
Type Inference in Flexible
Model-Driven Engineering

ATHANASIOS ZOLOTAS

DOCTOR OF ENGINEERING

UNIVERSITY OF YORK

COMPUTER SCIENCE

September 2016





Abstract

Model-driven Engineering (MDE) is an approach to software development that
promises increased productivity and product quality. Domain models that conform
to metamodels, both of which are the core artefacts in MDE approaches, are ma-
nipulated to perform different development processes using specific MDE tools.
However, domain experts, who have detailed domain knowledge, typically lack
the technical expertise to transfer this knowledge using MDE tools. Flexible or
bottom-up Model-driven Engineering is an emerging approach to domain and sys-
tems modelling that tackles this challenge by promoting the use of simple drawing
tools to increase the involvement of domain experts in MDE processes. In this ap-
proach, no metamodel is created upfront but instead the process starts with the
definition of example models that will be used to infer a draft metamodel. When
complete knowledge of the domain is acquired, a final metamodel is devised and a
transition to traditional MDE approaches is possible. However, the lack of a meta-
model that encodes the semantics of conforming models and of tools that impose
these semantics bears some drawbacks, among others that of having models with
nodes that are unintentionally left untyped. In this thesis we propose the use of
approaches that use algorithms from three different research areas, that of classifi-
cation algorithms, constraint programming and graph similarity to help with the
type inference of such untyped nodes. We perform an evaluation of the proposed
approaches in a number of randomly generated example models from 10 differ-
ent domains with results suggesting that the approaches could be used for type
inference both in an automatic or a semi-automatic style.

3





For my parents Despoina and Michalis





Contents

Abstract 3

Dedication 5

Table of Contents 7

List of Figures 11

List of Tables 15

Listings 17

List of Algorithms 19

Acknowledgements 21

Declaration 23

1. Introduction 25
1.1. Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1.1. Bottom-up MDE . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.2. Hypothesis and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1. Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3. Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2. Literature Review 33
2.1. Model-Driven Engineering . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1. MDE Principles and Tools . . . . . . . . . . . . . . . . . . . . . 34
2.1.2. Strengths and Weaknesses of MDE . . . . . . . . . . . . . . . . 43

2.2. Bottom-up MDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.1. Muddles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2. metaBUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3. Flexisketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7



Contents

2.2.4. Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3. Partial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4. Metamodel and Type Inference . . . . . . . . . . . . . . . . . . . . . . 57

2.4.1. MetaBUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.4.2. Flexisketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.3. MLCBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4.4. Process Development Environment (PDE) . . . . . . . . . . . 59

2.4.5. Metamodel Recovery System (MARS) . . . . . . . . . . . . . . 60

2.5. Summary and Critique of Flexible MDE approaches . . . . . . . . . . 61

2.6. Classification Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.6.1. Classification and Regression Trees (CART) . . . . . . . . . . . 63

2.6.2. Random Forests (RF) . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6.3. Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . 65

2.6.4. Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . 65

2.7. Constraint Logic Programming . . . . . . . . . . . . . . . . . . . . . . 66

2.7.1. Logic Programming Tools & Distributions . . . . . . . . . . . 69

2.7.2. Combining MDE with Logic Programming . . . . . . . . . . . 69

2.8. Graph Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8.1. Similarity Flooding . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8.2. Using Similarity Measurements in MDE . . . . . . . . . . . . . 71

2.9. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3. Type Inference using Classification Algorithms 77
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2. Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3. Feature Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.1. Features Based on the Semantics . . . . . . . . . . . . . . . . . 80

3.3.2. Features Based on Concrete Syntax . . . . . . . . . . . . . . . . 83

3.3.3. Extending Muddles . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4. Training and Classification . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.1. Experiment for Features Based on Semantics . . . . . . . . . . 86

3.5.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.3. Experiment for Concrete Syntax Features . . . . . . . . . . . . 110

3.5.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 112

3.6. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.7. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4. Type Inference using Constraint Programming 123
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2. Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8



Contents

4.3. The Constraint Satisfaction Problem . . . . . . . . . . . . . . . . . . . 126
4.3.1. CSP Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.3.2. Model and Metamodel to CSP Transformation . . . . . . . . . 131

4.4. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.1. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4.2. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . 137

4.5. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
4.6. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5. Type Inference using Graph Similarity 153
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2. Type Inference Using String Similarity . . . . . . . . . . . . . . . . . . 154
5.3. Graph Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.1. Flattened Configuration . . . . . . . . . . . . . . . . . . . . . . 157
5.4. Similarity Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.5. Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.1. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.5.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 168

5.6. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.7. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6. Conclusions 179
6.1. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.3. Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Appendices 189

A. Metamodels 191

Bibliography 201

9





List of Figures

1.1. Stages of a typical flexible MDE approach. . . . . . . . . . . . . . . . . 27

1.2. Overview of the research project. . . . . . . . . . . . . . . . . . . . . . 30

2.1. The relationships between a model with its metamodel and the do-
main it represents (adapted from [1]). . . . . . . . . . . . . . . . . . . 34

2.2. The four layers of metamodelling infrastructures (adapted from [2]
and [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3. An example of a metamodel. . . . . . . . . . . . . . . . . . . . . . . . 37

2.4. An example of a model that conforms to the metamodel of Figure 2.3. 38

2.5. An example of a model-to-model transformation between instances
of two different metamodels. . . . . . . . . . . . . . . . . . . . . . . . 39

2.6. An example of a model-to-text transformation. . . . . . . . . . . . . . 40

2.7. The architecture of the Epsilon suite . . . . . . . . . . . . . . . . . . . 42

2.8. An overview of the Muddles approach (based on Fig. 1 from [4]). . . 45

2.9. An example model diagram in yEd representing a zoo configura-
tion. Shapes and colours are not bound to types but can be used by
domain experts for the better presentation of the example models. . . 46

2.10. The Muddle metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11. An overview of the metaBUP approach (from [5]). . . . . . . . . . . . 50

2.12. An example visual fragment (from [5]). . . . . . . . . . . . . . . . . . 50

2.13. The Flexisketch approach’s three basic phases (from [6]). . . . . . . . 53

2.14. The Flexisketch Android application. . . . . . . . . . . . . . . . . . . . 54

2.15. String representation of sketches in the Coyette et al.’s approach (from
[7]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.16. Concept metamodel of PDE-based languages (adapted from [8]). . . 60

2.17. MARS metamodel inference approach (adapted from [9]). . . . . . . 61

2.18. An example of a decision tree in CART (from [10]). . . . . . . . . . . 64

2.19. A map for colouring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.20. An overview of the similarity flooding approach. . . . . . . . . . . . . 71

2.21. An example metamodel (adapted from [11]). . . . . . . . . . . . . . . 72

11



List of Figures

2.22. The directed graph of the metamodel shown in Figure 2.21 using the
minimal configuration (adapted from [11]). . . . . . . . . . . . . . . . 72

2.23. An overview of Grammel et al.’ approach [12] to trace link genera-
tion (adapted from [12]). . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.24. An example of how a metamodel is translated to an E-Graph in
Grammel et al. [12] model matching approach. . . . . . . . . . . . . . 74

3.1. An overview of the proposed approach to type inference using clas-
sification algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2. An example model of a zoo configuration. . . . . . . . . . . . . . . . . 80

3.3. Colours and shapes are used to define semantics on graphical models. 83

3.4. The muddles extension for type inference using concrete syntax prop-
erties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5. Example decision tree for the features based on semantics. F1 repre-
sents the number of attributes of a node and F2 the number of unique
incoming references. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6. The experimentation process using the features based on semantics. . 87

3.7. Accuracy for different sampling rates and number of trees (“Nor-
mal”, Random Forests). . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.8. Accuracy for different sampling rates and number of trees (“Sparse”,
Random Forests). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.9. A metamodel from which instances of “Children” nodes may never
be instantiated if the random model generator forces optional com-
position relationships to be instantiated less frequently (“Sparse” sce-
nario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.10. Variables importance of features based on semantics. F1 represents
the number of attributes, F2 and F3 represent the number of unique
incoming and outgoing references respectively and F4 and F5 the
number of unique children and parents respectively. . . . . . . . . . . 106

3.11. The concrete features experimentation process. . . . . . . . . . . . . . 110

3.12. Accuracy for different sampling rates (CART - Concrete). . . . . . . . 114

3.13. Accuracy for different sampling rates and number of trees (RF - Con-
crete). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.14. Variables importance of concrete features. . . . . . . . . . . . . . . . . 119

4.1. An overview of the proposed approach for type inference for exam-
ple models defined as part of flexible MDE approaches using con-
straint programming principles. . . . . . . . . . . . . . . . . . . . . . . 125

4.2. Example where a simple direct computation method of the possible
connected types has less performance compared to the CSP approach. 131

12



List of Figures

4.3. An example on amended multiplicities for the construction of the
appropriate CSP rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4. An overview of the experimentation process for type inference using
constraint programming principles. . . . . . . . . . . . . . . . . . . . 135

4.5. Histogram for the number of suggested types for each node that is
left untyped in the With-Orphans experiment. . . . . . . . . . . . . . 141

4.6. Number of returned predictions for each metamodel. . . . . . . . . . 142
4.6. Number of returned predictions for each metamodel (Continued). . . 143
4.7. Histogram for the number of suggested types for each node that is

left untyped in the No-Orphans experiment. . . . . . . . . . . . . . . 144
4.8. Number of returned predictions for each metamodel. . . . . . . . . . 145
4.8. Number of returned predictions for each metamodel (Continued). . . 146
4.9. Example of a corner case scenario. . . . . . . . . . . . . . . . . . . . . 151

5.1. An overview of the proposed approach to type inference based on
similarity flooding algorithm. . . . . . . . . . . . . . . . . . . . . . . . 155

5.2. Extract of the example model. . . . . . . . . . . . . . . . . . . . . . . . 157
5.3. The directed labelled graph of the example model of Figure 5.2 using

the flattened configuration. . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4. An example of the similarity flooding algorithm’s three-step process

(based on Figure 3 of [13]). . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.5. The experimentation process for the type inference approach based

on the similarity flooding algorithm. . . . . . . . . . . . . . . . . . . . 164
5.6. Histogram of the correct prediction’s position for each untyped node

in the similarity flooding experiment. . . . . . . . . . . . . . . . . . . 171
5.7. Position of the correct prediction for each metamodel in the similar-

ity flooding experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.7. Position of the correct prediction for each metamodel in the similar-

ity flooding experiment (continued). . . . . . . . . . . . . . . . . . . . 173

A.1. The Ant metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.2. The BibTeX metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 192
A.3. The Bugzilla metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 193
A.4. The Chess metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.5. The COBOL metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.6. The Conference metamodel. . . . . . . . . . . . . . . . . . . . . . . . . 196
A.7. The Profesor metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 196
A.8. The Usecase metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.9. The Wordpress metamodel. . . . . . . . . . . . . . . . . . . . . . . . . 198
A.10.The Zoo metamodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13





List of Tables

2.1. Element properties (based on Table 1 from [4]). . . . . . . . . . . . . . 47

3.1. The IDs of the experiments. . . . . . . . . . . . . . . . . . . . . . . . . 92

3.2. Input data summary table for the classification algorithms experiment. 92

3.3. Results summary table for N-CART . . . . . . . . . . . . . . . . . . . 93

3.4. Results summary table for S-CART . . . . . . . . . . . . . . . . . . . . 94

3.5. Results summary table for N-RF . . . . . . . . . . . . . . . . . . . . . 96

3.5. Results summary table for N-RF . . . . . . . . . . . . . . . . . . . . . 97

3.5. Results summary table for N-RF . . . . . . . . . . . . . . . . . . . . . 98

3.6. Results summary table for S-RF . . . . . . . . . . . . . . . . . . . . . . 98

3.6. Results summary table for S-RF . . . . . . . . . . . . . . . . . . . . . . 99

3.6. Results summary table for S-RF . . . . . . . . . . . . . . . . . . . . . . 100

3.7. Accuracy difference trends between “Normal” and “Sparse” experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.8. Accuracy difference trends between CART and RF. . . . . . . . . . . . 105

3.9. Variable importance table for the N-CART experiment. . . . . . . . . 107

3.10. Variable importance table for the S-CART experiment. . . . . . . . . . 107

3.11. Variable importance table for the N-RF experiment. . . . . . . . . . . 108

3.12. Variable importance table for the S-RF experiment. . . . . . . . . . . . 108

3.13. Average execution time for each metamodel in the classification al-
gorithms approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.14. Results summary table for CART (concrete syntax features) . . . . . . 113

3.15. Results summary table for RF (concrete syntax features) . . . . . . . . 115

3.15. Results summary table for RF (concrete syntax features) . . . . . . . . 116

3.16. Accuracy difference trends between CART and RF experiments. . . . 118

3.17. Variable importance table (CART - Concrete). . . . . . . . . . . . . . . 119

3.18. Variable importance table (RF - Concrete). . . . . . . . . . . . . . . . . 119

4.1. Input data summary table for the experiment using constraint pro-
gramming principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2. Average savings results table (With-Orphans) . . . . . . . . . . . . . . 139

15



List of Tables

4.3. Average savings results table (No-Orphans) . . . . . . . . . . . . . . . 144
4.4. Number of unfinished experiments in the type inference approach

using constraint programming principles evaluation. . . . . . . . . . 148
4.5. Average execution time for each metamodel in the CSP approach . . 149

5.1. Input data summary table for the similarity flooding experiment. . . 169
5.2. Results summary table for similarity flooding experiment . . . . . . . 170
5.3. Average execution time for each metamodel in the similarity flood-

ing approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

16



Listings

2.1. Emfatic code to define the metamodel presented in Figure 2.3. . . . . 41
2.2. EOL commands executed on the drawing . . . . . . . . . . . . . . . . 47
2.3. A fragment expressed using text (from [5]). . . . . . . . . . . . . . . . 51
2.4. The problem of colouring a map solved using PROLOG (adapted

from [14]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1. Crepe configuration parameters for the Normal set generation. . . . . 87
3.2. Crepe configuration parameters for the Sparse set generation. . . . . . 88
3.3. An example of a features signature list based on the semantics of the

example model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4. An example of a features signature list. . . . . . . . . . . . . . . . . . 111

4.1. An example PROLOG file automatically generated based on the draft
metamodel and the flexible example model shown in Figure 4.1. . . . 130

4.2. An example file containing the returned results solving a CSP for
type inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.1. Java generated code for the construction of the directed labelled graph
of the “Zoo” metamodel of Figure 2.3. . . . . . . . . . . . . . . . . . . 165

5.2. Java generated code for the construction of the directed labelled graph
of an instance of the “Zoo” metamodel presented in Figure 2.3. . . . 166

5.3. An extract of the similarities between pairs of the muddle and the
metamodel graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17





List of Algorithms

1. Computing signatures based on semantic features. . . . . . . . . . . . 82
2. Computing concrete signatures. . . . . . . . . . . . . . . . . . . . . . . 84
3. Algorithm to transform EMF models to muddles. . . . . . . . . . . . 91

4. Computing feasible types. . . . . . . . . . . . . . . . . . . . . . . . . . 127
5. Transforming a metamodel to a CSP. . . . . . . . . . . . . . . . . . . . 132
6. Transforming a muddle to a CSP. . . . . . . . . . . . . . . . . . . . . . 134

7. Transforming a metamodel to a directed graph based on the flattened
configuration rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

19





Acknowledgements

Before everyone else, I would like to express my endless gratitude to my super-
visors, Professor Richard Paige and Dr. Nicholas Matragkas for their incredible
support and guidance through the years this project lasted. I would like to thank
them for giving me the opportunity to travel to many conferences where I met with
members of the research community and I expanded my research horizons. I am
also very grateful to my assessor, Dr. Radu Calinescu, for providing me with ad-
vice and feedback. I address my acknowledgements to my industrial supervisor,
Mr. Chris Wedgwood, for sponsoring parts of this research project and for allowing
me to drive my research in the direction I was most interested in.

A big thanks and appreciation goes to my beloved parents, Michalis and De-
spoina, and my sister, Dimitra, for the incredible support and endless love they give
me every day. They are always present to figure out any problems arise though-out
my whole life.

Coping with domain-specific difficulties could not be possible without the help
of four colleagues, Dr. Dimitrios Kolovos, Dr. Sam Devlin, Dr. Robert Clarisó and
Dr. James Williams. Dimitris’ continuous support on the Muddles and Epsilon im-
plementation, Sam’s and Robert’s selfless guidance on the machine learning and
constraint programming insights, respectively, and James’ advice on MDE, contin-
uous motivation and support were priceless.

Of course, I would like to thank the people I lived with these years, Kyriakos
Efthymiadis and Simos Gerasimou, for making my daily life a nice and smooth
journey. Special thanks to my friends in York, Tina Alyssandraki, Chris Evripidou,
Liana Kafetzopoulou, Theo Karapanagiotidis, Maria Kechagia, Ioannis Kontopou-
los, Anna Ladi, Kelly Pentaraki and Tasos Tsompanidis with whom I spent some of
the most beautiful and remarkable moments in my life. I must thank the friends I
left behind in Greece, Kostas Nikos, Konstantina Psarra, Apostolos Stefanidis and
Thanos Stefanidis who gave me good advice and support in the years this project
lasted. Finally, I would like to thank my colleagues in the Enterprise Systems group,
Ran Wei, Adolfo Sanchez-Barbudo Herrera, Horacio Hoyos Rodriguez, Louis Rose,
Babajide Ogunyomi and Kostas Barmpis for their daily support.

None of this would be possible if the above didn’t believe in me and give me
opportunities, guidance, support and help to become a better person.

21





Declaration

I declare that the work presented in this thesis is my own, except where stated.
Chapters 3 and Chapter 4 present collaborative work and clearly state the contri-
butions of this author and the collaborators. This work has not previously been
presented for an award at this, or any other, University. All sources are acknowl-
edged as References. Parts of this thesis have been previously published in the
following research papers:

[15] Assigning Semantics to Graphical Concrete Syntaxes. Athanasios Zolotas,
Dimitris S. Kolovos, Nicholas Drivalos Matragkas, and Richard F. Paige. Pro-
ceedings of the Third International Workshop on Extreme Modelling (XM 2014),
Valencia, Spain, September 2014.

[16] Type inference in flexible Model-driven Engineering. Athanasios Zolotas,
Nicholas Matragkas, Sam Devlin, Dimitrios S. Kolovos, and Richard F. Paige.
Proceedings of the Eleventh European Conference on Modelling Foundations and
Applications, L’Aquila, Italy, July 2015.

[17] Type Inference Using Concrete Syntax Properties in Flexible Model-Driven
Engineering. Athanasios Zolotas, Nicholas Matragkas, Sam Devlin, Dim-
itrios S. Kolovos, and Richard F. Paige. Proceedings of the First International
Workshop on Flexible Model-Driven Engineering (FlexMDE 2015), Ottawa, Canada,
September 2015

[18] Flexible Modelling for Requirements Engineering. Athanasios Zolotas, Nicholas
Matragkas, Dimitrios S. Kolovos, and Richard F. Paige. Proceedings of the First
International Workshop on Flexible Model-Driven Engineering (FlexMDE 2015),
Ottawa, Canada, September 2015.

[19] Constraint Programming for Type Inference in Flexible Model-Driven En-
gineering, Athanasios Zolotas, Robert Clarisó, Nicholas Matragkas, Dim-
itrios S. Kolovos, Richard F. Paige. International Journal on Computer Languages,
Systems and Structures (COMLAN), 2016

Parts of this thesis have been submitted for publication in the following and are
under review at the moment this thesis is being written:

23



Declaration

• Type Inference in Flexible Model-Driven Engineering using Classification
Algorithms, Athanasios Zolotas, Nicholas Matragkas, Sam Devlin, Dimitrios
S. Kolovos, Richard F. Paige. Submitted and Under Review in the International
Journal on Software and Systems Modelling (SoSyM).

24



CHAPTER 1
Introduction

Model-Driven Engineering (MDE) is an approach to software engineering that pro-
motes the abstraction from technical and implementation related details towards
domain-related information [20, 21]. MDE treats models as first class artefacts in
the software development process. These models represent a variety of views and
store different levels of details of the system under development: from models that
omit low level details to models that can be used to automatically generate the final
working artefact. Metamodels are defined at the beginning of the MDE process and
include the syntax and the semantics of the models that conform to them.

Software engineers, designers and other stakeholders are key factors in the suc-
cess of an MDE process. Thus, the active collaboration among all of them is impor-
tant; the participation of the stakeholders, which are usually the domain experts, is
of interest as it can lead to better understanding of the domain and consequently to
complete and valid products [5, 22–25]. Although MDE conceals low level imple-
mentation details, focusing on abstractions, the active participation of the domain
experts is not always achieved.

In this chapter the identified gap that motivates this research work is discussed.
This chapter outlines the research hypothesis and lists the research objectives. An
overview of the research results and contributions is also included. Finally, the
structure of the thesis is presented.

Test paragraph!

1.1. Motivation and Background

In the process of building the domain knowledge needed to define a system, a
business process or a Domain-Specific Language (DSL) the participation of all the
stakeholders is important [5, 22–25]. They hold the knowledge of the domain and
they know the concepts that need to be modelled. However, not all the stakehold-

25



Chapter 1. Introduction

ers share the technical expertise to transfer their undoubtedly good understanding
of the domain to the technical experts responsible for building the aforementioned
artefacts. It is this difficulty in bridging the knowledge the domain and the en-
gineering experts hold in their respective areas of expertise that is known as the
“symmetry of ignorance" [26–28].

Sometimes models fail in being a correct and thorough representation of the sys-
tem. This can be either a result of bad design or a result of the symmetry of ig-
norance: the tacit knowledge of the domain that the domain experts hold cannot
be transferred to the system or language engineers effectively. Bottom-up or flex-
ible MDE is a revolutionary MDE approach, introduced to facilitate the bridging
of that gap by changing the sequence of steps followed in tradition MDE: models
are defined at the beginning and are used to help modelling engineers infer the
metamodel [5, 23, 29].

1.1.1. Bottom-up MDE

Conventional DSL definition processes start with the creation of a metamodel which
is then used to instantiate models and guide the development of editors and other
artefacts such as model-to-model and model-to-text transformations. Such a pro-
cess implies expertise in metamodelling, and in relevant technologies. While this
may be an easy or at least understandable process for MDE experts, this is not al-
ways the case with domain experts [5] who are more familiar with tools like simple
drawing editors [22]. However, the involvement of domain experts is important in
the definition of high quality and well-defined DSLs (i.e., those that cover all the
needed aspects of a domain) [5, 24, 25, 30]. To address the aforementioned issue,
flexible modelling approaches have been proposed in the literature (e.g., [4–6, 31]).
Such approaches are based on sketching tools and do not require the definition
of a metamodel during the initial phases of language engineering. The trade-off
between formality and flexibility results in a better domain understanding by lan-
guage engineers, and eventually to a higher quality language.

In flexible (or bottom-up) MDE, the process starts with the definition of example
models [5, 23, 29]. These example models help language engineers to better under-
stand the concepts of the envisioned DSL and can be used to infer draft metamodels
manually or (semi-)automatically, which eventually leads to the definition of the
final metamodel. In this fashion, a richer understanding of the domain can be de-
veloped incrementally, while concrete insights (e.g., type information) pertaining to
the envisioned metamodel are discovered. When all the details of the domain are
discovered and a final metamodel is developed, transition to traditional, rigorous
MDE approaches and tools is possible. Figure 1.1 depicts the stages taking place in
a typical flexible MDE process as this is interpreted by studying different flexible
MDE approaches in the literature (e.g., [5, 22, 32]).

26



Chapter 1. Introduction

Example model
definition

Draft metamodel
inference

Start

Figure 1.1.: Stages of a typical flexible MDE approach.

The sketching tools used in flexible MDE processes, allow the quick definition of
exemplar models sacrificing the formality that model editors, which are based on
a rigorously-defined metamodels, offer. In addition, drawing tools do not require
MDE-specific expertise. The elements (nodes and edges) of these flexible example
models can have type annotations assigned to them to describe the domain con-
cept they represent and can also be amenable to programmatic model management
using MDE suites like Epsilon [33].

On the other hand, since sketching tools cannot enforce syntactic and semantic
correctness rules, flexible models are prone to various types of errors [16]:

1. User input errors: elements that should share the same type have different
types assigned to them as a result of a typo on any other mistake.

2. Changes due to evolution: elements representing concepts that have evolved
during the domain exploration process do not have their types updated.

3. Inconsistencies due to collaboration: when multiple domain experts collaborate
in the definition of the models, multiple types representing the same concept
can be introduced.

4. Omissions: elements can be left untyped especially when models become large
as it is easier to overlook some of the elements.

The existence of such errors is an obstacle in the smooth execution of flexible
MDE approaches; for example an untyped element (error #4 above) is ignored. This
is an undesirable effect as the exploration of the domain and the identification of all
the concepts it includes is a basic aim in flexible MDE approaches. Deploying effi-
cient techniques that will prevent this from happening is of interest to improve the
effectiveness of flexible MDE approaches. There are at least two ways for achiev-
ing that. The first includes the creation of model managements scripts which will

27



Chapter 1. Introduction

identify the untyped elements and request the engineers to provide their type. A
second, could be that of type inference, where the types could be inferred and filled
in either automatically or in a semi-automatic way.

1.2. Hypothesis and Objectives

The research hypothesis of this thesis is stated as follows:

It is feasible to use classification algorithms, constraint programming and
graph similarity techniques in the two phases of flexible MDE approaches to
accurately suggest the most appropriate type for each untyped node of a model
or reduce the set of possible types an untyped node can have. This can reduce
the effort needed to produce complete example models from which metamodels
can be inferred.

The characteristics extracted from the research hypothesis that construct the con-
text of this research project are listed below:

1. Feasible: the techniques should be incorporated into the usual DSL engineer-
ing workflow, i.e. it does not take more than a few minutes to find the types.

2. Two phases of flexible MDE: flexible MDE processes are iterative and consist
from the two stages, depicted in Figure 1.1, the aim of which is an incremental
built of knowledge in the domain. The proposed solutions could be applied in
both of these phases, where a metamodel is or is not already inferred, tackling
the same problem, that of type inference.

3. Flexible MDE approaches: the proposed solutions should be applied in a
specific flexible MDE approach (i.e., Muddles [4]) and could be in principle
adopted into all the available approaches (i.e., those presented in Section 2.2).

4. Type suggestion/Reduce set of possible types: using different characteristics
available in flexible models, the approaches should be able to suggest possible
types for the elements left untyped. These characteristics can be the concrete
and the abstract syntax, the labels of the features of the models (i.e., references
and attributes) or constraints imposed by the draft metamodel (e.g., multi-
plicities). In addition, the proposed approaches should predict the correct
type of untyped nodes with at least higher accuracy than a random prediction
and provide a set of candidate types for each node, at least smaller than the
total number of the already defined types.

5. Nodes left untyped: this thesis focuses on adopting or introducing tech-
niques that tackle the problem of nodes’ type omission errors (i.e., error #4
in Section 1.1.1) in flexible models.

28



Chapter 1. Introduction

1.2.1. Thesis Objectives

The research objectives of this thesis are to:

• Facilitate the incremental acquisition of domain knowledge that flexible MDE
approaches offer by inferring the type of the untyped nodes in example mod-
els. This should be achieved by:

– Identifying existing research techniques that can be used for type infer-
ence in flexible MDE.

– Proposing new algorithms that could be used in the same direction.

• Develop the artefacts to import the aforementioned techniques and algorithms
in the domain of type inference in flexible MDE.

• Evaluate the performance of the proposed approaches and the level of assis-
tance they offer to language engineers.

1.3. Research Contributions

This thesis proposes three novel approaches for tackling the problem of type omis-
sions in flexible MDE. More specifically, implementations of approaches from three
different domains (i.e., machine learning, logic programming and graph similar-
ity) are adapted in the flexible MDE domain. To the best of our knowledge these
approaches are the first introduced in addressing the problem identified.

This thesis also proposes the classification of errors observed in the process of
defining example models into four categories, that of typos, type omissions, errors
due to language evolution and errors due to collaboration. A review of the available
flexible or bottom-up methodologies and tools was also performed as part of the
literature review for this research project. This thesis also contributes to the exten-
sion of a flexible modelling technique, called Muddles, which is part of the Epsilon
MDE suite [33] built on top the Eclipse Modelling Framework (EMF) [34] and the
GraphML file format [35].

The validation of the research hypothesis has been confirmed by evaluating the
proposed approaches for a number of randomly generated flexible models by defin-
ing new metrics of success in this domain. The results and the proposed metrics can
be used as benchmarks for future research in the domain. The evaluation also sim-
ulated a variety of scenarios to identify factors that affect (positively or negatively)
the type inference, extracting useful guidelines for language engineers working on
flexible MDE.

An outline of the research is shown in Figure 1.2.

29



Chapter 1. Introduction

Figure 1.2.: Overview of the research project.

1.4. Thesis Structure

Chapter 2 presents the literature related to the concepts underlying this research
project. More specifically, Section 2.1 introduces the reader to the principles and
practices of MDE. Section 2.2 presents a systematic review of the flexible or bottom-
up MDE approaches available, including the Muddles [4] used in the evaluation
of the research. The reviewed approaches are categorised using different criteria,
highlighting their advantages and disadvantages. Approaches related to comple-
tion of partial models are discussed in Section 2.3. In Section 2.4, the type and meta-
model inference approaches reviewed are presented. A comparison and a critique
of these approaches are given in Section 2.5. Sections 2.6, 2.7 and 2.8 briefly discuss
the available techniques and methodologies in the domains of classification algo-
rithms, logic programming and graph similarity respectively. These include the
Classification and Regression Trees (CART), Random Forests and Support Vector
Machines (SVM) in the classification domain; the PROLOG general purpose logic
programming language and its implementations (e.g., SWI-Prolog) in the logic pro-
gramming domain; and Similarity Flooding algorithm in the graph similarity do-
main.

Chapter 3 presents the first approach for tackling the problem of untyped nodes
in flexible modelling. More specifically, the use of Classification and Regression

30



Chapter 1. Introduction

Trees (CART) is presented (Section 3.2). The two variations proposed, one based
on semantics and the second based on graphical attributes of the flexible models,
are explained. For both variations, the elements of the flexible models need to be
encoded into a set a features, called feature signatures, in order to be fed into the
classification algorithm. The features selected and the way they are encoded are
presented in Section 3.3. Section 3.4 describes the training and classification process
in detail. In Section 3.5, the empirical evaluation for both the feature signatures sets
is presented. Finally, the prerequisites and the limitations of the specific approach
are discussed (Section 3.6).

Chapter 4 presents the second approach for type inference in bottom-up MDE
proposed in this research project. An overview of the approach is given in Sec-
tion 4.2, followed by the presentation of the algorithm that represents the con-
strained problem that needs to be solved by the logic programming solver (Sec-
tion 4.3.1). More specifically, each flexible model is represented as a constraint sat-
isfaction problem which the algorithm solves in order to suggest the possible types
for the untyped nodes. The experimental evaluation is presented in Section 4.4
while the limitations and prerequisites of the approach and the differences from
the previous (CART) one are discussed in Section 4.5.

Chapter 5 presents the third approach, that of inferring the type of the nodes
based on similarities in the labels of their features (attributes and references). The
representation of the flexible model in a format, called RDF [36], that can be used
by the similarity flooding algorithm is presented in Section 5.3. Section 5.5 presents
the empirical evaluation for the approach. The limitations and the prerequisites of
the approach, and the comparison with the other two approaches are also discussed
(Section 5.6).

Chapter 6 concludes the thesis by reminding the research hypothesis and sum-
marises the three proposed solutions for tackling the identified gap (Section 6.1).
The evaluation results are also discussed. Finally, guidelines for future work and
advancements are proposed (Section 6.2).

31





CHAPTER 2
Literature Review

This chapter gives the background to MDE and an overview of the key principles,
practices and tools used in the domain. The benefits and the weaknesses of using
MDE are also discussed. Flexible MDE approaches and metamodel and type infer-
ence literature are also presented followed by a critique on their advantages and
disadvantages.

The chapter is structured as follows. Section 2.1 describes the background of
MDE. The underlying principles and the tools used in MDE to define, instanti-
ate and manipulate models are presented. In Section 2.2 we present flexible MDE
approaches found in the literature. In the same section we analyse the flexible
MDE approach used as proof of concept in this thesis, named Muddles. Related
work on partial modelling and metamodel inference is also discussed. Sections 2.6,
2.7 and 2.8 give the background for the three different domains from which algo-
rithms and techniques were adopted to provide solutions in tackling the identified
research gap. More specifically, Section 2.6 presents an overview of classification
algorithms. In Section 2.7 we give the background for logic programming and con-
straint satisfaction problems. Finally, Section 2.8 presents graph similarity, focusing
on the similarity flooding algorithm used in this work.

2.1. Model-Driven Engineering

Before entering the world of software engineering, models were, and still are, a key
part of other domains like architecture and other areas of engineering. Models are
used to represent an abstract view of an artefact helping engineers to turn their
focus away from implementation details and reason about the artefact under de-
velopment among the stakeholders [37].

Models in software engineering are very important; some argue they are more
important than in any other discipline [37]. Software engineers and domain ex-

33



Chapter 2. Literature Review

perts can focus in expressing the domain characteristics rather than focusing on
implementation details, working in a more abstract level. The defined models can
be used to generate systems automatically; When the requirements or the design
change, the changes can be applied to the abstract models and using the same or
refined generators, the changes can be propagated to the system automatically.

The following section presents key MDE principles and tools used in MDE.

2.1.1. MDE Principles and Tools

Models are the main artefact in MDE. A generally accepted definition of a model is
as follows:

“A model is a simplification of a system built with an intended goal in mind.” [1]

From the above, and other definitions, a common outcome is that a model de-
scribes an abstract view of a system. This description can be either textual or graph-
ical [38]. Simplification is also important in an MDE lifecycle; A model should only
include the important information, abstracted, having all the details not-of-interest
pencilled out [1].

An exceptional example of a model is the metamodel. A metamodel - a model itself
- includes the set of syntactic rules that will be used to define other models. These
rules are also referred as the concepts and the relations between these concepts [39].
Thus, each model that fulfils all the rules defined in a metamodel and all of its
concepts, conforms to the metamodel [40]. The relationships between the model and
the domain it describes are shown in Figure 2.1.

Figure 2.1.: The relationships between a model with its metamodel and the domain
it represents (adapted from [1]).

It is not always the case that only metamodels can be used to define the rules
of models; other kind of schemas could also be used. In any form, a modelling
language, should typically include the following three constraints:

Semantics: Are used to describe the meaning of the concepts and the relation-
ships between them in the domain the metamodel is applied to. For example,

34



Chapter 2. Literature Review

if we take into account two languages, one that defines websites and one that
describes tailoring procedures, they may both have a “button” concept but
this will most probably represent two unrelated things. The semantics of a
modelling language specify this.

Abstract Syntax: Contains all the concepts that appear in the domain and are
of interest. For example, in a modelling language that defines websites the
abstract syntax may consists of concepts like “Page”, “Button”, “Image”, etc.

Concrete Syntax: Describes the notation of the concepts; how these concepts
may appear when the model is created. In textual languages this is the key-
words of the languages (e.g., in a websites’ definition language this might be
keywords like “img” that represents the “Image” concept, etc.) In graphical
languages this is the graphical representation of each concept in a model (e.g.,
a button might be represented by a rectangular box, while the connection be-
tween it and the page it leads to, as a line with an arrow at the ending point)

There is no definitive rule for separating modelling language; some classifica-
tions are proposed though. The first classifies them into two categories, domain-
specific and general-purpose languages.

Domain-specific: Domain-Specific languages (DSLs) contain languages such
as WebML [41] for describing web applications or SQL [42] for manipulation
of databases. DSLs are built to be used in a specific domain and they pro-
mote productivity in favour of portability [43]. In addition the use of DSLs
allows better understanding of the written code, especially by experts of the
domain and better communication between them [44]. DSLs that are used
for modelling purposes are known as Domain-Specific Modelling Languages
(DSMLs).

General-purpose: General-purpose languages capture a wide variety of do-
mains. Java [45] or BPMN [46] are examples of general-purpose languages
as they are used to describe multiple domains without adapting their syntax
and semantics. UML [47] is an example of a general-purpose modelling lan-
guage. General-purpose languages are addressed to a broader audience and
they promote portability and maintainability in favour of productivity [43].

Another common classification of languages is based on the nature of concrete
syntax; There are textual, graphical (or visual) and hybrid languages [48].

Textual: As the name suggests the commands of a textual language are ex-
pressed using words written in a text editor. Java [45] and HTML [49] are
examples of textual languages. In fact, most of the programming languages
are textual. Tools like Xtext [50] and EMFText [51] can be used to generate
editors for textual languages based on MDE principles.

35



Chapter 2. Literature Review

Graphical/Visual: In contrast, graphical languages have their commands ex-
pressed using shapes and icons. UML [47] is a characteristic example of a
graphical language. Tools like the Graphical Modelling Project (GMP) [52]
(i.e., the Graphical Modelling Framework (GMF) and Graphiti), the Sirius [53]
framework that builds on-top the GMF, AToM3 [54] and Eugenia [55] include
the necessary infrastructure to generate editors for graphical languages.

Hybrid: Hybrid languages are those that combine both textual and graphical
syntax. Each notation can be used to describe the system under development
from different viewpoints [56].

MOF

The Object Management Group (OMG) has defined an architecture for creating
modelling languages, called the Meta Object Facility (MOF) [3]. The architecture is
given in Figure 2.2. The top level, M3, consists of metamodelling languages, i.e.,
languages that can be used to define metamodels like those appearing in M2 level.
The UML Metamodel [47] is an example of a metamodel that is proposed by OMG
to define models like Class or Activity diagrams that appear in the M1 level. At
the bottom, the M0 level, consists of elements that represent the real world domain
objects need to be modelled (e.g., a booking system or a video player, etc.). The lay-
ering architecture of MOF is an analogy of how computer programming languages
are defined: at the top there is a language definition language (e.g., EBNF [57]),
the second layer consists of a programming language (e.g., Java [45]), the third of
a piece of code written in the aforementioned language (e.g., Book.java) and at the
bottom the real-world objects [2].

Figure 2.2.: The four layers of metamodelling infrastructures (adapted from [2]
and [3]).

36



Chapter 2. Literature Review

In MOF, models are stored using an OMG standard, the XML Metadata Inter-
change (XMI) [58, 59] which allows interoperability between the different MOF-
based modelling suites. Unfortunately, in the MOF standard it is not possible to
include constraints as part of the semantics of a metamodel, other than the struc-
tural constraints imposed by the metamodel itself. In MOF, the Object Constraint
Language (OCL) [60] is used to express more complex constraints.

An example of a metamodel defined in MOF is presented in Figure 2.3. This
metamodel creates a simple modelling language for expressing zoos. Each rect-
angle represents a concept of the language and is called a meta-class. The lines
connecting meta-classes are called references. The references with a black diamond
at their end are called compositions and declare that the existence of the contained
class (e.g., Animal) relies on the existence of the parent class (e.g., Zoo): if the par-
ent object is deleted then all the contained objects are also deleted. Each meta-class
might also have some attributes (e.g., name, entranceFee, etc.) each of which is of
a type (e.g., String, Integer, etc.). All the references and the attributes in MOF are
collectively called meta-features. The numbers or asterisks (“*”) at the end of each
reference or composition are called multiplicities and define the minimum (lower
bound) and maximum (upper bound) number of instances each object can be con-
nected with (e.g., for the treats relationship, each Doctor can be connected with
many Animals). If the minimum bound is set to 0, then this feature is optional as a
non-instantiation of it is allowed by the metamodel. The meta-classes whose name
is in italics define abstract meta-classes, that is the classes that cannot be instantiated
in the model level. Usually, abstract classes are used to group common characteris-
tics of the classes which extend them. The extension reference is expressed using a
white filled arrowhead. Meta-features are inherited to the extension classes.

Figure 2.3.: An example of a metamodel.

37



Chapter 2. Literature Review

Figure 2.4 shows an example model that is an instance of the metamodel given
in Figure 2.3 expressed in the object diagram notation of UML [47]. Each element
has a label which includes a column symbol (“:”) and the name of the meta-class
this object is an instance of. For example, the “JurassicZoo” object is an instance
of the “Zoo” meta-class. Each object also instantiates all its features (the references
and the attributes) that are not optional. Although this is UML’s way to instantiate
a metamodel, this does not mean that in MDE all the metamodels are instantiated
using this notation. The modellers are able to define their own concrete syntax,
either a textual or a graphical one. For example, in this Zoo DSL a concrete syn-
tax could possibly include icons of tigers and lions to the instantiated meta-classes
“Tiger” and “Lion” respectively and not rectangles as is done in the object diagram.

Figure 2.4.: An example of a model that conforms to the metamodel of Figure 2.3.

Beyond the four-layer that is used in this thesis, another proposed architecture is
that of multilevel modelling also called deep metamodelling which enables modelling in
different numbers of layers [61]. Such an architecture is argued to offer simplicity
in model and metamodel description in some scenarios, examples of which are
presented in [61].

Model Management

In MDE, models are manipulated to produce artefacts of interest. The most com-
mon model management activities are presented below.

Model Transformation: Model transformations are an important procedure
in MDE and allows the definition of mappings between different artefacts [2].
There are three basic categories of model transformations: model-to-model (M2M),
model-to-text (M2T) and text-to-model (T2M).

In M2M transformations the source model is transformed to another model
which is the target model by executing a set of pre-defined rules. In a M2M

38



Chapter 2. Literature Review

transformation there might be more than one source and more than one target
models. The multiplicity of the transformation declares that number. More-
over, the type of a M2M transformation can be either endogenous or exoge-
nous meaning that the source and the target model(s) conform to the same or
different metamodels, respectively. An example of a M2M transformation is
given in Figure 2.5.

Figure 2.5.: An example of a model-to-model transformation between instances of
two different metamodels.

In M2T transformations the source of the transformation is a model and the
target is a piece of text (e.g., runnable code, documentation, etc.). An example
is given in Figure 2.6. The opposite transformation (text-to-model) accepts as
input a textual artefact and produces as output a model. Such a procedure is
typical in reverse engineering operations [2].

There is a number of tools developed to perform model transformations.
Among others the most widely used are the Epsilon Transformation Lan-
guage [62], part of the Epsilon [33] suite, the Atlas Transformation Language
(ATL) [63], the OMG’s QVT [3] and VIATRA [64]. Languages like the Epsilon
Generation Language (EGL) [65], Xpand [66,67] and Acceleo [68] can be used
for model-to-text transformations specifically. Xtend [69, 70], a Java-like lan-
guage, is not a dedicated transformation language but it is used to perform
both M2M and M2T transformations [48].

Model Querying: Models can be seen as a store of information. Thus, query-
ing models to extract the data stored in them is important. For example, a
model that conforms to a metamodel that describes zoos will most probably
contain some instances of animals. In the event where the goal of the MDE
procedure is the production of a list of all the animals of the zoo (i.e., a simple
M2T transformation) then the model should be initially queried to get all the
instances of the “Animal” meta-class before completing the transformation.

39



Chapter 2. Literature Review

Figure 2.6.: An example of a model-to-text transformation.

Model querying is a core part of every model management process. The Ep-
silon Object Language (EOL) [38], OCL [60] and ATL [63] are languages that
can be used, among other things, to perform model querying.

Model Validation: Models need to conform to some syntactic and semantic
rules that the metamodel imposes [71]. Otherwise they become inconsistent.
Model validation helps in the direction of identifying if models conform to
these rules. In addition, there might be cases where models omit informa-
tion, thus they are incomplete [72]. As MDE promotes the chain procedure
of transformations between different artefacts, from models to a deployed
system, it is critical for inconsistencies and incompleteness to be discovered
otherwise they will be propagated. OCL [60] and the Epsilon Validation Lan-
guage (EVL) [73] can be used for checking constraints on models. In [74],
ATL [63] is used for checking models.

Other activities: Other model management activities include model compari-
son where a model containing similarities and differences between two other
models is produced in the form of traces. Finally, model merging combines
two or more models into one model.

In the following sections we discuss two modelling tools that are used in this the-
sis: the Eclipse Modelling Framework (EMF) [34] that implements the MOF architec-
ture and the Epsilon suite [72] that is used for model management. In principle, the
approaches presented in this thesis can be applied using any other tools described
above; EMF and Epsilon are used for proof of concept and were selected with no
other criterion rather than the familiarity of the author with these technologies.

40



Chapter 2. Literature Review

Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF) [34] is probably the most widely used
metamodelling infrastructure and is part of the Eclipse Foundation [75]. It aligns
with the four-layer MOF architecture and provides modellers with a metamod-
elling language called Ecore. Facilities to automatically generate graphical editors
of metamodels and models are part of the framework. The Emfatic [76] textual lan-
guage can be used to define metamodels in EMF. An example of Emfatic code for
defining the metamodel presented in Figure 2.3 is given in Listing 2.1.

1 @namespace(uri="zooMMExample",prefix="zooMMExample")
2 package top;
3

4 class Zoo {
5 attr String name;
6 attr String entranceFee;
7 val Animal[∗] resident;
8 }
9

10 class Doctor {
11 attr String name;
12 attr int age;
13 attr int salary ;
14 ref Animal[∗] treats ;
15 }
16

17 class Fan {
18 attr String name;
19 attr int age;
20 ref Animal[∗] supports;
21 }
22

23 abstract class Animal {
24 attr String name;
25 attr int ID;
26 attr String sex;
27 ref Animal[1] partner;
28 }
29

30 class Lion extends Animal {}
31

32 class Tiger extends Animal {}

Listing 2.1: Emfatic code to define the metamodel presented in Figure 2.3.

