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Abstract

Modular robotics has the potential to transform the perception of robotic systems from

machines built for specific tasks to multi-purpose tools capable of performing virtually

any task. This thesis presents the design, implementation and study of a new self-

reconfigurable modular robotic system for use as a research and education platform. The

system features a high-speed genderless connector (HiGen), a hybrid module (HyMod),

an extensions framework, and a control architecture. The HiGen connector features

inter-module communication and is able to join with other HiGen connectors in a manner

that allows either side to disconnect in the event of failure. The rapid actuation of HiGen

allows connections to be made and broken at a speed that is, to our knowledge, an order

of magnitude faster than existing mechanical genderless approaches that feature single-

sided disconnect, benefiting the self-reconfiguration time of modular robots. HyMod is

a chain, lattice, and mobile hybrid modular robot, consisting of a spherical joint unit

that is capable of moving independently and grouping with other units to form arbitrary

cubic lattice structures. HyMod is the first module, to our knowledge, that combines

efficient single-module locomotion, enabling self-assembly, with the ability for modules

to freely rotate within their lattice positions, aiding the self-reconfigurability of large

structures. The extension framework is used to augment the capabilities of HyMod units.

Extensions are modules that feature specialized functionality, and interface with HyMod

units via passive HiGen connectors, allowing them to be un-powered until required for a

task. Control of the system is achieved using a software architecture. Based on message

routing, the architecture allows for the concurrent use of both centralized and distributed

module control strategies. An analysis of the system is presented, and experiments

conducted to demonstrate its capabilities. Future versions of the system created by

this thesis could see uses in reconfigurable manufacturing, search and rescue, and space

exploration.
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1. Introduction

Since their inception, robotic systems have transformed the world we live in. Having

machines capable of repeatedly and reliably performing repetitive tasks has allowed many

manufacturing sectors to transition from human labor to machine labor, enabling higher

quality and faster production of the many products our society now relies upon. A

prime example of this is the car industry, where although many roles are still performed

by humans, much of the precision assembly of car chassis and components has been

performed by robots for decades.

Despite the advantages of robots for manufacturing, many systems are limited in their

uses, typically only designed to perform a single or small set of tasks within a well defined

or structured environment, such as an assembly line. Additionally, such robots can be

a single point of failure within a system, placing great importance on their continued

operation. Transitioning robotic systems to unstructured environments, expanding their

task set, and increasing their robustness is an ongoing mission for robotics researchers.

One way this transition is being performed is through modularity. Rather than having a

single robot for a given task, instead multiple robots work together to perform the same

task. The intention behind this is that by having a collective of robots, the importance

of any single one is reduced, allowing such systems to be more adaptable to failure, as

in-operable robots can be replaced. Additionally, collectives of robots are potentially

capable of collaborating to achieve tasks that may not be achievable by a single robot

alone, expanding the range of tasks such a system can perform and the number of

environments they can be performed in.

There are two main research areas focused on increasing the modularity of robotic sys-

tems, swarm robotics and modular robotics. In swarm robotics [1], many small and

sometimes simple robots are placed in an environment together in order to complete a

task. In some cases, each robot can complete the task on their own, so having multiple

robots increases the systems redundancy. In other cases, the task may only be achievable

1



1. Introduction

if multiple robots work together. The reference to swarms comes from this collective be-

havior, as it likens the systems to natural swarms such as insect colonies, flocks of birds

or schools of fish [2]. Examples of tasks being achieved with swarm robotics include

object clustering [3, 4] and cooperative transport [5, 6]. In modular robotics [7, 8], tasks

are performed via the use of multiple robotic units or modules. Each module can be

small and simple like the robots of swarm systems; however, unlike swarm robots, mod-

ular robots are capable of joining or being joined together to form connected structures.

Once connected, said modules effectively become a single robot, with the combined func-

tionality of all its modules, be it sensing, actuation or processing. This gives modular

systems an advantage over swarms, as with appropriate numbers and types of modules,

it is possible to create a structure that matches the shape and functionality of virtually

any traditional robotic system. Additionally, with appropriate connection hardware,

modular robots are capable of reconfiguring their own structure on demand to suit their

current task or environment, increasing their flexibility over swarm systems.

1.1. Motivation

Modular robotics has the potential to change our perspective on robotics, from being

bespoke machines intended for specific tasks to tools that can be assembled or self-

assemble to perform an endless array of tasks. Such tools could benefit a number of

application areas, including reconfigurable manufacturing [9], search and rescue [10],

and space exploration [11]. In the distant future modular robotics could even give rise

to programmable matter [12], materials consisting of millimeter-scale robots capable of

replicating the shape, appearance, and properties of virtually any object.

For reconfigurable manufacturing, the objective is to create manufacturing processes that

can adapt to changing product demands more efficiently than is possible with current

manufacturing processes [13]. Modular robotics has the potential to take reconfigurable

manufacturing further, by introducing self-reconfigurability. Having manufacturing sys-

tems that are able to self-reconfigure depending on the product that is to be produced,

opens up the opportunity for increased customization of products, as the system is able

to change its structure to account for their different manufacturing requirements.

For search and rescue, the ability for a response team to quickly react to a disaster is

critical for saving lives. To this end robotic systems have been employed to aid response

teams [14], by allowing them to explore areas that may have become inaccessible to

2



1.2. Problem Definition

humans. Modular robots have the potential to benefit in this regard, as rather than

teams needing to transport every available search and rescue robotics platform with

them to a disaster, or worse, get to the disaster and then need to have a specialized

platform shipped in, a large number of modules can be transported instead. Once

arrived, the team can assess the situation and assemble the modules into an appropriate

configuration to begin search and rescue operations with, potentially saving valuable

time. Additionally, if a self-reconfigurable modular system is used, it could adapt its

own configuration to the current situation it is facing, for example, by sprouting legs to

overcome rough terrain or transforming in to a snake to navigate through small tunnels.

For space exploration, robotic systems have been used for decades to assist astronauts on

orbit and enable our species to explore other planets. Despite this, it is still prohibitively

expensive to get payloads to orbit and beyond, meaning that the more uses a robotic

payload has the easier it is to justify the launch cost. Modular robotics has the potential

to assist in this regard, by offering a platform that is capable of being reconfigured in

to different structures to allow for many more tasks to be performed than a traditional

robotic system. Additionally, the ability for modular robots to deal with failures could

benefit planetary exploration, as such robots could self-reconfigure to discard damaged

modules in order to continue with their objective. Although such an application may

seem distant, a form of modular robot is already in operation on the International Space

Station. The Canadarm2, the stations main manipulator, acts as a normal arm for

most activities but when required can be relocated to any point on the station. This is

possible due to the symmetric nature of the arm, allowing either end to be docked into

the many grapple fixtures around the station’s outer surface [15], giving it the ability to

move end-over-end from one fixture to another. Additionally, when required, the arm

can be used to reconfigure the various sections of the space station as new sections are

delivered and old ones retired, effectively making the station itself a modular robot.

1.2. Problem Definition

Great strides have been made over the past decades in creating modular systems that

show the potential of the field; however, the field is yet to see systems being used in

the three main application areas that motivate it. One possible reason for this is the

lack of systems that excel in all the aspects of modular robotics [7] that would benefit

such application areas over existing solutions. For example, some systems that feature

3



1. Introduction

advanced self-reconfigurability [16, 17, 18, 19] lack the advanced individual locomotion

capabilities of other systems [20, 21, 22, 23], or vice versa. Another possible reason for

the lack of adoption of modular robotic systems is the absence of available platforms for

conducting research on. Unlike fields like swarm robotics, which have multiple platforms

available for researchers to purchase, there are relatively few for modular robotics, with

those that are available primarily being intended for teaching environments such as

schools. This means that the barrier to entry in to the modular robotics field is higher

than other robotics fields, as research either has to be confined to simulation or needs to

be conducted at institutions that already has their own systems, restricting advancement.

What is needed is a platform that integrates many of the successful features presented

by past works, whilst being open to allow other researchers to assemble their own.

1.3. Aim and Objectives

Out of the three main application areas of modular robotics, search and rescue is the

closest to seeing a benefit from modular robotics, with research already being conducted

in to dealing with potential challenges that may be faced [10, 27]. As such, the long-term

aim of this research project is to develop a modular robotic system primarily for use in

search and rescue applications. This system would need to be both robust to survive

the harsh environments that natural and man-made disasters present, and versatile in

order for it to add value over currently available platforms. For robustness, hazards the

modular robot would need to be designed to deal with include sharp obstacles, abrasive

dust, water, and corrosive agents [14]. For versatility, the modular robot would need to

be designed to include many of the features of past successful platforms. To be usable

in reconfigurable manufacturing and space exploration applications, the system would

need to be robust and versatile like for search and rescue, as well as be capable of

operating in semi-structured environments, be it production lines or on orbit assemblies.

For space exploration, the system would also need to be designed to withstand the cold

temperatures and solar radiation that are present in the vacuum of space. All of these

requirements are challenging to achieve together in a single iteration of a robotic system,

so because of this a short-term aim was selected for this thesis, focusing on versatility.

The overall aim for this thesis is to design, implement and study a new self-reconfigurable

modular robotic system for use as a research and education platform. The platform is

intended to enable scientific experiments to be conducted in to the self-assembly, self-

4
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reconfiguration, and collective locomotion of robotic modules within a laboratory envi-

ronment, as well as for demonstrations of tasks relevant to search and rescue as well

as reconfigurable manufacturing and space exploration to be illustrated. To this end

the system produced shall incorporate many features of past successful modular robotic

systems and, where possible, improve upon them to advance the state of the art be-

yond the theoretical and algorithmic contributions the finished system would facilitate.

Specific focus shall be given to improving the mobility, self-reconfigurability, and ex-

tendibility of modular robots, three attributes that relate to their versatility. To aid

in platform adoption, the system shall be made using off-the-shelf or easily acquirable

bespoke components as well as 3D printing technology.

To aid in the creation process of this new modular robotic system, four objectives have

been selected. These are:

� To develop a connection mechanism for self-reconfigurable modules that addresses

limitations of existing mechanisms presented by the literature. This connector

shall be designed, constructed, and tested to verify its abilities.

� To design and construct a new self-reconfigurable modular robot. The module

design shall be analysed to assess its movement capabilities and potential for self-

reconfiguration, and its mechanics and electronics shall be discussed. Finally, ex-

periments showing the capabilities of the module shall be presented.

� To extend upon the connector and module designs through the use of extensions,

to enable specialized tasks to be performed. A number of extension modules shall

be produced to demonstrate their ability to augment the capabilities of the new

modular robot.

� To implement a control architecture for the new modular robotic system that allows

for centralised and distributed algorithms to be employed to facilitate the system

in performing tasks. A number of tasks shall be demonstrated.

1.4. Contributions

The contributions of this thesis are:

5
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� A gender classification of modular robot connection mechanisms that addresses

an inconsistency in the terminology of various genderless designs. Under this new

classification connectors are either gendered, bi-gendered (hermaphrodite), or gen-

derless. The distinction between bi-gendered and genderless connectors is how

their elements join, with bi-gendered having the active element of one connector

joining with the passive element of another, and genderless having the active ele-

ments of the two connectors themselves join together. This means that single-sided

disconnect is an implicit property of genderless connectors, as only one active el-

ement needs to disconnect for a connection to be broken. As such, most existing

connectors in the literature that are referred to as genderless fall under this new

bi-gendered classification.

� A new high-speed genderless mechanical connection mechanism for modular robots,

called HiGen, which is capable of joining with other HiGen connectors in a manner

that allows either side to disconnect in the event of failure. The mechanism is

capable of extending out of and retracting in to its housing, allowing for electrical

connections for communication and power sharing to be made and broken, as well

as clearance to be created between two neighboring connectors. The connection

mechanism’s actuation speed is, to our knowledge, an order of magnitude faster

than existing mechanical genderless approaches that feature single-sided disconnect

(i.e. those that comply with the new genderless classification), offering benefits for

the reconfiguration time of self-reconfigurable modular robots.

� A new robotic module that is a hybrid between chain, lattice and mobile self-

reconfigurable robots, called HyMod. The module is based on a three degrees of

freedom spherical joint and features four HiGen connectors, enabling it to not only

rotate freely in place within a cubic lattice position, but also act as a differen-

tial wheel setup for individual mobility when away from a connected structure.

By allowing free in place rotation, connected modules are able to change their

orientation within their lattice positions without colliding with adjacent modules,

aiding the self-reconfigurability of large structures. Additionally, when operating

independently, wheeled mobility allows the modules to efficiently locomote around

flat environments, much like the robots of a swarm robotic system. HyMod is the

first modular system, to our knowledge, that combines these two capabilities. An

analysis of the geometry and reconfigurability of HyMod is presented, and details

of the mechanics and electronics of the module are discussed. Experiments were

conducted to show the module’s driving and lifting capabilities.
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1.5. Publications

� A hardware framework for the creation of extensions to the HyMod system. Ex-

tensions are modules that augment the capabilities of a set of connected HyMod

units, by introducing functionality that they may lack or could be impractical to

replicate with a collection of units. The framework covers a passive variant of

the HiGen connector, a pick-up location template, and internal electronics. To

demonstrate the framework, a set of four extensions were developed, covering the

areas of manipulation, mobility, perception, and support. Examples are given of

how these extensions could be used in combination with HyMod units to produce

configurations suited to performing real-world tasks.

� A software architecture for the control of sets of connected HyMod units and

extensions. The architecture allows for the concurrent use of both centralized and

distributed module control strategies, and is built around the concept of message

routing, enabling information to be exchanged between modules in a transparent

manner. Details of the architecture and its operational logic are presented, and a

self-reconfiguration scenario involving two HyMod units and a modular surface is

proposed and demonstrated in simulation.

1.5. Publications

This thesis represents the author’s own work, and includes a number of original con-

tributions to scientific knowledge. The work presented herein has so far led to three

peer-reviewed papers:

1. C. Parrott, T. J. Dodd, and R. Groß, “HiGen: A high-speed genderless me-

chanical connection mechanism with single-sided disconnect for self-reconfigurable

modular robots”, in Proceedings, 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, IEEE, 2014, pp. 3926-3932.

2. C. Parrott, T. J. Dodd, and R. Groß, “Towards a 3-DOF mobile and self-

reconfigurable modular robot”, in Proceedings, IROS 2014 Modular and Swarm

Systems Workshop, 2014.

3. C. Parrott, T. J. Dodd, and R. Groß, “HyMod: A 3-DOF hybrid mobile and

self-reconfigurable modular robot and its extensions”, in Proceedings, 13th Inter-

national Symposium on Distributed Autonomous Robotic Systems, Springer Tracts

in Advanced Robotics, Springer, 2016. (to appear)
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1. Introduction

The material in Publication 1 corresponds to the contents of Chapter 3, and was used as a

basis for Section 2.3. The content of Chapter 4 is derived from the material in Publication

3. Additionally, Publication 3 overviews concepts expanded upon in Chapter 5.

During the course of his PhD studies, the author also contributed to other projects that

are not featured in this thesis. These have led to the following publication:

1. M. J. Doyle, X. Xu, Y. Gu, F. Perez-Diaz, C. Parrott, and R. Groß. “Modular

Hydraulic Propulsion: A robot that moves by routing fluid through itself”, in

Proceedings, 2016 IEEE International Conference on Robotics and Automation,

IEEE, 2016, pp. 5189-5196.

1.6. Thesis Outline

This thesis is structured as follows:

� Chapter 2 explores the literature of modular robotics to place this thesis in con-

text. Section 2.1 presents a brief history of modularity and how it relates to

modular robotics. Section 2.2 surveys existing modular robotic systems, cover-

ing the categories of chain (2.2.1), translational lattice (2.2.2), rotational lattice

(2.2.3), morphable lattice (2.2.4), fixed lattice (2.2.5), self-mobile (2.2.6), and het-

erogeneous (2.2.7) systems. Section 2.3 examines existing connection mechanisms

for modular robots, and presents them under a new classification of gendered

(2.3.1), bi-gendered (2.3.2), and genderless (2.3.3). Section 2.4 explores how mod-

ular robots can be controlled, and details centralized (2.4.1) and distributed (2.4.2)

control strategies.

� Chapter 3 presents the high-speed genderless (HiGen) connection mechanism. Sec-

tion 3.1 presents the chapter and introduces the HiGen connector. Section 3.2

lists the mechanical (3.2.1), electrical (3.2.2), environmental (3.2.3), performance

(3.2.4), and reliability (3.2.5) requirements used in creating the connector. Sec-

tion 3.3 provides details of the HiGen connector’s mechanism (3.3.1) as well as

the electrical connections made between connectors (3.3.2). Section 3.4 discusses

experiments conducted with the connector, such as its actuation and connection

time (3.4.1), electrical connectivity (3.4.2), connection repeatability (3.4.3) and

load capacity (3.4.4). Section 3.5 summarizes the chapter.
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1.6. Thesis Outline

� Chapter 4 details the hybrid modular (HyMod) robot. Section 4.1 introduces the

chapter and presents the HyMod unit. Section 4.2 lists the mechanical (4.2.1),

electrical (4.2.2), environmental (4.2.3), performance (4.2.4), and reliability (4.2.5)

requirements used in creating the module. Section 4.3 covers the theory and de-

velopment of the module, by analysing its geometry (4.3.1) and ability to self-

reconfigure (4.3.2), examining the clearance considerations for free in place rota-

tion (4.3.3), and detailing the module’s hardware and electronics (4.3.4). Section

4.4 presents experiments conducted with a single module. Section 4.5 summarizes

the chapter.

� Chapter 5 expands upon the work presented in the previous chapters to create

extensions. Section 5.1 introduces the chapter and shows the four extensions de-

veloped. Section 5.2 lists the mechanical (5.2.1), electrical (5.2.2), environmental

(5.2.3), performance (5.2.4), and reliability (5.2.5) requirements used in creating

extension modules. Section 5.3 provides details of how the HiGen connector can

be expanded for use with extensions (5.3.1), presents an electronics framework for

the rapid creation of extensions (5.3.2), and shows a method for creating pick-

up locations for said extensions (5.3.3). Section 5.4 covers the development of a

gripper extension. Section 5.5 presents the mecanum wheel extension, driven by

HyMod units to allow a robot to move in any direction on a flat surface. Section

5.6 covers a camera extension, giving a modular robot vision as well as additional

processing capabilities. Section 5.7 shows a modular surface extension, allowing

for a regular grid to be produced for modules to self-reconfigure across. Section

5.8 showcases two example configurations of modules and extensions that could be

used for performing tasks. Section 5.9 summarizes the chapter.

� Chapter 6 provides details of the architecture used for the centralized and dis-

tributed control of HyMod units and extensions. Section 6.1 introduces the chap-

ter. Section 6.2 provides details of the control architecture, including its message

structures and routing method (6.2.1), its implementation of multi-byte serial com-

munication (6.2.2), and the logic of its controller (6.2.3). Section 6.3 presents a

self-reconfiguration scenario, detailing a 3D simulator (6.3.1), a surface traversal

algorithm for addressing the scenario (6.3.2), and the experimental setup to be used

for applying the algorithm to the physical system (6.3.3). Section 6.4 summarizes

the chapter.

� Chapter 7 concludes the thesis. Section 7.1 presents a discussion of the achieve-
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1. Introduction

ments (7.1.1) and limitations (7.1.2) of the work, as well as a research vision for the

field (7.1.3). Section 7.2 ends the thesis by offering number of avenues for further

research.
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2. Background and Related Work

This chapter begins with a brief history of modularity (Sections 2.1), and presents a

literature review of existing modular robotic systems (Section 2.2) and their connection

mechanisms (Section 2.3). Finally the chapter is concluded with a review of modular

robot control strategies (Section 2.4).

2.1. A Brief History of Modularity

Modularity of mechanical systems originated during the Industrial Revolution with the

advent of interchangeable parts in the early years of the 1800s. During this period,

advances in automation allowed for parts to be created with increased precision, and for

the first time, to specification. By having standardized parts, not only were machines

easier to construct, they could also have their components replaced if damaged or broken.

By the 1900s, the creation of mechanical systems had transitioned from a task requiring

few skilled workers to one that could be achieved by many unskilled workers, each focused

on a small aspect of the overall construction. This forms the basis of the assembly line

concept, with Henry Ford pioneering the moving assembly line for the mass production of

motor vehicles in 1913. With the arrival of computing towards the 21st century, workers

have slowly been replaced with robotic systems, capable of performing the same tasks

repeatedly and without breaks, further increasing the ability for machines and products

to be mass produced. More recently, there has been a shift away from mass production

towards specialized parts with the introduction of computer numerical control (CNC)

routers and 3D printers, allowing for companies or individuals with modelling skills to

produce one-off items or small runs of parts that may be impractical to mass produce

with traditional methods, due to setup costs for instance.
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2. Background and Related Work

A limitation of robotic systems used in manufacturing and other areas is that, although

they are made of standardized parts that can be replaced, they are only capable of

performing a specific set of tasks for which they are equipped. In contrast, a human is

capable of performing a wide variety of tasks if suitable tools are provided. This has

partially been addressed by the inclusion of interchangeable end-effectors, allowing robots

to swap from object grasping to drilling or welding, for example, but such robots are still

limited by the capabilities of their underlying platform. In 1988 Fukuda et al. proposed

the concept of a dynamically reconfigurable robotic system as a means of overcoming

robot platform limitations [26]. Consisting of intelligent cells with basic mechanical

functions, each cell is capable of joining with other cells to form larger structures to

match the mechanical needs of virtually any task. By having a robot composed of

cells, the robustness of the structure they create is increased due to each cell being

an interchangeable part, and the robot can be low-cost by taking advantage of mass

production techniques. Because of this, such reconfigurable robotic systems have the

potential to replace traditional robotic systems in many existing settings, as well as offer

increased flexibility and adaptability by allowing for the rapid reconfiguration of cells

to changing tasks or environments. Additionally, the act of reconfiguration could be

handled by the robots themselves, enabling their structures to change on demand. This

approach to modularity could see robots change from being machines used to perform

specific tasks to tools that can perform many tasks, in much the same way that 3D

printing is allowing many specialized items to be produced today. It is this potential

that has given rise to the current field of self-reconfigurable modular robotics.

2.2. Existing Reconfigurable Robotic Systems

Over the past decades many modular robotic systems have been developed, exploring

the various challenges of the field [7]. Initial efforts focused on what are now referred

to as chain-type systems, in which robotic modules are joined together via connection

mechanisms to form linear and branching structures reminiscent of snakes or other ani-

mals. Shortly after this, lattice-type systems emerged, in which robotic modules reside

in a two or three dimensional grid structure, with each module connecting to multiple of

their neighbors. The advantage of chain-type modules is that they are able to produce

kinematic chains, allowing them to be used as manipulator arms or execute locomo-

tion like that found in nature; however, because of this it can complex for modules to

self-reconfigure, that being to change their own connected structure without external
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2.2. Existing Reconfigurable Robotic Systems

influence. The advantage of lattice-type modules is that they are able to self-reconfigure

efficiently, due to modules being in known grid positions; however, their ability to lo-

comote is limited by the size and shape of the grid used (e.g. cubic, hexagonal) [7].

Later developments aimed to combine these two classes, creating hybrid-type systems

consisting of modules that can reside both in-lattice to simplify reconfiguration, and

off-lattice to perform locomotion [8]. Additionally, some systems explored the ability

of having modules be capable of independent locomotion, allowing them to break away

from a lattice and re-join at a different location.

Since the initial classification of chain, lattice, hybrid, and mobile modular systems,

it has become increasingly difficult to identify common traits between modules. For

the purpose of this review, the following classifications will be used, with some systems

falling under multiple classes:

� Chain - Systems with modules that are only capable of forming linear or branching

structures, due to the number and placement of their connection mechanisms. Joint

actuations can be translational and/or rotational. Branching is achieved either as

part of the standard module design, or via the addition of a secondary module.

� Lattice - Systems with modules that reside in a grid, with the number of con-

nectors and their positions allowing for each module to connect with multiple

neighbors at once. Four variations of this exist:

– Translational - Modules only feature translational joints, allowing them to

move parallel to the lattice directions. The orientation of modules can never

change, preventing their axes from being rotated off-lattice.

– Rotational - Modules feature at least one rotational joint, allowing them to

change their orientation and be rotated between lattice positions. All hybrid

systems fall under this category, as they are able to use rotation to produce

chains of modules that reside off-lattice.

– Morphable - Modules feature mechanisms allowing them to morph the shape

of the lattice they would normally form, allowing modules to be brought

together without needing to move to a neighboring grid position.

– Fixed - Modules have no mechanism for moving between grid positions and

instead require mobility or an external force to reposition them, be it from a

user or a stochastic process.
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2. Background and Related Work

� Self-Mobile - Systems with modules that are capable of efficient locomotion (that

being, wheels or other drive mechanisms) outside of a chain or lattice structure.

In addition to the above, some systems may feature multiple module designs, making

them capable of forming chain, lattice, or mobile systems depending on the modules

used. Such systems are known as heterogenous and have been grouped together in this

review. A list of all the modular robots covered by this review can be seen in Table 2.1.

2.2.1. Chain

The Polypod system [33, 65] developed by Yim et al. features cube-shaped joint modules

with two passive connection surfaces, capable of being connected together to form long

chains. Two motors reside in these modules, connected via lever mechanisms on either

side of the unit in such a way as to allow both translation and rotation to occur; a

design that is unique in the field. To allow for more varied configurations separate

branch modules are used with six connection surfaces but no actuation, enabling tree-

like structures to be formed. Many potential assemblies have been visualized with the

Polypod modules, ranging from snakes to bipeds. One interesting assembly shown was

the rolling track, which replicates the efficient motion of tank-treads by moving modules

end-over-end. Although no rolling track experiments were conducted with this system,

later works have shown the rolling track to be a viable method of locomotion [66].

