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Abstract 

 

Understanding plant responses to environmental stresses is a key strategy to meet the challenges 

of food security, adequate nutrition and sustainable agriculture. Environmental stresses limit 

plant growth and crop yields. In this thesis, the roles of Late Embryogenesis Abundant 5 

(LEA5) and Ethylene Responsive Factor 109 (ERF109) in plant growth and stress tolerance 

were investigated. These two genes are involved in the regulation of plant redox processes. 

LEA5 was previously shown to provide tolerance to oxidative stress. Furthermore, previous 

studies using transgenic A. thaliana found that the over-expression of LEA5 resulted in plants 

with a greater biomass. However, the precise functions of LEA5 in these processes are 

unknown. In this thesis, genetic and protein interaction approaches were used to investigate the 

role of LEA5. Protein interaction studies, which used tandem affinity purification (TAP) of 

protein complexes combined with mass-spectrometry revealed several LEA5 interacting 

partners, including genes associated with stress tolerance. Transgenic crops provide a promising 

avenue to reduce yield losses, improve growth. Homozygous transgenic barley plants 

expressing LEA5 were found to have an altered shoot phenotype compared to WT barley plants. 

ERF109 is part of a regulatory network that has a major role in the adjustment of A. thaliana 

leaves to reach homeostasis after high-light stress. Understanding the roles of transcriptional 

regulatory networks and their effects on downstream target genes will aid in the development 

of stress tolerant crops. Phenotype analysis of erf109 mutants presented here suggest that 

ERF109 has a role in the control of shoot growth in the absence of stress. Moreover, protein 

interactions of ERF109 were elucidated using TAP, a number of which might explain the 

phenotypic characteristics of the erf109 mutants. Taken together, this information could be used 

in breeding programmes to improve the predictability and sustainability of crop yields by 

enhancing stress tolerance.  



VI 

 

 

Contents 

 

Chapter 1. Introduction .......................................................................................................... 1 

1.1. The challenge ............................................................................................................... 1 

1.2. Stress tolerance of plants ............................................................................................. 1 

1.3. LEA proteins................................................................................................................ 2 

1.3.1. LEA protein structures ......................................................................................... 2 

1.3.2. LEA proteins can protect enzymes in non-optimal metabolic conditions ........... 3 

1.4. LEA5 ........................................................................................................................... 3 

1.5. Mitochondria ............................................................................................................... 5 

1.5.1. Mitochondrial targeting signals ............................................................................ 7 

1.5.2. Protein insertion into the inner mitochondrial membrane .................................... 7 

1.6. Respiration ................................................................................................................... 9 

1.6.1. Respiration: Step 1 - Glycolysis ........................................................................... 9 

1.6.2. Respiration: Step 2 - The Krebs cycle ................................................................ 11 

1.6.3. Respiration: Step 3 - The electron transport chain ............................................. 11 

1.6.4. Respiration: Step 4 - ATP synthesis ................................................................... 13 

1.7. Reactive Oxygen Species .......................................................................................... 15 

1.8. Mitochondria-to-nucleus communication .................................................................. 15 

1.9. Chloroplast to nucleus communication ..................................................................... 16 

1.10. Transcription factors of the ethylene responsive factor family ............................. 16 

1.11. ERF109 .................................................................................................................. 17 

1.12. Summary ................................................................................................................ 18 

1.13. Aims and objectives ............................................................................................... 19 

Chapter 2. Materials and Methods ....................................................................................... 20 

2.1. Arabidopsis plant material and growth analysis ........................................................ 20 

2.1.1. Plant material ...................................................................................................... 20 

2.1.2. In vitro shoot growth and stress treatments ........................................................ 20 

2.1.3. Shoot growth on soil and drought experiments .................................................. 21 

2.1.4. Determination of rosette area ............................................................................. 21 

2.1.5. Measuring the efficiency of photosystem II ....................................................... 21 



VII 

 

2.1.6. Photosynthetic CO2 assimilation measurements ................................................ 21 

2.1.7. Chlorophyll measurements ................................................................................. 22 

2.1.8. Anthocyanin measurements ............................................................................... 22 

2.1.9. Root analysis ...................................................................................................... 22 

2.2. Barley plant material and growth analysis ................................................................ 23 

2.2.1. Plant material ...................................................................................................... 23 

2.2.2. Selection ............................................................................................................. 23 

2.2.3. Phenotype analysis ............................................................................................. 23 

2.3. General molecular biology protocols ........................................................................ 24 

2.3.1. Standard PCR reaction ....................................................................................... 24 

2.3.2. Agarose gel electrophoresis ............................................................................... 24 

2.3.3. Gel extraction ..................................................................................................... 24 

2.4. Gene transcript analysis ............................................................................................. 25 

2.4.1. Production of plants ........................................................................................... 25 

2.4.2. Harvest ............................................................................................................... 25 

2.4.3. RNA extraction .................................................................................................. 25 

2.4.4. Synthesis of cDNA ............................................................................................. 26 

2.4.5. Quantitative real-time PCR ................................................................................ 26 

2.5. Mitochondria respiration assays ................................................................................ 27 

2.5.1. Isolation of intact mitochondria ......................................................................... 27 

2.5.2. Verifying mitochondrial integrity by measuring cytochrome c oxidase latency 28 

2.5.3. Complex I respiratory control ratio .................................................................... 28 

2.5.4. Complex II respiratory control ratio ................................................................... 29 

2.6. Production of plants expressing reduction-oxidation sensitive GFP ......................... 29 

2.6.1. Amplification of roGFP DNA using E. coli ....................................................... 29 

2.6.2. Preparation and transformation of Agrobacterium ............................................. 30 

2.6.3. Agrobacterium-mediated transformation of Arabidopsis thaliana .................... 30 

2.6.4. Selection of transformants .................................................................................. 31 

2.7. Protein-protein interaction analysis by tandem affinity purification (TAP) .............. 33 

2.7.1. Primer design and amplification of LEA5 .......................................................... 33 

2.7.2. Cloning of constructs containing LEA5 used in TAP ........................................ 33 

2.7.3. Cloning of constructs containing ERF109 used in TAP .................................... 34 

2.7.4. Cell culture cultivation ....................................................................................... 36 

2.7.5. Cell culture transformation ................................................................................. 36 



VIII 

 

2.7.6. Protein extract preparation ................................................................................. 36 

2.7.7. Western blots ...................................................................................................... 37 

2.7.8. Tandem affinity purification .............................................................................. 37 

2.7.9. Sample preparation ............................................................................................. 38 

2.7.10. Acquisition of mass spectra ............................................................................ 38 

2.7.11. Mass spectra-based protein homology identification ..................................... 38 

2.7.12. Data analysis ................................................................................................... 39 

2.8. Protein-protein interaction analysis by split-YFP ..................................................... 39 

2.8.1. Construction of the LEA5-YFPc and LEA5-YFPn vectors ............................... 39 

2.8.2. Construction of the RH22-YFPc and RH22-YFPn vectors ............................... 39 

2.8.3. Isolation of protoplasts ....................................................................................... 40 

2.8.4. Transient gene expression in protoplasts ........................................................... 40 

2.8.5. Visualisation of interactions ............................................................................... 41 

Chapter 3. Characterisation of the phenotype of Arabidopsis thaliana with modified 

expression of LEA5 .................................................................................................................. 42 

3.1. Introduction ............................................................................................................... 42 

3.2. Results: Shoot phenotype .......................................................................................... 44 

3.2.1. Rosette growth in the absence of stress .............................................................. 44 

3.2.2. Rosette growth in the presence of stress ............................................................ 46 

3.3. Results: Root phenotype in optimal conditions ......................................................... 53 

3.3.1. Analysis of root phenotypes for plants grown on ½ MS media ......................... 53 

3.3.2. Analysis of root phenotypes for plants grown on ATS media ........................... 56 

3.4. Discussion .................................................................................................................. 58 

Chapter 4. The identification of the effects of LEA5 expression on mitochondrial 

respiration and redox state ........................................................................................................ 60 

4.1. Introduction ............................................................................................................... 60 

4.2. Results: LEA5 transcript expression .......................................................................... 62 

4.3. Results: Mitochondrial respiration ............................................................................ 64 

4.3.1. The protein basis of mitochondria ...................................................................... 64 

4.3.2. The integrity of mitochondria and maximal cytochrome c oxidase activity ...... 64 

4.3.3. Respiratory control assays .................................................................................. 65 

4.4. Results: Transformation of Arabidopsis thaliana to express roGFP in the cytosol or 

mitochondria ......................................................................................................................... 69 

4.5. Discussion .................................................................................................................. 73 



IX 

 

Chapter 5. The identification of proteins that interact with LEA5 ...................................... 74 

5.1. Introduction ............................................................................................................... 74 

5.2. Results: TAP .............................................................................................................. 78 

5.2.1. Constructs for TAP experiments ........................................................................ 78 

5.2.2. The growth of Arabidopsis thaliana cell suspension cultures ........................... 83 

5.2.3. The effect of light on LEA5 protein expression ................................................. 83 

5.2.4. The effect of H2O2 on LEA5 protein expression ................................................ 84 

5.2.5. Identification of purified proteins from TAP with LEA5 as bait protein ........... 89 

5.3. Results: Split-YFP ..................................................................................................... 93 

5.3.1. Production of constructs for split-YFP experiments .......................................... 93 

5.3.2. Confirmation of interaction ................................................................................ 93 

5.4. Discussion ................................................................................................................ 102 

Chapter 6. Production and phenotype of transgenic barley expressing LEA5 ................... 104 

6.1. Introduction ............................................................................................................. 104 

6.2. Results ..................................................................................................................... 105 

6.2.1. The selection of transgenic barley plants ......................................................... 105 

6.2.2. Shoot phenotypes ............................................................................................. 111 

6.3. Discussion ................................................................................................................ 114 

Chapter 7. Characterisation of phenotype of Arabidopsis thaliana erf109 mutant plants. 115 

7.1. Introduction ............................................................................................................. 115 

7.2. Results - Shoot phenotype ....................................................................................... 117 

7.2.1. Rosette growth in the absence of stress ............................................................ 117 

7.2.2. Rosette growth in the presence of stress .......................................................... 117 

7.2.3. Anthocyanin content of leaves ......................................................................... 126 

7.3. Results - Root phenotype ......................................................................................... 128 

7.4. Discussion ................................................................................................................ 131 

Chapter 8. The identification of proteins that interact with ERF109 ................................. 133 

8.1. Introduction ............................................................................................................. 133 

8.2. Results ..................................................................................................................... 134 

8.2.1. Constructs for TAP experiments ...................................................................... 134 

8.2.2. The growth of Arabidopsis thaliana cell suspension cultures ......................... 137 

8.2.3. The effect of H2O2 on ERF109 protein expression in the light and dark ......... 137 

8.2.4. Identification of purified proteins from TAP with ERF109 as bait protein ..... 140 

8.3. Discussion ................................................................................................................ 143 



X 

 

Chapter 9. General discussion and conclusions ................................................................. 146 

9.1. The challenge ........................................................................................................... 146 

9.2. The role of LEA5 in plant growth and stress responses .......................................... 147 

9.3. Future prospects for LEA5 ...................................................................................... 150 

9.4. The role of EFR109 in plant growth and stress responses ...................................... 150 

9.5. Future prospects for ERF109 ................................................................................... 152 

9.6. Conclusion ............................................................................................................... 152 

Chapter 10. References .................................................................................................... 153 

 

 

  



XI 

 

 

List of Figures 

 

Figure 1-1: A diagram of mitochondria and the sub-compartments contained within. ............. 6 

Figure 1-2: Sorting pathways of inner membrane proteins ........................................................ 8 

Figure 1-3: Glycolysis .............................................................................................................. 10 

Figure 1-4: The mitochondrial electron transport chain. .......................................................... 14 

Figure 2-1: Plasmid map of pCAMBIA1304 ........................................................................... 32 

Figure 2-2: Plasmid map of pDONR201.................................................................................. 35 

Figure 3-1: A comparison of the rosette areas wild-type (WT) A. thaliana and transgenic lines 

that either over-express LEA5 (OEX2-2, OEX 2-5 and OEX-YFP), or express antisense LEA5 

(AS2 & AS8) ............................................................................................................................ 45 

Figure 3-2: The effects of abiotic stress treatments (mannitol, salt, and sorbitol) on the rosette 

area of wild-type (WT) A. thaliana and on transgenic lines that either over-express LEA5 

(OEX2-2, OEX2-5 and OEX-YFP) or produce antisense transcripts (AS2 & AS8) in 

comparison to plants grown in the absence of stress. .............................................................. 49 

Figure 3-3: The effects of high-light treatment on the shoot phenotype (A) and rosette area 

(B) of 21-day-old wild-type (WT) A. thaliana and transgenic lines that either over-express 

LEA5 (OEX2-2, OEX2-5 and OEX-YFP) or produce antisense transcripts (AS2 & AS8) in 

comparison to plants grown in the absence of stress. .............................................................. 50 

Figure 3-4: The effects of oxidative stress treatments (menadione and paraquat) on the rosette 

area of wild-type (WT) A. thaliana and on transgenic lines that either over-express LEA5 

(OEX2-2, OEX2-5 and OEX-YFP) or produce antisense transcripts (AS2 & AS8) in 

comparison to plants grown in the absence of stress. .............................................................. 51 

Figure 3-5: Anthocyanin concentration (µg/g FW) in the leaves of four-week-old wild-type 

(WT) A. thaliana and transgenic LEA5 over-expressing (OEX 2-5) and LEA5 antisense lines 

(AS2) grown on soil. ................................................................................................................ 52 

Figure 3-6: The root architecture of seven-day-old wild-type (WT) A. thaliana and transgenic 

LEA5 over-expressing (OEX2-2, OEX2-5) and LEA5 antisense (AS2, AS8) lines grown on 

½ MS. ....................................................................................................................................... 54 



XII 

 

Figure 3-7: The root architecture of ten-day-old wild-type (WT) A. thaliana and transgenic 

LEA5 over-expressing (OEX2-2, OEX2-5) and LEA5 antisense (AS2, AS8) lines grown on ½ 

MS. ........................................................................................................................................... 55 

Figure 3-8: The root architecture of seven-day-old wild-type (WT) A. thaliana and transgenic 

LEA5 over-expressing (OEX2-5) and LEA5 antisense (AS2) lines grown on ATS media. ..... 57 

Figure 4-1: Diurnal changes in LEA5 transcript abundance. ................................................... 63 

Figure 4-2: Protein standard curve used to determine the protein basis of mitochondria. ....... 66 

Figure 4-3: Determinations of the latency of cytochrome c oxidase (COX) in mitochondrial 

preparations. ............................................................................................................................. 67 

Figure 4-4: The naming policy for the selection of transgenic plants. ..................................... 70 

Figure 4-5: Selection for transformants on media containing Hygromycin B. ........................ 71 

Figure 4-6: PCR genotyping of transgenic plants .................................................................... 72 

Figure 5-1: Strategy followed to clone, express, purify, and identify tagged proteins and their 

interacting partners. .................................................................................................................. 77 

Figure 5-2: Identification of LEA5 DNA subcloned from plasmid DNA by PCR. ................. 79 

Figure 5-3: Identification of the LEA5+attB DNA fragment. .................................................. 80 

Figure 5-4: Analysis of pDONR201 plasmid containing LEA5 DNA. .................................... 82 

Figure 5-5: Western blot - expression of LEA5 in the light and the dark at different time 

points. ....................................................................................................................................... 85 

Figure 5-6: Western blot - expression of LEA5 in response to H2O2 in the light and the dark.

 .................................................................................................................................................. 86 

Figure 5-7: Western blot - expression of LEA5 over time in response to treatment with H2O2.

 .................................................................................................................................................. 87 

Figure 5-8: Western blot - expression of LEA5 over time in response to treatment with 2mM 

H2O2. ........................................................................................................................................ 88 

Figure 5-9: SDS-PAGE of purified protein complexes. .......................................................... 92 

Figure 5-10: Analysis of pDH51-GW-YFPc and pDH51-GW-YFPn plasmid containing either 

LEA5 or RH22 DNA. ............................................................................................................... 95 

Figure 5-11: Light microscopy images of mesophyll protoplasts. ........................................... 96 

Figure 5-12: Confocal microscopy images of an intact mesophyll protoplast transiently 

expressing APP1-GFP. ............................................................................................................. 97 

Figure 5-13: Confocal microscopy images of an intact mesophyll protoplast transiently 

expressing APP2-GFP. ............................................................................................................. 98 



XIII 

 

Figure 5-14: Confocal microscopy images of mesophyll protoplasts autofluorescence 

(negative control). .................................................................................................................... 99 

Figure 5-15: Confocal microscopy images of an intact mesophyll protoplast transiently 

expressing LEA5-YFPc and RH22-YFPn. ............................................................................. 100 

Figure 5-16: Confocal microscopy images of an intact mesophyll protoplast transiently 

expressing LEA5-YFPn and RH22-YFPc. ............................................................................. 101 

Figure 6-1: The naming policy for the selection of transgenic barley plants from callus. ..... 106 

Figure 6-2: Segregation analysis. ........................................................................................... 107 

Figure 6-3: PCR genotyping of T2 transgenic barley plants. ................................................. 109 

Figure 6-4: PCR genotyping of T3 transgenic barley plants. ................................................. 110 

Figure 6-5: The effects of LEA5 expression on the phenotype of barley plants. ................... 112 

Figure 6-6: The effects of LEA5 expression on the phenotype of barley plants. ................... 113 

Figure 7-1: The effects of abiotic stress treatments (mannitol, salt, and sorbitol) on the rosette 

area of wild-type (WT) A. thaliana and erf109 mutants in comparison to plants grown in the 

absence of stress (control). ..................................................................................................... 118 

Figure 7-2: The effects of drought on the growth of wild-type (WT) A. thaliana and erf109 

mutant plants. ......................................................................................................................... 120 

Figure 7-3: Photosynthetic CO2 assimilation of 4-week-old wild-type (WT) A. thaliana and 

erf109 mutant plants in optimal and restricted watering regimes. ......................................... 121 

Figure 7-4: The rosette area of wild-type (WT) and erf109 mutant plants grown under 

standard (control) light conditions for 11 days and then either under standard light conditions 

or high-light for 10 days. ........................................................................................................ 123 

Figure 7-5: The effects of paraquat on rosette area on wild-type (WT) A. thaliana and erf109 

mutant plants. ......................................................................................................................... 124 

Figure 7-6: The effects of menadione on the rosette area of wild-type (WT) A. thaliana and 

erf109 mutants. ....................................................................................................................... 125 

Figure 7-7: Anthocyanin concentration (µg/g FW) in 4-week-old wild-type (WT) A. thaliana 

and erf109 mutant plants grown on soil under standard (control) light conditions for 3 weeks 

and then either under standard light conditions or high-light for 1 week. ............................. 127 

Figure 7-8: The root architecture of 7-day-old wild-type (WT) A. thaliana and erf109 mutant 

plants. ..................................................................................................................................... 129 

Figure 7-9: The root architecture in 10-day old wild-type (WT) and erf109 mutant plants 

grown on ½ MS. ..................................................................................................................... 130 



XIV 

 

Figure 8-1: Linear plasmid map and sequence alignment of the pENTR221 plasmid 

containing ERF109 DNA. ...................................................................................................... 135 

Figure 8-2: Circular plasmid map and sequence of pENTR221 plasmid containing ERF109 

DNA. ...................................................................................................................................... 136 

Figure 8-3: Western blots – expression of ERF109 after one hour treatment with H2O2 in the 

light and the dark. ................................................................................................................... 138 

Figure 8-4: Western blots – expression of ERF109 in the light and the dark when treated with 

1 mM H2O2 for up to 1 hour. .................................................................................................. 139 

Figure 8-5: SDS-PAGE of purified protein complexes. ........................................................ 141 

Figure 9-1: Plant compara gene tree of all known orthologues of LEA5 in Ensembl Plants 

(plants.enseml.org). ................................................................................................................ 149 

 

  



XV 

 

 

List of Tables 

 

Table 1: PCR Primers for amplification of the Hygromycin B resistance and the LEA5-YFP 

sequences .................................................................................................................................. 23 

Table 2: PCR Primers for amplification LEA5 (without stop codon) ...................................... 33 

Table 3: PCR Primers for amplification RH22 (without stop codon) ...................................... 40 

Table 4: Percentage of plants with inflorescences 24 days after germination ......................... 44 

Table 5: Oxygen consumption (nmol O2.min-1.mg protein-1) at maximal COX activity and 

percentage intact mitochondria ................................................................................................ 68 

Table 6: Oxygen consumption (nmol O2.min-1.mg protein-1) when assaying complex I 

respiratory control .................................................................................................................... 68 

Table 7: Oxygen consumption (nmol O2.min-1.mg protein-1) when assaying complex II 

respiratory control .................................................................................................................... 68 

Table 8: Proteins that interact with LEA5 in either the light or dark ....................................... 90 

Table 9: Selected proteins that interact with LEA5 either in the light or dark ........................ 91 

Table 10: Segregation analysis of T2 plants ........................................................................... 108 

Table 11: Segregation analysis of T3 plants ........................................................................... 108 

Table 12: Proteins that interact with ERF109 in the light when either untreated or treated with 

1mM H2O2. ............................................................................................................................. 142 

  



XVI 

 

 

List of abbreviations 

 

ABA  Abscisic acid 

ABI1  ABA INSENSITIVE 1 

ADP  Adenosine diphosphate 

AOX  Alternative oxidase 

AP2  APETALA2 

APP  Amino peptidase P 

AS  Anti-sense orientation 

ATP  Adenosine triphosphate 

ATS  A. thaliana growth medium with sucrose 

BLAST Basic local alignment search tool 

BN   Blue Native 

BSA  Albumin from bovine serum 

CBP  Calmodulin binding peptide 

COX   Cytochrome c oxidase 

Ct  Cycle threshold 

DNA  Deoxyribonucleic acid 

DREB  Dehydration Responsive Element 

ERF  Ethylene Responsive Factor 

ETC  Electron transport chain 

EV  Empty Vector 



XVII 

 

FAD  Flavin adenine dinucleotide 

FADH2 Reduced flavin adenine dinucleotide 

FCCP  Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 

Fm  Maximal fluorescence 

Fv  Variable fluorescence 

GFP  Green fluorescent protein 

GUS  β-glucuronidase 

IDP  Intrinsically disordered proteins 

IgG  Immunoglobulin G 

IMS  Intermembrane space  

JA  Jasmonic acid 

LB  Lysogeny broth 

LEA  Late embryogensis abundant 

MS  Murashige and Skoog 

MSMO Murashige and Skoog basal salts with minimal organics 

mtROS ROS formation by the mitochondrial electron transport chain 

MW  Molecular weight 

NAD+  Oxidised nicotinamide adenine dinucleotide 

NADH  Reduced nicotinamide adenine dinucleotide 

OEX  Over-expressing / Over-expressor 

ORF  Open Reading Frame 

Oxa1   Oxidase assembly 1 

PAGE  Polyacrylamide gel electrophoresis 



XVIII 

 

PAP  Peroxidase anti-peroxidase 

PCR  Polymerase chain reaction 

ProtA  Protein A of Staphylococcus aureus 

PVP  Polyvinylpyrrolidone 

QPCR  Quantitative real-time PCR 

QY  Quantum yield 

RD17  Responsive to Dehydration 17 

Redox  Reduction-oxidation 

RH  Dead(D/H)-box RNA helicase family protein 

RNA  Ribonucleic acid 

roGFP  Reduction-oxidation sensitive green fluorescent protein 

ROS   Reactive oxygen species 

SDS  Sodium dodecyl sulfate 

TAP  Tandem affinity purification 

TBT   Tris-buffered tween 

TEV  Tobacco (Nicotiana tabacum L.) etch virus 

TIM  Transporter Inner Membrane 

TOM  Transporter Outer Membrane 

UV   Ultra violet 

VIB  Vlaams Instituut voor Biotechnologie 

WT  Wild-type 

YFP  Yellow fluorescent protein 



1 

 

 

 

Chapter 1. Introduction 

 

1.1. The challenge 

The challenges of food security, adequate nutrition and sustainable agriculture require 

innovative approaches to crop improvement. Environmental stresses limit plant growth and 

crop yields. Next generation crops are needed to mitigate future food shortages and to make 

agricultural industries more competitive. This requires a greater understanding of the processes 

that control growth and productivity, particularly under stress conditions. Research of this kind 

is of great interest for biotechnology companies [1]. Organelles that drive cellular metabolism, 

such as chloroplasts and mitochondria, play important roles in both growth and stress responses. 

This project focuses on gaining an improved understanding of how plants cope with stress. 

1.2. Stress tolerance of plants 

Plants are sessile organisms that can be regularly exposed to varying environmental conditions. 

Environmental factors deviating from the optimal intensity or quantity for the plant are called 

stress factors. Environmental stress can be categorised as biotic and abiotic stresses. Biotic 

stress results from interactions with other organisms, such as herbivory, pathogens, and 

parasitism. Abiotic stresses are defined as the negative impacts of non-living factors on living 

organisms. These can include factors such as extremes of temperature, drought or excess water, 

high-light intensity, and mineral deficiencies. It is not unusual for an organism to be subject to 

several stresses at once, for example high temperatures could cause a drought and therefore 

there is both heat-stress as well as a lack of water. It is also possible for a secondary stress factor 

to follow the primary one: for example, a plant might close its stomata in response to a lack of 

water which can result in an internal CO2 deficiency due to photosynthesis, and as a further 

consequence this could cause oxidative stress [2]. However, plants are extremely flexible and 

their metabolic processes continuously acclimate to accommodate changes in the environment. 

The perception of environmental change and associated signalling pathways are crucial to 

orchestration of an appropriate response. Late embryogenesis abundant (LEA) proteins are 

frequently associated with cellular dehydration as well as other stresses [3, 4].  
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1.3. LEA proteins 

LEA proteins were first identified in the seeds of cotton (Gossypium hirsutum) and wheat 

(Triticum aestivum) [5, 6]. Proteins homologous to prototypical LEAs have since been 

identified in the seeds of other plants, as well as in other plant tissues. LEA proteins are not 

plant specific and have been detected in other organisms, including archaea, protozoa, yeast 

and nematodes [7-11]. It has been proposed that many LEA proteins have functional roles in 

stress tolerance as their genes are often induced by stresses such as temperature, salt and 

osmotic stress. LEA proteins are frequently associated with cellular dehydration tolerance due 

to the accumulation of LEA proteins when presented with dehydration, salinity, or chilling 

stresses [12, 13]. The expression of LEA proteins in transgenic plants has been shown to be 

able to confer stress tolerance to drought, cold and freezing. There are many examples of this: 

in rice and wheat, the expression of a barley LEA protein, improved drought tolerance [14, 15]; 

the expression of a citrus LEA in tobacco bestowed cold tolerance [16]; and the freezing 

tolerance of strawberry leaves was increased by the expression of a wheat LEA [17]. However, 

the expression of LEA proteins does not always have these effects, for example, cold tolerance 

did not improve in tobacco with the expression of cold-induced spinach LEA proteins [18]. 

In Arabidopsis thaliana, LEA proteins consist of a family of 51 members that can be subdivided 

into nine groups [19]. Typically, LEA proteins are small and highly hydrophilic [20, 21]. Most 

LEA proteins contain high amounts of amino acid residues glycine, alanine, and glutamic acid 

and are poor in cysteine and tryptophan. There is a substantial overlap in proteins classified as 

hydrophilins with LEA proteins due to their tendency to be hydrophilic. However, not all LEA 

proteins are highly composed of glycine and not all LEA proteins are hydrophilins. Many non-

hydrophilin LEAs are essential for desiccation tolerance in yeast [20]. The mechanism by which 

LEA proteins protect organisms in response to environmental stresses is yet to be defined. 

1.3.1. LEA protein structures 

Many members of the major LEA protein groups lack conventional secondary structures and 

are included in a class of proteins called intrinsically disordered proteins (IDP) [22-24]. 

However, some LEA proteins exhibit the notable ability to become more ordered and to develop 

secondary structure as dehydration proceeds, which may have significance to their proposed 

functions during dehydration [4, 25-33]. For example, a plant group-3 LEA protein from the 

pollen of Typha latifolia became more ordered and developed a secondary structure in response 

to dehydration [25]. Drying the protein slowly led to both α-helical and intermolecular extended 
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β-sheet structures, which suggested that the final protein conformation was not predetermined 

[25]. Similar results have also been found for animal LEA proteins [29, 32], where the LEA 

proteins were unstructured in the fully-hydrated state but upon dehydration the protein became 

folded into an α-helical conformation. LEA protein folding during dehydration could be 

functionally important in dry viable seeds but it should be noted that LEA proteins accumulate 

in the vegetative organs of plants under mild stress conditions and so the functional relevance 

of protein folding under partially dehydrated conditions is uncertain. 

1.3.2. LEA proteins can protect enzymes in non-optimal metabolic conditions 

After desiccation, proteins may form aggregates and enzymes can lose their catalytic activities, 

however it has been shown that LEA proteins can protect against both aggregation and 

inactivation [27, 34-36]. Many LEA proteins do not aggregate upon dehydration, freezing or 

boiling due to their hydrophilic and unstructured nature. Group-3 LEA proteins from 

A. thaliana [37, 38], pea [39], and Aphelenchus avenae [30] were shown to be effective in 

protecting enzymes such as lactate dehydrogenase, malate dehydrogenase, citrate synthase, 

fumarase, and rhodanese against partial dehydration. Furthermore, LEA proteins from the green 

alga Chlorella vulgaris [40] and from the anhydrobiotic nematode A. avenae [27] prevented 

enzyme inactivation in freeze-thaw assays. LEA proteins can have a wide range of functional 

properties but the structural features of LEA proteins in relation to their function or their 

interaction with target peptides have not been elucidated [3, 41]. To date there are few studies 

indicating the induction of LEA proteins in response to oxidative stress but many highlighting 

their involvement in other environmental stresses. However, a novel LEA protein, LEA5, was 

induced in response to oxidative stress. 

1.4. LEA5 

LEA5 (At4g02380; also known as Senescence Associated Gene 21 [42, 43], and LEA38 [41, 

44]) is a member of the LEA protein family and belongs to the LEA-3 group [41]. LEA5 is 

unique in its responses to oxidation. The YAP1 transcription factor controls the expression of 

an array of anti-oxidative defensive components in yeast. The expression of LEA5 in a yap1 

mutant strain of Saccharomyces cerevisiae increased tolerance to oxidative stress [43]. These 

mutants have previously been used to identify novel genes associated with oxidative stress 

tolerance [45-48]. Furthermore, expression of LEA5 in A. thaliana was shown to be up-

regulated with the addition of H2O2 to wild-type (WT) A. thaliana cells in culture [49] and in 

mutants defective in antioxidants [50].  
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LEA5 mRNA is expressed in leaves with transcripts having a diurnal pattern of regulation, being 

abundant in the dark but suppressed in the light [43]. However, in the presence of biotic and 

abiotic stresses LEA5 is expressed in leaves even in the light. Unlike canonical LEAs, LEA5 is 

constitutively expressed in roots and reproductive organs but not in seeds. Although first 

identified as a senescence-associated gene, LEA5 is expressed only briefly, early in leaf 

senescence, as the leaves begin to yellow [42]. The abundance of LEA5 transcripts was 

significantly increased in A. thaliana tissues exposed to a range of biotic and abiotic stresses 

that cause enhanced cellular oxidation and alter stress hormone signalling [43, 51].  

Arabidopsis thaliana plants with constitutive over-expression (OEX) of LEA5 accumulated 

more biomass than WT plants, while conversely, plants that expressed LEA5 in the anti-sense 

orientation (AS) had a dwarfed phenotype with restricted shoot and root growth [51]. The LEA5 

AS plants notably had significantly fewer lateral roots and poorly formed root hairs [51]. These 

studies demonstrate that LEA5 has a role in the control of plant growth. Additionally, the 

growth of a fungal (Botrytis cinerea), and a bacterial pathogen (Pseudomonas syringae pv. 

Tomato) was altered in LEA5 over-expression lines [51]. 

Database evidence (from publicly available microarrays) [52], shows that LEA5 is up-regulated 

in response to exposure to many stresses including ozone [53], cold [54], low nitrate [55] and 

infection by Colletotrichum higginsianum [56]. It is also expressed in response to sugar 

signalling [57] and to hormones such as ethylene [42, 58], jasmonate [59] and abscisic acid 

(ABA) [43]. ABA is a hormone that has functions in many plant developmental processes. 

Moreover, ABA-mediated signalling plays an important part in plant responses to 

environmental stress and plant pathogens. [43, 60, 61]. ABA induces the expression of over 

half of the A. thaliana LEA genes [41]. However, LEA5 induction was found to be independent 

of ABI1 (ABA INSENSITIVE 1; a protein phosphatase that participates in ABA signalling) 

[43], suggesting that the signalling pathway converging on LEA5 is not exclusively via ABA 

dependent reactive oxygen species (ROS) production. Analogous to other LEA proteins, LEA5 

is induced in leaves by dehydration [43], suggesting that it has a role in the response to stress. 

In support of this view, a genome wide association study to map local adaptation in Arabidopsis 

identified LEA5 as being likely to be a key component underpinning plant stress tolerance in 

field conditions [62]. A single nucleotide polymorphism at position 1046738 (A/T), which is in 

the first exon of LEA5, was associated with local adaption to temperature stress [62]. The T 

allele, which is the less frequent allele across Arabidopsis ecotypes, was associated with poor 

survival in Finland, due to low-temperature stress [62]. 
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LEA5 was found to be localised to mitochondria of A. thaliana cells using a yellow fluorescent 

protein (YFP) fusion [51], and separately to the mitochondrial matrix using a green fluorescent 

protein (GFP) fusion [44]. As LEA proteins appear to have a role in protecting plants against 

stresses [13-18], it is possible that LEA5 has a role in the protection of mitochondrial functions 

in plants exposed to stress. Expression of LEA5 is strongly regulated by oxidants [43], leading 

to the hypothesis that LEA5 fulfils functions related to respiration and associated oxidative 

stress tolerance or signalling in mitochondria. 

1.5. Mitochondria 

Mitochondria are organelles, each of which is about 0.5 to 1.0 μm in diameter, found in 

eukaryotic cells [63]. Mitochondrial respiration generates most of the cell’s supply of adenosine 

triphosphate (ATP) which is used as a source of chemical energy to drive metabolism, growth 

and biomass production. Mitochondria also participate in multiple cellular signalling pathways, 

and are involved in processes as diverse as cell cycle regulation, cellular differentiation and 

apoptosis [64]. The number of mitochondria in a cell can vary depending upon the tissue type 

[65]. Mitochondria have an outer and inner membrane, which are composed of phospholipid 

bilayers and embedded proteins. This double membrane organisation provides four distinct 

areas to a mitochondrion; these are the outer mitochondrial membrane, the inter-membrane 

space, the inner mitochondrial membrane, and the matrix (Figure 1-1). 

