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Abstract

This thesis investigates the Purkinje network (PN) and its dependency on the heart

shape (HS) through cardiac simulation on virtual populations (VPs). The heart is a

complex organ and essential to the wellbeing of humans; its dysfunction is responsible

for more than 27% of all deaths in the UK. The PN delivers the activation impulse to the

ventricles of the heart and ensures their synchronous activation. Thus, the morphology

of the PN is important, but it varies between species and in vivo imaging is not feasible.

However, computer simulation could provide an alternative experimental tool.

In simulation of the cardiac electrophysiology, the PN is often replaced by stimulus

points on the HS that are fitted to physiological measurements (heart activation times,

ECG). Thus, not allowing the study of the PN morphology, nor studies of arrhythmia

involving re-entry into the PN. In this thesis, three studies involving explicit models of

PNs have been conducted.

First, an efficient algorithm for solving electrophysiology models for the PN is intro-

duced. These allow performing simulations of physiological activations. To minimise

the time for simulations, parallelisation with CPU and GPU architectures are investi-

gated, which is of interest for VP studies.

In the second study, false tendons (FTs) are studied, which provide an additional

connection from the left bundle branch (LBB) and are potentially beneficial in case of

LBB block. Therefore, the reduction in activation times by FT is studied as a function

of the HS.

In the third study, an automatically generated VP is used to explore uncertainty in

the PN morphology. The conjecture is that the PN structure adapts to the HS. The

coverage of the septum and the minimum distance of the PN to the base are varied. The

features of the resulting ECG are used to find the PN that gives maximally synchronised

contraction.
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Rg Gap-junction resistance



S Vector of three dimensional points describing a shape

t Time

u Local activation time
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In this thesis, the focus is on the computational study of the human Purkinje network

(PN), which is responsible for the normal activation of the heart [5].

The PN is located in the ventricular part of the heart muscle (Fig. 1.1). The whole

heart muscle is formed by four chambers, two smaller (atria) and large (ventricles).

Both atria share a common wall, the atrial septum, and both ventricles share the

ventricular septum. The right atrium and the right ventricle (RV) are connected by

the tricuspid valve, likewise the left atrium and the left ventricle (LV) are connected

by the mitral valve. The region separating the atria and ventricle can be approximated

with a plane which is called the base of heart. Attached to the mitral/tricuspid valves

are the papillary muscles (PMs), which are located in the ventricle. The PMs keep the

valves closed during the contraction of the ventricle. While the RV pumps blood to the

lungs; the LV pumps it to the body. To pump blood through the body, both ventricles

must contract in synchrony with the contraction proceeding from apex towards the

base. To ensure this contraction pattern, the ventricles are activated by an electrical

impulse, the action potential (AP), which is conducted to the heart muscle by the PN.

As such, the PN has a vital role in the synchronisation of the contracting heart, which

is essential to human life.

The PN has two functions, the primary is the fast and coordinated conduction of

the AP through the ventricle to maintain the apex to base contraction sequence [6–8].

The second function is the back up generation of an AP, in case the sinus node fails [6].

In healthy condition, the AP is generated in the sinus node, which initiates the

electrical activation. The sinus node is located in the right atrium and conducts the

AP directly to the muscle of the atria. From the atria, the AP is delayed at the atrio-

ventricular node, and conducted from the right atria to the RV. In healthy condition,

this is the only electrical pathway between atria and ventricles [6].

The atrio-ventricular node form the begin of the electrically insulated fast conduc-

tion system of the ventricles. The first part is named bundle of His after its discoverer,

the Swiss cardiologist Wilhelm His, Jr. The fibre continues and bifurcates into the left

bundle branch (LBB) and the right bundle branch (RBB). The morphology of the sub-

sequent PN depends strongly on the species and is named after the Czech anatomist Jan

Evangelista Purkynĕ. In dogs’ and rabbits’ hearts, the PN is often detached from the

myocardium, while in sheep [4] and human [9] the PN is superficial to the myocardial

endocardium. Furthermore, for some animals like sheep and cow the PN
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Figure 1.1: Overview of the anatomy of the heart. (a) both atria and both ven-
tricle, illustration from wikimedia CC BY-SA 3.0, https://commons.wikimedia.org
/w/index.php?curid=2344163 (b) Ventricles including Purkinje network.
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extends into the myocardium, while in humans the PN is endocardial only [6, 8, 10].

Nevertheless, there are similarities in PNs of the hearts of vertebrates [7].

For humans, it is assumed that the RBB runs in the ventricular septum until it

emerges on the right ventricular septum, where it bifurcates. One fibre runs towards

the PM and the other towards the right ventricular apex. From the apex, the fibre

fans out onto the right ventricular free wall covering large parts of it [5, 11]. However,

it is reported that there is no PN on the right ventricular septum.

In case of the LBB, literature is in disagreement whether the LBB ramifies in two or

three main branches [8]. These main branches run from their bifurcation to the PMs

and from there towards the base of the heart, while bifurcating into smaller branches.

This smaller branches cover large parts of the LV endocardium [9]. The fibres in the

LV form a dense network with frequent interconnections of fibres.

Beside its physiological function, the PN can be involved in the creation of ven-

tricular tachycardia (VT). VTs are life threatening arrhythmias with heart rates over

120 beats per minute, caused by unphysiological electrical excitation of the ventricle,

which results in a high contraction rate of the ventricles without physiological need.

This can be the result of slow conduction regions in the PN [6, 12–14]. A common

VT has retrograde conduction through one bundle branch and antegrade conduction

in the other bundle [6]. Thus, the AP propagates in a closed loop. A further source

of arrhythmia is the connection between the PN and the myocardium, in particular in

ischemic conditions [15]. A successful treatment of VT is ablation of the tissue region

in question [6].

A common variant in the left ventricular geometry are false tendons (FTs). FTs are

fibromuscular bands crossing from the left ventricular septum to the PM or ventricular

free wall (VFW) [16, 17], and connect different parts of the ventricle. According to

Luetmer et al.and Kervancioğlu et al. [16, 17], most FTs connect the septum and a

PM, where Deniz et al.reported that most connections are between the septum and

the VFW [18]. The FTs, which originating from the septum are usually attached at

the basal part of the septum. Other less frequent connections are between two PMs or

the PM and the VFW [16]. Frequently, more than one FT is found in a ventricle [19].

The composition of a FT can vary, where the following tissues have been reported:

myocardial fibres, blood vessels, connective tissue, fibrous tissue, and conductive tis-

sues [17–19]. Histological examinations showed the presence of Purkinje fibre in 30%
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of FTs [19], with the Purkinje fibres being similar to the fibres seen in the bundle of

His [20]. The Purkinje fibres can run through the whole FT or alternate with myocar-

dial tissue [18,21,22]. Overall, the FT can be an important part of the PN.

FTs are generally assumed to be benign, however, there are reports implicating them

in arrhythmias. Abdulla et al.conjectured that FTs can give rise to re-entry [17, 20].

Abouezzeddine et al.and Betsuyaku et al.report cases in which a FT was the origin

of a VT. In both cases, ablation of the attachment side cured the VT [23, 24]. It is

hypothesised that in the filling phase of the ventricle (diastole) the FT is stretched,

and the recurring stretch creates a slow conduction region [24, 25]. This stress is also

conjectured to cause premature ventricular contractions [26, 27]. Other case reports

indicate that FTs can have a significant influence on the electrocardiogram (ECG). The

ECG may shows a higher amplitude of the R-wave and an inverted T-wave, features

characteristic of ventricular hypertrophy [28,29].

As discussed above, the PN is of utmost importance to human life, however it is

poorly understood. This is related to the fact that the PN is a thin structure, difficult to

image in vivo with today’s imaging technology. Magnetic resonance imaging (MRI) has

only been used for some animals where the PN is detached from the myocardium [30].

Other ex vivo animal studies injected Indian ink [8] in the network, or use other markers

to highlight the PN [11]. However, it would be desirable to study the human heart

for information about the human PN, because of the variety in the PN morphology

between species. Besides the ethical concerns involved in human studies, the study of

the PN is also operationally difficult.

In cases, where in vivo studies are infeasible, often models are used to advance the

knowledge. This has a long history in the domain of computational modelling of the

heart. Already in 1946, a model of the excitation propagation was published and used

to describe the propagation in a two-dimensional domain of rectangular shape [31].

This first modelling approaches aimed to reproduce previous clinical observation of

activation propagation in simple shapes. Later, these models have been advanced to

simulation of the left and right ventricular activation [32], which were usually com-

pared against the measurements conducted by Durrer et al. [33]. For this simulations,

the parameter values were obtained from different studies usually investigating a single

parameter. The investigation leading to the parameter estimation, were often con-

ducted on a single subject, like the myocardial fibre orientation by Streeter [34], or
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with average values for the electrical conduction velocity in different tissues, aiming

for a general description of an average patient [35]. When modern in vivo imaging

techniques like computed tomography (CT) and MRI became widely available the de-

velopment of patient specific computer models started. In such models, the aim was

to use as much patient specific parameter values as possible to gain information about

the specific case. Generally, the parameter values are limited to the cardiac shape,

the outline of ischemic regions [36,37], or measurements of activation time or potential

at different endocardial positions [37, 38]. Such models allowed in silico experiments,

where in silico describes the fact that the experiment is conducted on a computer [39].

Patient specific modelling [36, 40, 41] marks the transformation from descriptive mod-

elling to predictive modelling. For the first time cardiac models can be used to predict

the outcome of different treatments for a particular patient [42]. Today, large database

like the UK Biobank1 exists and provide patient specific parameter values, like the

heart shape, for a huge population. This offers the possibility to perform patient spe-

cific cardiac simulations in a large population. In the future, such databases can be

used to study the effectiveness of a treatment or a new drug by an in silico trial. The

aim is to reduce the need for expensive and potentially dangerous clinical trails [39].

Besides that in silico trails might be more cost effective, they might also provide more

information as to why a drug or treatment failed [39].

In silico trails can be performed over a large database of patient-specific data sets,

or by utilising virtual populations. In this thesis, the term virtual population refers to

a collection of heart shapes, which are generated from a statistical shape model (SSM).

The SSM and the process of generating new heart shapes is explained in Section 2.1.1.

The advantage of using a SSM is that the shape of the heart is parametrised, which al-

lows to generated heart shapes of a desired shape. This can be used to generated entire

virtual populations without the need for patient images, or to augment a population

of real shapes, or enlarge the sample size.

1Incorporated in England and Wales, registered number 4978912, and registered as a charity in England and Wales,
number 1101332. Charity registered in Scotland, number SC039230, http://www.ukbiobank.ac.uk/
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1.1 Thesis Question

This thesis is part of the bigger vision to explain the rare observation of an enlarged

R-spike, and inverted T-wave in the ECG caused by a FT [28,29] . Clinically, the ECG

alternations can lead to the mis-diagnose of ventricular hypertrophy [29], which could

indicate a serious underlying heart condition, where FTs are assumed to be benign.

Therefore, a way to differentiate between ventricular hypertrophy and the benign

FTs is needed. One possible approach is to extract features from the ECG, like the

QRS duration, and use machine learning techniques to build a classifier. The machine

learning needs large amounts of ECGs data with the same condition (either FT, or

ventricular hypertrophy) for the training phase, however this data are not available for

the case of FT. A computational model of the heart, including a FT, can potentially

provide a replacement for the missing experimental data. The models need to be

developed to reproduce the clinically observed indicators of inversion of the T-wave

and enlarged R-spike. Then the model can be used in virtual population studies, and

thereby the statistical characterisation of the ECG alternations caused by the FT be

learned.

To tackle this problem, a model for the PN, FT, and the shape of the heart needs

to be develop. The parameter values of the first two models need to be learned from in

silico experiments reproducing physiological results. A brief overview of the problem

is shown in Figure 1.2. The vision includes three crucial parts, first a model of the

human PN, second a model of the FT and third the automatic simulation of virtual

population studies. Therefore, the thesis aims to study the activation sequence of the

human heart for different morphologies of the human PN, including the alternation by

a FT, in virtual populations. More specifically, the cardiac activation time is studied

in relation to the coverage of the endocardium by the PN. To this end, an automatic

pipeline of computer tools is developed to generate new heart shapes from a SSM and

perform simulations of electrical activity in the human heart. The pipeline includes a

tool for the generation of physiological PN and its morphological variability.

There are multiple challenges on the way: the development of a combined PN and

heart model, the automatic creation of the geometries for the heart and the PN, and

the integration of all tools, from the creation of the hearts to the simulation of the

activation time, in an automatic pipeline. To be able to perform virtual population
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Simpli�ed Model of
Cardiac Activation

Electrophysiogy
Model of Cardiac

Activation

Models Developed in this Thesis

Models to be Developed in Future Work

Experiment Conduted in this Thesis

Experiment to be Conduted

Build an

e�cient

model of the

PN electro-
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Figure 1.2: Plan on how to build a model to investigate electrocardiography (ECG)
abnormalities caused by false tendons (FT). In a first approach computational less ex-
pensive models are build to learn the Purkinje network (PN) and FT model. In a second
stage the models are applied to electrophysiology models, leading to electrophysiology
model of the heart including the PN and FTs.
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studies, hundreds of simulations need to be conducted, therefore the automatic pipeline

can not include manual intervention by the user. Furthermore, the automatic pipeline

should depend on parameters to control the shape of the heart geometry and the PN.

The four objectives of this theses are

1. Build a computationally efficient electrophysiology model of the PN for

simulation of virtual populations

Different models for the simulation of the electrophysiology in the PN exist. Some

of these models are able to simulate the propagation of APs through the PN

based on ionic exchange mechanisms. However, no special effort has been made

to achieve computationally efficient implementations of solvers for the electro-

physiology in the PN. As the aim of this thesis is to perform virtual population

studies, computational time is critical. Thus, it is important to explore different

parallelisation strategies, which should be accompanied by verification studies.

The verification ensures that any simplifications made for an efficient solver im-

plementation do not affect the solution accuracy.

2. Build an automatic pipeline for the construction and execution of a

computational heart model.

To perform virtual population studies of hearts, a manual creation of heart ge-

ometries is not feasible. Therefore, an automatic pipeline is developed to create

anatomically realistic heart shapes, based on a SSM of the heart. For a systematic

generation of virtual populations, the heart shape is controlled by parameters, as

should be the coverage of the endocardium by the PN. For a given heart shape and

PN, simulations of the activation sequence are performed and used to estimate

the ECG.

3. Perform a virtual population study on the effect of FTs in LBB block

condition.

The FT can connect to the PN, where an additional connection in the PN presents

a significant change to the topology of the PN. However, so far no computational

model includes them. To study potential benefits provided by the presence of a FT

in conduction dysfunction of the PN, a virtual population study is performed. The

study examines whether FTs can reduce the prolonged activation time resulting

from a dysfunction of the fast conduction system.
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4. Explore the relation between the PN morphology in different heart

shapes and the simulated ECG.

As the PN varies between species and many studied are based on animals, the

knowledge of the human PN has a high degree of uncertainty. This is particular

true when it comes to the extent to which the PN covers the endocardium. It

can even be conjectured that the PN morphology will influence the synchronicity

between activation in the RV and LV. Therefore, this study estimates the effect

of the PN morphology on the activation sequence. To explore this, the automatic

pipeline from the second objective should be used.

1.2 Thesis Outline

In Chapter 2, previous work completed in cardiac modelling is reviewed, where the focus

is on the healthy heart, and the explicit modelling of the PN. Therefore, the review

starts with different geometric heart models used in literature and continues with an

introduction to mathematical models for cardiac electrophysiology. A derivation of the

bidomain model is given, and it is explained how the model can be simplified to arrive to

the monodomain or eikonal models. The second focus is on the PN, for which different

approaches in modelling and generation of geometrical models are reviewed; a review

of electrophysiology modelling of the PN is also provided. The chapter concludes with

a brief overview of the mathematical modelling of the ECG.

Chapter 3 introduces different implementations of monodomain based solver for the

PN. One implementation relies only on the use of central processing units (CPUs),

where the second is a hybrid implementation using both CPUs and graphic processing

units (GPUs). The accuracy of both implementations is assessed by constructing a

test problem with an analytic solution. However, the convergence test with respect

to the spatial discretisation exhibits sublinear convergence. In a subsequent work,

presented in Chapter 4, it is shown that the convergence can be improved, by changing

the mathematical description of the bifurcation points in the PN. For the revised

formulation to solve for the electrophysiology of the PN three implementations are

presented: a pure CPU, a pure GPU, and a hybrid implementation. To evaluate the

performance of these different implementations the simulation runtime for four different

spatial complexities and two different ionic model is compared.
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In Chapter 5, a semi-automatic virtual population study is performed. The aim is to

quantify the reduction in activation time, which can be achieved by a FT in LBB block

condition. Therefore, a virtual population of 70 hearts is semi-automatically created

from a SSM. For all hearts, a PN is generated with a deterministic algorithm and

simulations of the activation time in LBB block condition are performed. Subsequently,

simulations with six different FT configuration are performed to compare the total

activation time between cases with and without FT.

In Chapter 6, the effect of the uncertainty in the PN morphology is explored. To that

end, an automatic pipeline is developed, which draws instances of heart shapes from

a SSM and performs simulations of the ECG. The pipeline uses a parameterisation of

the cardiac geometry consisting of 27 shape parameters and four Purkinje morphology

parameters. For the cardiac geometry, a SSM of the heart shape is implemented in a

computer program to automatically generate a heart surface mesh, based on the shape

parameter values. The four Purkinje parameters are used in the PN growing algorithm

to control the coverage of the endocardium by the PN. Two Purkinje parameters control

the minimum distance of the PN from the heart base in LV and RV, respectively. The

other two parameters control the length of the main branches of the LBB and RBB,

respectively. The algorithm is integrated in a second computer program. The pipeline

is completed by further computer programs: One from the LifeV library2, which assigns

the myocardial fibre orientation, a solver for the local activation times in the heart, and

the computer software SCIRun3 that obtains the forward ECG solution. The resulting

pipeline runs without intervention from the user. Using this pipeline, an experiment is

conducted to optimise Purkinje parameter values such that the resulting ECG exhibits

only one R-spike.

A summary of the work, and evaluation of the objectives is given in Chapter 7. The

chapter concludes with an outlook to future work.

2The LifeV (http://www.lifev.org) finite element library is the joint collaboration between four institutions: EPFL,
Politecnico di Milano, INRIA, and Emory University.

3SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI),
Download from: http://www.scirun.org
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In recent years, computer simulations have extended the experimental possibilities

in medical applications. Such that, today, computer simulations are used to aid in the

planning, operation of surgeries [42, 43], and in in silico trials [44, 45]. One reason for

this development is that computers have become more powerful and less expensive.

The other reason is the continuing advancement in cardiac modelling. In the following

section, the theory of computational modelling of the healthy heart is reviewed. The

cardiac model is composed of a model for the healthy myocardium, a model of the

myocardial fibre orientation, a model of the PN, and finally a model for the ECG.

2.1 Computational Models of the Heart

Computational models of the heart are composed of the heart shape, a model of the

inertial stimulation of the myocardium (e.g. a PN or carefully selected stimulus sides),

the myocardial fibre orientation, and a model of the activation propagation. In this

section, an overview of these topics is provided. An exception is the initial stimulus of

the heart, which is discussed in more detail in Section 2.2.

2.1.1 Geometric Models of the Heart

The description of the heart morphology is an essential part of the heart model, since

it influences [46] both the activation time and sequence (Section 2.1.2). In general, the

shape and size of the heart depends on the subject. In particular, the wall thickness may

be larger for athletes or patients suffering from diseases like pulmonary hypertension.

In this thesis, an additional interest is on the shape. This is because the PN is on the

endocardial surface (Chapter 1), and can be greatly affected by the heart shape.

For computer simulations, the heart shape is usually described by a surface mesh,

which is often built from triangular elements (Fig. 2.1a). The triangles form a triangu-

lation of the heart surface. To describe the volume enclosed by a surface a volumetric

representation is needed. These are usually achieved by filling the volume of interest

with tetrahedron (Fig. 2.1b), or other polyhedrons.

Here, the interest is on the surface description of the heart shape. It can be as

simple as a tissue slab or as complex as the reconstruction of the heart shape from

images. The smaller tissue slabs are used where the effect of interest does not de-

pend on the particular heart shape and can be reproduced in a rectangular shaped
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Figure 2.1: Types of surface and volume elements (a) Triangle (b) Tetrahedron

domain [1, 47–52]. Simplified geometries of the LV can be obtained from a truncated

ellipsoid [41, 51–53]. These allows the algorithmic generation of the LV, however it is

only an approximation of the anatomical shape. The first detailed models of the heart

were based on animal studies. Nielsen et al.generated an electronic representation from

mechanical measurements of ten dog hearts [54]. The position data were then used to

approximate the surface with a bi-cubic function, resulting in a smooth representation

of the geometry. Stevens et al. [55] extended the technique to digitise the shape of

a porcine heart to improve the representation of the basal area. Vetter and McCul-

loch [56] and Tusscher et al. [57] constructed a digital heart geometry from photograph

of successive short-axis slices of the heart.

In order to get a better in vivo volumetric visualisation of the heart, MRI [30,

58–60] or CT [51, 61, 62] is employed. Applying segmentation [63–65] and meshing

techniques [66], volumetric meshes of the heart can be constructed from in vivo images.

