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Abstract

Accessing structured data in the form of ontologies currently requires the use

of formal query languages (e.g., SeRQL or SPARQL) which pose significant

difficulties for non-expert users. One way to lower the learning overhead

and make ontology queries more straightforward is through a Natural Lan-

guage Interface (NLI). While there are existing NLIs to structured data

with reasonable performance, they tend to require expensive customisation

to each new domain. Additionally, they often require specific adherence to

a pre-defined syntax which, in turn, means that users still have to undergo

training.

In this thesis, we study the usability of NLIs from two perspectives: that of

the developer who is customising the NLI system, and that of the end-user

who uses it for querying. We investigate whether usability methods such

as feedback and clarification dialogs can increase the usability for end users

and reduce the customisation effort for the developers. To that end, we have

developed two systems, QuestIO and FREyA, whose design, evaluation and

comparison with similar systems form the core of the contribution of this

thesis.

i



ii



Acknowledgements

This work would not have been possible without help and support of many

people. I am grateful to my supervisor, Hamish Cunningham, for encour-

agement, guidance and support. My examiners, Enrico Motta and Mark

Stevenson for an interesting discussion during my viva and useful comments

that improved this thesis. Kalina Bontcheva and Valentin Tablan for their

support, and guidance in the course of the TAO project. The members of the

GATE team who were kind to participate in the QuestIO user evaluation.

The participants of the First GATE Summer School, who participated in the

FREyA user evaluation. Members of the NLP Group in Sheffield, and par-

ticularly Mark Hepple, Rob Gaizauskas, John Derick, Louise Guthrie, David

Guthrie, Sanaz Jabbari, Kumutha Swampillai and Leon Derczynski for en-

couragement and useful discussions. Johann Petrak, for useful discussions

while he was a visiting researcher in the NLP group, and also for developing

Virtual Documents plugin later which became a part of FREyA. Yaoyong Li

for answering my questions about statistics. The GOOD OLD AI Network,

and all members who are always a great inspiration, and most of all Vladan
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Chapter 1

Introduction

The context of this thesis is the task of automatically answering Natural

Language questions by a machine as if it were a human. This task has

long been a subject of research in the Natural Language Processing (NLP)

and Knowledge Representation (KR) fields, and is a project still some way

from completion. These two fields are subfields of Artificial Intelligence, and

complement each other. Recent advances in KR have been influenced by the

invention of World Wide Web, and driven by work on the Semantic Web:

the idea to make the Web and all information on the Web interoperable and

understandable by computers, so that applications (e.g., agents) can under-

stand, use, share and reason about them. Many KR languages have been

invented for this purpose including RDF – Resource Description Framework

[Manola and Miller, 2004] and OWL – The Web Ontology Language [Smith

et al., 2004]. These languages encapsulate knowledge of the world through a

set of concepts and relations between them. These are organised into triples

which have the form

SUBJECT <predicate> OBJECT

That is, two concepts – subject and object – related by a predicate.

These together form conceptual models or ontologies. In the domain of com-

puter science, the term ontology refers to a logical schema of roles and con-

cepts and the relationships between them (TBox) [Antoniou and van Her-

melen, 2008]. Knowledge base refers to the actual data such as instances
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or individuals that are generated based on the definitions in the ontology

(ABox). In practice, the ontology and the knowledge base are often pub-

lished together, and hence these terms are often used interchangeably in

literature referring to both the TBox and ABox. In this thesis we will use

the term semantic resources to refer to both ontologies and knowledge bases.

Consider the following example:

Mary works for University of Sheffield, which is located in

Sheffield. Sheffield is located in the United Kingdom. Mary lives

in Sheffield.

As triples:

MARY <is a> PERSON

UNIVERSITY OF SHEFFIELD <is an> ORGANISATION

MARY <works for> UNIVERSITY OF SHEFFIELD

SHEFFIELD <is a> CITY

UNIVERSITY OF SHEFFIELD <is located in> SHEFFIELD

UNITED KINGDOM <is a> COUNTRY

SHEFFIELD <is located in> UNITED KINGDOM

MARY <lives in> SHEFFIELD

If these triples were written in a specific KR language such as OWL, access-

ing them to answer queries such as In which country does Mary live? would

require knowledge of a formal query language such as SPARQL – Simple

Protocol And RDF Query Language [Prud’hommeaux and Seaborne, 2008].

This poses significant difficulties for non-expert users, while the experts need

to be familiar with the existing ontology structure. The role of Natural Lan-

guage Interfaces (NLIs) to conceptual models is to, given a Natural Language

question, find the correct answer in the model. NLIs are more intuitive than

alternatives such as formal query languages as they hide complexities of both

formal languages and the knowledge structure. In this thesis, our main goal

is to explore Natural Language Interfaces to Conceptual Models in order to

improve the task of answering Natural Language questions by machines.
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1.1 Motivation

The knowledge representation languages built on RDF and OWL are becom-

ing increasingly popular. With billions of triples being published in recent

years, such as those from Linked Open Data (LOD)1, there is a need for

more user-friendly interfaces which will bring the advantages of the data

to casual users. Research has been very active in developing interfaces for

accessing structured knowledge, from faceted search, where knowledge is

grouped and represented through taxonomies [Croft et al., 2009], to menu-

guided and form-based interfaces such as those offered by the Knowledge

and Information Management (KIM) platform [Popov et al., 2003]. While

hiding the complexity of underlying query languages such as SPARQL or

SeRQL (Sesame RDF Query Language) [Broekstra and Kampman, 2003],

these interfaces still require that the user is familiar with the queried knowl-

edge structure. However, casual users need to be able to access the data

despite their queries not matching exactly the queried data structures [Hur-

tado et al., 2009].

According to the interface evaluation conducted in Kaufmann and Bernstein

[2007], systems developed to support Natural Language Interfaces are per-

ceived as the most acceptable by end-users. This conclusion is drawn from

a usability study, which compared four types of query language interfaces

to knowledge bases and involved 48 users of general background. The full-

sentence query option was significantly preferred to keywords. However, us-

ing keywords for querying was preferred to menu-guided, or graphical query

language interfaces.

On the other hand, evaluation of the CHESt [Linckels and Meinel, 2007]

system (dealing with computer history and accepting both keywords and

NL queries as input), revealed users preference for keywords. When asked

if they would accept typing full blown questions instead of keyword-based

queries, 22% of users answered positive, 69% said they would accept only if

this yielded better results, and 8% of users disliked this option.

Web users are used to typing primitive questions into the text box of a search

engine. Search engines like Google are capable of answering simple questions

1http://linkeddata.org/

5

http://linkeddata.org/


Chapter I: Introduction

like what is the capital of Serbia. However, the power of Linked Data is in

the capability to answer more complex queries for which the answer cannot

be found through Google, as the question as such is not contained in any

document, and requires retrieving various data in different resources, and

then combining and possibly reasoning about them.

Also, much data on the Web is accessible through the use of applications

based on relational databases. According to Iskold [2008] semantic technolo-

gies are here to help us represent relational data spread over the entire Web:

it is relational queries that semantic search engines would excel at. As it is

concluded in Iskold [2008], the semantic web is going to help us resolve com-

plex, inferencing queries asked over the entire Web as if it was a database.

Expressing such complex queries requires using Natural Language (NL), as

a set of keywords is not sufficient.

1.2 Challenges

Building NLIs to structured data requires handling challenges related to

the Natural Language understanding such as ambiguity and complexity (e.g.

[Church and Patil, 1982]), see Figure 1.1. Ambiguity can be avoided through

the use of Controlled Natural Language (CNL): a subset of the respective

natural language that is specifically designed to serve as a documentation,

specification or knowledge representation language [Fuchs et al., 2006]. A

CNL typically includes a set of vocabulary, grammar rules and restrictions

that have to be followed by end-users. In addition, when interpreting ques-

tions, CNLs use some predefined strict rules. One example is Purpose-

fully Restricted English (PRE) [Epstein, 1985], a restricted English database

query language, which solves ambiguity by following the rule: relative clauses

modify the rightmost available heads. Hence, if the query is Find an employee

who was hired by a recruiter whose salary is greater than $30000, the relative

clause whose salary is greater than $30000 would always modify recruiter,

not employee (see Epstein [1985]). The problem with a CNL is that it re-

mains formal, and although more intuitive to casual users than languages

like SPARQL, still must be learned to be used efficiently.

Another big challenge is related to the expressiveness of the natural language:
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Figure 1.1: Ambiguity

it is possible to express the same meaning using different constructions (see

Figure 1.2). This increases the difficulty of automatically interpreting natu-

ral language [Cimiano et al., 2007], and it is very challenging to build a robust

NLI. Robust in this context means being able to interpret the same way sev-

eral alternative natural language queries which have the same meaning but

are expressed differently (for example, what is the largest city in Germany?

vs. give me the largest city in Germany, etc.). In order to support all mor-

phological inflections of words NLIs usually operate on the lemmas rather

than on the exact string matches. To handle synonyms, many systems use

external sources such as WordNet [Fellbaum, 1998]. To support as many

grammatical constructions as possible, NLIs often enumerate the question

patterns in advance, and then detect the question category based on which

the question is further interpreted. The question category is identified ei-

ther by using manually constructed rules for automatic classification, or by

using fully automatically constructed classifiers usually based on Machine

Learning algorithms. A problem with the former approach is that it is time-

consuming as the rules are hand-crafted. A problem with the latter approach

is that the automatic classifiers must be trained using large dataset in order

to work effectively.

Figure 1.2: Expressiveness

According to [Grosz et al., 1987], a major challenge when building NLIs is

to provide the information the system needs to bridge the gap between the
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way the user thinks about the domain of discourse and the way the domain

knowledge is structured for computer processing. This implies that in the

context of NLIs to conceptual models, it is very important to consider the

ontology structure and content. Two ontologies describing identical domains

(e.g., music) can use different modeling conventions. For example, while one

ontology can use a datatype property artistName of class Artist, the other

one might use instances of a special class to model the artist’s name2. A

portable NLI system would have to support both types of conventions with-

out sacrificing performance. Portable or transportable NLIs are those that

can be adapted easily to new domains (or new ontologies covering the same

domains). Although they are considered as potentially much more useful

than domain-specific systems, constructing transportable systems poses a

number of technical and theoretical problems because many of the tech-

niques developed for specialised systems preclude automatic adaptation to

new domains [Grosz et al., 1987]. Moreover, it is noted that portability af-

fects retrieval performance: “the more a system is tailored to a domain, the

better its retrieval performance is” [Kaufmann and Bernstein, 2007, p.281].

In general, existing NLI systems tend to be either domain independent (i.e.,

portable) but with lower performance, or more domain-specific (i.e., portable

only with prior customisation) but with a much better performance. The

caveat in the latter case is that customisation tends to be very expensive

as it is performed by experts (e.g., domain experts, language engineers).

Semantic resources can be constructed to include sufficient lexical informa-

tion to support a domain-independent query analysis engine. However, due

to different processes used to generate ontologies and knowledge bases, the

lexicon might be of varying quality. In addition, some words might have

different meanings in two different domains. For example, How big might

refer to height, but also to length, area, or population – depending on the

question context, but also on the ontology structure. This kind of adjust-

ments – or mappings from words or phrases to ontology concepts/relations,

is performed during customisation of NLIs.

Finally, while NLIs are intuitive, having only one text box for a query

can pose difficulties to users, who need to express their information need

2See for example how class Alias is used in the Proton System Module ontology:
http://proton.semanticweb.org/
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through a natural language query efficiently [Stojanovic, 2005b]. In order to

address this problem, several methods have been developed with the aim

to either assist the user to formulate the query, or to communicate the

system’s interpretation of the query to the user. However, a real challenge

when building NLIs is to hide all complexities of the underlying knowledge

from the casual user, and to provide him either the answer, or appropriate

guidance on how to reformulate the query in order to get the answer.

To summarise, the major challenges when building NLIs to conceptual mod-

els are:

• Ambiguity : unambiguous transformation from a NL query into a for-

mal query.

• Robustness/Expressiveness: supporting query variations which have

the same meaning although expressed using different constructions.

• Portability : being able to easily port an NLI system from one domain

or ontology to another.

• Keeping the supported language intuitive.

• Hiding complexities of the queried knowledge structure: showing results

without imposing users to the underlying complexities of the structured

knowledge.

• Guiding the user through the process of formulating queries.

1.3 Contribution

This thesis reports work from a research programme on minimal-lexicon CNL

and NLIs to structured data. This programme began in 2003 as part of the

Semantic Knowledge Technologies project3, and was initially concerned with

how to reduce the costs and lack of flexibility associated with the need to

provide precise and extensive lexical data for each CNL system. NLI and

CNL systems are increasingly relevant for information systems fronting rich

structured data stores such as RDF and OWL repositories, largely because

3http://www.sekt-project.com/
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of the complexity and syntactic unfamiliarity of the underlying triple models

and the query languages built on top of them.

The first result from the work was CLOnE, a Controlled Language for

ONtology Editing [Tablan et al., 2006, Funk et al., 2007], which proved

capable of expressing simple ontologies in an English-like language without

a sophisticated lexicon (only a fairly small number of key terms and phrases

stored in a gazetteer were required). The work reported in this thesis built on

this concept and has resulted in two further systems, QuestIO and FREyA.

These two systems, their design, implementation, comparison with related

work, and quantitative performance evaluation form the core contribution

of the thesis.

QuestIO, a Question-based Interface to Ontologies [Damljanovic et al.,

2008, Damljanovic and Bontcheva, 2008, Tablan et al., 2008], turns from

the construction and editing of the knowledge store (as in CLOnE) to the

querying of the data. As with the previous work our motivation was to pro-

vide simpler interfaces (as noted above the leading query language, SPARQL,

is prohibitively complex for casual users) while avoiding the cost of produc-

ing and maintaining a separate sophisticated lexicon. In this case we are

working in the context of existing semantic resources (authored in CLOnE

or extracted automatically from text, or generated by other tools and pro-

cesses). Our approach was therefore to use the terminology explicit in the

ontology and the knowledge base, along with the structural relationships be-

tween concepts and the properties of concepts (and a CLOnE-like mechanism

for analysing key terms and phrases such as “how many...?”).

With QuestIO we have addressed the following challenges:

• Ambiguity : QuestIO resolves ambiguities automatically, based on a

ranking derived from the ontology structure. The ranking is based on

an algorithm which combines similarity measures based on ontology

hierarchy with existing algorithms for string similarity.

• Portability : the domain lexicon is extracted automatically from the

ontology and the knowledge base and no customisation is necessary.

This approach is very similar to the existing approaches used in the

NLIs developed at about the same time as QuestIO. The component

10
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implemented for this purpose is a gazetteer called OntoRoot Gazetteer,

which became a GATE plugin in 2007 and since then is used extensively

by the GATE users. Its main application is the semantic annotation

based on the provided ontology/knowledge base.

• Expressiveness: the supported query language allows different ways of

expressing the same meaning as long as the question terms exist in the

domain lexicon. QuestIO is one of the first NLIs for the semantic web

which supports relaxed queries (ill-formed or incomplete) as well as

the full-blown grammatically correct questions. This flexibility comes

from the above mentioned gazetteer. The other similar system with

respect to expressiveness of the language is NLP-Reduce [Kaufmann

et al., 2007], which is developed in Zurich at about the same time.

QuestIO is evaluated on two domains:

• General knowledge data from KIM [Popov et al., 2003], which contains

facts about people, organizations, geographical locations and the like.

• Software engineering data created in the TAO project (Transitioning

Applications to Ontologies4) and with the questions from users in that

project.

The results were both positive and negative. On the positive side, our

performance was as good or better than related systems (we have performed

comparative evaluation with AquaLog [Lopez and Motta, 2004, Lopez et al.,

2007], a mature query system from the Open University). On the negative

side:

• Resolving ambiguities automatically relies heavily on the ontology

structure and hence only results in good performance for small and

manually crafted semantic resources, while for larger repositories the

query execution time for some queries can be intolerable.

• The expressiveness of the supported query language (language cover-

age) was sufficiently limited as to regularly cause problems for users:

4www.tao-project.eu
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the vocabulary used by the users often differed from the lexicon derived

from the semantic resources.

QuestIO and its evaluation forms the first half of our work.

The second half of the work was motivated by the problems just referred to,

and also by the challenges which have arisen when using this technology to

query resources from the Linked Open Data initiative. It became clear that

the significance of our work would be increased if we could develop mecha-

nisms that were appropriate to work with the large linked data, as well as

with manually-crafted data. We investigated whether user interaction cou-

pled with deeper syntactic analysis and usability methods such as feedback,

extending vocabulary, and query refinement can be used in combination to

improve the usability of NLIs to conceptual models. These form the base

of the FREyA system: Feedback, Refinement and Extended VocabularY

Aggregation [Damljanovic et al., 2009, 2010a,b, Damljanovic, 2010]. Work

on FREyA is reported in two parts:

• In the first part we further address the problem of ambiguity by com-

bining automatic ranking (as in QuestIO) with the user’s selections.

Our approach of solving the ambiguity by involving the user into di-

alog is very similar to the ones used in AquaLog [Lopez and Motta,

2004, Lopez et al., 2007] and Querix [Kaufmann et al., 2006], with

the difference in the underlying ranking and automatic disambigua-

tion mechanisms which precede the dialog. However, the approach of

using the dialog to show feedback to the user is novel and has not been

researched extensively. We explore the effect of feedback, by showing

the user the list of system interpretations of the query and the context

from which the answer is derived. Unlike QuestIO, which is fully au-

tomatic and does not give the opportunity to the user to validate the

machine interpretation, in FREyA the user can choose alternatives if

the one selected by the system does not seem valid. This approach has

been evaluated in the task-based user-centric evaluation which specif-

ically assessed whether the new usability features of FREyA had any

effect in comparison to QuestIO. The evaluation was conducted using

two domains:

12
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– software engineering : which is used in the evaluation of QuestIO;

the data have been generated in the TAO project mentioned above

– US geography : the Mooney GeoQuery dataset5 which has been

extensively used for evaluation of NLIs to databases and recently

for NLIs to ontologies/knowledge bases

• The second part is concerned with

– improved ambiguity resolution: disambiguation is moved from

the query interpretation level to the concept interpretation level :

instead of trying to automatically interpret the whole question at

once, we are interpreting each concept individually, and engaging

the user in the dialog only if necessary. This way, we reduce

the cognitive overhead for the user, while at the same time each

query is interpreted in one unambiguous way where the user is in

control.

– the more expressive query language: our approach enriches its

own lexicon (generated from RDF data, and extended by Word-

Net [Fellbaum, 1998]) from the user’s language. The lexicon en-

richment is powered by a light learning model, which is designed

in a way that can be reused by other NLI systems. Our approach

of extending vocabulary is more generic than existing approaches

which focus on mapping question terms to ontology relations, ex-

amples include AquaLog and ORAKEL [Cimiano et al., 2007].

– the deeper grammar analysis: while QuestIO uses very shallow

NLP, FREyA uses the parsed syntax tree in combination with

the ontology-based lookup in order to interpret NL questions.

We implemented a novel consolidation algorithm which attempt

to automatically merge the results of the two processes.

– learning from the users: our learning algorithm is a novel ap-

proach to using the ontology as the context for improving the

system over time and learning to map query terms to ontology

concepts and relations. Other similar approaches exist but they

5The original dataset is available from http://www.cs.utexas.edu/users/ml/nldata.

html. The dataset used in this thesis is available from http://www.ifi.uzh.ch/ddis/

research/talking-to-the-semantic-web/owl-test-data/.
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model the context differently and also focus on personalising the

vocabulary (e.g., AquaLog).

– ranking algorithms: each dialog consists of a term which needs to

be resolved, and a list of suggestions for the user to choose from.

The ranking which is implemented is used to reduce the cognitive

overhead and combines existing string similarity algorithms with

the synonym detection based on WordNet.

– the dialog sequence: answering a question correctly might require

more than one dialog to be modelled. Selecting the order in which

to model dialogs can significantly affect results. We implemented

a novel algorithm for deciding in which order the concepts will be

disambiguated or mapped to an ontology concept/relation.

– the scope in QuestIO was limited to using one RDF document at

the time. In FREyA we extend the scope by making it flexible in

terms of the number of ontologies that can be queried. Indeed, it

is possible to connect to a remote repository using FREyA (e.g.,

using a SPARQL endpoint) as well as to load a set of RDF doc-

uments (ontologies and knowledge bases) locally into its internal

repository. Most of the existing NLI systems were evaluated us-

ing one domain at the time, with the exception of the PowerAqua

[Lopez et al., 2009b] system, which evolved from AquaLog. Pow-

erAqua aims to serve as a Question-Answering system for the

Semantic Web and was evaluated in the open-domain scenario

[Lopez et al., 2011] (e.g. through querying the semantic resources

indexed by Watson [d’Aquin et al., 2007]).

– showing feedback to the user : the concise answer is derived based

on the novel algorithm for identification of the answer type which

does not require strict adherence to syntax. Hence, although the

user does not have to enter a grammatically correct question, the

ontology structure in combination with the grammar analysis is

used to correctly identify the answer type. In addition, the user

is presented with all concepts and relations that are used before

the concise answer is derived.

FREyA was evaluated with the Mooney GeoQuery dataset for the sake of
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comparison to other similar systems such as PANTO [Wang et al., 2007],

NLP-Reduce [Kaufmann et al., 2007] and Querix [Kaufmann et al., 2006].

FREyA outperformed all other similar systems (although it required dialog

with the user).

In conclusion, our key findings are that:

a) combining syntactic parsing with ontology-based lookup in

an interactive process of feedback and query refinement can

increase the precision and recall of NLIs to ontologies/-

knowledge bases, while

b) reducing porting and customisation time by shifting

some tasks from application developers to end-users

It is important to distinguish the usability of Natural Language Interfaces

from the point of view of application developers who are customising the

system, and end-users who are querying the system. While addressing ambi-

guity and expressiveness the NLI system becomes more usable for end-users,

the portability issue is tightly coupled with the usability from the application

developer’s point of view. The less time the application developers spend

customising the system, the more usable it becomes from their point of view.

Our proposed methods attempt to strike a balance between heavy customi-

sation, and the end user needs to explore the available knowledge without

being constrained by the query language.

The rest of the thesis is structured as follows:

Part I introduces Natural Language Interfaces to Conceptual Models and

contextualises our work in relation to that of others in this and related

fields:

• Chapter 2 briefly introduces conceptual models and the interfaces

which are used for browsing them.

• Chapter 3 reviews the history of Natural Language Interfaces including

NLIs to databases, open-domain Question-Answering systems, inter-

active NLIs, and NLIs to ontologies.

15
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• Chapter 4 outlines evaluation strategies for Natural Language Inter-

faces, making clear the distinction between the point of view of devel-

opers customising NLI systems, and users who are querying them.

Part II details and analyses the approaches which have been applied by

previously existing NLIs:

• Chapter 5 reviews Natural Language Interfaces to ontologies (with

special attention to their customisation).

• Chapter 6 reviews and classifies existing methods for increasing the

usability of NLIs from the end-users point of view.

Part III describes our approach to Natural Language Interfaces to ontologies:

• Chapter 7 details the design and evaluation of QuestIO.

• Chapter 8 reports our initial FREyA design, the implementation of

feedback, and its evaluation with users.

• Chapter 9 reports the final FREyA design, the evaluation of its sub-

components, and of the system as a whole.

Part IV concludes with a summary of the contribution of the thesis (Chapter

10) and plans for future work (Chapter 11) in our research programme.
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Chapter 2

Conceptual Models

2.1 What are Conceptual Models?

The inventor of the World Wide Web (WWW), Tim Berners-Lee, proposed

a new generation of the Web [Berners-Lee, 1999], called the Semantic Web,

where data has well-defined meanings expressed in a form that can be easily

interpreted by both computers and people. The idea is to have data on the

Web defined and linked in such a way that it can be used for more effective

discovery, automation, integration, and reuse across various applications

[Guha et al., 2003]. As envisaged by Guha et al. [2003], the Semantic

Web will contain resources corresponding not just to media entities (such

as Web pages, images, audio clips, etc.) as the current Web does, but also

to objects such as people, places, organisations and events. Furthermore, the

Semantic Web will define structured relations, not just hyperlinks, among

the different types of resources mentioned above. Each resource can have

metadata attached to it.

The metadata is usually described using a special language which is capable

of expressing concepts and the different relations between them. These to-

gether form conceputal models or an ontology which is defined as “an explicit

specification of a conceptualisation”[Gruber, 1993], where conceptualisation

is “an abstract, simplified view of the world that we wish to represent for

some purpose”.

In other words, an ontology formally describes a domain of discourse by
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defining concepts and how they relate to each other. For example, in the

domain of tourism, a set of concepts which are frequently used are: tourists,

destinations, and events, while one of the relations which describes a connec-

tion between a tourist and a destination is interestedIn, so that using formal

expressions it can be expressed as

TOURIST <interestedIn> DESTINATION

This is an example of the basic element of an ontology which is a triple, with

the form

SUBJECT <predicate> OBJECT

Creating instances of ontology classes and connecting them using ontology

relations (predicates) leads to generating a knowledge base – as previously

discussed in Chapter 1, ontologies and knowledge bases are usually published

together and hence both terms are used interchangeably in literature to refer

to both the schema and the data.

W3C organisation recommends OWL, The Web Ontology Language, as a se-

mantic markup language for publishing and sharing ontologies on the World

Wide Web1. Early knowledge modelling languages include F-logic [Kifer

et al., 1995], OCML [Motta, 1999], DAML+OIL [Horrocks, 2002] and oth-

ers.

Ontologies facilitate semantic search [Davies et al., 2002]. Semantic search

is an application of the Semantic Web to search, and it attempts to augment

and improve traditional search results (based on Information Retrieval tech-

nology) by using data with explicit semantics from the Semantic Web [Guha

et al., 2003].

Starting with the initiative of the Linked Open Data2 project, the term

Linked Data gained in popularity. According to the definition from the Web

site of Linked Open Data project, the term Linked Data refers to a set of

best practices for publishing and connecting structured data on the Web. The

Linked Data project can be seen as a simplification of the initially proposed

1http://www.w3.org/TR/owl-ref/
2http://linkeddata.org/
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idea of the Semantic Web. Described by Tim Berners-Lee (who has also

been credited for coining Linked Data term), Linked Data is “the Semantic

Web done right”.

2.2 Browsing Conceptual Models

One of the most popular tools which, among other features, allows browsing

ontologies and knowledge bases is Protégé3. For querying, users can use a

template-based form where they specify parts of a triple they are interested

in, and the missing parts will be given as a result - if found in the semantic

repository. Another way to query an ontology with Protégé is by writing

SPARQL queries: results are given in the form of triples. This platform

is very useful for experts who are familiar with query languages although

they also have to be experienced Protégé users. In comparison to Protégé,

KIM [Popov et al., 2003] goes one step further in simplifying the browsing

process – it provides predefined query templates, where users can construct

SeRQL queries using a form-based interface. Consequently, users are either

restricted in what they can search for, or they need to be familiar with the

underlying ontology structure.

At almost the same time as KIM, the TAP system was developed [Guha

et al., 2003]. The idea of TAP is to enable browsing and searching for the

specific semantic resources. Two graphical interfaces for querying ontologies

have as a starting point the node which is described by a URI , and they

return a graph describing the given URI. The third interface of TAP is called

Search – it takes a string as an input and returns all resources whose title

properties contain the string. Title property is specific to the TAP knowledge

base. A more widespread approach nowadays is to use the property rdfs:label

for the same purpose.

TAP interfaces were tested with RDF files maintained by W3C. In addi-

tion, for larger applications dealing with musicians, athletes, places, and so

forth, HTML scrapers are built to get the data from the popular sites such

as Amazon or AllMusic. That is, their Web crawler is dynamically locating

3http://protege.stanford.edu/
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and converting relevant pages into machine readable data so that they be-

come available for search by the TAP interfaces. The dynamically created

knowledge base contains many millions of triples.

While trying to improve traditional search by using a denotation of the

search term, Guha et al. [2003] encounter the following problems:

Denotation: determining the concept denoted by the search query is not

straight-forward. The biggest problem is ambiguity, which is solved by

preferring some denotations driven by a few heuristic rules, for exam-

ple: popularity of the term (Paris as the capital of France preferred

to Paris in Texas), the user profile, and the search context. Another

problem is related to what is called a complex search term: the subsets

of the search term map to different nodes. For example, to cite example

from [Guha et al., 2003] the query “eric miller rdf” can be broken down

into “eric miller”+”rdf”. The first mapping to the node corresponds

to the person Eric Miller and the second mapping to the Resource De-

scription Framework. Due to the complexity which arises with having

several terms together in a query, complex terms are restricted to two

denotations only.

What to show: which data to pull from the semantic web and in which

order to present them. The node that is the selected denotation of

the search term provides a starting point. The next problem is which

subgraph around this node to show. A more balanced subgraph is

produced by using heuristic rules based on the average branching factor

(i.e. bushiness) of the graph around the anchor node.

In the GetData interface, for example, there is a possibility to cus-

tomise the system by specifying which properties should be shown with

each resource. These properties are then presented first. If nothing is

specified, the TAP shows all available properties. The problem with

this approach is that it is very difficult to know the names of proper-

ties in advance – the user must be very familiar with the structure and

available knowledge in order to perform this customisation. However,

when a system is not customised and the queried knowledge is large

this approach might confuse the user rather than help find what is

being searched for.
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Presentation : the main problem is how to present the resulting

data/triples.

Seven years later, these problems remain big challenges for semantic search

and browse interfaces as we will discuss later in this thesis.

Probably due to its visual similarities to common search engines, TAP Search

interface has received a lot of attention. The main goal with this interface

was to make search engines capable of interpreting the different occurrences

of the same input string as different semantic concepts. In Search interface,

this problem is solved by asking the user to choose between available options.

Four types of question are supported by the TAP:

1. Entity search e.g. Johnny Depp

2. Comparison of entities e.g. buildings taller than the Tower Bridge

3. Attributes of entities e.g. birthday of Johnny Depp

4. Group queries e.g. birthday of Johnny Depp and Nicole Kidman or

countries with population greater than 100 million

These four types of questions are handled by 37 patterns which contain the

rules of how to handle and answer them. If the input query/question is

not recognised as belonging to one of these 37 patterns, the answer is not

returned.

The user-centric evaluation of the TAP Search interface revealed how dom-

inant the influence of search engines on casual users is. According to the

evaluation presented in da Costa et al. [2005], it appears that users expect

the semantic search interface to be similar to that of the search engine’s.

Namely, the first prototype of TAP Search interface rendered the results

on the right side of the page, and information about ontology entities (the

position of the queried entity inside the ontology) on the left. After the

evaluation, this was changed as it was disliked by users, who “learnt” to

ignore the right side, as that is the place for advertisements. TAP changed

the interface so that the results are shown underneath the query, in a similar

way to popular search engines like Google or Yahoo.

21



Chapter II: Conceptual Models

With regard to the previously mentioned form-based interfaces they are

convenient for repetitive searches but not for ad hoc queries [Tran et al.,

2010]. Faceted search is very similar to form-based, with the difference that

facets are generated dynamically based on the user’s query, and are not

predefined such as in the case of forms. It has been argued that faceted

search browsers are extremely helpful in cases when the user’s information

need is vague [Mäkelä, 2006]. The example of faceted search is displayed in

Figure 2.1, which is a screenshot of the museumFinland portal4, which uses

this kind of interface for searching data about three museums in Finland.

Even without any intention to search, the user can browse the available

categories and explore the knowledge step-by-step. Different approaches can

also be combined such as in Wang et al. [2009] where the authors introduce

a hybrid query which combines a keyword query with the precise structured

query.

Figure 2.1: The initial search page from the MuseumFinland portal

Ontotext5 developed several interfaces for exploring a part of Linked Data,

including RDF Search. RDF Search is powered by an auto-complete option

(see Figure 2.2), the implementation of which is based on Lucene6 used to

index the underlying knowledge. While the user is typing in a string or a

URI, the suggestions generated by indexing the available knowledge will be

offered to the user. These suggestions are generated not only by considering

4http://www.museosuomi.fi
5www.ontotext.com
6http://lucene.apache.org
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available URIs and the local names, but also the labels, and literals used to

describe nodes.

Figure 2.2: RDF Search by FactForge (www.factforge.net)

The most powerful way to query OWL/RDF ontologies is still SPARQL,

however, it does remain complex and is time-consuming even for experts.

The Franc Inc.7 company developed a graphical interface (Gruff, Allegro-

Graph triple-store browser) where the user can drag-and-drop nodes and

combine them in order to generate SPARQL. A sample graph displaying

parts of an ontology from the geography domain is shown in Figure 2.3.

While graph-like structure appears to be the most natural way to display

RDF graphs, displaying large amounts of data remains tempting, for example

to show all mountains in Figure 2.3. The user unfamiliar with graphs might

be confused by having two or more nodes with the name Mountain and

wonder whether there is any difference between the two. Designers of user

interfaces must make a presentation choice which is in-line with expectations

of their users.

Many systems support semantic search over documents, including the above

mentioned TAP and KIM, the SHOE Search tool [Heflin and Hendler, 2000],

the DOPE Browser [Stuckenschmidt et al., 2004] (see Figure 2.4), SemSearch

[Lei et al., 2006], or a system developed by Ding et al. [2006]. While a

7http://www.franz.com/
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Figure 2.3: The Gruff interface showing the Mountain concept from the
geography domain ontology

considerable amount of work has been done in this area, our focus is on

browsing conceptual models and thus the interfaces for semantic search over

documents will not be discussed further in this thesis.

Summary Many interfaces have been developed for browsing and searching

RDF spaces. The range varies from form-based, faceted searches to graphical

interfaces, and also keyword-based and Natural Language Interfaces. While

graphical interfaces put some limitations on the users in terms of what can

be queried, free text searches and Natural Language interfaces seems more

intuitive and less constrained.
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Figure 2.4: The DOPE Browser: searching for documents related to ‘aspirin’
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Chapter 3

Natural Language Interfaces:

a Brief Overview

Research in the area of Natural Language Interfaces (NLIs) has been around

for more than four decades. From the end-users point of view natural lan-

guage is easy to use as it is used everyday in human to human communi-

cation, and is therefore considered as a useful and efficient way for people

to interact with computers [Ogden and Bernick, 1997]. NLI systems have

Natural Language questions as input and are built for various purposes.

Most of them are concerned with the knowledge access problem, and among

these, they further differ in terms of the underlying knowledge structure,

and therefore can be grouped into three main categories:

NLIs to structured data. NLIs to structured data allow users to interact

with a system using written or spoken language (e.g. English) to per-

form tasks that usually require knowledge of a formal query language.

The intention behind building NLIs to structured data is enabling users

with no knowledge of formal languages to use them with minimal (ide-

ally no) training. These systems are often domain-specific, and are

usually referred to as closed-domain question answering systems. Two

major subgroups include:

• NLIs to relational databases (NLIDBs) translate Natural Lan-

guage into SQL in order to retrieve answers from the database.
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Most of the developed NLIs to structured data belong to this

group (e.g., [Popescu et al., 2003], [Thompson et al., 2005], [Hal-

lett et al., 2007], to mention a few recent ones). Recently, these

evolved towards interfaces to semantically-richer data in the form

of ontologies.

• NLIs to ontologies translate a Natural Language query into the

formal query language which is used to retrieve the knowledge ex-

pressed in one of the knowledge representational languages (such

as OWL). The most common query language is SPARQL. Re-

cently developed systems include ORAKEL [Cimiano et al., 2007],

AquaLog [Lopez et al., 2007] and PowerAqua [Lopez et al., 2009b],

PANTO [Wang et al., 2007], and Querix [Kaufmann et al., 2006].

NLIs to unstructured or semi-structured data differ from the previ-

ous group in that they do not translate the Natural Language query

into any formal language but they rather process the collection of doc-

uments (e.g. News articles on the Web, or Frequently Asked Questions

as in Burke et al. [1996]). However, similar to the previously mentioned

NLIs, the aim of these systems is to also find the answer to the question

posed by the user. The most prominent systems of this kind are open-

domain Question-Answering systems which process large collections of

documents in order to find answers. Examples include MURAX [Ku-

piec, 1993], MULDER [Kwok et al., 2001], and AnswerBus [Zheng,

2002]. Another group which belongs here are Reading Comprehen-

sion systems such as Deep Read [Hirschman et al., 1999], which are

used to test the reading level of children. They find the answer to the

set of questions related to a story which is written in simple Natural

Language.

Interactive NLIs are systems which are used for dialogue systems [Cimi-

ano et al., 2007], e.g., a chat bot called Asimov which answers simple

questions in English (http://asimovsoftware.com). These kind of

systems do not consider a set of questions as an independent collection,

but rather act as agents or robots which are involved in a conversation

with the user, with the capability to remember the sequence of previ-

ously asked questions, and to interpret the input from the user, and
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learn the answers to questions which they could not answer before.

These are more challenging to develop in comparison to the previously

mentioned NLIs, due to the requirement to model multiple conversa-

tional turns. These turns can refer one to another, and such systems

must have the ability to remember and respond to all this context.

Lastly, a few NLI systems are developed for purposes other than knowledge

access, such as systems to replace a programming language, e.g., the NLC

system [Alan W. Biermanna and Sigmon, 1983].

In order to put the work of NLIs to ontologies in the context of similar

systems, we give an overview of NLIDBs (Section 3.1), Question-Answering

systems (Section 3.2), and interactive NLI systems (Section 3.3). We end

this chapter with a discussion of how these systems can benefit from each

other, and how NLIs to ontologies can be used to boost the performance of

other similar systems (Section 3.4).

3.1 Natural Language Interfaces to Relational

Databases

First NLIs to relational databases were developed in the late 1960s and

early 1970s, among which the most popular was LUNAR [Woods et al.,

1972]. LUNAR was built on the top of a database about chemical analysis

of moon rocks. Soon after, several other systems were developed such as

dialogue-based RANDEZVOUS [Codd, 1974] which is capable of generating

clarification dialogs with multiple choice in case it fails to parse the question,

and LADDER [Hendrix et al., 1978] which was targeted at large and dis-

tributed databases. An impressive feature of LADDER was use of semantic

grammars, similar to PLANES [Waltz, 1975, 1978] which answers questions

related to airplane maintenance and flight histories. However, this feature

had a trade-off which is the requirement to develop a new grammar for each

new application domain. PLANES was based on the principles that the in-

put should be non-restrictive for the user (for example, supporting ellipsis

– omission of one or more words that can be understood in context), and it

also used the dialogue-based features developed by RANDEZVOUS.
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In the 1980s, NLIDBs continued to be a popular topic for research with the

main focus on portability – at this time many systems have been developed

such as

• CHAT-801 which translated the limited subset of NL queries into a

Prolog internal database [Warren and Pereira, 1982].

• TEAM [Grosz et al., 1987] which was translating NL queries into

SODA query language.

• PARLANCE [Bates, 1989a] can be configured by hand or using a

component called Learner, which is used to generate domain specific

configurations.

According to Grosz et al. [1987], “One of the main functions of the NLI is to

make the necessary transformations and thus to insulate the user from the

particularities of the database”. This seemed to be a very hard task, due

to many different designs and ways the data can be encoded in the specific

structure such as the database schema.

