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Abstract

In communication systems transmitting data through unknown fading channels, tradi-

tional detection techniques are based on channel estimation (e.g., by using pilot signals),

and then treating the estimates as perfect in a minimum distance detector. In this thesis,

we derive and investigate an optimal detector that does not estimate the channel explicitly

but jointly processes the received pilot and data symbols torecover the data. This optimal

detector outperforms the traditional detectors (mismatched detectors). In order to approx-

imate correlated fading channels, such as fast fading channels and frequency-selective

fading channels, basis expansion models (BEMs) are used due to high accuracy and low

complexity.

There are various BEMs used to represent the time-variant channels, such as

Karhunen-Loeve (KL) functions, discrete prolate spheroidal (DPS) functions, general-

ized complex exponential (GCE) functions, B-splines (BS), andthe others. We derive the

mean square error (MSE) of a generic BEM-based linear channelestimator with perfect

or imperfect knowledge of the Doppler spread in time-variant channels. We compare the

performance and complexity of minimum mean square error (MMSE) and maximum like-

lihood (ML) channel estimators using the four BEMs, for the case with perfect Doppler

spread. Although all BEM-based MMSE estimators allow achievement of the optimal

performance of the Wiener solution, the complexity of estimators using KL and DPS

BEMs is significantly higher than that of estimators using BS and GCE BEMs. We then

investigate the sensitivity of BEM-based estimators to the mismatched Doppler spread.

All the estimators are sensitive to underestimation of the Doppler spread but may be ro-

bust to overestimation. The results show that the traditional way of estimating the fading

statistics and generating the KL and DPS basis functions by using the maximum Doppler

spread will lead to a degradation of the performance. A better performance can be ob-
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tained by using an overestimate of the Doppler spread instead of using the maximum

Doppler spread. For this case, due to the highest robustnessand the lowest complexity,

the best practical choice of BEM is the B-splines.

We derive a general expression for optimal detection for pilot-assisted transmission

in Rayleigh fading channels with imperfect channel estimation. The optimal detector is

specified for single-input single-output (SISO) Rayleigh fading channels. The slow (time-

invariant) fading channels and fast (time-variant) fadingchannels following Jakes’ model

are considered. We use the B-splines to approximate the channel gain time variations

and compare the detection performance of the optimal detector with that of different mis-

matched detectors using ML or MMSE channel estimates. Furthermore, we investigate

the detection performance of an iterative receiver implementing the optimal detector in

the initial iteration and mismatched detectors in following iterations in a system transmit-

ting turbo-encoded data. Simulation results show that the optimal detection outperforms

the mismatched detection with ML channel estimation. However, the improvement in the

detection performance compared to the mismatched detection with the MMSE channel es-

timation is modest. We then extend the optimal detector to channels with more unknown

parameters, such as spatially correlated MIMO Rayleigh fading channels, and compare

the performance of the optimal detector with that of mismatched detectors. Simulation re-

sults show that the benefit in detection performance caused by using the optimal detector

is not affected by the spatial correlation between antennas, but becomes more significant

when the number of antennas increases.

This optimal detector is extended to the case of orthogonal frequency-division mul-

tiplexing (OFDM) signals in frequency-selective fading channels. We compare the per-

formance and complexity of this optimal detector with that of mismatched detectors us-

ing ML and MMSE channel estimates in SISO and MIMO channels. In SISO systems,

the performance of the optimal detector is close to that of the mismatched detector with

MMSE channel estimates. However, the optimal detector significantly outperforms the

mismatched detectors in MIMO channels.
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1.1 Overview

Many wireless communication techniques and components require knowledge of the

channel state to achieve their optimal performance. In practice, this knowledge is of-

ten acquired by estimation. The estimation can be performedblindly by using only un-

known data symbols, but more frequently, it is performed with the aid of pilot symbols

which are known at the receiver side. Although occupying transmission bandwidth and

energy, pilot-based channel estimation and detection offers reliable performance with a

relatively low complexity, especially for time-variant orfrequency-selective fading chan-

nels. Therefore, pilot symbol assisted modulation (PSAM) is widely proposed to detect

data symbols in fading channels by inserting known pilot symbols into data blocks [1–18].

In this thesis, we investigate the channel estimation and data symbol detection techniques

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York
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CHAPTER 1. INTRODUCTION 2

in PSAM systems in Rayleigh fading channels such as time-invariant flat fading chan-

nel, time-variant flat fading channel and frequency selective fading channel. Specifically,

we define that a time-invariant fading channel is quasi-stationary, which indicates that in

each transmission block, the channel coefficients are constant over all symbols but obey

Rayleigh fading between different blocks.

Accurately estimating time-variant and/or frequency-selective fading channels is a

challenge and the estimation results affect the system performance. In order to ap-

proximate the channel coefficients at data positions by using pilot symbols, basis ex-

pansion models (BEMs) are widely used, due to their reliable performance and lower

complexity than the Wiener filter [19]. For example, with a BEM, estimation of a re-

alization of the random process describing the time-variant channel is transformed into

estimation of a few time-invariant expansion coefficients [20]. There are different BEMs,

such as complex exponential (CE) model [19, 21–24], generalized complex exponential

(GCE) model [25], B-splines (BS) [26–28], discrete prolate spheroidal (DPS) basis func-

tions [20, 29, 30] and Karhunen-Loeve (KL) basis functions [31, 32] to model correlated

fading channels. In this thesis, the BEM-based channel estimators are investigated in

time-variant Rayleigh fading channels following Jakes’ model. We derive mean square er-

ror (MSE) of minimum mean square error (MMSE) and maximum likelihood (ML) chan-

nel estimators based on different BEMs, and compare their performance and complexity

for the case with perfect and/or inaccurate knowledge of theDoppler spread. Based on

this comparison, the estimator using B-splines is chosen andapplied to approximate the

time-variant channel in this thesis.

Due to noise and to the finite number of pilot symbols in a transmission block, the

channel estimate is not perfect. In [33, 34], the effects of channel estimation errors on

the detection performance of PSAM systems were evaluated. However, most of works

in [1–18] consider a traditional minimum distance detectorwhich suffers an extra error

on detection performance by treating channel estimates as perfect. In order to achieve

better detection performance, optimal detection with imperfect channel estimates in com-

munication systems with PSAM was proposed and investigatedin [35, 36]. The optimal

detector does not estimate the channel explicitly, but jointly processes received pilot and

data symbols to recover the data. The optimal detector in [35] is obtained for commu-

nication scenarios in channels with uncorrelated fading and white Gaussian noise, and
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its performance is compared with a minimum distance detector (mismatched detector)

using ML channel estimates. In [36], the performance of optimal and mismatched de-

tectors in single-input single-output (SISO) channels with time-variant Rayleigh fading

was investigated. In this thesis, we derive a generic optimal detector and apply it for dif-

ferent scenarios, i.e., time-variant flat channels obeyingthe Clarke’s model, time invari-

ant frequency-selective channels, and spatially correlated multiple-input multiple-output

(MIMO) channels, and compare its performance with mismatched detectors using ML,

regularized-ML and MMSE channel estimates. We obtain this optimal detector for the

case when the channel gain time variations and channel frequency response are approxi-

mated by using BEMs.

It is well known that the estimation of time variations in time-variant channels are

very challenging at low signal-to-noise ratio (SNR). Our solution is to apply forward

error correcting (FEC) channel codes, such as turbo codes anditerative channel estima-

tion/detection schemes by feeding the output information of the FEC decoder back to the

channel estimator or detector. In this thesis, we compare the performance of iterative

receivers applying ML, regularized-ML and MMSE channel estimation with soft-input

hard-output and soft-input and soft-output turbo decodingschemes. We also investigate

the iterative receiver implementing the optimal detector,and compare its bit-error-rate

(BER) performance with that of iterative receivers applying mismatched detectors.

1.2 Contributions

Major contributions in this thesis can be summed up as follows:

• MSE of a generic BEM-based linear channel estimator for time-variant fading chan-

nels has been derived. The MSE performance and complexity ofestimators using

different BEMs have been compared in cases with perfect and inaccurate knowl-

edge of the Doppler spread. The estimators have been shown tobe very sensitive

to underestimation of the Doppler spread but may have littlesensitivity to over-

estimation. The estimation using a slight overestimate of the Doppler spread to

calculate the fading statistics and generate the basis functions can significantly out-
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perform the estimation using the maximum Doppler spread. The B-splines have

been shown to be the best practical choice for BEM providing good performance

and low complexity.

• The optimal detection has been derived for general correlated fading channels. The

optimal detection is shown to outperform mismatched detection with ML and reg-

ularized ML channel estimation. In SISO Rayleigh fading channels, when QAM

signals are transmitted, the performance of the mismatcheddetection with MMSE

estimation is shown to be close to that of the optimal detection.

• It has been proved that the symbol-by-symbol optimal detection of PSK symbols

in spatial uncorrelated SIMO Rayleigh fading channels is equivalent to the mis-

matched detection with the MMSE channel estimation.

• The optimal detector has been specified for MIMO Rayleigh fading channels. The

optimal detector has been shown to significantly outperformmismatched detectors

when the number of antennas increases.

• The optimal detection has been specified for orthogonal frequency division multi-

plexing (OFDM) transmission in SISO and MIMO frequency-selective fading chan-

nels. The optimal detector has been shown to significantly outperform mismatched

detectors when the number of antennas increases.

• The performance of an iterative receiver incorporating theoptimal detector with

soft-input soft-output turbo decoder has been investigated. The iterative receiver

applying the optimal detector in the initial iteration has been shown to outperform

iterative receivers applying mismatched detectors in all iterations.

1.3 Thesis Outline

The rest of the report is separated into following chapters,according to the different sys-

tems investigated and analyzed.

• Chapter 2: Fundamental Techniques
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CHAPTER 1. INTRODUCTION 5

In this chapter, fundamental techniques used throughout this thesis are introduced.

We firstly compare different simulators of time-variant channels and apply the one

whose statistics match to those of the desired reference Clarke’s model. We also

describe the basic principles of BEMs, which are used to approximate the fading

channels. Turbo encoder and decoder are also briefly introduced.

• Chapter 3: Basis expansion model based channel estimation of time-varying chan-

nels

In this chapter, we investigate the pilot assisted channel estimators based on BEMs

in time-variant Rayleigh fading channels. We derive the MSE of a generic linear

channel estimator with a linearly independent BEM. We also compare the perfor-

mance and complexity of ML and MMSE estimators using different BEMs, such as

KL, DPS, GCE and BS BEMs for the cases with perfect and inaccurateknowledge

of the Doppler spread.

• Chapter 4: Optimal and mismatched detection in SISO frequency-flat Rayleigh

fading channels with imperfect channel estimation

This chapter presents the basic principles of the pilot assisted optimal detection

which does not require estimating the channel explicitly but jointly processes the

received data and pilot symbols to recover the data with minimum error. We derive

a generic optimal detector, and compare its performance with that of mismatched

detectors in single-input single output (SISO) time-invariant fading channels. We

then extend the optimal detector to the case of time-variantchannels and use B-

splines as basis functions to approximate the time variations of the channel gain.

The comparison of bit-error-rate (BER) and MSE performance between iterative

receivers applying optimal detector and mismatched detectors is also presented.

• Chapter 5: Optimal and mismatched detection in MIMO frequency-flat Rayleigh

fading channels with imperfect channel estimation

In this chapter, we firstly specify the optimal detector for spatially correlated MIMO

time-invariant Rayleigh fading channels and investigate the benefit caused by using

the optimal detector. We then extend the optimal detector toMIMO time-variant

fading channels with temporal fading correlation following Jakes’ model and com-

pare its detection performance with that of mismatched detectors. We also prove

that the optimal symbol-by-symbol detector in spatially uncorrelated single-input
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multiple-output (SIMO) channels with PSK modulation is equivalent to the mis-

matched detector with MMSE channel estimates.

• Chapter 6: Optimal and mismatched detection of OFDM signals in MIMO

frequency-selective time-invariant fading channels withimperfect channel estima-

tion

In this chapter, we specify the optimal detector for OFDM signals in SISO and

MIMO frequency-selective fading channels and compare its performance with that

of mismatched detectors. We compare the complexity of different BEMs and inves-

tigate their performance of approximating the channel frequency response. We also

investigate the performance of iterative receivers incorporating the optimal detector

in the initial iteration for turbo coded transmission in SISO channels, and compare

the performance of the optimal detector with that of the mismatched detectors.

1.4 Notations

In this thesis, we use capital and small bold fonts to denote matrices and vectors, i.e.,A

anda, respectively. Elements of the matrix and vector are denoted asAm,n = [A]m,n and

am = [a]m. The symbolj is an imaginary unitj =
√
−1. We denoteℜ{·} andℑ{·}

as the real and imaginary components of a complex number, respectively; (·)∗ denotes

complex conjugate;IQ denotes anQ × Q identity matrix; (·)T and(·)H denote matrix

transpose and Hermitian transpose, respectively.⊗ denotes the Kronecker product.⌈·⌉
denotes the smallest integer.E{·} denotes the statistical expectation operator and tr{·}
denotes the trace operator.
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In this chapter, fundamental techniques used throughout this thesis are introduced:

simulators of time-variant fading channels, BEMs and turbo codes.

2.1 Simulator of time-variant fading channels

In this thesis, we will investigate the channel estimation and signal detection in time-

variant Rayleigh fading channels. Before comparing the performance of different esti-

mation and detection schemes, we should firstly model and simulate the fading channel

accurately. This section introduces a simulator of time-variant Rayleigh fading channels,

which is used in the subsequent chapters.

After 1960’s, Clarke’s model [49] and its simplified version by Jakes [50] are widely

used to simulate time-variant Rayleigh fading channels. Although the simplicity of the
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CHAPTER 2. FUNDAMENTAL TECHNIQUES 10

original Jakes’ model makes it popular, there are two deficiencies that can not be ig-

nored [51]: the original Jakes’ model is a deterministic model and it is difficult to generate

the multiple independent fading channels, such as frequency-selective (multipath) fading

and MIMO channels. Various modifications [52–55] and improvements [51,56,57] have

been reported for generating multiple uncorrelated fadingwaveforms needed for mod-

eling frequency selective fading and MIMO channels, such asInverse Discrete Fourier

Transform (IDFT) [58] and the autoregressive approach [59]. It is pointed in [60] that

Jakes’ simulator is not wide-sense stationary when averaged across the physical ensem-

ble of fading channels. In [60], an improved simulator, named Pop-Beaulieu simulator,

is applied to remove this stationarity problem by introducing random phase shifts in the

low-frequency oscillators. However, it is shown that the Pop-Beaulieu simulator has defi-

ciencies in some of its high-order statistics [57].

Based on the Pop-Beaulieu simulator, novel sum-of-sinusoidsstatistical simulation

models with small number of sinusoids are proposed for Rayleigh fading channels

in [51,57]. These modified models improve the original Jakes’ model by introducing ran-

dom path gain, random initial phase and random Doppler frequency for sinusoids within

these models [57]. The high-order statistical properties of these novel models, such as

the autocorrelations and cross-correlations of the quadrature components, the autocorre-

lation of the complex envelop, and the probability density functions (PDFs) of the fading

envelop, asymptotically approach the desired ones as the number of sinusoids approaches

infinity [51,57].

In this section, we introduce the reference Clarke’s model mathematically and analyze

the deficiencies of the Jakes’ model and the Pop-Beaulieu model. Then, we introduce a

modified model proposed in [51,57] which provides good convergence of the probability

density functions of the envelope, the level crossing rate,the average fading duration, and

the autocorrelation of the squared fading envelope, even when the number of sinusoids is

as small as 8 [57]. This modified model is used to generate multiple independent time-

variant channels in this thesis.
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2.1.1 The reference model and its simplifications

Clarke’s model serves as a mathematical reference model for the other sum-of-sinusoid

simulation models. This model assumes that the field incident on the wireless receiver

consists of a number of azimuthal plane waves with arbitrarycarriers phases, arbitrary

arrival angles and equal average amplitude [49]. A low-passfading process can be used

to describe a frequency-flat fading channel containingN propagation channels as

g(t) = E0

N
∑

n=1

Cn exp [j(ωdt cosαn + φn)] , (2.1)

whereE0 is a constant scaling the fading energy,Cn, αn andφn are the random path gain,

arrival angle of incoming waves and initial phase corresponding to then-th propagation

channel;ωd = 2πν is the maximum angular Doppler frequency, whereν is the maximum

Doppler frequency, which depends on the motion velocityv, the carrier frequencyfC .

The Doppler frequency can be calculated by

ν =
vfC
c0

(2.2)

wherec0 is the speed of light. For example, we consider a system operating at carrier

frequencyfC = 2GHz, with the user moving with velocityv = 30m/s, and symbol

duration10−4s. Based on these parameters, the normalized Doppler spread isνTs = 0.02.

The Doppler frequency of then-th propagation channel is calculated by

νn = ν cosαn. (2.3)

Both αn andφn are uniformly distributed over[−π, π) for all n and they are mutually

independent.

In complex form, (2.1) can be decomposed as

g(t) = gr(t) + jgi(t), (2.4)

where

gr(t) =
√

E0

N
∑

n=1

Cn cos (ωdt cosαn + φn) (2.5)

and

gi(t) =
√

E0

N
∑

n=1

Cn sin (ωdt cosαn + φn) . (2.6)
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WhenN is large,gr(t) andgi(t) can be modeled as Gaussian random processes according

to the central limit theorem [50]. The statistics for fadingsimulators, such as autocorrela-

tion, cross-correlation functions and are given by

Rgrgr(τ) = E {gr(t)gr(t+ τ)} = J0(ωdτ),

Rgigi(τ) = J0(ωdτ),

Rgrgi(τ) = Rgigr = 0, (2.7)

Rgg(τ) = 2J0(ωdτ),

R|g|2|g|2(τ) = 4 + 4J2
0 (ωdτ),

whereJ0(·) is the zero-order Bessel function of the first kind. For simplicity, we set

E0 =
√
2 and

∑N
1 E{C2

n} = 1. For Clarke’s model, the fading envelope|g(t)| is Rayleigh

distributed while the phaseΘg(t) = arctan[gr(t), gi(t)] is uniformly distributed [49], i.e.

f|g|(x) = x exp(−x
2

2
), x ≥ 0 (2.8)

and

fΘg
(θg) =

1

2π
, θg ∈ [−π, π). (2.9)

Jakes’ model is well known as a simplified model of the Clarke’smodel. If the phase,

amplitude and arrival angle for each incoming propagation channel are fixed, Clarke’s

model is transformed to Jakes’ model. Specifically, the following parameters are set

Cn =
1√
N
, n = 1, 2, . . . , N,

αn =
2πn

N
, n = 1, 2, . . . , N, (2.10)

φn = 0, n = 1, 2, . . . , N.

The normalized low-pass fading processes of this model are given by

µ(t) = µr(t) + jµi(t),

µr(t) =
2√
N

M
∑

n=0

an cos(ωnt), (2.11)

µi(t) =
2√
N

M
∑

n=0

bn cos(ωnt),
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whereN = 4M + 2, and

an =







√
2 cos β0, n = 0,

2 cos βn, n = 1, 2, . . . ,M,

bn =







√
2 sin β0, n = 0,

2 sin βn, n = 1, 2, . . . ,M,
(2.12)

βn =







π
4
, n = 0,

πn
M
, n = 1, 2, . . . ,M,

ωn =







ωd, n = 0,

ωd cos
2πn
N
, n = 1, 2, . . . ,M.

The simplification in (2.10) makes this simulation model deterministic [52, 53].

In [60], it is shown that the statistical variance of the Jakes’ simulator fading process is

time variant and therefore, Jakes’ model averaged across the ensemble of physical fading

channels is wide-sense nonstationary. Various approachesare applied to conquer these

deficiencies [54, 55, 58–61]. Among these approaches, the Pop-Beaulieu simulator in-

troduced in [60] is wide-sense stationary and widely used asthe foundation of further

researches on the simulators.

The normalized low-pass fading process of the Pop-Beaulieu simulator is given by

f(t) = fr(t) + jfi(t), (2.13)

where

fr(t) =
2√
N

M
∑

n=0

an cos (ωnt+ φn) (2.14)

and

fi(t) =
2√
N

M
∑

n=0

bn sin (ωnt+ φn) , (2.15)

wherean andbn are the same as those defined in (2.12). It is clear that the Pop-Beaulieu

simulator addsφn, a random phase uniformly distributed on[−π, π), to the original Jakes’

model which assumes thatφn = 0 for all n. The introduction of the randomφn allows the

Pop-Beaulieu simulator becoming wide-sense stationary. However, some problems with

high order statistics remain [51].
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The autocorrelation and cross-correlation functions of the Pop-Beaulieu simulator are

given by [62]

Rfrfr(τ) =
4

N

[

M
∑

n=0

a2n
2

cos(ωnτ)

]

,

Rfifi(τ) =
4

N

[

M
∑

n=0

b2n
2
cos(ωnτ)

]

,

Rfrfi(τ) =
4

N

[

M
∑

n=0

anbn
2

cos(ωnτ)

]

, (2.16)

Rfifr(τ) = Rfrfi(τ),

Rff (τ)(τ) =
4

N

[

M
∑

n=0

2 cos(ωnτ) + cos(ωdτ)

]

,

R|f |2|f |2(τ) = 4 + 2R2
frfr(τ) + 4R2

frfi
+

8

N
J0(2ωdτ) +

16(N − 1)

N2
.

By comparing (2.16) with (2.7), it is clear that the second-order statistics

[Rfrfr(τ), Rfifi(τ), Rfrfi(τ), Rfifr(τ)] of the Pop-Beaulieu simulator approach those of

the desired Clarke’s model only ifM is infinite. WhenM is finite, these second-order

statistics will significantly deviate from the desired values [51]. Moreover, even ifM

is infinite, the higher-order statistics
[

Rff (τ), R|f |2|f |2(τ)
]

can not match to the desired

ones [62].

In order to overcome these deficiencies, an improved simulation model, whose statisti-

cal properties can perfectly match the desired Clarke’s model, is introduce by Zheng and

Xiao in [51,57], and we will describe this improved model in the next section.

2.1.2 An improved simulation model

An improved simulation model proposed in [51, 57] solves thedeficiencies of Jakes’

model by reintroducing the randomness of the three variablesCn, αn andφn. The nor-

malized low-pass fading process of the model is defined as

h(t) =
√

E0

N
∑

n=1

Ĉn exp[j(ωdt cos α̂n + φn)], (2.17)
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and

Ĉn =
exp(jψn)√

N
, n = 1, 2, . . . , N, (2.18)

ân =
2πn− π + θ

N
, n = 1, 2, . . . , N. (2.19)

It should be clarified thatN/2 is an integer, andψn, θ, andφn are mutually independent

random variables uniformly distributed on[−π, π) [51, 57]. By substituting (2.18) into

(2.17), we obtain the improved simulation model as

h(t) =

√
E0√
N







N/2
∑

n=1

ejψn
[

ej(ωdt cos ân+φn) + e−j(ωdt cos ân+φn)
]







, (2.20)

in which ej(ωdt cos ân+φn) represents the waves with Doppler frequencies from the range

[ωd cos(2π/N), ωd] to the range[−ωd cos(2π/N),−ωd], while e−j(ωdt cos ân+φ) repre-

sents the waves with Doppler frequencies from the range of[−ωd cos(2π/N),−ωd] to

[ωd cos(2π/N), ωd]. The Doppler frequencies are overlapped [51]. Equation (2.20) can

be further simplified to be

h(t) =

√
E0√
N

{

M
∑

n=1

√
2ejψn

[

ej(ωnt+φn) + e−j(ωnt+φn)
]

}

, (2.21)

whereM = N/4, andωn = ωd cos ân. A new simulation model can be defined based on

(2.21) as

h(t) = hr(t) + jhi(t) ,

hr(t) =

√

2

M

M
∑

n=1

cos(ψn) cos [ωdt cos(αn) + φn] , (2.22)

hi(t) =

√

2

M

M
∑

n=1

sin(ψn) cos [ωdt cos(αn) + φn] ,

where

αn =
2πn− π + θ

4M
, n = 1, . . . ,M, (2.23)

andθ, φn, ϕn are statistically independent and uniformly distributed on [−π, π). In [51],

the value ofφn has been chosen to be the same for alln, which is incorrect. This leads to

a mistake on the probability density function of the time-invariant fading envelop where

ωd = 0 [20]. Here we follow the corrected version used in [57] and reintroduce the

randomness ofφn. Therefore,ψn andφn can be combined together and (2.21) can be

further simplified as

h(t) =

√
E0√
N

{

M
∑

n=1

√
2
[

ej(ωnt+χn) + e−j(ωnt+χn)
]

}

, (2.24)
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whereχn = (ψn+φn) and the PDF ofχ is the convolution of the density functions ofψn

andφ.

The statistics of this simulation model are derived in [51] as

Rhrhr(τ) = J0(ωdτ),

Rhihi(τ) = J0(ωdτ),

Rhrhi(τ) = Rhihr = 0, (2.25)

Rhh(τ) = 2J0(ωdτ),

R|h|2|h|2(τ) = 4 + 4J2
0 (ωdτ), if M is infinite.

It is clear that except the autocorrelation function of the squared envelopR|h|2|h|2(τ),

the statistics of this improved model do not depend on the value of M , and exactly

the same as the desired statistics of Clarke’s model described by (2.7). Furthermore,

the high-order statisticR|h|2|h|2(τ) asymptotically approaches the desired autocorrelation

R|g|2|g|2(τ) whenM increases. Numerical results in [51] show that a good approximation

has been observed whenM is as small as 8.

In order to evaluate the improved fading simulator, we compare its simulation perfor-

mance with analytical results of the corresponding mathematical reference model. We set

thatM = 8, and the normalized Doppler frequencyνTs = 0.02, whereTs is the duration

of a transmitted symbol. The simulation results are based onensemble averages of 100

and 1000 random trials.

Firstly, we consider the case of a time-variant channel. Fig. 2.1 and Fig. 2.2 show

simulation results for autocorrelations of real and imaginary components of the fading,

respectively, and Fig. 2.3 shows the cross-correlation of the real and imaginary parts of

the fading. The reference is calculated based on (2.7) for the purpose of comparison. Note

thatRhrhi is almost the same asRhihr , therefore, onlyRhihr is shown here.