41



Chapter 2. Literature Review

Epsilon

A compatible with the EMF framework tool is Epsilon [72], which stands for Exten-
sible Platform for Specification of Integrated Languages for mOdel maNagement.
As the name suggests, Epsilon consists of a number of languages that allow model
management and manipulation. The core of the Epsilon suite is the Epsilon Object
Language (EOL) [38], an imperative language that is inspired from Javascript [77]
and OCL [60]. All the languages responsible for different model management pro-
cedures build atop EOL. Figure 2.7 shows the Epsilon architecture and summarises
the languages available in the suite. The Epsilon Transformation Language (ETL) [62]
is the language responsible for executing M2M transformations while the Epsilon
Generation Language (EGL) [65] offers the infrastructure for M2T transformations.
The Epsilon Validation Language (EVL) [73] allows validation of models while the
Epsilon Merging Language (EML) [78] supports merging of multiple models.

Figure 2.7.: The architecture of the Epsilon suite1.

One of the benefits of Epsilon is that it is a technology agnostic model manage-
ment suite. Metamodels and models can be expressed and manipulated in any
format due to an intermediate layer called the Epsilon Model Connectivity (EMC)
layer (see Figure 2.7). A new structure or filetype can be used as an input, if not
already supported, by implementing a driver (parser) that translates the structure
into the EMC’s façade. At the moment there are EMC drivers for EMF models,
XML files (with and without a schema), CSV files, BibTeX and much more. As of
2014, Epsilon also supports GraphML [79] diagrams as part of the Muddles [4] flex-
ible modelling approach. An extensive presentation of the GraphML driver and

1Based on figure from https://www.eclipse.org/epsilon/doc/

42

https://www.eclipse.org/epsilon/doc/


Chapter 2. Literature Review

the Muddles approach are given separately in Section 2.2.1 as this is the technology
used by a proof of concept in this thesis.

2.1.2. Strengths and Weaknesses of MDE

MDE is promising some benefits in the software development processes it is de-
ployed [2]. In this section these benefits are presented and verified based on sur-
veys conducted in the sources presented. The shortcomings of MDE are also given.

Strengths

One of the most claimed benefits MDE brings is that of increased productivity. Mo-
hagheghi et al. [80] performed a survey on how MDE is applied in industry. The
outcome was that in general MDE contributed to increased productivity, however
this was not always the case. Some studies suggested no or negative change in
the productivity mainly due to the lack of good tools and well-define MDE pro-
cesses. In the same survey, more claimed benefits of MDE were verified: better
product quality, increased maintainability of software and reduced labour-hours
due to the automation code generators bring [80]. That increase in productivity
and thus the gain of adopting MDE is not always visible in some teams working
on a software development project. For example, the team working in the main-
tainability of the system may find these models very beneficial while the team who
worked to develop these to be used in the maintenance will only see this as an
extra, time-consuming effort that adds no benefit to their own team [2].

Hutchinson et al. [81] performed an empirical study on the MDE brought where
it was applied by submitting questionnaires to MDE practitioners, interviewing
MDE professionals and by having on-site observations in companies applying MDE
processes. A proportion of 58%-66% of the professionals that responded to the
questionnaires (about 250 responses received) claimed that MDE has brought ben-
efits to the personal and team productivity, the maintainability and the portability.
A significant proportion (17%-22%), in contrast, disagreed. According to the same
study the most important impacts MDE had was in better communication between
stakeholders, improved code generation, better understanding of the problem at
the abstract level and better design and documentation of the solution [81]. A sur-
vey conducted by Bone [82] between 122 MDE professionals verified the above
claims as the average benefit that MDE brought to the overall project was judged
to be medium-high (rated 3.89 out of 5.00).

The benefits of MDE in productivity and quality of the products were reported by
Motorola in a study they published in [83]. More specifically, the authors claim that
the benefits were due to a number of reasons, among others that of automation of
labour-intensive tasks, reuse of designs and tests, focus of design on the application
rather than the platform, etc. [83].

43



Chapter 2. Literature Review

Weaknesses

The adoption of MDE in the industry is slow, although it offers all the aforemen-
tioned benefits [2]. Selic [84] identifies possible reasons for that from three dif-
ferent perspectives: cultural and social factors, economic factors and technical issues.
From the cultural perspective, technology minded people, like programmers, are
reluctant to leave the experience that coding offers and move to a more abstract
level [84]. This is also due to the fact that most of the coders do not see the system
as a whole but as individual components that are at some point integrated [84].
This human factor side is also verified by industrial experts [2]. Regarding the
economic factors, Selic identifies that MDE is becoming slowly adopted because
firstly managers are not willing to spend man hours on training programmers in
learning new technologies like MDE and secondly because the cost of buying new
tools used in MDE is an obstacle for them. The survey conducted by Mohagheghi
also supports this claim [80]. In addition, the productivity and product quality will
drop initially, until reaching the benefits that MDE offers [85]. Finally, the techni-
cal issues are grouped into three categories of challenges: capability, scalability and
usability challenges [84].

In [86], Steimann criticises MDE by highlighting one of the benefits of MDE, that
of simplification, is one of its drawbacks for adoption. More specifically, he claims
that models are more valuable for those who are not good in programming, as
models tend to oversimplify the system. If a system should be generated from the
model, then the model might be too complicated and as a result people who do not
know how to program will not be able to understand it. People who know how
to program and possibly will be able to understand the model, prefer to code the
system directly. However, as Fowler suggests in [87], the critical point for MDE
to be useful is to define the “right” level of abstraction for each of the steps in
the software development process and thus the right level of abstraction for the
programming step, as well.

2.2. Bottom-up MDE

As mentioned above, one of the perceived weaknesses in the adoption of MDE is
that of reduced usability of MDE tools and the extra training that MDE requires.
MDE experts may be familiar with MDE tools and processes however this is not
always the case with domain experts who hold the knowledge of the domain that is
being modelled [5]. These professionals are more familiar with tools like simple
drawing editors rather than complex MDE suites [22]. However, their involvement
in the definition of high quality and well-defined DSLs and models that cover all
the needed aspects of a domain is essential [5, 24, 25, 30]. A branch of MDE was in-
troduced to help tackling the aforementioned shortcoming of MDE, that of bottom-

44



Chapter 2. Literature Review

up or flexible MDE. The following sections introduce flexible MDE approaches and
tools.

2.2.1. Muddles

In this section, we present the Muddles flexible modelling approach proposed in [4].
Muddles is used for the evaluation of the proposed approaches for type inference
in this thesis.

Muddles allows language engineers to execute model management programs,
like model-to-text transformations, on example models at the early stages of lan-
guage development. This way language engineers are able to explore at the initial
phases if the models of the envisioned language are fit for purpose [4]. In addition,
the adoption of simple drawing editors, which arguably can be used by domain ex-
perts, enhance the participation of these experts in the language definition process
resulting in better DSLs [4, 5].

The process starts by having domain experts and languages engineers draw ex-
ample models of the envisioned DSL. These models are then annotated, by either
the language engineers or domain experts, with types and type-related informa-
tion like attributes. Following an automatic multipass model-to-model transfor-
mation the diagrams are transformed into a model that conforms to the Muddle
metamodel and are ready to be consumed by model managements suites like the
Epsilon platform [33]. An overview of the approach is shown in Figure 2.8. We
now explain each step in detail through an example.

Figure 2.8.: An overview of the Muddles approach (based on Fig. 1 from [4]).

45



Chapter 2. Literature Review

Example

Assume that the intention of a domain expert is to create a language that can be
used to manage a zoo. One requirement for this language is to be able to list the
names of all the animals and people involved in the zoo. The process starts by using
a simple drawing editor to create an example model of a zoo (step 1 ). In Mud-
dles [4], the yEd [88] editor is used to create the example models which comply to
the GraphML [35] modelling language. An example model is shown in Figure 2.9.
At this point the diagrams are not annotated with types.

Figure 2.9.: An example model diagram in yEd representing a zoo configuration.
Shapes and colours are not bound to types but can be used by domain
experts for the better presentation of the example models.

After the example model is created, language engineers and/or domain experts
can start annotating it with types and type related information (step 2 ). GraphML
does not support the notion of “Type” for the nodes and edges. This is done by
exploiting its extensibility facilities [35]. The information is provided using the
built-in parameters input window of yEd. For example, one can write in the type
input field for the node named “Tiger Kip” the word “Tiger” declaring that its type
is “Tiger”. Using the “>” symbol the inheritance relationship is expressed (e.g.,
“Tiger” > “Animal” defines that the class “Tiger” extends the class “Animal”). In
the same manner, the types of the relationships are also defined. For example,
the type of the directed edges from “Doctor” nodes (diamond shapes) to “Animal”
nodes (hexagons) can be defined as instances of the “treats” relationship. In a mud-
dle, the types are not bound to the shape; in the same drawing, the same shape can
represent different types (e.g., a hexagon in Figure 2.9 represents both elements of
type “Tiger” and “Lion”).

Each node and edge might also have some attributes. These are defined as lines
of text written in the “Properties” input field (e.g., String name = Kip, Integer age
= 12, etc.). Beyond types and attributes, Muddles capture additional information

46



Chapter 2. Literature Review

using the extensions summarised in Table 2.1.

Table 2.1.: Element properties (based on Table 1 from [4]).
Extension For Description Example
Type Node,

Edge
The type of the element Lion, Doctor < Person

Properties Node,
Edge

Descriptors and values
for primitive attributes of
nodes/edges

String name = Jenny,
Integer age = 25

Default Node,
Edge

Descriptor of the slot un-
der which the first label of
the node/edge should be
made accessible

name, label

Source role Edge Descriptor of the role of
the source end of the edge

source, sourceNode

Target role Edge Descriptor of the role of
the target end of the edge

target, targetNode

Role in source Edge Descriptor of the role of
the edge in its source node

patient 0..5, partner 0..1

Role in target Edge Descriptor of the role of
the edge in its target node

carer *, employee *

The values of the Source role, Target role, Role in source, and Role in target fields
of an edge define the name and multiplicity of the respective roles. For example,
the edges whose type is defined as “treats” can have these values set to “source”,
“target”, “treats *” and “treatBy 1” respectively. The numbers at the end declare
the multiplicities of the reference (e.g., a “Doctor” treats many “Tigers”, a “Tiger”
is treated by 1 “Doctor”). Model management programs use this information to
access and manipulate elements of the diagram.

Language engineers can then write model management scripts to query the draw-
ing (step 3 ). In Muddles, the Epsilon [33] platform can be used used to write these
scripts. An example written in EOL [38] is given in Listing 2.2.

var fans = Fan . a l l ( ) ;
for ( f in fans ) {

( " Fan : " + f . name) . p r i n t l n ( ) ;
}

Listing 2.2: EOL commands executed on the drawing

Assuming that the circular elements (typed as “Fan”) have a String attribute
called “name” assigned to them, then the script returns the names of all of them.
As such, muddles can be programmatically processed like other models, without
having to transform them to a more rigorous format (e.g., Ecore). In order for this to
happen, a multipass model-to-model transformation is executed in the background
(step 4 ) that transforms the GraphML drawings to a model that conforms to the
Muddles metamodel (the metamodel is presented in Figure 2.10). The steps of the

47



Chapter 2. Literature Review

transformation are listed below.

Figure 2.10.: The Muddle metamodel.

1. For every typed node an instance of the MuddleElement class is created. If
the type assigned to this node does not already exist, an instance of the Mud-
dleElementType is also created. Its name attribute value is the value of the type
written in the appropriate field in the diagram. Untyped nodes are ignored.

2. When all the nodes are created then the transformation algorithm iterates
through all of them to create and attach each of their attributes. The attributes
are created as instances of the Feature class and their type is one of the appro-
priate descendants of the PrimitiveType class.

3. Then both the labelled and unlabelled edges are parsed: a new Feature is
added to the type of the source muddle element of the edge. A Slot is added
to the source node while the target of the edge is set to the values of the afore-
mentioned slot.

4. The unlabelled and untyped edges are parsed again and the algorithm tries
to fit their targets into appropriate slots of the source muddle elements (i.e.,
slots that already contain at least one value of the same type).

5. For the remaining edges (i.e., typed) the transformation follows the same be-
haviour as in step 1 but this time the instances are of type LinkElementType
instead of MuddelElementType. In this step the Feature instances for the role in
source, role in target, source and target are also created and attached to the
LinkElementType.

6. The same process as in step 2 is followed for the attributes of the edges.

48



Chapter 2. Literature Review

7. Finally, the multiplicities of the roles are set based on the maximum number
of values of their slots.

The model management scripts written are now executed on the drawing. As the
transformation described above is transparent, steps 3 to 5 (see Figure 2.8) are
done all in once. As mentioned above, the Muddles approach is part of the Epsilon
suite and it can be used by installing the Epsilon platform 2.

Muddles [4] is a flexible MDE approach that is used for evaluating the type in-
ference approaches proposed in this work. Other approaches in flexible MDE are
proposed in the literature, a presentation of which follows.

2.2.2. metaBUP

MetaBUP [5, 29] is a tool that promotes the interactive construction and evolution
of metamodels based on example models. Domain experts use simple drawing
editors like yEd [88] and Dia [89] to express example models which can then be
used to automatically extract the metamodel. The approach and the tool are based
on five requirements that are listed below [5]:

1. Bottom-up: The approach should be based on the creation of example models
rather than a (even draft) metamodel at the beginning.

2. Interactive: An interactive, iterative approach will help in the definition of a
first draft metamodel based on the example models, and as example models
evolve, the metamodel should evolve as well.

3. Exploratory: Domain experts should be able to annotate different elements
of the example models with the intended behaviour which should then be
applied to the draft metamodel. If there are clashing annotations this should
be reported to the language engineers.

4. Guided by best-practices: As the users of this approach will be non-MDE pro-
fessionals, guidance on best practices should be given based on well known
design patterns and refactorings.

5. Technology agnostic: The metamodels built should not be affected by any im-
plementation related restrictions imposed by the underlying MDE technol-
ogy used. Thus, these technological related issues should be postponed for
the final stage when the metamodel will be deployed on a specific platform.

An overview of the approach is shown in Figure 2.11. A detailed description of
the approach follows.

2www.eclipse.org/epsilon/

49

www.eclipse.org/epsilon/


Chapter 2. Literature Review

Figure 2.11.: An overview of the metaBUP approach (from [5]).

The process starts (step 1 ) by having domain experts expressing example mod-
els which in this approach are called fragments. MDE engineers can also write their
own fragments or annotate those the domain experts have written with more in-
formation (step 2 ). These fragments are the input for the inference of a first draft
metamodel (step 3 ). At this point the iterative process starts. Domain experts and
language engineers can either improve the draft metamodel by applying the refac-
torings suggested by the system (step 4 ), or write new fragments to expand the
metamodel (step 5 ). A validator is attached to the tool that checks if the created
example models conform to the devised metamodel (step 6 ). Wrong models can
also be fed to the validator to make sure that the inferred metamodel rejects them.
When a final metamodel is obtained, the neutral metamodel is transformed (step
7 ) to the platform specific one (e.g., EMF metamodel).

Figure 2.12.: An example visual fragment (from [5]).

50



Chapter 2. Literature Review

Model fragments are the core of this approach. Fragments can be defined graph-
ically, by using a wide variety of drawing editors like yEd [88], Dia [89], Microsoft
PowerPoint [90] or Visio [91], or textually. An example for a visual fragment that
describes a simple educational DSML is shown in Figure 2.12 and part of its textual
equivalent in Listing 2.3. The latter can be generated automatically if the fragments
are sketched using either the yEd or Dia editors. The type of each of the nodes in
the diagram is defined by using a legend: each symbol (shape) is mapped to one
type while each concept may be mapped to more than one symbols.

fragment edu1 {
...

g1 : Group {
attr code = ‘‘ PADS221’’
attr shift = ‘‘ morning’’
ref course = c

}
...

p1 : Professor {
attr name = ‘‘Juan’’
ref teaches = g1

}
...

}

Listing 2.3: A fragment expressed using text (from [5]).

Engineers can annotate the fragments with properties that declare either domain
or design aspects of the diagram. For example, if the annotation @unique is assigned
to an attribute that means that the specific attribute acts like an id and thus the
same value cannot be reused. A comprehensive list of all the available annotations
is provided in [5].

The metamodel is inferred on the fly as new model fragments are added. A
detailed description of how metamodels are inferred in metaBUP is given in Sec-
tion 2.4.

As mentioned before, the approach performs some automatic refactorings based
on best practices available in the literature. If these recommendations lead to break-
ing the conformance of any of the model fragments with the refactored metamodel,
then the tool does not proceed but alerts the engineers about the conflict. Other-
wise, it proceeds by applying the proposed refactoring and marks the change. If
there are more alternative recommendations then one is applied and the change is
marked as an “open issue” giving engineers the chance to pick any other alterna-
tive if they prefer [5].

The induced metamodel can be validated against example models that domain
experts provide. More specifically, in the xUnit style [92], domain experts can pro-
vide example models that should or should not conform to the metamodel. The
metamodel should accept the former and reject the latter. This validation is done in
a straightforward way: if importing the model invokes changes to the metamodel,

51



Chapter 2. Literature Review

then that means that it does not conform to it and thus it is rejected. Otherwise it
conforms and thus it is accepted. As a result, validation is not done by writing code
but by providing sketches which domain experts are able to write [5].

Finally, the inferred metamodel is platform independent, meaning that it ab-
stracts away technical detail [93]. In order to be used by another MDE tool, this
metamodel should be transformed to support that specific platform. Currently
there are two platforms supported (i.e., EMF [34] and metaDepth [94]). For ex-
ample, as EMF requires a root class for the metamodel so that the tree editor can be
used, the algorithm automatically adds it to the metamodel [5].

The approach is supported by an Eclipse based tool called metaBUP3 which of-
fers all the functionality presented above for importing sketches, editing them, in-
ferring the neutral metamodel, proposing and apply refactorings, validating meta-
models and compiling a platform specific version of the metamodel.

2.2.3. Flexisketch

Flexisketch [6] is a mobile based drawing editor that allows users to draw mod-
els. The approach is based on the assumption that business analysts prefer to use
pencil and paper for their modelling activities. Flexisketch mimics this paper and
pencil approach by offering freeform drawing of models electronically. The drawn
elements can have types annotated to them to allow model management suites run
on the drawings. In this way the models written at the initial phases of the product
development can be reused throughout the whole software engineering process [6].

As one can extract from the above, the main goal of Flexisketch is to unify freeform
modelling with formal structured modelling [6]. The high level requirements for
an approach that allows the authors to fulfil this goal are highlighted in [6] and
summarised below:

1. High flexibility: The approach should offer users an unrestricted environment
in terms of what they should be able to draw.

2. Natural sketching: The drawing process should look and feel like sketching on
a whiteboard. The authors suggest that multi-touch tablet devices are capable
to do so.

3. Formalization capabilities: The informal models should be (semi-)automatically
transformed to structured artefacts that can be managed through model man-
agement suites.

4. Speed: In order for the process to be used, the tool should offer an experience
that will be no slower than the traditional paper and pencil approach.

3http://jesusjlopezf.github.io/metaBup/

52

http://jesusjlopezf.github.io/metaBup/


Chapter 2. Literature Review

Flexisketch is an iterative approach that is based on three basic phases: modelling,
metamodelling and sketch recognition. This iterative manner is depicted in Figure 2.13.

Figure 2.13.: The Flexisketch approach’s three basic phases (from [6]).

More specifically, the modelling step consists of two modes. The first is the draw-
ing mode, which allows domain experts to sketch their diagrams and the second is
the mode that allows manipulation of the drawn elements (e.g., actions like resize,
move, delete, etc.) The metamodelling step is when the untyped elements are an-
notated with types that define the concept they describe. This is the step where the
modelling language definition takes place. In Flexisketch this is done by simply
typing the type of the drawn element using the appropriate input field. When the
type is given, the tool automatically adds the symbol and its attached type to a li-
brary of known symbols and types. In each library the same symbol is attached to a
unique type however it is possible to define and use in the same drawing multiple
libraries of symbols among which the same symbol might represent a different type
offering more flexibility to the users. In the third step, that of sketch recognition,
hand drawn symbols are recognised on the fly as they are drawn. This is done in a
semi-automatic and interactive way: the system suggests possible alternatives for
the type and user picks the correct one. This way the tool is also trained to better
recognise future drawn symbols. The opposite is also allowed (i.e., the same type
can have different symbols attached to it). The way the types of the sketches are
predicted is described in Section 2.4.

A prototype tool supporting the Flexisketch approach was built for mobile and
tablet devices that run the Android OS4. A screenshot of the application is shown
in Figure 2.14 where a node is created and its type is assigned using the input field.

The authors performed two studies to evaluate the approach and the tool. The
results of the experiments run among users revealed that firstly the tool is not as

4https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.
flexisketch

53

https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch
https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch


Chapter 2. Literature Review

Figure 2.14.: The Flexisketch Android application.

fast as the traditional paper and pencil approaches so changes made to the software
according to the feedback improved that. Secondly, users were able to classify the
drawn elements (add their type) and finally, the majority of the participants were
positive about the idea of using the approach as part of their modelling activities.

2.2.4. Other

The Business Insight Toolkit (BITKit) was proposed in [22, 95] by IBM as an ap-
proach to flexible MDE that focuses on filling the gap of modelling the business
needs in pre-requirements analysis. As in Flexisketch (see Section 2.2.3), the au-
thors of BITKit claim that from their experience, domain experts and business an-
alysts still prefer to use office tools rather than MDE tools that offer the needed
structure to carry the elicited requirements through-out the whole software engi-
neering lifecycle [22]. Business Process Management approaches, like BPMN [46],
could be used but due to the abstract and the specific concrete syntax used, they
are restricting domain experts from expressing their needs. Thus, they argue that a
flexible modelling approach is more suitable [22].

BITKit tool is based on three underlying models: the visual, mapping and content
models. The last holds the content that the business analysts have written so far.
The first (visual) holds information on how the content is displayed to the users and
finally, the mapping model holds the rules on how the content is visualised and the
rules on what a specific visual effect means for the content (e.g., red human shapes
point to important stakeholders). When these models are constructed a metamodel
holding the new types and their features is created in the back-end. However,
this metamodel is not enforcing any rules to the front-end: types might violate the
semantics of the metamodel. The reason for having this metamodel built is that of
being able to import the concepts of a well established domain to future clients so
the clients do not need to start from scratch [22].

54



Chapter 2. Literature Review

Kurhmann in [32] suggests the use of drawing editors with free form capabilities
for the definition of DSLs and presents the framework under which such a tool
should be created. The envisioned approach is based on the Process Development
Environment (PDE)5 [96, 97] which is built atop the Microsoft DSL ToolKit [98] and
offers the infrastructure for the development of DSLs. In PDE, the PDE language is
used to define the DSL. In [8], PDE is extended to realise the envisioned idea and
support the development of DSLs based on free-form sketches in a bottom-up way.

The process starts by having users drag-and-drop shapes from a palette that rep-
resent concepts of the envisioned DSL. Domain experts should assign the type of
the concept that this drawn instance represents and assign attributes to it (if any).
The metamodel of the DSL is built as new instances are added. A key requirement
for this approach is that all the types and the attributes should be provided in the
example models. Details on the metamodel inference are presented in Section 2.4.
When the metamodel of the DSL is constructed an editor is generated for using the
graphical DSL.

The aforementioned approaches focus on the extraction of the metamodel for vi-
sual DS(M)Ls. Roth et al. [99] propose an approach to the bottom-up development
of textual DSLs. More specifically, their tool can infer a grammar from a set of tex-
tual examples. These examples are snippets of free text entered in a dedicated text
editor. The grammar inference is based on regular expressions and lexical analy-
sis [99].

The authors in [24] propose an Eclipse plug-in called Collaboro that can be used
for the collaborative definition of DSLs based on flexible MDE principles. More
specifically, Collaboro, a DSL itself, can be used by both technical and domain
experts during the definition of the abstract syntax of a DSL to propose missing
concepts and functionality for the DSL under construction. The proposed features
are becoming available to all the stakeholders which can then vote for accepting or
rejecting them. The goal of Collaboro is to involve domain experts in all the steps
of the definition of a DSL, including the stages of design and implementation, and
not restrict their role in the first and last phases, where the requirements are elicited
and the DSL is deployed, respectively [24]. Collaboration in the domain of MDE
is also used in the development of modelling tools in [100] and models in [101]
and [102].

A flexible approach called DSL-maps is used in [103] to represent requirements
for DSLs and the automated transformation of them into a metamodel. The re-
quirements of the DSL are expressed using models, the notation for which is in-
spired by mindmaps [104]. A customisable transformation is used to automatically
produce the metamodel based on these models, which is then refactored based on
well known DSL patterns [103].

Finally, in [105] an approach to the development of modelling environments for
5https://pde.codeplex.com/

55

https://pde.codeplex.com/


Chapter 2. Literature Review

graphical DSLs based on example models is proposed. The approach is based on
the metaBUP [5, 29] flexible MDE approach presented in Section 2.2.2.

2.3. Partial Models

In the literature there are different definitions of model partiality. In [106], a par-
tial model is a system model in which uncertainty about an aspect of the system
is captured explicitly. In this context, “uncertainty” means “multiple possibilities”;
for example a model element may be present or not. In contrast to [106], in the
context of this thesis model partiality means that a model fragment contains in-
complete information. For example element types can be missing. Our notion of
model partiality is close to the one of [107] and [108].

Rabbi et al. [107] propose a diagrammatic approach to the completion of par-
tial models based on category theory. Their approach is extending the Diagram
Predicate Framework (DPF) [109], a tool that allows the definition of metamodels
and models using diagrammatic specifications and constraints. In order to support
model completion, the framework was extended with the notion of completion rules.
Completion rules are extending the built-in functionality of predicates that DPF of-
fers and are used to express the abstract syntax and semantic constraints set by the
metamodel. When a rule is not satisfied by a model (thus the model is partial) then
model transformations are triggered to fix the problematic part. For example, if a
completion rule describes that all the instances of a model should contain an in-
stance of a specific class, then a transformation is invoked to create that instance in
case it is missing.

Similarly, in [108] the authors use Constraint Logic Programming (CLP) to assign
appropriate values for every missing property in the partial model so that it satis-
fies the structural requirements imposed by the meta-model. More specifically, the
semantics and abstract syntax provided by the metamodel, like source and target
types of references and multiplicity constraints are automatically translated to a set
of rules expressed in a format of a logic programming predicate. Their approach
also supports the translation of Object Constraint Programming (OCL) constraints
defined by the modellers. The rules created are expressed in the ECLiPSe [110] con-
straint logic programming language which is based on PROLOG [111]. Details on
these technologies are given in Section 2.7.

The process proposed in [108] starts by synthesizing the available elements of
the partial model into CLP facts. For example, all the nodes and references are
listed, attributes and their values are attached to the nodes, etc. Then the process
continues by creating what is called the domain of each variable in the constraint
satisfaction problem. The domain actually includes all the rules that are imposed
by the metamodel and the OCL constraints. That includes the definition of the
lower and upper bound for each relationship (multiplicities), the possible source

56



Chapter 2. Literature Review

and target types for each relationship, the possible values for the attribute of a
type, etc. Having this set of facts and rules the Constraint Satisfaction Problem
(CSP) is ready to be solved. The ECLiPSe engine applies the rules to the facts to
prune the search space of possible solutions and comes up with an arrangement of
the elements provided in the first set that satisfies the rules. If there is no possible
solution this is stated to the engineers.

The aim of both aforementioned approaches is to provide model completion to
reduce modelling effort in the same manner that code completion provided by
programming language editors reduces coding effort. Moreover, both these ap-
proaches rely on a metamodel to produce the rules for the model completion.

Antkiewicz et al. [112] propose an approach to partial model completion based
on the Clafer [113] language, which is a modelling language with first class support
for feature modelling. The main aim of this approach is to use model examples
for improving domain comprehension. In this work, partial models are expressed
in Clafer while constraints imposed by the metamodels are expressed using first
order predicate logic formulas using the Clafer syntax, with a similar syntax to that
in which predicates are expressed in Alloy [114]. The partial models expressed
in Clafer syntax and the rules imposed by the metamodel are then given to the
inference engine to produce a complete model. This work, as the two mentioned
above, relies on a metamodel.

2.4. Metamodel and Type Inference

2.4.1. MetaBUP

One of the steps described for the metaBUP bottom-up MDE approach (see Sec-
tion 2.2.2), is that of metamodel inference from example models (called fragments in
that approach). When a new fragment is created the algorithm checks if its type
exists in the metamodel. If not, the type is created. Then the algorithm checks for
the attributes attached to the specific type in the current model fragment. If any
attribute does not exist in the metamodel under that specific type, this attribute is
added. The same strategy in principle is followed for the creation of references. If
a reference bound with a specific type in the example model already exists for that
type then it is ignored. If not it is created. In the cases where a reference already
exists but it is targeting a different node than the one appearing in the fragment,
the algorithm automatically creates an abstract superclass for the two classes and
updates the target of the reference to point to the newly created abstract superclass.
Cardinalities are created by counting the minimum and the maximum numbers of
nodes that a specific reference points to in the different fragments. After the meta-
model inference these can be updated manually. The algorithm can also update the
cardinalities to many if the name used for the reference is a plural noun [5].

57



Chapter 2. Literature Review

Regarding type inference, the metaBUP approach relies only on the shape/icon of
a specific element to infer its type. Shapes are mapped to types and thus, when a
specific shape is re-used it automatically carries the concept (type) with it.

2.4.2. Flexisketch

As mentioned in Section 2.2.3, Flexisketch [6] has a built in mechanism for type
inference that is based on sketch recognition. All the symbols are mapped to a type.
These mappings are stored in libraries of symbols. When a new symbol is being
drawn then the tool automatically searches the library to find the top three most
similar symbols. The similarity of the symbols is calculated by using the trainable
sketch recognition approach proposed in [7] by Coyette et al.

Coyette et al. use a method that is also used in biometric characteristics recog-
nition [115] and is based on comparison between string vectors. More specifically,
each hand drawn shape is translated into a sequence of line segments. Each seg-
ment is characterised firstly by its position on a square grid and secondly by a
number that declares its direction (see Figure 2.15). This way each hand drawn
element is represented by a string. The comparison between these strings is done
using the Levenshtein’s string edit distance measurement [116].

Figure 2.15.: String representation of sketches in the Coyette et al.’s approach (from
[7]).

2.4.3. MLCBD

MLCBD [117] is an approach built to support the semi-automatic inference of the
abstract and concrete syntax and the semantics of visual DSMLs based on example
models. The process starts with the definition of example models of the envisioned
DSL using a drawing canvas similar to tools that domain experts are usually fa-
miliar with (e.g., Microsoft Visio [91]). These models are then automatically trans-
formed into undirected graph representations using the built-in Graph Builder [117].

After all example models are transformed into graphs, the Concrete Syntax Iden-
tifier parses all the models to identify unique shapes and styles that are used in

58



Chapter 2. Literature Review

representing concepts in the diagram. These become the candidates for the con-
crete syntax and it is up to the domain expert to pick the desired concrete syntax
representation for each concept and give a name to it. Thus, this process of concrete
syntax inference is done in a semi-automatic manner. The example models might
also include links that connect nodes. The concrete syntax of these is inferred using
the same process as for nodes. In addition at this point, the domain expert has to
select if the inferred link is directional or not.

In the next step, the undirected graphs are transformed into directed graphs by
applying the information given in the previous step. Optimisation is also per-
formed by pruning those nodes that represent the same concepts. This final graph
is given to the Metamodel Inference Engine to infer the metamodel of the DSL.

Firstly, all the graphs generated based on the example models are merged to-
gether in one graph. Then, the cardinalities of the references and the dependencies
are calculated. Finally, for the induction of the metamodel, the merged graph is
tested over a set of graphs, instances of metamodels that define metamodel design
patterns [118], in order to check (sub) graph isomorphism [117].

2.4.4. Process Development Environment (PDE)

The metamodel inference in the example-based DSL development version of the Pro-
cess Development Environment (PDE) [8] is done following similar rules with those
of metaBUP [5] (see above).

When a new node is created a type and the attributes of the node (if any) should
be assigned to it. A new instance of the DomainClass type is created for each unique
type (see the conceptual model of PDE-based languages in Figure 2.16). In the
same manner, instances of the DomainRelationship classes are created when a new
link is created between two nodes. This gradual construction of the conceptual
metamodel is the same that is used when a DSL is created using the textual syntax
of the PDE-language. The only difference is that the input method is changed:
nodes and links are drawn by the user rather than using textual commands.

PDE, like MetaBUP, offers language optimisation. In traditional DSL develop-
ment, where language engineers assume they have all the needed information of
the domain in hand, the DSL is constructed (or at least it is possible to be con-
structed) following the best practices and patterns. However, when a DSL is con-
structed using a flexible modelling approach, this information is gathered on the fly.
Thus, the conceptual metamodel that is automatically created is not always the op-
timal. PDE includes a model optimisation method that automatically refactors the
metamodel based on well known defined patterns (based on DSL patterns identi-
fied by Fowler et al. [119]). For example, if different types share the same attributes,
the application asks the engineer if a base class that includes these attributes should
be created.

59



Chapter 2. Literature Review

Figure 2.16.: Concept metamodel of PDE-based languages (adapted from [8]).

2.4.5. Metamodel Recovery System (MARS)

In [9], Javed et al. propose an approach to metamodel inference from a set of mod-
els after migrating or losing their metamodel. Their semi-automatic approach is
based on grammar-schema inference approaches. Metamodels evolve to adapt to
changing requirements and needs of the domain they represent [9]. The instances
that conformed to a legacy version of the metamodel can be transformed to adapt
to the new metamodel. In case both the deprecated and the new metamodel exist
then approaches like the one proposed in [120] can be used to create the mappings
between the concepts in the old and the new metamodel to support the domain
models migration. However, when either the old metamodel does not exist or the
mappings cannot be created those approaches are not working.

An overview of the MARS approach is shown in Figure 2.17. MARS is based
on the Generic Modelling Environment (GME) [121], a modelling tool that stores
in a database all the model elements and their relationships that are available in a
domain based on a metamodel that is given as an input [122]. The process starts
by providing example models expressed in XML. An XSLT [123] translator, which
can transform XML documents to any other textual format, is used to prune XML
specific content from the models and keep only the domain related information
(step 1 ). This information is expressed in a DSL developed as part of the ap-
proach, called the Model Representation Language (MRL) [9]. MRL generated code
is then given as an input to the metamodel inference engine (step 2 ), based on
LISA [124]. LISA is a grammar inference engine that inducts the grammar of a
programming language using context-free grammar (CFG) inputs (step 3 ). The
metamodel is then constructed based on this grammar.

60



Chapter 2. Literature Review

Figure 2.17.: MARS metamodel inference approach (adapted from [9]).

2.5. Summary and Critique of Flexible MDE approaches

As mentioned in Section 2.1.2, one of the weaknesses of MDE is that of the need
of training in order to be adopted in practice. Domain experts, whose involvement
and collaboration in MDE processes is important, are not usually specialised in us-
ing MDE tools which require a good understanding of MDE principles. Flexible
MDE offers the needed looseness by not requiring the implicit compliance with
rigorous rules that traditional MDE approaches require. However, this comes with
a number of drawbacks, one of which is the fact that some of the elements that are
drawn using simple editors may be left untyped. If an element is left untyped, it is
ignored; an undesirable effect if one thinks that one of the purposes of using flex-
ible MDE approaches is the exploration of the domain and the identification of all
the concepts the envisioned metamodel needs to include. Having mechanisms to
prevent this from happening is of interest to enhance the usability of flexible MDE
approaches. As mentioned in Section 1.1.1, there are at least two ways for achieving
that. The first is the execution of querying scripts on the drawn example models
which will identify the elements that have left untyped and request engineers to
provide the missing information. A second, could be that of type inference, where
the types are inferred and filled in either automatically or in a semi-automatic way.
In the flexible MDE literature presented in Sections 2.2, 2.3 and 2.4 the vast major-
ity of the approaches require all the elements to have a type assigned to them, or
otherwise they are ignored. To the best of our knowledge, the only two approaches
that offer type inference are metaBup [5, 29] and Flexisketch [6]. The critique of
their type inference approach follows.

In metaBUP [5, 29], the type of each node is explicitly bound to its shape: each
type when is instantiated is bound to a specific shape or icon. When this icon is
drawn on the canvas, it carries the type with it. That implies that each shape and

61



Chapter 2. Literature Review

icon can represent only and only one type. In contrast, one type can be represented
by more than one shapes or icons. For example, one can use a rectangle and a
circle to represent a single type, but then rectangles and circles cannot be used to
represent any other type. Following this approach metaBUP guarantees that as
soon as a type is introduced into the example model then all the elements that
represent this notion will not be left untyped. However, we believe that it is a kind
of restriction as it forces domain experts to use different shapes for all the types
they express while they need to remember which shape is mapped to which type.
This can also be seen as a requirement to have the concrete syntax of the graphical
DSL in mind when probably is to early to do so. In some cases this can be useful
as it can possibly help engineers consider or reject polymorphism requirements
(i.e., having different types for concepts that are similar but conceptually belong
to the same group or not). For example, should the metamodel include different
types for “Lion” and “Tiger” or is an “Animal” concept enough? However, in some
scenarios, especially at the exploratory phases of flexible MDE, domain experts are
not ready or willing to have the concrete syntax defined before even having all the
concepts (abstract syntax) expressed and thus such a strict requirement of attaching
the concrete syntax to each type reduces their flexibility.

The Flexisketch [6] approach, follows the spirit of metaBUP in terms of type in-
ference but in a more relaxed manner. Types are bound to shapes and icons but the
same shape and icon can be used to represent different types. In addition, the in-
ferred, based on graphical similarity, types are not directly bound to the elements,
but are suggested to the engineers as the element is drawn. The suggestion consists
of the types of the most similar shapes in the diagram. Flexisketch promotes the
use of freehand drawings and thus the definition of the similarity between shapes
is less strict; the approach looks for similar but not identical shapes. As done in
metaBUP, Flexisketch, bases its type inference approach on the concrete syntax of
the models that are drawn, which might not be useful in scenarios where the con-
crete syntax is not of interest at the phase of the development process the flexible
MDE approach is used.

Finally, in Muddles [4] and all the approaches presented in Sections 2.2, 2.3 and
2.4, if a node is left untyped then it is ignored. There is no other way to define or
infer the type of the node rather than implicitly filling its type in the appropriate
input field. Although this introduces great flexibility in terms of not having a strong
requirement to follow any rules while drawing example models, we believe that
it reduces the functionality of the approach as critical elements of the envisioned
metamodel can be easily ignored or overlooked. Thus, in this thesis we introduce
approaches that can be used to infer the types of untyped nodes using algorithms
and tools from three different domains, that of classification algorithms, constraint
programming and graph matching. The following sections introduce the reader to
the basic principles and tools of each of these three domains.

62



Chapter 2. Literature Review

2.6. Classification Algorithms

Classification algorithms are used in this thesis for type inference. An introduc-
tion to their basic principles and a presentation of the most important classification
algorithms are provided in this section.

Classification algorithms are a form of supervised machine learning for approx-
imating functions mapping input features to a discrete output class from a finite
set of possible values [125]. They require a training dataset with labelled examples
of the output class to process, after which they can generalise from the previous
examples to new unseen instances. For example, provided sufficient examples (i.e.,
diagram elements) of a specific type (e.g., Tiger from Figure 2.9) a classification al-
gorithm can learn to predict the class Tiger when given an unlabelled example with
the same properties. These properties are important for classification algorithms as
they represent characteristics of the elements that are possibly distinctive features
of the type/class each element belongs to. For example, a feature of an element in
the context of MDE could be the shape used to represent the node. More examples
of such properties will be given in the remaining of this section.

Many classification algorithms exist [125], some of the most established being
Classification and Regression Trees (CART) [126], Random Forests (RF) [127], Sup-
port Vector Machines (SVM) [128] and Artificial Neural Networks (ANN) [129]. In
the following sections these algorithms are presented.

2.6.1. Classification and Regression Trees (CART)

Classification and Regression Trees (CART) classify the elements of a set by pro-
ducing a decision tree. CART is trained by considering all labelled instances in the
training dataset in one single batch. For each input feature the information gain of
using that feature to classify the instances in the batch is calculated. The feature
with the highest information gain is used as the root node of the decision tree. The
dataset is then split based on the values of the feature at the root node, and the
process is repeated on each child node with each subset of the dataset until a stop
condition (e.g., minimum number of instances in a leaf node, depth or accuracy of
tree) is satisfied.

An example decision tree is illustrated in Figure 2.18. Internal nodes represent
features (i.e., Outlook, Humidity and Wind), branches are labelled with values of
the parent node (e.g., Sunny, Overcast or Rain for the Outlook feature) and leaf
nodes represent the final classification given. To classify a new instance, start at the
root of the tree and consider the feature specified and take the branch that repre-
sents the value of that feature in the new instance. Continue to process each internal
node reached in the same manner until a leaf node is reached where the predicted
classification of the new instance is the value of that leaf node. For example, given

63



Chapter 2. Literature Review

the tree in Figure 2.18, a new instance with a Sunny Outlook and Normal Humidity
would be positively classified (path is highlighted in Figure 2.18).

Figure 2.18.: An example of a decision tree in CART (from [10]).

2.6.2. Random Forests (RF)

Random Forests (RF), is a method that typically gives higher accuracy but less in-
terpretable results than CART [130]. An RF is an ensemble of multiple decision
trees, each trained on a different set of training instances from the training dataset
chosen at random with replacement and often using a random subset of the input
features. Once trained, the ensemble classifies new instances by processing each
tree in the same manner as an individual decision tree and then choosing a single
predicted class by majority vote. Intuitively, this typically increases the accuracy in
a manner similar to the wisdom of crowds [131].

More formally, the combined multiple weak hypotheses in an RF will typically
outperform the single hypothesis in CART due to each tree containing bias towards
the data it observed but the ensemble being able to average out these biases. This
advantage, however, is balanced by an increase in the complexity of the resultant
model. Whilst it is simple to read a single decision tree and gain an understanding
as to which features the model has correlated with a particular class, an ensemble
of multiple trees becomes harder to read as many trees must be considered and the
classifications of each combined to reach the final prediction of the model.

For both CART and RF, the performance can be evaluated by the accuracy of
the resultant model (e.g., the decision tree learnt by CART) on test data not used
when training. The performance, also called accuracy, of a model is the sum of true
positives and negatives (i.e., all correctly classified instances) divided by the total
number of instances in the test set. A single measure of accuracy can be artificially
inflated due to the learnt model over-fitting bias in the dataset used for training. To
overcome this, k-fold classification can be implemented [10]. This approach repeats

64



Chapter 2. Literature Review

the process of training the model and testing the accuracy k times each time with a
different split of the data into training and test data sets. The final accuracy using
this method is then the mean value generated from the k repeats.

2.6.3. Support Vector Machines (SVM)

Support Vector Machines (SVM) are considered among the best performing classi-
fication algorithms [132]. In SVMs, the goal is the identification of the best classifi-
cation function between the classes in the training set. The best function is realized
geometrically and is the separating hyperplane function f(x) that separates the in-
stances of the classes. Having f(x) identified, the classification is done by checking
the sign of each element in the testing dataset (an element xn belongs to the positive
class if f(xn) > 0).

The difference between SVMs and other classification algorithms that use a sep-
aration hyperplane is that SVMs seek and accept only the function that maximises
the separating distance among all the possible separation functions. The benefits of
doing that is that firstly it improves the performance (accuracy) of the classification
in the training dataset and secondly increases the chances for correct classification
of future data [132]. However, in order to improve the accuracy, the performance
in terms of computational power and time is sacrificed.

By the definition of the hyperplane separation, SVMs imply that the data should
be firstly linearly separable (the separation between the classes could be done by
drawing a linear function) and secondly belong to two classes (binary classifiers).
However, work in other directions is made in order to create kernel functions that
are quadratic and exponential to support non-linear separable data that belong to
more than two classes [133].

2.6.4. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) are inspired by the structure and operations of
the biological neural networks [129, 134]. As natural neural networks consist of
neurons interconnected with each other, ANNs consist of interconnected simple
computing nodes each of which acts like a summing device [135]. The neurons
are connected with weighted links which are adjusted during the training process
based on values and functions that are set by the engineers who set up the network.
Having these computing node layers set and connected, new instances are moving
through them until classified.

Initially, ANNs were able to solve only linear problems. However, new advanced
methodologies deployed to solve non-linear problems as well [135]. ANNs promise
high accuracy in the classification problems used. However, the setup of a well
performing ANN requires expertise in the domain of machine learning, a good
understanding of the domain the network will be applied to, experimentation with

65



Chapter 2. Literature Review

a variety of parameters and weights and validation of the produced ANN [135].

Until recently, all the artificial neural networks consisted of a small number of
layers (most commonly three). This was done for various reasons, mainly the Kol-
mogorov theorem [136] and the lack of computational efficiency. A new category
of ANN was proposed to help in the direction of improving accuracy, especially
when the domain involved audio and visual processing and recognition or chemi-
cal substances identification [137]. That new approach is called Deep Artificial Neu-
ral Networks. In contrast to the conventional classification algorithms, the repre-
sentation learning (i.e., the extraction of a pattern based on input that allows the
classification of future elements) in deep learning is done with multiple levels of
abstraction [137]. Each layer, starting from the raw input which has no abstraction
is one level of higher abstraction of the domain, slightly more abstract from the pre-
vious. Having multiple layers of varying abstraction leads to the creation of more
complex functions that in principle perform better. For example, in the scenario of
a classification problem, the low level abstraction consists of features that are not
distinctive for the elements, while higher levels contain all that properties that are
important for discrimination [137]. The key aspect of deep learning is that these
layers are not identified by engineers but by the algorithm itself, having it trained
using a general-purpose learning procedure [137].