The assembly of a mitochondrion necessitates the co-operation of several processes which 

include the transcription of mitochondrial-associated genes, the translocation and targeting of 

newly synthesised proteins and the assembly of those proteins into a functional unit [66, 67]. 

Mitochondria have their own DNA but require the input of the nuclear genome to encode most 

of the protein complement that constitute a mitochondrion [68, 69]. Mitochondrial biogenesis 

therefore requires coordination in the expression of the two genomes which is achieved by 

signalling between the nucleus and mitochondria. This coordination is also essential to ensure 

that mitochondria can respond to the changes in the physiological milieu of the cell [69]. The 

synthesis of some proteins destined to reside in mitochondria can occur on polysomes bound to 

mitochondria [70-74]. The localised synthesis of mitochondrial proteins is thought to promote 

their efficient import and assembly [67]. The trafficking of nuclear-transcribed and cytosol-

synthesised proteins into the mitochondria is carried out by mitochondrial protein import 

machinery [75]. Mitochondrial protein import machinery is a collective term for several 

translocation processes, each consisting of a distinct network of multi-subunit proteins.   
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Figure 1-1: A diagram of mitochondria and the sub-compartments contained within. 

(http://en.wikipedia.org/wiki/File:Animal_mitochondrion_diagram_en.svg) 
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1.5.1. Mitochondrial targeting signals 

Precursors of mitochondrial proteins that are present in the cytosol contain information to direct 

them to the mitochondria. This information is often available as a cleavable sequence at the N 

terminus. The N-terminal targeting sequences, in the absence of further sorting information, 

direct proteins into the matrix and are cleaved from the precursors by mitochondrial-processing 

peptidase in most cases. These targeting sequences, which in some cases can co-target proteins 

to both chloroplasts and mitochondria, allow the passage of proteins into the organelles via 

highly conserved import and incorporation machinery [68, 76]. Most mitochondrial proteins 

reside in the matrix of the mitochondria. Cytosolic precursors of mitochondrial proteins are 

imported into this innermost sub-compartment of mitochondria via the Transporter Outer 

Membrane (TOM) complex in the outer membrane [77, 78] and the Transporter Inner 

Membrane (TIM) 23 complex in the inner membrane [79]. This is not always the case as many 

precursors lack such a sequence and instead contain internal targeting signals. There are internal 

signals that direct the precursors to all mitochondrial subcompartments.  

1.5.2. Protein insertion into the inner mitochondrial membrane 

The inner mitochondrial membrane has a variety of proteins embedded within it. Most of these 

proteins are imported from the cytosol, although some are synthesised by mitochondrial 

ribosomes in the matrix. For proteins of a cytosolic origin, there are three import routes 

identified. One mechanism uses the TIM22 complex (Figure 1-2 a), in which proteins with 

internal signals are inserted into the inner mitochondrial membrane. The TIM22 pathway uses 

three mitochondrial protein complexes to facilitate the import and membrane insertion of 

proteins. These complexes are the TOM complex in the outer membrane [77, 78], complexes 

of small Tim proteins in the inter membrane space, and the TIM22 translocase in the inner 

membrane [68]. Another method of insertion involves the arrest of preproteins at the level of 

the TIM23 complex where they are laterally integrated into the inner membrane. This route is 

often referred to as the stop-transfer pathway [80] (Figure 1-2 b). The third method is called the 

conservative sorting pathway as it reflects that of the prokaryotic ancestors of mitochondria [81, 

82](Figure 1-2 c). In this method, inner membrane proteins are initially translocated into the 

matrix and, from there, they are inserted in to the inner membrane in an export-like step [68]. 

During translocation to the matrix, some proteins using this pathway are bound by Hsp70 [68]; 

which is thought to prevent degradation and aggregation, and remodel folding pathways [83]. 

The Oxa1 complex then facilitates the insertion of these proteins in to the membrane [84, 85].  



8 

 

 

Figure 1-2: Sorting pathways of inner membrane proteins 

a: Solute carriers and hydrophobic TIM subunits are inserted into the inner membrane by a dedicated inner 

membrane complex, the TIM22 translocase. Small Tim proteins in the intermembrane space (IMS) are assumed 

to function as chaperones, which guide the hydrophobic precursors across the IMS. b: Inner membrane proteins 

containing only one transmembrane span are arrested at the level of the TIM23 complex and are integrated into 

the inner membrane by lateral exit. c: A class of inner membrane proteins are sorted via soluble translocation 

intermediates in the matrix. Membrane insertion occurs here from the matrix side and, at least in certain cases, 

is facilitated by the Oxa1 (oxidase assembly) complex of the inner membrane. Figure taken from Neupert and 

Herrmann, 2007 [68]. 
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1.6. Respiration 

Respiration can be divided into three main pathways: glycolysis (Section 1.6.1), the Krebs cycle 

(Section 1.6.2) and the mitochondrial electron transport chain (Section 1.6.3). Cells use these 

pathways to harvest chemical energy by degrading complex organic compounds containing 

potential energy into products that have less energy. Through oxidation, of glucose for example, 

respiration makes energy available for ATP synthesis [86]. The energy stored in ATP can then 

be used to drive processes requiring energy, such as biosynthesis, or transportation of molecules 

across cell membranes. Plants respiratory metabolism has unique features, including multiple 

entry points from sucrose and starch [86, 87], complementation between the cytosol, plastid 

and mitochondria [86, 87], and the presence of non-phosphorylating transport systems [86]. 

1.6.1. Respiration: Step 1 - Glycolysis 

The glycolytic pathway oxidises hexose sugars (e.g. glucose) to generate ATP, reductant, and 

pyruvate. Glycolysis does not occur in a single step; rather is the linear sequence of 10 

enzymatic reactions occurring in the cytosol [87]. In glycolysis, glucose is converted into 

fructose 1, 6-biphosphate (F1, 6BP; Figure 1-3), consuming 2 ATP in three separate enzymatic 

reactions [87]. Fructose 1, 6-biphosphate is split into two molecules of glyceraldehyde 

3-phosphate (GADP; Figure 1-3). These three-carbon sugars are then oxidised and their 

remaining atoms rearranged to form two molecules of pyruvate (Figure 1-3), a process that 

yields 2 ATP per sugar (net yield 4 ATP) [87]. However, plants can use sucrose and starch as 

substrates for glycolysis; the products of sucrose and starch breakdown are metabolised via the 

classic intermediates of glycolysis. If O2 is present, the pyruvate is transported to mitochondria 

where it is converted to acetyl-coenzyme A (CoA), an enzyme used to provide acetate to the 

Krebs cycle for further oxidation, through a process called pyruvate decarboxylation. 

Glycolysis is an anaerobic reaction. In conditions of oxygen deprivation, such as when 

excessive rainfall has caused soil waterlogging or even the complete submergence of plants, 

plants rely on the ATP produced through glycolysis. This is because in anaerobic conditions, 

ATP production by the mitochondrial electron transport chain is compromised due to oxygen 

being the final acceptor of electrons. However, the absence of NADH oxidation by the 

mitochondrial electron transport chain puts glycolysis at risk of stopping as oxidised 

nicotinamide adenine dinucleotides (NAD+) are used in glycolysis to oxidise GADP [87]. 

However, plants can respond to low oxygen by shifting from aerobic mitochondrial respiration 

to fermentation in which NADH is oxidised by pyruvate which then forms lactate [88, 89].  
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Figure 1-3: Glycolysis  

The metabolic pathway of glycolysis converts glucose to pyruvate via intermediate metabolites. Each chemical 

modification is performed by a different enzyme. The steps performed by hexokinase and phosphofructokinase 

consume ATP. The steps performed by phosphoglycerate kinase and pyruvate kinase produce ATP. Since the 

steps performed by phosphoglycerate kinase and pyruvate kinase occurs twice per glucose molecule there is a 

net production of ATP. 
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1.6.2. Respiration: Step 2 - The Krebs cycle 

The respiratory process continues with the mitochondrial reactions of the Krebs cycle [90] (also 

known as the citric acid cycle, and the tricarboxylic acid cycle). Pyruvate, either entering the 

mitochondria from the cytosol or generated within the matrix via the malic enzyme, is first 

oxidized by pyruvate dehydrogenase complex to form acetyl-CoA [86]. The acetate entering 

the cycle is oxidized in a series of reactions carried out by 8 enzymes. The first reaction is the 

enzymatic addition of the two-carbon acetyl group from acetyl-CoA to the four-carbon acceptor 

oxaloacetate, forming citrate, a six-carbon compound, and coenzyme A [91]. The coenzyme A 

component of acetyl coenzyme A can be reused in acetyl coenzyme A formation. Subsequent 

steps revert the citrate back into oxaloacetate, producing CO2. For each acetate that enters the 

cycle, three molecules of NAD+ are reduced to NADH. In the sixth step of the cycle, catalysed 

by succinate dehydrogenase, electrons are transferred to flavin adenine dinucleotide (FAD) 

producing the reduced form of FADH2 [92]. Both FADH2 and NADH donate their electrons to 

the electron transport chain (ETC). One molecule of ATP is also formed in the Krebs cycle, but 

most of the ATP output of respiration occurs from oxidative phosphorylation which utilises the 

electrochemical proton gradient produced by the ETC for ATP synthesis. 

1.6.3. Respiration: Step 3 - The electron transport chain 

The ETC is an enzymatic series of electron donors and acceptors comprised of four large protein 

complexes (I, II, III, IV), the coenzyme ubiquinone, and the protein cytochrome c, residing in 

the inner mitochondrial membrane and inter membrane space (Figure 1-4). The electrons used 

in the ETC come from the NADH and FADH2 generated in the first two stages of respiration 

(glycolysis and the Krebs cycle). Each electron donor passes electrons to a more electronegative 

acceptor, which in turn donates these electrons to another acceptor, a process that continues 

until electrons are passed to oxygen, the most electronegative and terminal electron acceptor in 

the chain. The transfer of electrons between donors and acceptors during passage through the 

ETC releases energy which is used to generate an electrochemical proton gradient across the 

mitochondrial inner membrane by actively moving protons into the intermembrane space from 

the mitochondrial matrix. This electrochemical proton gradient allows ATP synthase to use the 

flow of H+ through the enzyme back into the matrix to generate ATP from adenosine 

diphosphate (ADP) and inorganic phosphate. 

Complex I (NADH dehydrogenase) is an initial electron acceptor. It transfers two electrons 

from NADH to ubiquinone, via an Fe-S cluster [93], in an exergonic process that is tightly 



12 

 

coupled to the endergonic translocation of four protons across the inner mitochondrial 

membrane into the inter membrane space [94]. In addition to the Complex I found in many 

organisms, plants have alternative NADH and NADPH dehydrogenases [95]. These 

dehydrogenases do not contribute to the electrochemical potential difference of protons across 

the inner mitochondrial membrane but still reduce ubiquinone. This provides a mechanism for 

plants to remove excess reducing power and balance the reduction-oxidation (redox) poise of 

the cell. Another initial electron acceptor is Complex II (succinate dehydrogenase), 

participating in both the Krebs cycle and the ETC [96]. Complex II reduces ubiquinone to 

ubiquinol by transferring electrons from FADH2 derived from the oxidation of succinate to 

fumarate in the Krebs cycle [93, 96]. However, unlike complex I, complex II is does not pump 

protons in to the intermembrane space [96]. 

Ubiquinone is an electron carrier that is reduced to form ubiquinol upon accepting electrons 

from complexes I and II. Ubiquinol freely diffuses within the inner mitochondrial membrane 

to deliver electrons to complex III (cytochrome bc1). Ubiquinol is oxidised by complex III 

which sequentially transfers electrons to cytochrome c [97, 98], a water-soluble electron carrier 

located within the intermembrane space [99]. The electrons are utilised by complex III for 

proton motive force generation through the Qcycle mechanism in a bifurcated fashion [97]. 

Four H+ ions are pumped across the mitochondria inner membrane during this process [98]. 

Complex IV (cytochrome c oxidase; COX) is a terminal oxidase of the ETC. Complex IV 

accepts electrons from cytochrome c and reduces molecular oxygen to water [99]. The residual 

energy from this reduction is used to pump 2 H+ ions across the inner membrane into the 

intermembrane space [100, 101]. Therefore, for every two NADH molecules, one O2 is reduced 

to two molecules of water. The electrochemical gradient produced by this process is utilised in 

oxidative phosphorylation to produce ATP [101]. As oxygen is the terminal electron acceptor 

in the chain, each acceptor molecule in the chain retains its electrons if it is not present. ATP 

synthesis will stop if the H+ gradient equilibrates as oxidative phosphorylation requires an 

electrochemical proton gradient. Inhibitors of the ETC components also constrain ATP 

synthesis.  

The plant ETC is highly branched and contains a second terminal oxidase in addition to 

Complex IV, known as alternative oxidase (AOX). The quinol-oxidizing AOX directly couples 

the oxidation of ubiquinol with the reduction of O2 to produce H2O and heat [102]. The presence 

of AOX in the mitochondrial ETC allows electron flow from ubiquinol to be diverted from the 
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cytochrome c pathway (complex III, cytochrome c, complex IV) to AOX to prevent the over 

reduction of the ubiquinone pool. The regulation of the redox state of the ubiquinone pool is 

particularly important because the ubisemiquinone intermediate formed at complexes I and III 

can act as an electron donor to oxygen forming superoxide [103]. The major sites of superoxide 

production are complexes I [104] and III [105-107]. By removing electrons from the ubiquinone 

pool that would reduce components of complex III, AOX minimises the likelihood of univalent 

oxygen reduction by complex III.  

1.6.4. Respiration: Step 4 - ATP synthesis 

Embedded in the inner membrane of the mitochondria are many copies of a protein complex 

called ATP synthase (Complex V; FOF1-ATP synthase). ATP synthase is the site of oxidative 

phosphorylation, which accounts for almost 90% of the ATP generated by respiration. The 

FOF1-ATP synthase consists of 2 domains: the FO portion (its name derives from the fact that 

this fraction binds to oligomycin [108, 109]) which resides within the mitochondrial inner 

membrane, and the F1 portion of the ATP synthase, which projects out of the inner membrane 

into the matrix of the mitochondria [110]. ATP synthesis by the FOF1-ATP synthase is powered 

by a proton-motive force, which is generated by the electrochemical potential difference of 

protons across the inner mitochondrial membrane [111] formed by the electron flow through 

the ETC [101]. The flow of protons through the inner mitochondrial membrane drives the 

rotation of ATP synthase components causing conformational changes in the catalytic sites  of 

the F1 domain resulting in the synthesis and release of ATP [112].  

The simplest known ATP synthase consists of 8 subunits; the FO domain consists of subunits 

ab2cn while subunits α3β3γɗɛ comprise the F1 domain [109]. Subunits a and b form the proton 

conducting half channels that end on either side of the inner mitochondrial membrane. Driven 

by the proton motive force, protons flow through the FO portion of the enzyme [113]. This 

transfer drives the rotation of a ring of c subunits (c-ring) in the FO domain relative to the 

subunits a and b [113, 114]. The c-ring is also attached to an asymmetric central stalk consisting 

primarily of the γ subunit [115] with subunit ɛ attached [116]. The rotation of the c-ring is 

passed to the γϵ central stalk of the F1 region. The rotation of γϵ causes conformational changes 

in the catalytic sites on the three β subunits of the F1 motor, resulting in the synthesis and release 

of ATP [112]. A narrow (45 Å) peripheral stator stalk, composed of a β dimer and subunit δ in 

most bacterial enzymes fixes the major F1 subunits, α3β3, to the static portions of the FO domain 

preventing the α3β3 ring following the rotation of the γ subunit [117-120].  
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Figure 1-4: The mitochondrial electron transport chain.  

The electron transport chain couples electron transfer between an electron donor (such as NADH) and an 

electron acceptor (such as O2) with the transfer of H+ ions across the inner membrane and into the 

intermembrane space. The passage of protons through the FO domain of ATP synthase is coupled with a 

conformational change in the ATP synthase which is used to generate chemical energy in the form of ATP. 
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1.7. Reactive Oxygen Species 

ROS are chemically reactive molecules containing oxygen. Molecular oxygen has two unpaired 

electrons in its outer electron shell which makes oxygen reactive. More reactive species such 

as superoxide (1O2) and hydrogen peroxide (H2O2) can be derived from molecular oxygen 

during metabolism. Plants produce ROS in chloroplasts, mitochondria, and peroxisomes, as 

well as other sites of the cell because of their metabolic processes such as photosynthesis and 

respiration [121]. ROS formation in mitochondria occurs under optimal conditions but can be 

increased with exposure to stress [122]. Most of the oxygen used in the ETC is reduced to water 

by complex IV but about 1–2% of the oxygen molecules are converted to the superoxide anion 

radical (O2
-) [123], mostly via complex I [104], and complex III [105-107]. The primary 

determinant of mitochondrial ROS production is the ubiquinone pool as the ubisemiquinone 

intermediate formed at complexes I and III is the principal electron donor to oxygen [103].  

ROS fulfil multiple functions in cells but excessive amounts can be detrimental to cells. ROS 

generated in the pathogen-induced oxidative burst play a key role in the elicitation of defence 

responses [124]. They are involved in multiple signalling pathways [125, 126] leading to 

alterations in gene expression and at high levels they can trigger programmed cell death. The 

lifetime of ROS is determined by the antioxidant network which prevents uncontrolled 

oxidation. Moreover, pathways such as the alternative oxidase pathway are considered to 

attenuate ROS formation by the mitochondrial electron transport chain (mtROS) by diverting 

electron flow from complex III, a major site of ROS formation [104, 106, 107], to AOX. 

1.8. Mitochondria-to-nucleus communication 

Plant cell function is dependent upon the regulated and reciprocal interaction between its 

different compartments [127]. This requires communication between the nucleus, 

mitochondria, and chloroplasts. Plant hormones are the major signalling components regulating 

cellular functions and are used for communication between the nucleus and mitochondria [127]. 

These signals can directly regulate nuclear gene expression (anterograde signalling; nucleus-

to-organelle) to adjust the protein composition of the mitochondria to the needs of the cell [127]. 

The mitochondria can also communicate their functional status to the nucleus (retrograde 

signalling; organelle-to-nucleus) to prompt adjustment of gene expression in the nucleus [127, 

128]. Intricate signalling pathways are needed as the nuclear genome encodes the majority of 

mitochondrial proteins which then have to be imported into the mitochondria [68, 69]. This co-

ordinated regulation is essential for appropriate responses to changes in the environment e.g. 
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temperature [129]. This mechanism may be used in response to the loss of mitochondrial 

function caused by a deficit in the electrochemical potential (uncoupling) of oxidative 

phosphorylation subunits [130], or by the accumulation of unfolded proteins in the organelle 

[131]. As well as direct mitochondria-to-nucleus signalling, it is plausible that mtROS produces 

secondary signals from local ROS detection mechanisms which then alter nuclear gene 

expression [132-135]. These responses enable mitochondria to recover from stress [129]. 

1.9. Chloroplast to nucleus communication 

The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus 

and chloroplast [136, 137], similar to mitochondria [68, 69]. For example, in the photosynthetic 

ETC of the thylakoid membrane, the core subunits are encoded by the chloroplast genome, and 

the peripheral subunits are encoded by the nuclear genome. In the stroma, the large subunit of 

ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco) is encoded by the chloroplast 

[138], whereas the small subunit is encoded by the nucleus [139]. To ensure the complexes are 

assembled stoichiometrically and to enable responses to changes in the environment, the 

plastids emit signals that are able to regulate nuclear gene expression [140-144]. Several plastid 

processes produce signals that influence nuclear photosynthetic gene expression [144, 145]. 

Moreover, different signals are produced at different developmental stages [146]. In this way, 

retrograde signalling is able to coordinate the expression of nuclear genes encoding plastid 

proteins with the metabolic and developmental state of the plastid [143, 147]. 

1.10. Transcription factors of the ethylene responsive factor family 

Elaborate mechanisms exist to buffer the cellular redox state in plants to prevent excessive 

oxidation or reduction that would impair metabolic functions. Increases in the levels of ROS, 

which can occur in cells exposed to stress, lead to oxidative signals that modify growth, 

development and defence responses [148, 149]. The type and extent of these modifications 

depends greatly on the nature of the stimulus, as well as its strength, and the exposure time of 

the tissue to the stimulus. The orchestration of these changes is brought about by the redox 

regulation of many proteins including transcription factors of the Ethylene Responsive Factor 

(ERF) family. ERFs are characterised by a common ‘GCC’ DNA binding domain. These bind 

directly to the cis-element called a GCC-box containing the core 5’-GCCGCC-3’ sequence 

[150]. These transcription factors are able to regulate primary and secondary metabolism as 

well as plant growth and defence responses [151]. The expression of ERFs in A. thaliana is 

inducible with biotic and abiotic stresses, and many have roles in the regulation of gene 
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expression in stress conditions. For example, by binding to GCC boxes in the promoters of 

target genes, such as the Dehydration Responsive Element 2A (DREB2A; At5g05410), ERFs 

are able to confer drought tolerance in A. thaliana; in this case by controlling the expression of 

the Responsive to Dehydration 17 (RD17; At1g20440) gene [148, 152]. However, the precise 

functions of many ERFs such as ERF109 (At4g43310) remain to be characterised.  

1.11. ERF109 

ERF109 (also known as Redox Responsive Transcription Factor 1) is a member of the 

ERF/APETALA2 (AP2; At4g36920) transcription factor superfamily and contains only one 

AP2 domain, which binds to the promoters of downstream target genes [150, 153, 154]. The 

role performed by ERF109 may be unique and without genetic redundancy to other ERF family 

members as it has a low homology with other members of the superfamily and within the AP2 

domain [155]. The transcription factor, ERF109, was identified as being part of a regulatory 

network that has a major role in the adjustment of leaves to reach homeostasis after high-light 

stress [156]. Analysis of an erf109 mutant found that 30 genes were differentially expressed in 

the vicinity of ERF109, many of which have roles in stress responses [156]. 

ERF109 transcripts increase in leaves that are directly exposed to high-light. The extent of 

transcript accumulation depends on the intensity of light that the leaves are exposed to [157]. 

Furthermore, ERF109 transcripts also accumulate in leaves that have not experienced high-light 

as a result of systemic signalling from leaves exposed directly to high-light [158]. Oxidative 

stress is an inescapable consequence when plants are exposed to high-light as singlet oxygen 

(1O2) is produced in energy transfer reactions from the excited triplet state of chlorophyll 

molecules or their precursors to molecular oxygen [159, 160]. ERF109 expression is induced 

by singlet oxygen but not by hydrogen peroxide [161]. Singlet oxygen-dependent activation of 

jasmonic acid (JA) and oxylipin signalling pathways may also be important in the activation of 

ERF109 expression in systemic leaves [161]. The lack of functional ERF109 restricted ROS 

accumulation in response to stress in mutant plants and conversely overexpression of ERF109 

resulted in an accumulation of ROS [162]. ERF109 is therefore considered to propagate ROS 

accumulation in response to ROS-producing abiotic and biotic stress signals. This is perhaps 

why ERF109 mRNAs accumulate in aphid-infested leaves [163]. 

Transgenic lines that overexpress ERF109 were impaired in root and shoot development [155, 

162], and showed increased light sensitivity [162]. ERF109 is expressed in low levels in roots 

[155] but transcripts are upregulated in response to JA [164]. JA is an endogenous hormone 
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that can be generated in response to many environmental stimuli. It activates a variety of 

transcription factors in order to mediate responses to biotic and abiotic stresses [164, 165]. 

ERF109 was shown to mediate cross-talk between JA signalling and auxin biosynthesis in the 

regulation of lateral root formation in A. thaliana [155]. Notably, ERF109 was significantly 

induced by methyl jasmonate but not by ABA [155], which has been shown to interact with JA 

to regulate plant responses to water stress conditions [166, 167]. The erf109 mutants have fewer 

lateral roots under methyl jasmonate treatments compared with WT. The shoots of these 

mutants have no visible phenotypic differences to the WT when grown under low-light [157]. 

However, they show a markedly different phenotype when grown for two weeks under high-

light as the leaves of WT plants appear visibly darker than those of the erf109 mutants [157].  

1.12. Summary 

The functional integrity of mitochondria is vital to the sustained production of ATP and survival 

of the cell. Exposure to stress can cause the processes that facilitate mitochondrial energy 

conversion to malfunction, leading to the generation of signals that are transmitted to the 

nucleus to mitigate harmful effects [127]. Despite intensive research efforts in recent years, 

very little is known about the mitochondrial signalling pathways that play central roles in the 

control of plant growth and stress responses. LEA5 is a protein that localises to mitochondria 

[44, 51] and was shown to protect against oxidative stress [43, 51]. There is the intriguing 

possibility that LEA5 has a role in mitochondrial ROS signalling, which in turn, impacts on 

root development and pathogen responses. The root and shoot development and response to 

biotic stress in LEA5 OEX and AS lines has been characterised [43, 51]. Primary root length 

was found to be shorter in AS lines, which also had fewer laterals relative to the primary root 

[51]. LEA5 AS genotypes also had a less shoot biomass and flowered earlier [51]. OEX lines 

had longer root hairs than WT [51]. These results suggest that LEA5 is an oxidation-responsive 

mitochondrial protein that is involved in growth and biotic and abiotic stress responses. 

Furthermore, the transcription factor ERF109 is considered to propagate ROS accumulation in 

response to ROS-producing stress signals [162] and is part of a regulatory network that has a 

major role in the adjustment of A. thaliana leaves to reach homeostasis after high-light stress 

[156]. ERF109 was shown to mediate cross-talk between JA signalling and auxin biosynthesis 

in the regulation of lateral root formation in A. thaliana [155]. 
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1.13. Aims and objectives 

The aim of these studies was to characterise LEA5 functions in mitochondria, in order to 

determine the effects LEA5 has on respiration and respiratory regulation and to determine 

whether the interactions between LEA5 and other proteins are important in the control of 

growth and stress tolerance. An understanding of LEA5 function in mitochondria will provide 

insights into the control of plant growth and stress tolerance. This information could be used in 

future breeding programs to improve the predictability and sustainability of cereal crop yields 

by enhancing environmental stress tolerance. A further aim was to characterise the phenotypes 

of erf109 mutants and to determine whether the interactions between ERF109 and other proteins 

are important to stress tolerance and root architecture. 

The specific objectives of this study were as follows: 

1. To characterise the phenotypes of A. thaliana plants that either overexpress LEA5 or 

express LEA5 in the anti-sense orientation in the absence and presence of stress.  

2. To investigate the role of LEA5 in respiration and redox homeostasis. 

3. To identify proteins that interact with LEA5. 

4. To characterise the phenotypes of barley plants that overexpress LEA5.  

5. To characterise the phenotypes of A. thaliana erf109 mutant plants.  

6. To identify proteins that interact with ERF109.  

7. To identify homologues of LEA5 in crop species. 
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Chapter 2. Materials and Methods 

 

 

2.1. Arabidopsis plant material and growth analysis 

2.1.1. Plant material 

Wild-type (WT) Arabidopsis thaliana seeds (Col-0) were obtained from Bayer (Crop Science 

Division - Trait Research Innovation Centre, Ghent, Belgium). Transgenic A. thaliana plants 

that over-express LEA5 under the control of the Cauliflower mosaic virus (CaMV) 35S 

promoter (LEA5-OEX) that were produced by Dr. Shaheen Mowla, University of Cape Town 

(Cape Town, South Africa) [43], and transgenic A. thaliana plants that express LEA5 in the 

anti-sense (AS) orientation or with a YFP fusion (OEX-YFP), described by Dr. Faezah Mohd 

Salleh, Cardiff University (Cardiff, UK) [51], were provided by Dr. Hilary Rogers, Cardiff 

University. The erf109 mutant line was provided by Prof. Peter Meyer, University of Leeds 

(Leeds, UK) and is a Salk T-DNA insertion line (SALK_150614; containing an insertion in 

exon of At4g34410) [156]. All lines had a Col-0 background and were homozygous for the 

gene of interest.  

2.1.2. In vitro shoot growth and stress treatments 

Seeds were sown in plates on half-strength Murashige and Skoog 1% agar medium (½ MS; 

2.2 g/l Murashige and Skoog basal medium (Sigma-Aldrich Company Ltd. Dorset, UK), 0.5 g/l 

MES, 0.1 g/l Myoinositol, 10 g/l sucrose, dissolved in deionised H2O, adjusted to pH 5.7 with 

1 M KOH, 10 g/l agar, and autoclaved at 121°C for 20 minutes) supplemented with 1.2% 

glucose. Control plates contained media alone. Stress conditions were achieved by adding 

sodium chloride (75 mM), mannitol (50 mM), sorbitol (100 mM) paraquat (N,N’-dimethyl-

4,4’-bipyridiniumdichloride; 0.1 μM), or menadione (0.1 mM) to the media. Once sown, seeds 

were stored at 4°C for 3 days and then moved to a controlled environment and arranged in a 

random-block design. Plants were grown under an irradiance of 100 µmol.m-2.s-1 with a 16 hour 

photo period, a constant temperature of 22 ± 2°C, and a relative humidity of 60% for 21 days.  
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2.1.3. Shoot growth on soil and drought experiments 

In the drought experiments, seeds were sown on to ½ MS and stratified at 4°C for 3 days. 

Seedlings were then grown in a controlled environment with an irradiance of 200 µmol.m-2.s-1, 

a photo period of 8 hours, and a constant temperature of 20 ± 2°C for two weeks. Two-week-

old seedlings were transplanted to soil and grown for a further 10 weeks. In this experiment 

water was withheld after 5 weeks of plant growth. Watering was reinitiated after 2 weeks of the 

water being withheld. Measurements taken included rosette area, leaf count, biomass, and water 

content. The fresh and dry weights of plant and soil samples were measured to calculate the 

percentage water content. 

2.1.4. Determination of rosette area 

Total rosette surface area measurements of plants grown on media were performed using 

RosettR (github.com/hredestig/rosettR). RosettR is open-source software that performs a 

protocol for a high-throughput phenotyping assay for Arabidopsis implemented as an 

R-package. For plants grown on soil, photographs of the plants were used to measure the total 

rosette surface area using Fiji Image J (v1.46r) [168]. Statistical analysis was performed with 

the program R studio [169]. The total rosette surface area, measured here, is highly correlated 

with the fresh weigh of the plant (usually r = 0.9–0.95).  

2.1.5. Measuring the efficiency of photosystem II 

A Flourpen FP100 was used to measure the Quantum Yield (QY), which is a measure of the 

efficiency of photosystem II, of all plants. In light-adapted leaf QY is equivalent to Fv’/Fm’ 

(Variable Fluorescence (the difference between minimal and maximal fluorescence) / maximal 

fluorescence). Measurements of Fv’/Fm’ were taken from light-adjusted plants. 

2.1.6. Photosynthetic CO2 assimilation measurements 

A LI-COR LI-6400XT Portable Photosynthesis System and a 6400-17 Whole Plant Arabidopsis 

Chamber (LI-COR Biotechnology UK Ltd, Cambridge, UK) was used to measure the 

photosynthetic CO2 capacity of A. thaliana plants. Plants were dark adjusted for 30 minutes 

before measurement. CO2 was kept constant at 400 μmol.s-1 and the temperature was 

maintained at 20°C. Measurements of CO2 assimilation by plants were taken at light intensities 

from 0 to 1600 μmol.m-2.s-1. Measurements were adjusted to account for the rosette area.  
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2.1.7. Chlorophyll measurements 

Chlorophyll a, b and carotene, were extracted by homogenising weighed plant material in liquid 

N2 using a mortar using a pestle and suspending in 95% ethanol. The homogenate was then 

centrifuged at 10000 × g for 10 minutes at 4°C. If the pellet was not white, the supernatant was 

removed and the pellet re-suspended in 400 µl of ethanol 95% and centrifuged again using the 

same settings. 200 µl of sample was used to assay pigment absorbance at 470 nm, 649 nm, and 

664 nm with a spectrophotometer. A blank of 95% ethanol was made for each wavelength.  

The pigment concentrations were calculated using the following equations [170]:  

Chlorophyll a = 13.36A664.2 – 5.19A646.6 ; 

Chlorophyll b = 27.43A648.6 – 8.12A664.2 ; 

Carotene = (1000A470 – 2.13Chlorophyll a – 97.64Chlorophyll b)/209. 

2.1.8. Anthocyanin measurements 

Leaf material (100 mg) was ground to a fine powder in liquid N2. 300 μl methanol and 1% HCl 

were added to the homogenate and incubated overnight at 4°C. Subsequently, 200 μl of 

deionised H2O and 500 μl of chloroform were added to the homogenate which was then 

centrifuged at 14000 × g for 5 minutes. After centrifugation, two different fractions were 

obtained. The bottom fraction contained chlorophylls and other pigments, and the upper 

fraction contained anthocyanin [171]. The upper fraction was used for spectrophotometric 

quantification of total anthocyanin. The absorbance at wavelengths 530 nm and 657 nm was 

measured. The total anthocyanin content of leaves was expressed as A530–A657 / g FW−1. 

2.1.9. Root analysis 

Seeds were sown onto A. thaliana growth medium with sucrose (ATS; 5 mM KNO3, 2.5 mM 

KPO4 (adjusted to pH 5.5), 2 mM MgSO4, 2 mM Ca(NO3)2, 70 µM H3BO3, 50 µM Fe-EDTA, 

14 µM MnCl2, 10 µM NaCl, 1 µM ZnSO4, 0.5 µM CuSO4, 0.2 µM Na2MoO4, 0.01 µM CoCl2, 

10 g/l sucrose, 8 g/l Agar, dissolved in deionised H2O, and autoclaved) or ½ MS plates and 

stratified for 3 days in the dark at 4°C. Plants were then grown in a controlled environment with 

an irradiance of 200 µmol.m-2.s-1, a photo period of 8 hours, and a constant temperature of 

20 ± 2°C. Images of plants were captured at different time points and a scale was included for 

comparison. The length of the primary roots and total length including lateral roots was 

measured using imageJ (v1.46r), and the number of lateral roots were counted.  
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2.2. Barley plant material and growth analysis 

2.2.1. Plant material 

Barley (Golden Promise) was transformed in our lab by Gloria Comadira (University of Leeds, 

Leeds, UK) with the assistance of Jennifer Stephens (University of Dundee, Dundee, UK).  

