
Statistical Analysis of Coevolution in

Protein Structure and in Ecology

Colleen Nooney

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Department of Statistics

September 2016

http://www.leeds.ac.uk
http://maths.leeds.ac.uk




The candidate confirms that the work submitted is her own, except where
work which has formed part of jointly authored publications has been
included. The contribution of the candidate and the other authors to
this work has been explicitly indicated below. The candidate confirms
that appropriate credit has been given within the thesis where reference
has been made to the work of others.

Jointly authored publications:

Nooney, C., Gusnanto, A., Gilks, W.R. & Barber, S. (2015).
Do protein structures evolve around ‘anchor’ residues? In I.L. Dryden
& J.T. Kent, eds., Geometry Driven Statistics , chap. 16, 311–336, John
Wiley & Sons

Chapter 2 of the thesis is based on this publication. The contribution of
authors is as follows:

Colleen Nooney implemented the methodology and Arief Gusnanto noted
the anomaly (low range divergences). All other results were drafted
by Colleen Nooney, and include contributions and edits from all four
authors.

This copy has been supplied on the understanding that it is copyright
material and that no quotation from the thesis may be published without
proper acknowledgement

c© 2016 The University of Leeds and Colleen Nooney





I would like to dedicate this thesis to my Supervisors for never
doubting my abilities, even when I doubt myself.





Acknowledgements

I am most thankful to my supervisors Prof. Walter Gilks, Dr Stuart
Barber and Dr Arief Gusnanto. Over the past four years their experi-
ence and guidance has been invaluable. They have always given me the
freedom and confidence to explore my own ideas, and their unwavering
enthusiasm for the topic has always motivated me.

I am also grateful to the Engineering and Physical Sciences Research
Council for funding my Masters and PhD studies. Without this support
I never would have discovered my passion for research.

I am thankful to the following people for their help and support during
the organisation of RSC at Leeds: Jeanne Shuttleworth, Margaret Jones,
Paula Talbot, Nebahat Bozkus, Wafa Almohri and Keith Newman. Ev-
ery bit of help was a huge weight off of my shoulders. Additional thanks
go to Keith for always being there for me, in all aspects of life.

Finally, thank you to all of my family and friends, for the support, under-
standing, happiness and sanity. Particularly to my parents and James
for their unwavering belief and encouragement.





Abstract

In this thesis we explore the theory of coevolution. Yip et al. (2008)
define coevolution to be the change in one biological object as a result
of the change in one or more associated objects. The process of coevo-
lution has been observed at many biological levels; from microscopic to
macroscopic. We explore coevolution at the molecular level by studying
protein sequences and their corresponding structures to determine how
correlated areas of multiple sequence alignments and structures have co-
evolved. At the species level, we assess how coevolution drives ecological
systems of interacting phylogenetic trees.

Determining the three-dimensional structure of proteins is of interest
because the structure of a protein is constrained by its function. Pro-
teins carry out vital functions in every cell and are arguably the most
important biological molecule found in organisms. Multiple sequence
alignments of protein families contain evolutionary information on these
functional constraints. In the first part of this thesis, we aim to develop a
method to identify correlated mutations within multiple sequence align-
ments. These correlated positions are used to predict residues that are in
close proximity in three-dimensional space. In turn these structural con-
straints can be used in ab initio protein structure prediction. Currently
the most accurate way to determine protein structure is using experimen-
tal techniques such as Nuclear Magnetic Resonance (NMR) and X-ray
Crystallography. These techniques are expensive and take time. As a
result, the proteins that are chosen to have their structures determined
may be subject to selection bias. Initially, we focus on a preliminary
analysis of the trypsin protein family. We align trypsin structures from
a variety of species using a multiple structural alignment algorithm, to
determine how the structure of the family has evolved. Basic summary
statistics of the aligned distance matrices reveal a set of residues where
the distance between these specific residues and every other residue in



the structure is highly conserved across all of the structures in the pro-
tein family. We label these residues as ‘anchor residues’ because they
appear to hold the structure of the trypsin protein family in place like
anchors.

Following this, we develop a regularised logistic regression model to de-
tect correlated mutations in multiple sequence alignments. We success-
fully apply our method to a number of small artificial test alignments.
When applied to real Pfam datasets, our method has varying success at
identifying coevolving columns that are close in physical proximity.

In the second part of this thesis we develop a new method to test effi-
ciently for cospeciation in multitrophic ecological systems. Our method
can be applied to bitrophic and tritrophic systems, with the potential
to generalise to higher order systems and networks. We utilise methods
from electrical circuit theory to reduce higher order systems into two
vectors of electrically equivalent patristic distances that can be com-
pared using Spearman’s rank correlation coefficient. Compared to ex-
isting methods, our method has equal or higher performance at both
trophic levels.

To test our method, interacting systems of phylogenetic trees were sim-
ulated by generating random trees, and separately, their interaction ma-
trices. Simulating the systems in this way does not take into account how
the systems might have evolved. We propose a more realistic simulation
method that evolves over time. The algorithm starts with one species per
lineage, that are assumed to have an ecological interaction. The joint
evolution of these species is simulated by sampling the time at which
evolutionary events occur from an exponential distribution. We explore
speciation events, and gaining and losing ecological interactions. Each of
these events are controlled by rate parameters. By experimenting with
these parameters, a wide range of systems with different cospeciation
properties can be simulated. We show that a wide range of systems that
can be produced using our method.
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Chapter 1

Introduction

The process of coevolution drives many biological systems. Identifying where co-
evolution occurs within these systems provides insight into how they function. We
focus on two biological systems. At the molecular level, we explore coevolution
as an indicator of residue contacts in three-dimensional protein structures. At the
species level we investigate coevolution in ecological systems consisting of interacting
phylogenetic trees.

We provide a brief biological background for each level in this chapter. More
detail unique to each of the chapters is given within their introductory sections. In
Section 1.5 we give a chapter by chapter overview of the research covered in this
thesis.

1.1 What is Coevolution?

Yip et al. (2008) define coevolution to be the change in one biological object as a
result of the change in one or more associated objects. This evolutionary process
occurs at many biological levels; from microscopic to macroscopic. For example, at
the molecular level positions in multiple sequence alignments coevolve to conserve
protein structure (Marks et al., 2011). Coevolution can also occur between genes,
and proteins, that physically interact or have functional relationships (Lovell &
Robertson, 2010).

At the species level, coevolution, or cospeciation, is where two or more lineages
that are ecologically associated jointly evolve to form new species (Page, 2003). The
terms cospeciation and coevolution are often used interchangeably. However, there
are differing opinions on how to define cospeciation and coevolution. Page (2003)
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1. Introduction

defines coevolution as the evolution of reciprocal adaptations in hosts and parasites,
that is, the evolution of new traits or characteristics as opposed to new species.
Thus, coevolution does not imply cospeciation.

1.2 Biological Background: Protein Structure

1.2.1 Protein Sequences

Proteins are biological macromolecules comprised of polypeptide chains; these in
turn are made up of amino acid residues. There are 20 standard amino acids; their
names and abbreviations are displayed in Table 1.1. Figure 1.1 displays the chemical
structure common to all amino acids. Every amino acid is comprised of a central,
or alpha, carbon atom (Cα), an amine group (NH2), a carboxyl group (COOH), and
an R group. The R group is connected to the Cα atom and represents the unique
side chain that differentiates the 20 standard amino acids. To form the polypeptide
chain, the amino-acid residues are combined by peptide bonds, resulting in the loss

Full Name Abbreviation Single Letter Code
Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartic Acid Asp D

Cysteine Cys C
Glutamine Gln Q

Glutamic Acid Glu E
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V

Table 1.1: Full name, three letter abbreviated name and single letter code for each
of the 20 standard amino acids.
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Figure 1.1: A two-dimensional ball-and-stick model of peptide bond formation be-
tween two amino acids. Atoms are represented by circles and bonds are lines between
them, where double bonds are indicated by two parallel lines. Nitrogen, Carbon,
Oxygen and Hydrogen are represented by ‘N’ (blue), ‘C’ (grey), ‘O’ (red) and ‘H’
(white) respectively. The unique side-chains or ‘R’ groups of the two amino acids
are represented by a square. Peptide bonds are formed when the carboxyl group
of one amino acid reacts with the amino group of another resulting in the loss of a
water molecule, as shown in the lower panel.

of a water molecule for each link.
Amino acids can be categorised according to their physiochemical properties.

These properties include; size, charge, functional group, hydrophobicity and hy-
drophilicity. Polar uncharged amino acids (S, T, Q, N, Y, C) are hydrophilic, and
can therefore form hydrogen bonds. Non-polar amino acids (G, A, V, L, I, M, F, W,
P) are hydrophobic, and therefore usually found in the centre of globular proteins,
with hydrophilic amino acids on the outside. Electrically charged amino acids (D,
E, K, R, H) have electrical properties and are thus influenced by pH levels. Cysteine
and Proline have unique properties. Cysteine residues can covalentently bond with
other cysteine residues to form disulphide bonds. Disulphide bonds are important in
the folding and structure of proteins. Proline is the only amino acid whose R chain
connects to the protein backbone twice. This results in a cyclic structure that is
conformationally more rigid than the other amino acids. Proline’s unique structure
can produce kinks in the protein chain.
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1. Introduction

Figure 1.2: Four different levels of protein structure; primary, secondary, tertiary
and quaternary structure. Source: http://en.wikipedia.org/wiki/File:Main_
protein_structure_levels_en.svg
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1.2 Biological Background: Protein Structure

1.2.2 Levels of Protein Structure

The complex structure of a protein is determined by four different levels of folding,
known as the primary, secondary, tertiary and quaternary structures. A simple
overview is given in Figure 1.2. The primary structure is the sequence of amino-acid
residues of each polypeptide chain.

The secondary structures of a protein are the regions of the polypeptide chain
that are organised into regular structures identified as alpha helices, and beta-pleated
sheets (Figure 1.3). Alpha helices are the most common type of secondary structure.
The protein chain twists into a coil held together by hydrogen bonds where the side-
chains of the amino acids point outwards. The helix is orientated in an anti-clockwise
direction, with approximately 3.6 amino-acid residues per turn. Beta sheets are rigid
planar surfaces formed when two or more strands of the protein chain lie side by
side. This structure is also held together by hydrogen bonds. The side chains lie
alternately above and below the plane of the surface of the beta sheet. Between the
organised secondary structure regions are less structured loops and turns, which are
less rigid and able to move more freely.

(a) (b)

Figure 1.3: Two types of secondary structure; alpha helix (a) and beta pleated
sheet (b). Dotted lines indicate where hydrogen bonds form, stabilising
the structures. Sources: http://www.mun.ca/biology/scarr/F09-05.jpg,
http://classconnection.s3.amazonaws.com/804/flashcards/1343804/png/
screen_shot_2012-04-19_at_105145_pm1334901100443.png
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The tertiary structure of a protein describes the folding of the polypeptide chain
to form its final three-dimensional shape. Interactions between the side chains of
the amino-acid residues hold this structure in place.

The quaternary structure of a protein is the combination of more than one
polypeptide chain. For example, dimers are proteins comprised of two polypep-
tide chains. The quaternary structure is held together by the same interactions as
the tertiary structure. Not all proteins have a quaternary structure. Those that do
not have a quaternary structure, consist of one polypeptide chain and are known as
monomers (Branden et al., 1991).

1.3 Protein Structure Determination and

Prediction

The three-dimensional structure of proteins is of great interest to biologists because
the structure of a protein is related to its function. Proteins carry out vital functions
in every cell and are arguably the most important biological molecule found in
organisms.

Currently the most accurate way to determine protein structure is using exper-
imental techniques such as Nuclear Magnetic Resonance (NMR) and X-ray Crys-
tallography. However, these techniques are expensive and take time. As a result,
the proteins that are chosen to have their structures determined may be subject to
selection bias. Many computer-based prediction methods have been developed to
predict protein structure.

1.3.1 Template Based Modelling

Template based, or homology, modelling is currently the most accurate method for
predicting protein structure. It is is a non-experimental method that attempts to
predict the structure of a protein sequence by finding closely related sequences which
have high sequence similarity, that already have their structures experimentally
determined. A suitable structure is then chosen as a template. The motivation
behind this approach is the fact that the structure of closely related proteins is
highly conserved to conserve their function. Sequences that are very similar are
likely to have similar structures. However, the converse is not always true.
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The accuracy of the predicted structure depends on the quality of the sequence
comparison and the quality of the alignment between the target sequence and the
template structure. If the sequence identity is greater than 40%, then approximately
90% of the predicted backbone atoms usually have an RMSD of around 1Å. When
the sequence identity is between 30 and 40%, 80% of the predicted backbone atoms
tend to have an increased RMSD of around 1.5Å. If the sequence identity is less than
30%, then approximately 20% of the residues may be misaligned, and the predicted
backbone atoms usually have an RMSD greater than 3Å (Fiser, 2010).

Fold Recognition

Fold recognition, or threading, is used to predict the structure of proteins that do not
have a homologous template available. To do this, the target sequence is compared
to structural templates to find a compatible fold. Fold recognition is motivated by
the theory that there are a limited number of distinct protein folds, around 2000,
and thus many sequences with low similarity still have the same fold (Fiser, 2010).

1.3.2 De novo Prediction Methods

De novo, or ab initio, protein structure prediction describes the process of predicting
the tertiary three-dimensional structure of a protein from its amino acid sequence,
or primary structure. Scientists have been trying to solve this problem for decades.
However, despite advancements, the problem still remains unsolved. As of 2016,
there were 120 057 structures in the Protein Data Bank (PDB) (Berman et al.,
2000). This is relatively small compared to the vast amount of sequence data. Cor-
respondingly, from 2016 there were 64 028 668 sequences in the UniProtKB database
(Boutet et al., 2016). Experimental methods for determining protein structure are
too slow and expensive to close the massive gap between the number of sequences
with determined structures.

Correlated Mutation Analysis

The structure of a protein is constrained by its function. Conservation and muta-
tion patterns contained within protein family multiple sequence alignments provide
evidence of functional and structural constraints (Göbel et al., 1994). If a mu-
tation occurs within a protein structure, the residue that it is in contact with in
three-dimensional space may need to make a compensatory change to preserve the
structure, and thus function, of the protein. We can see where this coevolution has
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occurred by looking for correlated columns in multiple sequence alignments of pro-
tein families. The theory of using evolutionary information to predict residues that
are close in three-dimensional space but far apart in sequence was first introduced by
Göbel et al. (1994). Many methods have been developed to predict residue-residue
contacts since, however until recently, predicted contacts consisted of >80% false
positive results (Monastyrskyy et al., 2014).

This year documented a significant step forwards for residue-residue contact pre-
diction methods. The structure of a large protein consisting of 256 residues was ac-
curately predicted as a result of improved residue-residue contact prediction (Moult
et al., 2016). In the latest round of CASP experiments, one method in particu-
lar outperformed all others, including methods in previous CASP experiments, in
the residue-residue contact prediction category (Monastyrskyy et al., 2015). The
method, CONSIP2, reported an average precision of 27% (ratio of true predicted
contacts out of all predicted contacts). CONSIP2 implements the MetaPSICOV
method (Jones et al., 2015); a new co-variation technique. The CONSIP2 server
uses the target sequence and HHblits (Remmert et al., 2012) to identify homolo-
gous sequences and construct an accurate multiple sequence alignment. If less than
2000 homologous sequences are identified, a combination of HHblits and jackHMMer
(Finn et al., 2011) is used. The resulting multiple sequence alignment is taken as
input by MetaPSICOV (Kosciolek & Jones, 2015). MetaPSICOV combines a classi-
cal neural network-based contact prediction method with three different coevolution
methods; PSICOV (Jones et al., 2012), CCMpred (Seemayer et al., 2014) and DCA
(Marks et al., 2011). The different coevolution methods each predict significant
sets of contacts that exhibit minimal overlap. The three methods were selected as
each one attempts to solve the statistical decoupling problem in a different way.
MetaPSICOV is a two stage neural network predictor; an initial contact map is
generated by the first stage network using the three coevolution based contact pre-
diction methods, mutual information measures and classical machine learning-based
contact prediction features. These features include amino acid profiles, predicted
secondary structures and solvent accessibility, and sequence separation prediction.
The second stage network removes outliers and fills in gaps in the contact map
supplied by the first stage (Kosciolek & Jones, 2015).

By combining machine learning-based contact prediction and coevolution-based
prediction, MetaPSICOV is able to successfully handle a range of alignments. If
an alignment is sparse or poor quality, MetaPSICOV downweights coevolution and
promotes generic structural features. Conversely, if sufficient homologous sequences
exist, coevolution is upweighted (Jones et al., 2015). Monastyrskyy et al. (2015)
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shows that combining these methods results in a hybrid method that outperforms
all others in the residue-residue contact prediction category.

1.4 Biological Background: Phylogenetics in

Ecology

1.4.1 Phylogenetic Trees

Different organisms often contain similar DNA sequences. Evolutionary theory sug-
gests that this may be because a common ancestor experienced mutational pro-
cesses, such as substitution, insertion or deletion events. Thus, any set of species
is related, and this relationship is called their phylogeny (Durbin, 1998). This can
be represented in a diagram known as a phylogenetic tree. Phylogenetic trees are
constructed using protein and nucleic acid sequence alignments (Hall, 2004) and
consist of branches and nodes, as shown in Figure 1.4. Edges represent branches. A
branch is a line connecting two nodes. Each branch of a phylogenetic tree represents
an amount of evolutionary divergence. This defines the length of the branches and
is typically a measure of distance between sequences or from a model of substitution
of residues over the course of evolution (Durbin, 1998). Vertices represent nodes. A
phylogenetic tree has two types of nodes; internal and external. External nodes are
the tips, or leaf nodes of the tree, whereas internal nodes are the points representing
a common ancestor of two or more other nodes (Hall, 2004). The distance between
each pair of external nodes can be calculated by summing the lengths of all the
branches between them. This distance is defined to be the patristic distance (Four-
ment & Gibbs, 2006). Patristic distances describe the amount of genetic change
that has occurred in a tree.

Gene duplication and gene speciation are both mechanisms by which two se-
quences can separate and diverge from a common ancestor. The mechanism of gene
duplication results in the problem that the phylogenetic tree of a group of sequences
does not always reflect the phylogenetic tree of the species they belong to. Ortho-
logues are genes which diverged because of speciation while paralogues are genes
which diverged because of gene duplication (Durbin, 1998). We are interested in the
phylogeny of orthologues.

Figure 1.4 also shows the difference between rooted and unrooted trees. Fig-
ure 1.4a displays a rooted tree, whereas Figure 1.4b displays an unrooted tree.
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Figure 1.4: Simple example of a rooted and unrooted phylogenetic tree.
(a) Rooted tree where R indicates the root. (b) Unrooted tree.

Often a rooted tree represents the phylogenetic history of species better than an
unrooted tree. This is because usually the direction of evolutionary time is known,
whereas with unrooted trees the direction of time is undetermined. However, un-
rooted trees give better correlations between species (Perretto & Lopes, 2005). A
true biological phylogeny has a root, that is, all of the sequences have an ultimate
ancestor (Durbin, 1998).

All trees in this thesis are rooted and binary or bifurcating. Every branch of the
tree splits into two daughter branches and thus every internal node is connected to
exactly three branches. Non binary, or multifurcating trees can in fact be approxi-
mated by binary trees by simply making some of the branches very short (Durbin,
1998).

The number of nodes and branches of a rooted tree can easily be counted. If a
tree has n external nodes, then as we move backwards through evolutionary time
the branches merge when another node is reached. Therefore, every time a node
is reached, the number of branches decreases by one, thus there are n − 1 internal
nodes. Adding up the internal and external nodes gives 2n− 1 nodes in total. Since
there is one fewer branch every time is a node is reached, it follows that there are
2n−2 branches in total. An unrooted tree with n external nodes has one node fewer
than a rooted tree, as it does not have the root node. Thus in total an unrooted
tree has 2n− 2 nodes, and therefore 2n− 3 branches in total (Durbin, 1998).

1.4.2 Phylogenetic Networks

Jin et al. (2007) define phylogenetic networks to be a special set of directed acyclic
graphs that are used when phylogenetic trees are not suitable. The direction of
each edge is from the root node to the leaf nodes. Phylogenetic networks can rep-
resent interspecies relationships where the usual phylogenetic tree structure cannot.
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Reticulate evolution can only be appropriately represented by networks; this in-

cludes evolutionary mechanisms such as hybrid speciation, horizontal gene transfer

between taxa and genetic recombination (Makarenkov et al., 2006). These processes

are represented by a type of phylogenetic network known as a reticulate network,

as shown in Figure 1.5. The main differences between reticulate networks and phy-

logenetic trees is that they contain hybrid nodes. Regular nodes in phylogenetic

trees have one parent node. Hybrid nodes have two parent nodes, thereby allowing

cross-connections between branches.

Figure 1.5: A simple example of a phylogenetic network.

1.4.3 Trophisms

Food webs diagrammatically represent the flow of energy through an ecosystem.

This involves the feeding relationships and nutrient and energy pathways within an

ecosystem (Rau et al., 1983). A simple food web is displayed in Figure 1.6.

Food webs consist of many trophic levels, that is, different feeding levels. The

trophic position of an organism is defined by the number of feeding links separating

it from the base of production. The base of production has a trophic position of

zero and contains the primary producers, such as photosynthesising plants. The

next trophic position is occupied by herbivores, that have a trophic position of one

and the higher trophic positions contain consumers (Thompson et al., 2007). In

Chapters 4 and 5 we look at how species belonging to different trophic layers in a

system coevolve.
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Figure 1.6: A simple example of a food web.

1.5 Thesis Overview

Throughout this thesis we explore the theory of coevolution. In Chapters 2 and 3 we
research how coevolution conserves the structure of protein families. In Chapters 4
and 5 we investigate how interacting species coevolve in ecological systems.

We begin with a preliminary analysis of a large protein family, trypsin, in Chap-
ter 2. We initially focus on a small seed sample of structures. The structures were
aligned in pairs to determine how the structure of the trypsin family has evolved.
By calculating the difference between the pairwise structurally aligned distance ma-
trices we aim to gain insight into the location of conserved areas of structure, and
where the main differences in structure may be. Following this, we extend our anal-
ysis to a larger sample of 83 structures, and structurally align the entire sample. We
align the sample using a structural alignment as opposed to a sequence alignment
because the structure of a protein family evolves more gradually than the amino-
acid sequence and is therefore more conserved. We aim to identify where conserved
regions appear in the structures, and where the regions of main difference are, to
gain insight into how the family has evolved. We calculate summary statistics on the
resulting aligned distance matrices and discover a set of residues where the distance
between these specific residues and every other in the structure is highly conserved
across all of the structures in the protein family. These residues appear to hold the
structure of the trypsin protein family in place like anchors. We aim to determine
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the validity and origin of these ‘anchor’ residues and the resulting conclusions drawn
about the trypsin protein family following their discovery.

In Chapter 3 we explore coevolution between columns of multiple sequence align-
ments. The structure of a protein is constrained by its function. Sequence alignments
from homologous proteins that are from a range of species provide information on
these evolutionary constraints. Identifying correlated mutations within multiple se-
quence alignments can be used to predict residues that are in close proximity in
three-dimensional space. We propose a regularised logistic regression model with
the aim of successfully identifying these correlated mutations.

In Chapter 4 we investigate cospeciation in interacting systems of phylogenetic
trees. We introduce a method to test efficiently for cospeciation in systems consist-
ing of two or more phylogenetic trees. Tritrophic relationships have been observed
in many ecological systems (Ahmad et al., 2004; Forister & Feldman, 2011; Micha
et al., 2000; Nelson et al., 2014). Mramba et al. (2013) developed the only statistical
method we are aware of to test cospeciation in tritrophic systems, that does not sim-
ply compare the trees at a pairwise level. We propose a method that overcomes the
limitations of Mramba et al.’s (2013) method; our method has the scope for general-
isation to higher order systems and networks, and we do not place constraints on the
interaction patterns between the phylogenetic trees in the system. We compare the
performance of our method with existing methods at the bitrophic and tritrophic
level. We aim to successfully test cospeciation hypotheses in tritrophic datasets and
demonstrate that our method outperforms the leading existing methods.

We conduct a series of tests to assess the performance of our method in Chap-
ter 4. To carry out these tests we simulated interacting systems of phylogenies by
independently generating random trees, and separately, randomly assigning inter-
actions between the trees. Simulating the systems in this way does not take into
account their joint evolution. Chapter 5 introduces a method to simulate bitrophic
and tritrophic systems under different evolutionary scenarios. Starting from one in-
teracting species per lineage, their joint evolution is simulated by sampling the times
at which evolutionary events occur from an exponential distribution. We focus on
three evolutionary events; speciation, gaining an ecological interaction and losing
an interaction. These events are controlled by a set of parameters. Experimenting
with the intensity of these parameters produces a range of systems with different
coevolutionary properties. We aim to simulate systems that extend the full range
of the bitrophic and tritrophic cospeciation hypotheses that we test in Chapter 4.

To conclude, in Chapter 6 we summarise our research and findings, and detail
the potential for further work.
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Chapter 2

Do protein structures evolve around

‘anchor’ residues?

2.1 Introduction

The exploratory data analysis reported in this chapter focusses on the structural
residue-residue distances of the trypsin protein family. By comparing distances
across the whole protein family we aim to gain insight into how the structure of the
family has evolved. Trypsin is widely used in biotechnological and food industries,
as well as for biological and medical research. As a result there are over 2000 trypsin
structures that have been experimentally determined, belonging to a large variety of
distantly related species. Marks et al. (2011) have successful predicted the structure
of trypsin; therefore it is an ideal protein family for preliminary analysis.

We initially focus on a small sample of 8 structures taken from the Pfam (Bate-
man et al., 2004) seed multiple sequence alignment. There are two types of align-
ment; sequence and structural. The seed structures were aligned in pairs using the
TM-align pairwise structural alignment algorithm (Zhang & Skolnick, 2005) to iden-
tify regions of similarity throughout evolution. Calculating the difference between
the pairwise structurally aligned distance matrices provided an indication of the lo-
cation of conserved areas of structure, and where the main differences in structure
may be. Following this, we extended our analysis to a larger sample of 83 structures.

The structures were aligned using a multiple structural alignment algorithm,
MUSTANG (Konagurthu et al., 2006), to determine how the structure of the family
has evolved. Calculating basic summary statistics on the resulting aligned distance
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matrices revealed an interesting result. We discovered a set of residues where the
distance between these specific residues and every other in the structure is highly
conserved across all of the structures in the protein family. These residues appear
to hold the structure of the trypsin protein family in place like anchors.

We conduct a series of tests to determine the validity and origin of the intriguing
concept of ‘anchor’ residues and the resulting conclusions drawn about the trypsin
protein family following their discovery. However, many of these tests proved incon-
clusive or provided conflicting evidence. Therefore the question is still open; are the
anchor residues artefacts?

2.1.1 Trypsin

Before selecting the trypsin protein family, a range of possible families were con-
sidered (more details can be found in Appendix A). We required a family with a
large number of sequences, and a reasonable number of structures experimentally
determined, from a range of species.

There is an overwhelming amount of structural data in the Protein Data Bank
(PDB) (Berman et al., 2000), of varying quality. We only considered protein families
that satisfy the following criteria:

• Determined using X-ray Crystallography as opposed to NMR. Both techniques
tend to produce structures with the same fold, however they often result in
different surface-loop regions and side-chain rotational states (Yang et al.,
2007). X-ray crystallography has the ability to produce structures with more
precise atomic resolution detail than NMR spectroscopy, which is also limited
to smaller proteins and protein domains (Krishnan & Rupp, 2012).

• Resolution less than 2.3Å, where 1Å = 10−10 meters. The resolution of a pro-
tein structure measures the quality of the crystal containing the protein. If all
of the proteins within the crystal are highly ordered, a greater resolution can
be obtained. That is, if the protein atoms are in defined positions throughout
the crystal and over time. If the proteins in the crystal are slightly differ-
ent, due to local flexibility or motion, then less detail can be obtained in the
diffraction pattern. The higher the resolution, the greater the detail that can
be observed, and less of the atomic structure will need to be inferred (Berman
et al., 2000).
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• Structures with a genetically manipulated source are excluded because unlike
natural source organisms the proteins are not isolated from the organism, but
from another genetic origin.

Trypsin is a protein of the serine protease family involved in the digestive pro-
cesses of most vertebrates. It is produced in the pancreas and breaks proteins
down into smaller proteins to be absorbed through the lining of the small intestine.
Trypsin has many applications; it is used in many biotechnological processes, the
food industry, biological research, as a treatment for inflammation and in micro-
bial form to dissolve blood clots. Due to its multiple varied uses, over 2000 trypsin
structures have been experimentally determined over a wide variety of species. A
typical trypsin structure is displayed in Figure 2.1, displayed using the molecular
visualisation software Jmol (Herraez, 2006). Trypsin is in the all-beta class of pro-
teins because it consists almost entirely of beta sheets, with the exception of two
small isolated alpha helices on the peripheral of the structure. Trypsin contains two
beta barrels that lie perpendicular to each other in the structure. The beta barrels
are a closed structure formed when the beta sheets twist such that the first strand
is hydrogen bonded to the last.