2.7. Constraint Logic Programming

The use of logic as a programming language in computer science and not only as
part of formal specifications began in the early 1970’s [138]. Kowalski [139] and
Colmerauer [140, 141] proposed the use of logic statements and PROgramming in
LOGic (PROLOG) was born. The first PROLOG interpreter, based on the work
of Colmerauer’s team was developed in 1972 written in the ALGOL-W [142] lan-
guage [138]. Since then many distributions of PROLOG were created; among the
most used are ECLiPSe [110] and SWI-Prolog [143,144] A short description of these
is given in Sections 2.7.1 and 2.7.1 respectively.

PROLOG is a declarative language. A logic program is split into two compo-
nents: the logic and the control. The first defines the problem that needs to be solved
and the second the way it should be solved [138]. A PROLOG program consists of
commands each of which is called a term. Terms can be either one of the datatypes:
atoms (i.e., names with no inherent meaning), numbers, variables (which act as place-
holders for arbitrary values) or relations: facts or rules [138]. An example of a rule
is the following.

woman(mary) : −true

66



Chapter 2. Literature Review

The equivalent fact for the above rule is (note the “.” at the end for the clause):

woman(mary).

A basic operation of PROLOG is that of querying. The program is asked a query
and returns all the values that satisfy the question. If there is no such a value, the
program returns a “No” statement. For example, one can ask the following query
to the simple PROLOG program consisting of the above fact:

?− woman(X).

and it will return the answer
X = mary

X is working as a variable in this term (i.e., as a placeholder for possible values).
That is very useful for solving a common category of problems for which PROLOG
is widely used, that of Constraint Satisfaction Problems (CSP). A CSP program usu-
ally consists of multiple rules and/or facts (constraints) and variables. Formally,
this is denoted by the tuple 〈V,D,C〉 where V represents the set of variables in the
problem, D the possible values that each variable can take (domain) and C the set
of constraints on the variables [145]. The built-in labelling predicate is called and
returns all the possible sets of values, if any, for the variables that satisfy all the
constraints.

Eventually, a Logic Programming paradigm can be summarised by the following
three principles [110]:

• Each variable can be a number or a string, a structure (e.g., tree) or another
program

• Variables are not assigned a value during the runtime but are constrained to
a set of possible values by rules and facts

• There are alternative paths for computation of the possible values a variable
can hold, each of which leads to a possible solution to the problem. If a value
of a variable at a path leads to a state that violates one of the constraints, all
the possible states that include this value are discarded as wrong and the pro-
gram returns back to “open” points where more untested values should be
checked; otherwise the value is marked as plausible and the program checks
the values of the remaining variables. If a combination of values (a com-
plete state) does not violate any of the rules then it is returned as a solution.
This process (of rejecting a set of states and returning back to “open” points),
called backtracking, is essential in constraint programming as it helps reduce
the search space thus improve the performance of the logic program in terms
of time. Search can be made more efficient by using optimizations such as

67



Chapter 2. Literature Review

propagation (i.e., use partial assignments to remove unproductive values from
domains of unassigned variables) or backjumping (i.e., reconsider several deci-
sions in each backtrack). These features are provided in most state-of-the-art
constraint solvers and, hence, these optimizations do not need to be imple-
mented manually in the definition of each CSP.

The efficiency of PROLOG in modelling and solving constraint satisfaction prob-
lems is demonstrated through a classic example in the literature, that of colouring
of maps. More specifically, the problem is that of how the map of a continent should
be coloured in a way that none of the neighbouring countries (named “A”, “B”,
“C” and “D”) are filled with the same colour. This solution (shown in Listing 2.4)
is based on the ECLiPSe [110] suite presented in the following section.

1 coloured ( Countries ) :−
2 Countries = [A, B , C,D] ,
3 value (A) , value ( B ) , value (C) , value (D) .
4 ne (A,D) , ne ( B ,D) , ne (C,D) , ne (A, B ) , ne ( B ,C) .
5

6 value ( red ) .
7 value ( green ) .
8 value ( blue ) .

Listing 2.4: The problem of colouring a map solved using PROLOG (adapted
from [14]).

The domain of possible values for the colour is defined in lines 6-8. Five con-
straints are given in line 4. All define that the variables representing the countries
cannot have the same values if they are neighbouring (see Figure 2.19). For exam-
ple, the values of the variable A and D cannot be equal (ne is a function to declare
this not equal relation) as they are neighbouring. For solving this problem, PRO-
LOG accepts the values in the four variables (A, B, C and D) that are not violating
the five rules.

Figure 2.19.: A map for colouring.

68



Chapter 2. Literature Review

2.7.1. Logic Programming Tools & Distributions

ECLiPSe

ECLiPSe [110] is a widely used PROLOG distribution that comes with an Integrated
Development Environment (IDE). Except the logic programming facilities, ECLiPSe

offers functionality for mathematical and stochastic programming [14].
Typically, a logic programming problem is not restricted to a specific category

(i.e., constraint propagation/solving or constraint optimisation) but it is a combi-
nation of those [14]. One of the main advantages and features of ECLiPSe is that
of offering support for combining different search algorithms and constraint han-
dlers to more efficiently tackle the aforementioned hybrid problems [14]. More
specifically, ECLiPSe supports different approaches: those that impose constraints
(typically in lower levels of search trees) and those that repeatedly repair existing
solutions to identify good solutions (stochastic techniques for optimisation) [14].
Regarding constraint handling algorithms, different approaches are supported, like
finite domain propagation [146, Chapter 14] or linear constraint solving [147].

SWI-Prolog

SWI-Prolog [143, 144] is a free distribution of the PROLOG language developed at
the University of Amsterdam. SWI-Prolog includes the core functionality of PRO-
LOG language along with packages that provides developers with access to rich
re-usable functions and procedures, multi-threading and distributed options, test-
ing and more. It is one of the most widely used PROLOG distributions, especially
by students and engineers working in the field of semantics web [143].

SWI-Prolog is available for all the major operating systems. There are versions
available that support the use through a graphical user interface (GUI) (based on
the XPCE suite [148]) or through the terminal.

2.7.2. Combining MDE with Logic Programming

Constraint Logic Programming (CLP) is applied in some MDE scenarios. This sec-
tion presents these.

In [145], the EMFtoCSP tool6 is proposed, which is used for the verification of
EMF models annotated with OCL constraints. The authors claim that as models
and model transformations become larger, they also become error-prone. Thus, a
fully automatic approach that will be responsible to identify and fix these errors
would be useful to improve the reliability of MDE-based processes [145].

The following correctness properties are supported by the tool: strong satisfia-
bility, weak satisfiability, lack of constraint subsumptions and lack of constraint redun-
dancies. EMFtoCSP translates the metamodel and the OCL constraints into a CSP

6https://code.google.com/archive/a/eclipselabs.org/p/emftocsp

69

https://code.google.com/archive/a/eclipselabs.org/p/emftocsp


Chapter 2. Literature Review

and the solver tries to identify at least one instance of that metamodel that satisfies
all the constraints. If there is one identified, the tool returns this example solution.
Otherwise, the solver returns the “No” statement, meaning that there is no possible
instance based on the criteria defined.

EMFtoCSP is an extension of the tool called UMLtoCSP [149] which in a simi-
lar manner to EMFtoCSP [145] uses CLP for the formal verification of UML class
diagrams instead of EMF.

Finally, as described in 2.3, the approach presented in [108] translates the con-
straints imposed by the metamodel and a partial model into a CSP, and the solver
tries to find a solution that creates a complete model based on the partial model
and the domain of the variables given.

2.8. Graph Similarity

In the graph similarity domain the main goal is that of identifying matches between
the nodes of the source and the target graphs based on different similarity criteria
(metrics). In MDE, a model and a metamodel can be seen as two graphs in which
the nodes of the first are instances of the nodes of the second. From the perspective
of this thesis, finding matches between the nodes of the example models and the
nodes of the draft metamodel inferred in one of the iterations that take place in
common flexible MDE approaches (see Figure 1.1), could help in identifying the
type of the untyped nodes.

In the literature there are different approaches proposed to compare graphs; a
classification can be found in [150, 151]. The majority of them are domain spe-
cific, meaning that their are developed to work in a specific domain (e.g., database
schema matching, XML matching, etc.). In [13, 152], a generic graph matching al-
gorithm, called Similarity Flooding is proposed which can be used for finding simi-
larities between the nodes of graphs of different domains. The similarity flooding
algorithm is presented in detail in Section 2.8.1. In addition, two approaches that
use graph similarity in the domain of MDE, the domain of interest of this thesis,
are also discussed in Section 2.8.2. The first [11] applies the similarity flooding al-
gorithm for the automatic generation of transformation rules while the second [12]
proposes the use of a custom graph similarity algorithm for the automatic genera-
tion of trace links in model transformations.

2.8.1. Similarity Flooding

Similarity flooding [13, 152] is a widely used graph matching algorithm. It accepts
two graphs as input and produces mappings between corresponding nodes of the
graphs. This schema matching procedure can be applied in different domains like
ER diagrams, UML class taxonomies, XML schemas, etc. [13]. The key idea of

70



Chapter 2. Literature Review

the similarity flooding, and thus the name, is the assumption that the similarity
between two nodes is affecting the similarity of their neighbouring nodes (i.e., a
node is “more” similar to another if their neighbouring nodes are similar). An
overview of the similarity flooding approach is shown in Figure 2.20.

Figure 2.20.: An overview of the similarity flooding approach.

The two schemas or data structures that need to be matched are initially trans-
formed into directed graphs. These graphs are given as input to the similarity com-
putation algorithms (that includes the core similarity flooding algorithm) which
calculates the matches between the nodes. Depending on the selected matching
goal the algorithm returns the mapping of the nodes.

The matching computation starts by comparing each node of one graph to all
the nodes of the second graph using a simple string similarity measure (e.g., the
Levenshtein distance). These values are stored in a mapping structure that is called
Initial Map. At this point the similarity between two nodes has not been propa-
gated to their adjacent nodes. This happens in the next step when the similarity
flooding algorithm itself is executed. More specifically, an iterative fixpoint com-
putation takes place to add to the values of the initial map the similarity values of
their neighbours. Finally, based on the selected mapping goal and constraints, the
final mapping is returned. For example, the results will be different if there is a
constraint that each of the nodes of the first graph must be mapped to exactly one
node of the second graph, or to many.

More details on the similarity flooding algorithm are given in Section 5.4 where
it is used as part of a proposed approach for type inference.

2.8.2. Using Similarity Measurements in MDE

In [11], Falleri et al. use the similarity flooding presented above, for the automatic
generation of MDE model transformations. More specifically, the source and the
target metamodels are translated into directed graphs and are given as input to the
matching algorithm in order to identify similarities between their classes. These
mappings are then used for the automatic generation of the transformation rules.

As discussed in the presentation of the similarity flooding algorithm, the two
schemas (in this context the metamodels) are translated to directed graphs. How-

71



Chapter 2. Literature Review

ever, the way this could happen is not restricted or guided by the similarity flood-
ing algorithm. In their work, Falleri et al. [11] propose 6 different representations,
(named Minimal, Basic, Standard, Full, Flattened and Saturated) that could be appro-
priate in the context of MDE and evaluate them though a set of experiments. One
of these representations is presented below; the metamodel shown in Figure 2.21 is
translated into a directed graph based on the Minimal configuration.

Figure 2.21.: An example metamodel (adapted from [11]).

In this configuration the following information of the metamodels is translated
into nodes: classes, non-derived attributes and references, datatypes and enumer-
ations. For example, the metamodel shown in Figure 2.21 will be transformed into
the directed graph shown in Figure 2.22.

Figure 2.22.: The directed graph of the metamodel shown in Figure 2.21 using the
minimal configuration (adapted from [11]).

72



Chapter 2. Literature Review

For edges, the keyword supertype is used to name the arc that connects two classes
that one inherits from the other. The keyword own is used to attach attributes to the
classes they belong to and ref for the references owned by the class. Finally, datatype
is used for attaching attributes to their datatypes and type to connect each reference
name with the class it is typed by.

In Section 5.3, a second configuration (i.e., flattened) that is used in our approach
to type inference, is presented in detail.

In [12], Grammel et al. propose an approach to trace link generation in MDE
based on model matching. The overview of the approach is summarised in Fig-
ure 2.23.

Figure 2.23.: An overview of Grammel et al.’ approach [12] to trace link generation
(adapted from [12]).

The generation of trace links for the transformation of a source model to the tar-
get model starts in step 1 where a custom made importer is used to import and
transform the models to a common basis; a graph that is called the internal data
model. In step 2 , matching algorithms are applied to identify similarities between
the different concepts of the source and target metamodels. The results of each
matching algorithm are stored in a similarity matrix. All the similarity matrices are
then arranged to create the Similarity Value Cube (SVC). Using different selection
methods (e.g., getting the average of all the similarity values for each pair of ele-
ments), the similarity values are then used to create a final mapping between the
source and the target model (step 3 in Figure 2.23). Specific heuristics and/or con-
figurations are then used to extract the trace links based on this mapping (step 4 ).

For the representation of the source and target models as structured graphs that
will allow their comparison, the authors use the Typed Attributed Graphs [153] for-
malism and the E-graphs [153] notation [12]. An example is shown in Figure 2.24
where the example metamodel of Figure 2.24(a) is transformed into the equivalent
E-Graph shown in Figure 2.24(b).

For checking the similarity between the model elements, Grammel et al. propose

73



Chapter 2. Literature Review

(a) UML class diagram of example meta-
model

(b) Equivalent E-Graph graph (adapted from [12])

Figure 2.24.: An example of how a metamodel is translated to an E-Graph in Gram-
mel et al. [12] model matching approach.

a simple similarity metric. Each element of the source model is checked against
each element of the target model. If their labels are identical then a similarity value
of 1 is given for this pair [12]. If the label of the source node is a subset of the la-
bel of the target node, but not identical, then a similarity value of 0.5 is given [12].
Finally, if the labels are different (i.e., neither identical nor the one is subset of the
other) a 0 similarity value is given [12]. Users are able to pick among different al-
gorithms for the calculation of the final similarity. The Attribute Similarity Measure
Algorithm compares each data node from the source model with each node of the
target model. The Connection Similarity Measure Algorithm propagates the similar-
ity of the children nodes to the parents but in a simplified way comparing to the
similarity flooding [13] algorithm presented above.

In our approach we used the similarity flooding [13] algorithm for model match-
ing as it is a widely used technique whose node similarity metric is based on the
well established Levenshtein [116] string distance metric, offering a wider granu-
larity than Grammel et al. [12] similarity metric. In addition, using the similarity
flooding algorithm in combination with Falleri et al.’s proposal [11] for graph rep-
resentation, more information from both the metamodel and the example models
(e.g., multiplicities, type of reference, etc.) can be taken into account comparing to
Grammel et al. [12] model representation.

2.9. Chapter Summary

This chapter discussed the literature related to MDE. The basic terminology and
principles of MDE were presented along with a commonly-used architecture for
MDE, the Meta Object Facility (MOF). Model management techniques like model
transformations were described. Exemplar tools for implementing the MDE opera-
tions, like the Eclipse Modelling Framework (EMF) and the Epsilon suite were also
presented. A specific branch of MDE approaches, commonly named as flexible MDE

74



Chapter 2. Literature Review

or bottom-up approaches were introduced. Tools for supporting flexible MDE opera-
tions like the Muddles approach, used to develop proofs of concept in this thesis,
were described in detail. Finally, literature on metamodel and type inference was
presented.

An introduction to the three major fields from which algorithms and tools were
used to tackle the research problem and answer the research questions of this thesis
was given in the last three sections of this chapter. More specifically, classification
algorithms, logic programming techniques and graph similarity were presented.

Although some work was carried out in the way of metamodel inference from
example models, there is no significant work done in the direction of type infer-
ence for the example models produced as part of flexible MDE approaches. The
following three chapters present the work carried out to fill this identified gap.

75





CHAPTER 3
Type Inference using

Classification Algorithms

3.1. Introduction

During the initial phases of flexible MDE approaches, domain experts experiment
with example models that are incomplete due to the reasons mentioned in Sec-
tion 1.1.1. As a result the drawing may be left with untyped nodes. Example mod-
els are incomplete and concepts of the domain, which the untyped elements repre-
sent, may be ignored. As described in Section 2.5, this is an undesirable effect espe-
cially if one takes into consideration that one of the benefits of using flexible MDE
approaches is that of having domain experts expressing concepts of the domain;
ignoring some of them due to technical errors works in the opposite direction.

This chapter introduces a new approach in type inference of untyped nodes
based on machine learning techniques and more specifically classification algorithms
(Classification and Regression Trees and Random Forests). The approach presented here
can be used in both phases of flexible MDE approaches depicted in Figure 1.1 and
discussed in Section 1.1.1 (i.e., having only example models and/or having a draft
metamodel inferred). This is the case because the approach relies only on informa-
tion available in the example models; as a result having a draft metamodel is not a
prerequisite. Related to that, the proposed approach differs from those reviewed in
Section 2.3, that require the existence of a metamodel for the completion of partial
models.

In contrast with the type inference approaches presented in Section 2.4 and sum-
marised in Section 2.5, this approach does not rely on the shapes/icons of the
drawn elements to infer the types. A set of characteristics that are not affected by
the graphical properties of the drawn elements is proposed. Thus, it can be used in

77



Chapter 3. Type Inference using Classification Algorithms

cases where domain experts are not ready or are unwilling to express the concrete
syntax of the concepts they draw in the example models.

A second set of characteristics is also proposed in this approach. This relies on
graphical aspects of the drawn models but it takes into account more features and
not only their shape (as done in the type inference approaches described in Sec-
tion 2.4). Additionally to the fact that our approach takes into account more graph-
ical characteristics than those presented in the literature review, it also differs in a
second point. The inference is not done using “hardcoded” similarity criteria (i.e.,
by default, if the shape is the same then the type is the same) but in a more adapt-
able manner. The approach is trained each time on a specific example model and
identifies which graphical characteristic (or characteristics) is (are) the best on this
specific example to be used for the classification.

The rest of the chapter is structured as follows. Section 3.2 includes an overview
of the approach for both classification algorithms. The two sets of characteristics
used to train the classification algorithms are presented in Section 3.3 followed by
an analysis of the training performed (Section 3.4). The evaluation of the proposed
approach follows in Section 3.5. The results of running the experiments are pre-
sented in the same section along with threats to experimental validity. Section 3.6
outlines the limitations of this approach.

Note: The work described in this chapter was published in [15–17]. The version

that includes the experiments using the Random Forests algorithm was submitted in

the International Journal on Software and Systems Modelling (SoSyM)a and is at present

under review. Parts of Section 3.4 are based on text written by Dr. Sam Devlin, a

lecturer at the University of York, for the publications mentioned above. His help

in understanding the principles of classification algorithms and the guidance in the

interpretation of the results are acknowledged.

ahttp://www.sosym.org/

3.2. Type Inference

An overview of the approach is given in Figure 3.1. Language engineers initially
construct a flexible model using a drawing tool. Each element of this example
model can then be annotated with types of the envisioned DSL. However, some
nodes may be left untyped. The annotated model is then automatically analysed
to extract characteristics of interest, based on the semantics, the abstract and the
concrete syntax. A detailed presentation of these characteristics is given in Sec-
tion 3.3. These characteristics are passed to the classification algorithm of choice
(either CART or Random Forests) which performs type inference. We now explain
this process in more detail.

78

http://www.sosym.org/


Chapter 3. Type Inference using Classification Algorithms

Figure 3.1.: An overview of the proposed approach to type inference using classifi-
cation algorithms.

A basic requirement for using classification algorithms is having a set of elements
whose class (in this chapter the words “class” and “type” will be used interchange-
ably) is known. This set of known elements is used as input for training the al-
gorithms to be able to classify, or in this context, infer the type, of the unknown
elements. In the domain of example models this set of known elements, called
training set is the nodes that the domain experts have given a type to. The set of the
unknown elements that need classification, called the test set, are those that were,
intentionally or unintentionally, left untyped.

In order to pass the training and the test sets for classification, each element
should be represented in a way that it is interpretable by the algorithm. This rep-
resentation is constructed by extracting specific characteristics from the elements,
called features. The process of extracting these features is labelled “Model Analysis”
in Figure 3.1. A comma-separated string that contains the values of each feature of
each element is called a feature signature and is unique for each element. At the end
of each signature, the type of the element (if known) is also attached. If the type is
not known then this field is left empty. As soon as all the elements have their fea-
tures extracted and placed in a list they can be fed into the classification mechanism
to classify the unknown elements.

Both classification algorithms used in this approach get as input the same feature
signatures. Before discussing in detail how each of these two works], we present
the features selected in this work.

3.3. Feature Signatures

In order to be able to match untyped elements with those that are typed, we need
to specify a set of features that describe selected attributes of each element. In this
work we focus on two aspects of each example model, the semantics and the concrete
syntax, to extract these characteristics.

79



Chapter 3. Type Inference using Classification Algorithms

3.3.1. Features Based on the Semantics

We use five features to describe example model nodes from the perspective of their
semantics. These features were selected because they arguably measure structural
and semantic characteristics of the models and are presented below:

• Number of Attributes (F1): The number of attributes that the node has.

• Number of different types of incoming references (F2): The number of all the types
of references that target the specific node. If a node is targeted by more than
one references of the same type, only one instance of these is taken into ac-
count (unique references).

• Number of different types of outgoing references (F3): The number of all the types
of references that come from that node. As above, multiple outgoing refer-
ences of the same type are counted only once.

• Number of different types of children (F4): The number of all the unique types
that the node contains. Multiple contained elements of the same type are
counted once.

• Number of different types of parents (F5): The number of all the types that the
node is contained in. For environments like the Eclipse Modelling Frame-
work (EMF) and Muddles where one element can be contained in no more
than one other node, this value is binary (0: no parents, 1: has parents).

Below we present examples of feature signatures for the elements of the model
illustrated in Fig. 3.2, which is an object-diagram-like representation of the muddle
of Fig. 2.9.

Figure 3.2.: An example model of a zoo configuration.

The feature signature of the node “JurassicZoo : Zoo” is [2,0,0,1,0,Zoo], as it has
2 attributes, no incoming or outgoing references, 3 children which are of the same

80



Chapter 3. Type Inference using Classification Algorithms

type (so 1 unique child) and 0 parents. The last position declares the type of the
element, which is useful for training the classification algorithm. Similarly, the fea-
ture signature of the node “Kato : Tiger” is [3,3,1,0,1,Tiger] as it has 3 attributes, 3
unique incoming references (supports, partner and treats), 1 unique outgoing ref-
erence (partner), 0 children and 1 parent (resident). The class of the node is Tiger
and is placed at the end of the signature. Note here that although the element “Kip
: Tiger" is also of type Tiger, has not got the “supports” incoming reference instan-
tiated so its signature (i.e., [3,2,1,0,1,Tiger]) is different from the aforementioned
“Kato : Tiger" node. This justifies the choice of using a classification algorithm to
perform the matching and it is a differentiation point between our approach and
those presented in the literature: Classification algorithms, in contrast with simple
matching algorithms, do not look for perfect matches based on a specific criterion
but are trained to classify elements by using each time those and only those features
that are most relevant in the specific set they are trained on, increasing the possibil-
ities of identifying true positives even if two elements have different signatures.

In contrast to the existing approaches in type inference summarised in Section 2.5
these 5 features do not rely on any graphical aspect of the example models, and as
such they can be used without forcing domain experts to have reached a decision
on the concrete syntax of the domain concepts before they are ready to do so.

Algorithm 1 describes how the features based on semantics are calculated from
the example models. An empty list that will contain all the signatures is created in
line 1. Then the algorithm iterates through all the nodes of the example model (lines
2-38). For each node an empty string is instantiated (line 4) which will host the
feature signature of the node. The type of the node (if known) is stored in variable
type (line 6). If the type is not known then this value is the empty string (line 8).
Four empty sets are initialized in line 10 each of which will host the labels of the
outgoing and incoming references, children and parents of the node. The number
of the attributes that the node has is also stored (line 11). The algorithm iterates
through all the edges that are connected with the node. If the node is the source
(origin) of the edge then this edge is either an outgoing reference or a containment
reference that points to a child. If the edge is a reference its label is added to the
set of the outgoing references (lines 15-18). This is done if and only if the label
does not already exist in the set (lines 16-18). Otherwise (lines 19-23), it is added
to the set of the unique children (if and only if this label does not already exist in
the set). If the node under examination is the target node of the edge then the edge
is either an incoming reference or an incoming containment from the parent of the
node. Following the same logic as described above, the label of the edge is added
either in the set of the incoming references (lines 25-28) or the set of the parents
(lines 29-33). In line 36, the signature string is constructed by concatenating the
number of attributes and the size of the sets containing the unique outgoing and
incoming references, children and parents followed by the value of th type variable.

81



Chapter 3. Type Inference using Classification Algorithms

Each value is separated from the other using a “,”. The signature is added to the
list containing all the signatures for the model (line 37). This process is repeated for
all the nodes and eventually the algorithm returns a list containing the signatures
for all the nodes in the model (line 39).

Algorithm 1 Computing signatures based on semantic features.

1: SignaturesList← Empty list
2: N ← all nodes in Model
3: for all n ∈ N do
4: signature← Empty String
5: if type of n is known then
6: type← type of n
7: else if type of n in unknown then
8: type← Empty String
9: end if

10: UniqueOutgoingReferences, UniqueIncomingReferences,
UniqueChildren, UniqueParents← ∅

11: NumberOfAttributes← number of the attributes node n has
12: E ← all edges connected with n
13: for all r ∈ E do
14: if n is the origin node of e then
15: if e is a reference then
16: if label of n /∈ UniqueOutgoingReferences then
17: add label of r in UniqueOutgoingReferences
18: end if
19: else if e is a containment then
20: if label of n /∈ UniqueChildren then
21: add label of r in UniqueChildren
22: end if
23: end if
24: else if n is the target node of e then
25: if e is a reference then
26: if label of n /∈ UniqueIncomingReferences then
27: add label of r in UniqueIncomingReferences
28: end if
29: else if e is a containment then
30: if label of n /∈ UniqueParents then
31: add label of r in UniqueParents
32: end if
33: end if
34: end if
35: end for
36: signature← “NumberOfAttributes, size(UniqueOutgoingReferences),

size(UniqueIncomingReferences), size(UniqueChildren),
size(UniqueParents), type′′

37: SignaturesList← SignaturesList+ signature
38: end for
39: return SignaturesList

82



Chapter 3. Type Inference using Classification Algorithms

3.3.2. Features Based on Concrete Syntax

In this section we present a second set of features that is based on four graphical
characteristics of each node. As presented in [15], graphical properties of the dia-
gram can be used to extract semantics for the elements of a graph. For example,
in Figure 3.3(a) the colours of the circle nodes represent the team each footballer
plays for while in Figure 3.3(b) the shapes and sizes denote the type of the tank in
a nuclear reactor building plan.

(a) Team Formations - Color (b) Nuclear Reactor - Shapes and Sizes

Figure 3.3.: Colours and shapes are used to define semantics on graphical models.

We use the following proposed properties to construct our feature signatures.
The selected characteristics are described below:

• Shape (F6): The shape of the node (e.g., rectangle, ellipse, etc.).

• Colour (F7): The colour of the filling of the node in HEX (e.g., #FFCC00, etc.).

• Width (F8): The width of node expressed in pixels.

• Height (F9): The height of the node expressed in pixels.

We now present examples of feature signatures for the elements of the muddle
shown in Figure 2.9. The feature signature for the node named “Jurassic Zoo” and
annotated with the type “Zoo” is [roundRectangle, #CCFFCC, 418, 196, Zoo]. The
first feature represents the shape of the node which in this example is a rounded
rectangle, the second the color of the filling which is expressed in hex code. The
third and the fourth features are the width and the height dimensions expressed in
pixels, respectively. The last part of the signature is the annotated type for this ele-
ment. Similarly, the feature signature for the node named “Tiger Kato" is [hexagon,
#FFCC00, 100, 43, Tiger]. Although the node “Tiger Kip” is also of type “Tiger” its
signature will be [hexagon, #FFCC00, 78, 35, Tiger] as it has smaller dimensions in
the drawn diagram. It is clear from these two signatures that elements of the same
type may or may not have the same signatures. As mentioned in the previous sec-
tion, this justifies the use of a classification algorithm and not a simple matching

83



Chapter 3. Type Inference using Classification Algorithms

algorithm, as classification algorithms do not look for perfect matches but classify
the items by picking each time the features that are more relevant in the set that
they are trained on.

Algorithm 2 presents how the features signatures based on the concrete syntax
of models are created.

Algorithm 2 Computing concrete signatures.

1: SignaturesList← Empty list
2: N ← set of all nodes in Model
3: for all n ∈ N do
4: id← n’s unique id
5: Shape(n)← getShape(id)
6: Color(n)← getColor(id)
7: Width(n)← getWidth(id)
8: Shape(n)← getHeight(id)
9: SignaturesList← SignaturesList+ Shape(n), Color(n),

Width(n), Height(n), Type(n)
10: end for
11: return SignaturesList

The Muddle implementation presented in Section 2.2.1 does not offer all the
needed functionality to extract the desired features. An extension was implemented
as part of this work and is described in the following section.

3.3.3. Extending Muddles

The current Muddles metamodel and the implementation of the EMC driver (see
Figure 2.7) for muddles discard information regarding graphical and spatial prop-
erties of each element. These properties are the: x and y coordinates, the width and
height, the shape and the colour of each Muddle Element.

Firstly, we extended the Muddles metamodel to allow muddle elements to hold
the above information. The changes are shown in Figure 3.4. In the previous ver-
sion, the Muddle metamodel (see Figure 2.10) held only the “id” of each element.
The “MuddleElement” class was extended to provide holders for the graphical and
spatial properties of each element as shown in Figure 3.4.

Figure 3.4.: The muddles extension for type inference using concrete syntax prop-
erties.

84



Chapter 3. Type Inference using Classification Algorithms

As these attributes are now available to store the information needed for each
element, we implemented the required functionality in the EMC Muddles driver
to be able to parse the GraphML file (the drawing), retrieve the information from it
and store them in these attributes.

3.4. Training and Classification

In our approach, the feature signatures list that contains the signatures of the known
elements of the model is the input to the CART and RF algorithms. A trained deci-
sion tree or ensemble of trees is produced depending on the algorithm used. These
can then be used to classify (identify the type of) the untyped nodes using their
feature signatures. A decision tree (or an ensemble of trees in the case of RF) is gen-
erated based on the training data that were given to the algorithm (in this context
the nodes that are typed). An example decision tree for the Zoo domain described
in this chapter is illustrated in Figure 3.5. Internal nodes represent conditions based
on features (e.g., number of attributes, unique children, etc.), branches are labelled
with “TRUE” or “FALSE” values for the condition of the parent node and leaf nodes
represent the final classification given.

Figure 3.5.: Example decision tree for the features based on semantics. F1 repre-
sents the number of attributes of a node and F2 the number of unique
incoming references.

To classify a new instance, the algorithm starts at the root of the tree and takes
the branch that satisfies the condition of this node. The algorithm continues to
process each internal node reached in the same manner until a leaf node is reached
where the predicted classification of the new instance is the value of that leaf node.
For example, given the tree in Figure 3.5, a new instance with fewer than 1.5 unique
incoming references (F2) and less than 3.5 attributes (F1) is classified as “Fan” (path
is highlighted in Figure 3.5).

85



Chapter 3. Type Inference using Classification Algorithms

3.5. Experimental Evaluation

In this work we use the Muddles approach [4] for running the experiments. The
proposed approach can be applied to any example models produced as part of a
flexible MDE approach which fulfils the following minimal set of requirements:

• provide a mechanism to extract the types of the nodes in the example models

• provide a mechanism to extract the names of the references/containments in the
example models (for the features based on semantics)

• provide a mechanism to extract the shape, color and dimensions of the nodes in
the example models (for the features based on the concrete syntax)

The following are the research questions addressed by the experiments presented
in the following sections for both the set of features:

• RQ1: What is the accuracy of the proposed approach in predicting the types
of the untyped nodes using the set of features based on the semantics of the
example models?

• RQ2: What is the accuracy of the proposed approach in predicting the types
of the untyped nodes using the set of features based on the concrete syntax of
the example models?

Related to the hypothesis presented in Section 1.2, both these research questions
will reveal if the approaches offer an acceptable accuracy to be feasibly applied
to a flexible MDE approach. Regarding RQ1, more details on the experiment are
presented in Section 3.5.1 that follows while in Section 3.5.3 the experiment related
to the second research question (RQ2) is presented.

3.5.1. Experiment for Features Based on Semantics

In this section, the experiments ran to evaluate the proposed approach using the
features based on the semantics are presented. An overview of the experiment is
shown in Figure 3.6. Details about each step follow.

To evaluate our approach we applied it to 100 randomly generated models, in-
stances of publicly available metamodels that were collected as part of the work
presented in [154]. The 10 metamodels, which were selected without having any
criterion in mind other than that of having a variation in size (number of concrete
meta-classes), are presented in Appendix A. For each of these metamodels we pro-
duced 10 random instances using the Crepe model generator tool [155] (step 1 in
Figure 3.6). Crepe uses a genetic algorithm to produce random models. In the ma-
jority of the cases the Crepe random model generator had the tendency to instan-
tiate all the “0..n” (optional) references and containment relationships appeared in

86



Chapter 3. Type Inference using Classification Algorithms

Figure 3.6.: The experimentation process using the features based on semantics.

the metamodels. This might be a bias in the experiment as features F2-F5 are rely-
ing on the unique appearance of references and containments: if a type of reference
is not instantiated then it is not counted; in contrast if it is instantiated at least once
then it is counted. This way we create cases like those presented in the example fea-
ture signatures in Section 3.3.1 between two “Tiger” nodes that have different sig-
natures due to the absence of the “support” incoming relationship in one of them.
To include noise in the signatures in this experiment we decided to create an extra
set of random models modifying the generator to be less keen in instantiating the
aforementioned relationships. This second set, consisting of 10 models for each of
the metamodels, is called “Sparse” set while the original is called “Normal” in this
work. This is done by changing a couple of parameters in the Crepe random model
generator. Listings 3.1 and 3.2 shows the values of these two parameters.

<?xml version=" 1 . 0 " encoding=" ASCII " ?>
<co nf :C on f i gu ra t io n xmi :vers ion=" 2 . 0 " xmlns:xmi=" h t t p : //www. omg . org/XMI"

xmlns:conf=" h t t p : //crepe . core/meta/conf ">
. . .

< p r o p e r t i e s name=" population . segments . f e a t u r e P a i r s . quant i ty . max" value=" 40 "/>
< p r o p e r t i e s name=" population . segments . f e a t u r e P a i r s . quant i ty . min " value=" 20 "/>
. . .

</co nf :C on f i gu ra t io n>

Listing 3.1: Crepe configuration parameters for the Normal set generation.

87



Chapter 3. Type Inference using Classification Algorithms

<?xml version=" 1 . 0 " encoding=" ASCII " ?>
<c o nf :C on f i gu ra t i o n xmi :vers ion=" 2 . 0 " xmlns:xmi=" h t t p : //www. omg . org/XMI"

xmlns:conf=" h t t p : //crepe . core/meta/conf ">
. . .

< p r o p e r t i e s name=" population . segments . f e a t u r e P a i r s . quant i ty . max" value=" 10 "/>
< p r o p e r t i e s name=" population . segments . f e a t u r e P a i r s . quant i ty . min " value=" 5 "/>
. . .

</c o nf :C on f i gu ra t i o n>

Listing 3.2: Crepe configuration parameters for the Sparse set generation.

For our approach, the values of the attributes of each node in the example mod-
els were randomly selected, as these do not affect the final feature signature of the
element. We discuss threats to validity introduced by using randomly generated
models instead of muddles in Section 3.6. Having the models generated, we then
transform them into muddles. A model-to-text (M2T) transformation was imple-
mented to transform instances of EMF models to GraphML files that conform to
the Muddles metamodel (step 2 ). Algorithm 3 describes the transformation.

These two steps ( 1 and 2 ) could be skipped if there was a corpus of muddles
available to test our approach on. However, to our knowledge such a repository
of flexible models does not exist. A second approach, that of drawing example
muddles on our own to experiment with, was also rejected because it could intro-
duce bias to the process. We decided to follow the 2-step process instead firstly
because we would be able to have a bigger number of test muddles and secondly
because these muddles are randomly generated and are not biased to fit our ap-
proach. Moreover, by introducing the second set of models (i.e., “Sparse”) we inject
noise in the features signatures that works against the proposed approach.

3 , 1 , 0 , 0 , 0 , P r o j e c t
. . .
3 , 1 , 0 , 1 , 0 , P r o j e c t
5 , 1 , 2 , 0 , 1 , Target
. . .
1 1 , 0 , 0 , 0 , 1 , Property
. . .
5 , 1 , 2 , 0 , 1 , Target
3 , 1 , 0 , 0 , 0 , P r o j e c t
3 , 1 , 0 , 2 , 0 , P r o j e c t
. . .
2 , 0 , 0 , 0 , 1 , Task
2 , 0 , 0 , 0 , 0 , A t t r i b u t e
2 , 0 , 0 , 2 , 0 , Task
. . .
2 , 0 , 0 , 1 , 0 , TaskParameter
2 , 0 , 0 , 0 , 1 , TaskParameter
2 , 0 , 0 , 3 , 0 , TaskParameter
. . .
2 , 0 , 0 , 0 , 1 , TaskParameter

Listing 3.3: An example of a features signature list based on the semantics of the
example model.

88



Chapter 3. Type Inference using Classification Algorithms

After the generation of the muddles from the random models, we extract the
feature signature of each node. We implemented a script (see Algorithm 1) that
queries each muddle to collect the information needed for each node (i.e., number
of attributes, unique outgoing and incoming references, children and parents). By
following this process a text file containing a list with signatures is created for each
muddle (step 3 ). An example is shown in Listing 3.3

At this point the types of all the nodes are known and saved in the feature signa-
tures list. However, in order to test the proposed approach we had to simulate the
scenario where some nodes were left untyped. For that reason, each feature signa-
ture file is split into two sets (step 4 ): the training set which includes all the nodes
that their type is known and will be used to train the classification algorithm and
the test set which includes all the nodes left untyped and will be used to test the
prediction capabilities of the algorithm. Of course, in this experiment all the nodes
have types assigned to them as the muddles were generated from typed models.
Thus, the simulation of a realistic scenario was done by randomly sampling the fea-
ture signatures lists and placing elements in the training and testing sets to simulate
a scenario in which some of them were left untyped. It is of interest to evaluate if
and how the proportion of untyped nodes affects the prediction capabilities of the
approach. For that reason we experimented with 7 different sampling rates, from
30% to 90% (with a step of 10%). A 30% sampling rate means that only 30% of the
nodes have a type assigned to them. For the rest of this thesis, the term “sampling
rate” will be used to denote the percentage of typed nodes in the model. In order to
conform to the standard 10-fold cross-validation in the domain of classifications al-
gorithms, described in Section 2.6, we did this random sampling 10 times for each
of the sampling rates for each example model, ending with 700 different pairs of
training and test sets for each metamodel in the experiment.

The same process was done for both the “Normal” and “Sparse” sets of models
in this work. It is important to highlight that each time the classification algorithm
was trained using one training set and was tested using the associated test set. After
that the algorithm was reset and trained/tested with the next pair of sets. We tested
two different classification algorithms, CART (step 5a ) and Random Forests (step

5b ). CART was used initially as it offers more interpretable results than other
classification algorithms, making the debugging of the approach easier. RFs were
then introduced as, in principle, they offer better accuracy but less interpretable
results.

In order to check if the number of trees used for the classification in Random
Forest affects the accuracy of the prediction we performed the same experiment for
seven different values for the number of trees variable: 1, 5, 10, 50, 250, 500 and
1000.

For classification and regression trees, we used the rpart package (version 4.1-

89



Chapter 3. Type Inference using Classification Algorithms

9) [156] that implements the functionality of CART [126] in R [157]. For RF we used
the randomForest R package (version 4.6-12) [158]. For both algorithms we used the
default parameters of each package except the minbucket parameter which value
was set in 1. This parameter denotes the minimum amount of instances that a leaf
node can have.

At the end of each train/test run, the success ratio was calculated (step 6 ). The
success ratio (also referred as accuracy) is defined as the total number of correct
predictions to the total number of untyped nodes. Before presenting the results, a
description of the algorithm that is used to transform models to muddles is given.

Models to Muddles Transformation

Step 2 of the experiment (see Figure 3.6) consists of the transformation of EMF
models to the flexible modelling approach used as proof of concept in this work,
called Muddles. Algorithm 3 describes the transformation of EMF models to mud-
dles. The transformation consists of two steps; the first transforms classes in the
EMF model to nodes in muddle while the second transforms references to edges.

In Muddles, each node and edge has a unique id. In lines 2-3 of Algorithm 3 the
id counter and a mapping that stores the instance class and the id it points to are
instantiated. The algorithm iterates through all the model’s class instances (lines 5-
18) and creates the unique id of the node; in yEd this should be a unique number led
by the letter “n” (line 6). The node mapping is updated in line 7. GraphML tags and
contents are created to draw the node based on the id (line 8). The property’s field
that stores the type of the node is populated in line 9. In Muddles, the attributes
are stored in a separate yEd property field. Each has a primitive type (e.g., String,
Integer, etc.), a name and a value. The algorithm iterates through all the attributes
of this instance class (lines 12-14) and constructs the attributes string that holds
all the attributes (line 13). Then the attributes’ field is populated in line 15. Static
content related with graphical properties of the GraphML file is then printed.

In the second step, the edges between the nodes are created. Again, a unique
id for each edge should be created, thus an edge counter is instantiated in line 21.
The algorithm iterates again through all the model’s class instances (lines 23-40).
For each reference of each class instance, the string containing the lower and upper
bounds is built (line 26). For technical reason in our approach containments are
differentiated by attaching the string “VAL” at the end of their name. This is done in
lines 28-30. The ids of the source and target node for the specific edge are retrieved
and stored in lines 31-33 while the GraphML statement to instantiate the edge is
printed in line 34. The fields for the name of the reference and its multiplicities
are populated in lines 35-36. Static content related with graphical properties of the
GraphML file is then printed.

90



Chapter 3. Type Inference using Classification Algorithms

Algorithm 3 Algorithm to transform EMF models to muddles.

1: {Step 1: Create nodes}
2: nodesCounter ← 0
3: nodesMapping ← {}
4: E ← all elements in model
5: for all e ∈ E do
6: nodeId← “n” + nodesCounter
7: nodesMapping ← (e, nodeId)
8: print <node id=“nodeId”>
9: print <data key="d4"><![CDATA[[e.type.name]]]></data>

10: A← all attributes of e
11: attributesString ← “”
12: for all a ∈ A do
13: attributeString ← attributeString + a.EType+ a.name+ a.value
14: end for
15: print <data key="d5"><![CDATA[[attributesString]]]></data>
16: print GraphML static content
17: nodesCounter ++
18: end for
19:
20: {Step 2: Create edges}
21: edgesCounter ← 0
22: E ← all instances in model
23: for all e ∈ E do
24: R← all instantiated references of e
25: for all r ∈ R do
26: bound← “lowerBound” + “upperBound”
27: name← r.name
28: if r is Containment then
29: name← name + “VAL”
30: end if
31: t← r’s target instance class
32: tId← nodesMapping.get(t)
33: sId← nodesMapping.get(e)
34: print <edge id=“e[edgesCounter]” source=“[sId]” target=“[tId]”>
35: print <data key=“d12”><![CDATA[[name]]]></data>
36: print <data key=“d16”><![CDATA[outgoing [bound]]]></data>
37: print GraphML static content
38: edgesCounter ++
39: end for
40: end for

3.5.2. Results and Discussion

In this section, the results of the experiment using the features signatures based on
the semantics are presented. As described in Section 3.5.1, the experiment can be
split into four sub-experiments based on two variables (see Table 3.1); the type of
classification algorithm used in the experiment (CART vs. RF) and the density of

91



Chapter 3. Type Inference using Classification Algorithms

the models (“Normal” set vs “Sparse” set). The results for the CART algorithm are
initially presented followed by the results for the RF experiment. A comparison of
the results for the CART vs. RF and the “Normal” set vs “Sparse” set experiments
follow. The results of the experiments on the importance of the variables used in
the feature signatures are also discussed in this section along with a qualitative
analysis.

Table 3.1.: The IDs of the experiments.
Normal Sparse

CART N-CART S-CART
Random Forest N-RF S-RF

Before going into the presentation and the discussion of the results, a summary of
the models used as input in the experiments is given (see Table 3.2). The smallest
of the metamodels consists of only 2 types. The largest is the one that describes
Wordpress Content Management System websites with 19 different types of classes.
On average the test metamodels had 6.5 types with a median of 6. The number of
classes exclude the abstract classes in the metamodels as it takes into account only
those that can be instantiated in models. For each metamodel, 10 models were
generated for the “Normal” set and 10 different for the “Sparse” set. The sizes of
the smallest (Min) and the largest (Max) instance model for each metamodel are
shown in the respective columns of Table 3.2. The average number of elements for
the instances of each metamodel is also given for both sets.

