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Abstract

We study the regions where the function π(x) − li(x) is positive, the first such

point being known as Skewes’ number. We prove a new theorem which, after extensive

numerical calculations, allows us to obtain a new lowest value where π(x) − li(x) is

positive, under the assumption of the Riemann Hypothesis. This new lowest value is

1.397166161527 × 10316. Our new theorem builds on previous work, but is different

in that it does not estimate a particular constant, instead keeping it exact. This

simplifies some of the calculations, permitting the error terms to be analysed more

easily.
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1 Introduction

1.1 Notation

The symbols ϑ and ϑi are often used throughout this paper, for some i ∈ N, they denote

complex numbers such that |ϑ| ≤ 1 and |ϑi| ≤ 1. Note that the actual value can be

different at each occurrence and it may also hold dependence on certain parameters.

Because there are a lot of compounded fractions in this paper, effort has gone into

making all of the equations as legible as possible, this includes the layout of fractional

indices. For instance, e1/32α represents the value of e raised to the 1
32α index, rather than

α
32 or even 2α

3 .

1.2 History

1.2.1 Prime counting functions

A popular area of mathematics is prime numbers. The prime counting function, denoted

by π(x), counts all prime numbers p less than a given number x:

π(x) =
∑
p≤x

1.

Legendre [10], in 1798, conjectured that

π(x) ∼ x

A log(x) +B
,

or, equivalently,

lim
x→∞

π(x)(A log(x) +B)

x
= 1,

for constants A and B, and where log(x) denotes the natural logarithm. In 1808 [11], he

refined this conjecture to

π(x) =
x

log(x)−A(x)
,

with limx→∞A(x) = 1.08366 . . .. Over time, better estimates for π(x) were discovered. In

1849, Gauss explained in a letter written to Enke that from 1791, he knew the logarithmic

integral function, denoted li(x), was a better estimate than all before. Gauss stated that

π(x) ∼ li(x).

This is the statement of the Prime Number Theorem (PNT), proven independently in

1896 by Hadamard [8] and de la Vallée-Poussin [6]. The function li(x) is defined as

li(x) = −
∫ x

0

1

log(t)
dt = lim

ε→0

(∫ 1−ε

0
+

∫ x

1+ε

)
1

log(t)
dt.

Gauss showed that for all 2 < x < 3, 000, 000, the inequality π(x) < li(x) held, and it was

believed for over half a century that this was true for all x. At the time of writing, it has

been shown by Büthe [4] that π(x) < li(x) holds for all x up to 1019. It is required that

x ≥ 2 otherwise π(x) = 0.
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It was not until Littlewood [13] in 1914, that we had proof that the logarithmic integral

function underestimates the prime counting function for some large x. He showed that

there were infinitely many crossover points, where the value of π(x)− li(x) became positive

rather than negative. He also showed that there exists a positive number K, for which

the function
{π(x)− li(x)} log(x)√

x log log log(x)

is greater than K and less than −K for arbitrarily large values of x. This was an existence

proof, his paper did not state where the first (or indeed any) crossover point lies.

The first bound on the location of the first crossover point was given by Skewes, and

hence this first crossover value was dubbed as Skewes’ number. In his 1933 paper [22] he

bounds the first crossover by 1010
1034

, this bound assumed that the Riemann Hypothesis

held true1. In 1955, Skewes [23] gave a bound which did not require the assumption of the

Riemann Hypothesis: 1010
10964

.

One of Riemann’s well known contributions to mathematics is the prime power

counting function Π(x):

Π(x) =
∑
pn≤x

1 =

∞∑
n=1

π(x1/n)

n
= π(x) +

1

2
π(x1/2) +

1

3
π(x1/3) + · · · . (1)

In 1859, Riemann [17] formed a relationship between π(x) and li(x) using this prime power

counting function:

Π(x) = li(x)−
∑
ρ

li(xρ)− log(2) +

∫ ∞
x

dt

(t2 − 1)t log(t)
for x > 1, (2)

where the sum over ρ denotes the sum over the zeros of the Riemann zeta function, see

below.

To evaluate the logarithmic integral of a complex argument, the following result was

defined for z = u+ iv ∈ C and v 6= 0,

li(ez) =

∫ u+iv

−∞+iv

et

t
dt.

We can perform integration by parts on this integral to obtain an expansion which we will

use frequently.

li(ez) =
ez

z
+
ϑez

z2
(3)

=
ez

z
+
ez

z2
+

2ϑez

z3
. (4)

1.2.2 Riemann zeta function

Another popular area of mathematics has been that of infinite series. One of the most

well known infinite series is defined by the Riemann zeta function ζ(s). This is expressed

1In this paper we define Skewes’ number to be the smallest x for which π(x) > li(x), rather than this
first bound that Skewes’ discovered.
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as

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · · .

This series converges for all s > 1, and diverges for all s ≤ 1. If we were to let s represent

a complex number, that is; let s = σ+ it, where σ, t ∈ R, then we have the result that the

Dirichlet series for ζ(s) converges for all σ = <(s) > 1, and diverges for all σ = <(s) ≤ 1.

Thanks to analytic continuation, however, we can extend the domain of ζ(s) to C \ {1},
that is, to the entire complex plane, apart from the point s = 1.

There are infinitely many solutions to the equation ζ(s) = 0; there are infinitely many

trivial solutions, which are at the points where s = −2n, for n ∈ N. There are also infinitely

many non-trivial solutions – these are the ones in which we are interested. The Riemann

Hypothesis states that all of the non-trivial solutions to the Riemann zeta function lie on

the line s = 1
2 + it. It has been shown that all non-trivial zeros ρ have the property that

0 < <(ρ) < 1, this region of the complex plane is known as the critical strip, and the line
1
2 + it is known as the critical line. To this day, billions of non-trivial solutions have been

found on this line. We will be making use of them in this paper.

Whilst the imaginary parts of the non-trivial zeros of the Riemann zeta function do

not appear to follow an obvious pattern, the number of zeros before a given point T in

the critical strip can be estimated by the following function, given by Backlund [2]:

N(T ) =
T

2π
log

(
T

2πe

)
+Q(T ), (5)

where Q(T ) = O(log(T )). One should take note that this is not the same as the commonly

used S(T ).

1.3 Previous work

The first improvement on Skewes’ bounds was given by Lehman in 1966 [12]. His paper

laid the foundations upon which nearly every paper written since has been based. He let

π(x) − li(x) be integrated against a Gaussian kernel over a finite interval, bounded any

error terms that arose, and performed numerical calculations on the sums of Riemann

zeta zeros to obtain a region where π(x) − li(x) is positive. He was able to find three

regions where it looked likely that a crossover point occurs, these regions were discovered

by identifying where the result of the sum

−
∑

0<|γ|≤T

eiγω

ρ

is somewhat larger than 1, where T is the largest imaginary part of a zero on the critical

strip used in the calculation, and γ = =(ρ). The parameter eω is the value of x in the

region being checked. These regions are in the vicinity of 1.398 × 10316, 6.663 × 10370

and 1.593× 101165, respectively. Lehman showed that there was a string of at least 10500

consecutive integers between 1.53× 101165 and 1.65× 101165 where π(x)− li(x) is positive.

This method did not assume the Riemann Hypothesis, but did contain an additional error

term in case it was shown not to be true!
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The next improvement on the upper bound for Skewes’ number came from te Riele [24],

in 1987. He lowered the bound to a region near 6.687 × 10370, confirming the second of

Lehman’s interval predictions.

In 1999, Bays and Hudson [3] succeeded in verifying the last of Lehman’s regions, as

they were the next to lower the bound again to 1.398244× 10316. To this day, the region

first verified by Bays and Hudson has been the subject of many papers, and it is believed

that this is the first region where a crossover takes place. Chao and Plymen [5] sharpened

the region given by Bays and Hudson in 2006. In 2010, Saouter and Demichel [20] brought

the bound down to 1.397199× 10316, which was improved on a few years later by Saouter,

Trudgian and Demichel [21] to 1.397167 × 10316. It is this last paper on which we base a

lot of our work in this paper.

2 Lehman’s theorem

As mentioned in the introduction, Lehman was the first to improve on the upper bound

for Skewes’ number. In this section we state some useful results and prove his theorem,

which we will later adapt to further improve the result.

2.1 Some results concerning π(x) and li(x)

We have established the link between the two functions π(x) and li(x), via the prime power

counting function Π(x). We can combine the results from (1) and (2) to obtain, for x > 1.

π(x) +
1

2
π(x1/2) +

1

3
π(x1/3) + · · ·

= li(x)−
∑
ρ

li(xρ)− log(2) +

∫ ∞
x

dt

(t2 − 1)t log(t)
. (6)

We can show the number of terms in the LHS of the expansion above is finite. Let

π
(
x1/k

)
/k be the last term in the expansion, then we want

π(x1/k) ≥ 1 ⇐⇒ x1/k ≥ 2,

and via algebraic manipulation, we get

x1/k ≥ 2,

1

k
log(x) ≥ log(2),

log(x)

log(2)
≥ k,

(7)

So we can state that there are at most k =
⌊
log(x)
log(2)

⌋
terms in the LHS of (6), where bxc is

the integer part of x.

Rosser and Schoenfeld [19] showed that, for x > 1

π(x) =
x

log(x)
+

3ϑx

2 log2(x)
. (8)
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Lehman used this result, along with the estimate π(x) < 2x
log(x) , to obtain the following:

1

2
π(x1/2) +

1

3
π(x1/3) + · · · = x1/2

log(x)
+ ϑ

{
3x1/2

log2(x)
+

2x1/3

log(x)

(
log(x)

log(2)

)}
.

We can also estimate the integral in (6), for x ≥ e,

0 <

∫ ∞
x

dt

(t2 − 1)t log(t)
< 2

∫ ∞
x

dt

t3
=

1

x2
< log(2),

and, since 2
log(2) + log(2) < 4, we obtain the result

π(x)− li(x) = − x1/2

log(x)
−
∑
ρ

li(xρ) + ϑ

(
3x1/2

log2(x)
+ 4x1/3

)
, (9)

for x ≥ e.
We are now in a position to state the theorem.

2.2 Statement of Lehman’s theorem

Theorem 2.1. Let A be a positive number such that β = 1
2 for all zeros ρ = 1

2 + iγ of

ζ(s) for which 0 < γ ≤ A. Let α, η and ω be positive numbers such that ω − η > 1 and

the conditions
4A

ω
≤ α ≤ A2 and

2A

ω
≤ η < ω

2
(10)

hold. Let

K(y) :=

√
α

2π
e−αy

2/2.

Then for 2πe < T ≤ A,

I(ω, η) :=

∫ ω+η

ω−η
K(u− ω)

u{π(eu)− li(eu)}
eu/2

du

= −1−
∑

0<|γ|≤T

eiγω

ρ
e−γ

2/2α +R.
(11)

Where

|R| ≤ s1 + s2 + s3 + s4 + s5 + s6

and

s1 =
3.05

ω − η
s2 = 4(ω + η)e−(ω−η)/6

s3 =
2e−αη

2/2

√
2παη

s4 = 0.08
√
αe−αη

2/2

s5 = e−T
2/2α

(
α

πT 2
log

T

2π
+

8 log T

T
+

4α

T 3

)
s6 = A log(A)e−A

2/2α+(ω+η)/2(4α−1/2 + 15η).

13



If the Riemann Hypothesis holds, we can ignore the term s6 and the inequalities given by

(10).

There are a couple of things to note before we prove this theorem. Firstly, the s6

error term is the aforementioned “extra error term” on page 11, in the scenario that the

Riemann Hypothesis does not hold. Second, there are a lot of parameters involved in

this theorem, effort has been put in to keep the same parameter labels unchanged since

Lehman first used them, so we display each parameter and its role in the problem in Table

1:

Table 1: Parameters
ω is the exponent of the centre of the interval along the real axis

being checked,
η is the radius of the interval,
α is a parameter relating to the Gaussian kernel being used,
A is the magnitude on the imaginary axis for which we know the

Riemann Hypothesis holds,
T is the largest imaginary part of a non-trivial Riemann zero

being used in our numerical calculations.