Although several systems have proved to have a great performance especially

in particular application domains, the uptake in industry was very slow

[Androutsopoulos et al., 1995] – it has not become a standard option for

users of DBMS, although several commercial options have appeared. One

example is INTELLECT [Harris, 1984], which is capable of translating the

NL query into SQL. An example which is used to motivate the usage of

INTELLECT in commercial applications is illustrated in Figure 3.1.

As described in Kho [2008], one of the first users of INTELLECT were

employees of the Hartford Hospital – one of the largest teaching hospitals

and tertiary care centres in New England. Due to the data about patients,

doctors and procedures being stored in databases, they were closely con-

trolled by the IT department and it was not possible for domain experts

to perform ad hoc queries that could answer critical questions e.g. about

identifying new cases of hospital-acquired infections. Therefore, in order to

enable easy querying using Natural Language, they deployed INTELLECT

1The code of this system is available from http://nltk.googlecode.com/svn/trunk/

doc/howto/chat80.html
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Figure 3.1: A sample session with INTELLECT, the example taken from
[Harris, 1984][p. 45]

– a product from Artificial Intelligence (AI) Corporation which was founded

by Larry Harris, Ph.D., who sold it and founded EasyAsk about ten years

later. The company was acquired by the Progress Software Corp. in 2005

and now offers solutions for e-commerce sites, including EasyAsk for the

Enterprise – which gives a natural-language based access to data and con-

tent. In Hartford Hospital, EasyAsk was first deployed in the payroll and

microbiology department, where the users could get answers to questions

such as how much vacation time was accrued in a particular department,

on what date did a particular employee begin working for purposes of em-

ployment verification, or have access to hospital-acquired infections or other

patient information through the use of Natural Language queries. EasyAsk

is used by many other customers, the full list is available on their website:

http://www.easyask.com/customers/index.htm.
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In the 1990s, the field of NLIDBs focused on learning approaches, with the

work from Mooney and colleagues being dominant. Mooney researched ma-

chine learning methods, in order to answer the question of whether semantic

grammars can be automatically generated from the available examples in

the specific domain [Zelle and Mooney, 1993]. Semantic grammars have

been successfully applied in NLIDBs, however, as previously discussed, each

new domain required newly written grammars – the size of the grammar

needed by general applications can make the manual construction infeasible.

Also, according to Mooney [1999], in addition to studying syntactic parsing

extensively, researchers should focus on understanding the logical represen-

tation of the sentence meaning. This logical representation is usually what

is strongly related to the underlaying structure of the knowledge (e.g. the

structure of the relational database or the ontology).

The early work of Mooney focused on applying Inductive Logic Programming

[Zelle and Mooney, 1993, 1996] which is tested within a system called Chill.

The input to Chill is a set of questions paired with the respective parses.

This set is used to train parsers map NL database queries into executable

logical form. According to Mooney [1999], it is a growing trend in compu-

tational linguistics to focus on shallow but broad-coverage NL tasks. Logic

based learning can be used to develop narrower, domain-specific systems

that perform deep processing. Although this learning approach is applied

to NLIDBs, the query language to which the natural language queries are

transformed is in a logical form, rather than SQL. This is because the log-

ical form is more straight-forward to be mapped from Natural Language

and in addition, translating from an unambiguous logical form into query

languages such as SQL can be easily automated [Zelle and Mooney, 1996].

In [Zelle and Mooney, 1996], the authors describe experiments in the do-

main of United States geography. This was motivated by the availability of

the system called Geobase, which was included in the commercial Prolog for

PCs (Turbo Prolog 2.0, Borland International 1988), and was a NLI for a

simple geography database. The Geobase data covered information about

the United States: population, area, capital cities, states, rivers, the highest

and the lowest points and their elevations. A sample question and its query

representation in Prolog look like the following:
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NL: What are the major cities in Kansas?

answer(A,(major(A),city(A),loc(A,B),const(B,stateid(kansas)))))

The system they developed is still available as an online demo at http:

//userweb.cs.utexas.edu/users/ml/geo-demo.html.

Other approaches for learning the semantic parsers include application of

machine learning for learning from ambiguous data [Kate and Mooney, 2007],

and also the application of statistical methods such as in Miller et al. [1996]

and Wong and Mooney [2006].

The Mooney GeoQuery database was used for evaluation of many systems

including PRECISE [Popescu et al., 2003], which focused on portability.

The demo of PRECISE is available from http://www.cs.washington.edu/

research/nli/. The lexicon in PRECISE is generated by automatically

extracting value, attribute, and relation names from the database. The

authors mention that they manually augmented the lexicon with relevant

synonyms, prepositions, etc. [Popescu et al., 2004]. The work in Popescu

et al. [2003] focuses on precision, highlighting that PRECISE can distinguish

between the questions which it can understand and those it cannot. In the

comparative evaluation with the Inductive Learning Programming (ILP) by

Tang and Mooney [2001] and also with the Microsoft’s English Query (EQ),

using Mooney GeoQuery, Job and Restaurant datasets, PRECISE made

no errors thus outperforming the ILP approach, while both systems were

significantly better than Microsoft’s EQ.

Precision was also a concern for the NLIDB that assists users by offering

auto complete options while users are entering the text presented in Hallett

[2006]. Users are guided through the available kinds of questions that can

be handled by the system. In a way, users are limited because questions are

chosen from the finite set of inferred queries. Their tool automatically infers

the set of possible queries that can apply to a given database. On the other

hand, the idea of helping users with available options for a query appears

to be promising, especially in cases when the user is not familiar with the

domain knowledge.

Finally, recent years have seen online systems such as Wolfram Alpha (http:

//www.wolframalpha.com/) answering factual queries directly by comput-
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ing the answer from the structured data, rather than providing a list of docu-

ments or web pages that might contain the answer as a search engine would.

Another system of this kind is Powerset (http://www.powerset.com/). On

May 11, 2008, the company unveiled a tool for searching a fixed subset of

Wikipedia using conversational phrases rather than keywords. On July 1,

2008, it was purchased by Microsoft. Another recent online service of this

kind is TrueKnowledge (http://www.trueknowledge.com) which is powered

by semantic technologies. Answers are found in two main sources: informa-

tion that has been imported initially and facts added by users.

With regard to architecture of NLIDBs, there are several kinds of systems:

• Pattern-matching systems are simple to design but prone to return

incomplete answers if they recognize certain patterns but not the whole

sentences. For instance, in What is the capital of France? if the system

does not have a pattern for capital followed by Country, but has a

pattern for capital only, it might list all capitals it has in its knowledge

base.

• Syntax-based systems map the parse tree of the question into the formal

language directly.

• Semantic grammar systems map the parse tree into the formal lan-

guage, but the non-leaf trees are not referring to syntactic but semantic

concepts. The advantage of such systems is that they can have a high

performance, but the downside is that they are not easily portable.

• Intermediate representation language systems translate a NL query

into an intermediate logical query, expressed in some internal meaning

representation language and independent of the database structure.

This logical query is then translated into the formal query language.

In such systems, the syntax rules which link non-leaf nodes in the parse

tree into the semantic rules is usually domain-independent, while the

leaf nodes and logic expressions corresponding to them are domain-

dependent, and are found in the lexicon.
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3.2 Open-domain Question-Answering Systems

Studying Question-Answering (QA) systems goes back to as far as 1965,

when Simmons [1965] reviewed the existing question-answering systems for

English, which had been developed in the period between 1960 and 1965

[Greenwood, 2006][p.11]. After almost fifty years, the problem of how to

automatically answer questions, similar to how would human do it remains

challenging. While these early question-answering systems were extracting

answers from the database by computing it (e.g., LUNAR and others men-

tioned in the Section 3.1), open-domain question-answering systems came

later and were finding the answer in free-text (a set of documents) [Webb

and Webber, 2009].

One of the first systems was MURAX [Kupiec, 1993], which was capable of

answering closed-class questions. A close-class question is a direct question

whose answer is assumed to lie in a set of objects and is expressible as a noun

phrase. e.g. Who’s won the most Oscars for costume design?. The answers

are found in Grolier’s on-line encyclopaedia2. MURAX was evaluated with

70 questions, which are factoid questions starting with What or who. The

correctness was 53%.

With the emergence of the WWW, the popularity of open-domain QA sys-

tems has increased. Unlike Information Retrieval systems, such as Google,

which search for the list of relevant documents to the user’s query, QA sys-

tems search for the answer to the user’s question (which might be located

within the collection of relevant documents).

However, majority of QA systems do rely on the Information Retrieval com-

ponents. Question-Answering systems usually consist of three modules: a

question processing module, a document processing module, and an answer

extraction module. The task of returning a concise answer from a set of

documents is different from that in Information Retrieval, or Information

Extraction, but requires a combination of the two and depends on both

[Strzalkowski and Harabagiu, 2006]. In the question processing module, the

question is translated into a set of keywords which are then passed on to

an Information Retrieval engine to retrieve relevant documents (those that

2http://teacher.scholastic.com/products/grolier/index.htm
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may contain the answer). The document processing module then identifies

the passages in these relevant documents, in which the answer is most likely

to be found. Finally, the answer extraction module extracts the snippet

which represents the answer to the posed question.

Most QA systems contain a classifier module which detects a question cate-

gory, based on which, each question is assigned an answer type. This classi-

fication often relies on Machine Learning approaches, which require a large

amounts of data in order to work effectively. Moreover, classical question-

answering approaches do not often apply to all domains. For example, in Niu

et al. [2003] the differences between general and medical QA are outlined.

Evaluation of open-domain QA systems was the subject of the competi-

tive evaluation TREC, Text Retrieval Conference (http://trec.nist.gov).

This initiative started in 1999 with TREC-8, and ran on a yearly cycle until

2007. Participating systems have been given a corpus and a set of questions,

for which they had to return the two types of answer lengths: 250 and 50

bytes. The former one was usually easier as all evaluated systems had the

better performance when returning the larger snippet of text. Clearly, these

were not always exact answers but more snippets of text which contained

the answer. This changed in TREC 2002, when the additional requirement

was that the systems must return the exact answer [Voorhees, 2003].

The results of the first large-scale evaluation of QA systems in TREC-8 was

with fact-based, short-answer questions [Voorhees, 1999]. The most accurate

system in the more difficult 50-bytes run, was from Cymfony, Inc. which

returned the answer in 72.72 % (144 out of 198 questions) of the cases. The

Mean Reciprocial Rank of 0.66 indicates that if the answer was returned it

was almost always correct. A very similar performance had the system from

Southern Methodist University, returning an answer in 68.18 % of the cases,

with an MRR 0.555.

TREC-9 was similar to the previous track, with the main difference in the

number of questions (500, plus 198 reformulated questions) and also in

the way the questions are obtained. While for the TREC-8, the questions

were artificially generated by humans looking into documents and generating

questions, the TREC-9 questions were extracted from various user logs such
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as that from Excite3. The best system was Falcon from Southern Methodist

University which answered 65% of questions correctly, with other systems

ranked much lower at 42%. The lower performance than in the previous

year is not suprising – given that the tasks were harder; questions were not

generated artificially but collected from the users [Voorhees, 2000].

Each year, TREC QA Track was designed to be more challenging and to

bring new previously unseen complexities such as the inclusion of questions

where the answer does not have to be in the collection in TREC-10 (2001)

and to include questions for which the answer is scattered among several

documents [Voorhees, 2001]; the requirement that the answer is exact answer

and not the text snippet which contains the answer in TREC 2002; and also

the consideration of context questions, see Figure 3.2.

Figure 3.2: A sample context question introduced in TREC 2002 (the exam-
ple from [Voorhees, 2002])

TREC 2003 contained list and definition questions [Voorhees, 2003]. In 2004,

the addition was the grouping of the factoid and list questions into different

series, where each series is associated with a target and the question in

the series is asking for some information about the target. The target was

a person, an organization, or a thing that was a plausible match for the

scenario assumed for the task. An example of series questions is illustrated

in Figure 3.3.

A new addition in TREC 2005 was the new target featuring events, and the

new tasks for document ranking and relationship retrieval. TREC 2006

systems were required to give the most up-to-date answer found in the

corpus. This restriction was more in line with the real world, where users

would want the best, and not just any answer to their question. Relationship

3Excite was one of the first companies to become famous on the Web in the “dotcom”
boom, together with Yahoo, Lycos, and Netscape. Today it is a portal offering many
services not only search: http://www.excite.com/
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Figure 3.3: Sample series questions with the target Organization and Person
(the example from [Voorhees, 2004])

task from the TREC 2005 was extended with the interactive QA task, with

the idea “to push the frontiers of question answering away from factoid

questions towards more complex information needs that exist within richer

user contexts, and to move away from the one-shot interaction model implicit

in previous evaluations towards a model based at least in part on interactions

with users” [Dang et al., 2006][p.2].

The main task in the TREC 2007 QA Track repeated the question series

format, however the corpus was not only newswire, but included blogs.

Mining blogs for answers introduced significant new challenges in at least two

aspects that are crucial for functional QA systems: 1) being able to handle

language that is not well-formed, and 2) dealing with discourse structures

that are more informal and less reliable than newswire [Dang et al., 2007]. In

addition to the main task, the TREC 2007 QA track repeated the complex,

interactive QA (ciQA) task of TREC 2006.

In 2008, TREC QA Track was replaced by TAC QA Track – TAC is spon-

sored by NIST and other U.S. government agencies and is overseen by an

Advisory Committee consisting of representatives from government, indus-

try, and academia. The focus of this track was answering opinion-related

questions and also questions requiring summarization [Dang, 2008]. The

track was not run in 2009, neither was the call announced for 2010.

Performance-wise, TREC evaluation reveals that there is a huge gap be-

tween the best performing system and the rest of the field. The number of

correctly answered questions was usually around 70% for most of the TREC
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QA tracks, with the best system reaching 76% and 83% for the main task

(factoid questions) in TREC 2001 and TREC 2002, respectively. While fac-

toid questions generally reach the highest performance (e.g. 0.76 in TREC

2003), the other types of questions such as definition and list perform much

worse reaching only 0.396 and 0.442 in 2003, respectively. The drop in ac-

curacy of factoid questions occurred in TREC 2006 by introducing the task

of returning the most up-to-date answer. It increased to the accuracy of

0.706 for the best performing system (LCC) in the next year (TREC 2007),

while other tasks remained challenging. These include interactive Question-

Answering and also opinion-focused QA Track which was the focus of the

TAC 2008.

Also, the TREC evaluation did not consider the time to return the answer

in its results [Greenwood, 2006]. At TREC 2004, Language Computer Cor-

poration (LCC) which developed PowerAnswer – a very well performing QA

system, introduced Palantir – a system which was answering questions in

under 20 seconds, and it was used in their dialogue system Ferret. Forcing

Palantir to return an answer within 20 seconds involves a trade-off between

the precision of the answer and the speed with which the answer is returned

[Greenwood, 2006]. When Palantir was compared with PowerAnswer, the

factoid score dropped from 0.77 to 0.339 and the overall combined score

dropped from 0.6 to 0.254 over the TREC 2004 test set, highlighting the

effect of attempting to show results in real time.

3.3 Interactive Natural Language Interface Sys-

tems

Answering complex questions in open-domain Question-Answering requires

sophisticated approaches, which might involve hypotheses and the conse-

quences, analogies and comparisons, which are not usually found in simple

factoid or definition questions, and moreover cannot be answered through

one or more independent questions [Webb and Webber, 2009]. While involv-

ing the user in dialog with the system in Question-Answering has not been

researched extensively, the idea of involving the user in dialog is almost as

old as the Question-Answering systems themselves. One of the earliest sys-
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tems called SHRDLU [Winograd, 1972] was designed in the late 1960s and

1970s, where the user is engaged in dialog (through text) with an animated

or robotic agent that is capable of performing limited set of actions and also

which is aware of its own behaviour, including this interaction. More recent

dialogue systems, although with some limitations, support speech [Allen

et al., 1996].

A sample conversation4 with SHRDLU looks like the following:

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU

ARE HOLDING AND PUT IT INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH

IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE

WHICH I TOLD YOU TO PICK UP?

Computer: YES, THE RED CUBE.

Person: IS IT SUPPORTED?

Computer: YES, BY THE TABLE.

In this dialogue, the user is asking or telling the system to perform some

actions (“Grasp the pyramid.”) and the system is either accepting the

action, or rejecting it by providing an explanation (“I don’t understand

which pyramid you mean”).

4Taken from the demo available at http://hci.stanford.edu/winograd/shrdlu/
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Jupiter [Zue et al., 2000] is another dialogue system developed by MIT, which

can answer the questions about the weather forecast on the phone. More in-

formation, including the number which one can dial in order to converse with

Jupiter is available from: http://groups.csail.mit.edu/sls/research/

jupiter.shtml. According to this Website “Since May 1997, Jupiter has

fielded over 300,000 calls, achieving average word accuracies of over 90% on

in-domain queries for novice users (over 98% for experienced users), and cor-

rect understanding of about 80% of in-domain queries for novice users (over

95% for experienced users). The system has a vocabulary of just over 2000

words.”. A sample session with Jupiter is shown in Figure 3.4.

Figure 3.4: A sample session with Jupiter, taken from Zue et al. [2000][p.101]

Note that for the understanding some of the questions, the system must

connect it to the previous ones. Similar system called Mercury (devel-

oped also by MIT, available from http://groups.csail.mit.edu/sls/

research/mercury.shtml) provides information about flight schedules

and pricing. Mercury enables users to book and price complex multi-

leg travel itineraries to over 200 cities within the United States and

around the world. A sample conversation with Mercury is available from

http://groups.csail.mit.edu/sls/research/mercury.wav.

While in this type of systems, there are no specific goals, the recent work in

this area is concerned with so called tutoring systems. The goal of tutoring

systems is very concretely specified, and these systems are used to assess the

student’s knowledge, or to correct the student’s errors. One of the well known

systems which also allows spoken interaction is ITSPOKE [Litman and Sil-

liman, 2004, Litman and Forbes-Riley, 2006]. One sample session looks like

in Figure 3.5, with identified emotional states of the students shown in red

square brackets (the example is taken from Litman [2006]): More informa-
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tion is avaliable at http://www.cs.pitt.edu/~litman/itspoke.html.

Figure 3.5: An example session with ITSPOKE

Developing dialogue systems is among the most researched topic in Artificial

Intelligence, and one sample list of such systems can be found at http:

//www.ling.gu.se/~sl/dialogue_links.html.

3.4 Summary and Discussion

As noted by Androutsopoulos et al. [1995], the most challenging problems

with regard to the linguistic features of NLIDBs (and for any kind of system

which deals with Natural Language understanding) is related to correctly

handling:

• nominal compounds,

• anaphora,

• disjunction and conjunction,

• quantifiers,

• modifiers,

• elliptical sentences: as a follow up to the already asked questions which

contain enough information for the context, so that the user can follow

up with small, incomplete questions which could still be understood,
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• extragrammatical utterances – namely linguistic theories describe the

structure and meaning of grammatically correct utterances. However,

every-day language often contains syntactically ill-formed input. If the

main goal of an NLI is to assist the user, then the system must be able

to understand the user’s requests, even when they are ill-formed.

According to Androutsopoulos et al. [1995], an advantage of NLIs as opposed

to other kinds of interfaces such as form-based is that there is no learning

overhead because the language is not artificial. This is at the same time a

disadvantage, as NLIs usually rely on a controlled language which has to be

learnt by the user. If the user is not very familiar with the required controlled

language, he might not be able to judge whether the system did not return an

answer because there is no information about the concepts in the knowledge

base, or the query was not properly formulated. In addition, while natural

language is potentially easier to use than formal query languages, it is still

prone to errors (e.g., misspellings). In comparison to alternative ways of

searching, natural language provides an easy way to express some questions

including those using negation and quantification. On the negative side, it

is usually unclear to the user what the linguistic coverage of the supported

language is. Another problem noted by Androutsopoulos et al. [1995] is

known as linguistic vs. conceptual failure which means that it is not often

the case that the NLIDB gives a clear message to the user in terms of

whether the failure to return a result was due to the system not having

the information about it (conceptual failure), or due to the system requiring

the reformulation of the question (linguistic failure). Further disadvantages

include: users assumptions that the system is intelligent, ambiguity of NL,

and tedious configuration.

In recent years, the popularity of NLIDBs and even open-domain Question-

Answering systems is replaced to some extent by the new kind of NLIs –

those which are finding answers in an ontology or a set of ontologies. As this

is quite a young research topic which has been around for less than a decade,

it can also be seen as a continuation of the work which has been researched

for more than five decades now. There are many similarities between all

systems which have been discussed mainly related to ways of solving the

language complexity problem. The advantages brought by the NLIs to
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ontologies are related to the possibility to link the word meanings, inherit

the relationships based on the existing structure and deal with ambiguities

more effectively. Moreover, in comparison to NLIDBs, these new systems

have been promoting the benefits of reasoning over structured data, and

portability – extracting the lexicon from the ontology directly, without any

need for customisation.

In other words, as noted by Grosz et al. [1987] who developed the TEAM

system, one feature which is missing in NLIDBs is what makes NLIs to

ontologies attractive:

[TEAM] shares such constraints of customized interfaces as being

restricted to single queries and being able only to retrieve the

facts from a database, not to reason about them. [Grosz et al.,

1987][p. 237]

A good example to demonstrate the reasoning was given by Professor Daniel

Weld from the University of Washington, during his invited talk at K-CAP

2009 [Weld, 2009]:

what vegetable prevents osteoporosis?

If we enter this query into Google, there will be no answer (or rather, no

documents which contain the answer). The answer can be found in the

documents available on the Web, however, Information Retrieval engines

can not locate it as they do not implement reasoning. Namely, kale is a

vegetable which prevents osteoporosis – but no such documents exist on the

Web which mention this, however, there are documents which mention the

following:

kale is a vegetable (1)

kale contains calcium (2)

calcium prevents osteoporosis (3)

NLI systems which interface ontologies are built to answer these and similar

kinds of questions.

Another important advantage of NLIs to ontologies is interoperability -

the possibility to easily combine and merge resources from various locations
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on the Web. For the example above, statements 1, 2 and 3, could or could

not be contained within one single resource on the Web. Therefore, the

knowledge which has been collected for decades can now be merged in or-

der to successfully accomplish what has been a great challenge for such a

long time: answer the questions automatically using the distributed sources

available on the Web. This has not been possible with databases as they are

distributed over the Web and not interoperable, while Question-Answering

systems have to process large amounts of unstructured text and use tech-

niques such as Information Retrieval to locate the documents in which the

answer may appear. This step can be misleading as Information Retrieval

methods although scale well, do not often capture enough semantics — doc-

uments with the answer could be easily disregarded if the answer was hidden

in a form which is not in-line with the patterns expected by the QA systems.

Finally, NLIs to ontologies can also use the techniques applied in interac-

tive NLI systems in order improve the user’s experience. Instead of a single

question session, they can move towards conversational systems which can

give answers simulating the human, but not being restricted to a topic or a

domain.
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Chapter 4

Evaluation of Natural

Language Interfaces

In this chapter1 we discuss measures used to evaluate NLI systems. First we

discuss habitability which gives an indication of how much effort is required

for users to make use of the language supported by the system (Section 4.1).

By identifying the habitability problems (e.g. difficulties that the user faces)

we can focus on correcting these to increase usability. Measuring usability

is described in Section 4.2.

1The content of this chapter is an updated and extended version of Section 2 in D.
Damljanovic, K. Bontcheva: Towards Enhanced Usability of Natural Language Interfaces
to Knowledge Bases. In V. Devedzic and D. Gasevic (Eds.), Special issue on Semantic
Web and Web 2.0, Annals of Information systems, Springer-Verlag, 2009. I am grateful
to the contribution of K. Bontcheva who read and commented on the initial version of the
paper and suggested improvements.

The discussion about habitability from this chapter is contributed to A. Wyner, K. An-
gelov, G. Barzdins, D. Damljanovic, B. Davis, N. Fuchs, S. Hoefler, K. Jones, K. Kalju-
rand, T. Kuhn, M. Luts, J. Pool, M. Rosner, R. Schwitter, J. Sowa: On Controlled Natu-
ral Languages: Properties and Prospects. In N. Fuchs, ed.: Controlled Natural Language.
Volume 5972 of Lecture Notes in Computer Science, pp. 281–289, Springer Berlin/Hei-
delberg, 2010, which is an outcome of a collaboration amongst the listed contributors
during the CNL’09 workshop. The publication is largely based on the original collabora-
tive document accessible from: http://docs.google.com/Doc?id=dd3zb82w_03976bbfm.
My contribution to that document is largely based on the work described in this thesis.
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4.1 Habitability

NLIs were invented to assist communication between users and computers.

However, some studies ([Chin, 1984], [Krause, 1980]) show that users behave

differently when communicating with computers than with humans. In the

latter case, their conversation relies heavily on context, whereas with a

computer the language they use is restricted as they are making assumptions

about what computers can and cannot understand [Ogden and Bernick,

1997].

One particular approach to the human-computer communication problem is

to keep it brief and use restricted natural language syntax [Malhotra, 1975].

However, a big challenge when restricting the vocabulary of an NLI system

is its habitability. Habitability is a term coined in 1965 by Watt [1968] – it

indicates how easily, naturally, and effectively users can use a language to

express themselves within the constraints imposed by the system. If users

can express everything they need for their tasks, using the constrained sys-

tem language, then such NLIs are considered habitable [Ogden and Bernick,

1997]. In other words, habitable languages are languages that people can use

fluently [Epstein, 1985]. According to Epstein [1985], a language is habit-

able if 1) users are able to construct expressions of the language which they

have not previously encountered, without significant conscious effort; and

2) users are able to avoid easily constructing expressions that are not part

of the language. Another way of viewing habitability is as the mismatch

between user expectations and the capabilities of an NLI system [Bernstein

and Kaufmann, 2006].

Ogden and Bernick [1997] describe habitability in the context of four do-

mains:

The conceptual domain of the language supported by the system de-

scribes the area of its coverage, and defines the complete set of objects

and the actions which are covered. In other words, conceptual domain

determines what can be expressed. This means that this domain is

satisfied if the user does not ask about the concepts which can not be

processed by the system. To cite the example from Ogden and Ber-

nick [1997], the user should not ask What is the salary of John Smith’s
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manager? if there is no information about managers in the system.

The conceptual domain of the language can be expanded to inform the

user that there is no information about managers in the system.

The functional domain determines how a query to the system can be

expressed. Natural Language allows different ways of expressing the

same fact, especially taking into the account the knowledge of the

listener and the context. The functional domain is determined by the

number of built-in functions or knowledge the system has available.

If, for example, the answer to a question requires combining several

knowledge sources, the system itself might not be able to answer it

and would require the user to ask two questions instead of one. A

habitable system provides the functions that the user expects. Note

that this is different from rephrasing the question in order to get the

answer, which is related to the syntactic domain.

The syntactic domain of a language is determined by the number of para-

phrases of a single command that the system understands. For exam-

ple, the system might not be able to understand the question What

is the salary of John Smith’s manager? but, could be able to process

a rephrased one such as What is the salary of the manager of John

Smith?.

The lexical domain is determined by the words available in the lexicon.

For example, in order to improve the coverage, many systems extend

their lexicon through the use of external sources for finding synonyms.

In order for an NLI to be considered habitable, it should cover all four do-

mains. As mentioned by Ogden and Bernick [1997], the most habitable NLI

would be the one capable of passing a Turing Test or winning the Loebner

Prize2. An interesting fact is that some NLIs have been quite habitable

without making use of any Natural Language Processing technologies. For

example, COMODA is a conversational natural language information system

for publicly distributing information about the disease AIDS to the public

[Patrick and Whalen, 1992]. This system won the Loebner’s prize by being

2Winning Loebner’s prize involves convincing users that they are conversing with an-
other human, when, in fact, they are communicating with a computer.
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able to process the actual words and phrases people used when discussing

the topic.

Habitability is an important aspect of a system to measure because it can

affect the usability of NLIs. By identifying why the system fails to be

habitable, we can identify the ways to improve them [Ogden et al., 2006].

4.2 Usability

According to Brooke [1996], usability can be defined as “being a general

quality of the appropriateness to a purpose of any particular artefact”. In

other words, usability is evaluated in the context in which an NLI system

is used, by measuring its appropriateness for that context. Firstly, it is

important to identify the system’s target users, and secondly – the tasks

that these users will have to perform.

NLIs are used by the two types of users:

• application developers who are responsible for porting a system to a

specific domain, and whose task is to customise the system to work

with that domain (if the system requires customisation); and

• end-users who are querying the customised systems in order to retrieve

domain knowledge (e.g., domain experts).

Therefore, the usability of NLI systems should be evaluated from the point

of view of these two types of users. According to ISO 9241-11, usability

measures should cover [Brooke, 1996]:

1. effectiveness – the ability of users to complete tasks using the system,

and the quality of output of these tasks;

2. efficiency – the level of resource consumed in performing tasks; and

3. satisfaction – users’ subjective reactions to using the system.
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4.2.1 Effectiveness

Customisation

Effectiveness with regard to the customisation of an NLI system is deter-

mined by the ability of application developers to complete the customisation

process successfully, and also by the quality of output of this customisation3.

Usually, the customisation process includes creating a domain-specific lexi-

con when it is ported from one domain to another. The quality of the output

can be measured through the coverage of the system. Given a set of ques-

tions collected from a real-world application, the percentage of those which

are answerable (e.g., covered by the domain lexicon) describes the system’s

coverage. The richer the lexicon is, the higher the value for the coverage.

This term should not be confused with the language coverage, which usually

refers to the complexity of questions covered by an NLI system.

End-user’s point of view

From the end-user’s perspective, effectiveness indicates whether they could

find the answer to their question using the system, and also whether the an-

swer was correct. Typically NLI systems are evaluated in terms of precision

and recall, which are measures adapted from information retrieval. Precision

measures the number of questions correctly answered divided by the number

of questions for which some answer is returned [Tang and Mooney, 2001],

[Cimiano et al., 2007]. The definition of recall varies and the most widely

used are as follows:

• According to Tang and Mooney [2001], recall is defined as the number

of correctly produced formal queries, divided by the total number of

questions. This definition is also used by Cimiano et al. [2007].

• According to Popescu et al. [2003], recall is interpreted as the number

of questions answered by an NLI system, divided by the total number

of questions. While this definition is different from the previous one,

in the evaluation of the system described by Popescu et al. [2003], the

3Note that this is appropriate only for the systems which can be customised or ported
to other domains.
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number of questions answered is equal to the number of those

correctly answered, as the precision is 100%.

However, the second definition is used for the evaluation of several NLIs to

ontologies where the number of answered is not equal to the number

of correctly answered, for example in Wang et al. [2007] and Kaufmann

and Bernstein [2007]. For the evaluation of the systems developed as a part

of this thesis, we use the first definition.

4.2.2 Efficiency

Efficiency refers to the level of resources consumed in order to perform the

specific task, e.g. how fast a user can accomplish a task. In the case of NLI

users, this is usually measured by the time needed to customise the system

for a specific domain (the developer’s point of view), or by the time needed to

successfully find some particular information (the end-user’s point of view).

In the letter case, the efficiency is usually expressed by the execution time

for queries of various complexity.

4.2.3 User Satisfaction

There is no definitive way of measuring user satisfaction. The most common

methodology is to engage users into a session with the system, and ask them

to fill out a questionnaire where they can express their views on the different

features of the system. One of the most popular questionnaires used for

evaluating different interfaces is SUS - System Usability Scale – a simple

ten-item scale giving a global view of subjective assessments of usability

[Brooke, 1996].

Before conducting a user-centric evaluation, each system should undergo a

laboratory evaluation. One of the most popular types is a heuristic evalua-

tion which has been proven to give significant results even with a small num-

ber of users (e.g., evaluation of TAP Search Interface presented in da Costa

et al. [2005]). Heuristic evaluation is the analysis that utilises history and

experience to discover problems with particular user interface designs. It re-

quires experimenting with individual components and noting any disparities
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between component design and the suggested user interface design princi-

ples. A very effective method for heuristic evaluation is summarised in the

ten general principles for user interface design presented in Neilsen [1994].

Other measures of effectiveness and user satisfaction are often related to

the specific methods used in NLI systems. The majority of systems express

the effectiveness of individual methods by comparing the system’s perfor-

mance with and without the specific method. For example, to test whether

the query refinement module has any effect on performance, it is usually

compared to the baseline model of the system – the one without the query

refinement.

More details about the evaluation of NLI systems is given in Ogden and

Bernick [1997] and also in Ogden et al. [2006].

4.3 Summary

Natural Language Interfaces are typically used by two types of users: appli-

cation developers who customise the system, and end-users who query the

customised system. Different evaluation measures are used to test usability

from different users’ perspectives, relative to the tasks the users perform.

Irrespective of the task type, usability measures should cover: effectiveness

– whether the users can finish tasks successfully using the system or not,

efficiency – how quickly they can finish tasks, and user satisfaction – the

user’s subjective reactions to using the system.

Common evaluation strategies with regard to Natural Language Interfaces

are related to habitability which reflects usability from the end-user’s point

of view – if the end-users can use the system effectively and easily avoid the

constructions that are not supported then the system is considered habitable.

Effectiveness can be measured through the number of correctly handled

questions, and in that respect precision and recall measures are commonly

used. Usability includes other aspects as well and these are related to

efficiency – how quickly the users can find the answers to their questions,

but also user satisfaction which is usually measured through questionnaires.

The most popular questionnaire for measuring user satisfaction is System

Usability Scale.
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With regard to the usability from the application developers’ point of view,

the measures are less standardised and include effectiveness – measuring

whether the users can customise the system for the particular domain suc-

cessfully or not, efficiency – how quickly they can customise it, and also the

user satisfaction based on how they like the customisation interface.
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Chapter 5

Portability of Natural

Language Interfaces to

Structured Data

In this chapter1 we review existing Natural Language Interfaces to concep-

tual models with special emphasis on their customisation.

5.1 Introduction

Building portable NLIs is a very challenging task, and, as we have discussed

previously, has been addressed in several different ways in previous work.

One of the first attempts to enable portability was in the 1980s when several

NLIDBs were developed. One of them is TEAM [Grosz et al., 1987], which

is envisaged to be used by

• a database expert who customises the system through an acquisition

dialogue in order to port it to a new database. The customisation

1The content of this chapter is an updated and extended version of Section 3 in D.
Damljanovic, K. Bontcheva: Towards Enhanced Usability of Natural Language Interfaces
to Knowledge Bases. In V. Devedzic and D. Gasevic (Eds.), Special issue on Semantic
Web and Web 2.0, Annals of Information systems, Springer-Verlag, 2009. I am grateful
to the contribution of K. Bontcheva who read and commented on the initial version of the
paper and suggested improvements.
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includes extending the lexicon by adding new verbs, adjectives or syn-

onyms for existing words in the database. In addition, it includes

adding the information about the fields in the database and the con-

ceptual content they encode, and also the words and phrases used to

refer to these concepts. Therefore, a database expert must be familiar

with the database structure and also with the domain that it covers,

but he does not need any knowledge about language-processing termi-

nology;

• end users who query the database.

There are two lexicons used by the TEAM system:

• An open-class words lexicon includes domain-specific words such as

nouns, adjectives and verbs. This lexicon is enriched through the

acquisition dialogue with a domain expert.

• A closed-class lexicon is built-in to the system as the initial lexicon of

TEAM and it does not depend on the domain. This lexicon includes

determiners, pronouns and conjunctions.

An example of acquisition dialog in TEAM is shown in Figure 5.1.

The difference between the approaches for portable systems such as TEAM

and CHAT-80 [Warren and Pereira, 1982], and the domain-dependent ones

(such as those developed in the 1970s, e.g. LUNAR) is that the former

do not directly translate NL into a formal language, but instead use an

intermediate logical representation which is subsequently translated into the

formal language. This logical representation allows for more generality and

the possibility of designing more portable systems.

Unlike with relational databases, where it is difficult, although not impos-

sible, to attach metadata to the fields in the tables (due to implementation

dependent features being present), with ontologies this is more natural. Each

concept and each relation in the ontology is envisaged to be accompanied by

a human-understandable label which describes the concept (or a relation).

Therefore, addressing portability in NLIs to ontologies does not seem to be

a big issue at first sight and many systems have been developed with the
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Figure 5.1: An acquisition dialogue from TEAM (taken from [Grosz et al.,
1987][p.10])
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claim that they are portable. However, especially for ontologies which are

generated automatically, many concepts can have missing labels or too many

labels, which again complicates the issue.

In what follows, we review and compare some of the existing NLIs to ontolo-

gies, emphasising customisation’s effect on performance. This comparison

is not a trivial task, due to the variation in evaluation conditions (e.g., on-

tologies) and measures used. To begin with, the datasets used to evaluate

the different systems are not the same and their size, coverage, and quality

varies. In addition, benchmark queries are of a different complexity. Overall,

these differences make comparative system evaluation somewhat unreliable,

because the evaluation metrics and, consequently, the reported system re-

sults, are heavily dependent on which datasets are used and how difficult

the queries are. Nevertheless, these results still provide an insight into the

achievements in the field.

A brief overall summary is shown in Table 5.1, subdivided by dataset, as

no reliable comparison of precision and recall can be made across different

datasets. This table only covers a sub-set of NLI systems to ontologies, i.e.,

those that reported evaluation results. The main conclusion to be drawn

from this table is that although systems with zero customisation tend to have

reasonable performance, it varies significantly across systems – in general,

the more complex the supported queries are, the lower the performance is.

Table 5.1: Natural Language Interfaces to Knowledge Bases

Dataset System Precision Recall Customis.

Mooney: geography
PANTO 88.05% 85.86% zero
Querix 86.08% 87.11% zero

NLP-Reduce 70.7% 76.4% zero

Mooney: restaurants
PANTO 90.87% 96.64% zero

NLP-Reduce 67.7% 69.6% zero
Mooney: jobs PANTO 86.12% 89.17% zero

Geographical facts ORAKEL 80.60-84.23% 45.15%-53.7% customised
about Germany

library data E-librarian 97% - -
biology CPL 38% - -

chemistry CPL 37.5% - -
physics CPL 19% - -
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5.2 ORAKEL

ORAKEL is an NLI to knowledge bases [Cimiano et al., 2007] which supports

factual questions, starting with WH-pronouns such as who, what, where, etc.

Factual here means that answers are ground facts as found in the knowledge

base, and not complex answers to why or how questions that require ex-

planation. The most important advantage of ORAKEL in comparison to

other similar systems is its support for compositional semantic construction

i.e. the ability to handle questions involving quantification, conjunction and

negation.

ORAKEL’s lexicon is composed of two parts:

• General lexicon which is shared among different domains, where words

such as what, which, etc. are stored.

• Domain-specific lexicon which has two parts:

– Ontological lexicon generated automatically from the domain on-

tology. It contains lexical entries and the semantics of instances

and concepts which are typically represented by proper nouns and

nouns respectively.

– Lexicon for mapping ontology relations to words: this part is cre-

ated manually and contains mappings of subcategorisation frames

to ontology relations. Subcategorisation frames are essentially

linguistic argument structures, e.g. verbs with their arguments,

nouns with their arguments, etc. For example, the verb to write

requires a subject and an object, as it is a transitive verb. This

triple of subject-verb-object in this case could be considered a

subcategorisation frame, and could be mapped to the ontology

relation writes. Subcategorisation frames are created by the do-

main experts who do not have to be familiar with computational

linguistics, although they are expected to have some very basic

knowledge of subcategorisation frames. The adaptation is per-

formed in several iterative cycles through the user interaction ses-

sions. In this way, the coverage of the lexicon is being increased

with each iteration.
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In the user study carried out by Cimiano et al. [2007] the aim was to test

whether it is feasible for users without NLP expertise to customise the sys-

tem without significant problems. The evaluation knowledge base contained

geographical facts about Germany, covering 260 entities in total. The ex-

periment was conducted with 27 users. Three people had to customise the

lexicon, while the remaining 24, who did not have any background knowledge

in computational linguistics, received a brief explanation about the scope of

the covered domain and were told to ask at least 10 questions; they also had

to explicitly say if the received answer was correct or not.