More recently, SSMs of the human heart have been developed [67,68], which give a

statistical characterisation of the shape over a population of hearts. The construction

of the model requires a consistent selection of anatomical landmarks for all shapes

in the population. There are different methods for the landmark selection including

manual annotation, mesh to mesh registration [44,68], volume to volume registration,

parametrisation to parametrisation and population to population methods. After the

landmark selection is completed for all different shapes, the corresponding landmarks

of the shapes need to be aligned to each other [69,70]. The aliment puts the shapes at

same spatial position, which is necessary to compare the shapes.

From the aligned landmarks the SSM is constructed. Usually, a landmark is a three
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dimensional vector ~S ∈ R3. Then, the m landmarks ~sj, j ∈ {1, . . . ,m}, form the vector

~S =
(
s1

1, s
1
2, s

1
3, · · · , sm1 , sm2 , sm3

)T
, (2.1)

where the subscript indicates the component and the superscript T the transposed. In

this setting, each shape is represented by a 3m-dimensional vector of m landmarks,

and after n observations there are ~Si vectors, i = {1, . . . , n}. The mean shape of the

population is constructed by averaging

~̄S =
1

n

n∑
i=1

~Si. (2.2)

However, the possible types of deformations in the population are restricted. There-

fore, it is common to apply a dimensionality reduction technique to extract the possi-

ble modes of variation. The most common technique is principal component analysis

(PCA), which performs an eigenvalue decomposition of the covariance matrix. As the

number of training cases (n) is commonly much smaller than 3m, PCA returns n-

1 modes of variation (non-zero eigenvectors). The eigenvalue (λi) associated to each

mode provides information about the fraction of total variation described by that mode

of variation.

After the PCA is completed, any new shape, ~̂S, can be created by:

~̂S := ~S + Φ ·~b (2.3)

where Φ is a matrix with the modes of variation and ~b is a vector describing the shape

in the eigenspace, commonly named model parameters. As a rule of thumb, the range

of variation in the parameters ~bi is limited to 3 times the standard deviation,
√
λi, of

each mode, which measures their relative influence.

SSMs have been used to describe the shape of the ventricles and atria in the

heart [68,71]. They have even been applied to virtual population studies investigating

the influence of shape on the activation time [44] and studying the relation of shape

and ischaemia conditions [45]. The advantage of SSMs is that they do not represent

only a single instance of the shape but the variability of shape in the entire population

used for training. With this information, it is possible to systematically generate new

physiological heart shapes with the desired amount of variability.
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Figure 2.2: First mode of variation in a statistical shape model of the heart. (a) Shape
at minus three standard deviations (b) Mean shape (c) Shape at plus three standard
deviations

2.1.2 Modelling the Myocardial Fibre Orientation

The heart model includes a model of the myocardial fibre orientation. The myocardial

fibre orientation is important for the activation propagation models (Sec. 2.1.3), as the

conduction along the myocardial fibre orientation is about twice as fast as perpendicular

to it.

In literature, the myocardial fibre orientation is often reconstructed from information

obtained ex vivo. For simple geometries, like slabs, the myocardial fibre orientation is

created artificially [48, 56]. For realistic shaped ventricles, mechanical measurements

can be obtained [54], the myocardial fibre orientation can be traced in photographs [57],

or reconstructed from diffusion tensor MRI [58]. The advantage of the above methods is

that they can provide a personalised myocardial fibre orientation with good resolution.

However, the data extraction is performed ex vivo.

The statistical descriptions of the myocardial fibre orientation can be used for algo-

rithmical generation. The standard reference for canine myocardial fibre orientations

is Streeter et al. [34] and is still used frequently. It describes a linear model for the

change in fibre orientation transmurally from the endocardium to the epicardium, and

from the apex to the heart base. A more detailed model was developed by Lombaert et

al. [72]. Their model characterises the transmural fibre orientation in each of the 17

segments of the 17 American Heart Association segment model [73]. The advantage

of the above algorithmic formulae for fibre orientations is that they can be used to
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assign an average fibre orientation to any ventricle, which can also be considered as a

limitation as it does not take into account subject-specific fibre orientations.

Combination of a statistical description of the myocardial fibre orientation and the

personalised diffusion tensor MRI the personalised high resolution myocardial fibre

orientation can be predicted. Such models have been developed in [74]. Advancements

of this model would combine the ventricular shape and the myocardial fibre orientation

in a single model. This would allow to predict personalised myocardial fibre orientations

based in the ventricular shape, only. However, such approaches are still an active topic

of research.

2.1.3 Modelling the Cardiac Activation Sequence

In the literature, the main model for cardiac electrophysiology is the bidomain model.

Two simplified models of the bidomain model are widely used, the monodomain model

and the eikonal model. In the following subsection, an overview of these models is

given.

Volume Conductor

First the equations for the electrical potential in a passive medium are derived. The

equations will be used in the next section to derive the bidomain equations of the

electrical activity of the heart, and in Section 2.3 for the simulation of the ECG. The

derivation of the volume conductor follows the work by Sundnes et al. [75].

From the laws of electrostatics, the electric field ~E is known and can be written as

a potential φ

~E = −∇φ. (2.4)

In addition, Ohm’s law states

~J = σ̃ ~E, (2.5)

where σ̃ is the conductivity tensor and ~J the current. Combining (2.4) and (2.5) results
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the cell membrane charge accumulates (green and yellow) and forms a transmembrane
potential (TMP).

in

−σ̃∇φ = ~J. (2.6)

This equation describes a volume-conductor.

The Bidomain Model

From the volume-conductor equations (2.6), the bidomain model can be derived. This

model is the most detailed representation of cardiac tissue commonly used in litera-

ture [48, 76–80].

The bidomain model is based on the observation that in the myocardium the intra-

cellular and the extracellular spaces are separated by a cell membrane (Fig. 2.3). In

both domains (2.6) is valid

−σ̃i∇φi = ~Ji (2.7)

−σ̃e∇φe = ~Je, (2.8)

where the subscript i indicates the intracellular space and the e the extracellular space.

The physiological assumption that the heart is an electrically closed system means that



21 2.1. COMPUTATIONAL MODELS OF THE HEART

the charge in the heart must be conserved. As a consequence, the current can only

flow between the intracellular and extracellular space. Therefore, any change in the ~Ji

must have opposite change in ~Je

∇ · ~Ji = −∇ · ~Je (2.9)

⇒ ∇ · (σ̃i∇φi) +∇ · (σ̃e∇φe) = 0. (2.10)

The cell membrane restricts the flow of charged particles between intra- and extracel-

lular spaces, thus the charge accumulates at the cell membrane (Fig. 2.3). Denoting

charge at the intracellular membrane qi and on the extracellular membrane qe results

in the total charge being q := 1/2(qi − qe). This charge generates a potential between

the intra- and extracellular spaces ϕ := φi−φe. The potential can be written in terms

of the charge

ϕ =
q

χCm
(2.11)

⇒ ϕ =
qi − qe
2χCm

, (2.12)

where Cm is the capacity of the cell membrane and χ is the surface-to-volume ration.

The potential changes as the charge moves through the cell membrane. This is captured

in the time derivative

χCm∂tϕ = 1/2∂t(qi − qe). (2.13)

Again, using the assumption of conservation of charge in the heart results in ∂t(qi+qe) =

0. This reduces (2.13) to

χCm∂tv = ∂tqi = ∂qe (2.14)

Furthermore, the current in a point is equal to the charge accumulation over time and

the ionic current through the membrane

−∇ · ~Ji = ∂tqi + χIion

−∇ · ~Je = ∂tqe − χIion
(2.15)
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Combining (2.14) and (2.15) gives

−∇ · ~Ji = χ(CM∂tϕ+ Iion). (2.16)

Here (2.7) is inserted

∇ · (σ̃i∇φi) = χ(CM∂tϕ+ Iion). (2.17)

This is the second equation of the bidomain formulation. In the two variables (φe, ϕ)

formulation, the problem becomes

⇒ ∇ · (σ̃i∇(ϕ+ φe)) +∇(σ̃e∇φe) = 0

∇ · (σ̃i∇(ϕ+ φe)) = χ(CM∂tϕ+ Iion).
(2.18)

With appropriate boundary conditions this problem is known as the bidomain problem.

The problem is completed by the description of ionic current Iion over the cell

membrane. The opening and closing of specific ion channels results in change of the

transmembrane potential (TMP). This specific dynamic (Fig. 2.4) of the TMP is called

action potential (AP), and is formed by five phases. Phase zero is the upstroke of the

initial activation, Phase one is the first downward deflection after the upstroke. It

follows the plateau phase two in which the AP stays nearly constant, and the repo-

larisation phase three where the AP return to the resting state, phase four. Hodgkin

and Huxley [81] gave the first mathematical model of such an ion current. So far, most

ionic models are based on this initial description. They have been developed further

to incorporate different ionic channels and are adapted to different cells types. For the

myocardium, the Bueno-Orovio (or minimal) model [82] is frequently used, which is

adapted to the human myocardium. More complex models for the human ventricular

cell are the ten Tusscher-Panfilov model from 2004 [83] and from 2006 [1]. There are

other models for animals like the Luo-Rudy model 2 [84]. For the PN, specialised ionic

models have been developed. The first model of the ionic dynamics of the Purkinje

cell membrane was developed by Noble [85]. It was followed by other models from di

Francesco and Noble [3] and the model by Stewart et al. [86]. Compared to the mod-

els of the myocardium, cell models of the Purkinje cells have a longer AP duration,

which is defined as the time from upstroke of the AP to the return to the resting state.

A comparison of AP generated by a myocardial cell and a Purkinje cell is shown in
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Figure 2.4.

The Monodomain Model

The bidomain model can be simplified to only one potential, assuming a fixed ratio

between the intra- and extracellular conductivity at all points

σ̃e := λσ̃i. (2.19)

This simplification reduces the computational complexity [87]. However, it cannot be

used where the extracellular potential is explicitly needed, for example in defibrillator

simulations [87]. The monodomain approach is frequently used [48,58,78–80,88], where

a benchmark test between solvers can be found in the publication by Niederer et al. [48].

To utilise the simplification, a rearrangement of the terms in (2.18) is beneficial

∇ · (σ̃i∇ϕ) +∇ · (σ̃i∇φe) = χ(CM∂tϕ+ Iion)

∇ · (σ̃i∇(ϕ)) +∇ · ((σ̃i + σ̃e)∇(φe)) = 0.
(2.20)
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Replacing the extra cellular conductivity and summing both equations

∇ · (σ̃i∇ϕ)− 1

1 + λ
∇ · (σ̃i∇(ϕ)) = χ(CM∂tϕ+ Iion) (2.21)

⇒ λ

1 + λ
∇ · (σ̃i∇(ϕ)) = χ(CM∂tϕ+ Iion) (2.22)

yields the monodomain equation.

The Eikonal Model

The eikonal model is a different simplification of the bidomain model. The full deriva-

tion of the model can be found in [89,90].

The idea is to only model the local activation time of the heart. The local activation

time at a specific location is the time point where the TMP attains the value equal to

half of the maximum AP amplitude (Fig. 2.4). In the eikonal model, the evolution of

the activation wave-front is modelled, instead of the ionic current. Nevertheless, the

eikonal approximation gives a good approximation of the myocardial activation time,

as has been shown by different authors [91–93].

In [94] it is shown that from the bidomain equation a simplification can be reached:

∂x∂xw(x) + c0∂xw(x) + f(w(x)) = 0, (2.23)

where w describes a travelling pulse, and c0 is a dimensionless number quantifying the

excitability of the myocardium and f(u(x)) depends on the ionic model. The pulse

describes the transition from resting potential to the depolarised state. As shown

in [90], the travelling pulse can be converted in the local activation time u(x) which is

the solution of the problem

ρ
√
∇uTM∇u = 1 (2.24)

u(xi) = u0(xi), xi ∈ S (2.25)

ρ is the conduction velocity along the fibre orientation, and M is the symmetric matrix

giving the vector along the fibre orientation and the local anisotropy. S is the set of

stimulus points.

This problem can be solved with standard numerical methods, like Euler-forward in-
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tegration method. Additionally, it can also be solved with the fast marching method [92].

This method exploits that the activation time increases monotonically from the sources

to solve the equation, a more detailed description is given in Section 5.2.6

2.2 Computational Models of the Purkinje Network

2.2.1 Geometrical Modelling

The geometric modelling of the PN has advanced from manually drawing two dimen-

sional networks to the automatic generation of three dimensional PN.

Different methods were used to generate two dimensional PNs. In the simplest

construction, the PN was hand drawn [5, 11, 58, 95]. The drawing was guided by mea-

surements of the endocardial activation sequence reported in Durrer et al. [33]. A semi

manual approach is followed in [5, 46, 96], where the junctions between the PN and

myocardium are manually placed. The network between the junctions is automatically

generated. Berenfeld and Jalife [97] digitalised representations of the PN from the lit-

erature and mapped them to a two dimensional endocardial surface. To fit the images,

scaling was applied. Manual corrections were done where the digitalisation produced

errors.

Semi-automatic or automatic generation algorithms for three dimensional PNs have

been proposed based on fractal L-Systems. An L-System starts from a single branch,

which bifurcates, yielding two new branches (Fig. 2.5). Each new branch can stop

growing and become an end point or continue bifurcating. Abbound et al. [32] in-

troduced this approach to model the PNs as a tree in 1991, where [98] extended the

approach to build large networks. In the model, different stages of the PN have then

been distinguished, where the first stage is a very coarse network, the second stage is

a refinement of the first, and the third stage adds endpoints of the PN. Physiological

adaptations to the model have been made to direct the generation of the main bundles

towards the PM [4, 99, 100]. Recently, there has been work done to adapt the PN to

patient specific endocardial measurements of the activation time [38,41]
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Growing direction

Figure 2.5: Small tree gown with an L-System. The growing direction is from left to
right, and the red dots mark endpints in the three.

2.2.2 Activation Modelling

The PN activation can be modelled with approaches similar to the myocardium (Sec. 2.1.3),

as Purkinje cells are specialised myocardial cells. Thus, the activation times can be

simulated with a cellular automata model [11], with the eikonal model [38, 101], or

the finite element method (FEM) [58, 97, 102, 103]. Berenfeld and Jalife [97] used the

monodomain equation and represented the PN as a regular grid, which enabled them

to mathematically describe bifurcation of fibres by appropriated coupling condition.

In one dimensional FEM simulations of the PN, bifurcations are modelled by cou-

pling three different branches together. Bordas et al. [102] solve the problem by intro-

ducing a special finite element basis function at the bifurcation, which linearly inter-

polates over three domains. For the one dimensional monodomain equation Vigmond

and Clements [103] demonstrated a numerical method to solve the problem based on

Kirchhoff’s current law. In the approach of Vigmond and Clements, the current is

obtained using Hermite polynomials, as basis function for the FEM.
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2.3 Computational Models of the Forward ECG

The electrical activity of the heart can be measured on the body surface by the ECG,

which measures the voltage between different points on the body surface. The numeri-

cal simulation of this body surface potential is called the forward ECG problem. In this

section, different methods are introduced for the simulation of the surface potential.

For the forward ECG problem, the torso and heart are assumed to consist of two

different domains ΩT and ΩH , respectively (Fig. 2.6). Then the torso domain is repre-

sented as a source free volume conductor, where (2.6) holds. The assumption that the

torso is free of electrical charges, and sources is used with the divergence theorem

∇ · ~J = 0. (2.26)

Inserting (2.6) and using φT as the torso potential results in

−∇ · (σ̃∇φT ) = 0. (2.27)

For this problem, the boundary conditions need to be defined. The first being the

assumption that no current leaves the body: ∂n ~J = 0 on the torso surface ∂ΩT , where

∂n is the derivative in normal direction. At the boundary between the heart and the

torso ∂ΩH , i.e. epicardium, the extracellular potential of the heart φe and the torso

potential φT are required to be the same φT |∂ΩH = φe|∂ΩH . A natural assumption is

that all current leaving the heart enters the torso ∂nφT |∂ΩH = ∂nφe|∂ΩH , which gives

the fully coupled model. However, for forward simulations also the stronger no-flux

conditions [104] between heart and torso have been used ∂nφT |∂ΩH = ∂nφe|∂ΩH = 0.

This is called uncoupling, as the heart and torso problem are solved separately. In

summary, the forward ECG problem is

−∇ · (σ̃T∇φT ) = 0,

∂nφT |∂ΩT = 0,

∂nφT |∂ΩH =

{
∂nφe|∂ΩH for fully coupled

∂nφe|∂ΩH = 0 for uncoupled

. (2.28)

The fully coupled model is the gold standard. The uncoupled model has the obvious

limitations that external pacing can not be simulated. Apart from this limitation, the
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Figure 2.6: Computational domains for the forward ECG problem.

uncoupling can affect the amplitudes of the different waves in the ECG. However, the

QRS wave and the QT interval are captured correctly [104].

Another uncoupling approach decouples the intracellular and the extracellular space,

by using the TMP instead of the extracellular potential. Assuming the TMP ϕ is

known, the second equation in (2.20) gives the extracellular potential φe in the heart.

The torso potential φT is given by (2.27), and the problem can be described by

∇ · (σ̃i∇(ϕ)) +∇ · ((σ̃i + σ̃e)∇(φe)) = 0. ∀x ∈ ΩH

∇ · (σ̃T∇(φT )) = 0. ∀x ∈ ΩT

(2.29)

∂nφT |∂ΩH = ∂nφe|∂ΩH (2.30)

φT |∂ΩH = φe|∂ΩH (2.31)

∂nφT |∂ΩT = 0 (2.32)

Thus, φe is identified with φT and solved to

−∇ · ((σ̃i + σ̃e)∇(φT )) = ∇ · (σ̃i∇(ϕ)) ∀x ∈ ΩH

∇ · (σ̃T∇(φT )) = 0. ∀x ∈ ΩT

(2.33)

∂nφT |∂ΩT = 0 (2.34)
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This way the potential distribution can be computed on the body surface from the TMP

only, which can then be used to simulate an ECG. The advantage of this formulation is,

that the monodomain equation can be used to describe the AP dynamic in the heart.

However, this also means that the limitation of the monodomain model apply here as

well.

An estimation of the ECG signal can be obtained by integrating the contribution

of the TMP to a particular lead point xL [47, 58]

φT |xL =

∫
ΩH

∇ϕ(x) ·
(
σ̃e(x)∇

(
1

R(x)

))
dΩH (2.35)

where the torso is assumed to have a homogeneous conductivity σ̃e. The function R(x)

denotes the distance from x to the lead position xL.

2.4 Conclusion

In the literature, virtual populations of heart have been created and simulations of their

activation times have been previously performed [44,45]. Some of these techniques can

be used or extended to achieve the objectives outlined in Section 1.1.

The geometric model of the heart can be obtained from MRI or CT images. This

allows the generation of highly detailed geometric models, which replicate the mor-

phology of the human heart. It has even been shown how to build a SSM of human

hearts from CT images [68,71]. These shape models need to be adapted such that they

can be used to build virtual hearts suitable for the volumetric mesh generation and

numerical computer simulations.

For the generation of the PN automatic algorithms exist. However, the algorithms

in literature need to be extended to generate FTs. Additionally, parameters to control

the extent to which the PN covers the endocardium need to be introduced. The best

fitting method for the purpose of this thesis is the method from [99] as it is based on

physiological observation of the PN structure.

For the modelling of the activation of the heart, existing models can be used. The

model choice depends on the specific application, and varies between chapters of this

thesis. For the virtual population studies conducted in Chapter 5 and 6 an efficient and

computational inexpensive model is needed. As in this thesis only healthy myocardium
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is modelled, the model is required to be accurate for healthy myocardium only. The

eikonal model is a promising candidate, as simulation can be performed on desktop

computers and the activation time approximated with the mleikonal model is in good

agreement with results obtained from bidomain or monodomain simulations [91–93].

Thus, the eikonal model is an optimal choice for the virtual population studies. On

the other hand, the detailed electrophysiology, including the ionic dynamic, of the

PN can not be modelled with an eikonal model. Consequently, in Chapter 3 and 4,

the monodomain model is used, which is still computationally less expensive than the

bidomain main model but can represent the ionic dynamic. The limitation of this

approach is that pacing experiments are not possible.
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To be able to conduct virtual population studies, an efficient implementation for

the numerical solution of the electrophysiology problem is needed. In this chapter, a

numerical solver is presented for the fast conduction system in the heart using both

a central processing unit (CPU) and a hybrid CPU/graphic processing unit (GPU)

implementation. To verify both implementations, an analytical solution is constructed

and it is shown that the L2-error between the numerical and analytic solution de-

creases when shortening the discretisation length. Finally, a performance test of the

implementations with networks of varying complexity is performed.

This chapter is adapted from the conference proceeding [105], where the motivation

is from [106].

3.1 Motivation

The Purkinje fibres form an extensive branching network of fast conducting cells within

the ventricular sub-endocardium of the human heart. This network covers large areas of

the ventricles and ensures their rhythmic contraction, in response to signals traversing

from the atrioventricular (AV) node along the His bundle and its branches [8,107]. The

fibres consist of specialised cardiac muscle cells that conduct the action potential (AP)

towards the ventricular myocardium at the Purkinje-muscle junctions (PMJs).