2.3 Preliminary proofs

Before we prove Lehman’s theorem, we state and prove some results which will help us

along the way.

Lemma 2.2. Let ϕ(t) be a continuous function which is positive and decreasing

monotonically for 2πe ≤ T1 ≤ t ≤ T2, then

∑
T1≤t≤T2

ϕ(γ) =
1

2π

∫ T2

T1

ϕ(t) log

(
t

2π

)
dt+ ϑ

{
4ϕ(T1) log(T1) + 2

∫ T2

T1

ϕ(t)

t
dt

}
.

Proof. We utilise Stieltjes integrals to prove this lemma.

∑
T1<γ≤T2

ϕ(γ) =

∫ T2

T1

ϕ(t)dN(t) =
1

2π

∫ T2

T1

ϕ(t) log

(
t

2π

)
dt+

∫ T2

T1

ϕ(t)dQ(t),

we have, by (5),∣∣∣∣∫ T2

T1

ϕ(t)dQ(t)

∣∣∣∣ = |ϕ(T2)Q(T2)− ϕ(T1)Q(T1)| −
∫ T2

T1

Q(t)dϕ(t),

≤ 2ϕ(T2) log(T2) + 2ϕ(T1) log(T1)− 2

∫ T2

T1

log(t)dϕ(t),

≤ 4ϕ(T1) log(T1) + 2

∫ T2

T1

ϕ(t)d log(t),

where Q(t) = ϑ(2 log(t)). Note this bound has been improved both by Trudgian [25] and

then by Platt and Trudgian [16].
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Lemma 2.3. If T ≥ 2πe, then

∑
γ>T

1

γn
< T 1−n log(T ), for n = 2, 3, . . .

Proof. Using Lemma 2.2, we get

∑
γ>T

1

γn
=

1

2π

∫ ∞
T

t−n log

(
t

2π

)
dt+ ϑT−n

(
4 log(T ) +

2

n

)

=
T 1−n

2π

(
log(T/2π)

n− 1
+

1

(n− 1)2

)
+ ϑT−n

(
4 log(T ) +

2

n

)
≤ T 1−n log(T )

(
1

2π
+

1

2π log(T )
+

4

T
+

1

T log(T )

)
< T 1−n log(T ).

One should note that for large T , we can improve this bound to T 1−n log(T )/(2π), however

for what we require the result in the proof is sufficient.

Lemma 2.4. We have ∑
γ>0

1

γ2
< 0.025.

Proof. See Appendix A.

It should be noted that this bound can be reduced to 0.0231055, however for the sake

of Lehman’s paper the lemma is sufficient.

Lemma 2.5. If α > 0, and ϕ(t) is positive and decreasing monotonically for t ≥ T > 0,

then ∫ ∞
T

ϕ(t)e−t
2/2αdt <

α

T
ϕ(T )e−T

2/2α.

Proof. We have that

d

dt

{
αe−t

2/2α

t

}
= −αe

−t2/2α

t2
− e−t2/2α,

and so, we have

∫ ∞
T

ϕ(t)e−t
2/2αdt <

∫ ∞
T

ϕ(t)
d

dt

(
−αe

−t2/2α

t

)
dt ≤ α

T
ϕ(T )e−T

2/2α.

The proofs of Lemma 2.2, Lemma 2.3 and Lemma 2.5 are taken directly from Lehman’s

paper [12], Lemma 2.4 is both stated and proven by Rosser [18], and we have verified the

calculation in Appendix A.

Lemma 2.6. Let α > 0 and let K(y) be as stated in Lehman’s theorem, then∫ ∞
−∞

K(y)eiγydy = e−γ
2/2α.
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Proof. This is simply a proof using algebraic manipulation.∫ ∞
−∞

K(y)eiγydy =

√
α

2π

∫ ∞
−∞

e−αy
2/2eiγydy

=

√
α

2π

∫ ∞
−∞

e−αy
2/2+iγydy

=

√
α

2π

∫ ∞
−∞

e−αy
2/2+iγy+γ2/2α−γ2/2αdy

= e−γ
2/2α

√
α

2π

∫ ∞
−∞

e−α(y
2−2iγy/α−γ2/α2)/2dy

= e−γ
2/2α

√
α

2π

∫ ∞
−∞

e−α(y−iγ/α)
2/2dy.

At this stage, let t =
√
α(y − iγ/α), then we get∫ ∞

−∞
K(y)eiγydy = e−γ

2/2α

√
α

2π

∫ ∞
−∞

e−α(y−iγ/α)
2/2dy

=
e−γ

2/2α

√
2π

∫ ∞
−∞

e−t
2/2dt

=
e−γ

2/2α

√
2π

√
2π

= e−γ
2/2α

the last evaluation being the well-known Gaussian integral, thus completing the proof.

Lemma 2.7. Let α > 0 and let K(y) be as stated in Lehman’s theorem, then∫ ∞
−∞

K(y)dy = 1.

Proof. Once again, we prove using algebraic manipulation, and using the change of

variables t =
√
αy: ∫ ∞

−∞
K(y)dy =

√
α

2π

∫ ∞
−∞

e−αy
2/2dy

=
1√
2π

∫ ∞
−∞

√
αe−αy

2/2dy

=
1√
2π

∫ ∞
−∞

e−t
2/2dt

=
1√
2π

√
2π

= 1.
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2.4 Proof of Lehman’s theorem assuming the Riemann Hypothesis

2.4.1 The s1 and s2 error terms

The proof of Lehman’s theorem is rather long, we have reworded certain sections and we

have amended some notation to fit with the other papers we are working with.

Proof. From (9), we let x = eu, and multiply throughout by the function ue−u/2, so that

we are working with smaller, “less massive” terms. So we have, for u > 1,

u{π(eu)− li(eu)}
eu/2

= −1−
∑
ρ

u li(eρu)

eu/2
+

3ϑ1
u

+
4uϑ2

eu/6
. (12)

This is what we will integrate against the Gaussian kernel K. We can split the integral

into three parts: ∫ ω+η

ω−η
K(u− ω)

u{π(eu)− li(eu)}
eu/2

du

=−
∫ ω+η

ω−η
K(u− ω)du−

∫ ω+η

ω−η
K(u− ω)

∑
ρ

u li(eρu)

eu/2
du

+

∫ ω+η

ω−η
K(u− ω)

(
3ϑ1
u

+
4uϑ2

eu/6

)
du.

(13)

We first evaluate the third term in (13). Since the kernel K is always positive, we have∫ ω+η

ω−η
K(u− ω)

(
3

u
+

4u

eu/6

)
du ≤ 3

ω − η
+ 4(ω + η)e−

ω−η
6 . (14)

This result corresponds to s2, and part of the s1 term in the statement of Lehman’s

theorem.

2.4.2 The −1 term and s3 error term

By symmetry, we have∫ ω−η

−∞
K(u− ω)du =

∫ ∞
ω+η

K(u− ω)du =

∫ ∞
η

K(y)dy

=

√
α

2π

∫ ∞
η

e−αy
2/2dy

=
1√
2πα

∫ ∞
ηα

e−t
2/2αdt

by letting t = αy. By Lemma 2.5 we get

1√
2πα

∫ ∞
ηα

e−t
2/2αdt <

1√
2πα

α

ηα
e−η

2α2/2α

=
e−αη

2/2

√
2παη

.
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From this, and Lemma 2.7, we can evaluate the first term in (13):

−
∫ ω+η

ω−η
K(u− ω)du = −

(∫ ∞
−∞

K(u− ω)du− 2

∫ ∞
ω+η

K(u− ω)du

)
= −1 + 2

∫ ∞
ω+η

K(u− ω)du

= −1 + 2

∫ ∞
η

K(y)dy

< −1 +
2e−αη

2/2

√
2παη

.

(15)

So we have both the −1 term in (11), and

s3 =
2e−αη

2/2

√
2παη

.

2.4.3 The sum and s4 and s5 error terms

By (3), and letting z = ρu− t, we have

li(eρu) =

∫ ρu

−∞+iγu

ez

z
dz = eρu

∫ ∞
0

e−t

ρu− t
dt. (16)

We can integrate this last integrand by parts to obtain∫ ∞
0

e−t

ρu− t
dt =

1

ρu
+

∫ ∞
0

e−t

(ρu− t)2
dt =

1

ρu
+

∫ ∞
0

ϑe−t

(γu)2
dt,

and so

li(eρu) =
eρu

ρu
+
ϑeβu

γ2u2
.

We now look at the last term of (13). Let A be as defined in Table 1, as the height up

the critical strip for which the Riemann Hypothesis holds, so β = 1
2 for |γ| ≤ A. We have

−
∑
ρ

∫ ω+η

ω−η
K(u− ω)

u li(eρu)

eu/2
du = S1 + S2 + S3, (17)

where

S1 + S2 = −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

u li(eρu)

eu/2
du

S3 = −
∑
|γ|>A

∫ ω+η

ω−η
K(u− ω)

u li(eρu)

eu/2
du.
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We can obtain S1 and S2 explicitly:

S1 + S2 = −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

u li(eρu)

eu/2
du

= −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

u

eu/2

(
eρu

ρu
+
ϑeβu

γ2u2

)
du

= −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

(
eiγu

ρ
+

ϑ

γ2u

)
du

= −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

eiγu

ρ
du−

∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

ϑ

γ2u
du.

So we have:

S1 = −
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

eiγu

ρ
du

|S2| ≤
∑
|γ|≤A

∫ ω+η

ω−η
K(u− ω)

ϑ

γ2u
du.

We begin by looking at the S1 term, by Lemma 2.6,

S1 = −
∑
|γ|≤A

eiωγ

ρ

∫ η

−η
K(y)eiγydy

= −
∑
|γ|≤A

eiωγ

ρ

(∫ ∞
−∞

K(y)eiγydy − 2<
(∫ ∞

η
K(y)eiγydy

))

= −
∑
|γ|≤A

eiωγ

ρ
e−γ

2/2α + 2<

∑
|γ|≤A

eiωγ

ρ

∫ ∞
η

K(y)eiγydy


= −

∑
|γ|≤A

eiωγ

ρ
e−γ

2/2α + 2ϑ

∣∣∣∣∣∣
∑
|γ|≤A

eiωγ

ρ

∣∣∣∣∣∣
∣∣∣∣∫ ∞
η

K(y)eiγydy

∣∣∣∣
= −

∑
|γ|≤A

eiωγ

ρ
e−γ

2/2α + 4ϑ
∑

0<γ≤A

1

γ

∣∣∣∣∫ ∞
η

K(y)eiγydy

∣∣∣∣ .
We can now perform integration by parts:∫ ∞

η
K(y)eiγydy =

[
K(y)eiγy

iγ

]∞
η

−
∫ ∞
η

K ′(y)eiγy

iγ
dy

= −K(η)eiγη

iγ
−
∫ ∞
η

K ′(y)eiγy

iγ
dy

=
eiγη

iγ

∫ ∞
η

K ′(y)dy −
∫ ∞
η

K ′(y)eiγy

iγ
dy

=

∫ ∞
η

K ′(y)
eiγη − eiγy

iγ
dy.
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Now we use the fact that K(y) is monotonically decreasing for y > 0 to show∣∣∣∣∫ ∞
η

K(y)eiγydy

∣∣∣∣ ≤ 2

γ

∫ ∞
η
|K ′(y)|dy =

2

γ
K(η) =

2

γ

√
α

2π
e−αη

2/2.

Then, by applying Lemma 2.4 and the inequality (2π)−
1
2 < 0.4, we get

S1 = −
∑
|γ|≤A

eiωγ

ρ
e−γ

2/2α + 8ϑ

√
α

2π
e−αη

2/2
∑

0<γ≤A

1

γ2

= −
∑
|γ|≤A

eiωγ

ρ
e−γ

2/2α + 0.08ϑ
√
αe−αη

2/2.