Figure 2.1: Ribbon representation of a trypsin molecule (Protein Data Bank (PDB)
accession code: 1S5S) displayed with the molecular visualisation software, Jmol. The
secondary structures are coloured; pink indicates an alpha helix, yellow indicates a
beta sheet and the purple helix is a 310 helix; a helix with 3 residues per turn rather
than 3.6.
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2.2 Exploratory Data Analysis

2.2.1 Trypsin Seed Sample

A large number of structures have been experimentally determined for the trypsin
protein family; therefore, we initially focus our analysis on the seed multiple sequence
alignment structures from the Pfam database of protein families (Bateman et al.,
2004). A seed alignment contains a small set of representative structures of a protein
family, whose alignment has been manually verified (Sonnhammer et al., 1998).
From this sample, we selected one protein structure for each UniProt ID in the seed
multiple sequence alignment, resulting in 8 structures in total. Information about
these structures is displayed in Table 2.1.

2.2.2 Pairwise Structural Alignment

The protein chains were aligned in order to identify regions of similarity. There
are two types of alignment; sequence and structural. Sequence alignments are con-
structed based on the similarity between amino-acid residues and their physiochem-
ical properties, while structural alignments use shape and three-dimensional confor-
mation to align the atomic coordinates of the structures. Structure alignments are
of interest because the structure of a protein family evolves more gradually than
the amino-acid sequence and is therefore more conserved. It is particularly useful
when the sequence similarity between proteins is low. To analyse where the differ-
ences and similarities are between the seed structures, we use a pairwise structural

Chain ID
PDB ID UniProt ID Domain Other Domain Range Resolution Species
1MKX THRB_BOVIN H,K L 16-238 2.20Å Cow
1UTM TRY1_SALSA A 16-238 1.50Å Salmon
2P3U FA10_HUMAN B A 16-238 1.62Å Human
3Q76 ELNE_HUMAN A,B 16-238 1.86Å Human
3ODF CELA1_PIG A 16-238 1.10Å Pig
1QTF ETB_STAAU A 28-223 2.40Å Bacteria
1PQ7 TRYP_FUSOX A 16-235 1.23Å Fungi
1S5S TRYP_PIG A 16-238 1.40Å Pig

Table 2.1: UniProt and PDB database identifiers for the seed sample of trypsin
structures. Information about the species, the number of chains in the PDB file,
and the chain and residue location of the trypsin domain is also provided.
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alignment algorithm, the TM-align server (Zhang & Skolnick, 2005). We use these
alignments to explore the difference between the aligned distances.

The method of TM-align only takes the Cα atom coordinates of the two pro-
tein structures as input. First the secondary structures are initially aligned using
dynamic programming. A score matrix is constructed where elements take the
value 1 or 0 depending on whether or not the secondary structure elements of
aligned residues are the same. A second initial alignment is obtained by thread-
ing the smaller of the two proteins against the larger structure, without introducing
any gaps. A score matrix is generated using the TM-score rather than RMSD. A
third initial alignment is constructed by dynamic programming with a gap-opening
penalty of -1, and using the score matrices from the first initial alignment of sec-
ondary structures and the second initial alignment, giving each score matrix equal
weight. The weighting accelerates the convergence of the dynamic programming. It
also corrects for the effects that result from alignment lengths.

A heuristic algorithm takes the initial alignments as input. The structures are
rotated based on the alignment in the first initial alignment. The TM-score rotation
matrix is used (Zhang & Skolnick, 2004). The score similarity matrix is defined as

S(i, j) =
1

1 + d2
ij/d0(Lmin)2

,

where dij is the distance between the ith residue of the first structure and the jth

residue of the second structure; d0(Lmin) = 1.24
3
√
Lmin − 15− 1.8 where Lmin is the

length of the shorter of the two structures. An intermediate alignment is generated
by applying dynamic programming to the matrix S(i, j). The intermediate is used
to superimpose the structures by the TM-score rotation matrix. An improved align-
ment is obtained by dynamic programming on the new score matrix. This heuristic
procedure is repeated and the alignment with the highest TM-score is returned.

2.2.3 Difference Distance Matrix Analysis

The three-dimensional shape of a protein can be summarised by its residue-residue
distances. A distance matrix for a protein structure, k, contains the Euclidean dis-
tance, d(k)

i,j , between the Cα atoms of each amino-acid residue pair, i and j. The align-
ment produced by TM-align provides us with a set of superposed three-dimensional
coordinates for each structure. These superposed coordinates imply a correspond-
ing sequence alignment. We can use this structure-based sequence alignment to
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2. Do protein structures evolve around ‘anchor’ residues?

structurally align or superimpose the distance matrices of the aligned structures.
This allows us to analyse corresponding distances across the structures. To identify
the differences between the corresponding distances of two structures, a difference
distance matrix, Ddiff, is calculated. The (i, j)th element of Ddiff is given by

(Ddiff)i,j = d
(1)
i,j − d

(2)
i,j , (2.1)

where d(1)
i,j and d(2)

i,j are

1UTM and 1S5S

Structure 1UTM is from species Salmo salar (common name: atlantic salmon) while
1S5S is from species Sus scrofa (common name: pig). Despite being very different
organisms the heat maps generated for the two structures are very similar, almost
identical by eye. The difference distance matrix for these structures is plotted as
a heat map in Figure 2.2. The heat map is interpreted slightly differently to a
typical distance matrix for a structure. The colour scale now indicates how similar
or different the distances between the residues of the two aligned structures are;
large differences are represented by red and blue, while small differences are given
in white. The black regions correspond to gaps in the sequence alignment obtained
by aligning the structures.

The heat map confirms that the two structures are very similar as it is largely a
pink colour, indicating that the differences are close to zero. Both structures consist
of one chain, with the trypsin domain found in the residue range 16-238. Therefore, it
may be expected that their structures are very similar. The superimposed structures
are displayed in Figure 2.3.

It can clearly be seen that the two structures overlap very closely. However,
there are a few small deviations in the loop regions. Closer inspection of these
regions revealed that 1UTM has a β-bridge between residues 94 and 95, whereas
1S5S does not. Their sequences at these positions differ by one amino acid; residue
94 is tyrosine in 1UTM and phenylalanine in 1S5S. Tyrosine and phenylalanine are
very similar amino acids. Their side chains are similar shapes and sizes and both
are hydrophobic and aromatic. Therefore this substitution would be expected to be
of little consequence to the structure. 1UTM also has a β-bridge inbetween residues
99-100 where 1S5S does not. Again, the difference is due to one residue; 99. Where
1UTM has isoleucine, 1S5S has leucine. These residues are very similar, and thus
the impact on structure is minor.
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Figure 2.2: Heat map of the difference distance matrix for aligned structures 1S5S
and 1UTM. The difference between the residue-residue distances are plotted in red-
white-blue colour scale; if there is no difference between the distances they are
plotted white, red and blue indicate large differences between the distances. The
black regions indicate where gaps occur in the structure alignment.

Figure 2.3: PDB file produced by TM-align for the pairwise structural alignment
of 1UTM (dark blue) and 1S5S (light blue), displayed using Jmol. The black box
highlights a deviation in a loop region of the structural alignment between residues
145 and 150.
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The main deviation in the two structures is between residues 145 and 150, a loop
region. This region is highlighted by a black box in Figure 2.3. The sequence of
aligned amino acids in this region are

MSSTAD

KSSGSS

for 1UTM and 1S5S respectively.

There are many differences in the aligned residues in this region. Methionine
and lysine are both hydrophobic amino acids. Threonine and glycine are both small
amino acids, however glycine is smaller and threonine is polar. Alanine and serine are
similar sized amino acids, however, serine is polar and alanine is aromatic. Aspartic
acid and serine are both polar, however serine is much smaller than aspartic acid,
which is negatively charged. These differences result in the slightly different loop
regions observed.

The final deviation in structure similarity is in the final helix length. The α-helix
for 1S5S is 2 residues longer than that of 1UTM.

These relatively minor deviations in the loop regions are not unexpected given
that these structures are from very different organisms, but clearly a large amount
of the more organised structural regions have been retained.

1S5S and 3ODF

Structures 1S5S and 3ODF are both from species Sus scrofa (common name: pig).
Both structures consist of a single chain and for both the trypsin domain lies in
the residue range 16-238. However, their heat maps are two of the most distinct.
The difference distance matrix for the two structures is plotted as a heat map in
Figure 2.4. The heat map shows that the distances between the aligned residues are
relatively similar for the two structures, however many gaps have been introduced.
This is because 3ODF is longer than 1S5S. In order to see how this extra length in
3ODF is accommodated, Figure 2.5 displays the superimposed structures.

The secondary structures and the internal structure of the proteins are closely
aligned in structure and thus strongly conserved between these two species. When
looking at the structure alignment from different angles it is clear that the additional
length of 3ODF is accounted for in the loop regions on the outside of the structure.
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Figure 2.4: Heat map of the difference distance matrix for aligned structures 1S5S
and 3ODF. The difference between the residue-residue distances are plotted in red-
white-blue colour scale; if there is no difference between the distances they are
plotted white, red and blue indicate large differences between the distances. The
black regions indicate where gaps occur in the structure alignment.

Figure 2.5: PDB file produced by TM-align for the pairwise structural alignment of
3ODF (dark blue) and 1S5S (light blue), displayed using Jmol.
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1S5S and 1QTF

All of the seed structures exhibit very similar heat maps. However, the heat maps

generated for 1QTF, displayed in Figure 2.6a, are the most distinct. This not

surprising as 1QTF is from species Staphylococcus aureu (common name: bacteria)

and therefore the most evolutionarily diverged from the other species.

Similarly to 1S5S, 1QTF also has only one chain and they are both of similar

lengths, meaning 1S5S is ideal to align structurally to determine how 1QTF differs

from the structures previously analysed.

The difference distance matrix for the two structures is plotted as a heat map in

Figure 2.6b. The heat map shows that the alignment contains many gaps. The su-

perimposed structures are displayed in Figure 2.7. Unsurprisingly, the structures are

not as closely aligned as those in Figures 2.3 and 2.5. Visual analysis of the aligned

structures in Jmol reveals that the main departures in the alignment are on the

outside of the protein, while the secondary structure elements and the hydrophobic

core of the protein are conserved.
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Figure 2.6: (a) Heat map of the original distance matrix of structure 1QTF. The
distances between residues are plotted in red-white-blue colour scale; small distances
are blue and large distances are red. (b) Heat map of the difference distance matrix
for aligned structures 1S5S and 1QTF. The difference between the residue-residue
distances are plotted in red-white-blue colour scale; if there is no difference between
the distances they are plotted white, red and blue indicate large differences be-
tween the distances. The black regions indicate where gaps occur in the structure
alignment.
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2.2 Exploratory Data Analysis

Figure 2.7: PDB file produced by TM-align for the pairwise structural alignment of
1QTF (dark blue) and 1S5S (light blue), displayed using Jmol.

2.2.4 Trypsin Extended Sample

We extended the sample of trypsin structures to conduct our analysis on a larger
structural alignment. The structures were chosen according to the criteria in Sec-
tion 2.1.1. Due to the size of the sample, the MUSTANG multiple structural align-
ment algorithm (Konagurthu et al., 2006) was used as it is one of the few structural
alignment algorithms capable of operating with a large number of structures.

The sequence alignment produced as a result of aligning the structures displayed
large gapped regions. These gaps were a result of only two sequences; 1MKX:K and
1QTF. Therefore, these structures were removed and the remaining 89 structures
realigned to get the best possible alignment without removing too much of the data.

During the course of the analysis it was found that one of the PDB files, 1JRT:A,
appeared to have an unusual entry. Between residues 183 and 184, a residue 983
had been inputted. Due to the unknown cause of this possible error, 1JRT:A was
removed to avoid confusion. It was also found that some of the PDB files identify
multiple chains which appear to constitute different elements of a single trypsin chain
when compared to the other trypsin structures, as illustrated with 2P8O in Figure
2.8. There are 5 chains with this property; 2P8O, 2VGC, 1UHB, 1YM0 and 2QA9.
Two of these structures, 2P8O and 2VGC, have an additional chain preceding the
trypsin chains suggesting that they are the zymogen trypsinogen. Trypsinogen is
the inactive enzyme precursor to trypsin; the additional chain is cleaved in order to
produce the active enzyme trypsin.
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2. Do protein structures evolve around ‘anchor’ residues?

(a) (b)

Figure 2.8: An example of a “broken” PDB file; PDB ID: 2P80. The single structure
is stored in three separate PDB files; 2P80:A, 2P80:B, and 2P80:C. (a) Ribbon
representation of the partial structure 2P80:C. (b) Reconstructed full PDB file for
2P80, consisting of the three partial structures.

MUSTANG failed to align these structures once the “broken” chains were altered
to produce a single PDB file containing a complete trypsin chain. Therefore these
structures were removed from the sample leaving a total of 83 structures in the final
sample. See Appendix B for a comprehensive list. Once aligned, the data were
prepared for analysis by removing all positions in the alignment where more than
20% of the entries consist of gaps.

2.2.5 Multiple Structure Alignment

An overview of the MUSTANG procedure is given in Figure 2.9. The main steps in
the procedure are as follows. The MUSTANG method first tries to find structural
similarity in pairwise fragments of structures before building the multiple structure
alignment. Each pair of structures are initially scored using root-mean-square de-
viation (RMSD) in order to find similar substructures. The RMSD is a measure
of the average distance between the atoms of superimposed structures. The indi-
vidual residue alignments are then scored using a similarity measure that is closely
based on the elastic similarity function proposed by Holm & Sander (1993). These
scores are used to align each pair of structures by a dynamic programming algo-
rithm. The pairwise alignment scores are then recalculated in the context of all of
the structures. This is achieved by taking every structure as an intermediate for each
pairwise alignment. The more intermediate structures that support the alignment
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STRUC: 1 STRUC: 2 STRUC: 3 • • • STRUC: N

Phase 1:
Calculation of pairwise residue-residue scores

Step 1: Generate list of
maximal fragment pairs

Step 2: Calculate
rough similarity scores

Step 3: Tentative
pairwise alignment

Step 4: Prune maximal
fragment pair list

Step 5: Recalculate
similarity scores
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Pairwise structural

alignments

Phase 3:
Recalculate the scores
of pairwise residue-

residue correspondences
in the context of

multiple structures

Phase 4:
Progressive alignment

using recalculated
pairwise scores

Multiple Alignment and
Multiple Structural

Superposition

Figure 2.9: An overview of the MUSTANG algorithm (Konagurthu et al., 2006).

of a pair of residues, the higher the score assigned to them. The multiple structure

alignment is finally obtained following a binary guide tree constructed using the

neighbour-joining method (Saitou & Nei, 1987) applied to the similarity scores.

The method in more detail is as follows:

Phase 1: Step 1: For every pair of structures to be aligned, the three-dimensional

coordinates of the Cα atoms of the residues are taken in blocks of at least 6

consecutive residues and superposed using the method of Kearsley (1989). If

the RMSD is less than or equal to 1.75 then the superposed fragments are

extended until the RMSD is no longer less than 1.75. The fragments are

extended by adding successive positions to the C-termini. The fragments are

truncated so that they do not end within secondary structures in order to

avoid mismatches in terminal regions. This collection of extended superposed

fragments are defined to be ‘maximal fragment pairs’ or MFPs. The values 6

and 1.75 were empirically determined by Konagurthu et al. (2006) to give the

best results.
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Phase 1: Step 2: Rough similarity scores are calculated for residue-residue cor-
respondences between every pair of structures. The scores do not take into
account the arrangement of the MFPs in their respective structures; they are
simply used to speed up Phase 1: Step 5.

Phase 1: Step 3: Dynamic programming is used to create a tentative pairwise
alignment for each pair of structures.

Phase 1: Step 4: The number of MFPs is reduced by ignoring all MFPs that
are outside ±30 positions from any of the correspondences produced by the
pairwise alignment.

Phase 1: Step 5: Using the reduced set of MFPs the similarity scores from Phase
1: Step 2 are recalculated and this new score is added to the previous score.

Phase 2: Dynamic programming is again used to align each pair of structures using
the new scores.

Phase 3: The residue-residue correspondence scores are recalculated again in the
context of multiple structures. Each pair of structures is scored taking every
other structure as an intermediate in the alignment; the more intermediate
structures supporting an alignment of a pair of residues, the higher the incre-
ments to it’s score.

Phase 4: A distance divergence between each pair of aligned residues is calculated
by transforming their normalised alignment score. The normalised alignment
score is calculated using the final residue-residue correspondence scores. The
distance divergences are then used to construct a guide tree, which in turn is
used to progressively align the structures.

Berbalk et al. (2009) and Konagurthu et al. (2006) compare MUSTANG with
other multiple structure alignment algorithms; POSA, CE-MC, MALECON and
MultiProt. According to Konagurthu et al. (2006), MUSTANG performs as well as
the other alignment tools for closely related proteins and outperforms them for more
distantly related proteins or proteins that exhibit conformational changes. Berbalk
et al. (2009) supports the conclusion that MUSTANG performs as well as other
alignment tools when the structures have high structural similarity but suggests
that there is room for improvement when structures are more distantly related.

When searching for a multiple structure alignment tool, MUSTANG proved to
be the easiest to use in terms of data upload and output. MUSTANG also has
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no limit on the number of structures it can align whereas other algorithms do, for
example CE-MC can align only up to 10 structures and POSA can align only up to
20 structures. The program STRAP was also considered, however it deleted residues
with the same residue number, a common occurrence in many PDB files to represent
where known insertions occur between aligned residues. However, MUSTANG also
has several disadvantages; it can be very temperamental in what can be aligned
and as a result wastes a lot of time and is sometimes unreliable. MUSTANG also
only uses the information in the Cα coordinates of the structures and the distances
between them. The information contained in the amino-acid sequence is ignored
completely.

The output of the process is a multiple-sequence alignment constructed using the
structural alignment of the chains. We prepared the alignment for subsequent anal-
ysis by removing all positions in the alignment where more than 20% of the entries
consist of gaps. (Gaps are introduced in alignments where insertions or deletions are
predicted to have occurred throughout evolution.) For smaller samples MUSTANG
produces a PDB file containing the coordinates for the superimposed structures; this
can be visualised using Jmol (Herraez, 2006). Visual analysis is impractical with
such a vast number of structures; instead, we considered the distances between the
residues in the superimposed structures.

2.2.6 Aligned Distance Matrix Analysis

The positions in the distance matrices can be aligned, or superimposed, using the
MUSTANG alignment to analyse corresponding distances across the structures. The
alignment produced by MUSTANG respects the sequence order of the amino acids.

There are 219 alignment positions in the MUSTANG alignment of the 83 trypsin
structures downloaded from the PDB, resulting in a 219×219×83 data array. This
large data structure can be summarised by calculating a measure of location and
divergence for every distance across the aligned structures. We achieved this by
calculating a weighted median and a weighted interquartile range, where the weights
are calculated using the method of Henikoff & Henikoff (1994) as follows:

• For each position in the alignment, divide a total weight of 1.0 evenly between
the unique letter types in that position.

• Divide the weight that has been assigned to each letter type between the
number of that letter type in that position.
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• For each sequence, sum the weights that have been assigned at each position.

• Normalise the sequence weights to sum to 1.0.

Example

Consider the following partial sequence alignment

ACQKMIVG

RCQLMLVQ

ACQI PLVE

ACEKPLVG

Table 2.2 displays how the Henikoff weights are calculated for each sequence by
first weighting the letter types occurring in each position as outlined above. The
final weight for each sequence is given in the final column of the table.

Sequences from the same species are likely to be very similar, whereas sequences
from more diverged species differ more. If all of the sequences are weighted equally
then information may be lost when there are many similar sequences due to indepen-
dent information from the more diverged sequences being diluted. The sequences are
weighted so that very similar sequences are down-weighted and unusual sequences
are up-weighted. We constructed a median matrix, D̃, and divergence matrix, Ddiv,
using the aligned distance matrices; the (i, j)th element of each of these matrices is

Position Total Normalised

1 2 3 4 5 6 7 8 Weights

1
6

A 1
4

C 1
6

Q 1
6

K 1
4

M 1
2

I 1
4

V 1
6

G 23
12

0.2396

1
2

R 1
4

C 1
6

Q 1
3

L 1
4

M 1
6

L 1
4

V 1
3

Q 9
4

0.2813

1
6

A 1
4

C 1
6

Q 1
3

I 1
4

P 1
6

L 1
4

V 1
3

E 23
12

0.2396

1
6

A 1
4

C 1
2

E 1
6

K 1
4

P 1
6

L 1
4

V 1
6

G 23
12

0.2396

Table 2.2: Calculation of Henikoff weights for a simple sequence alignment.
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given by

d̃i,j = Q2(d
(1)
i,j , . . . , d

(83)
i,j ),

ddivi,j = Q1(d
(1)
i,j , . . . , d

(83)
i,j )−Q3(d

(1)
i,j , . . . , d

(83)
i,j ),

where Qp is the pth weighted percentile. Recall, d(k)
i,j represents the distance between

alignment positions i and j for structure k, where i, j = 1, . . . , 219 and k = 1, . . . , 83.
To assess the relationship between the median and divergence matrices they

are plotted against each other in Figure 2.10. There are a vast number of data
points as a result of the size of the matrices; 2192

2
= 47 961 data points, however

there does not appear to be an obvious relationship between the divergence and the
median. Intuitively it might be assumed that a larger median would correspond
to a larger divergence, since the distance between the residues is larger. However
only a handful of points exhibit this property, suggesting that for the majority of
the sample the overall framework of the structures is very similar. Interestingly,
there are a collection of points where the divergence is high while the median is
very low. This pattern corresponds to the scenario where the distances between the
two residues are small, yet there is a lot of variation in the corresponding distances

Figure 2.10: Plot of median aligned residue-residue distance against the divergence
between the distances for each pair of residues, for the MUSTANG structural align-
ment of the trypsin sample.
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(a) (b)

Figure 2.11: Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the trypsin sample. The bars appear as a
result of many points plotted close together. (a) Median, d̃i,j, of the structurally
aligned distances plotted against position, i, in the alignment. There are many
columns, j, plotted for each i. (b) Divergence, ddivi,j , of the structurally aligned
distances plotted against position, i, in the alignment. There are many columns, j,
plotted for each i.

across the structures, suggesting a different local structure for some of the samples.
Each row (and column) of the median and divergence matrices corresponds to

a position in the structural alignment. This is plotted in Figure 2.11. The bars
appear as a result of many points plotted close together. The plot of divergence
against position in Figure 2.11b shows that there are positions in the alignment
where the range of divergences is low as indicated by distinct troughs between the
peaks. This suggests that there are residues, or short subsequences of residues,
where the distance between that residue and every other residue in the structure is
conserved, across all of the structures. If this result is genuine, these residues could
be used to predict the structure of proteins in the trypsin family, and might also
provide a basis for predicting structure from multiple sequence alignments of other
protein families.

2.2.7 Median Distance Matrix Analysis

The median matrix is plotted as a heat map in Figure 2.12. The heat map is
interpreted identically to a typical heat map for a structure; small distances are
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represented by blue while large distances are given in red. As a result the heat
map is not dissimilar to a typical distance-matrix heat map produced by any of the
structures. This is unsurprising given that the median matrix is an average of the
aligned distance matrices. This suggests that MUSTANG has produced a reasonable
structure alignment and the median distance matrix is a suitable measure to be
used to construct a consensus structure to represent the sample, that is, the average
structure of the sample.

Multidimensional scaling is a technique used to construct a configuration of data
points in Euclidean space using the distances, similarities or dissimilarities between
them. The data points are assigned coordinates in n dimensions that aim to preserve
the distances between them (see Appendix C for more details). Metric multidimen-
sional scaling can be applied to the median distance matrix in order to obtain a
consensus structure. We could also perform multidimensional scaling on the diver-
gence matrix which would allow us to see where the differences from the median
structure are.

The R (R Core Team, 2013) function cmdscale was used to perform metric multi-
dimensional scaling on the median distance matrix. There are three eigenvalues that
are much larger than the remaining eigenvalues. These normalised squared eigenval-

Figure 2.12: Median matrix heat map. The median residue-residue distances are
plotted in red-white-blue colour scale; small distances are blue and large distances
are red.
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Figure 2.13: Multidimensional scaling structure of the median distance matrix, dis-
played in black. The Cα atoms of each position in the alignment are given by a black
circle. Cα atoms corresponding to adjacent alignment positions are connected by
black lines to represent the backbone of the median structure. The trypsin structure
in Figure 2.1 is superimposed with the consensus structure and displayed in grey.
The structures were superimposed using TM-align pairwise structural alignment
algorithm (Zhang & Skolnick, 2005).

ues are 0.61, 0.28, 0.10, while the remaining values are close to zero, suggesting that
the first three coordinates are sufficient to reproduce the median distance matrix.
This is unsurprising given that we know that the distances are obtained from three
dimensional objects. The resulting coordinates are used to produce a PDB file which
can be viewed in Jmol. The consensus structure is displayed superimposed over the
trypsin structure 1S5S in Figure 2.13.

The consensus structure is comprised only of Cα atoms since the distance matri-
ces used to construct it contain the distances between the Cα atoms of each residue.
Despite this, Figure 2.13 shows that the configuration produced using multidimen-
sional scaling is a good approximation of the trypsin structure in Figure 2.1.

2.2.8 Divergence Distance Matrix Analysis

The divergence matrix is plotted as a heat map in Figure 2.14a. In this case red
indicates large divergences implying distances that are less conserved while blue re-
gions represent small divergences or distances that are more conserved. The scale
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in Figure 2.14a is inflated by a small area of high divergence. The low-range di-
vergences identified in Figure 2.11 are approximately 5 ångströms (5Å); to analyse
alignment positions at this end of the scale, all divergences greater than 5Å are
coloured black and the heat map recalculated based on the scale 0 to 5, as displayed
in Figure 2.14b.

The pattern of divergence at the lower end of the scale can now be visualised
more clearly. There is a clear pattern of horizontal and vertical blue lines running
across the heat map. These lines represent where in every structure the distance
between one residue and every other residue is highly conserved, in agreement with
the conclusions drawn from Figure 2.11. Four distinct groups of alignment positions
can be identified as having a low range of divergences. These residues are of interest
as they appear to be anchors for each of the structures; conserving their distances
and holding them in place.

To accurately determine the positions in the multiple structure alignment cor-
responding to the low-range divergences, the maximum divergence in each position
is plotted in Figure 2.15. The red line indicates a cutoff at 7Å as there is a natural

(a) (b)

Figure 2.14: Divergence matrix heat maps for different colour scales. The divergence
between the residue-residue distances are plotted in red-white-blue colour scale;
small divergences are blue and large divergences are red. (a) Divergence matrix
heat map based on the original scale. The information in blue is diluted by a
small amount of red that is pulling up the scale. (b) Divergence matrix heat map
recalculated for all of the divergences that are less than 5Å; larger divergences are
blacked out.
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2. Do protein structures evolve around ‘anchor’ residues?

Figure 2.15: Maximum divergence between the distances in each alignment position
of the trypsin sample. The dashed line indicates a cutoff of 7Å where there is a
natural divide in the maximum divergences.

divide between the maximum divergences at around this threshold. It remains to
identify which positions have a maximum divergence of less than 7Å and determine
where these lie on each of the structures. We define an anchor residue to be any
residue, i, with maxj d

div
i,j < 7Å. Figure 2.16a displays the structure of a represen-

tative sample structure (PDB identifier 1JIR), in a grey ribbon representation with
the anchor residues identified in blocks of black. Consecutive anchor residues are
coloured the same, resulting in longer bands of black where anchor residues lie next
to each other in sequence. In fact 70 of the structures (84%) in the sample exhibit
identical colourings to 1JIR.

The anchor residues are predominantly located on the outside of the protein
and in loop regions. One of the beta barrels is the only region that appears to
be completely devoid of colour. The beta sheets found on the section of the beta
barrels that faces into the centre of the structure form the hydrophobic core that is
important in attracting the specific residues that trypsin cleaves.

