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Abstract 

The research described in this thesis concerns the design and synthesis of three-

dimensional pyrrolidine fragments for use in fragment-based drug discovery. Chapter 

1 provides an overview of fragment-based drug discovery and highlights the 

importance of three-dimensionality in drugs and fragments. 

 
In Chapter 2, a principal moments of inertia (PMI) analysis of the three-dimensional 

shape of pyrrolidine fragments in described. The PMI plot that was used to select 

pyrrolidine fragments with methyl and methyl ester groups and four different nitrogen 

substituents (NH, NMe, NMs, NAc) is shown below. 
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Conformations with energy difference ≤ 1.5 kcal mol-1 
 

 

In Chapter 3, the synthetic efforts towards some of the three-dimensional pyrrolidine 

fragments are described. The synthesis of A1·HCl, A2·HCl, A3-4 and A40 was 

successful, but problems were found in the synthesis of H16 and G16. 
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Chapter 1: Introduction 

1.1 Fragment-Based Drug Discovery 

1.1.1 Introduction to Fragment-Based Drug Discovery 

Over the last two decades, fragment-based drug discovery (FBDD), also known as 

fragment-based lead discovery (FBLD), has become an established alternative 

approach for identifying new drugs. The approach is different to the conventional high-

throughput screening (HTS) approach.1–4 There are already two FDA approved drugs, 

Vemurafenib4,5 and Venetoclax4,6 (Figure 1.1), and many more clinical drug 

candidates that have been developed from using the FBDD approach. Vemurafenib 

was developed by Plexxicon for the treatment of late-stage melanoma, whereas 

Venetoclax was developed by AbbVie and Genentech for the treatment of chronic 

lymphocytic leukaemia.4–6 

 

 

Figure 1.1: The Structure of Vemurafenib and Venetoclax 
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20). Some typical fragments 1–4 are shown in Figure 1.2. Fragments 1 and 2 were 

identified from screening against choline kinase α (ChoKα) and could be further 

developed into antitumour agents.7 Indole fragment 3 was developed into an inhibitor 

of Matrix metalloproteases-13 (MMP-13) which is a protein for arthritic diseases 

medication.8 Bicyclic thiazine 4 was a fragment hit and was developed into a BACE1 

inhibitor for potential treatment of Alzheimer's disease.9 

 

 

Figure 1.2: Examples of fragments from FBDD programmes. 

 

There are several advantages of using a fragment-based screening method over HTS 

methods in drug discovery programmes. One of the advantages is that fragments have 

a wider chemical space coverage. This was statistically quantified by Hann et al.10,11 

and Reymond et al.12 In the study, they estimated the total number of possible 

compounds in the universe to be near to 1060. Thus, with a large screening library 

which typically has 106 compounds, it can barely touch the surface of the chemical 

space of all the compounds in the universe. However, for fragment space, it was 

estimated that there are 14 million compounds that have molecular weight below 160. 

Hence a fragment screening library of 10 000 compounds can significantly cover the 

available chemical space. Therefore, their result suggests that FBDD covers a much 

greater area of chemical space than traditional HTS methods. Another benefit of 
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developing lead compounds from fragments is that it can give a straightforward 

chemical optimisation in the later stages of drug discovery.13 Moreover, starting from 

a higher ligand efficiency (LE), a small fragment could lead to a final optimised ligand 

that is relatively low in molecular weight (MW < 500 Da). Another advantage of 

FBDD is that the structure-activity relationships (SAR) can be obtained more quickly 

since analogues can be easily obtained synthetically or from commercial sources. 

Overall, FBDD tends to be less resource dependent than HTS and a summary of the 

two approaches is shown in Figure 1.3. However, the key feature of FBDD is also a 

drawback as small fragments give weaker binding affinities in the millimolar or 

micromolar region. This means that highly sensitive biophysical screening methods 

are required instead of bioassays.14  

 

Figure 1.3: Comparison of HTS and FBDD approaches. (Figure adapted from reference 15) 

 
1.1.2. Properties of Fragment Libraries 

Similar to the ‘rule of five’, which was promoted by Lipinski et al.16 in 1997 to define 

drug-like properties, fragments adhere to a ‘rule of three’. The ‘rule of three’ properties 



 10 

are:  molecular weight (MW) < 300 Da (i.e. HAC ≤ 20),  total number of hydrogen 

bond donors (HBD) and acceptors (HBA) ≤ 3, ClogP ≤ 3, number of rotatable bonds 

(NROT) ≤ 3 and a polar surface area (PSA) ≤ 60 (Table 1.1).13,17 

 

Table 1.1: The comparison between 'rule of three' and 'rule of five'. 

Rule of Three Molecular Descriptors Rule of Five 

Less than 300 Da Molecular Weight Less than 500 Da 

No more than 3 Hydrogen-bond Donors No more than 5 

No more than 3 
Hydrogen-bond 

Acceptors 
No more than 10 

Less than 3 ClogP Less than 5 

 

 

It is also advisable that fragment libraries avoid structures that do not behave well in 

screening. Such compounds include pan-assay interference compounds (PAINS), a la 

assay to detect reactive molecules (ALARM) and ‘Shoichet’ aggregators. Avoiding 

these compounds in the fragment selection process will promote a higher hit rate and 

prevent false results at later stages in a drug discovery programme.13,17–22 Examples of 

typical PAINS are shown in Figure 1.4. 
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Figure 1.4: Examples of PAINS motifs. 
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Another key aspect of a successful fragment-based drug discovery project is to 

maintain the integrity of the fragment collections, as impure samples can then 

compromise the generation of fragment hits. It is thus necessary to ensure that the 

library stocks are chemically stable over a long period of time. Library fragments 

should be stored as dry powders or in solvent (e.g. DMSO) and their qualities should 

be monitored by 1H NMR spectroscopy and/or LC-MS repeatedly over months.20 
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1.2 Screening of Fragment Libraries 

The first step of a HTS drug discovery programme for SAR studies starts with 

bioassays. In this approach, screening of a very large collection (typically 106–107) of 

drug-like molecules is often carried out and hits can have good potency. These studies 

might provide an early indication of relevant activity. In contrast, with FBDD, the 

detection of the weak fragment binding using bioassays has proven to be difficult. 

Therefore, fragment-based screening (FBS) in FBDD projects is carried with much 

more sensitive biophysical techniques. Nuclear magnetic resonance-based screening, 

surface plasmon resonance (SPR) and X-ray crystallography are the most common 

techniques for fragment screening. 
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1.3. Case Studies of FBDD 

1.3.1 Vemurafenib – The First FDA-approved Drug 

The late-stage melanoma medication, Vemurafenib, was approved for clinical use in 

August 2011. It was developed by Plexxicon and it is the first marketed drug developed 

using the FBDD strategy.5,23,24  

 

This discovery of Vemurafenib began with screening a library of 20 000 fragment-like 

compounds with molecular weight between 150–350 Da at a concentration of 200 µM. 

Five different kinases were screened and there were 238 compounds that inhibited at 

least three kinases (PIM1, p38, and CSK) over 30% of their activity. After being 

confirmed with co-crystallisation, over 100 compounds were found to be bound with 

at least one of the three kinases and exclusively with PIM1 for low affinity compounds. 

Figure 1.5 shows the lead generation of Vemurafenib. One of the ATP site binders in 

the PIM1 co-structure 7-azaindole, was selected for further development to give 3-

aminophenyl-7-azaindole. This compound had improved potency with PIM1 and had 

only one binding mode. Upon further coupling with a 3-methoxybenzyl moeity, the 

potency improved significantly with FGFR1, which is likely due to the additional 

hydrogen bond interaction between the methoxy group and the protein. Additional 

modification of the 3-(m-methoxybenzyl)-7-azaindole around the 7-azaindole core 

identified PLX4720. This compound had an excellent potency with B-Raf and was 

subsequently developed into Vemurafenib.  
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Figure 1.5: The FBDD process in the development of Vemurafenib. (Figure adapted from 
reference 24) 

 

 

N N
H

HN

N N
H

N N
H

O

O
F

F NH
SO

O

Cl

3-aminophenyl-7-azaindole
PLM1 IC50 > 200 µM

LE ~ 0.34
One Binding Mode

3-(-m-ethoxybenzyl)-7-azaindole
FGFR1 

IC50 = 1.9µM
LE = 0.40

PLX4720 
B-Raf 

IC50 = 160nM

Lead
Generation

Scaffod

Screening

Profile
Optimisation N N

H

O
F

F

Cl

HN S
OO

Vemurafenib
B-Raf 

IC50 0.031µM
LE = 0.31
HAC = 33

N N
H

7-azaindole
PLM1 IC50 > 200 µM

LE < 0.56
HAC = 9

Scaffold
Validation



 15 

1.3.2 ASTX660 – Phase I Clinical Trial Candidate for Cancer Treatment   

The Astex Phase I candidate, ASTX660, is a dual inhibitor of apoptosis (IAP). This is 

another example of FBDD used in the development of a cancer therapy. ASTX660 is 

a novel non-peptidomimetic inhibitor that targeted both XIAP and cIAP1 in vivo. 

XIAP and cIAP1 belong to the family of IAP which has a role to block programmed 

cell death.  

 

This discovery of ASTX660 began with a virtual screening of 100 fragments against 

XIAP-BIR3 and piperazine amide 5 was selected (Figure 1.6). Fragment 5 had a rather 

weak affinity, but it had balanced activity at the targets. In order to improve affinity, a 

methyl group was added to the piperazine to fill a small hydrophobic pocket that is 

normally occupied by the alanine side chain. Also, the piperidine was replaced by a 

pyrrolidine to yield fragment 6 that had significantly improved activity.  

 

 

Figure 1.6: The FBDD of ASTX660. 
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Next, the pyrrolidine group was changed to a fused-ring as in fragment 7 which 

afforded better binding to the target. The next steps in the lead generation were 

introduction of the phenyl group, and modification on the indoline and the piperazine. 

This gave the lead compound 8 with nanomolar potency against both XIAP-BIR3. 

After profile optimisation, 8 was then further developed into the clinical trial candidate 

ASTX660 for cancer treatment.25 

 

1.3.3 Small Molecule Choline Kinase α (ChoKα) Inhibitor 

A novel small molecule which inhibits Choline Kinase α (ChoKα) was developed by 

ARIAD Pharmaceuticals via a FBDD method. The ChoKα inhibitor showed 

potentially useful antitumour properties. The project began with the structure-guided 

hit exploration by virtual screening against ChoKα to identify compound 9 (Figure 

1.7). Then, SAR of the initial fragment hit 9 was used to search for commercially 

available analogues by docking studies with the binding site in the target. The results 

showed that compound 10 gave the highest potency and exhibited the best interaction 

with the target. Further fragment optimisation and elaboration, by addition of the 

phenyl and piperazine group to give 12, gave a significant improvement of potency. 

Finally, optimisation to a biphenyl system gave lead compound 13. The X-ray 

crystallography showed that lead compound 13 bound in the pocket of the ChoKα 

protein and the water molecule displaced in the co-structure gave hydrogen bonding 

interactions.7 
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Figure 1.7: Summary of the FBDD process of the discovery of a ChoKα inhibitor. 
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1.4. Three Dimensionality in Drug and Fragments 

1.4.1 Importance of Three-dimensional Character in Drugs 

There is growing interest in three-dimensionality in drug molecules and studies have 

investigated the shapes and functionality of different drugs. Lovering et al.26 

introduced the concept of measuring molecular complexity by carbon saturation and 

chiral centres. Their rationale was that as the level of saturation increased, more three-

dimensional shapes followed. In addition, the higher the number of chiral centres, the 

greater the number of potential isomers for a particular compound.  

 

Lovering introduced a molecular descriptor called fraction sp3 (Fsp3) for the 

calculation of a molecule’s saturation. Fsp3 is defined as the number of sp3 hybridised 

carbons divided by the total number of carbon atoms in the molecule: 

Fsp$ =
Number	of	sp$	hybridised	carbons

𝑡𝑜𝑡𝑎𝑙	𝑐𝑎𝑟𝑏𝑜𝑛	𝑐𝑜𝑢𝑛𝑡  

As shown in Figure 1.8, there are only six isomers of dimethylpyridine. In contrast, 

for the more saturated analogue, dimethylpiperidine, there are 32 isomers even though 

there is little increase in molecular weight. †  There are more dimethylpiperidine 

isomers because there are more positions to attach the methyl groups and cis/trans 

isomers are possible. 

                                                
 
†  Lovering incorrectly calculated the total number of isomers for both 
dimethylpyridine (5) and dimethylpiperidine (34). 
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Figure 1.8: Comparison of the number of isomers of dimethylpyridine and 
dimethylpiperidine (a representative set of isomers). 
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a drug. High values of Fsp3 mean that the compound has higher complexity, but it can 

not necessarily be concluded that the compound has higher three-dimensionality. 

Therefore, a correlation can only be drawn between complexity with Fsp3 and chiral 

centre count.26  

 

In a separate study, researchers at GlaxoSmithKline studied the influence of aromatic 

ring count on the drug development process. In order to carry out the study, they 

defined the developability parameters as follows: aqueous solubility, lipophilicity 

(ClogP), and bioassays with serum albumin binding, CyP450 inhibition and hERG 

inhibition. These parameters are useful guidelines to indicate how likely a candidate 

is to become a drug. In their analysis, they selected 280 compounds from the 

GlaxoSmithKline pipeline which came from preclinical candidate selection, first time 

in human, phase 1, phase 2 and proof-of-concept trials. The number of compounds in 

each category and their mean aromatic ring count are shown in Table 1.2. 

Table 1.2: Mean aromatic ring count in compounds in the GlaxoSmithKline pipeline. 

 CSa FTIHa P1a P2a POCa 

Countb 50 68 35 53 96 

Mean aromatic ring 

count 
3.3 2.9 2.5 2.7 2.3 

(a) CS=Preclinical candidate selection; FTIH=first time in human; P1=phase 1; 
P2=phase 2; POC= proof-of-concept trials. (b) Count=total number of compounds 

in each category. 

 

This analysis of mean aromatic ring count showed a decreasing trend in each stage of 

drug development, from 3.3 for the preclinical candidate selection to 2.3 for the proof-

of-concept compounds. Furthermore, the average aromatic ring number in oral drugs 
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is 1.6, as there is a downward trend in number of aromatic ring during the drug 

development process. Therefore, the results support the idea that the lower the 

aromatic ring count of a compound, the better the chance of it progressing over the 

developmental process. This result might be correlated to the aqueous solubility and 

lipophilicity. 

 

Based on this observation, they investigated whether there is any correlation of the 

aromatic ring count with the developability parameters. ~26 000 compounds from their 

collection were analysed for their number of aromatic rings and ClogP. The results 

showed a perfect correlation between these two indexes (Figure 1.9).  As the aromatic 

ring count rose, the lipophilicity also increased and the aqueous solubility decreased.  

 

 

Figure 1.9: Mean lipophilicity against aromatic ring count. (Figure adapted from reference 
27) 

 

The results from bioassays also show a tendency of increased activity within all 

bioassays as the aromatic ring count increases (Table 1.3). Serum albumin binding 

assay is a bioassay which tests the ‘mobility’ of a drug in plasma. There is a low 

availability of the drug for the target if the serum albumin binding activity is high. For 
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CyP450 inhibition and hERG inhibition, bioassays are used to test the toxicity level in 

vivo. If the activities are high in these bioassays, the in vivo toxicity levels are high, 

which is an undesirable property of a drug. 

 

Table 1.3: Number of aromatic ring in a molecule and its activity with different bioassays. 

No. of aromatic rings 1 2 3 4 5 

Serum albumin binding (%) 78 88 93 96 96 

P450 3A4 inhibition (pIC50) 4.7 4.9 5.2 5.4 5.6 

hERG inhibition (pIC50) 5.2 5.6 5.7 5.7 5.5 

 

 

Overall, the GlaxoSmithKline results clearly pointed out that the higher the number of 

aromatic rings, the lower the potential for drug developability into an oral drug, which 

is reflected by the developability parameters. Moreover, they suggested that fewer than 

three aromatic rings in a molecule is more favourable for its development into a drug.27 

 

In another study, Aldeghi et al. looked further into ring structures in different drugs by 

analysing the architectures of marketed drugs and their biological targets. For their 

study, ring structures were defined in the following way. All ring systems should have 

at least one shared atom. The three-dimensional parts in a given drug should have a 

ring with at least one sp3 hybridised atom in them. If there are only sp2 hybridised 

atoms, the rings are defined as two-dimensional. This is shown using the example of 

the drug lndinavir (Figure 1.10). Ring structures highlighted in red are two-
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dimensional, in dark blue is three-dimensional and in light blue is three-dimension 

hybrid/fused (3D-h) ring system. 

 

 

Figure 1.10: Two- and three-dimensional features in Indinavir. 

 

Aldeghi evaluated and categorised the drug biological targets information which were 

extracted from the DrugBank database and EBI DrugPort into 15 target classes. Each 

drug was assigned to a single target class. GPCRs, ion channels and nuclear receptors 

were the most common drug target classes. The results are shown as percentages in 

Figure 1.11. The two- and three-dimensional ring systems of each drug were 

formulated in every target class. The analysis showed that three-dimensional systems 

appeared in all target classes. Moreover, most of the target classes were targeted more 

with three- than two- dimensional systems. For instance, nuclear receptors had the 

highest amount of three-dimensional systems (91.7%), whereas ligases had the lowest 

(50%). The findings showed that three-dimensional systems in drugs had the highest 

proportion across the whole range of classes, which could indicate that three-

dimensional structures are more selective than two-dimensional structures. 
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Figure 1.11: Ring systems in different biological targets. (Figure adapted from reference 28) 

 
 
 
In their study, they also explored which rings are associated in each type of systems 

and they identified the top five most commonly found ring types in marketed drugs 

(Figure 1.12). There were two two-dimensional ring structures and phenyl was the 

most frequently found ring in marketed drugs. There were three three-dimensional 

rings in the top five. Based on this result, they also examined the ‘privileged’ structure 

for each target class. These results suggested that three- dimensional rings occur more 

frequently than two-dimensional ring structures in marketed drugs.28 

 

 

Figure 1.12: Top five ring systems commonly found in marketed drugs. 
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In conclusion, the results from different studies suggest the benefit of increasing Fsp3 

and reducing aromatic ring count in developing drugs. Therefore, in drug design by 

including more three-dimensional saturated heterocyclic ring structures, hit rates could 

potentially be improved. 

 

1.4.2 Topographical Descriptors for Quantifying the Three-dimensionality of 

Molecules. 

There are different methods that have been developed to define shape and provide 

three-dimensional information on molecules. In all cases, a computational approach is 

used. 

 

Molecular globularity was introduced by Meyer in 1985 for the evaluation of 

molecular shape by determining how spherical it is. This globularity descriptor is a 

calculation of the radii of three spheres, R1, R2 and R3, in a compound to give a ratio 

Rm which is called the globularity. The radii are the Van der Waals volume (R1), the 

molecular volume (R2) and the outer circle of the circumscribing sphere (R3). 

Globularity, Rm, is defined by the following equation: 

𝑅@ =
𝑅$ − 𝑅B
𝑅B − 𝑅C

 

For instance, in a perfectly-spherical shaped compound, each of the cross-sections 

through the centre of the compound should have the same area. Therefore, the smaller 

the value of Rm, the higher the molecular globularity. This method can be used to 

rationalise the shape of molecules by their globularity and is a preliminary method for 

determining molecular shape.29  
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Since there was growing interest in molecular shapes, more robust and better 

representation methods to define molecule shapes of compounds in libraries were 

desired. Therefore, a number of topographical descriptors have been reported for this 

application. Principal moments of inertia (PMI) by Sauer et al. (2003)30 and plane-of-

best-fit (PBF) by Firth et al. (2012)31 are the most common descriptors for the 

comparison and presentation of molecular shape of a compounds. 

 

Principal moments of inertia (PMI) is a method to describe molecular shape. The three-

dimensional structural information of a compound is translated into a two-dimensional 

plot using three principal moments of inertia, I3, I2 and I1, where I3 is the largest. The 

values I3, I2 and I1 are generated by a molecular mechanics computer algorithm. For 

each conformation of a compound, two sets of normalised principal moments ratios, 

NPR1 and NPR2, are calculated as shown below: 

NPR1 = IC
I$ 	; 	NPR2 =

IB
I$	 

A triangular diagram is used for plotting these two sets of values where NPR1 is on 

the x-axis with a range of 0.5 to 1 and NPR2 is on the y-axis with a range of 0 to 1 

(Figure 1.13). The coordinates represent the molecular shape. For instance, a 

completely rod-shaped molecule, such as a di-alkyne compound, has coordinates (0,1) 

at the top left corner. A perfect disc-shaped molecule, benzene, has coordinates 

(0.5,0.5) at the bottom, whereas a perfect sphere-shaped molecule, such as adamantane, 

has coordinates (1,0) at the top right corner. A PMI plot is a useful diagram to visualise 

the distribution of molecular shapes of compounds. The relative position of the 

coordinates on the plot indicate the shape of a given compound and show whether it is 

flat or three-dimensional. 
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Figure 1.13: Triangular plot of PMI. 