2.2.2. Selection 

T2 WT and transgenic barley seeds were sterilised and sown on to ½ MS media containing 

100 mg/ml Hygromycin B to select for transformants containing the LEA5-YFP constructs. 

Seeds were kept in the dark at 4°C for 3 days to stratify them. Stratified seeds were moved to 

the light for 8 hours at a constant temperature of 20 ± 2°C to stimulate germination. The seeds 

were then moved to the dark for 4 days at a temperature of 20 ± 2°C. Transformants identified 

as Hygromycin B resistant seedlings were standing tall like dark grown plants with long blades. 

Hygromycin B sensitive plants were bleached with short hypocotyls. The plates were kept in 

weak light for 2 days to allow the Hygromycin B resistant plants to become green without 

bleaching them. Hygromycin B resistant plants were then grown in standard conditions for 1 

week until green and the number of resistant and sensitive plants was recorded. T3 WT and 

transgenic barley seeds were sown following the same procedure and the ratio of resistant to 

sensitive plants was recorded. Plants were selected for homozygosity. DNA was extracted from 

these plants and a PCR reaction (section 2.3.1), using primers targeting either the Hygromycin 

B resistance or the LEA5-YFP DNA sequences (Table 1), was performed to confirm the 

presence of the gene of interest. 

Table 1: PCR Primers for amplification of the Hygromycin B resistance and the LEA5-YFP sequences 

Primer  Sequence 

Hygromycin B Forward 5’- ACTCACCGCGACGTCTG -3’ 

Hygromycin B Reverse 5’- GCGCGTCTGCTGCTCCATA -3’ 

LEA5-YFP Forward 5’- GAGCTGTTGCTTGGCTGTGA -3’ 

LEA5-YFP Reverse 5’- ATGCCGTTCTTCTGCTTGTCG -3’ 

 

2.2.3. Phenotype analysis 

Barley seeds were sown on soil containing 10% pearlite in pots with a 1 L volume (10 cm 

diameter base, 13 cm diameter top, 10.8 cm depth). Pots were placed in trays and arranged in a 

random-block design. Plants were grown in greenhouses under an irradiance at soil level of 
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250 µmol.m-2.s-1, a 16 hour photoperiod, and a constant temperature of 22 ± 2°C. Plants were 

watered twice per week. The length of the longest leaf was measured from the base of the plant 

to the tip of the leaf, the number of leaves counted and the QY measured each week for 8 weeks. 

At the end of the experiment (week 25), the number of tillers were counted, and the flower head 

weight, seed weight, and shoot biomass was measured.  

2.3. General molecular biology protocols 

2.3.1. Standard PCR reaction 

Polymerase chain reaction (PCR) amplification of DNA fragments was conducted using 

BioMix™ Red (Bioline, London, UK) with a 1x final working concentration. PCR was 

performed in 0.2 ml PCR tubes with the final volumes of the reaction mix typically at 20 µl. 

Oligonucleotide primers were typically designed to have 25 bp homology with the sequence to 

be amplified. A 100 µM stock of each oligonucleotide primer was made in TE from which a 

10 µM working solution was made in deionised H2O. All PCRs contained a final concentration 

of 1 µM of the forward and reverse primer and typically 100 ng DNA. Reactions were run in a 

thermal cycler with the following conditions: an initial denaturation step was performed at 95°C 

for 5 minutes, followed by 34 cycles of amplification consisting of a denaturation step at 95°C 

for 30 seconds, an annealing step at 56°C for 30 seconds, and an extension step at 72°C for 30 

seconds. This was followed by a final extension step at 72°C for 5 minutes. 

2.3.2. Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate fragments according to their size to determine 

if gene inserts were present, whether vectors and gene inserts had been correctly digested, and 

to verify ligation reactions. Agarose gels were prepared by dissolving agarose in 1x Tris-

acetate-EDTA (TAE) buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA) by heating. 

1x SYBR® safe DNA gel stain (Qiagen nv, Hilden Germany) was added to allow DNA 

visualisation under ultra violet (UV) light. Samples loaded on the gel were treated with 1x 

loading buffer (0.05% (w/v) bromophenol blue, 0.05% (w/v) xylene cyanol, 3% (w/v) Ficoll) 

before loading. Electrophoresis was performed at a constant voltage of 100 V in 1x TAE buffer. 

2.3.3. Gel extraction 

Gel extraction was performed using a QIAquick Spin Column (Qiagen) according to the 

manufacturer’s instructions. The protocol uses a spin column combined with a silica membrane 
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to which DNA can bind to purify the DNA. The DNA fragment was excised from the agarose 

gel and weighed in a 1.5 ml microcentrifuge tube. The binding and solubilisation buffer, buffer 

QG, was added to the gel (300 µl per 100 mg of gel fragment) and incubated at 50°C until the 

gel was dissolved. The DNA was bound to a QIAquick spin column silica membrane by 

centrifugation for 1 minute at 12100 × g. The silica membrane was then washed with buffer PE 

and centrifuged for 1 minute at 12100 × g. Residual PE buffer was removed by a second 

centrifugation for 2 minutes at 12100 × g. The DNA was eluted from the column in 40 µl 

deionised H2O by centrifugation for 2 minutes at 12100 × g. 

2.4. Gene transcript analysis 

2.4.1. Production of plants 

Seeds were germinated and plants grown on soil under 150 µmol.m-2.s-1 irradiance with an 

8 hour photoperiod at 22°C ± 2°C. Plants were grown under a propagator cover for 1 week after 

which the cover was removed and plants were grown until four weeks old. 

2.4.2. Harvest 

Four-week-old plants were harvested by cutting the shoot just above the soil, taking care not to 

take any soil with it. For diurnal experiments, plants were harvested over a period of 24 hours 

and 3 plants were collected for each time point. Each plant was wrapped in foil, labelled and 

placed in liquid N2. Samples were stored at -80°C.  

2.4.3. RNA extraction 

RNA was extracted from plant samples using a NucleoSpin® RNA Plant kit following the 

standard protocol as follows. The rosettes of 4-week-old A. thaliana were homogenised under 

liquid N2. The cells were then lysed in 350 µl Buffer RA1 and 3.5 µl β-mercaptoethanol and 

vortexed vigorously. To reduce viscosity and clear the lysate the homogenate was filtered 

through a NucleoSpin® Filter by centrifugation 11000 × g for 1 minute. 350 µl ethanol (70%) 

was added to the homogenised lysate and mixed to adjust binding conditions. The preparation 

was added to a NucleoSpin® RNA Plant Column placed in a collection tube which was 

centrifuged for 30 seconds at 11000 × g to bind DNA to the column. The silica membrane was 

desalted using 350 µl of membrane desalting buffer and centrifuged at 11000 × g for 1 minute 

to wash the column. DNA was digested using rDNase which was incubated on the column at 

room temperature for 15 minutes. The silica membrane and bound RNA was then washed with 
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200 µl Buffer RA2 and dried by centrifugation for 30 seconds at 11000 × g, washed with 600 µl 

Buffer RA3 and dried by centrifugation for 30 seconds at 11000 × g and had a final wash with 

250 µl Buffer RA3 after which the membrane was thoroughly dried by centrifugation for 2 

minutes at 11000 × g. RNA was eluted in 60 µl RNase-free deionised H2O which passed 

through the column by centrifugation at 11000 × g for 1 minute. RNA was stored at -80°C. 

2.4.4. Synthesis of cDNA 

RNA was quantified using a Nanodrop (ND-1000 Spectrophotometer, Labtech International, 

UK). The ratio of absorbance at 260 nm and 280 nm was used to assess the purity of RNA. A 

ratio of at least 2.0 was accepted as “pure” for RNA. The ratio of absorbance at 260 nm and 

230 nm used as a secondary measure of nucleic acid purity. The 260/230 values of RNA used 

were in the range of 2.0-2.2. 1 µg of RNA was used to synthesise cDNA using a QuantiTect 

Reverse Transcription Kit (QIAGEN) following the manufacturer’s protocol. The reverse 

transcription step was also performed in the absence of reverse transcriptase as a no reverse 

transcriptase control. This control was to assess the amount of DNA contamination present in 

the RNA preparation. 

2.4.5. Quantitative real-time PCR 

Quantitative real-time PCR (QPCR) was performed on cDNA synthesised from the RNA of 

harvested samples. The cDNA was used in a reaction containing 10 µl 2x QuantiFast® SYBR® 

Green PCR master mix (provided by a QuantiFast SYBR Green PCR Kit – QIAGEN), 1 µM 

(final concentration) forward and reverse primers, and 20 ng of DNA. The reaction mixture was 

made to 20 µl with RNase-free H2O. At least three technical replicates were performed for each 

reaction. A no template control which omitted cDNA from the reaction was used as a control 

for extraneous nucleic acid contamination. This control also served as a control for primer dimer 

formation. Reactions were performed in skirted, low-profile 96-well PCR plates (STARLAB, 

Milton Keynes, UK). The reaction mix was used in a two-step cycling protocol. This reaction 

started with an initial incubation step at 95ºC for 5 minutes to activate HotStarTaq Plus DNA 

Polymerase. This was followed by 40 cycles of amplification consisting of a denaturation step 

at of 95°C for 10 seconds, and a combined annealing and extension step at 60°C for 30 seconds. 

Fluorescence data was collected during the combined annealing and extension step. Finally, a 

melting curve analysis was performed to monitor possible mispriming or primer dimer artefacts. 
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2.5. Mitochondria respiration assays 

2.5.1. Isolation of intact mitochondria 

The shoots of four-week-old A. thaliana plants (50 g), grown on soil with an irradiance of 

200 µmol.m-2.s-1, a photo period of 8 hours, and a constant temperature of 20 ± 2°C, were 

harvested. The following steps were performed at 4°C, where possible. Samples were 

homogenised in 200 ml Grinding Medium (0.3 M sucrose, 25 mM Na4P2O7, 10 mM KH2PO4, 

2 mM EDTA disodium, 1% PVP-40 (Polyvinylpyrrolidone MW 40000), 1% BSA (Albumin 

from bovine serum), 18 mM sodium L-Ascorbate, 20 mM L-Cysteine, dissolved in deionised 

H2O and adjusted to pH 7.5 with HCl) using a mortar and pestle at 4°C. Homogenised material 

was filtered through miracloth into a conical flask sat in ice to remove cell debris. Filtrate was 

transferred into cooled 50 ml centrifuge tubes (Nalgene). Cell debris and nuclei were pelleted 

by centrifugation at 2500 × g at 4°C for 5 minutes with slow deceleration. The supernatant was 

transferred to clean pre-cooled centrifuge tubes, balanced by weight and then the mitochondria, 

chloroplasts and peroxisomes were pelleted by centrifugation at 17500 × g at 4°C for 20 minutes 

with slow deceleration. Once pelleted the supernatant was aspirated and discarded. The pellets 

were resuspended in 1 ml of 1x wash buffer (0.3 M Sucrose, 10 mM TES (2-[(2-Hydroxy-1,1- 

bis(hydroxymethyl) ethyl) amino] ethanesulfonic acid, N-Tris (hydroxymethyl) methyl] -2-

aminoethanesulfonic acid), 0.1% BSA, dissolved in deionised H2O and adjusted to pH 7.5 with 

NaOH) and pooled into one 50 ml centrifuge tube using a sterile pipette. The centrifuge tube 

was filled to 50 ml with 1x wash buffer and again cell debris and nuclei were pelleted to ensure 

purity (2500 × g at 4°C for 5 minutes with slow deceleration). The supernatant was transferred 

to a clean centrifuge tube and centrifuged at 17500 × g at 4°C for 20 minutes to re-pellet 

mitochondria and peroxisomes. The supernatant was aspirated and discarded and the pellet was 

resuspended in 1ml 1x wash buffer. A 0-4% PVP-40 gradient was formed using a BioRAD 

Gradient Former 485. A heavy gradient fraction (17.5 ml 2x Wash buffer, 9.8 ml Percoll, and 

7.7 ml 20% PVP-40) and a light gradient fraction (17.5 ml 2x Wash buffer, 9.8 ml Percoll, and 

7.7 ml H2O) were prepared and poured into the BioRAD Gradient Former 485. The two 

fractions formed a gradient as the solutions were drawn from the BioRAD Gradient Former 485 

by a peristaltic pump, into 50 ml centrifuge tubes (Nalgene). Crude mitochondria were carefully 

layered on top of the gradient. Gradients were centrifuged at 40000 × g at 4°C for 40 minutes 

with no brakes. The mitochondria formed a light-yellow band low in the tube. Layers above the 

mitochondria were removed by aspiration. The remaining solution was washed in 1x wash 

buffer and centrifuged at 31000 × g at 4°C for 15 minutes. The supernatant was removed and 
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the pellet was resuspended and washed as previously. After this wash, most of the supernatant 

was removed and the pellet was resuspended in the residual 1x wash buffer. The concentration 

of mitochondria was determined with a Bradford assay (the BSA in the wash buffer was 

accounted for by subtracting 1 mg/ml from the determined concentration of protein). 

2.5.2. Verifying mitochondrial integrity by measuring cytochrome c oxidase latency 

A Clark-type oxygen electrode with a 2.5 ml chamber was calibrated and the chamber was filled 

with 2 ml Mitochondrial Reaction Buffer (0.3 M Mannitol, 10 mM TES-KOH pH 7.5, 3 mM 

MgSO4, 10 mM NaCl, 5 mM KH2PO4, 0.1% BSA, and dissolved in deionised H2O) and 

warmed to 25°C. 500 µg of mitochondria was added (in a volume of 10-40 µl) to the 

Mitochondrial reaction buffer and the chamber was closed ensuring that no bubbles remained 

in the chamber. Any substrates added after was through a pore in the chamber using a Hamilton 

syringe. Respiration rates were calculated by measuring oxygen saturation of buffer and 

dividing by time. Once a base respiration rate was established 40 µl of 0.5 M ascorbate was 

added using a 50 µl Hamilton syringe to reduce endogenous cytochrome c. 2-3 minutes later 

20 µl 5 mM cytochrome c was added. 2-3 minutes later 10 µl 10% Triton X-100 

(C14H22O(C2H4O)n) was added to solubilise mitochondrial membranes. Cytochrome c cannot 

traverse an intact outer mitochondrial membrane and so if the outer membrane is intact, COX 

will be 100% latent. Thus, by comparing COX activity in the absence and presence of Triton 

X-100, an estimation of the percentage of mitochondria with an intact outer membrane can be 

obtained. The following equation was used to calculate the proportion of intact mitochondria:  

100-(
(COX activity with cyt 𝑐 − COX activity with ascorbate)

(COX activity with Triton X100 − COX activity with ascorbate)
)*100 

2.5.3. Complex I respiratory control ratio 

The reaction chamber of the oxygen electrode was prepared with 2 ml of fresh reaction medium 

at 25°C with the stirrer on. A known concentration of mitochondria was added to the chamber 

(in a volume of 10-40 µl) so that the final concentration in the chamber was 100 µg/ml. The 

chamber was closed and any substrates added after was through a pore in the chamber using a 

Hamilton syringe. 8 µl of 500 mM pyruvate, 12 µl of 500 mM Thiamine pyrophosphate (TPP) 

and 8 µl of 800 mM Malate was added to the chamber so that the final concentration in the 

chamber was 2 mM, 3 mM and 2 mM, respectively. Typically, one or two minutes passed 

before adding 20 µl of 100 mM ADP to the chamber. After a further two minutes had passed, 

the reaction was stopped with the addition of 2.5 µl of 5 mg/ml Oligomycin to the chamber 
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(2 µg/ml final concentration). Oligomycin should block the FO domain of ATP synthase and 

thus inhibit respiration. Subsequently, 1 µl of 1 mM of the ionophore FCCP (Carbonyl cyanide-

p-trifluoromethoxyphenylhydrazone) was added to the chamber (0.5 µM final concentration). 

2.5.4. Complex II respiratory control ratio 

The reaction chamber of the oxygen electrode was cleaned and filled with 2 ml of reaction 

medium at 25°C with the stirrer on. A known concentration of mitochondria was added to the 

chamber (in a volume of 10-40 µl) so that the final concentration in the chamber was 100 µg/ml. 

The chamber was closed while ensuring that no bubbles remained in the chamber. Any 

substrates added after this step were added through a pore in the chamber using a Hamilton 

syringe. 20 µl of 1 M succinate was added to the chamber using a 50 µl syringe so that the final 

concentration in the chamber was 10 mM. This step reduces complex II. One minute later, 1 µl 

of 1 mM rotenone was added to the chamber using a 10 µl syringe (final concentration in 

chamber is 0.5 µM) which inhibited complex I activity. Two minutes passed before adding 2 µl 

of 100 mM ADP to the chamber using a clean 10 µl syringe. After a further two minutes had 

passed 2.5 µl of 5 mg/ml Oligomycin was added to the chamber using a clean 10 µl syringe 

(2 µg/ml final concentration). Subsequently 1 µl of 1 mM of the ionophore FCCP was added to 

the chamber (concentration in chamber: 0.5 µM).  

2.6. Production of plants expressing reduction-oxidation sensitive GFP 

Plasmids (pCAMBIA-1304; Figure 2-1) containing a roGFP2 sequence that was either targeted 

to the mitochondria (mitochondrial-roGFP) or without a targeting sequence (cytosolic-roGFP) 

were obtained from Prof. Ulrike Zentgraf (Universität Tübingen, Tübingen, Germany). These 

constructs were produced as in Wierer et al., 2012 [172]. A mitochondrial targeting sequence 

had been inserted before the roGFP sequence to produce roGFP targeted to the mitochondrion.  

2.6.1. Amplification of roGFP DNA using E. coli 

Ultra-competent E. coli were produced using a protocol by Inoue et al., 1990 [173]. 1µl 

(150 ng/µl) of each of the modified pCAMBIA1304 vectors was added to separate aliquots of 

ultra-competent 200 µl E. coli (DH5α) cells. The cells were left on ice for 5 minutes. 10 µl of 

cells were then spread onto LB plates containing 50 µg/ml kanamycin (Fisher Scientific), 

covered and incubated at 37°C overnight. Individual colonies were selected from the plates and 

cultured in 10ml LB medium containing 50 µg/ml Kanamycin. A sterile pipette tip was touched 

to a transformed colony and put into the culture medium. The culture was then incubated at 



 

30 

 

37°C with shaking at 200 rpm overnight. Cultures were grown to an OD600 of approximately 

1.6. Plasmids were extracted from cultured E. coli using the QIAGEN plasmid mini kit 

following the manufacturer’s protocol. Plasmids were stored at -20°C. 

2.6.2. Preparation and transformation of Agrobacterium 

To generate electro-competent Agrobacterium tumefaciens (strain: GV3101 (rhoH+ hrcA+)), an 

overnight culture of Agrobacterium in 100 ml YEB medium (1 g/l Yeast Extract, 5 g/l Beef 

extract, 5 g/l Sucrose, 5 g/l Bacto-peptone, 0.5 g/l Magnesium sulphate, dissolved in deionised 

H2O, adjusted to pH 7 and autoclaved) was prepared and grown at 28°C with agitation. The 

overnight culture was used to inoculate 1 L YEB. This was grown overnight at 28°C to an OD600 

of approximately 1.5. This culture was centrifuged at 2400 × g for 15 minutes at room 

temperature and resuspended in 1 L ice-cold deionised H2O. The suspension was pelleted by 

centrifugation at 2400 × g for 15 minutes. This pellet was resuspended in 2 x 20 ml aliquots of 

ice-cold 10% glycerol and centrifuged for 15 minutes at 3500 × g. The cells were then 

resuspended in 1 ml ice-cold glycerol, aliquoted into 100 µl and frozen in liquid nitrogen. 

Electro-competent cells were stored at -80°C. 

Aliquots of electrocompetent Agrobacterium were thawed on ice and the electroporator was set 

up to use 50 μF, 1.8 kV, 150 Ω. The plasmids were diluted to 40 ng/µl and 2 µl was added to 

100 µl of Agrobacterium, mixed briefly and placed in a pre-chilled electroporation cuvette. The 

mixture was then pulsed by the electroporator. 1 ml of pre-chilled YEB was added to the 

bacteria and the mixture was transferred to a sterile test tube. The bacteria were incubated at 

28°C for 2 hours. Cells were then plated out onto YEB-agar plates containing 50 µg/ml 

Kanamycin (to select for the construct), 50 µg/ml Gentamycin (to select for the Ti Helper 

plasmid) and 100 µg/ml Rifampicin (to select for Agrobacterium). 

2.6.3. Agrobacterium-mediated transformation of Arabidopsis thaliana 

A single colony of Agrobacterium harbouring the gene of interest in a binary vector was used 

to inoculate 5 ml liquid LB medium containing the appropriate antibiotics for binary vector 

selection. The liquid culture was grown at 28°C for 2 days with shaking. This feeder culture 

was used to inoculate 500 ml LB with the appropriate antibiotics and the bacteria were grown 

at 28°C for 16–24 hours to reach the stationary phase (OD 1.5–2.0). Agrobacterium cells were 

harvested by centrifugation at 4000 × g for 10 minutes at room temperature, the supernatant 

was discarded and the cells gently resuspended in 1 volume of freshly made 5% (wt/vol) sucrose 
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solution with a stirring bar. Silwet L-77 (a surfactant) was added to a concentration of 0.02% 

(vol/vol) and mixed well immediately before floral dipping the plants. The Agrobacterium cell 

suspension was transferred to a 500 ml beaker and plants were inverted and their flowers dipped 

in the Agrobacterium cell suspension for 10 seconds with gentle agitation. Care was taken to 

also dip the shorter axillary inflorescences. Plants were removed from the solution and drained 

for 10 seconds. Dipped plants were covered with a plastic cover and laid on their sides for 16–

24 hours to maintain high humidity. The cover was removed the next day and treated plants 

were grown normally for 1 month. Water was withheld when the siliques turned brown. Dry 

seeds were collected using a sieve mesh.  

2.6.4. Selection of transformants 

Transformed Arabidopsis seeds were sterilised in 10% bleach, with a wash of 70% EtOH and 

5 washes of sterile H2O. Seeds were sown on to ½ MS media containing 20 µg/ml 

Hygromycin B. Seeds were kept in the dark at 4°C for 3 days to stratify them. Stratified seeds 

were moved to the light for 8 hours at a constant temperature of 20 ± 2°C to stimulate 

germination. The seeds were then moved to the dark for 4 days at a temperature of 20 ± 2°C. 

Transformants identified as Hygromycin B resistant seedlings were standing tall like normal 

dark grown seedlings with long hypocotyls and closed cotyledons. Hygromycin B sensitive 

seedlings were lying on medium with very short hypocotyls. The seedlings were kept in weak 

light for 2 days to allow the Hygromycin B resistant seedlings to become green without 

bleaching the etiolated seedlings. Hygromycin B resistant seedlings were transferred to soil and 

grown to seed. Plants were selected for homozygosity. DNA was extracted from transgenic 

plants and a PCR was used to confirm the presence of the transgene. Primers that amplified the 

sequence encoding the mitochondrial targeting peptide and roGFP were used confirm the 

presence of mitochondrial-roGFP. Primers that amplified roGFP were used to confirm the 

presence of cytosolic-roGFP.  
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Figure 2-1: Plasmid map of pCAMBIA1304 
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2.7. Protein-protein interaction analysis by tandem affinity purification (TAP) 

2.7.1. Primer design and amplification of LEA5 

Primers were designed to amplify LEA5 from the start codon to the last nucleotide before the 

stop codon (Table 2: LEA5 Forward and LEA5 (no stop codon) Reverse, respectively). A 

standard PCR (Section 2.3.1) was performed to amplify the target gene. Once amplified the 

gene was purified and sequenced.  

A PCR reaction was then performed to add attB sites to the 5’ and 3’ ends of the LEA5 

sequences using primers that target LEA5 and contain overhangs for attB1 and attB2 sites 

(Table 2: LEA5-attB1 Forward and LEA5-attB2 Reverse, respectively). The forward primer 

was designed to contain the Kozak sequence which plays a major role in the initiation of the 

translation process [174]. The reverse primer was designed without a stop codon to perform a 

C-terminal fusion. The product was produced using a standard PCR (Section 2.3.1) with minor 

changes - the first 5 cycles had an annealing temperature of 45°C and the next 29 cycles had an 

annealing temperature of 58°C. The PCR products were separated by 1.5% agarose gel 

electrophoresis, and then purified and sequenced. The product identified as LEA5 without the 

stop codon and with attB ends was then used to produce constructs for TAP using the 

Gateway® Technology cloning method. 

Table 2: PCR Primers for amplification LEA5 (without stop codon) 

Primer  Sequence 

LEA5 Forward 5’- ATGGCTCGTTCTATCTCTAACG -3’ 

LEA5 (no stop codon) Reverse 5’- CTGCTTGTTGTTCAAGAGAGC-3’ 

LEA5-attB1 Forward 5’- GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCATGGCTCGTTCTATCTCTAACG -3' 

LEA5-attB2 Reverse 5’- GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGCTTGTTGTTCAAGAGAGCTGC -3’ 

Kozak sequence (underlined). LEA5 sequences (bold).  

 

2.7.2. Cloning of constructs containing LEA5 used in TAP 

Once amplified and sequenced, 100 fmol of PCR product and 100 fmol of pDONR201 (Figure 

2-2) was placed in a 10 µl BP reaction containing 2 µl 5x BP-clonase™ II enzyme mix and 

made to 10 µl with TE buffer. The reaction was left for 4 hours after which 1 µl 10x 

Proteinase K was added and incubated for 10 minutes at 37°C to stop the reaction.  

One Shot® OmniMAX™ 2 T1 Phage-Resistant Cells were transformed 5 µl of the recombined 

plasmid by heat-shock of the cells to facilitate uptake of the DNA. The cells were then incubated 

in Lysogeny Broth (LB; 10 g/l Tryptone, 5 g/l Yeast extract, 10 g/l NaCl, dissolved in deionised 
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H2O, adjusted to pH 7 with NaOH, and autoclaved) for one hour and then spread onto plates 

containing LB agar and 50 µg/ml kanamycin. Kanamycin resistant colonies were identified on 

the plates after 16 hours. A single colony was used to inoculate LB medium containing 50 µg/ml 

kanamycin. After 16 hours, these cells were pelleted and the plasmid was extracted using the 

QIAGEN plasmid mini kit following the manufacturer’s protocol. The plasmid was quantified 

using a Nanodrop. 

Finally, the LEA5 fragment, contained in the pDONR201 vector (Figure 2-2), was assembled 

in to a pKCTAP destination vector during a single MultiSite LR Clonase reaction to produce 

an expression clone. This procedure was performed at VIB following an established procedure 

[175]. The pKCTAP destination vector contained the improved TAP tag [176] on the C 

terminus of LEA5, a kanamycin resistance gene for selection of transformed cells, and a green 

fluorescent protein (GFP) expression cassette for use as a visible marker for transformation. 

2.7.3. Cloning of constructs containing ERF109 used in TAP 

ERF109 flanked by attB1 and attB2 sites was ordered as a gBlocks® Gene Fragment (double-

stranded, sequence-verified genomic DNA) from Integrated DNA Technologies Inc (Integrated 

DNA Technologies, BVBA, Leuven, Belgium). The ERF109 flanked by attB1 and attB2 DNA 

was cloned in to pDONR221 in a BP reaction using the Gateway® Technology cloning method, 

as in section 2.7.2. Subsequently the ERF109 fragment, contained in the pDONR221 vector, 

was assembled in to pKNTAP destination vector during a single MultiSite LR Clonase reaction 

to produce an expression clone. Assembly in to the pKNTAP destination vector was performed 

at VIB following an established procedure [175]. The pKNTAP destination vector contained 

the improved TAP tag [176] on the N terminus of ERF109. 
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Figure 2-2: Plasmid map of pDONR201 
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2.7.4. Cell culture cultivation 

Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems 

Biology; PSB-L and PSB-D), originally derived from MM1 and MM2d cultures [177], were 

obtained from Geert De Jaeger (VIB, Ghent, Belgium). Cultures were maintained in 50 ml 

Murashige and Skoog basal salts with minimal organics (MSMO) medium (4.43 g/l MSMO, 

30 g/l sucrose, 0.5 mg/l α-naphthaleneacetic acid, 0.05 mg/l kinetin, adjusted to pH 5.7 with 

1 M KOH) at 25°C in the dark, with agitation (130 rpm). Subcultures were established every 7 

days in fresh medium at a 1:10 dilution.  

2.7.5. Cell culture transformation 

Agrobacterium tumefaciens (strain: GV3101 (rhoH+ hrcA+)), were transformed by 

electroporation with appropriate plasmids. Transformed Agrobacterium were grown in YEB 

medium until they reached an OD600 between 1.0 and 1.5. The Agrobacterium culture was then 

washed three times by centrifugation (10 minutes at 3050 × g) with an equal volume MSMO 

medium. Washed Agrobacterium was resuspended in MSMO medium to an OD600 of 1. Two 

days after the sub-cultivation of an Arabidopsis thaliana cell suspension culture, 3 ml was 

incubated with 200 μl washed Agrobacteria and 200 μM acetoseringone at 25°C in the dark 

with agitation (130 rpm) for 48 hours. Two days after co-cultivation, 7 ml MSMO containing a 

mix of three antibiotics (25 μg/ml kanamycin, 500 μg/ml carbenicellin, and 500 μg/ml 

vancomycin) was added to the cell cultures and grown for 11 days under standard conditions. 

The stable transgenic cultures were selected by 1:5 dilution in 50 ml fresh MSMO medium with 

antibiotics 11 days after inoculation, and then with a sequential 1:10 dilution in to 50 ml fresh 

MSMO medium with antibiotics 18 days post inoculation. The transgenic cells were 

subcultured at a 1:5 ratio in 50 ml MSMO medium containing 25 μg/ml kanamycin once per 

week for 2 more weeks. Cell cultures were then scaled up to 200 ml (1:5 dilution) in a 500 ml 

conical flask and then after 1 week scaled up to 2x 1 L (1:10 dilution) in 2 L Erlenmeyer flasks. 

2.7.6. Protein extract preparation 

Cell material from cell cultures (1:5 dilution) was grown for 3 days, harvested on a sintered 

glass filter, wrapped in foil, frozen in liquid nitrogen and stored at -80°C. 2.5 g of cell culture 

was homogenised by grinding in liquid nitrogen. Crude protein extracts were mixed with 

1.67 ml extraction buffer (25 mM Tris/HCL pH 7.6, 15 mM MgCl, 150 mM NaCl, 15 mM 

pNO2Phenyl PO4, 60 mM β-glycerophosphate, 0.1% NP-40, 0.1 mM Na3VO4, 1 mM PMSF, 
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1 µM E64, EDTA-free Ultra Complete tablet (1 per 10 ml), 0.1% benzonase nuclease 

(Novagen), 5% ethyleenglycol) with an Ultra-Turrax T25 mixer (IKA Works, Wilmington, NC) 

and then incubated at 4°C for 30 minutes. The soluble protein fraction was obtained by 

centrifugation at 36900 × g for 20 minutes, transference of the supernatant to a clean 

microcentrifuge tube and another centrifugation at 36900 × g for 20 minutes. The protein 

concentration was quantified using a Bradford assay. 

2.7.7. Western blots 

To decide on the conditions for TAP, first it was important to understand how the protein 

responded to oxidants. Cultures were treated with 0, 1, 2, 5, 10, & 20 mM H2O2 for 1 hour, and 

separately with either 1 mM or 2 mM H2O2 and samples were collected between 0 and 60 

minutes. Protein extractions were acquired as in section 2.6.5. 

Samples were transferred to Nitrocellulose membranes (N-2639, Sigma) by semi-dry western 

blotting after sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE). The 

transfer was performed for 60-70 minutes in electrophoresis buffer containing 20% methanol, 

at a constant current of 1.1 mA times the area of the gel in cm2. The membrane was blocked in 

5% skimmed milk in Tris-Buffered Tween (TBT: 6 mM Tris base, 19 mM Tris HCl, 150 mM 

NaCl, 0.1% (v/v) Tween® 20 Chemiluminescence solution: 100 mM Tris/HCl pH 8.5, 

1.25 mM luminol, 68 μM p-Coumaric acid, 0.01% H2O2) for 45-60 minutes at room 

temperature or overnight at 4°C. Once blocked the membrane was incubated with the primary 

antibody (PAP) in a 1:2500 dilution in 5% skimmed milk in TBT for 2 hours at room 

temperature. The membrane was then washed in TBT for 15 minutes, and then washed a further 

three times for 5 minutes each time (total = 30 minutes). The chemiluminescence emitted by 

the antibody in the respective solutions was detected by Super RX films (Fuji). 

2.7.8. Tandem affinity purification 

Purifications were performed as described by Van Leene et al., 2007 [175] with some 

modifications. In the binding step, 25 mg of total protein extract was incubated with 500 μl IgG 

Sepharose 6 Fast Flow beads (GE-Healthcare, UK), pre-equilibrated with 3 x 1 ml extraction 

buffer with gentle rotation in a DNA LoBind Eppendorf for 1 hour at 4°C. The IgG Sepharose 

beads were transferred to a 1 mL Mobicol column (MoBiTec, Germany) and washed with 

3.75 ml (150 x V: 5x750 with rotation) tobacco (Nicotiana tabacum L.) etch virus (TEV) buffer 

(10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% [v/v] NP-40, 0.5 mM EDTA, 1 mM PMSF, 
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1 μM E64, 5% [v/v] ethylene glycol). In the first elution step, 100 µl TEV buffer + 5µl (10U) 

Rhinovirus protease (GE Healthcare) was added to the column and incubated at 4°C for 1 hour. 

After 30 minutes, an addition 5 µl (10 U) Rhinovirus protease was added. The eluate was 

collected in a microcentrifuge tube by centrifugation at 150 × g at 4°C for 1 minute. The eluate 

was then washed with an addition 100 µl TEV buffer (10 mM Tris/HCl pH 7.6, 150 mM NaCl, 

0.1% NP-40, 0.5 mM EDTA, 1 µM E64, 1 mM PMSF, 5% ethylene glycol) on a Mobicol spin 

column and again the eluate was collected by centrifugation at 150 × g at 4°C for 1 minute 

(total volume collected 210 µl). In the second binding step, the TEV-eluate was incubated with 

TEV-buffer (1 ml) equilibrated 100 µl Streptavidin Sepharose High Performance (Amersham) 

beads at 4°C on a rotating mixing device for 1 hour. The mix was transferred to a mobicol 

column and the Streptavidin beads were washed with 2.5 ml (100 CV) (3x833 µl) TEV buffer. 