(18)

To make the numerical calculations simpler, we can calculate

−
∑

0<|γ|≤A

eiωγ

ρ
e−γ

2/2α

only for the zeta zeros up to T , at the cost of having an extra error term. Using Lemma

2.2: ∣∣∣∣∣∣
∑

T<|γ|≤A

eiωγ

ρ
e−γ

2/2α

∣∣∣∣∣∣ ≤2

 ∑
T<γ≤A

e−γ
2/2α

γ


≤

(∫ ∞
T

e−t
2/2α

πt
log

(
t

2π

)
dt+

8e−T
2/2α log(T )

T

+ 4

∫ ∞
T

e−t
2/2α

t2
dt

)
,

provided that T ≥ 2πe. Applying Lemma 2.5 to estimate the integrals, we obtain for

2πe ≤ T ≤ A∣∣∣∣∣∣
∑

T<|γ|≤A

eiωγ

ρ
e−γ

2/2α

∣∣∣∣∣∣ < e−T
2/2α

(
α

πT 2
log

(
T

2π

)
+

8 log(T )

T
+

4α

T 3

)
. (19)

Combining the results of (18) and (19), we get the sum to calculate, plus results for s4

and s5:

S1 = −
∑

0<|γ|≤T

eiωγ

ρ
e−γ

2/2α + s4 + s5, with

s4 = 0.08
√
αe−αη

2/2,

s5 = e−T
2/2α

(
α

πT 2
log

(
T

2π

)
+

8 log(T )

T
+

4α

T 3

)
.

(20)
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By Lemma 2.4, we can estimate S2. We have

|S2| =
∑

0<|γ|≤A

∫ ω+η

ω−η
K(u− ω)

ϑ

γ2u
du

≤
∑

0<|γ|≤A

1

γ2

∫ η

−η

K(y)

ω + y
dy

≤ 0.05

ω − η
.

(21)

This gives the remainder of our s1 term, when combined with the result from (14):

s1 =
3.05

ω − η
.

If we were to assume the truth of the Riemann Hypothesis, then we could combine the

results of (14), (15), (17), (20) and (21), and then let A→∞ to obtain the conclusion of

the theorem, with the estimate for s6 omitted.

2.5 Proof without the Riemann Hypothesis: the s6 error term

Thus far we have not made use of the conditions stated in (10). Here, we bound the S3

term.

Proof. We begin with the function

fρ(s) = ρse−ρs li(eρs)e−α(s−ω)
2/2

in the region −π
4 ≤ arg(s) ≤ π

4 . The inequality 5π
12 ≤ | arg(ρ)| ≤ π

2 holds for every zero

ρ because 0 < β < 1 and |γ| > 14. It follows from (3) that fρ(s) is a regular analytic

function in the region since π
6 < | arg(ρs)| < 3π

4 . Also, by (16), we have

|fρ(s)| =
∣∣∣ρse−ρs li(eρs)e−α(s−ω)

2/2
∣∣∣

=

∣∣∣∣ρse−ρs(eρs ∫ ∞
0

e−t

ρs− t
dt

)
e−α(s−ω)

2/2

∣∣∣∣
=

∣∣∣∣ρse−α(s−ω)2/2 ∫ ∞
0

e−t

ρs− t
dt

∣∣∣∣
≤
|ρs|

∣∣∣e−α(s−ω)2/2∣∣∣
|=(ρs)|

∫ ∞
0

e−tdt

≤ 2
∣∣∣e−α(s−ω)2/2∣∣∣ .

(22)

This is because:

ρs = |ρs|ei arg(ρs) = |ρs| cos(arg(ρs)) + i|ρs| sin(arg(ρs)),

and

|=(ρs)| = |ρs| sin(arg(ρs)) ≥ |ρs| sin
(π

6

)
=

1

2
|ρs|,

21



since the angle π
6 is “closer to the real axis” than the angle 3π

4 . In the sum

S3 = −
∑
|γ|>A

∫ ω+η

ω−η
K(u− ω)

u li(eρu)

eu/2
du

=

√
α

2π

∑
|γ|>A

1

ρ

∫ ω+η

ω−η
eu(ρ−1/2)fρ(u)du,

we perform integration by parts:∫ ω+η

ω−η
eu(ρ−1/2)fρ(u)du

=
e(uρ−1/2)

ρ− 1/2
fρ(u)

∣∣∣∣ω+η
ω−η
−
∫ ω+η

ω−η

eu(ρ−1/2)

ρ− 1/2
f ′ρ(u)du

=
e(ω+η)(ρ−1/2)

ρ− 1/2
fρ(ω + η)− e(ω−η)(ρ−1/2)

ρ− 1/2
fρ(ω − η)−

∫ ω+η

ω−η

eu(ρ−1/2)

ρ− 1/2
f ′ρ(u)du.

We perform integration by parts, again, to obtain∫ ω+η

ω−η
eu(ρ−1/2)fρ(u)du

=
eω(ρ−1/2)

ρ− 1/2

(
eη(ρ−1/2)fρ(ω + η)− e−η(ρ−1/2)fρ(ω − η)

)
− e(uρ−1/2)

(ρ− 1/2)2
f ′ρ(u)

∣∣∣∣ω+η
ω−η

−
∫ ω+η

ω−η

eu(ρ−1/2)

(ρ− 1/2)2
f ′′ρ (u)du

=
eω(ρ−1/2)

ρ− 1/2

(
eη(ρ−1/2)fρ(ω + η)− e−η(ρ−1/2)fρ(ω − η)

)
− eω(ρ−1/2)

(ρ− 1/2)2

(
eη(ρ−1/2)f ′ρ(ω + η)− e−η(ρ−1/2)f ′ρ(ω − η)

)
+

∫ ω+η

ω−η

eu(ρ−1/2)

(ρ− 1/2)2
f ′′ρ (u)du

This, in turn, gives us∫ ω+η

ω−η
eu(ρ−1/2)fρ(u)du

=

N−1∑
n=0

(−1)neω(ρ−1/2)(
ρ− 1

2

)n+1

(
eη(ρ−1/2)f (n)ρ (ω + η)− e−η(ρ−1/2)f (n)ρ (ω − η)

)
+

(−1)N(
ρ− 1

2

)N ∫ ω+η

ω−η
eu(ρ−1/2)f (N)

ρ (u)du,

where N is a positive integer, which we fix later.

We estimate f
(n)
ρ (u) for ω − η ≤ u ≤ ω + η with a contour integral around a circle of

radius r ≤ ω
4 about the point u. If s is on this circle, then Re(s)≥ ω − η − ω

4 because of

(10), and Im(s)≤ ω
4 . Thus the circle lies in the sector | arg s| ≤ π

4 where fρ(s) is regular

and satisfies (22). Therefore, for ω − η ≤ u ≤ ω + η, we have

f (n)ρ (u) =
n!

2πi

∮
fρ(s)

(s− u)n+1
ds,
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and hence ∣∣∣f (n)ρ (u)
∣∣∣ ≤ 2n!

rn
max
|s−u|=r

∣∣∣e−α(s−ω)2/2∣∣∣ .
If s = σ + it, then on the circle (σ − u)2 + t2 = r2∣∣∣e−α(s−ω)2/2∣∣∣ = eα(t

2−(σ−ω)2)/2 = eα(r
2−(σ−u)2−(σ−ω)2)/2 ≤ eαr2/2.

If N ≤ αω2

16 , then we can let r =
√

N
α and obtain

∣∣∣f (N)
ρ (u)

∣∣∣ ≤ 2N !N−N/2αN/2eN/2 = 2N !
(αe
N

)N/2
(23)

for ω − η ≤ u ≤ ω + η. To estimate the derivatives at ω ± η, let r = η
2 , which is less than

ω
4 , by (10). On the circle |s− (ω ± η)| = r we have∣∣∣e−α(s−ω)2/2∣∣∣ = eα(η

2/4−(σ−(ω±η))2−(σ−ω)2)/2 ≤ e−αη2/8,

and thus ∣∣∣f (n)ρ (ω ± η)
∣∣∣ ≤ 2n!

(η
2

)−n
e−αη

2/8. (24)

Using (23) and (24) and the fact that all of the zeros lie in 0 < β < 1, we obtain

|S3| ≤ 2

√
α

2π
e(ω+η)/2

∑
γ>A

(
4e−αη

2/8

γ2

N−1∑
n=0

n!

(γη/2)2
+

4ηN !

γN+1

(αe
N

)N/2)
,

provided 1 ≤ N ≤ αω2

16 . We now let N =
[
A2

α

]
. By (10), we have 1 ≤ N ≤ A2

α ≤
αω2

16 , as

required. Applying Lemma 2.3 and observing that, by (10), we obtain

∑
γ>A

4e−αη
2/8

γ2

N−1∑
n=0

n!

(γη/2)2
≤ 4e−αη

2/8 log(A)

N−1∑
n=0

Nn

(η/2)2AN+1

≤ 4e−αη
2/8N log(A)

A

≤ 4e−αη
2/8A log(A)

α
.

Also, since A2

α − 1 < N < A2

α , we have

∑
γ>A

4ηN !

γN+1

(αe
N

)N/2
≤ 4ηe1−NNN+1/2

(αe
N

)N/2
A−N log(A)

≤ 4ηe1−N/2N1/2

(
A2

Nα

)−N/2
log(A)

≤ 4e3/2ηe−A
2/2αAα−1/2 log(A).

Since (2π)−1/2 < 0.4 and e3/2 < 4.5 it follows from (10) that

|S3| ≤ 4α−1/2A log(A)e−αη
2/8+(ω+η)/2 + 15ηA log(A)e−A

2/2α+(ω+η)/2

≤ A log(A)e−A
2/2α+(ω+η)/2(4α−1/2 + 15η).
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Thus giving us the value of s6, completing the proof!

3 Improvements to Lehman’s theorem

3.1 Changes due to time

As referenced before, several improvements have been made in closing the bound on

Skewes’ number. When Lehman published his paper in 1966, he had his value of ω set

around 2862.9768, the largest of his three estimates for a crossover point. His other

parameters were T = 12, 000, α = 107, A = 170, 000 and η = 0.034, he used

approximately 12,520 zeta zeros.

Without any extra work we can immediately improve on these parameters; the number

of zeta zeros we have access to has increased by several orders of magnitude, which means

we can increase our value of T , which results in a decrease of the s4 error term. With

similar reasoning, A can be increased since we have verified the Riemann Hypothesis to a

much higher point up the critical line, causing a decrease in the s5 error term.

These increases do not come for free, unfortunately, as we have to abide by the

restrictions placed in (10). We can note that an increase in A justifies potential increases

in α and η. An increase in α results in the graph of the Gaussian kernel having a

“narrower bell-curve”, which, in turn, would mean we could work with a smaller η to

give us a narrower interval to integrate against. This means we need to bear in mind not

to increase α to the point where we have to increase η, as well as not letting the s5 error

term get too large.

3.2 Improvements in previous papers

It was shown by te Riele [24] that there was a crossover point in the vicinity of 6.663×10370.

He followed Lehman’s theorem, but used improved parameters, he also used the first 50,000

zeta zeros, the first 15,000 to an accuracy of around 28 digits, and the remainder to around

14 digits.

Bays and Hudson [3] did similar with their paper showing a crossover point around

1.398× 10316. They used 1,000,000 zeros, 20 times that of te Riele.

Chao and Plymen [5] were the first to make modifications to Lehman’s theorem. They

reduced the constant in the leading s1 error term from 3.05 to 2.1611 (their paper

incorrectly states 2.1111 as the improved error term). Using their improvement, and

with 2,000,000 zeta zeros at their disposal, they tightened the interval which Bays and

Hudson discovered.

Saouter and Demichel [20] further bound the s1 error term by using a different estimate

for π(x), by Dusart [7], as an improvement as the one given in (8). Dusart’s estimate is

π(x) ≤ x

log(x)

(
1 +

1

log(x)
+

2.51

log2(x)

)
,

for x ≥ 355, 991. They also greatly increased the number of zeta zeros used to 22,000,000.

Saouter, Trudgian and Demichel [21] improved further by modifying the weight function
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in the integral against the Gaussian kernel, that is, their integral was∫ ω+η

ω−η
K(u− ω)

u{π(eu)− li(eu)}
eu/2

(
1 + 2

u + 10.04
u2

)du,
they also derived an improved version of Lehman’s theorem and utilised 525,000,000 zeta

zeros.