 
 

Different groups have used PMI plots to describe and evaluate the shapes of 

compounds in their libraries. For example, Spring et al. carried out a diversity oriented 

synthesis (DOS) of 73 macrocyclic compounds and compared their three-dimensional 

shapes with other compounds using PMI. DOS is an approach that has been widely 

used in HTS for building large collections of compounds systematically. The PMI plot 

of their macrocyclic DOS library is shown in Figure 1.14 together with the 40 top-

selling brand-name drugs, 24 macrocyclic natural products and 60 structurally diverse 

natural products. The drug reference set used in their PMI plot had predominantly rod-

like shapes with disc-like features (green squares), whereas the natural product sets 

had more shape diversity with more sphere-like character (blue triangles). The 
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macrocycles (red circles) were more similar to the spread and shape of the natural 

products than the drugs.32 

 

 

Figure 1.14: An example of a PMI plot of Spring’s macrocyclic DOS library with the 40 top-
selling brand-name drugs, 24 macrocyclic natural products and 60 structurally diverse 

natural products. (Figure adapted from reference 32) 

 

Although a PMI plot is a good graphical method to translate the three-dimensional 

shape information of molecules into a two-dimensional triangular graph, it only uses 

the normalised size of each compound, without any correlation to the size of the 

molecule (i.e. molecular weight, HAC). This is one of the disadvantages of PMI plots. 

 

Plane-of-best fit (PBF) is a newer molecular shape graphical descriptor which takes 

size (HAC) into account in the calculation process. In a similar way to PMI, PBF also 
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involves generation of the low energy conformers before calculation of the PBF score. 

In Firth’s paper,31 the low energy conformation was generated by a programme called 

CORINA. Using the conformation, a PBF can be determined from all of the heavy 

atoms in a molecule. To describe how far a molecule is from two-dimensional shape, 

the average distance of all the heavy atoms from the PBF is calculated. Figure 1.15 

illustrates the PBF for cyclohexane in a chair conformation. 

 

 

Figure 1.15: Illustration of the PBF for a chair conformation of cyclohexane. (Figure 
adapted from reference 31) 

 

The PBF score is from 0 to infinity. For small drug-like molecules, the PBF is usually 

below 2, whereas for proteins PBF is usually below 10. A planar molecule which has 

a lower PBF score, whereas a molecule with more three-dimensional shape has a 

higher PBF score. An example of the PBF score of several different compounds is 

shown in Figure 1.16. A compound which has a flat conformation, such as 14, has a 

PBF value of 0 Å, whereas compound 20 with a more three-dimensional conformation 

has PBF value of 1.06 Å.  
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Figure 1.16: Example of the PBF score of molecules from a library in Å. (Figure adapted 
from reference 31) 

 



 31 

In their study, PBF values were compared with PMI plots for analysing three-

dimensional shape. Figure 1.17 is an example of a density plot of PBF score versus 

NPR1 + NPR2 from an eMolecules data set. They defined the cut-off for ‘flat’ 

molecules as when the NPR1 + NPR2 is the horizontal black line (NPR1 + NPR2 ≤ 

1.07). For the PBF score, flat molecules were defined by the vertical black line (PBF 

≤ 0.6). The top right corner (three-dimensional molecules) and bottom left (flat 

molecules) contains the shape of molecules that both descriptors agreed with. Hence, 

PMI contains more three-dimensional molecules (top left) than PBF contains (bottom 

right). Therefore, there is only a weak correlation between PMI and PBF and there are 

differences in three-dimensionality between the two methods.31 

 

 

Figure 1.17: An example of plot NPR1 + NPR2 versus PBF scores of an eMolecules data 
set. (Figure adapted from reference 31) 
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1.5 Three-Dimensionality in Fragment Libraries 

One way to increase chemical space coverage and diversity of fragment library 

collections is to increase the three-dimensional character of the fragments. 

Traditionally, the majority of fragment libraries contain ‘flat’ compounds and are rich 

in aromatic and sp2 hybridised compounds which could reduce the scope of chemical 

and pharmacological space.33 This is perhaps the reason why fragment hits are more 

common for the flat ATP-binding pockets in kinases than for the fundamentally 

different pockets in protein-protein interactions (PPIs). In order to address this issue, 

three-dimensional fragments could be the solution and there has been growing interest 

in three-dimensional fragments. Another reason for increasing the three-

dimensionality of fragments is that such three-dimensional molecules could be better 

recognised by proteins. It was suggested that three-dimensional fragments would have 

a broader range of biological activities and could achieve greater interaction with 

proteins.34,35  

 

Hung et al. used diversity-oriented synthesis (DOS) strategies to produce a library 

collection with a large quantity of sp3-rich fragments, in order to cover wider chemical 

space. In this study, DOS is a three-step system of build, couple and pair, aimed to 

produce compounds with diversity of shape and stereochemistry. Hung began with the 

synthesis of three proline derivatives 21, 22 and 23 as building blocks to access 

different spirocyclic fragments (Figure 1.18). These building blocks are useful as their 

R and S enantiomers are easily obtained and they can be used to generate a large 

amount of stereochemically diverse fragments from a pyrrolidine-based scaffold. 
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Figure 1.18: 21, 22 and 23 were building blocks for their DOS system to generate large 
number of sp3-rich fragments (MW<300). 

 

Building blocks 21, 22 and 23 underwent the couple-pair phase to generate different 

ring sizes with diverse stereochemistry. For the coupling phase, different alkenes were 

coupled with the corresponding building blocks. Subsequently, a pairing phase 

composed of a ruthenium-catalysed ring-closing metathesis reaction yielded 35 

structurally and stereochemically diverse spirocyclic and bicyclic fragments. Figure 

1.19 shows the structures of five of their fragments 24, 25, 26, 27 and 28, together with 

a PMI plot of all 35 fragments (red circles) and 18 534 fragments from the ZINC 

database (blue circles). The fragments in the ZINC database are more rod-disc in shape, 

whereas the shapes of the new fragments are much more spread out and three-

dimensional.35 
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Figure 1.19: Five of their fragments 24, 25, 26, 27 and 28 and a PMI plot of all 35 
fragments (red circles) and 18 534 fragments from ZINC data base (blue circles). (Figure 

adapted from reference 35) 

 

In 2013, the 3D Fragment Consortium, which is constituted of several UK not-for-

profit drug discovery institutes and academic groups published their first paper. The 

aim of their project is ultimately to construct a fragment screening library that contains 

500–3000 fragments, which has shape diversity and three-dimensional fragments. 

Compounds in the library also need to satisfy the ‘rule of three’ criteria. 

 

To start, they constructed their foundation set of fragments from eMolecules and the 

ZINC database which have around 13.4 million compounds. They applied a filter on 

HAC, and typical fragment criteria, and they also removed unwanted functional groups. 
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This left 180 000 compounds. Subsequently, they selected 5000 shape diverse 

compounds using their NPR1/2 values. Then, they further removed compounds based 

on their availability, cost and internal controls to end up with 200 compounds in their 

3D Fragment Consortium foundation set. Figure 1.20 is the PMI plot of their library 

and three fragments are identified. The PMI plot shows a good shape diversity, with a 

high proportion towards three-dimensional chemical space.36 

 

 

Figure 1.20: The PMI plot of the 3D Fragment Consortium foundation set. (Figure adapted 
from reference 36) 

 

The consortium also introduced an online tool for evaluation of fragments, called 

3DFIT (three-dimensional fragment idea tool). This software allowed calculation of 

the predicted physicochemical properties of a molecule that is submitted by the user. 

The software was also equipped with Pipeline Pilot which could to generate the PMI 

plot of a given molecule for the different energy conformations. Figure 1.21 shows the 
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predicted properties and PMI plots of compound 29 and 30. In each compound, there 

are up to nine lowest energy conformations generated and plotted on the triangular 

PMI plots. This software is useful for generating new ideas in fragment design. 

Moreover, they suggest that synthesis of new three-dimensional fragments from non-

commercial scaffolds would increase the chance of making novel compounds. 36 

 

 

Figure 1.21: Predicted physicochemical properties of 29 and 30 and PMI plots of their nine 
lowest energy conformation generated by 3DFIT. (Figure adapted from reference 36) 

 

In 2015, Tran et al. repeated the design and synthesis of novel sp3-rich, spirocyclic 

fragments based on a 2-isoxazoline scaffold. Their aim was to produce compounds in 

the underrepresented area of three-dimensional chemical space. Isoxazolines 
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derivatives are commonly found in natural products and bioactive compounds. Tran’s 

were selected as they approach involved a one-pot, 1,3-dipolar cycloaddition strategy 

as shown in Scheme 1.1. Treatment of oximes 31 with N-chlorosuccinimide and 

subsequent reaction with alkenes 32 in the presence of base gave the spirocyclic 

isoxazolines 33 in 16-88% yield. 

 

 

Scheme 1.1: The one-pot 1,3-dipolar cycloaddition. 

 

Using this synthetic approach, Tran et al. prepared 21 spirocyclic isoxazoline 

fragments and some examples are shown in Figure 1.22. Analysis of the molecular 

shape of their fragments using PMI showed that they have a good shape and structural 

diversity. However, some the compounds had some rod-like character. Figure 1.22 

shows the six most three-dimensional fragments from their collection.37 

 

 

Figure 1.22: The six most three-dimensional fragments Tran’s isoxazoline compounds. 
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In another study, Spring et al. used the partially saturated bicyclic heteroaromtics 

(PSBH) approach to synthesise a collection of sp3-enriched fragments. In general, 

PSBH-containing compounds have shown bioactivity with different protein targets. 

Spring’s strategy used simple cross-coupling and alkylation reactions, followed by 

ring-closing metathesis to introduce precise ring sizes and to allow further 

functionalisation of the ring to give shape diversity. Their resulting compounds mostly 

fulfil the ‘rule of three’ ideal fragment criteria. Table 1.4 shows some of their 

fragments and a table of the mean physicochemical properties of their fragment 

collection together with two other commercial library collections.  

 

Table 1.4: Example of fragments from this study and the mean of physicochemical properties 
of their fragments with Chembridge and Maybridge commercial libraries. 

 

Property Spring’s library Chembridge Maybridge 
SlogP 1.45 1.31 2.55 
MW 190 222 265 
PSA 58.0 53.9 57.5 

HBA and HBD 1.35 & 0.55 1.81 &1.04 2.12 & 0.81 
HAC 12.8 15.5 18.0 

NROT 0.6 3.2 2.8 
No. of chiral centres 0.88 0.27 0.18 

Fraction aromatic 0.43 0.42 0.52 
 

As shown in Table 1.4, Spring’s fragments have lower molecular weight, SlogP and 

fraction aromatic with a higher number of chiral centres than the Maybridge library. 

Spring did not provide an analysis of the shapes of their fragment collection using a 

quantitative method such as PMI or PBF. They only demonstrated the increased shape 

diversity using Fsp3 and the number of chiral centres. 
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In a more recent study, researchers at AstraZeneca evaluated and compared the results 

of their two generations of fragment libraries, FL1 and FL2, in screening campaigns. 

Fragment screening projects started at AstraZeneca in 2002 and the number of 

successes improved over time, including an increase in the three-dimensionality of the 

fragments. AstraZeneca analysed their fragment-based lead generation (FBLG) 

programmes for 2002-2014 and the results are shown in Figure 1.23. The results show 

that there was an increase in the proportion of successes in this time period despite the 

number of FBLG projects decreasing. From 2012 onwards, the success rate increased 

to over 60%, which is a significant improvement on the success rate during 2002-2010 

(around 30%). This improvement was due to a more robust crystallography method 

and an associated structure-based approach. Also from 2012 onwards, a chemistry 

team was assigned to support FBLG in order to improve their collection and this is 

when their second generation library, FL2, was constructed. 

 

 

Figure 1.23: A plot of the number of AstraZeneca's FBLG programmes and success during 
2002-2014. (Figure adapted reference 38) 

 

AstraZeneca’s FL2 collection contained around 15000 compounds and around 25% of 

their fragments obey the ‘rule of three’ criteria. The shape of the compounds in the 
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library was analysed using PBF and PMI plots and showed a good shape diversity with 

a good proportion of fragments having three-dimensional character. Figure 1.24 shows 

the shape analysis by PBF and PMI plots of the FL2 collection and all FL2 hits. The 

shape of compounds in FL2 has high three-dimensionality. Around 60% of fragments 

have PBF > 0.25, which is their definition of three-dimensional fragment. However, 

less than half of their hits are for fragments above this score and, as a result, they 

suggest that their library is slightly too rich in three-dimensional character. 

 

 

Figure 1.24: The PBF scores and PMI plot of FL2 and FL2 hits fragments. (Figure adapted 
reference 38) 

 

In order to better study the three-dimensional fragments, they carried out an analysis 

of pocket volume filling for two- and three-dimensional fragment hits and their protein 

targets. The results showed that three-dimensional fragments better filled the pocket 

space in protein-protein interaction (PPI), nuclear hormone receptors and 

oxidoreductase/dehydrogenases, whereas two-dimensional fragments were better for 

kinases (Figure 1.25). Therefore, a library with balanced compound shapes could lead 

to higher success rates for different classes of protein targets. 
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Figure 1.25: The percentage of pocket volume filled in different target by two- and three-
dimensional fragment. (Figure adapted reference 38) 

 

The AstraZeneca study pointed out that shape diversity does have an influence on hit 

rate. In addition, their results show that three-dimensional fragments can improve the 

hit rate and could have better binding with some target classes, especially with protein-

protein interation.38 
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1.6 Project Outline 

The aim of this project is to design and synthesise novel three-dimensional fragments 

for use in drug discovery programmes. This project is a sub-set of a larger project at 

York which aims to construct a fragment library with ~300-500 compounds. This will 

address the under-represented areas of three-dimensional chemical space. 

 

In this project, we planned to carry out PMI plots of a range of three-dimensional 

pyrrolidine fragments with different regio- and stereochemistry to select compounds 

for synthesis. Some of the fragments that have been designed and synthesised are 

shown in Figure 1.26. The long term aim of the project is to screen the new three-

dimensional fragments against proteins of medicinal interest. 

 

 

Figure 1.26: Examples of fragments in this project. 
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Chapter 2: Computational Analysis and Selection of Three-

Dimensional Pyrrolidine Fragments 

 
In this chapter, we present the protocol that we use to evaluate the three-dimensional 

shapes of compounds. In general terms, a PMI analysis of all possible regio- and 

stereoisomers of different pyrrolidines was carried out. Then, the PMI plots were 

analysed in order to select the most three-dimensional compounds for synthesis. 

 

In Section 2.1, the computational protocol is introduced. In addition, the protocol is 

used to analyse the three-dimensional shape of ~1000-member fragment library from 

Maybridge. Section 2.2 discusses our fragment design based on a pyrrolidine with two 

substituents, methyl and methyl ester, and four different nitrogen groups, allowing 

some compounds for synthesis to be identified. Finally, in Section 2.3, a PMI analysis 

of a range of substituents on the pyrrolidine scaffold are described. 
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2.1 Introduction to Computational Protocol and Analysis of a Maybridge 

Fragment Library 

The generation of conformations and PMI data was carried out using the protocol that 

was developed by Mary Wheldon, a former PhD student in the group, together with 

Paul Bond and Rod Hubbard from the York Structural Biology Laboratory. Prior to 

the generation of conformations, a SMILES file of each fragment is entered into the 

Pipeline Pilot 8.5 software. The SMILES file for a compound can be imported from a 

database of compounds or generated using ChemDraw 12.0. 

 

The BEST tool in the Pipeline Pilot 8.5 was used for the generation of conformers as 

we believe that this provides the best coverage of conformational space. In principle, 

there is an infinite number of conformers for each molecule that could be generated 

and therefore constraints of conformational energy difference and root-mean-square 

deviation (RMSD) were used in this protocol. Conformational energy difference 

provides the energy difference between an individual conformer and the lowest energy 

conformer for the selected compound. Variation of this value could affect the total 

number of conformers. The RMSD indicates the difference in Å between atoms, or 

points of the conformer and the standard. If the RMSD is 0 Å, a conformer that only 

changes slightly from the standard will be kept, whereas if the RMSD is 1 Å, only very 

different conformers will be kept. Hence, the larger the RMSD, the fewer conformers 

that will be selected. In this study, the conformational energy difference was calculated 

up to 20.0 kcal mol-1 and the RMSD was set to 0.1. 
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As discussed in Sections 1.4.2 and 1.4.3, most of the examples in the literature that use 

PMI plots normally consider only the lowest energy conformation of a compound. In 

contrast, with this protocol, a number of conformations for each compound are 

generated within the constraints. By including other energy conformations of a given 

compound a better representation of the shape of the compound is provided. This could 

be useful as the conformation which binds in the protein binding pocket is not 

necessarily the lowest energy conformation.  

 

To start with, we decided to evaluate a Maybridge fragment library that contained 1000 

fragments using our computational protocol. Maybridge is a commercial vendor that 

provides screening and fragment libraries. The results of a PMI analysis using our 

protocol are shown in Figure 2.1. There are almost 16000 conformers generated from 

1000 fragments with a conformational energy difference less than 20 kcal mol-1. In the 

PMI plot, it is difficult to identify the position of an individual conformation as there 

are far too many data points on the PMI plot. Therefore, we concluded that a better 

method is required and, in particular, we needed to reduce the number of 

conformations. 

 
Colour            

Conformational energy 
difference/ kcal mol-1 <1 <2 <3 <4 <5 <6 <7 <8 <9 ≤10 >10 

Figure 2.1: PMI plot of the all conformations of a Maybridge fragment library with of 
conformational energy difference of less than 20.0 kcal mol-1. 
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In order to analyse the PMI plot for more three-dimensional shapes i.e. away from the 

rod-disc axis, we decided to divide the PMI plot into 10 sections with diagonal lines 

that are parallel to the rod-disc axis (Figure 2.2). Each data point on the PMI plot is 

defined by the (x,y) coordinates and they have NPR1 (x-axis) and NPR2 (y-axis) 

values. The sum of the NPRs, ΣNPRs, can be useful for defining the shape distribution. 

Each of the diagonal lines is effectively the ΣNPRs, and ranges from 1 to 2 where 1 is 

on the rod-disc axis. As ΣNPRs gradually increases, the conformations become more 

three-dimensional in shape. The number of conformers in the ΣNPRs categories is a 

useful way of analysing the PMI plot. 

 

Figure 2.2: PMI plot with the ΣNPRs of each category.  

With the purpose of trimming down the large number of conformations but retaining 

the conformational diversity of the compounds, the conformational energy difference 

of the selected fragments could be reduced. Using the Maybridge dataset, there are 

6498 conformers generated if the conformational energy difference is set at ≤ 1.5 kcal 

mol-1. The conformational energy difference is the energy above the lowest energy 

ground state conformer. Even with this conformational energy difference cut-off, the 

PMI plot still retains a good diversity of conformations (Figure 2.3). Figure 2.3 shows 

two PMI plots of the Maybridge library that contain conformational energy difference 
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≤ 1.5 kcal mol-1 and the lowest energy conformers with the corresponding pie chart 

that contains the percentage distribution of conformers in each energy category. With 

the higher energy cut-off, there are 15% fewer conformers in the PMI category 1–1.1 

and 13% more in the next PMI category (1.1–1.2) than the lowest energy cut-off.  

  

  

Colour       
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Figure 2.3: PMI plot of the conformations with energy difference energy ≤ 1.5 kcal mol-1 and 
the lowest energy conformers of Maybridge fragments and the corresponding PMI category 

distributions. 
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The same PMI data for the energy difference ≤ 1.5 kcal mol-1 in Figure 2.3 is also 

presented in Table 2.1. From Table 2.1, it is clear that more than 85% of the conformers 

are in the PMI category between 1–1.2. This is the category closest to the rod-disc axis, 

and so the Maybridge library contains mostly flat compounds and has a lack of shape 

diversity. However, there are still some of the fragments that have three-dimensional 

shapes. The ten most three-dimensional structures in the Maybridge library are shown 

in Figure 2.4. They have ΣNPRs values ≥ 1.4 and contain different heterocyclic ring 

systems. 

Table 2.1: Number of conformations and percentage in each PMI category with 
conformational energy difference ≤ 1.5 kcal mol-1. 

PMI category Number of conformations Percentage (%) 
1–1.1 3493 53.76 

1.1–1.2 2135 32.86 
1.2–1.3 600 9.23 
1.3–1.4 226 3.48 
1.4–1.5 31 0.48 
1.5–1.6 8 0.12 
1.6–1.7 4 0.06 
1.7–1.8 1 0.02 
1.9–2 0 / 
Total 6570 / 

 

 

Figure 2.4: 10 Maybridge fragments ΣNPRs values ≥ 1.4. 
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The ‘Rule of three’ is a general guideline of physicochemical properties for fragments. 

In Pipeline Pilot 8.5, physicochemical properties of compounds can also be predicted, 

including the number of hydrogen bond donors and acceptors, HAC and ALogP. This 

information could be useful for evaluation of library properties and fragment selection. 

Table 2.2 summarises the predicted mean of physicochemical properties of the 

Maybridge fragment library that was generated by Pipeline Pilot 8.5. They clearly fit 

within the ‘rule of three’. 

Table 2.2: Predicted average physicochemical properties of a Maybridge fragment library 
using Pipeline Pilot 8.5. 

Physicochemical Properties Mean 
Molecular Weight 180.13 

AlogP 1.3 
PSA 45.92 

HBA & HBD 1.94 & 0.79 
HAC 12.51 

NROT 1.78 
No. of ring (aromatic) 1.6 (1.17) 

 

In summary, the PMI analysis shows that the shapes of the conformations in the 

Maybridge fragment library are mostly flat. Furthermore, by considering a 

conformational energy difference ≤ 1.5 kcal mol-1, conformational diversity is 

achieved, compared to the lowest energy conformation. 
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2.2 Fragment Design and Overview of Our Enumeration and Selection 

Approach 

For our three-dimensional fragment library design, a systematic approach for fragment 

selection was required. To start with, we devised a systematic way of drawing all of 

the possible isomers of a particular scaffold. This format would also be helpful for 

comparing different systems. In our drawing approach, the order of nitrogen 

substituents was always NH, NMe, NMs and NAc. With the two substituents on the 

scaffold, any geminal disubstituted fragments were drawn first, followed by the lowest 

priority group (R1) in the 2-position and R2 opposite. For the diastereomer order, trans 

was drawn before cis. R2 was drawn around the ring to the position of R1. Afterwards, 

R1 was moved to the 3-position and repeated. Then, all isomers could be drawn. 