Even if the function of the Purkinje network (PN) is well-known, their involvement

in arrhythmia is less well understood. It is suspected that the PN can generate an AP

spontaneously [108], or it can be essential to the initiation of some ventricular tachy-

cardias (VTs) [109, 110]. The PN can cause VT if a unidirectional block in the main

bundle is present. Assuming that the left bundle branch (LBB) has a unidirectional

block with no orthodromic conduction (conduction in physiological direction from the

bundle of His to the myocardium), but slow antidromic conduction (conduction from

the myocardium towards the bundle of His). Then the AP would be conducted through

the right bundle branch (RBB) towards the ventricular septum, from where it travels

in the direction of the left ventricular PN and enters in the antidromic direction. In

antidromic direction the AP can pass through the unidirectional block and arrives at

the previously excited PN. If the loop is long enough or the conduction slow enough,

the cells in the previously excited PN have passed their absolute refractory period.

Thus, a new AP can be generated. Equally, unidirectional blocks downstream in the
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PN are believed to form loops and consequently generate VTs [109].

It is challenging to investigate the effect of the PN on arrhythmias in a clinical

setting, because the PN is very thin and fragile. This makes it difficult to perform

imaging or in vivo electrophysiological measurements. However, in recent years in

silico experiments have become feasible, and can provide information about the PN,

which are difficult to obtain from clinical settings [42]. It has even been suggested to

include the PN in cardiac simulations designed to aid interventions [42].

As discussed in Section 2.2.2, different models for the PN have been suggested.

Including the bidomain [30], the monodomain [36, 103], and the eikonal model [38].

The eikonal model has several limitations, the most significant of which is the absence

of an ionic model. This renders the eikonal model impractical for re-entry simulations,

or simulations of ischemic processes in the heart because the absolute and the relative

refractory period of the cell cannot be simulated. Another limitation is the inability

to simulate the physiological delay in the conduction of the AP of 3 ms to 12 ms from

the PN to the myocardium at the PMJs. This delay has to be included in the model

manually. Another recently observed limitation of the eikonal model has been the

assumption of constant conduction velocity, which is not correct due to the push and

pull effect [111]. Therefore, the eikonal model has a limited range of applications. Some

of these limitations can be overcome if the monodomain model is used.

The monodomain model describes the propagation of the AP based on the ion

exchange over the cell membrane. For this model certain observations have been made

in conjunction with the PN. Most importantly, it has been shown that coarse networks

are not able to reproduce physiological activations [36,42,58,100]. A further indication

that the PN needs a certain density comes from the fact that a single PMJ might fail

to conduct the AP from the PN to the myocardium. However, if the PMJ density is

high enough some PMJs are redundant. Thus, to obtain realistic activation patters

dense networks are required.

High density of the network or ionic model will reflect on the computational costs.

Currently, it is possible to solve the monodomain equation on the densest of PN in a

few hours, as will be shown. For the simulation of one case this might not be a strong

limitation. However, it becomes important when simulations are performed for virtual

population studies. In these experiments, a variety of different configurations in shape,

size, and possibly dysfunction of the heart are performed. This variation in parameters
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leads to large studies with more than 700 simulations, as will be seen in Chapter 5. In

such studies, the time demand for simulation of the PN activation with the monodomain

model will exceed feasible limits. Therefore, a reduction of the computational time for

the numeric solver is required. A reduction of the computational time can be achieved

by processing the problem in parallel. High performance computing (HPC) facilities

offer this parallel computing power. However, the sparsity structure of the linear system

resulting from the PN problem causes a higher communication demand than usual for

one dimensional problems. This reduces the speed-up from using multiple CPUs. To

overcome the scalability issue shared memory systems can be used. For the current

task, the GPU poses a promising choice, as outlined in the next paragraph.

There are two major advantages of the GPU when used with the PN problem.

1) The GPU is a highly parallel shared memory system and 2) the electrophysiology

problem in the PN is small enough to fit on one GPU. The first advantage means that

a substantial reduction in computational time is expected, as more than 100 cores are

processing at the same time. The second advantage relates to the fact that memory is

often a limitation when using the GPU, as the memory size is small in comparison to a

desktop machine. However, for the PN problem the common amount of 2 GB memory

for a GPU is sufficient to store the whole problem. Furthermore, the ionic models can

be processed independently of each other. This makes the electrophysiology problem

of the PN a good candidate for acceleration with the GPU.

Using new computational devices, like the GPU, can also introduce new errors.

Validation of the method would be the best, however all Purkinje models currently

lack in vivo validation due to difficulties in measuring APs in the subendocardial PN.

As such, the importance of numerical verification first and foremost has been identified

as a key stepping stone to the wider development and acceptance of numerical models

and methods for simulating PN activation [58].

3.2 Methods

First, a briefly explanation of the approach of Vigmond et al. [103] is given, and then

the implementation on the CPU and on a CPU/GPU hybrid platform are explained.
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3.2.1 Mathematical Model and Solution Method

The monodomain equation is considered in one dimension, because the PN can be ap-

proximated by a network of 1-D line segments. Here it is assumed that the extracellular

space of the myocardium is not affected by the PN, and it is ignored in the following.

The monodomain equation (2.22) in one dimension reads

∂x(σi(x)∂xϕ(x, t)) = β(Cm∂tϕ(x, t) + Iion(ϕ, ξ)), (3.1)

where x is the local coordinate, ϕ is the transmembrane potential (TMP), Iion is the

current that flows through the ion channels, ξ are the state variables of the membrane

model, β is the surface-to-volume ratio of the cell membrane, σi is the intracellular

conductivity, and Cm is the membrane capacitance.

To derive a coupling condition between two or more line segments the idea of Vig-

mond et al. [103] is followed. The equations on each line segment are coupled together

by a boundary condition resulting from the enforcement of continuity of the potential

and the conservation of charges (Kirchhoff’s law). To satisfy the boundary conditions,

the TMP, ϕ, and the current, I, are needed. Since I = σi∂xϕ, the spatial derivatives

of the TMP need to be computed.

The system is discretised using a cubic Hermite finite element method (FEM), which

allows the current I to be recovered as a continuous quantity. In view of the numerical

discretization with the FEM, each node of the mesh is assumed to be located in the

gap-junction between two cells, where the unknowns are the intracellular potential φi

and the current Ig through the gap-junction. Two ghost nodes are created on both

sides of the gap-junction, where the TMP ϕ±, and ionic channel current Iion are defined.

The advantage of the ghost nodes is that with the gap-junction modelled as a resistor

R, the current Ig can be obtained from Ohm’s law

ϕ± = φi − φe ∓
IgR

2
, (3.2)

where φe is the extracellular potential, which is taken constant in this chapter. This is

because the Purkinje cells have a negligible contribution to the extracellular space in

the myocardium.

To correct for the introduced gap-junction resistance, the equivalent conductivity
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σ∗ = (σil)/(l + σiRπρ
2) is used, where l is the length of the Purkinje cell and ρ

the radius. This means, that σi is the conductivity in the cell only, while σ∗ is the

conductivity of the cell and the gap-junction. In this notation (3.1) becomes

∂x(σ
∗∂xφ

±
i ) = β(Cm∂tϕ± + Iion(ϕ±, ξ±)) , (3.3)

where φ±i is the intracellular potential in the ghost nodes. Furthermore, an operator

splitting technique is applied to (3.3):{
∂tϕ+ L1(ϕ) = 0

∂tϕ+ L2(ϕ) = 0
, (3.4)

where L1 = Iion is part of the differential operator that represents the nonlinear term

of (3.3), whereas L2 = ∂x(σ
∗∂x) represent the diffusion term of (3.3). A fractional-step

method with a discretization of the temporal derivatives by a first-order approximation

is introduced, where the superscript n refers to the numerical solution computed at time

tn and each timestep is of size ∆t:

ϕn+1/2 − ϕn
∆t

= −L1(ϕn),
ϕn+1 − ϕn+1/2

∆t
= −L2(ϕn+1). (3.5)

Now the cable equation can be solved in four steps (Algorithm 1). To handle

branching and joining of segments in the PN, the node where the three segments join

is created three times. The repeated point is used to enforce the boundary conditions,

and thus couple together the solutions obtained for the different line segments. In the

case that segment 1 bifurcates into segments 2 and 3, the continuity of the potential

φ1 = φ2 = φ3 is enforced and the conservation of current I1 = I2 + I3 is used. This

implementation covers the case where segments 1 and 2 join to form segment 3, in

which case the coupling condition of the currents is I1 = I3 − I2. These boundary

conditions are introduced in the FEM system matrix associated to (3.9) and the right

hand side.

3.2.2 Hardware Implementation

Next, the CPU and the CPU/GPU hybrid implementations is outlined. The solver

for the cable equation uses the FEM in Step 4, and is implemented using the LifeV
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Algorithm 1 to Solve the Cable Equation with a Splitting Scheme

Step 1. Recover the transmembrane potential ϕn± with (3.2) from Ing , φni , φne .
Step 2. Solve the first equation of the (3.5), which is the update of the ionic current
in the ghost nodes

ϕ
n+1/2
± = ϕn± −

Iion(ϕn±, ξ)

Cm
∆t . (3.6)

Step 3. Compute φ
n+1/2
i and I

n+1/2
g with the new values of ϕ

n+1/2
± in the real node:

φ
n+1/2
i =

ϕ
n+1/2
+ + ϕ

n+1/2
−

2
+ φne , In+1/2

g =
ϕ
n+1/2
+ − ϕn+1/2

−

R
. (3.7)

Step 4. Use the FEM for the second stage of the operator splitting. By noticing

φi =
φ+i +φ−i

2
and using the linearity of L2, we find:

βCm∂t(φi − φe) = ∂x(σ
∗∂xφi) . (3.8)

Introducing a discretization in time results in:

βCm
(φn+1

i − φn+1
e )− (φ

n+1/2
i − φne )

∆t
= ∂xσ

∗∂xφ
n+1
i , (3.9)

which is solved with the FEM with 1-D cubic Hermite shape functions.

library1. Only Steps 1-3 of the algorithm are parallelised and the linear system in Step

4 is solved serially. The reason for this is that the solution of the Ionic model can be

advanced in time, independent from the heart mesh geometry and is computationally

intensive. On the other hand, it is less trivial to parallelise the solving of the linear

system. The resulting computational workflow is shown in Figure 3.1.

The Steps 1, 3, and 4 are always implemented on the CPU, only Step 2 is run on

the GPU. In the hybrid implementation, between Steps 1 and 2, an additional copy of

the TMP ϕ± from the CPU to the GPU is made. To minimize the time spent copying

the data, CUDA2 streams are used, which allow asynchronous tasks to be queued to

the GPU. All computations are performed with a Dell Precision-WorkStation-T7500

featuring two Intel(R) Xeon(R) CPUs E5620 at 2.40GHz and NVIDIA Quadro 4000

GPU with 256 CUDA Cores.

1The LifeV (http://www.lifev.org) finite element library is the joint collaboration between four institutions: EPFL,
Politecnico di Milano, INRIA, and Emory University.

2The CUDA (http://docs.nvidia.com/cuda/) toolkit is of the NVIDIA cooperation
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Step 1 on all

MPI nodes
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MPI nodes
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opy result

to all MPI

nodes

Step 1

on CPU

Copy potential

to GPU

Step 2 on all CUDA ores

Copy potential

to CPU

Step 3

with CPU

Step 4

with CPU

Figure 3.1: Workflow for the CPU (above), and CPU/GPU hybrid (below) implemen-
tation. The CPU implementation needs to copy the potential in the gap-junctions
and the current, while the hybrid implementation needs to copy the potential of the
ghost nodes. White boxes represent CPU tasks, and grey GPU tasks.

3.3 Numerical Experiments

To verify the correct and efficient implementation of the solvers, two numerical ex-

periments are performed. The first experiment uses an analytical solution to estimate

the absolute error and then to carry out a convergence test. The second experiment

compares the performance of the CPU and CPU/GPU hybrid algorithm.

3.3.1 Numerical Error and Convergence

First, a simplified model is introduced and two test problems with analytical solutions

are developed. The non-physiological ionic model is [112]

∂tϕ = pϕ, (3.10)

where ϕ is the TMP and p is a model parameter. Depending on the sign of p the cells

are stable (p < 0) and return exponentially to 0, or are unstable (p > 0) and the TMP

increases exponentially.

Next, two different test cases are introduced and their analytical solution is derived.

For the first case the domain D1 considered is an infinite line, which is composed

of three subintervals D1,1 = (−∞,−a), D1,2 = [−a, a], and D1,3 = (a,∞). In D1,2

unstable cells are assumed, while in the surrounding regions D1,1, D1,3 the cells are
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stable, which results in a spatial varying parameter of the simplified model

p(x) =

{
p2 for x ∈ D1,2

−p1 otherwise
, (3.11)

where p1, p2 > 0. Inserting the cell model in (3.1), results in the following equation to

solve
Cm∂tϕ = δ∂2

xϕ− p(x)ϕ

ϕ1(−a) = ϕ2(−a) , ϕ2(a) = ϕ3(a)

ϕ′1(x)|x=−a = ϕ′2(x)|x=−a , ϕ′2(x)|x=a = ϕ′3(x)|x=a

ϕ1(−∞) = 0 , ϕ3(∞) = 0,

, (3.12)

with δ = σ∗/β. The solution presented by Artebrant et al. [112] is

ϕ =


c1e
√
p1/δx x < −a

cos(
√
p2/δx) ‖x‖ ≤ a

c1e
−
√
p1/δx x > a

with ,
p1 = p2 tan2(

√
p2/δa),

c1 = cos(−
√
p2/δa)e

√
p1/δa

, (3.13)

where a and p2 are the model parameters.

In the second test case, the domain D2 is a double-bifurcation with an analytical

solution. The domain consist of two rays, D2,1 = (−∞,−a) and D2,2 = (−∞,−a)

joining to form a line segment D2,3 = [−a, a] in the middle, which then splits again

into two rays D2,4 = (a,∞), D2,5 = (a,∞), resulting in a domain of five subintervals

in total. The line segment D2,3 consists of active cells, while D2,1, D2,2, D2,4 and D2,5

consist of passive cells. The problem is symmetric with respect to zero, thus only one

half of the entire problem domain is of interest. Furthermore, the rays D2,1 and D2,2

are identical, thus it suffices to solve the following problem for only one of them:

δϕ′′1 − p1ϕ1 = 0, ∀ x ∈ D2,1

δϕ′′3 + p2ϕ3 = 0, ∀ x ∈ D2,3

ϕ1(−a) = ϕ3(−a) , 2 ϕ′1(x)|−a = ϕ3(x)′|−a , ϕ1(−∞) = 0 ,

(3.14)

where the factor of two in the derivatives is a result of Kirchhoff’s current law. The

solution is very similar to the problem on one infinite line, with the ansatz functions

ϕ1 = c1e
k1x, ϕ3 = c3 cos(k2x) the constant c1 is still given by (3.13). A relation between
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Figure 3.2: The absolute error between the analytic solution of the potential and the
numerical solution. For the test case on an infinite line (a), and for the simple branching
network (b), where the dotted line has a step size of 0.1 cm, while the solid is 0.00625 cm
and the error is multiplied by 10. The active cells are in the region marked with red.

p1 and p2 follows from

2ϕ′1(−a) = ϕ′3(−a)
(3.13)⇒ 2k1(c3 cos(−k2a)ek1a)e−k1a = −k2c3 sin(−k2a)

⇒ p1 = p2
4

tan2(
√
p2/δa).

(3.15)

Again, ϕ3 is fixed at one point to get a unique solution.

Comparison of the Absolute Error:

For numerical simulations, the parameter values p2 = 1 kS, a = 1 cm, Cm = 1 µF, and

c2 = 1 mV are used. The length has been chosen to l = 62.5 µm, and a radius of

ρ = 16.0 µm, which is within the physiological limits [113]. Furthermore, the arbitrary

choice δ = 1 kS/cm2, R = 0.1 kΩ is made. Recall that δ = σ∗/β, from which the

conductivity σi = 1967 kS cm−1 is found. The spatial discretisation step h is then

chosen to be an integer multiple of l, i.e. h = nl, n ∈ N. By choosing the discretisation

a multiple of the cell length, it is ensured that the explicit gap-junctions are modelled

at actual cell to cell connections. Additionally, this choice ensures the compatibility

of the equivalent conductivity and the explicit gap-junction, as the homogenisation is

over the cell conductivity and the gap-junction conductivity.
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Figure 3.3: Linear convergence in h (dashed line) and the convergence rates of the
potential computed with the CPU (dotted line), and from the CPU/GPU hybrid (solid
line). Results are for the single line case (left) and for the simple branching network
(right).

Convergence Test:

For the error convergence test, the simulations were run with the same parameters as

before for n = {1, 2, 3, 4, 5} in the spatial discretisation and the L2-Error was calculated

for each step size (Fig. 3.3). The CPU and CPU/GPU hybrid implementation give

the same linear convergence of the error for the test with the line segment D1 and a

sublinear convergence for the domain D2. As the FEM uses Hermite polynomials a

fourth order convergence would be expected. The only linear convergence is likely to

be due to the usage of the virtual nodes in Step 1 and 3 of the algorithm 1, because

linear approximation over the gap-junction is used. The sublinear convergence in the

domain D2 is related to a mathematical inconsistent formulation of the gap-junction,

as will be discuses in more detail in Chapter 4.

3.3.2 Performance Comparison

To compare the efficiency of the two implementations, four PNs were generated with

the method described in Section 5.2.3. The last two PNs have density consistent with

physiological PNs for the left ventricle (LV) and for both ventricles, respectively. The

simulation was performed with a spatial resolution of 0.1 mm and a temporal step

size of 0.02 ms. The duration of 45 ms was chosen because all networks were fully

depolarised by that time. The membrane model of Di Francesco-Noble was used [3].

The CPU code was run with eight parallel processes, while the hybrid code was run

with one CPU. Table 3.1 shows both the PNs and the total computational time spent
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Table 3.1: The computational time for different Purkinje networks in the left ventricle
(LV) and right ventricle (RV).

obtaining the respective solutions. Furthermore, the same figure shows the time spent

solving the diffusion problem and the reaction problem separately. In the pure CPU

implementation, the majority of the time is used to solve the ionic models. This is due

to the fact that a detailed ionic model with 15 state variables was used, while the linear

system for the diffusion step is comparably simple to solve, as the moving activation

front is limited to the vicinity of a few node points. For the hybrid implementation the

situation changes, and the time for solving the reaction and diffusion steps are roughly

the same, because the GPU offers a larger number of parallel cores. As a result the

solution of the reaction step is ca. 4.7 times faster with the GPU. Also, a decrease

in the time spent solving the diffusion step is noticed. This can be a result of several

factors, including that for the CPU implementation all eight processes need to copy

there data to a single CPU.
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3.4 Conclusion

An extension of the work of Vigmond et al. [103] was presented, to solve realistic

PNs, and implemented it both on a CPU and in a hybrid CPU/GPU architecture. To

evaluate the accuracy of both implementations a convergence test of the L2-Error was

calculated over a line, which showed that the solver converges linearly with the step size.

The branching points introduced a small additional error in the numerical solution,

causing a sub-linear convergence. Both implementations had equivalent numerical

accuracy.

The performance test indicated that the hybrid implementation using 256 CUDA

cores and 1 CPU was in average 5.8 times faster than the CPU implementation run

with 8 CPUs. This motivates future work on developing an implementation, which

performs all the remaining steps of the algorithm on the GPU to realize even greater

performance gains.
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47 4.1. MOTIVATION

In the previous Chapter, the efficient implementation of a numerical solver for the

electrophysiology problem in the Purkinje network (PN) has been investigated. It was

shown that the graphic processing unit (GPU) offers a powerful computational device,

which can be used to reduce computation times in numerical simulations. However, the

convergence test in a bifurcating fibre yielded unsatisfactory results. In this chapter

the formulation of the gap-junction model is changed to obtain a better convergence

rate. Furthermore, the numerical test is extended to time dependent solutions.

This chapter is adapted from the journal publication [106].

4.1 Motivation

The algorithm in Chapter 3 showed a sub-linear convergence of the numerical solu-

tion if a bifurcation point was present. This indicates a potential problem in the

mathematical formulation of the gap-junction formulation. Consequently, a revised

numerical method, which is mathematically more consistent is presented. As electro-

physiology measurements are widely unavailable at this time validation is not possible,

thus verification is performed. In Chapter 3 only the static solution has been verified.

This is insufficient, as the electrophysiology problem is a dynamic problem. Thus, the

verification is performed for a time dependent problem in this chapter.

Furthermore, the last chapter showed that the GPU is a strong computational de-

vice. Already the hybrid implementation between central processing unit (CPU)/GPU

out performed the pure CPU more than 5 times. This motivates a pure GPU imple-

mentation to reduce the computational time further, and potentially outperform the

hybrid implementation. To investigate this a comparison concerning the performance

of the implementations is made. Therefore, four different PNs are created, where the

smallest one has 6251 nodes and the largest one has 43748 nodes. The electrophysiology

for these networks is simulated with two different ionic models: the model developed

by di Francesco and Noble [3] and with the model developed by Stewart et al. [86].
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4.2 Numerical Scheme for Computing Action Potentials in 1-

D Networks

4.2.1 Definition and Modification of the Explicit Gap Junction Model

To solve the action potential (AP) in the PN, the algorithm from Chapter 3 is improved.