4 New theorem

Here we state our theorem, which we will prove in Section 6.

Theorem 4.1. Let α, η and ω be positive numbers such that ω − η > 43.7, and let

K(y) :=

√
α

2π
e−αy

2/2. (25)

Then for 2πe < M ≤ T ,

I(ω, η) :=

∫ ω+η

ω−η
K(u− ω)

u{π(eu)− li(eu)}
eu/2

du

> C −
∑

0<|γ|≤T

eiγω

ρ
e−γ

2/2α −
∑

0<|γ|≤M

eiγω

ρ2ω
e−γ

2/2α + E.
(26)

Where C is equal to the integral

−
∫ ω+η

ω−η
K(u− ω)

u li(eu/2)

2eu/2
du, (27)

and

|E| ≤ R1 +R2 +R3 +R4 +R5 +R6

and

R1 =
1.812(ω + η)

e(ω−η)/6
,

R2 =0.024e−(ω−η)/4
(

1 +
4

ω − η

)
+ e1/32α−ω/4(1.301 + 0.04α)

+
2e1/32α−ω/4

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ log (4αη − 1) + 0.9321

)
,

R3 =
αe−T

2/2α

2π
log

(
T

2π

)(
1

T 3
+

2

T 2

)
R4 =

K(η)

αη

(
1

π
log2

(αη
π

)
+ 4 log(2αη) + 4.52

)
R5 =

2αe−M
2/2α log

(
M
2π

)
2πωM3

+
K(η)

αωη

(
0.047 +

1

αη

)
+

0.019√
αω2

R6 =
2.92× 10−3

(ω − η)2
.

It should be noted that the Riemann Hypothesis is assumed for this theorem.

Before we prove this theorem, one note is that by immediate comparison, our theorem
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looks a lot “messier” than Lehman’s. This is because in trying to improve accuracy

wherever we can, some of our error terms have been bounded more strictly.

Another thing to note is the addition of the parameter M . To make the calculation

process easier, we are going to calculate the first term of the expansion of the logarithmic

integral (4) with all T zeta zeros at our disposal. Whereas we are going to calculate using

the second term only up to M zeros.

One should take note of the restriction that ω − η > 43.7, this is set because it has

been shown that π(x) < li(x) for all x < e43.7, so it is pointless to consider lesser x.

We next state a corollary to our theorem, which utilises optimised parameters, which

we shall prove in Section 7

Corollary 4.1 (Optimisation). Let T , ω and E be positive numbers such that M , T > 109,

ω > 400 and 4.15× 10−6 < E < 1. If we let

α =
T 2

2W

(
log( T2π )(2+ 1

T )
4πE−3.3×10−7)

) ,
and

η =

√
2

α
log

(
0.00019

√
α

E2

)
,

where W (x) is the Lambert W-function2, and let K(y) be as in (25), I(ω, η) be as in (26)

and C be as in (27). Then, for 2πe < M ≤ T ,

I(ω, η) = C −
∑

0<|γ|≤T

eiγω

ρ
e−γ

2/2α −
∑

0<|γ|≤M

eiγω

ρ2ω
e−γ

2/2α + ϑE.

It should be noted that the Riemann Hypothesis is assumed for this corollary.

It is worth noting that the purpose of this corollary is not to identify the best options for

both α and η, simply because there is no best value for both simultaneously. This corollary

aims to identify an estimate for the best possible α for the numerical calculations, followed

by a corresponding η which keeps the total error terms below a specified value E.

5 Prerequisite results

Here we state a few results we will need to know in order to complete the proof of our

theorem. First of all, we state and prove the following lemma regarding sums of reciprocals

of powers of the imaginary parts of zeta zeros:

2The Lambert W-function is defined as the multivalued inverse function of f(x) = xex [27]
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Lemma 5.1. We have ∑
γ>0

1

γ2
< 0.0231055

∑
γ>0

1

γ3
< 0.00072955

∑
γ>0

1

γ4
< 0.0000371727.

(28)

Proof. We know the results of these sums for 0 < γ < 42, 653, 550, from Saouter, Trudgian

and Demichel [21] (Lemma 2.9), we then apply Lemma 2.3 for the remaining zeros.3

This final lemma will prove useful a few times in our proof:

Lemma 5.2. Let K(x) be defined as in Theorem 4.1 equation (25), then for t, ε > 0, we

have ∣∣∣∣∫ ∞
ε

K(x)eixtdx

∣∣∣∣ < K(ε) min

{
1

αε
,
2

t

}
. (29)

Proof. This proof has two parts, one for each bound:∣∣∣∣∫ ∞
ε

K(x)eixtdx

∣∣∣∣ ≤∫ ∞
ε

√
α

2π
e−αx

2/2dx

=

∫ ∞
αε

1√
2πα

e−y
2/2αdy

<
1√
2πα

α

αε
e−(αε)

2/2α

=
1√

2παε
e−αε

2/2

=
K(ε)

αε
,

by Lemma 2.5. We also have∫ ∞
ε

K(x)eixtdx =

[
K(x)eixt

it

]∞
ε

−
∫ ∞
ε

K ′(x)eixt

it
dx

=− K(ε)eiεt

it
−
∫ ∞
ε

K ′(x)eixt

it
dx

=
eiεt

it

∫ ∞
ε

K ′(x)dx−
∫ ∞
ε

K ′(x)eixt

it
dx

=

∫ ∞
ε

K ′(x)
eiεt − eixt

it
dx,

from which we get∣∣∣∣∫ ∞
ε

K ′(x)
eiεt − eixt

it
dx

∣∣∣∣ ≤ 2

t

∫ ∞
ε
|K ′(x)|dx =

2K(ε)

t
.

Taking the minimum of these two upper bounds completes the proof.

3One should note that the proof in Appendix A is just for the proof of Lemma 2.4, Wolfram Mathematica
10 only has access to 107 zeta zeros, which results in less than a desired accuracy.

27



We next state a couple of results which we will be using a lot, which is summing

expressions containing zeros in complex conjugate pairs:

eiuγ

1
2 + iγ

+
e−iuγ

1
2 − iγ

=
cos(uγ) + i sin(uγ)

1
2 + iγ

+
cos(uγ)− i sin(uγ)

1
2 − iγ

=
cos(uγ) + 2γ sin(uγ)

1
4 + γ2

.

(30)

and

eiuγ

(12 + iγ)2u
+

e−iuγ

(12 − iγ)2u
=

cos(uγ) + i sin(uγ)

(12 + iγ)2u
+

cos(uγ)− i sin(uγ)

(12 − iγ)2u

=

(
1
2 − 2γ2

)
cos(uγ) + 2γ sin(uγ)(
1
4 + γ2

)2
u

.

(31)

We also note a result given by Saouter, Trudgian and Demichel [21], which is obtained by

applying Lemma 2.2 when ϕ(t) = 1
t :

∑
2πe<γ≤T

1

γ
=

1

2π

∫ T

2πe

1

t
log

(
t

2π

)
dt+ ϑ

{
2 log(2πe)

πe
+ 2

∫ T

2πe

dt

t2

}

=
1

2π

[
1

2
log2

(
t

2π

)]T
2πe

+ ϑ

{
2 log(2πe)

πe
+ 2

[
−1

t

]T
2πe

}

=
1

4π

(
log2

(
T

2π

)
− 1

)
+ ϑ

{
2 log(2πe) + 1

πe

}
=

1

4π
log2

(
T

2π

)
+ 0.8614ϑ.

There is only one zeta zero which has imaginary part less than 2πe, so we have

∑
γ≤T

1

γ
=

1

4π
log2

(
T

2π

)
+ 0.9321ϑ, (32)

this is the sum of the reciprocals of all zeta zeros up to T . As with the proof of Lemma

2.2, we also require that Q(t) = ϑ(2 log(t)) for this result to hold.

6 Proof of our theorem (Theorem 4.1)

6.1 A better integrand

We begin our proof by restating a result used before; the equation relating π(x) and li(x):

π(x)− li(x) =− 1

2
π(x1/2)− 1

3
π(x1/3)− . . .

−
∑
ρ

li(xρ) +

∫ ∞
x

dt

(t2 − 1)t log(t)
− log(2),

≥− 1

2
π(x1/2)− 1

3
π(x1/3)− . . .−

∑
ρ

li(xρ)− log(2).

(33)
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We know that the integral above is positive, and for values of x greater than e43.7, the

value of the integral is less than 10−39, so we can afford to ignore it in this inequality since

some of our error terms will have a much larger magnitude.

Rosser and Schoenfeld [19] discovered an inequality regarding π(x) which we will make

use of4, for all x ≥ 17:

π(x) <
1.25506x

log(x)
. (34)

We can further bound the result in (33) with the following inequality, in a similar

manner to (7):

−1

3
π(x1/3)− 1

4
π(x1/4)− . . . ≥ −1

3
π(x1/3)

⌊
log(x)

log(2)

⌋
,

which gives us

π(x)− li(x) ≥ −1

2
π(x1/2)− 1

3
π(x1/3)

⌊
log(x)

log(2)

⌋
−
∑
ρ

li(xρ)− log 2,

> −1

2
π(x1/2)− 1.25506x1/3

log(2)
−
∑
ρ

li(xρ)− log 2,

by (34). At this stage, instead of estimating π(x1/2) by an analytic function as has been

done before, we substitute in an expression derived from the equalities for Π(x), above:

π(x1/2) +
1

2
π(x1/4) +

1

3
π(x1/6) + . . . = li(x1/2)−

∑
ρ

li(xρ/2)

+

∫ ∞
x1/2

dt

(t2 − 1)t log(t)
− log(2),

we can then manipulate this to give:

π(x1/2) =− 1

2
π(x1/4)− 1

3
π(x1/6)− . . .+ li(x1/2)−

∑
ρ

li(xρ/2)

+

∫ ∞
x1/2

dt

(t2 − 1)t log(t)
− log(2).

Then we can multiply through by −1
2 :

−1

2
π(x1/2) =

1

4
π(x1/4) +

1

6
π(x1/6) + . . .− 1

2
li(x1/2) +

1

2

∑
ρ

li(xρ/2)

− 1

2

∫ ∞
x1/2

dt

(t2 − 1)t log(t)
+

1

2
log(2),

≥− 1

2
li(x1/2) +

∑
ρ

li(xρ/2)

2
.

Once again, the negligibility of the integral means it gets swallowed up in the inequality,

as does that of the x1/4/ log(x) term and the 1
2 log(2) term5, we can substitute this into

4We could find a much better inequality, however this simple one suits our needs, which will become
apparent.

5As an example if we let x = 10316 (which is in the region we are searching), the dominant term will
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our result:

π(x)− li(x) >− 1

2
li(x1/2)−

∑
ρ

li (xρ) +
∑
ρ

li
(
xρ/2

)
2

− 1.25506x1/3

log(2)
− log(2),

>− 1

2
li(x1/2)−

∑
ρ

(
li (xρ)− 1

2
li(xρ/2)

)
− 1.25506x1/3

log(2)
− log(2).

As we did previously, we replace x with eu, and we also multiply through by the function

ue−u/2:

u{π(eu)− li(eu)}
eu/2

>−
u li
(
eu/2

)
2eu/2

−
∑
ρ

2u li (eρu)− u li
(
e
ρu
2

)
2eu/2


− 1.25506u

log(2)eu/6
− u log(2)

eu/2
.

One should note that we differ here from previous papers; most recently, Saouter, Trudgian

and Demichel [21] multiplied their estimate for π(x) − li(x) by a function such that their

first term to be integrated became exactly 1. However, it is the above expression we will

integrate against the Gaussian kernel:∫ ω+η

ω−η
K(u− ω)

u{π(eu)− li(eu)}
eu/2

du

>−
∫ ω+η

ω−η
K(u− ω)

u li(eu/2)

2eu/2
du

−
∫ ω+η

ω−η
K(u− ω)

∑
ρ

2u li(eρu)− u li
(
e
ρu
2

)
2eu/2

 du

−
∫ ω+η

ω−η
K(u− ω)

(
1.25506u

log(2)eu/6
+
u log(2)

eu/2

)
du.