Only one of the three people in charge of creating the domain lexicon, was

very familiar with the lexicon acquisition tool (user A), while the other two

users (user B and user C) were not and received 10 minutes of training

on the software (the FrameMapper tool) and 10 minutes explanation about

the different subcategorisation types, illustrated with examples. User A

constructed the lexicon in one iteration, whereas users B and C constructed

it in two rounds, each lasting 30 minutes. In the first round they created

the model from scratch, while in the second round they were presented with

those questions which the system had failed to answer in the sessions with the

24 users. Overall, users B and C had one hour each to construct the lexicon.

The customisation system of ORAKEL is designed so that in each iteration,

the created lexicon is extended and therefore the system is expected to give

better performance. Consequently, the more time users spend customising

the system, the better the performance of the system is expected to be.

The results showed that querying the system using the lexicons created by

users B and C gives comparable precision and recall to that of the system

using the lexicon created by user A. Namely, after the second iteration, recall

for users B and C was 45.15% and 47.66% respectively, in contrast to the

recall when using the user A created lexicon which was 53.67%. Precision

varied from 80.95% (user B) to 84.23% (user A).

One weak point of the approach implemented in ORAKEL is that it maps

ontology relations to words. This approach assumes that all classes and

instances have understandable and useful lexicalisations, which is not always

the case. Moreover, while the user interaction is used for customisation, with

regard to the end users, the system either interprets the question and returns
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the answer, or it fails. Hence, the end-user has no control over the overall

process of interpreting the NL into the formal language.

5.3 AquaLog and PowerAqua

AquaLog [Lopez and Motta, 2004] is a portable question-answering system

which takes Natural Language queries and an ontology as input, and returns

answers as output. The supported questions are mainly factual queries

beginning with what, which, who and the like.

Although customisation of AquaLog is not mandatory (except providing

the URL of the different ontology), it can increase the performance of the

system [Lopez et al., 2007]. The role of a person who customises the system

is to associate certain words with relevant concepts from the ontology. For

example, where needs to be associated with ontology classes which represent

a location such as City and Country ; similarly, who needs to be associated

with classes like Person and Organisation. Additionally, it is possible to

add the so called pretty names to the concepts or relations in case the term

used when referring to a concept is not in the ontology. For example, if the

property locatedIn is usually lexicalised as in, this will be added as a pretty

name for that property. AquaLog also uses WordNet [Fellbaum, 1998] for

extending the system vocabulary.

In an evaluation with 10 users who are not familiar neither with the KMI

knowledge base2 nor with AquaLog, they were given an introduction about

conceptual coverage of the ontology pointing out that its aim is to model

the key elements of a research lab such as people, publications, projects,

research areas, etc. They were also told that temporal information is not

handled by AquaLog and that the system is not a conversational system,

as each question is resolved on its own without references to the previous

questions.

From the 69 collected questions, 40 of them (57.97%) were handled correctly

[Lopez et al., 2007]. However, this includes

2KMI knowledge base is populated based on AKT ontology http://kmi.open.ac.uk/

projects/akt/ref-onto/ and they are both a part of the KMI semantic portal: http:

//semanticweb.kmi.open.ac.uk
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• 7 queries with failures which happened when the ontology lexicalisa-

tions and query terms did not match, or when the ontology was not

designed in-line with the system’s expectations. For example, when

instances are modelled for certain concepts, whereas AquaLog would

parse the query if the same terms were modelled as classes.

• 10 questions for which the answer was not in the knowledge base.

To evaluate portability, AquaLog was trialled with the wine ontology3. To

customise the system to work with the new domain, first words like where,

when, and who were associated with relevant ontology resources; then syn-

onyms for several ontology resources were manually added. As pointed out

in Lopez et al. [2007], this step was not mandatory, but due to the limita-

tions of WordNet coverage, it increases the recall. Overall, the system was

able to handle 17.64% of questions correctly. The system failed to answer

51.47% of questions due to the lack of knowledge inside the ontology4. The

lack of knowledge was not the only cause for low performance. Many prob-

lems arose due to the problematic ontology structure, which is designed so

that it contains a lot of restrictions over properties. In order to be handled

properly by AquaLog, the ontology needs a simpler hierarchy structure; also,

the terms in a query can only refer to ontology concepts between which the

path length is not greater than two. For example, if the query were which

cities are located in Europe, cities might refer to the ontology class City, and

Europe might refer to an instance of the class Continent. If these concepts

are related so that a City is located in a County and a County is located in

a Country, where Country is located in a Continent, this query could not be

handled by AquaLog. However, if in this chain County did not exist, and

there was a direct relation between City and Country (located in), the query

would be processed and answered as the path length between the terms City

and Europe (as a continent) is two. In addition, all ontology resources should

be accompanied by labels, as the performance of the system directly depends

on them [Lopez et al., 2007].

AquaLog evolved into PowerAqua [Lopez et al., 2009b] – a QA system which

3http://www.w3.org/TR/2003/CR-owl-guide-20030818/
4Note that these numbers do not refer to the precision or recall as defined in Chapter 4.
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works with ontologies available on the Web (e.g. crawled through Watson5).

In contrast to AquaLog, PowerAqua addresses the challenges related to this

heterogeneity: locating the ontology which contains the answer, resolving re-

lations between the recognized resources, filtering duplicate questions which

come from different sources and the like. The downside is the performance:

in the initial evaluation with several ontologies (which were a collection of

ontologies saved into an online repository, and not directly queried from the

Web) and 69 questions, the time to answer queries was in the range of 0.5 to

78 seconds. PowerAqua successfully handled 48 questions resulting in 69.5%

success rate. However, these 48 questions include those that have not re-

turned any answer due to the knowledge not being available in the ontology

(conceptual failure).

5.4 E-librarian

The E-librarian [Linckels and Meinel, 2007] system accepts a natural lan-

guage question as input and returns the result found in the knowledge base

as output. The knowledge base contains a set of short multimedia docu-

ments (clips), each of which documents one subject or a part of a subject.

Hence, the system does not directly return the answer, but rather a clip

in which the user can find the answer. All clips are semantically described

using an ontology which is also used to interpret the user’s question. The

ontology serves as a hierarchical dictionary with domain-specific knowledge

and relations of words such as synonyms, homonyms, hypernyms and hy-

ponyms. This dictionary is carefully designed and used instead of external

sources such as WordNet. There is no evaluation on how expensive it is to

build this dictionary, however it needs to be built manually (see [Linckels

and Meinel, 2007]).

The E-librarian service was applied in two applications: one is CHESt –

about computer history, and the other is about fractions in mathematics –

MatES. The performance of MatES is evaluated with 229 questions created

by a mathematics teacher who was not involved in the implementation of

the prototype. The system returned the set of documents that contained the

5http://watson.kmi.open.ac.uk/WatsonWUI/
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correct answer for 97% of the questions, however the paper does not present

sufficient information on the complexity of those questions.

5.5 PANTO

PANTO [Wang et al., 2007] is a portable NLI to ontologies. According to

Wang et al. [2007], there is no specification for what types of questions are

supported, but it is claimed that the system correctly parsed 170 questions

taken from AquaLog’s website, so we can assume that PANTO supports

a set of questions that is similar to that supported by AquaLog. Similar

to AquaLog, WordNet is used for the vocabulary extension, and the user

lexicon is configurable - there is no need to manually customise the system

unless the user is interested in adding associations to the ontology resources

in order to improve the system’s performance.

PANTO was evaluated with test data provided by Mooney6 which had been

used previously to evaluate NLIs to databases. This dataset covers three

domains: geography, restaurants and jobs. As shown in Table 5.1 precision

and recall for this dataset is quite high7. In addition, the range of supported

NL queries is limited to those handled by SPARQL, e.g. questions starting

with how many are not supported. Additionally, they do not report if the

answer of the question was found in the knowledge base, as is the case with

most other systems, but rather if the generated SPARQL query was correct.

It is not clear from Wang et al. [2007] whether the system was customised

prior to experimenting with the three different domains.

5.6 Querix

Querix [Kaufmann et al., 2006] is another ontology-based question answer-

ing system that translates generic natural language queries into SPARQL.

Querix relies on clarification dialogs in the case of ambiguities. When Querix

6http://www.cs.utexas.edu/users/ml/nldata.html
7Note that the recall here is calculated with number of answered questions, even if they

are not all correct.

66

http://www.cs.utexas.edu/users/ml/nldata.html


Natural Language Interfaces to Conceptual Models

was evaluated on the Mooney geography domain (215 questions) the preci-

sion was 86.08% and recall 87.11%. Similar to the performance of PANTO,

if the answer was returned by the system, it was almost always correct. The

system vocabulary is derived from the semantic resources and enriched by

synonyms from WordNet. Hence, there is no need for customisation. The

downside of this approach is that both the lexicalisations attached to the

semantic resources and the availability of synonyms in WordNet strongly

affect the system’s performance.

5.7 NLP-Reduce

NLP-Reduce [Kaufmann et al., 2007] accepts full sentence queries, sentence

fragments, or keywords as input. However, the relaxation of supported

queries seems to have a negative impact on performance: when trialled with

Mooney geography and restaurants datasets, the performance was lower than

that of similar systems. Similar to Querix, the system requires ontology

lexicalisations which are inline with the user’s language, in order to return

the answer.

5.8 CPL

Computer Processable Language (CPL) [Clark et al., 2005] is capable of

translating English sentences to formal Knowledge Representation (KR).

KR is Knowledge Machine (KM) language - a mature, advanced, frame-

based language with well-defined semantics.

CPL was evaluated by two users in three domains: biology, physics and

chemistry. They all received 6 hours of training individually, followed by one

week using the question-answering system. Our understanding is that the

domain knowledge was created using the CPL language, however, in Clark

et al. [2007], it is not clear how much time was needed to create the domain

knowledge used in the evaluation. In physics, 131 questions were asked, and

the correctness of answers was 19%8. This low figure is due to the fact that

8It is important to point out that although Table 5.1 shows these measures as precision,
this result is calculated on the overall set of questions, whereas most other systems removed
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some questions were very complex, comprising several sentences. The total

number of questions in biology was 146, and the average correctness was

38%. In chemistry, 86 questions were answered with 37.5% correctness.

Examination of the system’s failures revealed that one third were caused by

the fact that the user did not create the query that was understandable for

the system (some common sense facts were not expressed explicitly enough).

Another third were because the knowledge base did not have an answer and

the last third were caused by mistakes by the CPL interpreter, so the system

failed to find the solution.

5.9 Attempto Controlled English (ACE)

Attempto Controlled English (ACE) [Fuchs et al., 2008] is one of the oldest

natural language interfaces which have been developed to serve as a formal

language for knowledge representation. Unlike NL which is ambiguous, vague

and potentially inconsistent, Controlled Languages have well-defined syntax,

unambiguous semantics, and they can also support formal methods, reason-

ing in particular [Fuchs et al., 2008]. ACE is a controlled English, “a precisely

defined, tractable subset of full English that can automatically and unambigu-

ously be translated into first-order logic.” [Fuchs et al., 2008][p.104]. ACE

is translated into several variations of first-order logic, such as Discourse

Representation Structures (DRS) [Blackburn and Bos, 1999], OWL, SWRL

[Horrocks et al., 2004], and RuleML [Boley, 2003]. ACE is supported by

many tools and a reasoner (RACE) which has been developed and used with

it. For example, there is ACE Wiki which enables generating text in ACE

which is being translated into OWL and SWRL and uses a predictive editor

which supports a user while generating sentences (it supports a subset of

ACE); AceRules translates ACE into rules; ACE View is a plugin for the

ontology editor Protégé.

ACE is applied in domains such as software and hardware specifications,

database integrity constraints, agent control, legal and medical regulations,

and ontologies.

the questions for which the answer was not in the ontology before calculating precision.
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Unlike majority of similar systems, ACE supports both knowledge represen-

tation and querying. However, the querying is feasible only if the knowledge

is generated using ACE sentences. That is, the questions supported work

well only if the knowledge has been generated by ACE. ACE supports yes/no

and WH-queries. For example, if the ACE sentence which was translated to

the knowledge representation was

A customer inserts a card.

we can ask a question such as:

Does a customer insert a card?

or another example:

A new customer inserts a valid card manually.

questions that could be answered are as follows:

Who inserts a card?

Which customer inserts a card?

What does a customer insert?

How does a customer insert a card?

What is most impressive about ACE is that the user can generate ACE

sentences which are declarative, and then ask questions at the end. For

example:

John enters a card. John drinks some water.

What does John drink? What does he enter?

This feature is unique to ACE and a few other similar systems like CPL.

5.10 Summary and Discussion

Figure 5.2 generalises the performance of NLIs in terms of precision, with

regard to two factors: questions’ complexity and the size of the evaluation
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dataset. Here we assume that the complexity of questions is low if the

system supports a limited set of grammatically correct questions (e.g., CNL),

while it is high if the system supports both ill-formed, incomplete and fully

grammatical questions.

Figure 5.2: Performance variation based on question complexity and the
dataset size

Systems that support simple questions and evaluated on narrow domains,

tend to have a very high precision. The reason is domain limitation: the

narrow domain narrows the scope of the questions which can be asked.

In addition, the specification of the supported language poses a language

limitation for the user, while having a positive influence on the performance.

As the complexity of questions grows, the language freedom given to the user

causes the precision to degrade for several reasons:

• While domain limitation narrows the scope of questions, supporting

more relaxed queries gives more freedom to the user, and introduces

more ambiguities which need to be resolved by the system.

• Systems which support relaxed questions with no full grammar re-

quired, tend to return an incomplete or incorrect answer, as they usu-

ally rely on shallow natural language processing, and do not support

deep understanding of the question.

If systems which support complex questions are trialled with several do-
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mains, the precision is affected even more. Here reasons related to the lan-

guage freedom also apply, but in addition, there is domain freedom. This

introduces a high challenge for building high-performance NLI systems as in

addition to handling any grammatical constructions they also need to handle

any vocabulary.

Finally, the systems which support simple questions, but trialled with several

ontologies:

• have better performance than the systems which support complex

questions. The reason is the language limitation.

• have the lower performance than the systems which work on narrow

domains. The reason is the domain limitation.

With regard to the recall, it usually increases for systems which support sim-

ple questions. In addition, recall is strongly influenced by the customisation

— more customisation is performed, the richer the lexicon and hence the

higher the recall is.

Portability with zero customisation was claimed to be possible with many

NLIs to ontologies which have been developed in the last few years. This was

achieved by automatically building the lexicon from the ontology. Majority

of described systems use external sources to extend the vocabulary and

include synonyms, hypernyms and hyponyms. The most common resources

are WordNet [Fellbaum, 1998], FrameNet [Ruppenhofer et al., 2005], and

OpenCyc9. Few systems use resources accessible through the Semantic Web

using relation owl:sameAs (e.g., PowerAqua, see Section 5.3).

However, the more technical the domain gets, the less chance there is that

one can rely on lexical matching alone. In fact, it is not expected that the

complete lexical knowledge necessary for very technical domains is present in

general resources such as WordNet [Cimiano et al., 2008]. This is especially

the case for properties. That is why domain lexicons, which contain only

domain-specific vocabulary, tend to be used by systems such as E-Librarian

or ORAKEL. Manually engineering a lexicon as in the ORAKEL system cer-

tainly requires substantial effort, but it allows one to directly control quality

9http://www.opencyc.org/
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and coverage of the lexicon for the specific domain [Cimiano et al., 2008].

Moreover, it has been shown that the more time users spend customising

the system, the better its performance (see Section 5.2).

However, this means that systems which have a good performance involve

three kinds of users, see Figure 5.3:

• Ontology engineers who design the ontology based on the knowledge

from a domain expert.

• Domain experts who are familiar with the terminology and abstract

concepts in the domain.

• Application developers need to align the language of a domain expert

with the generated ontology.

Figure 5.3: Semi-automated process of creating the domain lexicon from the
ontology

An alternative way to generate/enrich the lexicon for NLIs to ontologies

is shown in Figure 5.4. Now instead of having three kinds of users, we

can involve only domain experts whereas they would have to use NLIs for

knowledge representation, such as ACE [Fuchs et al., 2008], CPL [Clark
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et al., 2005], or recently developed SOS (Sydney OWL Syntax) [Cregan

et al., 2007], CLOnE [Funk et al., 2007], and Rabbit [Hart et al., 2008].

Figure 5.4: Automated process of creating the domain lexicon from the
ontology

ACE is probably the most powerful, not only because of its maturity, but

also due to many support tools, such as OWL Verbaliser, which can be

used to generate the lexicon from the ontology which is built externally; the

lexicon can be updated/enriched by changing/adding new ACE sentences.

In fact, systems like ACE which can be used both for generating and querying

the knowledge have very good performance in querying if the knowledge is

generated using the same language.

While neither of the NLIs for knowledge representation are tailored to a

specific domain, porting them requires knowledge of the supported language,

in order to generate/update the domain knowledge. The question is which

of the following is the easiest:

1. to learn a required supported language (e.g., a CNL) for knowledge

representation;

2. to learn how to use the customisation software (such as FrameMapper

in the case of ORAKEL);

3. to learn the ontology structure and then place mappings between

certain words such as Where and ontology concepts such as Location
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through configuration files (such as in the case of AquaLog and

PANTO);

4. to use any other tools for ontology editing in order to enrich an already

existing lexicon in the ontology, so that automatically generating the

lexicon from the ontology can be sufficient for reasonable performance.

The last two options are not practical for large ontologies or for a set of

ontologies, while the second option might involve domain-experts who will

generate a set of sample questions, so that application developers can asso-

ciate question terms with the particular ontology concepts. The first option

is most attractive due to the involvement of only domain experts. However,

as the underlying knowledge representation language (such as OWL) relies

on logical statements, the natural way to design NLIs for knowledge rep-

resentation is to use a CNL which is in fact yet another formal language

and needs to be learnt. The task of designing a CNL for knowledge rep-

resentation is challenging because not all mathematically clear and logical

expressions can easily be translated into English. Yet, CNLs need to be

intuitive for domain-experts which are often not logicians. An example from

Schwitter et al. [2008][p.7], where the authors compared ACE, Rabbit and

SOS, expressing that two things differ from each other would look as follows:

OWL: DifferentIndividuals([Individual(Scotland),

Individual(England)])

ACE: Scotland is not England.

RAB: England and Scotland are different things.

SOS: Scotland and England are different individuals.

While no domain expert would have a problem reading and understanding

any of the mentioned sentences (apart from OWL which is too formal),

generating them might be problematic. They sound natural in places, but

they often seem too explicit, as in the examples above. In the evaluation of

Rabbit with domain experts, each generated ontology was different and had

to be corrected by the knowledge engineers in order to be useful [Denaux

et al., 2009]. This indicates that the proposal in Figure 5.4 is too idealistic:

the domain experts might not be able to generate the knowledge in the first-

order logic such as OWL, without the help of a knowledge engineer.
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To conclude, customisation of NLIs, irrespective of the tools which are used

to accomplish this, significantly affects their performance. While ontologies

can ease the process of customisation, building systems which can work

with any ontology and thus are portable with no customisation is difficult

– ontologies have different designs and varying quality of lexicalisations.

Therefore, building a lexicon from ontologies and using external sources such

as WordNet might not be sufficient, and customisation might be necessary

in real world applications. The question is, in what form this customisation

poses the least overhead to the users who need to customise it.

On the other side of the coin are end-users. Even if the system is customised

to work very well for the specific domain, the performance is still affected by

the way the end-user uses the system. The next chapter is concerned with

this topic.
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Chapter 6

Usability Enhancement

Methods

In the previous chapter, we discussed the portability of NLI systems and

its relation to performance (expressed through precision and recall). In

this chapter1, we will assume that the system is ported successfully to the

new domain, and the end-users can post questions in the form of Natural

Language.

Although NL is intuitive, the simplicity of the interface, which is often a

single text box for queries, may cause additional problems for end-users

[Stojanovic, 2005b]. Moreover, designing NLI systems is not trivial due to

the ambiguities and complexities which arise from the Natural Language

itself. One of the ways to approach this problem is to support simple and

explicit semantic limitations [Epstein, 1985], i.e. by restricting the supported

vocabulary and grammar.

The usability of an NLI system depends on the level of the end-user satis-

faction - if the user does not have any difficulties using the system, then it

can be considered habitable. A habitable system, as discussed previously in

1The content of this chapter is an updated and extended version of Section 4 in D.
Damljanovic, K. Bontcheva: Towards Enhanced Usability of Natural Language Interfaces
to Knowledge Bases. In V. Devedzic and D. Gasevic (Eds.), Special issue on Semantic
Web and Web 2.0, Annals of Information systems, Springer-Verlag, 2009. I am grateful
to the contribution of K. Bontcheva who read and commented on the initial version of the
paper and suggested improvements.
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Section 4.1, makes the user aware of the reasons for failures if they happen.

By identifying these failures, we can further improve the system and make

it more usable. In an attempt to address this problem, many methods have

been developed for improving the communication between the user and the

system. Figure 6.1 illustrates some of the methods which adapt the system’s

vocabulary to that of the user (red circle), and those which aim to adapt the

user’s vocabulary to that of the system (yellow circle).

Figure 6.1: Synchronising the user and the system vocabularies

In what follows we will first discuss language restriction in Section 6.1,

followed by the effect of feedback (Section 6.2) and guiding the user (Section

6.3) through questions. In addition, as discussed in Section 5.10, the system

vocabulary is often extended from external sources (e.g., WordNet). For

more personalised systems, this extension can be user-centric, as the user

vocabulary can be used for extending the system vocabulary (Section 6.4).

Once the user is familiar with the system vocabulary, the opposite adaptation

needs to take place, as the user vocabulary needs to be in line with that of

the system. Methods for assisting the user in that adaptation are also used

to solve the ambiguity problem and are discussed in Section 6.5.

6.1 Language Restriction

As we have previously discussed in Section 1.2, a Controlled Natural Lan-

guage is a subset of a natural language that includes certain vocabulary,
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grammar rules and restrictions that have to be followed. The biggest chal-

lenge when designing a CNL is restricting the natural language in a way that

it remains intuitive and does not require extensive training for the end user.

However, applications in industry prove that, actually, CNLs can be learnt

and used in practice. For example, AECMA Simplified English [Unwalla,

2004] has been used by the aviation industry since 1986.

Another example is from CPL’s evaluation [Clark et al., 2007] – although

users had to be very familiar with CPL in order to use it successfully, they did

not have problems working with its grammar restrictions. Several failures

occurred due to using the language which was not explicit enough for the

system (i.e. common-sense facts were not made explicit). The conclusion in

Clark et al. [2007] was that the system would benefit from showing the user

the derived query interpretation so that any mistakes could be corrected. As

is pointed out in Clark et al. [2005, p.510] “a challenge for languages like

CPL is to devise methods so that these corrective strategies are taught to the

user at just the right time e.g., through the use of good system feedback and

problem-specific on-line help”.

According to Ogden and Bernick [1997], constraining a user to a limited

vocabulary and syntax is inappropriate, as users should be free, but the

constraints should come from the task and the domain instead. However,

allowing the task and the domain to constrain the language still does not

prevent the user from creating ambiguous queries. As natural language itself

is ambiguous even in human to human communication, controlled languages

have a role to play in reducing the ambiguity. The main drawback of CNLs

is their rather steep learning curve. However, according to Zolton-Ford

[1984], a limited vocabulary, coupled with a feedback mechanism, means

easy training from an end user’s point of view.

An alternative approach to restricting the vocabulary is relaxing the queries

to support keyword-based in addition to full-blown grammatically correct

questions. This allows some flexibility, for example if the user is not familiar

with the full expressiveness of the controlled language, he can try using

keywords, while for more advanced users there is the option of using full-

blown questions. An example of such a system is NLP-Reduce [Kaufmann

et al., 2007], which would give the same result for both capital France and

79



Chapter VI: Usability Enhancement Methods

what is the capital of France? queries. However, as we will discuss later,

allowing users to type in keywords can lead to misconceptions about the

system due to expecting the functionality of Information Retrieval engines

such as Google, and moreover, expressing the information need precisely

through a set of keywords might be difficult.

6.2 Feedback

Showing the user the system’s interpretation of the query in a suitably

understandable format is called feedback. Several early studies ([Zolton-

Ford, 1984],[Slator et al., 1986]) show that after getting feedback, users are

becoming more familiar with the system interpretations and the next step

is usually that they are trying to imitate the system’s feedback language.

In other words, returning feedback to the user helps them understand how

the system is transforming the queries, therefore motivating them to use

the similar formulations and create queries which are understandable to the

system.

Formulating the query and the user behaviour has long been researched in

Information Retrieval (IR): during the search process, the user performs

several actions [Stuckenschmidt et al., 2004]:

• poses a query based on an existing information need,

• after retrieved results are shown, decides to either:

– stop, or

– reformulate the query in a way which promises to improve the

result

This is repeated until the perfect answer (relevant documents in the case of

IR systems) is found. As this traditional model is adequate only for simple

cases, a so-called berry-picking model [Bates, 1989b] has been proposed

where users take some of the results and move on to a different topic area.

This model assumes that the user starts off with a query on a particular topic

and based on the results, he can either explore the result set or re-scope the
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search by re-defining the information need and posing a new query. Although

different users behave differently during the search process, it has been

shown (see [Stuckenschmidt et al., 2004]) that the majority prefer interactive

methods, where the system performs the search, gives the feedback to the

user and lets him decide about the next steps.

In the evaluation of Querix and three other interfaces for the semantic web

[Kaufmann et al., 2006], the system was preferred over all the others because

it returned the answer in a form of a sentence, in contrast to the list of

answers returned by the other three systems. For example, the question

How many rivers run through Colorado? was answered by Querix as: There

are 10, while the other three systems returned a list of rivers and the number

of results found. Because of the way Querix replied to the questions, users

had the impression that the system really understood them, and trusted the

system more.

CNL systems usually implement some form of a feedback. For example,

using ACE View in Protégé, typing in Serbia is a country the system will

show the feedback message: “The sentence was successfully parsed”. If the

input sentence is changed to Serbia is a country in Europe the feedback

message will be: “The snippet contains ACE snippet errors”. It will then

highlight Europe which ‘confused’ the ACE parser, and it will also show the

<> sign at the position where the parsing failed. For example, it will show

Serbia is a country <> located in Europe. However, in order to refine this

query and get the answer, the user needs to find out which constructions

are supported/understandable by the ACE parser. The user might be able

to construct the query in a different way, if he did know how, or if he

had more descriptive feedback (for example, whether the above sentence

has a problematic grammar not supported by ACE, or if the lexicon is the

problem). However, feedback messages are usually automatically generated

and are based on very simple rules such as which part of the statement/query

is recognised, and which is not.

Another example is CPL: in order to correctly formulate questions using

CPL, users need to know “a bag of tricks” [Clark et al., 2007]. That is one

of the reasons why an interactive process of question-asking was introduced

in CPL. After the user poses the question, their Advice System detects CPL
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errors and returns reformulation advice. There are 106 different advice

messages triggered when the user’s question contains grammar rules that

are outside the scope of CPL, although correctly interpreted in English; or

when the user omits words, such as a unit of measure after a number. In

CPL, the feedback does not contain the input text from the user, but rather

detects the error and gives advice from a static list of feedback sentences. As

Clark et al. [2007] point out, automatic rewording would be very challenging,

especially with longer, complex sentences. In addition to the Advice System,

an Interpretation Display System is implemented, which shows the user the

system’s interpretation of the question. It works so that after posing the

question, the system generates a set of English paraphrases and shows them

to the user. In addition, it generates a graph where nodes are objects or

events from the question, and arcs are relationships between them. If the

user detects an error in the graph or English paraphrases, it is possible to

rename nodes and arcs, or to reformulate the whole question and inspect

the system’s interpretation again. According to the evaluation presented in

Clark et al. [2007], this graphical representation was well perceived by users.

Although it might be annoying for users, it is not unusual for systems to

fail to answer a question, due to an unsupported query syntax, even though

the same query could be answered if re-formulated. Adding support for

extra linguistic coverage is not always easy due to the need to balance

expressiveness with ambiguity. For instance, the evaluation of AquaLog

with the KMI ontology [Lopez et al., 2007] shows that 27.53% (19 of 69)

of the questions could be handled correctly by AquaLog if re-formulated

which means that 65.51% of failures could be avoided. Reformulating in this

case entails stating the queries in AquaLog’s supported language so that

unsupported linguistic failures are avoided, as well as nominal compounds,

or unnecessary functional words like different, main, most of.

Closer look at user’s queries and behaviour during evaluation of CPL pre-

sented in Clark et al. [2007] revealed that users rarely “got it right” the first

time. The average number of attempts of reformulating the query by the

user, before either getting a satisfactory answer from the computer, or giving

up, was 6.3 and 6.6 in physics and chemistry, respectively, while for biology

it was 1.5 only; this is related to the questions complexity: the most common
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questions in biology where very simple, such as “what is an X?”, in contrast

to the “story” questions posted in physics, and the algebraic questions posed

in chemistry. Further analysis of the frequency of actions taken for refor-

mulating the query, and the types of these actions, showed that the biggest

problem for users was to find the right wording that enabled the system to

answer the question. For example, in chemistry one of the questions was

whether a compound is insoluble. Users tried several words to express solu-

bility: soluble, dissolve, solution, insoluble, until finally hitting on solubility,

for which the system was able to give the answer.

Summary: By providing the user with the feedback in the form of the sys-

tem’s interpretation of the query, users can learn how to generate queries

more efficiently. For example, showing the user which words were under-

standable and which were not, helps users to familiarise themselves with the

system’s vocabulary more quickly, and avoid repeating mistakes.

In cases when the system is not able to interpret the query, the system could

provide the user with a suggestion of how this query could be reformulated

in order to be answered (e.g., by showing examples of supported types of

queries adapted for the particular domain).

6.3 Guided Interfaces

Guided interfaces support the user by suggesting the queries which are sup-

ported by the system. In Bechhofer et al. [1999], relations between concepts

are used to assist users by expressing what it is possible to ask about the

concept which is typed in — this way only meaningful questions should be

posted.

According to Bullock [1999] there is a need for lucidity in information systems

– a system should supply the user with an idea as to what is available, and

which next steps can be taken. In Bechhofer et al. [1999], the tool for

assisting the users in formulating queries is described. The tool is driven

by the content of the conceptual model. The tool uses constraints known as

sanctions which are added to the ontology and which describe the meaningful

compositions which can be built. Sanctions are used for lucidity or guidance

for creating suggestions. Suggested manipulations are:
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• restriction – specialising the query by adding more criteria,

• widening – removing criteria from a composite query,

• replacement – replacing the query by a more specific one, and

• sibling replacement – replacing subqueries with sibling concepts.

Hallett [2006] presents a NLIDB that assists users by guiding them through

the supported queries. This guided interface automatically infers the set

of possible queries that can apply to a given database and generates query

frames. A query frame is a system-generated query which contains unfilled

WYSIWYM anchors. An anchor is a part of the WYSIWYM terminology

and means a span of text in a partially formulated query, that can be

edited by the user to expand a concept. The evaluation results are very

encouraging: according to the usability evaluation “users can learn how to

use the interface after a very brief training and succeed in composing queries

of quite a high level of complexity” [Hallett, 2006][p.14]. To evaluate coverage

of their system they used 250 questions from GeoBase (also known as the

Mooney GeoQuery dataset used in Tang and Mooney [2001] and Popescu

et al. [2003]). Their system could generate query frames for 58% of the

questions. 42% could not be handled (questions requiring inferences over

numerical types, such as which is the highest point in Alaska or what is the

combined area of all 50 states? ). However, if they could generate a query

frame, the answer was always correct. Although their system is limited

because the user cannot post free text queries, a precision of the system of

100% for the questions that were available is encouraging.

A similar approach was applied in an NLI for querying ontologies – Gin-

seng [Bernstein et al., 2005]2. This system allows access to knowledge bases

in OWL format through NL. The evaluation of Gingseng resulted in 92.8%

precision and 98.4% recall, which indicates that, although the user is limited

in the way questions can be asked, this is counter-balanced by high per-

formance thanks to the offered support. The evaluation of its descendant

GINO [Bernstein and Kaufmann, 2006] with six users proves that the use of

guided entry overcomes the habitability problem. The GINO system offers

2More details: http://www.ifi.uzh.ch/ddis/research/semweb/

talking-to-the-semantic-web/ginseng/
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guidance to the users as they formulate NL queries step by step, ensuring

that only valid queries are posed.

Another option for guiding the user through the domain and available con-

cepts is by using auto-completion. Traditional auto-completion is based on

matching input strings with a list of the words in a vocabulary, sorted by

different criteria e.g., popularity, user preferences, etc. For ontology-based

systems, this concept can be extended to the semantic level so that in ad-

dition to traditional string similarities, relations between ontology resources

are used in order to predict the next valid entry. The proposed semantic

auto-completion is described by Hyvönen and Mäkelä [2006] and applied in

information retrieval, specifically for multi-faceted search. For example, the

semantic portal MuseumFinland3 uses semantic auto-completion on request.

The search keywords are matched not only against the actual textual item

descriptions, but also against the labels and descriptions of the ontological

categories for which they are annotated and organised into view facets. As a

result, a new dynamically created facet is shown on user request and it con-

tains all categories whose name or other configurable property values, such

as alternative labels, match the keyword. For example, if the user types in

EU countries, the system would show list of countries in the dynamically

generated facet, from which the user can choose.

Summary: With guided interfaces, the user is limited as the number of

questions is limited, but the performance is rather high – once the user

formulates the query, it is very likely that he will get the correct answer.

A more flexible option is the use of semantic auto-completion. Contrary to

fully guided interfaces, this method allows for more freedom to the user.

6.4 Extending the Vocabulary

As it has been discussed in Section 5.10, many NLIs use external vocabularies

such as WordNet in addition to the domain lexicon (for example, to retrieve

synonyms). The user’s vocabulary could be a good source for extending the

system vocabulary as well.

3www.museeosuomi.fi
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AquaLog [Lopez et al., 2007] is backed by a learning mechanism, so that its

performance improves over time, in response to the vocabulary used by the

end users. As already discussed in Section 5.3, when porting AquaLog to

work with another domain, it is possible to configure its lexicon by defining

“pretty names”. During runtime, when the system is interpreting user’s

input ambiguously, it asks the user to help by choosing from several possible

interpretations. The user’s selection is then saved as a “pretty name” for

future disambiguation of the same type. For example, in the evaluation of

AquaLog, it was noticed that when referring to the relation works-for users

choose words such as: is working, collaborates, is involved in. Since the

system does not know that collaborates can be interpreted as referring to

the property works-for, it will prompt the user with the available options,

and ‘learn’ the user’s choice. In addition to learning a new term, AquaLog

records the context in which the term appeared. The context is defined by

the name of the ontology, the user information, and the arguments of the

question. Arguments of the question are usually the two arguments of the

triple, namely two classes or two instances in the ontology connected by a

relation.

To evaluate how the Learning Mechanism (LM) affects the overall system

performance and the number of user interactions, two experiments are con-

ducted and results are reported in Lopez et al. [2007]. First, AquaLog is

trialled with LM deactivated. In the second experiment two iterations are

performed. First, the LM is activated at the beginning of the experiment

in which the database containing learned concepts is empty. The second

iteration is performed over the results obtained from the first iteration.

The results show that using LM improves performance from 37.77% of an-

swered queries to 64.44%. Queries that could not be answered automatically

(i.e. required at least one iteration with the user) are quite frequent (35.55%)

even if the LM is used. This is because the LM is applied only to relations,

not to terms. Overall, the number of queries that required 2 or 3 iterations

are dramatically reduced with the use of the LM system which improved the

performance even after the first iteration from 37.77% to 40% as it uses the

notion of context to find similar but not identically learned queries. This

means that LM can help disambiguate the query even if it is the first time
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this query is presented to the system.

Summary: Although external sources such as WordNet can enrich the sys-

tem’s domain vocabulary, the user-centric vocabulary can play a significant

role in increasing the performance of the system as it has been shown in the

evaluation of AquaLog. In addition to maintaining the user’s vocabulary,

the AquaLog’s approach can be extended in several directions:

• to explore the user-contributed vocabulary which is not personalised, but

shared among all users. For example, if the user A asks Who works

for the University of Sheffield?, the system can map The University of

Sheffield to the Organisation, and Who to a Person, but the construc-

tion works for could be unknown and not similar to any of the existing

ontology relations between classes Person and Organisation. If there

are several relations between these concepts, the system can prompt

the user (as would be the case with AquaLog) to choose from the list

of available options. If the user chooses the relation employedIn, the

system will remember that works for can be related with the relation

employedIn and would add this to the user-centric vocabulary. Now if

user B asks the same question, and there is no data about works for

construction in his user-centric vocabulary, the vocabulary of the user

A could be used to automatically give the answer to the user B, or to

rank the employedIn relation on the top of all others suggested by the

system; a similar feature is discussed in Lopez et al. [2007] as a future

work for their learning mechanism where they propose grouping the

vocabulary by user profiles.

• hiding complexities: recommendations offered to users are usually the

names of potential ontology resources, e.g., names of properties, and

these sometimes do not sound natural. For example, properties usu-

ally consist of at least two words, such as hasBrother or has-brother.

Simple processing of such names can help in deriving more natural

words such as has brother. However, the way ontology resources are

named is definitely not standardised and this feature would have to be

customised for each system dependent on the domain;

• learning could be applied to terms (classes and instances), not only to
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relations;

• to put users in control : to allow users to see and modify the created

lexicon at any time.

6.5 How to Deal with Ambiguities?

Although controlled natural languages reduce ambiguities to some extent,

some issues, specific to the domain knowledge, still remain. For example, if

the knowledge base contains two instances of a class Person with the same

name e.g., Mary, the system is not able to predict which one the user is

interested in. The way this problem is usually solved is by using one or the

combination of the following methods:

1. automatically resolving ambiguities: using heuristics and ontology rea-

soning to implement ranking algorithms;

2. clarification dialogues: by involving the user;

3. query refinement : in cases when the cause of ambiguity is a vague

expression of the user’s information need.

6.5.1 Automatically Solving Ambiguities

The E-librarian system [Linckels and Meinel, 2007] uses a focus function

algorithm in case of ambiguities. A focus function returns the best inter-

pretation for a given word in the context of the complete user question. If

more than one best interpretation is found, they are all shown, although the

experience with the system revealed that the users generally enter simple

questions where the disambiguation is normally successful.