Table 3.2.: Input data summary table for the classification algorithms experiment.
Normal Sparse

Model Name #Types
Min
Ele-
ments

Max
Ele-
ments

Average
#Elements

in instances

Min
Ele-
ments

Max
Ele-
ments

Average
#Elements

in instances
Chess 2 17 26 21.3 18 33 25.5

Conference 4 30 61 42.5 21 48 36.7
Profesor 4 25 36 29.2 19 37 27.7

Zoo 5 47 73 57 22 35 26.2
Ant 6 53 78 65.3 39 77 61.1

Usecase 6 35 71 54.2 42 70 52
Bugzilla 7 21 56 39.9 10 30 21.4

Bibtex 8 56 106 78.8 66 122 92.9
Cobol 11 33 92 63.7 13 62 39.1

Wordpress 19 42 71 58.6 40 88 64.2
Muddle 20 105 105 105 - - -

We also provide the values for a muddle drawing we examined. This muddle
was part of a side project and was created before commencing this work. It was
used to describe requirements of a hotel booking system. We only provide this

92



Chapter 3. Type Inference using Classification Algorithms

muddle as an indication that the performance of the algorithm on the random gen-
erated muddles from Ecore metamodels does not differ from that of applying it to
real muddles.

Quantitative Analysis for CART

As discussed in Section 3.5.1, 10 random models were instantiated from each of
the metamodels. Seven different sampling rates (30%-90%) were applied to each
of these models. The classification algorithms were run 10 times (10-fold) for each
sampling rate of each model. That sums up to 700 experiments for each of the 10
metamodels (7,000 runs in total). In this work, the exact same experiments were
executed on the “Sparse” set. The results are summarised in Tables 3.3 and 3.4
respectively. In the table, we also include the calculated values for the muddle
drawing. However, we do not include it in the results’ analysis as we only have one
instance available in contrast with the 10 random instances of the other metamodels
and thus not the variability needed to extract statistical relevant conclusions from
it.

Table 3.3.: Results summary table for N-CART
Average Accuracy for Different Sampling

Rates (N-CART)
Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Chess 2 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
Profesor 4 0.97 0.98 0.98 0.99 0.99 1.00 1.00 0.985 1.00

Zoo 5 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.990 0.99
Ant 6 0.66 0.69 0.72 0.74 0.74 0.73 0.76 0.723 0.89

Conference 6 0.87 0.91 0.93 0.96 0.96 0.97 0.99 0.940 1.00
Usecase 6 0.74 0.76 0.80 0.81 0.80 0.80 0.78 0.783 0.5
Bugzilla 7 0.46 0.52 0.55 0.55 0.55 0.55 0.55 0.531 0.75

Bibtex 8 0.66 0.67 0.67 0.68 0.66 0.67 0.69 0.673 0.46
Cobol 11 0.59 0.63 0.68 0.71 0.75 0.75 0.74 0.692 0.89

Wordpress 19 0.44 0.53 0.63 0.69 0.75 0.77 0.81 0.658 1.00
Muddle 20 0.55 0.60 0.63 0.65 0.66 0.66 0.66 0.630 0.89

Avg. 0.70 0.77 0.79 0.81 0.82 0.82 0.83
Cor. 2 -0.88 -0.90 -0.89 -0.87 -0.74 -0.73 -0.72

In Tables 3.3 and 3.4, the average accuracy is given for all the models of each
metamodel. The results are separated into columns based on the sampling rate
that was used each time. For instance, the highlighted value 0.71 in Table 3.3 in-
dicates that for the Cobol metamodel, on average (between the 10 random models
and 10 random sampling simulations), 71% of the missing types were successfully
predicted, using 60% sampling rate. The respective value for the “Sparse” case was
59% (highlighted in Table 3.4)

Considering the raw values, the average successful prediction varied from 53.1%

93



Chapter 3. Type Inference using Classification Algorithms

Table 3.4.: Results summary table for S-CART
Average Accuracy for Different Sampling

Rates (S-CART)
Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Chess 2 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
Profesor 4 0.85 0.90 0.93 0.95 0.95 0.95 0.94 0.924 0.75

Zoo 5 0.72 0.81 0.89 0.94 0.96 0.97 0.99 0.899 1.00
Ant 6 0.69 0.74 0.75 0.76 0.78 0.78 0.80 0.758 0.96

Conference 6 0.88 0.92 0.94 0.95 0.96 0.97 0.98 0.943 1.00
Usecase 6 0.74 0.78 0.82 0.82 0.83 0.83 0.82 0.806 0.79
Bugzilla 7 0.53 0.57 0.61 0.62 0.63 0.67 0.56 0.599 0.46

Bibtex 8 0.68 0.68 0.68 0.67 0.67 0.68 0.69 0.679 0.04
Cobol 11 0.44 0.51 0.54 0.59 0.62 0.64 0.68 0.573 1.00

Wordpress 19 0.41 0.48 0.56 0.62 0.64 0.66 0.66 0.576 0.96
Avg. 0.66 0.74 0.77 0.79 0.80 0.82 0.81

Cor. 2 -0.85 -0.91 -0.90 -0.87 -0.85 -0.91 -0.87

to 100% for the “Normal” dataset and from 57.3% to 100% for the “Sparse” dataset.
By checking the values for the “Normal” experiments, there are some small models
(i.e., their metamodel has fewer than 5 types) that the predictive mechanism per-
forms quite well (success ratio of 96% to 100%) even for low samples like 30% and
40%. The same outcome is noticed at the smaller metamodels (fewer than 5 types)
of the “Sparse” experiments. In both, the average accuracy drops (some times sig-
nificantly) for models of more types. However, these values are affected by the
fact that in the relatively large metamodels, the prediction scores are lower in small
sampling rates, but they keep increasing as the sampling rate (which equals to the
amount of knowledge that the CART algorithm is trained with) is increased.

These two observations lead us investigate the following questions:

Cor. 1: How strong is the dependency between the sampling rate and the success
score?

Cor. 2: How strong is the dependency between the number of types in a meta-
model (size of metamodel) and the success score?

The answers to these questions are given by the values of the correlation mea-
sures that are calculated in column named “Cor. 1” and the row named “Cor. 2”
respectively.

We use Spearman’s rank correlation coefficient (Spearman’s ρ) [159] for all the
experiments in this thesis. Spearman’s ρ is the non-parametric equivalent to Pear-
son’s product-moment correlation coefficient [160, 161] and we use it as we do not
have evidence to assume that our data belong to a normal distribution. For the
rest of this thesis, we will interchangeably use the term correlation and correlation
coefficient to refer to Spearman’s rank correlation coefficient.

As expected, the correlation coefficient values for “Cor. 1” indicate a strong or

94



Chapter 3. Type Inference using Classification Algorithms

perfect dependency for all the metamodels (except BibTeX), for the “Normal” and
except two (i.e., BibTeX and Bugzilla) for the “Sparse” experiments. Regarding the
second correlation (“Cor. 2”) we observe a strong (negative) correlation between
the number of types in a metamodel and the success score for all the samples in the
“Normal” and the “Sparse” experiments. One can extract the following 2 observa-
tions by checking these trends:

1. Fewer types, lead to better results.

2. Lower proportion of untyped nodes results to higher accuracy of the
approach.

Both these outcomes are expected. For the first, having fewer types implies that
the classification algorithm has to pick the correct type among less candidates.
Regarding the second observation, classification algorithms perform based on the
training they have received on elements which class is known. The more the known
nodes, the more the knowledge that the algorithm is trained on.

Quantitative Analysis for RF

The results of running the experiments using the Random Forest algorithm as the
prediction mechanism for both the “Normal” and “Sparse” experiments are sum-
marised in Tables 3.5 and 3.6 respectively. Random Forests typically perform better
than individual classifiers like CART [130] and as that testing their performance is
of interest. A comparison between the results using CART and RF follows after the
presentation of the quantitative results.

The RF mechanism has the same prediction characteristics identified in the CART
experiments: for models with few types the accuracy is higher. It drops as the
number of types is increased. The same occurs when it comes to the sampling rate:
the higher the number of typed elements in the graph, the best the prediction. This
behaviour is identical for the “Sparse” set as well.

More specifically, for the “Normal” set the accuracy prediction varies from 84.0%
to 100.0% for models with less than 5 types (based on the 50 trees classification).
The same values for the “Sparse” set are 66.0% to 100.0%. The lowest prediction
value in the “Normal” set is for the Bugzilla metamodel, with 44.8% of the untyped
nodes predicted correctly. The lower value in the “Sparse” set is 51% and that is for
the Wordpress metamodel.

95



Chapter 3. Type Inference using Classification Algorithms

Table 3.5.: Results summary table for N-RF
Average Accuracy for Different

Sampling Rates (N-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Chess 2

1 - 0.97 0.96 0.97 0.98 0.97 0.98 0.970 0.41
5 - 0.99 1.00 0.99 1.00 1.00 0.99 0.995 -0.06
10 - 1.00 1.00 1.00 1.00 1.00 1.00 0.999 0.78
50 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
250 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
500 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA

1000 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA

Profesor 4

1 0.85 0.87 0.91 0.90 0.91 0.92 0.93 0.898 0.93
5 0.93 0.95 0.94 0.95 0.96 0.96 0.95 0.948 0.86
10 0.93 0.96 0.96 0.95 0.96 0.96 0.98 0.958 0.82
50 0.95 0.97 0.97 0.97 0.97 0.97 0.99 0.971 0.75
250 0.95 0.97 0.96 0.98 0.98 0.98 0.99 0.974 0.93
500 0.95 0.98 0.97 0.98 0.98 0.98 0.99 0.975 0.93

1000 0.95 0.98 0.96 0.98 0.98 0.98 0.99 0.975 0.93

Zoo 5

1 0.59 0.61 0.60 0.69 0.70 0.70 0.72 0.658 0.92
5 0.74 0.78 0.82 0.84 0.84 0.85 0.87 0.819 0.96
10 0.77 0.83 0.87 0.87 0.93 0.92 0.94 0.875 0.96
50 0.84 0.90 0.92 0.95 0.97 0.98 0.98 0.932 0.96
250 0.83 0.91 0.94 0.96 0.98 0.98 0.99 0.942 1.00
500 0.85 0.91 0.94 0.96 0.98 0.99 0.98 0.944 0.96

1000 0.85 0.91 0.94 0.96 0.98 0.99 0.98 0.944 0.96

Ant 6

1 0.52 0.58 0.61 0.66 0.67 0.65 0.67 0.625 0.89
5 0.59 0.66 0.68 0.71 0.72 0.70 0.72 0.682 0.89
10 0.62 0.67 0.70 0.72 0.73 0.72 0.74 0.701 0.96
50 0.65 0.68 0.71 0.73 0.74 0.73 0.75 0.713 0.89
250 0.66 0.69 0.71 0.73 0.74 0.73 0.75 0.717 0.89
500 0.66 0.69 0.72 0.73 0.74 0.73 0.77 0.718 0.89

1000 0.66 0.69 0.71 0.73 0.74 0.73 0.77 0.718 0.89

Conference 6

1 0.68 0.74 0.76 0.79 0.79 0.81 0.84 0.771 0.96
5 0.75 0.80 0.81 0.85 0.84 0.87 0.86 0.824 0.93
10 0.76 0.81 0.82 0.86 0.85 0.85 0.87 0.831 0.89
50 0.79 0.84 0.85 0.88 0.86 0.87 0.92 0.858 0.89
250 0.78 0.83 0.86 0.87 0.87 0.87 0.92 0.857 0.89
500 0.78 0.83 0.87 0.87 0.87 0.88 0.92 0.860 1.00

1000 0.78 0.83 0.86 0.87 0.88 0.88 0.92 0.859 1.00

96



Chapter 3. Type Inference using Classification Algorithms

Table 3.5.: Results summary table for N-RF
Average Accuracy for Different

Sampling Rates (N-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Usecase 6

1 0.59 0.63 0.67 0.67 0.66 0.70 0.73 0.663 0.91
5 0.67 0.71 0.74 0.76 0.76 0.77 0.74 0.736 0.61

10 0.70 0.73 0.76 0.78 0.78 0.79 0.78 0.759 0.75
50 0.72 0.74 0.78 0.79 0.79 0.79 0.78 0.771 0.54
250 0.73 0.75 0.78 0.79 0.79 0.79 0.78 0.772 0.75
500 0.73 0.75 0.78 0.79 0.79 0.79 0.78 0.774 0.75
1000 0.73 0.74 0.78 0.79 0.79 0.79 0.78 0.774 0.68

Bugzilla 7

1 0.36 0.37 0.39 0.40 0.38 0.42 0.38 0.386 0.54
5 0.41 0.43 0.44 0.43 0.44 0.44 0.41 0.427 0.43

10 0.42 0.43 0.44 0.44 0.42 0.42 0.42 0.430 -0.57
50 0.44 0.44 0.47 0.46 0.44 0.45 0.46 0.448 0.43
250 0.44 0.45 0.47 0.47 0.43 0.43 0.46 0.451 -0.18
500 0.44 0.45 0.48 0.47 0.44 0.43 0.45 0.451 -0.18
1000 0.44 0.45 0.47 0.47 0.43 0.44 0.43 0.447 -0.57

Bibtex 8

1 0.57 0.58 0.57 0.57 0.59 0.56 0.57 0.572 -0.18
5 0.61 0.61 0.62 0.61 0.61 0.58 0.61 0.606 -0.43

10 0.62 0.62 0.63 0.63 0.63 0.60 0.63 0.623 0.04
50 0.64 0.64 0.65 0.64 0.64 0.62 0.65 0.640 0.21
250 0.64 0.64 0.65 0.64 0.64 0.62 0.66 0.641 -0.11
500 0.63 0.64 0.65 0.64 0.63 0.62 0.65 0.640 0.14
1000 0.63 0.65 0.65 0.65 0.64 0.63 0.65 0.641 -0.04

Cobol 11

1 0.45 0.48 0.52 0.57 0.58 0.58 0.59 0.539 0.93
5 0.52 0.56 0.61 0.65 0.66 0.66 0.70 0.622 0.96

10 0.55 0.60 0.63 0.67 0.70 0.69 0.74 0.654 0.96
50 0.58 0.64 0.67 0.70 0.71 0.72 0.76 0.683 1.00
250 0.59 0.65 0.67 0.71 0.72 0.72 0.75 0.685 0.96
500 0.59 0.65 0.67 0.71 0.72 0.72 0.75 0.688 1.00
1000 0.59 0.65 0.67 0.71 0.72 0.73 0.75 0.687 1.00

Wordpress 19

1 0.25 0.32 0.35 0.39 0.42 0.44 0.51 0.384 0.99
5 0.35 0.42 0.48 0.54 0.56 0.59 0.66 0.515 1.00

10 0.38 0.47 0.54 0.59 0.62 0.64 0.70 0.563 1.00
50 0.44 0.53 0.59 0.65 0.68 0.68 0.77 0.618 0.96
250 0.44 0.53 0.61 0.67 0.70 0.71 0.80 0.637 1.00
500 0.44 0.53 0.61 0.68 0.70 0.71 0.80 0.638 1.00
1000 0.44 0.53 0.61 0.67 0.71 0.72 0.79 0.638 1.00

97



Chapter 3. Type Inference using Classification Algorithms

Table 3.5.: Results summary table for N-RF
Average Accuracy for Different

Sampling Rates (N-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Muddle 20

1 0.44 0.45 0.45 0.48 0.46 0.51 0.52 0.473 0.91
5 0.46 0.50 0.48 0.52 0.52 0.56 0.54 0.511 0.89
10 0.48 0.49 0.52 0.54 0.55 0.58 0.53 0.527 0.85
50 0.48 0.54 0.55 0.56 0.58 0.60 0.58 0.556 0.89
250 0.49 0.56 0.55 0.58 0.60 0.60 0.53 0.559 0.80
500 0.50 0.56 0.55 0.58 0.60 0.60 0.52 0.559 0.99

1000 0.50 0.56 0.55 0.58 0.59 0.60 0.56 0.563 0.91
Avg. 0.64 0.71 0.73 0.75 0.76 0.76 0.78

Cor. 21 -0.88 -0.91 -0.90 -0.88 -0.88 -0.87 -0.75

Table 3.6.: Results summary table for S-RF
Average Accuracy for Different

Sampling Rates (S-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Chess 2

1 - 0.98 0.97 0.95 0.98 0.99 0.94 0.969 -0.46
5 - 1.00 1.00 1.00 1.00 1.00 1.00 0.998 -0.21
10 - 1.00 1.00 1.00 1.00 1.00 1.00 0.999 0.65
50 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
250 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
500 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA

1000 - 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA

Profesor 4

1 0.75 0.77 0.84 0.86 0.87 0.87 0.87 0.830 0.89
5 0.79 0.86 0.91 0.92 0.92 0.92 0.91 0.890 0.68
10 0.83 0.88 0.92 0.93 0.92 0.93 0.93 0.906 0.82
50 0.87 0.90 0.92 0.94 0.94 0.95 0.95 0.925 0.96
250 0.88 0.90 0.93 0.93 0.94 0.95 0.94 0.924 0.96
500 0.88 0.91 0.93 0.94 0.94 0.95 0.95 0.926 0.96

1000 0.88 0.90 0.92 0.94 0.94 0.95 0.95 0.926 1.00

1Calculated based on the 50 trees values

98



Chapter 3. Type Inference using Classification Algorithms

Table 3.6.: Results summary table for S-RF
Average Accuracy for Different

Sampling Rates (S-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Zoo 5

1 0.48 0.50 0.58 0.61 0.64 0.60 0.65 0.578 0.89
5 0.57 0.61 0.67 0.70 0.75 0.74 0.77 0.689 0.96

10 0.62 0.65 0.72 0.74 0.79 0.79 0.81 0.731 1.00
50 0.66 0.71 0.76 0.80 0.84 0.83 0.88 0.780 0.96
250 0.66 0.72 0.76 0.80 0.84 0.84 0.90 0.786 0.96
500 0.66 0.71 0.77 0.80 0.83 0.83 0.89 0.784 0.96
1000 0.67 0.71 0.77 0.80 0.83 0.83 0.89 0.786 0.96

Ant 6

1 0.48 0.53 0.57 0.60 0.61 0.62 0.62 0.575 0.93
5 0.56 0.63 0.66 0.68 0.69 0.69 0.73 0.662 1.00

10 0.60 0.65 0.69 0.70 0.72 0.72 0.74 0.689 1.00
50 0.64 0.68 0.71 0.72 0.74 0.74 0.76 0.712 1.00
250 0.64 0.68 0.71 0.72 0.74 0.75 0.76 0.716 1.00
500 0.64 0.68 0.71 0.72 0.74 0.75 0.76 0.714 1.00
1000 0.64 0.68 0.71 0.72 0.74 0.74 0.77 0.716 1.00

Conference 6

1 0.76 0.79 0.79 0.82 0.83 0.84 0.83 0.809 0.92
5 0.82 0.84 0.85 0.85 0.87 0.85 0.88 0.852 0.96

10 0.84 0.84 0.87 0.87 0.88 0.86 0.88 0.862 0.75
50 0.85 0.85 0.88 0.88 0.88 0.88 0.88 0.871 0.68
250 0.85 0.85 0.88 0.88 0.89 0.88 0.88 0.873 0.71
500 0.85 0.86 0.88 0.88 0.88 0.88 0.89 0.875 0.96
1000 0.85 0.86 0.88 0.88 0.89 0.88 0.88 0.874 0.89

Usecase 6

1 0.56 0.62 0.67 0.69 0.73 0.72 0.73 0.674 0.92
5 0.66 0.69 0.75 0.76 0.81 0.80 0.79 0.751 0.86

10 0.69 0.71 0.76 0.79 0.82 0.81 0.79 0.767 0.86
50 0.72 0.75 0.79 0.79 0.83 0.82 0.81 0.787 0.86
250 0.73 0.76 0.79 0.81 0.83 0.82 0.82 0.794 0.86
500 0.73 0.76 0.80 0.81 0.83 0.82 0.82 0.794 0.89
1000 0.73 0.76 0.79 0.81 0.83 0.82 0.82 0.793 0.86

Bugzilla 7

1 0.47 0.48 0.53 0.53 0.53 0.58 0.48 0.513 0.41
5 0.52 0.53 0.58 0.56 0.59 0.60 0.54 0.560 0.61

10 0.53 0.56 0.59 0.57 0.59 0.62 0.53 0.571 0.43
50 0.55 0.57 0.60 0.60 0.59 0.65 0.55 0.588 0.32
250 0.55 0.58 0.60 0.60 0.59 0.64 0.55 0.588 0.11
500 0.55 0.57 0.60 0.61 0.59 0.64 0.55 0.588 0.36
1000 0.55 0.57 0.59 0.61 0.59 0.64 0.55 0.588 0.21

99



Chapter 3. Type Inference using Classification Algorithms

Table 3.6.: Results summary table for S-RF
Average Accuracy for Different

Sampling Rates (S-RF)
Model Name #Types #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Bibtex 8

1 0.58 0.60 0.59 0.59 0.59 0.59 0.63 0.596 0.62
5 0.62 0.62 0.62 0.61 0.61 0.61 0.65 0.622 0.00
10 0.63 0.63 0.64 0.63 0.62 0.63 0.67 0.635 0.43
50 0.63 0.65 0.64 0.63 0.63 0.64 0.66 0.641 0.29
250 0.64 0.65 0.64 0.63 0.63 0.64 0.66 0.641 0.00
500 0.64 0.65 0.64 0.63 0.63 0.64 0.66 0.642 -0.11

1000 0.64 0.65 0.64 0.63 0.63 0.64 0.67 0.642 -0.11

Cobol 11

1 0.32 0.39 0.39 0.45 0.46 0.48 0.47 0.424 0.93
5 0.39 0.45 0.48 0.52 0.55 0.57 0.55 0.501 0.96
10 0.42 0.48 0.51 0.55 0.58 0.59 0.56 0.528 0.89
50 0.45 0.51 0.53 0.58 0.61 0.63 0.63 0.562 1.00
250 0.45 0.51 0.55 0.58 0.61 0.64 0.63 0.567 0.96
500 0.45 0.51 0.54 0.58 0.62 0.65 0.63 0.570 0.96

1000 0.45 0.51 0.55 0.58 0.62 0.65 0.64 0.573 0.96

Wordpress 19

1 0.20 0.25 0.31 0.33 0.36 0.38 0.38 0.314 0.95
5 0.29 0.35 0.40 0.42 0.45 0.47 0.49 0.410 1.00
10 0.33 0.39 0.44 0.47 0.51 0.53 0.56 0.462 1.00
50 0.38 0.43 0.49 0.53 0.56 0.59 0.59 0.510 0.96
250 0.39 0.44 0.50 0.55 0.57 0.60 0.60 0.520 0.96
500 0.39 0.44 0.50 0.55 0.56 0.60 0.60 0.521 0.96

1000 0.39 0.44 0.50 0.55 0.56 0.60 0.60 0.520 1.00

Avg. 0.61 0.68 0.71 0.72 0.74 0.75 0.75
Cor. 22 -0.90 -0.93 -0.93 -0.95 -0.93 -0.96 -0.91

From both tables is clear that the number of trees affects the accuracy: more trees
lead to better accuracy. There is a point after which there is no improvement in the
accuracy. To make this more clear we present the accuracy line graphs based on the
number of trees used, for all the metamodels for both the “Normal” and “Sparse”
sets in Figures 3.7 and 3.8, respectively. From 1 − 50 trees there is a rapid increase
in the accuracy. After 50 trees the accuracy does not improve but the computation
required continues to increase. This pattern of diminishing returns is typical when
increasing the number of trees in a RF. Given the common occurrence of conver-
gence in the accuracy across multiple metamodels, these results would suggest that
if deploying RF as the classification algorithm for type inference, 50 is a suitable
parameter setting using the set of the five features that are based on the semantics.

2Calculated based on the 50 trees values

100



Chapter 3. Type Inference using Classification Algorithms

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●

●

●
● ● ●

Success score for different number of trees and sampling rates
(Ant, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(a) Ant - Normal

0.
56

0.
58

0.
60

0.
62

0.
64

0.
66

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

Success score for different number of trees and sampling rates
(Bibtex, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(b) Bibtex - Normal

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

Success score for different number of trees and sampling rates
(Bugzilla, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(c) Bugzilla - Normal

0.
96

0.
97

0.
98

0.
99

1.
00

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

● ● ● ●

●

●

● ● ● ● ●

●

● ● ● ● ● ●

Success score for different number of trees and sampling rates
(Chess, Random Forests, Normal)

●

●

●

Sampling %

40
50
60
70
80
90

(d) Chess - Normal

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

Success score for different number of trees and sampling rates
(Cobol, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(e) Cobol - Normal
0.

70
0.

75
0.

80
0.

85
0.

90

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

Success score for different number of trees and sampling rates
(Conference, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(f) Conference - Normal

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

Success score for different number of trees and sampling rates
(Profesor, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(g) Profesor - Normal

0.
60

0.
65

0.
70

0.
75

0.
80

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●
● ● ●

Success score for different number of trees and sampling rates
(Usecase, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(h) Usecase - Normal

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

● ● ● ●

●

●

●

●

● ● ●

●

●

●

●

●
● ●

Success score for different number of trees and sampling rates
(Wordpress, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(i) Wordpress - Normal

0.
6

0.
7

0.
8

0.
9

1.
0

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●

●

●

●
● ● ●

Success score for different number of trees and sampling rates
(Zoo, Random Forests, Normal)

●

●

●

Sampling %

30
40
50
60
70
80
90

(j) Zoo - Normal

Figure 3.7.: Accuracy for different sampling rates and number of trees (“Normal”,
Random Forests).

101



Chapter 3. Type Inference using Classification Algorithms

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

● ● ● ●

●

●

●

● ●
●

●

●

●

●

● ● ● ●

Success score for different number of trees and sampling rates
(Ant, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(a) Ant - Sparse
0.

58
0.

60
0.

62
0.

64
0.

66

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

● ●

Success score for different number of trees and sampling rates
(Bibtex, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(b) Bibtex - Sparse

0.
50

0.
55

0.
60

0.
65

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

Success score for different number of trees and sampling rates
(Bugzilla, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(c) Bugzilla - Sparse

0.
94

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

● ● ● ● ● ●

●

● ● ● ● ● ●

●

●

● ● ● ● ●

Success score for different number of trees and sampling rates
(Chess, Random Forests, Sparse)

●

●

●

Sampling %

40
50
60
70
80
90

(d) Chess - Sparse

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●

● ●

●

●

●

●

● ● ● ●

Success score for different number of trees and sampling rates
(Cobol, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(e) Cobol - Sparse

0.
76

0.
78

0.
80

0.
82

0.
84

0.
86

0.
88

Number of Trees

S
uc

ce
ss

 S
co

re
1 5 10 50 250 500 1000

●

●

●

● ●
● ●

●

●

●

●
●

● ●

●

●

●

●

● ● ●

Success score for different number of trees and sampling rates
(Conference, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(f) Conference - Sparse

0.
75

0.
80

0.
85

0.
90

0.
95

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

Success score for different number of trees and sampling rates
(Profesor, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(g) Profesor - Sparse

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

Success score for different number of trees and sampling rates
(Usecase, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(h) Usecase - Sparse

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

Success score for different number of trees and sampling rates
(Wordpress, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(i) Wordpress - Sparse

0.
5

0.
6

0.
7

0.
8

0.
9

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

●
● ●

●

●

●

●
●

● ●

●

●

●

● ● ● ●

Success score for different number of trees and sampling rates
(Zoo, Random Forests, Sparse)

●

●

●

Sampling %

30
40
50
60
70
80
90

(j) Zoo - Sparse

Figure 3.8.: Accuracy for different sampling rates and number of trees (“Sparse”,
Random Forests).

102



Chapter 3. Type Inference using Classification Algorithms

Finally, regarding the correlation coefficients “Cor. 1” and “Cor. 2” defined in the
CART experiment section, the calculated values for the RF experiment are given in
the columns labelled “Cor. 1” and “Cor. 2” respectively for both the “Normal” and
“Sparse” experiment (see Tables 3.5 and 3.6 respectively). We observed the same
behaviour with the CART experiment, as summarised below:

1. Fewer types, lead to better results.

2. Lower proportion of untyped nodes results to higher accuracy of the
approach.

The results for both algorithms answer the research question, related with the set
of features based on the semantics of example models (RQ1), set at the beginning
of this experiment. For both the approaches, regardless the density set (“Normal”
or “Sparse”), the prediction accuracy is high and acceptable for almost all the sce-
narios. This is not the case with some exceptional metamodels (the reasons for this
behaviour are investigated in the qualitative analysis section of this chapter) and
scenarios where relatively large metamodels have less than 50% of the nodes typed.

Comparison

Normal vs Sparse

In this experiment, we adjusted the random model generator to produce less dense
models by reducing the number of times that optional references (references with
multiplicities set to “0..n”) are instantiated. As discussed in Section 3.5.1 this be-
haviour affects features F2-F5 (i.e., the number of unique incoming and outgoing
references, unique children and parents) and this way we try to minimise any bias
in favour of the approach. We summarise the results of the comparison in Table 3.7.
In the table, the 2nd column presents the number of optional references in each
model out of the total references. The 3rd column shows the trend in the predic-
tion accuracy between the “Normal” and the “Sparse” set in CART. For example, in
the Ant metamodel the average accuracy was higher (↗) in the “Sparse” set than
the “Normal” set. In the same manner, the last column hosts the trend for the RF
equivalent.

As one can see from the table, in 9 cases the accuracy was not affected at all, while
in 8 others the accuracy dropped, sometimes significantly. The were 3 cases were
the accuracy was increased. There are models which have all their relationships
marked as optional (e.g., Bugzilla, Usecase, Wordpress) and have different trends
in their prediction scores (↗, ∼,↘ respectively). That does not allow us to reach a
definitive conclusion if the density of the models affects the prediction accuracy.

In addition, we believe that the following, unavoidable, side effect of the “Sparse”

103



Chapter 3. Type Inference using Classification Algorithms

Table 3.7.: Accuracy difference trends between “Normal” and “Sparse” experi-
ments.

Model Name
# of optional

relationships out of
total

Difference from
N-CART to

S-CART

Difference from
N-RF to S-RF (50

trees)
Ant 6/6 ↗ ∼

Bibtex 0/1 ∼ ∼
Bugzilla 6/6 ↗ ↗

Chess 1/1 ∼ ∼
Cobol 6/13 ↘ ↘

Conference 2/6 ∼ ∼
Profesor 3/5 ↘ ↘
Usecase 7/7 ∼ ∼

Wordpress 32/33 ↘ ↘
Zoo 2/3 ↘ ↘

model generation also affects the results: The elements that are created only through
one optional relationship will be instantiated fewer times in the “Sparse” experi-
ment. If these elements are in turn responsible to instantiate other types that are
only hosted by them, then the latter have significantly decreased chances of ap-
pearing in the set. For example, in a naive example model that could potentially
conform to the metamodel shown in Figure 3.9 with 3 types (Grandparent, Parent,
Children) with 2 optional relationships, the “Sparse” set will have fewer “Parent”
nodes and even fewer (maybe 0) “Children” nodes than the “Normal” set. In the
scenario, where the “Children” node is a distinctive one, and the prediction algo-
rithm has high accuracy in predicting this specific type, the absence of this type in
the model will be the reason why the total average accuracy is dropped and not
the fact that the model is less dense (and thus because of the fact that the feature
signatures of the “Grandparent” and “Parent” nodes were affected).

Figure 3.9.: A metamodel from which instances of “Children” nodes may never be
instantiated if the random model generator forces optional composition
relationships to be instantiated less frequently (“Sparse” scenario).

Finally, CART and RF, dynamically pick each time the feature that is distinctive
among the different types. Thus, it is possible that between two types that have one
of their features affected by the noise injection (e.g., F2), the algorithm will pick any
other from the remaining four features (i.e., F1, F3, F4 or F5) to differentiate these
types. This way, the noise injection has no effect in the accuracy of the prediction
mechanism.

104



Chapter 3. Type Inference using Classification Algorithms

CART vs RF

By comparing the accuracy of RF and CART given the same metamodel and sam-
pling rate, our results show that the accuracy of our implementation of RF is at
best equivalent to CART and often worse (see Table 3.8 for the trends in the aver-
age scores for each metamodel). This was an unexpected outcome for the study,
given that RF typically outperforms CART and more generally that ensembles of
classifiers typically outperform individual classifiers [130].

Table 3.8.: Accuracy difference trends between CART and RF.

Model Name
Difference from N-CART

to N-RF
Difference from S-CART

to S-RF (50 trees)
Ant ∼ ↘

Bibtex ↘ ↘
Bugzilla ↘ ∼

Chess ∼ ∼
Cobol ∼ ∼

Conference ↘ ↘
Profesor ∼ ∼
Usecase ∼ ∼

Wordpress ↘ ↘
Zoo ↘ ↘

Our possible explanation is that this result has occurred due to the reduction in
features used by each tree in the RF. By default, the randomForest package used
chooses

√
p features where p is the number of features in the input. Given that our

feature signature contains only five features, the package chose only two features
to train each tree in the ensemble potentially harming the accuracy achievable by
the resultant models. Furthermore, considering the high accuracy of CART on al-
most all metamodels (particularly those with 5 or less types) this may also have
occurred because CART is able to achieve an upper bound on the accuracy achiev-
able. Therefore, the extra predictive ability of RF may become more apparent if we
increased the number of features in our feature signature, removed the sampling of
features used by each tree in a RF or increased the complexity of the metamodels
by including more types. However, assuming the metamodels tested are repre-
sentative of those that this method may be applied to, we conclude that for this
application to type inference CART is both sufficiently accurate and preferable to
more complex classification algorithms due to its interpretable output.

Variables Importance

The importance of each variable is a value that signifies how important that vari-
able is in classifying the elements of the test set. In experiments with large sets
of features (variables) such a process is important as it helps eliminate those that

105



Chapter 3. Type Inference using Classification Algorithms

do not play a significant (or any) role in creating the split decision nodes in each
tree and thus reduce the time needed for training. As this is the first time, to our
knowledge, that classification algorithms are used for type inference, it is of inter-
est to assess if any of the five proposed features based on the semantics is redun-
dant and/or which features are more important in this domain. To measure the
importance of different variables in the experiments we used the built-in functions
available in the same packages (rpart and randomForest) used for the classification.

F1 37%

F2 21%

F3 12%

F4 12%

F5 18%

Variables Importance (CART, Normal)

(a) CART - Normal

F1 37%

F2 17%

F3 11%

F4 14%

F5 20%

Variables Importance (CART, Sparse)

(b) CART - Sparse

F1 38%

F2 24%

F3 12%

F4 9%

F5 18%

Variables Importance (RF, Normal)

(c) RF - Normal

F1 40%

F2 18%

F3 11%

F4 11%

F5 20%

Variables Importance (RF, Sparse)

(d) RF - Sparse

Figure 3.10.: Variables importance of features based on semantics. F1 represents the
number of attributes, F2 and F3 represent the number of unique in-
coming and outgoing references respectively and F4 and F5 the num-
ber of unique children and parents respectively.

A summary of the results for the four experiments is shown in the pie charts of
Figure 3.10. These values are the average importance of different variables for all
the runs of the experiments expressed as percentages. We also include the tables

106



Chapter 3. Type Inference using Classification Algorithms

with the variable importance values of each feature for each metamodel in the four
experiments (Table 3.9, 3.10, 3.11 and 3.12). The charts suggest that feature F1, that
of Number of Attributes, is the most important one in creating the decision nodes
in the classification trees. The second most important is either feature 2 (Number
of Incoming References) or feature 5 (Number of Parents). The last 2 positions are
occupied by features 3 or 4 (Number of Outgoing or Number of Children respectively).

The fact that F1 is the most important feature is an expected outcome. This is
because in all the metamodels used, there are types that have attributes assigned
to them, thus at some point this becomes a distinctive point between some types.
In contrast, there are metamodels which have no containment relationships or ref-
erences significantly. Thus this specific feature value (i.e., F2 and F3 if there are no
references, F4 and F5 if there are no containments) is always 0 between all elements.
This way features 2 to 4 are sometimes absolutely ignored and thus their average
importance value shown in the pie is decreased. For example, as is shown in Ta-
ble 3.9, in the Chess metamodel (also see Figure A.4(a)), which has no reference
relationships, the values of F2 and F3 are 0.

Table 3.9.: Variable importance table for the N-CART experiment.
Model Name F1 F2 F3 F4 F5

Ant 16.93 (39.29%) 9.26 (21.49%) 6.88 (15.97%) 3.18 (7.38%) 6.84 (15.87%)
Bibtex 21.99 (46.12%) 0.00 (0.00%) 0.00 (0.00%) 12.36 (25.92%) 13.33 (27.96%)

Bugzilla 10.49 (40.41%) 5.35 (20.61%) 0.00 (0.00%) 4.77 (18.37%) 5.35 (20.61%)
Chess 6.24 (46.46%) 0.00 (0.00%) 0.00 (0.00%) 0.97 (7.22%) 6.22 (46.31%)
Cobol 12.85 (28.71%) 11.73 (26.21%) 7.98 (17.83%) 4.71 (10.52%) 7.49 (16.73%)

Conference 8.14 (25.53%) 8.55 (26.81%) 0.28 (0.88%) 7.58 (23.77%) 7.34 (23.02%)
Profesor 7.64 (41.16%) 1.99 (10.72%) 1.84 (9.91%) 0.66 (3.56%) 6.43 (34.64%)
Usecase 7.32 (17.81%) 10.83 (26.36%) 11.69 (28.45%) 5.40 (13.14%) 5.85 (14.24%)

Wordpress 16.02 (39.43%) 13.74 (33.82%) 8.00 (19.69%) 0.46 (1.13%) 2.41 (5.93%)
Zoo 17.43 (55.49%) 9.76 (31.07%) 4.22 (13.44%) 0.00 (0.00%) 0.00 (0.00%)

Table 3.10.: Variable importance table for the S-CART experiment.
Model Name F1 F2 F3 F4 F5

Ant 17.66 (44.48%) 5.49 (13.83%) 4.80 (12.09%) 5.24 (13.20%) 6.51 (16.40%)
Bibtex 25.77 (45.84%) 0.00 (0.00%) 0.00 (0.00%) 14.72 (26.18%) 15.73 (27.98%)

Bugzilla 6.09 (49.15%) 0.00 (0.00%) 0.00 (0.00%) 2.55 (20.58%) 3.75 (30.27%)
Chess 6.85 (47.77%) 0.00 (0.00%) 0.00 (0.00%) 0.66 (4.60%) 6.83 (47.63%)
Cobol 7.96 (30.72%) 6.63 (25.59%) 4.43 (17.10%) 3.01 (11.62%) 3.88 (14.97%)

Conference 5.18 (17.61%) 8.15 (27.70%) 0.89 (3.03%) 7.70 (26.17%) 7.50 (25.49%)
Profesor 6.72 (33.02%) 4.29 (21.08%) 2.48 (12.19%) 1.14 (5.60%) 5.72 (28.11%)
Usecase 7.69 (18.75%) 10.39 (25.33%) 11.03 (26.89%) 6.71 (16.36%) 5.20 (12.68%)

Wordpress 16.48 (41.85%) 11.64 (29.56%) 7.78 (19.76%) 0.78 (1.98%) 2.70 (6.86%)
Zoo 8.09 (53.90%) 4.63 (30.85%) 2.29 (15.26%) 0.00 (0.00%) 0.00 (0.00%)

107



Chapter 3. Type Inference using Classification Algorithms

Table 3.11.: Variable importance table for the N-RF experiment.
Model Name F1 F2 F3 F4 F5

Ant 7.61 (41.18%) 4.77 (25.81%) 2.13 (11.53%) 1.24 (6.71%) 2.73 (14.77%)
Bibtex 8.56 (47.29%) 0.00 (0.00%) 0.00 (0.00%) 3.55 (19.61%) 5.99 (33.09%)

Bugzilla 3.23 (44.80%) 1.55 (21.50%) 0.00 (0.00%) 0.92 (12.76%) 1.51 (20.94%)
Chess 2.53 (45.34%) 0.00 (0.00%) 0.00 (0.00%) 0.37 (6.63%) 2.68 (48.03%)
Cobol 7.02 (29.16%) 7.38 (30.66%) 3.68 (15.29%) 2.25 (9.35%) 3.74 (15.54%)

Conference 4.00 (28.72%) 3.30 (23.69%) 0.39 (2.80%) 3.09 (22.18%) 3.15 (22.61%)
Profesor 3.24 (42.30%) 0.69 (9.01%) 0.52 (6.79%) 0.18 (2.35%) 3.03 (39.56%)
Usecase 3.61 (19.75%) 5.32 (29.10%) 5.20 (28.45%) 1.36 (7.44%) 2.79 (15.26%)

Wordpress 8.56 (38.20%) 7.12 (31.77%) 4.44 (19.81%) 0.47 (2.10%) 1.82 (8.12%)
Zoo 9.07 (53.26%) 6.08 (35.70%) 1.88 (11.04%) 0.00 (0.00%) 0.00 (0.00%)

Table 3.12.: Variable importance table for the S-RF experiment.
Model Name F1 F2 F3 F4 F5

Ant 9.36 (52.67%) 1.74 (9.79%) 1.72 (9.68%) 2.34 (13.17%) 2.61 (14.69%)
Bibtex 9.98 (47.12%) 0.00 (0.00%) 0.00 (0.00%) 4.27 (20.16%) 6.93 (32.72%)

Bugzilla 2.32 (50.33%) 0.00 (0.00%) 0.00 (0.00%) 0.67 (14.53%) 1.62 (35.14%)
Chess 2.82 (46.08%) 0.00 (0.00%) 0.00 (0.00%) 0.30 (4.90%) 3.00 (49.02%)
Cobol 4.50 (30.38%) 4.39 (29.64%) 2.32 (15.67%) 1.65 (11.14%) 1.95 (13.17%)

Conference 2.37 (20.97%) 2.83 (25.04%) 0.44 (3.89%) 2.94 (26.02%) 2.72 (24.07%)
Profesor 2.77 (33.74%) 1.43 (17.42%) 0.58 (7.06%) 0.27 (3.29%) 3.16 (38.49%)
Usecase 4.06 (22.80%) 5.18 (29.08%) 4.51 (25.32%) 1.94 (10.89%) 2.12 (11.90%)

Wordpress 9.82 (41.95%) 6.36 (27.17%) 4.44 (18.97%) 0.65 (2.78%) 2.14 (9.14%)
Zoo 3.91 (49.49%) 2.77 (35.06%) 1.22 (15.44%) 0.00 (0.00%) 0.00 (0.00%)

Qualitative Analysis

We now examine the results from a qualitative perspective in order to identify pat-
terns that may occur in the models that affect the prediction accuracy.

By assessing the Bugzilla metamodel (see Figure A.3) we found that all the wrong
predictions were done among four classes that were extending the same abstract
superclass. More specifically, the types DependsOn, Keywords, Blocks and CC
(which extend the class named StringElt) were all identified as being of the same
type, the one with the greatest presence in the training data. By looking at the meta-
model, we identified that these types follow the structure of modelling inheritance
with no concrete differentiating characteristics [162] (i.e., no differentiating point
with the parent class as they have no extra attributes, no extra containment rela-
tions assigned to them but one extra incoming reference going to each of them). As
a result, the feature signature is identical for all of the four and thus the classifica-
tion algorithm is unable to find a distinctive characteristic to split them into differ-
ent classes. A similar behaviour was also discovered in the BibTeX metamodel; the
types had one differentiating point which was of the same category (i.e., an extra

108



Chapter 3. Type Inference using Classification Algorithms

attribute each). Again, the feature signature was identical.
A way to address this problem could be to introduce other features, atop the

five used in this study, which are not calculated based on semantic characteristics,
like the features based on concrete syntax presented in Section 3.3.2. In addition, in-
cluding string similarity measurements (like checking the name of the extra added
attribute in the BibTeX example) will help, too.

However, that behaviour is not always undesirable: more specifically if the goal
is that of metamodel inference, this behaviour will help in identifying possible un-
necessary inheritance introduced in the language. Both algorithms used in this
approach have built-in mechanisms to group classes/types that are very similar by
using the notion of “buckets” in the leaf nodes.

Performance Analysis

Table 3.13 summarises the average execution time for each of the two prediction
algorithms (CART and RF) and the two model sets (“Normal” and “Sparse”) used
in this approach. The specification of the machine used to run the experiments is
the following:

• Architecture: x64 (64-bits)

• Processor: Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz

• RAM: 2x8GB DDR3 @ 1600 MHz

• Hard Disk Drive: 256GB PCIe SSD

• Operating System: Mac OS X 10.11.6

Table 3.13.: Average execution time for each metamodel in the classification algo-
rithms approach

Average Execution Time for Each
Metamodel (in seconds)
CART RF (50 trees)

Model Name #Types Normal Sparse Normal Sparse
Chess 2 0.06713 0.06635 0.00720 0.00751

Profesor 4 0.07610 0.09403 0.00751 0.00729
Zoo 5 0.07708 0.08369 0.00800 0.00755
Ant 6 0.10216 0.09426 0.00903 0.00946

Conference 6 0.08496 0.08558 0.00984 0.00721
Usecase 6 0.09611 0.10264 0.00839 0.00755
Bugzilla 7 0.08242 0.07704 0.00734 0.00718

Bibtex 8 0.08319 0.08244 0.00822 0.00843
Cobol 11 0.16032 0.14863 0.00938 0.00703

Wordpress 19 0.15565 0.17360 0.00874 0.00916

109



Chapter 3. Type Inference using Classification Algorithms

As one can see from Table 3.13, the execution times for this approach are very low
for all the four experiments. More specifically, times vary from 7.03 milliseconds
up to 17.36 milliseconds. There is some raise in execution times as the number of
types increases however this is not affecting the applicability of the approach as
the execution times are minor. There is also difference between the CART and RF
approach as RF performs significantly faster (the measurement is for the 50 trees for
which RF reaches its maximum performance). This is expected as in RF a subset of
the nodes and the features is taken into account when training is performed.