(35)

We can evaluate the first integral with relative ease, this is our C term in Theorem 4.1.

We can bound the third integral, which will be our R1 error term:∣∣∣∣∫ ω+η

ω−η
K(u− ω)

(
1.25506u

log(2)eu/6
+
u log(2)

eu/2

)
du

∣∣∣∣ ≤ max
u∈[ω−η,ω+η]

[
1.25506u

log(2)eu/6
+
u log(2)

eu/2

]
≤ 1.811(ω + η)

e(ω−η)/6
+

(ω + η) log(2)

e(ω−η)/2

=
1.811(ω + η)

e(ω−η)/6
+

log(2)

e(ω−η)/3
ω + η

e(ω−η)/6

≤ 1.812(ω + η)

e(ω−η)/6
,

since log(2)/e(ω−η)/3 ≤ 5× 10−7 for all ω − η ≥ 43.7.

be li(x1/2) = li(10158) ≈ 10155, compared with x1/4/ log(x) = 1079/ log(10316) ≈ 1.4 × 1076.
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6.2 The R2 error term

All of our attention is now focused on the second integral in (35). We begin by splitting

the integral in two:

−
∫ ω+η

ω−η
K(u− ω)

∑
ρ

2u li(eρu)− u li
(
e
ρu
2

)
2eu/2

 du

=−
∫ ω+η

ω−η
K(u− ω)

∑
ρ

(
u li(eρu)

eu/2

)
du+

1

2

∫ ω+η

ω−η
K(u− ω)

∑
ρ

u li
(
e
ρu
2

)
eu/2

 du.

(36)

The second integral in (36) is our second error term, R2. We utilise the expansion of the

logarithmic integral given in (3) and use the result from (30):

1

2

∫ ω+η

ω−η
K(u− ω)

∑
ρ

u li
(
e
ρu
2

)
eu/2

 du

=
1

2

∫ ω+η

ω−η
K(u− ω)

u

eu/2

∑
ρ

(
eρu/2

ρu/2
+

ϑeρu/2

(ρu/2)2

)
du

=
1

2

∫ ω+η

ω−η
K(u− ω)

∑
|γ|>0

(
2e−u/4+iuγ/2

1
2 + iγ

+
4ϑe−u/4+iuγ/2(

1
2 + iγ

)2
u

)
du

≤
∫ ω+η

ω−η
K(u− ω)e−u/4

∑
γ>0

cos
(uγ

2

)
+ 2γ sin

(uγ
2

)
1
4 + γ2

du

+

∫ ω+η

ω−η
K(u− ω)

e−u/4

u

∑
γ>0

(
4

γ2
+

4

γ3
+

1

γ4

)
du.

(37)

There are two separate integrals here which we bound individually. We tackle the first

one first. We can split this into two separate terms which we will bound separately. The

cosine term is absolutely convergent, whilst the sine term is conditionally convergent.

∑
γ>0

1
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 cos

(uγ
2

)
du

+
∑
γ>0

2γ
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du,

(38)

We take the first term, and bound the cosine term by 1:∣∣∣∣∣∣
∑
γ>0

1
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 cos

(uγ
2

)
du

∣∣∣∣∣∣
≤
∑
γ>0

1

γ2

∫ ω+η

ω−η
K(u− ω)e−u/4du

≤
∑
γ>0

1

γ2
max

u∈[ω−η,ω+η]
e−u/4

≤0.024e−(ω−η)/4.

(39)
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We now look at the second term in (38):

∑
γ>0

2γ
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du,

we can estimate the integral using Lemma 2.6:∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du

=

(∫ ∞
−∞
−
∫ ω−η

−∞
+

∫ ∞
ω+η

)
K(u− ω)e−u/4 sin

(uγ
2

)
du.

We have ∫ ∞
−∞

K(u− ω)e−u/4 sin
(uγ

2

)
du

==
[∫ ∞
−∞

K(u− ω)e−u/4eiuγ/2du

]
==

[∫ ∞
−∞

√
α

2π
Exp

(
−α

2
(u− ω)2 − u

4
+
iuγ

2

)
du

]
==

[∫ ∞
−∞

√
α

2π
Exp

(
−α

2

(
u2 − 2uω + ω2 +

u

2α
− iuγ

α

))
du

]
==

[∫ ∞
−∞

√
α

2π
Exp

(
−α

2

((
u− ω +

1

4α
− iγ

2α

)2

+
ω

2α
− iωγ

α
+

iγ

4α2
− 1

16α2
+

γ2

4α2

))
du

]
==

[∫ ∞
−∞

K

(
u− ω +

1

4α
− iγ

2α

)
Exp

(
−ω

4
+
iωγ

2
− iγ

8α
+

1

32α
− γ2

8α

)
du

]
==

[
Exp

(
−ω

4
+
iωγ

2
− iγ

8α
+

1

32α
− γ2

8α

)]
=e−ω/4+1/32α−γ2/8α sin

(
γ

2

(
ω − 1

4α

))
,

since
∫∞
−∞K(y)dy = 1, by Lemma 2.7. We also have, via similar argument∫ ∞

ω+η
K(u− ω)e−u/4 sin

(uγ
2

)
du

=

∫ ∞
η

K(x)e−(x+ω)/4 sin

(
(x+ ω)γ

2

)
dx

==
[∫ ∞

η

√
α

2π
Exp

(
−αx

2

2
− x+ ω

4
+
i(x+ ω)γ

2

)
dx

]
==

[∫ ∞
η

√
α

2π
Exp

(
−α

2

(
x2 − x

2α

))
Exp

(
ixγ

2
− ω

4
+
iωγ

2

)
dx

]
==

[∫ ∞
η

√
α

2π
Exp

(
−α

2

(
x− 1

4α

)2

− 1

16α2

)
Exp

(
ixγ

2
− ω

4
+
iωγ

2

)
dx

]

==
[∫ ∞

η
K

(
x− 1

4α

)
eixγ/2 Exp

(
1

32α
− ω

4
+
iωγ

2

)
dx

]
.
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We can bound this integral with Lemma 5.2, so we have

==
[∫ ∞

η
K

(
x− 1

4α

)
eixγ/2 Exp

(
1

32α
− ω

4
+
iωγ

2

)
dx

]
≤K

(
η − 1

4α

)
min

{
1

αη − 1
4

,
4

γ

}∣∣∣∣Exp

(
1

32α
− ω

4
+
iωγ

2

)∣∣∣∣
=K

(
η − 1

4α

)
min

{
1

αη − 1
4

,
4

γ

}
e1/32α−ω/4.

We can combine our results to give∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du

=e−ω/4+1/32α−γ2/8α sin

(
γ

2

(
ω − 1

4α

))
+ 2ϑK

(
η − 1

4α

)
min

{
1

αη − 1
4

,
4

γ

}
e1/32α−ω/4

≤e1/32α−ω/4−γ2/8α +K

(
η − 1

4α

)
min

{
2

αη − 1
4

,
8

γ

}
e1/32α−ω/4,

and thus: ∣∣∣∣∣∣
∑
γ>0

2γ
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du

∣∣∣∣∣∣
≤2e1/32α−ω/4

∑
γ>0

e−γ
2/8α

γ
+K

(
η − 1

4α

)∑
γ>0

min
{

2
αη−1/4 ,

8
γ

}
γ

 .

We have the result that min
{

2
αη−1/4 ,

8
γ

}
is 2

αη−1/4 for γ < 4αη − 1, and 8
γ , otherwise, so

our result becomes∣∣∣∣∣∣
∑
γ>0

2γ
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du

∣∣∣∣∣∣
≤2e1/32α−ω/4

∑
γ>0

e−γ
2/8α

γ
+

∑
0<γ≤4αη−1

2

γ (αη − 1/4)
+

∑
γ>4αη−1

8

γ2

 .
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Each of these terms can be bounded with lemmas from Section 2.3; we have, letting δ = 4α

∑
γ>0

e−γ
2/8α

γ
=
e−γ

2
1/2δ

γ1
+
∑
γ>γ1

e−γ
2/2δ

γ

≤e
−γ21/2δ

γ1
+

1

2π

∫ ∞
γ2

e−t
2/2δ log

(
t
2π

)
t

dt+
4e−γ

2
2/2δ log(γ2)

γ2

+ 2

∫ ∞
γ2

e−t
2/2δ

t2
dt

<
e−γ

2
1/2δ

γ1
+

1

2π

δe−γ
2
2/2δ log

( γ2
2π

)
γ22

+
4e−γ

2
2/2δ log(γ2)

γ2

+
2δe−γ

2
2/2δ

γ22

<
1

γ1
+

4

γ2

(
α log

( γ2
2π

)
πγ2

+ log(γ2) +
2α

γ2

)
.

(40)

We also have ∑
0<γ≤4αη−1

2

γ
(
αη − 1

4

) =
2

αη − 1
4

∑
0<γ≤4αη−1

1

γ

≤ 2

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ 0.9321

)
.

(41)

Finally, we have

∑
γ>4αη−1

8

γ2
≤ 8 log(4αη − 1)

4αη − 1
=

2 log(4αη − 1)

αη − 1
4

. (42)

Combining the results of (40), (41) and (42),∣∣∣∣∣∣
∑
γ>0

2γ
1
4 + γ2

∫ ω+η

ω−η
K(u− ω)e−u/4 sin

(uγ
2

)
du

∣∣∣∣∣∣
≤2e1/32α−ω/4

(
1

γ1
+

4

γ2

(
α log

( γ2
2π

)
πγ2

+ log(γ2) +
2α

γ2

)

+
2

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ log (4αη − 1) + 0.9321

))
.

(43)

We now look at the final term in (37); that is,∫ ω+η

ω−η
K(u− ω)

e−u/4

u

∑
γ>0

(
4

γ2
+

4

γ3
+

1

γ4

)
du

=
∑
γ>0

(
4

γ2
+

4

γ3
+

1

γ4

)∫ ω+η

ω−η
K(u− ω)

e−u/4

u
du

≤(4(0.0231055) + 4(0.00072955) + 0.0000371727) max
u∈[ω−η,ω+η]

e−u/4

u

≤0.096e−(ω−η)/4

ω − η

(44)
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by Lemma 5.1. Combining (39), (43) and (44) gives us∣∣∣∣∣∣12
∫ ω+η

ω−η
K(u− ω)

∑
ρ

u li
(
e
ρu
2

)
eu/2

 du

∣∣∣∣∣∣
≤0.024e−(ω−η)/4 +

0.096e−(ω−η)/4

ω − η

+ 2e1/32α−ω/4

(
1

γ1
+

4

γ2

(
α log

( γ2
2π

)
πγ2

+ log(γ2) +
2α

γ2

)

+
2

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ log (4αη − 1) + 0.9321

))

≤0.024e−(ω−η)/4
(

1 +
4

ω − η

)
+ e1/32α−ω/4(1.301 + 0.04α)

+
2e1/32α−ω/4

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ log (4αη − 1) + 0.9321

)
,

our R2 error term.

6.3 The R3 error term

We now look back at equation (36). The second term was our previous error term, so we

now look at the first. We split this integral by expanding out the logarithmic integral as

in (4), the first three terms of this expansion give us the following integrals.

−
∫ ω+η

ω−η
K(u− ω)

∑
ρ

(
u li(eρu)

eu/2

)
du

=−
∫ ω+η

ω−η
K(u− ω)

∑
γ

(
eiuγ

1
2 + iγ

)
du−

∫ ω+η

ω−η
K(u− ω)

∑
γ

(
eiuγ(

1
2 + iγ

)2
u

)
du

−
∫ ω+η

ω−η
K(u− ω)

∑
γ

(
ϑ

2eiuγ(
1
2 + iγ

)3
u2

)
du.

(45)

One should take note at this stage, that we could expand out the logarithmic integral

further, and obtain a greater accuracy at the expense of further error terms. However we

stick to three terms for the sake of saving computer processing power and time when it

comes to numerical evaluations, and, as we shall see later on, the overall error obtained

from three terms is sufficient for our needs.