 

Using the above guidelines, the first pyrrolidine fragments with methyl and methyl 

ester substituents were drawn and their 14 isomers are shown in Figure 2.5. With four 

different nitrogen groups, there are 56 fragments in total, excluding enantiomers. 
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Figure 2.5: The 14 different isomers of methyl, methyl ester disubstituted pyrrolidine. The 
four different nitrogen substituents are also shown. 

 

These 56 compounds were then submitted to the standard PMI analysis in Pipeline 

Pilot 8.5. The PMI plot of the lowest energy conformations and conformations with an 

energy difference ≤ 1.5 kcal mol-1 for these 56 fragments are shown in Figure 2.6. 

Table 2.3 shows the number and percentage of conformers up to 1.5 kcal mol-1 

conformational energy difference in each PMI category. From the PMI plot, it can be 

seen that the majority of fragments are away from the rod-disc axis and they have some 
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there are fewer lowest energy conformers (32%) than the conformers with a 

conformational energy difference ≤ 1.5 kcal mol-1 (62%). However, the higher energy 

conformers had a wider spread and a higher PMI category coverage on the PMI plot 

than the lowest energy conformers.  

 

 

Figure 2.6: PMI plot of the conformations with energy difference energy ≤ 1.5 kcal mol-1 and 
the lowest energy conformers of pyrrolidine ester derivatives and the corresponding PMI 

category distributions. 
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Table 2.3: Number of conformations and percentage in each PMI category with 
conformational energy difference ≤ 1.5 kcal mol-1. 

PMI category Number of conformations Percentage (%) 
1–1.1 117 20.17 

1.1–1.2 244 42.07 
1.2–1.3 144 24.83 
1.3–1.4 57 9.83 
1.4–1.5 13 2.24 
1.5–1.6 5 0.86 
1.6–1.7 0 / 
1.7–1.8 0 / 
1.9–2 0 / 
Total 580 / 

 

Further analysis considered how the fragments are distributed in each PMI category. 

The number of fragments and their percentage contribution in each PMI category is 

shown in Table 2.4. There are around 75% of the fragments distributed in the more 

three-dimensional areas between PMI categories 1.2–1.6. The PMI category 1.3–1.4 

has the most fragments. The PMI categories 1.3–2 contained over 45% of the 

fragments and these are the most three-dimensional fragments. 

 

Table 2.4: Number of fragments and percentage in each PMI category with conformational 
energy difference ≤ 1.5 kcal mol-1. 

PMI category Number of fragments Percentage (%) 
1–1.1 2 3.57 

1.1–1.2 11 19.64 
1.2–1.3 17 30.36 
1.3–1.4 18 32.14 
1.4–1.5 5 8.93 
1.5–1.6 3 5.36 
1.6–1.7 0 / 
1.7–1.8 0 / 
1.8–1.9 0 / 
1.9–2 0 / 
Total 56 / 

The next stage involved using the PMI plot of the conformers with energy difference 

≤ 1.5 kcal mol-1 in Figure 2.6 to select the most three-dimensional compounds for 
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synthesis. We planned to synthesise a selection of fragments that would represent all 

56 compounds. In the area ΣNPRs ≥ 1.40, eight fragments would be selected for 

synthesis, whereas it would increase to 17 fragments with ΣNPRs ≥ 1.34 (Table 2.5). 

Further inspection of the region between PMI categories 1.40–1.34 was carried out to 

identify a suitable number of compounds for the synthetic work. In the end, 14 

fragments were selected for synthesis i.e. ΣNPRs value ≥ 1.36 (Table 2.5). 

 

Table 2.5: Analysis of ΣNPRs values to select a suitable number of fragments for synthesis. 

ΣNPRs Number of fragments 
≥ 1.40 8 
≥ 1.39 9 
≥ 1.38 9 
≥ 1.37 10 
≥ 1.36 14 
≥ 1.35 15 
≥ 1.34 17 

 
 

The selected 14 fragments have a total of 117 conformations with a relative energy ≤ 

1.5 kcal mol-1. Figure 2.7 shows the structures of the selected fragments together with 

their corresponding PMI plot. These 14 fragments have a diversity of disubstituted 

pyrrolidines. There are geminal disubstituted fragments such as fragments A1–5 and 

there are 2,3-disubstituted pyrrolidines A28 and A29 which have cis and trans 

stereochemistry. For the nitrogen substituents, A1, A5, and A45 contain a NH group, 

A2, A18 and A56 have a NMe, A3 having a NMs, whereas A4, A16, A28 and A50 

contain a NAc. Therefore, with the 14 selected fragments shown positional, 

stereochemical and functional group diversity. 
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Figure 2.7:  The selected 14 pyrrolidine fragments, and the PMI plot containing their 117 
conformations with a relative energy ≤ 1.5 kcal mol‒1. 

 
The physicochemical properties of the selected fragments were also evaluated to see 

how well they fitted with the ‘rule of three’ criteria. The mean of the predicted 

physicochemical properties of the selected compounds is shown in Table 2.6. All 14 

selected fragments had physicochemical properties that fulfilled the ‘rule of three’ 

criteria, although the average AlogP values are relatively low. 
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Table 2.6: Predicted average physicochemical properties of 14 selected fragment from 
Pipeline Pilot 8.5. 

Physicochemical Properties Mean 
Molecular Weight 166.43 

AlogP -0.54 
PSA 56.06 

HBA & HBD 2.43 (0.64) 
HAC 11.5 

NROT 2.07 
No. of ring (aromatic) 1 (0) 

 

The results of the PMI analysis have shown that the selected designed pyrrolidine 

fragments have good three-dimensional shape as well as positional, stereochemical 

and functional group diversity. They also have good physicochemical properties. The 

strategy of using a basic pyrrolidine scaffold with decoration of two substituents can 

achieve the aim of three-dimensional shape and desirable physicochemical properties. 

Therefore, further investigations of variations of the substituents was carried out.  
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2.3 Comparison of the Three-dimensionality of Pyrrolidine Fragments with 

Different Substituents 

In this section, we present the application of the PMI analysis of different three-

dimensional pyrrolidine fragments. This includes the selection of some additional 

fragments for synthesis. Different substituents on the pyrrolidine scaffold were 

explored. Methyl, methyl ester, hydroxymethyl, phenyl, 3-pyridyl, 5-pyrazolyl and 

tetrazolyl group were chosen as substituents and they were paired with each other 

(Figure 2.8). Each disubstituted pyrrolidine gives 14 different isomers and 

functionalising the nitrogen with H, Me, Ms and Ac gives a 56 members in each library.  

 

 

Figure 2.8: Different substituents on the pyrrolidine scaffold. 
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Similarly, a 3-pyridyl group can provide a π stacking interaction with proteins as well 

as a bydrogen bonding interation, and also it is a top five commonly found ring system 

in marketed drugs.28 5-pyrazolyl and tetrazolyl are also listed as frequently found ring 

systems in marketed drugs and a tetrazoles provides an acidic protein as it is an isostere 

of a carboxylic acid.28 Thus, we chose these substituents to evaluate their three-

dimensionality. 

 

To start with, the methyl ester group was paired with five other substituents (methyl, 

phenyl, 3-pyridyl, 5-pyrazolyl and tetrazolyl) and their PMI plots of conformational 

energy difference ≤ 1.5 kcal mol-1 are shown in Figure 2.9. The tetrazolyl group gave 

the most conformers (1258 conformers) (Figure 2.9e) whereas the methyl group had 

the least conformers (580 conformers) (Figure 2.9a). In terms of the shape of their 

conformers, the four aromatic groups had similar spread over the PMI plot as most the 

conformers were populated between PMI category 1.1–1.2 (Figure 2.9b-e). 
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(b) 

 
698 conformers 

 
(c) 

 
779 conformers 

 
(d) 

 
1093 conformers 

 
(e) 

 
1258 conformers 

 
Figure 2.9: PMI plots of the conformations with energy difference ≤ 1.5 kcal mol-1 for methyl 

ester and five different substituents. 
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Further analysis was considered in order to determine how many fragments and their 

conformers had ΣNPRs ≥ 1.4. These compounds would have the most three-

dimensional conformations and therefore would be selected for synthesis. Each 

disubstituted system with their number of conformers and fragments are listed in Table 

2.7. The tetrazolyl and methyl ester disubstituted system (E1-56) had the highest 

number of conformers (22), but they came from only 3 fragments. The methyl and 

methyl ester disubstituted system (A1-56) had the highest number of fragments (8) 

which gave 18 conformers. 

 

Table 2.7: ΣNPRs ≥ 1.4 with conformational energy difference ≤ 1.5 kcal mol-1. 

Substituent 1 Substituent 2 No. of conformers No. of fragments 
Methyl Methyl ester 18 8 
Phenyl Methyl ester 8 2 

3-Pyridyl Methyl ester 10 2 
5-pyrazolyl Methyl ester 16 4 
Tetrazolyl Methyl ester 22 3 

 

 

Using ΣNPRs ≥ 1.4 as our cut-off, the selected fragments from the new systems are 

shown as in Figure 2.10. The geminal disubstituted NMs compounds were selected 

with all systems and the geminal disubstituted NAc appeared in phenyl, 3-pyridyl and 

5-pyrazolyl. The 5-pyrazolyl and tetrazolyl systems also included the examples with 

2,5-disubstitution. Overall, the geminal disubstituted N-substituted sulfonamide 

fragments in these series had the highest three-dimensional shapes. 
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Figure 2.10: Structure of selected fragments from phenyl, 3-pyridyl, 5-pyrazolyl and 
tetrazolyl. 
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(a) 

 
291 conformers 

 
(b) 

 
360 conformers 

 
(c) 

 
467 conformers 
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670 conformers 
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(e) 

 
525 conformers 

 
Figure 2.11: PMI plots of conformations with energy difference ≤ 1.5 kcal mol-1 for 

hydroxymethyl group and five different substituents. 

 

Further analysis was considered to explore how many fragments and their conformers 

had ΣNPRs ≥ 1.4. Each disubstituted system with their number of conformers and 

fragments are summarised in Table 2.8. The phenyl group (G1-56) had the highest 

number of conformers (17) and these were came from only four fragments. The methyl 

group (A1-56) had the highest number of fragments (6) which gave 16 conformers. 

 

Table 2.8: ΣNPRs ≥ 1.4 with conformational energy ≤ 1.5 kcal mol-1. 

Substituent 1 Substituent 2 No. of conformers No. of fragments 
Methyl Hydroxymethyl 16 6 
Phenyl Hydroxymethyl 17 4 

3-Pyridyl Hydroxymethyl 6 3 
5-pyrazolyl Hydroxymethyl 6 3 
Tetrazolyl Hydroxymethyl 8 3 

 

 

Using a cut-off of ΣNPRs ≥ 1.4, the selected methyl and hydroxymethyl disubstituted 

fragments are shown in Figure 2.12. All 2,2-disubstituted fragments F1-5, and 3,3-

disubstituted NH fragment F5 and 2,3-disubstituted NMe fragment F30 had the 

highest three-dimensional shapes in this series. 
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Figure 2.12: Structure of selected methyl and hydroxymethyl disubstituted fragments. 

 

For the aromatic substituents, the selected fragments had similar isomers. Therefore, 

only the phenyl and 3-pyridyl groups (as representative examples) are shown in Figure 

2.13. For both phenyl and 3-pyridyl groups, their 2,2-disubstituted NMs (G3/H3) and 

NAc (G4/H4) and 2,5-disubstituted NAc (G16/H16) were selected. With a phenyl 

group, 2,4-disubstituted NAc fragment (G20) was also included. 

 

 

Figure 2.13: Structure of selected phenyl and 3-pyridyl fragments. 
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Finally, a methyl group was paired with six other substituents (methyl ester, phenyl, 

hydroxymethyl, 3-pyridyl, 5-pyrazolyl and tetrazolyl) and their PMI plots for a 

conformational energy difference ≤ 1.5 kcal mol-1 are shown in Figure 2.14. This time, 

the 5-pyrazolyl group had the most conformers (670 conformers) (Figure 2.14e) 

whereas the hydroxymethyl group had the least conformers (291 conformers) (Figure 

2.14b). In terms of the shape of their conformers, they aromatic groups had similar 

spread over the PMI plot as most the conformers were populated between PMI 

category 1.1–1.2 (Figure 2.14c-f). 
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(d) 

 
467 conformers 

 
(e) 

 
670 conformers 

 
(f) 

 
525 conformers 

 
Figure 2.14: PMI plots of conformations energy difference ≤ 1.5 kcal mol-1 for methyl and 

six different substituents systems. 
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Table 2.9: ΣNPRs ≥ 1.4 with conformational energy difference energy conformations ≤ 1.5 
kcal mol-1. 

Substituent 1 Substituent 2 No. of conformers No. of fragments 
Methyl ester Methyl 18 8 

Phenyl Methyl 2 1 
3-Pyridyl Methyl 2 1 

5-pyrazolyl Methyl 6 3 
Tetrazolyl Methyl 1 1 

 

For the aromatic substituents, their selected fragments from a cut-off of ΣNPRs ≥ 1.4 

were similar isomers. Their structures are shown in Figure 2.15 and all selected 

fragments were 2,2-disubstituted isomers.  

 

 

Figure 2.15: Structure of selected aromatic fragments. 
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Figure 2.16:  The selected 11 pyrrolidine fragments and PMI plot containing their 58 
conformations with a relative energy ≤ 1.5 kcal mol‒1. 

 

The predicted physicochemical properties of these 11 selected fragments were also 

evaluated by Pipeline Pilot 8.5 as shown in Table 2.10. Most of the physicochemical 

properties of the 11 selected fragments fulfilled the ‘rule of three’ criteria and only 

their HBA and PSA were higher than the criteria. 
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Table 2.10: The predicated average physicochemical properties of the 11 selected fragment 
from Pipeline Pilot 8.5. 

Physicochemical Properties Mean 
Molecular Weight 243.02 

AlogP 0.58 
PSA 93.97 

HBA & HBD 3.18 (0.63) 
HAC 17.1 

NROT 2.73 
No. of ring (aromatic) 2(1) 
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2.4 Conclusions 

The main conclusions from the chapter are as follows. First, the PMI analysis of the 

Maybridge fragment library showed that 85% of their compounds were in the PMI 

category 1–1.2. This means that nearly all of the Maybridge fragments are two-

dimensional in shape. 

 

Second, we show that a simply designed pyrrolidine set of fragments with methyl and 

methyl ester substituents is much more three-dimensional in shape (by PMI analysis) 

than the Maybridge library. Furthermore, using a PMI cut-off of ≥ 1.36, 14 fragments 

were selected for synthesis. Their structures and PMI plot are summarised in Figure 

2.7. 

 

Third, the PMI analysis of 13 other pyrrolidine systems showed that addition of 

aromatic groups generally led to less three-dimensional shapes. However, with a PMI 

cut-off of ≥ 1.4, 11 other pyrrolidine fragments were identified for synthetic studies. 

Their structures and PMI plot are shown in Figure 2.16. 

 

Thus, using a new PMI analysis approach, 25 three-dimensional fragments have been 

identified. These fragments were designed to not only be three-dimensional, but also 

to fit the ‘rule of three’ fragment criteria. Overall, the approach of selecting compounds 

for synthesis based on their three-dimensional shape could be applied and extended to 

any new fragment scaffold. 
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Chapter 3: Synthesis of Three-Dimensional Pyrrolidine Fragments 

In this chapter, we present our synthetic efforts towards seven of the 25 designed three-

dimensional fragments (Figure 3.1). Other members of the O’Brien group have worked 

on the synthesis of some of the other fragments. 

 

 

Figure 3.1: The seven of the 25 designed three-dimensional fragments to synthesise. 

 

In Section 3.1, we report our efforts on methods for the N-functionalisation of the 

fragments on a model proline-derived system. The development of a synthetic 

approach to 2,2-disubstituted fragments A1·HCl, A2·HCl, A3 and A4 is presented in 

Section 3.2. All four fragments were successfully synthesised. In Section 3.3, the 

synthesis of 2,4-cis-disubstituted pyrrolidine A40 is described. Finally in Section 3.4, 

our efforts towards fragments are G16 and H16 presented. 
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3.1 Model Studies on N-functionalisation of Pyrrolidine Fragments 

For the purpose of increasing the diversity of the compounds in the library, we planned 

that there would be four different nitrogen substituents: NH, NMe, NMs and NAc 

(Figure 3.2). The synthetic approaches for installing these N-substituents would 

require the development of a short synthetic route with good yield and without giving 

any by-products. In this section, N-functionalisation methods for adding NH, NMs and 

NAc groups on a model system will be discussed. 

 

 

Figure 3.2: The four different nitrogen substituents in the final fragments. 

 

In order to identify suitable methods and conditions for N-functionalisation, the N-

protected, methyl ester pyrrolidine (S)-35 was selected. Using a literature route,39 

treatment of (S)-proline (S)-34 with thionyl chloride in methanol at reflux formed the 

methyl ester. The methyl ester intermediate was then treated with triethylamine and 

Boc2O to form the N-Boc methyl ester (S)-35. After work-up, purification of the crude 

product by flash column chromatography gave (S)-35 in 83% yield (Scheme 3.2). 

 

Scheme 3.2: Synthesis of N-Boc methyl ester (S)-35. 
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1.37 (9H integration in total) which were assigned to the Boc group. There were two 

t-butyl signals for the Boc group due to rotamers. The methyl ester gave a 3H singlet 

at δ 3.68. All of the 1H NMR spectroscopic data matched the literature.40  

 

Next, we planned to study the Boc deprotection and subsequent sulfonylation and 

acylation to from the NMs and NAc groups respectively. The Boc deprotection was 

achieved by a literature procedure.41 N-Boc methyl ester (S)-35 was treated with 

hydrochloric acid in Et2O at reflux for 12 h to give the crude pyrrolidine salt 36·HCl 

in 97% yield, which was not fully characterised. The crude pyrrolidine salt 36·HCl 

was then reacted with methanesulfonyl chloride and triethylamine. After an aqueous 

work-up, the crude product was purified by flash column chromatography to give 

sulfonamide (S)-37 in 34% yield (Scheme 3.3).  

 

 

Scheme 3.3: Synthesis of sulfonamide (S)-37. 

 

In the 1H NMR spectrum of sulfonamide (S)-37, the disappearance of the two 

rotameric singlets at δ 1.42 and 1.37 were the first piece of information showing that 

a new product had formed. There was also a 3H multiplet at δ 4.47-4.4 which was 

assigned to the proton α to the ester. The 13C NMR spectrum of (S)-37 showed a CH3 

signal at δ 39.1 due to the newly installed methanesulfonyl group. These spectroscopic 

data matched with those reported in the literature.42 
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Similarly, the synthesis of acetamide (S)-38 was carried out using acetyl chloride and 

triethylamine. Following an aqueous work-up and purification of the crude product by 

flash column chromatography, (S)-38 was isolated in 53% yield from hydrochloride 

salt 36·HCl (Scheme 3.4). 

 

Scheme 3.4: Synthesis of acetamide (S)-38. 

 

The synthesis of acetamide (S)-38 was confirmed by 1H NMR spectroscopy. In the 1H 

NMR spectrum, there were two singlets at δ 2.06 and 1.94 (3H integration in total) 

which were assigned to the methyl protons in the acetamide. There were two acetyl 

groups due to rotamers. The proton α to the ester gave two rotameric sets of double 

doublets at δ 3.45 and 3.35. The 13C NMR spectrum of (S)-38 showed a CH3 signal at 

δ 22.3 due to the acetyl moiety. These spectroscopic data matched with those reported 

in the literature data.43 

 

Thus, suitable conditions for Boc deprotection, sulfonylation and acetamide formation 

have been identified. However, the yields of sulfonamide (S)-37 (34%) and acetamide 

(S)-38 (53%) were unfortunately not very high. It was decided not to optimise these 

conditions further on the model system, but to move on to the real fragment system. 
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3.2 Synthesis of 2,2-Disubstituted Pyrrolidine Fragments 

3.2.1 Previous Routes to 2,2-Disubstituted Pyrrolidines with Methyl and Methyl Ester 

Groups 

In 2010, Kelleher et al. described a method for the direct alkylation of N-Boc proline 

methyl ester (S)-35 as a synthetic strategy to form spirocyclic lactams and α-methyl 

prolinamides 40. These 2,2-disubstituted pyrrolidines, such as 40, were used as 

organocatalysts in asymmetric Michael addition reactions. Methyl ester (S)-35 was 

treated with LHMDS at –20 °C to give the enolate. Subsequently, trapping with methyl 

iodide gave the 2,2-disubstituted pyrrolidine 39 in 72% yield (Scheme 3.5). The 

racemic product was formed because the reaction went via a planar enolate, and the 

electrophile could attack from either side of the molecule with equal chance. 

 

Scheme 3.5:  Synthesis of 2,2-disubstituted pyrrolidine rac-40 via enolate formation and 
electrophile trapping. 

An asymmetric synthesis of 2,2-disubstituted pyrrolidines was developed by Seebach 

via the stereoselective alkylation of amino acid derivatives.44 This method was adapted 

by Su et al. for one of the key steps in the synthesis of hypoestestatin 43.45 In this 

synthesis programme, (S)-proline (S)-34 was reacted with chloral hydrate to give the 

oxazolidinone 41 in 83% yield. This was followed by the addition of LDA at –78 °C 

to form the enolate, which allowed the trapping with methyl iodide to give 

oxazolidinone 42 in 75% yield. Then, the oxazolidinone ring was cleaved by treatment 

with thionyl chloride to form the 2,2-disubstituted pyrrolidine salt A1·HCl as a single 

enantiomer in 98% yield (Scheme 3.6). 
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Scheme 3.6: Synthetic steps in the attempted synthesis of hypoestestatin 43. 