It is observed that the simulated autocorrelations and cross-correlations match the de-

sired ones closely even whenM is as small as 8 and the number of random trials is only

100. A better match can be obtained if more random trials are performed.

Multiple mutual uncorrelated fading channels, which are required for MIMO channels
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Figure 2.1: Autocorrelation of the simulated real part of the fading,hr(t) and the refer-

ence.
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Figure 2.2: Autocorrelation of the simulated imaginary part of the fading,hi(t) and the

reference.
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Figure 2.3: Cross-correlation of the simulated real and imaginary parts of the fading,h(t)

and the reference.
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Figure 2.4: Cross-correlation of two independent fading channelsh1(t) andh2(t) and

reference.
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or double selective channels, can also be obtained by using this improved simulation

model. We can usehk(t) to denote thek-th Rayleigh fading channel defined by

hk(t) = hr(t) + jhi(t) ,

hk,r(t) =

√

2

M

M
∑

n=1

cos(ψn,k) cos(ωdt cos(αn,k) + φn,k) , (2.26)

hk,i(t) =

√

2

M

M
∑

n=1

sin(ψn,k) cos(ωdt cos(αn,k) + φn,k) ,

with

αn,k =
2πn− π + θk

4M
, n = 1, . . . ,M, (2.27)

whereψn,k, φn,k andθk are mutually independent and randomly distributed over[−π, π)
for all n andk. Therefore,hk(t) is uncorrelated withhl(t) for k 6= l. In order to show

that the multiple fading channels generated by this model are uncorrelated, we simulate

two independent fading channelsh1(t) andh2(t) and plot the cross-correlation between

4 quadrature components in Fig. 2.4. The simulation resultsare obtained by perform-

ing 1000 random trials. It is seen that the cross-correlations between multipath fading

channels are small.

Based on the discussions and simulations above, we find that the improved simulation

model can perfectly match the desired Clarke’s model, for both single time-variant chan-

nel and multiple time-variant channels. Therefore, all of time-variant Rayleigh fading

channels used in the following chapters are simulated by this model.

2.2 Basis expansion models

The traditional approach to estimate the time-variant fading channel is based on apply-

ing the Wiener filter for tracking time variations of the channel gain [1]. Although a

high accuracy of estimation can be achieved [26], the Wienerfilter requires a high com-

putational load [63]. In recent years, the basis expansion model (BEM) is widely used

for estimating time-variant fading channels, due to its high accuracy and low complex-

ity [19,20,25–32,64,65]. With a BEM, estimation of a realization of the random process

describing the time-variant channel is transformed into estimation of a few time-invariant
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expansion coefficients [64], and the time-variant channel can be modeled as

h̄ = Ba, (2.28)

where theM × 1 vectora = [a1, . . . , aM ]T contains the expansion coefficients, and the

N ×M matrixB = [b1, . . . ,bm, . . . ,bM ] collectsM linearly independent columnsbm.

According to the different ways to generate the matrixB, the family of BEMs can be

categorized into two categories. The first category appliesthe basis functions whose gen-

eration depends on the physical (e.g. fading rate) or statistical information of the fading

channel [20, 29–32, 64], while the second group employs a simple series representation

such as complex exponential or polynomial series [19, 25, 27, 28, 64]. In this section, we

will introduce two BEMs for each category:

The widely used BEMs in the first category are Karhunen-Loeve (KL) [31, 32] and

discrete prolate spheroidal (DPS) [20, 29, 30, 64] BEMs. The generation of KL and DPS

basis functions depends on the knowledge of statistical information of fading. The prob-

lem though is that if the assumed channel statistics deviatefrom the true ones, e.g., due to

inaccurate information of the maximum velocity of the mobile, the performance of these

BEMs may degrade. An alternative approach is to use the secondcategory of BEMs with

fixed functions. In this category, the generalized complex exponential (GCE) and B-spline

(BS) BEMs are widely used.

KL BEM

The KL BEM provides the best performance among these four BEMs [32, 64], since it

assumes that the statistical information of fading is perfectly known at the receiver side.

The KL basis functionsvm(n) are eigenvectors of the fading covariance matrix. For

example, the covariance matrix of Jakes’ fading process is defined as

[Υ]t1,t2 = J0[2πν(t1 − t2)]. (2.29)

We order the eigenvaluesλm of Υ as:λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0, and assume that when

m is larger than a fixed valueM << N , λm decreases rapidly and can be neglected [32].

Then, the matrixB of the KL BEM can be represented as

[B]n,m = vm(n), m = 1, . . . ,M, n = 1, . . . , N. (2.30)
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DPS BEM

Although the modeling error introduced by the KL BEM is insignificant [31, 32], the

covariance matrix of fading is not always available at the receiver side in a practical sce-

nario. Alternatively, a BEM based on DPS functions was proposed in [20]. The DPS

BEM corresponds to the discrete KL BEM with a rectangular spectrum [20]. The DPS

basis functions are also named Slepian sequences, which arebandlimited to the Doppler

spread[−ν, ν] and simultaneously most concentrated in the certain time interval of length

M [66]. DPS sequences are widely used for channel estimation both in time and fre-

quency domains [20, 30, 67]. Here we will introduce the principle of DPS sequences

briefly.

The target is to find the sequencesu[m] which maximize the energy concentration in

the interval with lengthN [20]

λ =

∑N−1
n=0 |u[n]|2

∑∞
n=−∞|u[n]|2

, (2.31)

while being bandlimited toν; hence

u[n] =

∫ ν

−ν

U(ν)ej2πnνdν, (2.32)

where

U(ν) =
∞
∑

n=−∞

u[n]e−j2πnν , (2.33)

and0 ≤ λ ≤ 1.

The solution of this constrained maximization problem are the DPS sequences [66],

which are the eigenvectors of the following eigenvalue equation

N
∑

q=1

sin(2πν(q − n))

π(q − n)
um(q) = λmum(n), (2.34)

whereum(n) is themth basis function with lengthN bandlimited to the frequency range

[−ν, ν], andλm is an eigenvalue indicating the fraction of energy contained in the fre-

quency range[−ν, ν] of the corresponding eigenvector [67].

The DPS sequenceu0[n] is the unique sequence that is bandlimited and most time-

concentrated in a given interval with lengthN , u1[n] is the next sequence having maxi-

mum energy energy concentration among the DPS sequences orthogonal tou0[n], and so
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on. Thus, the DPS sequences are a set of orthogonal sequenceswhich are bandlimited

and high (but not complete) time-concentrated in a certain interval with lengthN [20].

The eigenvaluesλm are a measure for this energy-concentration and ordered starting with

the maximum one asλ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. Therefore,um(n) is themth function

corresponding to themth most maximum eigenvalue;M should be chosen to provideλm

close to 1 whenm << M and close to 0 whenm >> M [29]. The option ofM is

described in [66], as

M = 2⌈νN⌉+ 1, (2.35)

⌈x⌉ denotes the smallest integer value larger than or equal tox. The rigorous proof can

be found in [68]. Then, the matrixB containing samples of the DPS basis functions can

be represented as

[B]n,m = um(n), m = 1, . . . ,M, n = 1, . . . , N. (2.36)

GCE BEM

The GCE BEM, which is also known as oversampled complex exponential (CE)

model [25] or non-critically sampled CE model [69], is a modified model of the the CE

BEM. The CE BEM is introduced in [19] to approximate the time variant fading channels.

Its basis functions are complex exponentials that have a period equal to the length of the

considered interval. Normally, the channel modeled by CE BEM is represented as [23,70]

h(n) =
M
∑

m=1

ame
j2π

N
(n−1)[(m−1)−M/2], m = 1, . . . ,M, n = 1, . . . , N. (2.37)

Although the CE BEM is widely used to approximate the time-variant fading channel [21,

23, 71–74], the modeling error of CE BEM is significant. The rectangular window in

(2.37), which corresponds to critically sampling the Doppler spectrum, results in spectral

leakage, which means, the energy from low frequency CE coefficients leaks to the full

frequency range [20]. This results in a floor in the BER performance for time-variant

channels with Doppler spread as shown in [75].

Since only a limit Doppler range of windowed channel is considered, the sidelobes

might be significantly eliminated and more samples are takenin within that range [25].

An improved modeling performance is obtained by using the GCEBEM, which applies a
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set of complex exponentials with the period longer than the window length related to the

CE BEM [25,70]. This corresponds to oversampling the Doppler spectrum of windowed

channel. For the GCE BEM, elements of the matrixB are given by [25,70]

[B]n,m = e
j2π

κN
(n−1)[(m−1)−M/2], m = 1, . . . ,M, n = 1, . . . , N, (2.38)

whereκ is a real number larger than1; usually,κ = 2 is used [25].

BS BEM

The B-splines have previously been investigated in application to estimating the Clarke’s

model [26–28,65,76] since its high approximation accuracyand low computational com-

plexity. An optimal spline of orderq, approximating the random processh(t) with zero

mean and varianceσ2
h, is a spline providing an MSE which is defined as

ε2 =
1

σ2
hT

∫ T

0

E{[h(t)− ĥ(t)]
2}dt, (2.39)

whereĥ(t) is an approximation ofh(t) by applying splines, andT is the sampling interval.

An optimal spline of orderq can be represented as

ĥ(t) =
m=∞
∑

−∞

ambq(t−mT ), (2.40)

wherebq(t) is the B-spline of orderq, andam are spline coefficients.bq(t) is a (q + 1)

fold convolution of the B-spline of zero degree [77]

b0(t) =















1, if |t| < T
2

1
2
, if |t| = T

2

0, otherwise,

(2.41)

whereT is the sampling interval. Usually,bq(t) are described by the Fourier trans-

form [27]

Bq(ω) =

∫ ∞

−∞

bq(t)e
−jωtdt = T

[

sin(ωT
2
)

ωT
2

]q+1

. (2.42)

The optimal spline approximation can be described by a “prefilter-sampling-postfilter”

scheme which is shown in Fig.2.5 [27] whereG(ω) andF (ω) are transfer functions of

the prefilter and postfilter, andδ(t) is the Dirac delta function [78]. The postfilter transfer
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Figure 2.5: Prefilter-sampling-postfilter scheme describing spline approximation of the

processx(t),

functionF (ω) is the Fourier transform of the B-splines,F (ω) = Bq(ω), while the prefilter

has the transform function [27]

G(ω) =

[

(
ωT

2
) sin(

ωT

2
)

]−q−1

×
[

∞
∑

n=−∞

(

ωT

2
+ nπ

)−2q−2
]−1

. (2.43)

If the the random processh(t) obeys Clarke’s model, the MSE of the approximation by

applying optimal splines of an arbitrary orderq can be calculated by [27]

ε2 ≈ π2q+2B2q+2

[(q + 1)!]2γ2q+2
+
π2q+4(q + 1)(2q + 3)B2q+4

[(q + 2)!]2γ2q+4
, (2.44)

whereBn are Bernoulli numbers [79], and the sampling factorγ = 1/(νT ).

To build the basis functions, we use the B-spline of orderq [76]

Bq(t) =
1

q!

q+1
∑

i=0

(−1)i
(

q + 1

i

)(

t

T
+
q + 1

2
− i

)q

+

, (2.45)

whereT = (N−1)/(M−q) is the sampling interval separating two adjacent BS functions,

and(x)+ = max{0, x}. In this case, elements of the basis function matrix are given by

[B]n,m = Bq

(

(n− 1)−
(

m− q + 1

2

)

T

)

, m = 1, . . . ,M, n = 1, . . . , N.

(2.46)

The accuracy and complexity of B-spline approximation depend on the orderq of the

spline.

As shown above, the KL and DPS BEMs can approximate the time-variant fading

channel with insignificant modeling error but require the statistics of fading and have to
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suffer extra error caused by inaccurate estimation of thesestatistics. Although the GCE

and BS BEMs do not require the knowledge of the statistical information of fading by

using a simple series representation as basis functions, they will introduce higher model-

ing errors than KL and DPS BEMs. We will compare the performance and complexity of

these four BEMs in Chapter 3 and use the one which can provide a good performance and

affordable complexity to approximate the fading channels in this thesis.

2.3 Turbo codes

Turbo codes were first introduced by Berrou, Glavieux and Thitimajshima at the Inter-

national Conference on Communication (ICC) in 1993 [80]. In AWGN channels, the

performance of a half rate turbo code is only 0.7 dB away from the Shannon capacity

limit at BER= 10−5. The remarkable achievement terminates the conventional thought

that the Shannon limit can only be approached by using extraordinarily long codes with

extremely complex decoding processes [81]. As one of the most powerful error-control

codes, Turbo codes have been developed rapidly and attract substantial attention in wire-

less communication community due to its outstanding ability of error correction [82–88].

Turbo codes are based on two fundamental concepts, concatenated coding and iterative

decoding, the latter of which is the core of the ‘turbo principle’ since it is the method

that allows the outstanding performance of turbo codes. As turbo codes will be used in

some chapters of this thesis, we will briefly introduce the structure of the turbo encoder

and main turbo decoding algorithms, i.e., the optimal maximum a posteriori(MAP) and

Log-MAP algorithms, and the suboptimal MAX-Log-MAP algorithm. For more detailed

description of turbo codes, readers are referred to [89–91].

2.3.1 Turbo encoder

The structure of the turbo encoder used in this report can be explained by its formal name,

parallel concatenated recursive systematic convolutional (RSC) code. Fig. 2.6 gives an

example of the structure of a turbo encoder. Two RSC encoders are concatenated and
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an interleaver is in between them. Comparing with non-systematic convolutional (NSC)

codes, RSC codes apply a feedback loop (recursive part) and set one of the outputs equal

to the input data (systematic part). The structure of a RSC encoder and the corresponding

NSC encoder are shown in Fig. 2.7 and Fig. 2.8, respectively.For both encoders, the

code rate is1 and the constraint length is3. The generator polynomials of the feedback

and output connectivity in the RSC encoder are[7, 5] in octal notations, respectively.

The working principles of the turbo encoder are described here. A lengthN data

sequenced = [d[1], . . . , d[N ]] is encoded by the first RSC encoder, the output of which

is a lengthN coded sequencex1
p = [x1p[1], . . . , x

1
p[N ]]. Then, the original data sequence

is interleaved and encoded by the seconde RSC encoder to generate another lengthN

coded sequencex2
p = [x2p[1], . . . , x

2
p[N ]]. Finally, d, x1

p andx2
p are multiplexed together

to generate the final turbo coded sequence. Without puncturing, this results in a code rate

of 1/3. Higher code rates can be obtained by applying a puncturing scheme.

Figure 2.6: Structure of a Turbo encoder.

The interleaver is a device that simply reorders the input data sequence, while an dein-

terleaver, which will be used in the decoder to recover the original order of the data se-

quence. It is the joint influence of the interleaver and RSC encoder leading to a high code

weight composite codeword for most of the time which is critical to the performance of

turbo code [92]. There are numerous interleavers that can beused in the turbo encoders,

i.e. pseudo-random [93], block [94], and s-random interleavers [95–98]. In this report, we

apply the s-random interleaver due to its superior performance [90]. The output pattern
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Figure 2.7: Example of a Recursive Systematic Convolutional (RSC) encoder.

of such an interleaver is generated randomly, with the constraint that any two input bits at

a distance smaller thans bits will be separated by at leasts bits after interleaving.

2.3.2 Turbo decoder

Fig. 2.9 illustrates the turbo decoder corresponding to theencoder in Fig. 2.6. It is seen

that two RSC decoders are linked by an deinterleaver/interleaver, which is similar to that

used in the encoder.

The turbo decoder works iteratively and in each iteration the two RSC decoders ex-

change the decoded information to help each other. Before decoding iterations, the re-

ceived signalsy[k] = (yd[k], y
1
p[k], y

2
p[k]) from the demodulator are demultiplexed to

sequencesyd[k], y1p[k] andy2p[k], respectively, whereyd[k] corresponds to the received

systematic codes,y1p[k] corresponds to the received 1st parity bits, andy2p[k] corresponds

to the received 2nd parity bits. The first RSC decoder appliesyd[k] andy1p[k] as input

sequences and the second RSC decoder appliesyd[k] andy2p[k]. When the parity bits of a

given RSC encoder are punctured before transmission, the corresponding decoder’s inputs

are set to zeros at the punctured positions. In the initial iteration, the first RSC decoder

takes onlyyd[k] andy1p[k] to generate soft information of the data bits,LE,1(d̄[k]). Then

the second RSC decoder can perform decoding with the soft information ofLE,1(d̄[k])
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Figure 2.8: Example of a Non-Systematic Convolutional (NSC) encoder.

andLap,1(d[k]) from the first RSC decoder, in addition to the receivedyd[k] andy2p[k].

The output of the second decoder is another soft decoding informationLE,2(d̄[k]), which

will be deinterleaved to generateLap,2(d[k]) and fed back to the first RSC decoder. In

the subsequent iterations, the first RSC decoder takesLap,2(d[k]) from the second RSC

decoder in the previous iteration as additional information to yd[k] andy1p[k], to generate

LE,1(d̄[k]). The performance of the turbo decoder improves as the numberof iterations

increases. However, the improvement from iteration to iteration decreases as the num-

ber of iterations increases. This process is repeated iteratively until two RSC decoders’s

estimates of the original data bits converge. Eight iterations are commonly used, as a

compromise between the performance and complexity [81]. Finally, the outputa pos-

teriori informationL(d̄[k]) of a data bitd[k] delivered from the second RSC decoder is

deinterleaved and used for the final hard decision.

In general, each RSC decoder performs decoding by using its input received signals

(yd[k] andyip[k], i = 1, 2) and thea priori information (Lap,i(d[k]), i = 1, 2) from the other

RSC decoder, and provides the extrinsic informationLE,i(d̄[k]) for the other decoder.

Note that the extrinsic information is only exchanged between decoders as intermediate

information during the decoding process. The soft information exchanging between two

RSC decoders is the reason why the turbo decoder is called soft-input soft-output decoder,
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Figure 2.9: Structure of a Turbo decoder.

which accepts softa priori informationLap,i(d[k]) at one of its inputs from the previous

decoding process and generates soft informationLE,i(d̄[k]) as its output. Soft information

means that besides decoded bits, the associated probability that each bit has been decoded

correctly is also provided, usually in the form of log-likelihood ratio (LLR). This indicates

that the decoder yields not only the coded bits but also how reliable they are. As its name

implies, the LLR is the logarithm of the ratio of two probabilities in the case of binary

transmission, e.g., the outputa posterioriinformation (L(d̄[k])) is generally given by

L(d̄[k]) = log
P (d[k] = +1|y)
P (d[k] = −1|y) , (2.47)

where the numerator and denominator are probabilities of the transmitted bitd[k] = +1

andd[k] = −1 conditioned on the received sequencey. Based on (2.47), the more positive

the value ofL(d̄[k]) is, the more reliably the transmitted bit was ‘1’, or the morenegative

the value ofL(d̄[k]) is, the more likely ‘0’ was transmitted.

In the turbo decoder shown in Fig. 2.9, the outputL(d̄[k]), a posterioriinformation of

an information bitd[k], is a sum of

L(d̄[k]) = L(d̃[k]) + Lap(d[k]) + LE(d̄[k]) , (2.48)

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. FUNDAMENTAL TECHNIQUES 30

whereL(d̃[k]) is the channel information,Lap(d[k]) is the a priori information and

LE(d̄[k]) is the extrinsic information.

The channel informationL(d̃[k]) can be extracted directly fromy[k] which are the

received signals ofd[k]. Supposing thatd[k] are transmitted withEs transmitted energy

per symbol, over an AWGN channel, the received signal is

y[k] = a · d[k] + n[k] , (2.49)

wherenk denotes an AWGN with a variance ofσ2
n, anda is the fading amplitude in a

fading channel or a constant value in an AWGN channel. For sucha model, the channel

information is given by [81]

L(d̃[k]) = log
exp

(

− Es

2σ2
n
(y[k]− a)2

)

exp
(

− Es

2σ2
n
(y[k] + a)2

)

= log

(

exp

(

2aEs
σ2
n

y[k]

))

= Lc · y[k], (2.50)

whereLc = 2aEs/σ
2
n is the channel reliability factor, which reflects the reliability of

estimating the transmitted signal from the received signal. For example,Lc will be large

if SNR in the channel is high, and we can estimate the transmitted signal from the received

signal correctly with a high probability. In such a case, thereceived signal will impact

heavily on the final outputa posterioriLLR.

Thea priori informationLap(d[k]) used here is the deinterleaved extrinsic information

from the other RSC decoder.

The extrinsic informationLE(d̄[k]) is the information that decoder exploits from the

whole received sequence anda priori information, but excludes these of the bits which

are currently being decoded in this iteration. It is only theextrinsic information that the

decoders exchange between each other since the same information should not be used

more than once at each decoding step.

Taking all these three types of information above into account, the turbo decoder de-

livers thea posterioriinformation of data bits. The final decision of the decoding is based

on thea posterioriinformation of data bits.
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There are 3 typical decoding algorithms applied widely: MAPalgorithm, MAX-Log-

MAP algorithm and Log-MAP algorithm [80,92,99–102]. All ofthese algorithm will be

introduced briefly in follows.

The Maximuma Posteriorialgorithm was firstly proposed by Bahl, Cocke, Jelinek

and Raviv in [92] and modified by Berrou, Glavieuv and Thitmajshima in [80]. Com-

pared with the conventional maximum likelihood sequence estimation (MLSE) algorithm

which can be efficiently implemented by the Viterbi algorithm [103], the MAP algorithm

is a symbol-by-symbol detection algorithm based on maximuma posterioriinformation.

It is optimal in the sense of minimizing the probability of a symbol error by takinga

priori information of the coded bits into account and providing soft information about

estimated bits. The performance of the MAP and MLSE algorithms would be the same

when there is noa priori information to be exploited. However, whena priori informa-

tion is available, for example, in the soft-input soft-output turbo decoder exchanging the

extrinsic information between two RSC decoders, the MAP algorithm will outperform the

conventional MLSE one [80].

Although the MAP algorithm is the optimal decoding scheme, it is too complicated

to be realized for implementation since the exact representation of probabilities used in

the MAP algorithm requires a high dynamic range [81]. Moreover, there are many non-

linear functions and numerous multiplications proposed inthe scheme [81]. Working in

the logarithmic domain instead of the linear domain for the probability used in the MAP

algorithm and invoking the approximation

ln(ex1 + . . .+ exn) ≈ max
i∈1,2...,n

xi, (2.51)

the MAX-Log-MAP algorithm reduces the complexity significantly. However, it is obvi-

ous that the MAX-Log-MAP algorithm is suboptimal since onlya part of information is

exploited due to the approximation.

This approximation can be avoided by applying the Jacobian logarithm to calculate

x = ln(ex1 + . . .+ exn). The Jacobian logarithm [104,105] is given by

ln(ex1 + ex2) = max(x1, x2) + ln(1 + e−|x1−x2|)

= max(x1, x2) + fc(|x1 − x2|)

= gc(x1, x2), (2.52)
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wherefc(|x1 − x2|) can be regarded as a correction term. Robertson, Hoeher and Ville-

brun in [100] proposed a method to show how to use the Jacobianlogarithm to calculate

ln(ex1 + . . .+ exn) accurately. They supposedx = ln(ex1 + . . .+ exn−1) is known. Then,

they obtained

ln(ex1 + . . .+ exn) = ln(ex + exn)

= max(x, xn) + fc(|x− xn|). (2.53)

This method is referred to as the Log-MAP algorithm [100]. Itwas also shown that the

correction termfc(|x1−x2|) can be implemented efficiently by an one dimension look-up

table to avoid real time computation, moreover, only a few values are needed for the table.

By applying the Jacobian logarithm, the Log-MAP algorithm retains the optimality of the

original MAP algorithm, while preserves the computationalsimplicity of the MAX-Log-

MAP algorithm. For interested readers, more details about the MAP, MAX-Log-MAP

and Log-MAP algorithms can be obtained from [99,101,102].
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Figure 2.10: BER performance of turbo codes with rate 1/3, 8 states, 1024 bits, Log-MAP,

over AWGN channels.

Fig. 2.10 shows the BER performance of the turbo codes over theAWGN channels.

A turbo code with rate1/3, 8 states is employed in the simulation. The generator polyno-

mials of the RSC encoders are[13, 15] in octal for their feedback and output connections

respectively. The length of frame is 1024, giving a sufficient s-parameter of 20 for the

s-random interleaver. The turbo decoder applies the Log-MAPalgorithm and the number
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of decoding iterations are 1, 2, 3, 4, 5, 8 and 10. Simulation results show that the BER

performance of turbo codes improves but the improvement between two consecutive it-

erations decreases as the number of iterations increases. When the number of iterations

is larger than8, the improvement almost decreases to zero. Thus, in this thesis, we will

apply 8 turbo decoding iterations in simulations.

2.4 Conclusions

In this chapter, we have introduced fundamental techniques, such as the simulator of time-

variant channels, BEMs and Turbo codes, which will be used throughout this thesis. After

briefly introducing the reference Clarke’s model and the deficiencies of Jakes’ model and

Pop-Beaulieu simulator, we have adopted the model introduced by Zheng and Xiao [51,

57] to generate multiple fading channels. We have also provided simulation results for

second-order statistics of this model, which have shown that this model can accurately

match to the desired Clarke’s model. Therefore, all time-variant channels considered in

this thesis are generated by using this improved simulationmodel.

We have also introduced BEMs used to approximate the fading channels. Advantages

and disadvantages of the most widely used BMEs, such as KL, DPS, GCE and BS BEMs,

have been briefly discussed. In the next chapter, we will compare these four BEMs in

application to time-variant fading channels and will show that the BS BEM is the best

practical choice providing good performance and low complexity.

Finally, we have introduced the turbo encoder and decoder with different decoding al-

gorithms, such as MAP algorithm, MAX-Log-MAP algorithm andLog-MAP algorithm.

After describing the advantages and disadvantages of each decoding algorithm, we have

chosen Log-MAP decoding algorithm and will be using it in thesubsequent chapters to

realize the soft-input soft-output turbo decoding schemes.
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3.1 Introduction

In mobile communications, the Doppler effect causes the time variant fading. The pa-

rameter used to measure this Doppler effect is the Doppler spread. Usually, this fading is
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well described by Jakes’ model [50], or more generally, by Clarke’s model [49,106]. For

Jakes’ model, the channel gain is a stationary random process with a correlation function

described as the zero-order Bessel function of the first kind parameterized by the Doppler

spread.

In order to approximate the time-variant fading channels, basis expansion mod-

els (BEMs) are widely used [19, 20, 25–32, 64, 65]. The most often used BEMs are

the Karhunen-Loeve (KL) functions [31, 32], discrete prolate spheroidal (DPS) func-

tions [20, 29, 30, 64], generalized complex exponential (GCE) functions [19, 25, 64], and

B-splines (BS) [26–28,65]. With a BEM, estimation of a realization of the random process

describing the time-variant channel is transformed into estimation of a few time-invariant

expansion coefficients [20].

The MSE performance of BEM-based channel estimators is considered in [20, 32, 64,

69, 107–109]. Analytical results in [32, 107, 108] are basedon the assumption that the

Doppler spread is perfectly known, whereas in practice, theDoppler spread is estimated

with some errors [110]. In [20], instead of assuming that theDoppler spread is perfectly

known, the maximum Doppler spread is used to generate the DPSbasis functions. This

method is widely used in the works investigating the DPS BEM [64, 109]. Although the

use of the maximum Doppler spread is more practical and may reduce the complexity of

BEM-based estimators, it may also lead to a significant degradation in the MSE perfor-

mance.

The Doppler spread can be estimated based on correlation andvariation of channel

estimates. For example, in [111], the Doppler estimation scheme based on the autocor-

relation of complex channel estimates is described. Instead of using channel estimates,

the received signal can also be used directly in estimating Doppler spread information.