Of the three terms in the RHS of (45), we split the first up and extract our R3 and

R4 error terms, as well as something to numerically calculate. The second term gives us

another term to calculate numerically and we get our R5 error term. Finally the third

term gives us our R6 error term.

Our aim in this subsection is to bound the first integral in (45). We begin by splitting
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up the integral:

−
∫ ω+η

ω−η
K(u− ω)

∑
γ

(
eiuγ

1
2 + iγ

)
du

=−
∫ ∞
−∞

K(u− ω)
∑
|γ|≤T

(
eiuγ

1
2 + iγ

)
du−

∫ ∞
−∞

K(u− ω)
∑
|γ|>T

(
eiuγ

1
2 + iγ

)
du

+

(∫ ω−η

−∞
+

∫ ∞
ω+η

)
K(u− ω)

∑
γ

(
eiuγ

1
2 + iγ

)
du.

(46)

The first term on the RHS of (46) is what will be calculated manually, see Section 8. The

second term is what we evaluate in this Subsection, and the third term will become R4 in

the next Subsection.

We begin by combining each zeta zero γ with its complex conjugate γ̄, as in (30):

−
∫ ∞
−∞

K(u− ω)
∑
|γ|>T

(
eiuγ

1
2 + iγ

)
du = −

∫ ∞
−∞

K(u− ω)
∑
γ>T

(
cos(uγ) + 2γ sin(uγ)

1
4 + γ2

)
du.

The first term in the sum gives us absolute convergence, and the second has conditional

convergence, so we can swap the order of summation and integration:∣∣∣∣∣∣
∫ ∞
−∞

K(u− ω)
∑
γ>T

(
cos(uγ) + 2γ sin(uγ)

1
4 + γ2

)
du

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ>T

1
1
4 + γ2

∫ ∞
−∞

K(u− ω) (cos(uγ) + 2γ sin(uγ)) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ>T

e−γ
2/2α

1
4 + γ2

(cos(ωγ) + 2γ sin(ωγ))

∣∣∣∣∣∣
<
∑
γ>T

e−γ
2/2α

γ2
+
∑
γ>T

2e−γ
2/2α

γ
.

We can use Lemma 2.5 to give us

∑
γ>T

e−γ
2/2α

γ2
+
∑
γ>T

2e−γ
2/2α

γ

<
1

2π

∫ ∞
T

e−t
2/2α

t2
log

(
t

2π

)
dt+

1

2π

∫ ∞
T

2e−t
2/2α

t
log

(
t

2π

)
dt

<
αe−T

2/2α

2π
log

(
T

2π

)(
1

T 3
+

2

T 2

)
.

This is our R3 error term.
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6.4 The R4 error term

We now look at the second term of (46):

(∫ ω−η

−∞
+

∫ ∞
ω+η

)
K(u− ω)

∑
γ

(
eiuγ

1
2 + iγ

)
du

=

(∫ ω−η

−∞
+

∫ ∞
ω+η

)
K(u− ω)

∑
γ>0

cos(uγ) + 2γ sin(uγ)
1
4 + γ2

du.

We perform the change of variables x = u+ ω, followed by applying Lemma 5.2:∣∣∣∣∣∣
(∫ ω−η

−∞
+

∫ ∞
ω+η

)
K(u− ω)

∑
γ>0

cos(uγ) + 2γ sin(uγ)
1
4 + γ2

du

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
γ>0

1
1
4 + γ2

(∫ −η
−∞

+

∫ ∞
η

)
K(x)(cos((x+ ω)γ) + 2γ sin((x+ ω)γ))dx

∣∣∣∣∣∣
<2K(η)

∑
γ>0

1 + 2γ

γ2
min

{
1

αη
,

2

γ

}
=

2K(η)

αη

∑
0<γ≤2αη

(
1

γ2
+

2

γ

)
+ 2K(η)

∑
γ>2αη

(
2

γ3
+

4

γ2

)

by Lemma 5.2. We can in turn bound this using Lemmas 2.3 and 5.1, and (32):

2K(η)

αη

∑
0<γ≤2αη

(
1

γ2
+

2

γ

)
+ 2K(η)

∑
γ>2αη

(
2

γ3
+

4

γ2

)

<
2K(η)

αη

(
0.0231055 +

1

2π
log2

(αη
π

)
+ 1.8642

)
+ 2K(η)

(
2 log(2αη)

(2αη)2
+

4 log(2αη)

2αη

)
<

2K(η)

αη

(
1

2π
log2

(αη
π

)
+ 1.888 +

log(2αη)

2αη
+ 2 log(2αη)

)
<
K(η)

αη

(
1

π
log2

(αη
π

)
+ 4 log(2αη) + 4.52

)
,

since log(x)/x ≤ 1
e . This is our R4 error term.

6.5 The R5 error term

We now look at the second term in (45). Since the sum has a factor of γ2 in the denominator

we have absolute convergence everywhere so we can freely swap the orders of summation
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and integration:

−
∫ ω+η

ω−η
K(u− ω)

∑
γ

(
eiuγ(

1
2 + iγ

)2
u

)
du

=−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)∫ η

−η

K(x)eixγ

1 + x
ω

dx

=−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)(∫ η

−η
K(x)eixγdx+

ϑ

ω

∫ η

−η
|x|K(x)dx

)

=−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)((∫ ∞
−∞
−
∫ −η
−∞
−
∫ ∞
η

)
K(x)eixγdx+

2ϑ

ω

∫ ∞
0

xK(x)dx

)

=−
∑
|γ|≤M

(
eiωγ(

1
2 + iγ

)2
ω

)∫ ∞
−∞

K(x)eixγdx−
∑
|γ|>M

(
eiωγ(

1
2 + iγ

)2
ω

)∫ ∞
−∞

K(x)eixγdx

+
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)(∫ −η
−∞

+

∫ ∞
η

)
K(x)eixγdx

−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)
2ϑ

ω

∫ ∞
0

xK(x)dx.

(47)

In the RHS of (47), the first term is the second term which will be calculated numerically,

whilst the remaining three become our R5 error term.

We will look at the first of these three terms first:

−
∑
|γ|>M

(
eiωγ(

1
2 + iγ

)2
ω

)∫ ∞
−∞

K(x)eixγdx,

the integral can be evaluated by Lemma 2.6. We bound the sum as follows:∣∣∣∣∣∣
∑
|γ|>M

(
eiωγ(

1
2 + iγ

)2
ω

)∫ ∞
−∞

K(x)eixγdx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|γ|>M

eiωγ(
1
2 + iγ

)2
ω
e−γ

2/2α

∣∣∣∣∣∣
≤
∑
γ>M

e−γ
2/2α

ωγ2
,

this, in turn, can be bounded by Lemmas 2.2 and 2.5:

∑
γ>M

e−γ
2/2α

ωγ2
≤ 1

2πω

∫ ∞
M

e−t
2/2α

t4
log

(
t

2π

)
dt+

4e−M
2/2α log(M)

M2
+ 2

∫ ∞
M

e−t
2/2α

t3
dt

<
1

2πω

α

M

e−M
2/2α log

(
M
2π

)
M2

+
4e−M

2/2α log(M)

M2
+

2α

M

e−M
2/2α

M3

=
αe−M

2/2α log
(
M
2π

)
2πωM3

+
4e−M

2/2α log(M)

M2
+

2αe−M
2/2α

M4

<
2αe−M

2/2α log
(
M
2π

)
2πωM3

.

The last two terms here are absorbed by the first, giving us the first part of R5. We next
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look at the next term in (47):

−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)(∫ −η
−∞

+

∫ ∞
η

)
K(x)eixγdx,

We can bound the sum as before, and we bound the integral using Lemmas 2.3, 5.1 and

5.2: ∣∣∣∣∣∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)(∫ −η
−∞

+

∫ ∞
η

)
K(x)eixγdx

∣∣∣∣∣
≤
∑
γ>0

2K(η)

ωγ2
min

{
1

αη
,

2

γ

}
=

2K(η)

αωη

∑
0<γ≤2αη

1

γ2
+

4K(η)

ω

∑
γ>2αη

1

γ3

≤0.047K(η)

αωη
+

4K(η) log(2αη)

4α2ωη2

≤K(η)

αωη

(
0.047 +

1

αη

)
,

our second term in R5. Finally we tackle the last term in (47):

−
∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)
2ϑ

ω

∫ ∞
0

xK(x)dx.

Once again, we bound the sum as previously, and explicitly evaluate the integral:

∑
γ

(
eiωγ(

1
2 + iγ

)2
ω

)
2ϑ

ω

∫ ∞
0

√
α

2π
xe−αx

2/2dx

≤
∑
γ>0

2ϑ

ω2γ2

[
−K(x)

α

]∞
0

≤
√

2√
παω2

∑
γ>0

1

γ2

<
0.019√
αω2

.

Combining the terms we have obtained gives us

2αe−M
2/2α log

(
M
2π

)
2πωM3

+
K(η)

αωη

(
0.047 +

1

αη

)
+

0.019√
αω2

,

our R5 error term.

6.6 The R6 error term

The term we will look at next is the third and final term of (45):

−
∫ ω+η

ω−η
K(u− ω)

∑
γ

(
ϑ

2eiuγ(
1
2 + iγ

)3
u2

)
du.
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We have absolute convergence throughout this term, so we can rearrange accordingly,

∫ ω+η

ω−η
K(u− ω)

∑
γ

∣∣∣∣∣ϑ 2eiuγ(
1
2 + iγ

)3
u2

∣∣∣∣∣ du ≤∑
γ>0

4

γ3

∫ ω+η

ω−η

K(u− ω)

u2
du

≤2.92× 10−3 min
u∈[ω−η,ω+η]

1

u2
du

=
2.92× 10−3

(ω − η)2
.

Identifying this final error term completes the proof of Theorem 4.1.

7 Optimisation

In this section we prove Corollary 4.1, which deals with optimising the parameters. The

parameters we are looking to optimise are α and η.

7.1 Initial bounds

Before we begin, we state a few loose restrictions on these parameters, they will help us

tighten α and η later on. We will require that αη2 > 20, this is to assure that the term

e−αη
2/2 (which crops up a lot) is sufficiently small.

Next, we state that

1015 < α < 4.7× 1020 and 2.07× 10−10 < η < 6.4× 10−6. (48)

The lower restriction on α and upper restriction on η comes from the fact that we are

aiming for this to improve upon previous work, which relies on achieving an α > 1015 and

η < 6.4 × 10−6, as used by Saouter, Trudgian and Demichel [21]. The upper restriction

on α comes from the requirement that −T 2

2α < −1, and the lower restriction on η comes

directly from αη2 > 20.

Finally, we will bound the total error from all terms, E, by 1.

We also make note that at the time of writing, we have access to just over 1011 zeros of

the Riemann zeta function, corresponding to a maximum possible T of 30, 610, 046, 000.

We will now look at each error term in turn.

7.2 R1

Our first error term
1.812(ω + η)

e(ω−η)/6

needs little optimising, simply due to the fact that our previous restriction of ω−η ≥ 43.7,

(see Theorem 4.1), means that our R1 error term is never greater than 0.055. Furthermore,

since we are mainly searching in regions where ω is greater than 700, we can rest assured

that our first error term is comfortably less than 10−45.

In their paper, Bays and Hudson [3] produced a plot ranging from 106 to 10400 of

li(x)− π(x), the smallest crossover point they make any note of is in the vicinity of e405,
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by setting our ω > 400 we get both coverage of every area Bays and Hudson noted, and it

means our R1 error is bounded above by 10−26. We create a similar plot in Appendix D.