Again, the one-dimensional cable equation is extended to describe the propagation of

the potential at the branching points. Each Purkinje branch is modelled as a separate

problem on a one-dimensional line segment, which is then coupled to other branches by

interface conditions determined by the continuity of potential and Kirchhoff’s current

law. For the latter, the input and output currents at the branching points are needed,

which for example can be obtained from a numerical derivative of the potential. As

in the previous chapter, the finite element method (FEM) is applied using Hermite

basis functions, such that the derivatives of the solutions are degrees of freedom in the

formulation.

To close the monodomain equations approximated using Hermite basis functions,

the concept of explicit gap-junction models is introduced. This involves writing Kirch-

hoff’s laws at the bifurcations explicitly in terms of the currents and potentials. Gap-

junctions are specialised intercellular connections between Purkinje cells. In the clas-

sical monodomain model for the myocardium, the effect of these gap-junctions is con-

flated into the conductivity tensor by a homogenisation process [114]. In the types

of models considered for the PN in this work, all gap-junctions between two cells are

homogenised into a single gap-junction (Fig. 4.1). This gap-junction is then modelled

explicitly [103, 115]. Also, the bifurcation is modelled based on the homogenisation

formula. This allows to model bifurcations with a single gap-junction connecting three

cells, in order to correctly capture the slow down of the AP propagation when ap-

proaching a bifurcation and the acceleration there after (“push-and-pull” effect).

Let us consider the case of two Purkinje cells connected by a gap-junction (inset of

Fig. 4.1). Then the degrees of freedom of the problem are the intracellular potential

φi and the current Ig across the gap-junction, where Ig relates to φi by the derivative:

Ig = πρ2σ∗i
∂φi
∂l

∣∣∣∣
g

, (4.1)
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Figure 4.1: Illustration of three Purkinje branches and the gap-junctions that link
together the Purkinje cells. The four steps of the algorithm to solve electrophysiological
problems are shown. In the middle of the gap-junction are the intracellular potential
φi|g and the current Ig. Additional nodes (ghost nodes) are defined to compute the cell
membrane model in the cell. All equations are explained in the text.

where σ∗i is the equivalent conductivity defined later, ρ the Purkinje cell radius and l

the cell length. Both quantities Ig and φi|g are formally located in the middle of the

gap-junction (in red in Fig. 4.1). The ionic channel current Iion is calculated in the

cells at the ghost nodes (in blue in Fig. 4.1), which means for each node point the cell

membrane model needs to be evaluated twice.

The relation between the intracellular potential φi in the gap-junction and the trans-

membrane potential (TMP) in the two neighbouring cells ϕ± is given by Ohm’s law

ϕ± = φi − φe ∓
IgRg

2
,

where Rg is the gap-junction resistance and φe is the extracellular potential. The latter

is assumed to be constant throughout this chapter. Furthermore, up to a multiplicative

factor Ig represents the derivative of φi by Ohm’s law.
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Figure 4.2: Detail of the branching node point in the finite element (FE) node points
and ghost nodes. The currents I1,2,3 are defined from the ghost node the FE nodes.

The values φi|g, Ig at the branching point are repeated in order to allow each segment

to be solved separately. The three endpoints of the segments are then assumed to

connect in the gap-junction of the three cells (see Fig. 4.2). In contrast to the method

in Chapter 3, each of the points gets only one cell membrane model associated with it

instead of two. The single cell membrane model will then be solved in the corresponding

cell segment. The currents are given from each cell to the branching point as indicated

in Figure 4.2. This adjustment is necessary because in the previous method there are

six ghost nodes at each branching point, but only three actual cells. As it will be seen,

the more concise formulation will also result in a more accurate numerical solution in

comparison with analytical solutions.

Once the explicit gap-junction model is in place, the compatibility of the macroscopic

conductivity tensor with the gap-junction resistance needs to be ensured. Therefore, it

is assumed that σi is the intracellular conductivity without any effect of gap-junctions
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and the equivalent conductivity is introduced under the assumption of a cylindrical

volume conductor σ∗i = (σi`)/(` + σiRgπρ
2), where ` is the length of the Purkinje cell

and ρ its radius. Note that this assumes that any discretisation has a step length

h = Z`, which is an integer multiple Z of the cell length `. In this notation (2.22)

becomes

∂xσ
∗
i ∂xϕ± = β(Cm∂tϕ± + Iion(ϕ±, ξ±)). (4.2)

To approximate the solution of (4.2) in time the operator splitting technique from

Section 3.2.1 is used. The four steps are outlined in Figure 4.1.

4.2.2 Hardware Implementation

In the following Section, the different characteristics of the three implementations are

detailed. They are all performed using the LifeV library1, which provides methods to

assemble the finite element stiffness and mass matrices and the right hand side coming

from boundary conditions, time discretization and forcing terms. Furthermore, linear

solvers and preconditioners are provided through the Trilinos2 linear algebra library.

In all implementations, the linear system is solved with the generalised minimal

residual method with incomplete LU factorisation for preconditioning of the linear

system. The generalised minimal residual method was used as the system matrices are

not symmetric due to the coupling condition enforcement at the junctions. In each

iteration the preconditioner is applied to the linear system. This is done by solving

first for the lower triangular system and then solving for the upper triangular system.

To advance the ionic cell models in time an explicit forward Euler method has been

used. The more efficient Rush-Larsen method could not be used, due to problems with

the numerical stability of the Stewart model. This is also reflected in the stiffness of the

resulting ordinary differential equation system from the ionic models. As a result of the

high stiffness, a timestep of 0.002 ms for the Euler method was needed. This timestep

is a factor of ten smaller than the timestep for the linear system of the diffusion part.

Therefore, in each global timestep the ionic model has been solved ten times.

The pure CPU implementation was parallelised with the help of the OpenMPI

1The LifeV (http://www.lifev.org) finite element library is the joint collaboration between four institutions: EPFL,
Politecnico di Milano, INRIA, and Emory University.

2http://www.trilinos.org



CHAPTER 4. A GPU ALGORITHM FOR SOLVING THE CARDIAC ELECTROPHYSIOLOGY
PROBLEM ON PURKINJE NETWORKS WITH IMPROVED MATHEMATICAL CONSISTENCY 52

framework, which allows, in the proposed algorithm, to perform Steps 1 to 3 in a

distributed way with linear partitioning. The linear system is solved (Step 4) with one

OpenMPI process to eliminate communication between CPUs while solving the linear

system. Furthermore, the computationally most expensive step in the algorithm is

Step 2. This implies that all other processes need to send their data to the serial process

and after solving the problem the solution needs to be redistributed (see Figure 4.3 for

the workflow).

In the CPU/GPU hybrid implementation the membrane models are solved on the

GPU. Therefore, before Step 2 the TMP is copied to the GPU, then the membrane

model variables are updated, and the TMP is copied back from the GPU to the CPU.

These three tasks are generated and queued in a CUDA stream, which allows for

asynchronous GPU tasks. After the CPU has scheduled all task groups, it waits for

their completion, and subsequently returns to Steps 3 and 4 on the CPU.

The third implementation does all the computation on the GPU, thus there is no

memory copy between the steps. Steps 1 and 3 use the same code on the GPU as on the

CPU, and in Step 2 the code from the hybrid implementation is reused, but without the

memory copy. To solve the linear system in Step 4, the mass matrix and the stiffness

matrix are built on the CPU with the LifeV framework, and the resulting sparse

matrices are copied to the GPU. The same is done for the preconditioner, which is built

on the CPU and then copied to the GPU. The generalised minimal residual method

on the GPU is the same as on the CPU, but uses cuSPARSE and cuBLAS for the matrix

operation. Solving for the upper and lower triangular matrix in the preconditioner is

optimised with the CUDA framework, which provides a parallel implementation for

the solution process [116].

There are two different hybrid and GPU implementations in the performance test,

which correspond to using different levels of floating point precision. GPUs are designed

for single precision and thus have much higher number of floating point operations in

single precision than in double precision mode. Therefore, the same GPU code has

been implemented using both double precision, and selectively dropping down to single

precision where numerical stability was verified not to be affected. This is referred to

as mixed-mode.

All computations were performed with a Dell Precision-WorkStation-T7500 featur-

ing two Intel(R) Xeon(R) CPUs E5620 at 2.40GHz and a NVIDIA Quadro 4000 GPU
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gap-junctions and the current, while the CPU/GPU hybrid needs to copy the potential
of the ghost nodes. In the GPU implementation there is no copy required.

with 256 CUDA cores.

4.3 Verification of the Proposed Numerical Method

Two verification tests are performed. The first evaluates the accuracy of the solution

in equilibrium against an analytical solution, and the second uses a travelling pulse

solution to verify the dynamic solution.

4.3.1 Numerical Error and Convergence in Equilibrium

In the first experiment, an equilibrium solution for the monodomain equation (4.2) is

sought. The approach is similar to Section 3.3.1, but with a finite line. Consider the

simplified cell membrane model [117] given by

∂tϕ = pϕ, (4.3)
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Figure 4.4: Problem domains for the equilibrium solutions, where the dashed area are
unstable cells. Left for a line segment and right for symmetric bifurcation

where ϕ is the TMP and p is a model parameter. Depending on p the solution is stable

(p < 0), or it is exponentially unstable if (p > 0). The cell membrane model is then

applied to two different test geometries. The first geometry is a finite one-dimensional

line segment (Fig. 4.4, left) D1 = [−M,M ], M > 1, which is divided in three parts

D1,1 = [−M,−1], D1,2 = [−1, 1], and D1,3 = [1,M ]. The cell membrane model is

chosen to be unstable in D1,2, and stable elsewhere.

p(x) =

{
p1 for x ∈ D1,2

−p2 elsewhere
,

where pi > 0. The simplified cell membrane model is then introduced in the mon-

odomain equation (4.2). Letting δ = σi/β and, assuming that the conductivity σi has

no spatial dependency, the problem to be solved becomes

Cm∂tϕ = δ∂2
xϕ− p(x)ϕ,

ϕ1(−1) = ϕ2(−1) , ϕ2(1) = ϕ3(1),

ϕ′1(−1) = ϕ′2(−1) , ϕ′2(1) = ϕ′3(1),

ϕ1(−M) = 0 , ϕ3(M) = 0.

(4.4)

The solution can be deduced with the canonical ansatz Vi(x) = c1 exp(kx)+c2 exp(kx),

as shown by Artebrant et al. [112]. For a line segment the solution is:

V (x) =


sinh(κ(M + x)) , x ∈ D1,1

d cos(kx) , x ∈ D1,2

sinh(κ(M − x)) , x ∈ D1,3

, (4.5)

where d = sinh(κ(M − 1))/cos(k) and parameters κ =
√
p1/δ and k =

√
p2/δ. To

satisfy the differentiability conditions ϕ′1(x)|x=−1 = ϕ′2(x)|x=−1, ϕ′2(x)|x=1 = ϕ′3(x)|x=1,
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in (4.4) the relation

k tan(k) =
κ

tanh(κ(M − 1))

must hold.

The second problem is formulated in the symmetric domain D2 with a branching

and joining point (Fig. 4.4, right). The domain consists of five line segments, the

first two, D2,1 = [−M,−1] and D2,2 = [−M,−1], join the segment D2,3 = [−1, 1],

which branches into two further segments D2,4 = [1,M ] and D2,5 = [1,M ]. As in

the first domain, the middle segment D2,3 has unstable cells while the outer branches

D2,1, D2,2, D2,4, and D2,5 are stable. The problem is symmetric with respect to zero,

thus it is sufficient to look at the negative domain only. Furthermore, D2,1 and D2,2 are

equal, thus it is sufficient to find the solution on one of them. This means the following

problem needs to be solved

δϕ′′1 − p1ϕ1 = 0 ∀ x ∈ D2,1

δϕ′′3 + p2ϕ3 = 0 ∀ x ∈ D2,3

ϕ1(−1) = ϕ3(−1), 2ϕ′1(x)|x=−1 = ϕ′3(x)|x=−1, ϕ1(−M) = 0

,

where the first two equations are due to Kirchoff’s current law.

Following an exponential ansatz, the solution can be constrained to be unique by

choosing the maximum amplitude ϕ(0) = 1, which leads to

ϕ1,2 = c1 sinh(κ(M + x)),

ϕ3 = cos(kx), (4.6)

ϕ4,5 = c1 sinh(κ(M − x)),

where c1 = cos(−k)/ sinh(λ1(M − 1)) and the relation between κ and k changes to

k tan(k) =
2κ

tanh(κ(M − 1))
.

Numerical solution in equilibrium

For the numerical solution δ = 1 is chosen, which imposes the condition 1 = σ∗/β. With

a physiological cell length of ` = 62.5 µm, a diameter of 16.0 µm, and a gap-junction

resistance chosen to R = 0.1 kΩ, the intracellular conductivity becomes 1967.5 kS cm−1.
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Furthermore, the spatial step size h is chosen as an integer multiple of the cell length `.

On the line D1 the parameter values p2 = 0.0946441, M = 20 are chosen, and the

capacitance of the cell membrane is assumed Cm = 1 µF. For the branching domain

D2 the parameters are set to M = 10, p2 = 1, with δ = 1.

The resulting error distribution over the line and the branching domain is shown

in Figure 4.5, where the largest contribution of the error comes from the passive cell

region. The convergence test shows that with decreasing spatial step size the L2-error

reduces faster than linearly for the single-interval domain D1 (Fig. 4.5) and linearly

for the example in the branching domain D2. Note that without the modification

introduced in Section. 4.2.1 only sub-linear convergence behaviour was obtained for

the branching domain case (compare with Fig. 3.3), indicating that the modification

is required for the accuracy of the numerical method.

4.3.2 Analytical Solution for a Travelling Pulse

In this section, the convergence of the dynamic solution is investigated. Therefore,

an analytic solution for a travelling wave of the linearised FitzHugh-Nagumo equation

[118,119] is constructed and then solved numerically.

For the construction of the solution to the FitzHugh-Nagumo model the work of

Rinzel and Keller [118] is followed. To solve the monodomain equation, they used the

two variable ionic model, with the TMP ϕ and the recovery variable w

∂tϕ = Iion = f(ϕ) + w

∂tw = bV

f = V (a− ϕ)(1− ϕ)

, (4.7)

where f can be piece-wise linearised to f = ϕ−H(ϕ− a), with 0 ≤ a ≤ 1/2 and H is

the Heaviside function. The solution of the linearised problem (4.7) on an infinite line

is well-known [78,118].

Next consider the monodomain equation (4.2) over an infinite line under the assump-

tion that σ∗i does not depend on x and couple it to the linearised FitzHugh-Nagumo
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Figure 4.5: Error obtained with different numerical implementations. Upper row: L2

error as a function of spatial step size h for different implementations; black solid line
for CPU, yellow dashed line for hybrid, green dotted line for GPU, and red dashed
line the comparison with linear convergence rate. (a) solution over one line segment
D1, (b) over the branching configuration D2. Lower row: relative error obtained for
the pure-GPU implementation. (c) solution over one line segment D1, (d) over the
branching configuration D2. Blue dotted line corresponds to error for a step size of
0.1 mm, the green solid line the error (enlarged by a factor 10) for step size of 0.00625
mm. The red zone corresponds to the domain of active cells.
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cell membrane model

Cm∂tϕ =
σ∗i
β
∂2
xϕ− f(ϕ)− w

∂tw = bϕ , b ≥ 0

f(ϕ) = ϕ−H(ϕ− a) , 0 ≤ a ≤ 1/2

. (4.8)

To be equivalent to the approach in [118], it is assumed that σ∗i /β = 1 and Cm = 1.

By differentiating the first equation in (4.8) with respect to time, the system can be

rewritten in one equation

∂2
t ϕ = ∂t∂

2
xϕ− ∂tf(ϕ)− ∂tw,

⇒ ∂2
t ϕ = ∂t∂

2
xϕ− ∂tf(ϕ)− bϕ. (4.9)

To solve this problem the travelling wave ansatz ϕ(x, t) = ϕc(z) where z = x+ ct with

c > 0 is introduced. Furthermore, it is assumed that ϕc(0) = a and lim|z|→∞ ϕc(z) →
0, and from the intermediate value theorem follows the existence of a z1 6= 0 with

ϕc(z1) = a. The system to be solved can be rewritten as

c2ϕ′′c = cϕ′′′c − cf ′(ϕc)ϕ′c − bϕ
0 = ϕ′′′c − cϕ′′c − f ′(ϕc)ϕ′c − (b/c)ϕ

0 =

{
ϕ′′′c − cϕ′′c − ϕ′c − (b/c)ϕ ∀z ∈ R\{0, z1}
ϕ′′′c − cϕ′′c − (b/c)ϕ z ∈ {0, z1}

, (4.10)

with boundary condition lim|z|→∞ ϕc(z) → 0 and where ′ indicates a derivative with

respect to z. The solution can be obtained in the three regions z < 0, 0 ≤ z ≤ z1 and

z > z1. Following an exponential ansatz for the differential equation the roots of the

cubic polynomial need to be found

p(λ) = λ3 − λ2 − λ− (b/c). (4.11)

If the discriminant is non-negative there are three distinct real solutions, while for a

negative discriminant two of the solutions are complex. Let λ1 be the positive real

solution while λ2 and λ3 are the possible complex solutions. Then, the solution to the
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differential equation (4.10) is [78]

ϕc =


a exp(λ1x) z < 0

(a− p′(λ1))−1 exp(λ1x)− p′(λ2)−1 exp(λ2x)− p′(λ3)−1 exp(λ3x) 0 ≤ z ≤ z1

p′(λ2)−1(exp(−λ2z1)− 1) exp(λ2x) + p′(λ3)−1(exp(−λ3z1)− 1) exp(λ3x) z > z1.

(4.12)

In the following, it is shown that ϕc is real, even with complex eigenvalues λ2, λ3. Here

the fact that Re(λ2) = Re(λ3) and Im(λ2) = −Im(λ3), where i =
√
−1 is used.

⇒ ϕc =


a exp(λ1x) z < 0
exp(λ1x)

(a−p′(λ1))
− ( e(iIm(λ2)x)

(p′(Re(λ2)+iIm(λ2))
+ e(−iIm(λ2)x)

p′(Re(λ2)−iIm(λ2))
)e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)−e(λ2)x
p′(λ2)

+ eλ3(x−z1)−eλ3x
p′(λ3)

z > z1

,

(4.13)

⇒ ϕc =


a exp(λ1x) z < 0
exp(λ1x)

(a−p′(λ1))
− ( α−iβ

α2+β2 e
(iIm(λ2)x) + α+iβ

α2+β2 e
(−iIm(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(
e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)
z > z1

,

(4.14)

α = 3(Re(λ2)2 − (Im(λ2)2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

Note that α, β ∈ R. Then applying Euler’s formula

(a+ bi)e−ci + (a− bi)eci = 2(a cos(c) + b sin(c)) a, b, c ∈ R. (4.15)
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to write the formula in the region 0 ≤ z ≤ z1 as real expression

⇒ ϕc =


a exp(λ1x) z < 0
exp(λ1x)

(a−p′(λ1))
− 2( α

α2+β2 cos(Im(λ2)x) + β
α2+β2 sin(Im(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

eλ2(x−z1)

p′(λ2)
+ eλ3(x−z1)

p′(λ3)
−
(
e(λ2)x

p′(λ2)
+ eλ3x

p′(λ3)

)
z > z1

,

(4.16)

α = 3(Re(λ2)2 − (Im(λ2)2)− 2Re(λ2)− 1,

β = 6(Re(λ2))(Im(λ2))− 2(Im(λ2)).

For the term in z > z1 the steps used in the region 0 ≤ z ≤ z1 are applied twice, which

results in the real expression

ϕc =


a exp(λ1x) z < 0
exp(λ1x)

(a−p′(λ1))
− 2( α

α2+β2 cos(Im(λ2)x) + β
α2+β2 sin(Im(λ2)x))e(Re(λ2)x) 0 ≤ z ≤ z1

2( α
α2+β2 cos(Im(λ2)(x− z1)) + β

α2+β2 sin(Im(λ2)(x− z1)))e(Re(λ2)(x−z1))− z > z1

−2( α
α2+β2 cos(Im(λ2)x) + β

α2+β2 sin(Im(λ2)x))e(Re(λ2)x)

(4.17)

Rintzel and Keller showed that (4.12) is a solution only if the parameter a satisfies

the relation with the parameters b and c, which is outlined in the following. The

relation assumes the eigenvalues λi i = 1, 2, 3 are known for given b, c, which then

define the function

f(s) := 2− s+
p′(λ1)

p′(λ2)
s(−λ2/λ1) +

p′(λ1)

p′(λ3)
s(−λ3/λ1).