In [112], the mobile speed is estimated as a function of the deviation of the averaged sig-

nal envelope in flat fading channels. In [110], an efficient Doppler estimation algorithms

for wireless mobile radio systems is introduced by using an ML approach relying on a

periodic channel estimation. In [69], the performance of BEM-based MMSE estimators

using the mismatched Doppler spread has been investigated.However, the derivation of

MSE in [69] is limited to the MMSE estimator using BEMs with orthogonal basis func-

tions; as a result, it cannot be applied to the BS and GCE BEMs.
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In this chapter, we derive the MSE of a generic linear channelestimator using lin-

early independent basis functions, and specify the error for MMSE and ML estimators.

The MSE performance of the Wiener solution is considered andused as a lower MSE

bound. We then investigate and compare the MSE performance and complexity for three

approaches to estimating time-variant channels with perfect or inaccurate knowledge of

the Doppler spread:

1) channel estimation using perfect knowledge of the Doppler spread;

2) channel estimation using the maximum Doppler spread as suggested in [20];

3) channel estimation using an estimate of the Doppler spread.

The first approach provides the best MSE performance; however, it might be very com-

plicated depending on the BEM used and the assumption of a perfectly known Doppler

spread is impractical. Both the second and third approaches are based on inaccurate

knowledge of the Doppler spread; we will investigate which one can provide a better

MSE performance and lower complexity. The complexity of each approach depends on

the BEM used. Therefore, we will compare the MSE performance and complexity of

estimators using different BEMs for each approach, and give apractical choice of the

approach and BEM providing the best performance and the lowest complexity.

The remainder of this chapter is organized as follows. In Section 3.2, the transmission

model and different BEMs are introduced. Section 3.3 describes the MSE derivation for

a generic BEM-based linear channel estimator. The performance and complexity of the

first approach using perfect knowledge of the Doppler spreadare described in Section 3.4.

Then, the MSE performance and complexity of the second and third approaches both

based on inaccurate knowledge of the Doppler spread are investigated and compared in

Section 3.5 and Section 3.6, respectively, followed by conclusions in Section 3.7.

3.2 Transmission model and BEMs

We consider a PSAM system and assume that a block ofN pilot symbols is transmitted

and there areNd data symbols transmitted between two neighboring pilot symbols, e.g.

as shown in Fig. 3.1. The received pilot signal can be writtenin the time-domain as

z(i) = s(i)h(i) + n(i), i = 0, · · · , N − 1, (3.1)
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Figure 3.1: Structure of transmitted block.

where at theith observed instance,s(i) is the transmitted pilot symbol of a power|s(i)|2 =
σ2
s , h(i) is the (time variant) channel coefficient andn(i) is the complex additive white

Gaussian noise (AWGN) with zero mean and varianceσ2
n. The matrix form of (3.1) is

given by

z = Sh+ n, (3.2)

wherez, h andn areN × 1 vectors with elementsz(i), h(i) andn(i), respectively, andS

is anN ×N diagonal matrix with diagonal elementss(i).

We consider time-variant Rayleigh fading channels following Jakes’ model [50, 51].

The covariance matrix of such a channel is anN ×N matrixΥ with elements

[Υ]t1,t2 = ρ(t1 − t2), (3.3)

wheret1, t2 = 1, . . . , N , andρ(τ) is the autocorrelation function [50]

ρ(τ) = σ2
hJ0(2πντ), (3.4)

σ2
h is the variance of channel coefficients,J0(·) is the zero-order Bessel function of the

first kind andν is the Doppler spread.

The time-variant fading channel can be represented by a BEM. We define anN ×M

matrixB containing samples of basis functions corresponding toN transmitted symbols,

whereM is the number of basis functions. The time-variant channel can be modeled as

h̄ = Ba, (3.5)

where the vectora = [a1, . . . , aM ]T contains the expansion coefficients and[·]T denotes

matrix transpose. The difference betweenh̄ andh is due to a modeling error. By applying
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a BEM, the task of estimatingN time varying channel coefficients is transformed into

estimating onlyM expansion coefficients with usuallyM << N . As mentioned above,

we will consider the following BEMs: KL, DPS, GCE, and BS basis functions.

KL BEM

The KL BEM is introduced in [32,107] as a BEM with perfect knowledge of the statistical

information of fading channels. The KL basis functionsvm(n) are the eigenvectors of the

covariance matrix of the fadingΥ, which is obtained in (3.3). We order the eigenvalues

λm of Υ asλ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. Then, the matrixB of the KL BEM can be

represented as

[B]n,m = vm(n), m = 1, . . . ,M, n = 1, . . . , N. (3.6)

DPS BEM

The DPS functions are a set of orthogonal functions bandlimited to the range[−ν, ν].
We considerM basis functionsum(n) of lengthN . Such sequences are defined as the

real-value solution of the following equation [20]

N−1
∑

q=0

sin(2πν(q − n))

π(q − n)
um(q) = λmum(n), n = 0, . . . , N − 1, (3.7)

whereλm andum are the eigenvalues and eigenvectors of the matrix

[C]i,j =
sin(2πν(i− j))

π(i− j)
, i, j ∈ {1, . . . , N}. (3.8)

λm indicates the fraction of energy ofum(n) contained in the range[−ν, ν] [67]. The

eigenvalues are ordered in the descending orderλ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. Then, the

matrixB of the DPS BEM can be represented as

[B]n,m = um(n), m = 1, . . . ,M, n = 1, . . . , N. (3.9)
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GCE BEM

For the GCE BEM, elements of the matrixB are given by [25,70]

[B]n,m = e
j2π

κN
(n−1)((m−1)−(M−1)/2), m = 1, . . . ,M, n = 1, . . . , N, (3.10)

whereκ is a real number larger than1. Forκ = 1, the GCE BEM becomes the complex

exponential (CE) BEM. However, the CE BEM results in a large modeling error [25,70].

The GCE BEM introduces a lower modeling error; usually,κ = 2 is used [25].

BS BEM

The B-splines have previously been investigated in application to estimating the Clarke’s

model [26–28,65]. To build the basis functions, we use the B-spline of orderq [76]

Bq(t) =
1

q!

q+1
∑

i=0

(−1)i
(

q + 1

i

)(

t

T
+
q + 1

2
− i

)q

+

, (3.11)

whereT = (N − 1)/(M − q) is the sampling interval separating two adjacent B-spline

functions, and(x)+ = max{0, x}. In this case, elements of the basis function matrix are

given by

[B]n,m = Bq

(

(n− 1)−
(

m− q + 1

2

)

T

)

, m = 1, . . . ,M, n = 1, . . . , N.

(3.12)

The accuracy and complexity of B-spline approximation depend onq, and normally, the

B-spline of orderq = 3 is widely used since it provides the trade-off between complexity

and accuracy [27,76]. Here, we use the cubic BS BEM and compare its performance and

complexity with those of the other BEMs. For this case, from (3.11) we have

B3(t) =















2
3
− t2

T 2 +
|t|3

2T 3 , if |t| < T,

1
6
(2− |t|

T
)
3
, if T ≤ |t| < 2T ,

0, otherwise,

(3.13)

and (3.12) becomes

[B]n,m = B3 ((n− 1)− (m− 2)T ) , m = 1, . . . ,M, n = 1, . . . , N. (3.14)
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It is clear that for cubic B-splines, theN ×M matrixB is a sparse matrix, and there are

only 4 nonzero elements in each row andK nonzero elements in each column, where

K = ⌈4T ⌉ = ⌈4(N − 1)/(M − 3)⌉, (3.15)

and⌈x⌉ denotes the smallest integer value larger than or equal tox.

3.3 MSE of a generic linear channel estimator

3.3.1 BEM-based estimator

A BEM-based channel estimate is given by

ĥ = Bâ, (3.16)

whereâ is a vector of estimates of expansion coefficients, the estimation ofĥ is transfer-

ring to the estimation ofa. In this chapter, we consider linear channel estimators based

on BEMs, i.e., ML channel estimator and MMSE channel estimator.

The ML channel estimator has the asymptotic properties of being unbiased and have

a Gaussian PDF [113]. We consider the case with white Gaussian noise with PDF

NC(0, σ
2
nIN). Under these condition the PDF of received signalz is [113]

p(z; a) =
1

(2π)N/2 σnN
exp

[

−1

2
(z− SBa)H (z− SBa)

]

, (3.17)

therefore, the ML channel estimation ofa is found by minimizing

J(a) = (z− SBa)H (z− SBa) . (3.18)

Since this is a quadratic function of the elements ofa andσ2
nIN is a positive definite

matrix, differentiation will produce the global minimum [113]. Thus, we have

∂ ln p(z; a)

∂a
=
∂J(a)

∂a
= σ−2

n

∂(SBa)H

∂a
(z− SBa). (3.19)

By setting (3.19) equal zero we have

SBH(z− SBâ) = 0. (3.20)

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 41

Therefore, the ML estimate ofa is given by [113]

âML = (BHSHSB)−1BHSHz. (3.21)

The MMSE channel estimator solving the estimation problem by minimizing

J(a) = E
{

(z− SBa)H (z− SBa)
}

. (3.22)

In (3.22), since the matricesS andB and vectorz are perfectly known, the only random

unknown variable is the vectora. Therefore, the expectation in (3.22) is overa. We can

solve the estimation problem by set

∂J(a)

∂a
= 0. (3.23)

After some algebra, we obtain the MMSE estimates ofa as [113]

âMMSE = E{a}+
(

BHSHSB+ σ2
n

(

E{aaH}
)−1
)−1

BHSH(z− SBE{a}). (3.24)

Here we consider the Rayleigh fading channels and therefore,we haveE{a} = 0 and

we define thatE{aaH} = Ra is the covariance matrix of expansion coefficients, and

represented as [65]

Ra = (BHB)
−1
BHΥB(BHB)

−1
. (3.25)

Then, (3.24) is simplified as [113]

âMMSE =
(

BHSHSB+ σ2
nR

−1
a

)−1
BHSHz. (3.26)

Considering a general expression of a BEM-based linear channel estimator, the vector

â can be represented as

â = Az, (3.27)

whereA is a matrix defined by the channel estimation scheme. For MMSEestimation,

we have

AMMSE = (BHSHSB+ σ2
nR

−1
a )−1BHSH . (3.28)

For ML channel estimation, we have

AML = (BHSHSB)−1BHSH . (3.29)
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Here we derive the MSE of a generic BEM-based linear estimatorand specify it for

different estimation schemes. The MSE is represented as

MSE=
1

tr {E [hhH ]} tr

{

E

[

(

h− ĥ
)(

h− ĥ
)H
]}

, (3.30)

where tr{·} denotes the trace operator,(·)H denotes the Hermitian transpose andE[·]
denotes the expectation. By substituting (3.16) and (3.27) into (3.30), we obtain

MSE=
1

tr {Υ} tr
{

E
[

(h−BA(Sh+ n)) (h−BA(Sh+ n))H
]}

=
1

σ2
hN

tr
{

E
[

hhH
]

− E
[

h (Sh+ n)H AHBH
]

− E [BA (Sh+ n)h]

+E
[

BA(Sh+ n)(Sh+ n)HAHBH
]}

=
1

σ2
hN

tr
{

Υ− 2ℜ
{

E
[

hhH
]

SHAHBH
}

+BAS
{

E
[

hhH
]}

SHAHBH

+BA
{

E
[

nnH
]}

AHBH
}

=
1

σ2
hN

tr
{

Υ+BASΥSHAHBH − 2ℜ{BASΥ}+ σ2
nBAAHBH

}

, (3.31)

whereℜ{·} denotes the real part. The MSE in (3.31) describes the overall error of a BEM-

based channel estimator and can be easily specified for any particular channel estimator,

i.e., the MMSE estimator and the ML estimator with perfect orinaccurate knowledge of

the Doppler spread.

3.3.2 Wiener solution

To evaluate the MSE performance of the BEM-based estimators,the MSE performance

of the Wiener solution is considered and used as a lower boundindicating the optimal

performance that can be achieved. The channel coefficientsh can be estimated by using

the Wiener solution [113]:

ĥW =
(

SHS+ σ2
nΥ

−1
)−1

SHz. (3.32)

The MSE of the Wiener solution is minimum and given by [113]

MSEW =
σ2
n

σ2
hN

tr
{

(

SHS+ σ2
nΥ

−1
)−1
}

. (3.33)

We will consider MSEW as a lower bound. The Wiener solution relies on anN -parameter

model, while a BEM-based estimator exploits anM -parameter model withM << N .
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The computational load of the Wiener solution is very high. The matrix inversion

in (3.32) requiresO(N3) complex multiplications. This matrix inversion has to be cal-

culated once for the channel coefficient at each data position, and therefore, there are

O(NdN
4) complex multiplications required to estimate the channel coefficients over the

whole transmission block withNNd data symbols. The use of BEMs can significantly

reduce the complexity but may lead to performance loss. In the next section, we will

investigate this performance loss and compare the complexity of the BEM-based estima-

tors using perfect knowledge of the Doppler spread. Normally, constant envelope signals

are used as pilot symbols and we will assume that PSK pilot signals are transmitted, and

thereforeSHS = σ2
sIN , whereIN denotes anN ×N identity matrix.

3.4 Approach 1: Channel estimation using perfect

knowledge of the Doppler spread

In this section, we will specify the MSE in (3.31) to MMSE and ML estimators using

perfect knowledge of the Doppler spread. Then, we will compare the MSE performance

and complexity of estimators applying different BEMs.

3.4.1 BEM-based MMSE estimator

The BEM-based MMSE channel estimator in the first approach is given by

ĥMMSE,1 = BAMMSE,1z, (3.34)

whereAMMSE,1 = (σ2
sB

HB+ σ2
nR

−1
a )−1BHSH . By substitutingAMMSE,1 into (3.31), the

MSE of a BEM-based MMSE estimator is represented as

MSEMMSE,1 =
1

σ2
hN

tr

{

σ2
n

σ2
s

[

I+
σ2
n

σ2
s

(

BHBRa

)−1
]−2

+

[

I−B

(

BHB+
σ2
n

σ2
s

R−1
a

)−1

BH

]2

Υ







. (3.35)
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Figure 3.2: MSE performance of the BEM-based MMSE channel estimators versus the

number of basis functions,M , with perfect knowledge of the Doppler spread,N = 100,

SNR = 30 dB,νTs = 0.02.
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Figure 3.3: MSE performance of the BEM-based MMSE channel estimators versus the

number of basis functions,M , with perfect knowledge of the Doppler spread,N = 100,

SNR = 30 dB,νTs = 0.05.
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Fig. 3.2 and Fig. 3.3 show the MSE performance of the BEM-basedMMSE channel

estimators for time-variant channels withνTs = 0.02 andνTs = 0.05, respectively. We

setN = 100 and SNR= 30dB. It can be seen that the MSE of the BEM-based MMSE

estimators decrease when more basis functions are applied,and for different BEMs, the

number of basis functions required to achieve the lower bound is different. The MMSE

estimator using BS BEM requires a larger number of basis functions than the others to

provide the same performance. This indicates that the modeling error of the BS BEM is

larger than that of the others. However, the MMSE estimatorsusing all BEMs can achieve

the identical lower bound and when the number of basis functions approachesN , there is

no performance loss. Note that these numerical results are based on (3.35), which match

to the results obtained by simulations in which the MSE of estimated are calculated and

averaged over time variant Rayleigh fading channels generated by using the improved

simulator (2.22) introduced in Chapter 3.

The complexity of the BEM-based estimators depends on the BEM used. The gener-

ation of KL and DPS basis functions requires the knowledge ofthe Doppler spread and

uses the singular value decomposition (SVD) to calculate the eigenvectors of theN ×N

matrixΥ. Therefore, for anyν, the generation of KL and DPS basis functions requires

O(N3) complex multiplications [114]. Note that the matrixBHB for KL or DPS BEM

is anM ×M identity matrix, since the basis functions are orthogonal.

For BS and GCE BEMs, which do not require the knowledge of the Doppler spread,

the basis functions can be precalculated and the matricesB, BHB,
(

BHB
)−1

BH can be

saved in a memory, and therefore, the complexity of generating basis functions is negli-

gible. Moreover, since the matrixB of the BS BEM is a sparse matrix, the complexity of

the MMSE estimator using BS BEM is lower than that of the estimator using GCE BEM

as shown in Table. 3.1.

Table 3.1 shows the number of complex multiplications required by MMSE estimators

using different BEMs in the first approach, whereq is the order of the B-splines and

K = ⌈4(N−1)
M−q

⌉ is the number of non-zero elements in each column of the matrix B of

the BS BEM. It can be seen that the complexity of the MMSE estimators using KL and

DPS BEMs is of the same order. The number of complex multiplications required by the

MMSE estimator using GCE BEM isO(N3) less than that required by estimators using
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Calculation KL DPS BS GCE

B O(N3) O(N3) − −

Ra MN2 +M2N MN2 +M2N MN2 +M2N MN2 +M2N

R
−1
a O(M3) O(M3) O(M3) O(M3)

V =
(

σ2
sB

HB+ σ2
nR

−1
a

)

−1

O(M3) O(M3) O(M3) O(M3)

AMMSE,1 = VBHSH (M2 +M)N (M2 +M)N (q + 1)N + (q + 1)KM (M2 +M)N

âMMSE,1 = AMMSE,1z MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.1: The number of complex multiplications required by MMSE estimators using

different BEMs in the first approach using perfect knowledge of the Doppler spread.

KL and DPS BEMs. WhenM << N , the termO(N3) dominates in the complexity of

the estimators using KL and DPS BEMs. For this case, the complexity of the MMSE

estimator using the GCE BEM is much lower than that of the estimators using KL and

DPS BEMs. WhenM < 5, the complexity of the MMSE estimators using cubic BS

(q = 3) and GCE BEMs is close. However, whenM increases, the complexity of the

MMSE estimator using the GCE BEM is much higher than that of the estimator using the

BS BEM.

3.4.2 BEM-based ML estimator

The BEM-based ML channel estimator is given by

ĥML,1 = BAML,1z, (3.36)

whereAML,1 = (BHSHSB)−1BHSH . By substitutingAML,1 into (3.31) and taking

SHS = σ2
sIN into account, the MSE of the BEM-based ML estimator is represented

as

MSEML,1 =
1

σ2
hN

tr

{

(

I−B(BHB)−1BH
)

Υ+
σ2
n

σ2
s

B
(

BHB
)−1

BH

}

=
1

σ2
hN

tr
{(

I−B(BHB)−1BH
)

Υ
}

+
σ2
nM

σ2
sσ

2
hN

(3.37)

= δ2m,ML + δ2s,ML, (3.38)

whereδ2m,ML = 1
σ2
h
N

tr
{(

I−B(BHB)−1BH
)

Υ
}

andδ2s,ML = σ2
nM

σ2
sσ

2
h
N

= M
βN

, andβ =
σ2
h
σ2
s

σ2
n

as the signal-to-noise ratio (SNR). WhenM increases,δ2m,ML reduces butδ2s,ML rises up.

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 47

0 2 4 6 8 10 12 14 16 18 20
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Number of basis functions, M

M
S

E
, d

B

 

 

GCE
BS
DPS
KL
MSE

ML

Lower

Figure 3.4: MSE performance of the BEM-based ML channel estimators versus the num-

ber of basis functions,M , with perfect knowledge of the Doppler spread,N = 100, SNR

= 30 dB,νTs = 0.02.
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Figure 3.5: MSE performance of the BEM-based ML channel estimators versus the num-

ber of basis functions,M , with perfect knowledge of the Doppler spread,N = 100, SNR

= 30 dB,νTs = 0.05.
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For the case with fixedN , νTs and SNR, there is a value ofM , below which, the term

δ2m,ML dominates in MSEML,1 and above whichδ2s,ML dominates in MSEML,1. We call this

the optimal number of basis functions, because, for thisM the ML estimator provides

the best performance. The optimal values ofM for different BEMs can be identified, as

shown in Fig. 3.4 and Fig. 3.5 for the cases withνTs = 0.02 andνTs = 0.05, respectively.

We setN = 100 and SNR to30dB. Note that these numerical results also match to the

simulation results. By comparing Fig. 3.4 and Fig. 3.5 with Fig. 3.2 and Fig. 3.3,

we find that unlike the MMSE estimators, the MSE performance of the BEM-based ML

estimators degrades when the number of basis functions is larger than the optimal value

of M .

Calculation KL DPS BS GCE

B O(N3) O(N3) − −

AML,1 =
(

σ2
sB

HB
)

−1
BHSH MN +M2 MN +M2 MN +M2 MN +M2

âML,1 = AML,1z MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.2: The number of complex multiplications required by ML estimators using dif-

ferent BEMs in the first approach using perfect knowledge of the Doppler spread.

We also investigate the complexity of the BEM-based ML estimators. Table. 3.2

shows the number of complex multiplications required by ML estimators with different

BEMs in the first approach using perfect knowledge of the Doppler spread. By comparing

Table. 3.2 with Table. 3.1, we find that for BS and GCE BEMs, the complexity of the ML

estimator is significantly lower than that of the MMSE estimator, since the ML estimators

do not require the matrixRa. However, the complexity of the ML estimators using KL

and DPS BEMs is still high due to the computational load required for the generation of

basis functions.

The results show that in the first approach, the MMSE estimator outperforms the ML

estimator but requires more complex multiplications. WhenM increases, the MMSE

estimators for all BEMs can provide a good performance close to that of the Wiener

solution. The complexity of the estimators using KL and DPS BEMs is much higher than

that of the estimators using BS and GCE BEMs. Among all BEM-based estimators, the

complexity of the one using BS BEM is the lowest.
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Although the performance of the first approach can be very close to the Wiener solu-

tion, the estimators using KL and DPS are too complicated to be implemented in practice.

Moreover, the assumption of perfectly known Doppler spreadis also impractical. In the

next section, we will investigate the performance and complexity of the second approach

using the maximum Doppler spread and compare them with thoseof the first approach.

3.5 Approach 2: Channel estimation using the maximum

Doppler spread

In practical scenarios, the Doppler spread is not always available. Therefore, in [20], the

maximum Doppler spread,νmax, is suggested to generate the DPS basis functions. This

method can also be applied for the KL BEM. For this approach, the generation of KL

and DPS basis functions depends onνmax. Therefore, like the BS and GCE BEMs, the

KL and DPS basis functions can be precalculated and saved in memory. This method can

significantly reduce the complexity of the estimators usingKL and DPS BEMs, but may

also lead to degradation of the performance due to the mismatch between the maximum

Doppler spread and the real Doppler spread. In this section,we will investigate the de-

crease in the complexity and degradation in the MSE performance of the second approach

compared to the first approach where the Doppler spread is perfectly known.

In the second approach, we can precalculate the mismatched covariance matrix̄Υ for

the Doppler spreadνmax and save it in memory. Elements ofῩ are calculated as

[Ῡ]t1,t2 = ρ̄(t1 − t2), (3.39)

where

ρ̄(τ) = σ2
hJ0(2πνmaxτ). (3.40)

The corresponding mismatched covariance matrix of the expansion coefficients is calcu-

lated by

R̄a = (B̄HB̄)
−1
B̄HῩB̄(B̄HB̄)

−1
. (3.41)

For KL and DPS BEMs,̄B is a matrix containing samples of the basis functions generated

by usingν̄max. For BS and GCE BEMs,̄B = B.
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By applying matrices of̄B andR̄a, the expressions of Wiener solution, MMSE esti-

mator and ML estimators are modified as below.

Mismatched Wiener solution

In the second approach, the mismatched Wiener solution is given by

h̄W,2 =
(

σ2
sIN + σ2

nῩ
−1
)−1

SHz. (3.42)

The MSE of the mismatched Wiener solution is represented as

MSEW,2 =
1

σ2
hN

tr

{

Υ−
[

2Υ−Υ

(

I+
σ2
n

σ2
s

Υ−1

)(

I+
σ2
n

σ2
s

Ῡ−1

)−1
]

(

I+
σ2
n

σ2
s

Ῡ−1

)−1
}

.

(3.43)

BEM-based MMSE estimator

The MMSE channel estimator in the second approach is given by

h̄MMSE,2 = AMMSE,2z, (3.44)

whereAMMSE,2 =
(

σ2
sB̄

HB̄+ σ2
nR̄a

)−1
B̄HSH , and the MSE is represented as:

MSEMMSE,2 =
1

σ2
hN

tr

{

σ2
n

σ2
s

[

I+
σ2
n

σ2
s

(

B̄HB̄R̄a

)−1
]−2

+

[

I− B̄

(

B̄HB̄+
σ2
n

σ2
s

R̄−1
a

)−1

B̄H

]2

Υ







. (3.45)

BEM-based ML estimator

The ML estimator using in the second approach is given by

h̄ML,2 = AML,2z, (3.46)

whereAML,2 =
(

σ2
sB̄

HB̄
)−1

B̄HSH , and the MSE in represented as

MSEML,2 =
1

σ2
hN

tr
{(

I− B̄(B̄HB̄)−1B̄H
)

Υ
}

+
σ2
nM

σ2
sσ

2
hN

. (3.47)
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3.5.1 MSE performance
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Figure 3.6: MSE performance of estimators with all BEMs usingthe maximum Doppler

spread,̄νmaxTs = 0.05,N = 100,M = 26 and SNR = 30dB.

Fig. 3.6 shows the degradation in the MSE performance of the second approach com-

pared with the first approach. We setN = 100, SNR= 30dB andνmaxTs = 0.05. Based

on the results shown in Fig. 3.3, we useM = 26 basis functions to guarantee that all

BEMs provide the best performance forνmaxTs = 0.05. In Fig. 3.6, ML2 and MMSE2

indicate the ML and MMSE estimators in the second approach, respectively, and MMSE1

denotes the MMSE estimators in the first approach. It can be seen that, in the second ap-

proach, the MMSE estimators for all BEMs provide a similar performance as that of the

mismatched Wiener solution usingνmax. In the second approach, the ML estimators using

all BEMs provide a similar performance, which is 3.2dB inferior to that of the MMSE

estimators.

Compared with the performance of MMSE estimators in the first approach, the per-

formance of the MMSE estimator in the second approach degrades whenν significantly

mismatches withνmax. For example, whenν = νmaxTs = 0.05, which indicates that there

is no mismatch, the performance of the MMSE estimator in the second approach is the

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 52

same as that of the MMSE estimators in the first approach. However, whenνTs = 0.01,

the performance of the MMSE estimators usingνmaxTs = 0.05 is 4.2dB inferior to the

performance of the MMSE estimators in the first approach.

3.5.2 Complexity

Calculation KL DPS BS GCE

B̄ − − − −

R̄a − − − −

R̄
−1
a − − − −

V =
(

σ2
sB̄

HB̄+ σ2
nR

−1
a

)

−1

O(M3) O(M3) O(M3) O(M3)

AMMSE,2 = VB̄HSH (M2 +M)N (M2 +M)N (M2 +M)N (M2 +M)N

âMMSE,2 = AMMSE,2z MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.3: The number of complex multiplications required by MMSE estimators using

different BEMs in the second approach.