The CONRO [28] by Castano et al. is one of the first chain systems to feature an active

connection mechanism. Two prototypes of this system exist, the first consisting of a

single module with one degree of freedom and two passive connection surfaces, and the

second having two degrees of freedom perpendicular to each other and four connection

surfaces (Figure 2.1(a)). This use of four surfaces in the revised prototype, one of which

being actuated, allows for branching structures to be produced with a single module;

however, the specific arrangement and types of connectors prevent it from forming lattice

structures.

Advancing upon their previous work, Yim et al. developed the PolyBot [32, 67, 68].

Three versions were created, with the G3 being the latest (Figure 2.1(b)). The modules

are cube-shaped similar to Polypod, but loose the compression and expansion ability in

favor of a single rotational degree of freedom with double the range (±90° versus ±45°).

This offers much greater freedom of movement for both locomotion and reconfiguration,

as only four modules are required to produce a closed loop.
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2.2. Existing Reconfigurable Robotic Systems

Table 2.1.: Classifications of the various modular systems covered in this review, grouped
by similarity and ordered alphabetically. The HyMod system produced by
this project is included for comparison.

System Dim. Self-
Reconfig.

Chain Lattice
Class

Self-
Mobile

Hetero-
genous

CKbot [27] 3D - X - - -

CONRO [28] 3D X X - - -

GZ-I [29] 3D - X - - -

ModRED [30] 3D X X - - -

Molecube [31] 3D X X - - -

PolyBot [32] 3D X X - - -

Polypod [33] 3D - X - - -

RobMAT [34] 3D - X - - -

YaMoR [35] 3D - X - - -

CHOBIE II [36] 2D Vert. X - Trans. - -

Crystalline [37] 2D X - Trans. - -

Meta. Square [38] 2D X - Trans. - -

Telecubes [39] 3D X - Trans. - -

3-D Unit [40] 3D X X Rot. - -

ATRON [16] 3D X X Rot. - -

Fracta[41] 2D X - Rot. - -

M-Blocks [42] 3D X - Rot. - -

M-TRAN I/II [43] 3D X X Rot. - -

M-TRAN III [17] 3D X X Rot. - -

Roombots [19] 3D X X Rot. - -

Soldercube [44] 3D X X Rot. - -

SuperBot [45] 3D X X Rot. - -

UBot [18] 3D X X Rot. - -
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System Dim. Self-
Reconfig.

Chain Lattice
Class

Self-
Mobile

Hetero-
genous

Catoms [12] 2D X - Morph. - -

Meta. Hex [38] 2D X - Morph. - -

Odin [46] 3D - - Morph. - -

Slimebot [47] 2D X - Morph. - -

Pebbles [48] 2D X - Fixed - -

Stochastic [49] 2D X - Fixed - -

CEBOT [50] 2D X - - X -

Distributed Flight Array [51] 2D X - Fixed X -

iMobot [52] 3D - X - X -

M3 Express [53] 3D X X Rot. X -

Sambot [20] 2D X X - X -

SMORES [21] 3D X X Rot. X -

S-bot [54] 2D X - - X -

T.E.M.P [55] 2D X - Fixed X -

Automatic Assembly [56] 3D X X Fixed - X

Cubelets / roBlocks [57] 3D - - Fixed X X

EDHMoR [58] 3D - X - - X

Fable II [59] 3D - X - - X

I-Cube [60] 3D X - Rot. - X

Molecube Ex. [24] 3D - X Rot. - X

Molecule [61] 3D X - Rot. - X

SMART [62] 3D X X - - X

Swarmanoids [63] 2D X - - X X

Symbrion & Replicator [64] 3D X X Rot. X X

Thor [25] 3D - - Fixed - X

HyMod 3D X X Rot. X X
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2.2. Existing Reconfigurable Robotic Systems

(a) (b) (c)

(d) (e) (f)

Figure 2.1.: A selection of chain modular robots; (a) CONRO © 2002 IEEE, (b) PolyBot
v3 © 2007 IEEE, (c) Molecube © 2007 IEEE, (d) RobMAT © 2008 IEEE,
(e) ModRED 1, and (f) YaMoR © 2005 IEEE. Reprinted from [28, 7, 31,
34, 30, 70], respectively.

A system by Zykov et al., called the Molecube [31] (Figure 2.1(c)) tackles the challenges

of reconfigurable modular robotics in a unique way. Rather than having its rotational

degree of freedom along one of the X, Y or Z axes, it is instead placed along the diagonal

of all three, going from one corner of a cube to another. The module is then divided

into two halves with three surfaces each, which can continuously rotate relative to each

other. By applying fixed rotation amounts of ±120° to the axis, the positions of the

surfaces of one half are exchanged, allowing an X axis oriented surface to become Y

or Z axis oriented. This offers novel motion at the cost of increased reconfiguration

complexity, due to the rotation not being a direct path between two axes. Although

designed as a cube and having six surfaces, this prototype only features two connection

mechanisms, restricting it to purely chain-like constructs. The connection mechanisms

used in this design are active and incorporate both permanent and electro-magnets to

hold modules together, with the former creating a strong connection and the latter

applying a force to break the connection when required. A revised system of the same

name introduces connectors on all surfaces, but removes the ability to self-reconfigure

to focus on locomotion strategies [69].

1Reprinted from Robotics and Autonomous Systems, 62 / 7, Baca, José and Hossain, SGM and Das-
gupta, Prithviraj and Nelson, Carl A and Dutta, Ayan, ModRED: Hardware design and reconfigura-
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Recent chain system developments have focused on the use of higher numbers of degrees

of freedom within modules to increase their usefulness when dealing with lower module

counts. RobMAT [34, 71] developed by Escalera et al. features a joint module with a

total of three degrees of freedom in an elbow-like arrangement, giving one across-axis

rotation and two along-axis rotations that emulate a spherical joint (Figure 2.1(d)). This

allows for the same motion of the PolyBot, but with the addition of the two connectors

being able to rotate freely around their normal axes. The ModRED [30, 72] by Chu et al.

too features three rotational degrees of freedom, but in a different arrangement (Figure

2.1(e)). Designed as a double cube, the two end rotations allow the connectors to move

±90° between cube faces, with the third rotation applying an angular offset between

the two cubes. Additionally the module features a translational degree of freedom at

the cube intersection, giving it the extension ability of the Polypod. This use of four

degrees of freedom allows for many different motions with very few modules, but at the

increased cost and complexity of each module.

Other chain systems worth mentioning are the CKbot [27], GZ-I [29] and YaMoR [35, 70].

These systems are manually reconfigurable, and designed to be relatively low cost, using

hobby grade components in some places. YaMoR can be seen in Figure 2.1(f))

2.2.2. Translational Lattice

Unlike chain and other lattice classes, relatively few translational lattice systems have

been developed thus far. The oldest translational lattice system is the Metamorphic

Square by Pamecha et al.. Featured as part of a paper discussing metamorphic robots

[38], the square design consists of a 2D module that is capable of sliding around neigh-

boring modules in a lattice. This is achieved using a series of rails on the outer perimeter

of each module that other modules are able to lock in to and drive along. To allow for

modules to transition around the corners of other modules, the rail mechanism can be

translated half way into the adjacent lattice position, effectively emulating a module

being in that position. This has the result that a module is able to transition itself in

to all eight of their neighbor’s adjacent lattice positions.

Following a similar concept to that of the Metamorphic Square is the CHOBIE II system

[36] (Figure 2.2(a)). Like the Square, all modules feature rails that form a surface other

tion planning for a high dexterity modular self-reconfigurable robot for extra-terrestrial exploration,
1002–1015, Copyright 2013, with permission from Elsevier.
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(a) (b) (c)

Figure 2.2.: A selection of translational lattice modular robots; (a) Chobie 2, (b) Crys-
talline © 2000 IEEE, and (c) Telecubes © 2002 IEEE. Reprinted from
[36, 73, 39], respectively.

modules can use to slide along. This requires that there be at least two other modules

aligned in the direction of travel to enable movement between two lattice positions. This

constraint prevents modules from positioning themselves on corners, as with the Square,

meaning a complete line of modules is not possible without removing the ability for

the system to self-reconfigure. Interestingly, CHOBIE II operates in a vertical plane,

rather than horizontal, allowing the system to be used to demonstrate the creation of

overhanging structures to bridge gaps, for example.

An alternative approach to modules sliding within a square grid is to perform expansion

and contraction of faces. The first system to feature this is the Crystalline (Figure

2.2(b)), by Rus & Vona [37, 73]. Consisting of 2D modules with four connection surfaces

arranged in a square, the system is able to self-reconfigure by compressing two modules

in to a single lattice position. This has the effect of making an adjacent lattice position

vacant, allowing a neighboring module to extend in to that position. It was shown that

this method of self-reconfiguration could be used as a viable method for transforming

large lattice structures. Rus & Vona’s work also discussed its applicability to three-

dimensional lattices; however, it was not until the development of Telecubes (Figure

2.2(c)) by Suh et al. [39, 74] that a platform existed that allowed this concept to be

explored. Unfortunately, no real-life demonstrations of 3D self-reconfiguration using

Telecubes have been presented.

2Springer Distributed Autonomous Robotic Systems, Cellular robots forming a mechanical structure,
6, 2007, 139–148, Koseki, Michihiko and Minami, Kengo and Inou, Norio, © 2007 “With permission
of Springer”
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2.2.3. Rotational Lattice

The first rotational lattice system to cover is the Fracta [41], a 2D hexagonal modular

robot. Each hexagonal module features connection mechanisms in its corners that other

modules connect to and can use and anchor points to roll from one module face to

another. This is achieved by using permanent and electro-magnet pairs (one half on

either module), oriented vertically. Depending on the field applied to the electro-magnet,

the permanent magnets are either attracted to or repelled from them. By coordinating

the attraction and repulsion of the magnet pairs, it is possible for a Fracta module to roll

around the perimeter of a set of connected modules. Unfortunately, the use of electro-

magnets in this manner means the exact angle of rotation cannot be controlled, and

therefore the Fracta system cannot reliably form kinematic chains of modules, meaning

it is not a hybrid system.

Shortly after the creation of Fracta came 3-D Unit [40, 75], a cube-like module with

arms protruding from each of its six faces (Figure 2.3(a)). Each arm features an active

connection mechanism and rotational degree of freedom along its axis, allowing modules

to assemble into cubic lattices. A novel feature of 3-D Unit for the time was that when

the connectors are released, clearance is created between a module and its neighbors,

allowing a single unit to rotate in place within a cubic lattice position without needing

neighboring modules to be moved from adjacent lattice positions. Additionally, due to

motors being used to drive the rotational degrees of freedom of each module, although not

demonstrated, it is technically possible for modules to go off-lattice and form kinematic

chains, meaning 3-D Unit also falls under the chain-type category and can therefore be

considered a hybrid system.

Another system that provides rotation clearance between modules when connectors are

retracted is ATRON [16, 76, 77] (Figure 2.3(b)). Designed as two hemispheres with a

single continuous rotational degree of freedom joining them, each half houses two active

connectors and two passive connectors. The active connectors can extend hooks out

from their surface to mate with passive rails on a neighboring module in such a way as

to place the two module’s rotational axes at right-angles to each other. This unusual

formation allows large lattice structures to be produced and for off-lattice configurations

to be created. One showcased example was a car-like robot, taking advantage of the

continuous rotation ability of the two hemispheres.

One of the most well known modular systems in the field is the M-TRAN [43, 78, 79].

It is designed as a double-cube with two parallel rotational degrees of freedom, placed
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.3.: A selection of rotational lattice modular robots; (a) 3-D Unit © 1998 IEEE,
(b) ATRON 3, (c) M-TRAN III (used with permission from H. Kurokawa), (d)
SuperBot © 2006 IEEE, (e) Roombots © 2010 IEEE, (f) UBot © 2011
IEEE, and (g) 3D M-Blocks © 2015 IEEE. Reprinted from [40, 16, 80, 81,
82, 18, 42], respectively.

perpendicular to the module’s longest axis, and six connection surfaces. Initial versions

were shown to perform both locomotion and self-reconfiguration; however, the latter

was limited due to the slow actuation time of the connection mechanism, which used

shape memory alloy to separate permanent magnets. Later versions refined this concept,

with number III forming connections via the use of mechanical hooks, offering greater

actuation speed over its predecessors. M-TRAN III (Figure 2.3(c)) was subsequently

demonstrated performing quadruped walking motions, self-reconfiguring to a snake and

crawling, and transforming back [17]; a significant step for the field. Much of the later

work in the field has been influenced by this design.

One such influenced system is the SuperBot [81], developed by B. Salemi et al.. Using

the same double-cube structure as M-TRAN, it features an additional degree of freedom

along the module’s longest axis, capable of rotating the cubes relative to each other

(Figure 2.3(d)). This extra degree opens up a number of options for locomotion beyond

3Springer Autonomous Robots, Design of the ATRON lattice-based self-reconfigurable robot, 21, 2006,
165–183, Østergaard, Esben Hallundbæk and Kassow, Kristian and Beck, Richard and Lund, Henrik
Hautop, © 2006 “With permission of Springer”
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that of M-TRAN as it can be used as a primitive wheel, or to make the two other

rotational axes become perpendicular, allowing pan and tilt operations. The main focus

of the SuperBot platform was to explore locomotion, with crawling, walking and rolling

gaits all being demonstrated [45]. Self-reconfiguration was never performed due to the

system, at the time, only featuring manual connection mechanisms.

Roombots [19, 82], developed by Spröewitz et al. combines the concept of a module

spanning two lattice positions, like M-TRAN, with that of diagonal rotational axes, like

Molecubes, into a single module (Figure 2.3(e)). Two cubes with diagonal axes are

joined together by a continuous rotational degree of freedom. This arrangement of axes

allows Roombots to house ten connection mechanism; however, like with Molecubes, the

use of diagonal axes increase the self-reconfiguration complexity of the platform.

Adopting a traditional single cube design is the Ubot by Tang et al.. Similar in function

to the PolyBot, the Ubot features two module halves, each with two connectors, joined

together via two ±90° rotational degrees of freedom (Figure 2.3(f)). These rotations

are oriented perpendicular to each other, allowing a connector to be rotated ±90° in

line with an opposing connector as well as raised and lowered to become perpendicular.

Unfortunately, only certain rotations can be performed together, otherwise there is risk

of the module halves colliding with each other.

Soldercubes are small cubic modules developed by Neubert et al. to demonstrate the use

of a phase-change connection mechanism using solder. Each module has six connectors,

but only a single continuous rotation axis, oriented through one of the cube’s faces

(similar to 3-D Unit). As such, the self-reconfiguration ability of the module is limited,

instead relying on the system’s simplicity to enable many modules to be produced at

relatively low cost to provide sufficient degrees of freedom.

A final system to mention in this category is M-Blocks [83], and the recent 3D M-Blocks

[42], by Romanishin et al.. Consisting of a single cube with six passive magnetic connec-

tors, each module moves via the use of an inertial mass within the modules themselves

(Figure 2.3(g)). By spinning the mass at high-speed and applying a sudden braking

force, the momentum of the mass is transferred to the module’s structure. This momen-

tum transfer has the effect of overcoming the attractive force of the module’s magnetic

connectors and pivoting the module around one of its edges, where others magnets and

guide teeth aid the module in transitioning between lattice positions. Additionally, by

spinning the mass at its maximum speed and then braking, it becomes possible for M-

Blocks to jump sections of an assembly. Although, both the M-Blocks and their 3D
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variant are in fact 3D cubic lattice modules, the non-3D version is only capable of spin-

ning its mass around a single axis. The 3D variant on the other hand, features a diagonal

rotational axis internal to it, allowing the axis of the spinning mass to be changed be-

tween X, Y and Z, allowing it to move in all three directions, hence being called 3D

M-Blocks.

2.2.4. Morphable Lattice

The first morphable system to consider is the Metamorphic Hex, the other platform

discussed by Pamecha et al. in their paper on metamorphic robots [38]. This module

is hexagonal in nature and capable of forming 2D lattice structures. The design of the

module consists of six links joined together in a loop, with actuators at every other

corner, allowing them to change their shape from a regular hexagon to fit through or

around obstacles. The connection between modules consists of a hook and claw setup,

capable of accepting moderate amounts of lateral motion. This enables modules to self-

reconfigure around their neighbors, by morphing their shape so that the connectors of

an adjacent lattice position are brought together, effectively enabling one module to roll

around the perimeter of others.

Following a similar concept of a deformable lattice as the Metamorphic, the Odin (Figure

2.4(a)) is a modular robot comprised of two module types, joints and telescopic links

[46, 84]. These modules are manually reconfigurable and can be assembled into a 3D

triangular lattice, with joints acting as the branching points for the system . Links have a

rotational offset at either end of ±23° and can extend from their default length of 60 mm

to 132 mm, allowing sides of the triangles to extend. By extending and contracting links

in sequence, locomotion of an Odin modular robot can be achieved.

An example of a 2D morphable system using electro-magnets is the Catoms platform

[85] (Figure 2.4(b)). Featuring modules just 44 mm across, each contains 24 electro-

magnets arranged as two rings of 12, one above the other, to allow fine grained control

over the movement of neighboring modules. Due to their cylindrical nature, Catoms

can be packed into a hexagonal lattice but can easily form irregular structures when

needed, allowing a configuration of modules to morph to fit through openings or around

obstacles. The future goal of this technology is to create programmable matter, in which

sufficiently small modules can reconfigure into physical structures and be manipulated

like clay to adapt new objects [12].
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(a) (b) (c)

Figure 2.4.: A selection of morphable lattice modular robots; (a) Odin © 2008 IEEE,
(b) Catoms © 2005 IEEE, and (c) Slimebot © 2007 IEEE. Reprinted from
[46, 12, 47], respectively.

A final 2D morphable system to mention is the Slimebot [47] (Figure 2.4(c)). Following a

similar premise to the Catoms, each module is circular in design, with genderless hook-

and-loop fasteners, as found on many clothing items, placed around their perimeter.

Unlike electro-magnets this method of connection is passive, so to allow for Slimebots to

self-reconfigure their outer surface is divided into six sections capable of extending and

retracting independently. This allows one module to effectively push another around its

perimeter, as well enable a collection of Slimebots to morph the hexagonal lattice the

modules would typically form.

2.2.5. Fixed Lattice

For modules that lack the ability to self-reconfigure by moving joints to transfer modules

between lattice positions, stochastic processes can be adopted instead. A stochastic

modular system consists of modules with the ability to connect to and disconnect from

other modules, but lack any joints or motion capabilities of their own, instead relying

on environmental effects to produce module encounters. This concept is demonstrated

by the square and triangular platforms of White et al. [49] (Figure 2.5(a)). To allow

for the two module types to self-reconfigure stochastically, an air table is used. This

table reduces the surface friction experienced by the modules, allowing them to float

around randomly. External fans can be used to keep modules in motion [86]. When two

modules experience an encounter, they can choose to attract each other using their active

magnetic connectors. As such, a set of modules can form a given structure by setting

their connector polarities to encourage other modules to attach at the correct locations.

Additionally, reconfiguration can occur at any time, by breaking existing connections
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(a) (b)

Figure 2.5.: A selection of fixed lattice modular robots; (a) Stochastic Square & Trian-
gle © 2004 IEEE, and (b) Pebbles © 2010 IEEE. Reprinted from [49, 48],
respectively.

and encouraging connections at new locations.

Pebbles [48] are centimeter sized 2D modular robots, developed by Gilpin et al.. Each

module is capable of attaching to other modules via the use of four electro-permanent

magnets, one per face (Figure 2.5(b)). The use of electro-permanent magnets allows the

attractive force of the connection mechanism to be enabled and disabled on demand, and

only consume energy when their state is switched. Structures are created with Pebbles

using a process of self-disassembly. Firstly, modules are brought together by an external

force such as gravity to produce a grid, with all units’ connectors enabled. Once a grid is

formed, the modules selectively disable their connectors in order to disconnect modules

that do not correspond to the shape required. This shape can then be manually removed

from the grid. Details of algorithms for subtractive shape formation with Pebbles can

be found in [87].

Two other fixed lattice systems of note are the Distributed Flight Array [51] and the

Tactically Expandable Maritime Platform [55]. As both of these system feature drive

mechanism that allow for the independent motion of modules, they are covered in more

detail in the Self-Mobile modular robots section.

2.2.6. Self-Mobile

One of the first systems created to explore the field of self-reconfigurable modular robotics

was CEBOT [50]. Developed by Fukuda et al., their initial work shows the concept of

how robotic modules could be used to allow for the examination of a container, with each

module being inserted through an inlet and assembling into a larger structure once inside.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6.: A selection of self-mobile modular robots; (a) S-bot © 2006 IEEE, (b) Sam-
bot © 2010 IEEE, (c) Distributed Flight Array © 2014 SAGE Publications,
(d) T.E.M.P © 2014 IEEE, (e) iMobot © 2010 IEEE, and (f) SMORES
© 2010 IEEE. Reprinted from [88, 20, 51, 55, 52, 21], respectively.

On the physical side, prototype modules were produced to test the basic feasibility of the

concept, by having a self-mobile robot with a differential drive mechanism move up to

and dock with a stationary module, thereby forming a larger configuration. Although the

experiments conducted may appear simplistic by today’s standards, they were the first

verification that self-reconfigurable modular robotics was a worthwhile field to explore.

A more recent showcase of the self-mobile concept is the s-bot platform by Dorigo et al.

[54]. Each s-bot (Figure 2.6(a)) features a differential wheel setup that combines wheels

and tracks to enable locomotion over uneven terrain whilst maintaining the ability to

efficiently rotate on the spot. Intended as a robot for swarm experiments, the s-bot

was used as part of the Swarm-Bot project [88], in which groups of s-bots would come

together and self-assemble to form large connected structures capable of overcoming

obstacles. This was achieved by each robot featuring an illuminated ring that all other

robots could attach to via a gripper mechanism, with the illumination being used by

each robot’s on board vision system to autonomously navigate towards other s-bots.

Following a similar premise to the s-bot is the Sambot by Wei et al. [20, 89], a mobile

robot that too can connect to other modules via a gripper mechanism. The Sambot

(Figure 2.6(b)) features four passive connectors around its side and an active connector
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on its top surface. This top surface is able to rotate from the vertical by ±150°, allowing

it to move down to the plane of the other connection surfaces, to enable it to join with

other modules. The use of a single active connector limits the Sambot to only chain

and branching structures. Experiments have shown that a line of modules can perform

a snake-like motion to move, and concepts have showcased rolling track and quadruped

structures as possible forms.

One of the most unique self-mobile modular systems is the Distributed Flight Array

[90]. Developed by Oung et al., this system is comprised of hexagonal modules that

fit together into a lattice (Figure 2.6(c)). Each module contains three omni-directional

wheels allowing it to independently move in any direction on a flat surface. Magnets on

each face are used to attach the modules together, and in the center is housed either a

clockwise or counter-clockwise rotating propeller driven by an electric motor. By con-

necting a minimum of four modules together with equal quantities of propeller rotations,

the system is able to take flight. Equal numbers of propellers are required to cancel out

the aerodynamic torque each set of spinning blades causes, and at least four modules

are needed to offer stability in all planes. Experiments have been conducted showing

modules coming together and driving on the ground as single units, with select cases of

up to 12 modules being shown to take-off and hover [51].

T.E.M.P, or the Tactically Expandable Maritime Platform [55], developed by O’Hara

et al. is a modular robotic system composed of 2D rectangular modules that can float

and manoeuvre on water (Figure 2.6(d)). Modules connect together via a flexible hook

and rope based mechanism, that allows for platforms to be constructed that can be rigid

when required as well as flex to adapt to strong waves. Demonstrations of T.E.M.P

modules have been conducted showing floating bridges being formed to allow for small

robotic vehicles to cross, as well as landing platforms for quadcopters.

There are three further mobile systems to mention; the iMobot, SMORES, and M3, all

featuring rotating connection surfaces that act as wheels to offer efficient locomotion.

The iMobot [52] by Ryland et al. consists of a double-cube structure with six passive

connection surfaces similar to the M-TRAN and SuperBot (Figure 2.6(e)). Its difference

lies in the addition of two continuous rotation end-plates that are used to propel the

module forward, in addition to rotating adjacent modules. This gives the module the

flexibility to perform fast locomotion over even ground, and slower inchworm locomotion

over rough ground.
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SMORES (Figure 2.6(f)), developed by Davey et al. consists of modules that fit within

single cubes much like the PolyBot [21]. It features two primary degrees of freedom

forming a tilt and roll mechanism, and two secondary actuations that rotate side plates to

provide wheeled locomotion. Connections between modules are achieved with magnets,

with a unique rod-based mechanism being used to perform disconnection. A recent

revision to SMORES sees this connection mechanism replaced with electro-permanent

magnets [91].

M3 [92] and the subsequent M3Express [53], developed by Kutzer et al. and Wolfe et

al, respectively, consist of L-shaped modules with three driving wheels arranged such

that when two modules come together they form the left and right sides of a hinge

joint, capable of turning ±120°. The main difference between the M3 and its Express

variant is the cost of manufacture, with the latter using cheaper components and simpler

construction techniques.

2.2.7. Heterogeneous

Heterogeneous systems with two module types are referred to as bipartite, and tend to

share a common theme of one module being a construction block and another being

a manipulator to move and assemble the blocks. Both the I-Cube [60, 93] and Auto-

matic Assembly System [56] demonstrate this. Another bipartite system of note is the

Molecule [61, 94]. Unlike the previous two, the relationship between the modules is more

traditional with both having the same shape but only one featuring active connectors.

Visually it resembles a molecule of two atoms (cubes) along a diagonal, with an actu-

ated link between them (Figure 2.7(a)). The actuated link consists of two continuous

rotational degrees of freedom, allowing each of the Molecule’s cubes to be rotated within

their respective lattice positions. Simulations and experiments have shown this design

to be capable of locomotion and reconfiguration.