Protein structure is closely related to its function. The enzymatic mechanism of
trypsin involves a catalytic triad of residues: the amino acids histidine-57, aspartic
acid-102 and serine-195, where the numbers after the hyphen indicate the sequence
position. These three residues form a charge relay that causes the active site serine
residue to become nucleophilic by modifying its electrostatic environment (Bate-
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(a) (b)

Figure 2.16: (a) Ribbon representation of a trypsin structure (PDB ID: 1JIR) iden-
tifying the location of the anchor residues, displayed in blocks of black, and the three
disulphide bonds, indicated by black lines and labelled cysteine (C) residues. The
black box indicates the cysteine (C) residue that is also an anchor residue. (b) The
same structure identifying the location of functional residues; including the catalytic
triad of residues and the oxyanion hole, displayed in blocks of black, and the three
disulphide bonds, indicated by black lines and labelled cysteine (C) residues.

man et al., 2004). Trypsin also contains an ‘oxyanion hole’ formed by the backbone
amide hydrogen atoms of glycine-193 and serine-195. This hole stabilises the devel-
oping negative charge on the carboxyl oxygen atom of the cleaved amides. Another
important functional residue is aspartic acid-189 located in the catalytic pocket of
trypsin. This residue is responsible for attracting and stabilising positively charged
lysine and arginine residues (Bateman et al., 2004).

To determine whether these functional residues coincide with the anchor residues,
Figure 2.16b displays the location of the functional residues, coloured in black. The
functional residues are generally in the centre of the protein, in contrast to the
location of the anchor residues. It can easily be seen that the functional residues
and anchor residues do not overlap, that is, none of the anchor residues correspond
to a functional residue.

Trypsin has a number of disulphide bonds stabilising its structure. Stroud (1974)
claims that trypsin has 6 disulphide bonds, however only 36 of the structures have
the required number of cysteine residues; 12. According to Várallyay et al. (1997)
there are 3 conserved disulphide bonds; C42-C58, C168-C182 and C191-C220. It was
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2. Do protein structures evolve around ‘anchor’ residues?

found that 80 of the 83 structures have enough cysteine residues to form at least
3 disulphide bonds. Figure 2.16 indicates by black lines connecting the ribbons
in the structure where these three disulphide bonds are found in relation to the
anchor residues and functional residues. The bonds appear to be positioned around
the substrate-binding pocket; this is unsurprising given that this is the part of the
structure vital to the protein’s function. Only one of the bonds involves an anchor
residue as indicated by the black box in Figure 2.16a.

It is important to check that the positions in the structural alignment that cor-
respond to the anchor residues are not predominantly comprised of gaps. If most
of the sequences correspond to gaps in the anchor positions, then the structural
conservation in these positions would be the result of a small number of structures
in the sample. The percentage of gaps in the anchor columns compared to the other
columns in the alignment are represented using boxplots, as displayed in Figure 2.17.

The median percentage of gaps in the anchor columns is 12.05 compared to a
median percentage of gaps of 4.22 in the other columns in the alignment. How-
ever, because there are fewer anchor columns, the percentage of gaps in the anchor
columns is much less variable, with a standard deviation of 1.89 compared to a stan-
dard deviation of 37.09 for the percentage of gaps in the other columns. Overall, the
anchor columns of the alignment are not excessively gapped compared to the other

Figure 2.17: Boxplots comparing the percentage of gaps in structural alignment
positions corresponding to anchor residues, with the percentage of gaps in the other
positions in the alignment.
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to the other columns in the alignment; however, the median number of gaps in the
anchor columns is larger than that of the other alignment columns. Given that the
anchor columns are not disproportionately gapped it remains to determine which
residue types are found in each anchor position and how conserved these residues
are. Table 2.3 contains the percentage of each residue type in each of the anchor
columns. Some of the anchor columns appear to be conserved in sequence; however,
overall they do not appear to be more conserved than every other column in the
alignment.

Rypniewski et al. (1994) propose several conserved residues, in both sequence
and structure. Comparing the anchor residues in Table 2.3 to those proposed by
Rypniewski et al. (1994) results in an overlap for some of the residues; there are 7
anchor columns that correspond to the conserved residues identified in that paper.
The residues 42, 43 and 44 correspond to anchor columns 3, 4 and 5 in Table 2.3, re-
spectively. These three residues are strongly conserved in the aligned sequences and
they are identified as conserved by Rypniewski et al. (1994). These three residues
are found close to the active site; glycine-43 forms a hydrogen bond with the car-
bonyl oxygen of serine-195, one of the catalytic triad residues and cysteine-42 forms
a disulphide bond, as displayed in Figure 2.16. Anchor column 11 corresponds to
residue 94 which lies in the exposed side of the loop that contains the active site
residue aspartic acid-102 and is important in maintaining structure; its side chain is
in contact with two residues of the catalytic triad; aspartic acid-102 and histidine-
57. In the paper, residue 94 is tyrosine; however, in Table 2.3 the corresponding
column shows that the residue is tyrosine in only 39% of the structures. This could
be due to the fact that the amino acid at residue 91 that forms a hydrogen bond with
residue 94 is variable, and thus residue 94 varies to accommodate this. Conserved
residues 171 and 172 are important in the specificity function of trypsin. In particu-
lar, residue 172 forms a hydrogen bond with a residue at the bottom of the specificity
pocket. These residues correspond to anchor columns 23 and 24. Rypniewski et al.
(1994) identify residue 172 as tyrosine, but also state that it is substituted in many
sequences, explaining why it is not very conserved in Table 2.3. The final residue
that is identified as conserved by Rypniewski et al. (1994) and is also an anchor
residue is residue 225, or anchor column 30. This residue is a conserved proline
residue in Table 2.3, and its role is linked to residues 171 and 172. A number of the
anchor columns are found next to the residues identified as conserved by Rypniewski
et al. (1994). Overall, this identifies that some of the anchor columns correspond to
known conserved residues, suggesting that MUSTANG has managed to align some
of the key conserved residues well.
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2.3 Are the Anchor Residues Artefacts?

The anchor residues identified by analysing the structure alignment produced by
MUSTANG are intriguing. It is necessary to test that these residues are not simply
an artefact produced by MUSTANG. There is no common standard for assessing
the quality of a structural alignment (Liu et al., 2011), therefore we propose the
following tests.

2.3.1 Aligning another protein family

One way to identify whether the anchor residues are an artefact of MUSTANG is
to align another protein family and determine whether low-range divergences are
apparent. If MUSTANG is reliable and the anchor residues are truly a feature of
protein evolution, we expect the anchor residues to be present.

A search of Pfam (Bateman et al., 2004) produced a suitable family from a
diverse range of species; short-chain dehydrogenase. A sample of 49 structures were
aligned and divergence and median matrices calculated for the aligned distance
matrices. Figure 2.18 displays the divergences and medians in each position of the
alignment. The plot of divergences in Figure 2.18b does not exhibit the distinct

(a) (b)

Figure 2.18: Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the short-chain dehydrogenase sample. The
bars appear as a result of many points plotted close together. (a) Median, d̃i,j, of
the structurally aligned distances plotted against position, i, in the alignment. (b)
Divergence, ddivi,j , of the structurally aligned distances plotted against position, i, in
the alignment.
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troughs that were seen for trypsin; however, the majority of the divergences are low
at less than 5Å. The distances between the residues in the structures of this protein
family are more similar than those in the trypsin family, suggesting that the short-
chain dehydrogenase family of proteins is more highly conserved in structure than
the trypsin protein family. Therefore, aligning short-chain dehydrogenase does not
conclusively determine whether MUSTANG introduces bias. However, it does cast
doubt on the significance of the anchor residues, suggesting that they are merely
well-aligned regions of the trypsin protein family.

2.3.2 Aligning an artificial sample of trypsin structures

The following method generates a sample of 83 artificial proteins consisting only of
Cα atoms by resampling the Cα-atom coordinates of residues from one structure.
We expect the anchor residues to be present in the artificial sample if they truly
exist, since the structures are created from one structure which exhibits the anchor
residue property.

The trypsin structure 1LVY was chosen for the resampling procedure because
it is relatively long and exhibits the conserved anchor residue pattern displayed
in Figure 2.16. The resampled structures are generated by uniformly selecting a
number of residues to remove from 1LVY at random and then closing the resulting
gaps in three-dimensional space. The gaps are closed using the following method:

When a gap is produced the adjacent residues are linearly translated such that
the Euclidean distance between their Cα atoms is equal to the standard bond length
between these atoms in a typical structure.

Consider the example structure displayed in Figure 2.19. The nodes represent
the Cα atoms. Let x0 be the vector of (x, y, z) coordinates of the Cα atom to be
removed.

Once the Cα atom corresponding to x0 is removed, the coordinates of the adjacent
Cα atoms, x−1 and x1, are translated using the following equation

x′−1 = x0 + λ0(x−1 − x0)

x′1 = x0 + λ0(x1 − x0), (2.2)

where x′−1 and x′1 are the new coordinates of the adjacent Cα atoms and where
λ0 ∈ [0, 1]. When λ0 = 0 the new coordinates are x′−1 = x0 and x′1 = x0. At the
other extreme, when λ0 = 1, the new coordinates are x′−1 = x−1 and x′1 = x1. We
want to choose λ0 such that x′−1 and x′1 lie between these extremes, specifically at
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x−4

x−3

x−2

x−1

x0

x1

x2

x3

x4

Figure 2.19: Example structure consisting only of Cα atoms, represented by dots;
adjacent residues are connected by lines to form the backbone of the structure. The
Cα atoms are labelled in accordance with the method for closing gaps in structure; x0

is a vector containing the (x, y, z)-coordinates of the residue that will be removed to
form the gap, and x1, . . . ,x4 and x−1, . . . ,x−4 are the coordinates of the sequence of
residues reading away from the gap on either side. See text for further explanation.

a distance of dα apart, where dα is defined to be the standard distance between Cα
atoms:

d2
α = ‖x′1 − x′−1‖2. (2.3)

The average Cα atom to Cα atom bond distance in the structure 1LVY is calculated
to be 3.81Å; therefore dα is taken to be 3.81Å.

Substituting x′−1 and x′1 from Equation (2.2) into Equation (2.3) and rearranging
in terms of λ0 gives

λ0 =
dα

‖x1 − x−1‖
.

Next we translate the residues adjacent to those either side of the gap. In this
case, only one residue is moved in order to preserve the distance between the residues
that were translated in the previous step; x−2 is translated to correct for the distance
between x−2 and x′−1 as follows

x′−2 = x′−1 + λ−1(x−2 − x′−1), (2.4)

where the scale constant λ−1 is calculated similarly to λ0 and is thus given by

λ−1 =
dα

‖x−2 − x′−1‖
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Equation (2.4) is applied successively to each Cα atom in the structure, substituting
for the appropriate coordinates at each iteration.

The number of residues removed was calibrated such that the number of gaps
produced by the alignment was close to the average number of gaps in the original
sample alignment. The average number of gaps per row in the original alignment
was 71.99 and an alignment with 66 gaps per row was produced for the resampled
structures when 28 residues are removed at random from 1LVY and aligned using
MUSTANG. Removing 30 residues produced too many gaps.

To complete the simulation of artificial proteins it is necessary to add random
N(0, s2

α) noise to the Cα atom coordinates, where s2
α is the variance of the Cα atom to

Cα atom bond lengths. Noise is added since all of the resampled structures originate
from the same structure and because not all Cα atom to Cα atom bond lengths are
precisely 3.81Å.

The previous analysis is carried out on the aligned sample of artificial structures
to produce the divergence and median plots displayed in Figure 2.20. The plot of
divergence against position in Figure 2.20b shows that the range of divergences is
very high, certainly none are below 5Å. There is no evidence to suggest the existence
of anchor residues. It might be expected that the structures are very similar and
would thus align well, producing low divergences; however, the range of divergences
is high suggesting the distances are less conserved than in the trypsin sample. There
is certainly no evidence of the previously observed anchor residues.

When compared to Figure 2.11a the plot of median against position in Fig-
ure 2.20a for the artificial structures does not exhibit similarities with the plot for
the real trypsin sample. This difference in median distances suggests that the arti-
ficial structures have a different structure to the trypsin sample structures. This is
not unusual since the artificial structures are all variations of one structure, 1LVY.
However, it is necessary to understand the effect that the gap-closing method has
on the shape of a structure, this is explored in Section 2.4.

Similarly to Figure 2.14b the divergence matrix can be displayed as a heat map
for the artificial sample, given in Figure 2.21. In this case it is the high divergences
that bring up the scale; as a result divergences greater than 10 have been coloured
black. There is no longer the pattern of horizontal lines that could be observed in
Figure 2.14b, confirming that there are no anchor residues. In fact there are very
few areas on the off diagonal that have low divergences at all.

The number of gaps removed was also varied for each resampled structure in the
sample; however, the same results were obtained concerning the low range diver-
gences or anchor residues.
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(a) (b)

Figure 2.20: Plots of the rows of the median and divergence matrices calculated
from structurally aligned distance matrices of the artificial trypsin sample. The
bars appear as a result of many points plotted close together. (a) Median, d̃i,j, of
the structurally aligned distances plotted against position, i, in the alignment. (b)
Divergence, ddivi,j , of the structurally aligned distances plotted against position, i, in
the alignment.

Figure 2.21: Divergence matrix heat map for the artificial trypsin sample, recal-
culated for all of the divergences that are less than 10Å. Larger divergences are
blacked out. The divergence between the residue-residue distances are plotted in
red-white-blue colour scale; small distances are blue and large distances are red.
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There are a number of ways in which this methodology for producing artificial
structures could be improved. In order to reflect true evolutionary processes, in-
sertions and substitutions could be incorporated as well as deletions. The method
could also be extended to include all of the atoms in the starting structure, not just
the Cα atoms.

Therefore this method provides evidence against MUSTANG; we would expect
anchor residues to be apparent in 1LVY if they truly exist. However, they are not
apparent in the artificial structures suggesting that the phenomenon is an artefact
of MUSTANG. It is also possible that the procedure for closing gaps in the artificial
structures is destroying the anchor residue property. We explore the effect the gap-
closing method has on the structures in Section 2.4.

2.3.3 Aligning Cα atoms of the real trypsin sample

Since the method in the previous section uses only the Cα atom coordinates it is
necessary to compare the structural alignment of the trypsin sample with the align-
ment produced when only the Cα atoms of their residues are structurally aligned.
MUSTANG appears to use only the Cα atom coordinate of structures when produc-
ing an alignment. Therefore we expect the full atom trypsin alignment and the Cα
only trypsin alignment to be similar.

In this case the plots of divergence and median against position displayed in
Figure 2.22 are produced and compared to the full atom structural alignment of the
trypsin sample in Figure 2.11. The distinct troughs in the divergences in Figure 2.11b
are not apparent when only the Cα atoms of trypsin are aligned; however, there is
a lower range of divergences compared to the artificial structures. There appears to
be some correspondence between the peaks of the median distances in Figure 2.11
and Figure 2.22, suggesting the overall shape of the structures is not too different,
and thus the two alignments are reasonably similar. However it also suggests that
using only Cα atoms is not representative of the full sample.

To understand more about how the full-atom trypsin structural alignment and
the corresponding Cα-atom-only structural alignment differ, their gaps are analysed.
In this case, a gap is defined to be a consecutive run of insertions where the length
of the gap is the number of insertions. Figure 2.23a compares the number of gaps
in each sequence for the two alignments from MUSTANG. This information is also
represented by boxplots in Figure 2.23b.

The median number of gaps in the Cα-atom alignment is much larger at 41.00,
compared to a median number of gaps of 24.00 in the full-atom alignment. The
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(a) (b)

Figure 2.22: Plots of the rows of the median and divergence matrices calculated from
structurally aligned distance matrices of the trypsin sample with only Cα atoms. The
bars appear as a result of many points plotted close together. (a) Median, d̃i,j, of
the structurally aligned distances plotted against position, i, in the alignment. (b)
Divergence, ddivi,j , of the structurally aligned distances plotted against position, i, in
the alignment.

number of gaps is also much more variable in the Cα-atom alignment with a stan-
dard deviation of 13.66 compared to a standard deviation of 1.92 in the full-atom
alignment. This can also be seen in Figure 2.23a where many of the points are
higher in the Cα-atom alignment, but there are also a smaller number of points that
are lower than the full atom case. However, are these gaps shorter than those in
the original alignment? The lengths of the gaps for each alignment are displayed in
Figure 2.24.

The median length of the gaps in the two alignments is the same at 2.00; however,
the range of values is very different. The largest gap in the full-atom alignment is
21.00, compared to an incredibly long gap of 119.00 in the Cα-atom alignment. Un-
surprisingly, the standard deviation for the length of the gaps in the Cα-atom align-
ment is larger at 7.80, compared to a standard deviation of 2.703 for the length of the
gaps in the full-atom alignment. Therefore, not only does the Cα-atom alignment
appear to have more gaps for most sequences, some of the gaps are also significantly
longer compared to the original alignment.

Clearly the full-atom alignment and the Cα-atom alignment are quite different;
therefore, the methods for testing bias may not be entirely representative of the full-
atom case. This is an interesting result since MUSTANG aligns structures using only
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(a) (b)

Figure 2.23: Comparison of the number of gaps in the trypsin structural alignment
with those in the structural alignment obtained only for the Cα atoms of the trypsin
sample. The number of gaps is defined to be the number of consecutive runs of
insertions. (a) Plot of the number of gaps in each position for each alignment. Those
corresponding to the full atom trypsin sample are white points. Those corresponding
to the Cα atom trypsin sample are coloured in black. (b) Boxplots comparing the
number of gaps in the two alignments.

Figure 2.24: Comparison of the length of gaps in the trypsin structural alignment
with those in the structural alignment obtained only for the Cα atoms of the trypsin
sample.
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the information from the Cα atoms and the distances between them; therefore, the
alignments should be similar.

2.3.4 Aligning the real trypsin sample with anchor residues

removed

The following further test was conducted. The anchor residues were removed from
the structures in the sample and the resulting structures aligned; if the alignment
results in more anchor residues, then MUSTANG is unreliable. The divergence and
median were again plotted against position and are displayed in Figure 2.25.

The peaks of the median distance plots in Figure 2.11a and Figure 2.25 are very
similar, suggesting that the alignments are similar. However, there is no longer
evidence of low-range divergences or anchor residues as the distinct troughs in the
divergences in Figure 2.11b are no longer apparent; the divergence between the
distances appear to be higher overall.

Therefore, removing the anchor residues produces results in favour of MUS-
TANG. This suggests that more tests are necessary in order to definitively determine
whether the anchor residues are artefacts of MUSTANG.

(a) (b)

Figure 2.25: Plots of the rows of the median and divergence matrices calculated
from structurally aligned distance matrices of the trypsin sample with the anchor
residues removed. The bars appear as a result of many points plotted close together.
(a) Median, d̃i,j, of the structurally aligned distances plotted against position, i, in
the alignment. (b) Divergence, ddivi,j , of the structurally aligned distances plotted
against position, i, in the alignment.
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2.4 Effect of gap-closing method on structure shape

In order to explore the effect of the gap-closing method in Section 2.3.2 on the
shape of a structure, we applied it to a selection of shapes typically found in protein
secondary structures. The shapes investigated include a straight line, a zigzag and
an idealised helix.

2.4.1 Zig-zag

The structure of trypsin has many beta sheets, where the Cα-atoms of residues
lie alternately above and below the plane of the beta sheet, not dissimilar to a
zigzag. A zigzag structure was generated such that the residues were dα apart, and
such that each set of three consecutive residues formed an equilateral triangle with
sides of length dα. Figure 2.26b shows how the zigzag structure is affected when a
gap is closed. The same pattern is observed wherever the gap is placed. However,
Figure 2.26c shows the effect on the structure when a gap of size 16 is closed. Clearly,
closing large gaps disrupts the structure around the gap significantly.

2.4.2 Idealised helix

The structure of trypsin has two small helices; therefore, it is of interest to analyse
how the structure of a helix changes when residues are removed and the gap closed.
An idealised helix with 50 residues was generated such that the residues are dα

(a) (b) (c)

Figure 2.26: Plots displaying the effect of the gap closing method on a zigzag struc-
ture. (a) Zigzag structure before a gap is closed. (b) Zigzag structure after closing a
gap of size one that is introduced in the middle of the structure. (c) Zigzag structure
after closing a gap of size 16 that is introduced in the middle of the structure.
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(a) (b) (c)

Figure 2.27: Plots displaying the effect of the gap-closing method on a helix struc-
ture. (a) Helix structure before a gap is closed. (b) Helix structure after closing a
gap of size one that is introduced in the middle of the structure. (c) Helix structure
after closing a gap of size 16 that is introduced in the middle of the structure.

apart and the helix has 3.6 residues per turn. Figure 2.27 displays the effect of
the gap-closing method on the helical structure. Figure 2.27b displays the helix
structure after one residue is removed. It is difficult to spot, but there is an irregular
kink at the end of the helix. This kink occurs regardless of the position of the
residue being removed. However, when more residues are removed, the gap is far
less subtle. Figure 2.27c displays the result of removing 16 residues and closing the
gap; the helical structure is barely recognisable. In fact, the helix structure is almost
completely destroyed after only five residues are removed.

2.5 Alternative to Multiple Structure Alignment

One way to be sure that MUSTANG introduces no structural bias is to conduct the
analysis using a multiple-sequence alignment of the structures where only sequence
and no structural information is used. Distances matrices can be obtained based
on the sequence alignment and divergence and median matrices calculated as be-
fore. The sequences are aligned using Clustal-W (Thompson et al., 1994), and the
divergences and medians plotted against position in Figure 2.28.

Compared to Figure 2.11b, the divergences in Figure 2.28b are similar in range;
however, the divergences in the anchor positions are not as small or distinct. The
median plots in Figure 2.11a and Figure 2.28a have a very similar pattern of peaks,
further suggesting that the structure alignment is similar to the sequence alignment.

For comparison a second multiple-sequence alignment algorithm is used; MUS-
CLE (Edgar, 2004). The same plots for this alignment are displayed in Figure 2.29.
Compared to Figure 2.28b, the divergences in Figure 2.29b are much smaller overall
and there are fewer large divergences. Most of the positions contain divergences
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(a) (b)

Figure 2.28: Plots of the rows of the median and divergence matrices calculated
from aligned distance matrices of the Clustal-W multiple-sequence alignment of the
trypsin sample. The bars appear as a result of many points plotted close together.
(a) Median, d̃i,j, of the aligned distances plotted against position, i, in the alignment.
(b) Divergence, ddivi,j , of the aligned distances plotted against position, i, in the
alignment.

(a) (b)

Figure 2.29: Plots of the rows of the median and divergence matrices calculated
from aligned distance matrices of the MUSCLE multiple-sequence-alignment of the
trypsin sample. The bars appear as a result of many points plotted close together.
(a) Median, d̃i,j, of the aligned distances plotted against position, i, in the align-
ment. (b) Divergence, ddivi,j of the aligned distances plotted against position, i, in the
alignment.
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small enough to be considered as the anchor residues that were identified previ-
ously; however, the divergences are not as low as the troughs in Figure 2.11b. This
suggests that the MUSCLE sequence alignment results in more conserved aligned
distances compared to the MUSTANG structure alignment, and even the Clustal-W
sequence alignment. However, despite producing a better structural alignment than
MUSTANG overall, the anchor positions do not appear to be aligned as well. Sim-
ilarly to Figure 2.28a, the median distances exhibit almost identical peak patterns
to Figure 2.11a.

2.6 Discussion

We have presented an investigation into the possibility that the trypsin protein fam-
ily contains ‘anchor’ residues. That is, residues where the distance between these
residues and every other in the structure is highly conserved across all of the struc-
tures in the protein family, compared to the other distances in the structure. These
anchor residues were identified from the aligned distance matrices from the struc-
tural alignment produced by MUSTANG. We conducted several tests to determine
the validity and origin of these anchor residues.

Investigation into the origin of the putative anchor residues did not result in a
definitive explanation; while some of the anchor residues appeared to correspond to
important conserved residues identified by Rypniewski et al. (1994), the evidence
was not overwhelming. The anchor residues were not more conserved in sequence
compared to the rest of the columns in the structural alignment.

The artefact testing method proposed in Section 2.3.2 proved inconclusive; we
would expect anchor residues to be apparent in 1LVY if they truly exist. However,
they were not apparent in the artificial structures suggesting that the phenomenon
is an artefact of MUSTANG. When the artefact testing method was investigated
in Section 2.4 it became clear that the gap-closing method distorts the structures
significantly and as a result the distances are also distorted. This method used
only the information contained in the Cα atoms of the structures. This was consid-
ered reasonable because MUSTANG appears to use this information only. Despite
this, aligning only the Cα atoms of the trypsin sample produced a different align-
ment compared to the trypsin sample; the alignment has more insertions, as well
as longer consecutive runs of insertions. This suggests that incorporating only the
information contained in the Cα atoms of the structures produces a less desirable
alignment, and therefore MUSTANG either incorporates additional information or
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2. Do protein structures evolve around ‘anchor’ residues?

is unreliable. Consequently we do not have much confidence in the artefact test-
ing method to accurately determine whether the anchor residues are an artefact of
MUSTANG. A simple test of removing the anchor residues in order to test whether
MUSTANG would artefactually introduce more anchor residues concluded in favour
of MUSTANG, as no new anchor residues were produced. The median distance
matrix also provides evidence in favour of the MUSTANG alignment; owing to the
fact that the structure produced by multidimensional scaling of the median distance
matrix resulted in a homogeneous trypsin structure.

When another protein family was aligned, we expected the anchor residues not
to be apparent if MUSTANG is not introducing bias because it is unlikely that this
feature would be observed in every protein family. However, the anchor residues may
be a feature of protein evolution rather than an artefact. The divergences in each
position were all small, suggesting that anchor residues merely identified areas of the
alignment where trypsin aligned well. Since this was not a large area it appeared to
be an interesting result.

While multiple-sequence alignments do not introduce bias they also do not pro-
duce an alignment based on how the structural components are aligned. A reliable
structural alignment would be preferred to an alignment based purely on sequence
because the protein structure evolves more slowly than sequence.

The Clustal-W sequence alignment results in a similar range of divergences when
compared to the MUSTANG alignment. However the MUSCLE sequence alignment
is significantly different with a much lower range of divergences overall. We expect
differences between the structure and sequence alignments because the structure
alignment completely ignores the amino-acid sequence while the sequence alignments
only use the amino-acid sequences. MUSTANG ignores the amino-acid sequence in
order to align more distantly related proteins; similarly Clustal-W weights sequences
based on their similarity. This focus on the evolution of the structures may explain
why Clustal-W and MUSCLE produce different alignments.

Out of the tests that were conclusive, many are in favour of MUSTANG. However
some tests identify inconsistencies that lead us to believe that MUSTANG may be
unreliable. The most convincing result against the existence of anchor residues arose
from aligning another protein family; the distances in the short-chain dehydrogenase
protein family have smaller divergences than the anchor residues in every position.
This strongly suggests that the anchor residues merely indicate well aligned regions
of structure in the trypsin family. Combined with the result that the anchor residues
do not appear to be strongly conserved in sequence or correspond to important
functional residues, we conclude that MUSTANG may be introducing bias, but it is
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also possible that the anchor residues are features of the trypsin family. To support
this conclusion, a larger range of protein families from diverse organisms would
need to be aligned, both in sequence and structure. There is also scope to subject
MUSTANG to further testing to determine its reliability.
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Chapter 3

Detecting Correlated Mutations in

Multiple Sequence Alignments using

Regularised Logistic Regression

3.1 Introduction

The structure of a protein is constrained by its function. Sequence alignments from
homologous proteins from a range of species provide information on these evolu-
tionary constraints. The analysis of correlated mutations within multiple-sequence
alignments can be used to predict residues that are in close proximity in three-
dimensional space. We propose a regularised logistic regression model to identify
these coevolving positions, and distinguish between the residue correlations that
correspond to structural proximity and potential confounding residue correlations,
which can occur as a result of noise or other biological evolutionary constraints
(Marks et al., 2011). Compared to the method of Sreekumar et al. (2011), our
method only requires one model to be fitted to the data, with easily interpreted
scores as output. Sreekumar et al. (2011) fit one model for every pair of columns,
and combine the output of thousands of models. We show that our model can
successfully identify known coevolving columns in a range of simulated datasets.
However, when applied to biological datasets, we obtain mixed results. For 3 of the
7 alignments, at least 80% of the residues identified as coevolving are in close prox-
imity in three-dimensional space. The percentage of predicted coevolving residues
that are in contact for the remaining four alignments is between 40-50%.
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3. Detecting Correlated Mutations in MSAs

3.1.1 Critical Assessment of protein Structure Prediction

(CASP)

The Critical Assessment of protein Structure Prediction, or CASP, is a worldwide
experiment to asses protein structure prediction methods via blind prediction. The
CASP experiments started in 1994 and have been held every two years since, result-
ing in eleven CASP experiments to date. The experiments aim to determine what
progress has been made in the field in protein structure prediction (Moult et al.,
1995).

The latest CASP experiment; CASP11, started in April 2014. The set of proteins
to be predicted are chosen as those that are about to have their structure solved
by x-ray crystallography or NMR. Therefore the predictors, and the organisers of
CASP, will not know the structure of the proteins, and will only have the sequence
information. As the coordinate information for the structures is determined, the
prediction models submitted by the predictors are evaluated (Moult et al., 2014).