In the second elution step, bound complexes were eluted with 30 µl 1x NuPAGE sample buffer 

containing 20 mM Desthiobiotin, incubated for 5 minutes with regular mixing. The beads were 

separated from eluate on a Mobicol spin column and the eluate was stored at -70°C.  

2.7.9. Sample preparation 

Sample preparation was performed by the Geert De Jaeger lab at VIB, Ghent, Belgium. Purified 

protein complexes were concentrated by trichloroacetic acid precipitation, resolved by 

NuPAGE electrophoresis, and visualised by Coomassie Brilliant Blue G-250 staining as 

described by Van Leene et al., 2011 [178]. Protein gels were cut to isolate complete lanes, and 

single protein bands were excised and collected in microtiter plates. These were further 

processed for mass spectrometry analysis as described by Shevchenko et al., 1996 [179], with 

minor modifications.  

2.7.10. Acquisition of mass spectra 

Single protein bands excised from gel were analysed by VIB Proteomics Expertise Center, 

Ghent University (Ghent, Belgium). Peptide mass fingerprints and subsequent 1 kV CID 

fragmentation spectra of selected peptides were acquired using a MALDI-tandem-mass 

spectrometry instrument (4700 Proteomics Analyzer; Applied Biosystems).  

2.7.11. Mass spectra-based protein homology identification 

Protein homology identification was performed by Dominique Eeckhout (VIB, Ghent, 

Belgium). GPS Explorer 3.5 (Applied Biosystems) was used to process the peptide mass 

fingerprints and peptide sequence spectra of each sample. Data search files were generated and 
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submitted for protein homology identification by using a local database search engine, Mascot 

v 2.4.01 (Matrix Science, London, UK). The database, SNAPS (Simple Non redundant 

Assembly of Protein Sequences; version 0.4) for Arabidopsis, compiled from multiple public 

databases, was searched for homologous proteins. A decoy database from the SNAPS for 

Arabidopsis database was generated to approximate the false positive rate of the protein 

homology data set. Each protein amino acid sequence was shuffled with the EMBOSS shuffle 

tool [180]. False positives were excluded from the results.  

2.7.12. Data analysis 

The BLAST (Basic Local Alignment Search Tool) and PSI (Position Specific Iterative)-BLAST 

algorithms were used to search for homologues of the identified proteins. The Arabidopsis 

Information Resource database (http://www.Arabidopsis.org) was used for gene ontology 

annotation searches.  

2.8. Protein-protein interaction analysis by split-YFP 

2.8.1. Construction of the LEA5-YFPc and LEA5-YFPn vectors 

The pDONR201+LEA5 plasmid (constructed in 2.7.2) was used in an LR reaction with N9842 

to produce LEA5-YFPc plasmid, and used in an LR reaction with N9843 to produce the LEA5-

YFPn plasmid. The LR recombination reaction was performed as in the handbook 

(Thermofisher Gateway ® Technology manual). 2 µl (300 ng/reaction) of the entry clone, 2 µl 

(300 ng/reaction) of the destination vector, along with 4 µl of 5 x LR Clonase Reaction buffer, 

8 µl TE buffer pH 8.0 and 4 µl of LR Clonase™ and mixed briefly. The reaction as incubated 

at 25°C for 1 hour. The reaction was stopped by the addition of 2 µl Proteinase K and incubation 

at 37°C for 10 minutes. The reaction was stored at -20°C and used to transfect protoplasts.  

2.8.2. Construction of the RH22-YFPc and RH22-YFPn vectors 

Primers were designed to amplify the ORF of DEA(D/H)-box RNA helicase 22 (RH22) from 

the start codon to the last nucleotide before the stop codon (Table 3). RH22 was amplified from 

genomic DNA extracted from A. thaliana using a standard PCR reaction. The PCR products 

were separated by agarose gel electrophoresis. The band representing RH22 was excised and 

purified. Primers were designed to extend the RH22 gene with attB sites (Table 3; RH22-attB1 

Forward and RH22-attB2 Reverse, respectively). The ORF of RH22 was used in a PCR reaction 

with attB primers (Table 3) in a standard PCR reaction. PCR products were separated by 



 

40 

 

agarose gel electrophoresis and the band representing RH22 with attB ends was excised, 

purified and sequenced. The sequenced PCR product representing RH22 with attB ends was 

then used in a BP reaction, as in Section 2.7.2.  

Table 3: PCR Primers for amplification RH22 (without stop codon) 

Primer Sequence 

RH22 Forward 5’- ATGATTCTCTCACGCTCTGTCTCC -3’ 

RH22 Reverse 5’- ATATCTCACAGCTTGAGGCTCCTC -3’ 

RH22-attB1 Forward 5’- GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACCATGATTCTCTCACGCTCTGTCTCC-3’ 

RH22-attB2 Reverse 5’- GGGGACCACTTTGTACAAGAAAGCTGGGTCATATCTCACAGCTTGAGGCTCCTC -3’ 

Kozak sequence (underlined). RH22 sequences (bold).  

2.8.3. Isolation of protoplasts 

Protoplasts were isolated from A. thaliana following the protocol of Wu et al., 2009 [181] with 

minor modifications, and the assistance of Nurhayati Razak. Plants were grown on soil in 

standard conditions for 4 weeks. Leaves were taken from these plants and the upper epidermal 

layer was affixed to Time tape (Time Med, Burr Ridge, IL) to support the leaf. The lower 

epidermal surface was affixed to a strip of Magic tape (3M, St. Paul, MN) which was then 

carefully pulled away removing the lower epidermal surface cell layer. Several leaves (~2 g) 

while still adhered to the Time tape were transferred to a Petri dish containing a 10 ml enzyme 

solution (1% cellulose 'Onozuka' R10 (Yakult, Tokyo, Japan), 0.25% macerozyme 'Onozuka' 

R10 (Yakult), 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 0.1% BSA and 20 mM MES, 

pH 5.7). The leaves were agitated on a platform shaker at 70 rpm for 30 minutes, releasing the 

protoplasts in to the solution. The solution was placed in to a centrifuge tube and the protoplasts 

were centrifuged at 100 × g for 3 minutes. The supernatant was removed and the protoplasts 

were washed with 50 ml of pre-chilled modified W5 solution (154 mM NaCl, 125 mM CaCl2, 

5 mM KCl, 5 mM glucose, and 2 mM MES, pH 5.7), and incubated on ice for 30 minutes. After 

30 minutes the protoplasts were centrifuged again at 100 × g for 3 minutes, the supernatant was 

removed and the protoplasts were resuspended in MMg solution (0.4 M mannitol, 15 mM 

MgCl2, and 4 mM MES, pH 5.7) to a final concentration of 2 to 5 x 105 cells/ml.  

2.8.4. Transient gene expression in protoplasts 

DNA was transiently expressed in Arabidopsis mesophyll protoplast using the method 

described by Yoo et al., 2007 [182], with minor modifications. Approximately 10 μg (8 to 

12 μg) of plasmid DNA was mixed with 200 µl of approximately 5 × 104 protoplasts (2 × 104 

to 1 × 105) in MMg solution at room temperature. Prepared fresh, a 200 µl of a solution of 40% 
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(w/v) PEG (MW 4000; Fluka), 0.1 M CaCl2, and 0.2 M mannitol was added to the protoplasts, 

and the mixture was incubated at room temperature for 5 minutes. Once incubated, the 

protoplasts were washed with 3 ml of W5 solution. The protoplasts were then pelleted by 

centrifugation at 100 × g for 1 minute. This wash step was repeated twice. Pelleted protoplasts 

were gently resuspended in 1 ml W5 solution and finally incubated in 6-well plates coated with 

1% BSA at room temperature for 16 hours in the light. 

2.8.5. Visualisation of interactions 

Protoplasts were observed with a Zeiss LSM700 laser scanning confocal microscope using 

20×/0.8 Plan-Apochromat, 40×/1.2 W C-Apochromat or 63×/1.4 Oil Plan-Apochromat in 

multi-track channel mode. Excitation wavelengths and emission filters were 488 nm/bandpass 

505-530 nm for YFP, and with simultaneous excitation at 488 nm with a band-pass 650-710 nm 

for detection of chloroplast auto-fluorescence. Image processing was performed using Zeiss 

ZEN 2011 (black edition) v7.1, and ImageJ v1.46r. Translational research 

The bioinformatics resources at Bayer (Crop Science Division - Trait Research Innovation 

Center in Ghent, Belgium) were leveraged to find crop homologues. A tree of orthologous genes 

was produced using Ensembl. Using the OMA browser [183] candidate genes identified in the 

TAP tag experiments were used to find homologous genes from key monocot species for each 

of those candidate genes. The protein sequences found were extracted in silico from genomic 

sequences and are sometimes truncated and/or absent due to the incompleteness of the original 

DNA molecule and/or genome. The same tool was used for expression analysis of candidates 

in wheat. Swiss model was used to produce 3D protein models.  
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Chapter 3. Characterisation of the phenotype of Arabidopsis thaliana with 

modified expression of LEA5 

 

3.1. Introduction 

The expression of LEA proteins in transgenic plants has been shown to be able to confer stress 

tolerance to drought [14, 15], cold [16], and freezing [17]. LEA5 is distinctive as it provided 

Saccharomyces cerevisiae tolerance to a range of oxidants including H2O2, menadione, and 

paraquat [43]. Previous studies have shown that plants with constitutive expression of LEA5 

accumulated more biomass than wild-type (WT) plants [43, 51]. Transgenic plants 

overexpressing LEA5 also demonstrated a higher tolerance to H2O2 by sustaining a higher root 

and shoot growth rate than WT plants when exposed to comparable levels of H2O2 [43]. The 

expression of LEA5 in leaves is suppressed in the light [43], unless in the presence of biotic and 

abiotic stresses [43]. This could be due to enhanced cellular oxidation - a common feature in 

the responses of plants to stress - as LEA5 is up-regulated by a range of oxidants [43]. Moreover, 

plants that expressed LEA5 in the anti-sense orientation (AS) accumulated less shoot biomass, 

and had shorter primary roots with fewer lateral roots and poorly formed root hairs [51]. The 

LEA5 AS plants also had earlier flowering and senescence [51]. However, the constitutive 

over-expression of LEA5 did not confer drought tolerance in A. thaliana which could have been 

expected from its up-regulation during dehydration stress [43]. Interestingly, plants over-

expressing LEA5 in drought conditions were assimilated less CO2 [43]. A LEA5 - yellow 

fluorescent protein (YFP) fusion was localised to mitochondria [51]. For this reason, it was 

suggested that there is possibility that LEA5 interacts with proteins involved in mitochondrial 

ROS signalling, which could impact on root development [51].  

The following studies focus on the role of LEA5 in growth and stress tolerance of A. thaliana. 

Three lines that over-express LEA5 (OEX2-2, OEX2-5 [43], and a line expressing LEA5 fused 

to YFP - OEX-YFP [51]), and two LEA5 AS lines (AS2 and AS8 [51]) were compared to WT 

type plants in a range of conditions to observe any phenotypical affects that LEA5 has on the 
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plants. The OEX2-5 line was reported to have a moderately increased expression of the 

transgene [43]. In contrast, the AS lines had about five-fold lower transcript levels [51].  

An in vitro setup was used as a proxy for field environments to study the effects of abiotic stress 

on plants. These experimental setups are based on the addition of compounds to the growth 

medium or exposure of the in vitro setup to controlled environmental conditions. Drought was 

simulated by adding osmotica - mannitol and sorbitol [184, 185] - to lower the water potential 

of the medium. Similarly, the addition of NaCl to the medium was used to expose plants to a 

combination of osmotic stress and Na+ toxicity [186]. The in vitro setup was also exposed to 

various light intensities. The production of ROS is an inescapable consequence of oxygenic 

photosynthesis. However high-light can result in the production of excessive amounts of ROS 

such as singlet oxygen (1O2) which is believed to be the main ROS produced in the chloroplasts 

under excess light. It is produced in energy transfer reactions from the excited triplet state of 

chlorophyll molecules or their precursors to molecular oxygen. It is a highly reactive species 

that engages readily with a variety of biomolecules, especially those containing double bonds 

[159], and results in reduced photosynthetic efficiency and ultimately cell death in 

photosynthetic tissues exposed to excess light [160]. The medium was also separately 

supplemented with hydrogen peroxide (H2O2), menadione, and paraquat to induce ROS 

formation in plant tissues. Paraquat, for example, accepts electrons from the photosystem I and 

transfers them to molecular oxygen to generate ROS. The use of in vitro setups offers practical 

advantages, such as control of stress level, low variability, and the ability to grow many plants 

in a limited space [184, 187]. Much of our current knowledge on stress physiology in 

A. thaliana is based on artificial stress conditions, and resulted in the identification of many 

genes that enhance stress tolerance [186, 188, 189]. The studies on shoot phenotypes were 

performed in the controlled environment facilities at Bayer (Crop Science Division, Trait 

Research Innovation Centre, Ghent, Belgium). The controlled environment facilities at the 

University of Leeds were also used to study the root phenotypes of these plants. 

The aim of the studies described in this chapter was to gain an insight in to the role of LEA5 in 

plant development and responses to abiotic stresses.  
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3.2. Results: Shoot phenotype 

3.2.1. Rosette growth in the absence of stress  

In the following studies, transgenic A. thaliana plant with either increased expression or 

anti-sense expression of LEA5 (characterised previously [43, 51]) were grown on ½ MS media 

in the absence of stress to test if phenotypes were similar to those grown on soil described in 

previous studies [43, 51]. The rosette area and relative growth rates were determined in plants 

grown for 21 days in vitro under growth conditions described in the Materials and Methods 

chapter. The overall germination rate for these experiments was 94.8%. A total of 960 plants 

per genotype were analysed in the absence of stress. Measurements were taken on seedlings 

that had been sown on to ½ MS agar and stratified for 3 days before transferring to the growth 

chambers for germination and growth. Plants were grown for a period of 21 days with 

measurements taken on the 11th, 14th, 16th, 18th, and 21st day after transfer to the growth 

chamber. Representative shoot phenotypes of the different lines on days 11, 14 16, 18 and 21 

are shown in Figure 3-1 A. Although the shoot phenotypes are visually similar in all lines, 

analysis revealed that the rosette area of AS2 and AS8 plants were significantly smaller early 

in the growth period – days 11 (P<0.001 for both genotypes), 14 (P<0.001 for both genotypes), 

and 16 (P<0.001 for AS2 plants), whereas the rosette area of OEX lines was similar to WT 

plants at these stages (Figure 3-1 B). Later in the growth period (days 18 and 21), the rosette 

areas of AS plants had grown to a similar size of the WT plants (Figure 3-1 B). Interestingly, 

more AS plants had inflorescences than the WT plants at 24 days whereas fewer OEX plants 

had committed to inflorescence at this age (Table 4).  

Table 4: Percentage of plants with inflorescences 24 days after germination 

Genotype WT AS2 AS8 OEX2-2 OEX2-5 OEX-YFP 

Percentage with 

inflorescences 

22.5 48.4 50.8 22.5 17.5 15 

 

Plants were also grown in stress conditions and a total of 20,160 plants were analysed. 8,640 

were analysed in drought stress experiments, another 8,640 were analysed in oxidative stress 

experiments, and 2,880 were analysed in light stress experiments. 360 plants per genotype were 

analysed in each condition.  
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Figure 3-1: A comparison of the rosette areas wild-type (WT) A. thaliana and transgenic lines that either 

over-express LEA5 (OEX2-2, OEX 2-5 and OEX-YFP), or express antisense LEA5 (AS2 & AS8) 

Plants were grown under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C. Rosette areas 

were measured at 11, 14, 16, 18 and 21 days in the absence of stress. A: Representative phenotypes. Scale bar 

represents 10 mm. B: Rosette area (mm2) over 21 days. Error bars represent mean +/- standard error. The 

asterisks indicate significant differences to WT plants (*** P<0.001; ANOVA). N=960. 
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3.2.2. Rosette growth in the presence of stress 

Drought, salt and osmotic stress 

In these experiments, plants were grown in the absence of stress (control) or in the presence of 

50 mM mannitol, 75 mM sodium chloride (NaCl), or 100 mM sorbitol which was added to the 

½ MS media to simulate drought stress. The aim of these experiments was to gain an insight in 

to the role of LEA5 in responses to abiotic stresses. The effects of the osmotica on WT and 

transgenic plants that either over-express LEA5 (OEX2-2, OEX 2-5 and OEX-YFP), or express 

antisense LEA5 (AS2 & AS8) were determined over 21 days. A total of 8640 plants were sown 

for these experiments and the germination rate was 93.5%. 8076 plants were assessed.  

Representative shoot phenotypes of plants from each of the different lines grown in each 

treatment condition 21 days after being moved into the growth chamber are shown in Figure 

3-2 A. The rosettes of plants grown in all stress treatments were visibly smaller than those 

grown in the absence of stress (Figure 3-2 A), with plants grown on media containing sodium 

chloride (salt stress) being the smallest at this point. The shoot phenotypes of plants grown in 

the control condition are visually similar in all lines, and analysis revealed that in the absence 

of stress, the rosette area of all lines was similar to WT plants after 21 days (Figure 3-2 B).  

The rosette areas of all genotypes were significantly smaller in all the stress treatments 

compared to the control condition (Figure 3-2 B, C, D & E; P<0.001). No effect of LEA5 

expression on the rosette area was observed when plants were grown in the presence of 

mannitol. In the salt stress treatment, the rosette area of AS8 plants was significantly smaller 

than WT plants (Figure 3-2 D; P<0.001); however, there were no significant differences 

between WT plants and the other lines. The OEX-YFP plants had significantly larger rosette 

areas than WT plants when grown on ½ MS media containing sorbitol (Figure 3-2 E; P<0.001).  

High-light stress 

In these experiments, WT and transgenic plants with altered expression of LEA5 were grown 

for 11 days under 100 µmol.m-2.s-1 irradiance with a 16 hour photoperiod. At this point plants 

in the high-light treatment were transferred to a comparable chamber but grown with an 

irradiance of 600 µmol.m-2.s-1. All plants were grown for a further 10 days. Measurements of 

the rosette area were taken on day 7, 8, 9, 10, 11, 14, 16, 18 and 21. For simplicity however, 

data shown in Figure 3-3 are for day 21 only. A total of 2880 plants were sown, with a 

germination rate of 98.5%. 2837 plants were measured. 
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The rosettes of all genotypes were generally visibly smaller when grown for 10 days in the 

high-light condition compared to the control condition (Figure 3-3 A). Growth of WT plants 

under high-light resulted in plants with significantly smaller rosette areas than those grown in 

control conditions (Figure 3-3 A, B; P<0.001). WT plants grown under high-light were 14.3% 

smaller than those grown in control conditions. Furthermore, after 10 days of growth under 

high-light, the rosette areas of AS2 plants were significantly smaller than that of the WT plants 

(Figure 3-3 B; P<0.001). However, there was no uniform effect of LEA5 expression on the 

rosette area when plants were grown in the under high-light: AS2 and AS8 plants were 22.8% 

and 13% smaller, respectively, than control plants, while OEX lines 2-2, 2-5 and YFP were 

12.7%, 16.5%, and 20% smaller, respectively (Figure 3-3 B).  

Oxidative stress 

In these experiments, plants were grown in the absence (controls) or presence of oxidative stress 

caused by addition of H2O2, paraquat, and superoxide generating agent menadione to the growth 

media. A total of 8640 plants were sown directly on to ½ MS plates that either had no added 

chemicals or contained 10 mM H2O2, 0.1 mM menadione or 0.1 µM paraquat with 2160 in each 

treatment condition. The germination rates of all genotypes sown on H2O2 were very low 

(25.6%) compared to the germination rates in the absence of added oxidants – the control 

condition (98.5%). Those that did germinate struggled to thrive. No further experiments were 

therefore conducted on the seedlings grown in the presence of H2O2. Seed germination rates 

were lower in the menadione condition (80.7%) than in the control condition. However, 

germination rates on paraquat condition were little affected (96.8%).  

In these experiments, the rosette area of OEX-YFP plants after 21 days in the control condition 

was significantly larger than that of WT plants (Figure 3-4 B: P<0.001). Notably, in these 

experiments, the rosette areas of 21-day-old AS2 and AS8 plants grown in the control condition 

were also significantly larger than those of WT plants (P<0.001 for both genotypes).  

The rosettes of all genotypes were visibly smaller when grown with menadione or paraquat 

compared to those grown in the absence of oxidative stress after 21 days (Figure 3-4 A). 

Moreover, the rosette area of all genotypes grown in the presence of either menadione or 

paraquat were significantly smaller than those in the absence of oxidative stress after 21 days 

(P<0.001 for all genotypes in both conditions). Both AS2 and AS8 lines as well the OEX-YFP 

line were significantly smaller than WT plants when grown on 0.1 mM menadione (Figure 3-4 

A & C: P=0.023 for AS8, P<0.001 for AS2 & OEX-YFP).  
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The mean rosette areas of plants were smallest when grown on media containing paraquat. The 

inhibition of photosynthetic electron transport by paraquat resulted in the rosette area of WT, 

OEX2-2, and OEX-YFP plants being between 54 and 62% smaller than those in the control 

condition with OEX2-5 being 40% smaller. In contrast, the paraquat-dependent decrease in 

rosette area was only 35% and 39% in AS lines, AS2 and AS8, respectably. The mean rosette 

areas of LEA5 AS2 and AS8 plants were significantly larger than WT plants after 21 days grown 

in the presence of paraquat (Figure 3-4: P<0.001 for both AS2 and AS8). However, the mean 

rosette area of OEX2-5 plants was also significantly larger than WT plants when grown in the 

presence of paraquat (P<0.001). 

Anthocyanin content of leaves 

The shoots of plants, grown on soil for 4 weeks in standard conditions, were homogenised and 

anthocyanins were extracted. WT plants had an average of 2.6 µg/g FW of anthocyanin (Figure 

3-5). There was no significant difference in the concentration of anthocyanins between WT 

plants and OEX2-5 plants which had 3.3 µg/g FW anthocyanin content. However, the leaves of 

AS2 plants had 0.6 µg/g FW anthocyanin content (P<0.001) which was significantly less 

anthocyanin content than in WT leaves. 
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Figure 3-2: The effects of abiotic stress treatments (mannitol, salt, and sorbitol) on the rosette area of wild-

type (WT) A. thaliana and on transgenic lines that either over-express LEA5 (OEX2-2, OEX2-5 and OEX-YFP) or 

produce antisense transcripts (AS2 & AS8) in comparison to plants grown in the absence of stress. 

Plants were grown under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C for 21 days. 

Representative phenotypes are shown in A. Scale bar represents 10 mm. The rosette area (mm2) for plants grown 

in the absence of stress (control) is shown in B, and in the presence of stress caused by addition of 50 mM 

mannitol, 75 mM salt (NaCl), or 100 mM sorbitol to the growth media are shown in C, D and E, respectively. Error 

bars represent mean +/- standard error. The asterisks indicate significant differences (P<0.001; ANOVA). N=360. 
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Figure 3-3: The effects of high-light treatment on the shoot phenotype (A) and rosette area (B) of 21-day-old 

wild-type (WT) A. thaliana and transgenic lines that either over-express LEA5 (OEX2-2, OEX2-5 and OEX-YFP) 

or produce antisense transcripts (AS2 & AS8) in comparison to plants grown in the absence of stress. 

Plants were grown for 11 days under 100 µmol.m-2.s-1 irradiance with a 16 hour photoperiod, at which point half 

were grown under high-light (600 µmol.m-2.s-1) for the remaining 10 days. All plants were grown for 21 days at 

22°C ± 2°C. A: Representative phenotypes at 21 days. Scale bar represents 10 mm. B: The rosette area (mm2) of 

plants grown in the absence of stress and under high-light. Error bars represent mean +/- standard error. N=360.  
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Figure 3-4: The effects of oxidative stress treatments (menadione and paraquat) on the rosette area of wild-

type (WT) A. thaliana and on transgenic lines that either over-express LEA5 (OEX2-2, OEX2-5 and OEX-YFP) or 

produce antisense transcripts (AS2 & AS8) in comparison to plants grown in the absence of stress. 

Plants were grown under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C for 21 days. 

Representative phenotypes are shown in A. Scale bar represents 10 mm. The rosette area (mm2) for plants grown 

in the absence of stress (control) is shown in B, and in the presence of stress caused by addition of 0.1 mM 

menadione, or 0.1 µM paraquat to the growth media are shown in C and D, respectively. Error bars represent 

mean +/- standard error. The asterisks indicate significant differences (* P<0.05, *** P<0.001; ANOVA). N=360. 
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Figure 3-5: Anthocyanin concentration (µg/g FW) in the leaves of four-week-old wild-type (WT) A. thaliana 

and transgenic LEA5 over-expressing (OEX 2-5) and LEA5 antisense lines (AS2) grown on soil. 

Plants were grown on soil under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C for four 

weeks. Error bars represent mean +/- standard error. The asterisks indicate significant differences to WT plants 

(*** P<0.001; ANOVA). N>30. 
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3.3. Results: Root phenotype in optimal conditions 

3.3.1. Analysis of root phenotypes for plants grown on ½ MS media 

The aim of these experiments was to investigate the role of LEA5 in root development. The 

AS2 and OEX2-5 have been reported to have a marked effect on root phenotype when grown 

on ½ MS media for 20 days [51]. However, the AS8 and OEX2-2 lines had not been described. 

The objective of these experiments was to determine the root phenotypes of the AS8 and OEX2-

2 lines as well as to confirm the previously observed phenotypes of the AS2 and OEX2-5 lines. 

After 7 and 10 days of growth (Figure 3-6 & Figure 3-7, respectively), the primary root lengths, 

the number of lateral roots and lateral root densities were determined. Root architecture was 

determined in a total of 244 plants.  

The root architecture of the AS2 and AS8 plants appeared visually different to WT plants 7 

days after germination (Figure 3-6 A), while both of the OEX lines were visually similar to the 

WT. Analysis of the roots revealed that the AS2 & AS8 plants had similar mean primary root 

lengths to the WT plants (Figure 3-6 B). In contrast, the OEX2-2 plants had significantly longer 

primary roots than the WT seedlings (Figure 3-6 B; P=0.009). However, there was no 

significant difference between OEX2-5 plants and the WT plants. Furthermore, there was no 

significant differences in the number of lateral roots (Figure 3-6 C) or the lateral root density 

between any of the transgenic lines and the WT plants after 7 days (Figure 3-6 D). 

After 10 days, AS2 and AS8 plants had similar primary root lengths to the WT plants (Figure 

3-7 B), as did OEX2-5 plants. However, OEX2-2 plants had significantly longer primary roots 

(P=0.0075; Figure 3-7 B), as well as significantly more lateral roots than WT plants (P=0.03; 

Figure 3-7 C). Lateral root density was similar to WT plants for all genotypes (Figure 3-7 D).  

Notably, the angle of root growth differed significantly in AS2 and AS8 lines which showed a 

preference for growing at angles 42° and 47° whilst WT grew at 20° (P<0.001 for both 

genotypes) and the primary roots of both OEX2-2 and OEX2-5 lines grew at 13° (Figure 3-7 A 

& E). 
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Figure 3-6: The root architecture of seven-day-old wild-type (WT) A. thaliana and transgenic LEA5 

over-expressing (OEX2-2, OEX2-5) and LEA5 antisense (AS2, AS8) lines grown on ½ MS. 

A: Representative phenotypes on day 7. Scale bar represents 10 mm. B: Primary root length (mm).  

C: The number of lateral roots. D: The lateral root density (number of lateral roots per mm primary root). Error 

bars represent mean +/- standard error. The asterisks indicate significant differences to WT plants (** P<0.01; 

ANOVA). N=48.  
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Figure 3-7: The root architecture of ten-day-old wild-type (WT) A. thaliana and transgenic LEA5 

over-expressing (OEX2-2, OEX2-5) and LEA5 antisense (AS2, AS8) lines grown on ½ MS. 

A: Representative phenotypes on day 10. Scale bar represents 10 mm. B: Primary root length (mm).  

C: The number of lateral roots. D: The lateral root density (number of lateral roots per mm primary root). E: The 

primary root tip angle (degrees). Error bars represent mean +/- standard error. The asterisks indicate significant 

differences to WT plants (* P<0.05, ** P<0.01, *** P<0.001; ANOVA). N=48.  
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3.3.2. Analysis of root phenotypes for plants grown on ATS media 

In the second root phenotype investigation, the roots of 7-day-old WT A. thaliana and 

transgenic A. thaliana seedlings that express LEA5 in the sense (OEX2-5) or antisense (AS2) 

orientations grown on ATS media were compared (Figure 3-8 A). These experiments were 

performed in the same way as those performed with ½ MS media (Section 3.3.1) except that 

these seedlings were grown on ATS media. After 7 days of growth, the primary root lengths, 

the number of lateral roots and lateral root densities were measured. The roots had reached the 

bottom of the media by day 10 and so no measurements were made on this day. 

After 7 days of growth on ATS, the root phenotypes of OEX2-5 and AS2 seedlings were 

visually like those of the WT plants (Figure 3-8 A). Under these conditions the primary root 

lengths of WT and OEX2-5 lines were similar (Figure 3-8 B). In contrast, the AS2 seedlings 

had significantly shorter primary roots than WT seedlings (Figure 3-8 B: P=0.022). There were 

no significant differences in the number of lateral roots per plant between WT and transgenic 

plants (Figure 3-8 C). Likewise, the abundance of lateral roots relative to the primary root length 

was similar in WT, OEX2-5 and AS2 seedlings (Figure 3-8 D).  
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Figure 3-8: The root architecture of seven-day-old wild-type (WT) A. thaliana and transgenic LEA5 

over-expressing (OEX2-5) and LEA5 antisense (AS2) lines grown on ATS media. 

A: Representative phenotypes at 7 days. Scale bar represents 10 mm. B: Primary root length (mm). 

C: The number of lateral roots. D: The lateral root density (number of lateral roots per mm primary root). Error 

bars represent mean +/- standard error. The asterisks indicate significant difference to WT plants (* P<0.05; 

ANOVA). N=45. 
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3.4. Discussion 

The aim of these studies was to characterise the shoot and root phenotypes of A. thaliana lines 

with altered expression levels of LEA5. The data presented in Figures 3-1 to 3-4 show no 

consistent effects of the level of LEA5 expression on shoot development as determined by 

rosette area. Furthermore, the root phenotypes were largely the same in all lines. These data are 

in marked contrast to previous studies [43, 51]. While in some experiments the rosette area 

reflect results published previously [43, 51], no consistent differences were observed between 

the experiments. The experiments performed in this chapter involved thousands of plants and 

the data is therefore arguably robust. The reasons for the apparent discrepancy in the results 

presented here and those reported previously [43, 51] are unknown. Seedlings were confirmed 

to contain the Kanamycin resistance gene by PCR and are thus transgenic. Furthermore, all 

plants grown on media containing Kanamycin were resistant and did not segregate which 

suggests they are homozygous for the gene of interest. However, expression of LEA5 in these 

lines (data not shown) was not as previously described [43, 51]. This could be due to the seeds 

being of a different generation to those used previously, and so some silencing of the transgene 

may have occurred.  

LEA proteins have frequently been associated with drought stress [13]. Plants over-expressing 

LEA5 were previously shown to be less able to assimilate CO2 in drought conditions [43]. For 

this reason, the effects of water deficiency on the rosette area of plants with altered LEA5 

expression were determined. A total of 8640 plants were assessed in the drought experiments. 

Rosette areas were significantly decreased following the drought stress treatments in all 

genotypes. The rosette areas of LEA5 OEX plants were similar to WT plants in most treatments 

with the exception of the treatment with sorbitol, in which OEX-YFP plants had a significantly 

larger rosette area than WT plants (Figure 3-2 A, E). Furthermore, the rosette areas of the LEA5 

AS plants were similar to WT plants when grown on media containing mannitol and sorbitol. 

However, the rosette areas of plants from the AS8 line were significantly smaller when grown 

on media containing salt (Figure 3-2 A & D). These findings as a whole do not suggest that the 

expression of LEA5 adjusts plant tolerance to drought stress.  

High-light led to a significant decrease in overall rosette size in all genotypes tested relative to 

the same genotypes in control conditions. This observation implies that an irradiance of 

600 μmol.m-2.sec-1 is sufficient to elicit photoinhibitory effects and inhibit growth in 

A. thaliana. While all plants showed inhibited growth under high-light, there was no clear effect 
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of LEA5 expression on the rosette area (Figure 3-3). Expression of LEA5 is usually 

downregulated in the light [51]. However, it appears from this data that constitutive expression 

of LEA5 is not preventing the plants coping with high-light stress.  

LEA5 is up-regulated by a range of oxidants [43] including both H2O2 and superoxide (O2
-) 

generating agents such as menadione and paraquat. The effects of continuous exposure to 

oxidative stresses on transgenic A. thaliana plants were also analysed in this study. It was found 

that 10 mM H2O2 was too strong a concentration for all plants tested to survive post 

germination. Any that did manage to germinate bleached and died soon after. All genotypes 

had a smaller rosette area when grown on media containing 0.1 mM menadione. Both AS lines 

were found to be significantly more sensitive to menadione than the WT plants. However, this 

effect was also observed in OEX-YFP plants. The greatest reduction in rosette area was 

observed in plants grown on media containing 0.1 µM paraquat. As expected, all genotypes had 

a smaller rosette area in this condition, however LEA5 AS plants were not as sensitive as the 

OEX lines and their rosette areas were larger than WT plants (Figure 3-4).  

The effects of LEA5 on root architecture reported previously [43] were also found to be less 

dramatic in this study. However, LEA5 OEX2-2 plants had a significantly longer primary root 

(Figure 3-7 B) and more lateral roots (Figure 3-7 C) after 10 days on ½ MS media. Moreover, 

the primary roots of LEA5 AS2 plants were significantly shorter than WT plants (Figure 3-8 B) 

when grown on ATS media. However, then root architecture of all other lines was like that of 

WT plants. While in some experiments, the data reflect results published previously, no 

consistent differences were observed between the experiments. The discrepancies between this 

and the previous studies could be due to subtle differences in growth conditions. However, it 

would appear that the expression of LEA5 in these plants does not match those used in previous 

studies, possibly due to silencing of the transgene. 
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Chapter 4. The identification of the effects of LEA5 expression on 

mitochondrial respiration and redox state 

 

4.1. Introduction 

LEA proteins are typically intrinsically-disordered proteins that seem to have roles in protecting 

plants against a range of stresses [13-18], although their precise cellular functions remain 

largely unknown [3]. There are 51 genes encoding LEA proteins in A. thaliana and they are 

clustered into nine families. Of these, 36 are localised to the cytosol, and 29 of these have a 

dual cytosolic-nuclear localisation [44]. Three proteins localised exclusively to the plastids or 

mitochondria, and two others are dually targeted to these organelles [44]. One of the LEA 

proteins found to be localised to mitochondria was LEA5, which appeared to localise in the 

mitochondrial matrix [44, 51]. As LEA proteins appear to have a role in protecting plants 

against stresses [13-18], it is possible that LEA5 has a role in the protection of mitochondrial 

functions in plants exposed to stress. LEA5 is unique among LEA proteins, in that its expression 

is strongly regulated by oxidants [43]. Furthermore, plants over-expressing LEA5 had a reduced 

sensitivity to H2O2 [43, 51]. It is possible that LEA5 fulfils functions related to respiration and 

associated oxidative stress tolerance or signalling in mitochondria. 