Expanding upon previous work with the original Molecube [31], Zykov et al. developed

a revised version of the module, with a smaller form-factor, this time featuring six

connectors rather than two [69]. Unlike their previous system that focused on self-

healing and replication, the new Molecubes were intended as a platform for exploring

locomotion capabilities of modules. Because of this the new version forgoes the ability to

self-reconfigure, by only using passive connectors, instead offering a number of specialised

module types for mobility and manipulation [24] (Figure 2.7(b)).
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(a) (b) (c)

(d) (e)

Figure 2.7.: A selection of heterogeneous modular robots; (a) Molecule © 2006 IEEE,
(b) Molecubes Extended (used with permission from V. Zykov & H. Lipson),
(c) Fable II © 2015 IEEE, (d) EDHMoR 4, and (c) Symbrion & Replicator
© 2013 IEEE. Reprinted from [61, 24, 59, 58, 95], respectively.

Moving towards larger numbers of module types are the Thor [25, 84] and SMART [62]

systems. Thor, developed by Lyder et al. is comprised of six varied module types,

ranging from rotational actuators and structural components to grippers and wheels.

Featuring only passive connectors, Thor is intended for manual assembly into rovers and

other forms. One unique feature of Thor’s design is the ability for multiple rotation

modules to be linked together to provide torque to the same drive shaft, passing it

through other modules to drive wheels, for instance. Following on, the SMART system

is an extension of the RobMAT system [71] developed by Escalera et al.. Featuring the

same core module types, the new team have introduced active connectors to the design

as well as a range of tool modules for various tasks that can be quickly swapped for

others when required.

Cubelets, or roBlocks as they were formerly called, is a commercial education platform

that uses small cubic modules that magnetically attach together to form robotic struc-

4Reprinted from Robotics and Autonomous Systems, 63 / 2, Fáıña, Andrés and Bellas, Francisco and
Orjales, Felix and Souto, Daniel and Duro, Richard J, An evolution friendly modular architecture to
produce feasible robots, 195–205, Copyright 2015, with permission from Elsevier.
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tures with behaviors [57, 96]. Each cube has a specific purpose, be it a sensor input,

output (e.g. motor or light), battery, or logic unit. The logic units take data from

an input cube or another logic unit and apply an operation to it based on their type

before passing it to other logic units or output cubes. By combining multiple inputs,

outputs and logic units, relatively complex behaviors can be created, allowing the assem-

bled blocks to react to light or obstacles, for example. The main advantage of Cubelets

for educational purposes is that users do not need to program the blocks, and instead

construct them to produce the behaviour required.

Fable II [59, 97], by Pacheco et al. is a modular robotics platform intended for creative

learning. The platform consists of both active and passive modules that connect together

via passive connection mechanisms to form chain and branching structures. Each active

module contain electronics, power, and wireless communication, as well as up to two

rotational degrees of freedom. By combining the various active and passive modules

together, walking robots can be formed (Figure 2.7(c)).

A further heterogeneous system is the EDHMoR [58, 98], developed by Fáıña et al..

The EDHMoR system consists of four primary actuating module types, as well as a

number of tools and passive modules, such as an electromagnet (Figure 2.7(d)). Each

actuating module offers a different motion capability, be it hinge rotation, continuous

rotation, extension, or translation. These types allow the creation of structures with

fewer modules than would perhaps be required with a homogeneous system.

A system that takes full advantage of the heterogeneous concept is that of the Symbrion

& Replicator project [64]. It features three modules types, a Scout, Backbone and Wheel

(Figure 2.7(e)). The Scout [22] module is a self-mobile robot featuring tracks around

its perimeter for locomotion and sensors to perceive its environment, allowing groups to

operate as a swarm robotic system. It is capable of joining with other modules, via four

active connectors, one of which can be angled up and down. The Backbone module,

called the CoSMO [23], is comparable in size to the Scout, with four active connectors

as well as a stronger rotational joint in its center. Additionally, the module has a unique

screw drive mechanism, allowing it to translate in two dimensions on a flat surface,

as well as perform limited turning [99]. The Wheel module, called Active Wheel [95],

features omni-directional wheels allowing it to move around and turn in any direction on

a flat surface, giving it an advantage over the Backbone. In addition, its body can raise

and lower, allowing its two active connectors to match the height of those on a module

the Wheel is attempting to join with. The combination of these three module types
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shows the advantages of the heterogeneous approach to modular robots, as by working

together they are able to self-assemble into a variety of configurations, with Backbone

modules acting as the main structure, Wheel modules providing efficient locomotion,

and Scout modules providing sensor coverage.

A final heterogeneous system to mention is Swarmanoids [63]. Expanding upon the work

of the Swarmbot project, Swarmanoids focused on exploring the collaboration of three

different robots, foot-bot, hand-bot, and eye-bot. A foot-bot is a revised version of the

s-bot, with the same ability to join with other foot-bots. A hand-bot is an immobile

robot with large grippers and a harpoon mechanism, allowing it to anchor itself to a

ceiling in order to ascend. An eye-bot is a quadcopter capable of attaching to ceilings

and relaying environmental information to the other robots. Demonstrations of these

robots showed how they can co-operate to navigate a hallway in order to collect a book

from a shelving unit.

2.3. Module Connection Mechanisms

The success of reconfigurable modular systems relies heavily upon the connection mech-

anism used to join their separate modules together. Such mechanisms need to be capable

of withstanding the forces expected by the intended system, provide accurate alignment,

and in some cases enable inter-module communication. This has led to a variety of

solutions to the connection problem:

� Mechanical - A traditional approach to the connection of modules is to use a

method of mechanical latching to lock them in place. A motor or other form of

actuating element, such as a shape memory alloy (SMA), is used to extend hooks

or clamp on to posts. Systems such as CONRO [28] and Crystalline [37] em-

ploy an approach of passive posts mating with active holes (post-hole), and active

latches mating with passive grooves (hook-groove), respectively. A limitation of

the CONRO design is that releasing the latch does not automatically disengage

the two connectors, instead requiring a separate operation to be performed.

The M-TRAN III platform [17] uses extendible hooks to overcome the limitation of

the post-hole approach. When retracted M-TRAN’s connection surfaces lie com-

pletely flat with its neighbor’s, allowing for translation parallel along the surface,

and thus removing the need for a separate operation to pull the connectors apart.
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This surface-to-surface connection, while allowing for translation, prevents mod-

ules from rotating on axes perpendicular to the surface, requiring clearance to be

gained first. This shortcoming is addressed by 3-D Unit [40] and ATRON [16],

which emulate a point-to-point connection with their neighboring modules, by ex-

tending hooks a significant distance out of their active surfaces. When retracted a

gap is produced sufficient for a collection of 3-D Unit or ATRON modules to rotate

in place within their lattice position. Examples of actuated mechanical connectors

can be seen in Figures 2.8(a, b, and c).

� Magneto-Mechanical - Mechanisms that employ both a mechanical actuator and

permanent magnets can be considered as magneto-mechanical connectors. Their

defining feature is that magnets are used to make the connection between neigh-

boring modules, and a mechanical element is used to separate them. A well known

example of this technique is on the original M-TRAN and its version II update [43].

It features north and south polarity connectors, arranged on the module such that

north always aligns with south within a lattice structure, allowing connections to

be automatically made when any two meet. To separate the magnets a mechanical

force is applied on the north connectors to make the magnets recede into the sur-

face. This is achieved by the use of SMA coils that, when heated, apply a strong

pulling force to overcome the strength of the magnets. Due to the properties of

the SMA material used, this process can take over one minute to perform.

Another method of separating two permanent magnet connectors, as employed on

the SMORES platform [21], is to twist one connector relative to another. When a

module wishes to disconnect from its neighbor, it extends a rod out of its connector

and in to the neighbor’s connector to temporarily lock its orientation. The module

then proceeds to rotate its connector in order to separate the magnets, before

finally retracting the rod. This approach allows for the same rotation method used

for joint motion to disconnect the connectors, with a small additional mechanism

needed for the actuation of the rods.

The M-Blocks system [42, 83] uses a unique solution to disconnecting two module

surfaces containing permanent magnets. Instead of having an actuated element on

the surface, it uses an inertial mass to exert an abrupt momentum transfer onto

the module. This transfer allows the module to overcome the magnetic attraction,

allowing it to roll from one face to another, as well as jump sections of an assembly.

Using an internal actuator to produce an external force allows M-Blocks to be
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completely enclosed, increasing their robustness.

� Electro-Magnetic - The use of connectors based upon electro-magnets allows

for faster connection and disconnection compared to mechanical based solutions,

and enables modules to be created without moving parts, potentially giving them

increased robustness. Electro-magnets can be used in one of two ways; either on

their own with power applied to create an attractive or repulsive force, as with

Catoms [100], or combined with permanent magnets to cancel out the normal

attractive force of a connection surface, as used on Molecubes [31].

A method for overcoming the power requirement of electro-magnets to maintain

state is to employ electro-permanent magnets. These are magnets with two dif-

ferent materials, one of which can be influenced by an external coil. When an

electro-magnetic field is applied, the direction of one material’s field is flipped to

either add to or subtract from the other’s field, creating a magnet that can be

switched on and off. This is put into practice on the Pebbles platform [48], and

the updated SMORES system [91].

� Electro-Static - In a similar manner to electro-magnetic connectors, electro-

statics can also be used for joining modules together without the need for moving

parts [101]. By applying a voltage to a set of electrodes that form the connector,

a charge is created that attracts an opposing connector towards it. This voltage

can then be removed once a charge has formed, allowing the connector to be un-

powered. In reality however, the charge will leak over time, so will need to be

replenished to maintain a given attraction level.

� Phase-Change - A recent development in module connection is the idea of phase-

change connectors [102], that being connectors which join together by melting a

material, such as a low melting point solder (Figure 2.8(d)), in order to create a

bond with a neighboring connector. The advantage of a connector such as this that

there are no moving parts, meaning their size can be relatively small. Additionally,

the use of a conductive material allows for electrical connections to be created

between two connectors as part of the melting process.

The above list of connection methods cover those used by self-reconfigurable systems.

For modular systems that are only intended to be reconfigured by an external operator,

three main connection methods exist:
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(a) (b) (c)

(d) (e) (f)

Figure 2.8.: A selection of modular robot connection mechanisms; (a) CoBoLD © 2011
IEEE, (b) Roombots connector 5, (c) SINGO © 2009 IEEE, (d) Solder
connector © 2014 IEEE, (e) ModLock © 2012 IEEE, and (f) Molecubes
connector (used with permission from V. Zykov & H. Lipson). Reprinted from
[104, 82, 105, 102, 103, 24], respectively.

� Mechanical - Identical to the mechanical and magneto-mechanical connection

mechanisms used for self-reconfigurable robots, except the actuating element is

replaced by a component that allows a user to grasp and actuate the mechanism

manually [62]. Additionally, connection mechanisms can be designed that are only

intended for manual actuation, such as ModLock [103] (Figure 2.8(e)).

� Magnetic - A connection in which permanent magnets are used to hold two

connectors together [21, 25]. The polarity and arrangement of magnets can be

arbitrary, depending on the intended application.

� Friction - Modules are joined together by the friction between the features of

two connectors. These features are typically posts that fit inside holes on an

opposing connector, with the walls creating the friction surface [69] (Figure 2.8(f)).

This method of connection can be combined with magnets to create a stronger

connection [59].

5Reprinted from Robotics and Autonomous Systems, 62 / 7, Spröwitz, A and Moeckel, R and
Vespignani, M and Bonardi, S and Ijspeert, AJ, Roombots: A hardware perspective on 3D self-
reconfiguration and locomotion with a homogeneous modular robot, 1016–1033, Copyright 2013,
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Table 2.2.: A comparison of connectors supporting self-reconfiguration in modular
robots, with known actuation times. The HiGen connector produced by
this project is included for comparison.

System / Connector Category Gender Pathways Actuation Time (s)

ATRON [76] Mechanical Gendered 2 2.4

M-TRAN I/II [43] Mag.-Mech. Gendered 3 60 to 180

M-TRAN III [17] Mechanical Gendered 5 5

DRAGON [107] Mechanical Bi-gendered 12 0.2

Roombots [19] Mechanical Bi-gendered 0 2

SMORES [21] Mag.-Mech. Bi-gendered 0 0.8 to 2.3

Pebbles [48] E.-Magnetic Genderless 1 0.0003

RoGenSiD [108] Mechanical Genderless 2 12

SINGO [105] Mechanical Genderless 0 25

Solder [102] P.-Change Genderless 3 30

HiGen Mechanical Genderless 12 0.2

Regardless of the method of connection used, all connectors can be categorised as either

gendered, bi-gendered, or genderless. A comparison of various connectors and their

gender is shown in Table 2.2. For a review of latching mechanisms beyond the area of

modular robotics, please refer to [106].

2.3.1. Gendered

Connection mechanisms are gendered if they feature two distinct types of connectors that

mate together. One connector type contains an active element, such as a latch or electro-

magnet, whilst the other contains passive elements, like posts or permanent magnets.

These connector types are typically referred to as male and female, although either

one can contain the active element depending on the specific implementation. Manual

connectors with only passive elements can also be considered gendered, depending on

whether one type contains a different set of passive features to the other. An example

with permission from Elsevier.
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Figure 2.9.: An example connection sequence for a gendered hook-groove mechanical
connection mechanism. The red and blue shapes represent the two connec-
tors, with the yellow shapes being their hooks.

connection sequence between active and passive mechanical hook-groove connectors is

shown in Figure 2.9.

In the case of magnetic connectors, the polarities of the magnets in each connector type

determines their respective gender, with north being used to denote male and south

used to denote female, for example. A connection is therefore achieved by aligning the

north facing magnets of one connector with the south facing magnets of the opposing

connector. To make magnetic connectors in to an active connection mechanism, either

side would need to feature an actuator to displace the magnets in order to break the

connection [78, 21], or use electro-magnets to cancel out the polarity of the permanent

magnets [49].

A key aspect of active gendered connectors is that only the side containing the active

element is able to initiate a connection or disconnection from a neighboring module. As

such, if the module with the active connector fails, the one with the passive connector

has no means of detaching the failed module, potentially restricting a modular robot’s

ability to perform a task.

Examples of modules that feature gendered connectors include: ATRON [16], CEBOT

[50], CONRO [28], Crysalline [37], Fracta [41], Sambot [20], S-bot [54] and Molecule [61].

2.3.2. Bi-Gendered (Hermaphrodite)

Often referred to as genderless in much of the literature, bi-gendered or hermaphroditic

connectors extend upon the gendered approach by combining both gender elements in

to a single connector design, with the male elements of one side connecting to the fe-

male elements of the other side. This allows for a connection between modules to be

established using just a single set of male-female elements, opening up the possibility for

inactive modules to be docked with and manipulated.
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Figure 2.10.: An example connection sequence for a bi-gendered post-hole mechanical
connection mechanism. The red and blue shapes represent the two connec-
tors, with the yellow shapes being their latches. Only a single side needs to
actuate in order for a connection to be made; however, if both sides actuate
and one subsequently fails, it is no longer possible for the remaining side
to separate from the failed side.

When two active bi-gendered connectors activate, a connection is produced that is equiv-

alent to having two sets of gendered connectors joined, offering increased strength and

redundancy. Unfortunately, such bi-gendered connection mechanisms suffer from the

same limitation as gendered connectors, in that if one side fails when connected, it is not

possible for the two connectors to be separated. The inability for modules to disconnect

if one side fails is the key distinction between the bi-gendered approach and gender-

less mechanisms, as it may prevent self-reconfigurable modular robots from performing

self-healing, whereby they discard damaged modules for new ones to allow the system

to continue with its objectives. An example connection sequence between two active

post-hole bi-gendered connectors is shown in Figure 2.10.

In the case of manual connectors based on magnets or friction, as there are no active

elements, the disadvantage of not being able to disconnect becomes inapplicable. This

makes these designs genderless despite containing male elements that join with female

elements. As such, arrangements like north facing magnets joining with south facing

magnets on SMORES [21], and posts fitting inside holes on Molecubes Extended [69]

(or both on Thor [25]), can correctly be referred to as genderless.

Examples of active bi-gendered connection mechanisms include CoBoLD [104] and DRAGON

[107], as well as the connectors on the 3-D Unit [40], Roombots [19], and PolyBot [32]

platforms.

2.3.3. Genderless

Recent works have seen the creation of connection mechanisms that overcome the limi-

tation of active bi-gendered designs, by offering single-sided disconnect, that being the
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ability for either side to freely disconnect from the other without mediation. This is

achieved by the connectors containing active elements that join with the active elements

of an opposing connector, rather than passive elements. As such, when one side wishes

to disconnect from its neighbor, only that side’s active element needs to be actuated.

This makes single-sided disconnect an inherent property of all genderless connection

mechanisms. An example connection sequence between two active hook-hook genderless

connectors is shown in Figure 2.11.

Two main methods for mechanical latching have been developed so far, contracting

hooks and rotating hooks. The SINGO connector [105] for the Superbot platform [45],

and GHEFT [109] achieve genderless latching using a chuck-like arrangement of hooks

that translate in and out from a central point along the surface. This design allows

an opposing connector to contract its hooks around those of the other whilst the other

simultaneously expands its hooks to meet at a mid-point. If one side fails the other can

actuate its mechanism in the appropriate direction to separate. Unfortunately, the use

of a chuck requires mediation between connectors prior to connecting in order to assign

movement roles, meaning the operation of each connector is not strictly genderless. The

RoGenSiD connector [108] for the ModRED platform [30] creates a genderless connection

using a rotating plate with hooks arranged around it. This plate is able to turn in a

clockwise direction relative to its surface normal to mate with an opposing connector

performing the same relative operation, removing the need for prior role mediation.

To prevent unwanted disconnection as a result of rotational forces, a number of posts

are used to maintain alignment. These posts introduce the mentioned issues of gendered

mechanical designs, by requiring an operation external to the connector to fully separate

the two surfaces, which in this case relies on a translational actuator within the ModRED

[30] platform on which RoGenSiD features.

Genderless magnetic connections are achieved by mounting magnets perpendicular to

a connector’s surface, allowing both their north and south poles to be exposed. This

arrangement allows two connectors to attach in a genderless manner, and halves the

overall number of magnets needed by a bi-gendered design. By using electro or electro-

permanent magnets in this arrangement, the active element of the connection becomes

the magnetic field from each connector, meaning that both fields need to be active in

order for a connection to be formed, but only one needs to deactivate in order to discon-

nect, thus fulfilling the single-sided disconnect property. Additionally, the perpendicular

magnet allows the same field polarity to be applied to both connectors, making their con-

trol genderless as well. The use of perpendicularly mounted electro-permanent magnets
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Figure 2.11.: An example connection sequence for a genderless hook-hook mechanical
connection mechanism. The red and blue shapes represent the two con-
nectors, with the yellow shapes being their hooks. Of the three mechanism
types, genderless is the only one to allow for single-sided disconnect.

can be see on the Pebbles [48] and SMORES-EP [91] platforms.

The recently developed Solder connector [102] for the Soldercubes platform [44] creates

a genderless connection via the use of a phase-change material. Each connector has

several solder balls on its surface that are heated by a resistor array on the reverse of

the mechanism. The solder balls act as the active element of the connector, and join

with those of an opposing connector when brought together. Due to the solder being

shared between the two connectors once joined, only a single connector needs to apply

its heater in order for disconnection to occur, thus fulfilling the single-sided disconnect

property. The Solder connector does however require an external operation in order to

separate the two connectors, so that the solder can separate and re-form in to balls.

2.4. Module Control

Unlike traditional robotic systems, the control of modular robotic systems requires the

coordination of many independent but connected robotic units in order for a given task

to be performed. The methods in which modular robots can be controlled are dependent

on the processing capabilities of their individual units, with units ranging from having

no processing at all [93] to units having full-featured computers [23]. Control of modular

robots falls in to two categories, centralized and distributed.

Centralized control of modular robots involves each individual module acting upon in-

structions sent by a single control unit, be it external to the robot or a designated

module within the robot itself. The implementation of centralized control is dependent

on the processing capabilities of each individual module, with those lacking any pro-

cessing having their sensors and actuators controlled directly from an external unit via
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tethers [38, 94, 75], and those with processing either using a dedicated control module

[24, 29] or having an arbitrary module assigned as a control unit, that other modules

are communicated with by a shared bus. The advantage of centralized control is that

it allows for algorithms to be employed that require global knowledge of the state and

configuration of a modular robot, for example, inverse kinematics for having modules

manipulate objects. The disadvantage of centralized control is that it compromises the

robustness of a modular robot, as a failure of the control unit, either on a software or

hardware level, results in a failure of the entire modular robot.

Distributed control of modular robots involves each individual module being in control of

itself. The implementation of distributed control requires that each module contain some

degree of processing, as well as the ability to communicate locally with other modules.

Local communication allows the state of one module to affect that of its neighbors,

enabling collective behaviors to emerge from a configuration of modules regardless of

the specific order the modules are arranged in. The advantage of distributed control is

that it does not require each module to be aware of the complete state of a modular

robot, instead acting based upon local interactions. This enables robust operation, as

the failure of one module has little impact on the whole robot, unlike centralized control.

The disadvantage of distributed control is that producing some behaviors can be more

challenging as existing algorithms may assume global information of the robot, which

each module may not have.

Both centralized and distributed control have their place in modular robotics. As such, a

number of control strategies have been developed that use these two methods of control.

2.4.1. Centralized Control Strategies

Centralized control of modular robot locomotion can be performed via the use of gait

control tables [65].

A gait control table consists of a list of steps that represent a complete motion cycle

of a modular robot. Each step contains a movement entry for each module and a list

of trigger modules. When a gait starts, a central control unit instructs each module

to move based on their specific entry in the current step. The control unit then waits

for the modules listed as triggers to report their motion as being completed, at which

point the next step is moved to and new instructions are sent out. This process repeats
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until the end of the table is reached, at which point the process loops back around. The

advantage of gait control tables is that they offer a method for implementing locomotion

that consists of quantized steps; however, they are static meaning that such locomotion

cannot adapt to disturbances or changes in the environment. Simulated demonstrations

of gait control tables have been shown, where a set of Polypod modules were able to

produce an inchworm and rolling-track motion [65].

2.4.2. Distributed Control Strategies

Distributed control of modular robot locomotion can be performed in two main way,

either by using hormone-inspired control [110], or by using central pattern generators

[111].

With hormone-inspired control, each module in a modular robot has a table of actions

they can perform. These actions can be triggered by each module either receiving a

hormone from their neighbors or by some internal logic. Once a module completes an

action it can send a hormone to its neighboring modules. The result of this is that

behaviors emerge from a set of connected modules regardless of their specific order, with

it being possible for the behavior to scale as modules are added and removed. This

method of locomotion control does require that there be a module to initiate hormone

sequences, introducing an element of centralized control, but this can be determined base

on its position within a configuration. For example, with a snake-like configuration,

a module with no module in front of it could consider itself to be the snake’s head,

with all other modules being the middle or tail of the snake. Which ever way the

assignment of the hormone initiator is chosen, this control method remains distributed

as no single module is directly in control of all the others. Note that like with gait

control tables, hormone-inspired control is based upon each module having quantized

steps they perform.

Using central pattern generators (CPGs) for module locomotion removes the restriction

on quantized steps that hormone-inspired control has. Each module features their own

CPG that produces an oscillating output signal that is used to drive their joints. The

CPGs of neighboring modules are linked together such that the output of one affects the

amplitude, phase, and frequency of another. As such, walking gaits and other motions

can be formed using this method, as has been demonstrated by the Roombots platform

[82]. An advantage of this approach is that CPG parameters can also be controlled
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by sensors, allowing the gait of the robot to adapt to environmental changes, unlike

hormone-inspired control. It should be noted however that depending on the complexity

of each CPG, correct assignment of parameters to neighboring module outputs may be

non-trivial, requiring some form of learning algorithm such as a genetic algorithm to be

employed.
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The content of this chapter is derived from the author’s following published work [112]

© 2014 IEEE.

3.1. Introduction

The concept behind modular robotics is that rather than building a bespoke system for

a given task, a kinematic approximation is assembled out of a number of ready-made

entities, known as modules, instead. These modules have the advantage that they can

be easily replaced when damaged or inoperable, as well as rearranged when their task

or environment changes.

Modular systems can be identified as either manually reconfigurable or self-reconfigurable

[8], based on the method used for connection. The former of these requires an external

operation or user to separate and reattach modules, whereas the latter gives modules

the ability to perform this action themselves. Self-reconfigurability presents a challenge

for the field, as reliable connection mechanisms need to withstand the expected forces,

provide accurate alignment, and in many cases feature inter-module communication.

This chapter presents a novel 90 degree symmetric connection mechanism for self-

reconfigurable modular robots, called HiGen (see Figure 3.1). It is capable of actuating

in a short time, and features a genderless latching method that allows for independent

detachment from a neighbor, without mediation. This is important for the self-repair of

modular systems, as malfunctioning modules can be discarded to allow the remaining

modular assembly to continue with a given task. To benefit modular systems that form

lattice structures, HiGen is capable of extending and retracting its latching mechanism

as part of the actuation process, creating clearance between two neighboring modules,

easing self-reconfiguration. This is demonstrated in Figures 3.1(b) and 3.1(c). A further
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(a)

(b)

(c)

Figure 3.1.: The HiGen connector, shown (a) face-on, and to the side in its (b) retracted
and (c) extended states. © 2014 IEEE.

feature of the connector is the integration of multiple electrical pathways between con-

nected modules, allowing for both local communication between neighbors and global

communication to all modules within an assembly, as well as power transfer. These

pathways are automatically made and broken as part of the extension and retraction

operations. Many of these aspects have been demonstrated on systems in the past (e.g.