The prediction of residue-residue contacts was first included in the CASP exper-
iment in CASP2. Monastyrskyy et al. (2014) evaluated the performance of residue-
residue contact prediction methods in CASP10, and compared these advancements
to previous CASPs.

Under CASP regulations, a pair of residues is defined to be in contact when the
distance between their Cβ atoms (Cα in the case of glycines) is less than 8Å. There
are three types of contacts; short, medium and long range. Short range contacts
are those separated by 6-11 residues, medium range contacts are separated by 12-23
residues, and long range contacts are at least 24 residues apart in sequence. Any
contacts that are separated by less than 6 residues are assumed to correspond to
secondary structures.

3.1.2 Regularised Multinomial Regression based Correlated

Mutations (RMRCM)

In Section 1.3.2, many correlated mutation methods were introduced. However,
there is only one method that utilises generalised linear models. The method of
Sreekumar et al. (2011), Regularised Multinomial Regression based Correlated Mu-
tations (RMRCM), differs from other methods as it takes into account the network
nature of relationships between protein residues to predict correlated mutations be-
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tween more than two columns of a multiple sequence alignment. Each column in the

alignment is regressed on all other columns, using multinomial regression models.

Each of the sequences in a multiple sequence alignment, A, are mapped to factors

with 21 levels (the first 20 levels represent the 20 different amino acids and the last

level accounts for gaps). Each of the columns, i, of A is replaced by a binary

matrix Mi with 21 columns where 1 represents the occurrence of each particular

amino acid. The collection of these binary matrices results in an expanded matrix

M = [M1, . . . ,MN ], where N is the number of alignment columns.

The factor representing column i of A is taken as y, the response variable. This

response variable is regressed upon the matrixM−i, which corresponds to the matrix

M with the submatrix Mi removed. This is a multinomial regression model because

y is a factor with 21 levels. This multinomial model is fitted for each column in A

separately. The coefficients β describe the relationships between columns in M−i

with the ith column in A. These are then projected back to describe relationships of

columns in A with each other. This is achieved by calculating the sum of the absolute

values of the regression coefficients to predict links between the columns of the

multiple sequence alignment. To reduce the number of parameters, regularisation

is used. The elastic-net method is applied when fitting each of the multinomial

regression models. We introduce regularisation and define the elastic-net method in

Section 3.2.2. The elastic-net mixing parameter, α, for the regularisation was set

to 0.99; very close the the Lasso penalty. Each model is fitted for the entire path

of solutions of the regularisation parameter λ. The default sequence of 100 values

of λ were calculated and the Bayesian Information Criterion (BIC) used to select

the best value. The predicted contacts with the minimum BIC are chosen for each

column separately. In a different approach, the coefficients β are summed over all

values of λ, as this often produced better results (Sreekumar et al., 2011).

The performance of RMRCM was tested on artificial datasets and compared

to the corrected Mutual Information (MI). RMRCM out performed MI in every

case. When applied to biological data, the performance of RMRCM depends on the

number of sequences in the alignment. In particular, when applied to the CASP9

data, RMRCM outperformed other correlated mutation analysis methods when the

number of sequences was at least 1000. However, it performed worse than average

compared to others methods in CASP9 when the number of sequences was low.
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3. Detecting Correlated Mutations in MSAs

3.2 A New Regularised Logistic Regression Model

We propose a method to identify coevolving columns in a multiple sequence align-

ment. A regularised logistic regression model is used to score alignment columns

based on their interaction coefficients. Large interaction coefficients are indicative

of coevolving alignment columns.

Before fitting the model, alignment columns that consist of more than 50% gaps

are removed. Alignment columns that largely consist of gaps contain less evidence

for coevolution. Alignment columns that are more than 90% conserved are also

removed, as they are unable to covary.

3.2.1 Logistic Regression Model Setup

Given a binary outcome variable yi and p associated predictor variables; Xi =

(xi1, . . . , xip)
T , we propose a logistic regression model to discover which predictors

are important. Logistic regression is typically applied to data with a binary response

variable. To apply this model to sequence alignment data, we view the data as a case

control study. Denote the input multiple sequence alignment by an n ×m matrix,

AI , where i′ = 1, . . . , n represents the sequences, and k = 1, . . . ,m represents the

alignment columns. Each sequence in AI is a case. For the controls, we generate

pseudo controls by independently shuffling the columns in the true alignment.

Generating Pseudo Controls

We generate the control data from the input alignment, AI . Each column, l, is

permuted independently to produce a new alignment, A1. Randomising the order

of the amino acids in the columns removes the coevolutionary signal by disrupting

the correlated mutations.

The input alignment, AI , is randomised multiple times to produce the control

data. We fit the logistic regression model to the following alignment data

A∗N×m = (AI , A1, . . . , Ac)
T ,

where c is the number of control alignments and i = 1, . . . , N is the total number of

sequences including the pseudo control sequences. That is, N = n(c+ 1).
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3.2 A New Regularised Logistic Regression Model

The columns of the input alignment, AI , are randomised 5 times to produce 5
controls per case. The response variable is thus given by

yi =

{
1 if sequence i belongs to the true alignment
0 if sequence i is a pseudo control

where i = 1, . . . , N is the total number of sequences including the pseudo control
sequences. The values yi are realisations of a random variable Yi that take the
values one and zero with probabilities πi and 1−πi. Therefore Yi follows a Bernoulli
distribution with parameter πi.

The matrix X is constructed from the input alignment A∗. We can partition X
in terms of the main effects and the second order interaction terms as follows

XN×p =
(
Xmain
N×21m, X

ints
N×441m(m−1)

)
, (3.1)

where the number of parameters in the model, p, is given by p = 21m+441m(m−1).
To understand how this number is calculated, we explain in more detail below.

The matrix corresponding to the main effects, Xmain
N×21m in Equation (3.1), can be

partitioned in terms of the columns of A∗ to produce the following submatrices

Xmain
N×21m =

(
X(1), X(2), · · · , X(m)

)
, (3.2)

where X(k)
N×21, k = 1, . . . ,m, is a binary matrix representing the occurrence of the

amino acids in column k of the alignment A∗. Each row of X(k) corresponds to the
sequences in the alignment. There is a column in X(k) for each of the 20 standard
amino acids, and a column for gaps.

For example, consider the simple alignment given in Figure 3.1. The submatrix
X(1) in Equation (3.2) is constructed from the first column of the alignment. For
each sequence, the corresponding amino acid is coded one in the appropriate column

ADFAHL

NDFADR

ADGADK

IDGAHE

Figure 3.1: A simple example alignment consisting of 4 sequences and 6 alignment
columns.
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of X(1) and all other columns are coded zero, resulting in the following matrix

X(1) =



A R N D C Q E G H I L K · · · −
Seq 1 0 0 0 0 0 0 0 0 0 0 1 0 · · · 0

Seq 2 0 1 0 0 0 0 0 0 0 0 0 0 · · · 0

Seq 3 0 0 0 0 0 0 0 0 0 0 0 1 · · · 0

Seq 4 0 0 0 0 0 0 1 0 0 0 0 0 · · · 0

.

The matrix corresponding to the second order interaction effects, X ints
N×441m(m−1)

in Equation (3.1), can be partitioned in terms of each pair of alignment columns to

produce the following submatrices

X ints
N×441m(m−1) =

(
X(1,2), X(1,3), · · · , X(1,m), X(2,3), X(2,4), · · · , X((m−1),m)

)
(3.3)

where X(k,l)
N×441 is a binary matrix representing the occurrence of amino acid pairs

in the pair of columns k and l of the alignment A∗. The rows of X(k,l) correspond

to the sequences in the alignment. There is a column in X(k,l) for every pairwise

combination of the 20 standard amino acids and gaps. Thus, X(k,l) consists of

212 = 441 columns.

Consider again the simple alignment given in Figure 3.1. The submatrix X(1,2)

in Equation (3.3) is constructed from columns 1 and 2 of the alignment. For each

sequence, the corresponding amino acid pair is coded one in the appropriate column

of X(1,2) and all other columns are coded zero, resulting in the following matrix

X(1,2) =



A,A A,R · · · R,D · · · E,H · · · L,H K,D · · · –,–

Seq 1 0 0 · · · 0 · · · 0 · · · 1 0 · · · 0

Seq 2 0 0 · · · 1 · · · 0 · · · 0 0 · · · 0

Seq 3 0 0 · · · 0 · · · 0 · · · 0 1 · · · 0

Seq 4 0 0 · · · 0 · · · 1 · · · 0 0 · · · 0

.

For the binary outcome variable yi and p associated predictor variables; Xi =

(xi1, . . . , xip)
T , the logistic regression model is given by

logit(πi) = log

(
πi

1− πi

)
= β0 + xTi βββ (3.4)
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Solving for π, this gives

πi =
eβ0+xTi βββ

1 + eβ0+xTi βββ
=

1

1 + e−(β0+xTi βββ)
, (3.5)

where βββ can be partitioned similarly to X in Equation (3.1) to produce subvectors

corresponding to the main effects and the second order interaction terms as follows

βββp×1 =
(
βββmain

21m×1,βββ
ints
441m(m−1)×1

)T
.

The vector corresponding to the main effects, βββmain
21m×1 in Equation (3.2.1), can be

partitioned in terms of the columns of A∗ to produce the following subvectors

βββmain
21m×1 =

(
βββ(1),βββ(2), · · · ,βββ(m)

)T
(3.6)

where βββ(k)
21×1, k = 1, . . . ,m, is the vector of regression coefficients corresponding to

each amino acid in column k of the alignment A∗. Each element in βββ(k) corresponds

to the 20 standard amino acids, plus gaps.

The vector corresponding to the second order interaction terms, βββints
441m(m−1)×1 in

Equation (3.2.1), can be partitioned in terms of each pair of alignment columns in

A∗ to produce the following subvectors

βββints
441m(m−1)×1 =

(
βββ(1,2),βββ(1,3), · · · ,βββ(1,m),βββ(2,3),βββ(2,4), · · · ,βββ((m−1),m)

)T
(3.7)

where βββ(k,l)
441×1 is the vector of regression coefficients corresponding to each pair of

amino acid in the column pair (k, l) of the alignment A∗. Each element in βββ(k,l)

corresponds to the 441 pairs of amino acids and gaps.

3.2.2 Fitting the Regularised Model in R

Due to the high-dimensional nature of our data, with p � N , any linear model is

over-parameterised and regularisation is needed to achieve a stable fit (Hastie et al.,

2015). There are a large number of predictors, however we are interested in a smaller

subset that exhibit the strongest effects.

We fit our regularised logistic regression model using the glmnet function of the

glmnet package (Friedman et al., 2010) in R (R Core Team, 2013). The model is
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fitted using penalised maximum likelihood. The likelihood function for the logistic

regression model is derived as follows.

Recall, the distribution of Yi is Bernoulli with parameter pi, given by

Pr(Yi = yi) = πyii (1− πi)1−yi ,

for yi = 0, 1. Therefore, the likelihood function is

L(y, X,βββ) =
N∏
i=1

πyii (1− πi)1−yi ,

the corresponding log-likelihood is thus

l(y, X,βββ) = logL(y, X,βββ)

=
N∑
i=1

{yi log πi + (1− yi) log(1− πi)}

=
N∑
i=1

{
yi log

(
πi

1− πi

)
+ log(1− πi)

}
.

Substituting log
(

πi
1−πi

)
from Equation (3.4) and πi from Equation (3.5) gives

l(y, X,βββ) =
N∑
i=1

{
yi
(
β0 + xTi βββ

)
+ log

(
1− 1

1 + e−(β0+xTi βββ)

)}

=
N∑
i=1

{
yi
(
β0 + xTi βββ

)
+ log

(
1

1 + e(β0+xTi βββ)

)}

=
N∑
i=1

{
yi
(
β0 + xTi βββ

)
− log

(
1 + e(β0+xTi βββ)

)}
.

Regularisation constrains the coefficients by applying a penalty on the coefficients

for each variable. The glmnet function solves the following problem:

argmax
β∈Rp

{
1

N
l(y, X,βββ)− λPα(βββ)

}
, (3.8)
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where Pα(βββ) is the elastic-net penalty

Pα(βββ) =

p∑
j=1

[
1

2
(1− α)β2

j + α|βj|
]
. (3.9)

The elastic-net linearly combines the lasso and ridge regression penalties; 0 ≤ α ≤ 1

is the elastic-net mixing parameter. When α = 1, Equation (3.9) is the lasso

penalty and when α = 0 it gives the ridge regression penalty. Setting α between

these extremes gives the elastic-net penalty. The tuning parameter, λ ≥ 0, controls

the amount of shrinkage that is applied to the estimates. When λ = 0, no shrinkage

is applied. When λ =∞ the lasso and ridge estimates are equal to zero. When λ is

between these values, the ridge and lasso estimates are shrunk towards zero. In the

case of the lasso, some of these estimates may be exactly zero (Hastie et al., 2015).

For each value of λ there is a solution to Equation (3.8). Therefore there is a path

of solutions given by the chosen values of λ. The regularisation path is calculated

for the elastic-net parameter for an entire path of solutions of the regularisation

parameter λ. The default sequence of 100 values of λ supplied by glmnet were used.

3.2.3 Scoring Alignment Columns

The regression coefficients of the second order interaction terms provide information

about which pairs of columns are covarying. There is a β coefficient for every distinct

pair of amino acids in every pair of columns, contained in the vector βββints described

in Equation (3.7). Recall that βββ(k,l) contains the regression coefficients for the second

order interaction terms corresponding to column pair (k, l). We define β(k,l)
(a,b) to be

the β coefficient corresponding to the amino acid pair (a, b) in columns k and l of

the alignment A∗.

The score for alignment columns k and l is given by summing the coefficients

over all amino acid pairs (a, b) as follows

sk,l =
∑
(a,b)

β
(k,l)
(a,b),

where (a, b) represent each pair of amino acids. A large value of sk,l indicates columns

k and l are coevolving.
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3.3 Results

We fit our model to a series of small test alignments to explore the ability of our
model to identify columns that are set up to covary. We design simulations to
determine the optimal value of the elastic-net parameter α and the regularisation
parameter λ under various alignment scenarios. We explore the effect of changing
the number of columns and sequences, the number of coevolving columns and adding
noise to the coevolving columns. We apply our method to a range of Pfam datasets.

3.3.1 Test Alignments

First we explore our proposed model by fitting it to simple test alignments. We
start with a 10 column alignment with 100 sequences, before extending our analysis
to alignments consisting of 30 and 50 columns. For alignments with 30 columns we
look at the effect of having a very small number of sequences, 20, and 100 sequences.
For alignments with 50 columns we increase the number of sequences to 50 and 100.
We also experiment with the number of coevolving columns and the amount of noise
added to these columns.

Simulating Test Alignments

Each alignment is simulated by randomly sampling with replacement the 20 standard
amino acids to generate one alignment row. This row is used as the base for the
whole alignment. The sampled row is multiplied to produce the desired number of
sequences, resulting in a base alignment that is 100% conserved.

Protein family alignments are rarely completely conserved, therefore we replace
60% of the alignment with random amino acids in randomly sampled positions. We
also replace 10% of the alignment with gaps in randomly sampled positions.

To generate coevolving columns a pair of columns is randomly sampled. The
amino acids in the sampled columns are replaced to reflect coevolution. If the sim-
ulated alignment consists of 100 sequences or less, there is one correlated mutation
event, as displayed in Figure 3.2a. If the simulated alignment contains more than
100 sequences, there are two correlated mutation events, as displayed in Figure 3.2b.
The amino acids that make up the coevolving columns are randomly sampled from
the 20 standard amino acids. If more than one pair of coevolving columns is simu-
lated, the sequence order is shuffled between setting up each pair of columns. This
ensures that each pair of columns are coevolving independently, and not together.
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ADFAHL

NDFADR

ADGADK

IDGAHE

NEIYHK

LELYDR

KEKYDL

CEKYHE

(a)

ADFAHL

NDFADR

ADGADK

IDGAHE

NEIYHK

LELYDR

KEKYDL

CEKYHE

AGFMHL

NGFMDR

AGGMDK

IGGMHE

(b)

Figure 3.2: Simple example alignments displaying a pair of columns set up to reflect
coevolution. a) An example alignment consisting of one correlated mutation event.
The residue pair ‘A’ and ‘D’, given in red, are substituted for the pair ‘Y’ and ‘E’,
in blue. (b) An example alignment consisting of two correlated mutation events.
The residue pair ‘A’ and ‘D’, given in red, are substituted for the pair ‘Y’ and ‘E’
in blue or ‘M’ and ‘G’ in green.

Ten Column Alignment

We generate an alignment consisting of 10 columns and 100 sequences. Columns 2
and 8 are coevolving, and separately, columns 3 and 7 are coevolving. The model
is fitted to the alignment at a range of values of the elastic-net parameter, α =

(0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). The regularisation path is calculated for
the elastic-net parameter at a grid of 100 values for the regularisation parameter, λ,
chosen by glmnet.

We want to determine which values of α and λ successfully identify the coe-
volving columns. A standard method for selecting an appropriate value of λ is
cross-validation. The value of λ is chosen to maximise some measure of model fit,
for example the percentage of null deviance explained. However, cross-validation
does not identify the coevolving columns. Figure 3.3 displays the combinations of
α and λ that produce non-zero scores for s2,8 and s3,7, and shrink the scores for all
other column pairs to zero.

For the alignment with 10 columns and 100 sequences there are multiple optimal
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Figure 3.3: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify s2,8 and s3,7 as the only non-zero scores. These scores correspond to
the coevolving columns in the 10 column alignment with 100 sequences.

combinations of α and λ, that result in our model successfully identifying only the
coevolving columns. However, true alignments are rarely this simple.

Thirty Column Alignments

We explore the effect of the number of sequences, the number of coevolving columns,
and the effect of adding random noise to these columns. To add noise to the coe-
volving columns, a percentage of the amino acids in each column are replaced with
random amino acids. We generate alignments consisting of 30 columns, and 20 and
100 sequences. We use the following parameter combinations:

Number of coevolving column pairs 1, 2, 3, 4

Percentage of random noise added 5%, 10%, 15%, 20%, 25%

We fit our model to each of these 20 alignments at a range of values of the elastic-
net parameter, α = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). The regularisation
path is calculated for each value of the elastic-net parameter at a grid of 100 values
for the regularisation parameter, λ.

We want to explore which combinations of α and λ are optimal for all 20 align-
ments. Figure 3.4 displays the combinations of α and λ that identify the coevolving
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(a) Coevolving pairs=1, noise=0.25 (b) Coevolving pairs=2, noise=0.25

(c) Coevolving pairs=3, noise=0.25 (d) Coevolving pairs=4, noise=0.25

Figure 3.4: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 25% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 20 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.

column scores, sk,l, as the only non-zero scores. Each plot corresponds to a differ-
ent number of coevolving columns; each with 25% noise added to the coevolving
columns.

The range of λ values appears to decrease slightly for each value of α as the
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number of coevolving pairs increases. The number of optimal λ values also de-
creases slightly. However, this pattern is not observed across other noise levels, see
Appendix D.1.

Figure 3.5 displays the combinations of α and λ that identify the coevolving
column scores as the only non-zero scores. Each plot corresponds to a different
percentage of noise added to the coevolving columns; each for alignments with 3
coevolving pairs of columns. There appears to be no obvious pattern as the noise
increases.

Only one alignment does not have a combination of α and λ that identifies only
the coevolving column scores as non-zero. This alignment has 4 coevolving pairs of
columns and 10% noise added to these columns. In addition to the scores for the

(a) Coevolving pairs=3,
noise=0.05

(b) Coevolving pairs=3,
noise=0.1

(c) Coevolving pairs=3,
noise=0.15

(d) Coevolving pairs=3,
noise=0.2

(e) Coevolving pairs=3,
noise=0.25

Figure 3.5: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where there are 3 coevolving pairs of columns. Each plot corresponds to an
alignment, each consisting of 30 columns and 20 sequences. The percentage of noise
added differs for each plot. (a) 5% noise added. (b) 10% noise added. (c) 15% noise
added. (d) 20% noise added. (e) 25% noise added.
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Figure 3.6: Coefficient scores for an alignment with 30 columns and 20 sequences.
The alignment has 4 coevolving pairs of columns and 10% noise added to the coe-
volving columns. The red points correspond to the coevolving column scores, and
the black points represent the scores for all other pairs of columns in the alignment.
The only non-zero black point corresponds to columns 20 and 23.

coevolving columns, another score, s20,23, for columns 20 and 23 is also non-zero

for many combinations of α and λ. Figure 3.6 displays the scores for each pair of

alignment columns for α = 0.1, λ = 0.2464. The red points correspond to the true

coevolving column scores and the black points represent the scores for the other

pairs of columns. All of the black points are zero as expected, except s20,23.

For each value of α we observe a range of λ values that are able to identify

the known coevolving columns. The range of λ values are consecutive runs of the

regularisation path, suggesting that any value of λ in this range would be optimal.

There are a small range of optimal λ values for 7 of the α values, that are common

to 17 of the 20 alignments. The combination of α and λ values that are optimal are

given in Table 3.1.

To test whether the optimal combinations of α and λ in Table 3.1 have the

ability to identify coevolving columns in other alignments, we fit our model with

these values supplied. The regularisation path for each value of α is calculated for

100 values of λ spanning the range given in the table. Alignments are generated

with 30 columns, 20 sequences, and 1-5 coevolving pairs of columns, each of which

has 25% noise added. We obtain mixed results:
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Table 3.1: Optimal values
of α, and the range of op-
timal λ values for each.
Optimal combinations are
those that identify the co-
evolving columns. These
combinations are common
to 17 of the 20 30 × 20
alignments.

α λ range
0.1 [0.2732, 0.2837]
0.2 [0.1366, 0.1418]
0.3 [0.0886, 0.0946]
0.4 [0.0664, 0.0709]
0.5 [0.0532, 0.0567]
0.6 [0.0451, 0.0473]
0.7 [0.0387, 0.0405]

1 pair of coevolving columns Every combination of α and λ identify the known
coevolving pair of columns. However, an additional score for another pair of
columns is also identified.

2 pairs of coevolving columns Every combination of α and λ successfully iden-
tify the coevolving columns in the alignment.

3 pairs of coevolving columns Every combination of α and λ identify the same
pairs of columns as coevolving. However, only two of the scores correspond to
known coevolving columns.

4 pairs of coevolving columns Every combination of α and λ successfully iden-
tify the coevolving columns in the alignment.

5 pairs of coevolving columns For α = 0.1, all values of λ identify the known
coevolving columns. However, an additional score, s16,29, is also identified. For
α = (0.2, 0.3, 0.4), all values of λ identify 4 out of the 5 coevolving columns,
and an additional score; s16,29. For α = (0.5, 0.6, 0.7), all values of λ identify
3 out of the 5 coevolving columns, and an additional score; s16,29.

Using the same parameter combinations for the coevolving columns as the 20-
sequence case, the number of sequences is increased to 100. For every alignment
there are multiple optimal combinations of α and λ that successfully identify the
coevolving column scores as the only non-zero scores. Figure 3.7 displays the com-
binations of α and λ that identify the coevolving column scores, sk,l, as the only
non-zero scores. Each plot corresponds to a different number of coevolving columns;
each with 25% noise added to the coevolving columns. Plots for the remaining
parameter combinations are given in Appendix D.2.

Similarly to the 20-sequence case, there appears to be no pattern in the α/λ
combinations as the number of coevolving pairs or percentage of noise increases.
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(a) Coevolving pairs=1, noise=0.25 (b) Coevolving pairs=2, noise=0.25

(c) Coevolving pairs=3, noise=0.25 (d) Coevolving pairs=4, noise=0.25

Figure 3.7: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 25% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 100 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.

However, the number of optimal combinations of α and λ is larger, and the range
of optimal λ values is larger for each value of α.

As in the 20-sequence case, the range of λ values are consecutive runs of the
regularisation path, suggesting that any value of λ in this range would be optimal.
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Table 3.2: Optimal values
of α, and the range of op-
timal λ values for each.
Optimal combinations are
those that identify the co-
evolving columns. These
combinations are common
to all of the 30×100 align-
ments.

α λ range
0.1 [0.1781, 0.2686]
0.2 [0.0850, 0.1343]
0.3 [0.0516, 0.0895]
0.4 [0.0370, 0.0671]
0.5 [0.0282, 0.0513]
0.6 [0.0218, 0.0427]
0.7 [0.0178, 0.0350]
0.8 [0.0156, 0.0306]
0.9 [0.0139, 0.0260]
1.0 [0.0128, 0.0234]

There is a range of optimal λ values for 10 of the α values, that are common to all
of the alignments. The combination of α and λ values that are optimal are given in
Table 3.2. Compared to the 20-sequence case, there are more optimal combinations
of α and λ common to each alignment.

To test whether the optimal combinations of α and λ in Table 3.2 have the
ability to identify coevolving columns in other alignments, we fit our model with
these values supplied. The regularisation path for each values of α is calculated for
100 values of λ spanning the range given in the table. Alignments are generated
with 30 columns, 100 sequences, and 1-5 coevolving pairs of columns, each of which
has 25% noise added.

The model successfully identifies the known coevolving pairs of columns for all
of the 30x100 alignments, including the previously uncalibrated case with 5 pairs
of coevolving columns. The difference in success between the 20- and 100-sequence
cases illustrates the dependence of our model on the number of sequences in an
alignment.

Fifty Column Alignments

We expand our simulations to 50 column alignments. Again, we explore the effect of
the number of sequences, the number of coevolving columns, and the effect of adding
random noise to these columns. We use the following parameter combinations:

Number of sequences 50, 100

Number of coevolving pairs 1, 2, 3, 4, 5

Percentage of random noise added 5%, 10%, 15%, 20%, 25%
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α λ range
0.1 [0.2093, 0.2627]
0.2 [0.1047, 0.1313]
0.3 [0.0698, 0.0876]
0.4 [0.0500, 0.0627]
0.5 [0.0400, 0.0501]
0.6 [0.0333, 0.0418]
0.7 [0.0286, 0.0358]
0.8 [0.0250, 0.0299]
0.9 [0.0222, 0.0266]
1.0 [0.0200, 0.0228]

Table 3.3: Optimal values
of α, and the range of op-
timal λ values for each.
Optimal combinations are
those that identify the co-
evolving columns. These
combinations are common
to all of the 50 column
alignments, irrespective of
the number of sequences.

Figure 3.8: Overlap between the optimal range of λ values for each value of α. The
black lines correspond to the minimum and maximum optimal values of λ for each α,
in the 50-column alignments. The red lines correspond to the 30-column alignment,
with 100 sequences.

For the 50- and 100- sequence cases, there are many optimal combinations of α
and λ, as given in Table 3.3. Figure 3.8 displays the overlap between the optimal
range of α and λ values across the 30× 100 alignments (Table 3.2) and the 50× 50

and 50× 100 alignments (Table 3.3).

3.3.2 Biological Data

We used the same Pfam (Bateman et al., 2004) protein family alignments and ref-
erence PDB structures as Sreekumar et al. (2011). The 7 selected alignments are
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Pfam IDa Number of Number of Number of PDB ID:Chaine UniProtKB IDf

columnsb columnscT sequencesd

PF00029 171 86 424 2ZW3:A CXB2_HUMAN
PF00193 168 83 432 1POZ:A CD44_HUMAN
PF00157 117 66 484 1POU:A PO2F1_HUMAN
PF00243 227 85 2260 1BET:A NGF_MOUSE
PF00366 144 60 2447 1I94:Q RS17_THET8
PF00276 304 86 2753 3G6E:S RL23_HALMA
PF00105 279 57 3702 2NLL:B THB_HUMAN

Table 3.4: Pfam alignment data organised by ascending sequence number.
a Pfam accession code for each alignment. b,c The number of columns in the Pfam
alignments, and the number of columns after our method has removed highly con-
served and gapped columns, respectively. d The number of sequences in each align-
ment. e The PBD identifier and chain number of the reference structure used for
each alignment. f The UniProt ID used to map from the Pfam alignment to the
PDB structure

summarised in Table 3.4.

In Section 3.1.1 we report that under CASP regulations, a pair of residues is

defined to be in contact when the distance between their Cβ atoms (Cα in the case

of glycines) is less than 8Å. For each combination of α and λ, the proportion of

predicted coevolving pairs that are within 8Å is calculated. Figures 3.9 and 3.10

display these proportions for each alignment. The plots for the alignments are

displayed in ascending sequence order.

The proportion of predicted coevolving residues in contact varies between the

alignments. However, for all alignments and values of α, the proportion is highest

for low values of λ in the regularisation path. Alignments PF00193 and PF00366

have the highest proportion of predicted coevolving residues in contact for some

combinations of α and λ. These combinations result in a proportion of 1, suggesting

that our method is successful for these alignments as all predicted residue pairs are in

contact in three-dimensional space. These alignments do not have similar numbers

of sequences or columns.