Calculation KL DPS BS GCE

B̄ − − − −

AML,2 =
(

σ2
sB̄

HB̄
)

−1
BHSH MN +M2 MN +M2 MM +M2 MN +M2

âML,2 = AML,2z MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.4: The number of complex multiplications required by ML estimators using dif-

ferent BEMs in the second approach.

Now, we will investigate the complexity of BEM-based estimators in the second ap-

proach. Table. 3.3 shows the number of complex multiplications required by MMSE

estimators using different BEMs. The matricesB̄, Ῡ andR̄−1
a can be precalculated and

saved in memory. Therefore, the estimators with KL and DPS BEMs are significantly

simplified. However, for the estimators using BS and GCE BEMs, the simplification is

not significant. We also find that the MMSE estimators using all BEMs require a similar

number of multiplications whenM < 5. For the case withM > 5, the complexity of the

estimator using the BS BEM is lower than that of the others.

Table. 3.4 shows the number of complex multiplications required by ML estimators

using different BEMs in the second approach. By comparing withTable. 3.2, it can be

seen that the complexity of the ML estimators using KL and DPSBEMs is significantly

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. CHANNEL ESTIMATION OF TIME-VARYING CHANNELS BASED ON BASIS

EXPANSION MODELS 53

reduced. However, the complexity of the ML estimators usingBS and GCE BEMs is the

same as that of the estimators in the first approach.

The results shown in this section indicate that the use of themaximum Doppler spread

can significantly simplify the estimation when using KL and DPS BEMs. However, for

the estimation using BS and GCE BEMs, the simplification is not significant. Note that

in the second approach, the complexity of the estimator using BS BEM is still the lowest.

The MSE performance of the estimators in the second approachis worse than that of the

estimators in the first approach, especially whenνmax >> ν. In the next section, we will

investigate the third approach using an estimate of the Doppler spread, and compare its

performance and complexity with those of the second approach.

3.6 Approach 3: Channel estimation using an estimate of

the Doppler spread

In this approach, we usêν, an estimate of the Doppler spread, to computeRa and generate

the KL and DPS basis functions. The Doppler spread can be estimated based on corre-

lation and variation of channel estimates. For example, in [111], the Doppler estimation

scheme based on the autocorrelation of complex channel estimates is described. Instead

of using channel estimates, the received signal can also be used directly in estimating

Doppler spread information. In [112], the mobile speed is estimated as a function of the

deviation of the averaged signal envelope in flat fading channels. By using the estimate

of the Doppler spread, elements of the estimated covariancematrix,Υ̂, can be calculated

by

[Υ̂]t1,t2 = ρ̂(t1 − t2), (3.48)

where

ρ̂(τ) = σ2
hJ0(2πν̂τ). (3.49)

The estimated covariance matrix of the expansion coefficients is given by

R̂a = (B̂HB̂)
−1
B̂HΥ̂B̂(B̂HB̂)

−1
. (3.50)
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For KL and DPS BEMs,̂B is a matrix containing samples of the basis functions generated

by usingν̂. For BS and GCE BEMs,̂B = B.

By applying matriceŝB andR̂a, we obtain the MSE for the mismatched Wiener solu-

tion, as well as the MMSE and ML estimators.

Mismatched Wiener solution

The mismatched Wiener solution in the third approach is given by

ĥW,3 =
(

σ2
sIN + σ2

nΥ̂
−1
)−1

SHz. (3.51)

The MSE of the mismatched Wiener solution is represented as

MSEW,3 =
1

σ2
hN

tr

{

Υ−
[

2Υ−Υ

(

I+
σ2
n

σ2
s

Υ−1

)(

I+
σ2
n

σ2
s

Υ̂−1

)−1
]

(

I+
σ2
n

σ2
s

Υ̂−1

)−1
}

.

(3.52)

BEM-based MMSE estimators

The MMSE channel estimator in the third approach is given by

ĥMMSE,3 = AMMSE,3z, (3.53)

whereAMMSE,3 =
(

σ2
sB̂

HB̂+ σ2
nR̂a

)−1

B̂HSH , and the MSE is represented as:

MSEMMSE,3 =
1

σ2
hN

tr

{

σ2
n

σ2
s

[

I+
σ2
n

σ2
s

(

B̂HB̂R̂a

)−1
]−2

+

[

I− B̂

(

B̂HB̂+
σ2
n

σ2
s

R̂−1
a

)−1

B̂H

]2

Υ







. (3.54)

BEM-based ML estimator

The ML estimator in the third approach is given by

ĥML,3 = AML,3z, (3.55)
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whereAML,3 =
(

σ2
sB̂

HB̂
)−1

B̂HSH , and the MSE is represented as

MSEML,3 =
1

σ2
hN

tr
{(

I− B̂(B̂HB̂)−1B̂H
)

Υ
}

+
σ2
nM

σ2
sσ

2
hN

. (3.56)

3.6.1 MSE performance

Generally, an estimate ofν can be represented as

ν̂ = ν +∆ν, (3.57)

where∆ν corresponds to overestimation (∆ν > 0) or underestimation (∆ν < 0) of the

Doppler spread. The sensitivity of the estimators to overestimation and underestimation

is different.

Fig. 3.7 shows the MSE performance of the BEM-based MMSE estimators in the third

appraoch versus∆ν for the case withN = 100, SNR= 30dB, andνTs = 0.02. We set

M = 13. The mismatched Wiener solution and MMSE estimators using all BEMs are

sensitive to underestimation of the Doppler spread (∆ν < 0). In the case of overestima-

tion (∆ν > 0), the performance of the MMSE estimators using BS and GCE BEMs is

similar and close to that of the mismatched Wiener solution.However, the performance

of the MMSE estimators using KL and DPS BEMs degrades when the Doppler spread is

significantly overestimated.

Fig. 3.8 shows the MSE performance of the BEM-based ML estimators in the third

approach versus∆ν for the case withN = 100, SNR= 30dB, andνTs = 0.02. We also

setM = 13. It is seen that the performance of ML estimators using BS and GCE BEMs

is not that significantly affected by∆ν. However, the performance of the ML estimators

using KL and DPS BEMs degrades significantly whenν is underestimated or significantly

overestimated. Therefore, the estimators using BS and GCE BEMsare more robust than

the estimators using KL and DPS BEMs.

In Fig. 3.9, we plot the MSE performance of the MMSE and ML estimation in the

third approach together and find that the MMSE estimators aremore sensitive to under-

estimation of the Doppler spread, but provide better performance than the ML estimators
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Figure 3.7: MSE performance of MMSE estimators in the third approach versus the

change of the Doppler spread,νTs = 0.02,N = 100,M = 13 and SNR = 30dB.
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Figure 3.8: MSE performance of ML estimators in the third approach versus the change

of the Doppler spread,νTs = 0.02,N = 100,M = 13 and SNR = 30dB.
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Figure 3.9: MSE performance of MMSE and ML estimators in the third approach versus

the change of the Doppler spread,νTs = 0.02,N = 100,M = 13 and SNR = 30dB.
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Figure 3.10: MSE performance of the BEM-based MMSE estimators using all BEMs

with different estimated Doppler spreads,N = 100,M = 26, νmaxTs = 0.05, ρ = 0.1 and

20%ν̂ overestimation.
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over the range0 < ∆νTs < 0.02. Therefore, in the third approach, the Doppler spread is

suggested to be slightly overestimated for the BEM-based MMSE estimation. Normally,

a Doppler spread estimator provides an unbiased estimationof the Doppler spread [110],

which can often be represented as a normal random variable with a meanνm = ν and

varianceρ2, whereρ = αν andα ∈ [0, 1] characterizes the accuracy of estimating the

Doppler spread. In order to reduce the chance of underestimation, we suggest to add a

small positive value,20%ν̂ to the unbiased estimatêν.

Now we compare the MSE performance of the MMSE estimators in the third approach

using the suggested overestimate of the Doppler spread withthat of the MMSE estimators

in the second approach usingνmax. We consider a case withνTs = 0.02, N = 100. For

the second approach, we setνmaxTs = 0.05 andM = 26. For the third approach, we set

M = 26, α = 10% and20%ν̂ overestimation. The performance of the Wiener solution in

the first approach using perfect knowledge ofν is considered as a lower MSE bound. The

results are shown in Fig. 3.10; they have been obtained by averaging over 1000 simulation

trials. It can be seen that the performance of the BEM-based MMSE estimators in the third

approach using a slight (20%ν̂) overestimate of the Doppler spread is only 0.5dB inferior

to the lower bound, and it outperforms that of the BEM-based MMSE estimators in the

second approach usinḡνmaxTs = 0.05 by 2.3dB for all SNRs.

3.6.2 Complexity

Calculation KL DPS BS GCE

B̂ O(N3) O(N3) − −

R̂a MN2 +M2N MN2 +M2N MN2 +M2N MN2 +M2N

R̂
−1
a O(M3) O(M3) O(M3) O(M3)

V =
(

σ2
sB̂

HB̂+ σ2
nR̂

−1
a

)

−1

O(M3) O(M3) O(M3) O(M3)

AMMSE,3 = VB̂HSH (M2 +M)N (M2 +M)N (q + 1)N + (q + 1)KM (M2 +M)N

âMMSE,3 = AMMSEz MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.5: The number of complex multiplications required by MMSE estimators using

different BEMs in the third approach using an estimate of the Doppler spread.

The number of complex multiplications required by the MMSE and ML estimators

using different BEMs in the third approach is shown in Table. 3.5 and Table. 3.6,
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Calculation KL DPS BS GCE

B̂ O(N3) O(N3) − −

AML,3 =
(

σ2
sB̂

HB̂

)

−1

B̂HSH MN +M2 MN +M2 MN +M2 MN +M2

âML,3 = AML,3z MN MN MN MN

To estimateNNd channel coefficients MNdN MNdN (q + 1)NdN MNdN

Table 3.6: The number of complex multiplications required by ML estimators using dif-

ferent BEMs in the third approach using an estimate of the Doppler spread.

respectively. It is clear that the complexity of the third approach is the same as that of

the first approach. The complexity of the estimators using KLand DPS BEMs in the

third approach is much higher than that of the estimators in the second approach. For the

estimation using BS and GCE BEMs in the third approach, the complexity is close to that

of the estimation in the second approach.

By comparing the third approach using a slight (20%ν̂) overestimate of the Doppler

spread with the second approach using the maximum Doppler spread, we find that al-

though the complexity of the second approach is lower, its performance is worse than that

of the third approach. Moreover, the increase of the complexity in the third approach is

only significant for the estimation using KL and DPS BEMs. For the estimation using

BS and GCE BEMs, the complexity of the third approach is close to that of the second

approach. It is also worthy to emphasize that the complexityof the estimators using BS

BEM is the lowest in all approaches. Therefore, the BS BEM is the most practical choice

due to its highest robustness and lowest complexity.

3.7 Conclusions

In this chapter, BEM-based estimators for time-variant fading channels have been inves-

tigated. The MSE of a generic linear channel estimator with linearly independent BEMs

has been derived. We have investigated and compared the MSE performance and com-

plexity for three approaches using different BEMs, such as KL, DPS, GCE and BS BEMs

for estimation with perfect or inaccurate knowledge of the Doppler spread:

1) channel estimation using perfect knowledge of the Doppler spread;
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2) channel estimation using the maximum Doppler spread as suggested in [20];

3) channel estimation with an estimate of the Doppler spread.

In the first approach based on the impractical assumption of perfect knowledge of the

Doppler spread, when the number of basis functions increases, all BEM-based MMSE

estimators can provide a similar performance close to that of the Wiener solution. How-

ever, the performance of the ML estimator degrades after an optimal number of basis

functions. Although the B-splines require slightly more basis functions than the other

BEMs to achieve the same estimation performance, the complexity of the estimator using

B-splines is still lower than that of the others.

In the second approach, the maximum Doppler spread is used tocalculate the fading

statistics and generate the KL and DPS basis functions. Although the estimation is sim-

plified with respect to the first approach, the significant mismatch between the maximum

Doppler spread and the real Doppler spread leads to degradation in the MSE performance.

Moreover, the decrease of the complexity is only significantfor the estimation using KL

and DPS BEMs, but not significant for the estimation using BS andGCE BEMs.

The third approach uses an estimate of the Doppler spread to compute the fading statis-

tics and generate the KL and DPS basis functions. In this approach, all estimators are

sensitive to underestimation of the Doppler spread but may have little sensitivity to over-

estimation depending on the BEM used. The estimators using BS and GCE BEMs are

more robust than the estimators using KL and DPS BEMs. The estimation in this ap-

proach using a slight (20%) overestimate of the Doppler spread outperforms the estima-

tion in the second approach using the maximum Doppler spread. The MSE performance

of the MMSE estimation in the third approach is very close to the performance of the

Wiener solution with perfect knowledge of the Doppler spread. In this approach, the esti-

mation with KL and DPS BEMs is more complicated than those in the second approach.

However, the increase of complexity for the estimation using BS and GCE BEMs in this

approach is close to that in the second approach.

It is also worthy to emphasize that the complexity of the estimation using BS BEM

is the lowest in each approach. Therefore, the BS-based estimation using a slight (e.g.,

20%) overestimate of the Doppler spread is a good practical choice providing a good
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performance, high robustness and low complexity.

In the following chapters, we will investigate the best performance that can be obtained

by using the optimal detection with imperfect channel estimation. Therefore, we will

assume that the Doppler spread is perfectly known. Moreover, the cubic BS BEM will be

used to approximate the time-variant channels.
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4.1 Introduction

In communication systems transmitting data through unknown channels, traditional de-

tection techniques are based on channel estimation (e.g., by using pilot signals), and then
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treating the estimates as perfect in a minimum distance detector; we call such detectors

mismatched(after [35]). A better detection performance can be obtained in anoptimal

detector that does not estimate the channel explicitly but jointly processes the received

pilot and data symbols to recover the data [35]. The optimal detector in [35] was obtained

for communication scenarios with space-time coding in a channel with uncorrelated fad-

ing and additive white noise. In this chapter, we consider a more general scenario that is

applicable to channels with correlated fading. We derive the generic optimal detector and

specify it for frequency-flat fading channels. We then compare its detection performance

with that of mismatched detectors using different channel estimation techniques for both

cases of time-invariant and time-variant fading.

In time-variant fading channels, the channel estimation isdifficult, especially in sys-

tems with powerful channel codes, such as turbo codes, generally operating at low SNR

where pilot-based channel estimates are often of low accuracy. Iterative channel esti-

mation and decoding over flat fading channels has been proposed to improve the esti-

mates [63, 115]. In this chapter, we will consider representation of channel gain time

variations by using basis functions. As shown in Chapter 3, compared with the other

BEMs, the B-splines provide high accuracy of approximation and require lower complex-

ity. Therefore, we consider approximation of the channel time variations by B-splines,

and, for this case, investigate the detection performance of the optimal detector. We then

investigate iterative receivers that exchange channel anddata estimates in a system trans-

mitting turbo-encoded data. Four channel estimation schemes are considered: the ML

estimator, MMSE estimator, regularized ML estimator, and an estimator providing statis-

tics for the optimal detector.

This chapter is organized as follows. In Section 4.2, the transmission model is in-

troduced. The generic optimal detection and mismatched detection are derived and de-

scribed in Section 4.3 and Section 4.4, respectively. In Section 4.5, the optimal detector is

specified for time-invariant channels. Section 4.6 specifies the optimal detector for time-

variant fading channels approximated by B-splines and describes iterative receivers with

soft-input hard-output and/or soft-input soft-output turbo decoding scheme. Numerical

results are given in Section 4.7. Section 4.8 concludes the chapter.
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4.2 Transmission model

We assume that the data transmission is split into two parts,pilot and data transmission.

For the pilot transmission, the received signal is modeled as

zp = Ψpa+ np (4.1)

wherezp is anNp × 1 received signal vector andΨp is anNp ×M matrix formed from

pilot symbols (for time-invariant channels) or formed fromthe multiplication of pilot

symbols and basis functions (for time-variant channels). TheNp × 1 complex-valued

noise vectornp has a zero mean Gaussian PDFNC(0,Rp) with covariance matrixRp =

E{npnHp }. The vectora = [a1, . . . , aM ]T is anM × 1 vector of complex-valued channel

gains (for time-invariant channels) or basis coefficients (for time-invariant channels) with

the Gaussian PDF

f(a) = NC(0,Ra) (4.2)

whereRa = E{aaH} is anM × M covariance matrix. The functionf(a) defines a

Rayleigh fading channel. The definition of the vectora depends on the considered chan-

nel. In time-invariant channels,a contains the channel gains, i.e.,a = h, and in time-

variant channels,a contains the expansion coefficients, i.e.,a = [a1, . . . , aM ]H . Cor-

respondingly, the structure ofΨp and is modified. In time-invariant channels,Ψp =

sp = [sp(1), . . . , sp(i), . . . , sp(Np)]
H wheresp(i) is an transmitted pilot symbols. In time-

variant channels,Ψp andΨd become matrices as

Ψp = DpBp, (4.3)

whereDp being a diagonal matrix defined as

Dp = diag{sp(t1), . . . , sp(tNp
)}, (4.4)

The matricesBp contain samples of the basis functions at the pilot instants. The de-

tails will be introduced in section 4.5 and section 4.6.1 corresponding to time-invariant

channels and time-variant channels, respectively.

The PDF of the received signal vectorzp for a given vectora is

p(zp|a) = NC(Ψpa,Rp). (4.5)
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For the data transmission, the received signal is modeled as

zd = Ψda+ nd (4.6)

wherezd is the receivedNd × 1 data vector andΨd is anNd × M matrix which de-

pends on a vectord of transmitted data symbols. In time-variant channels,Ψd =

[d(1), . . . , d(i), . . . , d(Nd)]
H whered(i) is an transmitted data symbol, andΨd = DdBd,

whereDd = diag{d1, . . . , dNd
} andBd contains samples of the basis functions at the data

instants. TheNd × 1 noise vectornd has the Gaussian PDFNC(0,Rd) with covariance

matrix Rd = E{ndnHd }. The PDF of the vectorzd for given vectorsd anda is also

Gaussian:

p(zd|d, a) = NC(Ψda,Rd). (4.7)

The transmission model presented in (4.1) and (4.6) is quitegeneral. It can be used to

describe single-input single-output or multi-input multi-output systems in both frequency-

flat and frequency-selective fading channels or in time invariant or variant channels. For

different channels, the structure of matrices or vectors defined above, i.e.,Ψd, Ψp, zp, zd

anda should be modified. The modifications of these matrices and vectors corresponding

are declared in following chapters corresponding to different channels considered.

4.3 Generic optimal detection

For the described transmission model, the optimal detectoris derived by maximizing the

PDFp(zd|d, zp) of the signalzd received at the data stage, conditioned on the transmitted

symbolsd and the signalzp received at the pilot stage, over the data set (alphabet)A:

d̂opt = argmax
d∈A

{p(zd|d, zp)}

= argmax
d∈A

{ln [p(zd|d, zp)]} . (4.8)

In the case of QAM transmission, the alphabetA includes all symbols corresponding to

the QAM constellation points. The PDFp(zd|d, zp) is obtained from the PDFp(zd|d, a)
in (4.7) by integrating out the channel parametersa which are now treated asnuisance

parameters:

p(zd|d, zp) =
∫

p(zd|d, a)f(a|zp)da (4.9)
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where theposteriorPDF f(a|zp) of channel parameters is conditioned on the received

pilot signalzp. Since (4.1) is theBayesian general linear model, the PDFf(a|zp) is also

Gaussian (see [113], pp.326),

f(a|zp) = NC(ma,Sa), (4.10)

with meanma and covarianceSa given by

ma = (Γp +R−1
a )−1Lp, (4.11)

Sa = (Γp +R−1
a )−1, (4.12)

where

Lp = ΨH
p R

−1
p zp, (4.13)

Γp = ΨH
p R

−1
p Ψp. (4.14)

If Rp = σ2
nINp

(i.e., the noise is white with varianceσ2
n), then we have

Lp = σ−2
n ΨH

p zp, (4.15)

Γp = σ−2
n ΨH

p Ψp, (4.16)

whereINp
denotes anNp ×Np identity matrix.

By substituting (4.7) in (4.9), we obtain

p(zd|d, zp) = c3

∫

e2ℜ(aHLd)−aHΓdaf(a|zp)dℜ(a)dℑ(a) (4.17)

whereℜ(·) denotes the real part andℑ(·) denotes the imaginary part,

c3 =
1

πNd|Rd|
e−zH

d
R

−1

d
zd > 0

is a constant, and|Rd| denotes the determinant of the matrixRd. By substituting (4.10)

in (4.17) and taking into account (7.3) in Appendix A, we obtain

p(zd|d, zp) =
c3

|SaΓd + IM | exp
{

(Ld + Lp)
H(Γd + S−1

a
)−1(Ld + Lp)

}

(4.18)

=
c3

|SaΓd + IM | exp
{

2ℜ[LHd (SaΓd + IM)−1ma] + LHd (SaΓd + IM)−1SaLd

−mH
a
Γd(SaΓd + IM)−1ma

}

(4.19)

where

Ld = ΨH
d R

−1
d zd, (4.20)

Γd = ΨH
d R

−1
d Ψd. (4.21)
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For the white noise case, we haveRd = σ2
nINd

and

Ld = σ−2
n ΨH

d zd, (4.22)

Γd = σ−2
n ΨH

d Ψd. (4.23)

Finally, the optimal detector (4.8) is given by

d̂opt = argmin
d∈A

{λ(d)} . (4.24)

where the metricλ(d) to be minimized is given by

λ(d) = −(Ld + Lp)
H(Γd + Γp +R−1

a )−1(Ld + Lp) + ln |Γd + Γp +R−1
a | (4.25)

= ln |SaΓd + IM | − 2ℜ[LHd (SaΓd + IM)−1ma]− LHd (SaΓd + IM)−1SaLd

+mH
a
Γd(SaΓd + IM)−1ma. (4.26)

The first presentation (4.25) of the optimal metricλ(d) shows how this metric is ex-

pressed in terms of the channel statisticLp, which is a vector of outputs of filters matched

to the pilot signals, and the correlation matrixΓp of the pilot signals. The second pre-

sentation (4.26) shows how the optimal metric is expressed in terms of the meanma and

covarianceSa of the posterior PDFf(a|zp).

If the perfect channel information (PCI) is available, we canwrite ma = a andSa =

0M , where0M is anM ×M zero matrix. In this case, the metric (4.26) takes the form

λ(d) = −2ℜ(LHd a) + aHΓda. (4.27)

The detector minimizing the metric (4.27) is equivalent to the classical minimum distance

detector

d̂PCI = argmin
d∈A

{

||zd −Ψda||2R−1

d

}

. (4.28)

In what follows, we will only consider scenarios with additive white noise.

4.4 Generic mismatched detection

The vectorma in (4.11) is known to be the MMSE estimate of the channel parametersa,

i.e.,

âMMSE = ma, (4.29)
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and this estimate is unbiased and has the covariance matrixSa (4.12) [113]. At high SNR,

i.e.,σ2
n → 0, we obtain

f(a|zp) → δ(a−ma), (4.30)

whereδ(a−ma) is an analog of the Dirac delta function for a vector argument. Then the

integration in (4.9) results in

p(zd|d, zp) → p(zd|d, a = âMMSE), (4.31)

and the optimal detector (4.8) becomes a mismatched detector where the MMSE channel

estimates

âMMSE = (Γp +R−1
a Lp (4.32)

are treated as perfect when minimizing the Euclidean distance:

d̂MMSE = argmin
d∈A

{

(zd −ΨdâMMSE)
H(zd −ΨdâMMSE)

}

. (4.33)

This motivates us to compare the optimal detector with the MMSE-mismatched detec-

tor. The mismatched detector with MMSE channel estimates exploits the samea priori

information as the optimal detector, but, in a different way. It minimizes the error of

channel estimates, while the optimal detector minimizes the probability of detection er-

rors. Therefore, when comparing the detection performanceof the two detectors, we

expect the optimal detector to outperform the mismatched detector with MMSE channel

estimates.

The optimal detector and mismatched detector with MMSE channel estimates require

the knowledge of the fading statistics that are not always available. Therefore, it is of

interest to consider the mismatched detector with ML channel estimates

d̂ML = argmax
d∈A

{

(zd −ΨdâML )
H(zd −ΨdâML )

}

(4.34)

where the ML channel estimates are given by

âML = (ΨH
p Ψp)

−1ΨH
p zp = Γ−1

p Lp. (4.35)

When comparing (4.32) and (4.35), it is seen that the inverse of the fading covariance ma-

trix Ra in (4.32) plays a regularization role. This, however, requires the fading covariance

to be known. Therefore, we will also consider a mismatched detector

d̂ǫ = argmax
d∈A

{

(zd −Ψdâǫ)
H(zd −Ψdâǫ)

}

(4.36)
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with channel estimates using regularization based on the diagonal loading

âǫ = (Γp + ǫIM)−1Lp (4.37)

whereǫ ≥ 0 is a regularization parameter. Such regularization does not require the fading

statistics to be available. Note that forǫ = 0, we havêaǫ = âML .

Thus, we are going to investigate the detection performanceof the following detectors:

1) optimal detector defined by (4.24) and (4.25);

2) mismatched detector with MMSE channel estimates given by(4.33);

3) mismatched detector with ML channel estimates given by (4.34); and

4) mismatched detector withǫ-ML channel estimates given by (4.36).

The relationship (4.24) describes the optimal detector applicable to many communi-

cations scenarios. However, in this chapter we are only interested in investigating single-

user systems in SISO frequency-flat time-invariant and time-variant Rayleigh fading chan-

nels.

4.5 Optimal and mismatched detection in time invariant

SISO channels

In this section, we specify the optimal detector for time-invariant fading channels with

QAM transmission and show that for signals with constant envelope the mismatched de-

tectors are optimal.

Consider the transmission in a SISO time invariant channel, described as

zp = hsp + np (4.38)

zd = hsd + nd (4.39)

i.e.,M = 1, a = h is a complex-valued scalar,Ra = σ2
h = E{|h|2}, andΨp = sp is a

Np × 1 vector of pilot symbols. We consider symbol-by-symbol detection, i.e.,Nd = 1
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andΨd = d. We only consider the white noise case, i.e.,Rd = σ2
n andRp = σ2

nINp
.

Denoteη = σ2
a/σ

2
n, γp = sHp zp, andγd = d∗zd. Then, from (4.12) and (4.11), we obtain

Sa = σ2
a(Epη + 1)−1 andma = ηγp(Epη + 1)−1, whereEp = sHp sp is the energy of the

pilot signal. We also obtainLp = γpσ
−2
n , Γp = Epσ

−2
n , Ld = γdσ

−2
n , andΓd = |d|2σ−2

n .