The root s0 of the function f defines

a =
1− s0

p′(λ1)
. (4.18)

This relation can be satisfied for any b with at most two ci, where c1 ≤ c2. The slow

pulse c1 is an unstable solution, while c2 is a stable solution [78, 118]. To obtain the

value of z1 for the given set of parameter a, b, c the following equation needs to be



61 4.3. VERIFICATION OF THE PROPOSED NUMERICAL METHOD

solved

exp(−λ1z1s0) = 1− ap′(λ1). (4.19)

Numerical Simulation of the Travelling Wave

For the verification of the dynamic solution the following values are used a = 0.225 mV,

c = 1.2 cm ms−1 , b = 0.2 and z1 = 6.633 cm. In the numerical problem, the parameter

values σi = 1967.5 kS cm−1, β = 1, R = 0.1 kΩ and Cm = 1 µF are used. The solution

(4.12) is used to initialise the numerical solution at the time 0 ms on a line of length

160 cm, and origin at 85 cm. With these values the wave exits the domain after 50 ms.

The final time is chosen such that the wave in the numerical simulation stabilises in

shape and then propagates for about 20 ms. All simulations use a temporal time step

of 0.001 ms.

The first experiment is performed for spatial resolution of 0.006 25 mm, where the

L2-error is calculated at each time step and plotted against the time for all three solvers

(Fig. 4.6, top, left)). For the first time steps the error increases slower compared to the

error increase after about 20 ms. Thereafter, a linear increase of the error is observed.

This can be explained with the plot of the L2-norm of the solution (Fig. 4.6, top,

right), which is changing until 20 ms and thereafter can be considered as constant.

The changes are due to the fact that the maximal amplitude of the wave is changing.

The stable, slightly larger pulse, has after 20 ms a higher conduction velocity of about

c = 1.201 32 m s−1 , which is responsible for the linearly increasing error over time.

The verification is concluded with a convergence test in the L2 error and the

conduction velocity for the dynamic simulation. Therefore, the L2 error and the

conduction velocity after 40 mm are evaluated for different step discretisations h =

{1 mm, 0.51 mm, 0.25 mm, 0.125 mm, 0.0625 mm}. The L2 error converges superlin-

early (Fig. 4.6, bottom, left). More importantly, the conduction velocity approaches

the theoretical value of 1.2 m s−1 at a step size of 0.0625 mm (Fig. 4.6, bottom, right).

Again, the improved method of Section 4.2.1 converges to the exact conduction velocity.
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Figure 4.6: Simulation results with the traveling wave. (a) the L2 error and (b) L2-
Norm of the solution. The solution was obtained with the CPU (solid), hybrid (dashed)
and the GPU (dotted), data shown for a spatial step size of 0.00625 mm. (c) the L2 error
and (d) the conduction velocity after 40 ms against the step discretisation, obtained
with the CPU (solid), hybrid (dashed) and the GPU (dotted)
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4.4 Computational Efficiency

Next, the computational performance of the different solver implementations is evalu-

ated on problems of varying size and complexity. The number of degrees of freedom is

therefore varied either by increasing the complexity of the PN (spatial complexity), or

by switching to a more complex cell membrane model (model complexity).

The four PNs of varying levels of detail from Section 3.3.2 are considered. In order

of increasing complexity, the first PN consists of the main Purkinje branches only, the

second one has another level of branching giving a physiological covering of the LV,

and the third network has another level of Purkinje branches added to increase the

density of the Purkinje-muscle junction (PMJ), resulting in a physiological PN for the

left ventricle (LV). The fourth case is a dense PN for both the LV and right ventricle

(RV). All PNs are discretised with a spatial resolution of 0.1 mm and are generated

without loops for compatibility with other solvers (see Fig. 4.7).

Two different cell membrane models were used to test the influence of model com-

plexity. The first and simpler Di Francesco-Noble model [3], which has been used in

previous works [103], has 15 state variables. The model has been obtained from the

CellML database and used without modification to the initial states or constants. The

second membrane model used here has been published by Stewart et al. [86], and is

based on modifications to the ten Tusscher-Panfilov model, and has 20 state variables.

The model was obtained from the CellML repository, although the initial conditions

were set to the values stated in Appendix Table 8.1. The change in initial condi-

tions was made to avoid the early self-excitation that is present in Purkinje cells but

should not manifest itself under physiological conditions. For both membrane models

a cell length of 0.01 mm, cell radius of 0.005 mm, and an intracellular conductivity of

40 S−1cm−1 were assumed, where the last two values were chosen to obtain realistic

conduction velocities in the range between 3 m s−1 and 4 m s−1. The gap junction re-

sistance was chosen as 500 kΩ. For the simulation, a temporal step size of 0.01 ms has

been used and the simulation was run for 50 ms, after which all networks were fully

depolarised.

In the pure CPU implementation eight processes are run in parallel, while the hybrid

and GPU implementations are run using one CPU process. The simulations were run

in two different configurations on the GPU, the first in double precision, while the
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second was in single precision. For all simulations, the time spent on setting up the

problem is measured, which includes reading the mesh and assembling the matrices

and preconditioners. Further, the time needed for solving the membrane models and

the diffusion equation is reported in Figure 4.7.

As expected the hybrid and pure GPU implementations are faster than the pure

CPU implementation (Fig. 4.7), and a further speed-up is observed moving from double

precision to single precision in the pure GPU implementation. The reason for the speed-

up with the single precision in the pure GPU implementation is that the particular GPU

used has roughly twice the number of floating point operations per second in single

precision than it has in double precision. The reduction of computational time by the

usage of single precision in hybrid implementation was limited. One possible reason

for this might be that the particular GPU used is able to handle the entire double

precision problem without full occupation. The second reason might be that the TMP

needs to be converted from double precision to single precision, which is done in serial

on the CPU.

The amount of time needed to solve the reaction part of the problem varies consid-

erably between the pure CPU, hybrid, and pure GPU implementations. The pure CPU

implementation is always the slowest, but the hybrid implementation performs more

favourably on less complex membrane models, while the pure GPU implementation

performs better with more complex membrane models. This is much more evident in

the single precision versions. A possible reason for this can be found in the workflow

of the hybrid and pure GPU implementations (Fig. 4.3), where a memory copy from

the GPU to the CPU takes place in each time step of the hybrid implementation. In

the pure GPU implementation this is unnecessary because values are used on the GPU

only. This explains why the GPU implementation performs better with increasing

complexity of the membrane model.

Solving the diffusion step with the pure GPU implementation is nearly always the

slowest. We note that the hybrid implementation is faster than the pure CPU, as

in the CPU implementation the TMP and the current need to be sent from all the

OpenMPI nodes to the master node and the results communicated back. The linear

system itself is solved in the same way in the pure CPU and the GPU/CPU hybrid

cases. In the pure GPU implementation the same algorithm is used, but the matrix

operations are performed on the GPU. For small Purkinje systems, meaning very sparse
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and small matrices, the performance of the pure GPU implementation is behind the

pure CPU and hybrid implementations. With increasing spatial complexity the pure

GPU performance becomes better compared to the pure CPU performance, which

likely is related to the size of the problem. Due to the overhead introduced by each

CUDA operation, for very small problem sizes the benefits of GPU parallelism are lost.

After comparing the various implementations of this chapter, results are compared

with previously published studies (Tab. 4.1). The speed-up for the reaction part is the

focus here, because no comparable speed-up was studied for solutions on 1-D networks.

Most studies compare the speed-up of a single GPU against a single CPU core. There-

fore, the previous simulation of the bi-ventricular PN has been run on one core with the

di Francesco-Noble model. It took 13 497 s to solve the reaction part. This means that

the pure-GPU formulation was 123 times faster in mixed precision mode and in double

precision mode it was 30 times faster. This is compared against four different studies,

which use an explicit time-stepping method and report their speed-ups. The first study

is conducted by Mena and Rodrigues [120] and investigates the speed-up for different

number of nodes in the mesh. Their results are based on the ionic model by Ten

Tusscher and Panfilov [1], which is integrated with the Rush-Larsen method. The best

speed-up achieved was 120, where a single CPU core is compared against one NVIDIA

Tesla M2090 GPU with 512 CUDA cores. This is the highest speed-up reported in

the comparison, and the single precision implementation performs slightly better. The

double precision mode is out performed by the study of Mena and Rodrigues, as well

as by the study of Rocha et al. [121]. In their study the Luo and Rudy [2] model

was solved by an Euler forward method. The usage of a GPU with 480 CUDA cores

resulted in a speed-up of 51 over one CPU. The remaining two studies reported smaller

speed-ups than the double precision implementation achieved. Vigmond et al. [122]

compared the speed-up for the cell model by Mahajan et al. [123]. For integration the

Rush-Larsen method was employed where possible and otherwise the Euler forward

or Runge-Kutta methods. This allowed them to reduce the computational time by a

factor of about 11, when using a single GPU with 240 CUDA cores. In the work of

Neic et al. [124] a larger whole ventricular simulation with the Mahajan ionic model is

performed. Therefore, they employed a minimum of six GPUs with 448 CUDA cores

each, and compared it against an implementation with six CPUs. The reported timings

for the time spent solving the ordinary differential equation system shows a reduction
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Study #CUDA
cores

Speed-up Degrees of freedom Ionic
model

Temporal
step size
[ms]

Mena [120] 512 120 1 900 000 TP06 0.020
Rocha [121] 240 51 824 328 LR 0.010
Vigmond [122] 240 11 27 000 600 Mahajan 0.025
Neic [124]* 448 12 116 100 000 Mahajan 0.025
Hybrid 256 123 1 387 410 DFN 0.002
Full GPU 256 30 1 387 410 DFN 0.002

Table 4.1: Comparison of the speed-up in solving the ionic model with previous studies.
The speed-up are based on one CPU core, against one GPU. * obtained using 6 CPUs
and 6 GPUs. (TP06) model by Ten Tusscher and Panfilov [1], (LR) Model by Luo and
Rudy [2], (DFN) model by di Francesco and Noble [3].

by a factor of 12. Overall, the presented single precision implementation has the best

speed-up of all studies, but also the double precision implementation shows an average

improvement for the speed-up.

4.5 Conclusion

An improved parallel algorithm has been presented for solving the monodomain car-

diac electrophysiology equations on one-dimensional branching PN that is suitable

for simulating activation on realistic PNs in human-size hearts. Then a verification

scheme of the numerical solution was developed, which was applied to three different

implementations: pure-CPU, pure-GPU, and hybrid. Finally, the performance of the

implementations was compared.

The verification of the first implementation in Chapter 3 of the original proposed

algorithm by Vigmond and Clemens [103] showed sublinear convergence in the L2-error

for branching fibres. To improve the convergence, in this Chapter, a new explicit gap-

junction formulation has been described, which is also more consistent in terms of the

connection between multiple Purkinje fibre endpoints. Furthermore, a modification

to the effective conductivity tensor was needed to ensure mathematical compatibility

with the new formulation. Both improvements together led to a linear convergence

as was demonstrated in the verification study. The results also showed convergence

of the conduction velocity in the numeric solution towards its theoretical value. Im-
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Figure 4.7: Performance test for two different cell models and four Purkinje networks.
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portantly, there were no notable differences in convergence rates between the three

different implementations.

After establishing that all three implementations achieved the same accuracy, the

selection of an implementation is based on the relative computational performances of

each implementation. The first observation was that GPU based methods outperformed

the implementation of eight parallel CPUs. The largest benefit on the parallel pure-

GPU implementation was obtained either when a fully detailed biventricular (spatially

complex) network was used, or when sufficiently complex membrane models were used,

such as the model proposed by Stewart et al. 2009 considered in this study. For

simpler LV-only models, or when using simpler membrane models, such as the Di

Francesco-Noble model considered in this study, the hybrid implementation may be

more attractive. In either case, the benefits of GPU-accelerated computation of AP in

the fast conduction system have been demonstrated.

The implementation proposed in this study, results in a substantial reduction of

computational time over conventional multi-processor implementations. Moreover, it

relies on GPU hardware which is widely available. Thus, there is no need to use less

available or expensive high performance computing facilities. The speed-up gained by

the GPU implementation enables running more simulations in less time. Therefore, it is

more feasible to perform virtual population studies, where large numbers of experiments

are required.

The PN model can be combined with different models of the myocardium to conduct

simulations of the ventricular activation. Currently, the eikonal model of activation

time is the only model feasible for virtual population studies in terms of computational

time. However, the model of the PN can also be coupled with monodomain or bidomain

approaches for the myocardium [111].
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After investigating models of the electrophysiology in the Purkinje network (PN) in

the last chapters, the focus is moved to study the morphology of the PN. In this chapter,

a virtual population study of the ventricular activation time of the human heart in the

presence of false tendons (FTs) is presented. Therefore, a computational model of

the human heart that includes a FT, PN, and papillary muscle (PM) is built. Based

on this models, simulations are performed to investigate the effect of different types

of FTs on hearts with the electrical conduction abnormality of a left bundle branch

(LBB) block. A virtual population of 70 human hearts is manually constructed from

a statistical shape model, and a total of 560 simulations are run to assess ventricular

activation time with different FT configurations.

This chapter is adopted from journal the publication [125].

5.1 Motivation

FTs are additional fibrous or fibromuscular strings occasionally located inside the ven-

tricles, which are attached to either the ventricular wall, the septum, or the PM [17].

Autopsy investigations have shown a high prevalence of these anomalies, ranging from

34% to 68% of the population (Table 5.1) in healthy humans. A wider prevalence range

is reported in echocardiographic studies, from less than 1% to more than 85% (Table

5.1), which shows the difficulty in imaging FTs in vivo, which in turn makes it difficult

to study their significance and possible effects on the cardiac function.

As described in Chapter 1, autopsy studies show that FTs comprise different tissue

types including connective, conductive, and fibrous tissues, as well as blood vessels

[17, 19, 20, 26, 126], which suggests that their presence is likely to intervene in the

cardiac electrical conduction and more generally in the function of the heart. This is

further supported by reports of isolated premature ventricular contractions [26,27,127],

electrical activation re-entry [19], tachycardia [23, 24], and electrocardiogram (ECG)

changes [28, 29, 128, 129] in subject with FTs. So far, due to the complexity of the

FTs and the challenges associated with their in vivo imaging, their exact significance,

effects and possible risks to the human heart remain largely unclear [19,25,130].

On the other hand, despite their relatively high prevalence and the increasing clinical

interest associated with FTs, to the best of knowledge of the author of this thesis there

exists in the literature no computational model assessing the activation times of the
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human heart that includes the influence of FTs. Yet, such a model would constitute a

valuable complement of clinically-motivated studies for simulating and understanding

the effects of FTs on specific aspects of the cardiac function such as electrical conduc-

tion. Furthermore, it would allow the study of the role of FTs under a wide range of

scenarios through the use of virtual populations and numerical simulations, both in

the healthy heart and also in relation to specific cardiac anomalies, such as the LBB

block.

LBB block is a condition affecting 1-2% of the general population [131], for whom

the activation of the left ventricle (LV) is delayed due to the disruption of the electrical

conduction along the LBB. In the presence of a complete LBB block, the LV is activated

by the electrical stimulus propagating from the right ventricle (RV). Thus, the overall

ventricular activation time increases, as reflected by the widening of the QRS complex

in the surface ECG.

As the risk of cardiovascular mortality increases for QRS lengths above 80 ms [132],

patients suffering from this condition may benefit from cardiac resynchronisation ther-

apy (CRT). However, the installation of CRT devices carries inherent risks, and inter-

national clinical guidelines [133,134] indicate an empirical threshold (QRSd,TH=120 ms)

of the QRS duration (QRSd), below which CRT is not recommended. On the other

hand, FTs could in principle reduce QRSd and thus the risk of cardiovascular mortality.

Consequently, the objective of this chapter is twofold. First, to the best of the thesis

authors knowledge the first computational model of the human heart that includes a FT

is proposed. Subsequently, the model is used to test the hypothesis that the presence

of FT in the LV reduces the LBB block induced QRS prolongation. The reduction

is then quantified with respect to the cardiovascular mortality risk based on [132], in

particular whether the QRSd falls below QRSd,TH.

To this end, the following key technical challenges are addressed: 1) Derive a rep-

resentative virtual population of ventricular models, where each shape is manually

checked for mesh intersection and repaired if needed. For the ventricular models dif-

ferent configurations of FTs are generated. 2) Introduce a computational approach

for modelling the PMs, which is a critical step in this process as FTs are in some

configurations connected to the PMs. 3) Extend the existing literature on the PN to

incorporate both the PM and FTs. 4) Generate several types of FTs based on the ex-

isting literature from autopsies and histological studies. To validate the model, a total
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Reference Study size FT prevalence (%)

Gerlis et al. [135] 686 48
Luetmer et al. [16] 483 55

(a) Boyd et al. [136] 474 68
Abdulla et al. [20] 100 34
Grzybiak et al. [137] 180 40
Kervancioğlu et al. [17] 8 63

Okamoto et al. [138] 132 46
Nishimura et al. [139] 1000 <1
Perry et al. [140] 3847 <1
Suwa et al. [26] 1117 6
Sethuraman et al. [141] 1012 <1
Brenner et al. [142] 100 61

(b) Vered et al. [143] 2079 2
Malouf et al. [144] 488 25
Casta and Wolf [22] 218 14
Suwa et al. [27] 187 71
Cangelosi et al. [145] 916 26
Cocchieri and Bardelli [146] 273 29
Kervancioğlu [17] 368 26
Lie et al. [147] 99 85

Table 5.1: Studies of the Prevalence of False Tendons (FTs) in the Human Heart by
(a) Autopsy and (b) Echocardiography.

of 560 simulations of the ventricular activation time are performed to assess the action

potential (AP) propagation under different FT configurations and in the presence or

absence of a LBB block.

5.2 Methods

The proposed computational model requires the modelling of various structures and

elements that are involved in the definition and electrical function of FTs. These

include the ventricles, within which the FTs are located. In this in silico study, a

virtual population of 70 ventricles is generated from a statistical shape model (SSM)

of the heart, as detailed in Section 5.2.1. Next, the computational model is enriched,

as described in Section 5.2.6, with PMs as they can serve as connection points for the
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FTs. Additionally, due to its importance in electrical conduction, a new PN that takes

into account the presence of PMs is generated in Section 5.2.3. The modelling of the

FTs themselves is presented in Section 5.2.4. Finally, using the solver and protocol

detailed in Section 5.2.6, simulations of the ventricular activation time are performed

based on the introduced computational model and the virtual population of ventricles.

5.2.1 Ventricular Model

To simulate the effect of FTs on the human heart, a sample of hearts with variable

ventricular geometries is required. Previous simulation works have used simplified

geometries of the LV as discussed in Chapter 1, which can differ from the human heart

in many aspects. Instead, in this chapter a virtual human heart population is generated

from a SSM, which accounts for differences in the shape and size of the ventricles, but

without linking the hearts into any specific patient instances.

More specifically, the in silico population of human ventricles produced in this study

is based on the SSM of heart by Hoogendoorn et al. [68], which was built from 134 real

patients based on high resolution CT image data, which resulted in high quality and

realistic surface meshes of the cardiac structures. Such a SSM is typically constructed

from a representative sample of human subjects and provides an average shape of the

anatomy, together with the main axes of deviations from this average. Mathematically,

each shape can be described using the following equation:

~̂S = ~̄S + Φ~b, (5.1)

where ~̂S is a vector of size 3m representing the shape in terms of its m 3D landmark

points. Here ~̄S corresponds to the mean shape of the model and Φ is a 3m×tmatrix that

encapsulates t eigenvectors describing the main directions of variation in the model.

Each unit vector is associated with an eigenvalue λi, i ∈ {1, · · · , t} that describes the

amount of variation observed along each axis. Finally, ~b = (b1, · · · , bt)T is a vector that

encapsulates the bi weights that control the deviation of the shape ~̂S from the mean ~̄S.

For this chapter the choice t = 10 modes of variation is made to generate the virtual

shapes, by randomly varying the deviation weights bi within the allowable bounds of

the model −3
√
λi ≤ bi ≤ +3

√
λi [67]. A virtual population of 70 ventricular meshes

is generated and used to run a large number of AP propagation simulations based on
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varying configurations of the PMs, FTs, and the PN, as detailed in subsequent sections.

5.2.2 The Papillary Muscle

The PMs are common endpoints for the FTs and therefore they must be modelled

so that the computational model has the capability to represent such configurations.

However, due to the complexity of PMs, in silico models of the heart usually do not

include PMs (nor the trabeculae). In this thesis a statistical approach to PM modelling

is proposed. More specifically, seven computed tomography (CT) datasets of the 134

datasets in [68] are used to assess key anatomical features of the PM [148–150]. These

include length, diameter, attachment points, angle inclination from base to tip, and

distance to the LV (more details can be found in Table 5.2). Subsequently, the sta-

tistical variability of these parameters was estimated, which allows to generate in new

virtual PMs with varying properties. Only subjects with a single posterior PM and a

single anterior PM are included in the sample. This is sufficient for the experiments

with the FT, as the majority of FTs connect to one PM [19]. Furthermore, the anterior

PM is in most cases singular [151].

The CT image data were acquired from patients who underwent a CT examination

as part of their routine diagnostic protocol for suspected coronary artery disease. The

CT scanner used for this purpose was a 64-row detector Toshiba Aquilion 64 system

(Toshiba Medical Systems, Tochigi, Japan), with contrast material of 80 to 100ml

Xenetic 350 applied at a rate of 5ml/s, which allowed to enhance the appearance of

the PMs. The obtained resolution of the images was of 0.4 mm× 0.4 mm× 0.8 mm.