The results of the average execution times let us believe that this approach has no
scalability issues, as the execution times are minor even with large metamodels.

3.5.3. Experiment for Concrete Syntax Features

In this section the experimentation process to evaluate the performance of the pro-
posed approach using features based on graphical characteristics of the example
models is presented. An overview is given in Figure 3.11.

Figure 3.11.: The concrete features experimentation process.

In order to test the proposed approach we applied both classification algorithms
to a muddle. This muddle was created before commencing this research as part of
a side project to express requirements for a web application [18]. Our experience
working with Muddles suggests that it is a fairly complicated example as it con-
sists of more than 100 elements of 20 different types. A comparison with the 10
other models used in the experiment of the previous approach is not possible as
these were automatically generated using mechanisms that are not unbiased in the

110



Chapter 3. Type Inference using Classification Algorithms

selection of the four features that we assess in this work: all the nodes were of the
same shape, colour and size.

In addition, we tested the reluctance of the proposed approach to human error
and the bias that our muddling habits may introduce: we tend to use the same
shape when we express a specific type. We need to highlight here, that this does not
mean that all elements of the same type have the same features or that each feature
value (e.g., rectangle) was used only in one type. Regarding the latter, elements
of different types share common features in our experimentation example. For
instance, rectangles were used to represent elements of many different types. The
same holds with the colours. Arguably, this is the case with any other relatively
large muddle as the number of available shapes and colours is in practice limited.
However, in order to check if adhering to some basic conventions when drawing
an example model is important for the accuracy of the prediction, we performed a
second experiment by adding noise to some of the elements by explicitly changing
some of their features. We did that gradually by altering randomly one feature of
none (0%) up to all (100%) of the elements of the muddle using a step of 20% (0%,
20%, ..., 80%, 100%). 40% noise addition means that 40 per cent of the nodes in
the diagram have one feature (randomly selected) changed to something else (e.g.,
shape is changed from rectangle to ellipse). A detailed step-by-step description of
the experimentation process follows.

Initially a script (see Algorithm 2) is run to collect the features from the mud-
dle and place them into a list that includes the feature signatures for each element
(step 1 ). As the example has 105 nodes, there are 105 feature signatures in this
signatures list. An extract of the signatures list is shown in Listing 3.4.

roundrectangle , # F5F5F5 ,934 .8791503906252 ,995 .6377243193067 ,TR
roundrectangle , # F5F5F5 ,904 .0000000000002 ,943 .9717086943067 ,HomePage
roundrectangle , # F5F5F5 ,862 .0000000000002 ,110 .66354037747524 ,Menu
rec tangle , # FFCC00 , 1 3 0 . 1 7 3 2 6 7 3 2 6 7 3 2 6 8 , 3 0 . 0 , MenuItem
. . .
roundrectangle , # F5F5F5 , 8 6 2 . 0 , 3 7 7 . 6 6 6 0 1 5 6 2 5 , Frame
rec tangle , # FFCC00 , 9 8 . 0 , 7 8 . 0 , Image
roundrectangle , # F5F5F5 ,854 .9999999999995 ,182 .91890279771678 , Frame
rec tangle , # FFCC00 , 2 2 8 . 7 4 9 9 9 9 9 9 9 9 9 9 9 , 3 0 . 0 , Heading
. . .
hexagon , # FFCC00 ,372 .6980198019801 ,173 .34003712871288 , Requirement
roundrectangle , # F5F5F5 ,1024 .897485014718 ,1032 .8898611540842 , Step
roundrectangle , # F5F5F5 ,862 .0000000000002 ,110 .66354037747521 ,Menu
. . .
rec tangle , # FFCC00 ,136 .81786872407747 ,43 .180693069306926 , Button
rec tangle , null , 994 .8974850147181 ,981 .2238455290842 , Page

Listing 3.4: An example of a features signature list.

The same process is repeated 6 times; in each iteration a new signatures list is
created for each noise level. At the end of step 1 there are 6 signature list files
generated. In step 2 , each of these lists is randomly separated into a training

111



Chapter 3. Type Inference using Classification Algorithms

and a test set. The training set contains the nodes which, in a realistic scenario, are
typed by the engineer while the test set contains those left untyped. Following this
random sampling we simulate that scenario. In order to reach unbiased results we
perform the sampling process 10 times for each file (10-Fold). It is also of interest to
identify if the amount of knowledge that the algorithm has on each diagram is of
importance to the success ratio. For that reason we use 7 different sampling rates;
from 30% to 90%. For example, a 40% sampling rate means that in the simulation,
40% of the nodes are thought to be of known type (and thus the training set consists
of them) while the rest (60%) are the nodes for which the type is unknown.

The generated pairs of training and test sets are then fed one after the other to

the CART (step 3a ) or the Random Forests (step 3b ) algorithm. The algorithm is
trained on the training set and predicts the types of elements of the test set. The pre-
diction accuracy is then calculated by dividing the total number of correct predic-
tions to the number of all untyped elements. Type predictions are checked against
the correct types of these nodes to calculate the success ratio. The correct types
are known to us, as these were originally defined to the example muddle and kept
before splitting it into sets of nodes with known and unknown types. The number
of trees that the Random Forest algorithm will be trained with is of importance so
we run the same experiment for 7 different values of trees: 1, 5, 10, 50, 250, 500 and
1000. For this experiment, we used the same R [157] packages used in the previous
experiment described in Section 3.5.1.

After having noise injected for 6 levels (0%-100%), for 7 different sampling rates
(30%-90%), 10 different times each to avoid a lucky (or unlucky) sample we end
up having 420 pairs of training and test sets. For the Random Forest each of these
420 pairs are tested for the 7 different values of the tree variables ending up having
2,940 runs in total.

3.5.4. Results and Discussion

CART

Table 3.14 summarises the results for the 420 runs in the CART experiment. Each
cell contains the average accuracy of the classification for the 10 runs for the spe-
cific added-noise level and sampling rate. For instance, the highlighted value 0.59
indicates that on average, 59% of the missing types were successfully predicted for
the 10 samples of the 40% added-noise model, using a 70% sampling rate.

The average accuracy for the CART prediction is 64.6% in the case where there
is no added noise. As expected, when the sampling rate is increased, which means
that more nodes are fed to the algorithm for training, the accuracy is improved.
This is verified by the line charts given in Figure 3.12. The lines follow an upward
inclination for all the noise levels. The opposite trend is visible when the level of
noise is increased: higher noise results in worse accuracy. The average accuracy

112



Chapter 3. Type Inference using Classification Algorithms

Table 3.14.: Results summary table for CART (concrete syntax features)
Average Accuracy for Different

Sampling Rates (N-CART)
Noise Level 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

0% 0.52 0.59 0.68 0.65 0.68 0.70 0.70 0.646 0.89
20% 0.50 0.55 0.63 0.63 0.68 0.70 0.66 0.622 0.89
40% 0.48 0.54 0.59 0.56 0.59 0.60 0.63 0.571 0.89
60% 0.40 0.47 0.48 0.48 0.49 0.50 0.60 0.488 0.96
80% 0.33 0.35 0.46 0.45 0.53 0.57 0.49 0.454 0.86

100% 0.32 0.35 0.37 0.41 0.40 0.41 0.45 0.388 0.96
Cor. 2 -1.00 -0.94 -1.00 -1.00 -0.93 -0.89 -1.00

drops to 38.8% in the case where all the elements have a randomly selected feature
altered. The following correlation coefficients confirm both these visual observa-
tions.

Cor. 1: How strong is the dependency between the sampling rate and the success
score?

Cor. 2: How strong is the dependency between the added-noise level and the
success score?

As expected, the correlation coefficient values for “Cor. 1” indicate strong de-
pendency for all the added-noise levels. This means that prediction scores increase
as training sets become larger or in other words the chances of correctly predicting
the type are significantly increased if the number of untyped nodes is decreased.
The same behaviour was also observed in the type inference approach presented
in 3.5.1 where the features are based on the semantics of the example models.

Regarding the second correlation (“Cor. 2”) we observe a perfect (negative) cor-
relation between the number of nodes in a drawing that have altered features and
the success score across all the sampling rates. This is evidence that following spe-
cific rules in the concrete syntax of the drawing, increases the chances for correct
type inference. By the term “specific rules” it is not implied that these rules should
be strict. As discussed in Section 3.5.3, in the 0% added-noise example the authors
use the same shapes to express the same concepts or in other cases the same color
but not in a rigorous manner: same graphical properties are used in different con-
cepts while the same concepts may have different graphical properties.

These two observations are summarised in the following:

1. Fewer untyped nodes results to higher accuracy of the approach.

2. Following drawing conventions results in a higher accuracy.

113



Chapter 3. Type Inference using Classification Algorithms

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●

●

●

●

●
● ●

Success score for different number sampling rates
(0% Noise Level, CART)

(a) 0% Noise Level

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●

●

● ●

●

●

●

Success score for different number sampling rates
(20% Noise Level, CART)

(b) 20% Noise Level

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●

●

●

●

●
●

●

Success score for different number sampling rates
(40% Noise Level, CART)

(c) 40% Noise Level

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●

●
● ●

● ●

●

Success score for different number sampling rates
(60% Noise Level, CART)

(d) 60% Noise Level

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●
●

●
●

●

●

●

Success score for different number sampling rates
(80% Noise Level, CART)

(e) 80% Noise Level

30 40 50 60 70 80 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sampling Rate

S
uc

ce
ss

 S
co

re

●

●
●

● ●
●

●

Success score for different number sampling rates
(100% Noise Level, CART)

(f) 100% Noise Level

Figure 3.12.: Accuracy for different sampling rates (CART - Concrete).

114



Chapter 3. Type Inference using Classification Algorithms

Random Forests

The same set of four features was used as an input to the Random Forests algorithm
to identify if this algorithm performs better than CART. Looking at the raw results
summarised in Table 3.15 the same trends identified for the CART algorithm appear
in RF as well. More specifically, as the sampling rate is increasing (thus, fewer
nodes are left untyped) the accuracy is improved. The same inverse trend is noticed
regarding the added noise: as the noise level is increased the prediction accuracy
drops. These two observations are verified by the correlation coefficient values,
named “Cor. 1” and “Cor. 2” in Table 3.15. Their description is repeated here:

Cor. 1: How strong is the dependency between the sampling rate and the success
score?

Cor. 2: How strong is the dependency between the added-noise level and the
success score?

Table 3.15.: Results summary table for RF (concrete syntax features)
Average Accuracy for Different
Sampling Rates (RF Concrete)

Noise Level #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

0%

1 0.47 0.48 0.54 0.58 0.62 0.64 0.64 0.567 1.00
5 0.52 0.59 0.66 0.64 0.68 0.70 0.71 0.643 0.96

10 0.56 0.61 0.66 0.67 0.70 0.71 0.73 0.663 1.00
50 0.59 0.63 0.70 0.67 0.71 0.74 0.75 0.684 0.96
250 0.58 0.63 0.72 0.68 0.71 0.76 0.75 0.691 0.86
500 0.59 0.63 0.71 0.68 0.71 0.76 0.73 0.687 0.86
1000 0.59 0.63 0.71 0.68 0.71 0.74 0.75 0.688 0.89

20%

1 0.42 0.46 0.52 0.55 0.57 0.60 0.57 0.528 0.89
5 0.50 0.54 0.58 0.61 0.64 0.63 0.64 0.593 0.96

10 0.52 0.57 0.62 0.63 0.68 0.65 0.69 0.623 0.96
50 0.54 0.60 0.66 0.65 0.67 0.70 0.74 0.652 0.96
250 0.55 0.60 0.66 0.65 0.68 0.70 0.74 0.655 0.96
500 0.55 0.61 0.66 0.65 0.69 0.71 0.73 0.657 0.96
1000 0.55 0.60 0.66 0.65 0.69 0.71 0.73 0.656 0.96

40%

1 0.41 0.41 0.50 0.52 0.52 0.52 0.52 0.487 0.89
5 0.46 0.52 0.55 0.56 0.58 0.57 0.55 0.543 0.75

10 0.49 0.53 0.57 0.57 0.60 0.62 0.58 0.567 0.86
50 0.53 0.57 0.60 0.60 0.62 0.61 0.62 0.593 0.86
250 0.53 0.57 0.61 0.61 0.63 0.63 0.61 0.599 0.82
500 0.53 0.57 0.61 0.60 0.63 0.62 0.62 0.599 0.86
1000 0.53 0.56 0.61 0.60 0.63 0.63 0.61 0.598 0.82

115



Chapter 3. Type Inference using Classification Algorithms

Table 3.15.: Results summary table for RF (concrete syntax features)
Average Accuracy for Different
Sampling Rates (RF Concrete)

Noise Level #Trees 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

60%

1 0.34 0.36 0.39 0.37 0.42 0.43 0.51 0.402 0.96
5 0.42 0.44 0.47 0.48 0.47 0.49 0.56 0.476 0.89
10 0.44 0.46 0.48 0.48 0.51 0.52 0.58 0.498 0.96
50 0.47 0.49 0.50 0.50 0.52 0.52 0.61 0.516 0.93
250 0.46 0.49 0.53 0.50 0.51 0.55 0.61 0.521 0.89
500 0.46 0.49 0.53 0.49 0.51 0.55 0.61 0.519 0.89

1000 0.47 0.50 0.53 0.49 0.52 0.54 0.61 0.522 0.82

80%

1 0.33 0.28 0.38 0.37 0.40 0.43 0.34 0.363 0.57
5 0.36 0.38 0.45 0.44 0.51 0.48 0.45 0.437 0.68
10 0.39 0.41 0.45 0.46 0.51 0.51 0.51 0.462 1.00
50 0.40 0.45 0.51 0.50 0.55 0.59 0.53 0.504 0.86
250 0.41 0.46 0.51 0.51 0.58 0.57 0.57 0.516 0.89
500 0.41 0.46 0.51 0.50 0.59 0.56 0.57 0.515 0.86

1000 0.41 0.46 0.52 0.51 0.58 0.57 0.57 0.517 0.86

100%

1 0.28 0.30 0.32 0.31 0.38 0.40 0.41 0.342 0.96
5 0.34 0.37 0.37 0.39 0.40 0.48 0.44 0.397 0.96
10 0.35 0.38 0.40 0.41 0.44 0.50 0.46 0.420 0.96
50 0.37 0.42 0.45 0.44 0.46 0.50 0.50 0.447 0.96
250 0.38 0.43 0.45 0.44 0.44 0.49 0.53 0.451 0.86
500 0.38 0.43 0.46 0.46 0.44 0.50 0.53 0.455 0.86

1000 0.38 0.43 0.45 0.44 0.45 0.50 0.54 0.455 0.89

Cor. 23 -0.99 -1.00 -1.00 -0.94 -0.94 -0.94 -1.00

Regarding “Cor. 1”, the values reveal a very strong or strong correlation for all
the number of trees and noise levels. Regarding “Cor. 2”, the values based on the
250 trees, show a very strong correlation between the added noise level and the
accuracy for all the sampling rates.

The results shown in Table 3.15 are also given as line charts in Figure 3.13. From
the six graphs for the different added noise levels one can see that the accuracy is
increased steadily and hits a plateau at either 50 trees value or at 250 trees value
(this depends on a mixture of the added noise level and the sampling rate). After
these values there is no improvement in the accuracy while the time needed for
the prediction continues to increase. Thus, as a conclusion, setting 250 trees as a
parameter for this algorithm is a value that maximises the accuracy to time ratio
when the four features based on the concrete syntax are used.

3Calculated based on the 250 trees values

116



Chapter 3. Type Inference using Classification Algorithms

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●

●

●
●

●

●

● ●
● ● ●

Success score for different number of trees and sampling rates
(0% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(a) 0% Noise Level

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

Success score for different number of trees and sampling rates
(20% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(b) 20% Noise Level

0.
40

0.
45

0.
50

0.
55

0.
60

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

Success score for different number of trees and sampling rates
(40% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(c) 40% Noise Level

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

● ●

● ● ● ●

Success score for different number of trees and sampling rates
(60% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(d) 60% Noise Level

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●

● ● ●

●

● ●

●
●

● ●

●

●

●

●

●

●
●

Success score for different number of trees and sampling rates
(80% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(e) 80% Noise Level

0.
30

0.
35

0.
40

0.
45

0.
50

Number of Trees

S
uc

ce
ss

 S
co

re

1 5 10 50 250 500 1000

●

●

●

●
● ● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

Success score for different number of trees and sampling rates
(100% Noise Level, RF)

●

●

●

Sampling %

30
40
50
60
70
80
90

(f) 100% Noise Level

Figure 3.13.: Accuracy for different sampling rates and number of trees (RF - Con-
crete).

117



Chapter 3. Type Inference using Classification Algorithms

The results for both algorithms answer the research question (RQ2) set at the
beginning of the experimental evaluation. For both approaches, the prediction ac-
curacy is high and acceptable for all the scenarios where the added-noise in less
than 40%. When the added-noise percentage is increased, then approach has satis-
factory accuracy for higher sampling rates (above 70-80%).

Comparison: CART vs RF

Looking at the averages for all the sampling percentages for each noise level one
can see that the Random Forests algorithm has better accuracy than CART in all the
scenarios. Table 3.16 summarises this. Based on the literature [130] this is an ex-
pected outcome as normally Random Forests outperform CART algorithms, how-
ever it is different from the outcome of the experiment with the features based on
semantics. There are at least two conditions that are different between these two
experiments and could possibly explain this behaviour. Firstly, the different nature
of the features used (concrete syntax vs. semantics) and secondly the fact that in
this experiment the approach is applied to a single example model. Suggestions for
future work on investigating this behaviour are provided in Section 6.2.

Table 3.16.: Accuracy difference trends between CART and RF experiments.

Noise Level
Difference from

CART to RF (250 trees)
0% ↗

20% ↗
40% ↗
60% ↗
80% ↗

100% ↗

Variables Importance

The level of significance of the features in the decision making for each algorithm
is of interest as it will help identify which characteristics of the diagram are more
important for the algorithm to split the nodes into the different classes (types in this
domain).

The significance of each of the four features which are based on the concrete
syntax is shown in the pie charts of Figure 3.14. More specifically, Figure 3.14(a)
shows that in the scenario where the CART algorithm was used, the most important
variable was F8, which is that of the width of the node. The second most important
is related to the size as well and it is that of height of the node. The last two features
have only half the importance of the top two features combined as they have a score
of 33% in total (17% for F6 which is the shape of the node and 16% for F7 which is
the colour of the node).

118



Chapter 3. Type Inference using Classification Algorithms

Regarding Random Forests, the results follow the same pattern but this time the
first top two features, which are again F8 and F9, accumulate three quarters of the
total importance. More specifically, the width of the node (F8) scores a 41% in
importance and the height (F9) a 34%. The other two variables (colour and shape)
tie in the last place and share the remaining 24% (12%) each.

F6 17%

F7 16%

F8 38%

F9 29%

Variables Importance (CART, Graphical)

(a) CART

F6 12%

F7 12%

F8 41%

F9 34%

Variables Importance (RF, Graphical)

(b) Random Forests

Figure 3.14.: Variables importance of concrete features.

Tables 3.17 and 3.18 show raw values of the importance of each variable for each
added noise level in the experiment for the CART and RF algorithms respectively.

Table 3.17.: Variable importance table (CART - Concrete).
Model Name F6 F7 F8 F9

0% 13.96 (16.51%) 12.26 (14.50%) 34.37 (40.66%) 23.94 (28.32%)
20% 14.41 (17.81%) 10.30 (12.73%) 31.73 (39.21%) 24.49 (30.26%)
40% 13.24 (16.21%) 12.82 (15.69%) 31.85 (38.99%) 23.78 (29.11%)
60% 13.46 (18.79%) 10.94 (15.28%) 25.92 (36.19%) 21.30 (29.74%)
80% 11.67 (16.67%) 12.73 (18.18%) 27.68 (39.53%) 17.94 (25.62%)

100% 11.59 (18.22%) 11.55 (18.16%) 21.53 (33.85%) 18.94 (29.78%)

Table 3.18.: Variable importance table (RF - Concrete).
Model Name F6 F7 F8 F9

0% 4.88 (10.34%) 5.35 (11.34%) 19.74 (41.83%) 17.22 (36.49%)
20% 5.81 (11.88%) 5.25 (10.73%) 21.13 (43.20%) 16.72 (34.19%)
40% 5.71 (11.16%) 5.69 (11.12%) 22.69 (44.34%) 17.08 (33.38%)
60% 6.84 (13.49%) 6.32 (12.46%) 18.81 (37.09%) 18.74 (36.96%)
80% 6.46 (12.41%) 7.67 (14.73%) 22.08 (42.40%) 15.86 (30.46%)

100% 7.19 (13.93%) 7.27 (14.08%) 18.98 (36.76%) 18.19 (35.23%)

119



Chapter 3. Type Inference using Classification Algorithms

3.6. Limitations

The data used to evaluate the performance of the first proposed approach were
generated using a random model generator. An issue of that is that we are us-
ing models which conform to a metamodel, and not real muddles. This was done
for pragmatic reasons: we have a model generator that uses genetic algorithms to
produce random models (no random muddle generator currently exists) and we
wanted to evaluate the feasibility of the proposed approach for type inference on a
large number of example models.

Regarding the approach that is based on the features extracted from the seman-
tics of the models, we do not believe that the use of models instead of muddles
has significant impact on the experimental results. The accuracy of our classifica-
tion algorithm depends only on the features described in Section 3.3.1; randomly
generated models and muddles will not be significantly different in terms of these
features. To support this argument, we ran the prediction on a real muddle and the
results suggest that the performance of the predictions is not affected by this pa-
rameter. In addition, we injected noise to the models that affect 4 out of 5 features
by generating a second “Sparse” set. This added noise sometimes affected the pre-
diction accuracy sometimes positively, sometimes negatively and sometimes had
no effect. However, other user-defined models and muddles may differ - and as
such future work on experiments with more user-created muddles is needed.

A second issue related to the use of this generator is that although it generates
random models, the number of attributes that each node has is always the same
for nodes of the same type. However, this does not always work in favour of our
approach, because in cases where two different types have the same number of
attributes, all instances will have the same value in the attributes feature in their
signature. A work-around for this would be the injection of noise in the number
of attributes that each node has by running a post-generation script that randomly
deletes attributes from elements. Interesting research directions for future work are
described in Section 6.2.

An additional limitation is the way in which the feature signatures are currently
calculated. As shown in Algorithm 1, the uniqueness of a reference is decided
based on its name, thus this current experiment relies on the assumption that the
references will have a name assigned to them.

For both the algorithms used, the outcome that fewer types lead to better results
was observed. However, we need to mention that this might be a result of having
higher nodes:types ratio in metamodels with fewer types than in those with more
types, especially in such approaches where learning is used. Further experimenta-
tion would be required to additionally check the impact of having more or fewer
nodes per type.

In this experiment, 10 metamodels were used in total from which a number of

120



Chapter 3. Type Inference using Classification Algorithms

muddles were generated. The metamodels were picked randomly from a reposi-
tory of 500 metamodels with no specific criteria other than that of having a varia-
tion in size (number of concrete meta-classes). The number of types in these varied
from 2 up to 19 as shown in Table 3.2. It would be of interest to experiment with
even larger metamodels, although our experience with working on muddles sug-
gests that having a flexible model with more than 20 different types is a marginally
realistic scenario.

Finally, the number of instances that the experiment was ran on is sufficient as it
complies with the standard 10-fold methodology used in the domain of classifica-
tion algorithms.

Regarding the approach using features based on the concrete syntax it was eval-
uated using one real muddle created as part of a side project. The fact that only one
muddle was examined presents a threat to validity, thus we experimented with the
intentional addition of noise in the diagram to check how this affects the prediction
accuracy. A strong correlation between the percentage of altered nodes and the ac-
curacy was identified providing evidence that this approach is more successful if it
is used under the assumption that modellers tend to use, to the extent possible, the
same graphical notation for elements of the same concept. We believe that this be-
haviour can be “unintentionally” replicated because of the “copy-paste" nature of
muddling (e.g., create an animal node once and then copy & paste the node when
you need it again). This way the same graphic notation is used for all the elements
of the same type reducing the effect of this threat.

3.7. Chapter Summary

In this chapter we proposed the use of classification algorithms for the type in-
ference in the initial steps of flexible MDE, providing support for moving from
partially typed example models to more complete ones. More specifically, we pro-
posed two different sets of features that can be used in classifying the elements,
based on the semantics and concrete syntax of example models. Both feature sets
were tested with two classification algorithms, Classification and Regression Trees
and Random Forests.

In order to test the proposed approach we ran experiments on a large number of
example models. The results suggest that even in large models with more than 10
concrete types, the prediction accuracy is significant. It varies based on the number
of nodes that are left untyped, the number of total candidate types and the classi-
fication algorithm used. Regarding the algorithm, the results show that CART has
already maximized the prediction performance for the feature signatures which
are based on the semantics and the use of an algorithm that belongs to the same
category does not improve the results. In contrast, using the concrete features sig-
natures we have seen an improvement in the accuracy.

121



Chapter 3. Type Inference using Classification Algorithms

For the Random Forests algorithm we used 7 different values for the number of
trees that the algorithm is trained with, identifying a point (i.e., 50 trees for features
based on semantics and 250 trees for concrete features) after which the prediction
accuracy reaches a plateau. Finally, we calculated the importance of each variable
in both algorithms for all the 9 features proposed as part of this work.

122



CHAPTER 4
Type Inference using Constraint

Programming

4.1. Introduction

In flexible MDE approaches, the language engineering process starts with the defi-
nition of example models [5,23,29]. These example models help language engineers
better understand the concepts of the envisioned DSL and can be used to infer draft
metamodels manually or (semi-)automatically. This can eventually lead to the defi-
nition of the final metamodel. In this fashion, a richer understanding of the domain
can be developed incrementally, while concrete insights (e.g., type information) per-
taining to the envisioned metamodel are discovered.

In Chapter 3, an approach to tackle type omissions from nodes of example mod-
els was proposed. The algorithm is trained on the elements of the example models
without requiring the existence of a draft metamodel. In this chapter a novel ap-
proach to addressing the challenges associated with type omissions, but this time
taking into account the draft metamodel is proposed based on Constraint Program-
ming (CP) principles. Thus, this approach can be applied in scenarios where a draft
metamodel is already inferred. As described in Section 1.1.1, the inference of draft
metamodels based on the knowledge of the domain acquired till that point from
the example models is possible. This iterative and incremental process, depicted
in Figure 1.1, helps in the development of a richer understanding of the domain.
In the approach presented here, the syntax and the semantics defined in the draft
metamodel are transformed into constraints that are then applied to the example
models to reduce the number of possible types of untyped nodes.

The requirement of a draft metamodel is a restriction of our approach comparing
with the type inference approaches used in metaBUP [5] and Flexisketch [6]. How-

123



Chapter 4. Type Inference using Constraint Programming

ever, our approach does not rely on the concrete syntax of the example models as
the aforementioned approaches do. In that way, language engineers and domain
experts are not required to have the concrete syntax in mind when expressing the
concepts of the domain. In addition, our approach guarantees that the correct type
will be in the set of possible types returned to the user; the Flexisketch [6] approach
returns the most similar types, but not necessarily the correct ones.

The approach proposed here is also close to the one presented in [108] that uses
CSP principles in partial models. Compared to [108] our approach is different in
two important points. The first is that [108] requires the type of each element to
be defined, otherwise the element is ignored. Secondly, their approach produces
only one possible solution that fulfils the rules of the CSP. Our approach calculates
and returns all the possible solutions to the CSP and the language engineer picks
the correct one that represents the envisioned DSL. By calculating all the possible
solutions, we actually identify all the possible values (types) from the domain (all
the available types) each element can take without violating the rules imposed by
the metamodel. The same differences exist with the approach proposed in [145]
which uses CSP principles to validate EMF models. Their approach requires the
types of the elements to be defined and returns only one solution to verify that the
model is valid.

The rest of the chapter is structured as follows. Section 4.2 includes an overview
of the proposed approach. In Section 4.3 the CP algorithm used for type inference
is described in detail followed by the algorithm used to transform the draft meta-
model and the example models into a CSP. In Section 4.4, an empirical evaluation of
the performance of the proposed approach is conducted. The results of running the
experiments are discussed in Section 4.4.2 from both a quantitative and qualitative
perspective. Any threats to experimental validity and limitations of the proposed
approach are discussed in Section 4.5.

Note: The technical work described in Section 4.3.1 was carried out in collaboration

with Dr. Robert Clarisó from the IT, Multimedia and Telecommunication Depart-

ment, Universitat Oberta de Catalunya, Barcelona, Spain. Parts of Section 4.3.1 of

this chapter were written by Dr. Robert Clarisó for [19] . My contributions in the

work described in Section 4.3.1 are the definition of the problem representation, the

variables, the domain and the representation of the results. In addition, a working

version of the constraints and the solver was implemented in SWI-PROLOG [144]

and handed to Dr. Robert Clarisó who produced a refined version that avoids re-

dundant computations using ECLiPSe [14], and is the one used in the evaluation of

this work.

124



Chapter 4. Type Inference using Constraint Programming

4.2. Type Inference

In this section the proposed approach for type inference in flexible MDE using CP
principles is presented. An overview is given in Figure 4.1.

Figure 4.1.: An overview of the proposed approach for type inference for example
models defined as part of flexible MDE approaches using constraint
programming principles.

The approach starts with the language engineers having example models drawn
using a flexible modelling approach (step 1 ). This may involve iterative changes
and updates to the example models, after which enough knowledge is acquired for
the production of a first draft version of the DSL’s metamodel (step 2 ). This can
be done either manually, or automatically using one of the approaches presented in
Section 2.4. As described in Section 1.1.1, the example models may have nodes that
are left untyped. At this stage, the draft metamodel might be a partial one, which
only describes the concepts that are defined in the example models. Thus this ap-
proach works under the Closed World Assumption (CWA) [163]. The language engi-
neer may want to continue working on the example models by introducing new or
evolved concepts. This is an iterative process: new concepts can be introduced in
the example models, and the metamodel could be updated until a final version is
ready. During each iteration, when a stable but incomplete metamodel is defined,
the proposed approach can be used to automatically assess the example models
and the metamodel to provide suggestions for the nodes that were left untyped to
facilitate the engineers having complete models so they can easier proceed to the
next iteration. This is done in step 3 (Figure 4.1). More specifically, a custom-
made script analyses the example models and the draft metamodel and produces a
set of constraints using model-to-text transformations. This auto-generated file can
be consumed by a constraint solver (e.g., ECLiPSe [110]) which suggests the possi-
ble types for each node (step 4 ). More details about the CSP algorithm and the
scripts responsible for the automatic transformation of the example models and
metamodels to a CSP are given in Sections 4.3.1 and 4.3.2 respectively. Once the

125



Chapter 4. Type Inference using Constraint Programming

type suggestions have been generated, language engineers can pick the correct type
from those suggested (if there is more than one) and assign it to the node.

The approach relies on the assumption that language engineers have acquired
enough knowledge from the example models to come up with a draft metamodel
that describes the envisioned DSL. Thus, it is important to highlight that in con-
trast with our approach presented in Chapter 3, this work requires the existence
of a draft version of a metamodel. Beyond the requirement for a metamodel, an-
other important difference from the approach presented in Chapter 3 is the fact
that in this approach, the correct type for each node is always included in the set
of suggested types. In the previous work, the suggested type is not guaranteed to
be the correct one. A trade-off for that is the fact that there might be more than
one possible type suggested for each node while in the previous there was always
one type returned, not always the correct one though. In addition, although the
approach guarantees that the correct type will be included in the set of possible
types returned, this does not mean that all the types returned for a node can be
combined validly with all the types returned for another node as constraints may
induce conflicting typing configurations.

Currently the errors of interest (i.e., type omissions) are eliminated manually by
engineers by selecting an appropriate type from a set of possible types. That means,
that if in the draft metamodel there areN concrete types, the language engineer has
N options for each untyped element. Following this practice one does not benefit
from information that exists in the draft metamodel and that could possibly help
in reducing the number of possible types for a specific node. For example, if in the
metamodel it is defined that nodes of “Type 1” can only be connected with nodes
of “Type 2”, then if an untyped node is connected with a node of “Type 2”, it can be
inferred that the type of the missing node is “Type 1”. An advantage of that second
approach is that the search space for the possible types suggested to the language
engineer can be reduced from N possible types to M , where M ∈ [1, N ].

4.3. The Constraint Satisfaction Problem

4.3.1. CSP Formalisation

In this section we describe how the type assignment problem is formalized as a
CSP. A CSP is characterized by three elements:

1. The set of variables involved in the problem.

2. The domain of each variable (i.e., the set of potential values it can take).

3. The constraints over the variables that define valid value assignments.

A solution to a CSP is an assignment of values to variables such that (a) each vari-
able is given a value within its domain and (b) all constraints are satisfied by the

126



Chapter 4. Type Inference using Constraint Programming

assigned values [164]. Depending on the CSP, there may be no solution (unsatisfi-
able problem [165]), a single solution or more than one.

Algorithm 4 Computing feasible types.

1: {Step 1: Construct the CSP}
2: N ← set of untyped nodes in Model
3: T ← set of non-abstract types in MetaModel
4: V ars← N {Define variables}
5: for all v ∈ V ars do
6: Domain(v)← T {Define domains}
7: end for
8: Constraints← ∅ {Define constraints}
9: for all edge ∈Model do

10: Constraints← Constraints ∪ compatibleAssociation(edge,MetaModel)
11: end for
12: for all node ∈Model do
13: for all association ∈MetaModel do
14: Constraints = Constraints ∪multiplicityBounds(node, association)
15: end for
16: end for
17:
18: {Step 2: Find feasible types by iteratively solving the CSP}
19: for all v ∈ V ars do
20: for all d ∈ T do
21: Feasible[v,d]← false
22: end for
23: end for
24: for all v ∈ V ars do
25: for all d ∈ Domain(v) such that Feasible[v,d] = false do
26: solution← solveCSP (V ars,Domain,Constraints ∪ (v = d))
27: if solution exists then
28: for all v′ ∈ V ars do
29: Feasible[v′, value(v′, solution)]← true
30: end for
31: end if
32: end for
33: end for
34: return Feasible

Considering these, type assignment in flexible modelling approaches can be for-
malized as the following CSP, as described in Step 1 of Algorithm 4:

1. Variables: There is one variable per untyped node in the model, representing
the type of that node (line 4).

2. Domain: Untyped objects may be assigned any non-abstract type in the meta-
model. Thus, the domain of each variable is all the concrete types (line 6).

127



Chapter 4. Type Inference using Constraint Programming

3. Constraints: Edges among nodes define some restriction on the valid type
assignments (lines 8-16):

a) All edges must belong to an association defined in the metamodel (line
10), i.e., the types of source and target nodes must be compatible with
some association.

Formalization: Let 〈obj1, obj2〉 be an edge between two objects
obj1 and obj2 in the model M . Any object obj is an instance of
class type(obj) in the metamodel MM . Pairs of classes may be
related through associations, e.g., 〈tA, tB〉, or inheritance hierar-
chies. Let super(t) denote the set of direct superclasses of a class t
and let ancestors(t) denote the set defined inductively as follows:
t ∪ ancestors(super(t)).
Given an edge e and an association as, the edge is type-compatible
with the association if the following holds:

compatible
(
e = 〈obj1, obj2〉, as = 〈tA, tB〉

)
:=

(t1 = type(obj1)) ∧ (t2 = type(obj2)) ∧
(tA ∈ ancestors(t1)) ∧ (tB ∈ ancestors(t2))

Then, the constraint can be expressed as follows:

∀edge ∈M : ∃assoc ∈MM : compatible(edge, assoc)

b) Edges must respect the multiplicity constraints of associations defined
in the metamodel (line 14), i.e., the number of edges corresponding to a
given association must be between the lower and upper bound.

Formalization: Let ltas (respectively utas) denote the lower (upper)
bound on the multiplicity of role t in association as.
Let from(obj, as) (respectively, to) denote the number of edges in
the model M that have object obj as a source (resp. target) and are
compatible with association as:

from(obj, as) :=
(
#e = 〈obj, obj′〉 ∈M : compatible(e, as)

)
to(obj, as) :=

(
#e = 〈obj′, obj〉 ∈M : compatible(e, as)

)
Then, the constraint can be expressed as follows:

∀obj ∈M : ∀as = 〈tA, tB〉 ∈MM :

(ltAas ≤ from(obj, as) ≤ utAas) ∧ (ltBas ≤ to(obj, as) ≤ utBas )

128



Chapter 4. Type Inference using Constraint Programming

A solution to this CSP is a type assignment that conforms to the metamodel. We
are not interested in a single type assignment but rather the set of potential types
for each object for which there is a valid type assignment. Therefore, we will need
to solve this CSP several times, once per each pair 〈variable, type〉. The existence of
a solution to this CSP means that the type can be assigned to that variable without
violating any constraints. Step 2 of Algorithm 4 describes this procedure.

To avoid redundant computations, if a pair 〈variable, type〉 has already appeared
in the solution to any of the previous CSPs (line 29), then it can be skipped (line 25)
as we already know that this type can be assigned to that variable. Thus, consid-
ering a model with n untyped objects and a metamodel with m non-abstract types,
the number of CSPs that need to be solved in the worst-case can be calculated as
follows. The total number of 〈variable, type〉 pairs is n · m. The solution to the
first CSP will yield one potential type assignment per variable, i.e., n pairs. Hence,
Algorithm 4 will require solving at most (n ·m)− n+ 1 CSPs. The search space of
each CSP has nm potential solutions, even though in practice the majority of CSPs
can be solved without exploring the entire search space.

This algorithm was implemented in the ECLiPSe [14,110] which uses a PROLOG-
based syntax. In principle any other PROLOG-based CSP solver could be used. The
finite domain (fd) library 1 has been used as the underlying constraint solver.

Listing 4.1 shows a (partial) example PROLOG file for the draft metamodel and
the flexible example model that appear in Figure 4.1. In lines 3-5, the relationships
(references and aggregations are treated the same way) appearing in the metamodel
are listed with their cardinalities using the can_have() fact. Its signature consists of
the name of the class that owns the reference followed by the type of the class the
reference points to. Finally, the upper and lower bounds of the reference are passed.
For technical reasons, the many (*) upper limit is set to the value 500 but this could
change to anything thought to be a large enough number for each domain. In lines
8-10, all the classes (both abstract and concrete) are instantiated as objects in the
problem by creating an object() fact for each of them. In lines 13-15, concrete classes
are defined by using a concrete() fact. In lines 17-19, the inheritance relationships
between the classes are defined. The fact for the inheritance relationship is direct() in
our solution. Its parameters are the name of the subclass and the name of the first-
level superclass. If the type extends more than one other classes, separate direct()
facts are created. This concludes all the information needed from the metamodel to
construct the CSP.

The rest of the file includes facts about the example model. In lines 24-26, each
node is assigned with a type using its distinctive id (in muddles each node by de-
fault gets a unique id). This is done by using a fact which we name as is_type(). Its
arguments are the id of the node and its type. If the type is unknown, meaning that
the node has been left untyped, then an "_" underscore is used, prompting the algo-

1http://eclipseclp.org/doc/bips/lib/fd/index.html

129

http://eclipseclp.org/doc/bips/lib/fd/index.html


Chapter 4. Type Inference using Constraint Programming

rithm to assign any valid type to this node. Finally, the edges between the nodes in
the muddle are defined in lines 29-31 using the unique ids of the source and target
nodes as parameters in the fact has_a().

1 // Information from the metamodel
2 // R e l a t i o n s and c a r d i n a l i t i e s between types
3 can_have ( zoo , animal , 0 , 5 0 0 ) .
4 . . .
5 can_have ( l ion , tamer , 1 , 1 ) .
6

7 // Every c l a s s ( a b s t r a c t and concre te ) i s an o b j e c t in the problem
8 o b j e c t ( zoo ) .
9 . . .

10 o b j e c t ( l i o n ) .
11

12 // Define which c l a s s e s are concre te
13 concre te ( zoo ) .
14 . . .
15 concre te ( l i o n ) .
16

17 // I n h e r t i a n c e r e l a t i o n s h i p s
18 d i r e c t ( tamer , person ) .
19 . . .
20 d i r e c t ( t i g e r , animal ) .
21

22 // Information from the example model
23 // The type of each node . I f not known then " _ " i s used
24 i s _ t y p e ( 1 , zoo ) .
25 . . .
26 i s _ t y p e ( 4 , _ ) .
27

28 // Links between the nodes
29 has_a ( 1 , 2 ) .
30 . . .
31 has_a ( 5 , 6 ) .

Listing 4.1: An example PROLOG file automatically generated based on the draft
metamodel and the flexible example model shown in Figure 4.1.

A straightforward approach that calculates the possible types that each type can
be connected with could also be used to solved the same problem. This approach
would be faster however it would have less predictive power. Consider the ex-
ample presented in Figure 4.2. In the example model (see Figure 4.2b) the set of
possible types using the aforementioned straightforward way for the node labelled
as “4:?" would be “C”, “D” as the metamodel (see Figure 4.2a) indicates that nodes
of type “B” should be connected with nodes of type “C” or of type “D”. However,

130



Chapter 4. Type Inference using Constraint Programming

using the CSP method, the algorithm will identify that the node labelled “3:?" could
only be of type “C” as nodes of type “A” can be connected only with nodes of type
“C”. This results to the propagation of this decision to the suggested types for node
“4:?", forcing prediction “C” to be removed from the set of the possible types as this
would violate the rule that nodes of type “B” should be connected with no more
than one nodes of type “C" and thus “D" becomes the only possible solution for
node “4:?". This propagation of solutions in the scenario where a CSP is formu-
lated leads to improved prediction performance and was selected over the straight
forward approach.

(a) Example Metamodel (b) Example Model

Figure 4.2.: Example where a simple direct computation method of the possible
connected types has less performance compared to the CSP approach.

4.3.2. Model and Metamodel to CSP Transformation

In this section, the algorithms that are used to transform the draft metamodel and
the example model into the CSP are presented. In our approach, the algorithms
were implemented in the Epsilon Generation Language (EGL) [65]. Using EGL, the
CSP code is automatically generated and printed to a PROLOG file. Algorithm 5
presents the transformation of the rules contained in the draft metamodel to the
necessary CSP rules while Algorithm 6 is the equivalent transformation for the
example model.

In step 1 of Algorithm 5 (lines 1-25), all the data from the metamodel, like the
concrete and abstract classes and references with their multiplicities, are collected
and stored into sets and maps. These sets and maps are instantiated (are empty at
this point) in lines 2-3. Then the algorithm iterates through all the classes (abstract
and concrete) of the draft metamodel (lines 5-25). The set containing the names of
all the types is populated with the name of the current class (line 6). If a class is
not abstract, the set containing the types of the concrete types is amended with the
type of the current class (line 8). Then the algorithm iterates through the references
of the current class (lines 11-24). The name of the current class and the type the
reference points to are stored to two variables in lines 12 and 13, respectively. The
lower and upper bounds of the reference are also stored (line 14).

131



Chapter 4. Type Inference using Constraint Programming

Algorithm 5 Transforming a metamodel to a CSP.

1: {Step 1: Collect concrete and abstract classes names and their multiplicities}
2: AllTypes,AllConcreteTypes← {}
3: ReferenceLowerBoundsMap,ReferenceUpperBoundsMap← {} 7→ {}
4: N ← set of all classes in metamodel
5: for all n ∈ N do
6: AllTypes← n
7: if n not abstract then
8: AllConcreteTypes← n
9: end if

10: R← set of all references of this class
11: for all r ∈ R do
12: SourceName← n
13: TargetName← Name of the class this reference points to
14: LowerBound, UpperBound← Lower and upper bounds of the reference
15: AlternativeName← SourceName_2_TargetName
16: if AlternativeName 6∈ ReferenceLowerBoundsMap then
17: ReferenceLowerBoundsMap← (AlternativeName,LowerBound)
18: ReferenceUpperBoundsMap← (AlternativeName,UpperBound)
19: else
20: OldLowerBound,OldUpperBound← Already stored bounds
21: NewLowerBound← OldLowerBound+ LowerBound
22: NewUpperBound← OldUpperBound+ UpperBound
23: end if
24: end for
25: end for
26:
27: {Step 2: Produce the CSP rules and facts based on the above collected data}
28: for all r ∈ ReferenceLowerBoundsMap do
29: SourceType← String before “_2_”
30: TargetType← String after “_2_”
31: LowerBound, UpperBoung ← Stored bounds
32: if n ∈ AllConcreteTypes then
33: Print can_have(SourceType, TargetType, LowerBound, UpperBound)
34: Print concrete(n)
35: S ← Super types of n
36: for all s ∈ S do
37: Print direct(n, s)
38: end for
39: end if
40: end for
41: for all t ∈ AllTypes do
42: Print object(t)
43: end for

In line 15, an alternative name for the reference is created. This is done to include
scenarios where a class points to another class two or more times. Consider the
example shown in Figure 4.3. A reference named “cures” and a reference named
“owns” might be part of a “Doctor” class pointing to a “Animal” class in a meta-

132



Chapter 4. Type Inference using Constraint Programming

(a) Draft metamodel (b) Example model

Figure 4.3.: An example on amended multiplicities for the construction of the ap-
propriate CSP rules.

model (see Figure 4.3(a)). In the example model (see Figure 4.3(b)), the domain
expert has created one “Doctor” node and three “Animal” nodes, one of which is
for the “owns” relationship. There are at least two approaches for constructing a
CSP in this case. The first requires the CSP to relay on the types on the edges of the
example model and construct different rules for the two different references (i.e.,
one rule for the “owns” and one rule for the “cures” references) with their appro-
priate multiplicities. The second does not require the types of the edges to be set
in the example model as they are ignored in the CSP. In this second approach, one
rule is created for denoting that “Doctors” are connected with “Animals”. Thus,
all the references in the draft metamodel between the same classes are combined
to one. We construct this “super-reference” by amending the name of the source
class with the name of the target class separated by the “_2_” string. For example,
both the “owns” and “cures” references are now represented as one with the name
“Doctor_2_Animal” reference. The lower bound (or upper bound) of this “super-
reference” is calculated by aggregating the lower bounds (or upper bounds) for the
two (or more) references. This is done in lines 16-23 of Algorithm 5. A unique rule is
created for this “super-reference” in the CSP and stored in the available references.
The sub-references consisting the “super-references” are discarded.