With these notations, from (4.25) we arrive at the optimal detector

d̂opt = argmax
d∈A

{ |d∗zd + γp|2
σ2
n(|d|2 + Ep + 1/η)

− ln

(

|d|2 + Ep +
1

η

)}

. (4.40)

For signals with constant envelope|d| = const, such as PSK signals, from (4.40) we

obtain

d̂opt = argmax
d∈A

{

ℜ(γ∗pγd)
}

= d̂ML = d̂MMSE = d̂ǫ. (4.41)

The data symbol estimate (4.41) is equivalent to the mismatched detectors with the fol-

lowing estimates of the channel gain:

âML = γp/Ep, (4.42)

âMMSE = γp/(Ep + 1/η), (4.43)

âǫ = γp/(Ep + σ2
n), (4.44)

correcting the received signal according to these estimates (z0 = â∗MLzd or z0 = â∗MMSEzd

or z0 = â∗ǫzd), and, finally, deciding on the transmitted symbold by mappingz0 to the PSK

constellationA. Thus, for constant envelope signals (such as PSK signals) all the three

mismatched detectors are optimal. In other cases of QAM signals, the optimal detector is

given by (4.40).

4.6 Optimal and mismatched detection in SISO time

variant channels

4.6.1 Transmission model

Now we consider single-user transmission in time variant channels. We assume that a

data block ofN symbols is transmitted,Np of which are pilot symbols and the other
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Figure 4.1: Structure of the transmitted data block.

Nd = N −Np are data symbols as shown in Fig. 4.1. The received signal corresponding

to the pilot and data parts of the data block are modeled, respectively, as

zp(tk) = sp(tk)h(tk) + n(tk), k = 1, . . . , Np, (4.45)

zd(τk) = sd(τk)h(τk) + n(τk), k = 1, . . . , Nd, (4.46)

wheresd(τk) = dk is a data symbol transmitted at timeτk, n(t) is the noise, andh(t)

states a Rayleigh fading channel following Jakes’ model [50,51]. The covariance matrix

of such fading channels is anN ×N matrix with elements

[Υ]t1,t2 = ρ(t1 − t2), (4.47)

wheret1, t2 = 1, . . . , N , andρ(τ) is the autocorrelation function of Jakes’ fading process

[50] as shown by (3.4) in Chapter 3

ρ(τ) = σ2
hJ0(2πντ), (4.48)

σ2
h is the variance of the channel coefficients,J0(·) is the zero-order Bessel function of

the first kind,ν is the Doppler frequency.

As shown in Chapter 3, BEMs can be used to approximate the time-variant fading

channels following Jakes’ model. With a BEM, the task of estimatingN time variant

channel gains transforms to estimating onlyM time invariant expansion coefficients,

whereM << N , and the time-varying channel is represented as a series

h(t) =
M
∑

m=1

amϕm(t), t = 0, . . . , N − 1, (4.49)
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where{ϕm(t)}Mm=1 are basis functions. In the matrix form, (4.49) can be represented by

h = Ba, (4.50)

whereB is anN × M matrix with elements[B]t,m = ϕm(t), t = 0, . . . , N − 1, and

a = [a1, . . . , am, . . . , aM ]T is anM×1 vector corresponding to the expansion coefficients.

We can represent the received data and pilot signals in the matrix form (4.1) and (4.6),

respectively, with

Ψp = DpBp, Ψd = DdBd, (4.51)

andDp andDd being diagonal matrices defined as

Dp = diag{sp(t1), . . . , sp(tNp
)}, (4.52)

Dd = diag{d1, . . . , dNd
}. (4.53)

The matricesBp andBd contain samples of the basis functions at the pilot and data

symbol instants, respectively:

[Bp]k,m = ϕm(tk), [Bd]k,m = ϕm(τk). (4.54)

Using these notations, and denoting

βd = DH
d zd, βp = DH

p zp (4.55)

and

Fd = DH
d Dd, Fp = DH

p Dp, (4.56)

we obtain:

Ld = σ−2
n BH

d βd, Lp = σ−2
n BH

p βp, (4.57)

and

Γd = σ−2
n BH

d FdBd, Γp = σ−2
n BH

p FpBp. (4.58)

4.6.2 Optimal detection

The optimal detector becomes very complicated for highNd. We want to consider the

simplest case of symbol-by-symbol detection of data symbols in a data block. In this
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case, expressions above are simplified:Dd = d, Fd = |d|2 andβd = d∗zd are now

scalars;Bd is a(1×M) vector whose elements are values of the basis functions at the data

symbol instant;Ld = σ−2d∗zdB
H
d ; andΓd = σ−2|d|2BH

d Bd. The optimal detector (4.24)

minimizes the metricλ(d) which is now given by

λ(d) = − 1

σ2
n

(

BH
d βd +BH

p βp
)H (|d|2BH

d Bd +BH
p FpBp + σ2

nR
−1
a

)−1

×
(

BH
d βd +BH

p βp
)

+ ln
∣

∣|d|2BH
d Bd +BH

p FpBp + σ2
nR

−1
a

∣

∣ . (4.59)

The optimal detector based on modeling time-variant fadingusing a BEM requires an

explicit expression for the fading covarianceRa. To obtainRa, we can use the transform

(3.25)

Ra = (BHB)−1BHΥB(BHB)−1. (4.60)

If the perfect channel information is available, for the PDFf(a|zp) = NC(ma,Sa) we

can writema = a andSa = 0M . In this case, the optimal metric (4.59) takes the form

λ(d) = −2ℜ(LHd a) + aHΓda. The detector minimizing this metric is equivalent to the

classical minimum distance detector

d̂PCI = argmin
d∈A

{

(zd −Ψda)
H(zd −Ψda)

}

. (4.61)

4.6.3 Mismatched detection

As introduced above, we will consider the mismatched detectors using MMSE, ML and

ǫ-ML channel estimates and compare their performance with that of the optimal detector.

Since we have used a BEM to approximate time-variant channelshere, and therefore, the

task of the channel estimator becomes to estimateM expansion coefficients. The MMSE

channel estimates are given by

âMMSE = (BH
p FpBp + σ2

nR
−1
a
)−1BH

p D
H
p zp. (4.62)

Correspondingly, a mismatched detector that treatsâMMSE as perfect and minimizes the

Euclidean distance is represented as

d̂MMSE = argmin
d∈A

{

(zd −ΨdâMMSE)
H(zd −ΨdâMMSE)

}

. (4.63)
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The ML channel estimates are given by

âML = (BH
p FpBp)

−1BH
p D

H
p zp. (4.64)

and a mismatched detector applying the ML channel estimatesis represented as

d̂ML = argmin
d∈A

{

(zd −ΨdâML )
H(zd −ΨdâML )

}

(4.65)

Theǫ-ML channel estimates are given by

âǫ = (BH
p FpBp + ǫσ2

nIM)−1BH
p D

H
p zp, (4.66)

whereǫ ≥ 0 is a regularization parameter andIM denotes anM ×M identity matrix.

Such regularization does not require the fading statisticsto be available. A mismatched

detector using theǫ-ML estimates is represented as

d̂ǫ = argmin
d∈A

{

(zd −Ψdâǫ)
H(zd −Ψdâǫ)

}

. (4.67)

Note that forǫ = 0, we havêaML = âǫ. It can be shown that theǫ-ML channel estimate

provides the minimum MSE ifǫ = σ−2
a ; this value ofǫ is used in our simulations.

4.6.4 Iterative receivers

Figure 4.2: Transmitter.

The transmission system with QAM modulation is shown in Fig .4.2. In the trans-

mitter, information bits are firstly encoded by a turbo encoder of 1/3 rate with generator

polynomials [013,015] in octal notation. The output bits ofthe turbo encoder are channel-

interleaved and grouped into QAM symbols. Then, pilot symbols are inserted periodically

every(P − 1) data symbols as shown in Fig. 4.1.

Fig. 4.3 or Fig. 4.4 show the structure of soft-input hard-output (SIHO) or soft-input

soft-output (SISO) turbo decoders, respectively.
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The receiver applying SIHO turbo decoder (Fig. 4.3) recovers the transmitted coded

bits by applying a turbo encoder same as the one used in the transmitter to encoding the

hard output of the decoder. The soft metrics output from the detector are de-interleaved

and then passed to a turbo decoder. The SIHO turbo decoder in Fig. 4.3 outputs the

decoded bits which are then turbo encoded. This receiver is too complicated for practical

scenarios, and moreover, its performance is much worse thanthat of the iterative receiver

with SISO Turbo decoder as shown in following simulations.

The receiver applying SISO turbo decoder (Fig. 4.4) performs several iterations, in

which channel estimation and decoding are refined. The receiver uses an SISO turbo

decoder. For every bitck = ±1 of a received symbol,k = 1, . . . , K, the a posteriori

log-likelihood ratio (LLR) is computed as [116,117]

λck = ln

[
∑

d∈A+

k
e−λ(d)

∏

i 6=k P (ci)
∑

d∈A−

k
e−λ(d)

∏

i 6=k P (ci)

]

, (4.68)

where thea priori probabilityP (ci) of a symbol bit is expressed in terms of itsa priori

LLR L(ci) [118]:

P (ci) =
1

2

[

1 + ci tanh

(

1

2
L(ci)

)]

,

A±
k = {d ∈ A|ck = ±1}, and the metricλ(d) depends on the detector used. For the first

iteration, we have

λck = ln
∑

d∈A+

k

e−λ(d) − ln
∑

d∈A−

k

e−λ(d). (4.69)

The LLRsλck are de-interleaved and passed to a turbo-decoder that outputs both a se-

quence of the symbol bit LLRs and decoded bits; the LLRs are thentransformed to re-

cover coded bits by hard decision. After interleaving, QAM mapping, and adding the

pilot symbols, the whole recovered sequence of the QAM symbols is used for channel

estimation in the next iteration.

Actually, this iterative receiver with SISO turbo decoder is not optimal since the hard

decision after the output of turbo decoder leads to a loss of soft information of coded bits

and causes extra error in the QAM Mapper. A better performance can be obtained by

using the soft mapping scheme to generate the data symbols based on the soft output of

the turbo decoder directly [119]. However, the complexity of this soft mapping is higher.

In this thesis, we focus on the hard mapping and the performance of the iterative receiver

with soft mapping scheme will be investigated in further works.
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Figure 4.3: Receiver with soft-input hard-output (SIHO) turbo-decoder.

Figure 4.4: Receiver with soft-input soft-output (SISO) turbo-decoder.
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Functions of the channel estimator and detector are also varying depending on the

detector used and whether it is the first or a subsequent iteration:

1) ML-ML receiver: The ML channel estimation is used in all iterations. At the first it-

eration, the channel estimator provides the ML channel estimateâML according to (4.64).

In the following iterations, it provides ML estimates with re-defined matricesDp andFp

to include all (pilot and data) symbols; the matrixBp is replaced by the matrixB. The

metricλ(d) is calculated as

λ(d) = σ−2
n |zd − âd|2, (4.70)

whereâ is a channel estimate given byâ = BdâML .

2) ǫ-ML-ǫ-ML receiver: The receiver is similar to theML-ML receiver with the channel

estimates given bŷa = Bdâǫ.

3) MMSE-MMSEreceiver: The receiver is similar to theML-ML receiver with the

channel estimates given bŷa = BdâMMSE.

4) Opt-ǫ-ML receiver: At the first iteration, the channel estimator provides the vector

Lp = σ−2
n BH

p D
H
p zp required for the optimal detector. In subsequent iterations, it provides

ǫ-ML estimates with re-defined matricesDp andFp to include all symbols; the matrixBp

is replaced by the matrixB. At the first iteration, the LLR (4.69) withλ(d) given by (4.59)

is calculated. At other iterations, the LLR (4.68) is calculated withλ(d) from (4.70) and

â = Bdâǫ.

5) Opt-MMSEreceiver: The receiver is similar to theOpt-ǫ-ML receiver with channel

estimates given bŷa = BdâMMSE.

4.7 Simulation results

We first consider the time-invariant fading channel. Fig. 4.5 shows the BER performance

of the optimal detector in Rayleigh fading channel with 16QAMmodulation. In this

scenario, only one pilot symbol is transmitted (Np = 1). In the simulation trials, the pilot

symbol is chosen randomly from the alphabetA. It is seen a small gain (less than 0.1
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Figure 4.5: BER performance of the optimal detector in time-invariant frequency-flat

Rayleigh fading channel with 16QAM modulation;Np = 1.

dB) due to the use of the optimal detector with respect to the MLand MMSE mismatched

detectors. Simulation for other modulation schemes has shown even a smaller gain. Thus,

in time-invariant fading channels, the optimal detector provides little improvement in the

detection performance compared to that of the mismatched detectors.

Then, we consider a time-variant fading channel with the Doppler spread factorνTs =

0.01, whereTs is the duration of a symbol. The time variant channel coefficients are

modeled by cubic B-splines with basis functions calculated by [76,120]

ϕ(t) = B3(t) =















2
3
− t2

T 2 +
|t|3

2T 3 , if |t| < T,

1
6
(2− |t|

T
)
3
, if T ≤ |t| < 2T,

0, otherwise

(4.71)

whereT is a sampling interval. For approximation ofh(t) on an intervalt ∈ [0, N − 1],

we setT = (N − 1)/(M − 3); then the basis functionsϕm(t) are given by

ϕm(t) = ϕ(t−mT + 2T ), m = 1, . . . ,M. (4.72)

Fig. 4.6 shows the mean squared error (MSE) of approximationof the fading process
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Figure 4.6: MSE performance of approximation of the fading Jake’s model by cubic B-

splines; no noise;M the number of basis functions;P − 1 is the number of data symbols

between 2 neighboring pilot symbols;Np is the number of pilot symbols in the block and

t0 is the position of the first pilot symbol.

h(t) with Jakes’ autocorrelation by cubic BS BEM with spline coefficients (4.64) as a

function of the sampling factorγ = 1/(νT ). These results are obtained by simulation for

the case of no additive noise. The MSE depends on the lengthN of the data block, the

numberNp and positionstn = t0 + (n − 1)P of pilot symbols within the block. If all

the symbols are pilots (Np = N ), then the MSE is very close to the ‘theoretical’ MSE of

approximation of Jakes’ model by using the optimal splines of an arbitrary orderq [27]

ε2q ≈
π2q+2B2q+2

[(q + 1)!]2γ2q+2
+
π2q+4(q + 1)(2q + 3)B2q+4

[(q + 2)!]2γ2q+4
, (4.73)

whereBm are Bernoulli numbers [79]. For the cubic B-splines (q = 3), from (4.73) we

have

ε23 ≈
0.549

γ8
+

17.736

γ10
. (4.74)

The MSE is still close to the theoretical calculation, if there are at least 1.5 pilot symbols

per sampling intervalT . If the number of pilot symbols is close to one symbol per sam-

pling interval, the MSE performance becomes sensitive to positions of the pilot symbols.

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 4. OPTIMAL AND MISMATCHED DETECTION IN SISO FREQUENCY-FLAT

FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 80

When comparing two scenarios,[N = 500, Np = 23] and[N = 507, Np = 24], it is seen

that there is a significant difference between the MSE performance of these two cases.

However, even for the worst-case scenario, the MSE is betterthan -20 dB forγ ≥ 3 and

better than -36 dB forγ ≥ 4. To avoid degradation in the detection performance with

respect to the case of perfect channel information, “the estimation error should be negli-

gible compared to the reciprocal of the signal-to-noise ratio” [121]. Thus, in the scenarios

considered, the MSE is low enough for many modulation techniques (operating at SNR

lower than 30 dB), i.e., for these cases, in our derivations, we can neglect the modeling

error of cubic B-spline approximation of Jakes’ model of time-variant fading channels.

Therefore, we setγ = 4 in all simulations following.

Fig. 4.7 shows simulation results for a scenario with 16QAM modulation in a sys-

tem without coding. It is seen that for BER= 10−2, the optimal detector outperforms the

mismatched detector with ML channel estimates by about 5.6 dB and is inferior to the

receiver with perfect channel knowledge by about 2.1 dB. The mismatched detector with

ǫ-ML channel estimates is inferior to the optimal detector by1.5 dB. However, the mis-

matched detector with MMSE channel estimates provides nearly the same performance

as the optimal one.

Now, we will consider the iterative receiver with turbo decoder.

Firstly, we will consider the upper and lower bound of the MSEperformance of chan-

nel estimators in the iterative receiver. Fig. 4.8 shows thedependence of the MSE on

Eb/N0 for 16QAM modulation andνTs = 0.01. At the first iteration, the channel estima-

tors only deal with pilot symbols. When the number of pilot symbols is small with respect

to the number of data symbols (P = 22), the ML estimator provides the worst MSE, and

the MMSE estimator provides the best performance, while theǫ-ML estimator with the

optimalǫ = σ−2
a has an intermediate MSE performance. These curves forP = 22 show

the upper MSE bounds for channel estimation performance in the iterative receivers, or,

in other words, they are equivalent to the performance of thereceiver without iterations.

In following iterations, after correcting by the FEC decoder, recovered data symbols are

also treated as pilot and involved in channel estimation. The MSE performance will be

improved and approach the lower bound given by the caseP = 1, i.e., when all symbols

are pilot symbols. It is seen that, in this case, the ML andǫ-ML estimators have similar
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Figure 4.7: BER performance of the optimal and mismatched detectors in time-variant

frequency-flat Rayleigh fading channel with 16QAM modulation; νTs = 0.01,N = 507,

M = 23,Np = 24, P = 22, t1 = 1.

MSE performance, whereas, at low SNRs, the MMSE estimator outperforms the others.

The curves forP = 1 show the lower bounds for channel estimation performance inthe

iterative performance. We can expect that the MSE performance of the channel estimation

at the initial iteration is the same as the upper bounds and improves iteration by iteration.

Fig. 4.9 shows the MSE performance of theMMSE-MMSEiterative receiver versus

the number of iterations increases. The SISO turbo decoder is implemented here. It can

be seen that the MSE performance of channel estimation in theMMSE-MMSEiterative

receiver does improve and the improvement between two consecutive iterations reduces

when the number of iterations increases. However, the improvement of MSE performance

can’t be distinguished after 4 iterations. Therefore, in this thesis, the iterative receiver will

perform 4 iterations at which it can provide acceptable performance and require affordable

complexity.

Two iterative receivers with SIHO and SISO turbo decoders are considered here. Fig.
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Figure 4.8: MSE performance of the ML,ǫ-ML, and MMSE estimators of Jake’s fading

model;N = 507,M = 23, νTs = 0.01, t1 = 1.

4.10 shows the BER performance of the iterative receivers with a SIHO turbo decoder

after 4th iteration in a scenario with 16QAM modulation and1/3 rate turbo code. The

Optimal-MMSEandOptimal-ǫ-ML iterative receivers, i.e., receivers using the optimal de-

tector at the first iteration, significantly outperform the iterative receivers with ML channel

estimation. At BER= 10−2, the improvement in the detection performance is about 5.4

dB against theML-ML iterative receiver and about 1.9 dB against theǫ-ML-ǫ-ML iterative

receiver. However, theMMSE-MMSEiterative receiver is only 0.3 dB inferior to the iter-

ative receivers with optimal detection. Fig. 4.11 shows theMSE performance of channel

estimation for this scenario. When comparing Fig. 4.11 and Fig. 4.8, it is seen that, at

high SNRs, MSEs of the estimators approach corresponding lower MSE bounds shown

in Fig. 4.8. However, it can be seen from Fig. 4.10 that the gapbetween the detection

performance of receivers with the optimal detector and a receiver with perfect channel

information is still significant (about 2.6 dB). This gap can be reduced if a SISO turbo

decoder is used.

Fig. 4.12 shows the BER performance of the iterative receivers with a SISO turbo
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Figure 4.9: MSE performance of theMMSE-MMSEiterative receiver with a soft-input

soft-output turbo decoder versusEb/N0 with respect to the number of iterations; code

rate-1/3, νTs = 0.01,N = 507,M = 23,Np = 24, t1 = 1.

decoder in the same scenario. The gap between the detection performance of theOptimal-

MMSEreceiver and a receiver with PCI is only 0.3 dB at BER=10−3. The gap between

the Optimal-MMSEand ǫ-ML-ǫ-ML receivers is only 1.5 dB. The performance of the

MMSE-MMSEreceiver is only 0.16 dB to that of theOptimal-MMSEreceiver.

Fig. 4.13 shows the MSE performance of channel estimation for this scenario. When

comparing Fig. 4.13 with Fig. 4.11, it is seen a significant improvement in the MSE

performance at low SNRs when using SISO decoder.

From the simulation results, we can conclude that the MMSE channel estimation al-

lows the detection performance of the mismatched detector to approach that of the optimal

detector in both uncoded and coded systems; the difference in the performance is at most

0.16 dB. However, both the optimal detector and the mismatched detector with MMSE

channel estimates require the channel covariance matrix tobe known. The mismatched

detector with regularized ML channel estimates does not need the knowledge of the fading
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Figure 4.10: BER performance of the iterative receivers witha soft-input hard-output

turbo decoder after 4th iteration in a time-variant frequency-flat Rayleigh fading channel

with 16QAM modulation; code rate-1/3, νTs = 0.01, N = 507, M = 23, Np = 24,

t1 = 1.

statistical characteristics. The payment for thisa priori uncertainty is a worse detection

performance. However, the performance degradation is not significant.

4.8 Conclusions

We have derived an optimal detector for pilot-assisted transmission in Rayleigh fad-

ing channels with unknown parameters. The results obtainedare applicable to a wide

range of communications scenarios, including single-input single-output and multi-input

multi-output systems, single-user and multiuser systems in frequency-flat and frequency-

selective time-invariant and time-variant fading channels. They can be used for correlated

fading channels and non-white additive noise.
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Figure 4.11: MSE performance of the iterative receivers with a soft-input hard-output

turbo decoder after 4th iteration in a time-variant frequency-flat Rayleigh fading channel

with 16QAM modulation; code rate-1/3, νTs = 0.01, N = 507, M = 23, Np = 24,

t1 = 1.

In this chapter, we were only interested in investigation ofsingle-input single-ouput

systems in frequency-flat fading channels. For slow fading channels, it has been shown

that, in the case of constant-envelope (e.g., PSK) modulation, the mismatched detectors

are equivalent to the optimal detector, while, in a general case of QAM modulation, the

optimal detector outperforms the mismatched detectors. Intime-variant fading channels,

we have considered B-spline approximation of the channel gain time variations. Simula-

tion results for uncoded data transmission have shown that,in such channels, the optimal

detector can significantly improve the detection performance compared to that of the mis-

matched detectors exploiting ML channel estimates. However, the MMSE-mismatched

detector provides nearly optimal detection performance. We have also investigated the

detection performance of iterative receivers that exchange information between a channel

estimator and decoder. It is shown by simulation that the iterative receiver with the op-

timal detector at the first iteration outperforms the receiver using ML or regularized ML

channel estimates. However, the use of MMSE channel estimates makes the detection
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Figure 4.12: BER performance of the iterative receivers witha soft-input soft-output

after 4th iteration in a time-variant frequency-flat Rayleigh fading channel with 16QAM

modulation; code rate-1/3, νTs = 0.01,N = 507,M = 23,Np = 24, P = 22, t1 = 1.

performance close to that of the receiver with the optimal detector at the first iteration.

In the next chapter, we will apply this optimal detector to MIMO Rayleigh flat fad-

ing channels, and compare its performance with those of the mismatched detectors. We

expect that the improvement of the performance by using thisoptimal detector will be-

come more obvious. We will focus on the comparison between the optimal detector and

the mismatched detector with MMSE channel estimation and investigate the conditions

under which these two detectors are equivalent.
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Figure 4.13: MSE performance of the iterative receivers with a soft-input soft-output

turbo decoder after 4th iteration in a time-variant frequency-flat Rayleigh fading channel

with 16QAM modulation; code rate-1/3, νTs = 0.01, N = 507, M = 23, Np = 24,

t1 = 1.
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5.1 Introduction

In the previous chapter, we have investigated a pilot assisted optimal detector which out-

performs the mismatched detectors in SISO Rayleigh fading channel. The optimal detec-

tor does significantly outperform mismatched detectors with ML or ǫ-ML channel esti-

mates, but slightly outperforms the one with MMSE channel estimates even for the case

with turbo code and iterative receiver. Similar conclusions are also presented in [36].

Simulation results in [36] show that the BER performance of the optimal detection is

close to that of the mismatched detector with MMSE channel estimates.

We can expect that the use of the optimal detection will bringa more significant ben-

efit in channels with a large number of unknown parameters. Inthis chapter, we con-

sider a more general channel, the MIMO channel. After deriving the optimal detector for

spatially correlated MIMO Rayleigh time-invariant fading channels, we then extend the

optimal detector to MIMO Rayleigh time-variant fading channels, in particular with the

fading correlation following Jakes’ model [50], and specify it for MIMO time-variant fad-

ing channels. The time-variant fading channel is modeled byusing BEMs; specifically,

cubic B-spline functions are used [76].

In [35, 36], the analysis and simulation results show that inSISO channels with PSK

modulation, the symbol-by-symbol optimal detection is equivalent to the mismatched de-

tection with MMSE channel estimates. However, this equivalence is only true for SISO

channels. In this chapter, we consider more general cases and prove that in spatially

uncorrelated SIMO channels the optimal symbol-by-symbol detection of PSK signals is

equivalent to the mismatched detection with MMSE channel estimation. However, this is

not the case for signals with non-constant envelope and/or multi-antenna transmission.

The rest of this chapter is structured as follows. In Section5.2, the optimal detector is

specified for spatially correlated MIMO time-invariant Rayleigh fading channels. Section

5.3 describes the proposed optimal and mismatched detectors for MIMO time-variant

Rayleigh fading channels. The conditions of equivalence between the optimal detector

and the mismatched detector with MMSE channel estimates arediscussed in Section 5.4.