Plant cell function is dependent upon the regulated and reciprocal interaction between its 

different compartments. Retrograde signalling from the mitochondria to the nucleus has been 

proposed to mediate abiotic stress perception [190]. Many abiotic stress conditions will 

influence mitochondrial metabolism and could generate signals by the over-reduction of the 

ETC, enhanced accumulation of ROS, or altered redox potential that will, in turn, trigger 

nuclear gene expression and acclimation responses. This co-ordinated regulation is essential for 

appropriate responses to changes in the environment e.g. temperature [129]. 

Intact plant mitochondria can be isolated from plant tissues and organs such as potato tubers, 

pea shoots and soybean cotyledons and roots [191-193] where mitochondria are abundant and 

tissues are relatively free of compounds such as lignins, polysaccharides and other cellular 

components. To perform the experiments described in this chapter, mitochondria were isolated 
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from the shoots of A. thaliana and purified by density gradient centrifugation using Percoll and 

PVP. The Percoll/PVP gradient separated the intact mitochondria from other cell components 

such as chloroplasts and thylakoids [191]. The integrity of the isolated mitochondria were 

determined, and respiratory electron transport rates were then assayed by measuring O2 

consumption in a Clark-type oxygen electrode [194, 195]. The respiration rates of mitochondria 

isolated from the shoots of 4-week-old WT A. thaliana, as well as from a transgenic line that 

over-expresses LEA5 characterised in Chapter 3, were measured to determine whether altered 

LEA5 expression alters respiration rates. In addition, transgenic plants were produced that 

express a reduction-oxidation sensitive Green Fluorescent Protein (roGFP) targeted to either 

the mitochondria or the cytosol [172]. The roGFP emission spectrum changes in a more reduced 

environment [172]. These transformations were made on plants that were either WT, or 

transgenic and either over-express LEA5 or express LEA5 in the anti-sense (AS) orientation. 

Homozygous lines were produced to observe if the expression of LEA5 alters the redox state of 

mitochondria and the cytosol. An understanding of how LEA5 functions in mitochondria could 

provide insights into plant growth and stress tolerance. 
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4.2. Results: LEA5 transcript expression 

To verify that LEA5 mRNA expression in leaves is abundant in the dark but suppressed in the 

light – shown previously by Northern blotting [43] – transcripts were quantified by QPCR. The 

shoots of four-week-old plants were harvested over a period of 24 hours. RNA was extracted 

from the plant samples, the concentration was measured, and 1 µg of RNA was used to 

synthesise cDNA. QPCR was then performed on the cDNA to determine LEA5 transcript 

abundance over the light/dark cycle (Figure 4-1). 

LEA5 transcripts were abundant in the shoots of WT plants at the 0 hour time point, when the 

plants had experienced 16 hours of darkness (Figure 4-1 A). The quantity of LEA5 transcripts 

decreased rapidly upon illumination, such that levels had almost halved after 1 hour of 

illumination (Figure 4-1 A). Levels of LEA5 mRNAs remained low throughout the light period 

and only accumulated once illumination was removed at the end of the photoperiod (Figure 

4-1). These results demonstrate that LEA5 mRNAs are most abundant in darkness. Therefore, all 

procedures undertaken to isolate mitochondria were performed on leaves harvested in the dark 

period. 

The melting temperatures of the target amplicons for the reference gene, UBC37, and for LEA5 

was 82°C and 81°C, respectively (Figure 4-1 B). A single peak can be seen in each curve 

indicating that primers amplified only one product. No products could be seen in the non-

template control which indicates a lack of contamination and primer dimers. Taken together 

this data implies that the cycle threshold (Ct) values i.e. the number of cycles required for the 

fluorescent signal to exceed background level, are valid and not due to nonspecific products. 
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Figure 4-1: Diurnal changes in LEA5 transcript abundance. 

Plants were grown under 150 µmol m-2 s-1 irradiance with an 8-hour photoperiod at 22°C ± 2°C for 28 days.  

A: QPCR was used to quantify LEA5 transcripts relative to transcripts encoding a ubiquitin-conjugating enzyme 

(UBC37) in the rosettes of 4-week-old WT plants. The light period was from 0 to 8 hours as indicated by the bars 

above the graph. Error bars are means +/- standard error.  

B: Dissociation curves illustrating the specificity of QPCR primers. The specific melting temperature of a product 

indicates its size, and a pure product gives one clear peak. Data are the mean of 3 biological replicates, each with 

3 technical replicates. 
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4.3. Results: Mitochondrial respiration 

Mitochondria were isolated from the shoots of four-week-old WT and LEA5-OEX2-5 plants 

grown on soil under an irradiance of 150 µmol.m-2.s-1 with a photo period of 8 hours and a 

constant temperature of 22 ± 2°C, in order to determine whether the LEA5 protein alters 

respiratory functions in mitochondria. The method of isolating intact mitochondria from soil 

grown A. thaliana was first optimised (as described in Chapter 2 and in Shaw et al., 2016 [196]). 

Parameters such as the age of the plants, the biomass:grinding buffer ratio and other factors 

were found to influence the amount and quality of the mitochondrial preparations [196]. The 

procedures used to establish (i) the proportion of intact mitochondria in the isolation, (ii) the 

mass (protein basis) of mitochondria required to give a linear respiratory response to substrate 

concentration and (iii) the optimal concentrations of additional substrates, cofactors and 

inhibitors for subsequent assays are described in Shaw et al., 2016 [196]. 

4.3.1. The protein basis of mitochondria 

The mass (protein basis) of mitochondria was determined using a Bradford assay (Figure 4-2). 

The standard curve produced had a coefficient of determination (R2) at 0.9982 (Figure 4-2). A 

R2 value this close to 1 indicates that the data points fit very closely to the line of best fit. It is 

therefore acceptable to use this curve to calculate unknown protein concentrations from the 

equation of this line. Respiration assays used 100 µg of mitochondria (in a volume of 10-40 µl).  

4.3.2. The integrity of mitochondria and maximal cytochrome c oxidase activity 

The maximal activity of cytochrome c oxidase (COX: Complex IV) was used as a measure of 

the integrity of isolated mitochondria [197]. These assays utilised a Clark-type oxygen 

electrode. COX is bound within the inner mitochondrial membrane and oxidises the electron 

carrier cytochrome c, located within the inter membrane space. The basis of these 

measurements is that cytochrome c cannot traverse the outer mitochondrial membrane, so the 

addition of cytochrome c to a preparation of mitochondria should only increase the COX 

activity if mitochondria with broken outer membranes are present. Representative traces are 

shown in Figure 4-3 A & B. The oxygen consumption rate in the absence and presence of a 

detergent that should disrupt the membranes was used to calculate the percentage of intact 

mitochondria. Preparations of mitochondria were used if over 75% were intact (Table 5). The 

maximal COX activity of mitochondria isolated from the leaves of WT plants was 142.9 nmol 

O2.min-1.mg protein-1 (Figure 4-3 C; Table 5). The maximal COX activity of mitochondria 
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isolated from the leaves of OEX2-5 plants was 166.2 nmol O2.min-1.mg protein-1 (Figure 4-3 

D; Table 5). There was no significant difference in the COX activity of mitochondria isolated 

from the leaves of WT plants and those isolated from OEX2-5 plants (Table 5). 

4.3.3. Respiratory control assays 

Assays were performed to investigate complex I and complex II respiratory control. Respiration 

measurements were performed on mitochondria that are >80% intact. To assay complex I 

respiratory control, the substrates pyruvate, tetrasodium pyrophosphate and malate were added 

to the chamber once a base respiration rate was established. Once a stable respiration rate had 

been established ADP was added to the chamber. After a further two minutes had passed, the 

reaction was stopped with the addition of oligomycin to the chamber. Oligomycin should block 

the FO domain of ATP synthase and thus inhibit respiration. Subsequently, the ionophore FCCP 

was added to the chamber thus negating this inhibition. FCCP is a mobile ion carrier that makes 

membranes selectively leaky to H+, and can dissipate the H+ electrochemical gradient across 

the mitochondrial inner membrane. There was no significant difference in complex I respiratory 

control between WT and OEX2-5 plants (Table 6). 

To assay complex II respiratory control, succinate was added to the chamber to reduce complex 

II and rotenone was added to inhibit complex I activity. Once a stable respiration rate was 

established ADP was added to the chamber. Following this oligomycin was added to the 

chamber inhibiting respiration. Finally, FCCP was added to the chamber negating this 

inhibition by dissipating the H+ electrochemical gradient across the mitochondrial inner 

membrane. There was no significant difference in complex II respiratory control between WT 

and OEX2-5 plants (Table 7).  
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Figure 4-2: Protein standard curve used to determine the protein basis of mitochondria.  

R2 = 0.9982 
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Figure 4-3: Determinations of the latency of cytochrome c oxidase (COX) in mitochondrial preparations.  

Representative trace of oxygen uptake by mitochondria extracted from A: WT and B: OEX2-5 plants. Average 

oxygen consumption rate (nmol O2.min-1.mg protein-1) by mitochondria extracted from C: WT and D: OEX2-5 

plants. 
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Table 5: Oxygen consumption (nmol O2.min-1.mg protein-1) at maximal COX activity and percentage intact 

mitochondria 

 

 

 

 

Table 6: Oxygen consumption (nmol O2.min-1.mg protein-1) when assaying complex I respiratory control 

Genotype CI Substrates ADP Oligomycin FCCP 

WT 23.0 +/- 2.5 18.6 +/- 1.1 1.0 +/- 0.5 20.4 +/- 3.8 

OEX2-5 22.0 +/- 2.5 22.5 +/- 5.2 1.4 +/- 0.3 14.0 +/- 4.1 

N=4 

 

Table 7: Oxygen consumption (nmol O2.min-1.mg protein-1) when assaying complex II respiratory control 

Genotype Succinate Rotenone ADP Oligomycin FCCP 

WT 23.1 +/- 3.4 26.2 +/- 3 41.0 +/- 3.3 26.2 +/- 4.6 32.6 +/- 3.4 

OEX2-5 22.8 +/- 4.2 24.2 +/- 2.6 33.4 +/- 3.9 27.5 +/- 3.5 24.3 +/- 4.6 

N=15 

  

 Maximal COX activity  Percentage (%) of intact 
mitochondria 

Genotype WT OEX2-5  WT OEX2-5 

Average  
+/- SE 

142.9  

+/- 7.9 

166.2  

+/- 9.8 

 85.4  

+/- 3.2 

89.8  

+/- 1.3 

   
 

 
N=24 
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4.4. Results: Transformation of Arabidopsis thaliana to express roGFP in the cytosol or 

mitochondria 

Arabidopsis thaliana plants with a WT background, and the transgenic lines LEA5-OEX(2-2), 

LEA5-OEX(2-5), LEA5-AS(2), and LEA5-AS(8) were transformed by Agrobacterium-

mediated transformation with constructs containing roGFP that was either targeted to the 

mitochondria (mitochondrial-roGFP) or without a targeting sequence (cytosolic-roGFP). The 

naming policy for the selection of transgenic plants is shown in Figure 4-4. The seeds of 

independently transformed lines (T1) were harvested and 3% were found to be resistant to 

Hygromycin B (Figure 4-5 A). The seedlings that were resistant to Hygromycin B were 

transplanted from the selection media onto soil where they were grown to seed (T2). T2 seeds 

were harvested and sown onto ½ MS agar containing Hygromycin B. About 75% of the 

seedlings that germinated on selection media were found to be resistant to Hygromycin B 

(Figure 4-5 B). The other 25% were sensitive to the antibiotic and did not grow. Deviations 

from the 3:1 ratio of antibiotic resistant to sensitive can indicate multiple insertions of the gene. 

One line was found to be 100% resistant to Hygromycin B. Plants were selected for 

homozygosity. Seeds with a segregation ratio of 3:1, resistant: sensitive were selected and 

grown to seed (T3). The T3 generation was 100% resistant to Hygromycin B, suggesting that 

the plants were homozygous for the insert. The phenotypes of these plants appeared no different 

from WT plants. 

DNA was extracted from the plants of each generation and a PCR was used to confirm the 

presence of the transgene. Primers that amplified the sequence encoding the mitochondrial 

targeting peptide and roGFP were used confirm the presence of mitochondrial-roGFP (Figure 

4-6). Primers that amplified roGFP were used to confirm the presence of cytosolic-roGFP 

(Figure 4-6). The sequence encoding the mitochondrial targeting peptide was not amplified 

from plants transformed with cytosolic-roGFP as expected (Figure 4-6). This indicates that the 

plants are correctly transformed with either roGFP targeted to the mitochondria or roGFP 

without a targeting peptide (Figure 4-6). 
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Figure 4-4: The naming policy for the selection of transgenic plants. 

Seeds are shown in circles and plants are shown in squares 
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Figure 4-5: Selection for transformants on media containing Hygromycin B.  

Seedlings resistant to Hygromycin B stand tall like normal dark grown seedlings with long hypocotyls and closed 

cotyledons and are indicated by arrows, whereas seedlings sensitive to Hygromycin B lay on the medium with 

very short hypocotyls and open cotyledons. A: T1 seedlings. B: T2 seedlings.  
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Figure 4-6: PCR genotyping of transgenic plants 

DNA was extracted from plants expressing cytosolic roGFP (lanes 1 and 2) and mitochondrial roGFP (lanes 3 and 

4). Lanes 5 and 6 were the non-template control. Lanes 7 and 8 contained plasmid containing cytosolic roGFP 

and lanes 9 and 10 contained the plasmid containing mitochondrial roGFP to act as a positive control. Primers 

targeted the mitochondrial targeting peptide in lanes 1, 3, 5, 7, and 9. Primers targeted roGFP in lanes 2, 4, 6, 8, 

and 10.  
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4.5. Discussion 

The aim of the studies performed in this chapter was to gain greater insights in to the functions 

of LEA5 in plant mitochondria, and to determine if the abundance of LEA5 affects respiration 

and respiratory regulation. The rationale for these studies is that LEA5 was found to be localised 

to the mitochondria [51], and LEA5 transcripts were found to be abundant in the dark (Figure 

4-1), consistent with previous studies [43], therefore it is plausible that LEA5 has functions 

related to mitochondrial functions, such as dark respiration. The mitochondria used in these 

studies were therefore harvested from leaves during the dark period. 

The data presented here show that while maximal COX activity in mitochondria from WT 

leaves was on average lower than in the mitochondria from OEX2-5 leaves, there was no 

significant difference between the two. Further studies using Blue-Native Polyacrylamide Gel 

Electrophoresis could determine the composition of respiratory complexes, and if the 

abundance of COX is altered by the levels of LEA5. A change in the abundance of the COX 

protein in transgenic plants that either overexpress LEA5 or express LEA5 in the antisense 

orientation would indicate that LEA5 stimulates respiratory functions in mitochondria. 

Respiratory control ratios were also measured for complex I and for complex II. However, no 

differences were apparent in respiratory control. The absence of differences between these lines 

is possibly due to the expression of LEA5 in the OEX2-5 line not being as previously described 

[43, 51]. This could be due to the seeds being of a different generation to those used previously, 

and so some silencing of the transgene has occurred. However, the optimisation of a method of 

isolating intact mitochondria from soil grown A. thaliana in vitro is still a considerable feat.  

Transgenic plants expressing either mitochondrial-roGFP or cytosolic-roGFP were produced in 

the WT background and in the transgenic lines of LEA5-OEX(2-2), LEA5-OEX(2-5), LEA5-

AS(2), and LEA5-AS(8) in order to explore the effects of altered LEA5 abundance on the redox 

state of the cytosol and mitochondria. Homozygous T3 generation lines expressing either 

mitochondrial-roGFP or cytosolic-roGFP were produced for each genotype and seeds of these 

lines are now available for further study. 

In the next chapter A. thaliana ecotype Landsberg erecta cell suspension cultures were 

transformed to express a tagged LEA5 protein in order to identify proteins that interact with 

LEA5 through the use of tandem affinity purification and mass spectrometry. Verification of 

these interactions utilised transfected protoplasts in a split-YFP system. 
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Chapter 5. The identification of proteins that interact with LEA5 

 

 

5.1. Introduction 

Many members of the major LEA protein groups lack conventional secondary structures and 

are included in a class of proteins called “intrinsically disordered” proteins [22-24]. It is 

possible for a transition from a disordered to an ordered state to occur under certain conditions, 

for example a transition in protein conformation of ASR1 was induced by desiccation [33]. The 

ability to attain an ordered structure in conditions of water limitation [25-28] presumably allows 

LEA proteins to recognize their target molecules under stress situations. Typically Group 3 

LEA proteins, of which LEA5 is a member, have been shown to prevent aggregation caused by 

drought and chilling. However, LEA5 has not been shown to have these functions. LEA5 is 

unusual as it is inducible by oxidative stress, as well as phytohormones, and a range of biotic 

and abiotic stresses.  

The interactome has been defined as “the complete repertoire of interactions” in a cell [198]. 

Analysing protein complexes and protein-protein networks allows the functional annotation of 

gene products, and is therefore of central importance in biological research. In the previous 

chapters, studies were presented concerning the role of LEA5, explored using transgenic lines 

with either sense or antisense expression of the gene. Unfortunately, these studies did not reveal 

new information concerning LEA5 functions. Since it was not possible to predict the functions 

of LEA5 from sequence and structural information, deducing the interactome of this protein 

might yield some results. Many methods have been developed to study protein-protein 

interactions; some are based on genetic approaches, while others rely on biochemical 

approaches, and more recently, computational methods have proven their utility in predicting 

protein-protein interactions. Comparing results obtained with different methods requires careful 

consideration as some methods only allow mapping of binary interactions whilst others can 

study protein complexes and are able to delineate both direct binary and indirect interactions. 
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A tandem affinity purification (TAP) approach was used in the following studies to identify 

proteins that interact with LEA5. TAP is a purification technique for studying protein-protein 

interactions. One-step purification methods have low purification levels, and so a method that 

isolates native protein complexes was developed. This method, named tandem affinity 

purification, was named due to its two consecutive affinity purification steps [199]. The use of 

two independent affinity steps enhances the specificity of the method. The original method used 

two Immunoglobulin G (IgG)-binding units of protein A of Staphylococcus aureus (ProtA) and 

the calmodulin binding peptide (CBP). While the CBP tag allowed for efficient elution under 

close to physiological conditions, ProtA release from the IgG matrix required denaturing 

conditions at relatively low pH levels. This problem was solved by the addition of the specific 

Tobacco (Nicotiana tabacum) Etch Virus (TEV) cleavage site which allowed proteolytic 

release under mild conditions, keeping the eluted complexes intact. Using this method, 

purification steps were optimized to recover high levels of protein while maintaining protein 

complex integrity [200]. However, the TAP approach in plants was not as well established until 

methods were optimised for plants. Most protein complex purifications from plants were, until 

recently, performed using the classical TAP tag, with two IgG-binding units of Prot A, or with 

a plant-adapted version, named the improved TAP tag [201]. Both the classical TAP tag and 

the improved TAP tag have been used to purify protein complexes from A. thaliana [175, 201]. 

Further optimisation of the purification method was necessary to improve the efficacy of this 

approach in plants. The use of the GS tag, which consists of two IgG-binding domains with a 

streptavidin-binding peptide that are separated by two TEV cleavage sites [200], was adapted 

for use in TAP of protein complexes in plants [175]. The GS tag outperformed the classical 

TAP tag in plant cells in both specificity and complex yield [202]. Furthermore this method 

was improved with the replacement of the TEV protease cleavage sites in the GS tag with the 

rhinovirus 3C cleavage site, improving protein complex stability during purification [202]. The 

rhinovirus 3C cleavage site is more specific and low-temperature active [203]. 

In the following experiments, plant cell suspension cultures were used to overexpress tagged 

LEA5 protein because they are fast growing and protein complexes can be rapidly isolated after 

homogenisation [175]. Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension 

cultures (Plant Systems Biology; PSB-L and PSB-D), originally derived from MM1 and MM2d 

cultures [177], were used in these studies. The success of the TAP approach depends on the 

amount of protein complexes purified and the sensitivity of mass spectrometry. We therefore 

used TAP eluates from parallel purifications to overcome this problem. The approaches and 
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strategies used in these studies are summarised in Figure 5-1, which is taken from Van Leene 

et al., (2007) [175]. The tagged protein is recovered from the host by breaking the cells, and 

retrieving it and associated components through affinity selection. Once isolated, the protein 

complex was identified using mass-spectrometry analysis [204]. Comprehensive protein 

sequence repositories were then used to identify purified protein complexes [205]. 

Split-YFP was also used in these studies to validate protein-protein interactions. In split-YFP, 

unfolded complementary fragments of the enhanced yellow fluorescent protein (YFP) are fused 

to two proteins that are postulated to interact, and expressed in live cells. If there is no 

interaction, then there is no florescence. If these proteins interact with one another then the 

fluorescent fragments will be brought within proximity to each other, which allows the YFP 

protein to form into its native three-dimensional structure and, upon excitation, emit a 

fluorescent signal. This assumes that the two fragments can fold properly. One major advantage 

of split-YFP is that, while initially the proteins fused to the YFP fragments may interact 

reversibly, once the YFP fragments associate, the complex is stabilised, facilitating visualision 

of an interaction. However, a major drawback of split-YFP is that the fluorescent protein halves 

may self-assemble independent of a protein interaction event [206]. Split-YFP also has the 

advantage that it can show the intracellular locations where the protein association occurs. 

Furthermore, visualising protein-protein interactions occurs in vivo which has the advantage 

that it is possible to observe interactions dependent on post-translational modification. Split-

YFP is now a well-established procedure, with many groups having used it in plants [207-211].  

The following experiments were performed to identify protein candidates that interact with 

LEA5 through the use of TAP and mass spectrometry, and verify these interactions by using 

split-YFP. 
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Figure 5-1: Strategy followed to clone, express, purify, and identify tagged proteins and their interacting 

partners.  

A: Summary of the technology platform implemented for screening of protein-protein interactions in plant cells. 

B: Overview of the TAP construct cloning strategy.  

For C-terminal TAP fusions, a three-fragment recombination strategy was used. Three entry vectors were 

produced in a BP Clonase reaction that transferred a PCR amplicon (promoter, ORF without stop codon, and TAP 

tag) flanked by the appropriate att sites in to a compatible donor vector (e.g. pDonr221). The three fragments 

are then assembled into the pKCTAP destination vector in a single MultiSite LR Clonase reaction to produce an 

expression clone.  

For N-terminal TAP fusions, a two-fragment recombination strategy was used. The promoter was cloned by BP 

Clonase reaction in pDonrP4P3, and the ORF (plus stop codon) was cloned in to pDonr221. Subsequently the two 

fragments were assembled into the pKNTAP destination vector, which contained the NTAPi tag [176], in a single 

MultiSite LR Clonase reaction to produce an expression clone.  

The pKCTAP vectors contained a kanamycin resistance gene for selection of transformed cells and a GFP 

expression cassette as a visible marker for transformation between the left (LB) and right (RB) T-DNA border 

sequences.  

Figure taken from Van Leene et al., 2007 [175].   
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5.2. Results: TAP 

5.2.1. Constructs for TAP experiments 

A plasmid containing LEA5-YFP was obtained from Dr. Hilary Rogers (Cardiff University, 

UK). LEA5 was subcloned from this plasmid by PCR using primers that amplified from the 

start codon to the stop codon of LEA5. The PCR products were separated by 1.5% agarose gel 

electrophoresis (Figure 5-2 A). The PCR product with the most intense band illustrated in 

Figure 5-2 A was at ~300 bp (LEA5 is 291 nucleotides long). This was extracted from the gel 

and sequenced. The DNA sequence (Figure 5-2 B) of this PCR product and its translated amino 

acid sequence (Figure 5-2 C) was found to be identical to the genome sequence open reading 

frame (ORF) of LEA5. The attB sites were added to the 5’ and 3’ ends of the LEA5 sequences 

by PCR. The primers used in this reaction amplified LEA5 and contained overhangs with the 

attB sites. These PCR products were separated using a 1.5% agarose gel electrophoresis (Figure 

5-3 A). The predicted size for a DNA product comprising LEA5 and the attB DNA sequences 

is 352 bp. The DNA band between 300 bp and 400 bp on the gel (Figure 5-3 A) was excised 

from the gel and the DNA was extracted and sequenced (Figure 5-3 B). The sequence of PCR 

product matched the genomic sequence of LEA5 with the addition of the attB ends in the correct 

orientation (Figure 5-3 B). The DNA sequence of the PCR product was translated in to the 

amino acid sequence (Figure 5-2 C) and found to be identical to the ORF of LEA5.  
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A: Seperation of DNA by electrophoresis 

 

B: DNA sequence alignment of PCR product against ORF 

ORF 1 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  60 

            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 1 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  60 

 

ORF 61 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 61 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  120 

 

ORF 121 GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  180 

          |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 121  GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  180 

 

ORF 181 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  240 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 181 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  240 

 

ORF 241 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAGTGA  294 

          ||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 241 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAG  291 

 

 

C: Amino acid sequence alignment of PCR product against ORF 

ORF 1 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

     |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 1    MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

 

ORF 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

   ||||||||||||||||||||||||||||||||||||| 

PCR 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

 

Figure 5-2: Identification of LEA5 DNA subcloned from plasmid DNA by PCR.  

A: DNA fragments separated by gel electrophoresis. Lane 1 –DNA ladder, Lane 2 – PCR products. B: the sequence 

of that DNA fragment aligned against LEA5 ORF. C: alignment of translated amino acid sequence. 
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A: Separation of DNA by electrophoresis 

 

B: DNA Sequence alignment of PCR product against ORF 

PCR 1  GGGGACAAGTTTGTACAAAAAAGCAGGCTCCACC 34 

ORF   1 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  60 

        |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 35 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  94 

 

ORF 61 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  120 

          |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 95 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  154 

 

ORF 121 GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  180 

        |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 155 GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  214 

 

ORF 181 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  240 

          |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 215 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  274 

 

ORF 241 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAG  291 

             ||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 275 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAG  325 

 

PCR 326 GACCCAGCTTTCTTGTACAAAGTGGTCCCC 356 

 

C: Amino acid sequence alignment of PCR product against ORF 

PCR 1 GTSLYKKAGST  11 

ORF 1 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

PCR 12 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  71 

 

ORF 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

             ||||||||||||||||||||||||||||||||||||| 

PCR 72 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  108 

 

PCR 109 DPAFLYKVVP 118 

 

 

Figure 5-3: Identification of the LEA5+attB DNA fragment. 

A: Separation of DNA products by gel electrophoresis. Lane 1 – DNA ladder, Lane 2 – PCR products. B: The 

sequence of LEA5+attB fragment aligned against LEA5 ORF. C: alignment of translated amino acid sequence. 
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A BP reaction was performed with pDONR201 vector and the LEA5+attB PCR product to swap 

out the DNA cassette containing the ccdB gene in the pDONR201 with the gene of interest. 

The ccdB protein interferes with E. coli DNA gyrase inhibiting growth in most E. coli strains 

thereby facilitating recovery of only the desired clones. One Shot® OmniMAX™ 2 T1 Phage-

Resistant Cells were transformed with the BP reaction by heat-shock of the cells to facilitate 

uptake of the DNA. The transformed cells were incubated in SOC for one hour. Cells were then 

streaked onto a LB plate containing 50 µg/ml kanamycin. The transformation was deemed to 

be successful as colonies were present on the plates after 16 hours. A single colony was selected 

and used to inoculate LB medium containing 50 µg/ml kanamycin. After 16 hours, the cells 

were pelleted and the plasmid was extracted from the cells. The plasmid was quantified using 

a Nanodrop at 140 ng/µl. 1µg of DNA was used in both a single and a double digest. The 

digested DNA was separated by 1% agarose gel electrophoresis (Figure 5-4 A). The single 

enzyme digest (Figure 5-4 A – lane 2) produced a single product between 2000 bp and 3000 bp, 

close to 2800 bp. The double digest (Figure 5-4 A – lane 4) produced two products, one at ~ 

2300 bp and another at ~400 bp. These values are similar to the predicted sizes of the digested 

plasmid. 100 ng of plasmid was sequenced using primers that covered the attL1 region of the 

vector and provided complete coverage of the plasmid insert (LEA5). The sequenced LEA5 

region of the plasmid shared 100% identity with the LEA5 ORF minus the stop codon (Figure 

5-4 B & C). Furthermore, this result was verified by sequencing using LEA5 primers. 

Finally, the LEA5 fragment, contained in the pDONR201 vector, was assembled in to pKCTAP 

destination vector during a single MultiSite LR Clonase reaction to produce an expression 

clone. This procedure was performed at VIB following the strategy outlined by Van Leene et 

al., 2007 [175]. The pKCTAP destination vector contained the improved TAP tag [176] on the 

C terminus of LEA5, a kanamycin resistance gene for selection of transformed cells, and a GFP 

expression cassette as a visible marker for transformation. 

  



 

82 

 

A: Separation of digested DNA by electrophoresis 

 

B: DNA sequence of LEA5 portion of plasmid 

ORF 1 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  60 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 109 ATGGCTCGTTCTATCTCTAACGTTAAGATCGTATCTGCTTTCGTCTCTCGTGAACTCTCC  168 

 

ORF 61 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  120 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 169 AATGCTATCTTCCGACGTGGTTATGCGGCCACGGCGGCGCAAGGGAGCGTTTCGAGCGGT  228 

 

ORF 121 GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  180 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 229 GGAAGAAGTGGAGCTGTTGCTTCGGCTGTGATGAAGAAGAAGGGAGTGGAAGAATCAACC  288 

 

ORF 181 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  240 

             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 289 CAGAAGATTTCTTGGGTTCCAGATCCCAAAACCGGTTATTACAGACCCGAAACCGGTTCC  348 

 

ORF 241 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAG  291 

            ||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 349 AACGAGATTGACGCGGCTGAGCTACGAGCAGCTCTCTTGAACAACAAGCAG  399 

 

 

C: Amino acid sequence of LEA5 portion of plasmid 

ORF 1 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

         |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

SEQ 40 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  99 

 

ORF 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

           ||||||||||||||||||||||||||||||||||||| 

SEQ 100 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  136 

 

Figure 5-4: Analysis of pDONR201 plasmid containing LEA5 DNA.  

A: Separation of digested DNA products by gel electrophoresis. Lane 1 – DNA ladder, Lane 2 – single digest 

reaction products, Lane 3 – DNA ladder, Lane 4 – double digest reaction products. The ladder is Thermo Scientific 

GeneRuler 1 kb Plus DNA Ladder. B: The sequence of the LEA5 insert aligned against LEA5 ORF. C: alignment of 

translated amino acid sequences. 
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5.2.2. The growth of Arabidopsis thaliana cell suspension cultures 

Arabidopsis cell suspension cultures were transformed with the pKCTAP-LEA5 expression 

vector. The cultures were sub-cultured every 7 days. Growth curves for the cultures grown in 

the light or in the dark were the same; the exponential phase occurring between 3 and 7 days, 

after which the cells enter the stationary phase (data not shown). The presence of the tagged 

LEA5 protein was detected in extracts of the cell cultures harvested at the beginning of the 

exponential growth phase by western blotting. The western blot used a peroxidase anti-

peroxidase (PAP) antibody that binds to the ProtG domains of the GS-tag. For these 

experiments, cells were harvested on a sintered glass pore filter with a paper filter disc. The 

tissue was homogenized in extraction buffer. This material was centrifuged, and the supernatant 

fraction was resolved using a western blot. The PAP antibody identified a protein band at 

31.3 kDa (as in Figure 5-5). The LEA5 protein has a molecular weight of 10.3 kDa and the GS 

tag has a molecular weight of 21 kDa. Hence the size of the tagged LEA5 protein is 31.3 kDa. 

5.2.3. The effect of light on LEA5 protein expression 

The cell cultures expressing the tagged LEA5 protein were grown either in the dark or in the 

light with 100 µmol.m-2.s-1 irradiance and a 16 hour photoperiod. In these experiments, samples 

were harvested immediately upon exposure to light (time point 0) or after 1 day or 3 days of 

exposure to the light (Figure 5-5 A). Samples were also harvested from dark grown cultures at 

the same time points (Figure 5-5 B). All samples were harvested on three days after sub-

culturing. Western blot analysis resolved a 31.3 kDa band that was present in both the light and 

dark grown cultures at all time points (Figure 5-5). An 18 kDa band, similar in size to the 

peroxidase product was also present in the western blots of samples harvested from both the 

light and dark grown cultures. This band was particularly prominent in cells harvested after 3 

days of exposure to light. In cultures grown in the light for 1 day, the 18 kDa protein was less 

abundant than those grown in the light for 3 days. Another band, representing a protein with a 

molecular weight of 50 kDa was present on the blots representing cultures grown in the light 

for 3 days (Figure 5-5 A). The 50 kDa protein was absent in cultures grown in the light for 1 

day. Furthermore, when cultures were placed in the light at the onset of the experiment, there 

was no noticeable difference between cultures introduced to the light to cultures kept in the 

dark. 

It should be noted that in contrast to cultures grown only in the dark, the LEA5 expressing 

cultures grown in the light over a 3-week period were no longer viable.  
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5.2.4. The effect of H2O2 on LEA5 protein expression 

The cell cultures were treated with various concentrations of H2O2 for different time periods. 

In the first experiment, concentrations of H2O2 up to 20 mM were added to dark-grown cultures 

or cultures grown in the light for 3 days. Samples were harvested after 1 hour (Figure 5-6). 