OntoNL is an ontology-based NLI for multimedia semantic repositories

[Karanastasi et al., 2007]. This system combines domain knowledge with

user profiles, both represented in standards such as MPEG-7 and TV-

Anytime to resolve ambiguities and rank results, thus avoiding clarification

dialogues. Their system is domain-specific and oriented towards digital

libraries.
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A large amount of semantic resources available on the Web can be a rea-

sonable source for automatic disambiguation. One example is the IBM’s

Watson4 where DBPedia.org (among other resources) is used to calculate

the confidence score based on which low scored query interpretations are

disregarded. Another example is PowerAqua, where WordNet in combi-

nation with the relations found on the Semantic Web is used for disam-

biguation. Firstly, the sense-based similarity matcher algorithm disregards

ontology terms that are syntactically related, but not semantically equiva-

lent to the query terms. Semantically equivalent are those that appear as

hypernyms or hyponyms of the given term, or hold an “is-a” relationship

with the synset of the term, based on WordNet. Secondly, relatedness be-

tween ontology terms based on the analysis of the existing taxonomy and

relationships between semantic resources is calculated. If the relatedness is

low, the query interpretations are disregarded.

As the domain knowledge grows, the task of automatically solving ambi-

guities becomes more difficult, and often the only way to resolve it is by

engaging the user through the clarification dialog.

6.5.2 Clarification Dialogs

In case of ambiguities Querix [Kaufmann et al., 2006] sends them to the user

for clarification. In this process users need to disambiguate the sense from

the menu with system-provided suggestions, in order to get better retrieval

results. For example, if the user enters population size and the system cannot

decide if the user is interested in the property with name population density

or population, it will ask the user to choose between the two.

Similar to Querix, the AquaLog system [Lopez et al., 2007] relies on clarifi-

cation dialogues when ambiguity arises. In contrast to Querix, AquaLog is

backed by the learning mechanism discussed earlier (see Section 6.4).

In general, clarification dialogues can help users resolve ambiguities, however,

if the suggestions provided by the system are not satisfactory, it is possible

that the user’s need was not expressed precisely enough in the query, which is

the main pre-requisite for retrieving relevant information from the knowledge

4http://www.watson.ibm.com
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base (see Figure 6.2). In addition, the query must contain the lexicalisations

which are found in the domain knowledge lexicon. This is why, many existing

NLI systems, extend their lexicons by using external sources for detecting

synonyms: the query posed by the user is very likely to contain words which

do not exist in the lexicon, although words with equivalent meaning do.

Figure 6.2: Retrieving relevant results

According to Stojanovic [2005b], there is usually a gap between the infor-

mation need and the query expressing that need, which is caused by “the

usage of short queries, whose meaning can be easily misinterpreted”. The

indicator of this gap, which is called query ambiguity [Stojanovic, 2005a],

can be reduced by the process of query refinement.

6.5.3 Query Refinement

Changing or refining the query in order to obtain results that are more

relevant is called query refinement. When refining the query it is important

to know the precise information need as well as which part of the query

to change/refine [Stojanovic, 2005b]. Refining usually means adding more

constraints to the query, until the quality of the results corresponds to the

user’s expectation.

Librarian Agent [Stojanovic, 2005b] – a system created to replace the hu-

man librarian when helping users to find the appropriate books in a library,

uses the query refinement technique proposed by Stojanovic [2005a]. Librar-

ian Agent measures query ambiguities with regard to the ontology struc-

ture (structure-related ambiguity) and the content of the knowledge base
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(content-related ambiguity). Ambiguities are interpreted from the point of

view of the user’s need, and are implicitly induced by analysing the user’s

behaviour. Modelling a user’s need is not trivial especially when users are

anonymous as the model of a user’s behaviour has to be developed implic-

itly i.e. by analysing implicit relevance feedback whose main purpose is to

infer the information need by analysing a user’s interaction with the system

[Stojanovic, 2005b].

The query refinement process is treated as the process of moving through the

query neighbourhood in order to decrease its ambiguity regarding the user’s

need [Stojanovic, 2005b]. Librarian Agent defines the query neighbourhood

through identification of the query constraints and the ambiguity for each

word. Query neighbourhood includes determining:

1. A more specific query. The query is refined so that the set of answers

is more specific.

2. A more generic query. The query is refined so that the set of answers

is bigger.

3. Equivalent query. The query is rewritten so that the returned results

are the same, but this is initiated for other reasons e.g., optimising the

execution time.

4. Similar queries. The query is refined so that its results are partially

overlapped with the initial query.

The approach is evaluated with 20 questions, which cannot be expressed pre-

cisely using the defined ontology vocabulary, but the answers are contained

in the information repository, e.g., find researchers with diverse experiences

about the semantic web. The goal of the evaluation was to see how the effec-

tiveness of the ontology-based querying is affected, when the query process

is enhanced with the presented refinement facility. Six computer science stu-

dents with little or almost no knowledge about domain ontologies, and with

no knowledge of the system, were asked to retrieve resources for 10 ques-

tions in one session, using the two retrieval methods (with and without the

refinement). Users were asked to explicitly confirm when they got relevant

results.
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For each search four measures have been considered: success, quality, number

of queries, and search time. Results revealed that success and the quality of

the session were significantly higher (57/85.7%; 0.6/0.9), while the number

of queries and the search time per session was significantly lower for the sys-

tem with query refinement switched on (10.3/5.2; 2023/1203s). Stojanovic

[2005b] concludes that if the system can discover and measure ambiguities

in a query and support the user in resolving these ambiguities efficiently, the

precision and recall of the retrieval process will increase.

Summary: In some cases it is not convenient for users to control the output

either because they are not interested in doing so, or the system might have

enough data to efficiently solve ambiguities automatically. However, this

is strongly related to the domain and the system functionality. The more

specific the domain and the simpler the system, the more feasible automatic

ambiguity resolution is. For more generic domains, a better solution would

be engaging the user to resolve ambiguities through clarification dialogs. In

cases of imprecisely expressed information need, query refinement is likely to

be a good solution. However, it is important to observe users, their actions

and behaviour during the process of refinement.

6.6 Summary and Discussion

Design of habitable NLIs and the choice of the methods which should be

used rely mainly on the targeted domain:

• Closed-domain NLIs usually work with one or several ontologies cov-

ering a narrow domain

• Open-domain NLIs work with a set of ontologies covering various do-

mains, ideally those available and published on the Web

Closed-domain NLIs might benefit from guided interfaces, which usually

have good performance, however the queries are fully controlled by the

system. This means that the user does not have the freedom to enter queries

of any length and form. A more flexible way of guiding the user is using

auto-completion and this can also be applied to open-domain NLIs.
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Another important factor when addressing habitability is the supported lan-

guage: an NLI which supports a CNL usually has good performance, however

the user has to learn the CNL. If the NLIs support more flexible language,

the performance is usually degraded. One of the reasons is ambiguity which

arises due to one of the following reasons:

• The undefined information need : flexible language usually means sup-

porting keyword-based queries which are often not enough to express

the need precisely. In this case query refinement could be used to

derive similar queries, more specific and more generic ones. Ontologies

play a significant role in predicting the query refinement process e.g.,

by defining a set of similar queries.

• The broad domain: for closed-domain NLIs, it is possible to resolve

ambiguities automatically by calculating the rankings of the query in-

terpretations based on the ontology reasoning. For open-domain NLIs,

although a ranking mechanism is advisable, it might be challenging

to resolve ambiguities automatically and the user might need to be

engaged with clarification dialogues to choose between system pro-

vided options. The challenge in this case is generating relevant, but

not too long of a list of options for the user.

Methods which can increase the habitability of NLIs irrespective of the

domain and the supported language are:

Feedback. Providing the feedback to the user by showing the system’s

interpretation of a query, the user can learn how to generate queries

efficiently. Moreover, an NLI system should make the user aware of

the type of a failure when it happens, by showing which habitability

domain was affected:

• conceptual failure: knowledge is not available in the system;

• lexical failure: the user should use different words when asking

the question;

• functional failure: the user might need to split the query into

several more simple ones;
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• syntactic failure: the user should be encouraged to reformulate

the question as the grammar might not be supported by the

system, but an alternative way to ask the same question and get

a result, exists.

The real challenge here is how to model feedback so that it does not

pose too much overhead to the user.

Extending vocabulary. Although external sources such as WordNet can

enrich the system vocabulary, as well as the lexicon which is created

individually for each domain, the user-contributed vocabulary can play

a significant role in increasing the performance of the system over time.

In contrast to the personalised vocabulary which observes the user as

an individual it would be interesting to simplify this approach, and

share vocabulary among different users. In addition to maintaining

the user-contributed vocabulary, this approach should allow users to

see and modify the created lexicon at any time.

From the discussion in this and the previous chapter, the biggest challenges

when building NLIs to ontologies can be summarised through the following

requirements:

1. Portability with minimal customisation.

2. Ambiguity: unambiguous transformation from NL into a formal query.

3. Expressiveness/robustness: avoiding the use of a controlled language,

but allowing users to enter queries of any length and form.

4. Minimum training for the user and keeping the supported language

intuitive.

5. Assisting the user in the process of query construction.

6. Allowing users to control the output by providing a mechanism to fol-

low the system’s transformations from the input (query) to the output

(result), so that they can disagree on the system’s decisions and refine

the query at certain points.
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7. Hiding complexities of the queried knowledge structure: showing re-

sults without imposing users to the underlying complexities of the

structured knowledge.

In the next chapters, we present how we have addressed these challenges

through the design of two systems:

• QuestIO (Question-based Interface to Ontologies) builds the domain

lexicon automatically from the semantic resources, and tries to auto-

matically interpret the user’s query based on internal ranking mecha-

nisms which rely on ontology reasoning.

• FREyA (Feedback, Refinement and Extended vocabularY Aggrega-

tion) is an interactive system which explores:

1. Feedback, which refers to showing the user query interpretations.

First experiments are presented in Chapter 8, where the approach

of QuestIO is extended with an interactive method of showing

the query interpretations to the user and allowing them to choose

the correct one. This approach is evaluated with users, and the

modifications which are adapted are presented in Chapter 9.

2. Refinement in FREyA (described in Chapter 9) refers to resolving

ambiguities which arise due to broad domain coverage. Ambigu-

ities are resolved by engaging the user with clarification dialogs.

3. Extended vocabulary is described in Chapter 9, where in addi-

tion to the automatically generating lexicon (as in QuestIO), the

user’s vocabulary and synonym detection coupled with a learning

mechanism is used to improve the performance of the system.
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Chapter 7

QuestIO

In this chapter1 we present Question-based Interface to Ontologies, and its

evaluation.

The Question-based Interface to Ontologies (QuestIO) system2 translates

1 The topic of this thesis originated as a part of my work within the TAO (Transitioning
Applications to Ontologies) project. The methodology used in TAO is to be published in H.
Wang, D. Damljanovic, T. Payne, N. Gibbins, and K. Bontcheva: Transition of Legacy
Systems to Semantically Enabled Applications: TAO Method and Tools. Semantic Web
Journal, IOS Press, 2011., where my main contribution is writing about ontology learning
tools in Section 2.1.2 which goes beyond the scope of this thesis, and the implementation
and writing about semantic annotation and querying ontologies using Natural Language in
Section 2.1.3 – that section is a summarized version of Sections 7.1 and 7.2 in this chapter.
Section 3 in the paper is by large my contribution which includes evaluation described in
Sections 7.4.1 and 7.5.6 in this chapter. The rest of the paper is written by the first author,
while the other authors read and provided suggestions for improvements of the work.

2 The initial idea about work described in this thesis was presented publicly for the
first time in D. Damljanovic: Natural Language Queries for Enhanced Knowledge Access,
Summer School on Multimedia Semantics Analysis, Annotation, Retrieval and Applica-
tions (SSMS’07) , Glasgow, UK, July 15-21, 2007. and included the description of CLOnE
QL. In 2008, CLOnE QL was renamed to QuestIO before it was published in

• V. Tablan, D. Damljanovic, K. Bontcheva: A Natural Language Query Interface to
Structured Information. In Proceedings of the 5h European Semantic Web Confer-
ence (ESWC’08), Tenerife, Spain, June, 2008. and

• D. Damljanovic, V. Tablan, K. Bontcheva: A Text-based Query Interface to OWL
Ontologies. In: 6th Language Resources and Evaluation Conference (LREC’08),
Marrakech, Morocco, ELRA, May, 2008..

My contribution for the former paper is writing the initial paper draft. The evaluation was
performed by K. Bontcheva and V. Tablan with my assistance and is not included in this
thesis. In terms of implementation of the described system, I had initial guidance from V.
Tablan, especially when developing the first version of the OntoRoot Gazetteer. He also
contributed the backtracking algorithm which became part of QuestIO. With regard to
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Natural Language queries to SeRQL (Sesame RDF Query Language)

queries3, which are then executed against the given ontology/knowledge

base in order to return results to the user. In this chapter, we give details

of QuestIO’s design, implementation, and evaluation. First, we present

the initialisation of the system, which is performed automatically from the

ontology (Section 7.1). Details of the runtime processing of the query is

described in Section 7.2, followed by the language coverage supported by

QuestIO in Section 7.3. Section 7.4.1 presents the evaluation of correct-

ness and the language coverage, Section 7.4.2 presents the evaluation of

portability and scalability, while in Section 7.5 results from the user-centric

evaluation are discussed.

7.1 Building the Domain Lexicon

To initialise the system automatically, the ontology resources (e.g., classes,

instances, properties and property values) are preprocessed, and any human-

understandable lexicalisations are extracted. To achieve this a list of the

following is extracted first:

• names of all ontology resources i.e. fragment identifiers4, and

• assigned property values for all ontology resources (e.g., label and

datatype property values).

Each item from the list is further processed so that:

• any name containing dash ("-") or underline ("_") character(s) is

processed so that each of these characters is replaced by a blank

the latter paper, my contribution was writing it in full along with the implementation of
the system and the evaluation section. V. Tablan and K. Bontcheva read and commented
on the pre-final version of the paper. Sections 7.1, 7.2, 7.3, 7.4.1, and 7.4.2 are updated
versions of the latter paper.

3At the time of the initial implementation of QuestIO, we were using GATE ontology-
based components which worked with Sesame 1.x and OWLIM 2.8.4. where SPARQL was
not supported.

4An ontology resource is usually identified by an URI concatenated with a set of
characters starting with ‘#’. This set of characters is called a fragment identifier. For
example, if the URI of a class is: http://gate.ac.uk/ns/gate-ontology#POSTagger, the
fragment identifier will be POSTagger.
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space. For example, Project_Name or Project-Name would become

Project Name;

• any name that is written in camelCase style is split into its constituent

words, so that ProjectName becomes Project Name.

Each item from this list is analysed separately by the Onto Root Application

(see Figure 7.1). The Onto Root Application is a pipeline of several shallow

language processing modules provided by GATE [Cunningham et al., 2002].

It first tokenises each list item, then assigns part-of-speech and lemma (i.e.

root) information to each token. It is this lemma or a set of lemmas which are

then added to a dynamic gazetteer list (Ontology Resource Root Gazetteer).

Figure 7.1: Building the domain lexicon from the ontology

For instance, if there is a resource with a fragment identifier ProjectName,

with assigned property rdfs:label with value project names, the created list

before executing the Onto Root application will contain the following strings:

• ProjectName as a fragment identifier,

• Project Name as split fragment identifier,

• project names as the value of rdfs:label.

Each of the items is then analysed separately and the results will be:
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• For ProjectName and Project Name the output will be the same as

the input, as the lemmas are the same as the input tokens.

• For project names the output will be the set of lemmas from the

input, resulting in project name.

A dynamic gazetteer list is created directly from the processed ontology

resources and is then used by the subsequent components in the process of

query processing. It is essential that the gazetteer list is created on the fly,

because it needs to be kept in sync with the ontology, as the latter changes

over time.

The overall performance of QuestIO is directly proportional to the quality of

the formal descriptions residing inside the knowledge repository: the more

human understandable descriptions attached to the semantic resources, the

richer the lexicon, and hence better the coverage of the system. However,

too many identical descriptions (e.g. exactly named entities of different

type such as people who are named as locations, etc.) might cause low

performance due to the high risk of ambiguity. In other words, we can expect

a reasonable performance only with a very specific domains and manually

crafted ontologies where ambiguities are not common. Even narrow domains

can be problematic for QuestIO if the data contains a large amount of

duplicate names. For example, in the domain of music a group called The

Who with the label Who might be misleading for questions starting with

Who such as in Who are the members of the Who?, in which case, the

gazetteer will mark both WH-phrase Who and the proper noun The Who

as referring to the same group, whereas the first annotation should ideally

be disregarded. In general, the performance is expected to be better for

semantic resources where the TBox is larger in comparison to the ABox.

This is because the TBox defines concepts and relations, and in that context

the ambiguity is avoided if the conceptualisation is carefully designed. The

ABox contains individuals that can be named ambiguously, and this can be

expected to degrade QuestIO’s performance, due to fact that it performs a

shallow text processing and heavily relies on the lexicalisations attached to

the semantic resources.
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7.2 Query Processing

QuestIO is an Information Extraction application, based on GATE, which:

• takes a free text query and an ontology as an input,

• transforms it to the set of queries expressed in a formal language, e.g.

SeRQL, and

• returns a set of results returned after executing these queries against

the given ontology.

Key components for the query interpretation and analysis are shown in

Figure 7.2.

Figure 7.2: The QuestIO component diagram

7.2.1 Query Interpretation

Each user query is interpreted using the Query Interpreter in the User In-

terface. It is then analysed by two components, each of which represent a

separate GATE pipeline application. Firstly, the Key Concept Identifica-

tion Tool (KCIT) identifies key concepts inside the query (instances, classes,

properties or property values from the ontology) by performing the ontology-

based lookup. We process the query with the same language processing re-

sources we used when extracting lemmas in the previous phase (Section 7.1),
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so that we can then match the extracted lemmas from the ontology resources

and the lemmas from the query. In this way, we are matching all existing

morphological inflections of the relevant terms.

Secondly, the Context Collector collects all words from the query that are

not recognised by KCIT, but could be useful in the process of generating the

formal query:

• keywords such in, of, from, etc. – used when analysing the direction

of a supposed relation between the two concepts that they connect.

• keyphrases usually contain few keywords, or the combination of a key-

word and a verb, for example What are, What is or How many.

• chunks – any part of a query that is between two identified key con-

cepts, used later in the relation ranking process.

To give an example, in a query What are the countries located in Europe?,

KCIT annotates countries as a mention of the class Country, and Europe

as an instance of the class Continent. What are is a keyphrase and in is a

keyword, both of which will be annotated by the Context Collector. Addi-

tionally, the Context Collector would extract the text between all identified

key concepts (i.e., chunks), which is in this case located in.

Next, the Query Analyser uses the identified key concepts from the KCIT

and all other concepts collected by the Context Collector to perform appro-

priate transformations, formulate SeRQL queries, execute them and send

them back to the User Interface where the Result Formatter renders them

in a user-friendly manner.

The Query Analyser, presented next, combines the key concepts with key

phrases, keywords, and chunks, in order to infer any potential relations that

are defined between these concepts inside the ontology.

7.2.2 Query Analysis

When all relevant data are collected, the Query Analyser (QA) performs the

following steps (Figure 7.3):
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Figure 7.3: The Query Analyser module

1. Filtering the identified key concepts. With human language it is possi-

ble to use the same expression in different context and express totally

different meanings (see e.g. Church and Patil [1982]). When identify-

ing key concepts, more than one annotation can appear over the same

token or a set of tokens, which needs to be disambiguated. The most

common disambiguation rule is to give priority to the longest matching

annotations. For example, there is an instance with label ANNIE POS

Tagger inside the GATE knowledge base5. The GATE knowledge base

contains instances of classes and relations between them based on the

GATE domain ontology6. (Note: as part of our evaluation, derived

from the TAO project, we use data about GATE such as system doc-

umentation, mailing list and so on. This is not to be confused with

our use of GATE to process the queries. See Section 7.4.1.) ANNIE

POS Tagger refers to an instance of type POSTagger, which has label

5http://gate.ac.uk/ns/gate-kb
6http://gate.ac.uk/ns/gate-ontology
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POS Tagger. If a query contains the text ANNIE POS Tagger, two

annotations will be created. One will refer to the class POS Tagger,

whereas the other one will refer to the instance of that class, namely

ANNIE POS Tagger.

As the annotation covering the ANNIE POS Tagger string inside the

query is longer than the one covering POS Tagger, it is given a higher

priority. This disambiguation rule is based on the assumption that

longer names usually refer to the more specific concepts or instances

whereas shorter ones usually refer to more generic terms.

2. Identifying relations between key concepts. This step includes identi-

fication of defined ontology relations (properties) between identified

key concepts. These relations are very important as they add descrip-

tions to the concepts and define their behaviour by adding rules and

constraints. They are retrieved through ontology-based reasoning (we

used the OWLIM7 repository and its TRREE engine).

3. Ranking potential relations. Retrieved relations are then scored using a

combination of three factors. One of them is based on string similarity

and is called a similarity score. The other two relevant factors for scor-

ing the properties are more complex and are based on the property’s

position in the hierarchy of concepts and properties: they are reflected

by a distance score and a specificity score. The next paragraphs pro-

vide more information on these.

The Similarity score (simScore) reflects the similarity of the rela-

tion’s name with the part of the query (a chunk) between iden-

tified concepts. The highest score is given to the relation that is

the most similar to the chunk. For this comparison we use Lev-

enshtein distance metrics. The Levenshtein distance between two

strings is the minimum number of operations needed to transform

one string into the other, where an operation is an insertion, dele-

tion, or substitution of a single character. Scores vary in range

from 0 to 1. For instance, if in a query list cities located in Eu-

rope, identified key concepts would be cities and Europe, the first

7http://ontotext.com/owlim/
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referring to the class City, and the latter referring to an instance

of the class Continent, the text given between these concepts

(located in) will be compared with names of all defined properties

between identified concepts. If the property with name locatedIn

is present in the ontology, the calculated similarity score between

‘locatedIn’ and ‘located In’ will be 0.8.

The Specificity score (specScore) reflects the position of the prop-

erty in comparison to other existing properties in the ontology

hierarchy. The intuition behind this score is that properties at

the top level usually refer to generic terms, whereas those that

are closer to the bottom refer to more specific ones. For example,

a property hasBrother could be defined as a subproperty of the

property hasSibling thus being more specific. The higher score

is given to the more specific properties (see Figure 7.5). The

specificity score is calculated as follows:

• All properties are arranged in two columns, where the first

column is a property, and the second column is its direct

super-property. To illustrate this with an example, let us as-

sume that an ontology has six properties defined as illustrated

in Table 7.1.

Property Direct super-property

p1 n/a

p2 p1

p3 n/a

p4 n/a

p5 p4

p6 p5

Table 7.1: Properties and their direct super-properties as defined in an
ontology

• For each property, its distance from the furthermost super-

property is calculated. Following our example, the distance

is as shown in Table 7.2.

• The specificity score is calculated by dividing the calculated

distance for each property by the maximum distance among
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Property Distance

p1 0

p2 1

p3 0

p4 0

p5 1

p6 2

Table 7.2: Distance of each property from its furthermost super-property

all properties on the ontology level. For the example in Ta-

ble 7.2, the maximum distance is 2, which appears between

p6 and p4. Hence, the specificity scores are as shown in Ta-

ble 7.3

Property Specificity score (normalised distance score)

p1 0

p2 0.5

p3 0

p4 0

p5 0.5

p6 1

Table 7.3: Specificity scores

As we can see from the example, the minimum specificity score is

assigned to the properties that have zero super-properties defined

(p1, p3, and p4), while the maximum specificity score is assigned

to the property with the largest number of super-properties de-

fined (p6).

The Distance score (distanceScore) reflects the position of the do-

main and range classes of the property inside the ontology hierar-

chy. In an ontology, concepts are usually organised in a sub-class

hierarchy where the most general ones are at the top, followed by

more specific ones lower down. For instance, if unlike in the pre-

vious example, the two properties hasSibling and hasBrother are

defined at the same level of the property hierarchy, and the latter

has a more specific domain which is Man while the domain for the

former is Person. If we assume that the class Man is defined as a
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sub-class of Person in the ontology, hasBrother will be assigned a

higher value on the distance score, because properties with more

specific domain and ranges are assigned a higher distance score.

In essence, the distance score is an average of the specificity scores

of all domain and range classes defined for the property. Hence,

it is calculated as follows:

• For each property, find the domain and range classes.

• For each domain and range class calculate the specificity score

following the same principles described above for calculating

Specificity scores for properties, where the only difference

is that we look at the super classes, instead of super proper-

ties.

• The distance score is the average of all specificity scores

found.

The final score (FC) for each property is a weighted sum of the three

measures and is calculated as shown in Equation 7.1:

(7.1) FC = 3 ∗ simScore+ 1 ∗ specScore+ 1 ∗ distanceScore

These metrics are ontology-motivated and are largely comparable to

those used in the AquaLog system and many others.

4. Creating SeRQL queries. When all potential relations are scored and

ranked, a formal SeRQL query is created dynamically. The key con-

cepts referring to ontology resources such as classes, instances, or prop-

erties are combined together with the derived properties in order to

generate the relevant query. However, before generating the formal

query, the elements are organized into a special format:

CLASS OR INSTANCE - [PROPERTY - CLASS OR INSTANCE]

where the part marked between ‘[’ and ‘]’ can be repeated N times,

where N is the number of key concepts in the query subtracted by 1.

The query interpretation with the highest score is then processed to

generate the SeRQL query.
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For example, if the query is What are the countries located in Europe?,

the key concepts are countries, and Europe. The first three query

interpretations after ranking relevant properties are:

COUNTRY locatedIn EUROPE (SCORE: 3.27)

COUNTRY hasOldName EUROPE (SCORE: 0.79)

COUNTRY hasMainAlias EUROPE (SCORE: 0.79)

...

The first interpretation has a very high score (3.27) due to similar-

ity score for locatedIn, see Table 7.4. The specificity score is lowest

(0.0) for this property because there is no defined super-property for

locatedIn in the property taxonomy. However, both hasOldName and

hasMainAlias are subproperties of hasAlias, and hence have a higher

specificity score. The similar trend exists with regard to the distance

score. This is due to the specificity scores of the domain and range

classes for these properties. Namely, all properties have ENTITY class

defined as domain, while the range for locatedIn is higher in hierarchy

in comparison to the range of the other two properties and hence the

lower distance score, see Figure 7.4.

Property locatedIn hasOldName hasMainAlias

Domain Class ENTITY ENTITY ENTITY

Range Class LOCATION ALIAS ALIAS

Specificity Score 0.0 0.25 0.25

Similarity Score 1.0 0.0 0.0

Distance Score 0.27 0.54 0.54

Total score 3.27 0.79 0.79

Table 7.4: Calculating individual scores for the candidate properties

The SeRQL query generated accordingly from the first ranked inter-

pretation is as follows:

SELECT c1, p2, i3

FROM

{c1} rdf:type
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Figure 7.4: Position of ENTITY, LOCATION, and ALIAS classes within the
PROTON ontology. ENTITY is most generic as it does not have any super-
classes (owl:Thing excluded), followed by ALIAS that has one super-class
LEXICAL RESOURCE, followed by LOCATION which is most specific as
it has two super-classes (OBJECT and ENTITY)
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{<http://proton.semanticweb.org/2005/04/protonu#Country>},

{c1} p2 {i3},

{i3} rdf:type

{<http://proton.semanticweb.org/2005/04/protonu#Continent>}

WHERE

p2=<http://proton.semanticweb.org/2005/04/protont#locatedIn>

AND

i3=<http://www.ontotext.com/kim/2005/04/wkb#Continent_T.4>

The dynamic creation of formal queries makes QuestIO flexible,

yet easily extendable towards any other formal query language e.g.,

SPARQL.

Figure 7.5: Specificity score for properties

7.3 Coverage

Query processing in QuestIO starts by identifying key concepts in the query

based on the lexicon extracted as described in Section 7.1. It performs exact

string matching between the lemmas of the extracted lexicalisations and

the lemmas found in the query. This improves robustness of the system

so that all morphological inflections such as city and cities in the query are

identified, no matter which of the two forms exist in the repository. However,

the system does not extend the vocabulary by any external resources such

as WordNet and solely relies on the lexicalisations attached to the semantic

resources.
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As QuestIO works by recognising key concepts inside the query before per-

forming other disambiguations and interpretations, the number of concepts

in the query is not limited. As long as there are relevant relations between

the concepts in the ontology, the required formal query can be created and

the results returned. An example is shown in Figure 7.6 where in the given

query three concepts are identified when run against the GATE knowledge

base: parameters - referring to the ResourceParameter class, PR – referring

to the ProcessingResource class, and ANNIE – referring to the instance

of a GATE Plugin class. Potential relations are identified between these re-

sources and the appropriate SeRQL queries are constructed.

Figure 7.6: Supporting relative clauses with QuestIO

The other important issue is that QuestIO is not relying exclusively on other

words in the query (e.g., keywords), besides the key concepts. As long as it

can recognise some key concepts, the remaining parts of the query are used

to predict relations and filter the results, but are not required to classify
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the type of the user query or the type of the formal query that must be

generated.

To illustrate this we give an example. If for instance, Europe is an instance

of the class Continent, and Country is a defined class inside an ontology,

the queries:Which countries are located in Europe? and countries located in

Europe will in most cases give the same results, regardless of the first query

being in the form of a fully-fledged question, and the latter more similar to

a concept-based search with important keywords only. Therefore, the same

SeRQL query can be generated from a number of different natural language

queries, thus providing the user with flexibility.

Furthermore, as long as there are relations between the identified key con-

cepts in the ontology, the appropriate SeRQL query will be formulated,

regardless of the number of key concepts identified in the query. For exam-

ple, in a query which are the capitals of countries in Southern Europe, if the

key concepts found are: capitals, countries and Southern Europe, the result-

ing query will include all relations where capitals are related to countries

(e.g., by relation locatedIn) and these are in relation with (e.g. by relation

locatedIn) Southern Europe.

Similarly, the order in which key concepts are positioned does not affect

the final result. For example, if a query List Processing Resources is

run against the GATE knowledge base, all known instances of the class

Processing Resource will be returned, because Processing Resources is

identified as a key concept referring to the class Processing Resource.

List Processing Resources in ANNIE would result in listing all processing

resources (i.e. instances of class Processing Resource) that are in a relation

with an instance ANNIE : in the GATE knowledge base, ANNIE is an

instance of class GATE Plugin, and each instance is related to several

Processing Resources by containsResource relation. As QuestIO does not

require strict adherence to syntax, the same results would be given for the

queries Processing Resources ANNIE and ANNIE Processing Resources.

Last but not least, QuestIO supports queries including conjunction and

disjunction (see Figure 7.7 ). These types of queries are processed so that

first, concepts connected with ‘and’ or ‘or’ are grouped. Next, relations with

other identified concepts are found for each member of the group separately.
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In this case, SeRQL UNION is used to represent OR, and INTERSECT is

used to represent AND.

Figure 7.7: Supporting queries expressing conjunction/disjunction with
QuestIO

In this given example, recognised concepts are parameters - referring to the

class ResourceParameter, ANNIE POS Tagger - referring to the instance

with this label and Sentence Splitter - referring to the class with this label.

ANNIE POS Tagger and Sentence Splitter are first grouped. Further on,

potential relations between ResourceParameter and each member of the pre-

viously created group are found, and SeRQL queries are created accordingly.

To illustrate the flexibility of the QuestIO’s supported syntax we give an

example in Figure 7.8. For three different input queries expressed in the

Natural Language or using incomplete queries, the result will be the same.

The inverse property visible at the bottom of the figure where the results

are shown, are indicating that the hasCapital property has French Republic

as a domain, and Paris as a range; however, due to the flattening effect of

the graph, we show results this way.

7.4 Qualitative and Quantitative Evaluation

In this section we present two kinds of evaluation performed with QuestIO.

The first one is comparative, demonstrating the advantages/disadvantages
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Figure 7.8: Expressiveness: QuestIO returns the same result for three dif-
ferent variations of the input query
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of QuestIO’s language coverage compared to that of AquaLog [Lopez and

Motta, 2004, Lopez et al., 2007]. The second one is performance, where the

same queries are executed against two different knowledge bases of different

sizes, one being a subset of the other, thus demonstrating how the size of

the knowledge base affects the query execution time.

7.4.1 Correctness and Coverage

We evaluate correctness using precision and recall measures (see Section 4

for definitions). We calculate these measures for the two systems: QuestIO

and AquaLog using the same evaluation conditions. We chose the AquaLog

system for two reasons. Firstly, our main intention with this comparative

evaluation is to assess the coverage of the language supported by QuestIO, in

comparison to a system with a deeper linguistic analysis. AquaLog satisfies

this requirement. Secondly, as QuestIO does not require any customisation

when porting from one system to another, the requirement for the system

to be tested against was also to be able to automatically load the desired

ontology without any additional configuration.

Dataset

36 questions were collected from the GATE user mailing list where users

are enquiring about various GATE modules and plugins. These questions

were run against the GATE knowledge base, which was created in the TAO8

project and is available from http://gate.ac.uk/ns/gate-kb. This ontol-

ogy encodes the component model of GATE, the available plugins, the types

of modules included in each of the plugins, the parameters for the different

modules, and the like. The resulting ontology contains 42 classes, 23 object

properties and 594 instances.

Firstly, the questions are filtered so that those enquiring about information

that is not in the ontology, are excluded (14 out of 36 questions). The reason

for excluding these questions is that they would not be answered correctly

due to the lack of the knowledge, neither the relevant SPARQL queries could

be generated. Hence, it is our view that it would be inappropriate to report

8http://www.tao-project.eu
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the results of the system based on them. On the other hand, if the new

knowledge would have been added to the ontology, the system might return

the correct answer. However, this we can not judge without running the

experiment with the updated knowledge base. The remaining 22 questions

are used in the experiment.

Results

Results are categorised as follows:

• correctly answered;

• correctly answered after reformulation: when the original question is

re-formulated the returned answer was correct;

• partially correct : the generated queries missed out one of the required

constraints, so the answer was less precise (these answers were not

included when calculating the overall precision and recall values);

• failed queries: when either no query is generated or the generated

query is not correct.

Further, we divided these 22 questions into two groups:

1. All questions that were malformed or are not supported by AquaLog

[Lopez and Motta, 2004, Lopez et al., 2007], among which there were

• one conjunction query What are the run parameters of POS Tag-

ger and Sentence splitter?

• one query with brackets Does GATE have a coreference resolution

component (PR)?

• one query starting with How many. . .

• three queries not in the form of a full-blown question, for example

I cannot get WordNet plugin to work.

2. Full-blown correctly structured questions (16 queries)

118



Natural Language Interfaces to Conceptual Models

Regarding group number 1, out of the 6 questions QuestIO was able to

correctly answer four queries, one question was answered partially, and one

failed.

Regarding group number 2, all questions were executed using the Aqua-

Log system, and then using QuestIO. The results are shown in Table 7.5.

QuestIO seems to perform better than AquaLog, if we consider only correctly

answered questions when calculating precision and recall (64.28% vs.45.45%,

and 56.25% vs. 31.25% respectively). Reformulating the query in order to

be answered with QuestIO did not affect its overall performance, whereas

for AquaLog 3 reformulated queries were answered correctly afterwards (re-

sulting in increased precision from 45.45% to 72.72% and recall from 31.25%

to 50%). For example, What are the values of the POS Tagger parame-

ters? was correctly answered by AquaLog when reformulated to What are

the parameters of the POS Tagger?, whereas both versions of the query were

handled correctly by QuestIO.

Table 7.5: Results of running the same set of queries with QuestIO and
AquaLog: c. correct - conditionally correct (correct after reformulated), p.
correct - partially correct

QuestIO AquaLog

correct 9 (56.25%) 5 (31.25%)
c. correct 0 3 (18.75%)
p. correct 5 (31.25%) 3 (18.75%)
failed 2 (12.5%) 5 (31.25%)

precision 64.28% 45.45%/ 72.72%
recall 56.25% 31.25%/50%

If we consider conditionally correct answers in the results, AquaLog outper-

forms QuestIO in terms of precision, while QuestIO outperforms AquaLog

in terms of recall. This is due to the fact that if a question is formulated

following the AquaLog’s supported language, the system seems to be more

precise and for the questions which it can not answer correctly it fails more

often than QuestIO, while QuestIO returns partially correct answers more

often than it fails. This highlights the advantages and disadvantages of the

languages supported by the two systems. AquaLog analyses grammar of

the question more carefully while requiring the user to know what kind of

questions are supported. QuestIO relies on a shallow language processing
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and the pattern-matching while not requiring a strict adherence to syntax.

In that regard, AquaLog seems to be more suitable for a question answering

system which would be used for searching the knowledge base to find precise

facts, while QuestIO seems to be better for browsing through the available

knowledge and looking into whether different concepts are related to each

other.

Among the questions that were answered by QuestIO at least partially cor-

rectly, while not being answered by AquaLog, the most common problem was

that they were too long and complicated. Our system was able to recognise

at least several concepts and generate SeRQL queries, even though they did

not always give the most precise answer.

Moreover, the AquaLog system has a better interface than QuestIO. For

example, in cases when the result is an ontology instance only, it is possible

to examine all assigned properties for this instance. In QuestIO, it is only

possible to see the name of the instance, and therefore the user has to browse

the ontology itself in order to find more details (see the lower part of the

previously discussed Figure 7.8 which demonstrates how QuestIO renders

results). Additionally, in the case of disambiguation, AquaLog will prompt

the user with a dialogue, whereas QuestIO would automatically derive the

result which is ranked best, or in case of several equal scores, it would return

all of them without requiring any input from the user.

7.4.2 Portability and Scalability

To test scalability, in another experiment we trialled QuestIO with two

different knowledge bases of different sizes, one being a subset of the other.

We prepared a set of queries that return identical results when executed

against the two knowledge bases. This is because the goal was to test how

the size of the dataset influences the execution time of the query.

The smaller dataset is the Travel Guides Knowledge Base (KB) that con-

tains instances and relations between them from the Travel Guides (TG)

Ontology9. The TG ontology is an extension of the PROTON ontology10

9http://goodoldai.org/ns/tgproton.owl
10http://proton.semanticweb.org
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and contains data about tourism destinations and tourist preferences (see

[Damljanovic and Devedzic, 2008] for more details).

The core of the Travel Guides Knowledge Base contains geographical data

such as those about cities, countries and continents [Damljanovic and

Devedzic, 2009]. This core was extracted from the KIM KB [Popov et al.,

2004] which contains general data, specifically about organisations, people,

locations, and has about 40 times more resources than the Travel Guides

KB. The size of both knowledge bases in shown in Table 7.6.

During this experiment, the two knowledge bases did not need to be changed

or customised to work with the QuestIO system, thus demonstrating porta-

bility. The set of queries chosen were of different level of complexity, where

the complexity is directly proportional to the number of identified key con-

cepts. The experiments were run on Ubuntu 9.10, on a computer with dual

Intel(R) Core (TM) 2 CPU 6400@2.13 GHz with 8G of memory. We have

also repeated all experiments five times and here we report the average num-

bers.

As shown in Table 7.6, the initialisation time of QuestIO was much longer

when used with KIM KB. However, this step is performed only once.

Table 7.6: Knowledge Base Sizes
TG KB KIM KB

Classes 364 335

Object Properties 120 90

Datatype Properties 47 43

Instances 2816 122885

Total size (C + P + I) 3347 123353

Initialisation time 11.68 seconds 318.4 seconds

The execution times were between 2.85 and 59.09 times (average: 13.7)

longer when executed with KIM KB. Still, most of the queries were executed

within a few seconds, excluding some exceptional cases. These are visible

from Figure 7.9.