The rules of the CSP are printed in the PROLOG file in step 2 of the Algo-
rithm 5 (lines 28-43) based on the data collected in step 1. The algorithm iterates
though all the created references and extracts the source and target types (lines 29-
30), while it gets the lower and upper bounds (line 31) previously calculated. A
“can_have()” rule is printed for each reference (line 33). For the example of Fig-
ure 4.3 a “can_have(doctor, animal, 1, 6)” rule is created. If the class is concrete,
the concrete() fact is created for this class (line 34). Inheritance relationships are
modelled using the direct() fact (line 37). Finally, for implementation related rea-
sons, each type in the metamodel (concrete or abstract) is modelled as an object by
creating an object() fact in the CSP (lines 41-43).

At this point the algorithm has printed all the necessary rules and facts related

133



Chapter 4. Type Inference using Constraint Programming

to the draft metamodel into the CSP file (lines 1-20 in the example file shown in
Listing 4.1).

The process continues with transforming the example model into facts in the CSP
by using Algorithm 6. The algorithm iterates through all the elements (lines 2-15);
If an element is a node, then its type and id are stored (lines 4-8). If it is untyped, the
“_” PROLOG wildcard is used to represent its type as described in Section 4.3.1.
The is_type() fact is printed (line 9). If the element is an edge then the ids of the
source and target nodes are stored (lines 11-12) and a has_a() fact is created (line
13).

At this point, the facts for the example model are printed and amended in the
already created metamodel rules and facts (lines 22-31 in the example file shown
in Listing 4.1). The CSP is now created and ready to be solved. Functions to solve
the CSP using the ECLiPSe Constraint Logic Programming System [14, 110] are
amended to the end of the file and are executed. The solution is saved in a text file,
as described in the following Section 4.4.

Algorithm 6 Transforming a muddle to a CSP.

1: E ← set of all elements in a muddle
2: for all e ∈ E do
3: if e is Node then
4: NodeType← Type of the node
5: if NodeType is Untyped then
6: NodeId← The id of the node
7: NodeType← “_”
8: end if
9: Print is_type(NodeId,NodeType)

10: else if e is Edge then
11: SourceNodeId← Source node id
12: TargetNodeId← Target node id
13: Print has_a(SourceNodeId, TargetNodeId)
14: end if
15: end for

4.4. Experimental Evaluation

In this section, the experimental evaluation to assess the performance of the pro-
posed approach is presented. The results and a discussion on both the quantitative
and qualitative findings are also given. For the purpose of these experiments, the
Muddles [4] approach will be used to express the example models. In principle,
any other flexible modelling approach which provides the following minimal set
of requirements could be used:

• provides a mechanism to extract the types of the (typed) nodes in the example
models

134



Chapter 4. Type Inference using Constraint Programming

• provides a mechanism to extract the source and target nodes and multiplicities
of the references/containments in the example models

The following are the research questions looking for answers through the exper-
iment that is presented in the following section:

• RQ1: How much is the search space for the correct type decreased by using
the approach?

• RQ2: How much is the search space for the correct type decreased by using
the approach if isolated nodes are not taken into account?

By the term search space, we refer to the number of candidate types the engi-
neer has to pick from for an untyped node. Related to the hypothesis presented in
Section 1.2, both these research questions will reveal if the approach offers, in a rea-
sonable amount of time (no more than a few minutes), an acceptable reduction to
the set of candidate types so it can feasibly be applied to a flexible MDE approach.
Regarding RQ2, more details on the isolated nodes and why it is important to evalu-
ate the approach on these scenarios as well, are presented in the following section
that describes the experimentation process.

4.4.1. Experiment

In this section, the experiment run to evaluate the proposed approach is presented.
An overview of the experimentation process is given in Figure 4.4.

Figure 4.4.: An overview of the experimentation process for type inference using
constraint programming principles.

The proposed approach was applied to a number of randomly generated mod-
els, each of which is an instance of one of the ten metamodels that were selected

135



Chapter 4. Type Inference using Constraint Programming

in this experiment. The metamodels are the same used in evaluating the approach
based on classification algorithms (see Chapter 3). These metamodels represent the
draft/intermediate metamodel that the language engineers came up with from sets
of muddle drawings, or inferred (semi-)automatically using one of the approaches
presented in Section 2.4. For each of the metamodels, 10 models were randomly
generated using the “Crepe” approach proposed in [155] (step 1 in Figure 4.4).
These 100 randomly generated models are of varying size. The values of the at-
tributes of the different classes of each model were randomly picked from a pool
of characters/integers, as they do not affect the performance of the proposed ap-
proach. The fact that there is no muddles corpus available led us to the decision
of using synthetic muddles based on randomly generated models. Any threats to
validity of that decision are discussed in Section 4.5.

In step 2 the randomly generated models are transformed into muddles using
the custom built M2T transformation of Algorithm 3 presented in Chapter 3. At this
point, the constructed muddles contain nodes that have all their types assigned.

In order to simulate the scenario of having muddles with untyped nodes, a script
runs on the example models and randomly deletes types from nodes (step 3a and

3b ). It is of interest to identify whether the proportion of the untyped nodes
affects the performance (in terms of the ability to infer the correct type) of the ap-
proach. Thus, 7 different sampling rates from 30% to 90% were selected. A 30%
sampling rate means that 30% of the nodes had a type assigned to them whereas
the rest 70% is the set of the nodes that are left untyped. The selected rates are the
same as the ones used in the previous approach (see Chapter 3). In order to con-
trol for sampling bias which can affect the results positively or negatively (e.g., the
type of the nodes picked for a simulated type deletion are those whose type can be
easily predicted), the type deletion was performed 10 times for each sampling rate
for each muddle. At the end of this step, a corpus of 7,000 different muddles was
created (10 metamodels x 10 models = 100 x 7 sampling rates = 700 x 10 sampling
repetitions = 7,000). In addition, we considered the scenario where some nodes are
not only left untyped but are also left isolated (i.e., are not connected with any other
node). Our approach cannot currently infer the type of such orphan nodes as there
is no type assigned to them and they have no relationship with any other node

on the diagram. For the second experiment (step 3b ), these nodes were removed
from the muddle before commencing the prediction mechanism.

A file that contains the constraints associated with a model-metamodel pair is
used by the ECLiPSe solver to identify the possible types for each untyped node.
In step 4 , the PROLOG files for each of the 7,000 muddles (and the 7,000 mud-
dles with no orphan nodes) are automatically generated. An extract from such a
file is shown in Figure 4.1. These files are consumed by the ECLiPSe solver (step
5 ) and the results are stored in a text file. A single text file is generated for each

136



Chapter 4. Type Inference using Constraint Programming

muddle and contains the mapping between the id of each node and the set of all
the suggested types. An example is shown in Listing 4.2.

1 : [ zoo ]
. . .
4 : [ fan ]
5 : [ zoo , doctor ]
. . .
1 2 : [ zoo , tamer , fan , doctor ]
1 3 : [ zoo , doctor ]
1 4 : [ doctor ]
. . .
1 5 : [ fan ]
1 6 : [ t i g e r , l i o n ]
. . .
2 0 : [ t i g e r , l i o n ]

Listing 4.2: An example file containing the returned results solving a CSP for type
inference.

The performance of the approach is calculated by comparing the real type of each

node and the types that are contained in the set of suggested nodes (step 6b ). The
real type of each node for each muddle is kept in a text file before commencing the
type deletion (step 6a ) to facilitate the comparison. The measures that are used
in this work to assess the performance of the approach are discussed in the next
section (Section 4.4.2) along with the results.

4.4.2. Results & Discussion

Before presenting the quantitative and qualitative results of running the experi-
ment we provide an insight into the random models used as input. Table 4.1
summarises the corpus of metamodels and the generated models used for the ex-
periment. More specifically, the number of concrete types (metaclasses) for each
metamodel is given (column “#Types"). The minimum and maximum number of
instantiated classes for the 10 generated models of each metamodel are provided
in columns “Min" and “Max", respectively, followed by the average number of el-
ements in these 10 models (column “Average"), for both the experiments with and
without including the orphan nodes. As shown in the data, the smallest meta-
model is the one used to describe a university professor, consisting of 4 concrete
types. The largest metamodel is that of describing Wordpress CMS websites with
19 different metaclasses.

Performance Measurement

The purpose of the proposed approach is to identify the set of types that an un-
typed node can have and reduce the number of these suggested possible types by

137



Chapter 4. Type Inference using Constraint Programming

Table 4.1.: Input data summary table for the experiment using constraint program-
ming principles.

With-Orphans No-Orphans

Model Name #Types
Min
Ele-

ments

Max
Ele-

ments

Average
#Elements

in instances

Min
Ele-

ments

Max
Ele-

ments

Average
#Elements

in instances
Professor 4 46 71 56.3 37 54 45.2

Chess 5 41 74 57.8 18 40 28.9
Zoo 5 24 76 35.8 22 63 31.4

Ant Scripts 6 40 79 62.2 38 69 53.9
Use Case 7 41 80 52.7 35 68 45.6

Conference 7 43 80 64.5 36 61 50.7
Bugzilla 7 41 80 59.6 22 55 36.4

Cobol 12 23 30 25.9 22 30 25.2
BibTeX 14 40 79 64.4 31 58 47.2

Wordpress 19 22 45 35.7 19 42 31.9

applying the constraints that the draft metamodel includes. When the metamodel
is not used for the type inference, the total number of possible types that a node can
have is the number of the concrete types that appear in the metamodel. In the Zoo
example of Figure 4.1, for instance, the number of possible types for each untyped
node, is 5. An identified measure of the performance of the proposed approach is
the following:

AverageSavingsPercentagePerMuddle =

∑n
i=1(1−

TSTi
TCT )

n
× 100 (4.1)

where n is the total number of nodes that are left untyped in the example model,
TSTi stands for the Total Suggested Types returned by the CSP algorithm for the
i-th node, while TCT stands for the Total Concrete Types in the metamodel. In
the Zoo example of Figure 4.1, the Average Savings Percentage value is 73.3% as
the individual savings values for nodes 4 and 7 are 0.8 (1 - (1/5)) and for node 6
is 0.6 (1- (2/5)). Thus, the average in this example model with 3 missing nodes is
(0.8 + 0.8 + 0.6)/3 = 0.733. This value, which represents the performance of the
approach, is interpreted as the reduction in effort required by the language engineer
to pick the correct type for of each of the nodes that was left untyped. Thus, the
greater the value the better the performance of the approach. A value of 0 means
that the algorithm offered no savings at all because the suggested types are equal
to all the possible types included in the metamodel.

138



Chapter 4. Type Inference using Constraint Programming

Quantitative Analysis for With-Orphans Experiment

Table 4.2 presents the results of the average total savings for each of the 10 meta-
models used in the experiment, for the 7 different sampling rates. The results are
averaged as each metamodel had 10 random models generated. Moreover, for each
sampling rate the type deletion was performed 10 times to avoid the case of a lucky
or an unlucky sampling. For example, the highlighted value of 67.39 means that the
average savings percentage for 100 example models (10 models x 10 type deletion
sessions for each) which have 60% of their types known for the Usecase metamodel,
is 67.38%. Three metamodels are marked with asterisks. These are the metamodels
for which not all the 700 runs were finished in reasonable time due to large states-
pace. The reasons behind that and more details are discussed in the qualitative
analysis subsection.

Table 4.2.: Average savings results table (With-Orphans)
Average Total Savings Percentage for

Different Sampling Rates (With-Orphans)
Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Profesor 4 63.18 63.09 62.93 63.12 63.36 63.33 63.13 63.161 0.39
Chess 5 39.96 39.78 40.34 40.04 40.10 41.61 38.49 40.045 0.11

Ant* 6 60.58 62.29 61.90 63.09 62.54 62.61 61.98 62.141 0.46
Zoo 6 69.05 68.38 68.91 68.54 69.25 68.75 69.60 68.925 0.43

Bugzilla 7 19.67 18.98 19.90 20.19 19.68 19.21 18.93 19.510 -0.29
Conference 7 67.11 67.79 67.27 67.76 67.80 66.88 67.23 67.406 -0.14

Usecase 7 67.34 67.36 67.89 67.39 67.35 67.33 67.65 67.473 0.07
Cobol* 12 75.28 75.70 75.72 76.19 76.04 75.81 78.35 76.156 0.86
Bibtex 14 49.28 49.02 49.48 48.85 49.74 48.76 48.70 49.120 -0.54

Wordpress* 19 79.12 80.18 80.77 82.08 81.91 80.24 81.83 80.876 0.57
Avg. 59.06 59.26 59.51 59.72 59.78 59.45 59.59

Cor. 2 0.39 0.39 0.39 0.39 0.39 0.39 0.39

By assessing the raw results, the average savings for the experiment vary from
19.51% (for the Bugzilla metamodel) to 80.88% (for the Wordpress metamodel). For
most of the metamodels in the experiment, the average savings percentage varies
between 60% to 70% which is arguably a significant amount of effort saved. This
means that about two thirds of the available types were pruned, returning a signif-
icantly smaller set of possible types to the language engineer to pick from for each
of the untyped nodes.

It is of interest to identify if the proportion of untyped nodes in the example
model and the size of the metamodel (i.e., number of the available types for sug-
gestion) affect the savings score. Correlations “Cor. 1” and “Cor. 2” below express
the above two questions.

Cor. 1: How strong is the dependency between the sampling rate and the average
savings score?

139



Chapter 4. Type Inference using Constraint Programming

Cor. 2: How strong is the dependency between the number of types in a meta-
model (size of metamodel) and the average savings score?

The correlation coefficient values for each of the 10 metamodels for the first and
second question are given in column “Cor. 1” and row “Cor. 2” of Table 4.2, respec-
tively. From these values, two conclusions can be safely made:

1. The savings percentage is not correlated to the size of the metamodel. There
are large metamodels (i.e., Wordpress, Cobol) where the scores are high while
in others (i.e., BibTeX) the score is significantly lower. In the same manner,
there are small metamodels (i.e., Professor, Zoo, Ant Scripts) where the sav-
ings are high while in other small metamodels (i.e., Chess) the results are
lower. The same applies to the mid-sized metamodels (i.e., Use Case and
Conference vs. Bugzilla). The correlations coefficient values verify this visual
observation.

2. The savings are not affected by the sampling rate. That means that no matter
the number of nodes left untyped, the performance remains the same. The
correlation coefficient values are fluctuating a lot based on the metamodel.
There is negative correlation starting from -0.54 for the Bibtex metamodel,
going up to 0.86 positive correlation for the Cobol metamodel. Even in cases
where the correlation is strong, the actual changes in savings are very small
to be considered a result of the change in the sampling rate rather than the
random sampling itself. This is an expected result as the CSP algorithm used
is not based on machine learning techniques. Hence, the amount of knowl-
edge that is available (i.e., the number of known nodes) does not affect its
performance. This behaviour was identified in the previous proposed ap-
proach presented in Chapter 3 where there was a significant improvement in
the prediction scores in higher sampling rates.

As described in Section 4.2, one of the differences of this work with the one based
on classification algorithms (see Chapter 3) is the fact that the algorithm returns a
set of suggested types for each node rather than a prediction for the most probable
one. The trade-off is that the correct type is guaranteed to be in the list of the sug-
gested types. In the “With-Orphans" experiment, there were about 155,000 nodes
left untyped. For all these nodes, the list of the suggested types included the correct
type verifying the previous argument.

It is of interest to assess how many types are returned as suggestions for each
of the nodes that are left untyped. Figure 4.5 presents a histogram to help explore
this. For 38% of the nodes, there is exactly one type returned. This is very important
because for more than the one third of the nodes this approach automatically pre-
dicted the correct type of the node; there was no need of verification or extra help
by the language engineer. Although in the type inference approach based on classi-
fication algorithms about 80% of the node types were predicted correctly, there was

140



Chapter 4. Type Inference using Constraint Programming

Number of returned predictions

P
ro

po
rt

io
n 

(in
 %

)

38%

24%

5% 5%

9%

6% 6%

0%

7%

0% 0% 0% 0% 0% 0% 0% 0% 1%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0
10

20
30

40

Figure 4.5.: Histogram for the number of suggested types for each node that is left
untyped in the With-Orphans experiment.

no guarantee about the correctness of the prediction meaning that the language en-
gineer had to verify the prediction manually for each single node. In addition, by
analysing the same histogram, one can see that for about the two thirds (67%) of the
nodes, the algorithm suggests 3 or fewer types from which the language engineer
has to select the correct type reducing the amount of effort needed to a minimum.

Because some metamodels contain fewer types than the maximum values ap-
pearing in the histogram of Figure 4.5, separate histograms for each metamodel are
provided in Figure 4.6. For some metamodels like Ant, Profesor, Usecase, Zoo and
Wordpress, the returned results contain either one or two types for more than the
70% of the untyped nodes. This is very important, especially for larger metamodels
(e.g., Wordpress - see Figure 4.6(i)) because: a) the type can be assigned automati-
cally for more than half of the nodes; and b) the savings against the total possible
types of the metamodel are significant for about the one third of the rest where the
engineer has to pick between two possible types. In two metamodels (i.e., Chess
and Bugzilla), the savings cannot be considered as significant as for the rest. Espe-
cially in the Bugzilla metamodel (see Figure 4.6(c)), for 85% of the elements there
is no or small type pruning provided by the algorithm. For 39% of the untyped
nodes, the size of set containing the suggested nodes is equal to the number of
types the metamodel has (7) and for 46% only one type is removed from the set of
possible. Possible explanations for this behaviour are provided in the qualitative
analysis section.

141



Chapter 4. Type Inference using Constraint Programming

Ant (With Orphans)

Number of returned predictions

41%

32%

14%

0% 0%

13%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6

0

20

40

60

80

100

(a) Ant

Bibtex (With Orphans)

Number of returned predictions

10%

0% 0% 0%

27%

0% 0% 0%

63%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

(b) Bibtex

Bugzilla (With Orphans)

Number of returned predictions

15%

0% 0% 0% 0%

46%

39%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7

0

20

40

60

80

100

(c) Bugzilla

Chess (With Orphans)

Number of returned predictions

50%

0% 0% 0%

50%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5

0

20

40

60

80

100

(d) Chess

Cobol (With Orphans)

Number of returned predictions

37%

0%

27%

18%

12%

3% 3%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7

0

20

40

60

80

100

(e) Cobol

Conference (With Orphans)

Number of returned predictions

31% 31%

17%
21%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4

0

20

40

60

80

100

(f) Conference

Figure 4.6.: Number of returned predictions for each metamodel.

142



Chapter 4. Type Inference using Constraint Programming

Profesor (With Orphans)

Number of returned predictions

52%
48%

P
ro

po
rt

io
n 

(in
 %

)

1 2

0

20

40

60

80

100

(g) Profesor

Usecase (With Orphans)

Number of returned predictions

43% 42%

1% 2% 0% 0%

13%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7

0

20

40

60

80

100

(h) Usecase

Wordpress (With Orphans)

Number of returned predictions

56%

16%

9% 7%

0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

10%

P
ro

po
rt

io
n 

(in
 %

)

1 3 5 7 9 11 13 15 17

0

20

40

60

80

100

(i) Wordpress

Zoo (With Orphans)

Number of returned predictions

40% 40%

8%
12%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4

0

20

40

60

80

100

(j) Zoo

Figure 4.6.: Number of returned predictions for each metamodel (Continued).

Quantitative Analysis for No-Orphans Experiment

In this section, the results of running the experiment having the orphan nodes re-
moved are presented. A summary of the results is given in Table 4.3. As described
for the “With-Orphans” experiment, the table presents the average savings per-
centage for the 100 runs for each metamodel and sampling rate. For example, the
highlighted value of 72.99 in Table 4.3 means that for the Zoo metamodel, the sav-
ing percentage on average was 72.99% between the 10 random models instantiated
from it, when 60% of the nodes were typed (i.e., 40% left untyped).

The results suggest that among the different metamodels, the minimum perfor-
mance was in the Bugzilla (31.6%) and the maximum in the Wordpress metamodel
(90.43%).

143



Chapter 4. Type Inference using Constraint Programming

Table 4.3.: Average savings results table (No-Orphans)
Average Total Savings Percentage for

Different Sampling Rates (No-Orphans)
Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Profesor 4 66.29 66.40 66.50 66.32 66.32 65.89 67.46 66.453 0.18
Chess 5 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.000 NA

Ant 6 70.92 71.32 71.78 71.96 72.36 72.96 72.01 71.899 0.89
Zoo 6 73.07 73.18 73.14 72.99 73.68 73.52 73.89 73.353 0.71

Bugzilla 7 31.82 32.47 32.67 31.23 31.75 30.19 31.11 31.605 -0.79
Conference 7 74.04 73.98 73.55 73.69 73.93 74.12 74.26 73.939 0.43

Usecase 7 77.67 77.57 77.73 77.57 77.49 77.36 77.97 77.624 -0.14
Cobol 12 75.67 76.21 76.81 76.72 77.37 77.38 76.75 76.702 0.71
Bibtex 14 44.34 44.24 44.76 43.89 44.55 43.35 44.56 44.241 0

Wordpress 19 88.05 89.94 90.36 90.86 91.18 91.19 91.46 90.433 1
Avg. 68.19 68.53 68.73 68.52 68.86 68.60 68.95

Cor. 2 0.17 0.17 0.17 0.17 0.17 0.20 0.17

The same correlations defined in the “With-Orphans” experiment, are assessed
here, too. Regarding “Cor. 2” (see row “Cor. 2” in Table 4.3), the same behaviour
as in the “With-Orphans” experiment is identified: there is no correlation between
the size of the metamodel and the saving percentage. Regarding “Cor. 1”, we find
a large fluctuation among the different metamodels. In some, there is positive cor-
relation, meaning that fewer missing types lead to higher effort saving percentage,
whilst in other there is a negative correlation. That does not provide with evidence
that sampling ratio affects the performance of the proposed approach.

Number of returned predictions

P
ro

po
rt

io
n 

(in
 %

)

47%

24%

8%

2%
1%

7%

0% 0%

10%

0% 0% 0% 0% 0% 0% 0% 0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0
10

20
30

40
50

Figure 4.7.: Histogram for the number of suggested types for each node that is left
untyped in the No-Orphans experiment.

The histogram in Figure 4.7 shows the size of the returned set containing the
suggested types for each of the about 109,000 untyped nodes in the “No-Orphans”
experiment. For 47% of the nodes, there was only one type returned. Thus, a

144



Chapter 4. Type Inference using Constraint Programming

guaranteed correct type could be assigned automatically. Cumulatively for the 79%
of the untyped nodes the returned set contained 3 or less types, in this experiment.

Histograms containing the number of returned types for each metamodel are
given in Figure 4.8. The same behaviour with the “With-Orphans” scenario (see
Figure 4.6) is also identified here. For some metamodels (i.e., Ant, Profesor, Use-
case, Zoo, Wordpress), the savings are significant. Two more metamodels (i.e., Con-
ference and Chess) can be added to this list in the “No-Orphans” scenario. Espe-
cially for the latter (see Figure 4.8(d)), all the untyped nodes can be automatically
filled with their type as the size of the set containing the suggested type is 1 for
all the untyped nodes. Possible reasons for that are discussed in the comparison
section that follows. For the Bugzilla metamodel (see Figure 4.8(c)) there was some
improvement but still for three quarters of the untyped nodes the assistance pro-
vided is minimal.

Ant (No Orphans)

Number of returned predictions

47%

38%

15%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3

0

20

40

60

80

100

(a) Ant

Bibtex (No Orphans)

Number of returned predictions

15%

0% 0% 0% 0% 0% 0% 0%

85%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8 9

0

20

40

60

80

100

(b) Bibtex

Bugzilla (No Orphans)

Number of returned predictions

25%

0% 0% 0% 0%

75%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6

0

20

40

60

80

100

(c) Bugzilla

Chess (No Orphans)

Number of returned predictions

100%

P
ro

po
rt

io
n 

(in
 %

)

1

0

20

40

60

80

100

(d) Chess

Figure 4.8.: Number of returned predictions for each metamodel.

145



Chapter 4. Type Inference using Constraint Programming

Cobol (No Orphans)

Number of returned predictions

37%

0%

27%

19%

13%

3%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6

0

20

40

60

80

100

(e) Cobol

Conference (No Orphans)

Number of returned predictions

40% 38%

22%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3

0

20

40

60

80

100

(f) Conference

Profesor (No Orphans)

Number of returned predictions

66%

34%

P
ro

po
rt

io
n 

(in
 %

)

1 2

0

20

40

60

80

100

(g) Profesor

Usecase (No Orphans)

Number of returned predictions

48% 49%

1% 2%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4

0

20

40

60

80

100

(h) Usecase

Wordpress (No Orphans)

Number of returned predictions

62%

18%

10% 8%

0% 1% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8 9 11 13 15 17

0

20

40

60

80

100

(i) Wordpress

Zoo (No Orphans)

Number of returned predictions

47%
44%

10%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3

0

20

40

60

80

100

(j) Zoo

Figure 4.8.: Number of returned predictions for each metamodel (Continued).

146



Chapter 4. Type Inference using Constraint Programming

The results for both algorithms answer both research questions (RQ1 & RQ2) set
at the beginning of this experiment. For both scenarios (“With/No Orphans”) the
reduction in the set of candidates is significant for almost all the cases, regardless
the percentages of nodes that are left untyped. There are some exceptional meta-
models mentioned above that the reduction is not significant, but still acceptable.
The reasons for this behaviour are investigated in the qualitative analysis section
of this chapter that follows. In almost all the cases (except for some models of the
metamodels marked with asterisks in the results tables) the calculation was per-
formed in a few (milli-)seconds. Thus, the approach can be feasibly applied into
the workflow of a flexible MDE approach as mentioned in the hypothesis of this
project.

Comparison & Qualitative Analysis

In this section a comparison between the “With-Orphans” and “No-Orphans” sce-
narios is presented followed by a qualitative analysis of the results.

In the CSP defined and presented in Section 4.3.1, all the constraints are related
to the references that each type has in the draft metamodel. Thus, it is expected
that for isolated nodes (i.e., those that are not connected with any other) there is
no significant pruning that can be done. This expectation is verified by the experi-
ments ran. By comparing Tables 4.2 and 4.3 one can see that for 8 of the metamodels
there was an improvement in the average total saving percentage. For the Cobol
metamodel, there was a small improvement while for the Bibtex metamodel the
performance was worse. This is explained by the histograms produced for this
metamodel for both scenarios (see Figures 4.6(b) and 4.8(b)).

The savings percentage in the “With-Orphans” scenario was better because a
number of nodes (about 27% - see Figure 4.6(b)), for which the size of the set con-
taining the possible suggested types was five, were contributing positively to the
averages. In a metamodel that contains 14 types, pruning them down to five for
some nodes it is an improvement in the average savings percentage value. How-
ever, in the “No-Orphans” scenario, these nodes completely disappear (see Fig-
ure 4.8(b)), and thus the average performance is worse. This behaviour is contradic-
tory to our expectation regarding the removal of orphan nodes but it is explained
by examining the Bibtex metamodel (see Figure A.2). There is a number of the
available types that extend the “AuthoredEntry” class. This class, and accordingly,
all of its children require at least one reference going to a node typed as “Author”.
Orphan nodes have no references at all, thus the algorithm was discarding from
the set of possible types all those extending the “AuthoredEntry” class improving
the results.

In contrast, in the Chess metamodel, the savings were maximised in the “No-
Orphans” experiment. By looking at the separate histograms for “No-Orphans”

147



Chapter 4. Type Inference using Constraint Programming

scenario (see Figure 4.8(d)), the algorithm returns 1 type for all the nodes, where
in the alternative scenario (i.e., “With-Orphans”) that value was down to 50% (see
Figure 4.6(d)). By examining the random generated models and the Chess meta-
model (see Figure A.4) we see that there are only optional references (i.e., lower
bound is 0). Consequently, the set of possible types for the orphan nodes cannot be
pruned like in the Bibtex scenario.

Regarding the Bugzilla metamodel the approach’s under-performance is explained
by the fact that there are six classes (see Figure A.3) that are having no outgoing
reference and one (the same) incoming edge from the “Bug” class which is of “*”
multiplicity. This gives no extra constraints for the approach to reduce the number
of possible types as everything that it is connected with a class of type “Bug” can
be any of the above six types.

The time needed for the algorithm to predict the possible types for all the miss-
ing nodes in an example model takes from a few milliseconds up to a few seconds.
There were a few experiments for three of the metamodels which were not finished
in reasonable time. Table 4.4 presents the number of experiments that were not
finished, and thus not included in the results. In all six cases, the unfinished exper-
iments are mostly part of the 30% or 40% sampling rate simulations. Any threats to
validity are discussed in Section 4.5.

Table 4.4.: Number of unfinished experiments in the type inference approach using
constraint programming principles evaluation.

Metamodel With-Orphans No-Orphans
Ant 86 13

Cobol 3 2
Wordpress 44 3

In the following, we discuss the causes of these timeouts. The execution time of
Algorithm 4 depends on the size of the model and the associations and multiplic-
ity constraints. Regarding model size, considering a model with n untyped nodes
and a metamodel with m concrete types, the number of potential type assignments
grows exponentially in the order of nm. Hence, the number of untyped nodes and
types has an impact on the efficiency of the solver. This happens because the major-
ity of experiments with a timeout are those with the highest rate of untyped objects
(e.g., scenarios like the 30% or 40%). Furthermore, the fact that the number of CSPs
that needs to be solved in Algorithm 4 grows with the size of the (untyped ele-
ments in the) model and (concrete types in the) metamodel, makes the impact of
the problem size even more significant.

Nevertheless, there is another factor that plays a larger role in the efficiency of
the solver which is the number and restrictiveness of the constraints. This happens
because the solver takes into account the constraints when searching for a solution,

148



Chapter 4. Type Inference using Constraint Programming

using them to prune the search space. Hence, in CSPs where constraints are very
tight (e.g., tight bounds for multiplicities), the solver will be able to discard large
sections of the search space without needing to explore them. Conversely, in CSPs
with few constraints or where constraints are loose, most solutions will satisfy the
CSP and the solver will again complete the search quickly.

However, there is a certain threshold between those two extremes where solv-
ing the CSP becomes more complex and requires exponential runtime. Within this
threshold, constraints discard many solutions, forcing the solver to evaluate many
candidates but at the same time pruning is not effective enough to avoid exploring
most of the state space. This phenomenon is well known and has been observed
empirically in random CSPs [166–168], i.e., CSPs with random constraints. A priori,
it is not possible to predict when a CSP will fall between this threshold.

Performance Analysis

Table 4.5 summarises the average execution time for each of the two model sets
(“With-Orphans” and “No-Orphans”) used in this approach. The specification of
the machine used to run the experiments is the following:

• Architecture: x64 (64-bits)

• Processor: Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz

• RAM: 2x8GB DDR3 @ 1600 MHz

• Hard Disk Drive: 256GB PCIe SSD

• Operating System: Mac OS X 10.11.6

Table 4.5.: Average execution time for each metamodel in the CSP approach
Average Execution Time for
Different Metamodels (in

seconds)
Model Name #Types With-Orphans No-Orphans

Profesor 4 0.02 0.02
Chess 5 0.01 0.01

Ant 6 1.95 17.03
Zoo 6 0.11 0.13

Bugzilla 7 0.10 0.08
Conference 7 0.25 0.19

Usecase 7 0.18 0.12
Cobol 12 1.27 2.33
Bibtex 14 0.78 0.78

Wordpress 19 14.45 8.79

149



Chapter 4. Type Inference using Constraint Programming

As one can see from Table 4.5, the average execution times vary from 10 millisec-
onds up to 17.03 seconds. As described in the previous section, the number of types
in the metamodel affects the time needed from the solver to provide a solution to
the CSP however, this is not the only and the most significant factor as the number
and the restrictiveness of the constraints play important role. As a result, although
there is a trend in having increased execution times while types are increasing we
cannot generalise and claim that this is the only factor. Thus, from these average
execution times, it is not clear if scalability is an issue for the applicability of this
approach as other factors might affect the execution time as well.

Comparing to the approaches presented in Chapter 3, the approach presented
here performs quite slower in terms of time. However, it is still applicable if one
thinks that in 7 out of 10 metamodels in the both (“With-Orphans" and “No-Orphans")
scenarios the prediction finishes in less than 1 second. However, as described in the
previous section, there were some examples where the prediction has not finished
in a reasonable amount of time.

4.5. Limitations

As discussed in Section 4.4.2, the effort saving results are not affected by the num-
ber of missing types. Moreover, the number of the missing experiments is not sig-
nificant for 5 out of the 6 cases where the experiments did not finish within rea-
sonable time (with the exception of the orphans scenario for the Ant metamodel).
As a result, we do not have reasons to believe that the experiments which were not
complete affected the validity of our experimental evaluation.

In the cases where a class is extended by one or more other classes we need to
accumulate the existence of this class’ children in the drawing to check if its upper
and lower cardinalities are fulfilled. For instance, in the example of Figure 4.1, each
element of type “Doctor" must treat no more than 5 elements of type “Animal". The
constraint programming algorithm aggregates the instances of “Lion" and “Tiger"
that each “Doctor" is connected with to validate if the constraint for the “Animal”
class is fulfilled. However, the way the example models are represented in our
algorithm does not make it feasible to include a corner case where a class/type is
connected with the parent class while it is also connected with one of its children
with a reference that has fixed cardinalities (Figure 4.9).

This corner case is found in two types in total in our experiments (one type in
the Cobol metamodel and one type in the Wordpress metamodel). For this cor-
ner case, the Muddle-to-Text generator that produces the PROLOG constraints and
commands raises the fixed multiplicity constraint for the class-to-parent reference
to many (*). This impacts the effectiveness of the proposed approach as suggested
types that normally would be rejected due to this multiplicity constraint are in-
cluded in the list of suggested types decreasing the savings effort figures presented

150



Chapter 4. Type Inference using Constraint Programming

(a) Original cardinality. (b) Changed cardinality.

Figure 4.9.: Example of a corner case scenario.

in the results of the experiment. An interesting logic paradigm called Answer Set
Programming (ASP) [169, 170] could be used to tackle this problem. Modern ASP
solvers use conflict-driven algorithms [171], promising improvements in perfor-
mance.

The constraints are checked and applied to the example models by checking
edges going from one node to the other. The names of the edges are not taken
into account, thus, the definition of the names of all the edges that appear on the
diagram is not a requirement for this approach to work. In contrast, if an edge is
defined wrongly (i.e., connects to elements that should not be connected according
to the draft metamodel) then the CSP will not be able to be solved as the mistaken
edge will be a violation to the rules contained in the algorithm. The algorithm
points to the node/edge that violates the rules. As a consequence, this behaviour
has the potential to be exploited to turn the CSP algorithm into a validation tool for
example models in the same manner it is used in [145].

Finally, in the experiment 10 metamodels from different domains were used to
generate random models which are then transformed into muddles. We do not
believe that the use of models that conform to metamodels rather than using mud-
dles will directly have a significant impact in the performance of the approach.
In this approach, the references of each type and their multiplicities are the only
constraints applied in the CSP. The fact that all the metamodels have optional ref-
erences (references which lower bound is 0) lead in the creation of random models
that will not always instantiate these. Therefore, the models already contain noise
that a muddle could contain. However, it would be of interest to inject more noise
to the generated models in the manner done for the “Sparse” experiment, where
classification algorithms are used for type inference (see Section 3.5.1), to identify
how much such type of noise affects the performance of the proposed approach.
Directions for future work are presented in Section 6.2.

151



Chapter 4. Type Inference using Constraint Programming

4.6. Chapter Summary

In this chapter we proposed the use of Constraint Programming to facilitate lan-
guage engineers infer the types of nodes that were left untyped in the example
models. Specifically, a Model-to-Text transformation is used to automatically trans-
late example models and constraints related with references and their multiplicities
appearing in draft metamodels to a Constraint Satisfaction Problem (CSP). By us-
ing ECLiPSe [14, 110], a CSP solver, language engineers get back a set containing
all the possible types a node can have based on the constraints proposed in the
metamodel.

In order to test the proposed approach, we run two experiments on a large num-
ber of example models. The first took into account “orphan” nodes that were iso-
lated (i.e., they were not connected with any other node) and a second that ex-
cluded these. The results suggest that a minimum of 19.51% of reduction in effort
saving was occurred. In some cases the total effort saving was up to 80.87%. As ex-
pected, the average effort savings were improved in the scenario were the orphan
nodes were removed from the experiment (values range from 31.60% to 90.43%).
An analysis based on the number of the possible types for each untyped node, the
approach returned, showed that for more than one third of the nodes, only one
possible type was identified, and thus an automatic assignment could be done. For
a great proportion of the remaining nodes, the returned types were less than three,
reducing the effort needing for picking the correct type significantly.

Finally, no evidence was found to extract safe conclusions if the proportion of the
types missing in the example models and the number of types in the metamodel
affect, positively or negatively, the performance of the algorithm.

152



CHAPTER 5
Type Inference using Graph

Similarity

5.1. Introduction

During the exploratory stages of DSL definition where a flexible MDE approach is
followed, the language engineers may come up with a draft version of the envi-
sioned DSL’s metamodel based on the domain knowledge that is already exposed
in the example models. This process is depicted in Figure 1.1. Following this it-
erative manner, a richer understanding of the domain is acquired incrementally.
As described in Section 2.4 the draft metamodel inference can be done either auto-
matically (e.g., using the metamodel inference mechanism of metaBUP [5, 29]) or
manually. This neither implies that this draft metamodel is a final version of the
envisioned DSL, nor that it follows the best practices and DSL patterns available.
It may even be a flat metamodel with no abstractions and grouping of concepts
(e.g., elements that have the same attributes most probably should extend the same
class). This draft metamodel can prove useful for type inference. Moreover, flexi-
ble MDE tools do not enforce conformance to this metamodel. Therefore, despite
of the existence of the metamodel, one can still have untyped nodes in the example
model. In this chapter, an approach to type inference that exploits the similarity of
untyped nodes in the example models with the elements defined in this draft meta-
model based on the “string similarity” of their features, is proposed. More specif-
ically, a state-of-the-art algorithm called Similarity Flooding [13] is used to predict
the types of the nodes in the example models that are left untyped by comparing
the names of their attributes and relationships.

Comparing with the inference approaches in metaBUP [5] and Flexisketch [6],
one can understand that the approach proposed here differs from them as it re-

153



Chapter 5. Type Inference using Graph Similarity

quires the existence of a draft metamodel; this is not a requirement for either metaBUP [5]
or Flexisketch [6]. A draft metamodel was also required in the approach presented
in Chapter 4 where types of nodes were inferred using CSP principles. However,
the approach presented here does not rely on the concrete syntax of the example
models as the aforementioned approaches do. As a result, language engineers and
domain experts do not need to follow specific concrete syntax conventions, in line
with the fact that they may not be ready to do so in the exploratory phases of the
domain understanding.

The approach proposed here similar to the approach presented in [11] where
the similarity flooding algorithm [152] is used to automatically produce the rules
for model-to-model transformations. A graph representation that was used in [11]
(see Section 2.8.2) is used in this chapter. However, the approach proposed in [11]
identifies similarities between two metamodels, while in our approach, similarities
between a metamodel and an example model are of interest.

The rest of the chapter is structured as follows. In Section 5.2 the proposed ap-
proach is presented. Section 5.3 demonstrates the graph representations that are
used as input to the similarity flooding algorithm in this research. In Section 5.4, a
detailed description of the similarity flooding algorithm is provided. Sections 5.5.1
and 5.5.2 summarise the experiment that was run to evaluate the proposed ap-
proach and discuss the results, respectively. Finally, Section 5.6 outlines the limita-
tions of the approach.

5.2. Type Inference Using String Similarity

In this section the proposed approach to type inference is described in details. An
overview of the approach is depicted in Figure 5.1.

Domain experts and language engineers use a simple drawing tool to express
example models of the envisioned metamodel (step 1 ). Then, from these example
models a draft metamodel can be extracted either manually or (semi-)automatically
using one of the approaches described in Section 2.4 (step 2 ). At this point the
example model may contain nodes that were left untyped by the engineers for the
reasons explained in Section 1.1.1.

The proposed automated approach starts from step 3 . Both the inferred meta-
model and each of the example models are transformed into directed graphs which
are used as input to the similarity flooding algorithm. The transformation is per-
formed by executing a model-to-text transformation following rules whose defini-
tion is based on the graph representation chosen for this work. More details on the
selected graph representation are given in Section 5.3.

The generated graphs from the draft metamodel and the example model are
given as input to the similarity flooding algorithm (step 4 ). The algorithm follows
a fixpoint computation process to produce a list containing the similarity values for

154



Chapter 5. Type Inference using Graph Similarity

Figure 5.1.: An overview of the proposed approach to type inference based on sim-
ilarity flooding algorithm.

the nodes’ cross product (i.e., for each pair of nodes) appearing in the input graphs
(step 5 ). The similarity flooding algorithm is presented in Section 5.4. Finally, the
metamodel’s type with the best similarity value for each model’s untyped nodes is
selected as the proposed type for the node (step 6 ).

This approach works under the Closed World Assumption (CWA) [163] meaning
that an untyped node could only be of a type that is already defined in the meta-
model. This explains why in our approach we are interested in similarities between
the model’s and metamodel’s nodes; the type of the untyped node is one of those
appearing in the metamodel. If the correct type of a node is one that does not ap-
pear in the metamodel, thus the CWA is not met, then the proposed approach will
not be able to predict it correctly.

The approach proposed in this chapter produces an ordered list containing pos-
sible types from the untyped nodes in the example models. This approach has
certain advantages and disadvantages when compared to the CSP approach pro-
posed in Chapter 4. The latter can be applied in the same scenarios where a draft
metamodel is already inferred. One advantage is that even if typing errors exist in
the labels of some nodes and references, the approach from this chapter is still able
to perform the prediction. In contrast, the CSP approach requires the labels of the
nodes to be correctly typed (except those that are untyped). Another advantage is
that this approach returns a sorted list of the candidate types; the top in the list is
the most similar, the next one is the second most similar, etc. In the CSP approach,
the returned suggested types are not sorted. A trade-off for that, which is the dis-
advantage of the approach presented in this chapter against the CSP approach, is

155



Chapter 5. Type Inference using Graph Similarity

that in the the latter, the size of the list containing the candidate types is pruned
and in any case is smaller or equal to the number of total types in the metamodel.
In the similarity flooding approach the size of the list returned is the similarity of
each untyped node with all the nodes in the target graph (metamodel); including
those that represent attributes and references.

5.3. Graph Configuration

The similarity flooding algorithm is a schema matching algorithm. One of its ad-
vantages is that it can be applied to match schemas from different domains, thus
not targeting specific matching problems (e.g., similarity between XML schemas,
or database schemas, etc.). In order to calculate similarities and support its generic
nature, the input of this algorithm is two directed labelled graphs, the source and
the target, where elements of the source graph need to be matched with those from
the target. In the scenario of an XML schema matching problem, the XML schemas
are transformed into graphs. However, the domains where the similarity flooding
algorithm can be applied are quite broad. This does not allow its authors to pro-
pose specific rules that could be used to transform the source and target artefacts
(e.g., XML schemas) to the source and target graphs.

In the domain of MDE, Falleri et al. [11] employ the similarity flooding algo-
rithm to automate the generation of model-to-model transformations. Their goal is
to identify matches between two different metamodels, thus the source and target
schemas of their matching problem are of the same domain, that of ECore meta-
models. As described in Section 2.8.2 they proposed six different set of rules for
the transformation of metamodels to graphs. These can be used as input to the
similarity flooding algorithm in the domain of MDE. Their names are minimal, ba-
sic, standard, full, flattened and saturated. The minimal, which is the simplest one, is
described in detail in Section 2.8.2. The rules referred to as configurations include
different amount and type of information each time. Falleri et al. [11] evaluated
them on the specific problem, that of automatic model-to-model transformations,
and identified that the minimal configuration had the worst performance. The re-
maining five performed significantly better than the minimal but there was no sig-
nificant difference among them.

From the description of the proposed approach for type inference given in Sec-
tion 5.2, one can identify that the matching problem in need of a solution in our ap-
proach is between an example model and a metamodel. Thus, our source schema
differs from that of Falleri et al.’s as we have an instance model and not a meta-
model. A metamodel is a model itself, however, it differs from the example models
in at least one point that is of importance for this work. The difference is that in the
example models abstract classes are not represented as in instances only the con-
crete classes can be instantiated. Amongst the six proposed representations in [11],

156



Chapter 5. Type Inference using Graph Similarity

the flattened representation is the only one not taking into account these abstract
classes; their features are explicitly inherited to their children while the abstract
classes themselves are deleted from the graphs. As the flattened representation
omits the identified difference and its performance is amongst the top, we decided
to select it as the configuration for the input graphs in our matching problem. The
description of the flattened configuration follows.