Alignments PF00029 and PF00105 have the lowest proportion of predicted co-

evolving residues in contact, for all values of α and λ. The largest proportion of

successfully predicted contacts is around 40%. PF00029 consists of the fewest se-

quences, while PF00105 has the most sequences. The two alignments also have

different numbers of alignment columns.
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(a) PF00029 (b) PF00193

(c) PF00157 (d) PF00243

Figure 3.9: Proportion of predicted coevolving residue pairs less than 8Å apart in
three-dimensional space, for each combination of α and λ. Each plot corresponds to
a different Pfam alignment.

3.4 Discussion

We have introduced a novel method to identify coevolving pairs of columns in protein

multiple sequence alignments. Compared to the method of Sreekumar et al. (2011)

we fit just one model, rather than one model for every column in the alignment.

We have shown that our model is successful when applied to small simulated

datasets. For alignments with 30 columns and 20 sequences, we are able to success-
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(a) PF00366 (b) PF00276

(c) PF00105

Figure 3.10: Proportion of predicted coevolving residue pairs less than 8Å apart in
three-dimensional space, for each combination of α and λ. Each plot corresponds to
a different Pfam alignment.

fully identify the known coevolving columns in 85% of datasets. When the number
of sequences is increased to 100, the model successfully identifies the coevolving
columns in all of the datasets. We have shown that our model is capable of dealing
with various levels of noise added to the coevolving columns and varying numbers
of coevolving pairs.

In addition, our model is successful when applied to datasets with 50 columns
and 50–100 sequences. We show that there are many optimal combinations of α and
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λ, common to all of the simulated datasets with more than 20 sequences.
When applied to real datasets of Pfam alignments, we obtain mixed results. All

of the residues identified as coevolving by our model are found to be in contact
for two of the alignments, and a third alignment is successful with 80% of the
predictions being in contact. The remaining four alignments report that 40-50% of
the predictions are in contact in three-dimensional space.

It would be interesting to determine whether these predicted contacts correspond
to short, medium or long range contacts, as defined in Section 3.1.1. This could then
be extended to analyse the proportion of predicted short, medium and long range
residues that are in contact.

Performance is lower for the biological datasets in comparison to the simulated
alignments, suggesting that our simulations may not be accurately representing real
biological data. We do not explore here simulated datasets with more than 100
sequences, and multiple coevolutionary mutation events between a pair of columns.
Potential future work could extend our simulations to be more representative of
biological datasets by introducing more noise to the coevolving columns, and ex-
ploring the effect of multiple mutations between coevolving pairs of columns. Other
selection procedures for λ could also be explored, for example the sum of coefficients
approach used by Sreekumar et al. (2011).

Our model may be identifying columns that are truly coevolving, however they
are not in close proximity in three-dimensional space for the alignments that had
lower contact percentages. To guide the model, or refine the output to predict those
residues in contact, additional information about the amino acid physiochemical
properties could be used. Further work could also include comparing our predictions
to those of other methods. In Section 1.3.2 we see that the leading method has an
average precision of 27%.
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Chapter 4

Analysing cospeciation in tritrophic

ecology using electrical circuit theory

4.1 Introduction

We introduce a new method to test efficiently for cospeciation in tritrophic systems.
Our method is a development of the correlation statistic proposed by Hommola
et al. (2009). We relate Hommola et al.’s (2009) method to higher-order systems
by applying methods from electrical circuit theory (Curtis et al., 2000). We use
these methods to reduce higher order systems into two vectors of electrically equiv-
alent patristic distances that can be compared using Spearman’s rank correlation
coefficient. The equivalent patristic distances take into account the information
contained in the connection to the third phylogenetic tree. We use a sophisticated
permutation scheme that weights interactions between two trophic layers based on
their connection to the third layer in the system.

As far as we know, Mramba et al. (2013) have developed the only method for
assessing cospeciation at the tritrophic level. Our method has several advantages
compared to the method of Mramba et al. (2013). We do not require triangular
interactions to connect the three phylogenetic trees and an easily interpreted p-
value is obtained in one step. Another advantage of our method is the scope for
generalisation to higher order systems and phylogenetic networks.

The performance of our method is compared to the methods of Hommola et al.
(2009) and Mramba et al. (2013) at the bitrophic and tritrophic levels, respectively.
This was achieved by evaluating type I error and statistical power. The results in
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Section 4.4 show that our method produces unbiased p-values and has greater power
overall at both trophic levels. Our method was successfully applied to a dataset of
leaf-mining moths, parasitoid wasps and host plants (Lopez-Vaamonde et al., 2005),
in Section 4.4.4, at both the bitrophic and tritrophic levels.

4.1.1 Motivation

The study of host-parasite coevolution originated with the work of Von Ihering, who
was the first to recognise predictable associations among hosts and their parasites
(Klassen, 1992). Parasites and their hosts generally form tight ecological associa-
tions and as such it has long been assumed that the speciation of parasites is largely
dependent on the speciation of their hosts (Legendre et al., 2002). However, cospe-
ciation is not the only process that occurs, and thus host-parasite phylogenies are
rarely exact mirror images. The parasite may switch lineages, speciate indepen-
dently, go extinct, fail to colonise all descendants of a speciating host lineage, or fail
to speciate when the host does (Page, 2003).

Figure 4.1 displays a simple example bitrophic system consisting of Tree X,
Tree Y and the interactions between their leaf nodes. We mainly focus on parasitic
interactions, however other types of ecological interaction exist. These interactions
may have arisen through symbiosis, mutualism, habitat or feeding relationships.

There has been extensive exploration into the bitrophic interactions observed
between hosts and their parasites, and between plants and specialised herbivorous
insects (Forister & Feldman, 2011). As a result, many statistical tests have been de-
veloped to assess cospeciation in these systems (Hommola et al., 2009; Huelsenbeck

X Y

Figure 4.1: An example bitrophic system consisting of two phylogenetic trees and
their ecological interactions. The solid lines present the branches of the phylogenetic
trees and the dashed lines between the tips of Tree X and Tree Y represent the
interactions between them.
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et al., 2000; Legendre et al., 2002; Mantel, 1967; Page, 1996). However, shared evolu-
tionary histories have been observed across more than two trophic levels (Forister &
Feldman, 2011). For example, tritrophic interactions were observed between hosts,
parasites and host plants (Ahmad et al., 2004; Micha et al., 2000). Recently, it was
discovered that tritrophic coevolution exists between flies and parasitic nematodes
on Mytaceae host plants (Nelson et al., 2014).

Mramba et al. (2013) developed the only statistical method we are aware of to
test cospeciation in tritrophic systems. However, Mramba et al.’s (2013) test requires
the interactions between three phylogenies to form triangles to be able to compare
patristic distances on the three trees. This is often not the case in naturally occurring
tritrophic systems, and thus interactions that do not form triangles are discarded
along with the information they provide. We propose an improved method which can
accommodate any type of interaction. To draw conclusions about where cospeciation
occurs within a tritrophic system, Mramba et al.’s (2013) method necessitates the
permutation of every pairwise combination of three trees; that is, 7 randomisations
and, correspondingly, 7 p-values. By contrast, our more efficient method requires
the use of one sophisticated permutation scheme, resulting in one easily interpreted
p-value.

Many bitrophic tests (Hommola et al., 2009; Legendre et al., 2002; Mantel, 1967)
and Mramba et al.’s (2013) tritrophic test are limited to systems consisting of phy-
logenetic trees. Our method has the scope for generalisation to higher order systems
and the application to phylogenetic networks.

4.1.2 Existing Methodology

There are many methods available to test whether bitrophic systems display evidence
of cospeciation as reflected by congruent phylogenies and corresponding interactions.
The method of Hommola et al. (2009) outperforms the Mantel test (Mantel, 1967)
and ParaFit (Legendre et al., 2002). Hommola et al.’s (2009) statistical test is a
development of the Mantel test that overcomes the one-to-one interaction constraint.
The Mantel test can only accommodate one-to-one interaction patterns between two
phylogenetic trees. It assumes that a species on Tree X can only interact with one
species on Tree Y . However one-to-one interaction patterns rarely occur naturally.
To manage many-to-one interactions, the generalist species are either discarded or
replicated. Both of these solutions introduce bias (Hommola et al., 2009). The
method of Hommola et al. (2009) calculates the patristic distances on each tree
between each pair of interactions in a bitrophic system. A test statistic is calculated
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as the Pearson’s correlation coefficient between the distances on Tree X and the
distances on Tree Y . A high correlation indicates cospeciation between the two
trees, while a low correlation indicates that there is no cospeciation. To calculate
the significance of this statistic, the tip labels of the trees are permuted many times
and the correlation recomputed for each. A p-value is calculated as the proportion
of times the permuted correlation is larger than the observed correlation.

Mramba et al. (2013) extend the permutation test developed by Hommola et al.
(2009) to systems with three phylogenies, by computing patristic distances and
using three-way interaction matrices. To extend the interaction matrices between
each pair of trees into one three-way interaction matrix only interactions that form
triangles between the three trees are considered. The patristic distances on each tree
between each pair of interaction triangles is calculated, resulting in three vectors of
patristic distances. These vectors are combined to form the columns of a distance
matrix D. Define λobs to be the dominant eigenvalue of the covariance matrix of D.
Similarly to the bitrophic case, if there is cospeciation somewhere in the system we
would expect the columns of D to be correlated. In this case, λobs would be large
relative to the other eigenvalues. Therefore λobs is used as a statistic to test the
following hypothesis:

H0: Trees X, Y and Z have evolved independently.

H1: Cospeciation is present somewhere in the X, Y , Z system.

The dominant eigenvalue test statistic is unable to determine where the coevolu-
tion in a tritrophic system has occurred. Therefore, additional test statistics are
calculated to test the following alternative hypotheses

HY Z.X : Cospeciation between Trees Y and Z is not due entirely to their common
cospeciation with Tree X.

HXZ.Y : Cospeciation between Trees X and Z is not due entirely to their common
cospeciation with Tree Y .

HXY.Z : Cospeciation between Trees X and Y is not due entirely to their common
cospeciation with Tree Z.

Partial correlation test statistics, robsyz.x, robsxz.y, and robsxy.z, are used to distinguish be-
tween these hypotheses. For example, robsyz.x is the partial correlation between the
patristic distances for Tree Y and the patristic distances for Tree Z, when their

84



4.1 Introduction

Permutation Pλ significant Pxy.z significant Pxz.y significant Pyz.x significant
X X involved in cospeciation X and Y cospeciate X and Z cospeciate -
Y Y involved in cospeciation X and Y cospeciate - Y and Z cospeciate
Z Z involved in cospeciation - X and Z cospeciate Y and Z cospeciate
XY Cospeciation occurs somewhere in the system
XZ
Y Z
XY Z

Table 4.1: Basic interpretation of the interaction between the possible permutations
of the tritrophic system and the p-values of the method of Mramba et al. (2013).

correlations with the patristic distances on Tree X are controlled for. Formally, the

partial correlations, robsyz.x, robsxz.y, and robsxy.z, are defined by

robsyz.x =
ryz − rxyrxz√(

1− r2
xy

)
(1− r2

xz)

robsxz.y =
rxz − rxyryz√(

1− r2
xy

) (
1− r2

yz

)
robsxy.z =

rxy − rxzryz√
(1− r2

xz)
(
1− r2

yz

) ,
where ryz is the Pearson’s correlation coefficient between the patristic distances on

Tree Y and the patristic distances on Tree Z. Similarly for rxz and rxy. To carry

out the test, first assess whether H0 can be rejected in favour of H1. Only if H1 is

rejected can the other alternatives be considered. The p-values for each test statistic,

denoted Pλ, Pxy.z ,Pxz.y and Pyz.x, are calculated using the same permutation method

as Hommola et al. (2009), where the tip labels of the trees are randomised. The

choice of which tree, or combination of trees, to randomise determines the alternative

hypothesis being tested. Randomising the tips of all three trees tests H0 against H1.

If this p-value is significant, then further permutations are performed to determine

where the cospeciation has occurred. If Tree X is randomised, the corresponding

p-values test whether Tree X is involved in cospeciation above any cospeciation

between Trees Y and Z. If the tips of two trees are randomised, then the resulting

p-values investigate their interaction with the third tree in the system. A simple

guide to interpreting the relationship between the different p-values and the different

permutation methods is given in Table 4.1.
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Z

X Y

Figure 4.2: An example tritrophic system with interactions between Trees X, Y and
Z forming two triangles. The red dashed lines between the tips of the trees represent
interactions. The red lines on the trees indicate the branches whose lengths would
be summed to produce the patristic distances on Trees X, Y and Z as a result of
comparing the two triangles of interactions.

4.2 Methods and Materials

The methods of Hommola et al. (2009) and Mramba et al. (2013) calculate the

patristic distance on each tree between each pair of interactions. In a bitrophic

system the calculation of patristic distances is trivial. However, in a tritrophic

system, there is no obvious analogue for patristic distances. Patristic distances on

the three trees can only be compared by finding pairs of interaction triangles in the

system, as displayed in Figure 4.2.

Another situation in which patristic distances are difficult to calculate is when

the system involves a phylogenetic network, as there may be more than one path

between two leaf nodes.

To overcome these problems we consider electrical networks as an analogy for

the network of phylogenetic trees. We utilise electrical circuit theory to develop a

method that can be generalised to test cospeciation hypotheses in both bitrophic

and tritrophic systems. We apply the forward problem in electrical networks to the

system of phylogenetic trees to obtain electrically equivalent distances between a

set of carefully placed nodes. Nodes are defined to be points where two or more

elements meet. In a circuit the elements are wires and in the case of a phylogenetic

tree, the elements are the branches and interactions.
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(a) (b)

Figure 4.3: Randomly generated systems consistent with the bitrophic hypotheses.
The dashed lines represent the interactions between the leaf nodes of the two phy-
logenetic trees. (a) System consistent with the null hypothesis. Both trees and the
interactions between them have been independently randomly generated. (b) System
consistent with the alternative hypothesis. The trees are identical and interactions
are placed at corresponding positions on the two trees.

4.2.1 Hypotheses

In the bitrophic case we consider two phylogenetic trees, X and Y , and the interac-
tions between their tips. We are interested in the following hypotheses:

H0: The phylogeny of Tree X and the phylogeny of Tree Y are unrelated, implying
no cospeciation between X and Y ;

H1: The phylogeny of Tree X and the phylogeny of Tree Y are related, implying
cospeciation between the trees.

Figure 4.3 displays systems generated under the extremes of the above hypothe-
sis. The system in Figure 4.3a is comprised of randomly generated trees with random
interactions consistent with the null hypothesis of no cospeciation. In contrast, the
system in Figure 4.3b consists of identical trees with corresponding interactions,
demonstrating the extreme of perfect cospeciation.

We do not simply want to know whether cospeciation exists somewhere within
a tritrophic system. Rather, we are interested in how the cospeciation is driven.
In the tritrophic case we consider three phylogenetic trees, X, Y and Z, and the
ecological interactions between each pair of trees. We are interested in the following
hypotheses:
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(a) (b)

Figure 4.4: Randomly generated systems consistent with the tritrophic hypotheses.
The dashed lines represent the interactions between the leaf nodes of the three
phylogenetic trees. (a) System consistent with the null hypothesis. All three trees
and the interactions between them have been independently randomly generated.
(b) System consistent with the alternative hypothesis. Two of the trees, X and Y ,
are identical with interactions placed at corresponding positions on the two trees.
The third tree, Z, is independently generated and has random interactions with the
other two trees.

H0: There is no more cospeciation between Trees X and Y than can be explained

by the cospeciation between Trees X and Z, and between Trees Y and Z,

suggesting that Tree Z is driving the cospeciation in the system;

H1: There is more cospeciation between Trees X and Y than is due to the cospeci-

ation between Trees X and Z, and Trees Y and Z.

Figure 4.4 displays systems generated under the extremes of the tritrophic hy-

potheses. The system in Figure 4.4a is comprised of three randomly generated trees

with random interactions between them. Clearly, there is no cospeciation between

Trees X and Y ; none of the trees appear to be cospeciating on a pairwise level.

Systems where Tree Z is driving the cospeciation between Trees X and Y would

also be consistent with the null hypothesis. The system in Figure 4.4b consists of

identical Trees X and Y with corresponding interactions. There is no cospeciation

between these trees and Tree Z, so Tree Z does not drive the cospeciation between

Trees X and Y .
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Figure 4.5: Schematic diagram of the forward problem in electrical networks. (a)
Example electrical circuit with nodes displayed as black circles that are connected
by wires. (b) Black box containing the circuit in (a) with four nodes exposed, the
wiring of the circuit inside the black box is unknown.

4.2.2 Correlation statistic calculated from resolved distances

Suppose we have an electrical circuit where the conductance and topology of the
connections is known, as displayed in Figure 4.5a. Suppose we take a subset of
nodes, nodes 1 to 4 in Figure 4.5a, and define these nodes to be external; all other
nodes are internal. If we impose a voltage on the external nodes, we can calculate
the resulting current at these nodes. We now suppose that the circuit, excluding
the external nodes, is inside a black box, as displayed in Figure 4.5b. We no longer
know how the internal nodes inside the box are connected, or the conductance
on the original connections; we only have the conductances on direct connections
between the external nodes. The forward problem assumes that we know how the
circuit is connected, and the conductance on each connection. The conductance
on the direct connections between the external nodes is then calculated using this
information. The inverse problem is to obtain the full circuit from the circuit in the
black box where only conductances on direct connections between the external nodes
are known. The conductances of each connection in the full circuit is calculated from
measurements of voltages and currents at the external nodes in the black box circuit
(Curtis et al., 2000).

We use the forward problem in electrical networks to calculate the conductance on
direct connections between each pair of interactions between Tree X and Tree Y . In
the tritrophic case these conductances will take into account how Tree X and Tree Y
are connected to Tree Z. These conductances can then be used to calculate distances.
In the bitrophic case, for each pair of interactions we will have a distance that
corresponds to Tree X, and a distance that corresponds to Tree Y . In the tritrophic
case these distances will take into account the connections between Trees X and
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Figure 4.6: External node placement in bitrophic and tritrophic systems. External
nodes are represented by black dots. Each node in the system has been numbered.
(a) External node placement in a bitrophic system. (b) External node placement
in a tritrophic system. The Trees X, Y and Z correspond to Trees X, Y and Z as
described in the tritrophic hypotheses.

Y with Tree Z. We calculate Spearman’s rank correlation coefficient between the
resulting vectors of Tree X and Tree Y distances. For a cospeciated system we
expect there to be a correlation between the distance on Tree X and the distance
on Tree Y associated with each pair of interactions.

To obtain direct connections between the interactions for Tree X and Tree Y ,
we need an external node at each end of every interaction. We introduce two ar-
tificial nodes on each interaction, dividing the interactions into three connections
as displayed in Figure 4.6a. We later show in Section 4.3 that the statistic does
not depend on the middle connection between the external nodes. The artificial
nodes are the external nodes and every other node in the system is internal. In
a tritrophic system the artificial external nodes are introduced on the interactions
between Trees X and Y , as shown in Figure 4.6b.

Our test statistic is derived by converting the phylogenetic distances on the
branches and interactions of the phylogenetic trees into conductances and calculating
a response matrix for the system. The conductance between two nodes i and j, which
are directly connected by a single branch, is calculated as

γi,j =
1

di,j
, (4.1)

where di,j is the phylogenetic distance between nodes i and j and γi,j = 0 if nodes i
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and j are not directly connected by a single branch. The interactions between the
phylogenetic trees do not typically have distances, therefore we assign each of the
three connections that make up an interaction a constant distance, ε. In our analysis
we chose ε such that the branches of the phylogenetic trees and the interactions are
weighted equally. However, it may be of interest to give the branches more or less
weight than the interactions. For example, the interactions may be given different
weights based on how strong the association is between the species in nature. The
interactions can also be weighted differently to represent how likely they are to exist.

Given an interacting system of phylogenetic trees consisting of m nodes in total,
the Kirchhoff matrix, K, is anm×m Laplacian matrix, assembled using the conduc-
tances between nodes connected by a single branch. The non diagonal elements of
K are given by the negative conductance between each pair of nodes. The diagonal
elements of K are calculated such that the rows and columns of the matrix sum to
zero. The (i, j)th element of K is thus given by

ki,j =

{
−γi,j if i 6= j∑

j 6=i γi,j if i = j.
(4.2)

The Kirchhoff matrix has the following interpretation. If u is defined to be a
vector of voltages applied to each node of the network, then φ = Ku is the resulting
vector of current flowing into the network at each node. If a voltage of one unit is
applied to node j and a voltage of zero is applied to every other node, then ki,j is
the current into the network at each node i. Thus column j of K gives the values
of the currents into the network at nodes i = 1, . . . ,m.

Rearranging the Kirchhoff matrix in terms of the internal and external nodes of
the system, where the external nodes are the nodes on the interactions and all of
the tree nodes are internal, partitions the matrix into four submatrices.

K =

( E I

E A B

I BT D

)
, (4.3)

where E and I correspond to the external and internal nodes respectively, and T

denotes transposition.
A response matrix, Λγ, is obtained by calculating the Schur complement in K of

the square submatrix corresponding to the internal nodes of the network, D:

Λγ = A−BD−1BT .
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This response matrix is simply a Kirchhoff matrix calculated for an electrically

equivalent system without internal nodes, and only direct connections between the

external nodes. The system is electrically equivalent because if the same voltages

are applied to the external nodes in both systems, then the same current will be

induced as a result.

The response matrix contains the negative conductance on each pairwise con-

nection between the external nodes. The distances between the external nodes in

the collapsed system are obtained by reversing Equations (4.1) and (4.2). We define

D∗ to be the resulting distance matrix, with (i, j)th element given by

d∗i,j =

{
− 1

(Λγ)i,j
if i 6= j

0 if i = j,

where (Λγ)i,j is the (i, j)th element of Λγ.

The distance matrix can be partitioned in terms of the external nodes corre-

sponding to Tree X; EX , and the external nodes corresponding to Tree Y ; EY , as

follows:

D∗ =

( EX EY

EX DX DXY

EY DT
XY DY

)
, (4.4)

where DX and DY are submatrices containing the distances between each pair of

external nodes corresponding to TreeX and Tree Y respectively. DXY is a submatrix

containing the distances between Tree X and Tree Y . In the tritrophic case, these

distances will also take into account the connection with Tree Z. Figure 4.7 displays

the connections corresponding to the distances contained in D∗ for the systems in

Figure 4.6.

Our statistic is obtained by calculating Spearman’s correlation coefficient, robs,

between the upper triangle of DX and DY . We use a rank correlation because

the response matrix calculations produce large distances when there are extreme

interactions between the trees.

4.2.3 Permutations

To determine whether our value of robs is statistically significant we propose a per-

mutation scheme that simulates under our null hypotheses.

92



4.2 Methods and Materials

DX DYDXY

4

3

2

1

8

7

6

5

Figure 4.7: Connections contained in D∗ for the systems displayed in Figure 4.6.
The external nodes are represented by black dots and numbered consistently with
Figure 4.6. The internal nodes have been integrated out by the response matrix
calculations.

Bitrophic Randomisation Scheme

In a bitrophic system the connections between the external nodes are sampled with
equal probability. Consider the simple example system in Figure 4.8. The system
in Figure 4.8b displays one example of a possible randomisation of the connections
in Figure 4.8a. Permutations of the connection between the external nodes that
result in overlapping interactions, such as those displayed in red in Figure 4.8b, are
rejected. This is equivalent to simply randomising the existing connections between
the external nodes. Randomising in this way preserves the many to one nature of the
interactions, however not all of the interactions between the two trees are possible
due to the placement of the external nodes on the interactions. For example, in
Figure 4.8a, node 9 will always have 2 interactions and node 18 will have none.
That is, nodes on the trees without interactions are essentially removed.

Tritrophic Randomisation Scheme

To determine whether our observed statistic is statistically significant, we propose a
randomisation scheme that simulates interactions consistent with the null hypothe-
sis. To do this we use a weighted randomisation scheme that samples the connections
between the external nodes that connect Trees X and Y .

The response matrix for the system of phylogenetic trees is simply a Kirchhoff
matrix calculated only for the external nodes of the electrically equivalent system
with the internal nodes integrated out. Therefore the response matrix infers a con-
nection between each pair of external nodes with different conductivities based on the
original connections between the trees. These conductivities are obtained from the
same partitions of the response matrix as the connections in DXY in Equation (4.4).
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Figure 4.8: A simple example system illustrating a possible permutation arrange-
ment in a bitrophic system. (a) Observed system. (b) The system in (a) where
the connections between the external nodes have been randomised to produce new
interactions. The red connections display where overlapping interactions have been
produced between nodes 9 and 16.

The conductances (analogous to evolutionary similarity) on these connections are
used as weights to sample the connections between the external nodes that connect
Trees X and Y . Connections consistent with H0 have a greater probability of being
sampled. To obtain these weights we recalculate the response matrix for the system
with the direct connections between the external nodes removed, as displayed in
Figure 4.9. To do this, these connections are simply not entered into the submatrix
A in the Kirchhoff matrix in Equation (4.3). The external nodes are still indirectly
connected via Tree Z, representing the joint cospeciation of Trees X and Y with
Tree Z. To randomise the tritrophic system consistent with the null hypothesis, we
sample the connections between the external nodes with probability proportional to
their conductance in the recalculated response matrix.

There are two practical considerations that must be taken into account when
sampling the connections. Firstly, the connections must be sampled such that many
to one interactions between two external nodes are avoided, as this would correspond
to a system where there are interactions between the interactions. Secondly, per-
mutations involving overlapping interactions are rejected, as in the bitrophic case.
Any randomisations that do not satisfy these criteria are rejected.

Calculating p-values

Similarly to the methods of Legendre et al. (2002), Hommola et al. (2009) and
Mramba et al. (2013), we propose a permutation test to determine whether the value
of robs is statistically significant. A p-value, p, is obtained for robs by simulating N
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Figure 4.9: The simple example tritrophic system from Figure 4.6b with the con-
nections between the external nodes removed.

systems under H0 as described in the previous section, then calculating

p =
1

N

N∑
i=1

I(ri > robs),

where ri is the test statistic calculated for the ith randomisation and I(ri > robs)

is an indicator function taking the value 1 if ri is greater robs and 0 otherwise. If
ri = robs, the indicator function takes the value 1 with probability 0.5. If p ≤ α we
reject H0 at the 100α% significance level.

4.3 Response Matrix Calculations

It can be easily shown that our method is equivalent to calculating two separate
response matrices, one for each side of the system (see Appendix E.3). We show
here that our statistic does not depend on the direct connections between external
nodes.

Recall Equation (4.3) where the Kirchhoff matrix, K, is partitioned in terms of
the external and internal nodes of the system to produce the following submatrices

K =

( E I

E A B

I BT D

)
,

The internal nodes, I, can be partitioned in terms of leaf nodes, L, and ancestral
nodes, C, as displayed in Figure 4.10. Each of these can then be partitioned further
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in terms of Trees X and Y. This results in the following partitions: EX , EY , LX , LY ,

CX and CY . Each of the submatrices in Equation (4.3) can therefore be partitioned

further into submatrices, as follows.

The submatrix B in Equation (4.3) is partitioned into eight submatrices:

B =

( LX LY CX CY

EX − IX
ε

0 0 0

EY 0 − IY
ε

0 0

)
, (4.5)

where IX and IY are binary matrices containing the connections between between

the external nodes and the leaf nodes on each tree respectively. Each connection

has conductance 1
ε
.

The submatrix A in Equation (4.3) is partitioned into four submatrices:

A =

( EX EY

EX ∆EX − I
δ

EY − I
δ

∆EY

)
,

where I is the identity matrix because each node of EX is connected to exactly

one node on EY . This connection has conductance 1
δ
, where δ is the distance on

LX LYCX CYEX EY

X Y

Figure 4.10: An example of how the simple bitrophic system in Figure 4.1 is parti-
tioned in terms of the external nodes on each tree, EX and EY , leaf nodes, LX and
LY , and ancestral nodes, CX and CY .
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the direct connections between the external nodes. The remaining entries, ∆EX

and ∆EY , are diagonal matrices that represent the unknown conductances on the
diagonal of K.

The matrices on the diagonal of A are obtained by recalling that the rows and
columns of a Kirchhoff matrix are set up to sum to zero. Therefore we have the
following constraints using the submatrices in B:

∆EX1−
I

δ
1− IX

ε
1 = 0,

−I
δ
1 + ∆EY 1−

IY
ε
1 = 0, (4.6)

where 0 and 1 represent column vectors of zero’s and one’s respectively. Each
external node is connected to only one leaf node. Therefore each row of IX and IY
will contain exactly one 1 and thus IX1 = 1 and IY 1 = 1. It is also clear that
I1 = 1. Therefore Equation (4.6) can be simplified and rearranged to give

∆EX1 = ∆EY 1 =

(
1

δ
+

1

ε

)
1.