Simulation results are given in Section 5.5, followed by conclusions in Section 5.6.
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5.2 Optimal and mismatched detection in MIMO time

invariant channels

In this section, we consider a system withNt transmit antennas andNr receive antennas

over MIMO time-invariant Rayleigh fading channels. We setΨd = INr
⊗ sd, where

sd = [s1, . . . , sk, . . . , sNt
] is an1×Nt vector, andsk is the data symbol transmitted from

thekth transmit antenna, andINr
is aNr ×Nr identity matrix. Correspondingly, we also

defineΨp = INr
⊗ Sp, whereSp is anNp ×Nt matrix with element[Sp]k,i = pk(i), and

Np is the number of pilot symbols transmitted from each antennaandpk(i) is the pilot

symbol transmitted fromkth transmit antenna at theith instance, andi = 1, . . . , Np. ⊗
denotes the Kronecker product. The received pilot and data signals are given by

zp = Ψph+ np, (5.1)

zd = Ψdh+ nd, (5.2)

whereh, anNtNr × 1 vector of channel coefficients, is given by

h = [h1, . . . ,hr, . . . ,hNr
]T ,

hr = [hr,1, . . . , hr,k, . . . , hr,Nt
],

hr,k is the channel coefficient between thekth transmit antenna andrth receive antenna,

andnp andnd are the noise observed at the data symbol and pilot symbol positions, re-

spectively. We consider the scenario where the noise samples at different receive antennas

are uncorrelated and assume that the noise temporal covariance matrix,Rn0, which char-

acterizes time-correlation of noise samples for a single receive antenna, is the same for

all receive antennas. We also assume that the variance of thepath between any pair of

transmit and receive antennas is normalized to 1 (σ2
hr,k

= 1). We then define the spatial

correlation matrix of transmit antennas as anNt×Nt symmetric matrixRt with elements

[Rt]i,i = 1 and[Rt]i,j = ρ, i 6= j, wherei, j = 1, . . . , Nt, while the spatial correlation

matrix of receive antennas is anNr ×Nr symmetric matrixRr with elements[Rr]i,i = 1

and[Rr]i,j = ρ, i 6= j, wherei, j = 1, . . . , Nr. The joint spatial covariance matrix of

the MIMO channel is given by [122,123]

Υ = E{hhH} = Rr ⊗Rt. (5.3)

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 5. OPTIMAL AND MISMATCHED DETECTION IN MIMO FREQUENCY-FLAT

FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 91

5.2.1 Optimal detector

By substituting these notations into the general expression(4.24), the optimal detector for

spatial multiplexing signals in MIMO time-invariant fading channels is given by

ŝd,opt = arg max
sd∈ANt

{

ln

[
∫

p(zd|sd, a)f(a|zp)da
]}

= arg max
Sd∈ANt

{

σ−2
n

(

ΨH
d zd +ΨH

p zp
)H (

ΨH
d Ψd +ΨH

p Ψp + σ2
nΥ

−1
)−1

×
(

ΨH
d zd +ΨH

p zp
)

− ln
∣

∣ΨH
d Ψd +ΨH

p Ψp + σ2
nΥ

−1
∣

∣

}

. (5.4)

5.2.2 Mismatched detectors

Correspondingly to the notations above, the channel estimators described in the last chap-

ter are also modified. In MIMO time-invariant fading channels, the ML channel estimates

are given by

ĥML = (ΨH
p Ψp)

−1
ΨH
p zp. (5.5)

Theǫ-ML channel estimates become:

ĥǫ = (ΨH
p Ψp + ǫσ2

nINtNr
)
−1
ΨH
p zp, (5.6)

where the regularization parameterǫ = 1.

The MMSE channel estimates that take the joint spatial covariance matrix of the

MIMO channel fading into account are given by

ĥMMSE = (ΨH
p Ψp + σ2

nΥ
−1)

−1
ΨH
p zp. (5.7)

A mismatched detector uses the minimum distance detector that treats the channel

estimates as perfect channel information and decides on thetransmitted data symbols by

minimizing the Euclidean distance

ŝd,mis = arg min
sd∈ANt











∥

∥

∥
zd −Ψdĥ

∥

∥

∥

2

σ2
n











, (5.8)

whereĥ = ĥML for ML channel estimates (5.5), or̂a = ĥǫ for ǫ-ML channel estimates

(5.6) orâ = ĥMMSE for MMSE channel estimates (5.7).
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Figure 5.1: Structure of transmitted data blocks transmitted from all antennas.

5.3 Optimal and mismatched detection in MIMO time

variant channels

5.3.1 Transmission Model

We now consider the transmission overNt × Nr MIMO time-variant Rayleigh fading

channels. We assume that a data matrix ofN × Nt symbols is transmitted,Np × Nt of

which are pilot symbols and the othersNd ×Nt are data symbols, whereNd = N −Np.

In this chapter, we consider the case that the pilot symbols are transmitted in groups ofPp

symbols with the group period ofP symbols, which is similar to the pattern scheme in-

troduced in [24]. We assume thatPp ≥ Nt. The structure of data blocks transmitted from

transmit antennas is shown in Fig. 5.1. Note that from different antennas, random pilot

symbols are transmitted at the same time instances. There are some other designs of pilot

patterns for estimating MIMO channels, i.e., the optimal placement of pilot symbols [124]

and the non-overlapping pilot structure [125]. The performance of the optimal detection

with these pilot patterns will be investigated in further work. The received signal at the
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rth receive antenna at timei can be written as:

zr(i) =
Nt
∑

k=1

hrk(i)sk(i) + nr(i), i = 0, · · · , N − 1, r = 1, · · · , Nr, (5.9)

wherehrk(i) is the channel coefficient linking thekth transmit antenna to therth receive

antenna;sk(i) is a symbol transmitted from thekth transmit antenna andnr(i) is the

additive white Gaussian noise observed at therth receive antenna. We denote a vector

of the received signal asz = [zT1 , . . . , z
T
r , . . . , z

T
Nr
]T , wherezr = [zr(0), . . . , zr(N −

1)]T ; a noise vectorn = [nT1 , . . . ,n
T
r , . . . ,n

T
Nr
]T , wherenr = [nr(0), . . . , nr(N −

1)]T ; a vector of the MIMO channel coefficientsh = [h1, . . . ,hr, . . . ,hNr
]T , hr =

[h
(0)
r , . . . ,h

(i)
r , . . . ,h

(N−1)
r ] andh(i)

r = [hr1(i), . . . , hrk(i), . . . , hrNt
(i)]; (·)T denotes ma-

trix transpose.We also assume that the noise samples at different receive antennas are

uncorrelated and assume thatRn0 is the same for all receive antenna. TheN ×N matrix

Rn0 characterizes time-correlation of noise samples for a single receive antenna. Here we

assume that the noise samples are uncorrelated in time andRn0 = σ2
nIN , whereσ2

n is the

noise variance. Then the total noise covariance matrix is given byRn = INr
⊗Rn0.

We consider MIMO time variant channels, which are temporally correlated following

Jakes’ model [50,51]. The temporal covariance matrix of thetime-variant fading channel

is aN ×N matrix with elements[Υ0]t1,t2 = ρ(t1 − t2), t1, t2 = 1, . . . , N , whereρ(τ) is

the autocorrelation function of Jakes’ fading process

ρ(τ) = σ2
hr,k

J0(2πντ), (5.10)

σ2
hr,k

is the variance of the channel coefficients which is the same for all paths,J0(·) is the

zero-order Bessel function of the first kind, andν is the Doppler frequency. The spatial

correlation matrix of transmit antennas isRt, and the spatial correlation matrix of receive

antennas isRr as defined in Section 5.2. The joint spatial and temporal covariance matrix

of the MIMO channel is given by [122]

Υ = E{hhH} = Rr ⊗Υ0 ⊗Rt. (5.11)

Time variations in the MIMO time-variant fading channels are represented by the cubic

B-splines which is given by

ϕ(t) =















2
3
− t2

T 2 +
|t|3

2T 3 , if |t| < T,

1
6
(2− |t|

T
)
3
, if T ≤ |t| < 2T ,

0, otherwise,

(5.12)
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whereT = (N − 1)/(M − 3) andM is the number of basis functionsϕm(t) = ϕ[t −
(m − 2)T ], m = 1, · · · ,M . These basis functions are used to model the time-variant

fading channel linking thekth transmit antenna and therth receive antenna:

h̄rk(i) =
M
∑

m=1

a(rk)m ϕm(i), (5.13)

wherea(rk)m are expansion spline coefficients. An approximation (model) error between

hrk(i) andh̄rk(i) can be neglected if the number of basis functionsM is large enough [27].

In the matrix form, the series (5.13) is given by

h̄rk = Ba(rk), (5.14)

wherea(rk) = [a
(rk)
1 , . . . , a

(rk)
M ]T andB is anN ×M matrix with elements

[B]i,m = ϕm(i), i = 0, . . . , N − 1, m = 1, . . . ,M, (5.15)

which are samples of the basis functions at the symbol positions. The matrixB can be

split into two parts as follows. TheNp×M matrixBp contains samples of basis functions

at the pilot symbol instants:[Bp]i,m = φm(τi). TheNd ×M matrixBd contains samples

of basis functions at the data symbol instants:[Bd]i,m = φm(ti). According to these

notations, the received signal can be represented as

z = Ψa+ n, (5.16)

where

a = [a(1), . . . , a(r), . . . , a(Nr)]T ,

a(r) = [a(r1), . . . , a(rk), . . . , a(rNt)],

a(rk) = [a
(rk)
1 , . . . , a(rk)m , . . . , a

(rk)
M ],

Ψ = INr
⊗ ΨNt

, ΨNt
= [Ψ(1), . . . ,Ψ(k), . . . ,Ψ(Nt)], Ψ(k) = SkB, and Sk =

diag[sk(0), . . . , sk(i), . . . , sk(N−1)]. The received signal corresponding to data and pilot

parts of the transmitted data block are modeled, respectively, as

zd = Ψda+ nd, zp = Ψpa+ np. (5.17)

According to (5.17), the vectorz can be split into a vector of received data symbols:zd =

[vT1 , . . . ,v
T
r , . . . ,v

T
Nr
]T , where[vr]i = zr(ti), and a vector of received pilot symbolszp =
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[uT1 , . . . ,u
T
r , . . . ,u

T
Nr
]T , where[ur]i = zr(τi). The noise vectorn is also split intond =

[xT1 , · · · ,xTr , · · · ,xTNr
]T where[xTr ]i = nr(ti) andnp = [wT

1 , · · · ,wT
r , · · · ,wT

Nr
]T where

[wT
r ]i = nr(τi). Correspondingly, the matrixΨ can be split into a matrix of transmitted

data symbolsΨd = INr
⊗ΨNt

d , where

ΨNt

d = [Ψ
(1)
d , . . . ,Ψ

(k)
d , . . . ,Ψ

(Nt)
d ], Ψ

(k)
d = S

(k)
d Bd,

S
(k)
d = diag[sk(0), . . . , sk(ti), . . . , sk(Nd − 1)],

and a matrix of transmitted pilot symbolsΨp = INr
⊗ΨNt

p , where

ΨNt
p = [Ψ

(1)
p , . . . ,Ψ

(k)
p , . . . ,Ψ

(Nt)
p ], Ψ

(k)
p = S

(k)
p Bp,

S
(k)
p = diag[sk(0), . . . , sk(τi), . . . , sk(Np − 1)].

5.3.2 Optimal detection

The task of the generic optimal detector in (4.8) now becomesto find a data matrixSd by

maximizing the PDFp(zd|Sd, zp) of the received signalzd, conditioned on the transmitted

data symbolsSd and the received pilot signalzp:

Ŝd,opt = arg max
Sd∈A

NdNt

{ln [p(zd|Sd, zp)]}

= arg max
Sd∈A

NdNt

{

ln

[
∫

p(zd|Sd, a)f(a|zp)da
]}

.

By taking above notations and after some algebra, we arrive at

Ŝd,opt = arg max
Sd∈A

NdNt

{

σ−2
n

(

ΨH
d zd +ΨH

p zp
)H (

ΨH
d Ψd +ΨH

p Ψp + σ2
nR

−1
a

)−1

×
(

ΨH
d zd +ΨH

p zp
)

− ln
∣

∣ΨH
d Ψd +ΨH

p Ψp + σ2
nR

−1
a

∣

∣

}

. (5.18)

The optimal detection requires the joint spatial-temporalcorrelation matrixRa of the

expansion coefficientsa. The matrixRa is given by

Ra = E{aaH} = Rr ⊗Rt ⊗Λ0, (5.19)

whereΛ0 = E{a(rk)(a(rk))
H} is theM ×M correlation matrix of the expansion coeffi-

cientsa(rk) that can be obtained from the fading covariance matrixΥ0 defined by (5.10)

by requiring

E{h̄rkh̄Hrk} = E{hrkhHrk} = Υ0. (5.20)
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This requirement means that the correlation matrix of spline coefficientsΛ0 results in

time correlation of the time-variant fading that is equivalent toΥ0, the time correlation of

Jakes’ model. By substituting (5.14) in (5.20), we obtain

BΛ0B
H = Υ0. (5.21)

As shown in Chapter 3, by multiplying both sides of (5.21) byΩ = (BHB)−1BH from

the left and byΩH from the right, we arrive at

Λ0 = (BHB)
−1
BHΥ0B(BHB)

−1
. (5.22)

The optimal detector for MIMO time variant channels is givenby (5.18). However, it is

not feasible to solve this optimization problem for a high numberNdNt of data symbols

due to extremely high complexity. If QAM modulated symbols with K constellation

points are transmitted, we have to calculate this metricKNtNd times. In order to reduce

the complexity, we only detectNt symbols at once. In this case, the expressions above

are simplified:zd = [z1(i), . . . , zr(i), . . . , zNr
(i)]T , Ψ(k)

d = sk(i)Bd, andBd becomes a

1×M vector corresponding to the BS samples atith instants. Now, we only calculate the

optimal metricNdK
Nt times to recover allNdNt data symbols.

5.3.3 Mismatched detection

A mismatched detector uses the minimum distance detector that treats the channel es-

timates as perfect channel information and decides on the transmitted data symbols by

minimizing the Euclidean distance

Ŝd,mis = arg min
Sd∈ANt

{

‖zd −Ψdâ‖2
σ2
n

}

. (5.23)

whereâ is the estimate of expansion coefficients, and it is depends on the applied estima-

tion schemes. Here we also consider the ML,ǫ-ML and MMSE channel estimation.

For the ML channel estimation, the vectorâ = âML and is given by

âML = (ΨH
p Ψp)

−1
ΨH
p zp. (5.24)
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For theǫ-ML channel estimation, the vectorâ = âǫ and is given by

âǫ = (ΨH
p Ψp + ǫσ2

nIMNtNr
)
−1
ΨH
p zp. (5.25)

For the MMSE channel estimation, the vectorâ = âMMSE and is given by

âMMSE = (ΨH
p Ψp + σ2

nR
−1
a )

−1
ΨH
p zp. (5.26)

5.4 The equivalence between the optimal detector and

the mismatched detector with MMSE channel esti-

mates in SIMO channels with PSK modulation

In [35,36], the analysis and simulation results show that inSISO channels with PSK mod-

ulation and white Gaussian noise, the symbol-by-symbol optimal detection is equivalent

to the mismatched detection with MMSE channel estimation. We find that the equivalence

between the optimal detector and mismatched detector with MMSE channel estimates

can be extended to the SIMO spatially uncorrelated Rayleigh fading channels with white

Gaussian noise. Note that for the case with non-white Gaussian noise, this equivalence

does not exist. The proof is given below.

Now, we consider a PSAM system with one transmit (Nt = 1) andNr receive anten-

nas, and the received signal in (5.9) becomes:

zr(i) = hr(i)s(i) + nr(i), (5.27)

wherehr(i) is the channel coefficient between the transmit antenna and the rth receive

antenna;s(i) is a transmitted symbol andnr(i) is the additive white Gaussian noise ob-

served at therth receive antenna. Thus, the vectors and matrices defined inSection 5.3.1

are transformed to

z = [zT1 , . . . , z
T
r , . . . , z

T
Nr
]T , (5.28)

wherezr = [zr(0), . . . , zr(N − 1)]T ; a noise vector

n = [nT1 , . . . ,n
T
r , . . . ,n

T
Nr
]T , (5.29)
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wherenr = [nr(0), . . . , nr(N − 1)]T ; a vector of SIMO channel coefficients as

h = [hT1 , . . . ,h
T
r , . . . ,h

T
Nr
]T , (5.30)

wherehr = [hr(0), . . . , hr(i), . . . , hr(N − 1)]T . The matrix of transmitted data symbols

becomes

Ψd = INr
⊗ Ψ̄d, (5.31)

where

Ψ̄d = SdBd, Sd = diag[s(τ1), . . . , s(τi), . . . , s(τNd
)],

and the matrix of transmitted pilot symbols becomes

Ψp = INr
⊗ Ψ̄Np

, (5.32)

where

Ψ̄p = SpBp, Sp = diag[s(t1), . . . , s(ti), . . . , s(tNp
)].

Note thatΨ̄d andΨ̄p are equivalent toΨ(1)
d andΨ(1)

p defined in Section 5.3.1.

In SIMO time-variant fading channels, the spatial correlation matrix of transmit an-

tenna isRt = 1, while the spatial correlation matrix of receive antennas is anNr × Nr

matrix. We consider channels with no space correlation, i.e., Rr = INr
. The joint spatial

and temporal covariance matrix of the SIMO channel is given by

Υ = Rr ⊗Υ0. (5.33)

We intend to prove that the optimal symbol-by-symbol detector and the mismatched

detector with MMSE channel estimation are equivalent, bothmaximizing the metric

λ(d) = ℜ
{

zHd
[

INr
⊗
(

Ψ̄d(Ψ̄
H
p Ψ̄p + σ2

nΛ
−1
0 )−1Ψ̄H

p

)]

zp
}

. (5.34)
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5.4.1 Mismatched detector with MMSE channel estimates

Firstly, we consider the mismatched detector treating MMSEchannel estimates as perfect.

Now, the task of the mismatched detector shown in (5.23) is todetect one data symbol

d̂mis = argmin
d∈A

{

‖zd −ΨdâMMSE‖2
σ2
n

}

= argmax
d∈A

{

2ℜ{zHd ΨdâMMSE} − âHMMSEΨ
H
d ΨdâMMSE

}

,

(5.35)

where the alphabetA includes all symbols corresponding to the PSK constellation points.

Note that in (5.35), since|d| is constant, the term

âHMMSEΨ
H
d ΨdâMMSE = âHMMSE(INr

⊗ Ψ̄d)
H(INr

⊗ Ψ̄d)âMMSE

= âHMMSE[INr
⊗ (|d|2BH

d Bd)]âMMSE (5.36)

does not depend ond, so it can be removed from (5.35) without affecting the decision

result. Finally, after some algebra, we arrive at

d̂mis = argmax
d∈A

{

ℜ{zHd ΨdâMMSE}
}

= argmax
d∈A

{

ℜ{zHd Ψd(Ψ
H
p Ψp + σ2

nR
−1
a )−1ΨH

p zp}
}

= argmax
d∈A

{

ℜ
{

zHd (INr
⊗ Ψ̄d)

[

INr
⊗ (Ψ̄H

p Ψ̄p + σ2
nΛ0)

−1
]−1

(INr
⊗ Ψ̄H

p )zp

}}

= argmax
d∈A

{λ(d)}. (5.37)

5.4.2 Optimal detector

We now derive the optimal symbol-by-symbol detector of PSK signals in SIMO time-

variant fading channels. After some algebra, (5.18) becomes

d̂opt = argmax
d∈A

{

1

σ2
n

(

ΨH
d zd +ΨH

p zp
)H

Y
(

ΨH
d zd +ΨH

p zp
)

− ln
∣

∣Y−1
∣

∣

}

, (5.38)

whereY =
(

ΨH
d Ψd +ΨH

p Ψp + σ2
nR

−1
a

)−1
. Similar to (5.36), since|d| is constant, we

find thatΨH
d Ψd does not depend on the transmitted PSK symbold. As a result, the term

ln |Y−1| can be removed from (5.38) and we obtain

d̂opt = argmax
d∈A

{

zHp ΨpYΨH
p zp + zHd ΨdYΨH

d zd + 2ℜ
{

zHd ΨdYΨH
p zd
}}

. (5.39)
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The first term in (5.39) does not depend ond. The second term can be transformed into

zHd ΨdYΨH
d zd = zHd (INr

⊗ Ψ̄d)Y(INr
⊗ Ψ̄d)

Hzd

= |d|2zHd (INr
⊗ B̄d)Y(INr

⊗ B̄d)
Hzd; (5.40)

it also does not depend ond since|d|2 is constant. We can now simplify (5.39) as

d̂opt = argmax
d∈A

{

ℜ{zHd ΨdYΨH
p zp}

}

= argmax
d∈A

{

ℜ
{

zHd (INr
⊗ Ψ̄d)

[

(INr
⊗Ψd)

H

×(INr
⊗ Ψ̄d) + (INr

⊗ Ψ̄p)
H(INr

⊗ Ψ̄p)

+σ2
nINr

⊗Λ−1
0

]−1
(INr

⊗ Ψ̄p)
Hzp
}}

= argmax
d∈A

{

ℜ
{

zHd
[

INr
⊗
(

Ψ̄d(Ψ̄
H
d Ψ̄d +Xp)

−1Ψ̄H
p

)]

zp
}}

, (5.41)

whereXp = Ψ̄H
p Ψ̄p + σ2

nΛ
−1
0 . By using the matrix inversion lemma [126], we obtain

d̂opt = argmax
d∈A

{

ℜ
{

zHd

[

INr
⊗
(

Ψ̄d(X
−1
p − X−1

p Ψ̄H
d Ψ̄dX

−1
p

1 + Ψ̄dX−1
p Ψ̄H

d

)

Ψ̄H
p )

]

zp

}}

= argmax
d∈A

{

ℜ
{

zHd

[

INr
⊗
(

Ψ̄dX
−1
p ΨH

p zp −
Ψ̄dX

−1
p Ψ̄H

d

1 + Ψ̄dX−1
p Ψ̄H

d

Ψ̄dX
−1
p Ψ̄H

p

)]

zp

}}

= argmax
d∈A

{

λ(d)

1 + |d|2BdX−1
p BH

d

}

. (5.42)

As |d|2BdX
−1
p BH

d is a constant which does not depend ond, (5.42) transforms into (5.37).

Thus, we proved that the mismatched detector with MMSE channel estimates is equiva-

lent to the optimal symbol-by-symbol detector for PSK signals in spatially uncorrelated

SIMO Rayleigh fading channels. Note that in spatially correlated channels or with non-

white Gaussian noise, these two detectors are not equivalent.

5.5 Simulation results

In this section, numerical results obtained by simulation are presented to compare the

performance of the optimal detector and the mismatched detectors for BPSK and 16QAM

uncoded signals. We assume that the average energy of each pilot and data symbol is equal

toEs.
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The average SNR is defined as

ζ =
E{(Ψa)HΨa}

tr{Rn}
=

tr{ΓRa}
tr{Rn}

, (5.43)

whereΓ = E{ΨHΨ}. For the additive noise uncorrelated at different receive antennas

we have tr{Rn} = Nrtr{Rn0} and (5.43) becomes

ζ =
tr[ΓRa]

Nrtr[Rn0]
. (5.44)

The matrixRa = INr
⊗ INt

⊗ Λ0 is block-diagonal and the noise is white, i.e.,Rn0 =

σ2
nIN ; then takingΓ = INr

⊗ Γ0 into account, we obtain

ζ =
tr[Γ0(INt

⊗Λ0)]

Nσ2
n

, (5.45)

whereΓ0 = E{ΨH
Nt
ΨNt

} = NEsINt
⊗ (BHB). Finally, the average SNR is given by

ζ =
NtEsσ

2
hr,k

σ2
n

. (5.46)

The average bit energy to noise ratio is defined asEb/N0 = ζ/(Nt log2K). The simula-

tion results here represent the BER versusEb/N0.

5.5.1 MIMO time invariant channels

Firstly we will consider the performance of the optimal and mismatched detectors in

MIMO time-invariant fading channels. We setNd = 1,Np = Nt + 1.

Fig. 5.2 shows the performance of the optimal and mismatcheddetectors in2 × 2

MIMO system with BPSK signals. It is seen that all detectors provide similar performance

in both spatially uncorrelated (Fig. 5.2.a) and high spatially correlated (Fig. 5.2.b) MIMO

channels.

Fig. 5.3 and Fig. 5.4 show the performance of the optimal and mismatched detectors

for BPSK signals in2×4 and4×4 systems, respectively. It is clear that the improvement

in the performance caused by using the optimal detector increases when the number of

antennas in the system increases. However, the spatial correlation between antennas can

not affect this improvement.
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Figure 5.2: BER performance of the optimal and mismatched detectors for BPSK signals

in 2× 2 MIMO time-invariant fading channels,Nt = 2,Nr = 2,Np = 3; a)ρ = 0 and b)

ρ = 0.9.
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Figure 5.3: BER performance of the optimal and mismatched detectors for BPSK signals

in 2× 4 MIMO time-invariant fading channels,Nt = 2,Nr = 4,Np = 3; a)ρ = 0 and b)

ρ = 0.9.
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Figure 5.4: BER performance of the optimal and mismatched detectors for BPSK signals

in 4× 4 MIMO time-invariant fading channels,Nt = 4,Nr = 4,Np = 5; a)ρ = 0 and b)

ρ = 0.9.

Fig. 5.5 and Fig. 5.6 for the transmission with 16QAM signalsresult in a similar

conclusion. Therefore, we will consider the channels with no spatial correlation in the

following simulation, i.e.,Rt = INt
,Rr = INr

.

5.5.2 MIMO time variant channels

We now investigate the performance of the optimal and mismatched detectors in spatially

uncorrelated MIMO time-variant fading channels. The number of pilot symbols inserted

into each transmitted block of one transmit antenna isNp = (M + 1)Pp and there are

NtPp(M + 1) pilot symbols in total, wherePp is the length of a group of pilot symbols

as shown in Fig. 5.1. In the simulation we setPp = Nt, N = 507, P = 22 andM = 23.

This corresponds to as little as4.3% overhead due to the use of pilot symbols.

Fig. 5.7 and Fig. 5.8 show the BER performance of the detectorsfor 16QAM signals

in MIMO time-variant Rayleigh fading channels withνTs = 0.01, whereTs is a symbol

duration. Fig. 5.7 shows the BER performance in a SISO channel(Nr = Nt = 1) and in
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Figure 5.5: BER performance of the optimal and mismatched detectors for 16QAM sig-

nals in2 × 2 MIMO time-invariant fading channels,Nt = 2, Nr = 2, Np = 3; a) ρ = 0

and b)ρ = 0.9.

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
, dB 

     a)     

B
E

R

 

 

ML
ε−ML
MMSE
Optimal
PCI

0 10 20 30
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
, dB 

     b)     

ρ=0.0 ρ=0.9

Figure 5.6: BER performance of the optimal and mismatched detectors for 16QAM sig-

nals in2 × 4 MIMO time-invariant fading channels,Nt = 2, Nr = 4, Np = 3; a) ρ = 0

and b)ρ = 0.9.
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Figure 5.7: BER performance of the optimal and mismatched detectors for 16QAM sig-

nals in1× 1 and1× 2 channels;N = 507, P = 22, Pp = 1,M = 23.

a1×2 SIMO channel(Nt = 1, Nr = 2). We setPp = 1 andNp = 24 in both these cases.

In the SISO channel, at BER=10−2, the optimal detector outperforms the mismatched

detector with ML channel estimates by 6.1 dB and withǫ-ML channel estimates by 1.2

dB. However, the BER performance of the optimal detector and the mismatched detector

with MMSE channel estimates are similar. These detectors are inferior to the minimum

distance detector with perfect channel information (PCI) by2.4 dB. In the1 × 2 SIMO

channel, when BER=10−3, the improvement due to the use of the optimal detector in-

creases up to 10 dB compared with the mismatched detector with ML channel estimates

and up to 2.1 dB compared withǫ-ML channel estimates. The BER performance of the

optimal detector and that of the mismatched detector with MMSE channel estimates are

close; the difference in the performance is 0.2 dB. The gap between the BER curve of

the optimal detector and that of the minimum distance detector with PCI is 2 dB when

BER=10−2.