5.3.1. Flattened Configuration

In our matching problem the source schema is an example model created as part
of a flexible MDE approach and the target schema is a metamodel. We describe the
flattened configuration through an example, using part of the example model in-
troduced in Section 3.3.1. For easier reference we highlight that part of the example
model in Figure 5.2. The flattened configuration for this extract is presented in Fig-
ure 5.3. A detailed description of the rules to transform the example models to this
configuration follows. These rules are proposed by Falleri et al [11] and they were
adapted to fit to the purposes of this chapter’s proposed approach (in [11] only
metamodels are transformed into directed graphs while in our approach example
models also need to be transformed).

Figure 5.2.: Extract of the example model.

• For each class node in the model a unique identifier node in the graph is
created. This id node consists of the “#” character and a number. For example,
the class element “JurassicZoo:Zoo” is represented by the graph node typed
as “#1”. The “#2” is the representation of the “Kato:Tiger” class. The same
process happens for every attribute and reference in the model. For example,
the attribute named “age” is represented by the node “#5” in the graph, while
the reference “resident” by the node “#9”. Finally, a hash node is created for
all the datatypes in the model (e.g., the “String” datatype is node “#7” in the

157



Chapter 5. Type Inference using Graph Similarity

Figure 5.3.: The directed labelled graph of the example model of Figure 5.2 using
the flattened configuration.

graph). For the attributes that have already been created (e.g., the “name”
attribute is a feature for both the “Zoo” and the “Tiger” class), only one hash
node that represents all the occurrences of these attributes is generated.

• For all these hash nodes another node is produced holding the label/name of
that node. For example, as soon as the “#1” hash node represents the “Zoo”
class, a node named “Zoo” is created in the graph. In the same manner, “age”,
“resident”, “String”, etc. nodes are created. An arc named “label” connects
the hash nodes with the nodes holding their names.

• Nodes for the kind of each hash node are also created. The different kinds are
“Class”, “Attribute” and “Reference”. Each hash node is connected with the
appropriate kind node using an arc labelled “kind”. For example, the “#1”
node represents a class, thus a “kind” arc is going from it to the “Class” node.

• For nodes that represent attributes a “datatype” arc is created to connect their
hash nodes with the hash node of the datatype. For example, the “#5” repre-
senting the “age” attribute is connected with the hash node “#8” (i.e., the node
that represents the “Int” datatype) with a “datatype” arc. In order to declare
that these attributes are features of specific classes, an “own” arc is created
that connects the hash node of the class owning that attribute with the hash
node of the attribute. For example, node “#1” (i.e., “Zoo”) owns an attribute
called “entranceFee” (i.e., hash node “#4”), thus an “own” arc connects “#1”
node with “#4” node in the graph.

158



Chapter 5. Type Inference using Graph Similarity

• For nodes that represent references, an arc named “containment” is created
and connected to either a node named “true” or “false” to declare if that refer-
ence is a containment or not, respectively. For example, reference “residents”
(i.e., “#9” in the graph) is a containment in the model, consequently, a “con-
tainment” arc connects it with the “true” node. A “ref” arc is also created
to declare the ownership of this reference by a class. For example, a “ref”
arc is created to connect the “#1” hash node (i.e., “Zoo”) with the “#9” (i.e.,
residents) hash node.

• Finally, a “type” arc is created that connects each reference with its type class.
For example, the “type” arc connects the “#9” (i.e., residents) hash node with
the “#2” hash node which represents a “Tiger”.

The same rules are followed for the transformation of the target schema (i.e.,
a metamodel). The transformation of the metamodel is carried out using Algo-
rithm 7. A similar algorithm is run for the example model-to-graph transformation.

As described in Section 5.2, the creation of the directed graphs based on the ex-
ample model and the metamodel is the first step of the automated process (step 3
in Figure 5.1). The next step is the consumption of these graphs by the similarity
flooding algorithm to produce the matching results. A step-by-step description of
the way the similarity algorithm operates to produce the similarity results is pre-
sented in the following section.

5.4. Similarity Flooding

An overview of the similarity flooding algorithm was given in Section 2.8.1. In this
section, the three-step process is explained in detail based on a toy example given
in [13]. The example with the three steps of the algorithm is shown in Figure 5.4.

In this example, the goal is that of matching two directed labelled graphs, A and
B. In directed labelled graphs, each edge is represented as a triple (s, l, t) where s is
the source node, l is the label of the edge and t is the target node. For example, the
triple for the highlighted nodes and edges in the example Model A in Figure 5.4
would be (a, l1, a1).

Step 1: The first step in the algorithm is the construction of the pairwise connectiv-
ity graph (PCG). In a PCG the nodes and edges are calculated based on the following
formula:

((x, y), l, (x′, y′)) ∈ PCG(A,B)↔ (x, l, x′) ∈ A and (y, l, y′) ∈ B

For example, the highlighted in the PCG of Figure 5.4 node-to-node mapping is
created for the edge named l2 in model A (going from a1 to a2) and B (going from b

to b2). The source node in the PCG is named after the names of the source nodes in

159



Chapter 5. Type Inference using Graph Similarity

Algorithm 7 Transforming a metamodel to a directed graph based on the flattened
configuration rules.

1: {Step 1: Create graph and add default arcs and nodes}
2: Graph← labelArc, kindArc, classNode, attributeNode, ...
3: {Step 2: Create arcs and nodes for classes, attributes and references}
4: NodesMapping ←map of element’s names to their unique # id
5: N ← set of all classes in metamodel
6: for all n ∈ N do
7: if n not abstract then
8: Add label node of n, hash node of n, label and kind arc triples to Graph
9: nodesMapping ←mapping of n’s label to n’s hash

10: F ← set of all features (attributes & references) of n and its superclasses
11: for all f ∈ F do
12: owner ← hash node of parent of feature
13: if f not ∈ nodesMapping then
14: Add label node of f, hash node of f, label arc triple to Graph
15: nodesMapping ←mapping of f’s label to f’s hash
16: if f is of type attribute then
17: Add kind, datatype and own (starting from owner) arc triples to

Graph
18: else if f is of type reference then
19: Add kind and ref (starting form owner) arc triples to Graph
20: if f is containment then
21: Add containment arc triple (pointing to trueNode) to Graph
22: else
23: Add containment arc triple (pointing to falseNode) to Graph
24: end if
25: end if
26: else if f ∈ nodesMapping then
27: if f is of type attribute then
28: attributeHashNode←node of the already created attribute
29: Add own arc triple (going from owner to attributeHashNode) to

Graph
30: else if f is of type reference then
31: referenceHashNode←node of the already created reference
32: Add ref arc triple (going from owner to referenceHashNode) to

Graph
33: end if
34: end if
35: end for
36: end if
37: end for
38: {Step 3: Create type arcs}
39: for all n ∈ N do
40: if n not abstract then
41: R← set of all references
42: for all r ∈ R do
43: pointingClassHashNode← the hash node of the pointing class
44: Add type arc triple (from r to pointingClassHashNode) to Graph
45: end for
46: end if
47: end for

160



Chapter 5. Type Inference using Graph Similarity

Figure 5.4.: An example of the similarity flooding algorithm’s three-step process
(based on Figure 3 of [13]).

the models and the target node after the names of the target nodes of the models.
The nodes in the PCG are called map pairs. This pairwise connectivity graph is the
heart of the similarity flooding algorithm as it is based on the intuition that if two
nodes are similar, then the nodes they are also connected to with the same labelled
arcs are somewhat similar. The nodes that are connected in the PCG are called
neighbours [13].

Step 2: From the PCG another graph is constructed called a propagation graph. For
each edge in the PCG a new edge heading to the opposite direction is created and
added to the propagation graph. The values of each edge, named propagation coeffi-
cients, range from 0 to 1 and can be calculated in various ways. In this example, they
are calculated by dividing the maximum value (1.0) with the number of edges that
are leaving this node and have the same labels. For example, for the highlighted
node in the propagation graph shown in Figure 5.4 there are two edges labelled
l1 exiting the node. So, the propagation coefficient value of each is 1.0/2 = 0.5.
The propagation coefficients are weights that declare how well the similarity of a
map pair will be propagated to its neighbouring nodes (map pairs). The authors
proposed different ways of computing the propagation coefficients - more than the
one presented here - and evaluated them through an experiment to identify the
best. In this work we employ the one they propose to be the most efficient. More

161



Chapter 5. Type Inference using Graph Similarity

details on this can be found in [13].

Step 3: The last step is the calculation of the similarity between all the elements of
model A and all the elements in model B (A×B). This is done by using an iterative
computation of the string similarity between the two elements in each map pair. In
each iteration this similarity is propagated to the neighbouring map pairs weighted
by the propagation coefficient value calculated in the previous step. The iterations
stop either after a specific number of iterations or after the computation converges
below a specific threshold. After completing all the iterations the final similarity is
returned. For example, the best mapping for node a1 from Model A is node b2 from
Model B and the final calculated similarity is 0.69 (highlighted in Figure 5.4). The
authors propose four different formulas for accumulating the similarity of each
map pair in each iteration. In this work we use the formula that was the most
efficient in the evaluation the authors carried out. More details on these formulas
are available in [13].

The similarity between two nodes of a map pair is calculated by a string similar-
ity formula based on the Levenshtein metric [116]. The Levenshtein distance be-
tween two strings is the minimum number of single character insertions, deletions
and substitutions needed in order to make these two strings similar. The formula
for the calculation of similarity between two nodes x and y in a map pair n of the
PCG is calculated based on the following formula also proposed in [13].

sn = 1− levenshtein(x, y)/max(len(x), len(y))

where levenshtein is the Levenshtein distance between x and y, and len(x), len(y)
are the lengths of the labels of nodes x and y, respectively. If at least one of the two
nodes x and y is an identifier (i.e., its name includes the “#” symbol), then sn = 0.

The similarity flooding algorithm is implemented by the authors of the approach
in the Java [45] programming language. In their implementation the directed graphs
are constructed using the Resource Description Framework (RDF) [36,172] Java im-
plementation.

The similarity flooding algorithm returns a list of similarity values for each of the
nodes in the source graph with all the nodes in the target graph. The mapping with
the highest similarity value for each node is the one with the highest chances to be
the type of the untyped element. The experiment run to evaluate the approach is
presented in the following section.

5.5. Experimental Evaluation

In this section, the experimentation setup is explained (Section 5.5.1), followed by
the results and the discussion on them (Section 5.5.2). To evaluate the proposed
approach we will use the Muddles [4] flexible MDE approach, however, in principle,

162



Chapter 5. Type Inference using Graph Similarity

the approach can be applied to any other type of example models. The minimal set
of requirements the flexible MDE approach should have is the following:

• provides a mechanism to extract the names of attributes and relationships in
the example models

• provides a mechanism to extract the type of the attributes (e.g., String, Integer,
etc.) and the type of the relationships (i.e., reference or containment) in the
example models

The following are the research questions where answers are sought through the
experiment conducted in this section:

• RQ1: Which proportion of the types of the untyped nodes is predicted cor-
rectly by applying the proposed approach?

• RQ2: Which is the position of the correct type in the returned list containing
the similarities of each node?

The similarity flooding algorithm returns a list containing the similarity value of
each node in the example model with each node in the draft metamodel. Regarding
RQ1, we identify the proportion of the times where the correct type was positioned
first in the list, thus when the algorithm has successfully inferred the node’s type.
Regarding RQ2, we are interested in finding the position of the correct type in the
results’ list even if this was not the first suggestion (e.g., the second most similar,
etc. ). Related to the hypothesis presented in Section 1.2, RQ1 will help investigate
if the approach achieves acceptable accuracy in predicting the correct types of un-
typed nodes. RQ2 will reveal if the approach offers, in a reasonable amount of time
(no more than a few minutes), an acceptable reduction to the set of candidate types
so can feasibly be applied to a flexible MDE approach.

5.5.1. Experiment

In this section we present the experiment used to evaluate the performance of the
proposed approach to type inference. An overview of the experiment is shown in
Figure 5.5. A detailed description of each step follows.

As with the previous experiments for the two other proposed approaches to type
inference presented in Chapters 3 and 4, to evaluate our approach we applied it to
a number of randomly generated models. These models are instances of 10 meta-
models that are part of a corpus of metamodels presented in [154]. The metamodels
were picked randomly with no specific criteria other than that of having a variation
in size (number of concrete meta-classes). The reason for using randomly gener-
ated models that conform to metamodels and not muddles was largely pragmatic:
there is no available corpus of muddles, so the approach could not be evaluated

163



Chapter 5. Type Inference using Graph Similarity

Figure 5.5.: The experimentation process for the type inference approach based on
the similarity flooding algorithm.

against a large set of available data. Threats to validity due to this are examined in
Section 5.6.

For each of the 10 metamodels, we produced 10 random instances employing the
Crepe model generator [155] (step 1 in Figure 5.5). Crepe uses genetic algorithms
to produce random models and assigns values for the attributes by randomly pick-
ing one from the pool of all the available values given as input. In our approach,
the value of the attributes does not affect the performance of the algorithm as they
are not taken into account when the example models are transformed to graphs.
Thus, the attribute values were populated with random strings.

Step 2 of the experimentation process consists of the transformation of the
models into muddle instances. This is accomplished by using the algorithm pre-
sented in Listing 3. These first two steps ( 1 and 2 ) are executed to create the
sets of data for the experiment. This process could be avoided if there was a port-
folio of example models available constructed as part of a flexible MDE approach.
However, to the best of our knowledge, such a portfolio does not exist. At the end
of these steps, we have 100 different muddles that conform to 10 metamodels.

The muddles’ transformation and their respective metamodel into the directed
graphs described in Section 5.3 is completed in step 3 . Specifically, for each mud-
dle we firstly transform its metamodel into a directed graph using Algorithm 7. A
M2T transformation written in the Epsilon Generation Language (EGL) [65] is used
for that purpose. As the available similarity flooding code supports input of direct
labelled graphs expressed in the RDF syntax implemented in Java, the generated
graphs are expressed in this RDF Java syntax. An extract of the generated Java code
for the “Zoo” metamodel presented in Figure 2.3 is given in Listing 5.1

164



Chapter 5. Type Inference using Graph Similarity

1 public s t a t i c RDFFactory r f = new RDFFactoryImpl ( ) ;
2 public s t a t i c NodeFactory nf = r f . getNodeFactory ( ) ;
3 public s t a t i c Model MM = r f . createModel ( ) ;
4

5 / / D e f a u l t a r c s
6 Resource labe lArc = nf . createResource ( " l a b e l " ) ;
7 Resource refArc = nf . createResource ( " r e f " ) ;
8 . . .
9 Resource kindArc = nf . createResource ( " kind " ) ;

10

11 / / D e f a u l t nodes
12 Resource classNode = nf . createResource ( " ClassElement " ) ;
13 Resource attr ibuteNode = nf . createResource ( " Attr ibuteElement " ) ;
14 . . .
15 Resource trueNode = nf . createResource ( " t rue " ) ;
16 . . .
17

18 / / C l a s s ‘ ‘ Zoo ’ ’ c r e a t i o n
19 Resource node5 = nf . createResource ( "Zoo" ) ;
20 Resource hash5 = nf . createResource ( " #5 " ) ;
21 MM. add ( nf . c rea teS ta tement ( hash5 , labelArc , node5 ) ) ;
22 MM. add ( nf . c rea teS ta tement ( hash5 , kindArc , classNode ) ) ;
23 / / A t t r i b u t e ‘ ‘ name ’ ’ c r e a t i o n
24 Resource node6 = nf . createResource ( "name" ) ;
25 Resource hash6 = nf . createResource ( " #6 " ) ;
26 MM. add ( nf . c rea teS ta tement ( hash6 , labelArc , node6 ) ) ;
27 MM. add ( nf . c rea teS ta tement ( hash6 , kindArc , at tr ibuteNode ) ) ;
28 MM. add ( nf . c rea teS ta tement ( hash5 , ownArc , hash6 ) ) ;
29 MM. add ( nf . c rea teS ta tement ( hash6 , datatypeArc , stringHashNode ) ) ;
30 . . .

Listing 5.1: Java generated code for the construction of the directed labelled graph
of the “Zoo” metamodel of Figure 2.3.

In lines 1-2 a new RDF factory is instantiated with a node factory allowing us to
create a new graph and nodes to attach to it. This new graph for the metamodel
is generated in line 3. In lines 5-9, the arcs representing defaults edges of the flat-
tened configuration like the “label” arc are created. In lines 11-16 the default nodes,
like the “class” node are created. In line 18-30 the elements of the metamodel are
transformed into directed graph nodes and edges and then added to the tree. More
specifically, a node for the label of the “Zoo” class of the metamodel is created in
line 19 followed by its appropriate hash node. The arc connecting the hash node
with the label node has already been instantiated (in the default arc creation sec-
tion) and is now added to create the triple in line 21. The same process is followed
for the remaining classes, attributes and references.

165



Chapter 5. Type Inference using Graph Similarity

Then, the RDF Java code for the directed graphs representing the muddle is ap-
pended to the already created Java file, below the code generated for the meta-
model. An extract of the generated Java code for a muddle, which is an instance of
the “Zoo” metamodel presented in Figure 2.3 is given in Listing 5.2

1 public s t a t i c Model MDL = r f . createModel ( ) ;
2

3 / / D e f a u l t a r c s
4 Resource labelArcMdl = nf . createResource ( " l a b e l " ) ;
5 Resource kindArcMdl = nf . createResource ( " kind " ) ;
6 . . .
7 Resource ownArcMdl = nf . createResource ( "own" ) ;
8

9 / / D e f a u l t nodes
10 Resource referenceNodeMdl = nf . createResource ( " ReferenceElement " ) ;
11 Resource classNodeMdl = nf . createResource ( " ClassElement " ) ;
12 . . .
13 Resource intNodeMudl = nf . createResource ( " I n t " ) ;
14 . . .
15

16 / / R e f e r e n c e ‘ ‘ s u p p o r t s ’ ’ c r e a t i o n
17 Resource mdlNode7 = nf . createResource ( " supports " ) ;
18 Resource mdlHash7 = nf . createResource ( " #7 " ) ;
19 MDL. add ( nf . c rea teS ta tement ( mdlHash7 , labelArcMdl , mdlNode7 ) ) ;
20 MDL. add ( nf . c rea teS ta tement ( mdlHash7 , kindArcMdl , referenceNodeMdl ) ) ;
21 . . .
22

23 / / Untyped e l e m e n t c r e a t i o n
24 Resource mdlNode15 = nf . createResource ( "&1" ) ;
25 Resource mdlHash15 = nf . createResource ( " #15 " ) ;
26 . . .
27 MDL. add ( nf . c rea teS ta tement ( mdlHash15 , ownArcMdl , mdlHash14 ) ) ;
28 MDL. add ( nf . c rea teS ta tement ( mdlHash15 , refArcMdl , mdlHash4 ) ) ;
29 . . .

Listing 5.2: Java generated code for the construction of the directed labelled graph
of an instance of the “Zoo” metamodel presented in Figure 2.3.

In lines 1-14, the graph, the default arcs and nodes for the muddle are created.
In lines 16-29, classes’, attributes’ and references’ nodes and arcs are instantiated
and added to the graph (lines 16-21 demonstrate how a reference is instantiated
and added to the graph). There are two differences between the creation of the
metamodel and the muddle graph. The first difference is that in contrast with the
metamodel graph where each type has strictly one node created for it, in the mud-
dle graph there might be several occurrences of the same type. For example, the
type “Zoo” is instantiated once in the metamodel graph as it appears once in the

166



Chapter 5. Type Inference using Graph Similarity

metamodel. However, there might be multiple occurrences of a “Zoo” instance in
the example model, thus there are multiple instances of a “Zoo” type node created
in the graph. The second difference has to do with the objective of the proposed
approach, that of type inference. At this point, due to the fact that the example
models were randomly generated from metamodels, all their elements are typed.
In order to simulate the scenario of having some nodes left untyped we need to
delete types from the example model’s nodes. This type deletion occurs during
the transformation of the muddle into its directed labelled graph. Looking at line
24 of Listing 5.2 one sees that the label of the node “#15” is “&1”. This does not
imply, however, that there is a node in the example model for which the type is
“&1” but that this is the name used to replace the original type (i.e., “Zoo”); we
randomly pick nodes during the transformation and swap their original type with
this placeholder to simulate the scenario of missing types.

It is of interest to assess if the sampling rate in the example model affects the
performance of the proposed approach. Thus, the type deletion simulation is exe-
cuted for 7 different sampling rates ranging from 30% to 90% (a step of 10% is ap-
plied). A 30% sampling rate means that 30% of the nodes in the muddle have their
type declared while for the rest 70% the type has been deleted (swapped with the
placeholder “&1”). In order to avoid a lucky (or an unlucky) sampling the random
sampling is repeated 10 times for each sampling rate. Thus, for each metamodel
the 10 random generated models are sampled 10 times for each of the 7 sampling
rates. That sums up to 700 different instances for each metamodel.

In the previously created Java file which contains the graphs we amend the match
method of the similarity flooding algorithm (already written in Java). The two
created graphs are passed as arguments. The algorithm then returns a list with
similarity values for the product of the nodes of both graphs (MDL × MM where
MDL and MM stand for the graph of the muddle and the metamodel respectively).
An extract of the returned list is shown in Listing 5.3.

[ # 1 , # 2 : sim =0.23011235267 , i n i t = 0 . 0 , N= 0 . 2 2 7 1 . . . , N1 = 0 . 2 3 0 1 . . . ]
. . .
[ # 1 , # 4 : sim =0.08796859768 , i n i t = 0 . 0 , N= 0 . 0 8 6 7 . . . , N1 = 0 . 0 8 7 9 . . . ]
. . .
[ # 1 0 , # 5 : sim =0.21893315580 , i n i t = 0 . 0 , N= 0 . 2 1 6 7 . . . , N1 = 0 . 2 1 8 9 . . . ]
[ # 1 0 , # 1 7 : sim =0.0742164313 , i n i t = 0 . 0 , N= 0 . 0 7 3 4 . . . , N1 = 0 . 0 7 4 2 . . . ]
[ # 1 0 , # 2 : sim =0.07271544227 , i n i t = 0 . 0 , N= 0 . 0 7 1 7 . . . , N1 = 0 . 0 7 2 7 . . . ]
. . .
[ # 1 0 , # 1 5 : sim =0.0284573766 , i n i t = 0 . 0 , N= 0 . 0 2 8 0 . . . , N1 = 0 . 0 2 8 4 . . . ]
. . .

Listing 5.3: An extract of the similarities between pairs of the muddle and the
metamodel graphs.

167



Chapter 5. Type Inference using Graph Similarity

In our matching problem the goal is that of finding similarities from the muddle
example model (source) to the metamodel (target). Thus, the first identifier found
in the results points to nodes of the muddle graph while the second points to nodes
of the metamodel graph. For example, in line 1 of Listing 5.3, the returned result is
interpreted as “The node with id “#1” in the muddle graph is similar to the node
with id “#2” in the metamodel graph and their similarity value is 0.23”. The al-
gorithm then returns the results sorted for each node in the source graph; the first
matching pair is that with the highest similarity for each node in the source graph.

Having the results stored in the list we can extract the matching accuracy of the
prediction mechanism. This is achieved by comparing the original types (which
were stored separately before performing the type deletion) with the best result
for each of the untyped nodes. For example, if node’s “#1” type was originally
“Zoo”, we check if the highest similarity pair returned (i.e., “#2” in Listing 5.3) is
of the same type (“Zoo”). If this is the case then the correct prediction counter is
increased by 1; if not, it remains the same. Next, we assess all the untyped nodes
consecutively for each example model. The prediction accuracy score is the number
of correct predictions to the total number of this model’s untyped nodes. This score
is stored in a text file (step 4a in Figure 5.5). The same process is followed for
all the 7,000 generated Java files representing the 700 different example models
for each of the 10 metamodels. The accuracy result for each example model is
afterwards appended to the results file.

The above metric counts the correct predictions in each example model. As de-
scribed above a correct prediction occurs when the correct type of the untyped node
is returned first in the sorted list of results. However, when this is not the case it is
of interest to identify the position of the correct type in the returned results. The
position of the correct type for each untyped node is subsequently added in a sec-

ond text file (step 4b in Figure 5.5). For example, if for an untyped “Tiger” node
of the example model, the highest similarity value is with a “Lion” node of the
metamodel but the second highest is with the “Tiger” node we store the value 2 in
the results file. This way we can identify the proportion of the correct predictions
in, for example, the top three guesses for each untyped node.

At the end, two results files are created, one having the success score for each of
the example models and the second having the position of the correct prediction
for each untyped node. These results are presented in the following section.

5.5.2. Results and Discussion

In this section the results of running the experiments are presented followed by
a discussion on the quantitative and the qualitative findings of the experiment.
Before that, a brief presentation of the data used as input in the experiment is given
in Table 5.1.

168



Chapter 5. Type Inference using Graph Similarity

Table 5.1.: Input data summary table for the similarity flooding experiment.
Model Name #Types Min Max Average

Professor 4 42 72 57.3
Chess 5 42 75 58.8

Zoo 6 21 77 36.8
Ant Scripts 6 41 80 63.2

Use Case 7 41 81 53.7
Conference 7 44 81 65.5

Bugzilla 7 42 81 60.6
Cobol 12 24 31 26.9

BibTeX 14 41 80 65.4
Wordpress 19 23 46 36.7

In this experiment we used the same metamodels used in Chapters 3 and 4. The
smallest was that defining university professors and the largest was that express-
ing the structure of Wordpress Content Management System [173] websites. The
number of types of each metamodel is shown in the column labelled “#Types” in
Table 5.1. These numbers include concrete classes only as, firstly, abstract classes
cannot be instantiated in the example models, and secondly, the flattened configu-
ration ignores them. In columns labelled “Min” and “Max”, the size of the smallest
and the largest example model, randomly generated by Crepe [155], is given re-
spectively. Finally, column “Average” shows the average number of nodes for the
10 model instances of each metamodel.

Quantitative Analysis

Table 5.2 summarises the results for the 7,000 runs of the experiment conducted
to evaluate the proposed approach. The results are grouped by metamodel and
sampling rate. Each value represents the average accuracy between all the 10 runs
for the 10 instances of each metamodel (100 runs in total) for the specific sampling
rate. For example, the highlighted value “0.83” in Table 5.2 denotes that for the
Zoo metamodel, when the 70% of the nodes of each model are typed, the average
accuracy between the 100 example models is 83%.

Regarding the raw values, the average performance varies from 41% (Confer-
ence metamodel) up to 100% (Profesor metamodel). There are metamodels with
a bigger number of types which perform better than others with less types and
vice versa. Between all the metamodels and the sampling rates there is an average
correct prediction of about 67.5%.

It is also of interest to identify if the prediction of this mechanism is affected
by the amount of untyped nodes in the diagram (see correlation “Cor. 1” below).
In addition, we also assess if the size of the metamodel affects the prediction (see
correlation “Cor. 2” below).

169



Chapter 5. Type Inference using Graph Similarity

Table 5.2.: Results summary table for similarity flooding experiment
Average Accuracy for Different Sampling

Rates
Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Cor. 1

Profesor 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 NA
Chess 5 0.77 0.76 0.76 0.77 0.76 0.77 0.76 0.762 -0.43

Ant 6 0.63 0.62 0.62 0.63 0.63 0.63 0.66 0.630 0.89
Zoo 6 0.80 0.80 0.80 0.81 0.83 0.82 0.79 0.808 0.07

Bugzilla 7 0.51 0.52 0.52 0.52 0.53 0.52 0.55 0.524 0.75
Conference 7 0.40 0.41 0.41 0.41 0.41 0.42 0.42 0.412 0.79

Usecase 7 0.70 0.70 0.71 0.70 0.71 0.70 0.71 0.704 0.75
Cobol 12 0.67 0.66 0.68 0.66 0.69 0.69 0.71 0.678 0.71
Bibtex 14 0.62 0.63 0.63 0.63 0.63 0.61 0.65 0.629 0.25

Wordpress 19 0.63 0.63 0.62 0.62 0.65 0.63 0.62 0.628 -0.43
Avg. 0.67 0.67 0.67 0.67 0.68 0.68 0.69

Cor. 2 -0.57 -0.50 -0.59 -0.59 -0.57 -0.65 -0.63

Cor. 1: How strong is the dependency between the sampling rate and the success
score?

Cor. 2: How strong is the dependency between the number of types in a meta-
model (size of metamodel) and the success score?

The first question can be answered by observing the raw results presented in
Table 5.2. The average prediction is not affected and there are only small fluctua-
tions as a result of the random sampling. The correlation coefficients are given in
column labelled “Cor. 1”. There are some correlation scores that declare statisti-
cal significance, however, the changes to the values are small so we cannot claim
that they are important. For example, the highest correlation is that of the “Confer-
ence” metamodel, however the difference in the accuracy is only 0.02 between the
30% and 90%, the lower and upper sample rates of the experiment, respectively.
Concluding, the amount of nodes left untyped in the diagram does not affect the
performance of the approach.

That is an expected outcome if one takes into account the way example models
are represented as graphs. For example, look at Figure 5.3 which is the graph for the
flattened configuration of the extract of the model given in Figure 5.2. The example
model consists of 2 nodes which are transformed to 21 nodes in the graph. If one
node in the example model is left untyped (50% sampling rate), the single change
in the graph would be the change in one label’s node (e.g., if the node “Zoo” is left
untyped, the node in the graph labelled “Zoo” will change to “&1”). The rest 21
nodes will remain the same, hence, that small change propagated to the rest of the
diagram will not have any significant impact. In the experiment conducted here,
the example models average from 26.9 to 65.5 nodes (see Table 5.1), consequently,
changing the labels of even a large proportion of them is not expected to have any

170



Chapter 5. Type Inference using Graph Similarity

significant impact.
Regarding the second correlation (“Cor. 2”), the correlation coefficient values for

the different sampling rates are given in the row labelled “Cor. 2” (see Table 5.2).
The values are nearly identical for all the sampling rates due to the outcome of the
previous question: the accuracy is the same between the different sampling rates
thus the correlation between similar values and fixed numbers (i.e., the number of
types in each metamodel) is similar. When examining the values one cannot reach
a definitive answer. The correlations suggest a weak negative similarity. These
values may have been affected by specific metamodels (e.g., “Conference”) that
score relatively low given the number of types they have. Nevertheless, we have
no evidence suggesting that the number of types affect the accuracy prediction or
any evidence to support that they do not.

The second part of this experiment is related to the position of the correct pre-
diction in the returned sorted list of candidate matches (RQ2). A histogram that
summarises these values for all the untyped nodes in all 7,000 experiments is given
in Figure 5.6.

Position of Correct Prediction

P
ro

po
rt

io
n 

(in
 %

)

67%

14%
6% 7%

0% 1% 1% 1% 0% 0% 0% 3%

1 2 3 4 5 6 7 8 9 10 11 12

0
20

40
60

80

Figure 5.6.: Histogram of the correct prediction’s position for each untyped node in
the similarity flooding experiment.

The histogram suggests that from approximately 140.000 nodes which were left
untyped in the experiment, the correct prediction for a significant proportion (87%)
of them was in the top 3 predictions returned by the similarity flooding algorithm.

In order to extract safe conclusions, the histograms for all the metamodels in the
experiment are given in Figure 5.7. These histograms present the position of the
correct prediction for each metamodel in the results list for each of the untyped
nodes. For the vast majority of the metamodels the accumulative proportion of
nodes for which the correct type was in the first 3 predictions is above 75%; for
some it is more than 90%, in two of them it is 100%, with an exception, that of
Bibtex with a 63% (see Figure 5.7(c)). A discussion on the qualitative findings and
their possible explanation is provided in the following qualitative results’ section.

171



Chapter 5. Type Inference using Graph Similarity

Ant

Position of Correct Prediction

63%

23%

2%

12%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4

0

20

40

60

80

100

(a) Ant

Bugzilla

Position of Correct Prediction

52%

40%

5% 3%
0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5

0

20

40

60

80

100

(b) Bugzilla

Bibtex

Position of Correct Prediction

63%

0% 0% 0% 0%
3%

9%

0% 0% 0% 0%

25%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

80

100

(c) Bibtex

Profesor

Position of Correct Prediction

100%

P
ro

po
rt

io
n 

(in
 %

)

1

0

20

40

60

80

100

(d) Profesor

Chess

Position of Correct Prediction

76%

0% 0%

24%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4

0

20

40

60

80

100

(e) Chess

Conference

Position of Correct Prediction

42%

9%

33%

17%

0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5

0

20

40

60

80

100

(f) Conference

Figure 5.7.: Position of the correct prediction for each metamodel in the similarity
flooding experiment.

172



Chapter 5. Type Inference using Graph Similarity

Usecase

Position of Correct Prediction

71%

29%

0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3

0

20

40

60

80

100

(g) Usecase

Cobol

Position of Correct Prediction

67%

20%

6%

0% 0% 0% 0%

7%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8

0

20

40

60

80

100

(h) Cobol

Zoo

Position of Correct Prediction

80%

12%

1%

8%

0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5

0

20

40

60

80

100

(i) Zoo

Wordpress

Position of Correct Prediction

63%

11%

3% 2% 1%
6%

3% 3% 4% 3%
0% 0%

P
ro

po
rt

io
n 

(in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

0

20

40

60

80

100

(j) Wordpress

Figure 5.7.: Position of the correct prediction for each metamodel in the similarity
flooding experiment (continued).

The results answer both the research questions (RQ1 & RQ2) set at the beginning
of this experiment. Regarding RQ1, the approach managed to successfully predict
the type of a large proportion of untyped nodes. Regarding RQ2, we identified
that for the majority of the metamodels, the correct type is included in the top
three predictions of the algorithm. This suggests a significant reduction in the set
of possible types the language engineer needs to check, especially when the total
number of types in the metamodel is increased. The similarity flooding algorithm
needs a few milliseconds to produce the similarity matrix and as a result it can be
feasibly included into the workflow of a flexible MDE approach as mentioned in
the hypothesis of this project.

173



Chapter 5. Type Inference using Graph Similarity

Qualitative Analysis

From the analysis of the raw values presented in Table 5.2, one can observe that
for the majority of the metamodels the proposed approach’s performance is good.
However, an investigation on where the similarity matching algorithm fails and
possible reasons for that failure can be useful.

By manually assessing different models for each metamodel of the experiment
we identified that the algorithm had a tendency to make wrong predictions be-
tween elements of types that extend the same class. Specifically, in the majority of
the metamodels, when two classes were extending the same superclass and one of
them had one (or more) extra differentiating features (e.g., an extra attribute), the
algorithm showed the tendency to pick as the most similar type the one having
the extra feature. For example, in the Bibtex metamodel, the algorithm was falsely
predicting nodes of the type “Manual” as ones of the type “Unpublished”. The
difference between these two is that the latter had an extra attribute. This was also
identified in the Bugzilla metamodel and is the reason why the approach under-
performs. This behaviour is explained by the nature of the similarity flooding algo-
rithm. The applied algorithm does not include any form of penalty (i.e., negative
similarity) for having extra neighbouring nodes in the target graph’s node which
are not similar with the source graph’s assessed node. In contrast, if the target node
has some extra features, even if those are not available in the source node, the sim-
ilarity is propagated to the node having these extra features. Hence, the algorithm
chooses it as the best match. A possible solution for such cases could be the inclu-
sion of the “top 3” predictions in the results and not only the first one. This way,
the described phenomenon would be minimised.

A second repeated behaviour across the majority of the metamodels was that of
having wrong predictions between some nodes and the parent node that is con-
taining all the other nodes. This parent node is also referred to as “root node” and
is a restriction of the underlying modelling technology which is used as part of this
experiment. Specifically, EMF by default requires the creation of a “Root” class in
the metamodels in order to be able to create instances of all the other types. In this
root class, containment references are created to point to all the classes, except those
already included as containments in other classes. Thus in some cases, the propa-
gated similarity with the root node was higher than the similarity with the correct
type resulting to a wrong prediction. This phenomenon occurred predominantly in
the Conference metamodel. A possible solution to this problem could be the appli-
cation of some constraints on the list of the returning types; an approach suggested
by the authors of similarity flooding in [13]. As soon as it is known that in the
specific domain the type “Root” is not a potential candidate for any of the untyped
nodes, this prediction could be discarded from the final results’ list. More details
and directions for future work on applying constraints are described in Section 6.2.

174



Chapter 5. Type Inference using Graph Similarity

Finally, there were cases where specific types were wrongly predicted as other
types and the cause for that could not be traced back. Due to their nature both
the similarity flooding algorithm and the seven proposed configurations for the
graph representations in the domain of MDE proposed in [11] result to large size
source and target graphs. Even the smallest viable example of a model with only
two elements presented in Figure 5.2 led to the creation of a 22-nodes graph (see
Figure 5.3). These complex, large graphs along with the fact that the similarity
flooding algorithm performs a number of iterations to propagate the similarities
to neighbouring nodes, makes errors’ tracing and their potential causes a difficult
procedure.

Performance Analysis

Table 5.3 summarises the average execution time for the similarity flooding algo-
rithm used in this approach. The specification of the machine used to run the ex-
periments is the following:

• Architecture: x64 (64-bits)

• Processor: Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz

• RAM: 2x8GB DDR3 @ 1600 MHz

• Hard Disk Drive: 256GB PCIe SSD

• Operating System: Mac OS X 10.11.6

Table 5.3.: Average execution time for each metamodel in the similarity flooding
approach.

Model Name #Types
Average Execution Time for

Each Metamodel (in seconds)
Profesor 4 0.38

Chess 5 0.33
Ant 6 0.47
Zoo 6 0.38

Bugzilla 7 0.53
Conference 7 0.39

Usecase 7 0.35
Cobol 12 0.47
Bibtex 14 0.41

Wordpress 19 0.67

As one can see from Table 4.5, the average execution time varies from 350 mil-
liseconds up to 670 milliseconds. The average execution time is not affected by the
size of the metamodel, as metamodels (i.e., Cobol) have the same average execution
time with others (i.e., Ant) although they are double in size. This is probably due

175



Chapter 5. Type Inference using Graph Similarity

to the fact that the example models for the “Cobol” metamodel were smaller than
the “Ant” (see Table 5.1). In any case, the execution times are relatively small and
consistent and thus scalability cannot be consider as an issue for this approach.

Comparing to the approaches presented in Chapters 3 and 4, this approach is
slower (not significantly, though) than the approach based on classification algo-
rithms and faster that the approach based on constraint programming.

5.6. Limitations

As described in Section 5.5.1, the data used to evaluate the proposed approach are
created using a random model generator. A first issue is that the generator does
not instantiate muddles directly, but models which are transformed into muddles.
This happened as currently there is neither a random muddle generator available
nor a large portfolio of muddles that could be used to evaluate the approach.

The flattened configuration we used in the approach takes into account two cat-
egories of features: attributes and references. Regarding the latter category, we do
not believe that using muddles which have been transformed from models has any
significant impact it the performance of the proposed approach. The majority of the
references in the metamodels are optional meaning that they are not always instan-
tiated for each element in the model, thus the necessary randomness is achieved.

Regarding the second type of features, that of attributes, we believe that it has
an impact on the performance of the algorithm. Although Crepe generates random
models, the number and names of attributes that each node has is always the same
for nodes of the same type. As described in Section 5.3, each attribute is translated
to a number of nodes in the flattened configuration graphs. The equivalent nodes
between the source and the target graphs are compared and their similarity is prop-
agated to neighbouring nodes. Having some of the attributes missing would lead
to less “amount of similarity” propagated, resulting in the final similarity value
being different. A small scale experiment ran and verified our expectation. In Sec-
tion 6.2, plans are discussed for a full scale experiment where different levels of
noise will be added to the attributes to identify the impact of this treatment to the
performance of the proposed approach.

A significant advantage of this approach when compared to the one proposed in
Chapter 4 is that it is less sensitive to typing errors (typos). In the type inference
approach based on constraint satisfaction (see Chapter 4) any typing error in the
example model’s references would not allow the constraint satisfaction problem to
have a solution until this error was fixed. In contrast, in this approach the algorithm
will produce results for all the nodes; the typo will only affect the node it is related
to. The significance of the impact for the type inference of this node is related to
the size of the typing error. Nonetheless, due to the architecture of the flattened
configuration (the label of the reference is one node in the graph out of the six

176



Chapter 5. Type Inference using Graph Similarity

nodes and arcs related to a reference) this impact is reduced.
The results suggest that although the algorithm performs well in predicting the

types of the nodes, the performance is affected by the domain (metamodel) it is ap-
plied to. This outcome was identified in the evaluation experiments in [13] and [11].
Thus, a fully automatic type inference is not suggested unless the engineers have
previously tested the approach in the specific domain the example models describe
and verified that it performs well. We believe that a semi-automatic approach like
the one used in Flexisketch (see Section 2.4) would be more appropriate. That is to
suggest the top three types for each untyped node that the algorithm returns and
let the engineers pick the correct one. As shown in the histograms with the posi-
tion of the correct prediction, the algorithms’ performance is increased significantly
when following such an approach.

Finally, in the experiment 10 metamodels were used in total from which a num-
ber of muddles was generated. The metamodels were picked randomly from a zoo
of 500 metamodels. The number of types in these varied from 4 up to 19 as shown
in Table 3.2. It would be of interest to experiment with even larger metamodels,
although our experience from working on muddles suggests that having a flexible
model with more than 20 different types is a marginally realistic scenario.

5.7. Chapter Summary

In this chapter, the use of a state-of-the-art graph matching algorithm called Simi-
larity Flooding [13] to help with type inference in flexible MDE approaches is pro-
posed. We used the flattened configuration deemed as appropriate for representing
the source and target schemas of the matching problem (muddles and metamodels
respectively). This was proposed in [11] and its performance was ranked among
the best.

This approach can be used in scenarios where a draft metamodel has already
been inferred. When applying the approach to the example models that contain
untyped nodes, the language engineers and the domain experts receive a sorted
list of similarities between each untyped node and the types available in the meta-
model. The most similar types are listed first facilitating the selection of the correct
type.

In order to test the proposed approach we ran experiments on a large number
of example models. The results suggest that in the majority of the metamodels the
prediction accuracy was high. This accuracy was increased when the top 3 results
for each node were taken into account. Based on that outcome, we suggested the
use of the proposed approach in a semi-automatic manner to facilitate the transition
from partially typed example models to more complete ones.

177





CHAPTER 6
Conclusions

This thesis proposes three solutions for type inference for nodes that are left un-
typed in example models. These example models are created as a result of follow-
ing a flexible MDE approach. MDE has proved to offer benefits like better product
quality, increased productivity, maintainability and portability [2, 80–83] in soft-
ware engineering. Following MDE processes implies expertise in metamodelling,
and in relevant technologies. While this may be an understandable process for
MDE experts, this is not always the case with domain experts [5, 22]. However, the
involvement of domain experts is important in the definition of high quality and
well-defined DSLs that cover all the needed aspects of a domain [5,24,25,30]. To ad-
dress the aforementioned issue, flexible modelling approaches have been proposed
in the literature (e.g., [4–6, 31]). Such approaches are based on sketching tools for
the definition of example models that describe the envisioned DSL. A definition
of a metamodel during the initial phases of language engineering is not required;
draft versions of it can be inferred either manually or automatically when a good
understanding of the domain is achieved.

However, a trade-off for the above advantages of flexible MDE, is that bottom-up
MDE approaches are prone to various types of errors. Sketching tools cannot offer
semantic and syntactic correctness rules checking that rigorous MDE tools offer.
Among others, a common error is that of type omissions: nodes that are sketched
in the example models are left untyped for various reasons. Having nodes that are
left untyped hardens the inference of metamodels based on the example models as
critical information (i.e., types of concepts) is missing. The research in this thesis
addressed this gap and has explored the following research hypothesis as this was
stated in Section 1.2:

179



Chapter 6. Conclusions

It is feasible to use classification algorithms, constraint programming and
graph similarity techniques in the two phases of flexible MDE approaches to
accurately suggest the most appropriate type for each untyped node of a model
or reduce the set of possible types an untyped node can have. This can reduce
the effort needed to produce complete example models from which metamodels
can be inferred.

Based on the above, the research objectives of this thesis, as identified in Sec-
tion 1.2 are to:

• Facilitate the incremental acquisition of domain knowledge that flexible MDE
approaches offer by inferring the type of the untyped nodes in example mod-
els.

• Identify existing research techniques that can be used for type inference in
flexible MDE.

• Propose new algorithms that could be used in the same direction.

• Develop the artefacts to import the aforementioned techniques and algorithms
in the domain of type inference in flexible MDE.

• Evaluate the performance of the proposed approaches and the proportion of
assistance they offer to language engineers.

6.1. Thesis Contributions

In this section the contributions of this research work are presented.

Type Inference using Classification Algorithms

In Chapter 3, type inference approaches based on classification algorithms were
proposed. More specifically, Classification and Regressions Trees (CART) and Ran-
dom Forests (RF) were used to infer the types of untyped nodes. The classification
is performed by analysing features of the elements in the example models without
requiring the existence of any draft metamodel, which is the case early in the flex-
ible MDE process. Two set of features were proposed, one based on semantics of
the example models and a second based on the concrete syntax.

Regarding the former, the example models are parsed to extract the following
five characteristics of interest as presented in Section 3.3.1:

• Number of Attributes: The number of attributes that the node has.