From this we can fill in the diagonal elements of A as follows

A =

( EX EY

EX (1
δ

+ 1
ε
)I − I

δ

EY − I
δ

(1
δ

+ 1
ε
)I

)
. (4.7)

The final submatrix, D, is partitioned into sixteen submatrices:

D =



LX LY CX CY

LX ∆LX 0 −ΓX 0

LY 0 ∆LY 0 −ΓY

CX −ΓTX 0 ΓCX 0

CY 0 −ΓTY 0 ΓCY

, (4.8)

where ΓX and ΓY contain the conductances on the connections between the leaf
nodes and the internal nodes on each tree. ∆LX and ∆LY are diagonal matrices
that represent the unknown conductances on the diagonal of K. ΓCX and ΓCY

are symmetric matrices containing the negative conductances between the internal
nodes on each tree. The conductances on the diagonal are unknown.
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The matrices on the diagonal of D are obtained by noting that the rows and
columns of a Kirchhoff matrix are set up to sum to zero. Therefore we have the
following constraints using the submatrices in BT :

−I
T
X

ε
1 + ∆LX1− ΓX1 = 0,

−I
T
Y

ε
1 + ∆LY 1− ΓY 1 = 0,

−ΓTX1 + ΓCX1 = 0,

−ΓTY 1 + ΓCY 1 = 0.

Rearranging each constraint in terms of the matrices with unknown diagonal
elements gives

∆LX1 =
ITX
ε
1 + ΓX1, (4.9)

∆LY 1 =
ITY
ε
1 + ΓY 1, (4.10)

ΓCX1 = ΓTX1, (4.11)

ΓCY 1 = ΓTY 1. (4.12)

Equations (4.9) and (4.10) calculate the values on the diagonal of the diagonal ma-
trices ∆LX and ∆LY . The columns of IX contain a 1 for every interaction connected
to each leaf node on Tree X. Therefore, I

T
X

ε
1 calculates the sum of the conductances

on the interactions for each leaf node on Tree X. The rows of ΓX correspond to the
leaf nodes of Tree X. Each leaf node is connected to one ancestral node, and thus
each row contains exactly one conductance, and the row sums will be the values of
this conductance. Therefore, each diagonal element of ΓLX corresponds to a leaf
node on Tree X, and is the sum of the conductances of branches and interactions
connected to that leaf node. Similarly for ΓLY and Tree Y .

Equations (4.11) and (4.12) are symmetric matrices containing the conductances
between the ancestral nodes on Trees X and Y , respectively. To understand the di-
agonal component of these matrices, consider the entries of ΓX . The columns of
this matrix correspond to the ancestral nodes. Each ancestral node is connected to
two leaf nodes. The column sums of ΓX add up the conductance of the leaf node
connections of each ancestral node. Therefore, each diagonal element of ΓCX corre-
sponds to an ancestral node, and is the sum of the conductances on the connections
with the ancestral node. Similarly for Tree Y .
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Recall that the response matrix is calculated using the following equation

Λγ = A−BD−1BT .

We can work through these calculations using the partitioned matrices in Equa-
tions (4.5), (4.7) and (4.8) to obtain the partitioned response matrix in Equa-
tion (4.13). For details of these calculations see Appendix E.

Λγ =

( EX EY

EX
(

1
δ

+ 1
ε

)
I − 1

ε2

(
IXD

11
∗ I

T
X

)
− I
δ

EY − I
δ

(
1
δ

+ 1
ε

)
I − 1

ε2

(
IYD

22
∗ I

T
Y

)
)
, (4.13)

where D11
∗ and D22

∗ are elements of the matrix inverse of D (see Appendix E.1),
given by

D11
∗ =

1

∆LX

+
1

∆LX

ΓX(ΓCX − ΓTX
1

∆LX

ΓX)−1(ΓTX
1

∆LX

),

D22
∗ =

1

∆LY

+
1

∆LY

ΓY (ΓCY − ΓTY
1

∆LY

ΓY )−1ΓTY
1

∆LY

.

Our statistic is derived from the upper triangle of the highlighted matrices in
Equation (4.13). Therefore our statistic only depends on the following matrices

− 1

ε2
IXD

11
∗ I

T
X ,

− 1

ε2
IYD

22
∗ I

T
Y .

These matrices do not depend on δ, the distance on the direct connections between
the external nodes, and therefore it follows that our statistic does not depend on
the direct connections between EX and EY . In fact, we have also shown that our
method is equivalent to calculating the response matrices separately for each tree
(see Appendix E.3).

4.4 Results

The performance of our method, at the bitrophic and tritrophic level, is analysed by
investigating Type I error and assessing statistical power (see below). We compared
the performance of our method to those proposed by Hommola et al. (2009) and
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Mramba et al. (2013) at the relevant trophic level. In every simulation we set ε = 0.5,
the average branch length of the simulated trees.

4.4.1 Type I Error

Type I error arises as a result of incorrectly rejecting the null hypothesis when it is
true. The probability of this is called the significance level, α, of the test. Type I
error is estimated by simulating data under the null hypothesis. The rate of rejection
of the null hypothesis for data simulated under it should be equal to α. We expect
the p-values of data generated under H0 to be uniformly distributed if the statistic is
reliable. Therefore we expect a plot of the empirical cumulative distribution function
(CDF) to be a straight diagonal line.

For both the bitrophic and tritrophic hypothesis, this corresponds to indepen-
dently generating random phylogenetic trees with randomly assigned interactions
(see Section 4.2.1 for the bitrophic hypothesis). The trees were generated using the
rtree function of the R (R Core Team, 2013) package ape (Paradis et al., 2004).
In the bitrophic case we used the same parameter combinations as Hommola et al.
(2009) and Legendre et al. (2002):

• 10 tips on Tree X, 10 tips on Tree Y and 10, 15, 20, and 25 interactions;

• 10 tips on Tree X, 15 tips on Tree Y and 10, 15, 20, and 25 interactions.

For each parameter combination, 1000 systems were generated. We calculated
p-values with N = 10000 randomisations for each system using our method and the
correlation method proposed by Hommola et al. (2009). The results for the first
parameter combination, with 10 and 15 interactions, are displayed in Figure 4.11.
The remaining plots for the first parameter combination, and the plots for the second
parameter combination are in Appendix F.1.

For the tritrophic case we used the same parameter combinations as Mramba
et al. (2013), with and without triangular interaction constraints:

• 10 tips on Tree X, 10 tips on Tree Y , 10 tips on Tree Z and 10, 15, 20, and
25 interactions between each pair of trees;

• 10 tips on Tree X, 10 tips on Tree Y , 15 tips on Tree Z and 10, 15, 20, and
25 interactions between each pair of trees.
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For each parameter combination, 1000 systems were generated. We calculated

p-values with N = 1000 randomisations for each system using our method and

the method of Mramba et al. (2013). The results of our method, for the first pa-

rameter combination, with triangular interactions, are displayed in Figure 4.12, the

(a) (b)

(c) (d)

Figure 4.11: Empirical cumulative distribution functions for our p-values and Hom-
mola et al.’s (2009). Each plot corresponds to simulations with 10 tips on each tree.
The first column corresponds to 10 interactions simulated and the second column
corresponds to 15 interactions simulated. The top row contains the p-values for our
method, and the bottom row contains the p-values for the method of Hommola et al.
(2009). The diagonal grey line is the identity line.
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(a) (b)

(c) (d)

Figure 4.12: Empirical cumulative distribution functions for our tritrophic p-values.
Each plot corresponds to simulations with 10 tips on each tree. Each plot represents
a different number of interactions simulated. From top left to bottom right, 10, 15,
20 and 25 interactions. The diagonal grey line is the identity line.

results for the second parameter combination, with triangular interactions, are in

Appendix F.1.

The empirical CDF for our p-values lies close to the desired diagonal line for all

parameter combinations in the bitrophic and tritrophic cases. The same is true of

the methods of Hommola et al. (2009) and Mramba et al. (2013). However, when

applied to datasets where there are no constraints on the interactions, Mramba

102



4.4 Results

et al.’s (2013) p-values are biased for systems where there are fewer interactions.
This is because any interactions that do not form triangles are discarded. For the
parameter combinations with 10 interactions, 95% and 97% of the simulated systems
could not be used to calculate p-values as their interactions did not form enough
triangles, as required by that method. In the case of the parameter combinations
with 15 interactions; 43% and 65% of the systems could not be used.

4.4.2 Power Simulations - Bitrophic

Statistical power is the probability that the null hypothesis is correctly rejected
when it is false. Statistical power has been assessed for our method as well as the
correlation statistic proposed by Hommola et al. (2009) for the bitrophic case. We
followed the simulation approaches adapted by Hommola et al. (2009) and Legendre
et al. (2002) to generate data consistent with H1. Noise is gradually added using
the following three methods, and the proportion of correct rejections of the null
hypothesis calculated in each case. In every simulation approach 1000 systems were
generated. We calculated p-values with N = 10000 randomisations for each system.

Simulation Method 1: Replacing Interactions

For each simulation, Tree X and Tree Y were assigned the same randomly generated
phylogenetic tree with interactions initially assigned at corresponding positions on
the tree. The interactions connect each leaf node on Tree X with the same leaf node
on the identical Tree Y , such that they exhibit perfect cospeciation. A percentage,
ranging from 10% to 50%, of these interactions are then replaced with random non-
corresponding interactions. We used the following parameter combinations:

• 10 tips on Tree X, 10 tips on Tree Y , 10 corresponding interactions, replacing
1, 2, 3, 4, and 5 random interactions

• 20 tips on Tree X, 20 tips on Tree Y , 20 corresponding interactions, replacing
2, 4, 6, 8, and 10 random interactions

Simulation Method 2: Adding Interactions

As for Simulation Method 1, TreeX and Tree Y were assigned the same phylogenetic
tree and interactions assigned at corresponding positions on the tree. A number of
random interactions were then added. This simulation approach was performed for
the same parameter combinations as for Simulation Method 1.
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Simulation Method 3: Randomise Clade Branch Lengths

We now consider the branch lengths of the phylogenies as well as the interactions.
A random base tree was generated and the branch lengths randomised to produce
Tree X and Tree Y . In each simulation a different number of clades on each tree are
randomised. The clades were selected based on their distance from the root node;
the clades furthest from the root node were randomised first. The branch lengths
in each of the selected clades were randomised by replacing the existing branch
lengths with new lengths sampled from the standard uniform distribution. This is
the distribution used by ape to create the original branch lengths of the trees.

• 10 tips on Tree X, 10 tips on Tree Y , and branch lengths randomised in 1, 2,
3, 4, and 5 clades.

• 20 tips on Tree X, 20 tips on Tree Y , and branch lengths randomised in 2, 3,
4, 5 and 6 clades.

For each simulation approach, we calculated the rejection rate of the null hypoth-
esis at the α = 0.05 and α = 0.01 significance levels. The rejection rate is calculated
as the proportion of times that we reject the null hypothesis. Selected rejection
rate plots are displayed in Figure 4.13. Rejection rate plots for Simulation Method
3 are in Appendix F.2. The rejection rates increase as the systems become more
cospeciated. For each of the simulation approaches the rejection rates are higher
for systems with 20 tips compared to systems with 10 tip trees. It is also clear that
the rejection rates are higher for Simulation Method 2 than the other simulation
approaches. For each simulation method, our rejection rate is higher than Hommola
et al.’s (2009) in the 20 tip case, see Figures 4.13c and 4.13d. In the 10 tip case, our
rejection rates are equivalent to Hommola et al.’s (2009). We obtain similar results
at the α = 0.01 significance level (see Appendix F.2).

At the bitrophic level our method has the ability to perform at least as well as
Hommola et al.’s (2009) method, and in most cases performs better. We have shown
that our method has greater power to detect cospeciation in systems where noise
has been introduced.

4.4.3 Power Simulations - Tritrophic

Statistical power has been assessed for our method at the tritrophic level and we
have also compared our method to the permutation test proposed by Mramba et al.
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(a) (b)

(c) (d)

Figure 4.13: Rejection rates for the p-values generated using our method and the
method of Hommola et al. (2009) at the α = 0.05 significance level, under different
simulation approaches. Black dots are the rates obtained using our method and
triangles are the rates calculated for Hommola et al.’s (2009) p-values. The points
are offset on the horizontal axis to prevent overlapping. Each column corresponds
to a different simulation approach. The first column corresponds to Simulation
Method 1 and the second column corresponds to Simulation Method 2. The top
row contains the 10 tip simulations for each approach. The bottom row contains
the 20 tip simulations for each approach.

(2013). We followed the simulation approaches adapted by Mramba et al. (2013),

and repeated these without forcing the interactions to form triangles between the
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three trees. In every simulation approach 100 systems were generated. We calculated
p-values with N = 10000 randomisations for each system.

Simulation Method 1: Replacing Interactions

Trees X and Y were assigned the same randomly generated phylogenetic tree.
To avoid computational issues with Mramba et al.’s (2013) method independent
N(0, 0.012) noise was added to the branch lengths, as described in Mramba et al.
(2013). Interactions were initially assigned at corresponding positions between the
trees, such that Tree X and Tree Y exhibit perfect cospeciation. Tree Z is unre-
lated to Trees X and Y , and is therefore independently generated with randomly
assigned interactions between itself and Trees X and Y . The interactions between
each pair of trees are then replaced with random interactions. We used the following
parameter combinations:

• 10 tips on Trees X, Y and Z, 10 interactions between each pair of trees, and
1, 2, . . . , 10 interactions replaced between each pair of trees.

• 20 tips on Trees X, Y and Z, 20 interactions between each pair of trees, and
2, 4, . . . , 20 interactions replaced between each pair of trees.

Simulation Method 2: Adding Interactions

Again, Trees X and Y have the same phylogenetic tree with interactions assigned
at corresponding positions. Tree Z is independently generated with random in-
teractions between itself and Trees X and Y . In this approach, interactions were
randomly added between each pair of trees. The same parameter combinations were
used as in the previous simulation approach.

Our method can only be compared to Mramba et al.’s (2013) when the interac-
tions between the three trees are forced to form triangles, as displayed in Figure 4.2.
The above simulation approaches are performed with and without triangular inter-
action constraints. Selected plots of the rejection rates are displayed in Figures 4.14
and 4.15.

By construction, Tree Z is not involved in the cospeciation between Trees X
and Y , thus permuting Tree Z reveals no effect of cospeciation. This can be seen
in Figure 4.14b, as expected, the rejections rates for Mramba et al.’s (2013) method
are all very low. We can interpret Mramba et al.’s (2013) p-values, defined in
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Section 4.1.2, using Table 4.1. A significant value of Pxy.z when Trees X and Y are
involved in the randomisation indicates that there is cospeciation between Trees X
and Y . This can clearly be seen in Figures 4.14a, 4.14c, 4.14d where the statistic
corresponding to Pxy.z is the most powerful. The statistics corresponding to Pxz.y
and Pyz.x are less powerful because Trees X and Y are not cospeciating with Tree Z,
and randomising Tree X tells us nothing about the cospeciation between Trees Y
and Z. Our statistic has slightly less power than Pxy.z under some randomisations.

The method of Mramba et al. (2013) requires the permutation of every combina-
tion of trees, and four different p-values to make conclusions about cospeciation in
a tritrophic system. A simple interpretation guide for the relationship between the
possible permutations and the p-values is given in Table 4.1. Figure 4.14 displays
the rejection rates for our p-values and Mramba et al.’s (2013) four different p-values
for the simulation approach where we replace triangles of interactions with random
triangles of interactions (see Appendix F.2 for results for the simulation approach
where we add random triangles of interactions). The rejection rates are calculated
at the α = 0.05 significance level. Each plot corresponds to a different randomisa-
tion in Mramba et al.’s (2013) method. The power curve for our method is repeated
in each plot. Figures 4.14a, 4.14b, 4.14c and 4.14d correspond to the cases where
only Tree X is randomised, only Tree Z is randomised, both Trees X and Y are
randomised, and all three trees are randomised, respectively.
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(a) Only X randomised (b) Only Z randomised

(c) X and Y randomised (d) X, Y and Z randomised

Figure 4.14: Rejection rates for p-values generated using our method and the method
of Mramba et al. (2013) at the α = 0.05 significance level, under the simulation
approach where triangular interactions are replaced between three 10 tip trees. The
interactions between the three trees are forced to form triangles. The horizontal axis
corresponds to the number of interactions replaced between each pair of trees. Black
dots are the rates obtained using our method, labelled “Circuit”, and the other lines
correspond to the rates calculated for the different p-values obtained under Mramba
et al.’s (2013) method; Pλ, Pxy.z, Pxz.y and Pyz.x.
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(a) (b)

(c) (d)

Figure 4.15: Rejection rates for p-values generated using our method and the method
of Mramba et al. (2013) at the α = 0.05 significance level, under different simulation
approaches. Each column corresponds to a different simulation approach; replacing
and adding interactions between the three trees, respectively. The horizontal axis
corresponds to the number of interactions replaced or added between each pair of
trees. In each simulation the interactions are not forced to form triangles. The
rows correspond to the tree sizes. The first row contains the 10 tip simulations for
each approach. The second row contains the 20 tip simulations for each approach.
Each plot corresponds to the case where only Tree X is randomised for Mramba
et al.’s (2013) method. Black dots are the rates obtained using our method, labelled
“Circuit”, and the other lines correspond to the rates calculated for the different
p-values obtained under Mramba et al.’s (2013) method; Pλ, Pxy.z, Pxz.y and Pyz.x.
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However, in natural systems there is no restriction that the interactions form
triangles between the three phylogenetic trees. Figure 4.15 displays the rejection
rates, calculated at the α = 0.05 significance level, for our method and Mramba
et al.’s (2013) for simulations with interactions that are not constrained to form
triangles. The first column of plots corresponds to simulation method 1 and the
second column to simulation method 2. The rows correspond to the size of the
trees; the first row is simulations involving 10 tip trees and the second row is 20 tip
trees. We show only one of Mramba et al.’s (2013) randomisations, the case where
only Tree X is randomised; other plots display very similar results. Clearly our
statistic is more powerful than the method of Mramba et al. (2013). Similar results
were obtained at the α = 0.01 significance level (see Appendix F.2).

To calculate their p-values, the method of Mramba et al. (2013) must discard any
interactions that do not form triangles. On average at least 60% of the interactions
were discarded in every simulation approach; in most of these simulations over 80% of
the interactions were discarded on average. Mramba et al.’s (2013) p-values cannot
be calculated unless there are at least three triangles. Any p-values that cannot
be calculated are not included in the calculation of the rejection rate. Therefore
many of the rejection rates calculated for the method of Mramba et al. (2013) are
calculated based on only a fraction of the systems simulated. If none of the p-values
can be calculated then the rejection rate is zero.

4.4.4 Application to Real Data

We applied our method to a tritrophic dataset consisting of hostplants (H), leaf-
mining moths (P) and parasitoid wasps (W) (Lopez-Vaamonde et al., 2005). We set
the value of ε on the interactions to be the average of all the branch distances on the
tree they are connected to. The value of ε on the interactions between Trees M and
W and Trees H and W is given by the average branch distance over the two trees
they are connected to. We used the reconstructed phylogenetic trees calculated by
Mramba et al. (2013). The three phylogenies and their interactions are displayed
in Figure 4.16. The interactions do not all form the triangles that are necessary for
Mramba et al.’s (2013) method; in fact 12 interactions had to be discarded.

The p-values for Mramba et al.’s (2013) method are given in Table 4.2, significant
p-values are displayed in bold font. The rows represent the permutations, and the
columns represent the different p-values of Mramba et al.’s (2013) method. Lopez-
Vaamonde et al. (2005) found no evidence that the hostplant, leaf-mining moth
or parasitoid wasp exhibit cospeciation at a pairwise level. By contrast, Mramba
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Figure 4.16: Tritrophic system consisting of hostplants (H), leaf-mining moths (M)
and parasitoid wasps (W) (Lopez-Vaamonde et al., 2005). The phylogenetic trees
were reconstructed by Mramba et al. (2013). Branch lengths have not been used to
plot the trees. Plots of the phylogenetic trees using the branch lengths are given in
Appendix F.3. The dashed lines display the interactions between the leaf nodes of
the three trees.

et al. (2013) found mixed evidence for cospeciation but conclude that the parasitoid

wasp has been central in the cospeciation of the tritrophic system. Our results

coincide with those of Mramba et al. (2013). We obtain a p-value of 0.441, with the

parasitoid wasp phylogeny taking the role of Tree Z in Section 4.2.1. This indicates

that there is insufficient evidence to reject the null hypothesis and therefore any

Permutation Pλ PMW.H PHW.M PHM.W

H 0.134 0.908 0.156 0.152
M 0.963 0.054 0.998 0.249
W 0.031 0.082 0.035 0.982
HM 0.957 0.028 0.213 0.132
HW 0.127 0.248 0.010 0.238
MW 0.957 0.062 0.067 0.265
HMW 0.954 0.048 0.012 0.139

Table 4.2: The p-values obtained using the method of Mramba et al. (2013) applied
to the hostplants (H), leaf-mining moths (M) and parasitoid wasps (W) dataset
(Lopez-Vaamonde et al., 2005). Significant p-values are highlighted in bold. The
rows indicate which phylogenetic trees have been permuted. The columns corre-
spond to the different p-values obtained using the method of Mramba et al. (2013).
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cospeciation between the moth and hostplant is due to the parasitoid wasp driving
the cospeciation in the tritrophic system.

4.5 Discussion

We have introduced a method that efficiently tests cospeciation hypotheses in tritrophic
systems. We use one sophisticated permutation scheme based on weighted interac-
tions to test our hypothesis. This is an improvement on the multiple permutation
scheme required by the method proposed by Mramba et al. (2013). Unlike Mramba
et al.’s (2013) method, which requires the interactions to form sets of triangles, we
do not require specific interaction patterns to be formed between the three phy-
logenies to calculate our statistic or to perform the randomisations. As a result
no information is discarded with our method, and we obtain unbiased p-values.
Discarding interactions results in biased p-values for the method of Mramba et al.
(2013). Statistical power for each method was evaluated by simulating data under
the alternative hypothesis. Our method out performed Mramba et al.’s (2013) in all
cases where the interactions were not constrained, even when noise was introduced
to the data.

We successfully applied our method to a tritrophic dataset of hostplants, leaf-
mining moths and parasitoid wasps. Our conclusions support those of Mramba et al.
(2013).

We have also demonstrated that our method is effective at the bitrophic level.
We observe unbiased p-values when assessing type I error. We have shown, using
power calculations, that our method performs at least as well as Hommola et al.’s
(2009), and in most cases better.

Due to the calculation of the direct distances between the external nodes, our
method is not restricted to phylogenetic trees; it can still be applied when the system
involves phylogenetic networks. It is also easily generalised to higher order systems.

Existing methods use a binary system to determine whether or not an association
exists between two species. By setting distances, ε, on the interactions, our method
allows the interactions to be weighted according to the user’s criteria. For exam-
ple, there may a degree of uncertainty surrounding the likelihood of an association
existing.

In Section 4.4 we simulate systems to test the performance of our method. The
trees and interactions in each system are simulated separately, and do not take into
account how the system has evolved. There are many limitations to this approach.
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Simulating the systems in this way does not take into account how the systems
might have evolved. To simulate a cospeciating bitrophic system two identical trees
are generated and interactions placed at corresponding positions between the two
trees. Random bitrophic systems are simulated by generating two random trees
and randomly assigning the interactions. This is not a flexible approach because
the number of external nodes must be selected, and the number of interactions. In
addition, it is difficult to simulate systems between these extremes. We can only
partially achieve this by altering the branch lengths and randomising the clades
and interactions on a tree. These disadvantages are even more pronounced at the
tritrophic level, where the range of systems is more complex. In Chapter 5 we
introduce a method to simulate these systems under different evolutionary scenarios
over time.

Our method has been implemented using R (R Core Team, 2013) and the source
code is available from: http://www.maths.leeds.ac.uk/~stuart/research
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Chapter 5

Simulating the Evolution of

Ecologically Associated Species

5.1 Introduction

There are limitations to the approaches used in Chapter 4 to simulate bitrophic and
tritrophic datasets. These approaches generate random trees using the rtree func-
tion of the R (R Core Team, 2013) package ape (Paradis et al., 2004), and separately
generate the interactions between the trees. To simulate a cospeciating bitrophic
system two identical trees are generated and interactions placed at corresponding
positions between the two trees. Non-cospeciating bitrophic systems are simulated
by generating two random trees and randomly assigning the interactions. This is not
a flexible approach because the number of external nodes must be selected, as must
the number of interactions. In addition, it is difficult to simulate systems between
these extremes. We can only partially achieve this by altering the branch lengths
and randomising the clades and interactions on a tree. Simulating the systems in
this way does not take into account how the systems might have evolved. These
disadvantages are even more pronounced at the tritrophic level, where the range of
systems is more complex and subtle.

In this chapter we introduce a more realistic method to simulate bitrophic and
tritrophic systems under different evolutionary scenarios. The algorithm starts with
one species per lineage, that are assumed to have an ecological interaction. The joint
evolution of these species is simulated by sampling the times at which evolutionary
events occur from an exponential distribution. The main evolutionary events that
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we are interested in are speciation, and gaining or losing ecological interactions. The
occurrence of these events are controlled by a set of parameters. By experimenting
with different intensities and parameter combinations, a wide range of systems with
different cospeciation properties can be simulated. These systems vary from having
no association to complicated patterns of interactions between tritrophic systems.
We are particularly interested in tritrophic systems where one phylogenetic tree is
driving the cospeciation in the system, consistent with the tritrophic null hypothesis
in Chapter 4. We initially focus on simulating interacting bitrophic systems, before
extending the method to the tritrophic case. However, there is also scope to gener-
alise to higher order systems. We produce example bitrophic and tritrophic systems
to display the range of systems our algorithm is able to produce. The performance
of our method is evaluated by testing that the systems produced exhibit the desired
level of cospeciation.

5.1.1 Existing Methodology

In Chapter 4 bitrophic and tritrophic systems were simulated using the rtree func-
tion in ape (Paradis et al., 2004). rtree generates random phylogenetic trees by
randomly splitting the edges. The branch lengths are sampled from the standard
uniform distribution. This method is able to simulate individual trees independently,
however it is unable to simulate an interacting system containing more than one tree.
It also does not take into account how the tree might have evolved. There are many
programs available to simulate individual phylogenetic trees; Geiger, TreeSample,
TESS, PhyloGen, TreeSim (Harmon et al., 2007; Hartmann et al., 2010; Höhna,
2013; Rambaut, 2002; Stadler, 2010). All of these methods simulate under the
episodic birth-death process (EBDP). In these processes, the births correspond to
speciation events and the deaths corresponds to the rate of losing an existing lineage.
These rates can shift, and the models include mass extinction events. Stadler (2011)
gives an overview of these methods, and the EBDP. There are currently no methods
available that we are aware of to simulate interacting systems of phylogenies.

5.2 Methods and Materials

Starting with a single species per phylogenetic tree, we detail an algorithmic ap-
proach to simulate the joint evolution of these associated species through time. A
set of parameters control a range of evolutionary events, chosen to reflect different
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coevolution scenarios. The time an event occurs is sampled from an exponential
distribution, and these times are used to construct branch lengths.

5.2.1 Bitrophic Case

The simplest case is a bitrophic system consisting of two phylogenetic trees, X and
Y . At time t = 0, we assume that there is one species per lineage, x1 and y1, the
roots of the phylogenetic trees. These species are assumed to be interacting. We
consider three events that can occur over time to shape the evolution of the system;
bifurcation of a branch, and gaining or losing an interaction with a species on the
other tree. These events are described in more detail below, and displayed in Figure
5.1.

Bifurcation of a branch
There are three points to consider for this event:

• A single node on one tree may speciate resulting in two descendants
(Figure 5.1a).

• Alternatively, a pair of interacting nodes may speciate simultaneously,
representing cospeciation between the trees (Figure 5.1b). Each species
can only speciate once resulting in exactly two descendants, to form bi-
nary trees.

• When two species cospeciate, the interactions are inherited at correspond-
ing positions, as shown in Figure 5.1b. When one node speciates, any
interactions that node was involved in are inherited independently by the
descendants with probability qXY (the interaction is lost with probability
1 − qXY ). The possible interaction placement outcomes are displayed in
Figure 5.2.

Gain an interaction
An interaction may be gained between any two species on the two trees (Fig-
ure 5.1c). An interaction cannot be gained between two species where an
interaction already exists at that time.