 

With Seebach’s relay of chirality approach, chloral hydrate was used to retain the 

chirality of (S)-proline. After the enolate has formed, only one face of the molecule is 

available for trapping with the electrophile. Subsequently, cleavage of the ring system 

allowed the formation of the enantiopure pyrrolidine salt A1·HCl. 

 

3.2.2 Synthesis of 2,2-Disubstituted Pyrrolidines with Methyl and Methyl Ester Groups 

As described in the previous section, the 2,2-disubstitued pyrrolidines could be 

synthesised by enolate formation from (S)-proline (S)-34 and then trapping with an 

appropriate electrophile. Therefore, the synthetic plan for the first fragments of the 

series would begin with the Boc-protected methyl ester (S)-35 formed from (S)-proline 

(S)-34. Then, enolate formation and trapping with methyl iodide would give the 

geminal alkyl substitution to form 39. Subsequent Boc deprotection would give the 

first fragment pyrrolidine salt A1·HCl and further N-functionalisation with three 

substituents (NMe, NMs, and NAc) would give fragments A2, A3 and A4 accordingly 

(Scheme 3.7).  
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Scheme 3.7: Proposed synthesis of A1-4. 

 

The enolate alkylation step was investigated first. Deprotonation of methyl ester (S)-

35 to form the lithium enolate was carried out with LHMDS in THF at –20 ºC based 

in the procedure reported by Kelleher et al.39 (see Scheme 3.3). Then, methyl iodide 

was added at –20 ºC to allow the enolate to trap the electrophile and to attach the 

methyl substituent. The crude product was purified by flash column chromatography 

and a 76% yield of 39 was obtained (Scheme 3.8).   

 

 

Scheme 3.8: Enolate alkylation to give methylated Boc protected methyl ester 39. 

 

The yield for the enolate alkylation with LHMDS varied depending on the scale of the 

reaction (Table 3.11). With smaller scale reactions (1.5–2.5 mmol scale), the yield was 

less than 40% (entries 1-3). On larger scales (4.8–21.5 mmol), the yield improved to 

around 70% (entries 4–6). This may be due to the presence of small amounts of water 

in the set-up having a larger effect on the yield of the smaller scale reactions. 
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Table 3.11: Effect of scale on the yield of the enolate alkylation. 

Entry Scale (mmol) Yield (%) 
1 1.53 32 
2 2.18 32 
3 2.50 37 
4 4.79 68 
5 8.71 76 
6 21.5 68 

 

The synthesis of 39 was proven by characterisation by 1H NMR spectroscopy. In the 

1H NMR spectrum, there were two singlets at δ 1.47 and 1.40 (3H in total, rotamers) 

which were assigned to the newly introduced methyl group. The 13C NMR spectrum 

of 39 showed two CH3 signals at δ 22.9 and 22.3 which were due to rotamers.  

 

Since this reaction proceeded via an enolate, the alkylated product 39 should be 

racemic. To confirm that 39 was racemic, the optical rotation was mesured. This did 

not confirm that the sample was racemic Because N-Boc ester 39 had an optical 

rotation value, [α]D, of –0.97 (c 1.0 in CHCl3). Therefore, chiral HPLC was carried out 

to determine the enantiomeric ratio of the sample. The chiral-HPLC was a recorded 

with a Chiralpak® ID column, eluting with 95:5 hexane–i-PrOH (1 mL min–1) and the 

result showed that 39 was formed as a 51:49 mixture of enantiomers (Figure 3.3).  
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Figure 3.3: CSP-HPLC chromatogram of 39. 

 

In the final synthetic steps towards A1-4, Boc deprotection would be next and then the 

various N-functionalisations would be carried out to give A2-4. The Boc deprotection 

of 39 was achieved by treating 39 with hydrochloric acid in Et2O at reflux for 12 h. 

This gave pyrrolidine salt A1·HCl in 91% yield (Scheme 3.9). Salt A1·HCl was 

collected as a crude product, as it had good purity. 

 

 

Scheme 3.9: Boc deprotection of 39 to give crude pyrrolidine salt A1·HCl. 

 

The purity and characterisation of pyrrolidine salt A1·HCl was proven by 1NMR 

spectroscopy (Figure 3.4). In the 1H NMR spectrum, there were two broad peaks at δ 

10.69 and 9.47 which were assigned to the two protons on the nitrogen. These signals 

appeared far downfield due to the positive charge on the nitrogen which means that 

these protons experience far less shielding. The diastereotopic pair of protons α to 

nitrogen appeared as a 2H multiplet at δ 3.68-3.58. Also, there was no signal due to 

the Boc group. In the 13C NMR spectrum, there was a CH2 signal at 46.5 which was 
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assigned to the NCH2 carbon. All results indicated that fragment A1·HCl had been 

successfully synthesised. 

 

 

Figure 3.4: 1H NMR spectrum of A1·HCl. 

  

The amine methylation was investigated next. The first attempted synthesis of A2 

followed a related literature reaction46 using NaHMDS as the base and methyl iodide 

to achieve N-methylation. Pyrrolidine salt A1·HCl was reacted with 2 equivalents of 

NaHMDS in THF for 30 min. Subsequently, methyl iodide was added and the reaction 

was left to react for 15 h. After aqueous work-up, the crude product was purified by 

flash column chromatography, However, no product was isolated (Scheme 3.10). 

Another attempted synthesis of A2 used catalytic reductive amination with palladium 

on carbon.47 In this reaction, pyrrolidine salt A1·HCl was reacted with catalytic 10 wt. 
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% Pd/C and 1.1 equivalents of formaldehyde solution in methanol under a hydrogen 

atmosphere for 23 h. The reaction mixture was filtered through Celite® and the filtrate 

was evaporated and subjected to 1H NMR spectroscopy. However, there was no 

product found in the sample. 

 

 

Scheme 3.10: Failed examples of synthesis of methylamine A2. 

 

The synthesis of NMe fragment A2 was finally achieved by using a different reductive 

amination procedure from the literature.48 In the initial attempt, pyrrolidine salt 

A1·HCl was reacted with sodium triacetoxyborohydride and formaldehyde in a 4:1 

mixture of AcOH and CH2Cl2 in the presence of MgSO4 for 19 h. After work-up with 

ammonia solution, the crude product was purified by flash column chromatography, 

but it only gave a 7% yield of methylamine A2 (Scheme 3.11). It was believed that the 

very low yield was because A2 was in fact volatile. 

 

 

Scheme 3.11: Synthesis of methylamine A2·HCl with sodium triacetoxyborohydride and 
formaldehyde. 
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To overcome the problem of methylamine A2 being volatile, it was decided to form 

the hydrochloride salt from the crude amine product. Thus, in a separate experiment, 

salt A1·HCl was reacted with sodium triacetoxyborohydride and formaldehyde under 

the usual conditions. Then, the crude product was stirred with hydrochloric acid for 30 

min to form methylamine salt A2·HCl immediately after the work-up. In this way, 

methylamine salt A2·HCl was isolated in 86% yield (Scheme 3.12). 

 

 

Scheme 3.12: Synthesis of methylamine salt A2·HCl using sodium triacetoxyborohydride and 
formaldehyde. 

 

To confirm the structure of A2·HCl, characterisation by 1H NMR spectroscopy in 

CDCl3 was attempted. However, the signals were broad and unclear. Therefore, the 

NMR solvent was changed to deuterated methanol, which gave a better resolved 

spectrum. The 1H NMR spectrum of A2·HCl in deuterated methanol is shown in Figure 

3.5. In the 1H NMR spectrum, there was a 3H singlet at δ 3.33 assigned to the newly 

formed N-methyl group. Also, there was a singlet with 3H integration at δ 3.87, which 

was assigned to the methyl ester group. In the 13C NMR spectrum, there was a signal 

at δ 36.6, which was assigned to the newly formed N-methyl group. The signal at δ 

54.5 was assigned the methyl ester group (Figure 3.5). 
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Figure 3.5: 1H NMR spectrum of A2·HCl. 

  

The final two fragments in this series were prepared used the conditions from the 

model study. The synthesis of N-sulfonamide A3 was achieved by the reaction of 

pyrrolidine salt A1·HCl with methanesulfonyl chloride and triethylamine in CH2Cl2. 

Then, aqueous work-up and purification of the crude product by flash column 

chromatography yielded sulfonamide A3 with 79% yield (Scheme 3.13).  

 

 

Scheme 3.13: Synthesis of sulfonamide A3. 
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The synthesis of sulfonamide A3 was proven by characterisation by 1H NMR 

spectroscopy. The 1H NMR spectrum of A3 in CDCl3 is shown in Figure 3.6. In the 

1H NMR spectrum of sulfonamide A3, there was a 3H singlet at δ 2.92 due to the 

methanesulfonyl group. The 13C NMR spectrum showed a CH3 at δ 39.6, which 

corresponded to the methanesulfonyl group. In the IR spectrum, there were two S=O 

stretches at 1319 and 1140 cm-1. 

 

 

Figure 3.6: 1H NMR spectrum of sulfonamide A3. 

 

The procedure for the formation of acetamide A4 was similar to the synthesis of 

sulfonamide A3. Pyrrolidine salt A1·HCl was reacted with acetyl chloride and 

triethylamine in CH2Cl2. Following an aqueous work-up and purification of the crude 
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product by flash column chromatography, acetamide A4 was obtained in 85% yield 

(Scheme 3.14).  

 

Scheme 3.14: Synthesis of acetamide A4. 

The synthesis of acetamide A4 was proven by characterisation by the 1H NMR 

spectroscopy. In the 1H NMR spectrum (Figure 3.7), there was a singlet at δ 2.00 (3H 

integration) that was assigned to the acetyl group. In the 13C NMR spectrum, the signal 

at δ 168.9 was due to the acetyl carbonyl group and the signal at δ 23.1 was assigned 

to the CH3 in the acetyl group. In the IR spectrum, there were two carbonyl stretches 

at 1736 and 1641 cm-1, which were due to the ester and acetyl groups respectively.  

 

 

Figure 3.7: 1H NMR spectrum of acetamide A4. 
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Thus, we have developed synthetic routes to four pyrrolidine fragments, salt A1·HCl, 

methylamine salt A2·HCl, N-sulfonamide A3 and N-acetyl A4. The syntheses proceed 

in a short number of steps which are high yielding. We were able to prepare 175–1000 

mg of the fragments and they had good purity. Therefore, the fragments were stored 

and are available for fragment screening with proteins. 

 

 

 

3.2.2 Evaluation of the Stability of Fragments 

It was necessary to store the fragments for a period of time. Thus, it was very important 

to investigate their stability upon storage. In order to do this, a stability test was carried 

out on one of the fragments, methylamine salt A2·HCl, using 1H NMR spectroscopy 

over two months and it was kept at room temperature. For the preparation of the test 

sample, 5 mg of fragment A2·HCl was weight out and dissolved in deuterated DMSO 

solvent.  
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Figure 3.8: Stability test of the methylamine salt A2·HCl. 

 

This sample was inspected by 1H NMR spectroscopy after 1, 2, 3, 4 and 8 weeks. The 

results from these 1H NMR spectra (Figure 3.8) were that the peaks and the ratio of 

sample to the solvent remained unchanged over the two-month period. Therefore, we 

concluded that the methylamine salt A2·HCl was stable. This method for testing 

fragment stability was applied for monitoring the fragment collection in the group. 
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3.3 Synthesis of a cis-2,4-Disubstituted Pyrrolidine Fragment 

3.3.1 Previous Routes to 2,4-cis-Disubstituted Pyrrolidines and Pyrrolidinones with 

Methyl and Methyl Ester Groups  

In 2003, Goodman and colleagues49 developed a method for the synthesis of Boc 

protected prolinol 42 via a divergent asymmetric hydrogenation strategy from trans-

4-hydroxyproline 40 (Scheme 3.15). The synthesis of the key ketone intermediate 41 

proceeded via Boc protection of free amino acid 40, reduction and selective protection 

of the primary alcohol with TBDMSCl. This was then oxidised using 

trichloroisocyanuric acid and catalytic TEMPO to form pyrrolidinone 41 in 88% yield. 

Subsequently, a Wittig reaction of pyrrolidinone 41 with the corresponding 

triphenylphosphorane afforded TBS protected prolinol 42 in 78% yield. 

 

 

Scheme 3.15: Synthesis of prolinol 42. 

 

This method was adapted by Shoulders et al.50 to prepare the acetamide A40 (Scheme 

3.16). To start, prolinol 42 was hydrogenated and silyl ether deprotection gave free 

prolinol 43 in 59% over 2 steps. The cis-diastereoselectivity results from attack of the 

hydrogen on the face of the alkene opposite to the sterically bulky silyloxymethyl 
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group. Subsequent oxidation of the free prolinol 43 by TEMPO formed Boc-protected 

carboxylic acid 44 in 94% yield, which allowed the acetylation and methyl ester 

formation to give acetamide A40 in 52% yield over 2 steps. In this work, the 

acetylation was carried out using 13C–labelled acetyl chloride to give 13C–labelled 

acetamide A40. 

 

 

Scheme 3.16: Synthesis of acetamide A40. 

 

This approach allows formation of the 2,4-cis-disubstituted acetamide A40 with good 

yield. However, this required a long synthesis route for obtaining the desired product 

and other routes have been reported. 

 

In 1997, Coudert et al.51 investigated the synthesis of methylglutamic acid 49 starting 

from the pyrrolidinone derivative, pyroglutamic acid (Scheme 3.17). (S)-Pyroglutamic 

acid (S)-45 was protected by esterification with thionyl chloride in methanol and tert-

butyloxycarbonylation to give (S)-46 in 85% yield over 2 steps. This was followed by 

reaction of protected pyroglutamate (S)-46 with Bredereck’s reagent to afford 

enaminone (S)-47 with 93% yield. This allowed the catalytic hydrogenation by 
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palladium on carbon to give a quantitative yield of methylglutamic acid cis-48 after 5-

6 days reaction time. As in the previous route, complete cis-diastereoselectivity was 

observed, with hydrogen adding opposite to the ester group. This approach allowed a 

much shorter scheme to functionalise the C-4 position in pyroglutamic acid although 

it gave the pyrrolidinones rather than the pyrrolidine. 

 

 

Scheme 3.17: Synthesis of methylglutamic acid 49. 

 

In 2003, Gu et al.52 reported a different method to synthesise methylglutamic acid. 

Boc protected pyroglutamic acid (S)-46 was prepared as previously, Then, alkylation 

at the C-4 position in (S)-46 was carried out by using LHMDS at – 78 ºC to from the 

enolate. Subsequently, trapping with methyl iodide gave a separable mixture of cis-48, 

trans-48, and disubstituted pyroglutamate 50 with 28%, 37% and 11% yields 

respectively (Scheme 3.18). The poor diastereoselectivity and the formation of the 

doubly alkylated product make this approach less suitable than the hydrogenation 

routes described previously. 
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Scheme 3.18: Unselective enolate alkylation reaction. 

In 2012, Belema and colleagues reported a patent on the synthesis of Hepatitis C virus 

inhibitor 52 and one of the intermediates was methylglutamic acid derivative cis-48 

from Gu et al.’s approach. Lactam reduction of pyrrolidinone cis-48 using BH3·DMS 

in THF gave methyl ester cis-51 in 56% yield (Scheme 3.19). Thus, using the 

approaches described in this section and this lactam reduction, a route to 2,4-cis-

disubstituted pyrrolidines cis-51 is possible.53 

 

Scheme 3.19: Synthesis of Hepatitis C virus inhibitor 52. 

In summary, a few different approaches to 2,4-cis-disubstituted pyrrolidines and 

pyrrolidinones with methyl and methyl ester groups are known in the literature. 
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3.3.2 Synthesis of a 2,4-cis-Disubstitued Pyrrolidine with Methyl and Methyl Ester 

Groups 

In this section, a method for introducing a substituent at the 2 and 4 positions on the 

pyrrolidine was investigated. As shown in the previous section, the synthetic 

approaches to 2,4-disubstituted pyrrolidines mostly began with pyroglutamic acid 45. 

In N-Boc pyroglutamate ester 46, deprotection α to the amide carbaryl is more 

favoured than α to the ester, so enolate formation occurs more readily at that position. 

This is driven by the electron withdrawing Boc group and hence led us to propose the 

synthesis plan as set out in Scheme 3.20. Esterification and Boc protection of racemic 

pyroglutamic acid rac-45 would give 46, which allows reaction with Bredereck’s 

reagent to form an enaminone at the C-4 position to give enaminone 47. Then, 

diastereoselective hydrogenation of enaminone 47 would give the methyl group in cis-

48. Subsequent lactam reduction would give methylpyroglutamic acid cis-51. This 

would be followed by Boc deprotection and acetylation to give the desired fragment, 

acetamide A40. 

 

Scheme 3.20: Proposed synthesis of acetamide A40. 
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To start with, protected pyroglutamic acid 46 was synthesised. rac-Pyroglutamic acid 

rac-45 was reacted with catalytic p-toluenesulfonic acid in methanol at reflux to form 

the methyl ester. The methyl ester intermediate was then treated with triethylamine 

and Boc2O to form the N-Boc methyl ester 46. After work-up, purification of the crude 

product by flash column chromatography gave 46 in 76% yield (Scheme 3.21).  

 

 

Scheme 3.21: Synthesis of methyl ester 46. 

 

The synthesis of 46 was verified by 1H NMR spectroscopy. In the 1H NMR spectrum, 

there was a 9H integration signal at δ 1.47, which was assigned to the Boc group. Also, 

there was a 3H singlet at δ 3.77 due to the methyl ester. In the 13C NMR spectrum, 

there were two carbonyl signals at δ 173.2 and 171.8 due to the lactam carbon and 

methyl ester group. There was a carbonyl signal at δ 149.2, which was assigned to the 

Boc group. The alkyl signal at δ 52.5 was due to the methyl ester group. All of the 

NMR spectroscopic data matched the literature values.51 

 

Then, methyl ester 46 was reacted with Bredereck’s reagent by using a literature 

route.51 Methyl ester 46 was reacted with Bredereck’s reagent in DME at reflux to give 

enaminone 47. After filtration and eluting with hexane, pure enaminone 47 was 

obtained in 82% yield (Scheme 3.22). 
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Scheme 3.22: Synthesis of enaminone 47. 

 

The synthesis of enaminone 47 was proven by 1H NMR spectroscopy. In the 1H NMR 

spectrum, there was a singlet at δ 7.11 (1H integration) which was assigned to the 

alkene proton. There was a 6H singlet at δ 3.00, which was due to the enaminone 

methyl groups. The 13C NMR spectrum showed a CH signal at δ 146.6 due to the CH 

in the alkene group. There was a signal at δ 91.0 due to the tertiary carbon in the alkene 

group. There was also a CH3 signal at δ 26.4, which was assigned to the enaminone 

methyl groups. All of the spectroscopic data matched the literature data.51 

 

This was followed by an investigation of the catalytic hydrogenation of enaminone 47. 

This was carried out by using a literature method.51 The catalytic hydrogenation of 

enaminone 47 with palladium on carbon in methanol was carried out first. After the 

solids were removed by filtration through Celite®, the crude product was purified by 

flash column chromatography. This gave a 52% yield of the desired product, methyl 

pyroglutamate cis-48, and a 47% yield of the ring-opened dimethyl ester by-product 

cis-53(Scheme 3.23). By-product 53 was formed by the methanol attacking the lactam 

carbonyl in methyl pyroglutamate cis-48 (Scheme 3.24).  
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Scheme 3.23: Catalytic hydrogenation enaminone 47. 

 

 

Scheme 3.24: Mechanism for the formation of by-product cis-53. 

 

The synthesis of methyl pyroglutamate cis-48 was confirmed by characterisation with 

1H NMR spectroscopy. In the 1H NMR spectrum, there was a 3H doublet signal at δ 

1.25 (J = 7.0 Hz) due to the protons in the newly formed methyl group. In the 13C 

NMR spectrum, there was a methyl signal at δ 18.3, which was assigned to the newly 

formed methyl group. The spectroscopic data matched with those values in the 

literature.51 

 

To confirm the structure of the ring-opened by-product dimethyl ester cis-53 

characterisation by 1H NMR spectroscopy was carried out. In the 1H NMR spectrum, 

there was a doublet at δ 4.98 (1H integration), which was assigned to the NH proton. 

There were two 3H singlets at δ 3.70 and 3.64, which were assigned to the methyl 

protons in the methyl ester. In the 13C NMR spectrum, there were three carbonyl 

signals at δ 176.7, 173.1 and 155.6 due to the carbonyl groups in the two methyl esters 

and in the Boc group respectively. There were two CH3 signals at δ 52.5 and 51.9, 
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assigned to the methyl in the two methyl ester groups. The CH3 signal at δ 17.3 was 

due to the newly formed methyl group. The molecular formula of the dimethyl ester 

cis-53 was confirmed by electrospray ionisation (ESI) mass spectrometry. In the ESI 

spectrum, there was a peak at 312.1423 which fitted well with the calculated 

C13H23NO6 (M + Na)+ 312.1418. All spectroscopic data matched with those reported 

in the literature.54 

 

In order to optimise the catalytic hydrogenation of enaminone 47, a solvent screen for 

this reaction was carried out (Table 3.12). To begin with, two non-protic solvents, 

EtOAc and THF, were chosen. With EtOAc, enaminone 47 did not dissolve well 

(Table 3.12, entry 1). With THF, enaminone 47 dissolved, but after reaction for 21 h, 

the desired product did not form (entry 2). This finding suggested that a protic solvent 

is required for the reaction. Then, the protic solvent, i-PrOH, was investigated (Entry 

3). The reaction was carried out for 71 h due to the low solubility of enaminone 47 in 

i-PrOH and the large amount of solvent that was required. Due to the dilute condition, 

this reaction required a long reaction time (entry 3). However, under these condition, 

pyroglutamate cis-48 was isolated in 74% yield without any dimethyl ester cis-53 

being formed. Reaction in 2:1 i-PrOH–MeOH as solvent was faster and gave a 74% 

yield of cis-48 after 22 h (entry 4). Finally, the reaction was carried out in methanol 

and the reaction time was closely monitored (entry 5). The result showed that after 6 

h, a good yield of desired product cis-48 was obtained (67%) with some by-product 

cis-53 (10%). Thus, we concluded that the entry 5 conditions were the best for catalytic 

hydrogenation of enaminone 47, as they have the shortest reaction time (Scheme 3.25). 
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Table 3.12: Conditions trialled to optimise the hydrogenation. 