7.3 R2

Our second error term

0.024e−(ω−η)/4
(

1 +
4

ω − η

)
+ e1/32α−ω/4(1.301 + 0.04α)

+
2e1/32α−ω/4

αη − 1
4

(
log2

(
4αη − 1

2π

)
+ log (4αη − 1) + 0.9321

)
,

also needs little optimising. For ω > 400, the first term is a lot less than 10−40, so we are

safe with there. Combining the second and third terms gives us a better idea of which

terms are largest:

e1/32α−ω/4

1.301 + 0.04α+
2 log2

(
4αη−1
2π

)
αη − 1

4

+
2 log (4αη − 1)

αη − 1
4

+
1.8642

αη − 1
4

 .
We can easily deduce that the second term is the largest. Our condition that αη2 is greater

than 20 ensures that the third and fourth terms do not grow anywhere near as large as

the second.

We require little optimising here since 0.04αe1/32α−ω/4 is a lot less than 10−20 for

ω ≥ 400 and α ≤ 5× 1020.

7.4 R5

The fifth error term is

2αe−M
2/2α log

(
M
2π

)
2πωM3

+
K(η)

αωη

(
0.047 +

1

αη

)
+

0.019√
αω2

.

We will split this up into the three terms and check each in turn. The first term

2αe−M
2/2α log

(
M
2π

)
2πωM3

is less than 7.51× 10−9 for all α < 5× 1020, ω > 400 and M > 109, so we are safe here.

The second term

K(η)

αωη

(
0.047 +

1

αη

)
=

e−αη
2/2

√
2πω

√
αη2

(
0.047 +

1

αη

)

relies on the fact that αη2 > 20, from this we have that the term outside the brackets is

bounded above by 1.02 × 10−8 for ω > 400, and the term inside the brackets is bounded

above by 0.047 + 4.84× 10−6 < 0.048, so the error for the whole term is less than 4.896×
10−10.

The final term
0.019√
αω2
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is less than 3.8× 10−15 for all α > 1015 and ω > 400.

Combining these results means that R5 never exceeds 8× 10−9.

7.5 R6

The final error term is
2.92× 10−3

(ω − η)2
,

which we can bound simply by
2.92× 10−3

ω2
.

This value is less than 1.825× 10−8 for all ω > 400, (and for ω = 728, larger than any ω

we will be checking, we have the result less than 5.51 × 10−9). This is the largest error

term which we will not be optimising.

7.6 Remaining terms

Until now we have been rather rash with our optimising, this is because the previous error

terms are almost negligible. The remaining error terms are where we will have to be a

little more careful, we have f(α) = R3 and g(α, η) = R4:

f(α) =
αe−T

2/2α

2π
log

(
T

2π

)(
1

T 3
+

2

T 2

)
g(α, η) =

K(η)

αη

(
1

π
log2

(αη
π

)
+ 4 log(2αη) + 4.52

)
.

The function f is increasing for α and g is a decreasing function for both α and η.

Combining all of our results thus far from this section, we can bound our total error

E, we have, for ω > 400:

f(α) + g(α, η) ≤ E − 2.625× 10−8.

We will find an upper bound for α; suppose we want f to be bounded by the RHS of

this sum E − 2.625× 10−8, we let A = 1
2π log

(
T
2π

) (
1
T 3 + 2

T 2

)
, for notational convenience:

Aαe−T
2/2α ≤ E − 2.625× 10−8

1

α
eT

2/2α ≥ A

E − 2.625× 10−8

T 2

2α
eT

2/2α ≥ T 2A

2E − 5.25× 10−8

T 2

2α
≥W

(
T 2A

2E − 5.25× 10−8

)
α ≤ T 2

2W
(

T 2A
2E−5.25×10−8

) ,
where W (x) is the Lambert W-function. We want f(α) to be as close to E as possible, so
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we turn this result into an equality, giving us:

α =
T 2

2W

(
log( T2π )(2+ 1

T )
4πE−3.3×10−7)

) ,
where

W (x) ∼ log(x)− log log(x),

We have a function which determines α and is dependent only on T and E, both of which

we have full control over.

To ensure that α is defined, we must place a lower bound on E to prevent the argument

of W (x) from becoming negative, so we will state that

4πE − 3.3× 10−7 > 0 ⇐⇒ E > 4.15× 10−6.

We now look at g(α, η), we now have our value of α, so this is essentially solely a

function of η, which is decreasing:

K(η)

αη

(
1

π
log2

(αη
π

)
+ 4 log(2αη) + 4.52

)
≤ K(η)(0.00019 + 0.00025 + 0.00003)

≤ 0.00047K(η)

by (48), and the fact that log2(x)/x is decreasing for all x > e2, and log(x)/x is decreasing

for all x > e. We want to bound this from above by a value small in magnitude compared

to E, so we choose E2:

0.00047K(η) =
0.00047

√
αe−αη

2/2

√
2π

≤E2

e−αη
2/2 ≤ E2

√
2π

0.00047
√
α

−αη2/2 ≤ log

(
E2
√

2π

0.00047
√
α

)

η2 ≥ 2

α
log

(
0.00047

√
α

E2
√

2π

)
η ≥

√
2

α
log

(
0.00019

√
α

E2

)
.

Once again, we turn this into an equality, to give our value for η, dependent on α and E

only:

η =

√
2

α
log

(
0.00019

√
α

E2

)
.

For α > 2.8× 107 and E < 1, the value of this logarithm is positive, so η is well defined.

We now have our values for α and η, completing the proof.
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7.7 Remark

At this stage, the reader may question why we put more effort into getting the largest α

possible and finding a suitable cooperating η and not vice versa. We wished to use the

largest α we could in an attempt to get the most accurate numeric results, in doing so we

had to choose a larger η to assure our total error E did not exceed what we wanted. An

increase in η provides negligible increase in C in (27).

If we had chosen to minimise η, we would have to choose a smaller α to compensate,

which in turn would provide a less accurate numeric result.

8 Numerical evaluation

When we come to sum our zeta zeros, we will have to deal with round-off error; that is,

the error from computing using each zeta zero to a finite accuracy. We apply Lemma 2.7,

followed by equations (30) and (31) to the first terms of (46) and (47), respectively, to

obtain the following:

−
∫ ∞
−∞

K(u− ω)
∑
|γ|≤T

(
eiuγ

1
2 + iγ

)
du = −

∑
|γ|≤T

eiωγ

1
2 + iγ

e−γ
2/2α,

and

−
∫ ∞
−∞

K(u− ω)
∑
|γ|≤M

(
eiuγ(

1
2 + iγ

)2
u

)
du = −

∑
|γ|≤M

eiωγ(
1
2 + iγ

)2
u
e−γ

2/2α.

These, in turn, give us

S1 = −
∑

0<γ≤T

(
e−γ

2/2α

1
4 + γ2

(cos(ωγ) + 2γ sin(ωγ))

)
(49)

and

S2 = −
∑

0<γ≤M

(
e−γ

2/2α

(14 + γ2)2ω

((
1

2
− 2γ2

)
cos(ωγ) + 2γ sin(ωγ)

))
. (50)

We let

t(γ) := e−γ
2/2α (cos(ωγ) + 2γ sin(ωγ))

1
4 + γ2

and

m(γ) := e−γ
2/2α

((
1
2 − 2γ2

)
cos(ωγ) + 2γ sin(ωγ)

)
(14 + γ2)2ω

.

We denote by S∗1 and S∗2 the sums which we calculate using our estimates for each zeta

zero. We will let γ∗ be our estimate for γ, we wish to find values for |t(γ∗) − t(γ)| and

|m(γ∗)−m(γ)|, which we can do by using the Mean Value Theorem, which states that

|t′(γ̄)| = |t(γ
∗)− t(γ)|
|γ∗ − γ|

⇐⇒ |t(γ∗)− t(γ)| = |γ∗ − γ| · |t′(γ̄)|,
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where γ̄ is such that |γ̄ − γ| < |γ∗ − γ|. The same equality holds with m′(γ̄). We have

t′(γ) =e−γ
2/2α

[
−γ
α

(
(cos(ωγ) + 2γ sin(ωγ))

1
4 + γ2

)
− (2γ)(cos(ωγ) + 2γ sin(ωγ))

(14 + γ2)2

+
(−ω sin(ωγ) + 2 sin(ωγ) + 2ωγ cos(ωγ))(14 + γ2)

(14 + γ2)2

]

=e−γ
2/2α

(
(2ωγ − γ/α)(cos(ωγ) + (2− ω − 2γ2/α) sin(ωγ))

1
4 + γ2

− 2γ cos(ωγ) + 4γ2 sin(ωγ)

(14 + γ2)2

)
.

We can bound the exponential and trigonometric terms by 1, and bound the absolute

value of the derivative as such

|t′(γ)| ≤

(
2ωγ + γ/α+ 2 + ω + 2γ2/α)

1
4 + γ2

+
2γ + 4γ2

(14 + γ2)2

)

<

(
2ω

γ
+

1

αγ
+

2

γ2
+
ω

γ2
+

2

α
+

2

γ3
+

4

γ2

)
=

1

γ

(
2ω +

1

α

)
+

1

γ2
(6 + ω) +

2

γ3
+

2

α
.

From this, we get

|S1 − S∗1 | ≤
∑

0<γ≤T
|t(γ∗)− t(γ)| =

∑
0<γ≤T

|γ∗ − γ| · |t′(γ̄)|.

Our resource for zeta zeros comes from David Platt, and the L-Function and Modular

Forms Database (LMFDB), where the accuracy of each zeta zero is known up to 30

decimal places, so we have that |γ∗ − γ| < 10−30:

|S1 − S∗1 | ≤10−30
∑

0<γ≤T

[
1

γ

(
2ω +

1

α

)
+

1

γ2
(6 + ω) +

2

γ3
+

2

α

]

<10−30
[(

2ω +
1

α

)(
1

4π
log2

(
T

2π

)
+ 0.9321

)
+ 0.02311ω +

2

α
+ 0.1401

]
<10−30

[
2ω + 1

α

4π
log2

(
T

2π

)
+ 1.888ω +

3

α
+ 0.15

]
,
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by Lemma 5.1. We can bound the second sum’s error in a similar manner.

m′(γ) =e−γ
2/2α

[
−γ
α

(((
1
2 − 2γ2

)
cos(ωγ) + 2γ sin(ωγ)

)
(14 + γ2)2ω

)

+
(−ω

2 sin(ωγ)− 4γ cos(ωγ) + 2ωγ2 sin(ωγ) + 2 sin(ωγ) + 2ωγ cos(ωγ))

(14 + γ2)ω

−
((

1
2 − 2γ2

)
cos(ωγ) + 2γ sin(ωγ)

) (
ωγ + 4ωγ3

)
(14 + γ2)4ω2

]

=e−γ
2/2α


(
2γ3

α −
γ
2α − 4γ + 2ωγ

)
cos(ωγ) +

(
2ωγ2 − 2γ2

α −
ω
2 + 2

)
sin(ωγ)

(14 + γ2)2ω

−
(ωγ

2 − 8ωγ5
)

cos(ωγ) +
(
2ωγ2 + 8ωγ4

)
sin(ωγ)

(14 + γ2)4ω2

]
.

We can bound this as before:

|m′(γ)| ≤
2γ3

α + γ
2α + 4γ + 2ωγ + 2ωγ2 + 2γ2

α + ω
2 + 2

(14 + γ2)2ω

+
ωγ
2 + 8ωγ5 + 2ωγ2 + 8ωγ4

(14 + γ2)4ω2

<
2

αωγ
+

1

2αωγ3
+

4

ωγ3
+

2

γ3
+

2

γ2
+

2

αωγ2

+
1

2γ4
+

2

ωγ4
+

1

2ωγ7
+

8

ωγ3
+

2

ωγ6
+

8

ωγ4

=
1

γ

(
2

αω

)
+

1

γ2

(
2 +

2

αω

)
+

1

γ3

(
1

2αω
+

12

ω
+ 2

)
+

1

γ4

(
1

2
+

10

ω

)
+

1

γ6

(
2

ω

)
+

1

γ7

(
1

2ω

)
.

We can now bound the error of our second sum

|S2 − S∗2 | ≤10−30
∑

0<γ≤M

[
1

γ

(
2

αω

)
+

1

γ2

(
2 +

2

αω

)
+

1

γ3

(
1

2αω
+

12

ω
+ 2

)

+
1

γ4

(
1

2
+

10

ω

)
+

1

γ6

(
2

ω

)
+

1

γ7

(
1

2ω

)]
<10−30

[
1

2αωπ
log2

(
M

2π

)
+

0.05

αω
+

0.01

ω
+ 0.048

]
.