[107, 76, 105]); however, HiGen is the first connector to combine them all into a single

unit.

The remainder of this chapter presents the requirements that resulted in the HiGen

connector (Section 3.2), details the connector’s mechanical and electrical design (Section

3.3), and presents experiments conducted with two units (Section 3.4). Finally, Section

3.5 concludes the chapter.

3.2. Requirements

From exploring the literature surrounding connection mechanisms for self-reconfigurable

systems, it is identified that a mechanical or magneto-mechanical solution would be
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preferred for the new connector being developed. This is because mechanical solutions

can be easier to implement than other solutions, can offer decent connection strength,

and can be designed to maintain a connection without consuming power. They can also

be genderless so as to avoid limitations in the ways in which modules that feature them

can be connected together. A desirable quality for the new connector is full separation

from a neighbor so as to open up the possibility for free in place rotation of any module

that incorporates it. On the electrical side, it is important for modules to be able to

pass power and communication through the new connector as well as for some level of

neighbor identification to be performed. These high-level goals for the connector give

rise to the following systematic requirements:

3.2.1. Mechanical

The connector shall:

C.1.1 - Be primarily constructed using 3D printing technology. A Stratasys Mojo [113] is

available in-house, capable of printing parts in ABS plastic with soluble supports

C.1.2 - Feature a self-actuating mechanism that is able to form a mechanical connection

with a neighboring connector

C.1.3 - Be genderless in both its design and its operation

C.1.4 - Be four times symmetric to allow for its use by cubic lattice modules

C.1.5 - Be able to maintain a connection with a neighboring connector without power

C.1.6 - Fully separate itself from a neighboring connector when disconnecting, such that

an external movement is not required to:

a) Enable translation along and away from the connector’s surface

b) Enable rotation in an arc away from the connector’s surface

c) Fully disconnect any electrical pathways

C.1.7 - Feature a mechanism design that can be adapted to a passive version
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3.2.2. Electrical

The connector shall:

C.2.1 - Contain its own microcontroller for controlling the actuation process of the mech-

anism

C.2.2 - Feature a motor and driver for actuating the mechanism

C.2.3 - Be able to detect:

a) The actuation state of the mechanism

b) If it is joined to a neighboring connector

c) The relative orientation of a neighboring connector

C.2.4 - Allow for multiple electrical signals to be passed through it to a neighboring

connector

a) Both power and communication pathways shall be incorporated

C.2.5 - Allow for actuation of the mechanism to be triggered directly by a user and by

an external control signal

C.2.6 - Be externally powered

C.2.7 - Feature indicator LEDs to visually report operation state

C.2.8 - Be reprogrammable

3.2.3. Environmental

The connector shall:

C.3.1 - Operate at a standard humidity for an indoor laboratory environment

C.3.2 - Operate within a temperature range of 20 to 30 degrees Celsius
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3.2.4. Performance

The connector shall:

C.4.1 - Be no larger than 100 mm in any direction

C.4.2 - Actuate in a time that is no longer than one second

C.4.3 - Tolerate translational misalignment of at least ±2 mm in any direction

C.4.4 - Tolerate rotational misalignment of at least 5° in any direction

C.4.5 - Be able to support a payload of at least 2 kg

C.4.6 - Become operational within one second

3.2.5. Reliability

The connector shall:

C.5.1 - Be capable of actuating hundreds of times before component failure

C.5.2 - Be able to detect if the mechanism is failing to actuate and stop the operation

3.3. The HiGen Connector

The HiGen connector consists of five 3D printed ABS plastic components, a custom

connection board, a DC geared motor, two contact switches, and control circuitry. A

breakdown of the connector is shown in Figure 3.2. The design is cylindrical, measuring

71 mm in diameter, with a depth of 32 mm at its thickest point, and 16 mm at its

thinnest, with a weight of 67 g. The dimensions fall below the 100 mm specified by

requirement C.4.1. The motor is housed directly in the center of the design and features

a 298:1 gearbox, giving it a quoted speed and torque at 6 V of 79 rpm and 338 mNm,

respectively. Contact switches are used to detect the connector’s retracted and extended

states, satisfying requirement C.2.3a.
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Figure 3.2.: A breakdown of the HiGen connector, showing the (a) housing, (b) docking
hooks, (c) motor and switch mount, (d) drive shaft, (e) shroud, (f) con-
nection board, (g) DC geared motor, and (h) contact switches. © 2014
IEEE.

3.3.1. Mechanism Details

The design of HiGen features four hooks placed radially around a central axis, with the

motor rotating them between the two states. These hooks mate with an identical set

of hooks on an opposing connector by passing over each other, forming a hook-to-hook

relation. This arrangement enables single-sided disconnect in the HiGen design. The use

of rotational latching, as opposed to translational chuck latching as in the SINGO [105],

allows for the operation of two joining connectors to be identical, simplifying the control

involved in creating a connection. Both the design and operation of the connector’s

hooks were a result of requirement C.1.3.

A shroud component is used to avoid any rotational forces around the central axis caus-

ing unwanted disconnects. This element mates with the opposing connector via the

use of four protrusions, which are tapered to provide a degree of auto-alignment. The

arrangement of hooks and protrusions allow for connections at 90 degree intervals, satis-

fying requirement C.1.4. Once two connectors are joined they can maintain a connection

even when power is removed, as per requirement C.1.5. An enclosed area is created by

the shroud that prevents external manipulation of the hooks, and motor gearbox friction
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acts to limit any momentum transfer from indirectly separating them.

In addition to aiding alignment, the shroud also houses the connection circuit board to

allow for electrical signals to be passed between modules, as per requirement C.2.4. This

board features a number of spring-loaded pins (covered in more detail in Section 3.3.2),

each with a quoted force of 0.6 N at half compression, enough to cause strain on the

motor. To overcome this force 8 neodymium magnets are included within the protrusion

surfaces, enough to counteract the spring force but not enough to hold a connection,

unlike magneto-mechanical designs. A caveat of using magnets within the shroud is that

a force needs to be applied in order to electrically disconnect two joined connectors. To

apply the necessary disconnection force, as well as to facilitate the connector’s use on

modules within large configurations, the hooks and shroud extend out of and retract into

their housing as part of the actuation process. Translation of these elements is achieved

via the use of helical guides within the connector’s housing, causing the hooks to spiral in

and out of the mechanism. Animation steps of the process during connection are shown

in Figure 3.3. This approach not only allows electrical contacts to be made and broken

without modules being required to move, it also produces a clearance between neighbors

of 12 mm. These two aspects satisfy all parts of requirement C.1.6. Inspiration for this

functionality was taken from the ATRON [16] and 3-D Unit [40] systems, which also

connect with their neighbors by extending hooks some distance above their respective

surfaces. This concept, as applied to HiGen, is illustrated in Figure 3.4, where a central

module is free to rotate within a lattice structure.

3.3.2. Electrical Details

Electrical connections between two HiGen connectors are made by a custom circuit board

housed within the shroud, featuring 12 spring-loaded pins, 12 static pads, and 2 flat-flex

cable connectors for interfacing with external circuitry. The flat-flex cable connectors

have a maximum quoted current per contact of 500 mA, whereas the pins and pads

can handle up to 3.5 A each. In total the connection board offers six wired channels

between neighboring modules, all with separate incoming and outgoing pathways. The

roles of these are: Ground, Power, Connection Sense, Two-wire Global Communication

(e.g. I2C, CAN bus), and Local Communication (e.g. serial). Not all of these roles

require separate directional pathways, so instead the directions can be combined to add

redundancy or increase current capacity, as in the case of power transfer. Note that the
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(a)

(c)

(b)

(d)

Figure 3.3.: Snapshots of the connection sequence of two HiGen connectors, showing the
hooks (in purple) extending behind each other and locking in place. The
shroud is transparent to help show the motion of the hooks. © 2014 IEEE.

connection sense pathway was included to allow the connector to detect if it is joined to

a neighboring connector, satisfying requirement C.2.3b.

To account for the four times symmetric nature of the HiGen connector, a staggered

placement of contacts is used similar to that of M-TRAN III [17], but in a bi-gendered

formation. In this case, the outgoing pins are duplicated by 180 degrees, and the incom-

ing pads by 90 degrees, resulting in double the number of contacts necessary for a single

orientation interval (24 versus 12). In addition to this, the incoming pads for half of the

channels are 180 degrees offset from the rest to ensure that the spring-loaded contact

force of two joining boards remains roughly central regardless of connection orientation.

The specific placement and intended role of each contact is shown in Figure 3.5. Figure

3.6 shows how the pins and pads of two boards make contact at each orientation interval.

To perform orientation detection, as per requirement C.2.3c, the local communication

channel is separated out into two outgoing and two incoming pathways (A and B).

Depending on the orientation of the connection, a unique arrangement of these pins
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Rotation Point Connected Disconnected

Figure 3.4.: A grid of square modules featuring HiGen, showing how a central module
is able to rotate in place within a lattice structure, without neighbors being
required to move to provide clearance. © 2014 IEEE.

and pads is produced between one connector and its neighbor (e.g. A-A, A-B, B-A,

B-B), such that only a single pathway is formed. By identifying the transmitting and

receiving pair of contacts the orientation between two connectors can be determined.

Once identified the channel can return to being used for local communication. This is

in contrast to solutions such as that on the UBot modular platform [114], which has

dedicated pins that can be read to discover the orientation state.

3.4. Experiments

In order to validate the HiGen connection mechanism two complete units were manu-

factured. The units are controlled using two separate circuits consisting of an Arduino

Pro Mini 16 MHz microcontroller, a motor driver, and a number of buttons and light

emitting diodes (LEDs). Power is provided by a bench supply running at 6 V, with

electronics regulated down to 5 V on board each Arduino. The connectors were tested

for actuation and connection time, electrical connectivity, connection repeatability, and

load capacity. Figure 3.7 shows the setup used for conducting connection trials.
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Out In

Ground

Power

Sense

Clock

Data

Serial
A B A B

Figure 3.5.: The arrangement and roles of the pins (dots) and pads (circles) on the
contact circuit board. Note that the local communication channel, labelled
Serial, has all its pins and pads separately accessible. © 2014 IEEE.

(a) 0° (b) 90° (c) 180° (d) 270°

Figure 3.6.: An illustration of the pins (dots) and pads (circles) that make contact when
two connectors are joined, at each orientation interval. The bottom board
contacts (red) remain fixed while the top board contacts (blue) are flipped
and rotated in a clockwise direction from (a) to (d). The dashed lines
indicate the resultant mirror axes from these combined operations. © 2014
IEEE.

3.4.1. Actuation and Connection Time

To measure the transition time between HiGen’s retracted and extended states, a logic

analyser was connected to the motor control lines and the two contact switches of each

unit in turn. The time from the initial trigger event until the related contact switch gets

pressed and settles is used as the actuation time measure.

A series of 10 actuations were conducted with each connector in isolation. The results

of these trials are:
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Figure 3.7.: The apparatus used to perform connection trials (excluding power supply
and logic analyser). The left connector is free to move on the surface,
whereas the right is fixed but able to rotate around the connection axis.
© 2014 IEEE.

� Unit One - Average extending time 0.239 s ±0.005. Average retracting time 0.242 s

±0.003.

� Unit Two - Average extending time 0.196 s ±0.001. Average retracting time 0.189 s

±0.001.

The discrepancy between the two units’ times may be attributed to differences in the

surface friction of the mechanisms as a result of using 3D printing, affecting the final

motor speeds when subjected to the same 6 V supply.

The motor within HiGen offers high actuation speed at the cost of low connection torque.

To determine if this torque has any detrimental effect on the connection process the two

HiGen units were connected and disconnected over a series of 10 further trials, with both

units receiving a simultaneous trigger pulse. The results of these tests are:

� Unit One - Average connection time 0.252 s ±0.004. Average disconnection time

0.248 s ±0.006.

� Unit Two - Average connection time 0.198 s ±0.003. Average disconnection time

0.205 s ±0.001.
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These timings show that connecting to and disconnecting from a neighboring mechanism

only marginally effects the actuation time of each unit. The results demonstrate that

the HiGen design surpasses performance requirement C.4.2 by being significantly faster

than the existing selection of genderless mechanical connection mechanisms, and on par

with the fastest bi-gendered designs.

3.4.2. Electrical Connectivity

Experiments were conducted with the two HiGen units to verify the successful connection

of the electrical pathways at each 90 degree orientation interval. For this the connection

sense line of each unit was wired up such that connecting with a neighbor would pull the

line low. This way, either microcontroller is able to know if it is electrically connected

to another mechanism even if that mechanism is not receiving power. This is useful for

situations where a tool has no internal power, and is instead powered via the connection.

Orientation detection was tested by mating the two connectors at different orientation

intervals. Each Arduino microcontroller, upon detecting a connection via the sense line,

initiates a transmission along both its serial communication lines. The other microcon-

troller then determines its orientation by detecting which message is received on which

pathway. For instance, if message A is received by input B then the connectors are 90

degree offset from each other. The microcontrollers are then able to communicate via

the connected input and output pathways, until they detect a connection being broken.

Reconnection automatically initiates the orientation detection routine.

3.4.3. Connection Repeatability

The two HiGen units were brought together to test their ability to connect under differ-

ent alignment conditions. Initially 10 trials were conducted with both units actuating

simultaneously, to test the designed separation distance of 12 mm (see Figure 3.8). This

presents the well aligned case, and was successful for 100% of the trials. An additional

10 trials were conducted at a closer distance of 6 mm to verify the connector’s ability to

push its neighbor towards the designed separation distance, with all being successful.

To test the connector’s ability to handle other forms of misalignment, and whether

the amounts match or surpass the values specified by requirements C.4.3 and C.4.4,
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(a) (b)

Figure 3.8.: Two HiGen connectors being tested for connection repeatability at the de-
signed separation distance, (a) detached and (b) connected together. © 2014
IEEE.

Unit One was placed in its extended state, whilst Unit Two repeatedly connected to

it. The misaligned cases considered here are detailed in Figure 3.9. A connection was

deemed to be a success if the two units fully joined together and were able to exchange

handshake messages, as indicated by LEDs illuminating on both microcontroller boards.

200 misalignment trials were conducted in total. Table 3.1 shows the success of these

trials, and includes the earlier 20 trials. Note that resetting the experiment after each

misalignment trial involved the single-sided disconnect of Unit Two from Unit One.

3.4.4. Load Capacity

A final test was performed on the HiGen connector to determine its load carrying ca-

pacity. This was achieved by connecting the two units together, suspending them in a

vertical orientation and hanging a mass below. A vertical orientation in this context

means that the surface normals of the connectors are parallel to the axis of gravity.

A spring balance was used to measure the load. During this test the connectors were

disconnected from the bench power supply, due to limited cable length to the microcon-

trollers.

The combined assembly of two connectors and mounting hardware weighed 145 g. When

suspended, it was capable of supporting a load at the limit of the measuring instru-

ment, which was 2 kg. Although this is not a thorough test of the load capacity of the

mechanism, it gives an indication that 3D printed parts are already suitable for use on
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(a)

(b)

(c)

(d)

Figure 3.9.: Four ways two HiGen connectors may be misaligned: (a) parallel translation,
(b) perpendicular translation, (c) roll rotation, (d) yaw rotation. Each pair
of images shows the range of misalignment tested. Unit One is on the left,
and Unit Two is on the right of each image. © 2014 IEEE.
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Table 3.1.: Results of performing misalignment trials on HiGen

Test Parameter Successes

Parallel Translation 6.0 mm 10 of 10

Well Aligned 12.0 mm 10 of 10

Parallel Translation 13.5 mm 10 of 10

Parallel Translation 15.0 mm 6 of 10

Parallel Translation 16.5 mm 5 of 10

Parallel Translation 18.0 mm 0 of 10

Perp. Translation +5.0 mm 1 of 10

Perp. Translation +2.5 mm 4 of 10

Perp. Translation -2.5 mm 3 of 10

Perp. Translation -5.0 mm 0 of 10

Roll Rotation +12° 2 of 10

Roll Rotation +8° 9 of 10

Roll Rotation +4° 10 of 10

Roll Rotation -4° 10 of 10

Roll Rotation -8° 9 of 10

Roll Rotation -12° 3 of 10

Yaw Rotation +15° 3 of 10

Yaw Rotation +10° 10 of 10

Yaw Rotation +5° 10 of 10

Yaw Rotation -5° 10 of 10

Yaw Rotation -10° 9 of 10

Yaw Rotation -15° 2 of 10
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connectors, as they support the mass specified by performance requirement C.4.5. If

the mechanical parts were made of metal or another high-strength material, the load

carrying capacity of the HiGen mechanism could be further increased.

3.5. Summary

This chapter presented HiGen, a novel mechanical genderless connection mechanism

for self-reconfigurable modular robots. The mechanism is four times symmetric and

genderless in both its design and operation. This is achieved using a rotary hook-to-

hook relation between connectors that does not require power to be maintained. The use

of hooks in this manner allows HiGen to separate from a neighboring connector without

mediation, benefiting the self-repair capabilities of modular systems. It also removes the

need for gender roles to be assigned to each connector, as is a limitation of chuck-based

genderless designs. External manipulation of the hooks is avoided by use of a shroud,

which also aids in connector alignment.

In contrast to previous genderless mechanisms, HiGen features multiple outgoing and

incoming electrical pathways, enabling the concurrent use of several communication pro-

tocols as well as power sharing techniques. Additionally, a subset of these pathways have

special roles that allow for connectors to not only detect the presence of a joined con-

nector, but also its relative orientation, aiding in modular robot configuration discovery.

HiGen is the first genderless connector in which latching elements are able to retract into

the mechanism. Not only does this ability disconnect the electrical pathways between

connectors without requiring an external operation to separate them afterwards, it also

creates clearance between the connectors that can be exploited by robotic modules for

free in place rotation within lattice structures.

Two full HiGen prototypes were built, and over 200 trials conducted to validate their

capabilities. From this it was discovered that HiGen is the fastest connection mechanism

of its kind, minimising the time taken for modules to connect and disconnect when

performing complex self-reconfigurations. Additionally, despite it being constructed of

3D printed parts, the design is capable of holding a vertical load of at least 2 kg.
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4.1. Introduction

Modular robotics has seen numerous advances over the past decades, with the likes of

M-TRAN III [17] and ATRON [16] successfully demonstrating the self-reconfiguration

and collective motion of large chain and lattice structures. Each module within a mod-

ular robot is relatively simple, with typically only one or two degrees of freedom (DOF),

allowing many modules to be produced at relatively low cost. Unfortunately, this means

that such modules have limited or no mobility outside of a configuration. Efforts have

been made to address this, with swarm systems gaining the ability to self-assemble [88],

and modular systems gaining dedicated drive mechanisms to provide efficient single mod-

ule locomotion [20, 23]. These systems demonstrate the advantages of mobile modular

robots, but compromise module self-reconfigurability in favor of individual autonomy.

To our knowledge, only one modular system features efficient module mobility without

sacrificing on self-reconfigurability [21, 91]; however, it lacks important features from

the field such as inter-module communication and power sharing. This highlights the

need for further modular robots that retain the features and reconfigurability of past

successful systems, whilst also offering efficient single module locomotion.

This chapter presents HyMod (Figure 4.1), a self-reconfigurable modular robot that

is a hybrid between mobile, chain, and lattice reconfigurable robots [7]. Inspired by

systems such as PolyBot [67] and CKbot [27], HyMod features a central rotational DOF

capable of moving ±90 degrees, and is designed to form arbitrary cubic lattice structures.

Two further rotational DOFs are mounted perpendicular to the central rotational joint,

serving the dual purpose of emulating a spherical joint and enabling the module to

drive around using a differential wheel setup. The arrangement of rotational axes shares

similarities with the RobMAT [34] platform, and the use of reconfiguration joints as

wheels has been explored on the iMobot [52], M3 [92], and SMORES [21] platforms.
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(a)

(b)

(c)

(d) (e)

Figure 4.1.: HyMod: a new self-reconfigurable modular robot with three degrees of free-
dom (two of which form differential wheels), and four genderless connectors
with single-sided disconnect. The module is shown from an (a) isometric,
(b) front, and (c) side view, with its central rotational joint at zero degrees.
The central joint is also shown at (d) -90, and (e) +90 degrees.

This implementation removes the need for a separate drive mechanism for locomotion,

as is the case with the modules of the Symbrion / Replicator project [64].

Connections to neighboring modules are achieved using four high-speed genderless (Hi-

Gen) connectors (Chapter 3), one for each wheel and two along the central rotational

axis. The use of HiGen connectors gives the module several advantages over other con-

nection mechanisms, most notably the ability to independently disconnect from as well

as produce clearance between neighboring modules. The choice of connector gave rise

to the module’s spherical design, which allows all three degrees of freedom to actuate

simultaneously without colliding with neighboring modules.
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4.2. Requirements

The remainder of this chapter presents the requirements that resulted in HyMod (Sec-

tion 4.2), the design and implementation of the module (Section 4.3), and experiments

conducted with a single unit (Section 4.4). Finally, Section 4.5 concludes the chapter.

4.2. Requirements

By examining the range of existing self-reconfigurable modular robots, a number of

beneficial features for the new modular robot emerge. On the mechanical side, the

ability for the module to reside in both and chain and lattice structures, with the ability

to rotate its connectors between lattice faces, is beneficial for both self-reconfiguration

and collective locomotion. In addition, having connectors able to move freeing between

lattice faces can increase the self-reconfiguration capabilities of the module. To have the

module capable of self-assembling, a form of wheel-based locomotion would be necessary.

In terms of the electronics, wired communication between modules as well as wireless

to an external computer would be desirable, along with the ability for modules to share

power between each other so that less active modules can support the energy demands

of more active modules. These high-level goals for the module give rise to the following

systematic requirements:

4.2.1. Mechanical

The module shall:

M.1.1 - Be primarily constructed using 3D printing technology. A Stratasys Mojo [113]

is available in-house, capable of printing parts in ABS plastic with soluble sup-

ports

M.1.2 - Feature more than two self-actuating genderless connectors to allow for its use

in both chain and lattice configurations

M.1.3 - Conform to the dimensions of one or more positions of a regular 3D lattice

structure, be it cubic or hexagonal

M.1.4 - Feature at least one rotational degree of freedom that moves a connector from

one face of a lattice position to another
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a) The degrees of freedom shall be able to stop at any angle between these

positions so as to form kinematic chain structures

M.1.5 - Be able to rotate its connectors away from occupied neighboring lattice positions

without being impeded by structural geometry

M.1.6 - Feature wheel-based locomotion to allow for independent movement in a flat

environment

4.2.2. Electrical

The module shall:

M.2.1 - Contain its own microcontroller that interfaces with sensors, actuators, and

connectors of the module

M.2.2 - Feature a motor and driver for actuating each of the module’s degrees of freedom

M.2.3 - Be able to detect:

a) The current angle of its rotational degrees of freedom

b) Its orientation with respect to gravity

c) The distance to nearby obstacles in a flat environment

M.2.4 - Be able to communicate with neighboring modules through its connectors

a) Both neighbor-to-neighbor and network-based communication shall be in-

corporated

M.2.5 - Be able to communicate wirelessly with an external computer

a) The chosen method shall have the option to be turned on and off by the

microcontroller to save power when not required

M.2.6 - Be powered by a common bus shared between modules through their connectors

a) An on-board power supply shall draw from and contribute to the bus
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b) One or more rechargeable batteries shall act as the internal power source

for the power supply

c) The batteries shall be removable for quick change-over during experiments

d) The batteries shall be rechargeable from within the module

M.2.7 - Feature indicator LEDs to visually report operation state

M.2.8 - Be reprogrammable

4.2.3. Environmental

The module shall:

M.3.1 - Operate at a standard humidity for an indoor laboratory environment

M.3.2 - Operate within a temperature range of 20 to 30 degrees Celsius

4.2.4. Performance

The module shall:

M.4.1 - Be no greater than 1 kg in weight

M.4.2 - Have 3D printed parts that are no larger than the 127 x 127 x 127 mm build

volume of the in-house Stratasys Mojo [113]

M.4.3 - Be able to lift at least two modules in line with at least one of its rotational

degrees of freedom

M.4.4 - Be able to operate on battery for at least 30 minutes

M.4.5 - Be able to measure distances to nearby obstacles of at least 5 cm

M.4.6 - Become operational within three seconds

4.2.5. Reliability

The module shall:

M.5.1 - Be able to actuate its degrees of freedom hundreds of times without failing

M.5.2 - Be able to repeatedly move its degrees of freedom between given positions
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4. Hybrid Module

4.3. The HyMod Unit

An objective for HyMod was to create a module to address the division between mobile

and self-reconfigurable systems, by integrating an efficient locomotion method that could

also have a use on modules within chain or lattice structures (e.g. as a degree of freedom

in a kinematic manipulator). Although the modules of systems such as M-TRAN can

move independently, they are slow and have limited control over their heading when

moving. A more efficient method of locomotion is that of wheels, as these can provide a

constant velocity to a robot and allow for controlled turning.

To incorporate wheels into HyMod, as specified by requirement M.1.6, the concept of

a spherical joint was adopted (Figure 4.2, left). Typically modules designed to reside

in a cubic lattice have a central rotational DOF that goes from -90 to +90 degrees,

allowing for a free end to move between three faces of a cube, relative to a fixed end.

By adding a rotational DOF to the fixed end, the free end is able to move between five

faces. Additionally, by applying a rotational DOF to the free end, any item attached to

it can be oriented arbitrarily. If the central rotation axis of this spherical joint is set to

zero degrees (Figure 4.2, center), the remaining axes become in-line. By placing wheels

on these axes a differential wheel setup is created (Figure 4.2, right), granting HyMod

locomotion capabilities on par with various mobile swarm robotic systems available.