Entry Solvent Reaction time Result 
1 EtOAc / SM did not dissolve well in the solvent 
2 THF 21 h No product was found 
3 i-PrOH 71 h 74% of cis-48 
4 2:1 i-PrOH – MeOH 22 h 74% of cis-48 
5 MeOH 6 h 67% of cis-48 & 10% of cis-53 

 

 

Scheme 3.25: Catalytic hydrogenation of enaminone 48. 

 

Lactam reduction was investigated next using an approach based on the method 

described by  Belema and colleagues.53 Methylglutamic acid cis-48 was reacted with 

BH3·DMS in THF refluxing for 9 h. After aqueous work-up, the crude product was 

purified by flash column chromatography and methyl ester cis-51 was isolated in 66% 

yield (Scheme 3.26).  

 

 

Scheme 3.26: Synthesis of methyl ester cis-49. 

 
 
To confirm the successful synthesis of methyl ester cis-51, characterisation by 1H 

NMR spectroscopy was carried out. In the 1H NMR spectrum, there were two double 
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the a proton next to the ester in the pyrrolidine ring. In addition, there were two new 

NCH protons at δ 3.75-3.64 (multiplet) and δ 2.98 (double doublet). In the 13C NMR 

spectrum, there were two signals at δ 173.9 and 173.7, which were assigned to the 

carbonyls in the methyl ester (rotamers). There were two rotametic NCH2 signals at δ 

53.8 and 53.3 due to the a carbon at the C-5 position in the pyrrolidine ring. The 

spectroscopic data matched with those in the literature.53 

 

Before synthesising acetamide A40, the Boc deprotection of methyl ester cis-51 was 

investigated. Our standard Boc deprotection conditions were used. Methyl ester cis-51 

was treated with hydrochloric acid in Et2O at reflux for 17 h to give pyrrolidine salt 

A37·HCl in 99% yield. Salt A37·HCl was collected as a crude product and did not 

require any purification (Scheme 3.27). 

 

 

Scheme 3.27: Boc deprotection of 51 to give pyrrolidine salt A37·HCl. 

 

The synthesis of pyrrolidine salt A37·HCl was proven by 1H NMR spectroscopy. In 

the 1H NMR spectrum, the Boc signal (normally a 9H integration singlet at around δ 

1.40) was not detected. This information suggested that the Boc group was 

successfully removed. There was a singlet at δ 3.89 (3H integration), which was 

assigned to the methyl ester group. There was a 3H doublet at δ 1.12 due to the methyl 

group at the C-4 position. In the 13C NMR spectrum, the Boc carbonyl signal (normally 
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around δ 155.0) was not detected. There was a signal at δ 170.6, which was assigned 

to the methyl ester carbonyl group. There was a signal at δ 60.8 due to the NCH. There 

was a signal at δ 53.9 due to the NCH2. The CH3 signal at δ 53.1 was assigned to the 

methyl in the methyl ester group. 

 

The final fragment in this series was prepared using the conditions from the model 

study. N-acetamide A40 was synthesised by reaction of pyrrolidine salt A37·HCl with 

acetyl chloride and triethylamine in CH2Cl2. Then, aqueous work-up and purification 

of the crude product by flash column chromatography yielded N-acetamide A40 in 

58% yield (Scheme 3.28).  

 

 

Scheme 3.28: Synthesis of acetamide A40. 

 

Acetamide A40 was characterised by 1H and 13C NMR spectroscopy. In the 1H NMR 

spectrum (Figure 3.9), there were two singlets at δ 2.07 and 1.93 (3H integration in 

total) that were assigned to the rotameric methyls in the acetyl group. In the 13C NMR 

spectrum, the two rotameric signals at δ 173.2 and 173.1 were due to the acetyl 

carbonyl group and the two rotameric signals at δ 22.4 and 21.4 was assigned to the 

acetamide groups. In the IR spectrum, there were two carbonyl stretches at 1740 and 

1641 cm-1, which were due to the ester and acetyl group respectively. The 

spectroscopic data matched with those reported in the literature.43 
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Figure 3.9: 1H NMR spectrum of acetamide A40. 

 

Thus, we have developed a synthetic route to pyrrolidine fragment, N-acetyl A40. Its 

synthesis proceed in a short number of steps which are high yielding. We were able to 

prepare 175 mg of the fragment and it had good purity. Therefore, the fragment was 

stored and was available for fragment screening with proteins. 
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3.4 Attempted Synthesis of 2,5-cis-Disubstituted Pyrrolidine Fragments 

3.4.1 Previous Routes to 2,5-cis-Disubstituted Pyrrolidines with Phenyl or Pyridine 

and Primary Alcohol Groups 

In 1999, Xu et al.55 reported a synthetic strategy toward the nicotine analogue 57. Their 

approach began with the synthesis of pyridinyl ketone 54. The coupling of 3-

pyridinyllithium with Boc protected pyroglutamate cis-46 in Et2O gave ketone cis-54 

in 59% yield. This was followed by cyclisation. Boc deprotection of 54 with 

hydrochloric acid in EtOAc gave an imine intermediate. Subsequently, hydrogenation 

with palladium on carbon in i-PrOH gave amine C13 in 97% yield. Then, Boc 

protection of C13 gave methyl ester cis-55 in 97% yield. This was then followed by 

the reduction of the methyl ester to a primary alcohol cis-56 in 87% yield using 

Ca(BH4)2 which was formed in situ from CaCl2 and NaBH4 (Scheme 3.29).  

 

 

Scheme 3.29: Synthesis of nicotine analogue 57. 
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In another study, our group reported a method using a sparteine surrogate to achieve 

asymmetric deprotonation of N-Boc pyrrolidine 58. In this approach, the lithiation-

Negishi coupling of N-Boc pyrrolidine was mediated by s-BuLi and (–)-sparteine to 

give the arylated adduct 59 in 81% yield (95:5 er). This was followed by lithiation of 

59 with s-BuLi and diamine 60, trapping with CO2 and acidification to give an acid 

cis-61 without purification by flash column chromatography. Acid cis-61 was then 

esterified and Boc deprotected. After flash column chromatography, pyrrolidine B13 

(>99:1 er) was isolated in 33% yield together with the competitive benzylic 

deprotonation product pyrrolidine 62 in 22% yield (Scheme 3.30). 

 

 

Scheme 3.30: Synthesis of pyrrolidine B13. 

 

This approach provided good stereocontrol with overall good yield via a short route 

(only three steps). However, it involved complicated synthetic methods to get to the 
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final product and this might not be the most suitable route for synthesising our 

fragments. 

 

In 2014, Scharnagel et al.56 described a synthetic approach to cis-64 by using a 

Grignard reagent to introduce a phenyl group into the C-5 position (Scheme 3.31). In 

their approach, methyl ester (S)-46 was reacted with phenylmagnesium chloride to 

give keto ester 63 in 92% yield. This was followed by Boc deprotection by TFA and 

cyclisation to give an imine. Then, the imine was reduced using NaBH4 and Boc 

protection gave pyrrolidine cis-64 in 60% yield over 3 steps. Subsequently, methyl 

ester reduction of cis-64 was carried out to give primary alcohol cis-65 in 96% yield. 

 

 
 

Scheme 3.31: Synthesis of cis-65. 

 

In 2006, Banfi et al.57 reported the chemoselective reduction of an ester to a primary 

alcohol in the presence of N-acetamide. In this study, the vinyl ester acetamide cis-67 

was treated with Ca(BH4)2 to give cis-68 in 89% yield (Scheme 3.32). Similar to Xu 

et al.55, Ca(BH4)2 was formed in situ by reacting CaCl2 with NaBH4.  
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Scheme 3.32: Chemoselective reduction of ester cis-67. 

 
 
 
 
 
3.4.2 Attempted Synthesis of a 2,5-cis-Disubstitued Pyrrolidine with Phenyl or 

Pyridine and Primary Alcohol Groups 

In this section, methods for introducing substituents at the 2,5 positions on the 

pyrrolidine was investigated. As shown in the previous section, the synthetic 

approaches to 2,5-disubstituted pyrrolidines mostly began with pyroglutamic acid, 

which is similar to the 2,4-disubstituted pyrrolidine series. Thus, the proposed 

synthesis plan is as set out in Scheme 3.33. Esterification and Boc protection of 

racemic pyroglutamic acid rac-45 would give 46. The allows reaction with the 

corresponding organometallic reagent to introduce a phenyl or 3-pyridinyl group at the 

C-5 position to give keto ester 63 or keto ester 54 respectively. Then, ring-closing and 

N-acetylation of 63 and 54 would give the fragment B16 and C16. Subsequent 

chemoselective ester reduction would give primary alcohol acetamide fragments G16 

and H16. 
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Scheme 3.33: Proposed synthesis of G16 and H16. 

 

The introduction of the phenyl group at the C-5 position was investigated first. 

Reaction of Boc protected methyl ester 46 was carried out with phenylmagnesium 

chloride in THF at –30 ºC based on the procedure reported by Scharnagel et al.56 (see 

Scheme 3.31).  Then, the resulting mixture was stirred at rt for 30 h. The crude product 

was purified by flash column chromatography and a 76% yield of keto ester 63 was 

obtained (Scheme 3.34). 

 

 

Scheme 3.34: Synthesis of keto ester 63. 

 

The synthesis of keto ester 63 was confirmed by characterisation by 1H NMR 

spectroscopy. In the 1H NMR spectrum, there were signals at δ 7.96, 7.57 and 7.46 
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integration) at δ 5.16 due to the NH. There was a 3H integration singlet at δ 3.75 which 

was assigned to the protons in the ester group. The protons from the tert-butyl in the 

Boc group gave a 9H integration singlet at δ 1.42. The 13C NMR spectrum of 63 

showed a carbonyl signal at δ 199.0 due to the carbon at the phenyl ketone. There were 

other signals at δ 173.1 and 155.6, which were assigned to the carbonyl ester and Boc 

groups respectively. There was a signal at δ 80.2 due to the tertiary tert-butyl carbon 

in the Boc group. There was a CH3 signal at δ 28.4 which was assigned to the tert-

butyl in the Boc group. These spectroscopic data matched with those reported in the 

literature.55  

 

The ring-closing reaction was carried out in the following way (Scheme 3.35). Boc 

deprotection and cyclisation of keto ester 63 was carried out by reacting with TFA in 

CH2Cl2 to give the crude imine. Without purification, the crude imine was reacted with 

NaBH4 in methanol for 16 h. Subsequently, Boc protection for 71 h gave a crude 

product which was purified by flash column chromatography. In this way, methyl ester 

cis-64 was isolated in 24% yield over 3 steps. 

 

 

Scheme 3.35: Synthesis of methyl ester cis-64. 

The synthesis of methyl ester cis-64 was proven by 1H NMR spectroscopy. In the 1H 

NMR spectrum, the phenyl protons appeared at δ 7.54, 7.32 and 7.22. There was a 
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rotameric multiplet and double doublet (1H integration in total) at δ 4.99-4.97 and 4.35 

which were assigned to the NCH. There were two rotameric singlets δ 1.41 and 1.14 

(9H integration in total) due to the Boc group. The 1H NMR spectroscopic data 

matched with those previously reported in the literature.56 

 

The ring-closing reaction to give methyl ester cis-64 via a literature route56 was 

successfully carried out. However, the yield was low. Therefore, an alternative 

literature route55 was investigated. Boc deprotection and cyclisation of 63 with TFA 

in CH2Cl2 gave the crude imine. Subsequent hydrogenation of the crude imine with 

palladium on carbon should have given the free amine fragment, which was reacted 

with acetic anhydride in pyridine to give fragment B16. However, after purification by 

flash column chromatography, the desired acetamide fragment B16 was not observed. 

Instead, ring-opening product acetamide 68 was isolated in 65% yield. Ring-opened 

acetamide 68 was presumably formed by benzylic C-N bond cleavage, due to over-

reaction in hydrogenation. 

 

Scheme 3.36: Synthesis of acetamide 68. 

The structure of ring-opened product acetamide 68 was proven by characterisation by 

the 1H and 13C NMR spectroscopy. In the 1H NMR spectrum (Figure 3.10), there were 

the expected phenyl signals at δ 7.28, 7.19 and 7.15 and a broad doublet (1H 

1. TFA, CH2Cl2, rt
2. H2,10% Pd/C
    iPrOH, rt

3. Ac2O, pyridine, rt
O O

OMe
HN

Boc
63

68

O
HN

O

O

CO2MeN
Ac
B16

1. TFA, CH2Cl2, rt
2. H2,10% Pd/C
    iPrOH, rt

3. Ac2O, pyridine, rt
            65%



 108 

integration) at δ 5.94 due to the NH. There was a 1H integration multiplet at δ 4.67-

4.62 which was assigned to the NCH. There was a 2H integration multiplet at δ 2.69-

2.56 due to the CH2 next to the phenyl group. There was a singlet (3H integration) at 

δ 2.01 which was due to the acetamide. The 13C NMR spectrum of 68 showed a 

carbonyl signal at δ 173.2 due to the methyl ester. There was a CH3 signal at δ 52.1 

which was assigned to the ester group. There was a CH3 signal at δ 23.4 due to the 

acetamide group. The m/z value of 68 was measured by electrospray ionisation (ESI) 

mass spectrometry. In the ESI spectrum, the (M + Na)+ was at 272.1249  which 

compared well with the calculated C14H19NO3 (M + Na)+ 272.1257. The spectroscopic 

data matched those reported in the literature.58 

 

 

Figure 3.10: 1H NMR spectrum of acetamide 68. 
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With this failed reaction, we investigated the analogous pyridine reaction. Instead of 

using a Grignard reagent as with the phenyl derivative, the use of 3-pyridinylithium 

was explored. 3-Pyridinyllithium was formed by reacting 3-bromopyridine and n-BuLi  

in THF for 30 min, based on the procedure reported by Xu et al.55 (see Scheme 3.29).  

Then, the 3-pyrridinyllithium was reacted with Boc protected methyl ester 46 in THF 

at –30 ºC. The resulting mixture was stirred at rt for 1 h. After aqueous work-up, the 

crude product was purified by flash column chromatography and a 21% yield of keto 

ester 54 was obtained (Scheme 3.37). 

 

 

Scheme 3.37: Synthesis of keto ester 54. 

 

The synthesis of keto ester 54 was confirmed by characterisation by 1H and 13C NMR 

spectroscopy. In the 1H NMR spectrum, there were signals at δ 9.16, 8.79, 8.22 and 

7.42 which were assigned to the protons in the pyridine group. There was a doublet 

(1H integration) at δ 5.15 due to the NH. There was a 3H integration singlet at δ 3.76 

which was assigned to the protons in the ester group. The protons from the tert-butyl 

in the Boc group gave a 9H integration singlet at δ 1.40. The 13C NMR spectrum of 54 

showed a carbonyl signal at δ 197.8 due to the ketone. There were other carbonyl 

signals at δ 172.9 and 153.7, which were assigned to the ester and Boc group 

respectively. These spectroscopic data matched those reported in the literature.55 
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The ring-closing reaction of keto ester 54 was carried out via a literature route55 and 

using the same conditions as with phenyl derivative to give acetamide 69. Boc 

deprotection and cyclisation of 54 with TFA in CH2Cl2 gave the crude imine. 

Subsequent hydrogenation of the crude imine with palladium on carbon and 

acetylation should have given the desired fragment C16. However, after purification 

by flash column chromatography, the ring-opened product acetamide 69 was isolated 

in 65% yield (Scheme 3.38). The result was the same as the phenyl series. 

 

 

Scheme 3.38: Synthesis of acetamide 69. 

 

The structure of ring-opening product acetamide 69 was proven by characterisation by 

the 1H and 13C NMR spectroscopy. In the 1H NMR spectrum (Figure 3.10), there were 

the expected phenyl signals at δ 8.41-8.38, 7.45 and 7.19 and a multiplet (1H 

integration) at δ 6.39-6.29 due to the NH. There was a 1H integration multiplet at δ 

4.65-4.55 which was assigned to the NCH. There was a 2H integration multiplet at δ 

2.73-2.54 due to CH2 next to the phenyl group. There was a singlet (3H integration) at 

δ 2.00 which was due to the acetamide. The 13C NMR spectrum of 69 showed a 

carbonyl signal at δ 173.1 due to the methyl ester. There was another carbonyl signal 
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at δ 170.0, which was assigned to the acetamide. There were five pyridine signals at δ 

149.8, 147.5, 137.0, 126.0 (ipso) and 123.5. There was a CH3 signal at δ 52.6 which 

was assigned to the ester group. There was a CH3 signal at δ 23.2 due to the acetamide 

group. The m/z value of 69 was measured by electrospray ionisation (ESI) mass 

spectrometry. In the ESI spectrum, the (M + H)+ was at 251.1387 which compared 

well with the calculated C13H18N2O3 (M + H)+ 251.1390. The spectroscopic data was 

compared the phenyl derivative. 

 

 

Figure 3.11: 1H NMR spectrum of acetamide 69. 

 
 
Due to lack of time, no further studies of the synthesis of the 2,5-cis-disubstitsuted 

pyrrolidine fragments has been carried out. 
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3.5 Conclusions and Future Work 

First, we have successfully developed a synthetic route for the preparation of the 

geminal 2,2-disubstituted pyrrolidine fragments A1-A4 from (S)-proline (S)-34. The 

overall route is summarised in Scheme 3.39. The key intermediate was N-Boc methyl 

39 which was prepared by enolate alkylation. Deporotection gave fragment A1·HCl 

and N-functionalisation gave fragment A2·HCl and A3-4.  

 

 

Scheme 3.39: Synthetic route to fragments A1·HCl, A2·HCl, A3 and A4. 

 

Second, a route to 2,4-cis-disubstituted pyrrolidine fragment A40 was developed 

(Scheme 3.40). The route started with rac-pyroglutamic acid rac-45 and the key step 

was cis-stereoselective hydrogenation of enaminane 47. 
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Scheme 3.40: Synthetic route to fragment A40. 

 

Third, attempts to prepare 2,5-cis-disubstituted pyrrolidine fragments G16 and H16 

were unsuccessful (Figure 3.12). The key issue was over-reduction in the 

hydrogenation step. Future work could involve the use of shorter hydrogenation 

reaction times or the use of NaBH4 for the reaction. 

 

 
Figure 3.12: 2,5-cis-disubstituted pyrrolidine fragments G16 and H16. 

 

Other members in the group have synthesised all of the remaining pyrrolidine 

fragments with methyl and methyl ester substituents. Therefore, the future work should 

focus on the 11 aromatic pyrrolidine fragments identified in Chapter 2 (Figure 3.13). 
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Pervious work in the O’Brien group has developed a route59 to 2,2-disubstituted 

pyrrolidine esters and this would be suitable for the synthesis of B3, B4, C3, C4, H3 

and H4. Routes to G16 and H16 would be based on that used in Section 3.4. Finally, 

a new route60 to G20 would need to be devised. 

 

 

Figure 3.13: 11 selected aromatic pyrrolidine fragments. 
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Chapter 4: Experimental 

 
4.1 General Procedures 

4.1.1 Computational Methods 

Shape analysis 

A SMILES file containing the SMILES strings for all fragment compounds was 

generated using ChemDraw 12.0. 

 

Three-dimensional structures were generated using Pipeline Pilot 8.5.0.200, 2011, 

Accelrys Software Inc. Generated conformations were used to generate the three 

Principal Moments of Inertia (I1, I2 and I3) which were then normalised by dividing 

the two lower values by the largest (I1/I3 and I2/I3) using Pipeline Pilot built-in 

components. 

Principal moments of inertia (PMI) about the principal axes of a molecule were 

calculated based on the following rules (In Accerlrys Software Inc. 2016):  

1. The moments of inertia are computed for a series of straight lines through the 

centre of mass. 

2. Distances are established along each line proportional to the reciprocal of the 

square root of I on either side of the centre of mass. The locus of these distances 

forms an ellipsoidal surface. The principal moments are associated with the 

principal axes of the ellipsoid. 

 

The PMI plots were then generated with these data in Excel 2016. 
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Molecular properties 

All physical properties in this study were calculated using Pipeline Pilot built-in 

algorithms. 

 

Computational protocol 

Prior to conformer generation a wash step was performed, which involved stripping 

salts and ionising the molecule at pH 7.4. Any stereocentre created here was left with 

undefined stereochemistry. SMILES strings were converted to their canonical 

representation. A list of allowed chirality at each centre is generated and a SMILES 

file with all possible stereoisomers was written. Conformers were generated using the 

BEST method in Catalyst using the rel option, run directly on the server and not 

through the built-in Conformation Generator component with a chosen maximum 

relative energy threshold of 20 kcal mol-1, maximum of 255 conformers for each 

compound. Conformations were read, ones that cannot be represented by the canonical 

SMILES are discarded, with the remaining ones standardised to a single enantiomer. 