Western blot analysis showed that a 31.3 kDa band was present in both the light and dark grown 

cultures at all concentrations of H2O2. However, the intensity of this band was greatly decreased 

in the presence of 20 mM H2O2, relative to cells not treated with H2O2 (Figure 5-6). In contrast, 

the intensity of the 18 kDa band was increased in the presence of 20 mM H2O2, relative to cells 

not treated with H2O2, particularly in the light (Figure 5-6 A). Other bands were also present in 

the light grown cultures at all concentrations of H2O2 (Figure 5-6 A). There was a 50 kDa band 

which had an increased intensity in the presence of 20 mM H2O2, in the cultures grown in the 

light but not in the dark (Figure 5-6 B). Furthermore, a band with a molecular weight slightly 

greater than 31.3 kDa was also apparent in cells treated with H2O2 (Figure 5-6 A).  

In the second series of experiments, cell cultures were treated with 1 mM H2O2 either upon 

exposure to light or after 1 day of exposure to light. Samples were harvested over a period of 1 

hour (Figure 5-7 and Figure 5-8). The pattern of bands observed in the dark-grown cultures or 

exposed to light at the onset of the experiment was similar at all harvest points (Figure 5-7). 

However, when cell cultures were exposed to 1 mM H2O2 having been exposed to light for 1 

day, the presence of the H2O2 and/or light had a marked effect on the proteins observed on the 

western blots (Figure 5-8). The 31.3 kDa band was predominant in both the light and dark 

grown cultures at all the harvest points in the absence or presence of H2O2 (Figure 5-8). 

However, the 31.3 kDa band was more intense in cultures grown in the light compared to dark 

grown cultures, particularly at the later harvest points (Figure 5-8). The intensity of the 18 kDa 

band also increased with the time of incubation in presence of H2O2, and was most intense in 

the light after 60 minutes (Figure 5-8). Moreover, the band with a molecular weight slightly 

greater than 31.3 kDa was observed in the cells treated with 1 mM H2O2, being most prominent 

in the light-grown cells at the later harvest points (Figure 5-8 A).  

  



 

85 

 

 

 

Figure 5-5: Western blot - expression of LEA5 in the light and the dark at different time points. 

Three-day old Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems Biology), 

either grown in the dark or exposed to light at sample collection, for 1 day, or for 3 days. A: Cultures grown in 

the light. B: Culture grown in the dark. LEA5 with the GS tag is 31.5 kDa and indicated on the blots with arrows.  
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Figure 5-6: Western blot - expression of LEA5 in response to H2O2 in the light and the dark. 

Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems Biology), either grown 

in the light for 3 days or in the dark, were treated for 1 hour with 0, 1, or 20 mM H2O2. A: Culture grown in the 

light. B: Culture grown in the dark. LEA5 with the GS tag is 31.5 kDa and indicated on the blots with arrows.  



 

87 

 

 

 

Figure 5-7: Western blot - expression of LEA5 over time in response to treatment with H2O2. 

Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems Biology), grown in the 

dark, were treated for 1 hour with 1 mM H2O2 and either kept in the dark or exposed to light from the onset of 

the treatment. Cultures were harvested over a period of 1 hour. A: Culture kept in the light. B: Culture exposed 

to the dark. LEA5 with the GS tag is 31.5 kDa and indicated on the blots with arrows. 
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Figure 5-8: Western blot - expression of LEA5 over time in response to treatment with 2mM H2O2. 

Three-day-old Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems Biology), 

either grown in the light for one day or in the dark, were treated for 1 hour with 1 mM H2O2. Cultures were 

harvested over a period of 1 hour. A: Culture grown in the light. B: Culture grown in the dark. LEA5 with the GS 

tag is 31.5 kDa and indicated on the blots with arrows. 
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5.2.5. Identification of purified proteins from TAP with LEA5 as bait protein 

The conditions selected for analysis by TAP were based on the western blot data. For these 

experiments, cultures grown in either the dark or the light for 3 days were treated with 1 mM 

H2O2 for 1 hour. The cells were harvested and homogenised, and protein complexes were 

extracted and purified by TAP. Protein complexes were then separated by SDS PAGE (Figure 

5-9) and analysed using mass spectrometry. Identified proteins were first checked against a list 

of proteins known to interact with the GS tag [212]. Proteins that interact with the GS tag were 

excluded from the list presented in Table 8. In total, 27 interacting proteins were identified in 

at least one replication of the experiment (Table 8). It is interesting to note that the LEA5 

interactome largely consists of proteins involved DNA or RNA processing and associated 

transport rather than metabolism (Table 8). Five LEA5-interacting proteins were identified in 

more than one replicate (Table 9). These are encoded by the following genes At1g59990, 

At3g16810, At1g55150, At2g02100, At2g36200. 

A Dead(D/H)-box RNA helicase family protein, RH22 (encoded by At1g59990) interacted with 

LEA5 in cells grown either in the dark or the light (Table 9). Pumilio 24 (encoded by 

At3g16810), also interacted with LEA5 in both conditions (Table 9). Another Dead(D/H)-box 

RNA helicase family protein, RH20 (encoded by At1g55150) interacted with LEA5 in the dark 

but not in the light (Table 9). At2g02100 encodes defensin like protein, PDF2.2, which is 

located in the cell wall and is often used a marker for ethylene and jasmonate dependent 

pathogen defence induction. PDF2.2 interacted with LEA5 in cells grown either in the dark or 

the light (Table 9). At2g36200 encodes a kinesin family protein that is involved in microtubule 

motor activity and translocation. This protein also interacted with LEA5 in cells grown either 

in the dark or the light but only in one instance of each (Table 9). 
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Table 8: Proteins that interact with LEA5 in either the light or dark 

Each experiment was repeated twice in the dark and twice in the light. A tick indicates that an interaction was 

observed. A cross indicates no interaction. 

Protein 
accession 

Protein description Dark 1 Dark 2 Light 1 Light 2 YAP1A 
background 

At1g59990 RH22 | DEA(D/H)-box RNA helicase family protein 22     0 

At3g16810 PUM24 | pumilio 24      0 

At1g55150 RH20 | DEA(D/H)-box RNA helicase family protein 20       0 

At2g02100 PDF2.2 | low-molecular-weight cysteine-rich 69       0 

At2g36200 P-loop containing nucleoside triphosphate hydrolases 
superfamily protein 

      0 

At1g22730 MA3 domain-containing protein   
 

   0 

At1g23280 MAK16 protein-related   
 

   0 

At1g24290 AAA-type ATPase family protein   
 

   0 

At1g26830 CUL3A, ATCUL3A, ATCUL3, CUL3 | cullin 3    
 

  0 

At1g48900 Signal recognition particle, SRP54 subunit protein    
 

  0 

At1g50920 Nucleolar GTP-binding protein    
 

  0 

At1g72440 EDA25, SWA2 | CCAAT-binding factor   
 

   0 

At2g02090 CHR19, CHA19, ETL1 | SNF2 domain-containing protein 
/ helicase domain-containing protein 

  
 

   0 

At2g31660 SAD2 | ARM repeat superfamily protein  
  

  0 

At2g34357 ARM repeat superfamily protein    
 

  0 

At3g06400 CHR11 | chromatin-remodeling protein 11    
 

  0 

At3g08947 ARM repeat superfamily protein   
 

   0 

At3g15590 Tetratricopeptide repeat (TPR)-like superfamily protein   
 

   0 

At3g19820 DWF1, DIM, EVE1, DIM1, CBB1 | cell elongation protein 
/ DWARF1 / DIMINUTO (DIM) 

   
 

  0 

At3g58660 Ribosomal protein L1p/L10e family    
 

  0 

At3g60240 EIF4G, CUM2 | eukaryotic translation initiation factor 
4G 

  
 

   0 

At4g12420 SKU5 | Cupredoxin superfamily protein    
 

  0 

At5g10470 KCA1, KAC1 | kinesin like protein for actin based 
chloroplast movement 1 

  
 

   0 

At5g18620 CHR17 | chromatin remodeling factor17   
 

   0 

At5g45550 Mob1/phocein family protein   
 

   0 

At5g51570 SPFH/Band 7/PHB domain-containing membrane-
associated protein family 

   
 

  0 

At5g64420 DNA polymerase V family        0 
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Table 9: Selected proteins that interact with LEA5 either in the light or dark 

Each experiment was repeated twice in the dark and twice in the light. A tick indicates that an interaction was 

observed. A cross indicates no interaction. 

Protein accession Protein description Dark 1 Dark 2 Light 1 Light 2 

At1g59990 RH22 | DEA(D/H)-box RNA helicase family protein 22     

At3g16810 PUM24 | pumillio24     

At1g55150 RH20 | DEA(D/H)-box RNA helicase family protein 20     

At2g02100 PFD2.2 | low molecular-weight cysteine-rich 69     

At2g36200 P-loop containing nucleoside triphosphate hydrolases superfamily protein     
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Figure 5-9: SDS-PAGE of purified protein complexes.  

Proteins purified by TAP were separated by SDS-PAGE. The MW ladder is SeeBlue Plus2 (Invitrogen). Lane 1: 35S-

LEA5-GSrhino Light replicate 1. Lane 2: 35S-LEA5-GSrhino Light replicate 2. Lane 3: 35S-LEA5-GSrhino Dark 

replicate 1. Lane 4: 35S-LEA5-GSrhino Dark replicate 2. 
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5.3. Results: Split-YFP 

The results of the TAP experiments demonstrated that LEA5 interacted with RH22. Since this 

interaction was observed in all the TAP experiments, this part of the LEA5 interactome was 

investigated in more detail. A split-YFP method was used to attempt to verify this interaction. 

To perform this analysis, constructs for split-YFP analysis were first produced. 

5.3.1. Production of constructs for split-YFP experiments 

Plasmids containing LEA5 fused to either the YFPc or YFPn halves of YFP were produced by 

recombining the pDONR201+LEA5 construct (produced previously for TAP tagging) with 

either the pDH51-GW-YFPc (NASC code: 9843, Accession number: AM773754) or the 

pDH51-GW-YFPn (NASC code: 9842, Accession number: AM773753) plasmid in an LR 

reaction. Plasmids containing RH22 fused to either YFPc or YFPn were produced in a similar 

manner. All plasmids were sequenced and confirmed to contain the genes of interest fused to 

either YFPc or YFPn (Figure 5-10). 

Plasmids containing either amino peptidase P1 (APP1; At4g36760) or amino peptidase P2 

(APP2; At3g05350) fused to GFP were used as transformation controls. As a negative control, 

protoplasts were transfected with two constructs containing the same half of YFP. 

5.3.2. Confirmation of interaction 

Protoplasts were successfully isolated from 3-week-old A. thaliana following the protocol of 

Wu et al., 2009 [181] with minor modifications (described in the Materials and Methods 

chapter). Protoplasts were viewed with a light microscope and a sufficient amount were deemed 

to be intact (Figure 5-11). These were transfected with constructs for the split-YFP experiments 

following the method of Yoo et al., 2007 [182] with minor modifications (described in the 

Materials and Methods chapter). 

Transfected protoplasts were observed with a Zeiss LSM700 laser scanning confocal 

microscope. Chloroplast autofluorescence was excited at 555 nm, and emission was 580 nm, 

the detection was 560-800 nm. Protoplasts transfected with control constructs, APP1, or APP2, 

indicated that transformation was successful. The APP1-GFP control was excited at 488 nm, 

and emission was 509 nm, the detection was 505-530 nm. The signal was detected in the 

cytoplasm (Figure 5-12). The APP2 control was excited at 488 nm, and emission was 509 nm, 

the detection was 505-530 nm. The signal was detected in the chloroplast (Figure 5-13). This 
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signal was similar to chlorophyll autofluorescence. Excitation at 488 nm can simultaneously 

excite enhanced GFP and chloroplast autofluorescence. As a negative control, protoplasts were 

transfected with two constructs, each containing the same half of YFP - LEA5-YFPc and 

RH22-YFPc (Figure 5-14). A relatively low signal was detected in the scan for YFP (Figure 

5-14 A; excitation at 488 nm, and emission was 509 nm, the detection was 505-530 nm) which 

was determined to be background fluorescence. 

To confirm LEA5 interaction with RH22, protoplasts were transfected with LEA5-YFPc and 

RH22-YFPn (Figure 5-15), or LEA5-YFPn and RH22-YFPc (Figure 5-16). If the LEA5 and 

RH22 proteins are able to interact with one another then the fluorescent fragments will be 

brought within proximity to each other, allowing the YFP protein to form into its native three-

dimensional structure and, upon excitation, emit a fluorescent signal. Chloroplast 

autofluorescence was excited at 555 nm, and emission was 580 nm, the detection was 

560-800 nm. YFP fluorescence was excited at 488 nm, and emission was 509 nm, the detection 

was 505-530 nm. A relatively low signal was detected in the scan for YFP (Figure 5-15 A), 

however this was deemed to be cell autofluorescence due to the pattern being similar to the 

negative control (Figure 5-14) and visible in all cells (transformation is unlikely to be 100% 

successful). Therefore, the YFP signal was not detected in protoplasts transformed with 

constructs containing LEA5-YFPc and RH22-YFPn (Figure 5-15). This was also the case for 

protoplasts transformed with constructs containing LEA5-YFPn and RH22-YFPc (Figure 5-16).  
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A: Amino acid sequence of LEA5 portion of plasmids aligned against ORF 

ORF  1 MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

LEA5-YFPc 1    MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

LEA5-YFPn 1    MARSISNVKIVSAFVSRELSNAIFRRGYAATAAQGSVSSGGRSGAVASAVMKKKGVEEST  60 

 

ORF  61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

    ||||||||||||||||||||||||||||||||||||| 

LEA5-YFPc 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

   ||||||||||||||||||||||||||||||||||||| 

LEA5-YFPn 61 QKISWVPDPKTGYYRPETGSNEIDAAELRAALLNNKQ  97 

 

 

B: Amino acid sequence of RH22 portion of plasmids aligned against ORF 

 

ORF  1 MILSRSVSVLHLCGVSSSAPSKLLSQRFKVSFALAYGSSVSFRLSSLNRSDRKWVRGFAS  60 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 1   MILSRSVSVLHLCGVSSSAPSKLLSQRFKVSFALAYGSSVSFRLSSLNRSDRKWVRGFAS  60 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 1    MILSRSVSVLHLCGVSSSAPSKLLSQRFKVSFALAYGSSVSFRLSSLNRSDRKWVRGFAS  60 

 

ORF  61    ATEAEVEKKGNDTFFADHTVSWKSLGLSDNVSIALRDSGFDRPSLTQAVCIPSILSGKDV  120 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc  61    ATEAEVEKKGNDTFFADHTVSWKSLGLSDNVSIALRDSGFDRPSLTQAVCIPSILSGKDV  120 

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn  61    ATEAEVEKKGNDTFFADHTVSWKSLGLSDNVSIALRDSGFDRPSLTQAVCIPSILSGKDV  120 

 

ORF  121 IVAAETGSGKTHGYLAPIIDQLTNTALDSEVTNREERPFPLKNISLILCPNVMLCEQVVR  180 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 121 IVAAETGSGKTHGYLAPIIDQLTNTALDSEVTNREERPFPLKNISLILCPNVMLCEQVVR  180 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 121 IVAAETGSGKTHGYLAPIIDQLTNTALDSEVTNREERPFPLKNISLILCPNVMLCEQVVR  180 

 

ORF  181 MVNGLVDEDGNPLLRVEAVCGSQGWPDRLPDIIVSTPAALLNNIEPKRNRRLEFLRCVKY  240 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 181 MVNGLVDEDGNPLLRVEAVCGSQGWPDRLPDIIVSTPAALLNNIEPKRNRRLEFLRCVKY  240 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 181 MVNGLVDEDGNPLLRVEAVCGSQGWPDRLPDIIVSTPAALLNNIEPKRNRRLEFLRCVKY  240 

 

ORF  241 VVFDEADMLLCGSFQNQIIRLINMLRFDEKQVSRLAKSNLGRPMEIDASVPQIDLENEDD  300 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 241 VVFDEADMLLCGSFQNQIIRLINMLRFDEKQVSRLAKSNLGRPMEIDASVPQIDLENEDD  300 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 241 VVFDEADMLLCGSFQNQIIRLINMLRFDEKQVSRLAKSNLGRPMEIDASVPQIDLENEDD  300 

 

ORF  301 AEFDEGSISEEEDEEEEEEYLDDIAQMPSVEAEAGSDTKKGWRRVRKIYTRSKQYIFIAA  360 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 301 AEFDEGSISEEEDEEEEEEYLDDIAQMPSVEAEAGSDTKKGWRRVRKIYTRSKQYIFIAA  360 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 301 AEFDEGSISEEEDEEEEEEYLDDIAQMPSVEAEAGSDTKKGWRRVRKIYTRSKQYIFIAA  360 

 

ORF  361 TLPVNGKKTAGGILKHMFQDAVWVSGNFLHRNSPRLKQKWVEVTVDSQVDALIEAVKNNN  420 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 361 TLPVNGKKTAGGILKHMFQDAVWVSGNFLHRNSPRLKQKWVEVTVDSQVDALIEAVKNNN  420 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 361 TLPVNGKKTAGGILKHMFQDAVWVSGNFLHRNSPRLKQKWVEVTVDSQVDALIEAVKNNN  420 

 

ORF  421 NTNTERTMVFANTVEAVEAVADILEKASIQCYRYHKNHKLDERANILADFRETGGVFVCT  480 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 421 NTNTERTMVFANTVEAVEAVADILEKASIQCYRYHKNHKLDERANILADFRETGGVFVCT  480 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 421 NTNTERTMVFANTVEAVEAVADILEKASIQCYRYHKNHKLDERANILADFRETGGVFVCT  480 

 

ORF  481 DAAARGVDVPNVSHVIQADFASSAVDFLHRIGRTARAGQYGTVTSLYTEANRDLVEAIRE  540 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 481 DAAARGVDVPNVSHVIQADFASSAVDFLHRIGRTARAGQYGTVTSLYTEANRDLVEAIRE  540 

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 481 DAAARGVDVPNVSHVIQADFASSAVDFLHRIGRTARAGQYGTVTSLYTEANRDLVEAIRE  540 

 

ORF  541 AVKMGQPVETAFSRKRGFRNKVKKRAFLKAEEAEEPQAVRY  581 

||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPc 541 AVKMGQPVETAFSRKRGFRNKVKKRAFLKAEEAEEPQAVRY  581 

||||||||||||||||||||||||||||||||||||||||| 

RH22-YFPn 541 AVKMGQPVETAFSRKRGFRNKVKKRAFLKAEEAEEPQAVRY  581 

 

Figure 5-10: Analysis of pDH51-GW-YFPc and pDH51-GW-YFPn plasmid containing either LEA5 or RH22 DNA. 

A: alignment of translated amino acid sequences of plasmids containing LEA5. B: alignment of translated amino 

acid sequences of plasmids containing RH22.  
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Figure 5-11: Light microscopy images of mesophyll protoplasts.   
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Figure 5-12: Confocal microscopy images of an intact mesophyll protoplast transiently expressing APP1-GFP.  

A: APP1-GFP (Excitation 488 nm, Emission 518 nm, Detection 300-550 nm). B: Chlorophyll autofluorescence 

(Excitation: 555 nm, Emission 580 nm, Detection 560-800 nm). C: Merge of A and B.  
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Figure 5-13: Confocal microscopy images of an intact mesophyll protoplast transiently expressing APP2-GFP. 

A: APP2-GFP (Excitation 488 nm, Emission 518 nm, Detection 300-550 nm). B: Chlorophyll autofluorescence 

(Excitation: 555 nm, Emission 580 nm, Detection 560-800 nm). C: Merge of A and B.  
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Figure 5-14: Confocal microscopy images of mesophyll protoplasts autofluorescence (negative control). 

A: YFP negative (Excitation 488 nm, Emission 518 nm, Detection 300-550 nm). B: Chlorophyll autofluorescence 

(Excitation: 555 nm, Emission 580 nm, Detection 560-800 nm). C: Merge of A and B.  
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Figure 5-15: Confocal microscopy images of an intact mesophyll protoplast transiently expressing LEA5-YFPc 

and RH22-YFPn. 

A: YFP (Excitation 488 nm, Emission 518 nm, Detection 300-550 nm). B: Chlorophyll autofluorescence (Excitation: 

555 nm, Emission 580 nm, Detection 560-800 nm). C: Merge of A and B.  
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Figure 5-16: Confocal microscopy images of an intact mesophyll protoplast transiently expressing LEA5-YFPn 

and RH22-YFPc. 

A: YFP (Excitation 488 nm, Emission 518 nm, Detection 300-550 nm). B: Chlorophyll autofluorescence (Excitation: 

555 nm, Emission 580 nm, Detection 560-800 nm). C: Merge of A and B.  
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5.4. Discussion 

The aim of the experiments reported in this chapter was to identify proteins that interact with 

LEA5. Through the use of an established tandem affinity purification procedure combined with 

mass spectrometry, a substantial list of proteins that interact with LEA5 was revealed. Previous 

studies have shown that LEA5 localises to the mitochondrion [51]. It was therefore predicted 

that many proteins that interact with LEA5 would also localise to the mitochondrion. However, 

no mitochondrial proteins were found to interact with LEA5 which was unexpected. The data 

presented here show that proteins localised to chloroplasts interacted with LEA5 in the TAP 

experiments. This finding is interesting as LEA5 was originally predicted to contain a putative 

chloroplast transit peptide [43, 213]. Of the proteins that interact in the TAP analysis, two are 

RNA helicases. These enzymes catalyse the unwinding and separation of double-stranded DNA 

or RNA during its replication. RH22 was shown to interact with LEA5 in all experiments and 

the functions of this protein therefore merit further consideration. 

RH22 is localised to plastids [214]. The developing seedlings of A. thaliana plants defective in 

RH22 have a pale-green phenotype, however adult leaves were similar to WT plants [214]. 

RH22 expression levels are high in developing seeds and seedlings compared to stems, and 

flowers. Plastid gene expression of the developing seeds and seedlings of rh22 mutants differed 

from the WT [214]. The expression of several genes was decreased in developing rh22 mutant 

seeds. For example, the expression of the gene encoding the β subunit of the 

carboxyltransferase, which is a component of acetyl-CoA carboxylase in the plastids, was 

decreased in rh22 seeds. The β subunit of the carboxyltransferase is essential for acetyl-CoA 

carboxylase function [215-217]. The carboxylation of acetyl-CoA to malonyl-CoA by acetyl-

CoA carboxylase is the first step in fatty acid biosynthesis [218]. Notably, the seeds of rh22 

mutants, which had a decreased expression of the gene encoding the β subunit of the 

carboxyltransferase, had a triacylglycerol content which was 10% lower than that of WT seeds, 

while the protein content was unchanged [214]. RH22 is essential for apposite accumulation of 

plastid mRNAs during seed development and seedling growth, ensuring seed oil biosynthesis 

by maintaining plastid mRNA levels. The strong evidence provided by the TAP analysis 

reported here suggests that RH22 interacts with LEA5 in both the light-grown and the dark-

grown cultures. These findings might suggest that LEA5 interacts with RH22 to regulate plastid 

gene expression, a possibility that can be explored in future work. 
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Other data presented in this chapter suggest that LEA5 might influence cell viability and fate 

via effects on chloroplast function. Proliferating cells expressing LEA5 were viable in the dark, 

but not in the light. As the expression of LEA5 in light-grown cell cultures did not immediately 

lead to loss of the ability of the cultures to proliferate, the LEA5 protein would appear to have 

a progressive or accumulative influence on cell functions. This is an interesting observation as 

this was the first case where expression of a transgene led to the progressive loss of viability of 

the cell cultures. Cultures expressing LEA5 in the light lost chlorophyll and came to resemble 

the dark grown cultures, which might link LEA5 to RH22 in the regulation of plastid gene 

expression, a possibility that again should be explored in detail in future work. 

Confirmation of RH22 interaction with LEA5 was attempted with a split-YFP approach. 

Split-YFP is now a well-established procedure in plants [207-211]. As well as its uses as a 

protein-protein interaction screening assay, split-YFP can also be used to show the intracellular 

locations where the protein association occurs. In the studies reported here, transfection of 

protoplasts with DNA control constructs was successful. APP1 was detected in the cytoplasm 

and APP2 was detected in the chloroplast. However, no signal was detected in the split-YFP 

verification of RH22-LEA5 interaction in the studies reported here. It could be possible that 

LEA5 interaction occurs in times of oxidative stress and so repeating the split-YFP experiments 

in the presence of H2O2 may yield more results. Given the rigour of the TAP tagging analysis, 

it is too soon to conclude that LEA5 does not interact with proteins localised to the chloroplasts, 

such as RH22. Similar experiments should also be performed to confirm other LEA5 protein 

interactions, such as those with PUM24, RH20, and PDF2.2. 

The western blot analysis reported here, provides insights into the expression and stability of 

the tagged LEA5 protein. The tagged LEA5 protein was always detected in the cells, whether 

they were grown in the dark or the light, in the absence or the presence of oxidant. However, 

evidence of degradation of the tagged LEA5 protein was observed in the presence of hydrogen 

peroxide, particularly in cultures grown in the light. Moreover, other bands containing the tag 

were also apparent in blots of proteins extracted from cells incubated with H2O2, particularly in 

the light. These findings would suggest that the presence of light and oxidative stress alters 

features of the tagged protein, that appear to include, turnover, post-translational modification 

and binding properties. This data suggests that the LEA5 interactome is complex and highly 

dependent on environmental conditions, and that its expression has a profound influence on cell 

functions, particularly in the light.  
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Chapter 6. Production and phenotype of transgenic barley expressing 

LEA5 

 

6.1. Introduction 

Earlier studies on transgenic A. thaliana showed that the over-expression of LEA5 resulted in 

plants with a greater biomass [43, 51]. Transferring this technology to a crop species, such as 

barley (Hordeum vulgare L.), could have a major effect in the agriculture industry. Research 

of this kind is of great interest for biotechnology companies [1]. Barley is a major cereal grain 

grown in temperate climates. In a 2007 ranking of cereal crops in the world, barley ranked 

fourth in quantity produced (136 million tons). Transgenic barley plants expressing LEA5 have 

been produced as part of research within the EU CropLife program.  

To produce the transgenic barley, LEA5 fused to YFP was cloned in to the pBRACT214 vector 

using the Gateway® Technology cloning method. The LEA5 gene was expressed with a 35S 

Ubi promoter. The golden promise cultivar - an English semi-dwarf, salt-tolerant variety, 

commonly used to make beer and whiskey - was transformed with the BRACT214_LEA5-YFP 

vector using Agrobacterium mediated transformation of embryos. The axis was removed from 

the barley embryos to stop development of root and shoot apices. Embryos were co-cultivated 

with Agrobacterium cells containing the transformation vector for 3 days in the dark. Embryos 

were then transferred to fresh media containing the antibiotic Timentin, used to kill the 

Agrobacterium; and Hygromycin B, used to select for transformants. Embryos were transferred 

to fresh media every two weeks and developed into callus over the following 4 weeks. Calluses 

were moved to regeneration media to produce shoots. Finally, transformed barley plants were 

confirmed by PCR using primers targeting the Hygromycin B resistance gene, and grown to 

seed in a glasshouse. 

The aim of the studies described in this chapter was to produce homozygous transgenic barley 

plants expressing LEA5 and to characterise the phenotype of these plants. In this chapter the 

effects of LEA5 expression on barley shoot growth were determined in the absence of stress.  
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6.2. Results  

6.2.1. The selection of transgenic barley plants 

To select for homozygous plants, WT, and T2 transgenic barley seeds that were either Empty 

Vector (EV) control, β-glucuronidase (GUS) control, or expressing LEA5 were surface 

sterilised and sown on ½ MS media containing 100 mg/ml Hygromycin B to select for 

transgenic plants. The naming policy for the selection of transgenic plants is shown in Figure 

6-1. Ten lines were sown for selection, which were previously shown to be following simple 

Mendelian inheritance with 75% of the plants having inherited resistance to Hygromycin B. 

The other 25% were sensitive to the antibiotic and did not grow. Deviations from this ratio can 

indicate multiple insertions of the gene. Sown seeds were kept at 4°C for 3 days to stratify them 

and then moved into the light at 20°C for 8 hours to stimulate germination before moving them 

back in to the dark at 20°C for 4 days. Transformants were identified as Hygromycin B resistant 

plants which were standing tall like normal dark grown plants with long stems and leaves. 

Hygromycin B sensitive plants were slightly bleached with short leaves (Figure 6-2 A). The 

plates were kept in weak light for 2 days before to allow the Hygromycin B resistant plants to 

become green without stressing the plants. Hygromycin B resistant plants were then grown in 

standard conditions for 1 week and numbers of resistant and sensitive plants were counted. As 

expected, no WT plans were resistant to Hygromycin B (Figure 6-2 A; Table 10). All of the 

EV and GUS control plants were resistant to Hygromycin B. Furthermore, all of plants from 

the transgenic LEA5-YFP lines, 4.1, 10.1, and 11.2, were resistant to Hygromycin B (Figure 

6-2 B; Table 10). Plants were selected for homozygosity. DNA was extracted from these plants 

and a PCR reaction was performed using primers targeting the Hygromycin B resistance gene. 

The gene was confirmed to be present in the EV214 and GUS controls and LEA5-YFP lines, 

4.1, 10.1, and 11.2 (Figure 6-3). Seeds from all lines were sown on to soil and grown until 

maturity at the James Hutton Institute, Dundee, for seed production. The phenotypes of these 

plants were analysed (data not shown). T3 seeds were harvested from these plants.  

Subsequently, seeds of WT, EV, GUS, and three T3 lines expressing LEA5-YFP were sown on 

to ½ MS media containing 50 mg/ml Hygromycin B to select for transgenic plants. No WT 

plants were resistant to Hygromycin B. All of the EV and GUS control plants, and all of the 

plants from transgenic lines, 4.1.2, 10.1.1, and 11.2.2, were resistant to Hygromycin B (Table 

11). DNA was extracted from these plants and a PCR reaction using primers targeting the 

LEA5-YFP sequence (Table 1) was performed to confirm the gene was present (Figure 6-4).   



 

106 

 

 

 

Figure 6-1: The naming policy for the selection of transgenic barley plants from callus. 

Seeds are shown in circles and plants are shown in squares. 
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Figure 6-2: Segregation analysis. 

A: WT barley plants with inhibited growth in the presence of Hygromycin B.  

B: Transgenic barley plants that express LEA5-YFP (line 11.2.2) and have a Hygromycin B resistance gene 

presenting uninhibited growth in the presence of this antibiotic. The scale bar represents 5 cm.  
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Table 10: Segregation analysis of T2 plants 

Genotype No germination Sensitive Resistant % resistant % germinated 

WT 4 16 0 0.0 80.0 

EV214 13.1 0 0 20 100.0 100.0 

pBGUS 13.1 1 0 19 100.0 95.0 

LEA5-YFP line 4.1 0 1 19 95.0 100.0 

LEA5-YFP line 8.1 0 6 14 70.0 100.0 

LEA5-YFP line 9.1 1 6 13 68.4 95.0 

LEA5-YFP line 10.1 1 0 19 100.0 95.0 

LEA5-YFP line 11.2 1 0 19 100.0 95.0 

LEA5-YFP line 17.1 1 4 15 78.9 95.0 

LEA5-YFP line 17.2 0 4 16 80.0 100.0 

LEA5-YFP line 20.1 4 3 13 81.3 80.0 

LEA5-YFP line 33.1 0 6 14 70.0 100.0 

 

 

Table 11: Segregation analysis of T3 plants 

Genotype No germination Sensitive Resistant % resistant % germinated 

WT 1 19 0 0.0 95.0 

EV214 13.1.1 0 0 20 100.0 100.0 

pBGUS 13.1.1 11 0 9 100.0 45.0 

LEA5-YFP line 4.1.2 17 0 3 100.0 15.0 

LEA5-YFP line 10.1.1 7 0 13 100.0 65.0 

LEA5-YFP line 11.2.2 8 0 12 100.0 60.0 

 

  



 

109 

 

 

Figure 6-3: PCR genotyping of T2 transgenic barley plants. 

DNA was extracted from the leaves of WT, EV and GUS control plants as well as 9 independently transformed T2 

barley lines. A PCR using primers that amplify the Hygromycin B resistance gene was used to identify transgenic 

Barley. The ladder is Thermo Scientific GeneRuler 1 kb Plus DNA Ladder. Lane 1: WT, lane 2: EV214, lane 3: GUS, 

lane 4: LEA5-YFP line 4.1, lane 5: LEA5-YFP line 8.1, lane 6: LEA5-YFP line 9.1, lane 7: LEA5-YFP line 10.1,  

lane 8: LEA5-YFP line 11.2, lane 9: LEA5-YFP line 17.1, lane 10: LEA5-YFP line 17.2, lane 11: LEA5-YFP line 20.1, 

lane 12: LEA5-YFP line 33.1. 
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Figure 6-4: PCR genotyping of T3 transgenic barley plants. 

DNA was extracted from the leaves of WT and EV control plants as well as 3 independently transformed T3 barley 

lines expressing LEA5. A PCR using primers that amplify the LEA5-YFP was used to identify transgenic Barley. The 

ladder is Thermo Scientific GeneRuler 1 kb Plus DNA Ladder. Lane 1: WT, lane 2: EV214, lanes 3-12: LEA5-YFP 

line 4.1.2, lane 13: Non-template control, lane 14: positive control. Lane 15: WT, lane 16: EV214, lanes 17-26: 

LEA5-YFP line 10.1.1, lane 27: Non-template control, lane 28: positive control. Lane 29: WT, lane 30: EV214, lanes 

31-40: LEA5-YFP line 11.2.2, lane 41: Non-template control, lane 42: positive control. 
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6.2.2. Shoot phenotypes 

In the following study, the shoot growth of transgenic barley that expressed LEA5-YFP was 

compared to WT plants to characterise the effects of LEA5 expression in barley. In addition, 

EV, and GUS control plants were also compared to WT plants. Measurements were taken each 

week for 8 weeks and then again on week 25. Representative shoot phenotypes of the different 

lines at week 8 are shown in Figure 6-5 A. Although the shoot phenotypes are visually similar 

in all lines, analysis revealed that after 8 weeks, LEA5-YFP line 11.2.2 had 96 leaves which 

was significantly more than WT plants which had 81 leaves (P<0.05; Figure 5 B).  

The plants were grown to produce seed and then dried in the controlled environment. Further 

measurements were taken on the 25th week; a few weeks after the plants had begun to turn 

brown. All lines were visually similar at week 25 (Figure 6-6 A). The dry shoot weight (without 

tillers) of LEA5-YFP expressing line 11.2.2 was significantly greater than WT plants (P=0.02; 

Figure 6-6 B). However, there were no significant differences in total dry shoot weights 

(including tillers) between any of the LEA5-YFP expressing lines and WT plants (Figure 6-6 

C).  