• Number of different types of incoming references: The number of all the types of
references that target that node.

180



Chapter 6. Conclusions

• Number of different types of outgoing references: The number of all the types of
references that come from that node.

• Number of different types of children: The number of all the unique types that
the node contains.

• Number of different types of parents: The number of all the types that the node
is contained in.

The second set contains features related to the concrete syntax of the example
models. The four features are listed bellow:

• Shape: The shape of the node.

• Color: The color of the filling of the node.

• Width: The width of node.

• Height: The height of the node.

Using one of the proposed set of features and one of the proposed classification
algorithms the approach returns one suggested type for each untyped node based
on knowledge gained from training on the nodes that are already typed in the ex-
ample model. This suggested type is not guaranteed to be the correct one, and as a
results language engineers need to approve the suggestions for all the nodes.

The proposed approach was evaluated on a number of random generated models
from 10 different domains (metmodels). Results suggested that the approach had
a good prediction performance for both feature sets proposed. In addition, the
classification algorithm used did not affect the performance. In contrast, the size of
the metamodel and the proportion of the nodes that are left untyped are affecting
the prediction capabilities of the approach.

Type Inference using Constraint Programming Principles

In Chapter 4, a type inference approach based on Constraint Programming prin-
ciples is proposed. This approach, in contrast to the one presented in Chapter 3
requires the existence of a manually or automatically inferred draft metamodel to
perform type inference, thus it is suitable for later steps of flexible MDE processes.
The approach parses this draft metamodel to extract rules and facts that it includes
and construct the Constraint Satisfaction Problem (CSP). The example models are
also parsed and included in the CSP. Using solvers, like ECLiPSe [14, 110], a set of
possible types are returned for each of the untyped nodes.

In contrast to the approach presented in Chapter 3 that returns only one sugges-
tion for each untyped node, this approach returns a set of suggested nodes. The
trade-off is that the correct type is guaranteed to be in the set of the suggested

181



Chapter 6. Conclusions

types returned. As a result, in case of nodes where only one type is returned, the
approach can automatically apply the suggested type to the node.

The proposed approach was evaluated on a number of randomly generated mod-
els, instances of the 10 different metamodels used in the evaluation of the approach
proposed in Chapter 3. A metric that calculates the savings in terms of effort that
language engineers have to do in order to manually assign the type for each un-
typed node was proposed. The results suggested that the average savings per-
centage was up to 80.87%. As the rules in the CSP are imposed by the relationships
between the different types in the metamodel and their multiplicities, the proposed
approach was also applied in random models for which the isolated nodes (those
that were not connected with any other) were ignored. As expected, a significant
improvement in the average saving percentage was occurred in that scenario.

Type Inference using Graph Similarity

In Chapter 5, a type inference approach based on a widely used graph similarity
algorithm, called Similarity Flooding [13, 152] is proposed. This approach also re-
quires the existence of a manually or automatically inferred draft metamodel that
depicts the elements appearing the example models. Both the draft metamodel
and the example models are transformed to directed labelled graphs using a spe-
cific configuration proposed in [11]. Each node of the example model graph (source
graph) is compared with every node of the draft metamodel graph (target graph)
using the Levenshtein [116] string similarity metric. The similarities between nodes
from the source and the target graphs are propagated to neighbouring nodes, based
on the assumption that two nodes of two distinctive graphs are similar when their
neighbouring nodes are similar. The proposed approach returns the similarity
value of each node n in the source graph (example model) with each node m in
the target graph (draft metamodel).

The approach is evaluated on randomly generated models, instances of the 10
different metamodels used in the evaluation of the two previous approaches pro-
posed in Chapters 3 and 4. The approach managed to correctly predict a good
proportion of the types of the untyped nodes. The success ratio varyied between
41% to 100% on average for the 10 different domains. There was no evidence found
to support that the prediction capabilities of the algorithm is affected by the size of
the metamodel or the proportion of untyped nodes in the example model.

Comparison of the Approaches and Usage Scenarios

In order to be able to identify usage scenarios for each of the approaches presented
in this thesis it is important to highlight the benefits, the weaknesses and the differ-
ences among them.

One of the differences is that the approaches presented in Chapters 4 and 5 which

182



Chapter 6. Conclusions

are based on constraint programming and string similarity, respectively, require the
existence of a draft metamodel while the approach presented in Chapter 3 does not.
From this difference one can understand that in early stages of a DSL development
where a draft metamodel does not exist, then the only approach that can be used is
the one based on classification algorithms (Chapter 3).

A second important difference is that the approach based on constraint program-
ming guarantees that the correct type is always included in the returned set of cor-
rect types. That means that whenever the set of the suggested types contains only
one type, this could be assigned automatically to the node without the need of hav-
ing the engineer’s interference. This is not the case with the other two approaches.
This benefit of the CSP approach makes it preferable in scenarios where a draft
metamodel exists however, it comes with a trade-off: This approach has higher ex-
ecution time than the other two as presented in Section 4.4.2 while sometimes it is
not possible to have it finished in a reasonable amount of time. As a result, a sug-
gested scenario would be to use the approach based on constraint programming if
waiting time is not a restriction (in the worst case scenario on average 17.03 seconds
to finish execution). If results are needed immediately then this approach should
be avoided.

The approach based on classification algorithms proved to perform better (in
terms of accuracy) than the other two on example model with fewer possible types.
In contrast the accuracy performance of the rest two approaches is not affected
by the number of types in the metamodel. As a result, the classification algorithms
approach should be preferred in scenarios with example models which contain few
types (a threshold of 6 to 7 types seems to be a turning point as the experiments
suggested). If the example models contain more types, then the other 2 approaches
should be used.

In addition, the approach presented in Chapter 3 relies on the names used for the
references in the example models. If engineers have reasons to believe that the ref-
erences’ names are inconsistent or missing then this approach should be avoided.
The other two approaches that are not relying (CSP approach) or are more resilient
to references’ inconsistencies (Similarity Flooding approach) should be preferred
instead.

Finally, in the scenarios where there is doubt about the structure of the exam-
ple models, i.e, they contain references that are incorrectly placed (e.g., a reference
links two elements that should be linked) then the approach based on CSP is more
applicable as it can initially be used as it can expose some of such inconsistencies.
When these doubts are raised any other approach could be used based on the afore-
mentioned criteria.

183



Chapter 6. Conclusions

6.2. Future Work

In this section, suggestions for future work and potential extensions of the pro-
posed approaches are discussed.

Classification Algorithms

There are interesting directions for future work. The features proposed in this work
can firstly be combined and probably improve the accuracy and secondly expanded
by more features belonging to each category. For example, the font size, orienta-
tion and border thickness of the elements are reasonable additions to the concrete
features.

For the evaluation of the proposed approach we have introduced noise to the
four out of five semantic-related features. Directions for future work include the
injection of noise to the last feature, that of number of attributes. More specifically, a
post-generation script could be run on the example models and remove attributes
from nodes. This way the scenario where language engineers have made errors
in the definition of attributes in nodes would be simulated. The expectation is
that there would be a decrease in the performance of the algorithm; its magnitude
cannot be predicted though.

In the approach we have applied two of the most used classification algorithms,
that of Classification and Regressions Trees (CART) and Random Forests (RF). Al-
gorithms, like Support Vector Machines (SVMs) and Artificial Neural Networks
(ANNs), described in Section 2.6, might be more efficient in this type of problem
and should be checked as well. However, representing the problem in a way that
these algorithms expect as input is more challenging and requires a deep under-
standing of both the classification algorithm and the domain of the problem [135].

Finally, the approach is intended to be used to support flexible modelling, where
examples can be created in ways that are not restricted by metamodels. However,
it could also be applied directly to traditional MDE, for instance, to infer types
for an already-typed model, which may potentially reveal poor or incorrect type
assignments or misuses of the metamodel. This can be done by adjusting the value
of a specific parameter available in classification algorithm, that of bucket. This
parameter, denotes the number of different classes (types) could be enclosed in a
lead node of the tree. In our experiment this is set to 1, however increasing that will
help grouping types that have similarities and might be considered to be extending
the same superclass.

Constraint Programming

In the approach proposed in Chapter 4 there are two types of constraints checked
and applied to the example models both of which are related with the references.

184



Chapter 6. Conclusions

However, as described in Section 2.1.1, in modelling architectures like the Meta Ob-
ject Facility (MOF) [3], constraints can be defined using the Object Constraint Lan-
guage (OCL) [60]. Thus, in addition to the constraints imposed by the metamodel
and already included in our approach, the OCL constraints could also be trans-
formed and included in the CSP to further prune the possible types. The transfor-
mation of first-order logic constraints (OCL) to positive conditional equations that
build the CSP can be done by the same way it is done in [145]. OCL invariants are
parsed as an abstract syntax tree (AST) and depending on nature of the node (if it is a
leaf, internal or root) a specific CSP predicate, compatible with the ECLiPSe solver
used in our approach, in generated. In [145] such an approach is followed for the
verification of EMF models.

The approach based on Constraint Programming principles returns a set of pos-
sible types. However, the returned types are not sorted and are equally likely to
be the correct one. In order to improve the assistance that the approach offers to
language engineers the types could be sorted. This could be done using different
criteria. A simple string matching algorithm (even a more complex one like the
similarity flooding [13] proposed in Chapter 5) could be used to check for similar-
ities between the labels of the features (attributes and references) of the untyped
nodes and the features of all the suggested types. The ordering will be based on
these similarity values.

Similarity Flooding

In Chapter 5, in order to apply the similarity flooding algorithm to our schema
matching problem, the default values for the algorithm, which has been proven to
perform the best [13,152] were used. However, the authors of the algorithm [13,152]
have proposed three more variations of the fixpoint formula and seven more ways
to calculate the propagation coefficient. It would be of interest to experiment with
combinations of these variations and check if they perform better in our domain.
In the study most relevant to our work, Falleri et al. [11] use the same two default
values that we use.

In addition, in the proposed approach the flattened configuration is used for the
representation of the labelled directed graphs of the example models and the draft
metamodel. That configuration was one of the 6 proposed in [11] and performed
among the best. Although the rest of the configurations (except the minimal that
has been proven to underperform) include abstract classes in their representations
it would be of interest to check their performance by discarding the abstract classes’
nodes and inheriting their features in the concrete classes that extend them (if any).

In our approach the similarity results between all the nodes of the source graph
with all the nodes in the target graph are returned and taken into account on finding
the best match. Melnik et al. [13, 152] propose the use of constraints in the process-

185



Chapter 6. Conclusions

ing of the results: domain related information could be used to prune undesired
matches returned from the target graph. In the domain of type inference, we are
only interested in finding matches with nodes that represent types. For example, if
the algorithm, for a reason, returns that the best match for the type of the untyped
node in the example model is the node that represents the name of an attribute in
the graph of the metamodel, this suggestion should be discarded.

Another filter that could improve the performance of the approach could be that
of selection metrics as described in [13,152]. Picking the results with the highest sim-
ilarity value is not always the best matching tactic as this may lead a lower cumu-
lative similarity in the problem. Matching strategies, like the perfectionist egalitarian
polygamy [152], could be applied to check if they affect the performance of the algo-
rithm. Six matching strategies were proposed in [13, 152] and could be applied to
our problem in the future.

As discussed in Section 5.6, the randomly generated example models include the
same attributes that their relevant class in the metamodel owns. It would be of
interest to inject noise to the attributes of each node in the example model to check
how this affect the performance. At least two types of noise are possible: firstly,
randomly delete attributes from the nodes and secondly insert typing mistakes to a
proportion of the attributes. An initial small scale investigation was carried out in
this direction and as expected the noise injection affected the performance but not
critically.

Finally, Grammel et al.’s [12] model matching approach discussed in Section 2.8.2
could be used to identify if their similarity metric and proposed model representa-
tion will perform better than the similarity flooding [13] algorithm used here.

Other Directions of Future Work

The proposed solutions are not necessarily individual type inference approaches
but could be combined to increase their performance. A useful combination could
be that of the approaches based on constraint satisfaction and graph similarity: the
results of the first could be sorted by using the results of the second. In addition,
as soon as the CSP approach returns a set of types in which the correct type is
contained, it could be used as a constraint to prune the results of the approach
based on the similarity flooding algorithm: if a high similarity value is returned for
a type that is not contained in the results of the CSP approach, then it is discarded
as this type is not a plausible assignment.

In this research we focused on inferring the types of nodes that were left un-
typed in processes that are based in flexible MDE approaches (identified as error
#4 in Section 1.1.1). Suggestions for future work include tackling the remaining
three types of errors (i.e., user input errors, inconsistencies due to collaboration, changes
due to evolution). The approaches (modified versions of them) have the potential

186



Chapter 6. Conclusions

to be applied in tackling these problems as well. For example, the graph similar-
ity approach (Chapter 5) could be directly applied to tackle problems related with
user input errors. In principle the performance should not be significantly affected
as typos will have a minimal effect in the propagated similarity values. Regard-
ing the error related with inconsistencies due to collaboration, a solution based on
finding matches based on synonyms in dictionaries could be deployed to tackle
the problem. WordNet [174] offers the technical infrastructure for that. Finally,
regarding changes to types due to evolution, techniques proposed in the domain
of metamodel evolution could possibly be applied to identify evolved concepts in
example models.

6.3. Closing Remarks

Model-driven Engineering is deemed to offer increased productivity and product
quality in software engineering. The participation of domain experts in the defi-
nition of metamodels of good quality and high completeness is important. Flex-
ible MDE approaches promise to fill the gap by promoting the domain experts’
involvement in MDE processes. However, at this immature state these approaches
are more error-prone than the rigorous, traditional MDE ones. The work presented
in this thesis provides engineers with a set of tools that can be used to reduce the
effort of applying flexible MDE approaches, bridging the transition from flexible to
more rigorous MDE approaches when engineers acquire the necessary knowledge
in the domain.

187





Appendices

189





APPENDIX A
Metamodels

Figure A.1.: The Ant metamodel.

191



Appendix A. Metamodels

Fi
gu

re
A

.2
.:

Th
e

Bi
bT

eX
m

et
am

od
el

.

192



Appendix A. Metamodels

Fi
gu

re
A

.3
.:

Th
e

Bu
gz

ill
a

m
et

am
od

el
.

193



Appendix A. Metamodels

(a
)

C
he

ss
m

et
am

od
el

us
ed

in
cl

as
si

-
fic

at
io

n
al

go
ri

th
m

s
ex

pe
ri

m
en

ts
.

(b
)

C
he

ss
m

et
am

od
el

us
ed

in
C

SP
an

d
Si

m
ila

ri
ty

Fl
oo

di
ng

ex
pe

ri
m

en
ts

.

Fi
gu

re
A

.4
.:

Th
e

C
he

ss
m

et
am

od
el

.

194



Appendix A. Metamodels

Fi
gu

re
A

.5
.:

Th
e

C
O

BO
L

m
et

am
od

el
.

195



Appendix A. Metamodels

Figure A.6.: The Conference metamodel.

Figure A.7.: The Profesor metamodel.

196



Appendix A. Metamodels

Fi
gu

re
A

.8
.:

Th
e

U
se

ca
se

m
et

am
od

el
.

197



Appendix A. Metamodels

Fi
gu

re
A

.9
.:

Th
e

W
or

dp
re

ss
m

et
am

od
el

.

198



Appendix A. Metamodels

Figure A.10.: The Zoo metamodel.

199





Bibliography

[1] J. Bézivin and O. Gerbé, “Towards a precise definition of the OMG/MDA
framework,” in Automated Software Engineering, 2001 (ASE 2001). Proceedings.
16th Annual International Conference on. IEEE, 2001, pp. 273–280.

[2] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software engineering
in practice,” Synthesis Lectures on Software Engineering, vol. 1, no. 1, pp. 1–182,
2012.

[3] Object Management Group, “Meta object facility (MOF) core specification,”
ONLINE, 2014, http://www.omg.org/mof/.

[4] D. S. Kolovos, N. Matragkas, H. H. Rodríguez, and R. F. Paige, “Program-
matic muddle management,” XM 2013–Extreme Modeling Workshop, 2013.

[5] J. J. López-Fernández, J. S. Cuadrado, E. Guerra, and J. de Lara, “Example-
driven meta-model development,” Software & Systems Modeling, pp. 1–25,
2013.

[6] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: A mobile sketching tool
for software modeling,” in Mobile Computing, Applications, and Services.
Springer, 2013, pp. 225–244.

[7] A. Coyette, S. Schimke, J. Vanderdonckt, and C. Vielhauer, “Trainable sketch
recognizer for graphical user interface design,” in IFIP Conference on Human-
Computer Interaction. Springer, 2007, pp. 124–135.

[8] M. Kuhrmann, G. Kalus, and A. Knapp, “Rapid prototyping for domain-
specific languages-from stakeholder analyses to modelling tools.” Enterprise
Modelling and Information Systems Architectures, vol. 8, no. 1, pp. 62–74, 2013.

[9] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: A metamodel recov-
ery system using grammar inference,” Information and Software Technology,
vol. 50, no. 9, pp. 948–968, 2008.

[10] T. M. Mitchell, “Machine learning. 1997,” Burr Ridge, IL: McGraw Hill, vol. 45,
1997.

201



Bibliography

[11] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel match-
ing for automatic model transformation generation,” in Model Driven Engi-
neering Languages and Systems. Springer, 2008, pp. 326–340.

[12] B. Grammel, S. Kastenholz, and K. Voigt, “Model matching for trace link gen-
eration in model-driven software development,” in International Conference on
Model Driven Engineering Languages and Systems. Springer, 2012, pp. 609–625.

[13] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile
graph matching algorithm and its application to schema matching,” in Data
Engineering, 2002. Proceedings. 18th International Conference on. IEEE, 2002,
pp. 117–128.

[14] M. Wallace, S. Novello, and J. Schimpf, “ECLiPSe: A platform for constraint
logic programming,” ICL Systems Journal, vol. 12, no. 1, pp. 159–200, 1997.

[15] A. Zolotas, D. S. Kolovos, N. Matragkas, and R. F. Paige, “Assigning seman-
tics to graphical concrete syntaxes,” in XM 2014–Extreme Modeling Workshop,
2014, p. 12.

[16] A. Zolotas, N. Matragkas, S. Devlin, D. Kolovos, and R. Paige, “Type infer-
ence in flexible model-driven engineering,” in Modelling Foundations and Ap-
plications, ser. Lecture Notes in Computer Science, G. Taentzer and F. Borde-
leau, Eds. Springer International Publishing, 2015, vol. 9153, pp. 75–91.

[17] A. Zolotas, N. Matragkas, S. Devlin, D. S. Kolovos, and R. F. Paige, “Type
inference using concrete syntax properties in flexible model-driven engineer-
ing,” 1st Flexible Model-Driven Engineering Workshop, 2015.

[18] A. Zolotas, N. Matragkas, D. S. Kolovos, and R. F. Paige, “Flexible modelling
for requirements engineering,” 2015, p. 32.

[19] A. Zolotas, R. Clariso, N. Matragkas, D. S. Kolovos, and R. F. Paige, “Con-
straint programming for type inference in flexible model-driven engineer-
ing,” Computer Languages, Systems & Structures, pp. –, 2016.

[20] B. Selic, “The pragmatics of model-driven development,” IEEE software,
vol. 20, no. 5, p. 19, 2003.

[21] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model driven
architecture: practice and promise. Addison-Wesley Professional, 2003.

[22] H. Ossher, R. Bellamy, I. Simmonds, D. Amid, A. Anaby-Tavor, M. Callery,
M. Desmond, J. de Vries, A. Fisher, and S. Krasikov, “Flexible modeling tools
for pre-requirements analysis: conceptual architecture and research chal-
lenges,” ACM Sigplan Notices, vol. 45, no. 10, pp. 848–864, 2010.

202



Bibliography

[23] K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz, Z. Diskin, A. Wasowski, and
D. Rayside, “Example-driven modeling: model = abstractions + examples,”
in Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 2013, pp. 1273–1276.

[24] J. L. C. Izquierdo and J. Cabot, “Community-driven language development,”
in 2012 4th International Workshop on Modeling in Software Engineering (MISE).
IEEE, 2012, pp. 29–35.

[25] M. Volter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L. Kats,
E. Visser, and G. Wachsmuth, DSL Engineering - Designing, Implementing
and Using Domain-Specific Languages. dslbook.org, 2013. [Online]. Available:
http://www.dslbook.org

[26] N. Cross, Developments in design methodology. John Wiley & Sons, 1984.

[27] G. Fischer, “Symmetry of ignorance, social creativity, and meta-design,”
Knowledge-Based Systems, vol. 13, no. 7, pp. 527–537, 2000.

[28] K. J. Fernandes, “Interactive situation modelling in knowledge-intensive do-
mains,” International Journal of Business Information Systems, vol. 4, no. 1, pp.
25–46, 2009.

[29] J. S. Cuadrado, J. de Lara, and E. Guerra, “Bottom-up meta-modelling: An in-
teractive approach,” in MODELS’12: ACM/IEEE 15th International Conference
on Model Driven Engineering Languages and Systems, ser. LNCS 7590. Springer,
2012, pp. 3–19.

[30] J. L. C. Izquierdo and J. Cabot, “Enabling the collaborative definition of
DSMLs,” in Advanced Information Systems Engineering. Springer, 2013, pp.
272–287.

[31] G. Gabrysiak, H. Giese, A. Lüders, and A. Seibel, “How can metamodels be
used flexibly,” in Proceedings of ICSE 2011 workshop on flexible modeling tools,
Waikiki/Honolulu, vol. 22, 2011.

[32] M. Kuhrmann, “User assistance during domain-specific language design,” in
FlexiTools workshop, 2011.

[33] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. Polack, “The de-
sign of a conceptual framework and technical infrastructure for model man-
agement language engineering,” in 14th IEEE International Conference on En-
gineering of Complex Computer Systems. IEEE, 2009, pp. 162–171.

[34] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling
framework. Pearson Education, 2008.

203

http://www.dslbook.org


Bibliography

[35] U. Brandes, M. Eiglsperger, J. Lerner, and C. Pich, “Graph markup language
(GraphML),” 2004.

[36] O. Lassila and R. R. Swick, “Resource description framework (RDF) model
and syntax specification,” 1999.

[37] B. Selic, “The pragmatics of model-driven development,” IEEE Softw.,
vol. 20, no. 5, pp. 19–25, Sep. 2003. [Online]. Available: http://dx.doi.org/
10.1109/MS.2003.1231146

[38] D. S. Kolovos, R. F. Paige, and F. A. Polack, “The epsilon object language
(EOL),” in Model Driven Architecture–Foundations and Applications. Springer,
2006, pp. 128–142.

[39] J. Bézivin, “On the unification power of models,” Software & Systems Model-
ing, vol. 4, no. 2, pp. 171–188, 2005.

[40] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based model confor-
mance and multiview consistency checking,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 16, no. 3, p. 11, 2007.

[41] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language (WebML):
a modeling language for designing web sites,” Computer Networks, vol. 33,
no. 1, pp. 137–157, 2000.

[42] C. J. Date and H. Darwen, A guide to the SQL Standard: a user’s guide to the
standard relational language SQL. Addison-Wesley Longman, 1993, vol. 55822.

[43] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full code genera-
tion. John Wiley & Sons, 2008.

[44] M. Fowler and R. Parsons, Domain-specific languages. Addison-Wesley Pro-
fessional, 2010.

[45] Oracle. (2016, July) Java oracle. ONLINE. [Online]. Available: https:
//www.oracle.com/java/index.html

[46] Object Management Group, “Business Process Model and Notation Standard
(formal/2011-01-03),” http://www.omg.org/spec/BPMN/, December 2013.

[47] ——, “Unified Modeling Language,” http://www.omg.org/spec/UML/,
June 2015.

[48] G. Scherp, A Framework for Model-Driven Scientific Workflow Engineering.
BoD–Books on Demand, 2013.

204

http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1109/MS.2003.1231146
https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/UML/


Bibliography

[49] T. Berners-Lee and D. Connolly, “Hypertext markup language (html): A rep-
resentation of textual information and metainformation for retrieval and in-
terchange,” Rapport technique, IETF IIIR Working Group, 1993.

[50] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,” in
Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006, p. 118.

[51] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende, “Derivation
and refinement of textual syntax for models,” in European Conference on Model
Driven Architecture-Foundations and Applications. Springer, 2009, pp. 114–129.

[52] The graphical modeling project (gmp). ONLINE. The Eclipse Foundation.
[Online]. Available: http://www.eclipse.org/modeling/gmp/

[53] V. Viyović, M. Maksimović, and B. Perisić, “Sirius: A rapid development of
dsm graphical editor,” in IEEE 18th International Conference on Intelligent En-
gineering Systems INES 2014. IEEE, 2014, pp. 233–238.

[54] J. De Lara and H. Vangheluwe, “Atom3: A tool for multi-formalism and
meta-modelling,” in International Conference on Fundamental Approaches to
Software Engineering. Springer, 2002, pp. 174–188.

[55] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. Polack, and G. Botter-
weck, “Taming EMF and GMF using model transformation,” in International
Conference on Model Driven Engineering Languages and Systems. Springer, 2010,
pp. 211–225.

[56] F. P. Andrés, J. De Lara, and E. Guerra, “Domain specific languages with
graphical and textual views,” in International Symposium on Applications of
Graph Transformations with Industrial Relevance. Springer, 2007, pp. 82–97.

[57] L. M. Garshol, “BNF and EBNF: What are they and how do they work,” ace-
dida pela última vez em, vol. 16, 2003.

[58] Object Management Group, “XML metadata interchange,”
http://www.omg.org/spec/XMI/2.5.1, June 2015.

[59] T. J. Grose, G. C. Doney, and S. A. Brodsky, Mastering XMI: Java Programming
with XMI, XML and UML. John Wiley & Sons, 2002, vol. 21.

[60] Object Management Group, “Object Constraint Language,” http://www.
omg.org/spec/OCL/, February 2014.

[61] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and how to use multi-
level modelling,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 24, no. 2, p. 12, 2014.

205

http://www.eclipse.org/modeling/gmp/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/


Bibliography

[62] D. Kolovos, R. Paige, and F. Polack, “The Epsilon Transformation Language,”
Theory and Practice of Model Transformations, pp. 46–60, 2008.

[63] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events
at the MoDELS 2005 Conference. Springer, 2006, pp. 128–138.

[64] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró, “Viatra-
visual automated transformations for formal verification and validation of
uml models,” in Automated Software Engineering, 2002. Proceedings. ASE 2002.
17th IEEE International Conference on. IEEE, 2002, pp. 267–270.

[65] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “The Epsilon gen-
eration language,” in Model Driven Architecture–Foundations and Applications.
Springer, 2008, pp. 1–16.

[66] S. Efftinge and C. Kadura, “OpenArchitectureWare 4.1 Xpand language ref-
erence,” 2006.

[67] B. Klatt, “Xpand: A closer look at the model2text transformation language,”
Institute for Program Structures and Data Organization (IPD), Tech. Rep.,
July 2007.

[68] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet, Y. Lussaud, and
F. Allilaire, “Acceleo user guide,” See also http://acceleo. org/doc/obeo/en/acceleo-
2.6-user-guide. pdf, vol. 2, 2006.

[69] S. Efftinge and S. Zarnekow, “Extending java–xtend: a new language for java
developers,” PragPub, The Pragmatic Bookshelf, no. 30, pp. 5–11, 2011.

[70] S. Efftinge, “Xtend language,” 2016. [Online]. Available: http://www.
eclipse.org/xtend

[71] M. Elaasar and L. Briand, “An overview of UML consistency management,”
Carleton University, Canada, Technical Report SCE-04-18, 2004.

[72] D. Kolovos, An extensible platform for specification of integrated languages for
model management. University of York, 2008.

[73] D. S. Kolovos, R. F. Paige, and F. A. Polack, “On the evolution of OCL for
capturing structural constraints in modelling languages,” in Rigorous Methods
for Software Construction and Analysis. Springer, 2009, pp. 204–218.

[74] F. Jouault and J. Bezıvin, “Using atl for checking models,” in Proc. Interna-
tional Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia
(September 2005). Citeseer, 2005.

[75] Eclipse, “The Eclipse Foundation open source community,”
http://www.eclipse.org, August 2016.

206

http://www.eclipse.org/xtend
http://www.eclipse.org/xtend


Bibliography

[76] C. Daly, “Emfatic language reference,” IBM alphaWorks, 2004,
http://www.eclipse.org/epsilon/doc/articles/emfatic/.

[77] D. Flanagan, JavaScript: the definitive guide. " O’Reilly Media, Inc.", 2006.

[78] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Merging models with the Ep-
silon merging language (EML),” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2006, pp. 215–229.

[79] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall,
“GraphML progress report structural layer proposal,” in Graph Drawing.
Springer, 2002, pp. 501–512.

[80] P. Mohagheghi and V. Dehlen, “Where is the proof? - A review of experi-
ences from applying mde in industry,” in European Conference on Model Driven
Architecture-Foundations and Applications. Springer, 2008, pp. 432–443.

[81] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, “Empirical
assessment of MDE in industry,” in Proceedings of the 33rd International Con-
ference on Software Engineering. ACM, 2011, pp. 471–480.

[82] M. Bone and R. Cloutier, “The current state of model based systems engineer-
ing: Results from the OMG SysML request for information 2009,” in Proceed-
ings of the 8th Conference on Systems Engineering Research, 2010.

[83] T. Weigert and F. Weil, “Practical experiences in using model-driven en-
gineering to develop trustworthy computing systems,” in IEEE Interna-
tional Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC’06), vol. 1. IEEE, 2006, pp. 8–pp.

[84] B. Selic, “What will it take? A view on adoption of model-based methods in
practice,” Software & Systems Modeling, vol. 11, no. 4, pp. 513–526, 2012.

[85] R. L. Glass, “Frequently forgotten fundamental facts about software engi-
neering,” IEEE software, vol. 18, no. 3, pp. 112–111, 2001.

[86] F. Steimann and T. Kühne, “Coding for the code,” Queue, vol. 3, no. 10, pp.
44–51, 2005.

[87] M. Fowler, UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional, 2004.

[88] yWorks, “yEd - Graph editor,” https://www.yworks.com/products/yed,
August 2016.

[89] The GNOME Project, “Dia diagram creation program,”
https://wiki.gnome.org/Apps/Dia, November 2013.

207



Bibliography

[90] Microsoft, “Microsoft PowerPoint,” https://products.office.com/en-
us/powerpoint, August 2016.

[91] B. Biafore, Visio 2007 Bible. John Wiley & Sons, 2007.

[92] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Education,
2007.

[93] OMG Architecture Board ORMSC, “Model driven architecture (MDA),”
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01, July 2001, OMG doc-
ument number ormsc/2001-07-01.

[94] J. De Lara and E. Guerra, “Deep meta-modelling with metadepth,” in Inter-
national Conference on Modelling Techniques and Tools for Computer Performance
Evaluation. Springer, 2010, pp. 1–20.

[95] H. Ossher, R. Bellamy, D. Amid, A. Anaby-Tavor, M. Callery, M. Desmond,
J. de Vries, A. Fisher, T. Frauenhofer, S. Krasikov et al., “Business Insight
Toolkit: Flexible pre-requirements modeling,” in 2009 31st International Con-
ference on Software Engineering-Companion Volume, 2009.

[96] M. Kuhrmann, G. Kalus, E. Wachtel, and M. Broy, “Visual process model
design using domain-specific languages,” in Proceedings of SPLASH Workshop
on Flexible Modeling Tools, vol. 2010, 2010.

[97] M. Kuhrmann, G. Kalus, M. Then, and E. Wachtel, “From design to tools:
process modeling and enactment with PDE and PET,” in Proceedings of Third
International Workshop on Academic Software Development Tools and Techniques
(WASDeTT-3), co-located with the 25th IEEE/ACM International Conference on
Automated Software Engineer, 2010.

[98] S. Cook, G. Jones, S. Kent, and A. C. Wills, Domain-specific development with
visual studio DSL tools. Pearson Education, 2007.

[99] B. Roth, M. Jahn, and S. Jablonski, “On the way of bottom-up designing tex-
tual domain-specific modelling languages,” in Proceedings of the ACM work-
shop on Domain-specific modeling, 2013, pp. 51–56.

[100] J. Gallardo, C. Bravo, and M. A. Redondo, “A model-driven development
method for collaborative modeling tools,” Journal of Network and Computer
Applications, vol. 35, no. 3, pp. 1086–1105, 2012.

[101] N. Pinkwart, H. U. Hoppe, L. Bollen, and E. Fuhlrott, “Group-oriented mod-
elling tools with heterogeneous semantics,” in International Conference on In-
telligent Tutoring Systems. Springer, 2002, pp. 21–30.

208



Bibliography

[102] N. Avouris, M. Margaritis, and V. Komis, “Modelling interaction dur-
ing small-group synchronous problem-solving activities: The synergo ap-
proach,” in Proceedings of ITS 2004 workshop on designing computational models
of collaborative learning interaction, 2004, pp. 13–18.

[103] A. Pescador and J. de Lara, “DSL-maps: from requirements to design of
domain-specific languages,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2016, pp. 438–443.

[104] T. Buzan and B. Buzan, “The mind map book: How to use radiant thinking
to maximize your brain’s untapped potential,” 1996.

[105] J. J. López-Fernández, A. Garmendia, E. Guerra, and J. de Lara, Example-Based
Generation of Graphical Modelling Environments. Cham: Springer International
Publishing, 2016, pp. 101–117.

[106] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards modeling
and reasoning with uncertainty,” in 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 573–583.

[107] F. Rabbi, Y. Lamo, I. C. Yu, L. M. Kristensen, and L. Michael, “A diagram-
matic approach to model completion,” in 4th Workshop on the Analysis of Model
Transformations (AMT)@ MODELS, vol. 15, 2015.

[108] S. Sen, B. Baudry, and D. Precup, “Partial model completion in model driven
engineering using constraint logic programming,” in International Conference
on the Applications of Declarative Programming. Citeseer, 2007.

[109] Y. Lamo, X. Wang, F. Mantz, W. MacCaull, and A. Rutle, “DPF workbench: A
diagrammatic multi-layer domain specific (meta-) modelling environment,”
in Computer and Information Science 2012. Springer, 2012, pp. 37–52.

[110] K. R. Apt and M. Wallace, Constraint logic programming using ECLiPSe. Cam-
bridge University Press, 2006.

[111] W. Clocksin and C. S. Mellish, Programming in PROLOG. Springer Science
& Business Media, 2003.

[112] M. Antkiewicz, K. Bak, K. Czarnecki, Z. Diskin, D. Zayan, and A. Wasowski,
“Example-driven modeling using clafer.” in MDEBE@MoDELS, vol. 1104.
CEUR-WS.org, 2013, pp. 32–41.

[113] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski, “Clafer:
unifying class and feature modeling,” Software & Systems Modeling, pp. 1–35,
2015.

209



Bibliography

[114] D. Jackson, Software Abstractions: logic, language, and analysis. MIT press,
2012.

[115] S. Schimke, C. Vielhauer, and J. Dittmann, “Using adapted Levenshtein dis-
tance for on-line signature authentication,” in Pattern Recognition, 2004. ICPR
2004. Proceedings of the 17th International Conference on, vol. 2. IEEE, 2004, pp.
931–934.

[116] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions
and reversals,” in Soviet physics doklady, vol. 10, 1966, p. 707.

[117] H. Cho, J. Gray, and E. Syriani, “Creating visual domain-specific modeling
languages from end-user demonstration,” in 2012 ICSE Workshop on Modeling
in Software Engineering (MISE). IEEE, 2012, pp. 22–28.

[118] H. Cho and J. Gray, “Design patterns for metamodels,” in Proceedings of
the compilation of the co-located workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11. ACM, 2011, pp. 25–32.

[119] M. Fowler, Refactoring: improving the design of existing code. Pearson Educa-
tion India, 2009.

[120] J. Sprinkle and G. Karsai, “A domain-specific visual language for domain
model evolution,” Journal of Visual Languages & Computing, vol. 15, no. 3, pp.
291–307, 2004.

[121] Á. Lédeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, and
G. Karsai, “Composing domain-specific design environments,” Computer,
vol. 34, no. 11, pp. 44–51, 2001.

[122] G. Karsai, M. Maroti, Á. Lédeczi, J. Gray, and J. Sztipanovits, “Composition
and cloning in modeling and meta-modeling,” IEEE Transactions on Control
Systems Technology, vol. 12, no. 2, pp. 263–278, 2004.

[123] J. Clark et al., “XSL transformations (XSLT),” World Wide Web Consortium
(W3C). URL http://www. w3. org/TR/xslt, p. 103, 1999.

[124] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer, “LISA: An interactive
environment for programming language development,” in International Con-
ference on Compiler Construction. Springer, 2002, pp. 1–4.

[125] H. Jiawei and M. Kamber, “Data mining: concepts and techniques,” San Fran-
cisco, CA, itd: Morgan Kaufmann, vol. 5, 2001.

[126] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and re-
gression trees. CRC press, 1984.

210



Bibliography

[127] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[128] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Support
vector machines,” IEEE Intelligent Systems and their Applications, vol. 13, no. 4,
pp. 18–28, 1998.

[129] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[130] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics, Springer, Berlin, 2001, vol. 1, pp. 587–604.

[131] J. Surowiecki, The wisdom of crowds. Anchor, 2005.

[132] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLach-
lan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in data mining,”
Knowledge and information systems, vol. 14, no. 1, pp. 1–37, 2008.

[133] A. J. Smola and B. Schölkopf, Learning with kernels. Citeseer, 1998.

[134] B. Müller, J. Reinhardt, and M. T. Strickland, Neural networks: an introduction.
Springer Science & Business Media, 2012.

[135] J. E. Dayhoff and J. M. DeLeo, “Artificial neural networks,” Cancer, vol. 91,
no. S8, pp. 1615–1635, 2001.

[136] V. Krkova, “Kolmogorov’s theorem and multilayer neural networks,” Neural
networks, vol. 5, no. 3, pp. 501–506, 1992.

[137] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[138] J. W. Lloyd, Foundations of logic programming. Springer Science & Business
Media, 2012.

[139] R. Kowalski and D. Kuehner, “Linear resolution with selection function,” Ar-
tificial Intelligence, vol. 2, no. 3-4, pp. 227–260, 1971.

[140] C. Alain, F. Didier, R. Pasero, P. Roussel, and J. Trudel, “Répondre à,” 1971.

[141] A. Colmerauer and P. Roussel, “The birth of PROLOG,” in History of program-
ming languages—II. ACM, 1996, pp. 331–367.

[142] R. L. Sites, “ALGOL W reference manual,” 1972.

[143] J. Wielemaker, “An overview of the SWI-Prolog programming environment.”
WLPE, vol. 3, pp. 1–16, 2003.

[144] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory
and Practice of Logic Programming, vol. 12, no. 1-2, pp. 67–96, 2012.

211



Bibliography

[145] C. A. González, F. Buettner, R. Clarisó, and J. Cabot, “EMFtoCSP: A tool for
the lightweight verification of EMF models,” in Proceedings of the First Interna-
tional Workshop on Formal Methods in Software Engineering: Rigorous and Agile
Approaches. IEEE Press, 2012, pp. 44–50.

[146] F. Rossi, P. Van Beek, and T. Walsh, Handbook of constraint programming. El-
sevier, 2006.

[147] J.-L. J. Imbert, “Linear constraint solving in clp-languages,” in Constraint Pro-
gramming: Basics and Trends. Springer, 1995, pp. 108–127.

[148] J. Wielemaker and A. Anjewierden, “Programming in XPCE/Prolog,”
Roetersstraat, vol. 15, p. 1018, 1992.

[149] J. Cabot, R. Clarisó, and D. Riera, “UMLtoCSP: a tool for the formal verifica-
tion of UML/OCL models using constraint programming,” in Proceedings of
the 22th IEEE/ACM international conference on Automated software engineering.
ACM, 2007, pp. 547–548.

[150] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema
matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[151] P. A. Bernstein, J. Madhavan, and E. Rahm, “Generic schema matching, ten
years later,” Proceedings of the VLDB Endowment, vol. 4, no. 11, pp. 695–701,
2011.

[152] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: A versatile
graph matching algorithm (extended technical report),” 2001.

[153] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, “Fundamentals of algebraic
graph transformation (monographs in theoretical computer science. an eatcs
series).” 2006.

[154] J. R. Williams, A. Zolotas, N. D. Matragkas, L. M. Rose, D. S. Kolovos, R. F.
Paige, and F. A. Polack, “What do metamodels really look like?” EESSMOD@
MoDELS, vol. 1078, pp. 55–60, 2013.

[155] J. R. Williams, R. F. Paige, D. S. Kolovos, and F. A. Polack, “Search-based
model driven engineering,” Technical Report YCS-2012-475, Department of
Computer Science, University of York, Tech. Rep., 2012.

[156] T. M. Therneau, E. J. Atkinson et al., “An introduction to recursive partition-
ing using the rpart routines,” June 2015.

[157] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2016. [Online].
Available: https://www.R-project.org/

212

https://www.R-project.org/


Bibliography

[158] A. Liaw and M. Wiener, “randomforest: Breiman and Cutler’s
random forests for classification and regression,” https://cran.r-
project.org/web/packages/randomForest/index.html, October 2015,
version: 4.6-12.

[159] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, vol. 15, no. 1, pp. 72–101, 1904.

[160] K. Pearson, “Notes on the history of correlation,” Biometrika, vol. 13, no. 1,
pp. 25–45, 1920.

[161] J. Lee Rodgers and W. A. Nicewander, “Thirteen ways to look at the correla-
tion coefficient,” The American Statistician, vol. 42, no. 1, pp. 59–66, 1988.

[162] B. Meyer, Object-oriented software construction. Prentice Hall New York, 1988,
vol. 2.

[163] R. Reiter, “On closed world data bases,” in Logic and data bases. Springer,
1978, pp. 55–76.

[164] R. Debruyne and C. Bessiere, “Some practicable filtering techniques for the
constraint satisfaction problem,” in In Proceedings of IJCAI ’97. Citeseer, 1997.

[165] E. Tsang, Foundations of constraint satisfaction: the classic text. BoD–Books on
Demand, 2014.

[166] P. Prosser, “An empirical study of phase transitions in binary constraint sat-
isfaction problems,” Artificial Intelligence, pp. 81–109, 1996.

[167] D. G. Mitchell, Proc. of the 8th International Conference on Principles and Practice
of Constraint Programming (CP’2002). Berlin, Heidelberg: Springer, 2002, ch.
Resolution Complexity of Random Constraints, pp. 295–310.

[168] Y. Gao and J. Culberson, “Resolution complexity of random constraint sat-
isfaction problems: Another half of the story,” Discrete Applied Mathematics,
vol. 153, pp. 124 – 140, 2005.

[169] T. Soininen and I. Niemelä, “Developing a declarative rule language for ap-
plications in product configuration,” in International Symposium on Practical
Aspects of Declarative Languages. Springer, 1999, pp. 305–319.

[170] Y. Dimopoulos, B. Nebel, and J. Koehler, “Encoding planning problems
in nonmonotonic logic programs,” in European Conference on Planning.
Springer, 1997, pp. 169–181.

[171] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven an-
swer set solving.” in IJCAI, vol. 7, 2007, pp. 386–392.

213



Bibliography

[172] G. Klyne and J. J. Carroll, “Resource description framework (RDF): Concepts
and abstract syntax,” 2006.

[173] L. Sabin-Wilson and M. Mullenweg, WordPress for dummies. John Wiley &
Sons, 2011.

[174] G. A. Miller, “WordNet: a lexical database for english,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

214


	Abstract
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Acknowledgements
	Declaration
	Introduction
	Motivation and Background
	Bottom-up MDE

	Hypothesis and Objectives
	Thesis Objectives

	Research Contributions
	Thesis Structure

	Literature Review
	Model-Driven Engineering
	MDE Principles and Tools
	Strengths and Weaknesses of MDE

	Bottom-up MDE
	Muddles
	metaBUP
	Flexisketch
	Other

	Partial Models
	Metamodel and Type Inference
	MetaBUP
	Flexisketch
	MLCBD
	Process Development Environment (PDE)
	Metamodel Recovery System (MARS)

	Summary and Critique of Flexible MDE approaches
	Classification Algorithms
	Classification and Regression Trees (CART)
	Random Forests (RF)
	Support Vector Machines (SVM)
	Artificial Neural Networks (ANN)

	Constraint Logic Programming
	Logic Programming Tools & Distributions
	Combining MDE with Logic Programming

	Graph Similarity
	Similarity Flooding
	Using Similarity Measurements in MDE

	Chapter Summary

	Type Inference using Classification Algorithms
	Introduction
	Type Inference
	Feature Signatures
	Features Based on the Semantics
	Features Based on Concrete Syntax
	Extending Muddles

	Training and Classification
	Experimental Evaluation
	Experiment for Features Based on Semantics
	Results and Discussion
	Experiment for Concrete Syntax Features
	Results and Discussion

	Limitations
	Chapter Summary

	Type Inference using Constraint Programming
	Introduction
	Type Inference
	The Constraint Satisfaction Problem
	CSP Formalisation
	Model and Metamodel to CSP Transformation

	Experimental Evaluation
	Experiment
	Results & Discussion

	Limitations
	Chapter Summary

	Type Inference using Graph Similarity
	Introduction
	Type Inference Using String Similarity
	Graph Configuration
	Flattened Configuration

	Similarity Flooding
	Experimental Evaluation
	Experiment
	Results and Discussion

	Limitations
	Chapter Summary

	Conclusions
	Thesis Contributions
	Future Work
	Closing Remarks

	Appendices
	Metamodels
	Bibliography