Duplicates were filtered with a RMSD threshold of 0.1. Minimisation with 200 steps 

of Conjugate Gradient minimisation with an RMS gradient tolerance of 0.1 was 

performed using the CHARMm forcefield with Momany-Rone partial charge 

estimation and a Generalised Born implicit solvent model. Duplicates were filtered 

again with a RMSD threshold of 0.1.  
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4.1.2 General Methods 

All non-aqueous reactions were carried out under oxygen-free Ar or N2. THF was 

freshly distilled from sodium and benzophenone. All solvents were purchased in 

Winchester quantities. Brine refers to a saturated solution. Water is distilled water. 

 

Flash column chromatography was carried out using Fluka Chemie GmbH silica (220-

440 mesh). Thin layer chromatography was carried out using commercially available 

Merck F254 aluminium backed silica plates. Proton (400 MHz) and carbon (100.6 

MHz) NMR spectra were recorded on a Jeol ECX- 400 instrument using an internal 

deuterium lock. For samples recorded in CDCl3, chemical shifts are quoted in parts 

per million relative to CHCl3 (δH 7.26) and CDCl3 (δC 77.0, central line of triplet). 

Carbon NMR spectra were recorded with broad band proton decoupling and assigned 

using DEPT, HMQC and HMBC experiments. Coupling constants (J) are quoted in 

Hertz. Melting points were carried out on a Gallenkamp melting point apparatus. 

Infrared spectra were recorded on a Perkin Elmer UATR Two FT-IR spectrometer. 

Absorption maxima (νmax) of selected peaks are quoted to the nearest cm-1. 

Electrospray high and low resonance mass spectra were recorded at room temperature 

on a Bruker Daltronics microTOF spectrometer. Selected mass-to-charge ratio peaks 

(m/z) are quoted in Daltons as a percentage of the base peak. Optical rotations were 

recorded at room temperature on a Jasco DIP-370 polarimeter (using sodium D line, 

589 nm) and [α]D given in units of 10-1 deg cm3 g-1. Chiral stationary phase HPLC was 

performed on an Agilent 1200 series chromatograph.  
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4.2 Experimental Procedures and Characterisation Data 

(S)-1-tert-Butyl 2-methyl pyrrolidine-1,2-dicarboxylate (S)-35 

 

Thionyl chloride (0.70 mL, 9.55 mmol, 1.1 eq) was added dropwise to a stirred 

solution of (S)-proline (S)-34 (1.00 g, 8.69 mmol, 1.0 eq) in MeOH (10 mL) at 0 °C 

under Ar. The resulting solution was stirred and heated at reflux for 1 h. After being 

allowed to warm to rt, the solvent was evaporated under reduced pressure to give the 

crude methyl ester. Et3N (1.21 mL, 8.69 mmol, 1.0 eq) was added to a stirred solution 

of the crude methyl ester in CH2Cl2 (5 mL) at 0 °C under Ar. Then, a solution of Boc2O 

(1.896 g, 8.69 mmol, 1.0 eq) and DMAP (50 mg, 0.409 mmol, 0.001 eq) in CH2Cl2 (5 

mL) was added dropwise. The resulting solution was stirred at rt for 18 h. The solvent 

was evaporated under reduced pressure to give a wet solid. The wet solid was dissolved 

in Et2O (10 mL) and the solution was washed with 1 M HCl(aq) (2 × 5 mL) and saturated 

NaHCO3(aq) (5 mL), dried (MgSO4) and evaporated under reduced pressure to give the 

crude product. Purification by flash column chromatography on silica with 1:1 

hexane–Et2O as eluent gave methyl ester (S)-35 (1.22 g, 82% over 2 steps) as a pale 

yellow oil, RF (1:1 hexane–Et2O) 0.37; IR (ATR) 2976, 2881, 1747 (C=O, CO2Me), 

1695 (C=O, Boc), 1391, 1365, 1157, 1119, 772 cm–1; 1H NMR (400 MHz, CDCl3) 

(60:40 mixture of rotamers) δ 4.28 (dd, J = 8.5, 3.0 Hz, 0.4H, NCHCO), 4.18 (dd, J = 

8.5, 4.0 Hz, 0.6H, NCHCO), 3.68 (s, 3H, OMe), 3.54-3.31 (m, 2H, NCH), 2.24-2.10 

(m, 1H, CH), 1.97-1.78 (m, 3H, CH), 1.42 (s, 3.6H, CMe3), 1.37 (s, 5.4H, CMe3); 13C 

NMR (101.6 MHz, CDCl3) (rotamers) δ 173.7 (C=O, CO2Me), 173.4 (C=O, CO2Me), 

154.7 (C=O, Boc), 153.3 (C=O, Boc), 79.94 (CMe3), 79.88 (CMe3), 59.0 (NCH), 58.6 

(S)-35

N
Boc

CO2Me
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(NCH), 52.0 (OMe), 51.8 (OMe), 46.5 (NCH2), 46.2 (NCH2), 30.8 (CH2), 29.8 (CH2), 

28.3 (CMe3), 28.2 (CMe3), 24.3 (CH2), 24.0 (CH2); MS (ESI) m/z 252 [(M + Na)+, 

100], 196 [(M – CMe3)+]; HRMS (ESI) m/z calcd for C11H19NO4 (M + H)+ 252.1206, 

found 252.1211 (–1.8 ppm error). Spectroscopic data consistent with those reported in 

the literature.40 

Lab Book Reference: IC 1-16 

The optical rotation was recorded on a different sample: [α]D –57.0 (c 1.0 in CHCl3) 

[lit.61, –54.5 (c 1.0, CHCl3)]  

Lab Book Reference: IC 2-7  
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(S)-2-(Methoxycarbonyl) pyrrolidin-1-ium chloride (S)-36·HCl 

 

Hydrogen chloride (19.2 mL of a 2.0 M solution in Et2O, 38.38 mmol, 4.4 eq) was 

added dropwise to a stirred solution of the methyl ester (S)-35 (2.00 g, 8.723 mmol, 

1.0 eq) in Et2O (20 mL) at rt under Ar. The resulting mixture was stirred and heated at 

reflux for 68 h. Then, the solvent was evaporated under reduced pressure to give the 

pyrrolidine salt (S)-36·HCl (1.40 g, 97%) as a brown solid, RF (100:9:1 CH2Cl2–

MeOH–NH4OH(aq)) 0.63. 1H NMR (400 MHz, CDCl3) δ 10.61 (br s, 1H, NH), 9.07 (s, 

1H, NH), 4.49 (br m, 1H, NCH), 3.90 (s, 3H, OMe), 3.64-3.53 (m, 2H, NCH), 3.11 

(br. s, 1H, NCH), 2.47-2.40 (m, 1H, CH), 2.29-2.08 (m, 3H, CH). Spectroscopic data 

consistent with those reported in the literature.62 

Lab Book Reference: IC 1- 70 

 

 

 

 

 

 

 

 

 

 

 

N
H⋅HCl

CO2Me

(S)-36⋅HCl



 121 

 (S)-N-Methylsulfonyl-proline methyl ester (S)-37 

 

Methanesulfonyl chloride (1.1 mL, 13.95 mmol, 3.0 eq) was added dropwise to a 

stirred solution of the pyrrolidine salt (S)-36·HCl (770 mg, 4.468 mmol, 1.0 eq) and 

Et3N (2 mL, 13.95 mmol, 3.0 eq) in CH2Cl2 (15 mL) at 0 ºC under Ar. The resulting 

mixture was stirred at rt for 3 h. Water (50 mL) was added and the mixture was 

extracted with CH2Cl2 (3 × 50 mL). The combined organic extracts were dried (MgSO4) 

and evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography with 10:1 CH2Cl2–MeOH as eluent gave the sulfonamide (S)-

37 (329 mg, 34%) as brown oil, RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.20; IR 

(ATR) 2927, 2851, 1740 (C=O, CO2Me), 1652 (C=O, C(O)Me), 1438, 1143, 1020, 

797 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.47-4.42 (m, 1H, NCHCO2Me), 3.71 (s, 3H, 

OMe), 3.54-3.39 (m, 2H, NCH), 2.97 (s, 3H, SO2Me), 2.30-2.21 (m, 1H, CH), 2.07-

1.93 (m, 3H, CH); 13C NMR (101.6 MHz, CDCl3) δ 173.0 (C=O, CO2Me), 60.5 (NCH), 

52.5 (OMe), 47.8 (NCH2), 39.1 (SO2Me), 31.0 (CH2), 25.0 (CH2); MS (ESI) m/z 230 

[(M + Na)+, 100]; HRMS (ESI) m/z calcd for C7H13NO4S (M + Na)+ 230.0457, found 

230.0454 (+1.4 ppm error); [α]D –80.2 (c 1.0 in CHCl3) [lit.42, –83.6 (c 1.1, CHCl3)]. 

Spectroscopic data consistent with those reported in the literature.42 

Lab Book Reference: IC 1-79 
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Methyl 1-acyl-2-methylpyrrolidine-2-carboxylate (S)-38 

 

Acetyl chloride (258 µL, 3.623 mmol, 3.0 eq) was added dropwise to a stirred solution 

of the pyrrolidine salt (S)-36·HCl (200 mg, 1.208 mmol, 1.0 eq) and Et3N (505 µL, 

3.623 mmol, 3.0 eq) in CH2Cl2 (4 mL) at rt under Ar. The resulting mixture was stirred 

at rt for 21 h. Water (10 mL) was added and the mixture was extracted with CH2Cl2 (3 

× 10 mL). The combined organic extracts were dried (MgSO4) and evaporated under 

reduced pressure to give the crude product. Purification by flash column 

chromatography with 100:10 CH2Cl2–MeOH as eluent gave acetamide (S)-38 (110 mg, 

53%) as a pale yellow oil, RF (10:1 CH2Cl2–MeOH) 0.44; IR (ATR) 2958, 1740 (C=O, 

CO2Me), 1617 (C=O, acetamide), 1079, 751 cm-1; 1H NMR (400 MHz, CDCl3) (80:20 

mixture of rotamers)  δ 4.45 (dd, J = 8.5, 3.5 Hz, 0.8H, NCH), 4.35 (dd, J = 8.5, 2.5, 

0.2H, NCH), 3.72 (s, 0.6H, OMe), 3.68 (s, 2.4H, OMe), 3.65-3.44 (m, 2H, NCH), 2.30-

1.86 (m, 4H, NCH), 2.06 (s, 2.4H, C(O)Me), 1.94 (s, 0.6H,  C(O)Me); 13C NMR (101.6 

MHz, CDCl3) δ 172.9 (C=O, CO2Me), 169.6 (C=O, acetamide), 58.6 (NCH), 52.3 

(OMe), 47.8 (NCH2), 29.5 (CH2), 24.8 (CH2), 22.3 (acetamide); MS (ESI) m/z 194 

[(M + Na)+], 172 [(M + H)+]; HRMS (ESI) m/z calcd for C8H13NO3 (M + Na)+ 

194.0788, found 194.0790 (–0.5 ppm error), (M + H)+ 172.0968, found 172.0963 (+3.5 

ppm error); [α]D –89.3 (c 1.0 in CHCl3). Spectroscopic data consistent with those 

reported in the literature.43  

Lab Book Reference: IC 1-71 
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1-tert-Butyl 2-methyl 2-methylpyrrolidine-1,2-dicarboxylate 39 

 

Lithium bis(trimethylsilyl)amide (12.2 mL of a 1 M solution in THF, 12.21 mmol, 1.4 

eq) was added dropwise to a stirred solution of (S)-35 (2.00 g, 8.72 mmol, 1.0 eq) in 

THF (20 mL) at –20 °C under Ar. The resulting mixture was stirred at –20 °C for 1.5 

h. Then, methyl iodide (760 µL, 12.21 mmol, 1.4 eq) was added. After being allowed 

to warm to rt, the resulting mixture was stirred at rt for 18 h. Saturated NH4Cl(aq) (20 

mL) was added and the mixture was extracted with EtOAc (3 × 20 mL). The combined 

organic extracts were washed with brine (3 × 20 mL), dried (MgSO4) and evaporated 

under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 3:1 hexane–EtOAc as eluent gave methylated product 

39 (1.62 g, 76%, 51:49 er by CSP-HPLC) as a pale yellow oil, RF (1:1 hexane–EtOAc) 

0.56; IR (ATR) 2976, 2877, 1742 (C=O, CO2Me), 1694 (C=O, Boc), 1386, 1366, 

1160, 1135, 773 cm-1; 1H NMR (400 MHz, CDCl3) (70:30 mixture of rotamers) δ 3.69 

(s, 3H, OMe), 3.57-3.39 (m, 2H, NCH), 2.18-2.05 (m, 1H, CH), 1.93-1.76 (m, 3H, 

CH), 1.52 (s, 0.9H, CMe), 1.47 (s, 2.1H, CMe), 1.40 (s, 2.7H, CMe3), 1.37 (s, 6.3H, 

CMe3); 13C NMR (101.6 MHz, CDCl3) (rotamers) δ 175.4 (C=O, CO2Me),  175.2 

(C=O, CO2Me), 154.0 (C=O, Boc), 153.6 (C=O, Boc), 79.9 (CMe3), 79.5 (CMe3), 65.2 

(CMe), 64.8 (CMe), 52.21 (OMe),  52.16 (OMe), 48.0 (NCH2),  47.8 (NCH2), 40.2 

(CH2), 39.2 (CH2), 28.5 (CMe3), 28.3 (CMe3), 23.4 (CH2), 23.2 (CH2), 22.9 (CMe), 

22.3 (CMe); MS (ESI) m/z 252 [(M + Na)+, 100], 196 [(M – CMe3)+]; HRMS (ESI) 

m/z calcd for C12H21NO4 (M + Na)+ 266.1363, found 266.1362 (+0.9) ppm error); [α]D 

N
Boc

CO2Me

39
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–0.97 (c 1.0 in CHCl3). Spectroscopic data consistent with those reported in the 

literature.39 

Lab Book Reference: IC 1-23 

The CSP-HPLC was recorded on a different sample: Chiralpak® ID (95:5 hexane–i-

PrOH, 1 mL min–1) 12.9 min and 14.1 min. 

 

 

Lab Book Reference: IC 2-12 
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Methyl 2-methylpyrrolidinium chloride-2-carboxylate A1·HCl 

 

Hydrogen chloride (22.6 mL of a 2.0 M solution in Et2O, 44.13 mmol, 4.4 eq) was 

added dropwise to a stirred solution of the methyl ester 39 (2.44 g, 10.28 mmol, 1.0 

eq) in Et2O (20 mL) at rt under Ar. The resulting mixture was stirred and heated at 

reflux for 23 h. Then, the solvent was evaporated under reduced pressure to give the 

pyrrolidine salt A1·HCl (1.75 g, 97%) as a brown solid, mp 86-94 ºC (lit.,63 106-108 

ºC); RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.67; IR (ATR) 3387 (NH), 2919, 2744, 

2508, 1741 (C=O, CO2Me), 1585, 1440, 1290, 1214, 1129, 985, 886, 763 cm-1; 1H 

NMR (400 MHz, CDCl3) δ 10.69 (s, 1H, NH),  9.47 (s, 1H, NH), 3.90 (s, 3H, OMe), 

3.68-3.58 (m, 2H, NCH), 2.48-2.42 (m, 1H, CH), 2.25-1.94 (m, 3H, CH), 1.96 (s, 3H, 

CMe); 13C NMR (101.6 MHz, CD3OD) δ 172.6 (C=O), 70.1 (CMe), 54.4 (OMe), 46.5 

(NCH2), 36.5 (CH2), 27.8 (CH2), 21.6 (CMe); MS (ESI) m/z 144 [M+, 100]; HRMS 

(ESI) m/z calcd for C7H14NO2 M+ 144.1019, found 144.1020 (+0.3 ppm error). 

Spectroscopic data consistent with those reported in the literature.45 

Lab Book Reference: IC 1-46 
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Attempted synthesis of methyl 1,2-dimethylpyrrolidine-2-carboxylate A2 

 

Sodium bis(trimethylsilyl)amide (535 µL of a 2 M solution in THF, 1.07 mmol, 2.5 

eq) was added dropwise to a stirred solution of pyrrolidine salt A1·HCl (77 mg, 0.428 

mmol, 1.0 eq) in THF (4.3 mL) at –78 °C under Ar. The resulting solution was stirred 

at –78 °C for 30 min. Then, methyl iodide (53 µL, 0.8566 mmol, 2.0 eq) was added. 

After being allowed to warm to rt, the resulting soloution was stirred at rt for 15 h. 

Water (5 mL) was added and the mixture was extracted with EtOAc (3 × 5 mL). The 

combined organic extracts were washed with brine (3 × 5 mL), dried (MgSO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 200:9:1 CH2Cl2–MeOH–NH4OH(aq) as eluent 

gave no identifiable products. 

Lab Book Reference: IC 1-21 
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Attempted synthesis of methyl 1,2-dimethylpyrrolidine-2-carboxylate A2 

 

10% Pd/C (20.1 mg, 0.1886 mmol, 0.27 eq) and 37% aqueous formaldehyde solution 

(60 µL, 0.7682 mmol, 1.1 eq) were added to a stirred solution of pyrrolidine salt 

A1·HCl (100 mg, 0.6984 mmol, 1.0 eq) in MeOH (7 mL) at rt under Ar. Then, the 

reaction flask was evacuated under reduced pressure and back-filled with Ar three 

times. After a final evacuation, a balloon of H2 was attached and the reaction mixture 

was stirred vigorously at rt under H2 for 23 h. Then, the solids were removed by 

filtration through Celite® and washed with MeOH (20 mL). The filtrate was evaporated 

under reduced pressure to give the crude product which contained starting material and 

methylamine A2 (by 1H NMR spectroscopy). Purification by flash column 

chromatography on silica with 200:9:1 CH2Cl2–MeOH–NH4OH(aq) as eluent gave no 

identifiable products.  

Lab Book Reference: IC 1-29 
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Methyl 1,2-dimethylpyrrolidine-2-carboxylate A2 

 

37% aqueous formaldehyde solution (1.78 mL, 22.04 mmol, 10.0 eq) and MgSO4 (1.3 

mg, 9.240 mmol, 4.2 eq) were added to a stirred solution of pyrrolidine salt A1·HCl 

(396 mg, 2.20 mmol, 1.0 eq) in CH2Cl–AcOH (4:1, 11 mL) at 0 ˚C under Ar. Then, 

NaBH(OAc)3 (1.4 g, 6.613 mmol, 3.0 eq) was added and the resulting mixture was 

stirred at rt for 21 h. Saturated NH4OH(aq) (5 mL) was added and the mixture was 

extracted with CH2Cl2 (3 × 5 mL). The combined organic extracts were dried (MgSO4) 

and evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 200:9:1 CH2Cl2–MeOH–NH4OH(aq) as eluent 

gave methylamine A2 (25 mg, 7%) as a yellow oil, RF (100:9:1 CH2Cl2–MeOH–

NH4OH(aq)) 0.48; 1H NMR (400 MHz, CDCl3) δ 3.68 (s, 3H, OMe), 2.87-2.84 (m, 2H, 

NCH), 2.30 (s, 3H, NMe), 2.24-2.14 (m, 1H, CH), 1.91-1.68 (m, 3H, CH), 1.26 (s, 3H, 

CMe). 

Methylamine A2 was shown to be volatile so care is needed during the rotary 

evaporation. 

Lab Book Reference: IC 1-45 
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Methyl 1,2-dimethylpyrrolidine-2-carboxylate hydrochloride A2·HCl 

 

37% aqueous formaldehyde solution (1.13 mL, 13.87 mmol, 10.0 eq) and MgSO4 (708 

mg, 5.87 mmol, 4.2 eq) were added to a stirred solution of pyrrolidine salt A1·HCl 

(200 mg, 1.387 mmol, 1.0 eq) in CH2Cl2–AcOH (4:1, 10 mL) at 0 ˚C under Ar. Then, 

NaBH(OAc)3 (882 mg, 4.161 mmol, 3.0 eq) was added and the resulting mixture was 

stirred at rt for 21 h. Saturated NH4OH(aq) (20 mL) was added and the mixture was 

extracted with CH2Cl2 (3 × 5 mL). The combined organic extracts were dried 

(MgSO4). Hydrogen chloride (3.47 mL of a 2.0 M solution in Et2O, 6.94 mmol, 5.0 

eq) was added to the filtrate. The resulting solution was stirred at rt for 30 min. The 

solvent was evaporated under reduced pressure to give the methylamine salt A2·HCl 

(205 mg, 86%) as a yellow oil, RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.44; IR 

(ATR) 3405 (NH), 2957, 2465, 1738 (C=O), 1448, 1286, 1215, 1118, 976, 729, 484 

cm-1; 1H NMR (400 MHz, CD3OD) δ 3.87 (s, 3H, OMe), 3.88-3.83 (m, 1H, NCH), 

3.71-3.76 (m, 1H, NCH), 2.90 (s, 3H, NMe), 2.38-2.21 (m, 3H, CH), 2.10-2.00 (m, 

1H, CH) 1.61 (s, 3H,  CMe); 13C NMR (101.6 MHz, CD3OD) δ 172.1 (C=O), 73.7 

(NCMe), 55.5 (NCH2), 54.5 (OMe), 49.8 (CH2), 36.6 (NMe), 21.3 (CMe), 17.1 (CH2); 

MS (ESI) m/z 158 [M+, 100]; HRMS (ESI) m/z calcd for C7H16NO2 M+ 158.1176, 

found 158.1172 (+2.6 ppm error). 