To obtain the length, diameter and direction from the base to the tip of the PM

(referred to as orientation), key anatomical landmarks were consistently defined on the

CT images by using the medical image analysis software GIMIAS 1 . More specifically,

four landmarks were selected manually as the center point of the area where the PM

joins the LV (i.e., attachment point), the tip of the PM and two landmarks that de-

termine the diameter of the PM (Fig. 5.1). Two further quantities were automatically

calculated from a LV SSM instance, which were fitted to the image, i.e. the center

of the mitral valve and the left ventricular apex. Table 5.2 shows the relationships

1The Graphical Interface for Medical Image Analysis and Simulation (GIMIAS) v1.5 (www.gimias.org) is developed
by the Center for Computational Image and Simulation Technologies in Biomedicine (CISTIB) at The University of
Sheffield (UK)
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2

1
3

4

Figure 5.1: A computed tomography slice and mesh of the left ventricle (red) with the
landmarks (yellow). This has been used to build the statistic of the papillary muscle:
(1) Attachment point (2) Tip of papillary muscle, (3-4) Landmarks for the diameter
estimation.

between the landmarks and the PM parameters, together with the mean and standard

deviation values.

The PM model in this work is represented by combining a cylinder and a paraboloid,

where this choice of shape is based on images of PM found in the literature [151–153].

The parameters for the cylinder and paraboloid are indicated in Table 5.2. The cylinder

is defined as 60% of the PM length. The remaining part of the PM is represented by

the paraboloid given in cylinder coordinates with origin at the center of the bottom of

the cylinder z(r, φ) = L− 4 · 0.4Lr2/(d2) where d is the diameter of the resulting PM,

L is the length, 0.4L is the height of the paraboloid, and r is the radial direction.

The PM is then placed at one of the statistically defined attachment points, oriented

according to the statistics, and merged with the ventricular model, which results in a

new LV surface with a PM as illustrated in Figure 5.2.

5.2.3 Purkinje Fibre Generation

The pattern in which the AP travels in the ventricle is critical to the efficiency of the

heart contraction and, therefore, it is important to consider the PN in our simulation.

As discussed in Section 2.2.2, the PN is difficult to image and is therefore constructed

with an algorithm. However, existing techniques do not take into account the presence
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Parameter Landmark relation APM PPM

LV axis A line connecting the LV apex and the
center of mitral valve.

N/A

LV length in
[mm]

Length of the LV axis. 98.0± 8.5

Normalised† PM
diameter

Distance between landmark (3) and (4). 8.9± 1.7 8.3± 1.9

Normalised† PM
length

Distance between the attachment
point(1) and tip(2).

33.6± 5.3 27.6± 5.5

PM attachment
triangle

The triangle in the LV-Mesh that is
closest the attachment point(1).

N/A N/A

Angle in degree
between PM tip
and attachment
point

Angle between the line from the attach-
ment point(1) to the LV axis and the
line from the tip(2) to the LV axis in a
plane perpendicular to the LV axis.

19.9± 6.3 27.8±12.2

PM tip distance
in [mm] from LV

A line starting from the LV axis and
perpendicular to it through the tip
point and intersection the LV-Mesh.

24.1± 3.1 21.7± 3.8

(i) Landmark (i) in Fig. 5.1, for i={1,2,3,4}
N/A: Not applicable
† normalised with respect to LV length and multiplied by 100

Table 5.2: Statistical Parameters of the Anterior Papillary Muscle (APM) and the
Posterior Papillary Muscle (PPM), Calculated from Landmarks in the Left Ventricular
(LV) Computer Tomography Scans.
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(a) (b)

Figure 5.2: Different terminations of the false tendon (green) with Purkinje network
(PN) (white). (a) False tendon directly connected to the main PN, on a left ventricular
surface based on triangles with papillary muscle, where the endocardium is red and
the epicardium is blue. (b) False tendon terminating in small Purkinje fibre branching,
on a left ventricular volume mesh based on tetrahedra with papillary muscle, with
myocardium in red.

of PMs and FTs. Therefore, an extension of the algorithm of Sebastian et al. [4] is

proposed to account for these additional structures, as well as to adapt it for the RV.

The PN is algorithmically generated with an L-system. This iterative process uses

two basic elements, i.e., L- or Y-shaped structures, which are generated progressively

from a given starting point. For the Y-structures, the direction of growth is from

the lower part to the upper part, which then creates two new starting points. In L-

structures, the growth starts at the lower left corner and advances toward the two

endpoints, which in turn creates new starting points. At the next iteration, a new

starting point is randomly selected from the set of starting points. With this imple-

mentation the resulting network depends on the angle of the L- or Y-structure, the

length of the branches, and the number of points from which each of the segments are

built, because they allow structure flexibility and thus the newly grown fibres can avoid

the already existing network. More details can be found in [4].

The modified algorithm for the generation of a PN in the LV consists of three stages,

where the first is landmark driven and the last two are deterministic rule-based. In

the first stage the LBB and the three main branches are created (Fig. 5.3, (a)). To do

so a Purkinje fibre is generated from the starting point of the LBB in the direction of
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(a) (b) (c)

Figure 5.3: The three stages of the Purkinje growing algorithm. (a) First stage with
main fibres in blue and endpoints marked by yellow sphere, (b) finer second stage in
green and (c) with final branching of the last stage in red.

the ventricular apex, and branches after two-thirds of the way in the three main fibres.

Two of these fibres proceed towards the posterior PM and anterior PM, respectively,

and the third towards the apex. After reaching their landmarks all fibres are grown

towards the base of the heart, where they stop 2 cm before reaching the basal plane.

After the three main fibres have been grown with an L-rule, a deterministic fibre

generation at the endpoints is started with an Y-rule. Note that all the branches are

grown underneath the PM (Fig. 5.2, (a)) and continued on the endocardial surface

after passing the PM. The second stage (Fig. 5.3, (b)) creates new Y-structures at

the endpoints of the developing PN, which extend onto the PM. The last two stages

create a homogeneous network with loops for redundancy, while the final stage (Fig.

5.3, (c)) increases the density of Purkinje-muscle junctions (PMJs), without creating

looping Purkinje fibres. Therefore, based on the American Heart Association segment

model [73], random points are selected from the previous PN and used as possible

starting points. At some of these points smaller Y-structures are generated.

For the RV, the bundle is grown from the atrio-ventricular node towards the apex

of the RV. Again, at two-thirds of the way the branch splits in two, where one branch

progresses to the apex and the other crosses to the right ventricular wall [8]. The

second and third stages are essentially the same as for the LV, and differing only in

stage two, which begins with only two starting points and in which the fibres do not

avoid each other.
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The growth parameters for the LV and RV are summarised in Table 5.3.

5.2.4 Creation of False Tendons

After generating the PN, as detailed above, the main object of study of this chapter,

the FT, is finally incorporated to the computational model of the electrical conduction

system of the heart.

The FT model is based on clinical observations that 60% of FTs feature conductive

tissue [19] and this tissue shows the same microscopic structure as the bundle of His.

Moreover, the fibres are connected to the bundle of His [19,20,154], which suggests that

the bundle of His radiates into the FTs [19,20]. For this reason, the FTs are modelled

as additional Purkinje fibres, which are attached to either the ventricular free wall

(VFW), the septum, or the PMs. This simplification has been made because the fast

conduction tissue is the only tissue of the FT that influences the total activation time.

The modelling process begins by automatically selecting the starting point of the

FT at the LBB, and by selecting the endpoint on the anterior PM, posterior PM, or

the VFW, depending on the desired FT configuration. Due to the lack of knowledge

on how the Purkinje fibre in the FT merges into the PM or ventricular muscle, two

different connection type are distinguished at the endpoint. The first one is a direct

connection of the Purkinje fibre in the FT to the PN on the LV, which is constructed

by an additional Purkinje fibre segment that connects the endpoint of the FT to the

closest Purkinje fibre point (Fig. 5.2, (a)). The second case is a delta connection,

which branches from the endpoint of the FT into a tree of Purkinje fibres. This

is achieved with the PN growing algorithm starting at the endpoint with a segment

Second step Third step

LV RV LV RV

Branch Length [mm] 6± 0.3 4± 0.3 1± 0.03 1± 0.03

Branch angle [degree] 60± 40 60± 20 60± 40 60± 40

Number of Segments 10 10 5 5

Max. branches 300 800 600 1000

Table 5.3: Values used for the Deterministic Purkinje Network Growing in the Left
Ventricle (LV) [4] and Right Ventricle (RV)



81 5.2. METHODS

length of 0.2± 0.1 mm and a branching angle of 60.0± 1.0◦. The algorithm generates

ten branches, which do not connect to the main PN. (Fig. 5.2, (b)).

5.2.5 Modelling of a Left Bundle Branch Block

In this study, the influence of FTs on hearts with conduction disturbances is investi-

gated. Since the FT provides an additional conduction path from the bundle of His to

the PN, it is important to understand its benefit in the presence of a LBB block.

The LBB block in the PN is modelled by assuming that the activation of the FT is

not affected, which means the LBB block occurs downstream of the FT insertion point.

This assumption is supported by the reported origin of the FT from the bundle of His

and a recent publication [155], who reports a case of LBB block in the presence of a

FT. In that particular case the FT is connected to the VFW and it is reported that

the lateral LV wall contracted during systole and relaxed during diastole, whereas the

septum expanded during systole and contracted during diastole [155]. This behaviour

can originate from an AP travelling through the FT and activating the VFW.

The chosen region for the LBB block is assigned a flag in the computational model,

such that in the AP propagation simulation the conduction velocity is assumed be to

zero. This corresponds to a full conduction block.

5.2.6 Ventricular Activation Time Estimation

In the Section 5.3, the effects of FTs on the electrical activation of healthy hearts and

on hearts with a LBB block is studied. To this end, AP propagation simulations need

to be carried out, for which different modelling approaches exist. For the intended

experiments an estimate of the ventricular activation time is needed, while the ionic

currents over the cell membrane will not be altered or be of interest. For this reason,

the eikonal equation is chosen to model the AP propagation. This describes the wave

propagation according to a prescribed constant conduction velocity without modelling

the cell membrane. More importantly, it has been shown that the eikonal approxima-

tion gives good approximation of the myocardial activation time [91–93] needed for our

experiments. The monodomain and bidomain models (Sec. 2.1.3) are diffusion reaction

models, which are usually solved with a spatial discretisation method, such as finite

volumes or finite elements [156], on a high resolution volume mesh (1 000 000 vertices
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or more). This makes the models computationally very demanding, and unsuitable for

the large number of simulations we intend to run.

The following eikonal problem is solved with the fast marching method [101]{
∇uAF(AF)T∇uT − 1 = 0 xi ∈ Ω

u(xi) = u0(xi) xi ∈ ∂Ω,
(5.2)

where Ω is the problem domain, u0 are the known activation times and u is the activa-

tion time to be obtained, the orthogonal matrix A is composed from the unit vectors

pointing along the myocardial fibre orientation and F represents the conduction veloc-

ity on the diagonal.

For the simulation, tetrahedral volumetric meshes with approximately 70 000 ver-

tices (Fig. 5.2, (b)) are generated from the ventricular surfaces with PMs using the

TetGen library2. For all vertices of the tetrahedral mesh, the myocardial fiber orien-

tation is estimated using the Streeter model [34] with a linear interpolation between

endocardium and epicardium. While for the RV and LV the same rules are applied

for vertices in the PM the fiber orientation is aligned to the long axis of the PM as

described in [157,158] (Fig. 5.4). At the border between ventricle and PM the fibres are

locally smoothed by the solver as it uses the average fibre orientation per tetrahedra.

The volumetric mesh together with the one dimensional PN provides the spatial

domains Ω within which the eikonal equation is solved for the estimation of the acti-

vation time of the heart. Both domains are coupled at the endpoints of the PN, where

the AP propagation from the PN to the myocardial system is delayed by 6 ms and 1 ms

in the opposite direction [159, 160]. Here, the PN includes the FT, such that there is

no additional delay between the normal PN and the FT fibre. In the case of a delta

ending only, which connects the FT to the myocardium, a delay of 6 ms is applied.

The eikonal equation is solved with the fast marching method proposed in [101],

where the myocardial conduction velocity is equal to 0.8 m s−1 in the longitudinal di-

rection and to 0.3 m s−1 in the transversal direction. For the PN and for the FT, the

conduction velocity is set to 3.5 m s−1.

2The TetGen (http://wias-berlin.de/software/tetgen/) Delauany tetrahedralization library is the developed by the
Numerical Mathematics and Scientific Computing research group an the Weierstrass Institute for Applied Analysis and
Stochastics.
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Figure 5.4: Myocardial fibre orientation generated with the Streeter model in one
exemplary heart.

5.3 Virtual Population Experiments and Results

5.3.1 Sensitivity of the QRSd to Different Purkinje Network Topologies

Before evaluating the computational model of the FTs, the variability of the QRSd

due solely to different configurations of the PN is estimated. Therefore, the mean

ventricular mesh with PMs is used and a volumetric mesh with fibre orientations is

generated. To this ventricular model the PN growing algorithm (Sec. 5.2.3) is applied

with the parameters from Table 5.3, i.e., for a total of 25 different PNs. Two parameters

(length, branching angle) were varied following a Gaussian distribution (Table 5.3),

while the remaining eight parameters were fixed. For each of the PN, the eikonal

equation was solved with the same ventricular geometry and the myocardial activation

time was estimated. From the myocardial activation time, the QRSd was calculated as

the time difference between the first myocardial activation and the time at which the

entire myocardium has been activated. The electrical charge in the PN is negligible

and will not be captured by a surface ECG [58,161]. A mean QRSd of 108± 6 ms was

obtained with a range from minimal 94 ms to maximal 118 ms. For the aforementioned

simulations the model did not include FTs.
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5.3.2 Influence of False Tendons on the Ventricular Activation Time

The aim of the following experiment was to investigate the influence of different FTs

configurations on the QRSd. To do so, simulations with 560 different heart model

configurations were conducted, based on the 70 virtual ventricle shapes as generated

in Section 5.2.1. For each shape, a PN was constructed, which was then supplemented

with the addition of a FT. Resulting in six new configurations (Fig. 5.5) where the FT

connected into the posterior PM, the anterior PM or the VFW(three subtypes) and

each of the FTs was created either with a direct connection at the end, or with a delta

connection (two subtypes). All the simulations on these configurations were run with a

PN featuring a LBB block and an additional simulation with the healthy PN without

LBB block and FT. In total, this resulted in 8 different configurations per geometrical

shape (i.e., 560 simulation runs).
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Figure 5.5: Shortening given for the direct and delta connected false tendon to various
endpoints. The mean QRS duration without FT was 131.9± 7.1 ms
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(a) (b) (c)

Figure 5.6: Comparison of the activation pattern with and without false tendon for
the same heart.(a) The local activation times for the heart without FTs, (b) difference
in the activation time of the heart with a FT to the ventricular free wall, (c) the same
with a left bundle branch block and a FT to the anterior papillary muscle.

Quantification of the influence of the FT on the AP propagation was based on the

reduction of the LBB block induced QRSd prolongation observed between the ”LBB

block, no FT” and ”LBB block with FT”-cases (the difference in QRSd is denoted by

QRSDiff). As each 10 ms increase above the QRSd of 80 ms has been associated with

10% increase in cardiovascular mortality risk [132], the FT-induced reduction of QRSd

is quantified by 10 ms intervals. Subsequently, it is tested whether the total ventricular

activation time was reduced to such an extent that QRSd would fall below QRSd,TH,

such that CRT would not be recommended by international guidelines. Finally, the

Kolmogorov–Smirnov test is used to investigate the similarity of the population fea-

turing a LBB block with FT and without FT to the healthy population.

For the healthy heart, the experiments revealed a QRSd of 108± 7.1 ms, which is

only slightly affected by a FT. However, the activation time near the FT attachment

point decreases locally (Fig. 5.6 (b)). The control cases with a LBB block but without

FTs show an increased mean QRSd to 131± 9.8 ms. This is an expected result since

the LBB block disrupts the conduction toward the PN, delaying the activation until

its breakthrough at the septum from the RV.

However, the experiments with a LBB block shows a clear benefit from the presence

of a FT. The simulations including FTs to the VFW show the shortest mean QRSd,

while a FT connecting to the posterior PM gave the only mean QRS durations above

the threshold QRSd,TH. In general, the direct connection results in shorter QRSd than
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No FT LBBB and Direct FT to LBBB and Delta FT to
QRS Duration Healthy LBBB APM PPM VFW APM PPM VFW

Mean [ms] 108.5 ±
7.1

131.9 ±
9.8

108.1 ±
7.5

110.1 ±
6.5

105.8 ±
7.1

116.0 ±
9.6

124.3 ±
11.74

111.5 ±
7.1

> Tth in %(n) 4 (3) 94 (66) 4 (3) 9 (6) 4 (3) 31 (22) 57 (40) 10 (7)

Table 5.4: The mean QRS duration for n=70 geometries and different configurations
of the heart model, and the proportion with QRS duration longer than the threshold
Qd,TH=120 ms. (LBBB) Left bundle branch block, (PPM) posterior papillary muscle,
(APM) the anterior papillary muscle, and (VFW) the ventricular free wall

the delta connection (Table 5.4), which may be explained by the fact that the electrical

impulse propagates partly in the slow conduction myocardium before re-entering the

PN.

In most cases, the presence of a FT decreased the QRSd by more than 10 ms (Fig. 5.5).

Badheka et al. [132] showed that this reduction indicates a more than 10% lower risk

of cardiovascular mortality. FTs with direct connection showed a QRSDiff of 20 ms or

more, suggesting a stronger effect of the alternative conduction pathway produced by

FTs of this type. In few cases the FT prolonged the QRSd. This might be explained by

an earlier onset of the AP in the myocardium due to the FT, but the total activation

time is still determined by the AP front originating from the RV (Fig. 5.7).

Evaluating the QRSd with respect to the CRT treatment recommendation showed

a benefit from the FTs (Table 5.4 and Figure 5.8 (b)). To see this the subjects with

LBB block and no FT are compared to subjects with LBB block and FT. In case of

LBB block, the majority of the subjects, 94%(n=66), have a QRSd longer then the

threshold QRSd,TH. For a LBB block in conjunction with a FT and delta connection,

only 33%(n=69) of the subjects have a QRSd longer than QRSd,TH. With a direct

connection of the FT, even fewer subjects remain over the threshold, 8%(n=16).

Subsequently, the differences in the cumulative distributions of the QRSd (Fig. 5.8)

are compared with a two sample Kolmogorov-Smirnov test, which confirmed with a

significance of α = 0.01 the similarity of the healthy heart with that featuring a FT

with direct connection and a LBB block. In contrast, when comparing the healthy

heart with a pathological heart due to a LBB block, the Kolmogorov–Smirnov test is

still rejected at the much smaller α = 0.0001.
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(a) (b)

Figure 5.7: QRSd prolongation. In a few cases the QRS duration may be prolonged by
adding a false tendon. (a) without false tendon, the last point activated is still reached
by the wave front from the right ventricle. (b) with false tendon there is an earlier
onset of myocardial activation, here seen in the papillary muscle.

5.3.3 Synchrony in Left and Right Ventricular Activation

In this experiment, the synchronous activation of the LV and RV is examined for a

healthy heart, a heart with a LBB block, and a heart with a LBB block and a FT. To

do so, a cumulative histogram of activated tissue (Fig. 5.9) is employed.

To measure the synchronicity of the activation, the myocardium is manually divided

in the LV and RV by a planar boundary in the middle of the septum (Fig. 5.10).

Subsequently, the first activation time in the LV is extracted, as well as the time from

the onset of the activation in the His bundle until the last point in the LV becomes

activated. For the RV, the same measures were calculated. Finally, the time difference

between the last point of activation in the RV and the last point of activation in the

LV is calculated to evaluate the (dys)-synchrony of the cardiac activation.
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Figure 5.8: Histogram of the QRSd in the study population (n=70). (a) Cumulative
histogram for all sub groups, (b) Histogram for the healthy, the LBBB, all case with
direct connected FT and LBBB and all case with delta connected FT and LBBB.
(LBBB) left bundle branch block, (PPM) posterior papillary muscle, (APM) anterior
papillary muscle, (VFW) ventricular free wall, (FT) false tendon.

The results (Table 5.5 and Figure 5.9) indicate that the dys-synchronous activation

of the LV and RV in a LBB block is compensated for by the presence of the FT.

The initial activation of the LV in the presence of a LBB block but without a FT

occurs 12 ms later compared to the healthy heart. In the presence of a FT, however,

this difference is reduced to 4 ms only. The third row in Table 5.5 shows that in the

healthy case, the LV was fully activated after 97 ms, while in the case with a conduction

block, 125 ms elapsed before full activation. This difference in activation time can be

overcome by a FT, whereby the LV is activated 11 ms earlier. In the presence of a

FT, the activation in the LV proceeds within the same period as in the healthy case,

but from a different starting point (Fig. 5.6 (a) and (b) ). The AP travels from the

FT to the PM toward the septum and basal area. The activation in the direction of

the basal area is comparable to the healthy case, but the activation of the apex and

the septal region occurs later. Thus, even when the total activation times are within

a healthy range, the contraction pattern needs to be evaluated before the efficiency of
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Figure 5.9: Percentage of activated tissue for the healthy heart, the same heart with
left bundle branch block (LBBB), for a heart with a direct connected false tendon (FT)
to the ventricular free wall and LBBB. The heart in healthy condition and the case of
a LBBB with FT are similar, while in case of a LBBB the slope is smaller.

the contraction can be judged.