Lose an interaction
An interaction may be lost between any two species that are interacting at
that time (Figure 5.1d).
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Figure 5.1: Evolutionary events included in the simulation model. (a) A node, xi,
on one tree speciates resulting in two descendants, xi+1 and xi+2. (b) Interacting
species xi and yj speciate simultaneously to produce two descendants on each tree,
indicative of cospeciation. Interactions are inherited at corresponding positions,
indicated by red dashed lines. (c) An interaction is gained between two species that
were not previously interacting, xi and yj. (d) An interaction is lost between two
interacting species, xi and yj.
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yjxi+1 xi+2

(c)

Figure 5.2: Possible interaction placement following a node, xi, on one tree spe-
ciating to produce descendants xi+1 and xi+2, as displayed in Figure 5.1a. Each
descendant of xi inherits the interaction with yj with probability qXY . (a) Nei-
ther of the descendants xi+1 or xi+2 inherit the interaction with yj. (b) One of
the descendants inherits the interaction. (c) Both of the descendants inherit the
interaction.

Each of the events is assigned an intensity of occurring in a small time interval
dt. These intensities are defined as follows.
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Bifurcation of a branch

• The intensities corresponding to a single node in Tree X or Y speciating
is given by αxi

m′ and
βyj
n′ , where xi and yj correspond to node i and j on

Trees X and Y respectively, and m′ and n′ are the number of nodes on
Trees X and Y that have not yet speciated. Dividing by m′ and n′ stops
one tree from accruing an increased chance of speciation simply by having
more nodes. Every node on each tree can be allowed to have different
speciation intensities if desired.

• We also have the intensity corresponding to a node in each tree speciating
simultaneously, indicating cospeciation between the two species. This is
given by (αβ)xi,yj , where xi and yj correspond to node i and j on Trees
X and Y respectively. Each pair of nodes can be set different intensities
of cospeciating. Two species can only cospeciate if there is an interac-
tion between them, since species that are not associated are unlikely to
cospeciate.

Gain an interaction
The intensity corresponding to an interaction being gained between a species
on one tree and a species on another is given by λxi,yj . As before, this allows
different pairs of nodes to have different intensities of gaining an interaction.

Lose an interaction
The intensity corresponding to an interaction being lost between a species on
one tree and a species on another is given by µxi,yj . Again, this allows different
pairs of nodes to have different intensities of losing an interaction.

The total rate, Λ, of an event occurring in a small time interval dt is calculated
by summing over all of the possible events:

Λ =

∑
i αxi
m′

+

∑
j βyj
n′

+

∑
i

∑
j(αβ)xi,yj

1T IXY 1
+ λxi,yj(mn− 1T IXY 1) + µxi,yj(1

T IXY 1),

(5.1)

where 1 is a column vector of ones, m and n are the total number of species on
Trees X and Y , m′ and n′ are the number of species on Trees X and Y that have
not speciated, and i and j sum over the nodes that could speciate in each case.
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The binary matrix (IXY )mxn contains the interactions between the species on Trees
X and Y . The rows correspond to species on Tree X and the columns correspond
to species on Tree Y . The (i, j)th element of IXY is equal to one if there is an
interaction between species i and j, and zero otherwise.

The length of time before an event occurs can be thought of in terms of survival
analysis. If the event is considered similarly to the event of death, then the proba-
bility of survival up to any given time t is equivalent to the probability of waiting
until time t before an event occurs in our system. This is represented by the survival
function:

S(t) = Pr(T > t) = e−Λt, (5.2)

where T is a random variable denoting the time of death, or in this case the time
an event occurs, Λ is as defined in Equation (5.1) and t is some time.

The cumulative distribution function, or lifetime distribution function, for Equa-
tion (5.2) is given by

F (t) = Pr(T ≤ t) = 1− e−Λt.

The derivative of the lifetime distribution function gives the event density; the rate
of death, or in our case, the number of events per unit time. The event density is
therefore calculated as follows

f(t) =
d

dT
1− e−Λt = Λe−Λt.

Clearly, the event density follows an exponential distribution with rate parameter
Λ, T ∼ exp(Λ). To determine the time at which an event occurs we sample from
this distribution.

After the time of an event has been sampled, we determine which event occurs
and which nodes are involved as follows:

Bifurcation of a branch
The bifurcation events are sampled with probabilities∑

i αxi
Λm′

,

∑
j βyj

Λn′
,

∑
i

∑
j(αβ)xi,yj

Λ1T IXY 1
. (5.3)

Gain an interaction
The gaining interaction events are sampled with probabilities
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λxi,yj(mn− 1IXY 1)

Λ
. (5.4)

Lose an interaction
The losing interaction events are sampled with probabilities

µxi,yj(1
T IXY 1)

Λ
. (5.5)

The input parameters in the simulation model are summarised in Table 5.1.

Parameter Description
αxi , βyj Single node speciates
qxiyj Interaction inherited

(αβ)xiyj Two nodes cospeciate
λxiyj Interaction gained
µxiyj Interaction lost

Table 5.1: Summary of the input parameters for the bitrophic simulation model.

Simulation:

1. Set parameters in Table 5.1.

2. Sample t ∼ exp(Λ) where Λ is defined in Equation (5.1).

3. Sample which event occurs with the probabilities given in Equations (5.3),
(5.4) and (5.5).

4. Sample which species are involved in the event with relevant probabilities.

5. Repeat from Step 1, adding the new sampled time t to the previous time,
until the desired number of external nodes have been reached (or some other
criteria).

5.2.2 Tritrophic Case

The tritrophic case is a simple extension of the bitrophic case. The main differences
are an additional phylogenetic tree, Tree Z, and the interaction matrices, IXZ and
IY Z containing the interactions between Tree X and Tree Z, and Tree Y and Tree
Z, respectively. These differences result in the following additional possibilities for

121



5. Simulating the Evolution of Ecologically Associated Species

each event.

Bifurcation of a branch

• A single node may speciate on any of the three trees. This results in
an additional intensity for Tree Z, γzk

o′
, where zk corresponds to node k

on Tree Z, and o′ is the number of nodes on Tree Z that have not yet
speciated. Any interactions that node zk is involved in with Trees X
and Y are inherited by the descendants with probability qXZ and qY Z

respectively.

• A pair of interacting nodes may speciate simultaneously between any
pairwise combination of the three trees. Additional intensities for Trees
X and Y cospeciating separately with Tree Z are given by (αγ)xizk and
(βγ)yjzk respectively. Any interactions that the two speciating trees have
with the third tree are inherited by the descendants with probability qXY ,
qXZ and qY Z respectively.

• A node on each of the three trees may speciate simultaneously if they
are all interacting, representing three-way cospeciation, as displayed in
Figure 5.3. The corresponding intensity is given by (αβγ)xiyjzk . Similarly
to the bitrophic case, interactions are inherited at corresponding positions
between each pair of trees.

xi yj zk
t

t+ 1

xi+2xi+1 yj+1 yj+2 zk+1 zk+2

Figure 5.3: Interaction placement at time t+ 1 when interacting nodes xi, yj and zk
speciate simultaneously. All descendants inherit the interactions at corresponding
positions between each pair of trees.

Gain an interaction
An interaction may be gained between any two species on any pair of the three
trees. Therefore, we have additional intensities for nodes on Trees X and Y
gaining an interaction with nodes on Tree Z, λxizk λyjzk respectively.
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Lose an interaction
An interaction may be lost between any two species on any pair of the three
trees. Therefore, we have additional intensities for nodes on Trees X and Y
losing an interaction with nodes on Tree Z, µxizk µyjzk respectively.

The input parameters for the tritrophic simulation algorithm are summarised in
Table 5.2.

Parameter Description
αxi , βyj , γzk Single node speciates

qxiyj , qxizk , qyjzk Interaction inherited
(αβ)xiyj , (αγ)xizk , (βγ)yjzk Two nodes cospeciate

(αβγ)xiyjzk Three-way cospeciation
λxiyj , λxizk , λyjzk Interaction gained
µxiyj , µxizk , µyjzk Interaction lost

Table 5.2: Summary of the input parameters for the tritrophic simulation model.

5.3 Bitrophic Results

In Section 5.3.1 we use our method to simulate example systems with varying degrees
of cospeciation and plot the resulting phylogenetic trees and interactions. On a larger
scale, we assess whether our simulation method has the ability to produce systems
with varying degrees of cospeciation by testing each system generated using our
method from Chapter 4. For simplicity all of the nodes in a tree are set the same
intensity for each parameter. For these simulations, the intensities of gaining and
losing interactions are calibrated to ensure the average number of interactions is set
at a desired level.

5.3.1 Example Systems

In the bitrophic case there are two extremes; independent systems and systems that
exhibit perfect cospeciation. To simulate between these extremes, we show sample
simulated trees. In all figures in this chapter, Tree X is on the left and Tree Y is
on the right. In these simulations we increased (αβ) in increments and decreased
α and β correspondingly. Thus, the intensity of a cospeciation event was gradually
increased, and the intensity of the trees speciating independently was reduced. The

123



5. Simulating the Evolution of Ecologically Associated Species

value of qXY is also increased gradually, to promote cospeciating interactions. The
parameter combinations used to simulate each system are given in Table 5.3. The
values of µ and λ for Systems 1-5 are chosen based on the parameter calibrations in
Section 5.3.2.

System 1: Independent System

In this scenario, the two phylogenetic trees evolve independently and do not exhibit
any cospeciation. Neither of the trees are allowed to split simultaneously, however
each tree has a large intensity of bifurcating independently. Following a bifurcation
event, each interaction has a 50% chance of being inherited. To add to the random-
ness, interactions can be gained or lost at random anywhere in the system. The
resulting system is displayed in Figure 5.4a.

Systems 2-5: Intermediate Systems

To generate systems between the extremes of System 1 and System 6, the intensity of
each tree speciating independently is slowly reduced. The intensity of cospeciation
is increased at the same rate as the intensity of independent speciation is reduced.
The intensity of cospeciation depends on the number of interactions between nodes
that have not yet speciated. To increase the chance of cospeciation, the value of
qXY is increased, allowing more interactions to be inherited after an independent
speciation event. The resulting systems are displayed in Figures 5.4b to 5.4e.

System 6: Perfect Cospeciation

Both trees exhibit perfect cospeciation. To generate the most extreme case of this
system both trees are set to speciate at the same time. No other speciation event is
allowed to happen, and no interactions are gained or lost at random. An example
system generated is displayed in Figure 5.4f.

5.3.2 Parameter Calibration

We want to test the ability of our method to generate systems ranging from evolving
completely independently to perfectly cospeciated on a larger scale. As in the pre-
vious section, the values of α, β and αβ are decreased and increased in increments
between 0 and 1 respectively, as displayed in Table 5.3. System 1 represents an
independent system and System 6 is a perfectly cospeciated system. Systems 2-5
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5.3 Bitrophic Results

(a) System 1 (b) System 2

(c) System 3 (d) System 4

(e) System 5 (f) System 6

Figure 5.4: Example systems generated by the bitrophic simulation method exhibit-
ing various levels of cospeciation. (a) An independent system. Both trees have
evolved independently, and interactions are inherited, gained and lost at random.
(b)-(d) Systems between the extremes of (a) and (e). The intensity of independent
speciation of each tree is gradually decreased. The intensity of cospeciation is in-
creased. (e) A perfectly cospeciated system. Both trees have evolved simultaneously,
and interactions have only been inherited at corresponding positions.
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Parameters Sys. 1 Sys. 2 Sys. 3 Sys. 4 Sys. 5 Sys. 6

Single node speciates α 1 0.8 0.6 0.4 0.2 0
β

Interaction inherited qXY 0.5 0.6 0.7 0.8 0.9 NA
Two nodes cospeciate αβ 0 0.2 0.4 0.6 0.8 1
Interaction gained λXY 0.1 0.1 0.1 0.1 0.1 0
Interaction lost µXY 0.5 0.5 0.6 0.6 0.5 0

Table 5.3: Parameter input values used to generate the bitrophic systems displayed
in Figure 5.4. The values of each parameter are set the same for all nodes in a tree.

represent the range of systems in between. It remains to determine the values of λ
and µ to control the number of interactions. This is achieved by numerical simu-
lations. For each parameter combination in Table 5.3, 100 systems are generated.
The values of λ and µ are varied between 0 and 1 for each parameter combination.

The value of λ and µ for each parameter combination is selected to keep the
average number of final interactions between the leaf nodes equal to the number of
leaf nodes on each tree. For System 6 this is trivial, when λ = µ = 0, the number
of interactions between the leaf nodes will be equal to the number of leaf nodes on
each tree. The results of the numerical simulations for Systems 1-5 are displayed in
Figure G.1 in Appendix G. Each plot corresponds to a different parameter combi-
nation in Table 5.3, and displays the average number of interactions for each value
of λ and µ. For Systems 1, 2 and 5, the same value of λ and µ is selected; λ = 0.1,
µ = 0.5. For Systems 3 and 4, λ = 0.1 and µ = 0.6.

5.3.3 Rejection Rate

To confirm that the systems generated by our method are representing the range
of systems we expect, they are tested using our bitrophic cospeciation method in
Chapter 4. For each parameter combination in Table 5.3, 1000 systems are simu-
lated. We calculate p-values with N = 10000 randomisations for each system. For
each parameter combination we calculate the rejection rate of the null hypothesis
at the α = 0.05 significance level. The rejection rate is calculated as the proportion
of times we reject the null hypothesis. The resulting plot is displayed in Figure 5.5.

The rejection rates increase as the systems become more cospeciated, in line with
our expectations. However, the rates hardly increase from Systems 1 to 5, and then
jump up at System 6. To understand this, we refer back to the power simulations
in Chapter 4. In Figure 4.13 it can be seen that both our p-values and Hommola
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Figure 5.5: Rejection rates for the p-values generated for each parameter combi-
nation in Table 5.3 at the α = 0.05 significance level. Systems range from Trees
X and Y evolving independently to systems where Trees X and Y exhibit perfect
cospeciation.

et al.’s (2009) are sensitive to interactions being replaced. In particular, replacing 5
interactions between the external nodes of a 10 tip tree system drastically reduces
the rejection rate (Figure 4.13a). In addition, Figure F.5a shows that changing
the branch lengths of 1-5 clades on 10 tip trees has an even larger effect on our p-
values and Hommola et al.’s (2009). The topology of the trees does not change. We
repeated these simulations and calculated p-values using the method of Hommola
et al. (2009), and obtained very similar results. This is unsurprising as we have
shown in Chapter 4 that our methods are roughly equivalent.

5.4 Tritrophic Results

The tritrophic setting is not as straightforward as the bitrophic case. There are many
different systems that are consistent with the tritrophic null hypothesis in Chapter 4.
As a result, there are many different ways to progress from the tritrophic null hy-
pothesis to the corresponding alternative. In Section 5.4.1, we generate example
systems to illustrate the range of systems that may be produced. We assess whether
our simulation method has the ability to produce systems under the tritrophic hy-
potheses in Chapter 4 by testing each system generated using our method described

127



5. Simulating the Evolution of Ecologically Associated Species

in Chapter 4. For simplicity all nodes in a tree share the same rate for each param-
eter.

5.4.1 Example Systems

We explore two possible pathways from the null to alternative hypothesis. The
first, and simplest, scenario is where systems range from all three trees speciating
independently, to TreesX and Y cospeciating, while Tree Z speciates independently.
The parameters selected to generate these systems are displayed in Table 5.4a. The
value of αβ is increased, while the values of α and β are decreased. Thus, the
intensity of a cospeciation event between Trees X and Y is gradually increased, and
the chance of Trees X and Y speciating independently is reduced. The value of γ
remains constant at 1, as Tree Z speciates independently in every case. The value
of qXY is increased to promote cospeciation between Trees X and Y . In all figures
in this chapter, Tree X is on the left, Tree Y is on the right, and Tree Z is at the
top.

Unlike the bitrophic case, we do not use parameter calibrations to determine the
values of λ and µ for each pair of trees. In the tritrophic case there is a value of λ and
µ for each interaction matrix. Setting up the parameter calibrations to simulate 100
systems for every combination of these ranging from 0 to 1, results in 885 780 500
systems to simulate. Computationally this would be too time consuming. Instead,
parameter calibration simulations were conducted setting λXY = λXZ = λY Z and
µXY = µXZ = µY Z . However, no choice of λ and µ was suitable to keep the expected
number of interactions at a desired level for all three trees, especially as Trees X and
Y became more cospeciated. This was reflected in the example systems simulated;
as Trees X and Y became more cospeciated, their interaction graph contained too
few interactions. To address this, the value of µXY is reduced slightly as the value
of αβ is increased.

The resulting systems for each parameter combination in Table 5.4a are displayed
in Figure 5.6. In System 1 all three trees are speciating independently. Gradually,
Trees X and Y become more cospeciated, independent of Tree Z. In System 6,
Trees X and Y exhibit perfect cospeciation, while their interaction with Tree Z is
random.

The second pathway through our tritrophic hypothesis ranges from systems
where Tree Z is driving the cospeciation in the system, to systems where Trees
X and Tree Y are cospeciating above their association with Tree Z. The parame-
ters selected to generate these systems are displayed in Table 5.4b. The intensity of
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(a) Case 1

Parameters Sys. 1 Sys. 2 Sys. 3 Sys. 4 Sys. 5 Sys. 6

Single node speciates
α

1 0.8 0.6 0.4 0.2 0
β
γ 1 1 1 1 1

Interaction inherited
qXY

0.5
0.6 0.7 0.8 0.9 NA

qXZ 0.5 0.5 0.5 0.5 0.5
qY Z

Two nodes cospeciate
αβ 0 0.2 0.4 0.6 0.8 1
αγ 0 0 0 0 0 0
βγ

Three-way cospeciation αβγ 0 0 0 0 0 0

Interaction gained
λXY

0.1 0.1 0.1 0.1 0.1
0

λXZ 0.1
λY Z

Interaction lost
µXY

0.6 0.6
0.5 0.5 0.4 0

µXZ 0.6 0.6 0.6 0.6
µY Z

(b) Case 2

Parameters Sys. 1 Sys. 2 Sys. 3 Sys. 4 Sys. 5 Sys. 6

Single node speciates
α

0 0 0 0 0 0
β
γ 0.2 0.4 0.6 0.8 1

Interaction inherited
qXY 0.5 0.6 0.7 0.8 0.9 NA
qXZ 1 0.9 0.8 0.7 0.6 0.5
qY Z

Two nodes cospeciate
αβ 0 0.2 0.4 0.6 0.8 1
αγ 1 0.8 0.6 0.4 0.2 0
βγ

Three-way cospeciation αβγ 1 0.8 0.6 0.4 0.2 0

Interaction gained
λXY 0.1

0.1 0.1 0.1
0 0

λXZ 0 0.1 0.1
λY Z

Interaction lost
µXY 0.6 0.5 0.4 0.3 0 0
µXZ 0 0.3 0.3 0.4 0.6 0.6
µY Z

Table 5.4: Parameter input values used to generate example tritrophic systems.
The values of each parameter are set the same for all nodes in a tree. (a) Parameter
values for the first scenario; trees range from speciating independently to Trees X
and Y cospeciating above their interaction with Tree Z. These systems are displayed
in Figure 5.6. (b) Parameter values for the second scenario; systems range from Tree
Z driving the cospeciation in the system, to Trees X and Y cospeciating above their
interaction with Tree Z. These systems are displayed in Figure 5.7.
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5. Simulating the Evolution of Ecologically Associated Species

(a) System 1 (b) System 2

(c) System 3 (d) System 4

(e) System 5 (f) System 6

Figure 5.6: Example systems generated by the tritrophic simulation method. The
systems represent one pathway from the tritrophic null to alternative hypothesis
detailed in Chapter 4. (a) An independent system. All three trees have evolved
independently, and interactions are inherited, gained and lost at random. (b)-(e)
Systems between the extremes of (a) and (f). The intensity of independent speciation
of TreesX and Y is gradually decreased. The intensity of cospeciation between Trees
X and Y is increased. (f) Trees X and Y are cospeciating perfectly. Tree Z has
evolved independently.
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(a) System 1 (b) System 2

(c) System 3 (d) System 4

(e) System 5 (f) System 6

Figure 5.7: Example systems generated by the tritrophic simulation method. The
systems represent one pathway from the tritrophic null to alternative hypothesis
detailed in Chapter 4. (a) Tree Z is driving the cospeciation in the system, Trees
X and Y are not cospeciating on their own, any cospeciation is a result of how the
interactions are inherited after cospeciation with Tree Z. (b)-(e) Systems between
the extremes of (a) and (f). The intensity of independent speciation of Tree Z
is gradually increased. The intensity of cospeciation between Trees X and Y is
increased, while the intensity of cospeciation between Trees X and Z and Trees
Y and Z, and their three-way interaction is decreased. (f) Trees X and Y are
cospeciating perfectly. Tree Z has evolved independently.
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5. Simulating the Evolution of Ecologically Associated Species

independent speciation of Tree Z is gradually increased. The intensity of cospecia-
tion between Trees X and Y is increased, while the intensity of cospeciation between
Trees X and Z and Trees Y and Z, and their three-way interaction is decreased.

The resulting systems for each parameter combination in Table 5.4b are displayed
in Figure 5.7. In System 1 Tree Z is driving the cospeciation in the system, any
cospeciation between Trees X and Y is only as a direct result of their interaction
with Tree Z. In System 6, Trees X and Y exhibit perfect cospeciation, while their
interaction with Tree Z is random.

5.4.2 Rejection Rate

To test that the systems generated by our method are representing the range of
systems we expect, they are testing using our tritrophic cospeciation method in
Chapter 4. For each parameter combination in Table 5.4a and Table 5.4b, 100
systems are simulated. We calculate p-values with N = 10000 randomisations for
each system. For each parameter combination we calculate the rejection rate of the
null hypothesis at the α = 0.05 significance level. The resulting plots are displayed
in Figure 5.8.

The rejection rates for the first case are displayed in Figure 5.8a and the rejection
rates for the second case are displayed in Figure 5.8b. In both cases, as expected, the
rejection rate of the null hypothesis increases as the systems generated tend towards
the alternative hypothesis. However, similarly to the bitrophic case, the increase is
much slower than expected. The reasons for this are the same as in the bitrophic
case. In Figure 4.15a it can be seen that our tritrophic test statistic is even more
sensitive to replacing interactions than our bitrophic test statistic.

5.5 Discussion

We have introduced a method to simulate the joint evolution of complicated sys-
tems, at the bitrophic and tritrophic level. The evolution of the system is controlled
by a set of parameters. Experimenting with different input values allows a wide
range of systems with different cospeciation properties to be simulated. Existing
methods are limited to simulating individual phylogenetic trees, and do not take the
evolution of an interacting system into account. In Chapter 4 the rtree function is
used to generate bitrophic and tritrophic systems by simulating phylogenetic trees
and separately assigning interactions. Simulating a completely random or perfectly
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(a) Case 1 (b) Case 2

Figure 5.8: Rejection rate plots for the p-values generated for tritrophic systems.
(a) Rejection rates for each parameter combination in Table 5.4a at the α = 0.05
significance level. Systems range from evolving independently to Trees X and Y
mutually cospeciating but having no relationship with Tree Z. (b) Rejection rates
for each parameter combination in Table 5.4b at the α = 0.05 significance level.
Systems range from Tree Z driving the cospeciation in the system, to Trees X and
Y cospeciating to a greater extent than implied by their relationship with Tree Z.

cospeciating system is trivial, however simulating systems between these extremes

is more complex, and the approach taken in Chapter 1 does not realistically reflect

how evolutionary events might occur. This was only partially achieved by alter-

ing the branch lengths and randomising the clades and interactions in a perfectly

cospeciating system.

We use simulations to explore the range of systems that our algorithm is able to

produce. Systems are simulated that span the range of the bitrophic and tritrophic

hypotheses in Chapter 4. Our method for testing multitrophic systems for cospe-

ciation (detailed in Chapter 4) was used to analyse the simulated systems. This

revealed that our method for testing cospeciation is sensitive to large changes in the

systems away from cospeciation.

Our method is simple and flexible, and can be easily adapted to include different

evolutionary events such as reticulate events to produce phylogenetic networks, and

cannibalistic interactions. The method is also easily generalised to produce higher

order systems. The algorithm is set up to end when the desired number of leaf nodes

have been generated. However, other criteria of interest may be used, such as time.
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5. Simulating the Evolution of Ecologically Associated Species

We do not explore here setting different intensities for different nodes in the sys-
tem. This would allow the intensities to change over time. To calibrate parameters
we used numerical simulations. However, in the tritrophic setting this was too large
to achieve in the time frame. Future work could explore the effect of gaining and
losing interactions in tritrophic systems.

In a previous idea, we considered allowing the intensity of speciation of a node
to depend on the number of interactions it is involved in. Theoretically, if a host is
being infected by multiple parasites, this may drive the host to speciate. However,
the converse does not necessarily hold for parasites. Setting the method up in this
way, made it very difficult for the user to calibrate the parameters to represent
systems of interest.
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Chapter 6

Discussion

In this thesis we used statistical methods to explore, detect, and simulate coevolution
in two different biological systems. At the molecular level, we explore how coevo-
lution can be used to predict contacts in protein structures. At the species level,
we analyse and simulate the coevolution between species in interacting systems of
phylogenetic trees.

In Chapter 2, we carried out an exploratory data analysis of the Trypsin family
of proteins. We investigated the possibility that this family of structures contains
‘anchor’ residues. That is, residues where the distances between these residues and
every other residue in the structure is highly conserved across all of the structures in
the protein family, compared to the other distances in the structure. These anchor
residues were identified from the aligned distance matrices from the structural align-
ment produced by MUSTANG (Konagurthu et al., 2006). We performed multiple
tests to determine whether the anchor residues are an evolutionary feature of the
trypsin family, or an artefact introduced by MUSTANG.

The tests that proved inconclusive suggested that the MUSTANG algorithm
requires further exploration to determine its reliability. Konagurthu et al. (2006)
detail a method that only uses the coordinate information of the Cα atoms. However,
MUSTANG produces two different structural alignments when supplied with all
of the structural information, and separately, with only the Cα atom coordinates.
This suggests that either MUSTANG must incorporate the additional structural
information somewhere, or that it is unreliable. The MUSTANG method does not
explain how the other structural information is used, therefore a more detailed
examination of the MUSTANG algorithm is required. In one test we generated a
sample of artificial structures consisting only of Cα atoms. However, we discovered
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that our method for generating the artificial structures was distorting the distances
significantly and thus not producing a representative protein family. In addition, as
discussed previously, the Cα coordinates alone produce a different alignment that is
not representative of the full atom case.

If MUSTANG is reliable, aligning a large number of protein families would give
insight into what range of divergences might be expected between the structures in
a typical family. In this context, we would be able to re-evaluate the significance of
the anchor residues in the trypsin family.

We developed a logistic regression model in Chapter 3 to identify coevolving
columns in protein multiple sequence alignments. We applied our model to different
artificial alignments to determine if a universally robust range of values for the
elastic-net penalty, α, and the regularisation parameter, λ, could be found. We only
had time to explore small simulated datasets with 30 and 50 columns, and 20, 50 and
100 sequences. For alignments with more than 50 sequences our model successfully
identified the known coevolving columns in 100% of datasets, even when the amount
of noise added to the coevolving columns and number of coevolving columns were
varied. However, even when the number of sequences is very low our model was
successful in 85% of datasets.

When applied to a selection of biological datasets we obtain mixed results. For
3 of the 7 alignments there is a combination of α and λ for which over 80% of the
columns identified as coevolving by our model are in contact in three-dimensional
space. The remaining 4 alignments perform slightly worse; 40–50% of the columns
identified as coevolving are in contact.

It would be interesting to determine whether these predicted contacts correspond
to short, medium or long range contacts, as defined in Section 3.1.1. This could then
be extended to analyse the proportion of predicted short, medium and long range
residues that are in contact. There was only time to apply our model to a small
number of biological datasets, future work would include applying our model to a
larger range of alignments.

Exploring how our method depends on the number of control sequences would
also be intriguing. Four of the Pfam alignments consist of over 2000 sequences.
If these sequences are from a diverse range of species it is reasonable to assume
that multiple coevolution events may have occurred between a pair of residues. We
did not explore this possibility in our artificial alignments, however it would be
interesting to explore how our model is affected by multiple coevolution events.
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In the second part of this thesis we analyse coevolution at the macroscopic level.
In Chapter 4 we introduced a method to test for cospeciation in tritrophic eco-
logical systems. We showed that our method performs comparably to a leading bi-
trophic method (Hommola et al., 2009), and outperforms the only tritrophic method
(Mramba et al., 2013) that we are aware of. We do not explore scenarios where our
method could be applied to higher order ecological systems. There is also scope to
explore applications for our method in other complex network-like systems.

In all of the simulations, the distance on the interactions were constant and
weighted equally to the branches on the phylogenetic trees in the system. Interac-
tions are typically represented by a binary system; they either exist or they do not.
By allowing the interactions to be given different distances, they can be weighted
according to the likelihood of being observed. The interactions can also be weighted
to give the trees or the interactions more weight as desired.

