pMTG could maintain information about what is currently relevant, 

so that when new inputs are presented, this site can play a critical role in detecting the need for 

controlled retrieval to constrain the pattern of spreading activation in ATL. This dissociation 

between ATL and pMTG validates ATL’s causal role in the automatic retrieval of semantic 

relationships (irrespective of type of association), and highlights pMTG’s early causal role in 

controlled semantic retrieval.  
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