The query is London capital of any country? took longest as scoring of the

properties was not very efficient and several queries were executed returning

no results, until it finally found the correct one in the fifth attempt.
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Figure 7.9: The average execution time across five runs, using the TG and
KIM knowledge bases
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Table 7.7: Execution times for running the same set of queries with QuestIO.
Shown times are in seconds.

TG KIM

Queries Execution time
countries located in Asia 0.41 1.38
capitals of countries located in Asia 0.41 1.17
which are the political regions in Europe 0.50 5.3
is London capital of any country? 0.58 34.27
capitals of countries in southern Europe 0.65 2.8
capital country France 1.06 4.52

Average execution time 0.60 8.21

7.5 User-centric Evaluation

In order to test usability of QuestIO, we have developed a prototype for

access to documentation about GATE software and then conducted a user-

centric task-based evaluation11.

7.5.1 QuestIO Prototype

The prototype interface had one text box for a query and a button. Each

page always had a link to browsing the ontology, so that the users who are

more comfortable with the structured format could use it (see Figure 7.10).

After the user submits a query, the results are shown in a document pane

(the pane where the results are URLs of documents mentioning concepts

from the query), and a refinement pane which is used to either refine the set

of returned documents in the document pane, or to provide an answer.

11The QuestIO prototype described in Section 7.5 is published in D. Damljanovic, K.
Bontcheva: Enhanced Semantic Access to Software Artefacts. In Workshop on Seman-
tic Web Enabled Software Engineering (SWESE’08) held in conjunction with ISWC’08,
Karlsruhe, Germany, October, 2008.. My contribution was the full implementation of the
system and writing the paper. K. Bontcheva provided comments on the pre-final version
of the paper.

Section 4 in H. Wang, D. Damljanovic and J. Sun: Enhanced Semantic Access to Formal
Software Models. In the Proceedings of the 12th International Conference on Formal
Engineering Methods, Shanghai, China, November 16 - 19, 2010. is largely based on
the OntoRoot Gazetteer and KCIT tool described in Sections 7.1 and 7.2 in this chapter.
My other contribution to the paper is the description of the ontology in Section 3.2 which
goes beyond the scope of this thesis. H. Wang and J. Sun contributed the remaining
sections.
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Figure 7.10: Browsing ontology to find GATE developers

Figure 7.11 illustrates refinement pane that shows the answer to the user’s

question which is expressed in Natural Language. However, if he selects one

of the named POS taggers and clicks Refine, the system will show only the

documents with the selected type of the POS tagger (see Figure 7.12).

Another example, for a question which is not expressed as a full-blown Nat-

ural Language question, but rather as its fragment, is shown in Figure 7.13.

The document pane lists all documents which contain the term GATE de-

veloper based on the user’s query. However, the refinement pane lists the

names of the developers as they appear in the ontology (see Figure 7.14),

and the user can now select one of the names and the list of documents

would be refined (see Figure 7.15).

Due to scalability issues with QuestIO working with SeRQL and OWLIM 2.8

(which was relying on Sesame 1.x), we have extended QuestIO in order to be

able to translate NL to SPARQL, as the SPARQL implementation was more

optimised and the answers were returned several times faster in comparison

to SeRQL. This significantly improved the performance of QuestIO with

the more-than-a-million-triples dataset, which had to return an answer in

subseconds when working with real users. Hence, in the experiments, we

used the version of QuestIO which worked with OWLIM 2.8.4, Sesame 1.2
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Figure 7.11: Using the QuestIO prototype to find the answer to the query
What types of POS Tagger are there in GATE?. The document pane lists
documents about POS Tagger, while the refinement pane lists the answer to
the question which can also be used to find more specific documents
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Figure 7.12: Documents about ANNIE POS Tagger

Figure 7.13: Searching for GATE developers using QuestIO
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Figure 7.14: The refinement pane showing the list of GATE developers
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Figure 7.15: Refined results after selecting Adam Funk from the list of
developers
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and SPARQL.

7.5.2 Dataset

We have used the GATE domain ontology which describes concepts about

the GATE software, modules, components, and developers (see Section 7.4.1

for more details). This ontology has been used to annotate existing software

documentation and code about GATE such as source code, forum posts,

Web pages linked from http://gate.ac.uk, and any documentation that

was available. Annotations are exported into OWL statements, based on an

Information-Extraction ontology12. By exporting information about anno-

tations and documents in which these occurred, we could perform not only

concept-based search which would discover relations available in the GATE

ontology (between the GATE components such as a GATE PR and a pa-

rameter for example), but also the documents which contain annotations

referring to certain GATE concepts. For example, we could find documents

which mention POS Tagger. Table 7.8 describes the size of the dataset.

number of annotated documents related to GATE 10 070

number of generated annotations 183 127

number of statements in the GATE ontology 3948

number of Information Extraction statements 1 138 847

total number of statements 1 142 795

Table 7.8: Size of the dataset

7.5.3 Evaluation Scope

The aim of this qualitative evaluation was twofold. Firstly, we wanted to test

the usability of QuestIO. Secondly, we wanted to validate whether software

developers, who are often not experienced in Semantic Web technologies and

formalisms, are able to easily find all information relevant to their tasks by

using QuestIO. This gives us an insight into the feasibility of using such an

interface in comparison to the baseline which in our case were traditional

ways of search e.g, Google, at least in the case of technologically literate

subjects.

12We have used the Proton ontology: http://proton.semanticweb.org/
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7.5.4 Experimental Setup

We carried out a complete counterbalanced13 repeated measures,14 task-based

evaluation design (also called a within-subjects design), i.e., the same users

interact with QuestIO and also use their current working practices and tools,

in order to complete a given set of tasks. With only two conditions in our

case (baseline and QuestIO) one half of the subjects was asked to accomplish

each task first using QuestIO, and the other half was asked to do it using

traditional ways of searching before doing it using QuestIO. As 12 subjects

were involved in the experiment, this enabled us to cover each possible order

6 times.

As part of the experiment we collected relevant background data (e.g., ex-

perience with GATE, familiarity with semantic web concepts) by asking

participants to fill in a multiple choice pre-test. Participants then had to

perform four tasks using both QuestIO and their usual working methods,

while we recorded their sessions. After each task they were asked to fill-in

a questionnaire assessing various features of the QuestIO prototype. At the

end, they had to fill in an overall user satisfaction survey and reply to ques-

tions related to the interface and the query language. Questionnaires used

in this experiment are available in Appendix A.

Training

Before the experiment, each participant watched two videos:

• a video introducing the aim and purpose of the QuestIO prototype,

mentioning its motivation and main objectives (1 min 52secs)15

13In complete counterbalancing each of the possible orderings of the experimental condi-
tions is equally represented. If k is the number of conditions, k! is the number of orderings
(see Wuensch [2009]). The reason for using counterbalancing is to minimise the sequence
effects – results might be contaminated by practice effects e.g. subjects get better at the
task as time passes, fatigue effects e.g., subjects get tired as time passes.

14“In this design all subjects appear in both experimental conditions, so halving the
number of subjects needed.” [Preece et al., 1994, p. 647]

15http://www.tao-project.eu/researchanddevelopment/demosanddownloads/

movies/gate-case-study-with-refs/gate-case-study-with-refs.html
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• a video explaining the language supported by QuestIO, and also the

prototype interface (5 min 37 secs)16

After watching the training videos and before being given their tasks, a half

of subjects were shown a short introduction:

The goal of this prototype is to enable a single point of access

to all knowledge contained in GATE software documentation and

code: forum posts, source code, source documentation, Web pages

and publications accessible from the GATE website. You will be

asked to perform several tasks using first this prototype and then

the tools you use on a daily basis, e.g. the GATE support page,

Google, Sourceforge.

Another half received a similar introduction, with the difference that they

were asked to use the tools they usually use on a daily basis, and then to

use the prototype.

Software

In order to collect and analyse the user interactions, we used the Morae

software17 which comprises of:

• Morae Recorder : to set up the study and record the user,

• Morae Observer : to observe the user while performing the tasks, and

• Morae Manager : to analyse results.

What to measure?

As this is primarily a usability study, we measured:

• efficiency : time spent to complete the tasks using the two approaches

– baseline and QuestIO;

16http://www.tao-project.eu/researchanddevelopment/demosanddownloads/

movies/prototype-tutorial/prototype-tutorial.html
17http://www.techsmith.com/morae.asp
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• effectiveness: the percentage of completed tasks using the two ap-

proaches;

• user satisfaction: a SUS questionnaire as a standard satisfaction mea-

sure [Brooke, 1996] to test usability of QuestIO.

In order to measure more subjective opinions after finishing each task, we

asked each participant to fill in a questionnaire reporting about their experi-

ence with the prototype. As argued by Nielsen [1994], subjective satisfaction

needs to be measured since it is an important usability attribute. We asked

all subjects the following questions:

• Were the results returned by QuestIO relevant?

• Did they find the refinement pane helpful?

• Was ontology browsing helpful?

We have also asked them to rank the overall experience with the QuestIO

prototype in comparison to their every day working practices, and also to

give their opinion on whether it was easy to formulate the queries required

by QuestIO.

As a set of answers the subject were offered a pre-defined set based on the

Likert scale [Likert, 1932] ranging from 1 to 5 (where 1 is Strongly Disagree

and 5 is Strongly Agree).

Sample

As the dataset was related to the GATE software, we asked the members

of the GATE team in Sheffield to participate in our experiment. We are

aware that this choice of evaluation participants could raise questions over

their objectivity, however our choice was limited due to the requirement that

all our users had knowledge of GATE. On the other hand, proximity, high

motivation and expertise of the group meant that we were able to obtain a

rich set of evaluation results (see Section 7.5.6) which influenced our decisions

related to the second part of our work (Chapters 8 and 9).

Most of the subjects belonged to both, or one of these groups:
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• GATE developers: a group of people who are actively working (or used

to work) on maintaining GATE and developing new GATE software

components.

• GATE users: a group of people who are using GATE to perform

language processing tasks such as syntactic parsing.

7.5.5 Tasks

A key point when designing the tasks was to make them similar to everyday

tasks carried out by GATE developers and users. We have also verbalised

them in a way that, if copy-pasted as such, the results will not be found.

The tasks were as follows:

1. Find out what POS (Part-Of-Speech) taggers exist in GATE.

• Our assumptions: this task is designed to test the effectiveness of

the semantically enabled prototype; answers are available both on

the Web, and through the prototype, but the idea is to test how

efficiently this task can be performed using the two approaches.

We would also like to see whether the subjects struggle with the

query language of QuestIO and whether those that are familiar

with the ontologies would turn to browse the ontology instead of

using the text-based interface.

2. Imagine that you are a GATE developer who needs to extend the

Cebuano Gazetteer. Your task is to find out the names of all its runtime

parameters.

• Our assumptions: this task is designed to resemble those per-

formed on a daily basis by GATE developers. More importantly,

it is not possible to find the correct answer on the Web as it is not

available even in the source code: the developers have to know

the specific place to look for the configuration files, which contain

the answer. However, this knowledge is available in the ontology.

3. Find which forum posts are related to the Learning PR.
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• Our assumptions: this task is designed to emphasis the bene-

fits of concept-based search in comparison to the keyword based

search currently available through search engines such as Google.

While it is possible to complete this task using traditional search

engines and also sourceforge.net, we hope that the subjects

will get more relevant results quicker, through using the Ques-

tIO interface. Also, we would like to see if the users will use the

refinement pane in this task, because learning is ambiguous in

the ontology and the pane can be used to filter out the irrelevant

results.

4. Think of any task that you would like to perform using this prototype.

For example, find documents which you have written. Try using the

refinement pane.

• Our assumptions: with this task we test whether the participants

have learned how to use the prototype and whether they can

formulate text-based queries without any difficulties; in addition,

we want to collect a new set of questions which can be used to

test and extend QuestIO’s capabilities.

7.5.6 Results

Subjects and their background

With the pre-tasks questionnaire we wanted to assess the background knowl-

edge of subjects and get an insight on how much they can be considered

GATE domain experts, but also how much they know about the semantic

web, ontologies, semantic search and ontology editors. We have also asked

them about traditional ways of searching about problems related to GATE:

where they search for help and how often. This gives us insight into the fea-

sibility of the QuestIO prototype which gathers all knowledge about GATE

at one place. Figure 7.16 shows the distribution of their answers. Each

subject had a choice to select all that apply, not only one from the list of

the options. Most of the subjects reported that they use the GATE sup-

port page (http://gate.ac.uk/support.html) as the starting point when
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trying to learn about GATE or solve a particular problem, but as many of

them reported that they use mailing list and the source code. We can see

that 6 out of 8 available methods are indeed using different locations on the

Web where subjects search for information about GATE. The lower part of

Figure 7.16 shows how often the subjects reported to be in need to search for

various GATE-related information. This gives us insight into suitability of

subjects for our study. More than half of our subjects are in need to search

for information about GATE at least once per week, making them highly

relevant for our study.

Figure 7.17 shows how often the subjects are asked about various GATE

components. This is important assessment about their GATE expertise, as

it is already shown in Figure 7.16 that in 33% of the cases the subjects re-

ported that they usually ask the member of the GATE team when enquiring

information about GATE.

Finally, Figure 7.18 shows their experience of using GATE expressed in years.

The most common experience was either 5 years or less and 10 years or less,

which represents the half of the participants. 16.67% of the participants have

never used GATE before.

We have calculated overall GATE expertise based on the linear combination

of these three assessments: how often the subjects are asked about GATE

(never: 0 points, rarely: 1, 1-2 days per week: 2, 3-5 days per week: 3

points), for how many years they have been using GATE (never used GATE:

0 points, rarely: 1 point, less than 2 years: 2, less than 5 years: 3, less than

10 years: 4, less than 14 years: 5) and also whether they consider themselves

as GATE users (1 point), GATE developers (2 points), both (3 points) or

neither (0 points). In the scalar representation of the latter, the GATE User

was considered to be less of an expert than GATE developer; this might

not be true outside of this evaluation however, we are primarily concerned

with finding and searching GATE components which is something GATE

developers do more often than GATE users. Figure 7.19 shows the results.

In order to assess their knowledge about semantic web technologies we have

asked them about their familiarity with the terms semantic web, ontologies,

semantic search and also whether they have ever used the ontology editors.
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Figure 7.16: Traditional ways of searching about GATE components and
frequency of search as reported by 12 subjects: 1 pm (per month), 1-2 dpw
(days per week), 3-5 dpw (days per week)
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Figure 7.17: Frequency of being asked about the GATE-related components,
as reported by 12 subjects: 1 pm (per month), 1-2 dpw (days per week), 3-5
dpw (days per week)

The normalised results are shown in Figure 7.2018. From this figure we can

derive that majority of the subjects were unfamiliar with the semantic web

related terms as the most common answer was familiarity 0 (the mode),

while the median and mean were 16.67 and 25.69 respectively.

18Answers were chosen from a 5-point Likert scale, see Appendix A. The final results are
calculated as score minus one so that 1 (Strongly Disagree) scored 0 points, 2 scored 1, and
so on, where 5 (Strongly Agree) scored 4. We then normalised the score on the scale from
0 to 100, similar to the way SUS Scores are normalized as described by Brooke [1996].
There are many discussions in literature on whether Likert scale should be interpreted
as interval or ordinal data. While the opinions are mixed, it seems to be dependent on
the design of the experiment, and indeed on what is being measured by the scale. See
Jamieson [2004] for more details. Throughout this thesis we interpreted Likert scale using
both ways, depending on the circumstances and the goal of the experiment in question.
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Figure 7.18: Experience in using GATE
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Figure 7.19: GATE Expertise expressed through the scalar value (0 – never
used GATE, 11 – the most experienced GATE expert)

139



Chapter VII: QuestIO

Figure 7.20: Expertise in semantic web technologies, familiarity expressed
in the range from 0 (minimum) to 100 (maximum)
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Efficiency

To measure efficiency, we measured the time it took each participant to

finish each task. We used one-way repeated-measures ANOVA to test the

significance of our results.

Figure 7.21 shows the average time spent per task for all participants. From

this diagram it is visible that for most tasks, the subjects finished tasks

considerably faster with QuestIO. On average, it took 46.61% longer to finish

each task using baseline (traditional ways of search) in comparison to using

QuestIO (107.1375 seconds vs. 157.075 seconds). The only exception is task

3 where participants spent slightly more time to finish it with the QuestIO

prototype. When looking at the results more closely, we noticed that when

performing task number 3 using the QuestIO prototype, the participants

spent majority of the time clicking on the resulting URLs in order to decide

whether the documents were relevant or not. When using a traditional search

method, they could easily determine this because they were displayed not

only with the URL, but also with short snippets from the content.

In order to test the statistical significance of this difference we used repeated-

measures one-way ANOVA with two levels. This method assumes the normal

distribution of the dependent variable (average time per task in our case) for

all factors, hence we first performed the tests of normality for both groups

using Shapiro-Wilk test with 95% confidence interval19.

This test suggested that both groups do not have a normal distribution (p <

0.001 for both groups) and hence we performed the data transformation using

Ln function. The Shapiro-Wilk test on the transformed data reveals that the

normal distribution exists (p = 0.353 for baseline and p = 0.987 for QuestIO

indicating that the latter data have almost perfect normal distribution). On

the transformed data, we proceed with the one-way ANOVA with 2 levels

to further investigate our findings. We set up our null hypothesis as follows:

there is no difference in the efficiency of the baseline and QuestIO approach.

If we find that this is true the assumption is that the difference in efficiency

19Another commonly-used test is Kolmogorov-Smirnov. Both methods test whether
one distribution is significantly different from a normal distribution. Shapiro-Wilk test is
recommended when the sample size is between 3 and 2000 and the Kolmogorov-Smirnov
test if the sample size is greater than 2000. See Phillips [1996] for more details.
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happened due to chance.

The ANOVA shows that we can reject the null hypothesis, and conclude

with a high level of confidence (F (1, 11) = 9.5, p = 0.001) that the subjects

were significantly slower when using baseline (157.08 seconds) in comparison

to using QuestIO (107.14 seconds).

Figure 7.21: Average time per task

Effectiveness

Effectiveness indicates how successfully the tasks were finished using both

systems. We observed each user and graded task success as:

• task completed with ease (0),

• completed with difficulty (1),

• failed to complete (2).

Figure 7.22 shows the difficulty per task based on the success rate for all

participants. Two extreme cases were task 1, which was finished successfully

with ease by all participants when using QuestIO, and task 2 which was not

completed by any of the participants, when using alternative ways of search.

This is in line with our expectations. Overall, the success rate for performing

tasks using QuestIO was 0.355 in comparison to 0.895 using baseline, on the
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Figure 7.22: Task difficulty based on the average success rate per task: task
completed with ease (0), completed with difficulty (1), failed to complete (2)

scale from 0 to 2. This difference is highly significant according to the

Friedman test with χ2 = 12 and p = 0.00120. This indicates that subjects

found it easier to finish tasks using QuestIO, in comparison to the baseline.

User satisfaction

We chose the SUS questionnaire as our principal measure of software us-

ability because it is the de facto standard. This questionnaire is developed

according to the proper techniques based on the Likert scale [Brooke, 1996].

Furthermore, researchers at Fidelity Investments carried out a comparative

study of SUS, three other published usability questionnaires and an internal

questionnaire used at Fidelity, over a population of 123 subjects, to deter-

20The Friedman test is the non-parametric alternative to the one-way ANOVA with
repeated measures. It is used to test for differences between groups when the dependent
variable being measured (success rate in our case) is ordinal.
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mine the sample sizes required to obtain consistent, accurate results. They

found that SUS produced the most reliable results across all sample sizes;

they noted a jump in accuracy to 75% at a sample size of 8, but recommended

a sample of at least 12–14 subjects [Tullis and Stetson, 2004]. Consequently,

for our evaluation, we recruited 12 participants.

As a reference for interpreting the results, SUS scores range from 0 (very

little satisfaction) to 100 (very high satisfaction) [Bailey, 2006], and scores

from 60 to 70 are considered average. Total mean SUS score in our evaluation

was 69.38, which is almost equal to the most common value (the mode) and

also median which both were 70 (see Figure 7.23). SUS scores ranged from

the minimum of 52.5 to the maximum of 85. Moreover, as our SUS scores

were almost perfectly normally distributed (Shapiro-Wilk coefficient=0.974,

p=0.949), we can estimate that 95% of the SUS scores will fall in the range

from 63.47 to 75.28. This is a satisfactory result.

Spearman test showed that the SUS result was not influenced neither by the

GATE expertise of our subjects (Spearman correlation coefficient = −0.134,

p-value=0.679, for the relation between GATE expertise and the SUS score),

neither by their knowledge of semantic web technologies (Spearman corre-

lation coefficient= 0.014 for the relation between semantic web knowledge

and the SUS score, p-value=0.965).

Subjective measures of user satisfaction

Whereas above results are based on our judgment from observing the sub-

jects, we were also interested into a subjective insight as perceived by the

subjects themselves. To assess that we asked them five questions, first of

which was whether it was easier to perform tasks using the QuestIO pro-

totype in comparison to the alternative ways of search. The overall results

were in favour of our prototype, with 18.8% disagreement to this statement,

54.1% agreement, and 27.1% neutral. Figure 7.24 shows the detailed dis-

tribution of results, grouped by task. For tasks 3, 2 and 1 (sorted by %

of agreement) the subjects considered QuestIO easier in comparison to the

traditional ways of search, whereas for task 4, they voted in favour of the

latter.
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Figure 7.23: The SUS score by participant

Users also reported that:

The prototype was slightly easier, in that it listed them all

(except rasp, which it missed) on a single page with no false

positives. (user 2, task 1)

but also

I couldn’t find the answer using the standard approaches.

(user 1, task 2)

In order to get a subjective measure of result relevance, we asked subjects

after each task whether they found the results returned by QuestIO relevant.

Across all tasks, 60.4% of subjects agreed, 10.5% disagreed, and 29.2% were

neutral. Detailed distribution is shown in Figure 7.25. It is interesting

to note that while the first three tasks had no recorded disagreements of

subjects, the task 4 seemed problematic and 41.7% subjects disagreed to

the statement that the results returned by QuestIO were relevant. Another

extreme is Task 2 which has the highest level of agreement (83.3%) in com-

parison to the other tasks. Let us recall that Task 2 was the most difficult
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Figure 7.24: Agreement of subjects to the statement that It was easier to
finish the task using the prototype in comparison to the traditional ways of
search.

task for all participants as shown in Figure 7.22. A closer analysis revealed

that the queries for Task 4 were very similar to those they would have typed

into Google, some of which were not related to GATE components at all,

although they were related to GATE. For example, queries such as GATE

web site, or GATE projects. This demonstrates that we failed to explain

well to the subjects what kind of knowledge is available, and also that the

prototype is not a replacement of a general purpose search engine, firing off

queries against the entire Web and its documents, but rather containing the

knowledge about GATE as a software.

In addition to choosing an answer from the Likert scale, the participants
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could give specific comments for each question. These comments reveal

that different users had different experience using QuestIO prototype. For

example, a user reported that:

The QuestIO results do not offer any summary or snippet,

which makes it difficult to assess their relevance. (user 12)

while another user reported:

It’s useful to have the various sources all available to search

via a single interface. (user 4)

Figure 7.25: Relevance of results returned by QuestIO
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We asked all participants whether the possibility to browse the ontology in the

prototype was helpful. 8.3% disagreed, 54.2% agreed, and 37.5% were neutral

reporting that they did not need to use it. Figure 7.26 shows the detailed

distribution of results. For tasks 2, 3 and 1 (in decreasing order according to

agreement) this option was rated most helpful, while again, task 4 had the

highest percent of disagreement in comparison to others (25% in comparison

to 0% for Tasks 2 and 3, and 8.3% for Task 1).

Figure 7.26: Was the option to browse the ontology helpful?

In the participants’s own words, when searching for developer of Morpholog-

ical Analyser the system could not find any results, so the user browsed the

ontology and afterwards reported:

It explained why I couldn’t search for Niraj and Morpher to-
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gether because there wasn’t a relationship defined there. (user 12,

task 4)

We asked all participants whether the refinement pane was helpful. The

refinement pane showed the answers for Tasks 1 and 2 (given that partic-

ipants formulated the query which could be parsed successfully), while for

the Task 3 it was used for the refinement of the results, as the task was

to find documents about specific GATE component (Learning PR). Overall,

58.4% agreed, 6.3% disagreed, 35.4% reported that they neither agreed nor

disagreed.

Figure 7.27 shows that for tasks 1, 2 and 4 the disagreement was equal

(8.3%) while for task 3, all subjects eather agreed that the refinement pane

was helpful or were neutral. Interestingly, agreement for the first 3 tasks

was similar (75%, 58.3% and 66.7% for tasks 1, 2 and 3 respectively), while

at the same time much higher than the agreement for the task 4 (33.3%).

However, most of the comments expressed positive attitude overall:

It seemed to narrow down the results to the right thing (user

1, task 3).

or

Great! the refinement pane suggested ‘LearningBatchLearn-

ingPR’, which was the right choice (user 12, task 3).

We asked all participants whether it was easy to formulate queries using

QuestIO. 68.7% agreed, 4.2% disagreed, 27.1% neither agreed nor disagreed.

Figure 7.28 shows the detailed distribution of results, where it is visible that

the easiest was to formulate the query for task number 3 (100% agreement),

which is in-line with one of the comments:

same keyword used with the mailing list - and it works!, (user

7, task 3)

The next easiest was Task 1 (83.3% agreement), followed by Task 2 (50%

agreement), and finally Task 4 (41.7% agreement) with which subjects strug-

gled as they report:
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Figure 7.27: Was the refinement pane helpful?

Wanted to search for PRs implemented by Niraj. Couldn’t do

it or didn’t know how to do it, (user 7, task 4) .

We have also asked the participants for any suggestions and ideas on the

interface improvements. Some of the suggestions were as follows:

• “When displaying the results (document links) you need to provide a

summary or a lead paragraph or a list of keywords so that the user

knows whether a document is relevant”.

• “The answer was in the ‘refine’ section at the bottom of the page; maybe

put this closer to the top?”
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Figure 7.28: Was it easy to formulate the query using QuestIO?

• “Yes, definitely don’t display everything (papers, pages, posts) but only

resources that are specified.”

• “Also navigation, ordering, ranking and grouping of results should be

implemented. Highlighting the terms is not supported, too, which I find

very useful.”

The evaluation results show that majority of participants (68.7%) found the

QuestIO language easy, and in fact 54.1% found using QuestIO easier than

traditional ways of search. The reason for this might be the possibility to find

all information at one place, rather than searching several locations on the

Web. Through measuring the relevance of the results (60.4%) we proved that
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the SPARQL queries generated based on the user’s queries were sufficiently

accurate. Despite the fact that 58.4% subjects agreed that the refinement

pane was helpful, the comments they left indicate that our design decision

to use refinement pane both for showing the results of the query (Tasks 1

and 2), and refining the documents to contain results of the query (Task

3) was confusing. Although our subjects were not highly experienced with

semantic web technologies, the possibility to browse ontology was rated as

helpful in 54.2% of cases. While the five tested features of QuestIO received

quite a positive feedback in general, we must note that, without exception,

Task 4 received the most negative results. Many of the comments left by

our subjects indicate that it was difficult for them to understand the scope

of the knowledge available in the prototype, and also, in cases of failures,

to understand why they happened. Similar trend is revealed through the

effectivness evaluation, where subjects were generally more successfull for

all tasks on average, the only exception being task 4.

In addition, many subjects were frustrated by the fact that they had to

browse through documents in order to judge their relevance and also by

other user interface issues listed above, most of which were related to the

subjects’ familiarity with search engines and the way these show results.

The prototype was taken as a competitor of Google, which is not what our

intention was, however, due to the comparison and also the fact that we

asked the subjects to perform identical tasks using the prototype and any

other page on the Internet, lead them to such thinking. Nevertheless, this

evaluation encouraged us to continue work on the text-based interface, how-

ever, we have revisited our requirements based on the analysis just shown,

before we did any further work.

7.6 Summary and Discussion

In this chapter we described a Question-based Interface to Ontologies which

automatically derives the answer by translating the Natural Language or

keyword-based question into the SeRQL/SPARQL, and returns the answer

to the user after executing the formal query against a given ontology. We

evaluated QuestIO in several aspects, and here we present the brief summary
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and the lessons learned from those evaluations which assessed the main

features of QuestIO which are the flexibility of the supported language and the

portability without customisation. We also presented the GATE case study

and the user-centric evaluation which assessed the usability of QuestIO, the

difficulty of the supported language, and several other features.

Flexibility of the supported language We have evaluated expressiveness

of the supported language using the software engineering domain with 36

questions from the GATE mailing list, and then repeated the experiment

with AquaLog. QuestIO’s query language showed advantages in comparison

to the AquaLog’s, thus resulting in higher precision and recall for the same

set of questions. The main difference in the two supported languages is

that while QuestIO does more shallow language processing in comparison

to AquaLog, it supports not only grammatically correct questions, but also

question fragments, and ill-formed ones.

The language supported by QuestIO proved to be very robust during the

user-centric evaluation, based on the number of different queries which have

been formulated in order to successfully finish the same tasks. To give an

example, in order to complete Task 2, users typed in:

• “cebuano gazetter parameters”

• “What are the runtime parameters of cebuano gazetteer?”

• “what are the parameters of cebuano gazetteer?”

• “Cebuano gazetteer runtime parameters”

• “Runtime parameters of cebuano gazetteer”

• “Cebuano runtime parameters”

• “Cebuano gazeteer”: this example includes the spelling error, due to

which the system failed to return the correct answer; it has happened

twice for two different users, where one of them immediately typed the

same query into Google and based on the ‘Did you mean’ functionality

which offered the correct spelling, figured out that he made a mistake

– corrected it and got correct results, while the other one gave up on
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the query and went to browse the ontology. Nevertheless, he has also

found the correct answer.

Moreover, our findings showed that encouraging subjects to use keyword-

based input was in places misleading. Set of keywords for search engines

is a bag of words which would be searched against the available documents

using boolean operators. Set of keywords as an input for a Natural Language

Interface is a set of words with omitted prepositions or WH-phrases for

example – these keywords are not independent, the assumption is that the

user is interested in existing relations between them. These two concepts are

quite different, and it might be better way to encourage users to use Natural

Language questions, even if not fully grammatically correct and with omitted

words, instead of encouraging them to use keyword-based queries.

However, the flexibility of the supported language has a trade-off which was

highlighted during the user-centric evaluation. Namely, the concepts which

appear in the query should be in line with the knowledge structure. An

interesting example of the system’s failure was the query Cebuano param-

eters. System recognized Cebuano as a plugin, and also parameters, but it

could not connect these two as there is no direct relation in the ontology.

The system also failed to provide a useful feedback so the user decided to

browse the ontology in order to figure out what the problem was and find

the answer. As shown in Figure 7.29, the system needed to find a Process-

ing Resource which is the connecting node in between the two nodes which

appeared in the query; this emphasises the fact that translation from the

NL query to the SPARQL query which will give the correct answer

must take the structure of the knowledge into account – and this is

what makes the design on NLIs to any structured data extremely

hard and expensive. The system could search for the connecting nodes in

between concepts in the query (and not only the direct relations), but this

is very time consuming and in addition will generate a lots of noise which

might be very difficult to filter. Moreover, there might be more than one

connecting node in between the two concepts, and this complicates the issue

even more.

Scalability and portability We have assessed QuestIO’s scalability by

trialling it with the two ontologies of different sizes one being the subset of
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Figure 7.29: Finding parameters of the Cebuano gazetteer: the importance
of the data structure

the other. While the quality of results was not affected, the initialisation

time and the execution time were significantly longer for the larger ontology.

More specifically:

• The ranking mechanism which relies on the properties and string simi-

larity caused extremely low performance (long execution time) for some

queries.

• Best ranking based on the assumptions for one type of ontology design

might not stand for the other, and therefore automatically returning

the answer in all cases might not be preferable.

• Using SPARQL as an alternative to SeRQL is faster for version 2.8.4

of OWLIM which relies on Sesame 1.x.

Usability With regard to the user-centric evaluation, QuestIO had quite

a good performance when evaluated on the set of predefined questions and

also with questions for which the answer was in the ontology. However, for

undefined tasks (where subjects had freedom to type in any query they were

interested in) users often were not satisfied with the results, and the reasons

can be summarized through the following cases:

Lexical failures Tokenizer vs. Tokeniser : the system did not support

spelling variations; but neither it could recognize the misspelled words
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such as Gazetteer vs. Gazeteer ; also, horacio saggion articles failed

due to the system not being able to find relation between publications

and articles. While publication was in the lexicon, articles was not and

thus the system returned no answer.

Conceptual failures The most common types were:

• Missing concepts: the system failed to return any results due to

no knowledge about concepts, for example Projects about GATE,

GATE web site; although the ontology is about GATE compo-

nents, even GATE was not recognized by the system as such a

concept does not exist in the ontology (however, GATE plugins,

GATE PRs, etc. do exist); similar was for JAPE, which was not

recognized by the prototype and resulted in some very experi-

enced GATE users be very frustrated due to the fact that the

system about GATE must know about JAPE.

• Missing relations between concepts: for example, for the

query Developer of Tokeniser the system knows about Developers

such as Adam Funk, Niraj Aswani, Hamish Cunningham, etc.

however, there was no relation defined between developers and

the components they developed. Therefore the system failed to

find them but also to give a useful message to the user.

• Missing concepts and relations: this case is the combination

of the previous two, such as in the query Author of morphological

analyser where the system did not know about Author ; the user

reformulated the query into Developer of morphological analyser

but still no results were found this time due to no relation between

Developer and morphological analyser.

While lexical failures are easier to address (e.g. using some spelling algo-

rithm in combination with WordNet) than conceptual failures, both remain

challenging. For example, in the last mentioned example, the system does

have knowledge about question terms in the ontology, but it cannot find rela-

tions between them and therefore does not give any answer. In an ideal case,

the system should communicate the relevant message to the user indicating

whether the answer does not exist, or the query needs to be reformulated.
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With regard to the lexical failures, using WordNet would help find the ar-

ticles and publications as synonyms for example, however, for very specific

domains such as the GATE case study, it would fail to connect author with

developer.

To address these challenges we developed a second NLI system called

FREyA, to which we now turn.

157



Chapter VII: QuestIO

158



Chapter 8

Towards Better Usability

with FREyA: Part I

In this chapter1 we present the FREyA system which is named after

Feedback, Refinement and Extended Vocabulary Aggregation. Our in-

tention with FREyA is to combine these usability enhancement methods

(discussed in Chapter 6) in order to improve the performance of NLIs to

ontologies and address the challenges discussed in Section 7.6:

Conceptual failures: At first, we have taken QuestIO one level up by

including the user into the loop when interpreting questions. We ex-

periment with feedback by showing the user all query interpretations

and the system’s rankings, so that the user can influence the answer

by choosing the correct interpretation. This approach is evaluated

with users, details are presented in this chapter. Further on, we move

towards concept interpretation where we use clarification dialogs for

resolving ambiguities through query refinement – details of this work

are presented in Chapter 9.

Lexical failures: we have used the user-interaction methods to extend the

system’s lexicon from the user’s vocabulary. In addition, we experiment

with handling the spelling-errors and synonym detection.

1An updated version of of this chapter is submitted as a research article to the Journal
of Web Semantics.
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Addressing lexical failures is detailed in Chapter 9, where in addition, we

address the following:

• Deeper grammar analysis The identification of the the question’s

semantic meaning is improved (in comparison to QuestIO) by combin-

ing the syntactic analysis with the ontology-based lookup.

• What to show The goal is to provide a concise answer to the user’s

question. The result of the SPARQL query returned by QuestIO is a

subgraph (represented by a table) which ideally contains the answer to

the user’s question. However, it is not trivial to derive one single answer

from this subgraph, and showing the whole graph to the user might be

overwhelming (as pointed out by users in the evaluation described in

Section 7.5).

8.1 Feedback

As we discussed in Chapter 6, feedback increases the user’s confidence and in

the case of failures, helps the user understand which habitability domain is

affected (see details about habitability domains in Section 4.1). In our initial

design of FREyA, we modelled the system’s interpretation of the query based

on two important aspects:

• The answer is found : feedback can make the user more confident that

the answer is indeed correct and also it can make the user familiarise

himself with the queried knowledge structure.

• The answer is not found : feedback should be used to make the user

aware of the reasons for no answer. This is more complex case as it is

sometimes hard to identify which habitability domain is affected:

– The answer is not found because the system could not parse the

question (the lexical or syntactic failure, the question could be

answered if reformulated).

– The answer is not found because the system could not find the

information about the required concepts (the conceptual failure,

the question could not be answered if reformulated).
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– The answer was not found although the system successfully parsed

the question. This case is probably the most complex because

it might mean that the answer is negative, but also that the

information is missing.

8.1.1 Hiding Complexities

One challenge when modelling feedback is showing the system’s interpre-

tation having in mind that NLIs are intended to be used by the users not

necessarily familiar with ontologies. NLIs to ontologies usually translate a

natural language query into some intermediate interpretation which is a set

of triples, which is then translated into a formal query such as SPARQL.

Hence, the most natural way, from the point of view of the system’s devel-

oper, would be showing either triples or the SPARQL query. However, as our

intention is to develop methods which are suitable for casual users as well as

for semantic web experts, in our initial design we want to simplify the sys-

tem’s interpretation, and hide complexities as much as possible. Therefore,

we take the following decisions:

• show labels instead of URIs;

• show the linear list of elements (instead of triples) in order in which

they appear in the question;

• show relations between the elements by rendering a tree-like structure.

8.1.2 Identified Context and Tree-based View

Implementing these decisions resulted in the Web interface which looks as

in Figure 8.1. After the user posts a question, the system first generates

the table with two columns: Identified context which shows the linear list

of elements (recognised concepts and relations between them as found in

the ontology), and Our score, which shows the score based on which the

Identified contexts are ranked. The system automatically selects the first

option, and the results are rendered using the tree-based view.

The user has the option of selecting any of the Identified contexts by clicking

on the radio button in the desired row. The results will be rendered on click.
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Figure 8.1: The FREyA interface

Further on, the user can explore the tree-based view by selecting its nodes,

for example Country in Figure 8.1, and the instances will be shown in the

right pane.

In the case when the system recognises concepts in a query, but does not

find any results, the concepts will be shown in the Identified context, and

on selection the message reading No relation found within this context is

displayed in the area for the tree-based view (see Figure 8.2).

8.1.3 Linearised List of Concepts

We have mentioned previously that the order of the recognised concepts fol-

lows the order in which they appear in the question. This is to ensure the

user is not confused with the output, and also to try and ‘translate’ the

natural language question into the set of recognised concepts. However, due

to the presence of properties in each query interpretation (as properties are

crucial to get the correct answer), this can lead to the ‘not so natural’ effect,

see for example Figure 8.3. The Identified context is shown including has

run time parameter relation. The interpretation as such is not understand-

able without additional explanation to the user – users must be trained to

understand the role of the property in between the recognised concepts. The
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Figure 8.2: The FREyA interface: showing results for states bordering
Hawaii

other option which we could consider is to reverse the order and show the

interpretation to read:

rasp parser (language analyzer) has run time parameters resource

parameter

However, for more complex queries, this approach would require modelling

triples. For example, if we look back at the example in Figure 8.1, the first

interpretation reads:

capital has capital country sub region of europe (continent)

To make this interpretation more natural, we would have to show:

country has capital capital;

country sub region of europe (continent)

However, this makes it harder to follow which question term refers to which

ontology concept, and from where the relations were derived. Therefore,

we stay with the linearised representation, but decide to model the tree-like

view (see the lower left part of the Figure 8.3), so that it is indeed clear to

the user that according to the knowledge structure ‘the rasp parser has run

time parameters...’ and not the other way around.
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Figure 8.3: The FREyA interface: showing results for runtime parameters
of rasp parser

When no results are found, the user will see the message No relations found

within this context, see Figure 8.4.