LEA5-YFP line 4.1.2 produced an average of 32 tillers (Figure 6-6 D). This was significantly 

more tillers than WT plants which produced an average of 21 (P=0.025; Figure 6-6 D). 

However, whilst not significant, the average weight of tillers produced by LEA5-YFP line 4.1.2 

was 0.5 g which is noticeably less than WT plants which produced tillers with an average 

weight of 0.8 g (Figure 6-6 E). There was no significant difference in the number of tillers or 

the average tiller weight between WT plants and either LEA5-YFP line 10.1.1 or 11.2.2 (Figure 

6-6 D & E).  

At no point during the experiment was there a significant difference in the QY between any of 

the lines (data not shown).   
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Figure 6-5: The effects of LEA5 expression on the phenotype of barley plants.  

Plants were grown under 400 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C. A: Representative 

phenotypes of WT and LEA5-YFP expressing plants. Scale bar represents 5cm. B: The number of leaves of control 

and LEA5 expressing barley plants. Error bars represent mean +/- standard error. The asterisks indicate 

significant differences (* P<0.05; ANOVA). N=10. 
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Figure 6-6: The effects of LEA5 expression on the phenotype of barley plants. 

Plants were grown under 400 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C. A: Representative 

phenotypes of WT and LEA5-YFP expressing plants. Scale bar represents 5cm. B: Dry weight (g) of shoot material 

without tillers. C: Total dry weight (g) of shoot material. D: Number of tillers. E: Average tiller weight (g). Error 

bars represent mean +/- standard error. The asterisks indicate significant differences (* P<0.05; ANOVA). N=10.  
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6.3. Discussion 

The data described in this chapter demonstrate that transgenic homozygous lines transformed 

with LEA5-YFP can result in an altered shoot phenotype compared to WT barley plants. This 

was shown in two lines (4.1.2 and 11.2.2). This finding provides insight into the role of LEA5 

in plant growth.  

Previous studies using transgenic A. thaliana found that the over-expression of LEA5 resulted 

in plants with a greater biomass [43, 51]. The data presented here reflect results published by 

Mowla et al., 2006 [43] and Mohd Salleh et al., 2012 [51], albeit more subtly. Homozygous 

transgenic barley plants transformed with LEA5-YFP had significantly more biomass than WT 

plants in line 11.2.2. Furthermore, presence of the LEA5-YFP transgene resulted in LEA5-YFP 

line 11.2.2 resulted in those plants having significantly more leaves after 8 weeks than WT 

plants. Notably, the presence of the LEA5-YFP transgene in line 4.1.2 resulted in the production 

of significantly more tillers, however these tillers weighed less than those of WT plants. These 

findings support the view held previously that LEA5 affects the growth of plants [43, 51].  

The production of homozygous transgenic barley plants is a considerable feat. The analysis of 

barley plants transformed with LEA5-YFP under a range of biotic and abiotic stresses will allow 

the exploration of bestowed stress tolerance by LEA5. LEA proteins have been frequently been 

associated with providing protective functions [3, 4]. Some, for example, provide protections 

in dehydrated tissues, where they are thought to act as chaperones, protecting other proteins 

from aggregation or desiccation [13]. A reasonable starting point for further study of LEA5 

would be to investigate tolerance of these plants to H2O2 it has been shown to be upregulated 

by oxidants and provide tolerance to H2O2 [43]. Earlier studies also reported that LEA5 is 

localised to the mitochondrial matrix [44, 51]. The inclusion of YFP, fused to LEA5, in these 

transgenic plants will allow confocal microscopy experiments to determine the cellular 

localisation of LEA5 in barley. Moreover, LEA5 was found to be involved in the control of 

root architecture [43, 51], and so the analysis of the effects of LEA5 on barley roots could also 

provide further insights. Transferring results such as increased biomass, stress tolerance, and 

altered root structures into a crop species such as barley could have a major effect in the 

agriculture industry and be of substantial interest for biotechnology companies [1].  

In the next chapter, the phenotype of A. thaliana erf109 mutants is characterised in the absence 

and presence of different abiotic stresses to gain greater insights into the role of ERF109 in 

plant development and in responses to abiotic stresses. 
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Chapter 7. Characterisation of phenotype of Arabidopsis thaliana erf109 

mutant plants  

 

7.1. Introduction 

Key processes in growth and development are regulated by the redox environment of the cell 

[148, 149]. ERF109 (At4g43310), which is also known as Redox Responsive Transcription 

Factor 1, is part of a regulatory network that has a major role in the adjustment of A. thaliana 

leaves to reach homeostasis after high-light stress [156]. Transcripts of ERF109 accumulate in 

leaves that are directly exposed to high-light, the extent to which depends on the intensity of 

light that the leaves are exposed to [157]. Furthermore, systemic signalling from leaves exposed 

directly to high-light results in the accumulation of ERF109 transcripts in leaves that have not 

experienced high-light [158]. Exposure of leaves to high-light results in the production of 

singlet oxygen (1O2) due to energy transfer reactions from the excited triplet state of chlorophyll 

molecules or their precursors to molecular oxygen [159, 160]. ERF109 expression is induced 

by singlet oxygen [161]. Moreover, singlet oxygen-dependent activation of JA and oxylipin 

signalling pathways may also be important in the activation of ERF109 expression in systemic 

leaves [161]. The application of paraquat and inhibition of antioxidant enzymes by 

aminotriazole have also been found to induce ERF109 expression [219].  

Much of the current understanding of the functions of ERF109 comes from the analysis of 

A. thaliana erf109 mutants. These mutants have a markedly different phenotype when grown 

under high-light for two weeks as the leaves of WT plants appear visibly darker than those of 

erf109 mutants [157]. Under these conditions, the total chlorophyll, chlorophyll a/b ratios, and 

the ratios of carotenoid pigments to chlorophyll were similar in both genotypes [157]. 

Therefore, the visible difference in leaf colour was presumably because protective pigments 

such as anthocyanins accumulated in the WT but not in the erf109 mutant leaves. A 

transcriptome analysis of the leaves of erf109 mutant plants suggested an association between 

ERF109 and PAP1 (At1g56650) [156], a transcription factor involved in the regulation of 

anthocyanin biosynthesis. Furthermore, the increased photosensitivity observed in erf109 
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mutants could result from changes in secondary metabolism indicated by the microarray 

analysis [156]. The lack of functional ERF109 restricted ROS accumulation in response to 

stress in mutant plants and conversely overexpression of ERF109 resulted in an accumulation 

of ROS [162]. ERF109 is therefore considered to propagate ROS accumulation in response to 

ROS-producing abiotic and biotic stress signals. 

Transgenic plants overexpressing ERF109 were impaired in root and shoot development [155, 

162], and showed increased light sensitivity [162]. ERF109 is expressed in low levels in roots 

[155] but transcripts are upregulated in response to JA [164]. ERF109 was shown to mediate 

cross-talk between JA signalling and auxin biosynthesis in the regulation of lateral root 

formation in A. thaliana [155]. ERF109 binds to the GCC-boxes in the promoters ASA1 and 

YUC2 [155] - two key enzymes in auxin biosynthesis [220-222]. The biosynthesis of auxin, 

transport of auxin and auxin dependent signalling processes all influence lateral root formation 

[223-227]. It is plausible that ERF109 may function alongside a range of other hormones, e.g. 

auxin, to modulate plant stress responses. Indole-3-acetic acid (IAA) is the most abundant form 

of auxin natively occurring and functioning in plants [228]. IAA levels were elevated in the 

roots of ERF109 overexpression lines relative to WT A. thaliana plants [155]. Conversely, IAA 

levels were reduced in erf109 mutants. The response of most auxin/IAA genes to IAA is tissue 

specific and dose dependent [229]. An elevated auxin level within Arabidopsis roots increases 

the levels of auxin response factors (ARF) leading to the degradation of IAA and other auxins 

[230, 231]. The ARFs promote lateral root formation by activating plant-specific transcriptional 

regulators such as LATERAL ORGAN BOUNDARIES-DOMAIN 16 (At2g42430) [232]. In 

contrast to the increased levels of auxins in root tissues, the relative expression levels of IAA14 

and IAA19 were lower in the shoot tissues of ERF109 overexpression lines, however there was 

no difference between erf109 mutants and WT plants [155]. One explanation for this is that the 

steady-state mRNA accumulation of auxin/IAA inducible genes may have been inhibited by 

the constitutively elevated IAA levels in ERF109 overexpressors, which could have resulted in 

a different response to what is usually observed from short-term exogenous IAA treatments.  

While excellent research into the role of ERF109 has been performed, its role in the regulation 

of root and shoot growth has not been fully characterised. The aim of the studies described in 

this chapter was to characterise the phenotype of erf109 mutants in the absence and presence 

of different abiotic stresses to gain greater insights into the role of ERF109 in plant development 

and in responses to abiotic stresses.   
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7.2. Results - Shoot phenotype 

7.2.1. Rosette growth in the absence of stress 

An in vitro phenotyping approach was undertaken to assess the rosette growth of erf109 

mutants. In the absence of stress the WT and erf109 mutant plants had visibly similar rosettes 

(Figure 7-1 A). However, digital analysis revealed that the erf109 mutants had a significantly 

increased rosette area compared to WT controls after 2 weeks of growth, with WT plants having 

a mean rosette area of 32.5 mm2 while erf109 mutant plants had a mean rosette area of 34.5 mm2 

(Figure 7-1 B; P=0.012). Three-week-old WT plants had an average rosette area of 73.8 mm2 

while the mean rosette area of erf109 mutants was significantly larger at 79.3 mm2 (Figure 7-1 

B & C; P=0.003). 

7.2.2. Rosette growth in the presence of stress 

Rosette growth in the presence of drought, salt and osmotic stress 

The same phenotyping approach was used to determine the stress tolerance of erf109 mutants, 

as reflected by rosette area. In these experiments, control plates (i.e. the absence of stress) 

contained ½ MS media alone. Stress conditions were achieved by the inclusion of either sodium 

chloride (75 mM; salt), mannitol (50 mM; drought), or sorbitol (100 mM; osmotic stress) in the 

media. A total of 360 plants per genotype were sown in each condition for these experiments - 

a total of 2880 plants. In all cases, at least 98% of seeds sown germinated.  

The rosette area of both the WT and erf109 mutant plants were visibly smaller when grown in 

the stress conditions than in the control condition (Figure 7-1 A). After 3 weeks growth in the 

presence of mannitol, WT plants had a mean rosette area of 35.2 mm2 while erf109 plants had 

a mean rosette area of 36.9 cm2 (Figure 7-1 C). Similarly, after 3 weeks growth in the presence 

of salt, the mean rosette area of WT plants was 27 mm2 while erf109 was 26.2 mm2 (Figure 7-1 

C). However, when grown on media containing sorbitol, the average rosette area of erf109 

plants was 54% of the size of those grown in the absence of stress at 43mm2. This was 

significantly larger than WT plants which had an average rosette area 51% of the size of control 

plants at 37.4 mm2 (Figure 7-1 C; P=0.002).  
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Figure 7-1: The effects of abiotic stress treatments (mannitol, salt, and sorbitol) on the rosette area of wild-

type (WT) A. thaliana and erf109 mutants in comparison to plants grown in the absence of stress (control). 

Plants were grown under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C for 21 days, either 

in the absence of stress (control) or presence of abiotic stress caused by inclusion of 50 mM mannitol, 75 mM 

salt (NaCl) or 100 mM sorbitol to the growth media. A: Phenotypes of WT and erf109 plants. Scale bar represents 

10 mm. B: Rosette area (mm2) with time for WT and erf109 plants in the absence of stress. C: Rosette area (mm2) 

of WT and erf109 plants at the end of the experiment (day 21). Error bars represent means +/- standard errors. 

The asterisks indicate significant differences to WT (* P<0.05, ** P<0.01, *** P<0.001; ANOVA). N=360. 
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Rosette growth of plants grown on soil in the absence and presence of drought stress 

One week old seedlings, germinated on ½ MS media, were grown on soil for 9 weeks. Drought 

stress was imposed at 5 weeks by withholding water for two weeks to determine the stress 

tolerance of erf109 mutants. 

The rosette area, number of leaves, and the biomass were similar between the WT and erf109 

mutant plants that were grown in the absence of stress (control). Eight-week-old WT plants had 

a mean rosette area of 78.6 cm2 (Figure 7-2 A), an average of 33.8 leaves (Figure 7-2 B), and 

mean a dry-weight of 447 mg (Figure 7-2 C), while erf109 mutants had a mean rosette area of 

85.9 cm2 (Figure 7-2 A), an average 37.3 leaves (Figure 7-2 B), and a mean dry-weight of 

631mg (Figure 7-2 C).  

Plants exposed to drought were significantly smaller in terms of rosette area, and biomass (dry-

weight) than water replete controls: 8-week-old drought-stressed WT plants had a mean rosette 

area that was just 64% (50.6 cm2) of the water-replete controls (Figure 7-2 A), with a lower 

average dry-weight of 219 mg (Figure 7-2 C). However, there was no significant difference in 

the number of leaves between drought-stressed and water-replete WT plants (Figure 7-2 B). 

The effects of the drought treatment on the rosette growth of the erf109 mutants was similar to 

WT plants, except that the erf109 mutants also had significantly fewer leaves than their water-

replete counterparts. After two weeks exposed to drought, 8-week-old erf109 mutants had a 

significantly smaller rosette area (57.1 mm2; Figure 7-2 A), had fewer leaves (34.5 leaves; 

Figure 7-2 B), and weighed significantly less with a dry-weight of 226mg (Figure 7-2 C) than 

water-replete erf109 mutants. However, there were no significant differences in the total rosette 

area, number of leaves or dry-weight between drought-stressed WT and erf109 plants.  

The light response curves for photosynthetic CO2 assimilation were measured in the leaves of 

4-week-old WT and erf109 plants. In these experiments, 2-week-old plants were deprived of 

water for 14 days, and the light response curves were measured. In the absence of stress, the 

leaves of WT and erf109 plants had similar light response curves (Figure 7-3 A). The drought 

treatment led to a decrease in soil water content of ~55% (Figure 7-3 B). This level of drought 

imposed at the seeding stage had a severe impact on photosynthesis. Photosynthetic CO2 

assimilation did not increase above the compensation point at any of the light levels used in 

either the WT or erf109 mutant plants when drought-stressed (Figure 7-3 A)  
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Figure 7-2: The effects of drought on the growth of wild-type (WT) A. thaliana and erf109 mutant plants. 

Plants were grown under 100 µmol.m-2.s-1 irradiance with an 8 hour photoperiod, at 22°C ± 2°C. Water was 

withheld from plants in the drought treatment from week 5 and resumed at week 7. A: Total rosette area (cm2), 

B: number of leaves, and, C: dry weight (g). Error bars represent means +/- standard errors. The asterisks indicate 

significant differences to WT plants (** P<0.01; ANOVA). N=20. 
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Figure 7-3: Photosynthetic CO2 assimilation of 4-week-old wild-type (WT) A. thaliana and erf109 mutant 

plants in optimal and restricted watering regimes. 

A: Photosynthetic CO2 assimilation, measured using a LI-COR LI-6400XT Portable Photosynthesis System.  

B: Soil water content. Error bars represent means +/- standard errors.  
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Rosette growth under high-light 

The effects of high-light on rosette growth were also determined using the in vitro phenotyping 

approach. In these experiments, WT and erf109 mutants were grown in standard conditions for 

11 days, after which half were grown for a 10 days under high-light (600 μmol.m-2.s-1) while 

the rest remained in control conditions (100 μmol.m-2.s-1). A total of 960 plants were sown, 

with a germination rate of 98.8%. 948 plants were measured (480 WT and 468 erf109 mutants).  

Plants grown under high-light were visibly smaller than those grown in the control light 

condition (Figure 7-4 A). The WT plants had significantly smaller rosette areas when grown 

under high-light than those grown under control light conditions (Figure 7-4 B; P<0.05). Under 

control light conditions, the WT plants had a mean rosette area of 102mm2 after 21 days. The 

mean rosette area of WT plants grown under high-light were 88 mm2, 14.3% the size of those 

grown in control conditions after 21 days. The mean rosette area of erf109 mutants grown under 

high-light was 82 mm2, significantly smaller than the rosettes of WT plants grown in the same 

conditions (Figure 7-4 B; P<0.01).  

Rosette growth in the presence of oxidants 

The in vitro phenotyping approach was also used to determine the tolerance of erf109 mutants 

to oxidative stress, as reflected by the rosette area. In these experiments, control plates 

contained ½ MS media alone. Stress conditions were achieved by the inclusion of either 0.1 μM 

paraquat (Figure 7-5), or 0.1 mM menadione (Figure 7-6) to the media. A total of 2160 plants 

were sown. The germination rate of both genotypes on control media and on media containing 

paraquat was >98%. However, on menadione the germination rate of WT plants was 92% and 

erf109 mutants was even lower at 52%.  

In the absence of stress, the erf109 mutants had a significantly larger rosette area than WT 

plants at the end of the experiment (Figure 7-5 B, & C; P<0.001). The presence of paraquat 

resulted less rosette growth in both genotypes. However, at the end of the experiment, the erf109 

mutants had a mean rosette area of 34.9 mm2; significantly larger than WT plants that had a 

mean rosette area of 28.7 mm2 (Figure 7-5; P<0.001). Like paraquat, menadione caused a 

significant decrease in the rosette area of both genotypes (P<0.001; Figure 7-6). However, in 

the presence of menadione 21-day-old erf109 mutants had a significantly smaller mean rosette 

area than WT plants (P<0.001; Figure 7-6). After 3 weeks, the erf109 mutants had a mean 

rosette area of 19.4 mm2 while WT plants were 45.4 mm2 (Figure 7-6 B & C; P<0.001).   
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Figure 7-4: The rosette area of wild-type (WT) and erf109 mutant plants grown under standard (control) light 

conditions for 11 days and then either under standard light conditions or high-light for 10 days. 

Plants were grown for 11 days under 100 µmol.m-2.s-1 irradiance with a 16 hour photoperiod, at which point half 

were grown under high-light (600 µmol.m-2.s-1) for the remaining 10 days. All plants were grown for 21 days at 

22°C ± 2°C. Rosette areas were measured at 7, 8, 9, 10, 11, 14, 16, 18 and 21 days either in the standard (control) 

or high-light conditions. A: The phenotype of the WT and erf109 mutant plants at 21 days. Scale bar represents 

10 mm. B: Rosette areas (mm2). Error bars represent means +/- standard errors. The asterisks indicate significant 

differences to WT plants (** P<0.01; ANOVA). N=240. 
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Figure 7-5: The effects of paraquat on rosette area on wild-type (WT) A. thaliana and erf109 mutant plants. 

Plants were grown under 150 µmol.m-2.s-1 irradiance with a 16 hour photoperiod at 22°C ± 2°C for 21 days, either 

in the absence (control) or presence of 0.1 µM paraquat. A: Phenotypes of WT and erf109 plants. Scale bar 

represents 10 mm. B: Rosette area (mm2) for WT (circles) and erf109 mutant (triangles) plants grown in the 

control condition (shaded shapes) or with the addition of paraquat (non-shaded). C: Rosette areas (mm2) of WT 

(light bars) and erf109 mutant (dark bars) plants on day 21 in the conditions described. Error bars represent 

means +/- standard errors. The asterisks indicate significant differences to WT plants (* P<0.05, *** P<0.001; 

ANOVA). N=360. 
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Figure 7-6: The effects of menadione on the rosette area of wild-type (WT) A. thaliana and erf109 mutants. 

Plants were grown under 150 µmol.m-2.s-1 irradiance at 22°C ± 2°C. Rosette areas were measured at 11, 14, 16, 

18 and 21 days either in the absence (control) or presence of 0.1 mM menadione. A: Phenotypes of WT and 

erf109 plants. B: Rosette area (mm2) for WT (squares) and erf109 (circles) plants in the control condition (shaded 

shapes) and with the addition of menadione (non-shaded). C: Rosette area (mm2) of WT (white bars) and erf109 

(grey bars) plants on day 21 in the conditions described. Error bars represent means +/- standard errors. The 

asterisks indicate significant differences to WT plants (*** P<0.001; ANOVA). N=360. 
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7.2.3. Anthocyanin content of leaves 

To investigate the role of ERF109 in the production of anthocyanins, plants were germinated 

on ½ MS and then grown on soil until they were 3-weeks-old under 100 µmol.m-2.s-1 irradiance 

(control). After three-weeks, half of the plants were transferred to a high-light environment 

(800 µmol.m-2.s-1) while the other half remained in the control condition. Plants were grown 

for a further 7 days, after which the leaves were harvested and analysed for anthocyanin 

contents.  

In the control light conditions, the anthocyanin content of leaves was similar between both 

genotypes; WT plants accumulated 16 µg anthocyanin/g FW, while erf109 mutants 

accumulated 19 µg anthocyanin/g FW. Growth for 7 days under high-light significantly 

increased the level of anthocyanins in WT plants (Figure 7-7: P<0.001) but not erf109 mutants 

when comparing to controls. Furthermore, the erf109 mutant leaves accumulated significantly 

less anthocyanin than WT plants in the high-light conditions (Figure 7-7; P<0.001). WT plants 

produced an average 124 µg anthocyanin/g FW while erf109 mutants produced 31 µg 

anthocyanin/g FW.  

  



 

127 

 

 

Figure 7-7: Anthocyanin concentration (µg/g FW) in 4-week-old wild-type (WT) A. thaliana and erf109 

mutant plants grown on soil under standard (control) light conditions for 3 weeks and then either under 

standard light conditions or high-light for 1 week. 

Plants were grown for 3 weeks under standard (control) light irradiance (100 µmol.m-2.s-1) with a 16 hour 

photoperiod, then either under standard light conditions or high-light (600 µmol.m-2.s-1) for 1 week. All plants 

were grown at 22°C ± 2°C. Error bars represent means +/- standard errors. The asterisks indicate significant 

differences to WT plants (*** P<0.001; ANOVA). N=9.  
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7.3. Results - Root phenotype 

In these experiments, seeds of WT and erf109 mutant plants were sown on to either ATS or 

½ MS media within vertical plates. The roots grew along the surface of the media for 7 days, at 

which point the lengths of primary root were measured, the number of lateral roots were counted 

and lateral root densities were calculated (Figure 7-8). 

The erf109 mutants grown on ATS media for 7 days had significantly shorter primary roots 

than WT plants (Figure 7-8 A & B; P=0.046). The erf109 mutant plants had a mean primary 

root length of 56.3 mm while the WT plants had a mean primary root length of 59.9 mm (Figure 

7-8 B; P=0.046). However, there were no significant differences in the number of lateral roots 

(Figure 7-8 C) or the lateral root densities (Figure 7-8 D) between WT and erf109 mutant plants. 

Root phenotypes were also determined for plants grown on ½ MS media. In these experiments 

root architecture was determined for a total of 108 plants. There was no difference between WT 

and erf109 mutant plants in the primary root length (Figure 7-9 A & B), the number of lateral 

roots (Figure 7-9 C), or the lateral root density (Figure 7-9 D) when grown on ½ MS media for 

10 days.  
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Figure 7-8: The root architecture of 7-day-old wild-type (WT) A. thaliana and erf109 mutant plants.  

A: The phenotype of 7-day-old WT and erf109 mutant plants. Scale bar represents 10 mm. B: The primary root 

length (mm) of WT and erf109 mutant plants. C: The number of lateral roots of WT and erf109 mutant plants. D: 

The lateral root density (the number of lateral roots per mm primary root) of WT and erf109 mutant plants. Error 

bars represent means +/- standard errors. The asterisks indicate significant differences (* P<0.05; T-Test). N>30.   
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Figure 7-9: The root architecture in 10-day old wild-type (WT) and erf109 mutant plants grown on ½ MS. 

A: The phenotype of 10-day-old WT and erf109 mutant plants. Scale bar represents 10 mm. B: Primary root 

length (mm). C: The number of lateral roots. D: The lateral root density (number of lateral roots per mm primary 

root). Error bars represent means +/- standard errors. N>30.   
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7.4. Discussion 

The studies reported here suggest that ERF109 has a role in the control of shoot growth in the 

absence of stress. Although the difference in rosette area between WT and erf109 mutant plants 

was small (less than 10%), the erf109 mutants tended to have a larger rosette area than the WT 

plants at the later stages of vegetative growth. It was previously shown that overexpression of 

ERF109 led to altered leaf morphology, producing leaves that were longer, narrower and curled, 

similar to auxin overproduction phenotypes [155, 162]. Indeed plants which overexpress 

ERF109 had significantly higher auxin levels in the shoot tissues than the WT plants [155]. 

Conversely, the levels of auxin were reduced in the shoots of erf109 mutants [155]. The 

increased rosette area of the erf109 mutants observed here could result from lower auxin levels. 

However, the leaf phenotype of the erf109 mutants was similar to that of WT plants.  

Previous studies have shown that by binding to GCC boxes in the promoters of target genes, 

such as DREB2A, ERFs are able to confer drought tolerance in A. thaliana [148, 152]. It has 

also been shown that overexpression ERF107 enhances tolerance to salt stress [233]. However, 

the erf109 mutants showed similar responses to drought stress as the WT plant, except when 

grown on media containing sorbitol (Figure 7-1). Further studies on soil did not reveal altered 

growth responses to drought stress, however, the drought-induced repression of growth was 

greater in the erf109 mutants than WT plants (Figure 7-2).  

The transcripts of ERF109 are present in all tissues but accumulate in leaves as a result of high-

light [158]. Both genotypes, WT and erf109 mutants, had a similar high-light mediated 

repression of growth (Figure 7-4). However, the erf109 mutants accumulated significantly less 

anthocyanin in their leaves than the WT plants under high-light conditions (Figure 7-7). It has 

previously been observed that erf109 mutants do not present a visibly darker phenotype when 

grown under high-light as WT plants do [157], suggesting that protective pigments such as 

anthocyanins might not accumulate in the leaves of erf109 mutant plants as they would in WT 

plants. The inability to accumulate anthocyanins in the erf109 mutants explains the increased 

photosensitivity described previously by Khandelwal et al., 2008 [156]. A leaf transcriptome 

profile of the erf109 mutants had suggested an association between ERF109 and PAP1 [156] - 

a transcription factor involved in the regulation of anthocyanin biosynthesis. The results 

presented here confirm that the WT plants are able to accumulate more anthocyanins under 

high-light than erf109 mutants. Taken together, these results confirm that ERF109 has a role in 

regulating anthocyanin production, and mediating the response to high-light. 
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Oxygenic photosynthesis produces superoxide by the univalent reduction of molecular oxygen, 

a process that is greatly increased in the presence of paraquat. Paraquat is able to inhibit 

photosynthesis by interfering with electron transfer. Paraquat accepts electrons from 

photosystem I in light-exposed plants and transfers them to molecular oxygen producing 

superoxide anions. It is regenerated once the electrons are transferred to oxygen which restarts 

the cycle, allowing it to again transfer electrons away from photosystem I [234]. Previously it 

was found that the application of paraquat can induce ERF109 expression [219]. The data 

presented here show that the erf109 mutants had a significantly larger rosette area than WT 

plants when grown on media containing paraquat (Figure 7-5). This indicates that the erf109 

mutants are less sensitive to paraquat-mediated repression of growth than WT plants. In contrast 

to paraquat, which acts largely through ROS generation in chloroplast, menadione generates 

superoxide radicals and hydrogen peroxide via interaction with dehydrogenases, which are 

present throughout plant cells [235]. It is often used in the study of oxidant stress in plants 

[236]. The growth of the erf109 mutants was significantly more inhibited by menadione than 

the WT plants. One of the functions of ERF109 is to exacerbate ROS production in response to 

ROS accumulation or stress signals, and plants that overexpress ERF109 accumulate much 

higher levels of ROS than the WT plants [162]. The decreased sensitivity of erf109 mutants to 

paraquat can therefore be explained by the lack of accelerated ROS production in the absence 

of the transcription factor. The effect of menadione is less easy to explain and may be related 

to dehydrogenase-mediated signalling pathways that are distinct from ROS signalling.  

It was previously shown that ERF109 mediates cross-talk between JA signalling and auxin 

biosynthesis in the regulation of lateral root formation [155]. Manipulations resulting in an 

increase in ERF109 expression were reported to have a marked effect on root phenotype [155]. 

However, it was also reported that the root phenotype of the erf109 mutants was similar to that 

of controls [155]. The experiments described here show that the growth media had an effect on 

the root phenotype as erf109 mutants had significantly shorter primary roots than WT plants 

when grown on ATS media (Figure 7-8) but not on ½MS media (Figure 7-9).  

Unlike the roots, the shoots of the erf109 mutants showed significant differences to the WT in 

terms of growth in the absence of stress and leaf anthocyanin accumulation, which may be 

related to oxidative signalling in the shoots. These observations led to an investigation of the 

ERF109 interactome that is described in the next chapter. 
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Chapter 8. The identification of proteins that interact with ERF109 

 

 

8.1. Introduction 

ERF109 encodes a plant specific transcription factor of the Ethylene Responsive Factor family 

of transcription factors. ERF109 contains an AP2 domain which is responsible for binding to 

the promoters of downstream target genes [150, 153, 154]. For example, it was shown to bind 

to the GCC-boxes in the promoters of ASA1 (At5g05730) and YUC2 (At4g13260) in a yeast-

one-hybrid assay [155]. The specific binding of ERF109 to the GCC-boxes in the promoters of 

ASA1 and YUC2 was confirmed in vivo using transgenic A. thaliana plants and chromatin 

immunoprecipitation assays [155].  

The data presented in Chapter 7 suggest that ERF109 has a role in the control of shoot growth 

in the absence of stress as the erf109 mutants tended to have a larger rosette area than WT 

plants. However, the leaves of erf109 mutants accumulated less anthocyanin than the WT plants 

under high-light conditions. The following studies were undertaken to identify proteins that 

interact with ERF109 in order to gain an insight into the mechanisms that underpin these 

phenotypes. Proteins can either function as isolated monomeric entities or form multi-protein 

complexes functioning via interactions with other proteins or molecules (e.g. DNA, RNA, lipids 

and metabolites) [237]. Analysing protein-protein networks can provide a better understanding 

of the functional relationships between proteins that facilitate regulatory pathways. A TAP 

approach was used in combination with mass spectrometry in the following studies to identify 

proteins that interact with ERF109. The tagged ERF109 protein was expressed in Arabidopsis 

cell suspension cultures. Tagged proteins were recovered from the host by breaking the cells 

and retrieving it and associated components through affinity selection and identified using 

mass-spectrometry analysis [204]. Comprehensive protein sequence repositories were then 

used to identify purified proteins complexes [205].  
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8.2. Results 

8.2.1. Constructs for TAP experiments 

The constructs used for the TAP experiments were prepared using the Gateway® Technology 

cloning method. 100 ng of pDONR221 plasmid containing ERF109 was sequenced using 

primers that covered the attL1 region of the vector and provided complete coverage of the 

plasmid insert (ERF109; Figure 8-1 A). The sequenced ERF109 region of the plasmid aligned 

completely with the ERF109 ORF (Figure 8-1 B). The ERF109 fragment, contained in the 

pDONR221 vector (Figure 8-2), was assembled into pKCTAP destination vector during a 

single MultiSite LR Clonase reaction to produce an expression clone for use in Agrobacterium 

mediated transformation. Assembly in to the pKCTAP destination vector was performed at VIB 

following an established procedure [175]. The pKNTAP destination vector contained the 

NTAPi tag [176] on the N terminus of ERF109, a kanamycin resistance gene for selection of 

transformed cells, and a GFP expression cassette for use as a visible marker for transformation.  
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 ORF  1 ATGCATTATCCTAACAACAGAACCGAATTCGTCGGAGCTCCAGCCCCAACCCGGTATCAA  60 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  671   ATGCATTATCCTAACAACAGAACCGAATTCGTCGGAGCTCCAGCCCCAACCCGGTATCAA  730 

 

 ORF  61 AAGGAGCAGTTGTCACCGGAGCAAGAGCTTTCAGTTATTGTCTCTGCTTTGCAACACGTG  120 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  731 AAGGAGCAGTTGTCACCGGAGCAAGAGCTTTCAGTTATTGTCTCTGCTTTGCAACACGTG  790 

 

 ORF  121 ATCTCAGGGGAAAACGAAACGGCGCCGTGTCAGGGTTTTTCCAGTGACAGCACAGTGATA  180 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  791 ATCTCAGGGGAAAACGAAACGGCGCCGTGTCAGGGTTTTTCCAGTGACAGCACAGTGATA  850 

 

 ORF  181 AGCGCGGGAATGCCTCGGTTGGATTCAGACACTTGTCAAGTCTGTAGGATCGAAGGATGT  240 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  851 AGCGCGGGAATGCCTCGGTTGGATTCAGACACTTGTCAAGTCTGTAGGATCGAAGGATGT  910 

 

 ORF  241 CTCGGCTGTAACTACTTTTTCGCGCCAAATCAGAGAATTGAAAAGAATCATCAACAAGAA  300 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  911 CTCGGCTGTAACTACTTTTTCGCGCCAAATCAGAGAATTGAAAAGAATCATCAACAAGAA  970 

 

 ORF  301 GAAGAGATTACTAGTAGTAGTAACAGAAGAAGAGAGAGCTCTCCCGTGGCGAAGAAAGCG  360 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  971 GAAGAGATTACTAGTAGTAGTAACAGAAGAAGAGAGAGCTCTCCCGTGGCGAAGAAAGCG  1030 

 

 ORF  361 GAAGGTGGCGGGAAAATCAGGAAGAGGAAGAACAAGAAGAATGGTTACAGAGGAGTTAGG  420 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1031 GAAGGTGGCGGGAAAATCAGGAAGAGGAAGAACAAGAAGAATGGTTACAGAGGAGTTAGG  1090 

 

 ORF  421   CAAAGACCTTGGGGAAAATTTGCAGCTGAGATCAGAGATCCTAAAAGAGCCACACGTGTT  480 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1091  CAAAGACCTTGGGGAAAATTTGCAGCTGAGATCAGAGATCCTAAAAGAGCCACACGTGTT  1150 

 

 ORF  481 TGGCTTGGTACTTTCGAAACCGCCGAAGATGCGGCTCGAGCTTATGATCGAGCCGCGATT  540 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1151  TGGCTTGGTACTTTCGAAACCGCCGAAGATGCGGCTCGAGCTTATGATCGAGCCGCGATT  1210 

 

 ORF  541   GGATTCCGTGGGCCAAGGGCTAAACTCAACTTCCCCTTTGTGGATTACACGTCTTCAGTT  600 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1211  GGATTCCGTGGGCCAAGGGCTAAACTCAACTTCCCCTTTGTGGATTACACGTCTTCAGTT  1270 

 

 ORF  601 TCATCTCCTGTTGCTGCTGATGATATAGGAGCAAAGGCAAGTGCAAGCGCCAGTGTGAGC  660 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1271 TCATCTCCTGTTGCTGCTGATGATATAGGAGCAAAGGCAAGTGCAAGCGCCAGTGTGAGC  1330 

 

 ORF  661 GCCACAGATTCAGTTGAAGCAGAGCAATGGAACGGAGGAGGAGGGGATTGCAATATGGAG  720 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1331 GCCACAGATTCAGTTGAAGCAGAGCAATGGAACGGAGGAGGAGGGGATTGCAATATGGAG  1390 

 

 ORF  721 GAGTGGATGAATATGATGATGATGATGGATTTTGGGAATGGAGATTCTTCAGATTCAGGA  780 

  |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

 Seq  1391 GAGTGGATGAATATGATGATGATGATGGATTTTGGGAATGGAGATTCTTCAGATTCAGGA  1450 

 

 ORF  781 AATACAATTGCTGATATGTTCCAGTGA  807 

  ||||||||||||||||||||||||||| 

 Seq  1451 AATACAATTGCTGATATGTTCCAGTGA  1477 

 

Figure 8-1: Linear plasmid map and sequence alignment of the pENTR221 plasmid containing ERF109 DNA.  