To allow for HyMod to form both chain and cubic lattice structures, four connectors are

used; one in each wheel, and two along the central rotational axis. This arrangement

gives rise to two options for how the three degrees of freedom of the module are connected;

either the two central axis connectors reside on the same structure, or each resides

in separate module halves, capable of rotating relative to each other. Although both

options satisfy requirement M.1.2, the latter was chosen for HyMod as allows for the

two central axis connectors to be rotated relative to each other, which could benefit

self-reconfiguration.

4.3.1. Geometry Analysis

From examining the 3-DOF spherical joint (Figure 4.2, left), it is apparent that an

element of symmetry exists, as swapping which end is fixed can result in the same

movements, provided appropriate control remapping occurs. By discovering what these
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Figure 4.2.: The transition from the side view of a 3-DOF spherical joint (left) to a top
view of a differential wheel setup (right), via an intermediate step where the
middle DOF is locked at 0 degrees.

symmetries are, the isomorphic configurations that can be created with a given number

of HyMod units can be determined, thereby reducing the search space complexity of any

self-reconfiguration algorithm that may be employed on the system.

Figure 4.3 shows the eight possible orientations of a HyMod unit. The orientations are

depicted on a 2D plane with the central rotational joint set to zero degrees. This can

either be thought of as a top-down view of the modules resting on their wheels, or a side

view with the modules anchored to a surface via their bottom connectors. The module

has a rotational symmetry of two, meaning that of the eight orientations shown, only

four are unique. The connector and joint mapping to go between one orientation and

its symmetric version are shown in Table 4.1. As an example, to map orientation A to

C, commands that would be sent to connectors 0, 1, 2 and 3, would instead need to be

send to connectors 2, 3, 0 and 1. Similarly, commands to joints X and Y would instead

be sent to joints Y and X, with Z remaining unchanged.

Using the knowledge of module symmetry and the four times symmetry of HiGen con-

nectors, the number of isomorphic configurations of two modules can be determined. By

applying the mapping and discarding configurations where a connector symmetry offset

(e.g. 90°) is equivalent to a wheel rotation, six isomorphic configurations are produced.

These can be seen in Figure 4.4. Of the six, the two configurations labelled α offer a

higher number of quantized joint angle combinations, 36 (3 x 4 x 3) versus the 9 (3 x

3) of the four other configurations. This is because those two configurations contain at

least one continuous rotational degree of freedom between the two modules, featuring

four quantized angles versus the three of the central joint. Note that rotations of wheels

not connected to another module were discounted here, as they can be cancelled out by

connector symmetry. Similarly, when two wheels are connected together their rotational

degrees of freedom are in-line and can therefore be considered as a single joint. Renders
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Figure 4.3.: The eight ways a HyMod unit can be oriented, as viewed on a 2D plane.
Connectors are depicted using yellow rectangles, and are labelled 0 to 3.
Rotational DOFs are depicted using connected triangles and are labelled X
to Z. In this arrangement, connectors 1 and 3 can be rotated continuously,
whereas connectors 0 and 2 can only be rotated ±90 degrees.

Table 4.1.: The connector and joint index changes when mapping one HyMod orienta-
tion to another.

Map Connectors Joints

A B E F 0 1 2 3 X Y Z

l l l l l l l l l l l

C D G H 2 3 0 1 Y X Z

of the joint angle combinations for all six configurations are shown in Appendix A.

As the design of HyMod is based on a spherical joint, it only occupies a single cubic lattice

position. This means that in order to self-reconfigure, either four modules are needed so

that a loop can be formed, or two modules and some kind of support surface (either a

custom made structure or a grid of modules). By using a support surface, and provided

both modules are adjacent to it, all of the isomorphic configurations of two modules

(Figure 4.4) can transform in to each other without moving between lattice positions 1.

1Note, if a surface is made up of passive HiGen connectors, that being connectors without the ability to
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Figure 4.4.: All six of the isomorphic configurations that exist for two connected HyMod
units.

If only one module is adjacent however, and the configuration is one of the four labelled

β or γ, self-reconfiguration is not possible as there are no perpendicular rotational axes

available to move the other module to be adjacent to the surface. This suggests that

one or both of the α configurations should be considered the metamodules [115] of the

HyMod system. By using these metamodules, arbitrary connected 3D structures can be

formed. For example, a cube structure can be formed with n3/2 metamodules, opening

up the possibility for configurations of HyMod units to be constructed within the cube,

with the remaining modules acting as a form of scaffold to support the construction

process. Figure 4.5 shows a cube formed out of 32 HyMod unit metamodules.

actuate from their extended state, then it is not possible to self-reconfigure in to, out of, or between
the two configurations labelled γ even if they are adjacent to the surface, as clearance cannot be
created between the surface and the modules to allow for such a rotation.
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4. Hybrid Module

Figure 4.5.: A 4 x 4 x 4 cube formed out of 32 HyMod unit metamodules, using model
files from a 3D printable scale module.

4.3.1.1. Example Configurations

To explore the possibilities of the HyMod unit’s design before production, six scale

models were produced. They consist of four 3D printed components each, connected

together by screws, and four perpendicularly mounted permanent magnets per face.

This arrangement of magnets emulates the genderless property of the HiGen connector.

Examples of common modular robot configurations using the scale modules are shown

in Figure 4.6. Additionally, renders of the 3D model files from the scale modules can be

seen in Figure 4.5, all the figures within Section 4.3.2, and Tables A.1, A.2, and A.3 of

the Appendix.
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(a)

(c)

(b)

(d)

Figure 4.6.: Examples of four possible HyMod robot configurations, using scale models:
(a) snake, (b) 6-wheeled vehicle, (c) rolling track, (d) crawler.

4.3.2. Self-Reconfiguration Analysis

The ability for a HyMod unit to self-reconfigure within a cubic lattice position is de-

pendent on its orientation with respect to the lattice’s coordinate system, its current

connections to neighboring modules, and what other modules are available to connect

to. From these starting conditions, a sequence of transitions, that being quantized joint

actuations accompanied by connectivity changes, can be applied to a module to change

it from one orientation to another. Note that the vacancy of adjacent lattice positions

can limit the available transitions, as although a particular transition between orienta-

tions may be allowed by the module’s current and available connectivity, the motion

may result in its geometry colliding with an adjacent module. This limitation can be

overcome by designing the module geometry to avoid such collisions, enabling free in

place rotation.

By taking a HyMod unit with its central rotational joint at zero degrees and rotating it

through all axes of a cubic lattice, 24 orientations of the module are produced. These

shall be referred to as planar orientations. Additionally, by setting the central joint

to -90 and +90 degrees and applying the same process, 48 non-planar orientations are
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produced, giving 72 orientations in total. Due to the symmetric nature of the module,

only 36 of these orientations are unique, as control remapping allows for it to effectively

reside in two orientations at once. From each of these orientations it is possible to

transition to exactly six others. For example, each planar orientation has ±90 degree

non-planar orientations relative to either side of its central joint, as well as ±90 degree

rotations of the module’s body relative to both of its wheels.

All 72 orientations and the transitions between them can be thought of as the vertices and

edges of an undirected graph, respectively. To help depict this graph, Figure 4.7 shows

the orientations grouped in to six faces of a cube. Each face features the orientations

that can be reached by actuating the central joint of HyMod, with either the cyan

side or purple side of the module being fixed relative to the lattice coordinate system.

Transitioning between orientations via wheel rotations results in moving to orientations

in the same grid position on an adjacent face of the cube. These three transition types

are depicted as cyan, purple and yellow lines to match the piece of module geometry that

remains stationary with respect to the cubic lattice. Alongside each transition line is an

isometric cube icon that shows the maximum connectivity required for the associated

joint actuation to occur, with the minimum being just one connection. This means that

some transitions may first require module connectivity to be changed before they can

be performed, whereas others may already match all or a subset of the connectivity. To

better illustrate this concept, four example transition sequences are shown in Figure 4.8.

To aid in understanding the 3D nature of the orientation cube, a printable version can

be found in Appendix B.

Assuming a HyMod unit has neighboring modules that it can connect to in all six neigh-

boring lattice positions, transitioning the unit from one planar orientation to another

by ±90 degrees around the lattice’s X, Y, or Z axis requires a minimum of one joint

actuation and zero connectivity changes, and a maximum of three joint actuations and

four connectivity changes. This is shown in the first three examples from Figure 4.8. In

the case of non-planar orientations, the minimum is the same and the maximum is only

two joint actuations and three connectivity changes. This is because the axes of all three

joints are perpendicular for non-planar orientations, whereas for planar orientations the

two wheel axes are parallel. The maximum number of connectivity changes is dependent

on whether the starting and ending connectivities of a module match that required by

the starting and ending transitions, respectively. Additionally, some transitions may use

the same connectivity as a previous transition, as shown in Figure 4.8(d), reducing the

total count for self-reconfiguration operations that follow that path.
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AL0 CL0

(a)

AL0
AL+90

AU0

(b)

AL0 BF0
AU-90 BU-90
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AL0
AL-90 BF-90 A'R-90

A'R0
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Figure 4.8.: Example transition sequences from the orientation cube, showing the joint
actuations and connectivity changes required to rotate a HyMod unit 90
degrees around the (a) X axis, (b) Z axis, and (c) Y axis, as well as (d)
switch the unit to its symmetric version. All four examples use the starting
orientation AL0, a planar orientation on the left side of the cube’s A face.

To get from an orientation to its symmetric version without control remapping, as shown

in Figure 4.8(d), takes four transitions. By analysing the graph represented by the

orientation cube for the shortest paths between orientations, it is discovered that four is

the maximum number of transitions needed for a HyMod unit to self-reconfigure between

any two orientations in a cubic lattice. This is provided there are six neigbors available

to change connectivity with. The result of this analysis can be seen in Table 4.2, and the

adjacency matrix depictions of the graphs used to derive them are presented in Appendix

C. Observe that removing symmetric orientations from the graph does not increase the

maximum number of transitions required to reach all orientations, and instead reduces

the number of transitions in several cases. This highlights the benefit of the symmetric
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Table 4.2.: The number of planar and non-planar orientations that are reachable from
any planar or non-planar starting orientation with available connectivity on
all six cubic faces, for increasing numbers of transitions. The results for the
full 72 orientation graph are shown, as well as those for the graph with the
36 symmetric orientations removed. P and N denote planar and non-planar,
respectively. Revisited orientations are not counted.

Planar Non-Planar

Transitions Symmetries No Symmetries Symmetries No Symmetries

0 1 (1P) 1 (1P) 1 (1N) 1 (1N)

1 6 (2P + 4N) 6 (2P + 4N) 6 (2P + 4N) 6 (2P + 4N)

2 19 (3P + 16N) 15 (3P + 12N) 23 (8P + 15N) 15 (6P + 9N)

3 38 (10P + 28N) 13 (5P + 8N) 32 (14P + 18N) 13 (4P + 9N)

4 8 (8P) 1 (1P) 10 (10N) 1 (1N)

Total 72 (24P + 48N) 36 (12P + 24N) 72 (24P + 48N) 36 (12P + 24N)

nature of the HyMod design for self-reconfiguration. Note that the difference between

planar and non-planar starting orientations on both graphs can be attributed to four of

the transitions from the first non-planar orientation resulting in ±90 degree rotations of

the module. In contrast, only two transitions from the first planar orientation result in

±90 degree rotations of the module.

4.3.2.1. Example Sequences

To demonstrate the self-reconfiguration capabilities of the HyMod design before produc-

tion, two example sequences are presented. The first is a quadruped formation of nine

modules transforming in to a line formation, and the second is the 4 x 4 x 4 cube of

modules from Figure 4.5 relocating a single module from one of its corners to another.

The sequence of self-reconfiguration steps for the quadruped and the cube can be seen in

Figures 4.9 and 4.10, respectively. Additionally, the list of orientation changes each step

performed for the two sequences are shown in Tables 4.3 and 4.4. Note that with the

cube example, free in place rotation of HyMod units is required to achieve the sequence

of self-reconfiguration steps shown.
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Figure 4.9.: A sequence of self-reconfiguration steps that can be performed to transform
a quadruped formation of nine HyMod units in to a line formation. Modules
coloured in grey are not modified during the sequence, and as such are not
given identifiers.
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Table 4.3.: The orientation changes of each of the modules in the quadruped to line
self-reconfiguration example. Orientations in blue italics are those that are
caused by a module being moved by a neighbor, and | denotes sequence steps
where a module’s orientation has not changed from a previous step.

Module

Step 1 2 3 4 5 6

0 A’L0 A’R0 B’B0 B’B0 B’F0 B’F0

1 | | C’B0 C’B0 | |
2 | | | C’B-90 | |
3 | | C’B-90 C’R-90 | |
4 | | C’R-90 C’F0 | |
5 | | C’F0 | | |
6 | C’R0 | | | |
7 | C’R+90 | | | |
8 | | C’L+90 | | |
9 | | C’B+90 C’L+90 | |
10 | | C’B0 C’B+90 | |
11 | C’R0 C’R0 C’R+90 | |
12 | | | C’R0 | |
13 | A’R0 A’R0 A’R0 | |
14 | | | | CF0 CF0

15 | | | | | CF+90

16 | | | | CF+90 CL+90

17 | | | | CL+90 CB0

18 | | | | CB0 |
19 CL0 | | | | |
20 CL-90 | | | | |
21 | | | | | CR-90

22 | | | | CR-90 CF-90

23 | | | | CF-90 CF0

24 CL0 | | | CL-90 CL0

25 | | | | CL0 |
26 A’L0 | | | A’L0 A’L0
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Figure 4.10.: A sequence of self-reconfiguration steps that can be performed to relocate
a single module from one corner of a 4 x 4 x 4 cube to another. Modules
coloured in grey are not modified during the sequence, and as such are
not given identifiers. Note that transition lines shown in green indicate
transitions that can only be achieved using free in place rotation.
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Table 4.4.: The orientation changes of each of the modules in the 4 x 4 x 4 cube relocation
example. Orientations in blue italics are those that are caused by a module
being moved by a neighbor, and | denotes sequence steps where a module’s
orientation has not changed from a previous step.

Module

Step 1 2 3 4 5 6 7 8 9 10

0 AL0 AL0 AL0 AL0 AL0 AL0 AU0 AL0 AU0 AU0

1 AL+90 | | | | | | | | |
2 AU+90 AL+90 | | | | | | | |
3 | | | AD+90 | | | | | |
4 AR+90 AU+90 AL+90 | | | | | | |
5 | AL+90 AL0 | | | | | | |
6 | AL0 | | | | | | | |
7 AD0 | | | | | | | | |
8 AL0 | | AL0 | | | | | |
9 | | | AL-90 | | | | | |
10 | | | | AL+90 | | | | |
11 | | | | AU0 | | | | |
12 AU-90 | | | | | | | | |
13 AR-90 | | AU-90 AU+90 | | | | |
14 | | | AL-90 AU0 | | | | |
15 | | | AL0 | | | | | |
16 | | | | AU-90 | | | | |
17 | | | | AL0 | | | | |
18 CR-90 | | | | | | | | |
19 CB-90 | | | | BF0 BU0 | | |
20 | | | | | AL0 AU0 | | |
21 CL-90 | | | | | | BF0 BU0 |
22 | | | | | | | | | AL+90

23 B’D-90 | | | | | | | | |
24 C’R-90 | | | | | | | | |
25 AR-90 | | | | | | BU0 BU+90 |
26 | | | | | | | BF0 BU0 |
27 | | | | | | | AL0 AU0 |
28 AR0 | | | | | | | | |
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4.3.3. Clearance Considerations

To allow for a 3-DOF spherical joint module like HyMod to freely rotate in place within

a cubic lattice position, and satisfy requirement M.1.5 in the process, sufficient clearance

needs to exist such that the module’s furthest geometric point from the 3-DOF rota-

tion center can move freely without colliding with neighboring modules. The space for

collision-free rotation can be imagined as a sphere around the module. The design of

spherical joint modules can be adapted to ensure that the sphere of one module does not

intersect with the sphere of a neighbor; however, as most connectors require a surface-

to-surface connection (see Section 2.3), a mechanism such as HiGen is needed that is

capable of retracting in to its housing when disconnecting, thus staying within the sphere

when unused.

The distance a connector’s surface needs to be inset from the sphere of a spherical joint

module is dependent on the size of the surface and the minimum sphere size, as shown in

Figure 4.11. By applying Pythagoras’ Theorem, the relation between these parameters

can be calculated using the following equations,

M2
r = C2

r + (Mr − Is)2, (4.1)

Cr =
√
M2

r − (Mr − Is)2, (4.2)

Is = Mr −
√
M2

r − C2
r , (4.3)

Mr =
C2
r + I2s
2Is

, (4.4)

where Mr is the radius of the module sphere, Cr is the radius of the connector surface,

and Is is the inset amount.

There are two options for applying the clearance equations to a module; either the

module can be designed so that neighboring module spheres do not intersect (Figure

4.11(a)), or by using the knowledge that connectors are inset, the spheres can be made to
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Figure 4.11.: Diagrams showing the relation between module sphere radius Mr, connec-
tor surface radius Cr, and inset amount Is, for the (a) non-intersecting and
(b) intersecting clearance options.

intersect by the inset amount (Figure 4.11(b)). Using the non-intersecting option allows

two neighboring modules to rotate simultaneously without colliding with each other,

whereas the intersecting option allows for smaller module sizes for a given connector

size (by doubling the value supplied to Is in equation 4.4), at the cost of only one

neighboring module being able to rotate at a time. Applying the two clearance options

to HyMod, by setting the connector radius to 35.5 mm (half the diameter of HiGen) and

the inset amount to 6 mm (half HiGen’s actuation distance), results in a non-intersecting

module radius of 108.0 mm and an intersecting module radius of 58.5 mm. Due to the

smaller value, the intersecting option was chosen as the minimum module size for the

development of HyMod.

4.3.4. Hardware Details

The module is built from two mirrored halves, forming a rotational hinge joint. This

arrangement of identical halves is common with several modular robots, such as ATRON

[16], Molecubes [69], UBot [114], and CoSMO [23]. Each half consists of a chassis housing

two HiGen connectors; one parallel to, and the other perpendicular to the hinge axis.

The parallel connector is fixed to the chassis whereas the perpendicular connector has a

rotational degree of freedom through its center, forming a wheel. This gives a total of

four connectors and two wheels per module.

HiGen connectors (described in more detail in Chapter 3) operate by using a central drive

motor to translate and rotate four hooks. These hooks latch on to hooks of an opposing
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connector, creating a genderless connection that allows for single-sided disconnect. As

part of this latching process, electrical connections are made, allowing for communication

and power transfer across the connectors.

Each HyMod unit consists of sixteen custom ABS plastic components (excluding the four

connectors) created using 3D printing technology, fifteen custom circuit boards, two slip

rings, two battery packs, and several off-the-shelf items. Four DC geared motors are

used to drive the three degrees of freedom of the module (two paired together for the

hinge joint), each with a ratio of 154:1 and a quoted torque of 847 mNm at 6 V. An

additional 5:1 gear ratio is applied on top of each motor gearbox, increasing the torque

of the rotational joints and allowing the motors to be offset from each drive axis. This

setup is what facilitates the use of two motors to drive the hinge joint, enabling all

motors to be identical whilst allowing the hinge joint to offer effectively twice the torque

of the other degrees of freedom. This also simplifies their control because the same driver

electronics can be used for each motor. The housings of the four connectors are modified

from the original design to allow for extra mounting points for the wheel hubs and the

addition of infrared sensors for distance sensing (requirement M.2.3c). Internal sensing,

as specified by requirements M.2.3a and M.2.3b, is achieved using a potentiometer, two

optical encoder setups, and an Inertial Measurement Unit (IMU). To allow for continuous

rotation of the wheels whilst passing power and communication to their connectors, slip

ring components are used. This is a solution adopted by past systems [16, 19].

The module weights 810 g, falling below that specified by requirement M.4.1, and mea-

sures 128 mm x 128 mm x 94 mm when its hinge is at zero degrees. The size is governed

by the part dimension restrictions imposed by requirement M.4.2, the dimensions of

the HiGen connector, the height of the slip rings, and the chosen wheel diameter of

94 mm. This wheel diameter gives the module a 4 mm ground clearance when oriented

for driving. The separation between modules in a cubic lattice is 140 mm due to the

connectors extending out of their housings by 12 mm during connection. To take ad-

vantage of this ability the module is designed to fit within a spherical volume, allowing

for rotation around three axes without risk of colliding with neighboring lattice modules

(Figure 3.4). As such the module shares visual similarity with the Roombots [19] plat-

form, which uses its spherical design to enable the wheel-based locomotion of modules,

rather than to provide clearance for self-reconfiguration. Figure 4.12 shows renders of

the three main sections that form a complete HyMod unit (Figure 4.13). Additionally,

a breakdown of the main HyMod unit properties is shown in Table 4.5.
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(a)

(b)

(c)

Figure 4.12.: 3D renders of the three main components of a HyMod unit. The external
structure (left) and internal electronics (right) of the unit’s (a) wheel, (b)
processing half and (c) power half, are shown.
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(a)

(b)

Figure 4.13.: 3D renders of an assembled HyMod unit, oriented (a) vertically and (b)
horizontally.
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Table 4.5.: Properties of a HyMod unit

Property Value

Size 128 x 128 x 94 mm

Lattice spacing 140 mm

Ground clearance 4 mm

Weight 810 g

Controllers 1x PJRC Teensy 3.2

4x Atmel ATmega324P (HiGen controller)

Communication 1x EGBT-046S Bluetooth modem

1x NXP fault-tolerant CAN transceiver

Sensors 1x Sparkfun 9 DOF sensor stick IMU (accelerometer, gyro, mag-
netometer)

12x Vishay reflective optical sensor (infrared proximity)

Motors 4x Pololu 154:1 metal gearmotor

4x Solarbotics 298:1 mini metal sealed gear motor

Power supply 1x Pololu step-up voltage regulator (set to 9 V)

Batteries 2x Turnigy 3.7 V, 750 mAh round li-po cells (total 7.4 V, 750 mAh)

4.3.4.1. Electronics

HyMod contains 15 custom circuit boards: 1x processing board, 1x Bluetooth board, 1x

power board, 4x HiGen controller, 2x motor driver, 2x encoder board, and 4x contact

ring. The arrangement of boards is shown in Figure 4.14(a).

The main microcontroller for each HyMod unit is a Teensy 3.2, a 32-bit ARM Cortex-M4

based development board running at 96 MHz. This board has built-in USB for com-

munication and programming (requirement M.2.8), a Controller Area Network (CAN)

controller, and can interface with the popular Arduino development environment. The

Teensy is sandwiched between the Bluetooth board and processing board ; the former

acts as an adapter to an off-the-shelf modem for wireless communication to an external

computer (requirement M.2.5), and the latter houses additional CAN components and

connects to an off-the-shelf Inertial Measurement Unit. Unfortunately, the Bluetooth
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Figure 4.14.: (a) Block diagram showing how the circuit boards and other components
within a HyMod unit connect together. White blocks are the custom boards
created for this project. Assembled (b) processing, (c) power and (d) HiGen
controller boards are also shown.

modem chosen cannot natively be enabled and disabled on-demand, as specified by re-

quirement M.2.5a, so a small MOSFET was added to the Bluetooth board to allow power

to the modem to be toggled. Figure 4.14(b) shows the assembled board stack.

Each HyMod unit is powered by two 750 mAh lithium polymer battery packs, as per

requirement M.2.6b. The packs reside in each half of the module and are connected

in series to give 7.4 V. The power board (Figure 4.14(c)) takes this voltage and, via a

boost regulator, produces a 9 V output. This output is used to power the two motor

driver boards, which each drive two joint motors. Additionally, to enable power sharing

between modules and satisfy requirement M.2.6a, the power board passes the 9 V output

through an ideal diode to create a power bus. The diode prevents the current of one

power supply from feeding back in to another and potentially causing damage. The

power bus is then used to produce a 5 V supply for the rest of the electronics with a

module. To facilitate the repeated operation of HyMod units, their batteries can be

exchanged (requirement M.2.6c) by detaching their wheels from each side and pulling

each pack out, allowing for new packs to be inserted. Additionally, the batteries can

be charged in place (requirement M.2.6d) by connecting a charging unit to a dedicated

port on the side of each unit.
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The connectors in HyMod units are controlled using custom HiGen controller boards.

These boards feature an ATmega324P, a motor driver, two contact switches, an analogue

switch, contact ring connections, a programming header, a manual trigger, and indicator

LEDs. These features satisfy connector requirements C.2.1, C.2.2, C.2.5, C.2.7 and

C.2.8. The use of a separate microcontroller allows for each connector to be treated as

a device on an internal communication network. Additionally, it reduces the number of

connections that need to be passed through the slip rings. There are two versions of the

HiGen controller board in each module (Figure 4.14(d)), one for the wheel connectors

and one for the side connectors. Both boards perform the same basic functions (e.g.

connector actuation, infrared proximity sensing) but differ in geometry and specialized

features. For instance the wheel HiGen controller has a grey code disc etched into it for

absolute positioning of the wheel, whereas the side controller has a RGB LED for state

indication and general debugging of a module, as per requirement M.2.7.

4.3.4.2. Communication

Modular systems can be thought of as computer networks, where each module acts as

a node, able to communicate with other nodes. There are two main ways this can be

achieved, referred to as local and global communication [116]. Local communication

allows each module to communicate with its immediate neighbors, but requires that

messages be relayed in order to reach modules other than direct neighbors. Global

communication allows each module to send messages directly to any other module on

the same network, but the identifier of the recipient must be known in advance. Due

to the different use cases of local and global communication, both are implemented by

HyMod, fulfilling requirements M.2.4 and M.2.4a. In addition, each unit features an

internal I2C network to communicate between components, with the Teensy acting as

the master.