Figure 8.4: The FREyA interface: showing results for init parameters of
rasp parser

The tree-like structure shows relations between the concepts which are

grouped so that for example, one node is rendered for each class, but not for

all instances. Instances are shown in the right pane when the user clicks on

the node.
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8.2 Evaluation

During the GATE Summer School in July 2009, we organised a task-based

evaluation with the participants in order to test feedback. The evaluation

was a part of the lecture on using GATE to build Natural Language Inter-

faces to Ontologies.

8.2.1 Evaluation Scope

Our intention was to see whether users could make the correct conclusions

based on the system’s feedback, and therefore:

• reformulate the query in order to get better results,

• terminate the task based on the conclusion that

– there is no answer (answer is negative), or

– the knowledge was not available in the system.

In addition, we wanted to assess the efficiency, effectiveness and user satis-

faction of FREyA in comparison to QuestIO.

8.2.2 Experimental Setup

Training

The participants listened the 20 minutes talk about Natural Language In-

terface to Ontologies, where they were given a short overview of how the

system works and they had also the chance to familiarise themselves with

the separate components in GATE in order to understand various Process-

ing Resources which are used for building QuestIO and FREyA. They were

given a five minutes demo on how to use the Web-based interface2.

2Slides are available from http://gate.ac.uk/sale/talks/gate-course-july09/

slides-pdf/questio.pdf
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What to measure?

At the beginning of the experiment, we asked participants to complete the

questionnaire about their background (age, profession, knowledge of seman-

tic technologies). Next, they are asked to complete four tasks, and after each

task, they had to answer several questions:

• whether they could finish the tasks successfully: based on their answer,

we measured effectiveness;

• whether the feedback was helpful or not;

• whether it was easy to formulate the queries for the task or not.

As a set of answers the subjects were offered a pre-defined set, with an

option to add additional comments in free-text. The full task list and the

questionnaires given to the participants can be found in Appendix B.

After finishing all tasks, subjects were asked to complete the SUS question-

naire as a standard user satisfaction measure.

In addition, we measured the time each user spent on each task, and also

the number of queries they have used.

8.2.3 Dataset

We have initialised FREyA with two domain ontologies. The first one is the

same as in the evaluation described in Section 7.5 covering GATE compo-

nents, while the second one is the Mooney GeoQuery ontology covering the

United States geography3.

8.2.4 Tasks

As previously mentioned, subjects were asked to perform four tasks. For each

task they had the opportunity to read the one related to the GATE domain,

and the other one related to the United States geography, before they decide

3The Mooney geography dataset is available from http://www.ifi.uzh.ch/ddis/

research/talking-to-the-semantic-web/owl-test-data/
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which one to perform. If they were not confident in their knowledge about

GATE, we hoped they would choose the task related to the US geography.

The task pairs covering two domains were of the same complexity.

We will next list the tasks and describe what were our incentives for them.

Task 1:

• Task 1a: Find part of speech taggers which exist in GATE. Find out

which parameters exist for the POS Tagger of your choice.

• Task 1b: Find mountains which exist in the United States. Find out

in which state is the mountain of your choice located.

Our assumptions: This task contains two parts, each of which was a separate

task in the previous evaluation of QuestIO. The intention is to compare

efficiency and effectiveness of subjects with those in the previous study. This

way we are testing the effect of the new usability features which exist in

FREyA, but were not part of QuestIO.

Task 2:

• Task 2a: Imagine that you are a GATE developer who needs to extend

the RASP Parser. Your task is to find out the names of init parameters.

• Task 2b: Find out which states border hawaii.

Our assumptions: In this task, our goal was to see if the system provided

enough feedback to the user when the answer to the question was nega-

tive. Both ontologies contain the knowledge about the concepts in question,

however, the lack of relations between the concepts indicates that there is

no answer. What we are interested in here is whether the system’s inter-

pretation of the query together with the message No relations found within

the context can be clear to the user, and if he can make the decision with

confidence based on this.

Task 3:

• Task 3a: What are the parameters of the PRs which are included in

the same plugin as the Morpher?
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• Task 3b: Which rivers flow through the state in which the mountain

harvard is located?

Our assumptions: With this complex task we wanted to see whether the

users are able to complete it based on the feedback the system provides.

The task is complex in terms that it requires formulation of at least two

queries to get the answer. The second query needs to be formulated based

on the answer and the feedback returned for the first query. The subjects

need to figure out that there is knowledge about what they are searching for

in the system, but the query they are likely to type in first is too complex

and therefore, they need to reformulate it (and not give up concluding there

is no answer).

Task 4:

• Try exploring the knowledge available in the system. Either search

for various components of GATE such as PRs, plugins, LRs, VRs, or

explore the United States geography by inquiring about: cities, states,

rivers, mountains, highways, etc. Then ask some questions in order

to connect these concepts such as ‘which states border georgia?’ or

‘which rivers flow through states which border california’. Input as

many queries as you like.

Our assumptions: with this task we test whether participants have under-

stood what types of tasks can be performed using FREyA. Alternatively, we

could compare the results of this task with the ones from the previous study.

In addition, this gives us the opportunity to collect a new set of questions

which can be used to test and extend FREyA’s capabilities.

8.2.5 Participants

Participants were all outside Sheffield University, and were not known to us

before they registered to attend the GATE Summer School. They were al-

most evenly distributed across researchers, software developers and students,

and also across gender.

We measured their expertise in ontologies, ontology editors and SPARQL,

using the Likert scale, and the expertise is calculated as a linear combination
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of these three, and then normalised on the scale from 0 to 100 (similar to

how the SUS score is calculated). With the most common value (the mode)

of 50, median=58.33, and the range from 0 to 100, we conclude that their

knowledge of the semantic web technologies was neither basic, nor advanced

(see Figure 8.5), although with a mean of 60.8 and a very high variation

(22.98) which is more distributed towards the higher values, it is leaning

more towards the advanced level.

Figure 8.5: The expertise of subjects in using ontologies, ontology editors
and SPARQL

8.2.6 Results

While the number of participants at the GATE Summer School was 50, the

participation in the evaluation was on the voluntary basis, and many have

not completed all required tasks and also all questionnaires. Therefore, we

have disregarded all incomplete records, which resulted in the recorded data
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for 30 participants having completed the background questionnaire and at

least first three tasks. 11 out of these 30 participants finished Task 4, while

19 completed the SUS questionnaire. However, all of them have previously

finished at least three tasks and therefore we can make conclusions about

the user satisfaction based on these records.

Effectiveness

Figure 8.6 illustrates the task difficulty per task, based on the average value

of the success rate across all participants. Task 1 was the easiest, while Task

3 was the most difficult to finish.

Figure 8.6: Task difficulty based on the success rate per task: finished with
ease (0), finished with difficulty (1), not finished (2)

However, looking into the distribution of different success rates within each

task, as shown in Figure 8.7, Task 2 had the most failures (23.33% partic-

ipants did not finish the task). Task 1 was completed successfully by all

participants, with only four subjects reporting difficulty. Interestingly, if
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Figure 8.7: Frequency of different success rates per task

participants managed to finish Task 2 successfully, they have not experi-

enced any difficulties. Task 3 had not been finished in 20% of the cases.

In comparison to Task 2, this is slightly better, however, a large portion of

those who completed task 3 reported difficulty to do so. Task 4 was finished

by only 11 participants, majority of which reported that they have finished

it with ease.

User Satisfaction

With regard to the SUS score, the overall mean was 66.97. This is slightly

lower than the SUS score of 69.37 for the QuestIO user evaluation presented

in Section 7.4. The mode and the median were equal to the one in the pre-

vious evaluation (70). The range was much bigger starting at the minimum

of 25, and spreading until the maximum of 95 (in comparison to 52.5 mini-

mum and 85 maximum in the evaluation of QuestIO). Overall, this is a good

result.
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Figure 8.8: The distribution of SUS scores for 19 participants who completed
the questionnaire
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Comparison with QuestIO

Task 1 was intended to test the difference between effectiveness and efficiency

of FREyA in comparison to QuestIO. In other words, this test evaluates

whether the feedback in FREyA improves usability of the system.

Preparing data As in the FREyA evaluation, the first task was equivalent

to the two tasks (Task 1 and 2) from the QuestIO evaluation, we first merged

the results of these two into one. For effectiveness, in case that the success

score differed for the two tasks in the previous study, the higher one was

picked as the representative. For example, if one of the tasks was marked as

task completed with ease (0), and the other failed to complete (2), the overall

assigned score was failed to complete (2). For efficiency, measured through

the time spent on the task, we summarized the time for Tasks 1 and 2 into

one value.

Effectiveness We test the significance of the difference in effectiveness using

Chi-Square test of independence. Our null hypothesis is that there is no

relation between the system used (independent variable) and effectiveness

measured through the success rate (dependent variable). With p=0.01 and

χ2 = 8.313 we can reject the null hypothesis, leading us to the conclusion

that the difference in effectiveness in using the two systems (0.67 for QuestIO,

0.13 for FREyA) is significant. This indicates that the new usability features

that exist in FREyA and do not in QuestIO, had a positive impact on

effectiveness.

Efficiency With regard to the efficiency of the two systems, although the

overall result differs (180.5 seconds on average for Tasks 1 and 2 for QuestIO,

155.27 seconds for FREyA), 2-tailed independent t-test reveals that this dif-

ference is not significant (t=0.188, p=0.852 with equal variances assumed,

and t=0.287), and thus we retain the null hypothesis and conclude that

there is no relation between the system used (independent variable) and effi-

ciency measured through the time spent on task (dependent variable). This

indicates that new usability features of FREyA did not have a significant

influence on how quickly subjects could finish tasks.
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Subjective Measures of User Satisfaction

In order to test the subjects’ subjective perception of the specific features,

we asked them about Identified context and Query formulation.

Identified context Figure 8.9 shows the distribution of the subjects’ sub-

jective judgment on the Identified context. The exception is task 2 for which

we did not ask subjects about Identified context explicitly, but instead we

asked them whether it was clear that there were no states (or no parameters

for the GATE domain).

With regard to the first three tasks, the Identified context was most useful

for the easiest task (task 1), and the least useful for Task 3. It is surprising

Figure 8.9: Clarity of feedback, all tasks

that the large percent of subjects found the Identified context confusing or

neutral when doing task 1, although all of them successfully finished the

task. Namely, six subjects who found the Identified context confusing when

doing task 1, reported that several of the generated examples were confusing
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or nonsensical e.g. ‘state – is mountain of – rainer’ ; the reason for this

was that the system showed the recognised elements of the query in order

in which they appeared in the query; as in the ontology, the actual relation

is mountain of has state as a range, and mountain(rainer) as a domain,

the natural way of showing this to the user would be: rainer – is mountain

of– state. However, this kind of interpretation is a step towards showing

triples to the end-user, and for more complex queries, these would need to

be multiplied. As we have previously discussed (see Section 8.1), with this

initial prototype of FREyA, the intention was to mark question terms as

recognised without going deeply into the complexities of ontology structure.

With regard to the subjects who failed to complete task 2, this happened

due to three reasons:

• Two out of seven (28.57%) said the System provided confusing output

so they could not figure out what to do.

• Two out of seven (28.57%) said the System provided no output so they

could not figure out what to do.

• Three out of seven (42.86%) could not find any information about

‘Hawaii’ due to the system failing to recognize ‘Hawaii’ with uppercase.

The last group can be classified as the system failure, and therefore we

conclude that the remaining 57.14% failures happened due to the users

struggling to understand the feedback. In other words, four subjects failed

to finish task 2 due to not being able to understand the system’s feedback.

Looking at the results of 23 participants who claimed that they finished task

2 with ease (see Figure 8.10):

• For 8 out of 23 (34.78%) it was not clear that there are no bordering

states/no init time parameters for Rasp parser for that specific task,

but they could successfully finish the task by looking at the results

for some other queries. For example, some of them said that they

determined that the system meant that there were no bordering states

by querying another state with others bordering it.
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Figure 8.10: Clarity of feedback for Task 2 considering only the participants
who have finished the task with ease

• 3 out of 23 (13.04%) experienced the system failure in not rec-

ognizing Hawaii spelled with an upper case; they have managed to

reformulate the query in order to finish the task successfully.

• For 12 out of 23 (52.17%) participants, the feedback shown by the

system was clear enough to draw conclusions that there is no answer.

Overall, 12 subjects struggled to understand the system’s feedback, 4 out

of which have not found the alternative way to solve the task. This forms

40% of all subjects, which is quite a high number. Only 40% of subjects

found the feedback messages useful, even though 76.67% of them reported

that they finished the task with ease.

From task 2, we conclude that the Identified context coupled with the mes-

sage No relation found within identified context was not useful even though

76.67% of subjects have found the way to complete the task successfully,

usually by trying similar queries for which a result existed.

Looking into the details for the six subjects (20%) who failed to complete
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task 3, one of the subjects stated that “system provided confusing output:

couldn’t manage to find out how to formulate the query; tried several ones by

refinement”: when investigating further the queries of this user, we found out

that he tried 18 different queries, most of which gave some results, however,

they were either too generic (e.g., PRs), or too specific and long, and also

very similar to the wording of the actual task, for example “creole plugin

prs parameters that are the same as the parameters of gate morphological

analyser”.

Query formulation Figure 8.11 illustrates how easy was to formulate the

queries for the tasks. Subjects struggled most with task 3: many of them

have tried to input the exact wording of the task and then, since the system

showed the recognised concepts but no answer, 80% tried to reformulate the

query and successfully finished it, while 20% gave up (tasks not finished).

Figure 8.11: Query formulation per task

Table 8.1 illustrates the average number of queries across all subjects, which

were used for finishing the first three tasks.

The lowest number of queries was for task 2. However, it seems that for both
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Task Avg.
#queries

Avg. #queries (success-
fully finished tasks)

Avg. #queries (tasks
not finished)

1 7.27 7.27 n/a

2 4.10 3.17 7.14

3 6.03 5.5 8.17

Table 8.1: Number of queries per task across all subjects

tasks 2 and 3, the subjects who have finished the task successfully, used less

queries. The logs reveal that majority of subjects who failed to complete the

task, could have finished it even after the first query, given that they could

understand the system’s messages.

One of the subjects stated that [FREyA] is a nice tool but can easily be fake

i.e. try ‘state mountains in the States’ or ‘state apple, monkeys, bananas,

mountains in the USA’. This is an interesting observation which is indeed

true. The system does not use any predefined rules or syntax which would

help it rule out the sentences such as this one. However, this is left to the

user: our intention is to make the user aware of the available knowledge; if,

for the given query, the user gets the wrong answer, he will at least know the

reason for that. In an ideal case, the tool would indicate that state at the

beginning of the query is recognised as geo:State, and the user, knowing this

is not true, needs to reformulate the query (i.e. use similar words such as

‘give me’ or ‘show’ or ‘list’ instead of ‘state’ at the beginning of the query).

Comparison with QuestIO As we have assessed the query formulation

in the evaluation of QuestIO, we can now compare the results of the two

studies. Here we consider only the tasks that are repeated across the two

studies. In other words, we compare the perception of the query formulation

for Tasks 1 and 2 in the QuestIO evaluation against the perception of the

query formulation for Task 1 in the FREyA evaluation. In addition, we

compare the perception of the query formulation for the undefined task (Task

4) for both studies.

While the query language used in the two studies does not differ, the com-

parison will reveal whether there is any effect of some other factors (such

as user-interaction features of FREyA and the feedback) that influence the

perception of the query formulation. Our null hypothesis is that there is no
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relation between the system used, and the difficulty of the query language.

We use non-parametric Fisher Exact Test to assess this4.

Query language
easy neutral difficult

QuestIO defined task 66.7% 29.2% 4.2%

FREyA defined task 80% 6.7% 13.3%

QuestIO undefined task 41.7% 50% 8.3%

FREyA undefined task 63.6% 0% 36.4%

Table 8.2: Query formulation as perceived by subjects in the two studies

Table 8.2 shows the distribution of the answers, indicating that there were

more positive answers to the perception of the query language in the FREyA

evaluation, in comparison to the evaluation of QuestIO for both defined and

undefined tasks. For defined tasks, Fisher’s Exact test reveals that this

difference is not significant (F=5.255, p=0.071) hence we retain the null

hypothesis that there is no difference in how the two groups of subjects

perceived the query formulation for defined tasks. For the undefined task,

this difference is significant (F=8.016, p=0.015) indicating that subjects

had impression that the FREyA’s query language was easier than the one

required by QuestIO. This might indicate that the new usability features of

FREyA had a positive effect on the user’s perception of the query language

and helped boost the user’s experience.

8.2.7 Summary and Discussion

In this chapter we presented the initial implementation of the FREyA system

with the special emphasis on feedback, and the task-based evaluation with

30 subjects from the GATE Summer School, which was conducted with the

aim to assess the new usability features of FREyA from the end-user ’s point

of view, and make comparison, where appropriate, with QuestIO. While we

mention the term end-user quite frequently in this thesis, an interesting

question is certainly who are they? Are they expected to have background

in semantic technologies or can we assume that FREyA can be used by

4Fisher exact test is the exact version of Chi-square which is usually used for testing
2-by-2 tables, particularly for small samples. As Chi-square is an approximation, it is not
as trustworthy as the exact test on the data with expected counts less than 5.
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casual users of any background? FREyA attempts to render the feedback

in a user-friendly manner and its eventual goal is to make the vast amount

of structured information available to the casual users. However, based on

the evaluation presented in this chapter, we can only make claims about the

population represented by our sample which largely included computational

linguists, computer scientists, and software developers, who were familiar

with semantic web technologies even if not on the advanced level. With

regard to the application developers, the system was not customised prior

to this evaluation. However, it is important to highlight that the system

was initialised using two completely different domains, one about the GATE

software and the other one about the United States geography. Due to the

huge diversity between the two domains, there were no problems caused by

ambiguities, neither there was a need to combine the knowledge of the two

for any of the questions.

The feedback was provided using two elements:

• The Identified context table showing all query interpretations to the

user, where each interpretation is a linear combination of the concepts

and relations between them. The order of the recognised concepts

followed the order in which they appeared in the question.

• The tree-based view showing the concepts and their relations in the

tree view, for any selected identified context.

We tested the effectiveness, efficiency, and also user satisfaction using the

System Usability Scale. We also compared effectiveness, and efficiency with

the results from the previous study to assess whether feedback makes any

significant difference. In addition, we assessed subjective measures of user

satisfaction through gathering the user’s opinion about Identified context

and Query formulation.

Task 1 was intended for a comparison of effectiveness and efficiency of

FREyA with the results of the previous study with QuestIO. Task 2 was

intended to test whether subjects could understand that the answer to their

question was negative. Task 3 was testing whether subjects could make cor-

rect conclusions about query reformulation based on feedback. The wording

of the task was such that if used as a query the answer would have not been
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retrieved unless the query was reformulated or split into at least two queries.

Task 4 was important only in the context of collecting new queries, and also

for a comparison with the previous evaluation where appropriate.

All subjects completed Task 1 although four of them did so with difficulty.

This result is significantly better (p = 0.01) than the result for the same task

in the previous study of QuestIO, indicating that the new usability features

had a positive effect on effectiveness. However, although the subjects finished

this task faster than in the previous study, this difference is not significant

(p >= 0.776).

With regard to the Identified context, it was not well received even for task

1 which was the easiest. For tasks 2 and 3, the Identified context was not

key to success. Instead of understanding that there were no relations within

the identified context as it was stated by the system, the subjects ended up

reformulating the queries many times, and trying similar queries in order

to finish the task. The average number of queries per task for the tasks

completed successfully is much lower than for those that were not completed,

indicating that the subjects who did not understand the system’s messages,

believed that they need to reformulate the query, which is what they did

many times until giving up at the end. This is specifically the case for tasks

2 and 3.

Overall, our conclusion is that:

• Feedback had a positive impact on the overall effectiveness of the

system, but no significant effect on efficiency.

• Feedback had a positive impact on the subject’s perception of the

difficulty of query formulation.

• The Identified context showing the linearised list of concepts was not

well accepted.

• The tree-based structure especially its interactive feature was well ac-

cepted.

• Showing that the system knows about certain concepts, but cannot

find any relation between them was not clear.
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• For complex queries, feedback was often helpful in terms that subjects

could figure out that they need to reformulate the query in order to

get the correct answer.

Based on the findings from this evaluation, we moved towards the concept-

based interpretation, in contrast to the query-based one which was repre-

sented by Identified context. This enabled us to address some of the issues

revealed during the evaluation just presented, and also to address challenges

highlighted in the QuestIO evaluation (Chapter 7). These challenges are the

base for the improved version of FREyA – its design, implementation and

evaluation are detailed in the next Chapter 9.
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Chapter 9

Towards Better Usability

with FREyA: Part II

In this chapter1, we detail FREyA which goes one step further in exploring

the usability enhancement methods, by combining feedback with clarification

dialogs with the aim to improve the performance of NLIs to ontologies. This

1 My initial ideas on FREyA are summarised in D. Damljanovic, M. Agatonovic, H.
Cunningham: Usability of Natural Language Interfaces for Querying Ontologies, Work-
shop on Controlled Natural Language (CNL’09), Marettimo Island, Italy, June 08-10,
2009.. M. Agatonovic and H. Cunningham provided useful comments and improvements
on the initial proposal. In D. Damljanovic, M. Agatonovic, H. Cunningham: Natural Lan-
guage Interfaces to Ontologies: Combining Syntactic Analysis and Ontology-based Lookup
through the User Interaction. In Proceedings of the 7th Extended Semantic Web Confer-
ence (ESWC’10), Springer Verlag, Heraklion, Greece, May 31-June 3, 2010. I wrote about
FREyA which is largely based on the content in this chapter. While I implemented the
system, I had lots of discussions with M. Agatonovic whose comments and suggestions im-
proved the system and also the final version of the paper. H. Cunningham commented on
an earlier version of this chapter, which was then included in the paper. Similar contribu-
tion of both co-authors is applicable to D. Damljanovic, M. Agatonovic, H. Cunningham:
Identification of the Question Focus: Combining Syntactic Analysis and Ontology-based
Lookup through the User Interaction. In Proceedings of the 7th Language Resources and
Evaluation Conference (LREC’10), ELRA 2010, La Valletta, Malta, May 17-23, 2010. –
Sections 9.2 and 9.7.4 are an updated version of this paper. Section 9.4 is an updated
version of D. Damljanovic. Towards Portable Controlled Natural Languages for Querying
Ontologies. In Rosner, M., Fuchs, N., eds.: Proceedings of the 2nd Workshop on Con-
trolled Natural Language. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
Marettimo Island, Sicily, September 13-15, 2010. Sections 9.6 and 9.7.5 are an updated
version of D. Damljanovic, M. Agatonovic, H. Cunningham: FREyA: an Interactive Way
of Querying Linked Data using Natural Language. In: Proceedings of 1st Workshop on
Question Answering over Linked Data (QALD-1), Collocated with the 8th Extended Se-
mantic Web Conference (ESWC 2011). Heraklion, Greece, June 2011.
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work builds up on the experience from the evaluation of QuestIO described

in Chapter 7 and also on the evaluation of the initial implementation of

feedback described in Chapter 8. This leads to the system which, in contrast

to QuestIO, and the first version of FREyA which works with query-based

interpretations, moves towards concept-based interpretations, in an attempt

to:

• Improve recall by addressing expressiveness: generating the dia-

log whenever an “unknown” term appears in a question. The initial

domain-lexicon is extracted from the ontology, as in QuestIO (see Sec-

tion 7.1), and enriched by WordNet [Fellbaum, 1998]. “Unknown”

terms are those that are identified as candidates to be linked to the

ontology concepts. These terms are chosen based on the analysis of

the syntactic parse tree, however this analysis does not require strict

adherence to syntax and works on ill-formed and incomplete questions

as well as on the grammatically correct ones (Section 9.4).

• Improve precision by resolving ambiguities more effectively: gen-

erating the dialog whenever a question term refers to more than one

ontology concept i.e. for any ambiguities that cannot be solved auto-

matically.

The important part of the dialog are suggestions, which are found through

ontology reasoning. The system then learns from the user’s selections, and

improves its performance over time (Section 9.5). The complete workflow

starting with the Natural Language question and ending with the answer is

detailed next in Section 9.1.

In addition, while in QuestIO the results are shown to the user as a set of

triples returned by SPARQL, in FREyA two important aspects are explored:

• identification of the answer type (Section 9.2), which is then used for

• showing the concise answer to the user (Section 9.3).

With regard to portability, FREyA allows different modes to be used with

different datasets, so that the learning model can be built during the training

phase, and used later (Section 9.6).
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The system is evaluated using the Mooney GeoQuery dataset previously used

in the evaluation of feedback, and also using the MusicBrainz and DBPedia

datasets which are part of the Linked Open Data cloud. The results are

presented in Section 9.7.

9.1 FREyA Workflow

Figure 9.1 shows the workflow which starts with the Natural Language

question (or its fragment), and ends when the answer is found. Each step in

the workflow is explained in details in the following sections.

Figure 9.1: FREyA Workflow

9.1.1 Ontology-based Lookup

Ontology-based Lookup links question terms to logical forms in the ontology

which we call Ontology Concepts (OCs) without considering any context or
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grammar used in the question. Ontology Concepts refer to instances/indi-

viduals, classes, properties, or datatype property values such as string liter-

als. The lookup is performed against the domain-lexicon extracted using the

same principles detailed in Section 7.1. However, the OntoRoot Gazetteer

used in QuestIO is memory-based, and hence is not always suitable for large-

scale datasets as initialisation of the domain lexicon is time-consuming. The

lexicon is derived from the semantic repository by executing a set of SPARQL

queries. Moreover, the data can be distributed over various types of servers,

which often allow access through SPARQL endpoints. However, depending

on the repository which is used underneath, some SPARQL queries can be

highly unoptimised and slow.

One optimisation which we had to perform when attempting to load the

DBpedia dataset from the FactForge server2 with FREyA, is using a more

scalable gazetteer for ontology-based lookup. OntoRoot Gazetteer which loads

the lexicon into memory could not load the DBpedia lexicon with 20G

RAM, and we had to use a more scalable gazetteer called Large Knowledge

Gazetteer (LKB) developed by Ontotext.

Initial version of LKB (distributed with GATE 5.1) loaded the lexicon by ex-

ecuting one SPARQL query and was matching the exact text from the query

with the lexicalisations from the ontology as they are returned by SPARQL.

OntoRoot Gazetteer is more flexible and robust than LKB, as it does a sig-

nificant post-processing of the ontology lexicalisations returned by SPARQL,

before it adds them to the gazetteer list. Therefore, we collaborated with

Ontotext in order to merge the features of the OntoRoot and LKB gazetteers

and enable loading the lexicon from the large datasets through more than

one SPARQL query, and also to be able to post-process the lexicalisations

returned by SPARQL in order to improve the effectiveness of the lookup.

The initial SPARQL query which is used for the DBpedia experiment is

shown in Appendix C. The queries are not optimised and it would be worth

to explore the alternatives that would help to achieve the same result more

efficiently. For this experiment, we did not have control over factForge.net,

which already included inferred triples which had to be filtered out to avoid

duplicates – hence the SPARQL was more complicated than the one that

2www.factforge.net
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would be as effective if the repository contained explicit statements only.

By default, the system assumes that rdfs:label property is used to name On-

tology Concepts. However, for ontologies which use different naming con-

ventions (such as using the special class Alias in PROTON previously men-

tioned, or using dc:title inside the MusicBrainz dataset, see Section 9.7.5),

it is possible to predefine which properties are used for names. This will

enable the system to make the distinction between making a datatype prop-

erty value element and an instance element. This distinction is important

as different elements are used differently during the Triple Generation and

SPARQL generation steps.

To give an example using the MusicBrainz dataset, for the query When did

Kurt Cobain die? Kurt Cobain would be linked to four Ontology Concepts

(all individuals), one referring to mm:Artist, one referring to mm:Album,

and the other two referring to mm:Track3, because it is matched with the

string literal of the property dc:title of these four URIs which is Kurt Cobain.

However, if the question were Did Kurt Cobain die on April 8, 1994?, the

April 8, 1994 would be annotated as a datatype property value element

related to the individual Kurt Cobain, as it is matched with the value of

the property mm:endDate.

The ontology-based lookup relies on the human understandable lexicalisa-

tions of ontology resources and therefore, the quality of produced annotations

depends directly on them. However, it is not always the case that ontology

resources are followed by human understandable lexicalisations (e.g., labels).

This is especially the case for properties. In addition, Natural Language is

so expressive that words like total, smallest, higher than or how many cannot

be understood without grammar analysis, neither they can be encoded into

the relevant structure without additional processing. Some formal languages

such as SPARQL have not even supported some of these structures until re-

cently (e.g., it was not possible to do count in SPARQL before version

1.14). In order to capture the semantic meaning of such and similar con-

structions, we analyse its grammar and then translate certain question terms

3For clarity of presentation, we use prefix mm: in-
stead of http://musicbrainz.org/mm/mm-2.1# and dc: instead of
http://purl.org/dc/elements/1.1/title in the examples.

4http://www.w3.org/TR/sparql11-query/
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into the relevant operations with ontology concepts (e.g., superlative might

mean applying maximum or minimum function to the datatype property

value).

9.1.2 Syntactic Parsing and Analysis

The syntactic parsing and analysis generates a parse using the Stanford

Parser [Klein and Manning, 2002] and then uses several heuristic rules in or-

der to identify Potential Ontology Concepts (POCs). POCs refer to question

terms/phrases which can but not necessarily have to be linked to Ontology

Concepts. Although POCs are chosen based on the grammar analysis, the

strict adherence to syntax is not required and the algorithm works on ill-

formed questions and question fragments as well as on the grammatically

correct ones. For example, noun phrases (NP), nouns (NN*), verbs (VB*),

or WH-phrases such as Where, Who, When, How many are expected to be

found by our POC Identification algorithm. This algorithm is based on the

identification of prepreterminals and preterminals in the parsed tree, and

also on their part-of-speech tags. A node is a prepreterminal if all its chil-

dren are preterminals. A preterminal is defined to be a node with one child

which is itself a leaf. The POC Identification algorithm is configurable in a

sense that it can be set to ignore, or consider specific part-of-speech tags.

The high-level pseudo-code looks as follows:

1. find all X where X is a prepreterminal

2. if X is NP or NN* then POC = X

3. if POC contains ADJP or ADVP

then split POC into several POCs

4. find all Y where Y is preterminal AND Y is not

identified as POC at step 2

5. if Y is in the list of POS tags to consider AND

Y is not in the list of POS tags to ignore then

POC = Y
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9.1.3 Consolidation

The consolidation algorithm aims to merge the output of the Ontology-based

lookup and the Syntactic parsing and analysis by mapping the identified

POCs into OCs. While this algorithm attempts to perform this step au-

tomatically, it is possible that it requires attention from the user. This is

the case when there are ambiguous OCs in the question which could not

be resolved automatically, or when a POC could not be mapped to an OC

automatically. More concretely, a Potential Ontology Concept is mapped to

an Ontology Concept in two ways:

1. Automatically : if it overlaps with the Ontology Concept in a specific

way:

• Both POC and OC refer to the same text span in the ques-

tion (OC == POC). For example, in which rivers flow through

Texas?, rivers can be identified as an OC, as referring to the class

geo:River, while it can also be identified as a POC. In this case,

the POC is automatically mapped to the OC, as OC == POC

(the starting and ending offsets are identical).

• A POC refers to the text span which is contained within the span

to which an OC refers (POC ⊂ OC).

• The OC is contained within the POC which contains a determiner

(POC = DT +OC). If we look at the query Give me all former

members of the Berliner Philharmoniker., the POC Identification

Algorithm will find that the Berliner Philharmoniker is a POC,

while the Ontology-based Lookup will find that Berliner Philhar-

moniker is an OC, referring to an instance of mm:Artist. As the

only difference in the POC and the OC text is a determiner (the),

the consolidation algorithm will resolve this POC by removing it,

and by verifying that this noun phrase refers to the OC (with

dc:title Berliner Philharmoniker).

2. By engaging the user : in cases when the system fails to automatically

resolve a POC (or when it is configured to work in the forceDialog

mode, see Section 9.6) it will generate the dialog.
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When the system fails to automatically generate the answer (or when it is

configured to work in the forceDialog mode, see Section 9.6) it will prompt

the user with a dialog. There are two kinds of dialogs in FREyA:

1. The Disambiguation dialog involves the user to resolve identified am-

biguities in the question.

2. The Mapping dialog involves the user to map a POC to the one of the

suggested OCs.

While the two types of dialogs look identical from the user’s point of view,

there are differences which we will highlight here. Firstly, we give a higher

priority to the disambiguation dialog in comparison to the mapping dialog.

This is because our assumption is that the question terms which exist in the

graph (OCs) should be interpreted before those which do not (POCs). Note

that FREyA does not attempt to interpret the whole question at once, but

it does it for one pair of OCs at the time. In other words, one resolved dialog

can be seen as a pair of two OCs: an OC to which a question term is mapped,

and the neighbouring OC (context). Secondly, the way the suggestions are

generated for the two types of dialogs differ. The disambiguation dialog

includes only the suggestions with Ontology Concepts that are the result of

the ontology-based lookup (unless it is extended using the forceDialog mode,

see Section 9.6). The mapping dialog, in contrast, shows the suggestions that

are found through the ontology reasoning by looking at the closest Ontology

Concepts to the POC (the distance is calculated by walking through the

parsed tree). For the closest OC X, we identify its neighbouring concepts

which are shown to the user as suggestions. Neighbouring concepts include

the defined properties for X, and also its neighbouring classes. Neighbouring

classes of class X are those that are defined to be 1) the domain of the

property P where range(P)=X, and 2) the range of the property P where

domain(P)=X. Finally, the sequence of disambiguation and mapping dialogs

themselves controlled differently for these two kinds of dialogs:

• The disambiguation dialogs are driven by the question focus or the

answer type, whichever is available first: the closer the OC to be dis-

ambiguated to the question focus/answer type, the higher the chance
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that it will be disambiguated before any other. The question focus is

the term/phrase which identifies what the question is about, while the

answer type identifies the type of the question such as Person in the

query Who owns the biggest department store in England?. The focus

of this question would be the biggest department store (details of the

algorithm for identifying the focus and the answer type are described

in Damljanovic et al. [2010a]). After all ambiguities are resolved the

FREyA workflow continues to resolve all POCs through the mapping

dialogs.

• The mapping dialogs are driven by the availability of the OCs in the

neighbourhood. We calculate the distance between each POC and the

nearest OC inside the parsed tree, and the one with the minimum

distance is the one to be used for the dialog before any other.

9.1.4 The Disambiguation Dialog

For ambiguous OCs that are identified through the Ontology-based lookup,

the dialog is modelled and the user needs to disambiguate the specific mean-

ing. This dialog consists of the ambiguous term and the list of OCs. The

user is then asked:

I struggle with [ambiguous term]. Is [ambiguous term] related to:

OC1

OC2

...

OCn

In QuestIO, we use the approach for automatic disambiguation of question

terms: we consider all possible interpretations of the question, and then rank

them before we generate the SPARQL query – this way we automatically

disambiguate the terms referring to more than one concept by simply ex-

cluding those which are not ranked first. This approach proved problematic

for ontologies which have hundreds of property definitions. For example,

the PROTON ontology which is the core of the Travel Guides ontology (see

Section 7.4.2) has more than 150 relations defined between classes Country
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and Continent. Disambiguating relations in this case requires mapping the

user’s expression to the certain property which is difficult due to expressive-

ness of Natural Language, but also due to the large number of candidates to

which a question term could be mapped.

In FREyA, the automatic disambiguation could be corrected by involving

the user into the dialog. For example, if someone is inquiring about Missis-

sippi, we might not be able to automatically derive whether the query refers

to geo:River5, or geo:State, because we do not have enough context for ef-

fective disambiguation. However, if the question is which rivers flow through

Mississippi?, the context can help automatically derive that the question is

about Mississippi state due to the existing relation in the ontology such as

geo:River – geo:flowsThrough – geo:State.

9.1.5 The Mapping Dialog

For all POCs that could not be automatically resolved, the dialog is modelled

which consists of the unknown/POC term, and the list of suggestions. The

user is then asked:

I struggle with [POC term]. Is [POC term] related to:

suggestion 1 (OC1)

suggestion 2 (OC2)

...

suggestion n (OCn)

Note that while the OCs in the Disambiguation dialog are found through

the ontology-based lookup, the OCs (suggestions) in the Mapping dialog

are found based on the ontology reasoning – they are derived based on the

closest OC to the POC term6. The closest OC is found by walking through

the syntax tree. Based on the type of the closest OC, rules for generating

suggestions vary (see Table 9.1.5). Generating suggestions based on context

ensures that any suggestion that is selected by the user can be used to

generate the answer.

5For clarity of presentation, we use prefix geo: instead of http://www.mooney.net/geo#
in all examples.

6In the specific cases the disambiguation dialog can be extended by generating sugges-
tions using the Mapping Dialog rules described in Table 9.1.5, see Section 9.6
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Table 9.1: Generating suggestions based on the type of the nearest OC

Type of the closest OC Generating suggestions

class or instance get all classes connected
to the OC by exactly one
property, and all properties
defined for this OC

datatype property of type number maximum, minimum and
sum function of the OC

object property get all domain and range
classes for the OC

datatype property value get suggestions for the in-
stance to which this value
belongs

Option none is always added to the list of suggestions (see Table 9.2), unless

FREyA is configured differently (see Section 9.6 on different modes). This

allows the user to ignore suggestions if they are irrelevant. That is, the

system assumes that the POC in the dialog should not be mapped to any

suggested OCs, and therefore the system would learn that this POC is either:

1) incorrectly identified, or 2) cannot be mapped to any OC as the ontology

does not contain the relevant knowledge. While this option will not be of a

huge benefit to end-users, it is intended to identify flaws in the system and

encourage improvements.

The task of creating and ranking suggestions before showing them to the

user is quite complex, and this complexity arises as the queried knowledge

source grows.

Ranking suggestions

The initial ranking in FREyA is based on the string similarity between a

POC term and suggestions, and also based on the synonym detection:

String similarity. We combine Monge Elkan7 metrics with Soundex8 al-

gorithm. When comparing two strings the former gives a very high

7see http://www.dcs.shef.ac.uk/~sam/stringmetrics.html#monge
8http://en.wikipedia/wiki/Soundex
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Table 9.2: Sample queries and generated suggestions for the identified POCs
Query POC Closest

OC
Suggestions

population of
cities in Califor-
nia

population geo:City 1. city population
2. state
3. has city
4. is city of
5. none

population of Cal-
ifornia

population geo:california 1. state population
2. state pop density
3. has low point
...
n. none

which city has the
largest population
in California

largest popu-
lation

geo:City 1. max(city population)
2. min(city population)
3. sum(city population)
4. none

score to those which are exact parts of the other. For example, if we

compare population with city population, the similarity would be max-

imised as the former is contained in the latter. The intuition behind

this is that the ontology concepts are usually named using camelCased

names, and are more explicit than how they are usually referred to

using natural language, e.g., cityPopulation, stateArea, projectName,

and the like. Soundex algorithm compensates for any spelling mistakes

that the user makes – this algorithm gives a very high similarity to the

two words which are spelled differently but pronounced similarly.