It is worth noting that the RV is affected in the same way by the LBB block and

the FT. The main effect is the missing activation in the septal area due to the failure

of activation from the LV.

5.3.4 The Effect of Heart Size and Shape on the False Tendon induced

QRSd Reduction

So far this study has looked at different types of FT across a virtual population of heart

shapes to evaluate the possible benefit of a FT in case of a LBB block. An interesting

additional question is: What influence do the shape of the heart, the size of the heart,

or the FT configuration have individually on the ventricular activation time or when

compared against each other? Therefore, an additional study is performed consisting

of three different sample populations to characterise the influence of each of these three

factors independently from each other. For simplicity, the size of the heart is defined

as the LV length.

The first population (P1) was generated by choosing randomly four heart shapes of

the 70 hearts in Section 5.3.2 and then scaling them to have LV length between 70 mm

to 90 mm with 2 mm intervals. For each of the 44 hearts, a PN with and without FTs

has been generated, where the attachment point of the FT to the anterior PM/posterior
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Figure 5.10: Manual division of the myocardium by a plane in left and right ventricle,
used to estimate the activation time in the different ventricles.

PM was fixed on the top of the PM and the FT to the VFW was always attached at

the same point on the VFW. This population was used to characterise the effect of size

on ventricular activation time.

The second population (P2) was generated to characterise the effect of heart shape.

It was built using all 70 shapes from Section 5.3.2, but rescaled to a fixed LV length.

For each shape a PN was generated with all types of FT, where the attachment points

were fixed to match those used in P1.

In the third population (P3), the FT attachment point on the VFW was varied.

Therefore, the four heart shapes previously used to generate P1 were scaled to 80 mm

LV length, and a PN without FT was generated. These four PNs were than used as a

basis for PNs with FT connecting to the VFW. Randomly chosen attachment locations

of the FT in the VFW were selected to generate 50 different PNs per shape.

By performing simulations using the eikonal model, it can be studied how the ven-

tricular activation time is affected by the LV size in P1. To quantify this, the definition

of QRSDiff is recalled, which is the change in ventricular activation time observed be-

tween the ”LBB block, no FT” and ”LBB block with FT”-cases (Tab. 5.6). As one

would expect, the ventricular activation time has a general tendency to increase as the

LV length increases, as shown for one case in Figure 5.11 (top). Somewhat surprisingly,

the suspicion that QRSDiff would show the same behaviour turns out not to hold in this
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Activation time
[ms]

Healthy LBBB FT&LBBB

First LV 23 35 27
First RV 26 26 26
Total LV 97 125 86
Total RV 73 98 86

Table 5.5: For a healthy heart, the same heart with left bundle branch block (LBBB)
and the same heart with direct connected false tendon (FT) to the ventricular free
wall and LBBB times are compared. The time the action potential needs from the
activation of the Bundle of His to the first activation in the left ventricle (LV) and
right ventricle (RV) are compared, and the time elapsing from the first activation in
the LV/RV to the last activation in the LV/RV. This reveals that in case of LBBB
the RV and LV are not synchronous in activation, but a FT reinstates part of the
synchrony.

particular case. Initially increasing with LV size, QRSDiff seems to reach a particular

value and then plateau out (Fig. 5.11, bottom). This may indicate that the size of

the LV has relatively little influence on the reduction in ventricular activation time, or

that the effect will at least be less pronounced for small hearts.

To compare the change in QRSDiff across populations rather than just between

individuals, the interquartile range of variation in the QRSDiff is reported as measure

over P1, P2, and P3 respectively in Tab. 5.7. Applied to QRSDiff the interquartile

range gives the range of improvement in which 50% of the measured data lie. As such,

the interquartile range quantifies the range of data distribution.

The interquartile range in P2 is in almost all cases much larger than in P1, with

as much as four times the values in P1. This means that the range of improvement is

much larger for the shape population compared to the size population. This conclusion

is further supported by the fact that the mean QRSDiff varies considerably between

subjects in P1 (Tab. 5.7). Both observations together are strong indicators that in this

model the improvement of the QRSd in LBB block is more sensitive to shape then LV

length.

The same analyses can be done between P2 and P3 to compare the sensitivity of

shape vs. FT location. This comparison is even more striking, as it can be seen that

for certain configurations the observed interquartile range can vanish, which is also

reflected in the smaller standard deviation in P3 (Tab. 5.7). At first this appears
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Figure 5.11: The QRS duration (QRSd) for different sizes of the left ventricle, were a
LBBB and a false tendon to the anterior papillary muscle is present. The improvement
between the ”LBBB, no FT” and ”LBBB with FT”-case is given by QRSDiff.

surprising, however an explanation is given by looking at the activation patterns. If

the improvement by inserting a FT does not depend on the FT attachment location, it

means that the last part of the heart to get activated is by an action potential arriving

from the RV, which should be independent of the FT attachment point.
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PPM-
Delta

PPM-
Direct

APM-
Delta

APM-
Direct

VFW-
Delta

VFW-
Direct

P1: Case 1 4.69 ±
5.42

7.32 ±
4.46

4.16 ±
4.76

10.62 ±
3.60

8.46 ±
4.05

9.96 ±
3.91

P1: Case 2 9.41 ±
4.55

17.38 ±
4.26

17.00 ±
5.04

24.74 ±
3.55

19.22 ±
3.29

23.86 ±
2.23

P1: Case 3 8.95 ±
5.92

22.08 ±
4.87

11.55 ±
6.66

23.80 ±
5.33

21.30 ±
4.00

27.76 ±
3.99

P1: Case 4 10.83 ±
5.28

19.74 ±
3.63

8.96 ±
5.76

20.85 ±
2.83

21.24 ±
3.11

24.96 ±
2.53

P2 8.49 ±
8.64

18.96 ±
8.91

14.38 ±
8.80

21.23 ±
9.02

18.42 ±
8.23

23.73 ±
8.44

P3: Case 1 N.A. N.A. N.A. N.A. 14.02 ±
0.00

14.02 ±
0.00

P3: Case 2 N.A. N.A. N.A. N.A. 17.30 ±
2.36

20.26 ±
1.59

P3: Case 3 N.A. N.A. N.A. N.A. 19.47 ±
2.68

23.86 ±
2.47

P3: Case 4 N.A. N.A. N.A. N.A. 14.80 ±
2.44

15.91 ±
0.12

PPM Posterior Papillary Muscle
APM Anterior Papillary Muscle
VFW Ventricular Free Wall
N.A. Experiement Not Conducted

Table 5.6: Mean and Standard Deviation of the QRSDiff [ms] in the Different
Populations.
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P1 (size) P2

(shape)

P3 (FT configuration)

Case

1

Case

2

Case

3

Case

4

Case

1

Case

2

Case

3

Case

4

PPM

Delta

9.58 4.67 6.91 6.00 15.20 N.A. N.A. N.A. N.A.

PPM

Direct

8.16 6.03 4.57 3.41 9.64 N.A. N.A. N.A. N.A.

APM

Delta

6.07 5.57 10.67 10.29 10.51 N.A. N.A. N.A. N.A.

APM

Direct

5.68 3.48 5.32 3.72 10.83 N.A. N.A. N.A. N.A.

VFW

Delta

7.63 3.20 5.12 4.36 10.97 0.00 3.18 3.67 0.24

VFW Di-

rect

6.50 2.40 4.19 2.32 9.29 0.00 1.61 3.23 0.00

PPM Posterior Papillary Muscle
APM Anterior Papillary Muscle
VFW Ventricular Free Wall
N.A. Experiement Not Conducted

Table 5.7: Interquartile Range in [ms] of the QRSd Improvement in each Population and
Case.

5.4 Limitations

In this study, the eikonal equation was chosen for simulating AP propagation, which

provides information on the activation times only. A limitation of this model is that

it does not account for ionic currents in ventricular cells, and as such it is unable

to simulate charge accumulation or arrhythmia. Even though the eikonal equation

approximates the local activation times very well, the QRSd estimated from a surface

ECG can differ from the QRSd measured on the endocardial surface.

Furthermore, the current model does not include multiple FTs in one heart, which
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are occasionally observed [19], but our model could be extended to cover this possibil-

ity. A further limitation of the current model is that the FT is modelled as a single

Purkinje fibre, whereas in the literature it has been observed that a FT can feature also

myocardial and fibrous tissue, which could have a contribution in the electrical con-

duction. The work constitutes a first step towards more advanced simulations and one

that is necessary to establish the importance of FTs in the study of cardiac physiology

and function.

The current study does not investigates the exact relationship that the shape of

the hearts and the FTs have on the reduction on QRSd. Therefore, a parametrisation

is needed where each parameter corresponds to clinically intuitive and identifiable

features [162]. Such an approach would lend itself to visually assess FT effects on LBB

block patients based on imaging data and supplementing the knowledge of the type of

FT in question and surface ECG.

Measurements of the action potential in the PN are very limited and do not in-

clude systematic studies of the propagation of the AP. Moreover, reports of FTs in

humans are very few and mostly limited to case studies, which makes it hard to vali-

date our model against experimental data. Nevertheless, the eikonal equation and the

PN model have been previously shown to reproduce local activation times reasonably

accurately [91–93].

5.5 Discussion and Conclusions

This study demonstrates and quantifies for the first time the effect of the presence of

the FT in terms of QRSd. It has been carried out in anatomically accurate models

of the heart in the presence of LBB block, where the FT is assumed to contain fast

conducting fibres. This assumption is motivated by a recent observation by Irie et

al. [155] and the similarities between Purkinje fibres in the FT and the bundle of His,

but lacks extensive clinical evidence. However, the work provides a motivation for

gathering further clinical evidence, as this study shows there are two possible ways in

which the FT can influence the activation pattern. First, it may lead to a decreased

cardiovascular mortality risk; and second, it may have practical implications on patient

management.

The cardiovascular mortality risk is largely influenced by QRSd as each 10 ms in-
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crease above 80 ms has been associated with a 10% increase in the cardiovascular

mortality risk, as shown by Badheka et al. [132]. In the in silico experiments, almost

all cases show a QRSd reduction, where the mean reduction was 20± 10 ms with a

maximum of 45 ms. The shortened QRSd is also reflected in an improved synchronous

activation of the LV and RV. Overall, this indicates a substantial improvement, but

also the treatment recommendation can be affected.

The amount of QRSd reduction reported in this paper highlights the impact of FT

on practical patient management. Current guidelines do not recommend CRT for LBB

block patients with QRSd <120 ms. In this experiments 97% of simulation with no

FT present had QRSd>120 ms, after introducing the effect of the FT, experienced a

reduction in their QRSd below the patient selection criteria. This effect however is

dominantly present with FTs of the direct connection type. Therefore, both the pres-

ence of the FT and the structure of their attachment has to be taken into consideration.

Overall, a FT seems to impact the QRSd and affect the recommended management of

LBB block patients. However, in the same way the presence of a FT can mask the

severity of the LBB block.

By looking at the three parameters shape, LV length and FT attachment point, it

has been established the QRSd decrease seems to be most sensitive to shape, whereas

size still influences the decrease to certain extent, and the FT location on the ventricular

free wall has minor or no influence at all.

As any model, the model has limitations. With respect to this study, there are

two important to keep in mind. First, the study was performed with the eikonal

model, which only models wave propagation, but no charge accumulation or specific

ion channels. The second is, that the treatment recommendations are with respect to

the surface ECG, while our QRSd are obtained within the heart.

Overall, the results demonstrated that in some cases of pathological conduction it

is relevant to consider FTs in the electrical activity of the human heart. Future work

should investigate FTs in more detail. A first step will be to further develop the model

using the monodomain or bidomain equations and to refine the FT anatomical model.

Such refined models could then be used to answer the question of how the FT might

affect CRT outcome. Finally, the model could be used to begin explaining unusual

ECG observations like inverted T waves.
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In the previous chapter, it has been demonstrated that virtual population studies

can be used to explore the false tendon (FT) in humans, where in this chapter a

virtual population is used to explore how different coverages of the endocardium by

the Purkinje network (PN) affect the electrocardiogram (ECG). This addresses the

two remaining objectives: to present an automatic pipeline, and investigate the PN

morphology.

The automatic pipeline presented in this chapter consist of five computer programs.

The first, for the in silico generation of new heart shapes uses a purpose build statistical

shape model (SSM) of the human heart. It proceeds with an application to grow the

PN, where the coverage of the endocardium by the PN is controlled by four parameters.

The third program generates the myocardial fibre orientation. The last two programs

perform the simulation of the activation and the ECG, respectively. To understand

better the effect the PN morphology has on the ECG, a virtual population study

is conducted. The virtual population is generated by sampling the shape/Purkinje

parameter space by a sparse grid interpolation algorithm. The sparse grid algorithm

interpolates a cost function, which describes whether the ECG shows one or two R-

spikes. For a given shape, this allows to describe Purkinje parameter values resulting

in a single R-spike.

6.1 Motivation

As discussed in Chapter 1, the PN varies between species [7] and in particular from

animals to humans. Nevertheless, the majority of morphological and physiological

knowledge of the PN arises from animal studies [8,11,30]. For example, the PN growing

algorithm in Section 5.2.3 was developed from observations made in calf and lamb

hearts [99]. Studies of the human PN are limited to single subjects [9], and as a result

it is unclear to which extent the PN may vary over a large population.

Besides the statistical investigation, the morphology of the PN could be understood

from the genesis of the PN. There are two competing theories: in-growth, and out-

growth hypotheses [163,164]. Both assume that the formation of the left bundle branch

(LBB) and the three main branches is encoded in the genome. In the out-growth theory

the remaining network is formed by advancing existing Purkinje fibre. The growth is

directed such that local homogeneous activations patterns are generated. The same
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objective exist for the in-growth theory, but new Purkinje fibre are recruited from the

myocardium. This are grown towards the existing PN. Both theories have in common

to follow and optimisation process.

The statistical observation and the analysis of the developing heart indicate that the

bifurcation point and free basal area (both are described in more detail in Section 6.2.2)

could depend on the heart shape. The earlier the bifurcation takes place the more of

the septum is covered by the PN. Furthermore, the bifurcation point determinates the

first point of myocardial activation and thereby the synchrony of the left and right

ventricular activation, where the free basal area could have an influence on the total

activation time of the heart.

It would be best to study the bifurcation point and the free basal area in a popula-

tion. From such studies, statistical representative measurements of the PN can be ob-

tained [99]. However, presently this investigation needs to be performed ex vivo [30,99],

as in vivo images and electrophysiology measurements of the PN are insufficient to re-

solve the morphology of the PN. Due to the dependency on the species, the study

would ideally be performed with healthy human hearts, which is ethically difficult.

Consequently, an alternative to ex vivo study is favourable.

In this Chapter, the hypothesise that the PN morphology depends on the heart

shape, is tested with a computational study. Therefore, a computational model of the

PN is developed, which has four different parameters, two for the bundle bifurcation

points and two for the free basal area to control the extent of the PN on the endo-

cardium. To explore the dependencies of the four parameters on the shape, different

heart shapes are taken in to consideration. This are realised by a virtual population,

which is automatically generated from a SSM. The approach has the advantage of a

parametrisation of the shape, which allows to explore shape dependency in a systematic

way.

6.2 Methods

For the conduct of the virtual population study, an automatic pipeline for the creation

of physiological heart shapes and the electrophysiology simulations is developed. The

automatic pipeline begins with the construction of a heart shape from a SSM, based on

27 shape parameters. For the new shapes, a PN is generated depending on four Purkinje
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Figure 6.1: Overview of the automatic pipeline for simulation.

parameters, and the myocardial fibre orientation is generated. This is combined for

the simulation of the activation time with an eikonal model. In the second part of

the automatic pipeline, a forward ECG simulation is performed and all 12 leads of the

ECG are extracted. An overview of the pipeline is shown in Figure 6.1.

6.2.1 Construction of a Statistical Shape Model of Cardiac Shape

To generate physiological heart shapes, the automatic pipeline uses a SSM of the heart

shape. The SSM is constructed from 134 heart surface meshes obtained in the work

of Hoogendoorn [68]. Point alignment and correspondents between different heart

surface mesh is built with an algorithm published in [70], resulting in 2500 points for

each shape. From the single value decomposition of the shape matrix, 133 modes of

variation are obtained.

A subset of the eigenvectors is sufficient to achieve an acceptable reconstruction

accuracy. In this chapter, the aim is an accuracy better then 6 mm (less than 3

pixel). To find the minimal set of eigenvectors needed to achieve this reconstruc-
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Figure 6.2: The compactness of the statistical shape model.(a) The accuracy depen-
dency on the number of Eigenvectors used. (b) The percentage total variation explained
by a given mode of variation. The red line shows the cut-off, such that an accuracy of
less 6mm (3 pixel) is achieved.

tion accuracy, leave-one-out cross-validation is performed using n eigenvectors, where

n = 1, 2, · · · , 133. The accuracy of the reconstruction is measured by the Hausdorff

metric dh

dH(A,B) := max(sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)),

where d is the Euclidean metric. The evaluation shows, that the first 27 eigenvectors

are sufficient for reconstruction (Fig. 6.2).

From the SSM, a volumetric heart mesh is required for the simulations. Therefore,

the mean point distribution is used to generate a signed distance map. From the signed

distance map the heart surface mesh is generated with a marching cubes algorithm.

In a last step, this mesh is manually cleaned, i.e. to small triangles are merged and

intersections are removed. The result is a smooth mesh with a homogeneous triangle

area (Fig. 6.3), consisting of 8754 points and 17508 triangles. This mesh is later

converted in a volumetric mesh.

6.2.2 The Automatic Pipeline

The automatic pipeline is formed by a series of computer programs, which are combined

by a computer script. The computer programs implement the cardiac model and the

ECG model, which are described in the following sections.
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Figure 6.3: The surface reconstruction for the mean. a) mean heart surface mesh b)
histogram of triangle surface

The Cardiac Model

The cardiac surface model creates a new heart surface mesh, based on 27 shape parame-

ters. The shape parameters correspond to the weights given to each of the eigenvectors

in the SSM. A new instant of the SSM is built by adding the weighted modes of vari-

ation to the mean, as described in Section 2.1.1. The new instant of the SSM consists

of points only, to obtain the new heart surface mesh the mean surface mesh needs to

be deformed. The deformation is based on the difference of the mean SSM and the

new instance of the SSM. To interpolate the deformation on surface mesh radial basis

functions are used [165]. From the surface mesh, a volumetric mesh is generated with

TetGen [166].

On the surface mesh of the heart, a PN is grown. The main algorithm is the

same presented in Section 5.2.3, however improvements have been made to control the

coverage of the endocardium by the PN. In detail, there is one Purkinje parameter

for the LBB bifurcation point and one for the right bundle branch (RBB) bifurcation

point and two controlling the free basal area in left ventricle (LV) and right ventricle

(RV) (Fig 6.4). The modified PN growing algorithm allows a physiological stimulation
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Figure 6.4: Four Purkinje parameter a) free basal area b) control of the LBB bifurcation
point.

pattern of the heart, which can be adjusted for the heart shape and endocardial surface

area.

For the volumetric heart mesh the myocardial fibre orientation is assigned based on

a method described in [51]. In brief, the solution of the Laplace problem is used to

parametrise the transmural change in fibre orientation from −41◦ on the endocardium

to +60◦ on the epicardial surface. The implementation has been done in the LifeV

library1.

The activation times of the heart are estimated with the eikonal model Section 2.1.3,

which is solved with the fast marching algorithm (Section 5.2.6). The activation times

are converted to time-series of transmembrane potential (TMP) distributions. For each

point in the volume mesh, the activation time is used as the time of upstroke (Phase

0) in the action potential (AP). The AP is sampled from a lookup table of the minimal

ionic model [82]. For 150 time-steps, ranging from 0 ms to 300 ms, the TMP distribution

is exported. The duration of 300 ms allows all myocytes to complete the AP, while the

timestep is chosen to capture the upstroke in phase 0, which takes about 2 ms.

1The LifeV (http://www.lifev.org) finite element library is the joint collaboration between four institutions: EPFL,
Politecnico di Milano, INRIA, and Emory University.
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Figure 6.5: Torso (green), with lungs (blue) forming the torso domain ΩT and the
mean shape of the heart (red) ΩH .

ECG Model

The second part of the automatic pipeline is the ECG model, which consists of the

torso model and the forward ECG model.

The torso model describes the geometric modelling of the problem. In contrast to

the cardiac shape model, the torso is a fixed geometry consisting of a skin and lung

mesh from [167]. The third mesh is the heart surface mesh from the previous step. As

the heart surface mesh has a varying shape it can be necessary to deform the lungs,

to prevent intersection of lungs and heart. Therefore, a force field is created around

the heart surface. Then the lungs are moved from far outside of the body to the

physiological location, while the force deforms the lung surface. All surfaces are then

supplied to TetGen [166] to generate a volumetric mesh, which outlines the region of

lungs, heart and remaining torso (Fig. 6.5 ).