Local communication between two HyMod units is achieved using a serial link. Messages

sent from one module to another are first sent from the Teensy over I2C to the HiGen

controller in question. This controller buffers the message and sends it over the serial

link to the neighboring module’s HiGen controller, which stores the message until the

neighboring Teensy is ready to collect it.

Global communication between HyMod units is achieved using CAN. CAN allows for

multiple connected nodes to communicate with each other by broadcasting messages on
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Figure 4.15.: The placement of the termination resistors, R, for the (a) normal and (b)
fault-tolerant Controller Area Network implementations.

a common bus. The messages are picked up by all other networked nodes, which can

then act upon the data based on an identifier. By default CAN is designed for fixed

networks where there is a single line with termination resistors at the ends. Because

HyMod units are self-reconfigurable, fault-tolerant CAN was used, as this places the

termination resistors at each node instead. A comparison of these two implementations is

shown in Figure 4.15. By using digital potentiometers along with FT CAN, the network

resistance can be dynamically adjusted based on the number of nodes, maintaining a

stable network. Additionally, to avoid looping CAN networks that get created during

self-reconfiguration, HyMod employs analogue switches at its connectors to break the

network. The use of these switches also allows for hybrid networks to exist [116], whereby

the global network is divided in to smaller sub-networks for task processing, with local

communication being used to bridge sub-networks when necessary. Figure 4.16 shows

both the power and communication networks produced between two HyMod units.

4.4. Experiments

To verify the capabilities of HyMod, a single unit was used. Three main experiments

were performed using the unit, examining driving speed, lifting capability and connector

actuation. For the purpose of these experiments the unit was tethered to a bench power

supply set to 8.4 V (replicating the maximum battery voltage).

The driving speed of HyMod was determined by placing the robot on the ground and

timing how long it took for it to travel 2 m in a straight line. The result of this is that

the module has a driving speed of 0.1 m s−1. The experimental setup and snapshots of

the driving experiment can be seen in Figure 4.17.
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Figure 4.16.: The power and communication network formed between two HyMod units.
BT, µC, M, and S denote Bluetooth, microcontrollers, connector motors,
and bus switches, respectively.

The lifting capability of HyMod was tested using a 3D printed variable mass holder that

attaches via a HiGen connector. The holder weighs 520 g, and supports up to 1000 g

(in 100 g increments) of additional weight. The distance from the center of the HyMod

unit to the center of mass of the holder is 280 mm (two lattice spacings). Lifting tests

were conducted by clamping the HyMod unit to a table and having its hinge joint rotate

between -90 and +90 degrees (decelerating on the downward arc). The unit was tested

lifting masses up to 1120 g, which is equivalent to lifting 1.8 modules in-line. Greater

masses than 1120 g were attempted, but resulted in the failure of the 3D printed gears

on the hinge joint’s motors, followed by the docking hooks on the HiGen connectors

themselves. If these components were constructed with stronger materials, the stated

torque value of the motors suggests that higher lifting capacities would be achievable.

The experimental setup and snapshots of the lifting experiment can be seen in Figure

4.18.

A final test was performed with HyMod, verifying that the two HiGen controller boards

were able to operate the connectors as intended. Each connector was programmed to

drive their motors between retracted and extended states every 2 s. The result was

that both controller boards were able to successfully actuate the connectors. Further

experiments involving HiGen can be found in Section 3.4.
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(a) 0 s

(c) 14 s

(b) 7 s

(d) 21 s

Figure 4.17.: Snapshots of a tethered HyMod unit driving a distance of 2 m.

4.5. Summary

This chapter presented HyMod, a new robotic module that is a hybrid between mobile,

chain and lattice reconfigurable robots. This is achieved using a novel arrangement of

rotational degrees of freedom that serve the dual purpose of emulating a spherical joint

and enabling independent module mobility using differential wheels. This contrasts with

previous hybrid modular robot implementations that feature separate drive mechanisms

for motion, which result in increased module weight and complexity. Four HiGen con-

nectors are integrated in to HyMod to enable the formation of arbitrary cubic lattice

structures and, because of their ability to retract, allow the module to freely rotate in

place. HyMod is the first module, to our knowledge, that combines independent mobility

and free in place rotation.

An analysis of the HyMod design was performed, identifying the module’s symmetry and

motion capabilities, as well as its ability to self-reconfigure in general and between two

example configurations. This analysis highlights the advantages of HyMod’s joint and

connector arrangement. In addition, the considerations for free in place rotation were
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(a) 0.0 s

(c) 1.0 s

(e) 2.0 s

(b) 0.5 s

(d) 1.5 s

(f) 2.5 s

Figure 4.18.: Snapshots of a tethered HyMod unit lifting a mass of 1120 g. A connector
assembly composed of a passive HiGen connector and sheets of Medium-
Density Fiberboard (MDF) is clamped to the table to fix the unit in place.
Foam padding is positioned either side of the unit to cushion the variable
mass holder upon reaching the end of the experiment’s rotation arc.
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addressed, identifying two clearance options for the design of spherical joint modules.

Details of HyMod’s hardware and electronics were given, covering its actuation, sensing,

communication, and power system. The module is able to communicate locally with

neighboring modules via serial links, communicate globally with specific modules through

a common Controller Area Network bus, and wirelessly to an external computer via

Bluetooth. The CAN bus implementation on HyMod has the novel ability to dynamically

adjust its resistance to account for the number of connected modules, as well as divide the

bus into smaller sections to avoid loops and allow for focused communication between

modules, enabling hybrid communication. The module also features power sharing,

allowing one module to power the electronics of others.

Experiments were conducted examining the movement and lifting capabilities of a single

HyMod unit, with it being able to drive at 0.1 m s−1 and lift 1120 g at a distance at of

280 mm with its central joint.
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5.1. Introduction

Unlike bespoke robotic systems made for specific tasks, modular robotic systems are

intended to perform a wide variety of tasks. Some of these tasks may require specialized

hardware, meaning that all modules in a homogeneous modular robot would need to

feature this hardware in order for said tasks to be accomplished. This would increase

the cost and complexity of each module. A solution to this is to develop specialized

tools, lacking most of the functionality of the main module of a system, but gaining

other application-specific functionality.

This chapter presents HyMod extensions; modules built to add specialized capabilities

to a modular robot. Past systems to employ specialized modules include [24, 25, 44]. An

extension module must contain processing and local communication (primarily for iden-

tification purposes), as well as at least one passive HiGen connector. A passive HiGen

connector is one that is in a constant extended state, allowing for an active HiGen con-

nector to attach to it without prior communication. This removes the need for extensions

to contain their own power source. Extensions could therefore reside in known pick-up

locations to be collected by modular robots when needed. Four extensions have been

developed for the HyMod system (see Figure 5.1), covering the areas of manipulation,

mobility, perception and support.

The remainder of this chapter presents the requirements that resulted in extension mod-

ules (Section 5.2), the common structural and electronics elements of extensions (Section

5.3), the four extensions developed (Sections 5.4, 5.5, 5.6, and 5.7), and a number of

configurations such extensions allow the HyMod system to form (Section 5.8).
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(a)

(c)

(b)

(d)

Figure 5.1.: Four of the extensions created for the HyMod system; (a) Gripper extension,
(b) Mecanum Wheel extension, (c) Camera extension, and (d) Modular
Surface extension. (a), (b), and (c) are placed on an extension holder, which
can be attached to the side of (d) to create a pick-up location.

5.2. Requirements

To introduce specialized functionality to the HyMod system, the extension framework

should offer standardized elements for the structure and electronics of extension modules.

These elements should provide all the features necessary to produce functional modules

that can integrate with the HyMod system, with only minor modifications being required

for any specialized functionality. In terms of electronics, it would be beneficial if the

framework did not enforce any requirements on power source. These high-level goals for

extension modules give rise to the following systematic requirements:
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5.2.1. Mechanical

Extension modules shall:

E.1.1 - Be primarily constructed using 3D printing technology. A Stratasys Mojo [113] is

available in-house, capable of printing parts in ABS plastic with soluble supports

E.1.2 - Feature a passive genderless connector that is four times symmetric

E.1.3 - Feature a profile that allows for them to reside in pick-up locations for other

modules within a lattice to connect to (if appropriate for their use case)

5.2.2. Electrical

Extension modules shall:

E.2.1 - Be capable of being powered through their connector(s) and (depending on their

use case) via external power

E.2.2 - Contain their own microcontroller that interfaces with their connector(s)

a) Connections for sensors and servos shall be included to allow for basic ex-

tension functionality

b) Additional inputs and outputs shall be exposed to headers to allow for

expanded functionality, such as via Arduino-like add-on boards

E.2.3 - Feature indicator LEDs to visually report operation state

E.2.4 - Be reprogrammable

5.2.3. Environmental

Extension modules shall:

E.3.1 - Operate at a standard humidity for an indoor laboratory environment

E.3.2 - Operate within a temperature range of 20 to 30 degrees Celsius
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5.2.4. Performance

Extension modules shall:

E.4.1 - Become operational within three seconds of receiving a connection from a non-

extension module or from an external power source

E.4.2 - Have 3D printed parts that are no larger than the 127 x 127 x 127 mm build

volume of the in-house Stratasys Mojo [113]

5.2.5. Reliability

Extension modules shall:

E.5.1 - Extensions should handle hundreds of repeated connections and disconnections

without failing

5.3. Expanding HiGen to Extensions

The purpose of extensions is to allow for application-specific functionality to be intro-

duced to a modular robot with relative ease. As such, it is important that the number

of essential elements for an extension be minimal. The primary element of HyMod ex-

tensions is their connection interface. Using a normal HiGen connector, due to its active

mechanism, means that any module that features it must contain a power source in order

to initiate the actuation process. For the HyMod unit this is acceptable; however, for

extensions it may be impractical to introduce a power source. To overcome this problem

and satisfy requirement E.1.2 in the process, a passive variant of the HiGen connector

was devised, which can be connected to by an active connector but does not contain its

own actuation mechanism. This allows extensions to be made that are unpowered and

are activated once connected to, drawing power from the HyMod system’s shared power

bus. Additionally, an electronics framework was devised. This framework deals with

the communication requirements of HiGen whilst also allowing for common functional-

ity, such as reading sensors or driving servos, to be performed without requiring extra

circuitry.
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Figure 5.2.: A passive HiGen connector.

5.3.1. Passive Connector

A passive HiGen connector takes advantage of the genderless and single-sided disconnect

nature of the active design. When an active connector is in its extended state, another

active connector can freely connect to and disconnect from the first connector without

the first needing to perform any actions. In fact, the first connector does not need to be

powered in this situation. This realisation makes the development of a passive connector

trivial, as the extended state of HiGen can be taken and modified to produce a single

3D printable component, containing docking hooks, the alignment shroud, and the top

surface of the upper housing. A passive connector is shown in Figure 5.2. It consists of

just two components, the passive connector itself and a contact ring. This is in contrast

to the nine components of an active connector. Animation steps of the process of an

active connector joining to a passive connector are shown in Figure 5.3.

Due to a passive HiGen connector being functionally identical to an extended active

HiGen connector, the clearance relation presented in Section 4.3.3 is broken. As a

result, any HyMod unit that is a neighbor to an extension must translate either away

or along the connector surface before it is able to rotate in place. It was decided that

the ability to have extensions be composed of few parts and not require their own power

source outweighed this clearance limitation.
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(a)

(c)

(b)

(d)

Figure 5.3.: Snapshots of the connection sequence of an active to a passive HiGen con-
nector, showing the hooks (in purple) extending behind the hooks on the
passive side and locking in place. The shroud is transparent to help show
the motion of the hooks.

5.3.2. Electronics Framework

To facilitate in the rapid development of HyMod extensions, an electronics framework

was devised, consisting of two custom circuit boards, a tool controller, and a tool extender.

These can be seen in Figure 5.4.

The tool controller board serves two purposes for the framework; it contains the nec-

essary electronics to interface with and perform local communication across a HiGen

connector, as per requirement E.2.2, and it is capable of acting as the central micro-

controller of simple extensions that do not require much processing power or access to

the global communication bus. To create this board, the HiGen controller presented in

Section 4.3.4 was modified to remove unneeded functionality, such as the motor driver,

contact switches, analogue switch, and infrared distance sensors. Distance sensors were

removed due to them serving no purpose in the primary use-case of extensions, of being

connected to a module that provides them with power. Additionally, the analogue switch

used to divide the global communication bus was removed as it is guaranteed that the

connecting HiGen will be active and therefore contain a switch, making one on the tool
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Figure 5.4.: The two custom printed circuit boards that form the HyMod extensions’
electronics framework, with the tool controller on the left, and the tool ex-
pander on the right.

controller unnecessary. The programming header and indicator LEDs from the HiGen

controller remain, fulfilling requirements E.2.3 and E.2.4. One piece of functionality the

tool controller has over the HiGen controller boards is a 5 V regulator, that takes the

voltage from the shared power bus and uses it to power extension. This allows for the

board to be powered either through its connector or from an external source that is

compatible with the shared bus, satisfying requirement E.2.1.

To make the tool controller usable for a variety of applications, the concept of add-

on boards was adopted from the Arduino hardware platform [117], as requested by

requirement E.2.2b. Add-ons are circuit boards that stack on top of a main processor

board by a number of header connections. For the tool controller all but four unused

pins from the microcontroller are routed to such headers. To fulfil requirement E.2.2a

and allow for some basic uses of the tool controller without requiring an add-on board,

the four unused pins are routed to two sets of connections, one set for controlling up to

two servo motors, and another set for reading values from up to two sensors. This allows

for basic extensions to be developed without requiring additional circuitry.

Although the tool controller is sufficient for simple extensions, some extensions may

require more capabilities. To address this, an add-on board called the tool extender was

developed. The primary purpose of the tool extender is to give extensions the option of

having the same processing capabilities as a HyMod unit, as well as access to the global

communication bus. This is achieved by the board housing a Teensy 3.2 microcontroller
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and related CAN bus components. Additionally, the board can accept an external 9 V

power source and contribute it to the shared power bus of the HyMod system. This

is beneficial as it enables static extensions such as docking stations to be developed,

capable of powering the electronics of a module until it needs to disconnect to perform

a task. Additionally, by having the board feature a Teensy microcontroller, multiple

I2C devices such as connectors can be addressed. To take advantage of this, the tool

extender has connections for two ribbon cables, allowing any number of tool controller

boards to be commanded from a single extender, opening up the option for connector

grid extensions. In such a situation, the board would not be an add-on and instead act

in a stand-alone manner. Similar to the tool controller, the extender also has unused

pins routed to connections for servos and sensors, as the board’s shape blocks those

connections from any tool controller mounted below. Additionally, a general header

exists for communicating to other microcontrollers over serial links.

5.3.3. Extension Holder

The passive HiGen connector and electronics framework allows for extensions to be

created that have a single connection point, meaning that in order for a HyMod unit

to connect to such extensions, they need feature a profile that allows them to reside in

some kind of pick-up location, as specified by requirement E.1.3.

To create a pick-up location, a holder and accompanying chassis template were designed

(Figure 5.5). The template consists of a ring that slots in to the holder to keep the

extension in place whilst leaving the HiGen connector unobstructed. Both the holder

and template conform to the dimension constraints of requirement E.4.2, with the width

of the holder being 1 mm below the maximum at 126 mm. The centerline of any extension

placed in to a holder is raised 64 mm relative to the holder’s base, half the width of a

HyMod unit. To aid in the rotational alignment of an extension placed in to the holder,

the template’s ring has four indentations. These indentations match a protrusion in

bottom of the holder, allowing the extension to rest at 0, 90, 180, or 270 degrees.

To enable a single HyMod unit to pick an extension out of a holder using only rotation,

the outer surface of the template’s ring conforms to the surface of a sphere centered

around the position of the HyMod unit. This is in addition to a group of modules being

able to lift an extension out via translation, by coordinating their motions. Animation

steps of a single HyMod unit lifting the template out of an extension holder can be seen

in Figure 5.6.
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(a) (b)

Figure 5.5.: 3D renders of the (a) holder and (b) chassis template used to create a pick-up
location for extensions.

(a) 0° (b) 2.5° (c) 5° (d) 7.5° (e) 10° (f) 12.5° (g) 15°

Figure 5.6.: Snapshots of a HyMod unit lifting an extension out of a holder. The template
is transparent to show how its shape interacts with that of the holder.

5.4. Gripper Extension

The ability to manipulate objects is an important feature of many robotic systems. To

create an extension for the HyMod system that is capable of manipulation, an off-the-

shelf gripper was sourced. The gripper chosen was the MKII Robot Gripper by Dagu

[118], due to it being readily available and fitting within the dimensions of a single

HyMod lattice position. It is built from aluminium and consists of two parallel actuated

gripping fingers driven by a servo motor. A 2:1 gear ratio is applied to the servo output
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(a) (b)

Figure 5.7.: 3D renders of the Gripper extension, showing the (a) external structure and
(b) internal electronics.

to increase the capable force of the gripper. Additionally, a spring and magnet based

clutch is placed between the servo and the output to prevent damage to the motor when

attempting to apply an excessive force to an object. The maximum finger separation of

the Dagu gripper is 55 mm.

Due to the Dagu gripper only using a servo motor to actuate, minimal control and pro-

cessing is required by the extension. As such only the tool controller from the electronics

framework is necessary. A chassis was designed to interface the passive HiGen connector

with the gripper, via its rear mounting screws. Square cut outs were added to the chassis

to allow for the servo to be connected, as well as sensors for possible future expansion,

such as adding force sensing to the fingers. Note that although the gripper itself fits

within a single lattice position, with the chassis and connector mounted, the gripper’s

fingers need to be in their fully separated position for this to remain true. Figure 5.7

shows renders of the extension and its internal electronics. Additionally, Figures 5.12(a)

and 5.13(a) show block and network diagrams of the extension’s electronics, respectively.

The weight of the Gripper extension is 220 g.
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5.5. Mecanum Wheel Extension

HyMod units are capable of independent locomotion via differential wheels, allowing

for individual modules to efficiently navigate a flat environment. Unfortunately, this

ability can be diminished as modules are connected together in different configurations.

For instance, a line of HyMod units arranged end-to-end would be capable of driving

forward and backward, but would have difficulty turning on the spot due to friction. To

overcome this, a Mecanum Wheel extension was developed (inspired by [119]), allowing

for omni-directional motion when four or more are placed on a system [120].

Mecanum wheels consist of a central hub with a number of free-spinning rollers around

their perimeter. These rollers are placed at 45 degrees to the hub’s rotation axis, creating

the effect of the wheel applying a force in a diagonal direction when rotated. By placing

four or more mecanum wheels on a robot (two left-handed and two right-handed), these

diagonal vectors can be combined to create a net translational vector in any direction,

as well as allow for rotation on the spot. Details of the geometry and kinematics of

mecanum wheels can be found in [121].

To create a Mecanum Wheel extension, an off-the-shelf wheel was sourced. A four-pack

of 5 inch (127 mm) aluminium wheels was selected from a company called Nexus Robots

[122]. This size was chosen due to it being larger than the HyMod units’ wheel diameter,

and less than the dimensions of a single HyMod lattice position, offering higher ground

clearance and allowing two to be placed on neighboring modules without interference.

Due to HyMod units containing two continuous rotational degrees of freedom, it is not

necessary for Mecanum Wheel extensions to feature their own drive mechanism, instead

they can be turned by the module they are attached to. This made the creation of a

chassis for the extension relatively simple because, like the gripper, all that was required

was a component that interfaced between a passive HiGen connector and the wheel itself.

Although a Mecanum Wheel extension is mechanically passive, it is still necessary for

it to contain a tool controller, to allow for the extension to be identified by neighboring

modules. Having a tool controller on board also opens up the possibility for future

expansion, such as adding distance sensing inside the wheel hub to report the distance

the wheel may be away from an object when translating towards it, for example. Figure

5.8 shows renders of the extension and its internal electronics. Additionally, Figures

5.12(b) and 5.13(b) show block and network diagrams of the extension’s electronics,

respectively. The weight of the Mecanum Wheel extension is 560 g.
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(a)

(b)

Figure 5.8.: 3D renders of the Mecanum Wheel extension, showing the (a) external struc-
ture and (b) internal electronics.
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5.6. Camera Extension

Vision is an important feature for many tasks a robot may be required to perform, be

it as a video feed for tele-operation, or for environmental details to automatically be

identified and reacted to.

To create a Camera extension, a Raspberry Pi Zero 1.3 [123] along with the Raspberry

Pi Camera were chosen. This small board is a linux-based computer running at 1 GHz

and with 512 MB of RAM. The Pi Zero 1.3 is an improvement over previous versions as

it features a connection for a Pi Camera, allowing for small video streaming platforms

to be developed. The choice of a Raspberry Pi was based on research conducted by

a Masters student by the name of Mohamed Marei, who was tasked with creating a

prototype for a Camera extension. The Camera extension presented here extends upon

his work.

The use of a Raspberry Pi opens up the possibility for the Camera extension to also be

used as the central brain of a modular robot composed of HyMod units, as its processor

is an order of magnitude faster than the Teensy 3.2 microcontroller. To take advantage of

this possibility, the Camera extension houses both the tool controller and tool extender,

enabling the Raspberry Pi to indirectly (via the extender’s Teensy) communicate over

the global network to all connected modules.

To allow for a video feed to be received from the Raspberry Pi, a USB WiFi dongle is

used. This dongle enables the processor to be connected to as a computer on a network,

bypassing the need for video to be sent through the global communication bus of the

HyMod system and out of a unit’s Bluetooth modem, which that network would be

unsuitable for due to its relatively low bit rate.

Figure 5.9 shows renders of the extension and its internal electronics. Additionally, Fig-

ures 5.12(c) and 5.13(c) show block and network diagrams of the extension’s electronics,

respectively. The weight of the Camera extension is 125 g.

5.7. Surface Extension

In addition to wheel-based locomotion, HyMod units can also locomote via self-reconfiguration,

using neighboring modules to form a grid structure. For some tasks or environments such
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(a) (b)

Figure 5.9.: 3D renders of the Camera extension, showing the (a) external structure and
(b) internal electronics.

a grid may be required, but the number of modules available may be insufficient, due to

cost for example. This can be overcome using a modular grid of passive connectors. As

such, a Surface extension was developed (inspired by [124]).

A Surface extension consists of a tool extender in a control box connected via ribbon

cables to one or more tool controller boards, one under each passive connector. The

passive connectors are mounted on laser cut acrylic, with each being 140 mm from its

neighbor (the cubic lattice size of the HyMod system). An additional laser cut acrylic

layer is mounted on top of the first to recess the passive HiGen connectors and allow for

HyMod units to drive over the surface should the need arise.

Two versions of the surface were designed, a modular grid, and a single 4 x 3 grid. The

cells of a Modular Surface extension were designed to fit together in much the same

way as the pieces of a jigsaw puzzle, allowing for any shape or size of 2D grid to be

formed. The single grid on the other hand is intended for a single use-case, but offers

increased rigidity and lower cost due to it only being comprised of two acrylic pieces,

versus the two pieces per cell of a modular grid. Images of the fixed 4 x 3 grid are

shown in Figure 5.10. With additional 3D printed components it is possible to mount

the holder presented in Section 5.3.3 on the side of either Surface extension, enabling

HyMod units to self-reconfigure to a position adjacent to an extension to connect to it.
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(a)

(b)

Figure 5.10.: A single 4 x 3 Surface extensions, viewed from the (a) top, and (b) bottom.
The underside shows the 12 passive HiGen connectors wired to the control
box via two ribbon cables and daisy-chained power cables.

Figure 5.11 shows renders of the extension and its internal electronics, for a single mod-

ular cell. Additionally, Figures 5.12(d) and 5.13(d) show block and network diagrams of

the extension’s electronics, respectively.
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(a)

(b)

Figure 5.11.: 3D renders of the Modular Surface extension, showing the (a) external
structure and (b) internal electronics.
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(d)

(a) (b) (c)
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Figure 5.12.: Block diagrams showing the circuit boards and other components within
the (a) Gripper extension, (b) Mecanum Wheel extension, (c) Camera ex-
tension, and (d) Modular Surface extension. White blocks are the custom
boards created for this project.
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Figure 5.13.: The power and communication network within the (a) Gripper extension,
(b) Mecanum Wheel extension, (c) Camera extension, and (d) Modular
Surface extension. µC and J denote the microcontroller and power input
jack, respectively.
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5.8. Example Extension Configurations

Figure 5.14 illustrates how (a) a manipulator arm and (b) an omni-directional rover could

be constructed out of combinations of HyMod units and extensions. The manipulator

arm takes advantage of the 3-DOF of each unit to create a 7-DOF manipulator, with

the Gripper extension mounted as the end-effector. The omni-directional rover takes

advantage of the two continuous rotational degrees of freedom of each HyMod unit to

drive Mecanum Wheel extensions to produce motion in any direction on a flat surface. A

Camera extension is mounted at the front of the rover to allow for either tele-operation

or autonomous operation.

5.9. Summary

This chapter presented HyMod extensions, modules that augment the capabilities of the

HyMod system. Extension modules allow for the introduction of application-specific

functionality to a modular robot, without requiring that each main module include said

functionality, increasing their complexity.

For the creation of HyMod extensions, a novel framework was devised that consists of

a passive variant of the HiGen connector, a chassis template, and control circuitry. The

passive connector allows for extensions to be developed that can be connected to without

needing their own source of power, reducing their complexity. Such extensions, via use

of the chassis template and a custom holder, can reside in known pick-up locations for

HyMod units to collect as and when required. The control circuitry for extension modules

is modified from the electronics present in HyMod to provide common functionality

such as HiGen control, local and global communication, and power sharing, as well as

support for connections to sensors and actuators. By combining the three elements of

the framework, extension modules can be developed much faster than would otherwise

be possible with traditional module development methods.