The simulation methods used to test our method are very limited and do not
realistically reflect the range of coevolutionary scenarios we are interested in. The
trees and interactions are simulated separately and do not take into account how
the system has evolved. For example, in a bitrophic system, each tree is randomly
simulated or they can be set to be identical. There is no compromise between these
extremes. The interactions are placed completely at random, or in corresponding
positions and gradually replaced at random to produce a slightly less perfect system.
The number of external nodes on each tree, and the number of interactions must be
selected in advance. These limitations are even more pronounced at the tritrophic
level. To address this, we introduced a more sophisticated method for simulating
these systems in Chapter 5. There are a number of small adjustments that could
be incorporated into our model to tailor it to different user criteria. Currently,
the simulation ends when the total number of desired leaf nodes has been reached.
Alternatively, the simulation could terminate after a chosen number of time steps,
or number of events.

The evolutionary events studied could easily be extended to include reticulate
events to produce phylogenetic networks, and cannibalistic interactions. In addi-
tion, outside environmental or ecological pressures could be explored such as mass
extinction events. Systems could be complicated further by analysing the effect of
setting different rates for the nodes on a tree. For example, the rates of different
evolutionary events could be set to change with time. It would also be interesting
to explore simulating more than three trophic levels.

In the tritrophic case, we set the rates of gaining and losing interactions between
each pair of trees to be the same. This was sufficient for testing our algorithm but
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setting the rates differently for each pair of trees would be more realistic and worth
exploring in future work.
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Appendix A

Protein Family Selection

Before selecting the trypsin protein family, a range of possible families were con-
sidered. We required a family with a large number of sequences, and a reasonable
number of structures experimentally determined, from a range of species.

The first families considered were DNA clamp loaders and DNA clamps. DNA
clamp loaders load clamp proteins onto their associated DNA template strands and
then disassemble the clamps after replication has been completed. Clamp proteins
bind DNA polymerase to the DNA strand. The presence of DNA clamps and clamp
loaders increases the rate of DNA synthesis up to 1000 fold. To carry out their func-
tion DNA clamp loaders have a specific structure composed of 5 subunits. Neuwald
(2007) analysed the DNA clamp loader Replication Factor C, however only one
structure has been determined for this protein. Protein domains within the sub-
units of the DNA clamp loaders were also considered, particularly the AAA family
of ATPases. However these structures were all genetically manipulated. PCNA is a
DNA clamp, again none of the structures corresponding to this protein were suit-
able as they are also genetically manipulated. Zinc fingers and leucine zippers are
also protein families whose structures are essential to their function, however the
structures determined are low quality and solved using NMR.

Marks et al. (2011) successfully predicted the structure of a number of protein
families to 2.7-4.8Å Cα-RMSD error relative to the experimentally determined struc-
tures. The Cα atom is the backbone carbon atom to which the side chain of the
residue is bonded. Thus Cα root mean squared deviation (RMSD) is a measure
of the average distance between the Cα atoms of the predicted protein structure
and the experimental structure. They applied their method to protein families
with more than 1000 aligned sequences and at least one experimentally determined
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three-dimensional structure. Due to their relative success, the families they used are
suitable for analysis. First, we considered the Kunitz domain, before finally deciding
on the trypsin protein family.

Kunitz Domain

The Kunitz Bovine pancreatic trypsin inhibitor domain was chosen first due to
the relatively small size of the protein; around 50-60 residues. Protein domains
can vary largely in size, for example the E-selectin domain consists of 36 residues,
while lipoxygenase-1 consists of 692 residues. However Jones et al. (2008) found
that 80% of protein domains tend to be less than 200 residues in size. Typically
shorter domains are found on short polypeptide chains, or in multidomain proteins
(Wheelan et al., 2000).

The multiple sequence alignment contained sequences from a wide range of eu-
karyote species, and even bacteria and virus species. However, the experimentally
determined structures were only from cattle and humans. As a result, the structures
are identical, with 100% sequence similarity, that is every residue in every position
is conserved across all of the sequences. Therefore the structures are not diverse
enough to explore how they have evolved.
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Trypsin Data

PDB ID Non Domain Chains Domain Range Species
1S5S 16-238 Pig
1JIR 16-238 Cow

2QAA:A 16-236 Streptomyces Griseu
2OUA:A 47-238 Nocardiopsis Alba
2ZPQ:A 1-215 Chum Salmon
3Q76:A 16-238 Human
3K9X:D A,C 16-238 Human
1K1I 16-238 Cow
1K1J 16-238 Cow
1L0Z 1-233 Pig
1LKA 1-233 Pig
1LPG:B A 16-238 Human
1LQE 16-238 Cow
1LVY 16-238 Pig
1MAX 16-238 Cow
1MAY 16-238 Cow

1MKX:H L 16-238 Cow
1MQ5:A L 16-238 Human
1MTS 16-238 Cow
1MTU 16-238 Cow
1N6X 16-238 Cow
1N6Y 16-238 Cow

1NFU:A B 16-238 Human
1NFW:A B 16-238 Human
1NFX:A B 16-238 Human
1O2I 16-238 Cow
1O2J 16-238 Cow
1O2M 16-238 Cow
1O2N 16-238 Cow
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1O2O 16-238 Cow
1O2Q 16-238 Cow
1O2S 16-238 Cow
1O2T 16-238 Cow
1O2U 16-238 Cow
1O30 16-238 Cow
1O33 16-238 Cow
1O35 16-238 Cow
1O37 16-238 Cow
1O3D 16-238 Cow
1OP0 16-238 Snake
1P3E 7-213 Bacillus Intermediu
1PPZ 16-235 Fungus
1PQ5 16-235 Fungus
1PQ7 16-235 Fungus
1PQA 16-235 Fungus
1S6F 16-238 Pig
1S81 16-238 Pig
1UO6 1-233 Pig
1UTJ 16-238 Atlantic Salmon
1UTK 16-238 Atlantic Salmon
1UTL 16-238 Atlantic Salmon
1UTM 16-238 Atlantic Salmon
1V3X:A B 16-238 Human
1XVO 16-235 Fungus
1Z6E:A L 16-238 Human
2OQU 1-233 Pig
2OUA:B 47-238 Nocardiopsis Alba
2P3U:B A 16-238 Human
2P95:A L 16-238 Human
2Q1J:A B 16-238 Human
2QAA:B 16-236 Streptomyces Griseu
2UWL:A B 16-238 Human
2UWO:A B 16-238 Human
2V0B 1-233 Pig
2V35 16-238 Pig

2VH6:A B 16-238 Human
2W26:A B 16-238 Human
2Y7Z:A B 16-238 Human
2Y81:A B 16-238 Human
2ZPQ:B 1-215 Chum Salmon
2ZPS 1-215 Chum Salmon

3K9X:B A,C 16-238 Human
3KQC:A L 16-238 Human
3MNB 16-238 Pig
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3MNC 16-238 Pig
3MNS 16-238 Pig
3MO3 16-238 Pig
3MOC 16-238 Pig
3MTY 16-238 Pig
3MU0 16-238 Pig
3ODF 16-238 Pig
3Q76:B 16-238 Human
3TGI:E I 16-238 Rat

Table B.1: Sample of 83 trypsin chains.
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Appendix C

Multidimensional Scaling

Multidimensional scaling is a technique used to construct a configuration of data
points in Euclidean space using the distances, similarities or dissimilarities between
them. The data points are assigned coordinates in n dimensions that aim to preserve
the distances between them. Define P1, . . . , Pn to be the unknown coordinates of
the n data points, then D̂ is the distance matrix corresponding to the set of points
P and is similar to D, the distance matrix corresponding to the original data points.
The method of metric multidimensional scaling is as follows:

• Construct a matrix A from the distance matrix D:

A = (−1

2
d2
rs).

• Use A to calculate the matrix B with elements

brs = ars − ar• − a•s + a••,

where

ar• =
1

n

n∑
s=1

ars

a•s =
1

n

n∑
r=1

ars

a•• =
1

n2

n∑
r,s=1

ars.
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C. Multidimensional Scaling

The matrix B is calculated using B = HAH, where the nxn centering matrix
H is given by

H = I − n−111T ,

where 1 is a vector of ones.

• Find the k largest eigenvalues λ1 > . . . > λk of B, with corresponding nor-
malised eigenvectors X =

(
X(1), . . . , X(k)

)
.

• The coordinates of Pr are Xr = (Xr1, . . . , Xrp)
T , where r = 1, . . . , k are the

rows of X.

If the first k eigenvalues ofB are large and positive and all of the other eigenvalues
are close to zero then the interpoint distances of the configuration should closely
approximate the original distance matrix D (Mardia et al., 1979).
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Appendix D

Additional Figures for Chapter 3

D.1 Simulated Alignments: 30 Columns, 20

Sequences

Figure D.1 displays the combinations of α and λ that identify the coevolving column
scores, sk,l, as the only non-zero scores. Each plot corresponds to a different num-
ber of coevolving columns; each with 5% noise added to the coevolving columns.
Figures D.2, D.3 and D.4 display the combinations of α and λ that identify the co-
evolving column scores, sk,l, as the only non-zero scores, for the 10%, 15% and 20%
noise cases. Each plot corresponds to a different number of coevolving columns.

For each noise level there is no obvious pattern as the number of coevolving
columns changes.
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D. Additional Figures for Chapter 3

(a) Coevolving pairs=1, noise=0.05 (b) Coevolving pairs=2, noise=0.05

(c) Coevolving pairs=3, noise=0.05 (d) Coevolving pairs=4, noise=0.05

Figure D.1: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 5% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 20 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.
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D.1 Simulated Alignments

(a) Coevolving pairs=1, noise=0.1 (b) Coevolving pairs=2, noise=0.1

(c) Coevolving pairs=3, noise=0.1

Figure D.2: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 10% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 20 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b) 2
coevolving pairs of columns. (c) 3 coevolving pairs of columns. There is no plot for
the case with 4 coevolving pairs of columns as there was no combination of α and λ
that identified only the true coevolving column scores as non-zero (see Section 3.3.1).
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D. Additional Figures for Chapter 3

(a) Coevolving pairs=1, noise=0.15 (b) Coevolving pairs=2, noise=0.15

(c) Coevolving pairs=3, noise=0.15 (d) Coevolving pairs=4, noise=0.15

Figure D.3: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 15% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 20 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.
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D.1 Simulated Alignments

(a) Coevolving pairs=1, noise=0.2 (b) Coevolving pairs=2, noise=0.2

(c) Coevolving pairs=3, noise=0.2 (d) Coevolving pairs=4, noise=0.2

Figure D.4: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 20% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 20 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.
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D. Additional Figures for Chapter 3

D.2 Simulated Alignments: 30 Columns, 100

Sequences

Using the same parameter combinations for the coevolving columns as the 20-
sequence case, the number of sequences is increased to 100. For every alignment
there are multiple optimal combinations of α and λ that successfully identify the
coevolving column scores as the only non-zero scores. Figure D.5 displays the com-
binations of α and λ that identify the coevolving column scores, sk,l, as the only
non-zero scores. Each plot corresponds to a different number of coevolving columns;
each with 5% noise added to the coevolving columns. Figures D.6, D.7 and D.8
display the combinations of α and λ that identify the coevolving column scores,
sk,l, as the only non-zero scores, for the 10%, 15% and 20% noise cases. Each plot
corresponds to a different number of coevolving columns.

Similarly to the 20-sequence case, there appears to be no pattern in the α/λ
combinations as the number of coevolving pairs or percentage of noise increases.
However, the number of optimal combinations of α and λ is larger, and the range
of optimal λ values is larger for each value of α.
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D.2 Simulated Alignments

(a) Coevolving pairs=1, noise=0.05 (b) Coevolving pairs=2, noise=0.05

(c) Coevolving pairs=3, noise=0.05 (d) Coevolving pairs=4, noise=0.05

Figure D.5: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 5% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 100 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.

153



D. Additional Figures for Chapter 3

(a) Coevolving pairs=1, noise=0.1 (b) Coevolving pairs=2, noise=0.1

(c) Coevolving pairs=3, noise=0.1 (d) Coevolving pairs=4, noise=0.1

Figure D.6: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 10% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 100 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.
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D.2 Simulated Alignments

(a) Coevolving pairs=1, noise=0.15 (b) Coevolving pairs=2, noise=0.15

(c) Coevolving pairs=3, noise=0.15 (d) Coevolving pairs=4, noise=0.15

Figure D.7: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 15% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 100 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.
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D. Additional Figures for Chapter 3

(a) Coevolving pairs=1, noise=0.2 (b) Coevolving pairs=2, noise=0.2

(c) Coevolving pairs=3, noise=0.2 (d) Coevolving pairs=4, noise=0.2

Figure D.8: Values of the elastic-net parameter, α, and the regularisation parameter,
λ, that identify the coevolving column scores as the only non-zero scores for the
case where 20% noise is added to the coevolving columns. Each plot corresponds
to an alignment, each consisting of 30 columns and 100 sequences. The number of
coevolving column pairs differs for each plot. (a) 1 coevolving pair of columns. (b)
2 coevolving pairs of columns. (c) 3 coevolving pairs of columns. (d) 4 coevolving
pairs of columns.

156



Appendix E

Response Matrix Calculation Details

for Chapter 4

The first step in calculating the response matrix for the partitioned matrices in

Equations (4.5), (4.7) and (4.8) is to invert D.

E.1 Inverting D

Suppose D is partitioned into four matrices as follows

D =

(
D11 D12

D21 D22

)
,

where the partitions are given by

D11 =

(
∆LX 0

0 ∆LY

)
,

D12 =

(
−ΓX 0

0 −ΓY

)
,

D21 =

(
−ΓTX 0

0 −ΓTY

)
,

D22 =

(
ΓCX 0

0 ΓCY

)
.
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E. Response Matrix Calculation Details for Chapter 4

We use the following notation for the partitions of the matrix inverse of D.

D−1 =

(
D11 D12

D21 D22

)−1

=

(
D11 D12

D21 D22

)
Using the blockwise inversion formula, the partitions of the inverse of D, are given
by

D11 = D−1
11 +D−1

11 D12(D22 −D21D
−1
11 D12)−1D21D

−1
11 ,

D12 = −D−1
11 D12(D22 −D21D

−1
11 D12)−1,

D21 = −(D22 −D21D
−1
11 D12)−1D21D

−1
11 ,

D22 = (D22 −D21D
−1
11 D12)−1. (E.1)

Using Equation (E.1), the four partitions of D−1 are given by

D11 =

(
1

∆LX

+ 1
∆LX

ΓX(ΓCX − ΓTX
1

∆LX

ΓX)−1(ΓTX
1

∆LX

) 0

0 1
∆LY

+ 1
∆LY

ΓY (ΓCY − ΓTY
1

∆LY

ΓY )−1ΓTY
1

∆LY

)

D12 =

(
1

∆LX

ΓX(ΓCX − ΓTX
1

∆LX

ΓX)−1 0

0 1
∆LY

ΓY (ΓCY − ΓTY
1

∆LY

ΓY )−1

)

D21 =

(
(ΓCX − ΓTX

1
∆LX

ΓX)−1ΓTX
1

∆LX

0

0 (ΓCY − ΓTY
1

∆LY

ΓY )−1ΓTY
1

∆LY

)

D22 =

(
(ΓCX − ΓTX

1
∆LX

ΓX)−1 0

0 (ΓCY − ΓTY
1

∆LY

ΓY )−1

)

E.2 Calculating Λγ

Recall that the response matrix is calculated using the following equation

Λγ = A−BD−1BT

The inverse of D is comprised of 16 submatrices. To make the calculations easier,
let these 16 submatrices be represented as follows

D−1 =


D11
∗ D12

∗ D13
∗ D14

∗
D21
∗ D22

∗ D23
∗ D24

∗
D31
∗ D32

∗ D33
∗ D34

∗
D41
∗ D42

∗ D43
∗ D44

∗

 .
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E.3 Calculating Λγ for Tree X and Tree Y separately

Using this, the response matrix is calculated to be

Λγ =

( EX EY

EX
(

1
δ

+ 1
ε

)
I − 1

ε2

(
IXD

11
∗ I

T
X

)
− I
δ

EY − I
δ

(
1
δ

+ 1
ε

)
I − 1

ε2

(
IYD

22
∗ I

T
Y

)).
The matrices D11

∗ and D22
∗ correspond to the diagonal elements of D11:

D11
∗ =

1

∆LX

+
1

∆LX

ΓX(ΓCX − ΓTX
1

∆LX

ΓX)−1(ΓTX
1

∆LX

)

D22
∗ =

1

∆LY

+
1

∆LY

ΓY (ΓCY − ΓTY
1

∆LY

ΓY )−1ΓTY
1

∆LY

E.3 Calculating Λγ for TreeX and Tree Y separately

In Section 4.3 the calculation of the statistic is worked through using the properties

of the phylogenetic system. Here, we show that these calculations are equivalent to

calculating two separate response matrices, one for each tree individually.

The Kirchhoff matrix, KX , calculated only for the nodes in Tree X, using the

partitions defined in Figure 4.10, is given by

KX =


EX LX CX

EX
I
ε

− IX
ε

0

LX − ITX
ε

∆LX −ΓX

CX 0 −ΓTX ΓCX

,
where I is the identity matrix and IX is a binary matrix containing the connections

between the external nodes and the leaf nodes of Tree X. Each connection in IX

has conductance 1
ε
. The matrix ΓX contains the conductances on the connections

between the leaf nodes and the internal nodes on each tree. ∆LX is a diagonal

matrix that represents the unknown conductances on the diagonal of KX , and ΓCX

is a symmetric matrix containing the negative conductances between the internal

nodes on Tree X. The Kirchhoff matrix, KY , for Tree Y will have the same general

structure as KX .

The constraints for KX and KY are the same as those for the Kirchhoff matrix

for the whole system, with the exception of those involving the external nodes. This
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E. Response Matrix Calculation Details for Chapter 4

constraint no longer depends on the center of the interactions.

I

ε
1− IX

ε
1 = 0

We partition KX into the submatrices in Equation (4.3) as follows

AX =
(
I
ε

)
BX =

(
− IX

ε
0
)

DX =

(
∆LX −ΓX
−ΓTX ΓCX

)
The response matrix for Tree X is calculated as follows

ΛX = AX −BXD
−1
X BT

X

=
I

ε
− 1

ε2
IXD

11
X I

T
X ,

where D11
X is calculated using the blockwise inversion formula and is given by

D11
X = D−1

X11
+D−1

X11
DX12

(
DX22 −DX21D

−1
X11

DX12

)−1
DX21D

−1
X11

=
1

∆LX

+
1

∆LX

ΓX

(
ΓCX − ΓTX

1

∆LX

ΓX

)−1

ΓX
1

∆LX

Therefore our statistic is calculated from the upper triangle of the following
matrices, since the Equations for Tree Y are equivalent:

1

ε2
IX

(
1

∆LX

+
1

∆LX

ΓX

(
ΓCX − ΓTX

1

∆LX

ΓX

)−1

ΓX
1

∆LX

)
ITX

1

ε2
IY

(
1

∆LY

+
1

∆LY

ΓY

(
ΓCY − ΓTY

1

∆LY

ΓY

)−1

ΓY
1

∆LY

)
ITY

This is the same result as when the Kirchhoff matrix is calculated for the full system.
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Appendix F

Additional Figures and Tables for

Chapter 4

F.1 Type I Error

The bitrophic empirical cumulative distribution functions for the first parameter
combination in Section 4.4.1 are displayed in Figure F.1. The plots for the second
parameter combination are displayed in Figures F.2 and F.3. The empirical CDF
for our p-values and Hommola et al.’s (2009) lies close to the desired diagonal line.
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F. Additional Figures and Tables for Chapter 4

(a) (b)

(c) (d)

Figure F.1: Empirical cumulative distribution functions for our p-values and Hom-
mola et al.’s (2009). Each plot corresponds to simulations with 10 tips on each tree.
The first column corresponds to 20 interactions simulated, and the second column
corresponds to 25 interactions simulated. The top row contains the p-values for our
method, and the bottom row contains the p-values for the method of Hommola et al.
(2009). The diagonal grey line is the identity line.
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F.1 Type I Error

(a) (b)

(c) (d)

Figure F.2: Empirical cumulative distribution functions for our p-values. Each plot
corresponds to simulations with 10 tips on Tree X and 15 tips on Tree Y . Going
clockwise the plots correspond to 10, 15, 20, and 25 interactions simulated. The
diagonal grey line is the identity line.
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F. Additional Figures and Tables for Chapter 4

(a) (b)

(c) (d)

Figure F.3: Empirical cumulative distribution functions for Hommola et al.’s (2009)
p-values. Each plot corresponds to simulations with 10 tips on Tree X and 15 tips
on Tree Y . Going clockwise the plots correspond to 10, 15, 20, and 25 interactions
simulated. The diagonal grey line is the identity line.

164



F.1 Type I Error

The tritrophic empirical cumulative distribution functions for the second pa-

rameter combination in the Type 1 Error section are displayed in Figure F.4. The

empirical CDF for our p-values lies close to the desired diagonal line for all parameter

combinations.

(a) (b)

(c) (d)

Figure F.4: Empirical cumulative distribution functions for our tritrophic p-values.
Each plot corresponds to simulations with 10 tips on Trees X and Y , and 15 tips
on Tree Z. Each plot represents a different number of interactions simulated. From
top left to bottom right, 10, 15, 20 and 25 interactions.
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F. Additional Figures and Tables for Chapter 4

F.2 Power Simulations

The rejection rate plots for Simulation Method 3 in the Power Simulations - Bi-
trophic section are displayed in Figure F.5. The rejection rates increase as the
systems become more cospeciated and the rejection rates are higher for systems
with 20 tips compared to systems with 10 tips. Our rejection rates are higher than
Hommola et al.’s (2009) in the 10 and 20 tip case.

(a) (b)

Figure F.5: Rejection rates for the p-values generated using our method and the
method of Hommola et al. (2009) at the α = 0.05 significance level, under Simulation
Approach 3. Black dots are the rates obtained using our method and triangles are
the rates calculated for Hommola et al.’s (2009) p-values. The points are offset on
the horizontal axis to prevent overlapping. The plot on the left corresponds to 10
tip simulations and the plot on the right corresponds to 20 tip simulations.

The rejection rate plots for each Simulation Method at the α = 0.01 significance
level are displayed in Figures F.6, F.7 and F.8. The rejection rates increase as the
systems become more cospeciated and the rejection rates are higher for systems
with 20 tips compared to systems with 10 tips. Our rejection rates are equivalent
to Hommola et al.’s (2009) in each case.

Figure F.9 displays the rejection rates for our tritrophic p-values and Mramba
et al.’s (2013) four different p-values for the simulation approach where we add
random triangles of interactions. The rejection rates are calculated at the α = 0.05

significance level. Each plot corresponds to a different randomisation in Mramba
et al.’s (2013) method. The power curve for our method is repeated in each plot.
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F.2 Power Simulations

(a) (b)

Figure F.6: Rejection rates for the p-values generated using our method and the
method of Hommola et al. (2009) at the α = 0.01 significance level, under Simulation
Approach 1. Black dots are the rates obtained using our method and triangles are
the rates calculated for Hommola et al.’s (2009) p-values. The points are offset on
the horizontal axis to prevent overlapping. The plot on the left corresponds to 10
tip simulations and the plot on the right corresponds to 20 tip simulations.

(a) (b)

Figure F.7: Rejection rates for the p-values generated using our method and the
method of Hommola et al. (2009) at the α = 0.01 significance level, under Simulation
Approach 2. Black dots are the rates obtained using our method and triangles are
the rates calculated for Hommola et al.’s (2009) p-values. The points are offset on
the horizontal axis to prevent overlapping. The plot on the left corresponds to 10
tip simulations and the plot on the right corresponds to 20 tip simulations.
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(a) (b)

Figure F.8: Rejection rates for the p-values generated using our method and the
method of Hommola et al. (2009) at the α = 0.01 significance level, under Simulation
Approach 3. Black dots are the rates obtained using our method and triangles are
the rates calculated for Hommola et al.’s (2009) p-values. The points are offset on
the horizontal axis to prevent overlapping. The plot on the left corresponds to 10
tip simulations and the plot on the right corresponds to 20 tip simulations.

Figures F.9a, F.9b, F.9c and F.9d correspond to the cases where only Tree X is
randomised, only Tree Z is randomised, both Trees X and Y are randomised, and
all three trees are randomised, respectively.
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F.2 Power Simulations

(a) Only X randomised (b) Only Z randomised

(c) X and Y randomised (d) X, Y and Z randomised

Figure F.9: Rejection rates for p-values generated using our method and the method
of Mramba et al. (2013) at the α = 0.05 significance level, under the simulation
approach where triangular interactions are added between three 10 tip trees. The
interactions between the three trees are forced to form triangles. The horizontal axis
corresponds to the number of interactions added between each pair of trees. Black
dots are the rates obtained using our method, labelled “Circuit”, and the other lines
correspond to the rates calculated for the different p-values obtained under Mramba
et al.’s (2013) method; Pλ, Pxy.z, Pxz.y and Pyz.x.

169



F. Additional Figures and Tables for Chapter 4

Tree Z is not involved in the cospeciation between Trees X and Y , thus per-
muting Tree Z reveals no effect of cospeciation. This can be seen in Figure F.9b, as
expected, the rejections rates for Mramba et al.’s (2013) method are all very low.
From Table 4.1, a significant value of Pxy.z when Trees X and Y are involved in the
randomisation indicates that there is cospeciation between Trees X and Y . This
can clearly be seen in Figures F.9a, F.9c, F.9d where the statistic corresponding to
Pxy.z is the most powerful. The statistics corresponding to Pxz.y and Pyz.x are less
powerful because Trees X and Y are not cospeciating with Tree Z, and randomising
Tree X tells us nothing about the cospeciation between Trees Y and Z. Our statistic
has slightly less power than Pxy.z under some randomisations.

Figure F.10 displays the rejection rates, calculated at the α = 0.01 significance
level, for our method and Mramba et al.’s (2013) for simulations with interactions
that are not constrained to form triangles. The first column of plots corresponds
to simulation method 1 and the second column to simulation method 2. The rows
correspond to the size of the trees; the first row is simulations involving 10 tip trees
and the second row is 20 tip trees. We show only one of Mramba et al.’s (2013)
randomisations, the case where only Tree X is randomised; other plots display very
similar results. Clearly our statistics is more powerful than the method of Mramba
et al. (2013).

F.3 Tritrophic Dataset

The phylogenetic trees for the Lopez-Vaamonde et al. (2005) dataset consisting of
hostplants, leaf-mining moths and parasitoid wasps are plotted individually, with
edge lengths and species labels in Figures F.11a, F.11b and F.11c respectively.
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F.3 Tritrophic Dataset

(a) (b)

(c) (d)

Figure F.10: Rejection rates for p-values generated using our method and the method
of Mramba et al. (2013) at the α = 0.01 significance level, under different simulation
approaches. Each column corresponds to a different simulation approach; replacing
and adding interactions between the three trees, respectively. The horizontal axis
corresponds to the number of interactions replaced or added between each pair of
trees. In each simulation the interactions are not forced to form triangles. The
rows correspond to the tree sizes. The first row contains the 10 tip simulations for
each approach. The second row contains the 20 tip simulations for each approach.
Each plot corresponds to the case where only Tree X is randomised for Mramba
et al.’s (2013) method. Black dots are the rates obtained using our method, labelled
“Circuit”, and the other lines correspond to the rates calculated for the different
p-values obtained under Mramba et al.’s (2013) method; Pλ, Pxy.z, Pxz.y and Pyz.x.
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(a) Hostplant (b) Leaf-mining moth

(c) Parasitoid wasp

Figure F.11: Individual phylogenetic trees for the hostplant, leaf-mining moth and
parasitoid wasp tritrophic dataset (Lopez-Vaamonde et al., 2005). Each phylogenetic
tree is plotted using edge lengths. Leaf node species labels are also displayed.

172



Appendix G

Additional Figures and Plots for

Chapter 5

G.1 Parameter Calibration - Bitrophic

Figure G.1 displays parameter calibration plots for the numerical simulations in
Section 5.3.2. For each system the parameters are set to range from evolving inde-
pendently (System 1) to perfectly cospeciated (System 6) by scaling α, β and αβ

incrementally. The parameter combinations used for each system are given in Ta-
ble 5.3. To determine the values of λ and µ we perform numerical simulations. For
each parameter combination in Table 5.3, 100 systems are generated. The values of
λ and µ are varied between 0 and 1 for each parameter combination.
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Figure G.1: Parameter calibration plots for the numerical simulations in Sec-
tion 5.3.2. The parameter combinations used in plots (a)-(e) are given in Table 5.3.
For each parameter combination, 100 systems are generated. The values of λ and µ
are varied between 0 and 1 for each parameter combination. (a) System 1: Trees X
and Y are evolving independently. (b)-(e) Systems 2-5: Trees X and Y are gradually
more cospeciated.

(a) System 1

(b) System 2
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G.1 Parameter Calibration - Bitrophic

(c) System 3

(d) System 4
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(e) System 5

Figure G.1: (cont.)
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