To simulate the ECG the extracellular potential on the torso surface generated by

the heart is calculated. In Chapter 2.1.3 the equations have been developed (2.33)

−∇ · ((σ̃i + σ̃e)∇(φT )) = ∇ · (σ̃i∇(ϕ)) ∀x ∈ ΩH

∇ · (σ̃T∇(φT )) = 0. ∀x ∈ ΩT

(6.1)

∂nφT |∂ΩT = 0 (6.2)

where φT is the torso potential, ϕ is the TMP, and σ̃e, σ̃i, σ̃t are the extracellular,

intracellular and torso conductivities. Two domains are distinguished (Fig. 6.5), Ω =
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Figure 6.6: The positioning of the electrodes on the torso, the colouring is according
to European standard.

ΩH ∪ ΩT with ΩH being the domain of the heart and ΩT the domain of the torso

without heart.

Thus, for a given TMP ϕ the torso potential φT can be obtained. To solve (6.1)

numerically the computer program SCIRun2 is used. The solution of the torso potential

is obtained for all 150 time-steps of the TMP exported by the cardiac model.

The ECG is generated from the signal of different electrodes on the torso surface

(Fig. 6.6). The three Einthoven leads are given by

I(t) = φLA − φRA, (6.3)

II(t) = φLL − φRA, (6.4)

III(t) = φLL − φLA, (6.5)

where these are the torso potentials at the left leg (φLL), left arm (φLA), and right

2SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI),
Download from: http://www.scirun.org



109 6.2. METHODS

arm (φRA). Combination of electrodes are used for the three augmented leads

aVL(t) = φLA − 1/2(φLL + φRA), (6.6)

aVR(t) = φRA − 1/2(φLA + φRL), (6.7)

aVF (t) = φLL − 1/2(φLA + φRA). (6.8)

To generate the precordial Wilson leads, the Wilson central terminal φWCT it needed.

This lead is generated by connecting φLA, φRA, and φLL over a 5000Ω resistor each.

As the sum of all currents needs to vanish one finds that

φWCT =
φLA + φRA + φLL

3
. (6.9)

Thus, the six precordial Wison leads are

v1(t) = φWCT − φV 1, v4(t) = φWCT − φV 4 (6.10)

v2(t) = φWCT − φV 2, v4(t) = φWCT − φV 5 (6.11)

v3(t) = φWCT − φV 3, v4(t) = φWCT − φV 6 (6.12)

The time-series of the different leads is the output of the automatic pipeline.

6.2.3 The Surrogate Model

The aim is to construct a function, which based on the shape and Purkinje parameters

predicts whether the ECG shows a double R-spike. Therefore, to any set of shape

and Purkinje parameters a cost is assigned. The smaller the cost the more likely the

parameter values will result in a single R-spike. As this function will be constructed

from experiments, an interpolation is needed to predict the cost for not simulated

parameter values. The interpolation gives the surrogate model, which is described by a

hyperplane in the 32 dimensional space of cost and parameter (4 Purkinje parameters +

27 shape parameters + 1 cost).

In this chapter, the surrogate model is a piecewise linear sparse grid interpolant.

The number of interpolation points of this linear interpolation is a compromise on the

accuracy of the interpolation. This is necessary, since the execution of the pipeline for a

single case can take more than an hour. To achieve the best compromise, a dimension-

adaptive sparse grid is used. The algorithm starts with a fixed sparse grid for all
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parameter dimension, which is refined in each iteration of the interpolation. If the cost

of a newly refined set of parameter values can be predicted from the already constructed

Surrogate model, that parameter dimension is no longer refined. The sparse grid

algorithm is realised in a Matlab toolbox by A. Klimke [168,169]. The toolbox is based

on [170], but has further improvements, particular for higher dimensions. This allows

vectorisation of the execution of the automatic pipeline in a batch of jobs. For each

set of parameter values in the batch, a new evaluation of the automatic pipeline is

performed.

To evaluate the presents of a double R-spike, the lead II from the ECG is used to

fit two Gauss-functions. The least-squares approximation is given by

gs1,µ1,σ1,s2,µ2,σ2(t) =
s1√
2σ2

1π
exp

(
−(x− µ1)2

2σ2
1

)
︸ ︷︷ ︸

N1

+
s2√
2σ2

2π
exp

(
−(x− µ2)2

2σ2
2

)
︸ ︷︷ ︸

N2

. (6.13)

For the interpolation, lets assume that ECG(t) is the signal of lead II and the R-spike is

at the origin ECG(0) = max(ECG). To interpolate g(t) to this the L2 error between

the signal and g(t) is minimized with a constrained minimisation. A regularisation

terms r1 is used to prevent both Gauss-function at the origin

E(s1, µ1, σ1, s2, µ2, σ2] =

∫
(ECG()t)− g(t))2dt+

1

|µ1 − µ2|︸ ︷︷ ︸
r1

, s.t.

0 ≥ s2

σ2

− s1

σ1

(6.14)

µ1 ∈ [−3, 3], σ1 ∈ [10., 40], s1 ∈ [−20, 200]

µ2 ∈ [−50, 50], σ2 ∈ [0.1, 50], s2 ∈ [−0.1, 30]

The constrains ensures that N1 is the larger spike. The domain of the function E allows

a negative amplitude, because the R-spike can become negative for some Purkinje

parameter values.

From the fitting process six features (s1, σ1, µ1, s2, σ2, µ2) are obtained, which are

used to generate the cost. The cost becomes smaller if the double peaks get closer to

each other and has a minimum if only one peak is detected. Therefore, the difference
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between the detected amplitudes and the distance between the detected spikes is de-

scribed by three functions. The first function uses the ratio between the two amplitudes

of the Gauss-functions

f1(σ1, s1, σ2, s2) := sig

(
100

s2σ1

s1σ2

, 20

)
. (6.15)

The function becomes 0.5 or smaller if the fitting process resulted in one major ampli-

tude and second amplitude, which can be neglect (less then 20% of the first amplitude).

Here, the sigmoid function has been used

sig(x, x0) =
1

1 + exp(x0 − x)
. (6.16)

The second part of the cost comes from the separation of both Gauss-functions

f2(µ1, s1, µ2) := sig(

(
(µ1 − µ2)

µ2

)2

, 2). (6.17)

f3 = sig(σ1, 20) (6.18)

Combining the contributions give the cost

Cost(s1, µ1, σ1, s2, µ2, σ2) :=f1 · f2 + 0.5f3(1− f1). (6.19)

This results in the cost function asymptoticly approaching 1 far away from plausible

configuration, which helps the sparse grid algorithm finding relevant sampling points.

After the cost is obtained, the surrogate model is updated. The process starts over

with creating a new batch of parameter values. The exit criterion is that the sparse

grid is evaluated to the second level. This means in each parameter dimension are not

more than two refinements of the grid performed. If sufficient interpolation points have

been evaluated, the surrogate model is saved and can be used to predict plausible PNs,

based on the shape parameter values.
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6.3 Results

The results section has three parts. In the first, the correct function of the automatic

pipeline is shown, and the output of each step is visualised. The second is concerned

with the behaviour of the cost function. In the last part, the actual virtual population

study of the PN is conducted to constructed the surrogate model.

6.3.1 Running the Automatic Pipeline

The automatic pipeline has six steps, which produce output data and shape. This

experiment visualises (Figure 6.7) the different data generated. For this illustration of

the automatic pipeline, there are no preferred parameter values. Hence, for the shape

parameter the mean shape is chosen. The Purkinje parameter values chosen to be in

the middle of their parameter range. There is no particular reason for this choice.

6.3.2 Cost Function Behaviour

The cost function is constructed to guide the selection of the Purkinje parameter values

such that simulations of the ECG result in a single R-spike, for a specific set of shape

parameter values. Therefore, the cost function should be smooth and decaying if a

series of Purkinje parameter values reduces the distance of the R-double spike. This

experiment tests whether the cost function exhibits the behaviour, which is essential

to find a correct set of Purkinje parameter values for a heart shape.

For the experiment, several different test ECG signals are constructed from two

Gauss-function as they slide towards each other. The sliding of the Gauss-function

represents an idealised way of a continuously better choice of Purkinje parameter,

meaning a more synchronise activation of LV and RV. The Gauss-function with the

larger amplitude is fixed at µ1 = 0 and a second function is added at positions in the

range of µ2 ∈ {−40, 40}. For each selected µ2, a least-square fit with the function in

(6.13) is obtained and the cost calculated. As a result, the cost can be plotted against

the separation distance (Fig. 6.8).
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: The output of each step in the automatic pipeline. a) Heart surface model
b) The PN c) The myocardial fibre orientation d) Local activation times of the heart
e) Volumetric torso mesh f) The resulting 12 lead ECG

6.3.3 The Surrogate Model

The surrogate model is constructed in an automatic process, which evaluates the au-

tomatic pipeline at desired parameter values. In this study, the construction of the

surrogate model uses only the first mode of variation from the SSM. The reason is

that tests with more modes of variation showed the problem is still computationally

challenging and would need to be run in a high performance computing (HPC) facility

For the one shape parameter and four Purkinje parameter, the sparse grid algorithm

generated 61 sets of parameter values. The automatic pipeline constructed the hearts

shapes and PNs for the parameter values and then run the simulation. The signal

of the second ECG lead was extracted and the cost (6.19) was calculated. The 61

combinations of parameter values and assigned cost form the surrogate model. The
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Figure 6.8: (a) Cost for different separations of the double spike, with the smallest
cost for both peaks at the same position (µ1 = µ2). (b) Amplitude of the smaller
Gauss-function (N2) and the second Gauss-function (N1).

complete evaluation was performed with a Dell Precision T7500 workstation and took

three days.

The surrogate model was used to interpolate the cost over four different planes

through the five dimensional parameter space. The first interpolation was the cost

(6.19) in relation to the LBB bifurcation point and the first shape parameter (Fig. 6.9a).

Than the cost function is visualised with respect to the RBB bifurcation point and the

first shape parameter (Fig. 6.9b). Finally, the cost was plotted with respect to the

LBB and RBB bifurcation point (Figure 6.10).

After the cost in dependency of the bifurcation points is interpolated and plotted,

the same is done for free basal area (Fig. 6.11).

6.4 Discussion and Conclusions

The experiments do not confirm the hypothesises that the PN morphology depends

on the heart shape, for the first mode of variation in the SSM. However, there are

indications that the heart shape influence which bifurcation point position yields an

ECG with a single R-spike.
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Figure 6.9: The cost as predicted from the surrogate model, where the blue circles
indicate parameter values for which simulation where performed. The cost is shown
in relation to the first shape parameter and (a) the LBB bifurcation point or (b) the
RBB bifurcation point.



CHAPTER 6. AUTOMATIC CREATION OF A VIRTUAL POPULATION TO INVESTIGATE THE
EFFECT OF THE PURKINJE NETWORK MORPHOLOGY ON THE ECG 116

0.5

0.1 0.2 0.3 0.4 0.5 0.6

0

1

L
B
B
B
ifurcation RBB Bifurcation

E
n
er
g
y

Figure 6.10: The cost function as predicted from the surrogate model, in relation to
LBB bifurcation point and the LBB bifurcation point.

For the LBB bifurcation point (Fig. 6.9a) an early bifurcation near the base or a

late bifurcation near the apex would be favoured by the computational model. The

experiments with shape deformation in the negative direction of mode one yield an

ECG with a double R-spike, for all tested bifurcation points of the LBB. This could

indicate that all four Purkinje parameter need to be tuned simultaneously. Another

explanation would be that shapes in negative direction of the first mode of variation

are not physiological.

In case of the RBB bifurcation point the results are more conclusive and strongly

favour a bifurcation point close to the apex. This observation is in agreement with

literature reports that the RBB runs towards the apex and fans out from there on the

right ventricular free wall [11,171]. As for the LBB bifurcation a slight dependency on

the shape is observed. However, for all shapes the same bifurcation point is favoured.

A correlation between the LBB and RBB bifurcation point is seen in Figure 6.10. As

already seen in Figure 6.9 for both bundle branches exist parameter values for which the

cost becomes small. However, only if both bifurcation parameters are chosen optimally

an ECG with a single R-spike is produced. This was expected, because the bifurcation

points determinate the synchronous activation of LV and RV. It should be noted that
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Figure 6.11: The cost function as predicted from the surrogate model, in relation to the
first shape parameter and the free basal area in (a) Left Ventricle (b) Right ventricle
point.
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the plot is the result of a multidimensional interpolation, and in this particular example

it shows negative cost, which do not exist by construction of the energy.

The free basal area in LV and RV has a smaller influence on the ECG (Fig. 6.11).

With incorrectly chosen bifurcation points the free basal area in the LV has nearly no

influence on the resulting ECG. Varying the free basal area in the RV can reduce the

separation of the double spike. This could be related to the longer activation time in

the RV if the free basal area increases. However, for all experiments the separation

persisted.

In conclusion, the simulation showed that the bifurcation points of the LBB and

RBB have a major impact on the correct activation sequence. Both parameters need

to be tuned simultaneously until a healthy ECG is obtained. On the other hand, the

simulation indicated minor importance of the free basal area for the correct formation

of the ECG.

As do all studies, this study has limitations. One is the current sparse grid, which

chose the middle of the parameter range as reference point. This means, that for many

simulations non optimal bifurcation parameter are used. Taken the results for this

study into account, it would be better if the sparse grid algorithm first searches for

the correct LBB and RBB parameter and then explores other parameter dependencies.

Otherwise, a bias towards the chosen bifurcation points exist. With such a technique,

it might be possible to overcome the restriction to the first mode of shape variation in

this study. Using a larger representation of the shape variation can give more insight

in the shape dependency of the PN. Furthermore, this study uses only the lead 2 of

the ECG. These means the PNs optimisation process evaluates only one of three axis.

The study shows two things, first the importance of the PN for the correct activation

of the heart, and second the value of virtual population studies. Through the systematic

exploration of different bifurcation points, and free basal areas in the LV and RV, it

was found that the bifurcation points of the bundles need to be positioned correctly for

the formation of a physiological ECG, where the free basal area is of minor importance.

The systematic exploration was possible because of the virtual population, which

was generated from parametrised heart shape and Purkinje morphology. As the com-

putational model is created from the SSM, specific heart shapes or PN can be added

to the virtual population. Moreover, the virtual populations allowed to study how

an unphysiological configuration of the bundle branching points in the PN affects the
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ECG.
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The aim of the thesis was to study the activation sequence of the heart for different

morphologies of the human Purkinje network (PN) and heart shapes by utilising virtual

populations. Following this aim, four objectives were set out in Chapter 1. In this

conclusion, the objects are evaluated against the thesis.

The first objective to build an efficient electrophysiology model of the PN was ad-

dressed in Chapter 3 and 4. A numerical algorithm for the solution of the monodomain

equation in the PN was developed based on the work of Vigmond and Clements [103].

In our algorithm, the mathematical formulation for the bifurcation of a Purkinje fi-

bres in two has been changed, which improved the convergence of the algorithm with

respect to the spatial discretisation. In the new formulation, linear convergence was

reached and the convergence was the same for all three implementations pure central

processing unit (CPU), pure graphic processing unit (GPU) and a hybrid implemen-

tation. The hybrid and pure GPU implementations reduced the computational time

for simulation compared to the pure CPU substantially. The algorithm based on a

pure-GPU implementation can solve the electrophysiology problem in the PN for one

heart beat (400 ms) in less than 60 min on a desktop computer, while the pure CPU

implementation needs nearly 6 h. With simulation times of under an hour for the elec-

trophysiology of the PN, it becomes feasible to perform the simulation on a desktop

computer, and run virtual population studies on high performance computing (HPC)

facility with many GPUs.

The second objective was the development of an automatic pipeline for the gen-

eration of heart shapes and the simulation of their electrophysiology. In Chapter 6,

such a pipeline was developed. One key component of that pipeline was the statisti-

cal shape model (SSM) of the heart, which was built for the pipeline such that heart

shapes generated with that model have a smooth endocardial and epicardial surface,

and in the triangle based surface mesh there are no intersecting triangles. The second

key component was the PN growing algorithm, which offers parameters to control the

left bundle branch (LBB) and right bundle branch (RBB) bifurcation point, as well

as two parameter to control the basal free area of the PN in the left ventricle (LV)

and right ventricle (RV). Additionally, the pipeline includes the numerical simulation

of the electrocardiogram (ECG). To the best of the knowledge of the author, this is

the first automatic pipeline able to simulate the ECG from shape and PN parameter

values of the heart. The pipeline fulfils the requirements of the objects and provides
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an important tool for conducting virtual population studies.

The third objective was to explore how false tendons (FTs) affect the heart acti-

vation pattern in LBB block condition, by the use of a virtual population. Therefore,

the first computational model of a human heart that includes a FT and the papillary

muscle (PM) has been developed in Chapter 5. The generation of the FT is integrated

in the automatic PN growing process, and supports three different end points and

two different connection types. The model has been used in a population of 70 virtual

hearts to evaluate potential benefits of FTs in the pathological condition of LBB block.

It was computationally shown that FT can provide a significant reduction of the total

activation time in LBB block condition. Based on the literature regarding the relation

of the QRS length and the cardiovasular mortality, the reductions are sufficient to re-

duce the cardiovascular mortality risk. Furthermore, the experiment showed that the

activation time is affected by shape more than by the length of the ventricle or the

attachment point of the FT. This shows the importance of virtual population studies,

because there experiments are conducted for different heart shapes.

The last objective was to test the hypothesis that the extend to which the PN

covers the endocardial surface depends on the heart shape. For the shape variation

encoded in the first mode of variation of the SSM, the hypothesis was not confirmed.

However, the study showed for the first time with a computational model of a realistic

bi-ventricular heart the relevance of the correct bundle bifurcation points. Without

a correctly chosen bifurcation point an ECG derived from the activation pattern will

show a double R-spike. A phenomena, which is not observed in healthy physiology.

Indicating that the LBB and RBB are tuned to each other, be it either by genetically

encoding or by an optimisation of the activation pattern, as has been hypothesised for

the PN [163, 164]. The surrogate model constructed in the thesis can be a first step

towards a heuristic description of the optimal length for both bundle branches with

respect to the heart shape.

Overall, the thesis has shown that virtual population studies are feasible and can

augment the knowledge gained from in vivo or ex vivo studies, like the reduction

in QRS duration gained by FT in LBB block condition. They are a complement to

computational single-case study and offer the possibility to explore the effect of various

model parameters, such as shape, on the simulation outcome. Furthermore, the thesis

showed that the computational cost of virtual population study can vary greatly. While
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it was possible to run simulation in excess of 700 cases for the FT model in a few days

on a desktop computer, the automatic pipeline including ECG took already three days

for only 62 simulations. Meaning, simple virtual population studies can be performed

on the desktop computer, while more complex studies should still be performed in a

HPC facility.

Consequently, the methods and models developed in this thesis have great potential

for future applications and development. The automatic pipeline can be utilised to

extend the surrogate model from Chapter 6 to more shape parameter. Therefore, it

would need to be implemented on an HPC to be able to deal with the fast growing

numbers of simulations needed when adding more shape parameter to the surrogate

model. The automatic pipeline can also be combined with a segmentation tool of the

heart and a registration tool which registers the segmentation to the SSM. This would

offer the possibility to perform simulation for new segmented hearts.

Beside the application of the pipeline, there is potential for development. The

current version of the automatic pipeline uses the eikonal model for the activation

simulation, which is limited to simulation of healthy myocardial tissue. To overcome

this limitation, the use of the monodomain model would be desirable. The integration

of a monodomain model in the pipeline is uncomplicated, and the eikonal model can

directly be replaced by the monodomain model. However, if the bidomain model

should be used the uncoupling of the intracellular space and the extracellular space in

the forward ECG is not possible. A fully coupled ECG forward solver or uncoupling of

the heart domain and the torso domain would be required, as discussed in Section 2.3.

The use of the monodomain model for the automatic pipeline opens many new

areas to explore, like ischaemia, re-entry, effect of different ionic models, or the effect

of drugs on the heart, to name just a few. In ischaemic conditions the development

of ventricular tachycardia (VT) can depend on the PN and th shape of the ischaemic

region, which could be investigated further with the automatic pipeline. Such a study

could provide additional information and the susceptibility of VT to a heart.

The FT model can be extended to in-cooperate more tissue, than only the Purk-

inje fibre. The additional tissue can have a contribution to the observed ECG. It

is suspected that the additional tissue might be responsible for the reported T-wave

inversions in conjunction with PN.
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Table 8.1: Initial conditions used for the Stewart et al. 2009 model

V Transmembrane potential [mV] -75.6095
Ki Potassium dynamics [mMol] 136.757
Nai Sodium dynamics [mMol] 0.80211
Cai Intracellular calcium [mMol] 1.47164e-4
y y gate 0.00780153
Xr1 Rapid time dependent potassium current 0.382558
Xr2 Rapid time dependent potassium current 0.37373
Xs Slow time dependent potassium current 3.85284e-2
m m gate 1.24135e-2
h h gate 0.361832
j j gate 0.102063

Cass Calcium dynamics [mMol] 5.49319e-4
d L type Ca current d 1.21585e-4
f L type Ca current f 0.611603
f2 L type Ca current f2 0.861484
fcass L-type Ca current 0.985735
s Transient outward current s 0.925862
r Transient outward current r 6.46602e-4

CaSR Calcium in sarcoplasmic reticulum [mMol] 3.17519
Rprime Calcium dynamics 0.851882
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