To demonstrate the potential of the framework, four extension modules were built

that expand the capabilities of HyMod; a Gripper extension for manipulation tasks, a

Mecanum Wheel extension for mobility tasks, a Camera extension for perception tasks,

and a Modular Surface extension for supporting other tasks. Details of the four exten-

sions were presented, as well as examples shown of how they may be used together with

HyMod units as part of useful configurations.
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(a)

(b)

Figure 5.14.: Two example configurations of HyMod system modules; (a) three units and
two extensions (one Gripper extension and one Modular Surface extension)
forming a manipulator arm, and (b) two units and five extensions (one
Camera extension and four Mecanum Wheel extensions) forming an omni-
directional rover.
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6.1. Introduction

Traditionally in robotic systems, control is achieved using a central processor, capable

of reading in sensor data and outputting commands to motors, either directly or via the

use of a hierarchy of sub-processors. This arrangement of processors makes such robots

straightforward to operate, as the central processor acts as a single point of control, where

instructions can be sent, or programs and algorithms uploaded. For modular robotic

systems, although the arrangement of processors still applies to individual modules,

bringing several modules together results in a distributed system being created, with

multiple points of control. This makes modular robots more complex to operate than

traditional robots, as either techniques need to be employed to elect a leader module

to command other modules, creating a single point of failure, or distributed algorithms

need to be created to allow for modules to perform actions using only information from

themselves and possibly their neighbors.

This chapter presents a centralized and distributed control architecture for the HyMod

system. Based on message routing [125], the architecture allows for modules to send

messages to and receive messages from other modules in a transparent manner, with

messages being sent across multiple communication channels and forwarded by any in-

termediary modules as necessary. Both neighbor-to-neighbor and source-to-destination

communication are possible, with the former communication not requiring knowledge of

module identifiers, benefiting distributed algorithms.

The remainder of this chapter describes the HyMod control architecture, including

its message structures and routing implementation (Section 6.2), and presents a self-

reconfiguration scenario being performed in simulation (Section 6.3). Finally, Section

6.4 concludes the chapter.
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6.2. Control Architecture

A set of connected HyMod units and extensions share similarity with nodes in a computer

network, capable of sending messages to other connected nodes. There are two common

ways such nodes can be connected; a Bus topology or a Star topology [126]. In a Bus

topology, each node is connected to a central communication bus. Nodes can broadcast

messages on to this bus for all other nodes to receive, as well as listen for messages

of interest from any other node on the network. This topology allows for one node to

communicate directly with another on the network regardless of distance, as every node

will receive the message almost simultaneously, and can use address filtering to only

act upon messages intended for them. In a Star topology, each node is connected to a

central connection point. This point receives all messages and either broadcasts them on

to all other nodes, or selectively routes the messages to the intended nodes via the use

of addresses. To enable larger networks, multiple Star connection points can be joined

together, with each routing all or a subset of messages to their neighbors to handle.

This, at a most basic level, is how the internet operates.

As described in Section 4.3.4, HyMod units are capable of both local and global com-

munication with neighboring modules. Each module can broadcast messages on to their

CAN bus as well as send messages directly to adjacent modules via their connectors.

By using these two approaches to communication, a combination of the Bus and Star

topologies is produced. A network topology diagram of this combination, for multiple

connected modules, is shown in Figure 6.1. This topology allows for messages to be

routed from an external device, such as a computer, on to the global bus to be sent

to other networked modules. Additionally, for modules that lack access to the global

bus, such as the Gripper extension (Section 5.4), messages can be routed to them via

neighboring modules with bus access.

6.2.1. Message Structures and Routing

There are two types of messages used by the HyMod system, commands and responses.

A command is a message that a module will act upon, and a response is a message that

a module returns as an acknowledgement. This distinction allows for messages to be

filtered based upon whether the data they contain is to be processed, or is information

that was previously requested. In addition to type, messages also contain an identifier
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Unit 1

G
ripper

Bus

USB BT

Star

Unit 2

USB BT

Unit 3

USB BT

Star Star

PC

Figure 6.1.: The network topology produced by three HyMod units, a Gripper extension,
and an external computer (PC). Blue dashed lines show how messages from
the computer can be routed via the Star and Bus topologies to reach all of
the modules. BT denotes the Bluetooth serial link in each HyMod unit.

that defines their purpose. The type and identifier form a one byte message header,

with one bit for the type and seven for the identifier (allowing for 128 unique message

purposes per module). This byte is followed by an arbitrary number of data bytes to

create a full message (see Figure 6.2). As an example of a message transfer, suppose the

external computer in Figure 6.1 wants the current accelerometer reading from Unit 1’s

IMU. To retrieve this information the computer would send a command message with

the identifier GetAccelerometerData to Unit 1, which would then send back a GetAc-

celerometerData response message containing the readings. This approach to message

exchange is sufficient for the distributed control of modules, as it allows for information

to be passed between neighbors; however, it is lacking details about which module the

message is intended for, making it unsuitable for centralized control.

To allow for centralized control of the HyMod system, packets are used. A packet

is a wrapper around a message that includes module source and destination addresses.

When a module receives a packet, the destination address is compared with the module’s

own address. If the two addresses match then the message can be extracted and dealt

with like messages from distributed control. If such messages are commands then any

resulting response is placed in a new packet with the original source and destination

addresses exchanged to allow for it to be returned to sender. If the packet is not for the

module, it can be forwarded to another module to bring it closer to its destination.

Due to the self-reconfigurable nature of the HyMod system, it was opted to have modules

forward packets across all available communication channels (e.g. connectors, CAN bus
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Figure 6.2.: The byte structure of a message. The first byte is the header and contains
a command / response bit and seven identifier bits (allowing for 128 unique
message purposes). Following that are an arbitrary number of data bytes.

etc) as opposed to selectively forwarding them to destination modules via a routing

table. This choice presents two problems; how to avoid a module acting on echoes of

command packets it has previously received, and how to prevent packets from being

forwarded through the network indefinitely. To overcome these problems, the header of

a packet contains two additional values, a sequence number and a jump count. These

are adopted from the Transmission Control Protocol / Internet Protocol (TCP/IP) used

in computer networking [127]. The sequence number provides a means for a receiving

module to compare the relative age of a packet. For instance, if a module receives a

packet over the CAN bus with sequence number 3, and then receives another identical

packet from a connector, the second packet can be ignored as its number no longer

matches the next expected sequence number of 4. For this to work, both the sending

and receiving modules need to keep a record of the current sequence number (with there

being the ability to synchronise the two modules’ numbers if necessary). Additionally,

the size of the numbers available should be large enough such that a repeat sequence

number from wrapping around is unlikely to be encountered soon after the last. The

jump count serves the purpose of limiting the amount of times a packet can be forwarded

through the network. The count starts at a high value and is decremented each time the

containing packet is forwarded. Once the count reaches zero the packet can no longer

be forwarded and is discarded if the module it arrives as is not the intended destination.

A consideration for packets is the number of bits available for their header information.

Unlike communication over serial and I2C, which have no imposed limit on the number

of bytes that can be sent at a time, CAN only supports eight data bytes per CAN frame.

Additionally, the standard requires that any data sent must have a unique frame identifier

of 29 bits. This identifier is used to handle any communication conflicts that may occur,

such as multiple modules attempting to communicate at the same time. This is referred

to as arbitration [128]. If two modules send a frame with the same identifier (due to

insufficient uniqueness), both will believe they have won arbitration and attempt to
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Figure 6.3.: The byte structure of a packet. 29 bits are used for the CAN identifier,
which contains both the packet header and message header. The packet
header consists of seven bit source and destination addresses, a four bit
sequence number and a three bit jump count. The message header contains
a command / response bit and seven identifier bits. Following the identifier
are up to eight data bytes.

transmit their data, potentially resulting in data corruption. To ensure the uniqueness

of CAN frames within the HyMod system, both the packet and message headers are

used to form the frame identifier (see Figure 6.3). Because message headers are a byte in

length, only 21 bits are available for the four properties of a packet header. As such, it

was decided to allocated seven bits to both the source and destination addresses (allowing

for 128 modules on a single network), four to the sequence number, and three to the

jump count. This division between sequence number and jump count was chosen so that

forwarded packets expire before the same sequence number is repeated. Three bits are

used for the jump count, giving a maximum of seven jumps, to reduce the likelihood

of packets expiring before they reach their destination in a modular network combining

both local and global communication routes. For example, with only two jump bits,

giving a maximum of three jumps, it would not be possible for packets to reach the

Gripper extension in the configuration shown in Figure 6.1 if the global bus is disabled

between two of the HyMod units.

6.2.2. Serial Frame Communication

Asynchronous serial is a bit-level communication protocol widely used by microcontroller

electronics for transferring data between pairs of devices. The protocol allows for data

to be sent from one device to another using a single communication line (two for bi-

directional communication). To deal with the communication being asynchronous, each
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Figure 6.4.: The byte structure of a message or packet serial frame, including an escaped
byte.

transmitted byte is preceded and followed by a number of start and stop bits, respec-

tively. These bits allow the receiving device to synchronise itself with the data without

requiring a separate clock signal to accompany it, as is the case for synchronous serial.

Additionally, a parity bit can follow each byte to enable basic data validation. The

advantage of serial protocols is that they allow streams of characters to be easily output

from a device to, for example, be viewed on a computer terminal; however, for multi-byte

data that needs to arrive as a contiguous block, such as HyMod messages and packets,

additional logic is required.

To allow for multi-byte communication of packets and messages over asynchronous serial,

be it between connectors or over USB or Bluetooth, a byte-level communication protocol

was devised, following the information presented in [129]. Data sent via this protocol is

preceded by a start byte, instructing the receiving device to buffer any bytes that follow

it. Once the data is transmitted an end byte is sent, instructing the receiving device

to close the buffer and forward its content on to other sections of the program. The

grouping of start byte, data bytes and end byte form a serial frame. Because the start

and end bytes are specific binary values, it is possible for the data being transmitted to

also contain these values. To overcome this problem the protocol precedes any such value

by an escape byte, instructing the receiving device to ignore the special meaning of the

following data byte. In addition, if a start byte that is not escaped is encountered during

a frame, the receiving device assumes that a problem occurred during communication

and flushes the previous buffer ready for the new data. The structure of a serial frame,

including an escaped byte, is shown in Figure 6.4.

An advantage of implementing a frame-based protocol is that, if bi-directional communi-

cation is available, it allows for acknowledgements to be returned once data is received.

This is an ability natively supported by protocols such as I2C and CAN, but not asyn-

chronous serial. When a serial frame is transmitted, the receiving device can choose to

send an acknowledgement byte back, informing the sender that the data arrived. The

number and meaning of the acknowledgements can be arbitrary, but for the purposes
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waiting within frame post escape

start byte

positive ack.

negative ack.

data byte

start byte

end byte

escape byte

data byte

Figure 6.5.: The state machine used to parse serial frames. The machine starts in the
waiting state until a start byte is received, and returns to it once an end byte
is received. Acknowledgements are only checked for in the waiting state, as
one device cannot respond to a frame from another device until its own
frame has finished transmitting.

of the HyMod system positive and negative acknowledgements were chosen. A positive

acknowledgement informs the sender that the data arrived and has been acted upon,

whereas a negative acknowledgement informs the sender that the data arrived but has

not been acted upon for some reason, for example, if it was for an unsupported com-

mand. Figure 6.5 shows the state machine used by receiving devices for handling serial

frames and acknowledgements.

To make use of serial frame communication with acknowledgements, a handshaking

and connection routine was implemented. This routine performs two main functions;

it allows for data, such as the relative orientation of two connectors, to be transferred

between devices at a level that is transparent to any external code running on a module,

and enables communication channels that lack a physical connection state, such as USB

and Bluetooth, to have a logical connection state that can be queried. To perform

handshaking, three serial frames are used (see Figure 6.6). First a handshake request

frame is sent from a device to its neighbor. The device then waits a set amount of

time for a handshake data frame to be returned, containing data about the connection.

If a frame is returned, the connection can be considered to be established, otherwise

after a time-out the handshake process begins again. To keep a connection established,

the device keeps a record of the time data was last received, be it a serial frame or an

acknowledgement to a frame that was sent. If no data is received within a given time

period (e.g. 5 seconds), a handshake poke is transmitted, forcing the neighboring device
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Figure 6.6.: The byte structure of the three serial frames used for handshaking; (a) hand-
shake request, (b) handshake poke, and (c) handshake data. To differentiate
handshakes from message and packet serial frames, a different start byte
value is used.

to issue an acknowledgement to confirm that it is still active. If an acknowledgement

is not received, the connection is considered to be broken and the handshake process

begins again. The state machine that performs the handshaking and connection routine

is shown in Figure 6.7. This routine is used by the HyMod system in all the situations

where asynchronous serial communication is used, allowing for the robust transmission

of messages and packets between modules in a network and from an external computer

to a set of connected modules.

6.2.3. Module Controller Operation

Control of individual HyMod units and extensions is performed by a class called a Mod-

uleController. This class is responsible for taking messages and packets received by a

module’s various communication channels and either acting upon them, or routing them

on to other modules as described in Section 6.2.1. To facilitate this behavior, and allow

for the control architecture to easily be deployed on multiple module types, module func-

tionality is divided in to two object types that get registered with the ModuleController,

Components and Communicators. A component is an element of module functionality

that is wished to be read from, written to, or triggered by other modules on the HyMod

network. A communicator is an element of functionality that is capable of communi-

cating with other modules in some manner. Note that for consistency in operation, an

external computer application is considered to be a module, with its own unique HyMod

network address. The code definitions for the component and communicator objects

118



6.2. Control Architecture

offline begin delay handshaking

online

wait

start initialise

update receiver

send request hs.

stop

update receiver

data hs. received

timed out

stop

update receiver

send message/packet

send poke hs.stop
ack. received

timed out

stop

Figure 6.7.: The state machine used to perform handshaking and establish a logical con-
nection between two serial frame devices. Blue dashed lines denote functions
that are triggered by external code running on a module.

are shown in Figure 6.8. In this code implementation both the command and response

message types have an equivalent object type. This avoids the need for components to

verify a message is a command before acting upon it (as this is performed earlier in the

code), and ensures that only responses are returned to the ModuleController from its

registered components.

There are five component objects implemented by HyMod units; ModuleMemory, Joint-

Manager, ConnectorManager, SensorStick, and BluetoothSwitch. The module memory

component gives read access to the internal EEPROM of a module, containing persis-

tent information such as its unique address and type. The joint and connector managers

are used to group multiple of their respective objects together, allowing for joints and

connectors to referenced by index, rather than requiring that each has its own unique set

of message identifiers. The sensor stick component gives read access to the Inertial Mea-

surement Unit within a HyMod unit. Finally, the Bluetooth switch component allows for
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6. Control and Self-Reconfiguration

// /////////////////////////////////////////////////////////////////////

class Component

{

public:

virtual void Initialise(void) = 0;

// --------------------------------------------------

virtual bool HandleCommand(const Command& rIn , Response& rOut) = 0;

};

// /////////////////////////////////////////////////////////////////////

class Communicator

{

public:

virtual void Update(void) = 0;

// --------------------------------------------------

virtual bool Send(const Packet& rPacket) = 0;

virtual bool Receive(Packet& rPacketOut) = 0;

virtual bool Send(const Message& rMessage) = 0;

virtual bool Receive(Message& rMessageOut) = 0;

};

// /////////////////////////////////////////////////////////////////////

Figure 6.8.: The C++ definitions for the component and communicator objects.

the modem of each module to be enabled and disabled, allowing for energy to be saved

when wireless communication is not required. For communication, four communicator

objects are used, USBComms, BTComms, CANComms, and HiGenComms. The USB

and Bluetooth communicators are wrappers around a common SerialComms class, with

different definitions for which serial link is used. The CAN communicator deals with

transferring packets across the CAN bus to other modules (messages cannot be sent over

CAN as they lack address information). Finally, the HiGen communicator deals with

sending and receiving messages and packets across HyMod’s internal I2C communication

bus to the HiGen Controller boards. Four HiGen communicators are registered with

the ModuleController, one per connector. Figure 6.9 shows a block diagram of how the

components and communicators of a HyMod unit link to the ModuleController class.

The main operation of the ModuleController is performed by calling the function Update.

This function is responsible for updating all registered communicators and processing

any messages and packets they receive. Processing of messages consists of converting

them to commands (if possible) and passing them to each registered component in turn.

If the command is handled by a component, a response is created and sent out via the

same communicator the original message came in on. If the command is not handled, it

gets discarded. Note that if a response message is received, it is ignored by this function
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Figure 6.9.: A block diagram of how a ModuleController connects to the components and
communicators of a single HyMod unit. The arrows indicate the direction
data can be exchanged.

so that code external to the ModuleController can process it. To send command messages

to a neighboring module, the Send function on the specific communicator needs to be

called directly. Continuing with the Update function, processing of packets is performed

by first decrementing the jump count of each one received, then checking whether the

current module is the intended destination. If the packet is not for the current module,

and the jump count has not reached zero, then it is forwarded via all communicators

except the one that received it. If the packet is for the current module, then their type

is checked, with command packets being dealt with in the same manner as command

messages, and response packets being stored for recall by the WaitForResponseFrom

function. During both these paths, the sequence numbers of the packets are checked

to discard any echoes caused by packets taking multiple network routes. Sending of

command packets is performed by calling SendCommandTo on the ModuleController,

which forwards them via all registered communicators, unless they are intended for the

current module, in which case they are handled like command message. This process of

sending and handling messaged and packets allows for the concurrent use of distributed

and centralised control of the HyMod system. Pseudocode for Update, SendCommandTo

and WaitForResponseFrom, as well as key sub-functions, can be seen in Appendix D.
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6. Control and Self-Reconfiguration

6.3. Self-Reconfiguration Scenario

Self-reconfiguration is a complex problem for the control of modular robots [130], as on

the hardware side it requires the coordination of multiple modules and on the software

side it requires algorithms capable of planning the sequence of module motions needed to

transform one configuration of modules in to another. Due to the algorithmic complexity

of self-reconfiguration, there is yet to be a generic solution to the problem that can be

applied to any type of module.

To demonstrate the capabilities of the HyMod control architecture, a self-reconfiguration

scenario involving two HyMod units and the Modular Surface extension has been chosen.

The two units are arranged in the α1 configuration (Figure 4.4) and connect to the

surface via their end wheel connectors, forming a tower. The objective of the scenario is

for the two modules to self-reconfigure from one arbitrary grid position on the surface to

another. Although this scenario is relatively simple compared to other demonstrations

of self-reconfiguration [37, 16, 17, 18], it is sufficient to show that the HyMod system

has the capability to self-reconfigure.

6.3.1. 3D Simulator

Simulations play an important role in the development of reconfigurable modular robots.

Not only do they offer the ability to trial module concepts before investing in hardware,

they can also demonstrate the capabilities of a system when scaled up to many hundreds

of modules, well beyond what may be currently achievable [131] (e.g. due to technology or

financial limitations). Examples of simulators for modular robots include CubeInterface

for the Molecubes platform [69, 24], and the Unified Simulator for Self-Reconfigurable

Robots [132].

To aid in the creation of an algorithm for performing the described self-reconfiguration

scenario, an interactive 3D simulator was produced. The simulator is built in C++ and

uses the Object-Oriented Graphics Rendering Engine (OGRE) [133] for real-time 3D

rendering, and wxWidgets [134] for the graphical user interface. To accommodate the

multiple module types of the HyMod system, each is represented in memory as a tree

data structure consisting of three object types:

122



6.3. Self-Reconfiguration Scenario

Figure 6.10.: The schematic viewer window for a scale model of the HyMod unit, showing
the tree structure and 3D render of the module (left), and the placement
of the parts that form the module (right). Magenta cubes, cyan cylinders,
and orange discs depict model, actuator, and connector parts, respectively.
The X, Y, and Z axes of each part are shown in red, green, and blue,
respectively.

� ModelPart - A structural element, supporting the assignment of geometric data.

Multiple actuator and connector parts can be children of a model part.

� ActuatorPart - A degree of freedom between two structural elements of a module.

Only a single model part can be a child of an actuator part.

� ConnectorPart - A connection mechanism that is used to attach to other module’s

connection mechanisms. No object can be a child of a connector part.

These object types form a Schematic, that can either be hard-coded or loaded in from

a file. The file format used for module schematics is the eXtensible Markup Language

(XML), as its structure of tags matches that of a tree. Loaded or generated schematics

can be opened in a viewer window to confirm their tree structure and object placement

is as intended. The viewer window of a scale model of HyMod (Section 4.3.1.1) can be

seen in Figure 6.10, and the XML file it was loaded from can be seen in Figure 6.11.
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6.3. Self-Reconfiguration Scenario

Figure 6.12.: A 3D render from the simulator of a configuration of 23 HyMod scale
models forming a hexapod. Three modules are used for each leg, and five
for the spine.

To perform simulations with multiple connected modules, a graph data structure is used,

with modules being vertices and connections between modules being edges. Each vertex

contains a module schematic reference, current actuator values, and matrix information

for distance checking and rendering purposes. Each edge contains details of the specific

modules and connectors they are linking together. By using this representation, any

connected structure of modules can be created. As an example, Figure 6.12 shows a

hexapod configuration composed of 23 HyMod scale models.

6.3.2. Surface Traversal Algorithm

To traverse a tower of two HyMod units in an α1 configuration from one arbitrary posi-

tion on a Modular Surface extension to another requires the tower to perform a number

of self-reconfiguration steps. The number of steps is dependent on the relative difference

between the x and y coordinates of the two positions (their Manhattan distance), and

can be calculated using the following equation,

S = abs(Xa −Xb) + abs(Ya − Yb) (6.1)
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6. Control and Self-Reconfiguration

Table 6.1.: The state sequence performed to translate a two HyMod unit tower in a (a)
forward and (b) reverse direction along a Modular Surface. T0 and T1 denote
towers with unit 0 and 1 at the top, respectively. ↓ and ↑ represent lowering
and raising, respectively.

State T0 ↓ L ↑ T1 ↓ L ↑ T0

Hinge Angle 0° → +90° ← 0° ← -90° → 0°

Top Module 0 0 - 1 1 1 - 0 0

(a)

State T0 ↓ L ↑ T1 ↓ L ↑ T0

Hinge Angle 0° ← -90° → 0° → +90° ← 0°

Top Module 0 0 - 1 1 1 - 0 0

(b)

where S is the number of steps, Xa and Ya are the coordinates of position a, and Xb

and Yb are the coordinates of position b. Each step moves the tower closer to the goal

position by translating it into an adjacent grid position along whichever axis it is facing.

To change axis, a rotation of the wheel connector attached to the surface is required

between steps.

Self-reconfiguration steps involve four operations; lowering the tower to form a line,

connecting the line to the adjacent grid position, disconnect the line from the current

grid position, and raising the line to form a tower. Performing this sequence of operations

reverses the orientation of the tower, requiring joint motions be inverted and module

references switched in order for the tower to continue moving in the same direction. For

example, a tower starting with a HyMod unit labelled 0 on top (T0), can transform to a

tower with a unit labelled 1 on top (T1) by actuating the joints of both units to +90 or

-90 degrees to form a line, then reversing that motion. Table 6.1 shows the corresponding

joint angles and top modules for a tower moving forward and backward along a Modular

Surface. Note how the hinges of the modules only rotate in a single direction whilst a

given HyMod unit is on top.

To implement the surface traversal algorithm in simulation, the simulator was modified to

create the required configuration of tower and surface, and specify random goal locations

for the tower to move to. Movement of the tower is performed using the state machine

shown in Figure 6.13, with lower, disconnect and turn commands being issued by the
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6.3. Self-Reconfiguration Scenario

tower

lowering connect

line

raising disconnect

turning

lower

turn +90

turn −90

update

connect

update

connected

failed

disconnect

update

raise

failedupdate

raised

update

turned

Figure 6.13.: The state machine used to control the self-reconfiguration of two connected
HyMod units in the α1 configuration (Figure 4.4) across a Modular Surface
extension. Blue dashed lines denote functions that are triggered by the
traversal algorithm.

algorithm based on the tower’s current position and orientation. Inversion of the tower

is accounted for with variables rather than separate states. This state machine has been

designed to work for controlling both the simulation and the physical system via the

control architecture, hence the failure paths. Snapshots of the simulated HyMod tower

performing surface traversal on a 5 x 5 Modular Surface can be seen in Figure 6.14.

6.3.3. Experimental Setup

To illustrate the applicability of the surface traversal algorithm, the experimental setup

shown in Figure 6.15 was assembled. The setup consists of two HyMod units and the 4 x

3 Surface extension. The HyMod units are tethered to a bench power supply set to 8.4 V

(replicating the maximum battery voltage), and the Surface extension is powered by a

9 V DC wall adapter. A USB cable is connected between the Surface and an external

computer to allow for centralised control of the setup.

Due to time constraints on the project, work on integrating the surface traversal algo-

rithm with the experimental setup will be the focus of future research efforts.
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6. Control and Self-Reconfiguration

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s)

Figure 6.14.: Snapshots of a two HyMod unit tower self-reconfiguring from an arbitrary
starting position of (0, 1) to an arbitrary goal position of (1, -2) on a 5 x
5 Modular Surface, in simulation. Joints are moved in 45° increments.
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6.3. Self-Reconfiguration Scenario

(a)

(b)

Figure 6.15.: The experimental setup that will be used for future demonstrations of the
surface traversal algorithm, with the HyMod tower oriented towards the
(a) front, and (b) side.
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6. Control and Self-Reconfiguration

6.4. Summary

This chapter presented a novel software architecture for the control of sets of connected

HyMod units and extensions. The architecture allows for the concurrent use of central-

ized and distributed module control strategies, via the use of a custom message routing

protocol that works across HyMod’s network of communication channels, forwarding

messages between modules when necessary. Each module type implements a standard-

ized controller for dealing with the protocol, and adapts it to expose their specific func-

tionality to the network. This approach offers an advantage over previous approaches

to module control, by allowing modules with varying capabilities to co-exist in the same

network.