Lab Book Reference: IC 1-52 
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Methyl 1-methylsulfonamide-2-methylpyrrolidine-2-carboxylate A3 

 

Methanesulfonyl chloride (0.5 mL, 573.8 mmol, 3.0 eq) was added dropwise to a 

stirred solution of pyrrolidine salt A1·HCl (300 mg, 1.670 mmol, 1.0 eq) and Et3N (0.5 

mL, 5.010 mmol, 3.0 eq) in CH2Cl2 (6 mL) at rt under Ar. The resulting mixture was 

stirred at rt for 18 h. Water (20 mL) was added and the mixture was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic extracts were dried (MgSO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography with 10:1 CH2Cl2–MeOH as eluent gave sulfonamide A3 

(293 mg, 79%) as an off-white solid, mp 67-72 ºC; RF (100:9:1 CH2Cl2–MeOH–

NH4OH(aq)) 0.61; IR (ATR) 3004, 2972, 1721 (C=O), 1443, 1319, 1140, 1087, 1008, 

897, 777, 733 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.70 (s, 3H, OMe), 3.52-3.44 (m, 

2H, NCH), 2.92 (s, 3H, SO2Me), 2.23-2.14 (m, 1H, CH), 2.00-1.89 (m, 3H, CH), 1.61 

(s, 3H, CMe); 13C NMR (101.6 MHz, CDCl3) δ 174.6 (C=O), 68.7 (NCMe), 52.6 

(OMe), 48.8 (NCH2), 40.1 (CH2), 39.6 (SO2Me), 24.6 (CMe), 23.4 (CH2); MS (ESI) 

m/z 244 [(M + Na)+, 100]; HRMS (ESI) m/z calcd for C8H15NO4S (M + Na)+ 244.0614, 

found 244.0614 (0.0 ppm error). 

Lab Book Reference: IC 1-82 
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Methyl 1-acyl-2-methylpyrrolidine-2-carboxylate A4 

 

Acetyl chloride (0.24 mL, 3.340 mmol, 3.0 eq) was added dropwise to a stirred 

solution of the pyrrolidine salt A1·HCl (200 mg, 1.113 mmol, 1.0 eq) and Et3N (0.47 

mL, 3.340 mmol, 3.0 eq) in CH2Cl2 (4 mL) at rt under Ar. The resulting mixture was 

stirred at rt for 23 h. Water (20 mL) was added and the mixture was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic extracts were dried (MgSO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography with 100:10 CH2Cl2–MeOH as eluent gave acetamide A4 

(175 mg, 85%) as a pale yellow oil, RF (200:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.36; IR 

(ATR) 2952, 2876, 2508, 1736 (C=O, CO2Me), 1641 (C=O, acetamide), 1410, 1283, 

1135, 869 cm-1; 1H NMR (400 MHz, CDCl3) δ 3.69 (s, 3H, OMe), 3.65-3.54 (m, 2H, 

NCH), 2.15 (ddd, 1H, J = 12.0, 9.0, 7.0 Hz, CH), 2.00 (s, 3H, C(O)Me), 2.64-1.95 (m, 

2H, CH), 1.87 (ddd, 1H, J = 12.0, 6.0, 6.0 Hz, CH), 1.54 (s, 3H, CMe); 13C NMR 

(101.6 MHz, CDCl3) δ 174.7 (C=O, CO2Me), 168.9 (C=O, acetamide), 65.6 (NCMe), 

52.5 (NCH2), 49.0 (OMe), 38.8 (CH2), 24.0 (CH2), 23.1 (C(O)Me), 21.7 (CMe); MS 

(ESI) m/z 208 [(M + Na)+, 100]; HRMS (ESI) m/z calcd for C9H15NO3 (M + Na)+ 

208.0944, found 208.0947 (–1.1 ppm error). 

Lab Book Reference: IC 1-86 
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1-tert-Butyl 2-methyl 5-oxopyrrolidine-1,2-dicarboxylate 46 

 

p-Toluenesulfonic acid monohydrate (884 mg, 4.64 mmol, 0.03 eq) was added a stirred 

solution of rac-pyroglutamic acid rac-45 (20.0 g, 154.9 mmol, 1.0 eq) in MeOH (300 

mL) at rt under Ar. The resulting solution was stirred and heated at reflux for 24 h. 

The mixture was then allowed to cool to rt and the solvent was evaporated under 

reduced pressure to give the crude methyl ester. Et3N (23.8 mL, 170.4 mmol, 1.1 eq) 

was added to a stirred solution of the crude methyl ester in CH2Cl2 (5 mL) at rt under 

Ar. Then, a solution of Boc2O (37.2 g, 170.4 mmol, 1.1 eq) and DMAP (1.892 g, 170.4 

mmol, 1.1 eq) in CH2Cl2 (142 mL) were added dropwise. The resulting mixture was 

stirred at rt for 23 h. The solvent was evaporated under reduced pressure to give a wet 

solid. Saturated NH4Cl(aq) (80 mL) was added and the mixture was extracted with 

EtOAc (3 × 40 mL). The combined organic extracts were dried (MgSO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 4:1 hexane–EtOAc as eluent gave methyl ester 

46 (28.5 g, 76%) as a pale yellow oil, RF (1:1 hexane–EtOAc) 0.26; IR (ATR) 2980, 

2878, 1789 (C=O, CO2Me), 1746 (C=O), 1714 (C=O), 1369, 1256, 1146, 843, 729 

cm-1; 1H NMR (400 MHz, CDCl3) δ 4.60 (dd, J = 9.5, 3.0 Hz, 1H, NCH), 3.77 (s, 3H, 

OMe), 2.61 (ddd, J = 17.5, 10.0, 10.0 Hz, 1H, CH), 2.47 (ddd, J = 13.0, 10.0, 10.0 Hz, 

1H, CH), 2.06-1.99 (m, 2H, CH), 1.47 (s, 9H, CMe3); 13C NMR (101.6 MHz, CDCl3) 

δ 173.2 (C=O), 171.8 (C=O), 149.2 (C=O, Boc), 83.6 (CMe3), 58.8 (NCH), 52.5 

(OMe), 31.1 (CH2), 27.8 (CMe3), 21.4 (CH2); MS (ESI) m/z 266 [(M + Na)+, 100]; 

N
Boc

CO2MeO
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HRMS (ESI) m/z calcd for C11H17NO5 (M + Na)+ 266.0999, found 266.0986 (+4.7 

ppm error). Spectroscopic data consistent with those reported in the literature.51 

Lab Book Reference: IC 2-22 
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1-tert-Butyl 2-methyl 4-((dimethylamino)methylene)-5-oxopyrrolidine-1,2-

dicarboxylate 47 

 

tert-Butoxy bis(dimethylamino)methane (575 µL, 2.79 mmol, 1.5 eq) was added to a 

stirred solution of methyl ester 46 (452 mg, 1.86 mmol, 1.0 eq) in DME (2 mL) at rt 

under Ar. The resulting solution was stirred and heated at reflux for 20 h. The solvent 

was then evaporated under reduced pressure. Hexane (200 mL) was added and the 

solids were removed by filtration through filter paper. The filtrate was evaporated 

under reduced pressure to give the enaminone 47 (453 mg, 82%) as yellow solid, mp 

127-129 ºC (lit., mp 124–127 ºC64) RF (1:1 hexane–EtOAc) 0.01; IR (ATR) 2990, 2956, 

2815, 1960, 1757 (C=O), 1740 (C=O), 1677 (C=O), 1607 (C=C), 1440, 1374, 1366, 

1308, 1250, 1152, 1110, 1015, 843, 771, 737, 457 cm-1; 1H NMR (400 MHz, CDCl3) 

δ 7.11 (s, 1H, C=CH), 4.60 (dd, J = 11.0, 4.0 Hz, 1H, NCH), 3.73 (s, 3H, OMe), 3.23 

(dd, J = 14.0, 11.0 Hz, 1H, CH) 3.00 (s, 6H, NMe2), 2.87 (dd, J = 14.0, 4.0 Hz, 1H, 

CH), 1.47 (s, 9H, CMe3). 13C NMR (101.6 MHz, CDCl3) δ 172.9 (C=O), 169.6 (C=O), 

150.6 (C=O), 146.6 (NCH=C), 91.0 (NCH=C), 82.4 (CMe3), 56.1 (NCH), 52.5 (OMe), 

42.1 (CH2), 28.2 (CMe3), 26.4 (CH2); MS (ESI) m/z 321 [(M + Na)+, 100], 299 [(M + 

H)+, 100]; HRMS (ESI) m/z calcd for C14H22N2O5 (M + Na)+ 321.1421, found 

321.1413 (+2.0 ppm error). Spectroscopic data consistent with those reported in the 

literature.51 

Lab Book Reference: IC/1/31 
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1-tert-Butyl 2-methyl 4-methyl-5-oxopyrrolidine-1,2-dicarboxylate cis-48 and 

dimethyl-N-tert-butoxycarbonyl-4-methylglutamate cis-53 

 

10% Pd/C (125 mg, 0.118 mmol, 0.14 eq) was added to a stirred solution of enaminone 

47 (250 mg, 0.839 mmol, 1.0 eq) in MeOH (2 mL) at rt under Ar. Then, the reaction 

flask was evacuated under reduced pressure and back-filled with Ar three times. After 

a final evacuation, a balloon of H2 was attached and the reaction mixture was stirred 

vigorously at rt under H2 for 16 h. Then, the solids were removed by filtration through 

Celite® and washed with MeOH (20 mL). The filtrate was evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on 

silica with 4:1 hexane–Et2O as eluent gave methyl pyroglutamate cis-48 (112 mg, 52%) 

as a pale yellow oil, RF (4:1 hexane–EtOAc) 0.1; IR (ATR) 1759 (C=O, CO2Me), 1678 

(C=O, Boc), 1609 cm-1; 1H NMR (400 MHz, CDCl3) δ 4.49 (dd, J = 4.5, 4.5 Hz, 1H, 

NCH), 3.77 (s, 3H, OMe), 2.67-2.49 (m, 2H, CH), 1.64-1.61 (m, 2H) 1.49 (s, 9H, 

CMe3), 1.25 (d, J = 7.0 Hz, 1H, NCOCHMe); 13C NMR (101.6 MHz, CDCl3) δ 175.8 

(C=O), 172.2 (C=O), 149.6 (C=O, Boc), 83.8 (CMe3), 57.5 (NCH), 52.7 (OMe), 37.7 

(CHMe), 29.9 (CH2), 28.0 (CMe3), 16.3 (CHMe); MS (ESI) m/z 280 [(M + Na)+, 100] ]; 

HRMS (ESI) m/z calcd for C12H19NO5 (M + Na)+ 280.1155, found 280.1145  (+3.2 

ppm error) and dimethyl ester cis-53 (101 mg, 47%) as a colourless oil, RF (4:1 

hexane–EtOAc) 0.2; IR (ATR) 3364 (NH), 2977, 1713 (C=O), 1514, 1437, 1366, 1158, 

1061, 859, 780 cm-1; 1H NMR (400 MHz, CDCl3) 4.98 (d, J = 9.0 Hz, 1H, NH), 4.32 

(ddd, J = 9.0, 9.0, 5.0 Hz, 1H, NHCH), 3.70 (s, 3H, OMe), 3.64 (s, 3H, OMe), 2.54 

cis-53

MeO2C
NHBoc

CO2Me
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(ddq, J = 7.0, 7.0, 7.0 Hz, 1H, CHMe), 2.00 (ddd, J = 12.0, 8.0, 4.0 Hz, 1H, CH), 1.89-

1.83 (m, 1H, CH), 1.40 (s, 9H, CMe3), 1.19 (d, J = 8.0 Hz, 3H, NCOCHMe); 13C NMR 

(101.6 MHz, CDCl3) δ 176.7 (C=O), 173.1 (C=O), 155.6 (C=O, Boc), 80.1 (CMe3), 

52.5 (OMe), 51.9 (OMe), 36.4 (CH), 36.0 (CH), 28.4 (CMe3), 17.3 (CHMe) ; MS (ESI) 

m/z 312 [(M + Na)+, 100]; HRMS (ESI) m/z calcd for C13H23NO6 (M + Na)+ 312.1418, 

found 312.1423  (–2.0 ppm error). Spectroscopic data consistent with those reported 

in the literature.51,54  

Lab Book Reference: IC 1-33 
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1-tert-Butyl 2-methyl 4-methyl-5-oxopyrrolidine-1,2-dicarboxylate cis-48 and 

dimethyl 2-((tert-butoxycarbonyl)amino)-4-methylpentanedioate cis-53 

 

10% Pd/C (125 mg, 0.118 mmol, 0.14 eq) was added to a stirred solution of enaminone 

47 (250 mg, 0.839 mmol, 1.0 eq) in MeOH (2 mL) at rt under Ar. Then, the reaction 

flask was evacuated under reduced pressure and back-filled with Ar three times. After 

a final evacuation, a balloon of H2 was attached and the reaction mixture was stirred 

vigorously at rt under H2 for 6 h. Then, the solids were removed by filtration through 

Celite® and washed with MeOH (20 mL). The filtrate was evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on 

silica with 4:1 hexane–Et2O as eluent gave methyl pyroglutamate cis-48 (148 mg, 67%) 

as a pale yellow oil, RF (4:1 hexane–EtOAc) 0.1, and dimethyl ester cis-53 (24 mg, 

10%) as a colourless oil, RF (4:1 hexane–EtOAc) 0.2. 

Lab Book Reference: IC 1-63 
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1-tert-Butyl 2-methyl 4-methyl-5-oxopyrrolidine-1,2-dicarboxylate cis-48 

 

10% Pd/C (50 mg, 47.0 µmol, 0.14 eq) was added to a stirred solution of enaminone 

47 (100 mg, 0.335 mmol, 1.0 eq) in i-PrOH–MeOH (2:1, 4 mL) at rt under Ar. Then, 

the reaction flask was evacuated under reduced pressure and back-filled with Ar three 

times. After a final evacuation, a balloon of H2 was attached and the reaction mixture 

was stirred vigorously at rt under H2 for 22 h. Then, solids were removed by filtration 

through Celite® and washed with i-PrOH (20 mL). The filtrate was evaporated under 

reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 4:1 hexane–Et2O as eluent gave methyl pyroglutamate 

cis-48 (45 mg, 74%) as a pale yellow oil, RF (4:1 hexane–EtOAc) 0.1. 

Lab Book Reference: IC 1-56 
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1-tert-Butyl 2-methyl 4-methyl-5-oxopyrrolidine-1,2-dicarboxylate cis-48 

 

10% Pd/C (134.4 mg, 0.126 mmol, 0.05 eq) was added to a stirred solution of 

enaminone 47 (700 mg, 2.35 mmol, 1.0 eq) in i-PrOH (4 mL) at rt under Ar. Then, the 

reaction flask was evacuated under reduced pressure and back-filled with Ar three 

times. After a final evacuation, a balloon of H2 was attached and the reaction mixture 

was stirred vigorously at rt under H2 for 71 h. Then, the solids were removed by 

filtration through Celite® and washed with i-PrOH (20 mL). The filtrate was 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography on silica with 4:1 hexane–Et2O as eluent gave methyl 

pyroglutamate cis-48 (423 mg, 74%) as a pale yellow oil, RF (4:1 hexane–EtOAc) 0.1. 

Lab Book Reference: IC 2-21 

 

 

 

 

 

 

 

 

 

 

N
Boc

CO2MeO

cis-48



 140 

Attempted synthesis of 1-tert-butyl 2-methyl 4-methyl-5-oxopyrrolidine-1,2-

dicarboxylate cis-48 

 

10% Pd/C (125 mg, 0.118 mmol, 0.14 eq) was added to a stirred solution of enaminone 

47 (250 mg, 0.839 mmol, 1.0 eq) in THF (2 mL) at rt under Ar. Then, the reaction 

flask was evacuated under reduced pressure and back-filled with Ar three times. After 

a final evacuation, a balloon of H2 was attached and the reaction mixture was stirred 

vigorously at rt under H2 for 16 h. Then, the solids were removed by filtration through 

Celite® and washed with MeOH (20 mL). The filtrate was evaporated under reduced 

pressure to give the crude product which contained none of the desired product (by 1H 

NMR spectroscopy). 

Lab Book Reference: IC 1-37 
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1-tert-Butyl 2-methyl 4-methylpyrrolidine-1,2-dicarboxylate cis-51 

 

BH3·DMS (0.49 mL of a 2 M solution in THF, 0.972 mmol) was added dropwise to a 

stirred solution of methyl pyroglutamate cis-48 (125 mg, 0.486 mmol, 1.0 eq.) in THF 

(4 mL) at rt under Ar. The resulting solution was stirred and heated at reflux for 9 h. 

The solvent was evaporated under reduced pressure to give a wet solid. EtOAc (20 

mL) was added and washed with H2O (20 mL). The aqueous layer was extracted with 

EtOAc (3 × 10 mL). The combined organic layers were dried (MgSO4) and evaporated 

under reduced pressure to give the crude product. Purification by flash column 

chromatography on silica with 3:2 hexane–Et2O as eluent gave methyl ester cis-51 (78 

mg, 66%) as a pale yellow oil, RF (1:1 hexane–EtOAc) 0.6; IR (ATR) 2977, 2931, 

2851, 1742 (C=O, CO2Me), 1694 (C=O, Boc), 1393, 1367, 1256, 1169, 994, 906 cm-

1; 1H NMR (400 MHz, CDCl3) (60:40 mixture of rotamers) δ 4.25 (dd, J = 8.0, 8.0 Hz, 

0.4H, NCH), 4.19 (dd, J = 9.0, 8.0 Hz, 0.6H, NCH), 3.75-3.64 (m, 1H, NCH), 3.73 (s, 

1.2H, OMe), 3.72 (s, 1.2H, OMe), 2.98 (dd, J = 10.0, 10.0 Hz, 1H, NCH), 2.38 (dddd, 

J = 19.0, 13.0, 6.0 Hz, 1H, CH), 2.29-2.15 (m, 1H, CH), 1.61-1.50 (m, 2H, CH), 1.45 

(s, 3.6H, CMe3), 1.40, (s, 5.4H, CMe3), 1.06 (d, J = 6.5 Hz, 1.8H, CHMe), 1.04 (d, J 

= 6.5 Hz, 1.2H, CHMe); 13C NMR (101.6 MHz, CDCl3) (rotamers) δ 173.9 (C=O), 

173.7 (C=O), 154.3 (C=O, Boc), 153.6 (C=O, Boc), 79.9 (CMe3), 79.9 (CMe3), 59.8 

(NCH), 59.3 (NCH), 53.8 (NCH2), 53.3 (NCH2), 52.2 (CHMe), 52.0 (CHMe), 39.0 

(CH2), 38.1 (CH2), 33.3 (CH), 32.7 (CH), 28.5 (CMe3), 28.3 (CMe3), 17.07 (CHMe), 

16.95 (CHMe); MS (ESI) m/z 266 [(M + Na)+, 100]; m/z calcd for C12H21NO5 (M + 

N
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Na)+ 266.1363, found 266.1370  (–2.6 ppm error). Spectroscopic data consistent with 

those reported in the literature.53 

Lab Book Reference: IC 1-64 

 

 

2-(Methoxycarbonyl)-4-methylpyrrolidin-1-ium chloride A37·HCl 

 

Hydrogen chloride (1.78 mL of a 2.0 M solution in Et2O, 3.563 mmol, 4.4 eq) was 

added dropwise to a stirred solution of methyl ester cis-51 (2.44 g, 10.28 mmol, 1.0 

eq) in Et2O (20 mL) at rt under Ar. The resulting mixture was stirred and heated at 

reflux for 17 h. Then, the solvent was evaporated under reduced pressure to give the 

crude pyrrolidine salt A37·HCl (1.4 mg, 99%) as a brown oil, RF (100:9:1 CH2Cl2–

MeOH–NH4OH(aq)) 0.55; 1H NMR (400 MHz, CD3OD) δ 4.43 (dd, J = 10.0, 8.0 Hz, 

1H, NCH), 3.84 (s, 3H, OMe), 3.48 (dd, J = 11.0, 8.0 Hz, 1H, CH2), 2.88 (dd, J = 11.0, 

8.0 Hz, 1H, CH), 2.61-2.54 (m, 1H, CH) 2.52-2.42 (m, 1H, CH), 1.72-1.65 (m, 1H, 

CH), 1.12 (d, J = 6.5 Hz, 3H, CHMe); 13C NMR (101.6 MHz, CD3OD) δ 170.6 (C=O), 

60.8 (NCH), 53.9 (NCH2), 53.1 (OMe), 37.3 (CHMe), 34.4 (CH2), 16.7 (CHMe). 