Fig. 5.8 shows simulation results for a2× 2 MIMO channel(Nt = Nr = 2); here, we
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Figure 5.8: BER performance of the optimal and mismatched detectors for 16QAM sig-

nals in a2× 2 channel ;N = 507, P = 22, Pp = 2,M = 23.

setPp = 2 andNp = 47. The optimal detector outperforms the mismatched detectorwith

ML channel estimates by 13 dB at BER=10−2; it outperforms the mismatched detector

with ǫ-ML channel estimates by 4.8 dB at BER=10−3; it also outperforms the mismatched

detector with MMSE channel estimates by 2.2 dB when BER=10−4. From this figure, we

find that the optimal detector provides better BER performance than mismatched detectors

which treat channel estimates as perfect for 16QAM signals,and the improvement in the

BER performance is increased when the number of antennas increases.

Fig. 5.9 and Fig. 5.10 show the BER performance of the optimal detector and mis-

matched detectors for BPSK signals. As shown in Fig. 5.9, in a SISO channel, when

BER=10−2, the optimal detector outperforms the mismatched detectorwith ML channel

estimates by 5.5 dB and the one withǫ-ML channel estimates by 0.5 dB. Similar to the

case of 16QAM signals in Fig. 5.7, the BER curves for the optimal detector and the mis-

matched detector with MMSE channel estimates are close. In a1×2 SIMO channel, when

BER=10−4, the benefit due to the use of the optimal detector is 7.4 dB compared with the

mismatched detector with ML channel estimates. Compared with the mismatched detec-
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Figure 5.9: BER performance of the optimal and mismatched detectors for BPSK signals

in 1× 1 and1× 2 channels;N = 507, P = 22, Pp = 1,M = 23.

tor with ǫ-ML channel estimates, this benefit is 1.1 dB. It can be seen that the performance

of the optimal detector is similar with that of the mismatched detector with MMSE chan-

nel estimates, and it is inferior to the performance of the minimum distance detector with

PCI by 1.6 dB when BER= 10−4.

Fig. 5.10 shows simulation results in a2× 2 and2× 4 MIMO channels. In the2× 2

MIMO channel, the mismatched detector with ML estimates provides significantly worse

performance compared with others. The optimal detector provides significantly better per-

formance than the mismatched detector withǫ-ML channel estimates and it outperforms

the mismatched detector with MMSE channel estimates by 3 dB when BER=10−5. In

the2× 4 MIMO channels, the optimal detector significantly outperforms the mismatched

detectors withǫ-ML channel estimates. It also outperforms the mismatched detector with

MMSE channel estimates by 5.7 dB when BER=10−6.
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Figure 5.10: BER performance of the optimal and mismatched detectors for BPSK signals

in 2× 2 and2× 4 channels;N = 507, P = 22, Pp = 2,M = 23.

5.6 Conclusions

We have proposed and investigated an optimal detector for PSAM systems in MIMO

Rayleigh fading channels. In MIMO time-invariant Rayleigh fading channels, comparing

with mismatched detectors, the benefit on performance caused by using the optimal detec-

tor becomes significant when the number of antennas increases. However, the simulation

results show that the spatial correlation between antennasdoes not influence upon the

difference between the performance of the optimal detectorand that of mismatched de-

tectors. We have also extended the optimal detector to spatially uncorrelated MIMO time-

variant fading channels, the time variation of which is modeled by BS basis functions. We

have investigated the optimal detector and compared its performance with that of tradi-

tional mismatched detectors with ML, regularized ML or MMSEchannel estimates and

compared their performance in MIMO time-variant fading channels with 16QAM and

BPSK modulation. Among these mismatched detectors, the one exploiting MMSE chan-

nel estimates provides the best performance and its performance is close to that of the
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optimal detector in SISO time-variant fading channels whenQAM signals are transmit-

ted. However, the optimal detector significantly outperforms the mismatched detectors

in spatially uncorrelated MIMO time-variant fading channels when the number of anten-

nas increases. In this chapter, we have also shown that if theSIMO channel is spatially

uncorrelated, the optimal symbol-by-symbol detector of PSK signals is equivalent to the

mismatched detector with MMSE channel estimates. Note thatin the general case of

QAM symbols, the termY will depend ond and these two detectors are not equivalent.
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6.1 Introduction

In previous chapters, we have investigated the optimal detector and compared it with

mismatched detectors in frequency-flat Rayleigh fading channels. The optimal detector

can also be used to detect OFDM signals in frequency-selective fading channels. In this

chapter, we derive and investigate the optimal detection ofOFDM signals.
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In OFDM systems, channel estimation is usually performed byemploying pilot

tones [17,21,24,127–138]. Then, the channel estimates aretreated as perfect in the tradi-

tional minimum distance detector. Motivated by the benefit caused by using the optimal

detector as shown in previous chapters, we derive an optimaldetector for OFDM signals

and specify it for spatially uncorrelated MIMO frequency-selective fading channels. We

compare the BER performance of this detector with that of mismatched detectors with

ML, regularized ML (ǫ-ML) or MMSE channel estimates for uncoded transmission. We

also investigate the performance of iterative receivers incorporating the optimal detector.

Specifically, four iterative receivers are considered: receivers with mismatched detectors

using ML, ǫ−ML or MMSE channel estimates, and a receiver with optimal detector at

the first iteration and the mismatched detector based on MMSEchannel estimates in sub-

sequent iterations.

In order to approximate the channel frequency response at data positions by using

channel estimates at positions of pilot symbols, many channel estimation schemes for

OFDM systems have been proposed in the literature [21, 70, 77, 129–131]. In [129], a

low rank approximation to the frequency domain linear MMSE channel estimator was

proposed by using singular value decomposition. In [130], the Wiener filter has been

investigated, and a robust MMSE channel estimator exploiting correlation in both time

and frequency domains was proposed in [131]. In this chapter, we also use channel

estimation based on BEMs, such as CE model [19, 21–24], GCE model[25], B-spline

functions [26–28], Slepian sequences [20, 29, 30] or KL basis functions [31, 32] to ap-

proximate correlated fading channels. After comparing theMSE performance of MMSE

channel estimators corresponding to these BEMs in Rayleigh frequency-selective fading

channels, we use the cubic B-splines to represent the channelfrequency response.

The rest of this chapter is structured as follows. In Section6.2, the transmission model

and communication scenarios are introduced. Different BEMsused to represent the chan-

nel frequency response are specified for frequency domain approximation in Section 6.3.

Section 6.4 describes the proposed optimal detector and mismatched detectors with dif-

ferent channel estimation schemes, and Section 6.5 describes the iterative receivers. Sim-

ulation results are given in Section 6.6, followed by conclusions in Section 6.7.
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6.2 Transmission model

We consider an MIMO OFDM system withN subcarriers,Nt transmit andNr receive

antennas. We assume that a data matrix ofN × Nt symbols is transmitted,Np × Nt of

which are pilot symbols and the othersNd ×Nt are data symbols, whereNd = N −Np.

The duration of an OFDM symbol without a cyclic prefix (CP) isTs = 1/∆f , where∆f

is the space between two neighboring subcarriers. In frequency domain, the pilot symbols

are inserted in groups ofPp symbols with the group period ofP symbols to construct an

OFDM symbol transmitted from one antenna as shown in Fig. 6.1. Here we follow the

the design of group pilot insertion in [24] and guaranteePp ≥ Nt. This OFDM symbol is

inverse Fourier transformed and a CP is added before the transmission.

Figure 6.1: Structure of an OFDM symbol transmitted from onetransmit antenna.

We consider transmission over MIMO time invariant frequency-selective fading chan-

nels withL path components, and assume that the inter-symbol interference (ISI) between

consecutive OFDM symbols is eliminated by using a CP of lengthLmaxT chosen to be

longer than the maximum channel delay, whereT = Ts/N . The channel from thekth

transmit antenna to therth receive antenna can be represented by the channel impulse

response

grk(τ) =
L−1
∑

l=0

αrk(l)δ(τ − τrk(l)), (6.1)

whereδ(τ) is the Dirac delta function,τrk(l) andαrk(l) are, respectively, the delay and

complex amplitude of thelth path in the channel. The channel frequency response at the

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 6. OPTIMAL DETECTION OF OFDM SIGNALS IN FREQUENCY-SELECTIVE

FADING CHANNELS WITH IMPERFECT CHANNEL ESTIMATION 113

ith subcarrier from thekth transmit antenna to therth receive antenna is given by

hrk(i) =
L−1
∑

l=0

αrk(l)e
−j2πi∆fτrk(l). (6.2)

We denote anN×1 vectorhrk = [hrk(0), . . . , hrk(i), . . . , hrk(N−1)]T and anNtNrM×1

vector of the MIMO channel frequency responseh = [h1, . . . ,hr, . . . ,hNr
]T , wherehr =

[h
(0)
r , . . . ,h

(i)
r , . . . ,h

(N−1)
r ] is a1×N row vector,h(i)

r = [hr1(i), . . . , hrk(i), . . . , hrNt
(i)]

is a1×Nt row vector.

The path amplitudesαrk(l) are independent zero-mean complex Gaussian random

variables with exponential power delay profile given by [129]

ϑ(τ) = e−τ/τrms, (6.3)

whereτrms is the root-mean square width ofϑ(τ). The probability density function (PDF)

of a random delayτrk is uniform and given by

fτ (τ) =







1/(LmaxT ) if τ ∈ [0, LmaxT ],

0, otherwise.
(6.4)

With these definitions, elements of the covariance matrixΥ0 = E{hrkhHrk} of the fading

in the frequency domain can be represented as [129]

[Υ0]m,n =
1− e−LmaxT [(1/τrms)+j2π∆f(m−n)]

(1− e−LmaxT/τrms) (1 + j2π∆f(m− n)τrms)
, (6.5)

wheren andm denote two subcarriers of the OFDM symbol. Therefore, the dimension

of Υ0 isN ×N .

The spatial correlation matrix of transmit antennas is anNt×Nt symmetric matrixRt,

while the spatial correlation matrix of receive antennas isanNr × Nr symmetric matrix

Rr. We consider channels with no spatial correlation, i.e.,Rt = INt
,Rr = INr

, where

IS is anS × S identity matrix. The joint spatial and frequency covariance matrix of the

MIMO channel is given by

Υ = E
{

hhH
}

= Rr ⊗Υ0 ⊗Rt. (6.6)

Note that the fading channel described above is only an example used in our simula-

tion. The results obtained below for the optimal detection can be applied to the case of an

arbitrary fading covariance matrixΥ0.
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At the receiver side, the CP is removed and the received signalis Fourier transformed.

In the frequency domain, the received OFDM symbol at therth receive antenna can be

written as:

zr(i) =
Nt
∑

k=1

hrk(i)sk(i) + nr(i), r = 1, · · · , Nr, (6.7)

wheresk(i) is a symbol transmitted at theith subcarrier from thekth transmit antenna

andnr(i) is the additive white Gaussian noise observed at therth receive antenna. We

denote anNNr × 1 vector of the received signal asz = [zT1 , . . . , z
T
r , . . . , z

T
Nr
]T , where

zr = [zr(0), . . . , zr(N − 1)]T is anN × 1 vector; anNNr × 1 noise vector is given by

n = [nT1 , . . . ,n
T
r , . . . ,n

T
Nr
]T , wherenr = [nr(0), . . . , nr(N−1)]T is anN×1 vector. We

consider scenarios where the noise samples at different receive antennas are uncorrelated

and assume that in the frequency domain, the noise covariance matrixRn0 = E{nrnHr }
is the same for all receive antennas. TheN × N matrixRn0 characterizes correlation of

noise samples for a single receive antenna. Here we assume that the noise samples are

uncorrelated in frequency domain andRn0 = σ2
nIN , whereσ2

n is the noise variance. Then

the total noise covariance matrix in frequency domain is given byRn = INr
⊗Rn0.

6.3 BEM of channel frequency response

A channel frequency responseh(f) can be represented by a BEM as

h(f) ≈ h̄(f) =
M
∑

m=1

amB(f,m), (6.8)

whereB(f,m) are basis functions,am are expansion coefficients, andM is the number

of basis functions. The BEM allows transforming the nonparametric estimation problem

to a parametric one: we need to estimateM unknown expansion coefficients instead of

estimatingh(f) as a function off . The difference betweenh(f) and h̄(f) represents a

modeling error, which can be made negligible by choosingM large enough [20,27]; then,

we can assume thath(f) = h̄(f). However, depending on an estimation technique, a large

M may also result in a high noise error (as opposed to the modeling error) [26]. Moreover,

a largeM will lead to high complexity of the receiver. Therefore, it is important to choose

an appropriateM to guarantee that the receiver provides a high estimation performance

and requires a low computational load.
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We denoteB as anN×M matrixB containing samples of basis functions at subcarrier

frequencies. The channel frequency response between thekth transmit antenna and the

rth receive antenna is then modeled as

h̄rk = Ba(rk), (6.9)

where theM × 1 vectora(rk) = [a
(rk)
1 , . . . , a

(rk)
M ]T represents the BEM coefficients be-

tween thekth transmit antenna and therth receive antenna, and these coefficients are

constant over an OFDM symbol. The matrixB can be split into two parts as follows. The

Np ×M matrixBp contains samples of basis functions at subcarriers occupied by pilot

symbols:[Bp]i,m = [B]ξi,m. TheNd ×M matrixBd contains samples of basis functions

at subcarriers occupied by data symbols:[Bd]i,m = [B]fi,m. With these notations, the

received signal can be represented as

z = Ψa+ n, (6.10)

where

a =





















a(1)

...

a(r)

...

a(Nr)





















, a(r) =





















a(r1)

...

a(rk)

...

a(rNt)





















,

andΨ = INr
⊗ΨNt

is anNNr ×MNtNr matrix,ΨNt
= [Ψ(1), . . . ,Ψ(k), . . . ,Ψ(Nt)] is

anN ×MNt matrix,Ψ(k) = SkB where theN ×N matrixSk is given by

Sk = diag[sk(0), . . . , sk(i), . . . , sk(N − 1)]. (6.11)

The received signal corresponding to subcarriers occupiedby data and pilot symbols

are modeled, respectively, as

zd = Ψda+ nd, zp = Ψpa+ np. (6.12)

According to (6.12), theNNr × 1 vectorz is split into a vector of received data symbols:

zd = [vT1 , . . . ,v
T
r , . . . ,v

T
Nr
]T is anNdNr×1 vector, where[vr]i = zr(fi), and anNpNr×1

vector of received pilot symbolszp = [uT1 , . . . ,u
T
r , . . . ,u

T
Nr
]T , where[ur]i = zr(ξi). Sim-

ilarly, the noise vectorn is split into anNdNr × 1 vectornd = [xT1 , · · · ,xTr , · · · ,xTNr
]T ,

where[xTr ]i = nr(fi) and anNpNr × 1 vectornp = [wT
1 , · · · ,wT

r , · · · ,wT
Nr
]T , where
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[wT
r ]i = nr(ξi). Correspondingly, the matrixΨ is split into a matrix of transmitted data

symbolsΨd = INr
⊗ΨNt

d , where

ΨNt

d = [Ψ
(1)
d , . . . ,Ψ

(k)
d , . . . ,Ψ

(Nt)
d ], Ψ

(k)
d = S

(k)
d Bd,

S
(k)
d = diag[sk(0), . . . , sk(fi), . . . , sk(Nd − 1)],

and a matrix of transmitted pilot symbolsΨp = INr
⊗ΨNt

p , where

ΨNt
p = [Ψ

(1)
p , . . . ,Ψ

(k)
p , . . . ,Ψ

(Nt)
p ], Ψ

(k)
p = S

(k)
p Bp,

S
(k)
p = diag[sk(0), . . . , sk(ξi), . . . , sk(Np − 1)].

For different BEMs, the calculation of the matrixB and the vectora are different. In

this chapter, we consider the following BEMs: CE BEM, GCE BEM, cubic B-splines,

Slepian sequences and KL basis functions.

6.3.1 CE basis functions

The CE BEM is widely used [19, 21–23], but it can result in large modeling errors. For

the CE model, elements of the matrixB are given by [21]

[B]n,m = ej2π∆fn(m−M
2
), m = 1, . . . ,M, n = 1, . . . , N. (6.13)

6.3.2 GCE basis functions

An improved modeling performance is obtained by using the GCEBEM applying a set

of complex exponentials with the period longer than the window length related to the CE

BEM [25,70]. For the GCE model, elements of the matrixB are given by [25,70]

[B]n,m = ej2π
∆f

κ
n(m−M

2
), m = 1, . . . ,M, n = 1, . . . , N, (6.14)

whereκ is a real number which is larger than1; usually,κ = 2 is used [25].

Note that there is another ways to build the generalized complex exponential functions,

i.e.,

[B]n,m = e−j2π∆f(n−1)(m−1)LmaxT
M−1 , m = 1, . . . ,M, n = 1, . . . , N. (6.15)
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By using (6.15), we assume that the considered channel (6.7) is equivalent to a multipath

channel

ḡrk(τ) =
M−1
∑

m=0

ᾱrk(m)δ
(

τ − m

M
LmaxT

)

, (6.16)

and the task of the estimator becomes to estimateM correspondinḡαrk. It indicates that

the number of basis functions does not depend onN anymore. In this chapter, we just

consider the GCE defined in (6.14), and the details of the performance of the modified

GCE as (6.15) can be found in our previous publications [41].

6.3.3 Cubic B-splines functions

Cubic B-splines have previously been used for estimating the channel frequency response

in the underwater acoustic channel [139]. To build basis functions, we use the cubic

B-splines [76]

ϕ(f) =















2
3
− f2

F 2 +
|f |3

2F 3 , if |f | < F,

1
6
(2− |f |

F
)
3
, if F ≤ |f | < 2F ,

0, otherwise,

(6.17)

whereF = (N − 1)∆f/(M − 3) and the basis functions are given byϕm(f) = ϕ[f −
(m− 2)∆f ], wherem = 1, . . . ,M . Elements of the matrixB are given by

[B]n,m = ϕm(n− 1), m = 1, . . . ,M, n = 1, . . . , N. (6.18)

6.3.4 Slepian sequences

Slepian sequences are a set of orthogonal functions which are widely used for channel

estimation both in time and frequency domains [20, 30, 67]. Let considerM Slepian se-

quencesum(n) with lengthN bandlimited to the frequency range[−1
2
τmax∆f,

1
2
τmax∆f ].

Such sequences are the eigenvectors of the following equation

N
∑

q=1

sin(πτmax∆f(q − n))

π(q − n)
um(q) = λmum(n), (6.19)

whereλm is an eigenvalue indicating the fraction of energy contained in the frequency

range[−1
2
τmax∆f,

1
2
τmax∆f ] of the corresponding eigenvector [67]. The eigenvalues are
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ordered starting with the maximum one:λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0. Therefore,um(n) is

themth most concentrated Slepian sequence. According to [29], Mshould be chosen to

provideλm close to 1 whenm ≤ M and close to 0 whenm ≥ M . We intend to use the

Slepian sequences over the frequency range[0, τmax∆f ]. Then, the basis functions can be

represented as

[B]n,m = um(n)e
−jπnτmax∆f , m = 1, . . . ,M, n = 1, . . . , N. (6.20)

6.3.5 KL BEM

The KL BEM is optimal in terms of the mean square error (MSE) [31, 32], which is a

reduced-rank decomposition of channels whose statisticalinformation is known at the

receiver side. The KL basis functionsvm(n) are eigenvectors of the fading covariance

matrix. Specifically, the covariance matrix of the fading inthe frequency domain isΥ0

which is obtained in (6.5). We also order the eigenvaluesλm of Υ0 as:λ1 ≥ λ2 ≥ . . . ≥
λN ≥ 0, and assume that whenm is larger than a fixed valueM << N , λm decreases

rapidly and can be neglected [32]. Then, the KL basis functions can be represented as

[B]n,m = vm(n), m = 1, . . . ,M, n = 1, . . . , N. (6.21)

6.4 Optimal and mismatched detectors

6.4.1 Optimal detection

We now derive an optimal detector by maximizing the PDFp(zd|Sd, zp) of the received

signalzd and the received pilot signalzp, conditioned on the transmitted data symbolsSd:

Ŝd,opt = arg max
Sd∈A

NdNt

{p(zd|Sd, zp)}

= arg max
Sd∈A

NdNt

{λopt(Sd)} , (6.22)

where the metricλopt(Sd) is given by

λopt(Sd) = ln [p(zd|Sd, zp)] , (6.23)
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and the alphabetA includes symbols corresponding to all constellation points. The PDF

p(zd|Sd, zp) can be obtained from the PDFp(zd|Sd, a) of the received signal vectorzd

conditioned on the transmitted dataSd and channel parameters (expansion coefficients)a

by integrating out the channel parametersa which are treated asnuisance parameters:

p(zd|Sd, zp) =
∫

p(zd|Sd, a)f(a|zp)da, (6.24)

wherep(zd|Sd, a) is given by

p(zd|Sd, a) =
1

πNdσ2
n

exp

{

−‖zd −Ψda‖2
σ2
n

}

. (6.25)

The posterior PDF f(a|zp) of the expansion coefficientsa subject to the received pi-

lot signalszp is Gaussian with the mean vector(ΨH
p Ψp + σ2

nR
−1
a )

−1
ΨH
p zp and covari-

ance matrix(ΨH
p Ψp + σ2

nR
−1
a ) [113], where the covariance matrixRa is given by

Ra = E{aaH} = Rr ⊗ Rt ⊗ Λ0, andM ×M matrix Λ0 = E
{

(a(rk))Ha(rk)
}

is the

covariance matrix of the expansion coefficientsa(rk) for the frequency response between

thekth transmit antenna and therth receive antenna. The matrixΛ0 can be obtained from

the fading covariance matrixΥ0 by requiring that

E{h̄rkh̄Hrk} = E{hrkhHrk} = Υ0. (6.26)

This requirement means that the correlation matrixΛ0 results in fading correlationΥ0 in

the frequency domain. By substituting (6.9) in (6.26), we obtain

BΛ0B
H = Υ0. (6.27)

Multiplying both sides of (6.27) byΩ = (BHB)−1BH from the left and byΩH from the

right, we arrive at

Λ0 = ΩΥ0Ω
H . (6.28)

The optimal detector finds a data matrixSd that maximizes the metric (6.23) which

is obtained by substituting the Gaussian PDFf(a|zp) in (6.24) and then the result of

integration - in (6.23). After some algebra, we arrive at

Ŝd,opt = arg max
Sd∈A

NdNt

{

ln

[
∫

p(zd|Sd, a)f(a|zp)da
]}

= arg max
Sd∈A

NdNt

{

ln

[
∫

eσ
−2
n [2ℜ(aHΨH

d
zd)−aHΨH

d
Ψda]f(a|zp)da

]}

= arg max
Sd∈A

NdNt

{

σ−2
n

(

ΨH
d zd +ΨH

p zp
)H (

ΨH
d Ψd +ΨH

p Ψp + σ2
nR

−1
a

)−1

×
(

ΨH
d zd +ΨH

p zp
)

− ln
∣

∣ΨH
d Ψd +ΨH

p Ψp + σ2
nR

−1
a

∣

∣

}

, (6.29)
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However, it is unfeasible to solve this optimization problem for a highNd due to ex-

tremely high computational complexity. If QAM symbols with2K constellation points

are transmitted, we have to calculate the metric2KNdNt times. In order to reduce the

computational load, we separate the data into groups of symbols, each containingG data

symbols. We repeat the detectionNd/G times to recover all the symbols. In this case, the

optimal metric should be calculatedNd

G
2KNtG times, which can be significantly smaller

compared with2KNdNt .

As the simplest case, we considerG = 1, which indicates that the optimal symbol-

by-symbol detection scheme is applied, and we only detectNt data symbols at once. In

this case, the expressions above are simplified:zd = [z1(fi), . . . , zr(fi), . . . , zNr
(fi)]

T ,

Ψ
(k)
d = sk(fi)Bd, andBd becomes a1 × M vector corresponding to samples of ba-

sis functions at theith subcarrier frequency. Although the computational load is re-

duced, the detection performance will be degraded. Therefore, we also consider the

optimal detection with1 < G ≪ Nd to trade off the complexity and detection perfor-

mance. In this case, expressions above are modified:zd = [vT1 , . . . ,v
T
r , . . . ,v

T
Nr
]T and

vr = [zr(fi), . . . , zr(fi+G−1)]
T ; Bd becomes anG×M matrix corresponding to samples

of basis functions at thefi-th to (fi + G − 1)-th subcarriers. Investigating the improve-

ment of BER performance due to using the optimal detector compared with traditional

mismatched detectors is the main target of this chapter, andmethods to analyze the com-

plexity and reduce the computational load of this optimal detector will be discussed in

further works.

6.4.2 Mismatched detection

Now, we consider mismatched detectors applying three different channel estimators: ML,

ǫ-ML or MMSE estimators. The ML channel estimate is given by

âML = (ΨH
p Ψp)

−1
ΨH
p zp. (6.30)

The performance of the ML channel estimator is significantlydegraded in noisy scenarios.

A better performance is obtained when using regularized ML channel estimation based

on the diagonal loading:

âǫ = (ΨH
p Ψp + ǫσ2

nIMNtNr
)
−1
ΨH
p zp, (6.31)
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whereǫ is a positive regularization parameter and in our simulation we useǫ = 1. We

also consider the MMSE channel estimation that takes the statistical information of the

channel fading into account,

âMMSE = (ΨH
p Ψp + σ2

nR
−1
a )

−1
ΨH
p zp. (6.32)

A mismatched detector uses the minimum distance detector that treats the channel

estimates as perfect channel information and decides on thetransmitted data symbols by

minimizing the Euclidean distance

Ŝd,mis = arg min
Sd∈ANt

{λmis(Sd)} ,

= arg min
Sd∈ANt

{

‖zd −Ψdâ‖2
σ2
n

}

, (6.33)

whereâ = âML for ML channel estimates (6.30), orâ = âǫ for ǫ-ML channel estimates

(6.31) orâ = âMMSE for MMSE channel estimates (6.32).