To aid in the deployment of the messaging protocol, a frame-based communication pro-

tocol for asynchronous serial was developed, for use between modules and from modules

to external computers. This protocol allows for messages to be transmitted as contiguous

blocks, with acknowledgements returned to confirm they were received. These are used

as a basis for a custom handshaking routine, allowing serial devices to not only know if

their neighbor is operational, but also allow for essential information such as identifiers

and orientation to be exchanged during an initial connection phase. The frame-based

serial protocol and handshaking routing enable robust transmission of messages between

modules in a network.

To demonstrate the control of multiple modules, a self-reconfiguration scenario was pre-

sented, consisting of two HyMod units in a tower formation traversing a Modular Surface

extension. An algorithm for the traversal process was devised that takes advantage of

the novel joint and connector arrangement of HyMod, and a novel 3D simulator created

to verify the algorithm’s effectiveness. The simulator allows for multiple module types

to be defined in files and loaded in to create a connected structure that can be controlled

by the algorithm in real-time. Finally, an experimental setup for recreating the results

of the simulator on the physical system was shown.
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This thesis presented the design, implementation and study of a new self-reconfigurable

modular robotic system for use as a research and education platform, called HyMod.

The HyMod system is build using off-the-shelf and easily acquirable bespoke compo-

nents, such as printed circuit boards, and makes extensive use of 3D printing technology.

The system is intended for experiments relating to self-assembly, self-reconfiguration, and

collective locomotion, as well as for demonstrating tasks relevant to the areas of reconfig-

urable manufacturing, search and rescue, and space exploration. In addition, the HyMod

system improves upon the state of the art in the areas of mobility, self-reconfigurability,

and extendibility. This is achieved by a combination of a high-speed genderless con-

nection mechanism (HiGen), a hybrid mobile and self-reconfigurable robotic module

(HyMod), a hardware and electronics framework for extension modules, and a software

architecture for the centralized and distributed control of modules.

The HiGen connector is four times symmetric and is capable of joining with other HiGen

connectors in a manner that allows either side to disconnect in the event of failure. The

mechanism is capable of extending out of and retracting in to its housing, allowing for

electrical connections to be made and broken, as well as clearance to be created between

two neighboring connectors. The electrical contacts allow for the concurrent use of local

and global communication protocols, as well as power sharing techniques. Additionally,

the relative orientation of connectors can be determined based on the unique pattern

of connections formed at each symmetry interval. Experiments were conducted with

a pair of connectors, testing their actuation speed, electrical connectivity, connection

repeatability, and load capacity. Actuation results showed that the mechanism is able

to actuate in under 0.3 s, a speed that is, to our knowledge, an order of magnitude faster

than existing mechanical genderless connection mechanisms that feature single-sided

disconnect.

HyMod is a new robotic module that is a hybrid between chain, lattice and mobile self-

reconfigurable modular robots. Its hybrid nature is achieved using a three degrees of
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freedom spherical joint and four HiGen connectors, enabling it to not only rotate freely

in place within a cubic lattice position, but also act as a differential wheel setup for

individual mobility when away from a connected structure. To our knowledge, HyMod

is the first robotic module to combine these two capabilities. An analysis of the module

is presented, detailing its symmetry, ability to form configurations and self-reconfigure

between them, as well as the clearance considerations for free in place rotation. The

mechanical and electrical properties of the completed module are also presented. Ex-

periments were conducted with a single HyMod unit, testing its driving and lifting

capabilities. Results show that the module is able to drive at 0.1 m s−1 and can lift a

weight equivalent to 1.8 modules in-line.

A framework for extension modules has been devised for HyMod. Extensions introduce

functionality to a modular robot that its modules may lack or could be impractical to

replicate with a collection of modules. This framework accelerates the creation process

of specialized or task-specific modules for the HyMod system, by providing a passive

variant of the HiGen connector, a pick-up location template, and internal electronics.

Four extension module types have been built using the framework; a Gripper extension,

a Mecanum Wheel extension, a Camera extension, and a Modular Surface extension.

Details of each extension are given, as well as which aspects of the framework each of

them adopts.

A software architecture has been implemented for the HyMod system. The architecture

allows for the concurrent use of both centralized and distributed module control strate-

gies, and is built around the concept of message routing, enabling information to be

exchanged between modules in a transparent manner. Details of the message structures

and routing procedures of the architecture are given, as well as the logic for reliable

communication between neighboring modules. A self-reconfiguration scenario involving

two HyMod units and the Modular Surface extension was proposed, and demonstrated

in simulation.

We believe that the HyMod system has the potential to advance the field of self-

reconfigurable modular robotics, by being a platform for research in to modular robotics

that others can adopt, and highlighting modular robot functionality that future sys-

tems should aim to incorporate, such as high-speed genderless connection, free in place

rotation, and independent module mobility.

132



7.1. Discussion

7.1. Discussion

With the current iteration of the HyMod system being complete, now presents an op-

portunity to discuss how successful it is in achieving the requirements derived from the

original objectives. The discussion is divided into achievements and limitations, with a

vision for the future of the field also presented.

7.1.1. System Achievements

Beyond the successful creation of a self-reconfigurable modular robot, there are a number

of achievements of the HyMod system that are worth a specific mention:

� Connection Mechanism - Developed HiGen, a new genderless mechanical con-

nection mechanism for modular robots. The connector incorporates many useful

features from past designs such as identical operation (requirement C.1.3), four

times symmetry (requirement C.1.4), no power required to maintain a connection

(requirement C.1.5), and electrical pathways (requirement C.2.4). The main ad-

vantage of HiGen over other genderless designs is its high-speed actuation, which

not only surpassed performance requirement C.4.2 by a factor of four, is also an

order of magnitude faster than other genderless designs. This speed has the poten-

tial to significantly reduce the self-reconfiguration time of any modular robots that

include HiGen. Another advantage of the connector is its ability to fully separate

from a neighboring connector (requirement C.1.6), as not only does this disconnect

the multiple electrical pathways of the connector, it also creates clearance between

connectors that is exploited by HyMod units to allow for free in place rotation.

This is a beneficial ability for modular robots that relatively few systems have

incorporated thus far. On the electrical side, HiGen is able to detect its actuation

state (requirement C.2.3a), as well as the presence of a neighboring connector (re-

quirement C.2.3b) and its relative orientation (requirement C.2.3c). These latter

two pieces of information are useful for module configuration discovery.

� Connector Reliability - Of all the parts of the HyMod system, HiGen has proved

to be the most reliable, having its actuation be formally tested in over 200 trials

and informally tested hundreds of times more during the development of HyMod

and its extension. The only time actuation fails is when the misalignment between
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connectors is greater than its designed limits (requirements C.4.3 and C.4.4), which

the mechanism can detect and terminate the actuation to prevent damage (require-

ment C.5.2).

� Hybrid Module - Developed HyMod, a new self-reconfigurable modular robot

capable of independent locomotion. The module features four genderless connec-

tion mechanisms, allowing it to form both chain and lattice structures (requirement

M.1.2). To make the module a hybrid, wheel-based locomotion was introduced (re-

quirement M.1.6) by having the module feature three rotational degrees of freedom

arranged in to a spherical joint. This arrangement achieves independent locomotion

without introducing dedicated drive mechanics that would otherwise add additional

complexity and weight to the module, as well as benefits self-reconfiguration when

combined with free in place rotation (requirement M.1.5). In terms of electron-

ics, HyMod incorporates various features of past successful systems, most notably,

neighbor-to-neighbor and network-based communication, wireless communication,

and power sharing (requirements M.2.4, M.2.5, and M.2.6, respectively). It also

integrates orientation and environmental sensing (requirement M.2.3). This is all

achieved whilst keeping HyMod below a 1 kg target weight (requirement M.4.1).

� Module Compactness - Given the design chosen for HyMod, the functionality

and dimensional requirements imposed on it (M.4.2), as well as the wish for it to

be composed primarily of off-the-shelf components, HyMod is relatively compact.

Although HyMod lies on the larger end of the modular robot size spectrum, to make

it smaller whilst retaining all of the included functionality would have required the

introduction of specialist or bespoke components, increasing the overall cost of the

project. Reducing the module’s size could perhaps be a research focus for a second

iteration of HyMod, if one is developed.

� System Extendibility - Developed four extension modules for the HyMod system.

These extension modules benefit from the consideration that was made for how

HiGen could be adapted to a passive design (requirement C.1.7), allowing for

them to be tools that are connected to rather than full-featured modules. This

consideration influenced the requirements for extensions, such as requiring passive

connectors (requirement E.1.2), being powered through their connector (E.2.1),

and being able to reside in pick-up locations (requirement E.1.3). It also resulted

in a framework for extensions being developed, as the common functionality, such

as driving actuators or reading sensors (requirement E.2.2a), could be designed
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once and incorporated in to multiple extension types faster than would otherwise

be possible. As extension modules are based on the HiGen design, they too have

proven to be reliable for hundreds of repeated actuations (requirement E.5.1).

� Control System - Developed a control system that successfully supports both

the centralized and distributed control of a set of connected HyMod units and

extensions. The architecture created allows for easy adaptation to the varied func-

tionality of these modules, and can be expanded to new module types in the future.

7.1.2. System Limitations

Despite the achievements of the HyMod system, there are a few limitations of the current

iteration that should be resolved by any future iterations:

� Ease of Assembly - No explicit priority was given to the complexity of the as-

sembly process of the system, meaning that HyMod units are difficult and time

consuming to put together and require the intricate manoeuvring of components.

This is due to there being no requirement for ease of assembly imposed on the

system, as well as the component dimension constraints specified by module re-

quirement M.4.2. As such, to incorporate all of the module’s required functionality

some assembly steps became more complicated than originally intended. In hind-

sight, ease of assembly should have been a requirement of the system from the

outset, with a threshold for complexity to compare against and trigger design

revisions for assembly steps that exceeded it.

� Power Sharing - Although HyMod units feature a power supply that allows

for them to be powered by a shared bus between modules, as per requirement

M.2.6, there are caveats to the final implementation that limit the usefulness of

this functionality. Specifically, only the 5 V regulator that powers the module’s

electronics and the HiGen connector motors are connected to this shared bus, not

the motors that drive HyMod’s three joints. The reason for this is because the

amount of current these motors draw under load exceeds the maximum supported

by the components of the HiGen connectors, such as the ribbon cables joining

the control board to the contact ring. As the HiGen connector was developed

before HyMod, it was unknown what the final power draw of the system would

be. Rather than redesign the HiGen connector to accommodate this higher power
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draw, which would have been a significant time investment at the stage when this

was discovered, it was opted to design the power system with the joint motors

and associated drivers excluded from the shared bus. This means that less active

modules in a configuration are unable to assist other modules with movement

activities, potentially limiting the duration of any self-reconfiguration or collective

locomotion experiments that are wished to be performed with the modules.

� Battery Charging - Even though the requirement for battery charging within

a module was achieved (M.2.6d), the solution adopted fell short of the original

intention. This intention was for each HyMod unit to incorporate a charging circuit

that would connect to the shared power bus so that one could be charged by other

units or specialised charging station modules. Unfortunately, after researching

the electronics required to implement charging circuitry for the lithium polymer

batteries, along with potential safety concerns, it was deemed unsuitable to adopt

this solution at the time. Instead, ports were added to the side of HyMod units to

allow for commercially available charging units to be connected, which still satisfies

the requirement but lacks the functionality benefits of the original planned solution.

� Operation Time - Due to delays in the project caused by the complexities of

hardware development, experiments have yet to be conducted on untethered Hy-

Mod units. As such, their operation time under various use cases has yet to be

tested, meaning that it has not been possible to verify module requirement M.4.4.

Unfortunately, it is expected that the 30 minute goal will not be achieved. This is

because HyMod was originally intended to feature two 1800 mAh batteries (one in

either side of the module) but during early assembly tests it was discovered that

the module’s wiring occupied more space than was anticipated, and it was too

late to increase the module size to resolve it. This led to smaller batteries being

sourced, both in size and capacity, whilst still matching the performance properties

of the originals. In hindsight, more internal space should have been reserved for

the battery compartments in HyMod, or the module should have been increased

in size, so that the original batteries could have been retained.

� Lifting Capability - As highlighted by the experiments conducted with a single

tethered HyMod unit, the goal of lifting at least two modules in-line with its main

joint (M.4.3) was not achieved. The power system, joint motors, and motor drivers

within HyMod were selected so that one module would be able to lift two other

modules; however, it was not anticipated that the material properties of the 3D
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printed plastic components in the connector and on the lifting mechanism would

be the limiting factor. This can be attributed in part to the lifting capability of

the HiGen connector not being tested beyond the requirement (C.4.5), meaning

that the material limitations were not discovered as early as they perhaps should

have been so that alternatives could be sourced.

� System Reliability - Due to project delays it has not been possible to assess

the reliability of the various aspects of HyMod units beyond the HiGen connec-

tor. Specifically, no experiments have been conducted to determine the reliability

(M.5.1) and repeatability (M.5.2) of the module’s joints, beyond that observed

during the lifting and driving tests. These tests should be conducted in the fu-

ture as their outcome could impact the ability for HyMod units to successfully

self-reconfigure and may require design revisions to resolve.

7.1.3. Research Vision

From undertaking this research, it is observed that modular robotics is now reaching a

point where many of the technical challenges involved in the hardware itself have been

addressed to varying extents, with new research improving upon past designs. As such,

the technology is at a level of maturity where it is already being used as educational

platforms and can begin to be considered for use in the various application areas of the

field. Because of this, it is anticipated that research over the next decade will focus more

on domain specific challenges rather than platform specific challenges, with researchers

adopting a number of standard research platforms to accelerate this effort.

In the decades beyond it is foreseeable that the field will reach the goal of creating mod-

ular robotic systems that act as tools for performing virtually any task; however, it is

not expected that a single modular robotic system will emerge. Instead there will likely

be several classes of systems, based on the scales of the tasks to be performed as well

as the environments they are being performed in. It could be possible that during this

time technologies such as rapid manufacturing may advance to the point where special-

ized robotic tools can be made to perform the tasks modular robots would otherwise

be assembled to perform, but ultimately the adaptability and self-reconfigurability of

modular systems will remain desirable properties for many application areas.
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7.2. Future Work

With the modular robotic system presented in this thesis, there are several areas where

improvements and future work can be performed. In the immediate term, the intention

for this project is to open-source all of the hardware design files and program source

files used to create the HyMod system. It is hoped that by releasing these files, other

researchers will examine and learn from the work produced here, and maybe even adopt

the HiGen connector and HyMod unit for their future research with modular robotics.

On the side of improvements, and as mentioned in the discussion section, although the

motors and power system of HyMod are theoretically capable of lifting greater than

two modules in-line, it has not been possible to verify this as the plastic 3D printed

hinge joint gears and the HiGen connector’s docking hooks are not capable of handling

more than 1.8 modules in-line without failing. With additional time and resources,

alternative manufacturing methods could be explored, such as injection moulding, or

metal 3D printing, to make these components and other critical parts stronger.

One main area for future research would be on the algorithmic side of self-reconfiguration.

Despite the HyMod system being capable of self-reconfiguration and an analysis having

been performed, to truly unlock its potential, algorithms need to be developed that take

advantage of this knowledge to allow for many HyMod units (both in simulation and

reality) to self-reconfigure between different structures autonomously. This would allow

for the benefits of free in place rotation to be further demonstrated, by having a shape

be formed within a structure of modules acting as a scaffold, for example.

Another area for future research would be on increased task complexity. With the use of

the Modular Surface, Gripper and Camera extensions, it should be possible to implement

algorithms that allow for a robot arm constructed of modules to pick up an object from

one arbitrary location to another, by recognising the shape, and therefore how to grasp

the object, for example. This and other tasks could be explored.

A final area for future research is that of fault tolerance. The system features a connector

capable of single-sided disconnect, but so far this ability has only been of benefit for

interfacing with extension modules. By exploring fault tolerance, algorithms could be

developed that allow for a set of connected modules to adapt to failure, either by self-

reconfiguring or discarding failed modules and changing their operation procedure. Both
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avenues could demonstrate the capability for the HyMod system to continue performing

tasks whilst gracefully responding to damage, for example.
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A. Two-Module Motion Capabilities

This appendix presents 3D renders of all the possible quantized joint angle combinations

(90 degree increments) for the two-module configurations presented in Section 4.3.1,

Figure 4.4. Note, rotations of wheels not connected to another module are discounted

from the combinations, as they can be cancelled out by connector symmetry. Similarly,

the configurations with two wheels connected together are considered as a single joint,

as their rotational degrees of freedom are in-line, reducing the number of configurations.

For these renders, model files from a 3D printable scale module of a HyMod unit were

used (Section 4.3.1.1).
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A. Two-Module Motion Capabilities

Table A.1.: The quantized joint angle combinations for the α1 configuration of two mod-
ules. In total there are 36 combinations, resulting from there being two hinge
joints and one wheel joint, giving 3 and 4 angles, respectively.

Hinges -90° 0° +90°

-90°

0°

+90°

(a) Wheel 0°

Hinges -90° 0° +90°

-90°

0°

+90°

(c) Wheel 180°

Hinges -90° 0° +90°

-90°

0°

+90°

(b) Wheel 90°

Hinges -90° 0° +90°

-90°

0°

+90°

(d) Wheel 270°
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Table A.2.: The quantized joint angle combinations for the α2 configuration of two mod-
ules. In total there are 36 combinations, resulting from there being two hinge
joints and one wheel joint, giving 3 and 4 angles, respectively.

Hinges -90° 0° +90°

-90°

0°

+90°

(a) Wheel 0°

Hinges -90° 0° +90°

-90°

0°

+90°

(c) Wheel 180°

Hinges -90° 0° +90°

-90°

0°

+90°

(b) Wheel 90°

Hinges -90° 0° +90°

-90°

0°

+90°

(d) Wheel 270°
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A. Two-Module Motion Capabilities

Table A.3.: The quantized joint angle combinations for the remaining configurations of
two modules. In total each configuration has 9 combinations, resulting from
there only being two hinge joints, giving 3 angles each.

Hinges -90° 0° +90°

-90°

0°

+90°

(a) β1 Configuration

Hinges -90° 0° +90°

-90°

0°

+90°

(c) γ1 Configuration

Hinges -90° 0° +90°

-90°

0°

+90°

(b) β2 Configuration

Hinges -90° 0° +90°

-90°

0°

+90°

(d) γ2 Configuration
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B. Printable Orientation Cube

This appendix includes a version of Figure 4.7 presented in Section 4.3.2 that can be

printed out and assembled in to a cube.
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B. Printable Orientation Cube
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C. Orientation Adjacency Matrices

This appendix shows the adjacency matrices of the graphs used to derive the results

presented in Table 4.2 of Section 4.3.2.
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Figure C.1.: The adjacency matrix for the no symmetries HyMod orientation graph,
covering the case in which a single unit has modules in all neighboring
cubic lattice positions. Each populated cell is a valid orientation transition,
with their colors matching those used by the orientation cube.
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C. Orientation Adjacency Matrices

AL-90
AL0

AL+90

BU0
BU+90
BB-90
BB0

CB+90

BD-90
BD0

BD+90
CL-90
CL0

CL+90
CB-90
CB0

BU-90

BB+90

BF+90
BF0

BF-90
AD+90
AD0

AD-90
AR+90
AR0

AR-90
AU+90
AU0

AU-90

CR-90
CR0

CR+90

CF+90
CF0

CF-90

C
'B
+
90

C
-B
0

C
'B
-90

B
'F
0

B
'F
-90

B
'U
+
90

B
'U
0

A
'L
-90

B
'B
+
90

B
'B
0

B
'B
-90

A
'D
+
90

A
'D
0

A
'D
-90

A
'L
+
90

A
'L
0

B
'F
+
90

B
'U
-90

B
'D
-90
B
'D
0

B
'D
+
90

C
'L
-90
C
'L
0

C
'L
+
90

C
'F
-90
C
'F
0

C
'F
+
90

C
'R
-90
C
'R
0

C
'R
+
90

A
'U
+
90

A
'U
0

C
F
+
90
C
F
0

C
F
-90

C
R
+
90

A
'U
-90

A
'R
-90
A
'R
0

A
'R
+
90

B
D
-90

B
B
+
90

B
B
0

B
B
-90

B
U
+
90

B
U
0

B
U
-90

B
F
+
90

B
F
-90

B
D
0

B
D
+
90

C
L
-90
C
L
0

B
F
0

C
L
+
90

C
B
-90
C
B
0

C
B
+
90

C
R
-90
C
R
0

A
D
0

A
D
-90

A
R
+
90

A
R
0

A
R
-90

A
U
+
90

A
U
0

A
U
-90

A
L
+
90

A
D
+
90

A
L
0

A
L
-90

C'B+90
C-B0
C'B-90

B'F0
B'F-90
B'U+90
B'U0

A'L-90

B'B+90
B'B0

B'B-90
A'D+90
A'D0

A'D-90
A'L+90
A'L0

B'F+90

B'U-90

B'D-90
B'D0

B'D+90
C'L-90
C'L0

C'L+90
C'F-90
C'F0

C'F+90
C'R-90
C'R0

C'R+90

A'U+90
A'U0

A'U-90

A'R-90
A'R0

A'R+90

Figure C.2.: The adjacency matrix for the full HyMod orientation graph, covering the
case in which a single unit has modules in all neighboring cubic lattice
positions. Each populated cell is a valid orientation transition, with their
colors matching those used by the orientation cube.
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D. ModuleController Pseudocode

This appendix contains pseudocode for the message and packet handling functions of

the ModuleController class detailed in Section 6.2.3.

Algorithm 1 The functions used during the ModuleController’s update loop, to process
incoming messages and packets and issue responses. Capitalized function names denote
those that are included in this code extract.

1: function Update()
2: for all comm ∈ Communicators do
3: UpdateCommunicator(comm)
4: ProcessReceivedMessages(comm)
5: ProcessReceivedPackets(comm)
6: end for
7: end function

8: function ProcessReceivedMessages(comm)
9: for all m ∈Messages(comm) do

10: if mCommand← ConvertToCommand(m) then
11: if mResponse← CommandComponents(mCommand) then
12: SendMessage(mResponse, comm)
13: end if
14: end if
15: end for
16: end function

17: function CommandComponents(mCommand)
18: for all comp ∈ Components do
19: if mResponse← HandleCommand(mCommand, comp) then
20: return mResponse
21: end if
22: end for
23: return null
24: end function
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D. ModuleController Pseudocode

25: function ProcessReceivedPackets(comm)
26: for all p ∈ Packets(comm) do
27: p.JumpCount← p.JumpCount− 1
28: ourAddr ← GetAddress()
29: if p.DestinationAddress = ourAddr then
30: if p.Type = COMMAND then
31: if pResponse← ProcessCommandPacket(p, ourAddr) then
32: SendPacket(pResponse, comm)
33: end if
34: else if p.Type = RESPONSE then
35: ProcessResponsePacket(p)
36: end if
37: else
38: ForwardPacket(p, comm)
39: end if
40: end for
41: end function

42: function ProcessCommandPacket(pCommand, ourAddr)
43: address = pCommand.SourceAddress
44: currentNumber = pCommand.SequenceNumber
45: pLastResponse =LastResponseSent(address)
46: lastNumber = pLastResponse.SequenceNumber
47: nextNumber =CalculateNext(lastNumber, currentNumber)

48: if currentNumber = nextNumber then
49: pResponse←CreateEmptyPacket(ourAddr, address, currentNumber)
50: if mCommand← ExtractCommand(pCommand) then
51: if mResponse← CommandComponents(mCommand) then
52: pResponse.Message← mResponse
53: end if
54: end if
55: LastReceivedJumpCount(address)← pCommand.JumpCount
56: LastResponseSent(address)← pResponse
57: return pResponse . Return a new response

58: else if currentNumber = lastNumber then
59: if pCommand.Identifier = pLastResponse.Identifier then
60: if pCommand.JumpCount =LastReceivedJumpCount(address) then
61: return pLastResponse . Return the previous response
62: end if
63: end if
64: end if
65: end function
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66: function ProcessResponsePacket(pResponse)
67: address← pResponse.SourceAddress
68: if pResponse.SequenceNumber =GetSequenceNumber(address) then
69: StoreReceivedResponse(pResponse)
70: AdvanceSequenceNumber(address)
71: end if
72: end function

73: function ForwardPacket(p, sourceComm)
74: if p.JumpCount > 0 then
75: for all comm ∈ Communicators do
76: if comm 6= sourceComm then
77: SendPacket(p, comm)
78: end if
79: end for
80: end if
81: end function

Algorithm 2 The function used to have a ModuleController either act on or forward a
command to other modules. Capitalized function names denote those that are included
in this code extract.

1: function SendCommandTo(mCommand, address)
2: ourAddr ← GetAddress()
3: number ←GetSequenceNumber(address)
4: pCommand←CreatePacket(ourAddr, address, number,mCommand)
5: if address = ourAddr then
6: if pResponse← ProcessCommandPacket(pCommand, ourAddr) then
7: ProcessResponsePacket(pResponse)
8: end if
9: else

10: ForwardPacket(pCommand, null)
11: end if
12: end function
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D. ModuleController Pseudocode

Algorithm 3 The function used to have a ModuleController wait for a response to
a command. Capitalized function names denote those that are included in this code
extract.

1: function WaitForResponseFrom(address,millis)
2: prevT ime← GetT ime()
3: repeat
4: Update()
5: currentT ime← GetT ime()
6: until currentT ime− prevT ime > millis or ResponseReceivedFrom(address)
7: if ResponseReceivedFrom(address) then
8: return LastResponseReceived(address) . Return the received response
9: end if

10: end function
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