So our total numerical error δS is bounded by

10−30

[
2ω + 1

α

4π
log2

(
T

2π

)
+

1

2αωπ
log2

(
M

2π

)
+ 1.888ω +

3

α
+

0.05

αω
+

0.01

ω
+ 0.2

]

<10−30

[
2ω + 1

α

4π
log2

(
T

2π

)
+

1

2αωπ
log2

(
M

2π

)
+ 2ω

]
.
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Since we have (at the time of writing) our largest T as 30, 610, 046, 000, and we have

43.7 < ω < 728, so

δS = |S1 − S∗1 |+ |S2 − S∗2 | <10−30
(

116 log2
(
T

2π

)
+ 4× 10−3 log2

(
M

2π

)
+ 1456

)
<10−30 (57720.4 + 2 + 1456)

<6× 10−26.

9 Numerical application

We are going to try and get the most accurate result we can, for which we require using

as large a value of T as we can, so let T = 30, 610, 046, 000. We do not want our total

error to be too much larger than 10−5, so we let E = 10−5, which in turn gives us

α = 4.48864 × 1019, and η = 1.28542 × 10−9, see Appendix B. Since we intend for

Corollary 4.1 to be a guideline for the parameters to calculate, we will let α = 4.5× 1019

and η = 1.3× 10−9, our error then is less than 1.029× 10−5 for all ω > 400.

All results are obtained with thanks to David Platt. All the obtained numerical data

can be found in Appendix C. The following graph is plotted withM = T and α = 4.5×1019

to calculate values the sum of (49) and (50) for ω between 727.95133539 and 727.95133542;

the results are displayed in the following graph.

Figure 1: Sum of (49) and (50) over 103,800,788,359 zeros

There are three almost-parallel lines in the plot. The middle one corresponds to C,

(27) in the statement of our theorem, it is actually decreasing, albeit very slowly. Our

total error E corresponds to the two other “straight” lines in the plot; that is, the error

with the given α and η, and the corresponding ω. We zoom in on the area around the

crossover points:
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Figure 2: Sum of (49) and (50) over 103,800,788,359 zeros (zoomed in)

For ω = 727.951335401 and η = 1.3× 10−9, we have

−
∫ ω+η

ω−η
K(u− ω)

u li(eu/2)

2eu/2
du = −1.002762659 . . .

and thus, I(ω, η) > 0.000107555, which means that we have a new record for the smallest

ω such that π(x) > li(x).

By comparison, for ω = 727.951335400, we have I(ω, η) < −0.0000407. From this we

can deduce that for some ω ∈ (727.951335400, 727.951335401), we have I(ω, η) = 0.

If we let F (u) = ue−u/2{π(eu)− li(eu)}, then we can say that, for ω = 727.951335401,∫ ω+η

ω−η
K(u− ω)F (u)du ≥ δ, where δ = 1.07555× 10−4,

and, since K(u− ω) is a probability measure, we have

0 < δ ≤
∫ ω+η

ω−η
K(u− ω) sup{F (u)}du < sup{F (u)}.

Since F is continuous except at the points where u is of the form log(p), for some prime

p, there exists at least one point u ∈ (ω − η, ω + η) where F (u) > δ; that is, where

u{π(eu)− li(eu)}
eu/2

> δ

π(eu)− li(eu) >
δe(ω−η)/2

ω − η
> 1.74643× 10151.

If we let b > 0, then we know that li(x− b) < li(x). We can also state, by the nature of

the prime counting function, that π(x−1) ≥ π(x)−1, for x > 1. Combining this inequality
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with recurrence, we can come to the conclusion that π(x−b)−li(x−b) > 1.74643×10151−b;
that is, that the 1.74643× 10151 integers preceding our chosen x satisfy π(x) > li(x).

Since we know that π(x) is increasing, and we know how the function − li(x) decays,

we can state the following theorem which gives us a narrower interval of positivity:

Theorem 9.1. There is at least one value of x for which π(x) > li(x) holds in the interval

[exp(727.9513353997), exp(727.9513354023)]. Furthermore, there is a sequence of at least

1.27132 × 10154 successive integers which begins in this interval where the inequality also

holds.

Proof. We first note that, if x > 1 and y > 0, then

li(x+ y)− li(x) =

∫ x+y

x

dt

log(t)
<

y

log(x)
.

Next, we note that, for π(x)− li(x) > A > 0 and y > 0,

π(x+ y)− li(x+ y) = [π(x+ y)− π(x)] + [π(x)− li(x)] + [li(x)− li(x+ y)]

= A− y

log(x)
.

So for 0 < y < A log(x), we have that π(x+y)− li(x+y) is positive. For our case, we have

A = 1.74643× 10151 and log(x) > 727.9513353997. Multiplying these two values gives the

result in the theorem.

This result consists of an interval just over 150 times narrower than that of Saouter,

Trudgian and Demichel [21], with over 17 times the verified positive integers.

10 After thoughts

There are a few comments to make regarding the results of this paper.

Firstly, the assumption of the Riemann Hypothesis can be removed, despite its not

being likely to make a huge impact on the result, until it is proven (or disproven!) it

should be included for accuracy.

Next, from the numerical analysis that has been performed, we can make a remark on

how modifying the parameters changes the results. When observing ω over an interval of

around 10−8, as we have done here, changes in α and η of less than one order of magnitude

will likely leave the underlying result unchanged, we verified this for different values of α,

as shown in Appendix C.

We would be able to obtain a tighter bound for an improvement to Theorem 9.1 if we

were to sharpen our interval in a similar manner to Section 9 of Saouter, Trudgian and

Demichel [21].

Finally, when scouring for areas where crossovers could occur before the main region

we have been searching, we also looked into an area suggested by Saouter, Trudgian and

Demichel [21], around ω = 727.951332982. They theorised that one would require 1012

zeros to fully identify whether or not a crossover occurs. Researching the area with our

1011 zeros did provide a crossover, however it was trumped by our total error, so we cannot
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state with certainty that a crossover point exists. The fact that our largest error term can

be reduced with an increase in T backs up the claim that more zeros are required.
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11 Appendices

A Proof of Lemma 2.4

Here we have the proof of Lemma 2.4. We have Wolfram Mathematica 10 manually

calculate the sum of the reciprocals of the squares of the first 100,000 zeta zeros, and

apply Lemma 2.3 to bound the remaining zeros:

Figure 3: Sum over all γ with exponent −2

From this, we get the result that our sum is less than 0.025, as required.
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B Defining our parameters

We show how we use Corollary 4.1 to obtain α and η:

Figure 4: α and η
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C Results of computations

Here we state all of the results obtained by David Platt, who implemented our theorem,

for computational specifications, see Appendix E. The following are all the results of

summing

−
∑

0<γ≤T

(
e−γ

2/2α

1
4 + γ2

(
cos(ωγ) + 2γ sin(ωγ) +

((
1
2 − 2γ2

)
cos(ωγ) + 2γ sin(ωγ)

)
(14 + γ2)ω

))

for T = 30, 610, 046, 000. The first table was summed for ω between 727.951335402 and

727.951335422 for three different values of α:

Table 2: Change in ω

ω
α

1.64× 1019 3.59902× 1019 4.5× 1019

727.951335402 1.002748 1.002746 1.002746

727.951335404 1.002901 1.002911 1.002912

727.951335406 1.002998 1.002994 1.002993

727.951335408 1.003076 1.003072 1.003072

727.951335410 1.003096 1.003084 1.003081

727.951335412 1.002864 1.002855 1.002853

727.951335414 1.002948 1.002972 1.002978

727.951335416 1.002926 1.002931 1.002933

727.951335418 1.002899 1.002908 1.002910

727.951335420 1.003170 1.003172 1.003172

Our next table shows how changing the value of α effects the sum around two particular

values of ω:

Table 3: Change in α

α
ω

727.951335402 727.951335404

1.64× 1019 1.002747564 1.002901612

3.59902× 1019 1.002745771 1.002910837

3.82475× 1019 1.002745843 1.002911317

3.83194× 1019 1.002745846 1.002911331

3.86149× 1019 1.002745856 1.002911389

3.92513× 1019 1.002745880 1.002911509

The final table shows with more depth the change in the sum as ω varies for α =

4.5 × 1019, this is the data which is plotted in Figures 1 and 2. All values are correct to

20 decimal places.
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Table 4: Sum over ω
ω S1 + S2

727.951335390 1.00190866884011382864

727.951335391 1.00201854967684632649

727.951335392 1.00213347518371362329

727.951335393 1.00217629389659785571

727.951335394 1.00230198730807473534

727.951335395 1.00234359282628042873

727.951335396 1.00236680388663977650

727.951335397 1.00246904879740147398

727.951335398 1.00242685873369174199

727.951335399 1.00262137363445462331

727.951335400 1.00271158300323501821

727.951335401 1.00288049783641096204

727.951335402 1.00274612189791114819

727.951335403 1.00280798486275898499

727.951335404 1.00291240960630788449

727.951335405 1.00287492794724527094

727.951335406 1.00299281882170823702

727.951335407 1.00309848260820786820

727.951335408 1.00307170506180394891

727.951335409 1.00314523129500517202

727.951335410 1.00308122682380819222

727.951335411 1.00301671794161463288

727.951335412 1.00285314012033711954

727.951335413 1.00290411389339446590

727.951335414 1.00297796001400488544

727.951335415 1.00289589505461519867

727.951335416 1.00293260539679423985

727.951335417 1.00290456710554147644

727.951335418 1.00291046400991108639

727.951335419 1.00282888557072673681

727.951335420 1.00317163421701490261
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D Searching for crossover points with smaller ω

As we mentioned in Section 7, Bays and Hudson [3] produced a plot of the function li(x)−
π(x) from 106 to 10400 on a logarithmic scale. Their plot used the first 106 zeros.

We have created a similar plot, computed and plotted by David Platt. This plot is of

our sum S1 + S2, for ω ∈ [137, 738] and α = 2.836× 1011. Our plot uses all the zeros with

|=(ρ)| < 2, 546, 000; that is, the first 4,826,908 zeros.

Figure 5: S1 + S2 for ω ∈ [137, 738]

We can see immediately that the region around 728 is very positive, and it is the only

point on the plot where the sum is greater than 0.95. There are a few other areas on the

plot which look interesting, we have plotted a table of each of the four regions where the

sum exceeds 0.9.
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Table 5: S1 + S2 for intervals of ω

ω S1 + S2

195.105 0.807711275587995987352550595097

195.106 0.863260249618894657279674785427

195.107 0.901574357267209432232451687928

195.108 0.859128204729691621487646363984

195.109 0.792968020610560854896084919455

412.390 0.753153454124809224184101977078

412.391 0.763379439898559464054571801391

412.392 0.918461113414711366613373113701

412.393 0.891552882555343037626367080424

412.394 0.887925204080240275520615004642

437.780 0.652260670147146642793044763734

437.781 0.755401412538619285463776001982

437.782 0.93312036945013591131580620296

437.783 0.886657145457510703708917185371

437.784 0.77388213347577176803915161091

727.950 0.891243815943253607920130574107

727.951 0.928398837586333834943594078605

727.952 1.00074565427825151175660792005

727.953 0.91402382005620585979261892379

727.954 0.885836734976227789559917330905

As we can see from the table, there exists a value for ω where the sum is greater than

1, which does not show on the plot, so the quality of the image does not show every detail

from the data.
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E Computing specifications

The program to compute the sum over the non-trivial zeros was written in 255 lines of C++

and used Fredrik Johansson’s ARB [9] interval arithmetic package to manage rounding

errors. The database of zeros used was computed as described in Platt’s article [15] and

all the computations were undertaken on the University of Bristol BlueCrystal Phase III

cluster [1]. Each node of Phase III comprises two 8 core Intel(R) Xeon(R) E5-2670 CPUs

clocked at 2.60GHz and we were able to use all 16 cores concurrently.
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