Synonym detection. We use WordNet [Fellbaum, 1998] in order to re-

trieve synonyms of a POC. For example, if a question is What is the

highest peak in the US?, although there is no mention of US in the

ontology, WordNet would list The States as a synonym for US. This

would match with the geo:State in the ontology and therefore, this

option would be ranked very high.

When ambiguous OCs and all POCs are resolved, the query is interpreted

as a set of OCs. At this point, there is enough information for identifying

the answer type. Before going into details about the Answer type algorithm,
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we first explain how generated OCs are combined into triples and used to

generate the SPARQL query.

9.1.6 Combining Ontology Concepts into Triples and Gener-

ating SPARQL

The list of Ontology Concepts is prepared to conform to the structure that

is suitable for generating triples. As the triples are in a form

SUBJECT - PREDICATE - OBJECT

CLASS/INSTANCE - PROPERTY - CLASS/INSTANCE/LITERAL

we first insert any potential joker elements in between OCs, if necessary.

Jokers are wildcards or variables used instead of classes, instances, literals or

properties to generate query interpretations in a triple format. At the time

of generating these interpretations it is not known what kind of elements

can be expected, and hence the jokers are used. The rules for inserting joker

elements are as follows:

• If the first or the last element is a property, then we add a Joker

element at the beginning or at the end of the list, respectively; a

joker here is a variable representing a class, an instance or a datatype

property value (literal).

• If any two classes, instances, or datatype property values in the list of

OCs are next to each other, we insert the Joker element representing

a property between them.

• If any two properties in the list of OCs are next to each other, insert

a Joker element representing a class/datatype property value between

them.

For example, if the first two OCs derived from a question are referring to

a property and a class respectively, one joker class would be added before

them. For instance, the query what is the highest point of the state bordering

Mississippi? would be translated into the list of the following OCs:
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geo:isHighestPointOf geo:State geo:border geo:mississippi

PROPERTY CLASS PROPERTY INSTANCE

These elements are transformed into the following:

? geo:isHighestPointOf geo:State geo:border geo:mississippi

JOKER PROPERTY1 CLASS1 PROPERTY2 INSTANCE

The next step is generating a set of triples from OCs, taking into account

the domain and the range of the properties. For example, from the previous

list, two triples would be generated9:

? - geo:isHighestPointOf - geo:State;

geo:State - geo:borders - geo:mississippi (geo:State);

The last step is generating the SPARQL query. Set of triples are combined

and based on the OC type, relevant parts are added to the SELECT and

WHERE clauses. Following the previous example, the SPARQL query would

look like the following:

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix geo: <http://www.mooney.net/geo#>

select ?firstJoker ?p0 ?c1 ?p2 ?i3

where { { ?firstJoker ?p0 ?c1 .

filter (?p0=geo:isHighestPointOf) . }

?c1 rdf:type geo:State .

?c1 ?p2 ?i3 .

filter (?p2=geo:borders) .

?i3 rdf:type geo:State .

filter (?i3=geo:mississippi) . }

9.1.7 An Illustrative Example

Figure 9.2 shows the syntax tree for the query what is the population of new

york. As new york is identified as referring to both geo:State and geo:City

9Note that if geo:isHighestPointOf had the geo:State as a domain, the triple would look
like:geo:State - geo:isHighestPointOf - ?;.
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in the ontology, we first ask the user to disambiguate (see Figure 9.2 a.)). If

he selects city (geo:City), we start iterating through the list of POCs. The

first POC (new york as a city) overlaps with an already identified ontology

concept, which causes its immediate verification so we skip it. The next one

(population) is used to generate suggestions. Among them there will be city

population (geo:cityPopulation) and after the user select this from the list of

available options, we verify that population refers to the datatype property

geo:cityPopulation (see Figure 9.2 b.)).

Figure 9.2: Validation of potential ontology concepts through user interac-
tion: an example

An example of the generated suggestions for the same query is shown in

Figure 9.3. Suggestions are made based on city (geo:City) which is the

closest OC. If the user selected state (geo:State), the list of suggestions would

contain different options starting with state population (geo:statePopulation)

(see Figure 9.4). We can see the difference in the generated suggestions in

the cases when the user selected that new york means the city, and the state,
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respectively. The following answer differs as well.

Figure 9.3: Generated suggestions and the result for city population of the
new york city

Figure 9.4: Generated suggestions and the result for state population of new
york state
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9.2 Answer Type Identification

Most NLI systems classify questions based on the type such as What, Why,

Who, How, Where, which is followed by the identification of an answer

type. The answer type refers to the type of the answer, such as Person

or Organisation for questions starting with Who.

In NLIs to unstructured data, such as open domain QA systems, the answer

type is derived following the question classification. The two most common

approaches are [Greenwood, 2006]: 1) manually constructed rules for auto-

matic classification 2) fully automatically constructed classifiers – usually

based on Machine Learning algorithms such as Nearest Neighbour (NN),

decision trees (DT) and support vector machines (SVM). Both approaches

have drawbacks. In the former case, rules are hand-crafted and therefore it

takes a considerable amount of time to generate them. In the latter case,

automatic classifiers work well only if trained with a large amount of data,

but even then the problem is their performance at runtime.

However, identifying the answer type is not always sufficient for finding

answers. In Moldovan and Harabagiu [2000] the identification of the answer

type is followed by the identification of the focus. According to Moldovan and

Harabagiu [2000], a focus is a word or a sequence of words which define the

question and disambiguate it by indicating what the question is looking for.

For example, in what is the largest city in Germany? the focus is largest

city. Figure 9.5 shows a part of the table from Moldovan and Harabagiu

[2000] with examples of question categories, subcategories, answer types and

focuses of questions. Unlike their approach which is in-line with traditional

approaches used in open-domain QA systems, we skip the identification of

the question category, and first try to identify the question focus, which is

used in the subsequent steps to identify the answer type.

In NLIs to unstructured data, the answer type is derived from predefined

taxonomies which are more or less fine-grained. In the case of NLIs to struc-

tured data, the answer type is usually aligned with the queried knowledge

structure, as this could change over time (for example, if the ontology which

is being queried changes or if the system is being ported to work with a dif-

ferent domain/ontology). It is not trivial to translate an arbitrary question
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Figure 9.5: Sample questions with the identified question type, the answer
type and the focus (taken from Moldovan and Harabagiu [2000][p.3])

into a relevant logical representation or a formal query which will lead to

the correct answer [Tang and Mooney, 2001]. However, when querying on-

tologies in order to find the answer to a question, the approaches of question

classification can be avoided: unlike documents, which are unstructured and

thus have to be processed carefully in order to locate the answer, with on-

tologies, definitions between concepts already exist, and taking advantage of

this enables avoiding strict adherence to syntax. In what follows we describe

our approach for deriving the answer type without classifying the question,

but rather by combining the syntax tree and the semantics found in the

ontology.

Figure 9.6 shows the workflow for the identification of the answer type. QA

Detector combines syntactic parsing with a set of heuristic rules in order

to identify the focus. For a specific type of questions, the focus is not so

important for identification of the answer type, and these questions usually

have the Answer Type Identifier (ATI). For example, while the focus in

How long is Mississippi? is Mississippi, what we need to know in order to

find the answer type is what How long refers to. Therefore, QA Detector
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Figure 9.6: The workflow for the identification of the answer type

would identify that How long is the ATI. During consolidation, How long is

used together with the first ontology concept (geo:Mississippi) to generate

suggestions for the user. The user’s selection is then saved as the answer

type.

9.2.1 QA Detector

Similar to the POC Identification algorithm described previously in Sec-

tion 9.1, QA Detector combines the syntax tree with several heuristic rules.

The high level pseudo code is as follows:

1. find X: the first prepreterminal

2. if X is NP or NN* then focus = X

3. if X is WHADVP || WHNP || WHADJP

|| ADJP

- if the first child is WRB, and the second is JJ or ADJP,

then Answer Type Identifier (ATI) = X

- if there is only WRB then ATI=WRB

The output of this algorithm can be:
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• The focus of the question.

• The Answer Type Identifier (ATI). This indicates that an additional

input is required from the user in order to assign the answer type to

the question.

• No match found : the parser finds neither the focus nor the ATI.

9.2.2 FOC Finder

The FOC Finder identifies the First Ontology Concept (FOC) in a question

which is of the class or the datatype property type. This is because the

answer type eventually refers to one of these two types of concepts in the

ontology. Therefore, if the FOC refers to other types of ontology concepts,

the procedure is as follows:

• If the FOC refers to an object property: perform the consolidation

with domain or range classes of this property.

• If the FOC refers to an instance: perform the consolidation with a

class of that instance.

9.2.3 Consolidation

For each query the goal is to identify the answer type. Consolidation is an at-

tempt to achieve this by merging the output of the QA Detector/HeadFinder

with the FOC. While the focus itself is important to capture relevant infor-

mation which helps in finding the correct answer, the head of the focus is

what we use in order to find the answer type. We identify the head of the

focus using the ModCollinsHeadFinder class of the Stanford Parser package,

which is a variant of HeadFinder described in Collins [1999].

The consolidation algorithm can be described using the following pseudo

code:

if ATI!=null then

1. generate suggestions for the user

2. the Answer Type = the user’s selection
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else

if the head of the focus != null then

consolidate it with the FOC and identify the Answer Type

Depending on the relation between the head of the focus and the FOC, we

apply different rules in order to identify the answer type. Both head of

the focus and the FOC refer to a word or a set of words in the question.

Therefore, they can either overlap, or be placed one before/after another. In

the case when these two overlap the consolidation is performed as follows:

• Exact match: both the head of the focus and the FOC refer to the same

word(s) in the question. Therefore, the FOC becomes the Answer Type

of the question. For example, in What is the capital of Texas? capital

is the head of the focus (as capital is the head of the capital). The

same string (capital) is annotated as the FOC referring to geo:Capital

in the ontology. As these two overlap meaning that their start and end

offsets are equal, the answer type of the question is geo:Capital.

• The FOC is contained within the head of the focus, and vice versa: the

user is asked to decide whether the identified head of the focus refers

to the FOC or not.

When the head of the focus and the FOC do not overlap, the consolidation

is performed as follows:

• The head of the focus is before the FOC : for example, in what is the

area of Idaho? the focus is the area, and the answer type cannot be

resolved without a dialog because the only ontology-based annotation

in this question is Idaho referring to geo:Idaho, a country; the user

must choose that area refers to one of the suggestions generated based

on the neighbouring Ontology Concepts in the question (geo:Idaho).

This is based on the same principles which are explained earlier in

Section 9.1.5. More details are given in Section 9.2.4

• The system failed to identify the focus or the ATI in the previous step:

in this case the FOC becomes the answer type. For example, in what

is the most populous state? the focus is not identified due to our
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algorithm relying on prepreterminals; in this case, as the FOC refers

to geo:State, geo:State becomes the answer type.

• The head of the focus is after the FOC : in this case, the FOC be-

comes the answer type. For example, in what state borders Michi-

gan? borders is incorrectly identified as the focus while state is an-

notated as the FOC; therefore, the answer type is consolidated into

geo:State. This consolidation rule is usually used to correct the mis-

takes of the parser. Another example is the query which rivers flow

through Nevada?, where the parser identifies the focus to be Nevada,

which is incorrect. During the consolidation phase, if rivers is identi-

fied as the FOC which refers to geo:River, this will cause ignoring the

identified focus, and the answer type would be geo:River.

9.2.4 Generating Suggestions

A list of suggestions is created based on the ontology reasoning rules, and

ranked using combination of synonym detection and string similarity as

previously described in Section 9.1.5. For example, in the case of How big

is Alaska?, where Alaska is recognised as an instance of geo:Country in the

ontology, the suggestions would include the datatype properties related to

geo:Country such as: geo:stateArea and geo:statePopulation. Table 9.5 shows

several examples of the identified ATIs, and the suggestions generated based

on the FOC in the question – the answer type will be identified after the

user makes a selection. Table 9.4 shows the answer type identified for the

questions which did not have any ATI.

During the consolidation phase (described in Section 9.2.3) we give priority

to ontology concepts, particularly to the First Ontology Concept, when

consolidating it with the focus. However, when consolidating an ATI with

an ontology concept, the ATI is usually prioritised. This is because the ATI

usually refers to WH-phrases which occur at the beginning of the question.

One example is How long is Mississippi?. Our algorithm would identify How

long to be an ATI. On the other hand, long would be annotated as referring

to the mountain Longs in the ontology. The reason is that the name longs is

lowercased in the ontology, and therefore, our gazetteer which matches the
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Table 9.3: Sample queries with the identified ATI and the generated sugges-
tions: the answer type will be the user’s selection
Query ATI FOC Suggestions

How big is
Alaska?

How big geo:Alaska
(geo:State)

1.geo:stateArea
2.geo:statePopulation
3.geo:isCityOf
...
n. none

How high is
the highest
point in
America?

How
high

geo:hiPoint 1.geo:hiElevation
2.geo:isHighest PointOf
3.geo:hasHighPoint
4.none

Where is
the highest
point in
Hawaii?

Where geo:isHighestPointOf 1.geo:HiPoint
2.geo:State
3.none

Table 9.4: Sample queries with the identified focus and the answer type
Query Focus FOC Suggestions Answer

Type

What rivers
run through
Colorado?

rivers
(head:
rivers)

geo:River - geo:River

What is
the small-
est city in
Alaska?

the small-
est city
(head:
city)

geo:City - geo:City

What is the
population
of Idaho?

population
(head:
popula-
tion)

geo:Idaho
(geo:State)

1.geo:statePopulation
2.geo:stateArea
3.none

the
user’s
selec-
tion

root of the question term with a root from ontology lexicalisations, matches

long in How long with the root of longs. As this partially overlaps with

the ATI How long, we ignore it, and proceed with generating suggestions

and asking the user to choose what How long refers to. The suggestions

are generated using the neighbouring ontology concept geo:mississippi, and

among them there will be geo:length which is the correct one.

One special case is when no ontology concepts are found in the question
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(FOC = null). In this case, we generate suggestions by showing the most

generic concepts to the user such as top classes and properties. We then ask

the user to relate the identified focus to one of the suggested options.

9.2.5 An Illustrative Example

The result of running the algorithm for the identification of the answer type

over what are the highest points of states bordering Mississippi? is shown in

Figure 9.7.

Figure 9.7: Combining the syntactic parse tree with the ontology-based
lookup

Words highlighted in red (states, mississippi) are those that refer to the

ontology concepts. Red lines (borders) are relations found based on ontology

reasoning. The blue highlight (the highest points) refers to the identified

focus following our algorithm. As in this example, the identified focus is not

related to any ontology concept, it is used to generate suggestions for the

user. The user will be prompt with the dialog which looks like in Figure 9.8
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– the selected suggestion will be used to infer the answer type; for example,

if he selects the first option the answer type will become geo:hiPoint.

Figure 9.8: The clarification dialog preceding the identification of the answer
type

The trade off is that in our initially untrained system, the user will see much

more options than the ones he is interested in, but the learning mechanism

which works behind the scene would put the correct ones at the top by the

time. This is explained in Section 9.5.

9.3 What to Show: Presentation of Results to the

User

In this section we describe how we use the answer type identified as described

previously in Section 9.2, in order to show the concise answer to the user

but also in order to show feedback.

Natural Language Interfaces for querying ontologies translate Natural Lan-

guage into formal languages such as SPARQL. This translation is what most

of the existing NLIs focus on, and the problem of showing the results to the

user is somewhat de-emphasised.

In Chapters 5 and 6 we discussed the performance of various NLIs to ontolo-

gies, and analysed the low performance and the error rate which seems to

be often caused by the way the result is shown (or not shown) to the user.

Some of the reasons which were elaborated are:

• The knowledge is not in the ontology/knowledge base but the system

is not capable of guiding the user to change the topic (as the answer

to the initial query can not be found due to the lack of knowledge).

• Feedback messages are not helpful i.e. the user can not figure out how

to proceed further.
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• Users have assumptions/misconceptions about the system capabilities

and the supported language.

We discussed in Chapter 6 the importance of various usability methods which

can address some of these problems, however, one of the most important

aspects, which needs to be considered is that the user feels confidence and

trust, when using the system, and one of the methods which is important in

that context is feedback – showing the system’s interpretation to the user,

and communicating the message of what the system understood clearly.

Based on the results of the user-centric evaluation of feedback in Chapter 8,

we modified our initial implementation so that in addition to the question

interpretation, we use the identified answer type in FREyA to:

• display the concise answer to the user, and

• show feedback in the graph-based view.

9.3.1 Display the Concise Answer

As previously discussed, the answer type in FREyA is mapped to an ontology

concept which could either be: a class, or a datatype property. Other

ontology concepts are resolved to these two during the consolidation phase

(see Section 9.2). Based on the type of the ontology concept, we use different

albeit similar patterns for displaying the concise answer:

• Answer type is mapped to a class: in this case, the answer is usually the

list of instances of this class, and the pattern looks like the following:

CLASS (number of answers):

instance 1

instance 2

...

instance n

• Answer type is mapped to a datatype property : the answer is the value

of this property and the pattern is as follows:
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DATATYPE PROPERTY (number of values):

value 1

value 2

...

value n

For example, in case of Show lakes in Minnesota, lakes is identified as re-

ferring to the ontology concept geo:Lake which is the answer type of the

question. As geo:Lake is a class we render it as shown in Figure 9.9.

Figure 9.9: The answer to the query Show lakes in Minnesota

9.3.2 Feedback: the Graph-based View

According to the user-centric evaluation presented in Chapter 8, the users

liked the interactive feature of the tree-based representation where they could

click on the node of interest and explore details further. However, the tree-

based view had some disadvantages which could not be easily overcome.

Namely, attempting to render a tree based on a graph caused problems in

some cases, when attempting to translate the graph returned by SPARQL

into the tree like structure required by our interface. Therefore, we adapted

more intuitive approach which renders the graph with all nodes, but it can

be navigated in the case there are too many.

A sample graph is shown in Figure 9.10, where the answer type is placed in

the centre, while the answer is available on the nearest circle. The user can

click on any node in order to investigate it further – each click will cause the

graph to be re-rendered and the clicked node will be placed in the centre.

We used JIT library10 for the visualisation of this graph (as well as for the

10www.thejit.org
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visualisation of the tree presented in Chapter 8).

Figure 9.10: The graph showing the system’s interpretation of the query
Show lakes in Minnesota

9.4 Enriching Lexicon through User Interaction

QuestIO’s approach, described in Section 7.1, generates the initial lexicon

automatically from the ontology lexicalisations. With FREyA, we extend

that approach with WordNet [Fellbaum, 1998], and by involving the user

into the loop to enable the incremental enrichment of the lexicon over time

(see Figure 9.11). When a user starts using the system, if a question term

is not found in the lexicon, the Mapping dialog is modelled and the user is

asked to map the unknown term into the ontology concept11 and following

his selection, the new term is added to the lexicon. In addition, the lexicon

carries the semantics related to the context in which a certain word appeared.

The approach of extending the vocabulary is very similar to the one used

in AquaLog [Lopez et al., 2007], however, there are a few differences which

11If the unknown term cannot be mapped to any of the generated suggestions, the user
can choose the option none which will cause the unknown term in question to be ignored.
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we will highlight here. Firstly, our model does not distinguish input from

individual users, and building the lexicon is a collaborative effort where the

input of one user is used for all the others. Our decision not to personalise

this learning feature is influenced by the recent emergence of social networks

which have shown the advantages of collaborative intelligence. Secondly, to

the best of our knowledge, the learning mechanism in AquaLog is used for

learning ontology relations only, when parts of the linguistic triples (verbs,

or sometimes nouns) are associated with relations by involving the user into

dialog. Our approach is more generic in that it is applied to any ontology

element, not only relations. The notion of using context is also inherited

from AquaLog, however the context is modelled differently, as it will be

detailed in Section 9.5.

Figure 9.11: Extended Vocabulary in FREyA

Extending the existing lexicon from the user’s vocabulary is performed

through the following steps:

1. Perform the ontology-based lookup. This step is previously de-

scribed in Section 9.1.1, and its role is to link question terms to logical

forms in the ontology. For example, in What is the population of New

York?, New York would be linked to two Ontology Concepts, one re-

ferring to geo:newYork and the other one referring to geo:newYorkNY,

because it is matched with the labels of these two URIs which is New

York. This step is identical to the one used in QuestIO (see Sec-

tion 7.1).
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2. Analyse grammar and identify the candidate words which could be

referring to an Ontology Concept, which are called Potential Ontology

Concepts or POCs. This step is previously described in Section 9.1.2.

For example, if in the ontology there is no word population which can

be used to annotate the above question about New York, as population

is a noun, it would be identified to be a POC. However, we do not

know to which concept in the ontology this noun refers, and therefore,

we model the dialog.

3. Dialog modelling: if a POC cannot be mapped to a logical form

automatically ask the user to map the unknown term (POC) into the

specific ontology concept using the Mapping Dialog (see Section 9.1.5).

In addition, if a question term refers to more than one OC, generate the

disambiguation dialog and ask the user to choose (see Section 9.1.4).

For example, in What is the population of New York? the question

is ambiguous as it can be translated to two interpretations, where the

first one is the state population of New York (state) and the other one

is city population of New York (city).

4. Add the term to the lexicon as a description of the OC. This de-

scription includes the context in which the term appears so that it can

be reused in the similar context. In the case when the term was already

in the lexicon, its ranking in the specific context is updated as will be

detailed in Section 9.5. We previously discussed the What is the pop-

ulation of new york? example in Section 9.1.7. Figure 9.3 illustrates

the example of how population is mapped to the geo:cityPopulation

whenever it appears together with New York as a city. If the same

word (population) is used together with New York state, then it might

need to be mapped to a different form such as geo:statePopulation (see

previously discussed Figure 9.4)12.

Table 9.5 shows several questions and the question terms which are initially

not found in the lexicon. The query term (POC) and the context (OC)

12Note that the system can also work in the automatic mode where it would simulate
the user’s selection of the best ranked options without the need to engage the user into
dialog. This is discussed later in Section 9.6
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Figure 9.12: A sample dialog in FREyA

are used when generating suggestions as explained in Section 9.1.5. Fol-

lowing the user’s selection, the new term will be added to the lexicon. For

example, if smallest was not in the lexicon initially, and the user selects

min geo:cityPopulation from the list of suggestions, then this term would be

added to the lexicon together with its context which is geo:City in this case.

Table 9.5: Sample queries and generated suggestions
Query Query

term
Context
(OC)

Candidates

What is the
smallest city in
Alaska?

smallest geo:City 1. min(geo:cityPopulation)
2. max(geo:cityPopulation)
3. sum(geo:cityPopulation)
4. none

What is the pop-
ulation of Idaho?

population geo:Idaho
(geo:State)

1. geo:statePopulation
2. geo:stateArea
3. none

Dynamically enriched lexicon from the user-defined vocabulary is used by

FREyA13 however, the lexicon can be easily used by any other NLI system.

Currently, its format is in JSON and looks like the following:

"Key:

largest

http://www.mooney.net/geo#State",

"identifier":

"http://www.mooney.net/geo#stateArea",

"function":"max"

which means that if largest occurs followed by a lexicalisation of geo:State,

then this should be mapped to geo:stateArea with the maximum function.

13http://gate.ac.uk/freya
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The lexicon is enriched with the term largest which did not have any se-

mantics attached before the user selected it through the dialog. Translating

this JSON format into the knowledge representation such as OWL in a way

which can then be used by any NLI system is straightforward. For exam-

ple, the format of the OWL file could be such that ACE OWL Verbaliser14

generates proper ACE sentences so that the lexicon (content words) of ACE

can be enriched.

9.5 Learning from the User’s Selection

Applying learning to NLIs seems analog to applying it to the Information

Retrieval (IR) systems. In IR, input is a query which is usually a set of key-

words which provide the most obvious set of features on which classification

can be based [Belew, 2000]. This results in very large and sparse learning

problems.

Supervised learning requires a set of questions with the right answers in

order to give satisfying performance. Unfortunately, as noted by Belew

[2000], there are many situations where we do not know the correct answers.

In supervised learning every aspect of learner’s action can be contrasted

with corresponding features of the correct action. On the other hand, semi-

supervised approach such as Reinforcement Learning (RL) aggregates all

these features into a single measure of performance. Therefore, reinforcement

seems to be much better for users as there is less cognitive overhead. In

addition, as pointed out by Sutton and Barto [1998, p.32]:

“A supervised learning system cannot be said to learn to control

its environment because it follows rather than influences, the in-

structive information it receives. Instead of trying to make its

environment behave in a certain way, it tries to make itself be-

have as instructed by its environment.”

Semi-supervised learning such as RL allows starting with an empty model

which can be randomly initialised, and then updated based on the user’s

input.

14http://attempto.ifi.uzh.ch/site/tools/

214

http://attempto.ifi.uzh.ch/site/tools/


Natural Language Interfaces to Conceptual Models

In our case we use a simplified approach inspired by RL to improve the

ranking of the suggestions which are shown to the user:

• in the case of ambiguities: if a query concept is mapped to several

ontology concepts;

• when a query concept is not automatically mapped to an ontology

concept, but our system identifies it as a potential ontology concept.

Our goal is to learn ranking of the suggestions shown to the user.

We decide to use semi-supervised approach due to several reasons. Firstly,

supervised learning goes in-line with automatic classification of the question,

where each question is usually identified as belonging to the one predefined

category. Our intention is to avoid this automatic classification and allow

users freedom to enter queries of any form. Secondly, we want to minimize

the customisation of the NLI system which is required when using supervised

learning, in order to map some parts of the query to the underlying structure.

For example, we want the system to suggest that where should be mapped

to the specific part of the ontology concept such as Location, rather than the

application developer browsing the ontology structure in order to place this

mapping.

In RL, an agent learns how to achieve correct rankings by trial-and-error

interactions with its environment. Based on the knowledge which is avail-

able to the agent, suggestions are ranked and these are shown to the user.

In the standard reinforcement learning model an agent interacts with its

environment by sensing it, and based on this sensory input chooses an ac-

tion to perform in the environment. The action changes the environment

in some manner and this change is communicated to the agent through a

scalar reinforcement signal. There are three fundamental parts of a rein-

forcement learning problem: the environment, the reinforcement function,

and the value function.

9.5.1 Environment

The environment encodes all knowledge which is exposed to the agent, which

is in our case a set of three states: the beginning state, the desired state and

215



Chapter IX: Towards Better Usability with FREyA: Part II

the undesired state. The initial state is represented by a list of initially

ranked suggestions. A set of actions available at the initial state are the set

of suggestions which are generated. Depending on the action which is taken

(the suggestion selected from the list), the agent might end up at either

desired or undesired state. The desired state is determined by the state

which will happen after the user selects a suggestion from the list of those

which are available.

9.5.2 Reinforcement Function

Our learning algorithm is inspired by a pure delayed reward reinforcement

function [Sutton and Barto, 1998], which is defined to be zero after the

user selects the clarification option except when an action results in a win

(satisfying answer) or a loss (wrong answer or no answer), in which case the

agent receives a +1 reinforcement for a win, and a -1 reinforcement for a

loss. Because the agent is trying to maximize the reinforcement, it will learn

that the states corresponding to a win are goal states and states resulting in

a loss are to be avoided.

9.5.3 Value Function

Value function is a mapping from states to state values, and is expressed

using Bellman equation (Equation 9.1). In order to decide which action to

take, an agent usually follows a policy – a mapping from state to actions.

The value of state xt for the optimal policy is the sum of the reinforcements

(r(xt)) when starting from state xt and performing optimal actions until a

terminal state is reached.

(9.1) V ∗(xt) = r(xt) + γV ∗(xt+1)

We initialise the value function based on the string similarity and synonym

detection as described in Section 9.1.5. Discounted factor (γ) is 1. When

the user changes the selection (selects the option other than the first one
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suggested by the agent), the agent will learn that the previous rankings

were not correct, and will recalculate its value function.

We assume that the action selected by the user is the one which is desired,

and therefore give a reinforcement of +1 to such an action, while we give -1

to all the others. Therefore, if the initial ranking was wrong, there is a good

chance that this is corrected by only one user choosing the right option. For

example, if the question was how many people live in florida? the closest OC

to the POC people is geo:florida which is a state. Our ranking mechanism

would place the correct suggestion (geo:statePopulation) at the 14th place.

This is due to no significant similarity between people , and state population,

at least according to our initial ranking algorithm (Section 9.1.5).

Figure 9.13 shows the values of initial states, reinforcement received after

the user selecting geo:statePopulation, and finally the rankings after recal-

culation15.

Figure 9.13: Mapping how many people to geo:statePopulation in the ontol-
ogy

9.5.4 Generalisation of the Learning Model

We use the ontology as the source for designing the generic learning model.

When an OC is related to another concept with a rdfs:subClassOf relation,

that concept is used to learn the model. For example, if the features are

extracted for the OC of type class – geo:Capital, the same features would be

applicable for the OC geo:City, because geo:Capital rdfs:subClassOf geo:City.

15For the sake of clarity, we only show a subset of generated suggestions in Figure 9.13.
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In addition, we do not update our learning model per question, but per

combination of a POC and the closest OC. We also preserve a function over

the selected suggestion such as minimum, maximum, or sum (applicable to

datatype property values). This way we may extract several learning rules

from a single question, and if the same combination of a POC and an OC

appears in another question, we can reuse it. Table 9.5.4 shows several

sample questions and derived features which are used to learn the model.

POC context function correct rank

what is the smallest city in the us?

smallest geo:City min geo:cityPopulation

What is the population of tempe arizona?

population geo:City – geo:cityPopulation

what is the population of the capital of the smallest state?

population geo:Capital – geo:cityPopulation

smallest geo:State min geo:statePopulation

Table 9.6: Features used for learning the model

Figure 9.14 demonstrates how our learning algorithm works for query What

is the highest point of the state with the largest area?. There is only one token

(state) annotated as referring to an OC, whereas there are three POCs. We

start with the last POC largest area. Suggestions are generated based on the

closest OC which is geo:State in this case (see Figure 9.15). As one of the

options will be a datatype property referring to geo:stateArea, the user is very

likely to select this from the list of available options. We would then resolve

that area refers to geo:stateArea, whereas the largest is still a candidate for

generating further suggestions and asking the user whether this relates to

an operation related to geo:stateArea such as finding the minimum or the

maximum value of it. With time, the system will learn to associate largest

area with the maximum function of geo:stateArea, even if this combination

appears in the context which is not the same but similar.

We then skip the next POC (state) as it overlaps with the ontology concept

geo:State. The last POC the lowest point is then used to generate sugges-

tions. In this step we use the closest OC, which is again, geo:State. There

will be several suggestions and the user is very likely so select a property

named geo:isLowestPointOf, although this one will be ranked on the third
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Figure 9.14: Validation of POCs through the user interaction: preparing for
the dialog

place. Note that although lowest is the superlative it will not be further

used to generate suggestions for the user as geo:isLowestPointOf is an ob-

ject property. However, for the next user, the system will learn to rank

isLowestPointOf first.

Figure 9.15: Validation of POCs through the user interaction: the user is in
control
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9.6 Portability

FREyA is a portable NLI in a sense that it can be easily ported to work with

a different ontology, or a set of ontologies which are available either from the

Web or on the local file system. It can either preload the ontologies into

its own repository which is based on OWLIM16, or connect to the already

existing repository, which can be local or remote.

In order to perform the ontology-based lookup at the query processing time,

FREyA requires extracting the ontology lexicalisations, processing them,

and adding them to an index. The extraction of ontology lexicalisations

requires reading the whole repository through the set of SPARQL queries.

The number of SPARQL queries depends on the size of the schema which

describes the dataset.

FREyA does not require a strict adherence to syntax, however, it relies on the

ontology-based lookup. Trying a sample query What is the capital of France?

with FREyA initialised with a superset of DBpedia (accessed through http:

//www.factforge.net/sparql repository) revealed that according to the

extracted lexicon, each word in the question refers to at least one

Ontology Concept. If there were no automatic disambiguation nor heavy

grammar analysis, the system would model the first dialog asking What is

‘what’? Is ‘what’ related to: LIST OF URIs. A similar dialog would be

modelled for ‘is’; the system would ask the user whether is is related to: be,

was, or were. And so on, for each word in the question.

These situations must be resolved either by performing automatic disam-

biguation (which might be expensive for datasets with billions of triples) or

by constraining the supported language and allowing the user to type in only

a limited set of question types. In case of the system failing to automati-

cally interpret the question, it can seek help from the user as is the case with

FREyA. The fine balance is in the combination of these approaches: disam-

biguate as much as possible and use the ranking mechanisms (e.g., those that

exist in FREyA, or any other methods for effective ranking such as in Lopez

et al. [2009a]), and correct them if necessary using the interactive features

of FREyA.

16http://ontotext.com/owlim
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Expressiveness of the language supported by FREyA has a trade-off, which

is especially highlighted when coupled with the heterogeneity which comes

from the Linked Open Data. Indeed, when trying any dataset with FREyA

for the first time, it is advisable to use the dialog as much as possible in

order to check the system interpretations and correct them if necessary. In

that regard, there are several modes that can be used:

• Automatic mode The dialog in FREyA is designed in a way that

it can be configured based on the level of confidence. The maximum

confidence level allows using FREyA in the automatic mode meaning

that the system will generate the answer by simulating selection of the

best ranked options. This mode is used when the confidence is high

that the ranking is effective, or the system has been trained enough

and can make the decisions on its own.

• ForceDialog mode operates on two levels:

1. Ignoring the system’s attempt to perform the mapping by adding

a ‘None element’. This element is used to ignore the system’s

attempt to map a question term to an OC. That is, the system

would assume that the question term in the dialog should not be

mapped to any suggested OCs, and therefore the system would

learn by the time that this POC/OC is either: 1) incorrectly

identified, or 2) cannot be mapped to any OC as the ontology

does not contain relevant knowledge. As previously discussed,

this option is not likely to provide much benefit to the end-users,

but it is intended to identify flaws in the system and encourage

improvements.

2. Extending the disambiguation dialog This option extends the dis-

ambiguation dialog by adding more suggestions, in addition to the

OCs identified through the Ontology-based Lookup. This option is

important to be used when the knowledge base has a large number

of names (e.g., MusicBrainz) so that any question would be a rich

set of Ontology Concepts, while the underlying grammar would

be somewhat ignored. For example, in question Which members

of the Beatles are dead? due to a huge number of string literals
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dead appearing in the ontology, this element would be annotated

to refer to several OCs (such as instances of rdf:type mm:Album)

while indeed it needs to be mapped to the property endDate.

9.7 Evaluation

While QuestIO and the feedback in FREyA are evaluated with users, in

order to compare FREyA with the state of the art, we evaluated the system

using 250 questions from the Mooney GeoQuery dataset. Although the

ontology contains rather small portion of the knowledge about the United

States geography, the questions are quite complex and the system must have

a good understanding of the semantic meaning in order to correctly answer

them. In addition, other NLIs have been evaluated using this dataset, and

therefore, by conducting the evaluation with the same ontology and the

same set of questions, we can compare our performance with the state of the

art. We evaluate correctness (Section 9.7.1), learning (Section 9.7.2), ranked

suggestions (Section 9.7.3), and answer type identification (Section 9.7.4).

Further on, to demonstrate the portability and the suitability of FREyA

to be used in the real scenario for querying the Linked Data, we present

experiments in Section 9.7.5.

9.7.1 Correctness

We report correctness of FREyA in terms of precision and recall (see Sec-

tion 4.2 for the definition of precision and recall).

Recall and precision values are equal, reaching 94.4%. This is due to FREyA

always returning an answer, although partial or incorrect. 34 questions

were answered correctly without requiring any dialog with the user, while

remaining 202 required at most 4 dialogs in order to correctly return the

answer (see Figure 9.16). The system failed to answer 14 questions (5.6%), 5

out of which are not supported by the system, such as negation or comparison

e.g. which states have points higher than the highest point in colorado?. The

remaining 9 were incorrectly interpretted.
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Figure 9.16: The distribution of the number of dialogs for 202 correctly
answered questions

Although FREyA required quite a significant user input, its performance

compares favourably to other similar systems. PANTO [Wang et al., 2007]

is a similar system which was evaluated with the Mooney geography dataset

of 877 questions (they removed duplicates from the original set of 879).

They reported precision and recall of 88.05% and 85.86% respectively. NLP-

Reduce [Kaufmann et al., 2007] was evaluated with the original dataset,

reporting 70.7% precision and 76.4% recall. Kaufmann et al. [2006] selected

215 questions which syntactically represent the original set of 879 queries.

They reported the evaluation results over this subset for their system Querix

with 86.08% precision and 87.11% recall. Our 250 questions are a superset

of these 215.

In order to test the statistical significance of our results, we calculated 95%

confidence interval for the precision and recall. As we only have one test
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set, we used the bootstrapping sampling technique17. The method had also

been used in the CoNLL-03 competition (see Sang and Meulder [2003] and

also Li et al. [2009]).

The 95% confidence interval with 1000 samplings range from 91.6% to 97.2%.

As the lower range is still higher than the best previously evaluated system

(88.05% for recall of PANTO [Wang et al., 2007], and 87.11% precision of

Querix [Kaufmann et al., 2006]), we conclude that precision and recall values

obtained with FREyA were significantly better (p=0.05) than the precision

and recall of other systems trialed with the same dataset. It should be

noted, however, that this high performance of FREyA engaged the user into

the dialog. Querix also relies on dialogs, while PANTO answers questions

automatically.

What makes FREyA outstanding is the possibility to put the user in control

and improve the performance incrementally with each user’s new question,

by boosting the rankings through learning from the user’s clicks. In the next

section, we describe the evaluation of our learning mechanism and its effect

on performance.

9.7.2 Learning

We evaluate our learning algorithm using cross-validation on 202 questions

which are a subset of the above 250 – those that can be answered correctly

and which required at least one dialog.

Cross-Validation is a statistical method used to evaluate and compare learn-

ing algorithms by dividing data into two segments: one used to train a

model and the other used to test it. In typical cross-validation, the training

and validation sets must cross-over in successive rounds such that each data

point is tested against [Refaeilzadeh et al., 2009]. The basic form of cross-

validation is k-fold cross-validation, where the data is first partitioned into k

17Given the set of the 250 test samples that we used for computing the precision and
recall: T = s1, s2, s3, ..., s250, and obtained P = 94.4, we did one sampling 1000 times:
in the step i, get a set Ti by randomly sampling the set T with replacement. The set Ti
has 250 samples but some samples may be the same. Then we compute the precision on
Ti and get Pi. When we calculated 1000 precisions P1, P2, ..., P1000, we sort them from
low to high and get P1’, P2’, ..., P1000’. Then the 95% confidence interval will be [P25’,
P975’].
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equally (or nearly equally) sized folds. Subsequently k iterations of training

and validation are performed such that within each iteration a different fold

of the data is held-out for testing while the remaining (k-1) folds are used

for training.