A: Linear plasmid map of pENTR221 containing ERF109. B: The sequence of the ERF109 insert aligned against 

ERF109 ORF. 
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SEQ 1  CTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTG AGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCA 100 

SEQ 101 GTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGC GCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGA 200 

SEQ 201 AAGCGGGCAGTGAGCGCAACGCAATTAATACGCGTACCGCTAGCCAGGAA GAGTTTGTAGAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTA 300 

SEQ 301 GTTTGATGCCTGGCAGTTTATGGCGGGCGTCCTGCCCGCCACCCTCCGGG CCGTTGCTTCACAACGTTCAAATCCGCTCCCGGCGGATTTGTCCTACTCA 400 

SEQ 401 GGAGAGCGTTCACCGACAAACAACAGATAAAACGAAAGGCCCAGTCTTCC GACTGAGCCTTTCGTTTTATTTGATGCCTGGCAGTTCCCTACTCTCGCGT 500 

SEQ 501 TAACGCTAGCATGGATGTTTTCCCAGTCACGACGTTGTAAAACGACGGCC AGTCTTAAGCTCGGGCCCCAAATAATGATTTTATTTTGACTGATAGTGAC 600 

SEQ 601 CTGTTCGTTGCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTT TGTACAAAAAAGCAGGCTTAATGCATTATCCTAACAACAGAACCGAATTC 700 

SEQ 701 GTCGGAGCTCCAGCCCCAACCCGGTATCAAAAGGAGCAGTTGTCACCGGA GCAAGAGCTTTCAGTTATTGTCTCTGCTTTGCAACACGTGATCTCAGGGG 800 

SEQ 801 AAAACGAAACGGCGCCGTGTCAGGGTTTTTCCAGTGACAGCACAGTGATA AGCGCGGGAATGCCTCGGTTGGATTCAGACACTTGTCAAGTCTGTAGGAT 900 

SEQ 901 CGAAGGATGTCTCGGCTGTAACTACTTTTTCGCGCCAAATCAGAGAATTG AAAAGAATCATCAACAAGAAGAAGAGATTACTAGTAGTAGTAACAGAAGA 1000 

SEQ 1001 AGAGAGAGCTCTCCCGTGGCGAAGAAAGCGGAAGGTGGCGGGAAAATCAG GAAGAGGAAGAACAAGAAGAATGGTTACAGAGGAGTTAGGCAAAGACCTT 1100 

SEQ 1101 GGGGAAAATTTGCAGCTGAGATCAGAGATCCTAAAAGAGCCACACGTGTT TGGCTTGGTACTTTCGAAACCGCCGAAGATGCGGCTCGAGCTTATGATCG 1200 

SEQ 1201 AGCCGCGATTGGATTCCGTGGGCCAAGGGCTAAACTCAACTTCCCCTTTG TGGATTACACGTCTTCAGTTTCATCTCCTGTTGCTGCTGATGATATAGGA 1300 

SEQ 1301 GCAAAGGCAAGTGCAAGCGCCAGTGTGAGCGCCACAGATTCAGTTGAAGC AGAGCAATGGAACGGAGGAGGAGGGGATTGCAATATGGAGGAGTGGATGA 1400 

SEQ 1401 ATATGATGATGATGATGGATTTTGGGAATGGAGATTCTTCAGATTCAGGA AATACAATTGCTGATATGTTCCAGTGATACCCAGCTTTCTTGTACAAAGT 1500 

SEQ 1501 TGGCATTATAAGAAAGCATTGCTTATCAATTTGTTGCAACGAACAGGTCA CTATCAGTCAAAATAAAATCATTATTTGCCATCCAGCTGATATCCCCTAT 1600 

SEQ 1601 AGTGAGTCGTATTACATGGTCATAGCTGTTTCCTGGCAGCTCTGGCCCGT GTCTCAAAATCTCTGATGTTACATTGCACAAGATAAAAATATATCATCAT 1700 

SEQ 1701 GAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATG AGCCATATTCAACGGGAAACGTCGAGGCCGCGATTAAATTCCAACATGGA 1800 

SEQ 1801 TGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAG GTGCGACAATCTATCGCTTGTATGGGAAGCCCGATGCGCCAGAGTTGTTT 1900 

SEQ 1900 CTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGT CAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATT 2000 

SEQ 2001 TTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGA AAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATAT 2100 

SEQ 2101 TGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTT GTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAA 2200 

SEQ 2201 TCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCG TAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGC 2300 

SEQ 2301 CATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAAC CTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGT 2400 

SEQ 2401 CGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCG GTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATT 2500 

SEQ 2501 GATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGTT TTTCTAATCAGAATTGGTTAATTGGTTGTAACACTGGCAGAGCATTACGC 2600 

SEQ 2601 TGACTTGACGGGACGGCGCAAGCTCATGACCAAAATCCCTTAACGTGAGT TACGCGTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATC 2700 

SEQ 2701 TTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAA AACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACT 2800 

SEQ 2801 CTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGT TCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC 2900 

SEQ 2901 CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGT GGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGA 3000 

SEQ 3001 TAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCT TGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGA 3100 

SEQ 3101 GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAG CGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACG 3200 

SEQ 3201 CCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGT CGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAG 3300 

SEQ 3301 CAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA TGTT      3354 

 

Figure 8-2: Circular plasmid map and sequence of pENTR221 plasmid containing ERF109 DNA.  

A: Circular plasmid map of pENTR221 containing ERF109. B: The complete sequence of pENTR221 containing 

ERF109 (highlighted). 
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8.2.2. The growth of Arabidopsis thaliana cell suspension cultures 

Arabidopsis thaliana (ecotype Landsberg erecta) cell suspension cultures (Plant Systems 

Biology) were transformed with the pKNTAP-ERF109 expression vector. The cultures were 

sub-cultured every 7 days. Growth curves for the cultures grown in the light or in the dark were 

the same; the exponential phase occurring between 3 and 7 days (data not shown). The presence 

of the tagged ERF109 protein was detected in extracts of the cell cultures by western blotting. 

The PAP antibody identified a protein band with a molecular weight between 50-75 kDa. 

ERF109 has a molecular weight of 29.4 kDa and the GS-tag weighs 21 kDa, thus the tagged 

ERF109 protein should weigh 50.4 kDa. However, this band was calculated to be about 58 kDa.  

8.2.3. The effect of H2O2 on ERF109 protein expression in the light and dark 

In the following experiments, Arabidopsis cell cultures expressing the tagged ERF109 protein 

were grown either in the dark or in the light with 100 µmol.m-2.s-1 irradiance and a 16 hour 

photoperiod for 3 days after sub-culturing.  

In the first experiment, concentrations of H2O2 up to 20 mM were added to light or dark-grown 

cultures. Samples were harvested after 1 hour (Figure 8-3 A & B). Western blot analysis showed 

that in the absence of H2O2, extracts from both the light and dark-grown cultures contained a 

band with a molecular weight between 50-75 kDa band, as well as a protein with a weight close 

to 37 kDa in approximately equal abundance. There was also a number of other faint bands. 

The 58 kDa band was present in extracts from light and dark-grown cells incubated at all H2O2 

concentrations. The intensity of this band appeared to be unchanged with increasing 

concentrations of H2O2. In contrast, the band at 37 kDa was less intense relative to cells not 

treated with H2O2 when in the presence 5, 10, or 20 mM H2O2 (Figure 8-3 A & B). The faint 

bands were present at all concentrations of H2O2. 

In the second series of experiments, cell cultures were treated with 1 mM H2O2, and samples 

were harvested over a period of 1 hour (Figure 8-4). The abundance of the 58 kDa band in the 

extracts of light-grown (Figure 8-4 A) and dark-grown (Figure 8-4 B) cultures was similar at 

all harvest points. At every time point, the 37 kDa band was less intense than the 58 kDa band. 

However, the intensity of this band increased in the light-grown cultures after 30 minutes of 

incubation with H2O2 (Figure 8-4 A).  
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Figure 8-3: Western blots – expression of ERF109 after one hour treatment with H2O2 in the light and the 

dark. 

Three-day old Arabidopsis thaliana ecotype Landsberg erecta cell suspension cultures (Plant Systems Biology), 

either grown in the light or the dark, were treated with 0, 1, 2, 5, 10, or 20 mM H2O2 for 1 hour. A: Cultures grown 

in the light. B: Cultures grown in the dark. ERF109 with the GS tag is 50.4 kDa. 
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Figure 8-4: Western blots – expression of ERF109 in the light and the dark when treated with 1 mM H2O2 for 

up to 1 hour. 

Three-day old Arabidopsis thaliana ecotype Landsberg erecta cell suspension cultures (Plant Systems Biology), 

either grown in the light or the dark, were treated with 1 mM H2O2 for up to 1 hour. A: Cultures grown in the 

light. B: Cultures grown in the dark. ERF109 with the GS tag is 50.4 kDa. 
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8.2.4. Identification of purified proteins from TAP with ERF109 as bait protein 

In these experiments, cultures were grown in the light for 3 days and were either untreated or 

treated with 1 mM H2O2 for 10 minutes. The cells were harvested and homogenised, and protein 

complexes were extracted and purified by TAP. Protein complexes were separated by SDS 

PAGE (Figure 8-5) and analysed using mass spectrometry. Identified proteins were checked 

against a list of proteins known to interact with the GS tag [212]. Proteins that interact with the 

GS tag were excluded from the list presented in Table 9. In total, 14 proteins were identified as 

interacting with ERF109 (Table 9). The proteins that interact with ERF109 was changed by the 

presence of H2O2. ERF109 was found to interact with nuclear and cytosolic localised proteins 

but also one plastid localised protein. 

In the absence of oxidative stress, 11 proteins were identified as interacting with ERF109 (Table 

9). Two were dead(D/H)-box RNA helicase family proteins: RH20 (encoded by At1g55150) is 

a nuclear ATP-dependent helicase [238] and RH22 (encoded by At1g59990) is localised to 

plastids and is essential for apposite accumulation of plastid mRNAs during seed development 

and seedling growth [214]. Embryo Defective 2762 (EMB2762; encoded by At2g17250) is a 

nucleolar protein that is a ribosome biogenesis co-factor [239]. SAD2 (super sensitive to ABA 

and drought 2; encoded by At2g31660) is predominantly nuclear localised and may mediate 

nuclear transport of ABA signalling proteins [240]. At2g33470 encodes glycolipid transfer 

protein (GLTP) 1 involved in the intervesicular trafficking of glycosphingolipids [241]. 

MOB1A (Mps One Binder 1A; encoded by At4g19045) is involved in the co-ordination of 

tissue patterning and organ growth [242]. EXO70A1 (exocyst subunit EXO70 (exocyst 

component of 70 kDa) family protein A1; encoded by At5g03540) is the most abundant form 

of 23 paralogues of EXO70 in Arabidopsis and is cytosolic [243, 244]. Replication factor C1 

(RFC1; encoded by At5g22010) mediates genomic stability and transcriptional gene silencing 

[245, 246]. Three of the proteins found to interact with ERF109 in the absence of oxidative 

stress, encoded by At1g23280, At3g02200, and At5g64420, have not been characterised. 

Only 3 proteins were found to interact with ERF109 in cultures were treated with 1 mM H2O2; 

these are encoded by At1g50600, At2g36200 and At3g06400 (Table 9). At1g50600 is a 

member of GRAS gene family and encodes scarecrow-like 5 [247]. At3g06400 encodes a 

chromatin remodelling protein that is involved in nuclear proliferation and is required for 

female gametogenesis [248]. The remaining protein found to interact with ERF109 in the 

presence of oxidative stress, encoded by At2g36200, has not been functionally characterised. 
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Figure 8-5: SDS-PAGE of purified protein complexes.  

Proteins purified by TAP were separated by SDS-PAGE. Lane 1: SeeBlue Plus2 MW marker (Invitrogen). Lane 2: 

35S-ERF109-NGSrhino untreated. Lane 3: 35S-ERF109-NGSrhino treated with 1 mM H2O2.  
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Table 12: Proteins that interact with ERF109 in the light when either untreated or treated with 1mM H2O2.  

A tick indicates that an interaction was observed.  

Protein accession Protein description No treatment 1mM H2O2 
At1g23280 MAK16 protein-related  

 

At1g55150 RH20 | DEA(D/H)-box RNA helicase family protein 20   
 

At1g59990 RH22 | DEA(D/H)-box RNA helicase family protein 22  
 

At2g17250 EMB2762 | CCAAT-binding factor  
 

At2g31660 SAD2 | ARM repeat superfamily protein  
 

At2g33470 GLTP1 | glycolipid transfer protein 1  
 

At3g02200 Proteasome component (PCI) domain protein  
 

At4g19045; At5g45550 MOB1A | MOB1 (Mps One Binder)/phocein family protein  
 

At5g03540 EXO70A1 | exocyst subunit EXO70 family protein A1  
 

At5g22010 RFC1 | replication factor C1  
 

At5g64420 DNA polymerase V family  
 

At1g50600 SCL5 | scarecrow-like 5  
 

At2g36200 P-loop containing nucleoside triphosphate hydrolases superfamily protein  
 

At3g06400; At5g18620 CHR11 | chromatin-remodeling protein 11  
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8.3. Discussion 

The aim of the experiments reported in this chapter was to identify proteins that interact with 

ERF109. Through the use of an established TAP procedure combined with mass spectrometry, 

a list of proteins that interact with ERF109 was revealed. ERF109 was found to localise to 

nuclei in a previous study [155]. The data presented here show that a number of proteins that 

are localised to nucleus interact with ERF109, as did several proteins that localise to the cytosol. 

Surprisingly, one protein that localises to the chloroplast, RH22, also interacts with ERF109. 

Interestingly, the proteins that were found to interact with ERF109, do so either in the absence 

or presence of oxidative stress but not under both conditions. This finding might suggest that 

ERF109 protein-protein interactions are determined or responsive to the redox state of the cells. 

The results of the experiments reported in this chapter help explain some of the phenotypes 

observed in Chapter 7. 

In the absence of oxidation, many of the proteins that interact with ERF109 are involved in 

RNA processing or related pathways. For example, ERF109 interacts with RH20, a nuclear-

localised Dead(D/H)-box RNA helicase family protein involved in the regulation of nonsense-

mediated mRNA decay and ribosome biogenesis. ERF109 also interacts with EMB2762, a 

nucleolar protein that is a ribosome biogenesis co-factor [13]. The emb2762 mutants display 

aberrant RNA processing, and homozygous embryos arrest in the globular stage of 

development. Furthermore, ERF109 was found to interact with EXO70A1, which is the most 

abundant form of 23 paralogues of EXO70. This cytosolic protein complex involved with pre-

mRNA splicing [17, 18]. 

Other interactions may go some way to explaining the phenotype of the erf109 mutants reported 

in Chapter 7. ERF109 was found to interact with SAD2, a predominantly nuclear localised 

protein, in the absence of oxidants. SAD2 has been found to be involved in nuclear transport as 

well as in ABA signalling [240]. The sad2 mutants are more tolerant to UV-B radiation than 

the WT plants [249]. SAD2 is required for the nuclear trafficking of MYB4 [249], which has 

previously been shown to negatively regulate the transcription of cinnamate 4-hydroxylase 

(C4H) [250], a component of the anthocyanin biosynthetic pathway. The MYB4 protein also 

specifically binds to the promoter of MYB4 and represses its own expression [249]. In this way 

the MYB4 protein and mRNA are part of a negative autoregulatory loop. MYB4 is therefore 

able to regulate expression of both MYB4 and C4H, and the accumulation of UV-absorbing 

compounds. The negative autoregulatory feedback loop is altered in the sad2 mutant due to the 
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absence of MYB4 protein in the nucleus, leading to the constitutive expression of MYB4 and 

C4H and resulting in accumulation of UV-absorbing pigments [249]. As discussed in Chapter 

7, erf109 mutants produce significantly less anthocyanins that WT plants, which is in contrast 

to sad2 mutants, which accumulate more anthocyanins than the WT. This finding might suggest 

that ERF109 interacts with SAD2 in the absence of oxidants to alter this pathway.  

The interaction of ERF109 with MOB1A might also explain some of the phenotypic 

characteristics of the erf109 mutants described in Chapter 7, and in previous studies [155]. In a 

previous study, the root meristems of mob1a mutants were significantly reduced in size [242], 

similar to the root phenotype of plants that overexpress ERF109 [155]. MOB1A transcript levels 

are high in columella and lateral root cap cells of WT plants. Moreover, MOB1A expression 

was upregulated by several stress conditions as well as by ABA and salicylic acid [242]. 

Reduced levels of MOB1A expression in the primary root brought about severe defects in tissue 

patterning of the stem cell niche and columella and led to a decrease in meristem size [242]. 

MOB1A also regulates the expression of PINNATE (PIN)4, which is an auxin efflux carrier 

[251]. The pin4 mutants are defective in establishment and maintenance of endogenous auxin 

gradients, and fail to canalise externally applied auxin [251]. Transport of auxin through PIN4 

generates a sink for auxin below the quiescent centre of the root meristem that is essential for 

auxin distribution and patterning [251]. The expression of PIN4 in WT columella initials was 

altered in MOB1A knocked-down lines [242]. In addition, MOB1A RNAi plants showed a 

misalignment of PIN4-labelled cell files around the quiescent centre. The observation that 

ERF109 overexpression causes a root phenotype that resembles those of auxin overproduction 

[155], is consistent with the observations reported here.  

Three proteins were found to interact with ERF109 in cultures exposed to oxidants; these are 

encoded by At1g50600, At2g36200 and At3g06400 (Table 1). Interestingly, the proteins that 

were found to interact with ERF109 in the presence of oxidative stress, did not do so in the 

absence of oxidative stress. This finding might suggest that ERF109 protein-protein interactions 

are determined or responsive to the redox state of the cells. It is likely that ERF109 interactome 

is condition-dependent, and this influences interaction with other proteins that have not been 

identified in this study.  

As discussed in Chapter 5, other approaches should be used to verify the results of the protein 

interaction studies. For example, a split-YFP approach, used in Chapter 5, is a well-established 

procedure in plants [207-211] and could be used to verify the results presented here. 
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The western blot analysis reported here, provides insights into the expression and stability of 

the tagged ERF109 protein. The tagged ERF109 protein was always detected in the cells, 

whether they were grown in the dark or the light, in the absence or the presence of oxidant. 

Another band containing the tag weighing about 37 kDa was also apparent in blots of proteins 

extracted from both light- and dark-grown 3-day-old cultures. There was no discernible 

difference in the pattern of bands observed on western blots of protein extracts from light- or 

dark-grown cultures. However, in the presence 5, 10, or 20 mM H2O2, the 37 kDa band was 

less intense relative to cells not treated with H2O2. This finding would suggest that the tagged 

ERF109 protein is more stable in the presence of oxidative stress than the 37 kDa protein.  

The results of the experiments performed in this chapter help explain some of the phenotypes 

observed in Chapter 7. Furthermore, the western blots and TAP results taken together suggest 

that the ERF109 interactome is complex, and alters with cell oxidation conditions. 
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Chapter 9. General discussion and conclusions 

 

 

9.1. The challenge 

The focus of the studies in this thesis was on two genes putatively involved in the regulation of 

plant redox processes. These were LEA5, which was found to provide tolerance to oxidative 

stress, and ERF109, a transcription factor that is part of a regulatory network that plays role in 

the adjustment of leaves to homeostasis after high-light stress. The general aim of the studies 

was to find the role that these to genes play in plant growth and stress responses. 

Current and predicted climate conditions, such as prolonged drought and heatwaves, present a 

challenge for agricultural production worldwide by affecting plant growth and yield, and 

causing annual losses estimated to cost £billions [252, 253]. Climate change and global 

warming are generating rapid changes in global temperature that are not matched by any global 

temperature increase of the past 50 million years [254]. Models tend to agree in their predictions 

of increased frequencies of heatwaves, tropical cyclones, floods, and prolonged drought 

episodes [255]. There is a general consensus supporting the notion that changes in atmospheric 

CO2 concentrations, an increase in the ambient temperature, and regional changes in annual 

precipitation will significantly influence future agricultural production. 

Transgenic crops provide a promising avenue to reduce yield losses, improve growth, and 

provide a secure food supply for a growing world population [256, 257]. Various strategies can 

be used to enhance the tolerance of plants to abiotic stress by genetic engineering. However, a 

detailed understanding of the response of plants to abiotic stress is a prerequisite to the 

identification and use of transgenes or upstream regulators to activate an acclimation response 

that will enhance the tolerance of plants to different stresses. A major objective of abiotic stress 

research in plants is to study how plants sense and acclimate to abiotic stress conditions, and 

then use this knowledge to develop plants and crops with enhanced tolerance to abiotic stresses. 
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9.2. The role of LEA5 in plant growth and stress responses 

The aims of the studies on LEA5 were to determine its effects on the plant phenotype in optimal 

and stress conditions, characterise its functions in mitochondria, and to determine whether the 

protein interactions with LEA5 are important in the control of growth and stress tolerance.  

LEA proteins are frequently associated with stress tolerance [12, 13]. LEA5 is novel as it was 

found to provide tolerance to oxidative stress [43, 51]. Homologues of LEA5 exist throughout 

the plant kingdom (Figure 9-1). Previous studies using transgenic A. thaliana found that the 

over-expression of LEA5 resulted in plants with a greater biomass [43, 51]. However, the results 

presented in Chapter 3 which used the same transgenic lines as previous studies, but were of a 

different generation, were similar to WT plants. This is likely because expression of LEA5 in 

these lines was not as previously described [43, 51]. A possible explanation for this discrepancy 

lies in loss of transgene expression. It could be that, in successive generations, the transgene 

has been silenced. However, transgenic barley plants that express LEA5 analysed in Chapter 6, 

do have a greater biomass, as observed in the Arabidopsis lines in previously published studies 

[43, 51]. Three independently transformed lines of barley that express LEA5 were selected for 

homozygosity. These transgenic barley plants had more biomass on average than WT plants 

(P<0.05 for line 11.2.2). Also, after 8 weeks of growth, the LEA5-YFP line 11.2.2 had 96 leaves 

whilst WT plants which had 81 leaves (P<0.05). Furthermore, the expression of LEA5 resulted 

in the production of significantly more tillers in line 4.1.2 (P<0.05), however the tillers weighed 

less than those of WT plants.  

Given these findings, a pertinent question concerns the mechanisms by which LEA5 might 

confer an increase in biomass. One clue might be found in the localisation of this protein. Earlier 

studies had shown that LEA5 is localised to mitochondria [44, 51]. While no significant 

differences were found in the assays performed on the ETC in Chapter 4, there was a tendency 

towards higher cytochrome c oxidase activity in isolated mitochondria from the LEA5 OEX 

line compared to from the WT plants. Further investigation is still necessary to determine how 

these parameters might contribute to the greater biomass observed in the OEX lines. 

Alternatively, LEA5 could be involved in retrograde signalling from the mitochondria to the 

nucleus, which has been proposed to mediate abiotic stress perception [190]. Many abiotic 

stresses will influence mitochondrial metabolism and could generate signals such as the over-

reduction of the ETC, enhanced accumulation of ROS, or altered redox potential that will, in 

turn, trigger nuclear gene expression and acclimation responses. It is possible that LEA5 is 
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involved in the adjustment of the redox state of mitochondria. For this purpose, transgenic 

plants that express roGFP in either the mitochondria or the cytosol were produced in plants with 

altered expression of LEA5. The roGFP emission spectrum changes in a more reduced 

environment [172]. Homozygous plants expressing either mitochondrial-roGFP or cytosolic-

roGFP were produced in plants with altered expression of LEA5 and seeds of these lines are 

now available for further study. An understanding of how LEA5 alters the redox state in 

mitochondria could provide insights into plant growth and stress tolerance. 

A crucial step towards understanding cellular systems is mapping networks of physical protein-

protein interactions. Knowledge of the interactome of LEA5 increases our understanding of 

plant growth and development. In Chapter 5 protein interactions with LEA5 were explored 

using TAP combined with mass spectrometry. The TAP isolated protein complexes from 

suspension-cultured A. thaliana cells. TAP uses a combination of two high-affinity handles to 

reduce background interactions caused by spurious and promiscuous proteins, while 

maintaining a high protein complex purification yield [175]. RH22 was shown to interact with 

LEA5 in the protein-protein experiments, but was not verified in the split-YFP experiments. 

However, the functions of this protein merit further consideration. RH22 is essential for 

apposite accumulation of plastid mRNAs during seed development and seedling growth, 

ensuring seed oil biosynthesis by maintaining plastid mRNA levels [214]. It is possible that 

LEA5 interacts with RH22 under certain conditions, or when cells are damaged. In this way, 

LEA5 might interact with RH22 to regulate plastid gene expression, a possibility that can be 

explored in future work. Another Dead(D/H)-box RNA helicase family protein, RH20 also 

interacted with LEA5. It is possible that the interaction of LEA5 with RH22 occurs via a similar 

domain to RH20. This interaction occurred in the dark but not in the light which is interesting 

as LEA5 transcripts are also abundant in the dark [43], possibly indicating circadian regulation. 

Additionally, the growth of a fungal (Botrytis cinerea), and a bacterial pathogen (Pseudomonas 

syringae) was previously shown to be altered in LEA5 over-expression lines [51]. The 

interaction of LEA5 with PDF2.2, which is located in the cell wall and is often used a marker 

for ethylene and jasmonate dependent pathogen defence induction, could help explain these 

results. Further investigation of the LEA5 interactome could advance understanding of the role 

of LEA5 in plant growth and stress tolerance. An understanding of the functions of LEA5 could 

provide insights into the control of plant growth and stress tolerance. This information could be 

used in breeding programmes to improve the predictability and sustainability of crop yields by 

enhancing stress tolerance which is of interest to biotechnology companies [1].  
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Figure 9-1: Plant compara gene tree of all known orthologues of LEA5 in Ensembl Plants (plants.enseml.org). 

Left: Dendrogram of orthlogues. Right: Alignment structures of LEA5 orthologues.  
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9.3. Future prospects for LEA5 

LEA5 is predominantly expressed in non-photosynthetic tissues such as roots. For this reason, 

LEA5 is thought to be involved in the protection of roots against stress. Under conditions of 

dehydration and oxidative stresses, root-to-shoot signalling leads to the expression of LEA5 in 

vegetative tissues [51]. The over-expression of LEA5 conferred tolerance to H2O2 [43]. Many 

of the proteins found to interact with LEA5 in Chapter 5 have been associated with various 

stresses. Verifying these interactions in vivo by split-YFP could provide new information on 

important pathways. Furthermore, while predominant expression in non-photosynthetic tissues 

might preclude a direct antioxidant role in photosynthesis, the interaction of LEA5 with RH22, 

in addition to the up-regulation of LEA5 transcripts in response to oxidants and the reduced 

sensitivity to H2O2 in LEA5 over-expressing plants, suggest a potential role in ROS mediated 

signalling. Transgenic A. thaliana plants that express roGFP in either the mitochondria or 

cytosol were produced for further analysis of the involvement of LEA5 in moderating the cell 

redox state and in oxidative stress tolerance. An understanding of how LEA5 alters the redox 

state in mitochondria could provide insights into plant growth and stress tolerance. 

Finally, the production of homozygous transgenic barley plants expressing LEA5 will allow the 

exploration of bestowed stress tolerance by analysing these plants under a range of biotic and 

abiotic stresses. A reasonable starting point would be to investigate tolerance of these plants to 

H2O2 as LEA5 has been shown to be upregulated by oxidants and provide tolerance to H2O2 

[43]. LEA5 was also found to be involved in the control of root architecture [43, 51], and so the 

analysis of the effects of LEA5 on barley roots could also provide further insights in to root 

growth. If LEA5 confers increased stress tolerance and altered root structures into a crop species 

such as barley then it could have a major effect in the agriculture industry [1].  

9.4. The role of EFR109 in plant growth and stress responses 

Like LEA5, ERF109 is considered to have a role in the regulation of plant redox processes. 

Studies have shown that ERF109 propagates ROS accumulation in response to ROS-producing 

abiotic and biotic stress signals [162]. A further aim of studies performed in this thesis was to 

characterise the phenotypes of erf109 mutants and to determine ERF109 protein interactions.  

The combination and cross-regulation of transcription factors defines the core regulatory 

network of a cell. Understanding the roles of transcriptional regulatory networks and their 

effects on downstream target genes will aid in the development of stress tolerant crops. The 
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transcription factor, ERF109, is part of a regulatory network that has a major role in the 

adjustment of A. thaliana leaves to reach homeostasis after high-light stress [156]. Much of the 

current understanding of the functions of ERF109 comes from the analysis of A. thaliana erf109 

mutants. These mutants have no visible phenotypic differences to the WT when grown under 

low-light [157]. However, they show a markedly different phenotype when grown for two 

weeks under high-light as the leaves of WT plants appear visibly darker than those of the erf109 

mutants [157]. The results in Chapter 7 reflect this, as the erf109 mutant leaves accumulated 

significantly less anthocyanin than WT plants in the high-light conditions. The studies 

presented in Chapter 7 suggest that ERF109 has a role in the control of shoot growth in the 

absence of stress. Although the difference in rosette area between WT and erf109 mutant plants 

was small, the erf109 mutants tended to have a larger rosette area than the WT plants at the 

later stages of vegetative growth. It was previously shown that overexpression of ERF109 led 

to altered leaf morphology, producing leaves that were longer, narrower and curled, similar to 

auxin overproduction phenotypes [155, 162]. Moreover, plants that overexpress ERF109 were 

found to have significantly higher auxin levels in the shoot tissues than the WT plants [155]. 

Conversely, the levels of auxin were reduced the shoots of erf109 mutants [155]. The increased 

rosette area of the erf109 mutants observed here could result from lower auxin levels.  

Knowledge of the ERF109 interactome improves our understanding of the role ERF109 has in 

plant growth and response to stress. In Chapter 8 protein interactions with ERF109 were 

investigated using TAP, and proteins that interact with ERF109 were revealed. The interactions 

reported in Chapter 8 explain some of the phenotypic characteristics of the erf109 mutants 

described in Chapter 7, and in previous studies [155]. ERF109 was found to interact with SAD2, 

a predominantly nuclear localised protein. SAD2 is involved in nuclear transport as well as 

ABA signalling [240]. The sad2 mutants are more tolerant to UV-B radiation than WT plants 

[249]. SAD2 is required for the nuclear trafficking of MYB4 [249], which has previously been 

shown to negatively regulate the transcription of C4H [250], a component of the anthocyanin 

biosynthetic pathway. This could help explain why the leaves of erf109 mutants accumulated 

significantly less anthocyanin than WT plants in high-light conditions. Furthermore, ERF109 

was found to interact with MOB1A. Reduced levels of MOB1A expression in the primary root 

brought about severe defects in tissue patterning of the stem cell niche and columella and led 

to a decrease in meristem size [242]. MOB1A regulates the expression of PIN4, which is an 

auxin efflux carrier, and pin4 mutants are defective in establishment and maintenance of 

endogenous auxin gradients, and fail to canalise externally applied auxin [251]. The observation 
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that ERF109 overexpression causes a root phenotype that resembles those of auxin 

overproduction [155], is consistent with the observations reported here.  

9.5. Future prospects for ERF109 

The interactions reported in Chapter 8 help to explain some of the phenotypic characteristics of 

the erf109 mutants described in Chapter 7, and in previous studies [155]. Other approaches 

should be used to verify the results of the protein interaction studies. For example, a split-YFP 

approach, as performed in Chapter 5, could be used here. Verifying these interactions in vivo 

by split-YFP would validate these experiments and show the location of these interactions. 

The erf109 mutants tended to have a larger rosette area than the WT plants at the later stages of 

vegetative growth. This could be due to lower photo-respiration rates and so investigating the 

rates of photorespiration of these mutants, as well as of ERF109 over-expression lines, in 

environments with altered CO2 might indicate if this is the case. Further experiments to 

understand why erf109 mutants accumulated less anthocyanin than WT plants in high-light 

conditions could reveal the role of ERF109 in regulating this pathway. Norflurazon and 

lincomycin induce retrograde signalling in WT plants resulting in altered anthocyanin 

accumulation [258]. Treating erf109 mutants with these compounds, might indicate if ERF109 

has a role in ROS signalling. This could be particularly interesting as ERF109 is considered to 

propagate ROS accumulation in response to ROS-producing abiotic and biotic stress signals. 

Once an improved understanding of the role ERF109 plays in growth and stress responses is 

developed, then it would be useful to apply this knowledge to a crop species which could have 

tangible outcomes and a major effect in the agriculture industry. 

9.6. Conclusion 

The challenges of food security, adequate nutrition and sustainable agriculture require 

innovative approaches to crop improvement. Next generation crops are needed to mitigate 

future food shortages and to make agricultural industries more competitive [256, 257]. 

However, a detailed understanding of the response of plants to abiotic stress is a prerequisite to 

the identification and use of transgenes or upstream regulators to activate an acclimation 

response that will enhance the tolerance of plants to different stresses. While further work is 

required, the results presented in this thesis have provided insights and will help elucidate the 

roles of LEA5 and ERF109 in plant growth and stress responses. 
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