Lab Book Reference: IC 1-75 
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Methyl 1-acetyl-4-methylpyrrolidine-2-carboxylate A40 

 

Acetyl chloride (0.24 mL, 3.340 mmol, 3.0 eq) was added dropwise to a stirred 

solution of the crude pyrrolidine salt A37·HCl (200 mg, 1.113 mmol, 1.0 eq) and Et3N 

(0.47 mL, 3.340 mmol, 3.0 eq) in CH2Cl2 (1 mL) at rt under Ar. The resulting mixture 

was stirred at rt for 4 h. Water (20 mL) was added and the mixture was extracted with 

CH2Cl2 (3 × 20 mL). The combined organic extracts were dried (MgSO4) and 

evaporated under reduced pressure to give the crude product. Purification by flash 

column chromatography with 10:1 CH2Cl2–MeOH as eluent gave the acetamide A40 

(175 mg, 85%) as a pale yellow oil, RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.59; IR 

(ATR) 2957, 2875, 1740 (C=O, CO2Me), 1644 (C=O acetamide), 1417, 1197, 1174, 

1026, 877, 800, 626., 597, 504 cm-1; 1H NMR (400 MHz, CDCl3) (80:20 mixture of 

rotamers) δ 4.35 (dd, J = 8.0, 8.0 Hz, 0.8H, NCH), 4.05 (dd, J = 8.0, 8.0 Hz, 0.2H, 

NCH), 3.77 (s, 2.4H, OMe), 3.76 (s, 0.6H, OMe), 3.72-3.66 (m, 1H, NCH), 3.18 (dd, 

J = 8.0, 8.0 Hz, 0.8H, NCH), 2.96 (dd, J = 8.0, 8.0 Hz, 0.2H, NCH), 2.44-2.30 (m, 2H, 

CH), 2.07 (s, 2.4H, C(O)Me), 1.93 (s, 0.6H, C(O)Me), 1.57-1.51 (m, 0.8H, CH), 1.29-

1.25 (m, 0.2H, CH), 1.10 (d, J = 8.0 Hz, 2.4H, CHMe), 1.05 (d, J = 8.0 Hz, 0.6H, 

CHMe); 13C NMR (101.6 MHz, CDCl3) (rotamers) δ 173.2 (C=O, CO2Me), 173.1 

(C=O, CO2Me), 169.7 (C=O, Ac), 169.2 (C=O, Ac), 60.3 (NCH), 59.3 (NCH), 55.0 

(OMe), 53.4 (NCH2), 52.7 (NCH2), 52.3 (NCH2), 39.6 (CHMe), 37.6 (CHMe), 33.9 

(CH2), 31.9 (CH2), 22.4 (Me, Ac), 21.4 (Me, Ac), 17.0 (CHMe); MS (ESI) m/z 208 

[(M + Na)+, 100]; HRMS (ESI) m/z calcd for C9H15NO3 (M + Na)+ 208.0944, found 

N
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208.0942 (–1.1 ppm error). Spectroscopic data consistent with those reported in the 

literature.43 

Lab Book Reference: IC 1-86  
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Methyl 2-((tert-butoxycarbonyl)amino)-5-oxo-5-phenylpentanoate 63 

 

PhMgCl (0.822 mL of a 3.0 M solution in Et2O, 2.466 mmol, 1.2 eq) was added 

dropwise to a stirred solution of pyroglutamate methyl ester 46 (500 mg, 2.055 mmol, 

1.0 eq) in THF (6 mL) at –30 °C under Ar. The resulting mixture was stirred at rt for 

30 h. Saturated NH4Cl(aq) (0.1 mL) was added the solvent was evaporated under 

reduced pressure to give a wet solid. The wet solid was dissolved in CH2Cl2–saturated 

NH4Cl(aq) (1:1, 16 mL) and extracted with CH2Cl2 (3 × 3 mL). The combined organic 

layers were washed with saturated NaHCO3(aq) (8 mL), dried (MgSO4) and evaporated 

pressure to give the crude product. Purification by flash column chromatography with 

1:0-2:1 hexane–EtOAc as eluent keto ester 63 (502 mg, 76%) as a white solid. mp 83-

86 ºC (lit.,65 109 ºC); RF (1:1 hexane–EtOAc) 0.63; IR (ATR) cm-1 3365 (NH), 2981, 

2967, 2944, 2892, 1737 (C=O, CO2Me), 1681 (C=O, COAr), 1670 (C=O, Boc), 1599, 

1582, 1514, 1449, 1349, 1163, 1044, 888, 851, 740, 686, 558 cm-1; 1H NMR (400 

MHz, CDCl3) δ 7.95 (d, J = 7.5 Hz, 2H, Ph), 7.57 (t, J = 7.5 Hz, 1H, Ph), 7.46 (dd, J 

= 7.5, 7.5 Hz, 2H, Ph), 5.16 (d, J = 7.0 Hz, 1H, NH), 4.42-4.37 (m, NCH), 3.75 (s, 3H, 

OMe), 3.18-3.00 (m, 2H, CH), 2.36-2.27 (m, 1H, CH), 2.17-2.06 (m, 1H, CH), 1.42 

(s, 9H, CMe3); 13C NMR (101.6 MHz, CDCl3) δ 199.0 (C=O, PhCO), 173.1 (C=O, 

CO2Me), 155.6 (C=O, Boc), 136.8 (CH, ipso-Ph), 133.4 (Ph), 128.8 (Ph), 128.2 (Ph), 

80.2 (CMe3), 53.2 (OMe), 52.6 (NCH), 34.7 (CH2), 28.4 (CMe3), 27.1 (CH2); MS (ESI) 

m/z 344 [(M + Na)+], 288 [(M – CMe3)+]; HRMS (ESI) m/z calcd for C17H23NO5 (M 

O O

OMe
HN

Boc
63
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+ Na)+ 344.1468, found 344.1463 (+1.0 ppm error). Spectroscopic data consistent with 

those reported in the literature.56 

Lab Book Reference: IC 1-9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 147 

1-tert-Butyl 2-methyl 5-phenylpyrrolidine-1,2-dicarboxylate cis-64 

 

TFA (0.95 mL, 12.45 mmol, 20 eq) was added to a stirred solution of keto ester 63 

(200 mg, 0.6223 mmol 1.0 eq) in CH2Cl2 (6 mL) at rt under Ar. The resulting solution 

was stirred at rt for 20 h. The solvent was evaporated under reduced pressure to give 

an orange oil. CH2Cl2 (5 mL) was added to the orange oil and the solvent was 

evaporated under reduced pressure to give the crude product. The addition of CH2Cl2 

and evaporation was repeated four more time to give the crude imine (298 mg) as an 

orange oil. NaBH4 (44.72 mg, 1.182 mmol, 1.9 eq) was add portionwise to a stirred 

solution of the crude imine in MeOH (5 mL) at 0 ºC under Ar. The resulting solution 

was stirred at rt for 21 h. The solvent was evaporated under reduced pressure. Then, 

MeOH (4 × 5 mL) was added and the and solvent was evaporated under reduced 

pressure to give the crude amine. The addition of MeOH and evaporation was repeated 

three more time to give the crude amine (330 mg). Boc2O (204 mg, 0.9334 mmol, 1.5 

eq), Et3N (0.07 mL, 0.9334 mmol, 1.5eq) and DMAP (8 mg, 0.0622 mmol, 0.1 eq) 

were added to a stirred solution of the crude amine in CH2Cl2 (17 mL) at rt under Ar. 

The resulting mixture was stirred at rt for 65 h. Saturated NH4Cl(aq) (20 mL) was added 

and mixture was extracted with CH2Cl2 (3 × 20 mL). The combined organic extracts 

were dried (MgSO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 400:9:1 CH2Cl2–MeOH–

NH4OH(aq) as eluent gave methyl ester cis-64 (46 mg, 24%) as an orange oil, RF 

(200:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.79; IR (ATR) 2952, 1732 (C=O), 1604, 1493, 

1450, 1367, 1155, 1120, 912, 883, 756, 700, 545 cm-1; 1H NMR (400 MHz, CDCl3) 

CO2MeN
Boc

cis-64
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(60:40 mixture of rotamers) δ 7.54 (d, J = 7.5 Hz, 2H, Ph), 7.32 (dd, J = 7.5, 7.5 Hz, 

2H, Ph), 7.22 (t, J = 7.5 Hz, 1H, Ph), 4.99-4.97 (m, 0.4H, NCH), 4.74 (dd, 0.6H J = 

7.0, 7.0 Hz, NCH), 4.49 (dd, J = 8.0, 4.5 Hz, 0.4H, CH), 4.35 (dd, J = 7.5, 7.5 Hz, 

0.6H, CH), 3.81 (s, 3H, OMe), 2.36-2.28 (m, 1H, CH), 2.25-2.16 (m, 1H, CH), 2.11-

1.92 (m, 2H, CH), 1.41 (s, 3.6H, CMe3), 1.14 (s, 5.4H, CMe3); MS (ESI) m/z 328 [(M 

+ Na)+];  HRMS (ESI) m/z calcd for C17H23NO4 (M + Na)+ 328.1519, found 328.1525 

(+2.8 ppm error). Spectroscopic data consistent with those reported in the literature.56 

Lab Book Reference: IC 2-4 
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Methyl 2-acetamido-5-phenylpentanoate 68 

 

TFA (0.95 mL, 12.45 mmol, 20 eq) was added to a stirred solution of keto ester 63 

(200 mg, 0.6223 mmol, 1.0 eq) in CH2Cl2 (6 mL) at rt under Ar. The resulting solution 

was stirred at rt for 20 h. The solvent was evaporated under reduced pressure to give 

an orange oil. CH2Cl2 (5 mL) was added to the orange oil and the solvent was 

evaporated under reduced pressure to give the crude product. The addition of CH2Cl2 

and evaporation was repeated four more time to give the crude imine (294 mg) as an 

orange oil. 10% Pd/C (125 mg, 0.118 mmol, 0.08 eq) was added to a stirred solution 

of crude imine in i-PrOH (1 mL) at rt under Ar. Then, the reaction flask was evacuated 

under reduced pressure and back-filled with Ar three times. After a final evacuation, a 

balloon of H2 was attached and the reaction mixture was stirred vigorously at rt under 

H2 for 23 h. Then, the solids were removed by filtration through Celite® and washed 

with i-PrOH (10 mL). The filtrate was evaporated under reduced pressure to give the 

crude amine (198 mg). Ac2O (0.18 mL, 1.867 mmol, 3.0 eq) and DMAP (23 mg, 

0.1867 mmol, 0.1 eq) were added to a stirred solution of the crude amine in pyridine 

(0.15 mL, 1.867 mmol, 3.0 eq) at rt under Ar. The solution was stirred at rt for 2.5 h. 

Water (40 mL) was added and the mixture was extracted with CH2Cl2 (3 × 10 mL). 

The combined organic extracts were dried (MgSO4) and evaporated under reduced 

pressure to give the crude product. Purification by flash column chromatography on 

silica with 100:9:1 CH2Cl2–MeOH–NH4OH(aq) as eluent gave acetamide 68 (100 mg, 

65%) as an orange oil, RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.43; IR (ATR) 3281 

68

O
HN

O

O
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(NH), 3027, 2951, 2861, 1741 (C=O, CO2Me), 1652 (C=O, acetamide), 1543, 1436, 

1373, 1207, 1169, 1127, 1030, 735, 699, 593, 524, 495 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 7.28 (dd, J = 7.5, 7.5 Hz, 2H, Ph), 7.19 (d, J = 7.5 Hz, 1H, Ph), 7.15 (d, J = 

7.5 Hz, 2H, Ph), 5.94 (br d, J = 8.0 Hz, 1H, NH), 4.67-4.62 (m, 1H, NCH), 3.73 (s, 

3H, OMe), 2.69-2.56 (m, 2H, ArCH2), 2.01 (s, 3H, C(O)Me), 1.91-1.85 (m, 1H, CH), 

1.71-1.66 (m, 2H, CH); 13C NMR (101.6 MHz, CDCl3) δ 173.2 (C=O, CO2Me), 169.9 

(C=O, acetamide), 141.7 (ispo-Ph), 128.5 (Ph), 126.1 (Ph), 52.6 (NCH), 52.1 (OMe), 

29.9 (CH2), 27.7 (CH2), 23.4 (C(O)Me); MS (ESI) m/z 272 [(M + Na)+];  HRMS (ESI) 

m/z calcd for C14H19NO3 (M + Na)+ 272.1257, found 272.1249 (+2.9 ppm error). 

Spectroscopic data consistent with those reported in the literature.58  

Lab Book Reference: IC 2-15 
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Methyl 2-((tert-butoxycarbonyl)amino)-5-oxo-5-(pyridin-3-yl)pentanoate 54 

 

A solution of 3-bromopyridine (223 µL, 2.261 mmol, 1.1 eq) in Et2O (1.73 mL) was 

added dropwise to a stirred solution of n-BuLi (1.13 mL of a 2 M solution in hexane, 

2.261 mmol, 1.1 eq) in Et2O (5.1 mL) at –78 ºC under Ar. The resulting yellow slurry 

was stirred at –78 °C for 30 min. Then, a solution of pyroglutamate methyl ester 46 

(500 mg, 2.055 mmol, 1.0 eq) in THF–Et2O (1:1, 2.88 mL) was added dropwise. The 

resulting mixture was stirred at –78 °C for 1 h. The reaction mixture was poured into 

H2O (5 mL) and extracted with Et2O (3 × 5 mL). The combined organic layers were 

dried (MgSO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 7:3 CH2Cl2–EtOAc as 

eluent gave keto ester 54 (119 mg, 18%) as a white solid, mp 86-92 ºC (lit.,55 90-92 

ºC); RF (200:9:1 CH2Cl2–MeOH– NH4OH(aq)) 0.43; IR (ATR) 3230 (NH), 3006, 2984, 

2951, 1749, (C=O, CO2Me), 1699 (C=O, COAr), 1682 (C=O, Boc), 1588, 1539, 1364, 

1303, 1160, 1012, 979, 700 cm-1; 1H NMR (400 MHz, CDCl3) δ 9.16 (d, J = 2.0 Hz, 

1H, CH, Ar), 8.79 (d, J = 4.0 Hz, 1H, Ar), 8.22 (br d, J = 8.0 Hz, 1H, Ar), 7.42 (dd, J 

= 8.0, 4.0 Hz, 1H, Ar), 5.15 (d, J = 7.5 Hz, 1H, NH), 4.43-4.38 (m, 1H, NCH), 3.76 (s, 

3H, OMe), 3.20-3.02 (m, 2H, CH), 2.37-2.35 (m, 1H, CH), 2.12-2.03 (m, 1H, CH), 

1.40 (s, 9H, CMe3); 13C NMR (101.6 MHz, CDCl3) δ 197.8 (C=O, COAr), 172.9 (C=O, 

CO2Me), 153.7 (C=O, Boc), 149.7 (Ar), 135.5 (Ar), 132.4 (ipso-Ar), 123.8 (Ar), 80.3 

(CMe3), 52.9 (OMe), 52.6 (CH), 34.9 (CH2), 28.4 (CMe3), 26.9 (CH2); MS (ESI) m/z 

345 [(M + Na)+], 323 [(M + H)+]; HRMS (ESI) m/z calcd for C17H23NO5 (M + Na)+ 

O O

OMe
HN

BocN
54
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345.1421, found 345.1412 (+2.7 ppm error). Spectroscopic data consistent with those 

reported in the literature.55 

Lab Book Reference: IC 2-31  

 

 

Methyl 2-((tert-butoxycarbonyl)amino)-5-oxo-5-(pyridin-3-yl)pentanoate 54 

 

A solution of 3-bromopyridine (3.24 mL, 33.68 mmol, 2.2 eq) in Et2O (16 mL) was 

added dropwise to a stirred solution of n-BuLi (21.05 mL of a 1.6 M solution in hexane, 

33.68 mmol, 2.2 eq) in Et2O (40 mL) at –78 ºC under Ar. The resulting yellow slurry 

was stirred at –78 °C for 30 min. Then, a solution of pyroglutamate methyl ester 46 

(3.724 g, 15.31 mmol, 1.0 eq) in THF–Et2O (1:1, 18.3 mL) was added dropwise. The 

resulting mixture was stirred at –78 °C for 1 h. The reaction mixture was poured into 

H2O (35 mL) and extracted with Et2O (3 × 35 mL). The combined organic layers were 

dried (MgSO4) and evaporated under reduced pressure to give the crude product. 

Purification by flash column chromatography on silica with 7:3 CH2Cl2–EtOAc as 

eluent gave keto ester 53 (1.028 g, 21%) as a white solid.  

Lab Book Reference: IC 2-41 
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Methyl 2-acetamido-5-(pyridin-3-yl)pentanoate 69 

 

TFA (2.38 mL, 31.02 mmol, 20 eq) was added to a stirred solution of keto ester 54 

(500 mg, 1.551 mmol, 1.0 eq) in CH2Cl2 (16 mL) at rt under Ar. The resulting solution 

was stirred at rt for 3.5 h. The solvent was evaporated under reduced pressure to give 

an orange oil. CH2Cl2 (16 mL) was added to the orange oil and the solvent was 

evaporated under reduced pressure to give the crude product. The addition of CH2Cl2 

and evaporation was repeated four more time to give the crude imine (780 mg) as an 

orange oil. 10% Pd/C (394 mg, 3.704 mmol, 1.07 eq) was added to a stirred solution 

of crude imine in i-PrOH (21 mL) at rt under Ar. Then, the reaction flask was 

evacuated under reduced pressure and back-filled with Ar three times. After a final 

evacuation, a balloon of H2 was attached and the reaction mixture was stirred 

vigorously at rt under H2 for 5.3 h. Then, the solids were removed by filtration through 

Celite® and washed with i-PrOH (16 mL). The filtrate was evaporated under reduced 

pressure to give the crude amine (520 mg). Ac2O (0.72 mL, 7.608 mmol, 3.0 eq) and 

DMAP (3.1 mg, 0.0254 mmol, 0.1 eq) were added to a stirred solution of the crude 

amine in pyridine (1.9 mL) at rt under Ar. The solution was stirred at rt for 7 h. Water 

(30 mL) was added and the mixture was extracted with CH2Cl2 (3 × 40 mL). The 

combined organic extracts were dried (MgSO4) and evaporated under reduced pressure 

to give the crude product. Purification by flash column chromatography on silica with 

100:9:1 CH2Cl2–MeOH–NH4OH(aq) as eluent gave acetamide 69 (100 mg, 65%) as an 

orange oil. RF (100:9:1 CH2Cl2–MeOH–NH4OH(aq)) 0.43; IR (ATR) 3281 (NH), 3027, 

69

O
HN

N
O
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2951, 2861, 1741 (C=O, CO2Me), 1652 (C=O, acetamide), 1543, 1497, 1436, 1373, 

1267, 1207, 1169, 1127, 1030, 735, 699, 593, 524, 495 cm-1; 1H NMR (400 MHz, 

CDCl3) δ 8.41-8.38 (m, 2H, CH, Ar), 7.45 (d, J = 8.0 Hz, 1H, Ar), 7.19 (dd, J = 8.0, 

5.0 Hz, 1H, Ar), 6.39-6.24 (m, 1H, NH), 4.65-4.55 (m, 1H, NCH), 3.70 (s, 3H, OMe), 

2.73-2.54 (m, 2H, CH2), 2.00 (s, 3H, C(O)Me), 2.90-1.76 (m, 2H, CH2); 13C NMR 

(101.6 MHz, CDCl3) δ 173.1 (C=O, CO2Me), 170.0 (C=O, acetamide), 149.8 (Ar), 

147.5 (Ar), 137.0 (Ar), 136.0 (ipso-Ar), 123.5 (Ar), 52.6 (OMe), 51.9 (NCH), 32.5 

(CH2), 32.3 (CH2), 26.9 (CH2), 23.2 (C(O)Me); MS (ESI) m/z 251 [(M + H)+];  HRMS 

(ESI) m/z calcd for C13H18N2O3 (M + H)+ 251.1390, found 251.1387 (+1.3 ppm error). 

Lab Book Reference: IC 2-42 
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Abbreviations 
Ac Acetyl 

ALARM A la assay to detect reactive molecules 

Aq Aqueous 

Ar  Aromatic ring 

ATP Adenosine triphosphate 

BACE1 Beta-secretase 1 

Br Broad 

B-Raf v-Raf murine sarcoma viral oncogene homolog B 

ChoKα Choline Kinase 

cIAP1 Cellular inhibitor of apoptosis protein-1 

cm‒1 Wavenumber 

CS Preclinical candidate selection 

CSK C-Src Tyrosine Kinase 

d Doublet 

Da Dalton 

DMAP 4-Dimethylaminopyridine 

DME Dimethoxyethane 

DMSO Dimethylsulfoxide 

DOS Diversity oriented synthesis 

Eq Equivalents 

ESI Electrospray ionisation 

Et2O Diethyl ether 

EtOAc Ethyl acetate 
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FBDD Fragment-based drug discovery 

FBLG Fragment-based lead generation 

FBS Fragment-based screening 

FDA Food and drug administration 

FGFR1 Fibroblast growth factor receptor 1 

FL Fragment library 

Fsp3 Fraction sp3 

FTIH first time in human 

g Gram(s) 

h Hour(s) 

H bond Hydrogen bond 

HAC Heavy atom count 

HBD Hydrogen bond donor(s) 

HBA Hydrogen bond acceptor(s) 

HCHO Formaldehyde 

HRMS High resolution mass spectrometry 

HTS High throughput screening 

Hz Hertz 

IAP Inhibitor of apoptosis 

i-PrOH Isopropyl alcohol 

J Coupling constant in Hz 

kcal mol‒1 Kilocalories per mole 

LC-MS Liquid chromatography–mass spectrometry 

LE Ligand efficiency 
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LHMDS Lithium bis(trimethylsilyl)amide 

m Multiplet 

M Molar 

m/z Mass to charge ratio 

M+ Molecular ion 

Me Methyl 

mg Milligrams 

µM Micromolar 

mL Millilitre(s) 

mmol Millimole(s) 

µmol Micromole(s) 

MMP-13 Matrix metallopeptidase 13 

MS Mass spectrometry 

Ms Sulfonamide 

MW Molecular weight 

NaHMDS Sodium bis(trimethylsilyl)amide 

nM Nanomolar 

NMR Nuclear Magnetic Resonance 

NPR Normalised PMI ratio 

NROT(s) Number of rational bond(s) 

P1 Phase 1 

P2 Phase 2 

PAINS Pan-assay interference compounds 

PBF Plane of Best Fit 
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Pd/C Palladium on carbon 

Ph Phenyl 

PIM1 Proto-oncogene serine/threonine-protein kinase 

PMI Principal moment of inertia 

POC Proof-of-concept trials 

PPI Protein-protein interaction 

ppm Parts per million 

PSA Polar surface area 

Py Pyridine 

q Quartet 

RF Retention Factor 

rt  Room temperature 

t Triplet 

TBAF Tetra-n-butylammonium 

TBDMSCl tert-Butyldimethylsilyl chloride 

TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

TFA Trifluoroacetic acid 

THF Tetrahydrofuran 

s Singlet 

SAR Structure-activity relationships 

SMILES Simplified molecular-input line-entry system 

SPR Surface plasmon resonance 

XIAP X-linked inhibitor of apoptosis protein 
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