6.4.3 Complexity analysis

Now, we analyze the complexity of the optimal detector with symbol-by-symbol detection

scheme (G = 1) for SISO systems. In this case, quantities in (6.29) are significantly

simplified: Sd = d, whered is a data symbol;zd = z1(fi); Ψd = dBd, whereBd

becomes a1×M vector. Accordingly, we can simplify (6.29) as

d̂opt = argmax
d∈A

{

σ−2
n

(

d∗zdB
H
d +ΨH

p zp
)H (|d|2BH

d Bd +ΨH
p Ψp + σ2

nR
−1
a

)−1

×
(

d∗zdB
H
d +ΨH

p zp
)

− ln
∣

∣|d|2BH
d Bd +ΨH

p Ψp + σ2
nR

−1
a

∣

∣

}

= argmax
d∈A

{

σ−2
n |d|2|zd|2BdYBH

d + 2σ−2
n ℜ{dz∗dBdYΨpzp}

+ σ−2
n zHp ΨpYΨH

p zp + ln |Y|
}

, (6.34)

whereY =
(

|d|2BH
d Bd +ΨH

p Ψp + σ2
nR

−1
a

)−1
is anM × M matrix and(·)∗ denotes

complex conjugate. If we assume that (i) the same pilot symbols are inserted into every

OFDM symbol (Ψp is the same for all OFDM symbols); (ii) the covariance matrixof

fadingRa andσ2
n are constant overNc OFDM symbols and known at the receiver side,

the matrixY will depend only on the possible magnitudes of data symbols|d|, pilot
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symbols and BEM samplesBd andBp. The pilot symbols and all possible values of

|d|2 (we denote this number asD) are known to the receiver. Moreover,Bd andBp are

also available, since positions of data and pilot symbols are fixed. Therefore, we can

precompute scalarsln |Y| for all possible|d|. This precomputation requiresO(M3NdD)

complex multiplications. E.g., for 16QAM modulation, the number of possible|d| is

D = 4; thus the number of scalarsln |Y| is 4Nd. The scalarBdYBH
d in the first term of

(6.34),1×Np vectorBdYΨp in the second term of (6.34) andNp ×Np matrixΨpYΨH
p

in the third term of (6.34) can also be precomputed for allD possible|d|. In total, there

are (N2
p + Np + Nd)D complex numbers to be kept in memory. To precompute these

numbers requiresO(M3NdD) complex multiplications. These complex numbers can be

used for detecting allNc OFDM symbols. Therefore, the average number of complex

multiplications for all the precomputation isO
(

M3D+NpM2+N2
pM

Nc

)

per one data symbol.

We now denote:ρ = BdYBH
d , w = BdYΨp, andΞ = ΨpYΨH

p . Then, the equation

(6.34) is transformed to

d̂opt = argmax
d∈A

{

σ−2
n |d|2|zd|2ρ+ 2σ−2

n ℜ{dz∗dwzp}+ σ−2
n zHp Ξzp + ln |Y|

}

.(6.35)

For each OFDM symbol, in (6.35), the scalarswzp andzpΞzp can be computed once and

reused for detecting all data symbols. Thus, only|d|2|zd|2 in the first term anddz∗d in the

second term require to be computed symbol-by-symbol. Therefore, with the precomputa-

tion as explained above, the average number of complex multiplications required to detect

one data symbol is
N2

p+2Np+4

Nd
+ 2K +D.

Now, we analyze the complexity of a mismatched detector treating the MMSE chan-

nel estimates as perfect. For a fixedσ2
n, we can precompute theM × Np matrix

(ΨH
p Ψp + σ2

nR
−1
a )

−1
ΨH
p in (6.32) and keep it in memory; the number of complex mul-

tiplications required for this precomputation isO(M3 + NpM
2). This matrix can also

be calculated once and reused to detect allNc OFDM symbols as well, for channels with

fixed Ra andσ2
n. Therefore, the number of complex multiplications for thisprecompu-

tation isO
(

M3+NpM2

NcNd

)

per one data symbol. The number of complex multiplications

required by a minimum distance detector (6.33) isM2K . Table. 1 shows the complexity

of the optimal and mismatched detectors.

It is seen that whenNc is large, which indicates that the channel statistics change

slowly (Ra andσ2
n keep constant for numerous OFDM symbols), to detect one datasym-
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Algorithms Optimal detector Mismatched detector

Number of complex numbers saved

in memory

(N2
p +Np +Nd)D NpM

Number of complex multiplications

required for the precomputation per

a data symbol

O
(

M3D+NpM2+N2
pM

Nc

)

O
(

M3+NpM2

NcNd

)

Number of complex multiplications

required for detecting a data symbol

N2
p+2Np+4

Nd
+ 2K +D M2K

Table 6.1: Complexity of the optimal detector and the mismatched detector with MMSE

channel estimates.

bol, the number of complex multiplications required by the optimal detector is compara-

ble to that required by the mismatched detector. However, ifthe channel statistics change

faster (Nc is small), all precomputed matrices, vectors and scalars have to be updated

frequently and the complexity of the optimal detector significantly increases compared

with the mismatched detector. For example, if the channel statistics change between two

neighboring OFDM symbols (Nc = 1), for the optimal detector, the number of complex

multiplications required for the precomputation becomesO(M3D), which is much larger

than the number required by the mismatched detector,O
(

M3+NpM2

Nd

)

, for a largeNd.

6.5 Iterative receiver

We are also interested in the performance of an iterative receiver incorporating the optimal

detector for coded transmission in SISO frequency-selective channels. The structures of

the transmitter and iterative receiver are shown in Fig. 6.2and Fig. 6.3, respectively. If

the optimal detection is used, the channel estimator and detector in Fig. 6.3 are replaced

by the optimal detector. In the receiver, the CP is removed andthe received signal is

Fourier transformed before the first iteration. Channel estimators use the vectorszp and

sp to estimate the channel frequency response in the first iteration and the vectorz and

recovered OFDM symbol̂Sk in subsequential iterations. The channel estimates are used

in the detector to calculate the soft metricλck for coded bits. For every bitck = ±1 of a
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Figure 6.2: Block-diagram of the transmitter with turbo encoder and channel interleaver

for SISO channels.

Figure 6.3: Block-diagram of the iterative receiver for SISOchannels.

received symbol,k = 1, . . . , K, thea posteriorilog-likelihood ratio (LLR) is computed

as

λck = ln

[
∑

d∈A+

k
e−λ(d)

∏

i 6=k P (ci)
∑

d∈A−

k
e−λ(d)

∏

i 6=k P (ci)

]

, (6.36)

where thea priori probabilityP (ci) of a symbol bit is expressed in terms of itsa priori

LLR L(ci) [118]:

P (ci) =
1

2

[

1 + ci tanh

(

1

2
L(ci)

)]

,

A±
k = {d ∈ A|ck = ±1}, and the metricλ(d) depends on the detector used. For the first

iteration, we have

λck = ln
∑

d∈A+

k

e−λ(d) − ln
∑

d∈A−

k

e−λ(d). (6.37)

After being de-interleaved, LLRsλck are decoded by a soft-input soft-output turbo

decoder. The hard decisions of the LLRs of decoded bits are interleaved and mapped

to the QAM constellation to rebuild the data symbols. The pilot symbols are inserted

to recover the OFDM symbol in the frequency domain. The recovered OFDM symbol

is feedback to the channel estimator or to the optimal detector. The channel estimates,
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LLRs of coded bits and LLRs of decoded bits are refined once per iteration by treating

all recovered data symbols as pilot symbols. Since the channel estimator and detector

applied at the first iteration and those applied in the following iterations can be different,

the schemes used at the receiver are correspondingly modified. Depending on the detector

used and whether it is the first or a subsequent iteration, four different iterative receivers

are considered:

1. ML-ML receiver: The ML channel estimator is used in all iterations. At the first

iteration, the ML estimator (6.30) is used to estimate the channel frequency response

based on transmitted pilot symbols. In the following (three) iterations, the number of input

pilot symbols used to obtain the frequency response estimatesĥML = BâML is extended

from Np to N , all recovered symbols are used as pilot symbols to refine thechannel

estimation and signal detection, and consequently,Ψp, Bp, zp in (6.30) are replaced by

Ψ, B andz, respectively.

2. ǫ-ML-ǫ-ML receiver: This receiver is similar to theML-ML receiver with replace-

mentâML by âǫ according to (6.31).

3. MMSE-MMSE receiver: The receiver is similar to theML-ML receiver with re-

placement̂aML by âMMSE according to (6.32).

4. Optimal-MMSEreceiver: The optimal detector is used at the first iteration; MMSE

channel estimation and minimum distance detector are used in the following three itera-

tions.

6.6 Simulation Results

In this section, numerical results obtained by simulation are presented. We consider

frequency-selective fading channels withL = 6 paths, and setLmax = 10, Pp = Nt,

N = 461, P = 20 andM = 23. Firstly, we compare the performance of the MMSE

channel estimators corresponding to different BEMs for SISOmultipath channels with

differentτrms. Then, the performance of the optimal detector with group symbol detection

(G > 1) in SISO channels is also considered. As the improvement of the BER perfor-
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mance is not significant even ifG = 7, in the following simulation scenarios, we only

considerG = 1. We then compare the BER performance of four iterative receivers for

turbo coded transmission in SISO multipath channels. Finally, we consider the trans-

mission with 16QAM and BPSK modulation in MIMO channels and concentrate on the

comparison between the BER performance of the optimal detector and that of the mis-

matched detector with MMSE channel estimates for uncoded transmission. The average

SNR is given by

ζ =
NtEsσ

2
h

σ2
n

, (6.38)

whereEs is the average energy of data symbols andσ2
h is the variance of channel fre-

quency response between a pair of transmit and receive antennas. The average bit energy

to noise ratio is defined asEb/N0 = ζ/(NtK). Simulation results below represent the

MSE or BER versusEb/N0.

Firstly, we compare the MSE performance of the mismatched detector with MMSE

channel estimates based on different BEMs. The MSE in one simulation trial is calculated

as

MSE=

∑Nr

r=1

∑Nt

k=1

∑N−1
i=0 |hr,k(i)− ĥr,k(i)|2

∑Nr

r=1

∑Nt

k=1

∑N−1
i=0 |hr,k(i)|2

. (6.39)

Then these MSEs are averaged over all simulation trials. Fig. 6.4 shows the MSE perfor-

mance of the MMSE channel estimators in SISO channels withτrms = 5T . The CE BEM

shows a poor performance compared to the other BEMs, while theKL BEM provides the

best MSE performance. The other BEMs show the performance similar to that of the KL

BEM. We have also considered a channel withτrms = T ; the simulation results show a

similar performance. However, both the Slepian and KL BEMs require the knowledge of

statistical characteristics of the fading, which is not practical for ML andǫ-ML channel

estimation. The cubic B-splines provide performance close to that of the KL BEM in most

scenarios. However, as B-splines have a finite support that issignificantly smaller thanN ,

as seen from (6.17) and (6.18), the complexity of estimatorsusing B-splines can be sig-

nificantly lower than that of the other BEMs. Moreover, the complexity of the minimum

distance detector applying B-splines channel estimates is lower than that of the minimum

distance detector applying other BEMs channel estimates. Based on (6.33), in order to

detect allNd data symbols, the number of complex multiplications required by the mini-

mum distance detector applying other BEMs channel estimatesisO(MNd2
K), while the

number of required complex multiplications for cubic B-splines is onlyO(4Nd2
K), as
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Figure 6.4: MSE performance of MMSE channel estimators withdifferent BEMs for

BPSK signals in SISO channels,L = 6, Lmax = 10,N = 461, P = 20, Pp = 1,M = 23,

τrms = 5T .

seen from (6.17). For these reasons, we use B-splines as basisfunctions in the following

simulations.

Simulation results for transmission of BPSK signals in SISO channels with different

G are shown in Fig. 6.5. For BER= 10−3, the optimal detector withG = 1 is inferior to

the minimum distance detector with perfect channel information by 1.7 dB. ForG = 3,

this is reduced to 1.4 dB, and forG = 7 it is reduced to 1 dB. Thus, the performance

of the optimal detector is slightly improved if the number ofsymbols in detection groups

increases. However, compared with the symbol-by-symbol detection (G = 1), the com-

plexity is also significantly increased. In the following simulation, we will only consider

the caseG = 1.

We investigate the performance of the optimal and mismatched detectors for coded

transmission of 16QAM symbols(K = 4) in SISO channels. The iterative receivers and
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Figure 6.5: BER performance of the optimal detector againstG for the transmission of

BPSK signals in SISO channels;L = 6, Lmax = 10, τrms = 5T , N = 461, P = 20,

Pp = 1,M = 23.

rate-1
3

turbo code with generating polynomial[013, 015] are used to improve the BER and

MSE performance. Fig. 6.6 shows the BER performance of the iterative receivers after

4 iterations. The receiver using the optimal detection at the first iteration significantly

outperforms receivers using mismatched detectors with ML and ǫ-ML channel estimates.

At BER = 10−3, the improvement in the detection performance is6.3 dB against the

ML-ML receiver and2.0 dB against theǫ-ML-ǫ-ML receiver. Both theMMSE-MMSE

receiver and theOptimal-MMSEreceiver provide the BER performance close to the case

of perfect channel information; the gap between the BER curves of theOptimal-MMSE

receiver and that of theMMSE-MMSEreceiver is approximately 0.6 dB at BER=10−3.

We now compare the performance of the optimal detector for uncoded symbols with

that of mismatched detectors in MIMO channels. Fig. 6.7 shows the BER performance of

the detectors for 16QAM signals in MIMO channels. Fig. 6.7(a) shows the BER perfor-

mance in SISO channels(Nr = Nt = 1) and in1× 2 SIMO channels(Nt = 1, Nr = 2).
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Figure 6.6: BER performance of iterative receivers applyingoptimal and/or mismatched

detection for 16QAM signals in SISO channels, rate 1/3 turbocode, 4 iterations;L = 6,

Lmax = 10, τrms = 5T ,N = 461, P = 20, Pp = 1,M = 23.

We setPp = 1 andNp = 24 in both these cases. In1 × 1 SISO channels, at BER=10−2,

the optimal detector outperforms the mismatched detector with ML channel estimates by

13 dB and withǫ-ML channel estimates by 1.2 dB. However, the BER performance of the

optimal detector and the mismatched detector with MMSE channel estimates are similar.

These detectors are inferior to the minimum distance detector with perfect channel infor-

mation (PCI) by 2 dB. In1×2 SIMO channels, the mismatched detector with ML channel

estimates is inferior to other detectors significantly. ForBER=10−2, the improvement due

to the use of the optimal detector increases up to 18 dB compared with the mismatched

detector with ML channel estimates and for BER=10−3, the improvement is up to 2 dB

compared with the mismatched detector using theǫ-ML channel estimates. The BER per-

formance of the optimal detector is close to that of the mismatched detector with MMSE

channel estimates; the difference in the performance is approximately 0.2 dB. The gap

between the BER curve of the optimal detector and that of the minimum distance detector

with PCI is 2 dB at BER=10−3.
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Fig. 6.7(b) shows simulation results for2 × 2 MIMO channels(Nt = Nr = 2);

here, we setPp = 2 andNp = 47. It can be seen that using the mismatched detector

with ML channel estimates does not allow achieving good performance. The optimal

detector outperforms the mismatched detector withǫ-ML channel estimates by 4.3 dB at

BER=10−2; it also outperforms the mismatched detector with MMSE channel estimates

by 4 dB at BER=10−3. From Fig. 6.7(a) and Fig. 6.7(b), it is seen that the improvement

is increased when the number of antennas increases.

Fig. 6.8 shows the BER performance of the optimal and mismatched detectors for

MIMO systems with BPSK signals. As seen in Fig. 6.8(a), in a SISO channel, for

BER=10−2, the optimal detector outperforms the mismatched detectorwith ML chan-

nel estimates by 13.5 dB and the one withǫ-ML channel estimates by 0.7 dB. Similar

to the case of 16QAM signals in Fig. 6.7(a), the BER curves for the optimal detector

and the mismatched detector with MMSE channel estimates areclose. In a1 × 2 SIMO

channel, for BER=10−2, the benefit due to the use of the optimal detector is 15.6 dB

compared with the mismatched detector with ML channel estimates. Compared with the

mismatched detector withǫ-ML channel estimates, this benefit is 1.1 dB at BER=10−4.

The performance of the optimal detector is the same as that ofthe mismatched detector

with MMSE channel estimates, and it is inferior to the minimum distance detector with

PCI by 1.6 dB when BER= 10−4.

Fig. 6.8(b) shows simulation results for larger MIMO systems. In2× 2 MIMO chan-

nels, the optimal detector provides significantly better performance than the mismatched

detectors with ML andǫ-ML channel estimates and it outperforms the mismatched detec-

tor with MMSE channel estimates by 3 dB at BER=10−4. In 2×4 MIMO channels, the op-

timal detector significantly outperforms all the mismatched detectors, e.g., it outperforms

the mismatched detector with MMSE channel estimates by 6.5 dB at BER=2 × 10−6.

Thus, as the number of antennas in a MIMO system increases, the benefit of using the

optimal detector becomes more significant.
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6.7 Conclusions

We have proposed and investigated an optimal detector for OFDM signals with PSAM in

spatially uncorrelated MIMO frequency-selective Rayleighfading channels. The optimal

detector does not estimate the channel explicitly but jointly processes the received data

and pilot symbols to recover the data. After comparing the performance of the MMSE

estimators of the channel frequency response with different BEMs for SISO channels

and choosing B-splines, which provide good performance and require low computational

load, we investigated the optimal detector and compared itsperformance with that of tra-

ditional mismatched detectors with ML, regularized ML or MMSE channel estimates for

16QAM and BPSK modulation for uncoded OFDM symbols. Among these mismatched

detectors, the one exploiting MMSE channel estimates provides the best performance and

in SISO channels its performance is close to that of the optimal detector. We have also in-

vestigated the detection performance of iterative receivers that exchange soft information

between a turbo decoder and the optimal or mismatched detectors in SISO channels. The

simulation results show that in SISO channels, although theiterative receiver using the

optimal detector at the first iteration outperforms iterative receivers applying mismatched

detectors in all iterations, the improvement of the detection performance is not significant

compared with the iterative receiver using the mismatched detector with MMSE channel

estimates in all iterations. However, for transmission with larger number of antennas, the

optimal detector significantly outperforms the mismatcheddetectors in spatially uncorre-

lated MIMO frequency selective fading channels. We can expect that the improvement

will become more significant for coded transmission with iterative receivers in MIMO

channels, and we will consider this in our further work.
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Figure 6.7: BER performance of the optimal and mismatched detectors for 16QAM sig-

nals in MIMO channels,L = 6, Lmax = 10, τrms = 5T , N = 461, P = 20, Pp = Nt,

M = 23; (a)1× 1 and1× 2 MIMO channels, and (b)2× 2 MIMO channels.
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Figure 6.8: BER performance of the optimal and mismatched detectors for BPSK signals

in MIMO channels,L = 6, Lmax = 10, τrms = 5T ,N = 461, P = 20, Pp = Nt,M = 23;

(a)1× 1 and1× 2 MIMO channels, and (b)2× 2 and2× 4 MIMO channels.
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This thesis investigated the optimal detection in different scenarios of wireless com-

munications with imperfect knowledge of the channel state information. We have inves-

tigated the MSE of BEM-based ML and MMSE channel estimators and sensitivity of the

estimators to the mismatched Doppler spread (Chapter 3). We have derived an optimal

detector which does not estimate the channel explicitly butjointly processes the received

pilot and data symbols to recover the data and specify it to SISO time-invariant and time-

variant channels (Chapter 4). We have extended this optimal detector to MIMO time-

variant Rayleigh fading channels (Chapter 5) and investigated its detection performance.

Finally, we have specified the optimal detector for scenarios with OFDM transmission

and investigated the performance and complexity of this optimal detector in SISO and

MIMO frequency selective channels (Chapter 6).

7.1 Conclusions

Chapter 1 has briefly introduced the whole work, and Chapter 2 has presented funda-

mental techniques including simulators of time-variant fading channels, BEMs and turbo
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codes, which are used throughout the rest of the thesis.

In Chapter 3, we have derived the MSE of a generic BEM-based linear channel estima-

tor with perfect or imperfect knowledge of the Doppler spread in time-variant channels.

We have compared the performance and complexity of linear estimators based on various

BEMs including Karhunen-Loeve (KL), discrete prolate spheroidal (DPS), generalized

complex exponential (GCE) and B-spline BEMs, for the case with perfect or inaccurate

knowledge of the Doppler spread. For the case with perfect knowledge of the Doppler

spread, when the number of basis functions increases, all BEM-based MMSE estimators

allow achievement of the optimal performance of the Wiener solution. We have also in-

vestigated the sensitivity of the BEM-based ML and MMSE estimators to the mismatched

Doppler spread. The BEM-based estimators are very sensitiveto underestimation of the

Doppler spread but may have little sensitivity to overestimation. The estimators using

BS and GCE BEMs are more robust to the Doppler spread mismatch than the estimators

using KL and DPS BEMs. Although using the maximum Doppler spread to calculate the

fading statistics and KL and DPS basis functions can simplify the estimation, it also leads

to degradation in the MSE performance. The estimation usinga slight overestimation of

the Doppler spread outperforms the estimation using the maximum Doppler spread. It is

worthy to emphasize that the complexity of the estimation using BS BEM is the lowest

among all these 4 BEMs. Therefore, the estimation using B-splines with a slight (e.g.,

20%) overestimate of the Doppler spread is a good practical choice providing a good

performance, high robustness and low complexity.

In Chapter 4, we have proposed a pilot assisted optimal detector which does not require

estimating the channel explicitly but jointly processes the received data and pilot symbols

to recover the data with a minimum error. This optimal detector has been derived in the

general case, i.e., time-variant channels, frequency-selective fading channels and MIMO

channels. It outperforms the traditional detectors (namedmismatched) treating channel

estimates as perfect in systems applying QAM modulation schemes. However, we have

found that the optimal detector cannot improve the performance in a system applying PSK

modulation scheme in SISO channels. This optimal detector has been then specified to

the SISO frequency-flat time-variant channels modeled by Jakes’ model. We have com-

pared performance of the optimal detector with that of the mismatched detectors applying

ML, regularized ML or MMSE channel estimates. The simulation results have shown that

J. Zhang, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 7. CONCLUSIONS AND FURTHER WORK 136

the optimal detector outperforms the mismatched detectorsusing ML and regularized ML

estimates in the time-variant fading channel. However, themismatched detector applying

MMSE channel estimates provides nearly optimal detection performance. Due to the dif-

ficulty of estimating time-variant channels with high accuracy at low SNR, we have also

investigated the detection performance of iterative receivers that exchange information

between a channel estimator and turbo decoder. It has been shown by simulation that the

iterative receiver with the optimal detector at the first iteration outperforms the receiver

using the ML or regularized ML channel estimates. However, the use of MMSE channel

estimates makes the detection performance close to that of the receiver with the optimal

detector at the first iteration.

In Chapter 5, the optimal detector has been specified for MIMO Rayleigh frequency-

flat fading channels. We have investigated the optimal detector and also compared its

performance with that of traditional mismatched detectorswith ML, regularized ML or

MMSE channel estimation and compared their performance in MIMO time-invariant and

time-variant flat fading channels with 16QAM and BPSK modulation. Simulation results

for time-invariant fading channels have shown that the benefit on the performance caused

by using the optimal detector becomes more significant when the number of antennas in-

creases, but does not depend on the spatial correlation between antennas. We have then

specified the optimal detector to spatially uncorrelated MIMO time-variant channels. The

optimal detector significantly outperforms the mismatcheddetectors in spatially uncor-

related MIMO time-variant channels when the number of antennas increases. We have

proved that if the SIMO channel is spatially uncorrelated, the optimal symbol-by-symbol

detector of PSK signals is equivalent to the mismatched detector with MMSE channel

estimation.

In Chapter 6, we have specified the optimal detector for OFDM signals in MIMO

frequency-selective Rayleigh fading channels. We have compared the performance of

the MMSE channel estimators with different BEMs for SISO channels and have chosen

B-splines as basis functions to represent the channel frequency response. We have inves-

tigated the optimal detector and compared its performance with that of traditional mis-

matched detectors with ML, regularized ML or MMSE channel estimation for 16QAM

and BPSK modulation for uncoded OFDM transmission. We have also investigated the

detection performance of iterative receivers that exchange soft information between a
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turbo decoder and the optimal or mismatched detectors in SISO channels. The simula-

tion results have shown that in SISO channels, although the iterative receiver using the

optimal detector at the first iteration outperforms iterative receivers applying mismatched

detectors in all iterations, the improvement of the detection performance is not significant

compared with the iterative receiver using the mismatched detector with MMSE channel

estimates in all iterations. However, for transmission with a larger number of antennas,

the optimal detector significantly outperforms the mismatched detectors in spatially un-

correlated MIMO frequency-selective fading channels.

7.2 Further Work

Some suggestions for further work based on this thesis are given below:

1. In this thesis, we have derived the optimal detector in thegeneral case and com-

pared its performance with that of the mismatched detectorsin MIMO frequency-flat

time-variant or frequency-selective time-invariant fading channels. Although this optimal

detector outperforms the mismatched detectors for these cases, the improvement that can

be obtained by using this optimal detector in doubly selective fading channels has not

been investigated. We can expect that a more significant benefit can be obtained by using

this optimal detector in MIMO doubly selective fading channels, which require a large

number of unknown parameters to be estimated.

2. We have applied iterative receiver that exchanges information between a channel

estimator and turbo decoder in SISO channels. We found that using the optimal detector

only in the initial iteration can provide some improvement in the performance. A more

significant benefit can be obtained by using iterative receivers with the optimal detector

in MIMO channels. The challenge here is the significant increase in the complexity.

3. In this thesis, we have investigated the sensitivity of the MMSE channel estimator

to the mismatched Doppler spread. However, we considered the optimal detector for the

only case of perfect knowledge of statistical information of the fading. The sensitivity of

the optimal detector to the mismatched estimation of the fading statistics is not clear. We

can assume that the optimal detector is more robust to the mismatched fading statistics
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than the mismatched detector with MMSE channel estimation,but this assumption needs

to be proved by further research.

4. The optimal detector investigated in this thesis is basedon the independence be-

tween received pilot and data symbols, and therefore, this detector cannot be extended

directly to the transmission with superimposed training. We believe that an optimal de-

tector for the transmission with superimposed training does exist, but the expression of

this detector needs to be derived based on dependence of the received pilot and data sym-

bols.
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Appendix A

Let x andv be complexM -dimensional vectors andC be anM ×M positive definite

Hermitian matrix; then we have
∫

e2ℜ[xHv]−xHC−1xdℜ[x]dℑ[x] = πM |C|evHCv. (7.1)

To prove (7.1), consider the probability densityp(x) of a complex Gaussian vectorx:

p(x) = NC(u,C) with meanu and covariance matrixC. From
∫

p(x)dℜ[x]dℑ[x] = 1

and(x− u)HC−1(x− u) = xHC−1x− 2ℜ(xHC−1u) + uHC−1u, it follows
∫

e2ℜ[xHC−1u]−xHC−1xdℜ[x]dℑ[x] = πM |C|euHC−1u. (7.2)

Using the substitutionv = C−1u and the equalityuHC−1u = vHCv, we finally obtain

(7.1).

Let f(a|zp) = NC(ma,Sa) be a PDF of aM × 1 random vectora with meanma and

covarianceSa. Then, from (7.1) it follows that
∫

e2ℜ[aHLd]−aHΓdaf(a|zp)dℜ[a]dℑ[a]

=
1

|SaΓd + IM |e
−mH

a
S
−1
a ma+W (7.3)

where

W = (Ld + S−1
a
ma)

H(Γd + S−1
a
)−1(Ld + S−1

a
ma). (7.4)
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