We performed 10-fold evaluation using the subset of the Mooney GeoQuery

questions which could be correctly answered:

• 5 questions were not supported by the system, and they have been

removed due to no possibility to map them to the relevant ontology

concepts and get the correct answer,

• 9 questions were misinterpreted by the system,

• 34 could be answered automatically so they were removed.

This resulted in 202 questions requiring 343 dialogs in total. In 10 iterations,

181/182 questions were used for training the model, while the remaining

21/20 were used for testing it. Before executing the test, we have generated

a gold standard in two steps:

• We ran FREyA in the automatic mode where for any required dialog

the system would choose the first available option, save the learning

items and carry forward to the next question.

• We then manually examined the output and corrected invalid entries.

If we had to change the entries we have marked those as incorrect.

This enabled us to measure the performance of the baseline system.

The goal of this evaluation was to test whether our learning algorithm can

improve the performance of the system. In order to assess this, we compare

the precision of the trained system with the performance of the baseline.

The results are shown in Table 9.7 and also in Figure 9.17

The average precision for the system trained with 9/10 of questions was 0.48,

which is 0.2324 higher than the baseline. While this is a good improvement

of the baseline model, the performance is not outstanding. Looking into the

questions which could not be answered using our trained system, the reasons

are:
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Fold 0 1 2 3 4 5 6 7 8 9 Avg.

Baseline .3 .15 .2 .25 .24 .3 .3 .35 .15 .19 0.2476

Learning .65 .4 .65 .4 .24 .55 .5 .6 .35 .48 0.48

Table 9.7: Precision for 250 questions evaluated using 10-fold cross-
validation

Figure 9.17: Precision for the trained vs. baseline system using 10-fold
cross-validation

226



Natural Language Interfaces to Conceptual Models

Ambiguity 30 questions were not correctly answered due to ambiguity.

The advantage of our learning model is its simplicity: it is based on

a very few features ensuring that questions with similar word pairs

would benefit from the training with similar and not necessarily same

questions. However, this is at the same time a drawback as it can in-

troduce ambiguities. For example, if the system learns from what is the

highest point of nebraska? that point refers to geo:HiPoint, whenever

it appears in the context of geo:Country, then, for similar albeit dras-

tically different questions, the system would use the knowledge which

might be wrong. Namely, for the question what point is the lowest in

california? the system would find the previously learned mapping and

it will associate point with geo:HiPoint whereas the correct mapping

is the geo:LoPoint. This indicates that we should extend the context

of our learning model to consider the whole phrase in which the ‘un-

known’ term appeared, so that for the mentioned example whenever

point appears in the context of geo:Country

• AND highest, map it to geo:HiPoint.

• AND lowest, map it to geo:LoPoint.

Sparsity 65 questions contained a learning item which was seen only once

across all questions. For example, the only questions which included

greatest were: what state has the greatest population density? and

what state has the greatest population?. However, while in the former

case the greatest is paired with geo:statePopDensity in the latter, it is

paired with geo:statePopulation. Therefore, these two questions cannot

benefit from each other. This suggests a possible improvement of our

learning model. Namely, instead of using the exact words to match

against our learning model we could make it more robust by matching

against all the synonyms of greatest.

While the performance of the baseline is quite low, we should note here that

this figure does not take into consideration the cases when an ‘unknown’ or

‘ambiguous’ term can be mapped to more than one ontology concept. In

addition, the question is marked as correct if all dialogs have the correct

ranking placed first. However, for some cases it is very difficult to judge
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automatically which suggestion to place first. It is very likely that different

users would select different suggestions for the questions phrased the same

way. This emphasises the importance of dialog when modelling NLI systems.

To assess this we evaluate the ranking of suggestions in isolation.

9.7.3 Ranked Suggestions

We use Mean Reciprocal Rank (MRR) to report the performance of our rank-

ing algorithm. MRR is a statistic for evaluating any process that produces

a list of possible responses (suggestions in our case) to a query, ordered by

probability of correctness. The reciprocal rank of a suggestion is the multi-

plicative inverse of the correct rank. The mean reciprocal rank is the average

of the reciprocal ranks of results for a sample of queries (see Equation 9.2).

(9.2) MRR =
1

|Q|

Q∑
i=1

1

ranki

We manually labelled the correct ranking for suggestions which are gener-

ated when running FREyA with above set of 202 questions. This was the

gold standard against which our ranking mechanism achieved MRR of 0.76.

However, the median and mode were both 1 indicating that majority of rank-

ings were correct. Indeed, as shown in Figure 9.18, in 69.7% of the cases

the correct ranking is placed first, while in 87.5% of the cases the correct

ranking is among first five.

From the above set of 343 dialogs, we selected 103 randomly, and then ran

our initial ranking algorithm and compared results with manually labelled

gold standard. MRR was 0.72. Table 9.8 shows the distribution of the

rankings.

We then grouped 103 dialogs by OC, and then randomly chose training and

evaluation sets from each group. We repeated this two times. Table 9.9

shows the structure of the dataset grouped by OC for both iterations. Note

that these two iterations are independent - both are performed starting with

an untrained system.
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Figure 9.18: The distribution of the MRR for 343 dialogs

Table 9.8: Evaluation with 103 dialogs from the Mooney geography dataset

Correct rank Number of questions

1 64 (62.13%)

2 or 3 22 (21.36%)

4 or more 17 (16.5%)
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Table 9.9: The distribution of the training and evaluation sets for 103 dialogs
Iteration 1 Iteration 2

OC Training Evaluation Training Evaluation

geo:State 26 19 19 26

geo:City/Capital 20 19 19 20

geo:River 12 6 9 9

geo:Mountain 1 0 0 1

total 59 44 47 56

After training the model with 59 dialogs from the iteration 1, MRR for

the evaluation set (44 of them) reached 0.98. Overall MRR (for all 103

dialogs) increased from 0.72 to 0.77. After training the model with 47 items

during the iteration 2, overall MRR increased to 0.79. Average MRR after

running these two experiments was 0.78, which shows the increase of 0.06 in

comparison to MRR of the initial rankings. Therefore, we conclude that for

the selection of 103 dialogs from the Mooney GeoQuery dataset, our learning

algorithm improved our initial ranking by 6%.

9.7.4 Answer Type

First we have experimented with QA Detector in isolation, and calculated

to which extent it was possible to identify the question focus/ATI using

the algorithm described in Section 9.2.1. This shows the correctness of QA

Detector irrespective of whether the answer type was correctly found in the

subsequent steps, or not.

The second experiment evaluates the correctness of the consolidation algo-

rithm from Section 9.2.3 used to identify the answer type.

QA Detector algorithm

We first manually labeled the correct focus/ATI for all 250 questions. This

was the gold standard for this step.

Out of 250 questions, the ATI was correctly identified for 45 of them (ques-

tions starting with how big, how large, where and the like). The results for

the remaining 205 were as follows (see Figure 9.19):

• Correct : For 174 out of 205 (84.88%), the focus was identified correctly.
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Figure 9.19: Identification of the question focus: results

• Not found : For 2 questions (0.97%), our algorithm could not identify

neither the focus nor the ATI. This is due to the complex structure in

which the prepreterminals were not tagged as noun phrases or nouns.

For example, in the questions what is the most populated state bordering

Oklahoma? or what is the most populous state?, the correct focus is

the most populous state for both questions, however, this noun phrase

is not prepreterminal due to most populous being tagged as Adjective

Phrase – ADJP (see Figure 9.20).

• Incorrect : Remaining 29 (14.15%) questions had incorrectly identified

focus and errors could be represented through the following patterns:

– Negation: one sentence with negation had been parsed incor-

rectly: in What rivers do not run through Tennessee?, the parser

tagged rivers as RB (adverb), while it should be Noun. It is

interesting that the same sentence with omitted not, is parsed

correctly (i.e. rivers is tagged as noun (NNS)).

– What NP: such as in What capital is the largest in the US?

and What city has the most people? ; while the parser correctly

identified the span which contains the focus (What capital and

What city respectively), the head finder identified the head of

both phrases to be What.

– Give me NP: the personal pronoun me was tagged as PRP

which is correct. However, as it was identified as a part of the

prepreterminal noun phrase, our algorithm wrongly identified it

as the focus. For example, in Give me the cities in Virginia?
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Figure 9.20: Failing to identify the answer type: no identified prepretermi-
nals are nouns/noun phrases

or Give me the largest state?, correct focus is the cities and the

largest state respectively, and not the possessive pronoun me as

identified by our algorithm.

– State vs. Borders: When occurring together, these two words

have been tagged incorrectly by the parser. For instance, in

Which states borders Arkansas? state is identified as VBZ (Verb,

present tense, 3rd person singular) while borders Arkansas is NP

consisting of NN (borders) and NNS (Arkansas). Therefore, the

focus is identified to be border Arkansas, which is incorrect.

Consolidation

Further on, we evaluated the consolidation algorithm in order to identify

• The number of questions for which the focus could be used to success-

fully identify the answer type with and without engaging the user.

• The number of questions for which the answer type was identified
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Figure 9.21: Correctness of the identification of the answer type

Answer type

Focus
Required 1 di-
alog with the
user

Automatically
consolidated

Incorrectly
consolidated

correct (174) 65 106 3

not found (2) 0 2 0

incorrect (29) 4 25 0

ATI found (45) 45 0 0

total (250) 114 133 3

Table 9.10: Results of identifying the answer type using the consolidation
algorithm

correctly although the focus was incorrectly identified in the previous

step.

Figure 9.21 shows the percentage of the correctly identified answer type

and also the distribution of the results based on whether this identification

required the user to provide input (for 45.6% of the cases) or not (for 53.2%

of the cases).

Table 9.10 shows more details. All questions which had the focus identified

incorrectly in the previous step, had the answer type identified correctly

after the consolidation phase. However, 4 out of 29 questions involved the

user into the dialog in order to place this mapping.

With regard to 174 questions for which the correct focus was found in the

previous step, 106 (60.92%) could be mapped to an ontology concept auto-

matically. 65 (37.36%) questions required a dialog with the user in order

to map the answer type correctly, 6 out of which did not have any FOC
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identified, and were answered by modeling suggestions as explained in Sec-

tion 9.2.4.

3 (1.72%) questions had wrongly identified answer type after the consolida-

tion. This was the case for compound-nominal expressions which contain

several nouns, each of which being annotated as referring to an ontology

concept. For example, the phrase state capital refers to geo:Capital in what

is the largest state capital in population?. However, both state and capi-

tal are annotated as refering to different ontology concepts (geo:State and

geo:Capital), and our algorithm would give priority to the state as the first

ontology concept in the question. In future, we will consider giving priority

to the ontology concepts which are the exact matches with the identified

head of the focus, such as in this case.

While identification of the answer type through the engagement of the user

can be seen as cognitive overhead, our intention is to see whether our learning

mechanism can reduce this overhead by the time. In addition, by engaging

the user into dialog, he has the full control of the system interpretations and

therefore can train it towards a very good performance even in cases when

the ontology (or a set ontologies which are being queried) does not have

human understandable lexicalisations.

9.7.5 Querying Linked Data with FREyA

In this section we report the performance of FREyA using the MusicBrainz

and DBpedia datasets provided within the 1st Workshop on Question An-

swering over Linked Data (QALD-1) challenge18.

We preloaded the data into our local repository (BigOWLIM 3.4, on the

top of Sesame19) and then initialised the system using the SPARQL queries.

Another option was to connect to the SPARQL endpoint provided by the

QALD-1 challenge organisers20, however, this was a difficult path due to the

limited server timeout, which was not sufficient for executing all required

queries.

18http://www.sc.cit-ec.uni-bielefeld.de/qald-1
19http://openrdf.org
20http://greententacle.techfak.uni-bielefeld.de:5171/sparql
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Generating the index which is required for performing the ontology-based

lookup is a mandatory step but is done once per dataset, although it might

be time-consuming depending on the size of the data. Table 9.11 shows

the statistics of loading the two datasets into the OWLIM repository and

generating the index.

MusicBrainz DBpedia

#explicit statements 14 926 841 328 318 709

#statements 19 202 664 372 110 845

#entities 5 490 237 96 515 478

#SPARQL queries executed 30 361623

initialisation time 1380s (0.38h) 182779s (50.77h)

Table 9.11: Initialisation of the system and the size of datasets

After the index is generated, it is used at the query execution time. We first

ran 50 training queries for both datasets and measured the overall precision,

recall and f-measure. We then repeat the process with 50 test questions for

each dataset. This experiment was conducted with FREyA in the forceDialog

mode. Results are shown in Table 9.1221. MusicBrainz was a challenging

dataset due to the existence of properties beginDate and endDate, which

do not have any domain defined, and moreover, which are used extensively

throughout the ontology and especially in the combination with the blank

nodes. Several failures were due to the malfunction of the Triple Generator

when these two properties were mapped to the wrong entity. For example,

Since when is Tom Araya a member of Slayer? resulted in generating the

following mappings:

Since when >> beginDate

Tom Araya >> Tom Araya (Artist)

a member >> memberOfBand

of >> toArtist

Slayer >> Slayer (Artist)

Our Triple Generator then followed by generating:

21Demos showing FREyA answering the QALD-1 challenge questions are available from
http://gate.ac.uk/sale/dd/.

235

http://gate.ac.uk/sale/dd/


Chapter IX: Towards Better Usability with FREyA: Part II

MB DBpedia

Training Testing Training Testing

Precision 0.75/0.77 0.66/0.8 0.74/0.85 0.49/0.63

Recall 0.66/0.68 0.54/0.66 0.58/0.66 0.42/0.54

F-measure 0.70/0.74 0.59/0.71 0.67/0.72 0.45/0.58

# NS questions 6 9 11 7

# RF questions 1 6 4 6

avg.#dialogs per question 3.4 3.65 2.7 2.85

# PC questions 1 1 3 12

Table 9.12: Performance of FREyA using QALD-1 datasets: the left figures
exclude while the right figures include the questions correctly answered after
reformulation (RF questions). The number of dialogs per question includes
only the questions that could be answered correctly with or without refor-
mulation. NS (Not supported) questions include those that could not be
correctly mapped to the correct SPARQL query due to the limited language
coverage. For example, questions requiring negation, temporal reasoning
such as Which bands were founded in 2010? or quantification such as in
Which locations have more than two caves?. PC (partially correct) ques-
tions are those that have returned a portion or a superset of the correct
results.

?joker1 - beginDate - Tom Araya (Artist)

Tom Araya (Artist) - member of band - ?joker2

?joker2 - toArtist - Slayer (Artist)

and the corresponding SPARQL was:

prefix mm: <http://musicbrainz.org/mm/mm-2.1#>

prefix mma: <http://musicbrainz.org/mm-2.1/artist/>

SELECT DISTINCT ?firstJoker0 WHERE {

{{?i1 ?p0 ?firstJoker0} UNION { ?firstJoker0 ?p0 ?i1} .

FILTER (?p0=mm:beginDate) .

}

FILTER (?i1=mma:362105d1-8f4f-4ba1-949f-3e70183880b5) .

{{?classJoker4 ?p2 ?i1} UNION { ?i1 ?p2 ?classJoker4} .

FILTER (?p2=<http://musicbrainz.org/ar/ar-1.0#memberOfBand>) . }

{{?i4 ?p3 ?classJoker4} UNION { ?classJoker4 ?p3 ?i4} .

FILTER (?p3=<http://musicbrainz.org/ar/ar-1.0#toArtist>) . }
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FILTER (?i4=mma:72de5171-38cf-4734-bc8a-6ac374dea523 ||

?i4=mma:bdacc37b-8633-4bf8-9dd5-4662ee651aec) . }

which resulted in retrieving the birthday of Tom Araya, and not the date

when he joined the group which is the correct answer.

Other challenges related to the ontology design in MusicBrainz include ex-

istence of the property trackList which has a container of type rdf:Seq as

range. In addition, the statements with releaseType property use subclasses

of class Type and not instances of that class which caused several failures.

For example, the question Who is the creator of the audiobook the Hobbit?

requires retrieving instances with lexicalisation the Hobbit, which are at the

same time related to the class TypeAudiobook using the releaseType property,

while FREyA expects that they are related using the rdf:type relation.

The main challenge with DBpedia was a selection of the property to use,

due to the large number of suggestions that have always been present.

For example, Who created English Wikipedia? could be mapped to ?joker

dbp:created dbpedia:English Wikipedia while the correct answer is returned

only after using dbo:author relation, instead of dbp:created22. In addition,

there are many quality issues such as in the question Who designed the

Brooklyn Bridge? where designed was mapped to dbp:architect instead of

dbp:designer which resulted in retrieving http://dbpedia.org/resource/

John_Augustus_Roebling, while using dbp:designer the result is http://

dbpedia.org/page/John_A._Roebling. However, as no mapping exist be-

tween the two URIs, the former URI is not the same as the latter, and

hence this is marked as an incorrect answer. Interestingly, the former URL

is redirected to the latter, which indicates that the two URIs should also be

connected using the property sameAs in the dataset.

Another challenge specific to DBpedia was the lack of the domain and range

classes for properties. Therefore, some questions could not be correctly

mapped to the underlying Ontology Concepts. In some cases, the reformula-

tion of queries could help (such as using spouse instead of married to). How-

ever, reformulation was not always sufficient. For example, in Which states

border Utah?, border needs to be mapped to the eight properties: dbp:north,

22We use dbp for http: // dbpedia. org/ property and dbo for http: // dbpedia. org/
ontology namespaces.
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dbp:south, dbp:east, dbp:west, dbp:northwest, dbp:northeast, dbp:southwest,

and dbp:southeast. As none of these have any domain or range, they did

not appear in the suggestions and hence the only way to answer the ques-

tion using FREyA is to ask eight questions such as Which states are north

of Utah?, Which states are south of Utah, and so on for each property. It

is interesting to observe that 12 incorrectly answered questions using the

DBpedia test questions were indeed partially correct. The correct mappings

could only be placed if we were more familiar with the knowledge structure

inherent in the dataset. This also explains the difference in the performance

of FREyA using the training and the testing set of DBpedia.

Failures that were common for both datasets are related to the equal treat-

ment of the datatype property values. For example, the question How many

jazz compilations are there? failed to be answered correctly due to FREyA

finding all compilations that had the user defined tag ‘jazz’ which is case

insensitive (using FILTER REGEX(str(?var), “^jazz$”,“i”). Therefore, it

included also ‘Jazz’ which lead to the incorrect answer. On the other hand,

some entries were missed when the fuzzy matching was necessary such as

in Which companies are in the computer software industry? that requires

finding not only companies with the property industry ‘computer software’

but also ‘computer hardware, software’, ‘computer software and engineer-

ing’, and the like. At the moment, the datatype property values in FREyA

are supported by including the exact match (case insensitive) only. In future,

we might extend our approach to support more sophisticated treatment of

strings so that the treatment differs depending on the context.

Several reformulations for both datasets resulted in a significant increase

of the precision and recall, e.g. adding quotes such as in Which artists

performed the song “Over the Rainbow?”. Without quotes, Over was parsed

as a preposition, and the whole question failed to be answered, while with

quotes this was a part of the Noun Phrase which lead to the correctly

answered question.

Learning To measure the effect of the learning mechanism, we run the ex-

periment in two iterations: we first answered 50 testing questions using an

empty learning model and then using the system trained with 50 training

questions. Results are shown in Table 9.13. The learning mechanism im-
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MusicBrainz DBpedia

untrained trained untrained trained

MRR 0.63 0.68 0.52 0.54

Table 9.13: Mean Reciprocal Rank for the testing set with and without
learning

proved the overall ranking of suggestions for 0.05 for MusicBrainz, and only

0.02 for DBpedia. The reason is the size of the datasets and the relatively

small number of the training questions. However, improvement of 0.02 is still

an achievement considering that DBpedia has almost 100 million entities.

Execution time for queries that could be answered correctly fluctuates

based on the complexity of questions (e.g. number of the required dialogs).

This is due to our on fly mechanism for finding suggestions which requires

executing a large number of SPARQL queries in order to generate a dia-

log. Long execution is also affected by the complexity of the final generated

SPARQL which is used to retrieve the answer. For example, queries which

include FILTER statements over literal strings such as FILTER (regex(?var,

“^jazz$”, “i”)) currently can take more than ten minutes to be executed23.

The size of the dataset influences the execution time as well. For Mu-

sicBrainz, the average time per dialog was in the range from 0.073 to 11.4

seconds, or 8.5 seconds on average per question. For DBpedia, the execution

time was much longer: from 5 to 232 seconds per dialog, and 36 seconds on

average per question. This is quite slow, however, it can be optimised (e.g.

by using the caching mechanisms for suggestions).

The evaluation using the DBpedia and MusicBrainz testing datasets leads

to the f-measure of 0.58 and 0.71 respectively which favourably compares to

the other tested systems that participated in the QALD-1 challenge (Pow-

erAqua 0.5 using DBpedia, SWIP 0.66 using MusicBrainz). More impor-

tantly, FREyA was the only system that is tested with both MusicBrainz

and DBpedia datasets which demonstrates portability. The learning mecha-

nism improved the results for 5% and 2% for the MusicBrainz and DBpedia

datasets respectively.

23Experiments are run using the CentOS 5.2 Linux virtual machine running on a AMD
Opteron 2431 2.40GHz CPU with 2 cores and 20G RAM.
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9.8 Summary

In this chapter we discussed the final design, implementation and evaluation

of FREyA, an interactive Natural Language Interface that combines the syn-

tactic parsing with the ontology-based lookup in order to interpret a Natural

Language query or its fragment. The query is mapped into the formal query

language SPARQL in order to find the correct answer. If it fails to perform

the mappings automatically, or in case of any ambiguities, FREyA generates

a dialog and involves the user into loop. The user’s selection is saved and

used for training the system so that it improves its performance over time.

In contrast to QuestIO, which is a closed-and-single domain, the scope in

FREyA is extended towards multiple domains, or rather to any semantic

repository that may contain a large number of ontologies and knowledge

bases which may originate from different sources. However, FREyA needs

to generate the index offline, in order to perform the ontology-based lookup

at the query analysis time. This process requires executing a number of

SPARQL queries and can be time-consuming however, it is performed only

once.

We discussed earlier (see the end of Section 7.1) that QuestIO is not suitable

to be used even in narrow domains that contain a large amount of identical

names, due to the data ambiguity problem. In FREyA this problem is re-

duced by performing a deep grammar analysis of the question. This helps in

solving data ambiguities caused by either diverse data sources or repositories

where the ABox is much larger than the TBox. However, the supported lan-

guage remains flexible, and both grammatically correct questions, fragments

or ill-formed queries are supported. The flexibility has a trade-off (discussed

previously in Section 7.6) related to the fact that it is not trivial for the

user to translate his information need into the question. Hence, we looked

at combining usability enhancement methods feedback and clarification di-

alogs in order to improve precision by asking the user to disambiguate, but

also in order to extend the system’s vocabulary (derived from the semantic

resources and enriched by WordNet) from that of the user.

The vocabulary extension reduces the lexical failures discussed in Sec-

tion 7.6. Moreover, the lexical failures are avoided due to our ranking algo-
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rithm which relies on Soundex – the state of the art algorithm that assigns

a very high similarity to the two words which are spelled differently but pro-

nounced similarly. Soundex is combined with Monge Elkan string similarity

algorithm which assigns a high similarity to the two words, one of which

is contained in the other (e.g. a question term population is very similar

to the ontology lexicalisation state population according to Monge Elkan).

Combining the two algorithms gives the possibility to go beyond the exist-

ing lexicalisations attached to semantic resources, and “understand” words

which are either misspelled or expressed differently in comparison to how

they are verbalised in the semantic repository.

In order to avoid the conceptual failures discussed in Section 7.6, FREyA

can be used in the forceDialog mode. This mode means that the dialog

will be modelled for each attempt to map a question term into an ontology

concept. This is a slight modification of the approach described in the first

version of FREyA (Chapter 8), where the conceptual failures were handled

by showing the user all query interpretations at the time. Moving from a

query interpretation towards a concept-based one is largely influenced by the

feedback from users in the user-centric evaluation described in Section 8.2.

The concept-based interpretation discussed in this chapter is guided by the di-

alog sequence algorithm. While other existing approaches start by generating

linguistic triples from a question (even if in an iterative fashion) and then at-

tempt to generate ontology triples in a form of Subject-Predicate-Object,

our approach operates on a pair of Ontology Concepts at the time, which

can be Subject-predicate or predicate-Object or Subject-Object. In

that sense our approach is more flexible as it operates on a unit smaller than

a triple.

Question interpretation starts by the syntactic parsing and analysis to find

the focus – a question term or phrase that identifies what the question is

about, and then consolidating it with the ontology-based lookup. The output

of the consolidation algorithm is the focus which is mapped to one or several

Ontology Concepts. Further on, other Potential Ontology Concepts are

also mapped to Ontology Concepts using the same consolidation algorithm.

Potential Ontology Concepts are candidate question terms or phrases that

are extracted by combining a parsed tree with a set of heuristic rules. The
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order in which the Potential Ontology Concepts are mapped is controlled by

the dialog sequence algorithm, which is based on favourising the mapping of

those concepts that are closer to the focus (as per distance calculated by

looking into the parsed tree).

For any ambiguity or uncertainty, the system generates a dialog and the user

is involved to choose from a set of available options. If the system is run in

the automatic mode it will return the answer automatically by simulating

selection of the best ranked options. To give an example for which is the

largest lake in California?, the focus largest city will be interpreted first.

Indeed, first the algorithm attempts to resolve the head of the focus (city),

consolidates it with the ontology-based lookup (e.g., ontology class City),

and then it continues to resolve largest. Only after these are interpreted

the algorithm will follow to resolve California. The consolidation algorithm

may automatically resolve this mapping based on the exact match between

California with the existing ontology lexicalisation.

Note that for true ambiguities the automatic mode might not be the best

choice even in the perfectly trained system. For instance, if somebody

asks about How big is New York state? we might be unable to decide

whether How big refers to state area or state population automatically. In

this situation, as the system learns from the users’ selections, the automatic

mode would work in favour of majority of the users. However, if the majority

of users refer to state area when mentioning size, the minority still have a

chance to get the correct answer by using FREyA in the forceDialog mode

and mapping big to state population.

In addition, in contrast to the tree-based feedback representation described

in Chapter 8 we decide to use a graph-based one. This is because trees were

impractical when tested with different ontologies, as the relations between

all nodes could not always be represented clearly using the tree. However,

the interactive features remain the same as they were widely accepted by

users in the evaluation in Section 8.2.

All algorithms as well as the system as a whole are evaluated using the

GeoQuery Mooney dataset for the sake of comparison with other similar

systems. MRR for the initial ranking using 250 questions from the Mooney

GeoQuery yielded 0.76. The answer type identification algorithm, which is
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fundamental in order to precisely answer the question, correctly returned the

answer type for 98.18% of questions, although 37.36% required one dialog

with the user. The learning algorithm showed an improvement of the baseline

model for 23.24%. The overall precision and recall with this dataset reached

94.4% which is significantly better than other similar systems evaluated using

the same dataset.

FREyA also participated in the QALD-1 challenge, where the organisers

released two datasets, DBPedia 3.6 and an RDF export of MusicBrainz,

which differ not only in size but also in the complexity of the ontol-

ogy structure. Each dataset was initially released with 50 training

questions accompanied with the correct SPARQL queries and answers.

Further on, the organisers released a testing set of 50 questions per each

dataset and all participants had to provide either the correct answers or

the SPARQL queries, or both. The evaluation results can be accessed

from http://www.sc.cit-ec.uni-bielefeld.de/sites/www.sc.cit-ec.

uni-bielefeld.de/files/overall.pdf.

FREyA was the only system among the three participating ones, that pro-

vided results for both datasets thus demonstrating portability. Moreover,

FREyA outperformed the other systems although it was used in the force-

Dialog mode and required quite an engagement of the user. Nevertheless,

this demonstrates that the implemented methods and algorithms in FREyA

can be a good starting point for a more ambitious goal which is Question-

Answering on the open Web. We discuss suitability of FREyA for this task

in Chapter 11.

At first sight, the two types of modes described above (forceDialog and

automatic modes), look as a perfect match for the two types of users of

FREyA: ideally application developers can use the system in the forceDialog

mode until they are satisfied with the system interpretations of the questions.

At that point, the end-users can take over the system and use it in the

automatic mode to ask questions. However, the real scenario might be

completely different. The system’s mode can be changed easily hence if the

user uses FREyA in the automatic mode and discovers non-satisfying results,

he can immediately switch to the forceDialog mode in order to investigate

the mappings. His input will then improve the system for the next user.
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Easy switching between modes makes FREyA a system that can be used

by the end-users and application developers at the same time. In fact, the

border between the customisation of the system performed by application

developers, and the customised version of the system used by the end-users

is not strict. Hence, the role of the two types of users is to some extent

overlapped, which allows the end-user to control the answer to the question

or to at least understand how the Natural Language query is mapped to the

formal query. This leaves us with the same question that we asked in the

previous chapter about the end-users. Who are they? For the current state of

the methods and algorithms as they are implemented in this thesis, the end-

users probably need not to know about semantic technologies if the system

works with narrow domains such as the Mooney GeoQuery. As soon as we

move towards a large scale data such as DBPedia, and the datasets which

are characterised by a large amount of redundant, duplicate, and often false

data, FREyA becomes a tool for semantic web experts who can explore the

available knowledge by asking questions and being engaged into the dialog.

Using FREyA in the forceDialog mode and with the low quality data can

be used not only to get familiarised with the dataset, but to discover the

existing inconsistencies. It is left for the future work to further develop and

test mechanisms that will use FREyA in this kind of scenarios, and also for

the scenarios where these large knowledge bases are queried by the end-users

who are not familiar with semantic technologies at all.
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Chapter 10

Summary of Findings

This dissertation investigates usability of Natural Language Interfaces to

ontologies from the point of view of:

• application developers who are customising the system (Chapter 5):

the less time they spend customising the system, the more usable it

becomes;

• end-users who are querying the system (Chapter 6): the higher pre-

cision and recall, the more usable the system becomes.

The thesis around which our work is centred is stated in the Chapter 1 as:

a) combining syntactic parsing with ontology-based lookup in

an interactive process of feedback and query refinement can

increase the precision and recall of NLIs to ontologies,

while

b) reducing porting and customisation time by shifting

some tasks from application developers to end-users

In what follows we reflect on the status of this hypothesis, in the light of the

methods and results which have been tested through building two systems

QuestIO and FREyA.
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QuestIO (Chapter 7) is concerned with portability and relaxation of the

user’s queries – similar to others it does not require any customisation in

order to be ported from one ontology to another. QuestIO is one of the first

NLIs to ontologies which supports relaxed queries (incomplete or ill-formed)

as well as grammatically correct ones. The other similar system is NLP-

Reduce, which is developed in Zurich at about the same time. QuestIO’s

query language has been tested using questions from end users, and the test

indicated that QuestIO is as good or better than the AquaLog system [Lopez

and Motta, 2004, Lopez et al., 2007] which supports grammatically correct

questions only (Section 7.4.1). With regard to portability, QuestIO, as other

similar systems, is trialled with ontologies which cover different, but narrow

domains. Portability is tested by demonstrating that all that is required to

port the system is the URI of the ontology – the system automatically gen-

erates the domain-lexicon by reading and processing ontology lexicalisations

(Section 7.4.2).

QuestIO then uses this domain-lexicon to perform ontology-based lookup over

a query and produces all possible query interpretations. It also ranks them,

and returns the answer based on the first interpretation for which the answer

is non-empty. On the positive side, returning the best possible answer auto-

matically is very good for users, especially if there were many interpretations

of the query – they do not have to see those that would anyway return no

answer. On the negative side, no answer does not necessarily imply that

the interpretation of the query is wrong – it might be that interpretation is

correct, but the answer is missing, or, it is negative. Another issue which is

problematic (see Section 7.4.2) is the ranking of the interpretations which,

in case of QuestIO, relies on the ontology structure. QuestIO is built with

the assumption that ontologies are perfect, namely:

• Each concept/relation in the ontology has the human lexicalisation

which describes it – not necessarily a definition, but rather a term

which a human would use to refer to this concept/relation.

• Each concept/relation is positioned carefully in the taxonomy: all

super-concepts/relations are more generic, and all sub-concepts/relations

are more specific.
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Therefore, this tool, although portable in the sense that it can be easily

plugged in with another ontology, is directly dependent on the quality of data

available in the ontologies. At about the time of the QuestIO’s development,

the initiative has started to encourage people to publish their own data

(through Linked Open Data Project), generate their own ontologies from

databases (such as DBpedia), and soon after, the large amount of ontologies

have been made available and interlinked with each other. None of these

were perfect – lexicalisations do exist, but not often they reflect “a term

which a human would use to refer to this concept” – this again is especially

the case for properties. In addition, the flat structure is dominant. One of

the reasons for this is scalability: tractable reasoners do not scale well if the

structure of the ontology is complex.

Another observation from the evaluation of QuestIO (Section 7.5) is that

encouraging users to use keywords-based queries is at times, misleading.

There is a difference in keyword-based searches which are used to answer

the question and those used to query the search engines. The intention

for the former is to find the answer to the question which is interpreted

through the set of keywords, while for the latter the aim is to find relevant

documents which would contain given keywords. However, encouraging users

to use keyword-based queries, makes them expect the results similar to those

which would be found and shown by Google (see Section 7.6).

QuestIO was evaluated with users, where they have been given 3 defined

and 1 undefined task. Defined tasks were concrete problems such as find

parameters of POS Tagger, while the undefined task gave a freedom to

users to type in whatever they were interested in, such as think of any

task you would like to perform using the system. The evaluation results

emphasised the importance of usability methods (Chapter 6) which can

improve the confidence of the user when querying the system. Namely, as

all defined tasks have had the answer, the users did not struggle much to

finish them. However, for the undefined task, the performance of the system

was poor, and the users disliked it: many errors happened due to users not

understanding the way the system is interpreting the query. For example, it

was not clear whether the system did not parse the question, or whether it

did not have any knowledge about the certain query terms.
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Therefore, we have used the experience and the evaluation of QuestIO, to

explore these interfaces further, and address some of the problems which

arose along the way, considering also the changes which have happened on

the Web. Our assumption has now changed with the new challenges which

have appeared, the main one being that ontologies are not perfect, and that

tools which work with them must take this into consideration.

Therefore, our exploration resulted in building a fully interactive system

FREyA, which makes certain assumptions but none of them are confirmed

automatically - the user has to verify each one of them. In contrast to

QuestIO which is fully automatic, FREyA involves the user in the loop. The

user is put in focus with our new approach, which is based on the assumption

that no ranking will be perfect (because ontologies are not perfect and

ranking relies on ontology reasoning).

In this respect, we have first explored feedback : showing the user all query

interpretations as a list of linear combinations of the recognized concepts (see

Chapter 8). The user then can choose which of the system’s interpretations

is correct. On the negative side, if there are too many, and especially if the

ranking is not effective, it might be tedious and time-consuming for the user

to go through the list of the interpretations in order to find the one which

correctly interprets his question. On the positive side, the user is aware of the

concepts which are known to the system, and if the concepts are recognized,

but no relations between them are found, the user could assume that the

reason is no results (the answer is negative).

In the evaluation with users (Section 8.2), while the system’s interpretation

was helpful for complex queries, as they could figure out that they need to

reformulate the question, for the queries with the negative results, feedback

as such was not perceived as useful by a significant percentage of users.

Showing the user that the concepts are recognized, but the answer was

not found, was often perceived as the system’s failure. In addition, this

approach, although with a greater potential than the automatic approach

taken by QuestIO, has several difficulties:

• Firstly, interpreting the query as a whole might be problematic: even if

only one query term is interpreted incorrectly, the whole interpretation

would be invalid.
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• Secondly, for several ambiguous terms in the question (which is quite

realistic given the current state of the Linked Data), the number of

interpretations would be large, producing a huge cognitive overhead

on the user.

• Thirdly, the question terms are linked to ontology concepts based on

the existing lexicalisations for that concept: if the lexicalisation is

missing, the query term would not be understood. This is especially

problematic for adjectives, for example. To parse the query What is

the biggest city in Europe? lexicalisations from the ontology are not

enough. Understanding biggest in this example means looking into the

properties of the word which it modifies (city) and then finding the

biggest value out of them all.

• Finally, recognising WH-phrases can be of a great importance for un-

derstanding the meaning of the question, and therefore should be con-

sidered more carefully.

Therefore, in order to address all these observations we have moved towards:

• concept-based interpretation: instead of interpreting the query as a

whole, and showing all query interpretations to the user, each query

term is interpreted separately, and the user is engaged into the dialog

to resolve ambiguities on the concept level, if necessary;

• enriching the domain-lexicon by integrating the vocabulary of the end-

users: if an unknown term appears in the question, we model the dialog

and ask the user to attach the meaning, by choosing one of the listed

ontology concepts. These ontology concepts are found based on the

ontology knowledge, and take the context in which the term appears

into account.

The user’s input is saved and used to update the learning model which is

used to train the system towards better performance. The learning model

is context-based, and uses ontology reasoning in order to generalise itself

whenever feasible.

The aim of this new approach (presented in Chapter 9) is to interpret a

user’s query in one unambiguous way, by solving the ambiguities through
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the dialog, but at the same time, understanding the user’s language and

trying to map it to the logical form, through considering the context. For

example, How big can be mapped to different ontology concepts depending

on the context, where context is identified by the ontology concepts with

which it appeared in the question. If How big appears in the context of a

state, it could be mapped to the state population, while when appearing with

a city, the same phrase could be mapped to the city population. However,

if we have already learned that How big is a city... can be mapped to city

population - city, the same rule would enable us to conclude that How big

is a capital... could be mapped to city population - capital, because of the

existing relation in the ontology: capital - rdfs:subClassOf - city.

Domain-independent words such as WH-phrases (such as Where), and es-

pecially those which contain adverbs (such as How big) or adjectives (such

as largest city) can be crucial for understanding the question, and also they

can modify the meaning of the question terms. However, in different do-

mains, and in different context, these words have different meanings. What

is the largest city in California, and What is the largest lake in California

require mapping largest to two different properties, namely city population

and lake area, respectively. Machine Learning approaches suggested by Tang

and Mooney [2001] and Wong and Mooney [2006] solve this by labelling

the questions and applying an Inductive Learning Programming approach,

which, for known sets of questions, and for small ontologies, can work quite

well. However, for the larger repositories, and real world applications such as

Linked Data for example, we might not know the structure of the ontology

in advance. Therefore, it might be very hard if not impossible to label sets of

questions and map them to certain ontology concepts in the vast collection,

which must be browsed or queried in order to be understood. In addition,

for unseen questions, this approach would not work well.

With our approach, this problem is addressed by modelling the dialog, and

learning from the user’s selections, therefore potentially improving the per-

formance of the system with each user posing a question. The dialog is

modelled based on the combination of syntactic parsing and ontology-based

lookup.
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Our proposed methods balance between heavy customisation (which is usu-

ally required by application developers to port an NLI system to a different

domain), and the end users who need to explore the available knowledge

without being constrained by the query language. Our evaluation with the

Mooney GeoQuery dataset, shows that FREyA, with precision and recall

reaching 94.4%, outperforms other similar systems (see Section 9.7.1). This

satisfies our hypothesis. What contributes to its overall performance is:

• Initial ranking. Although the user is in focus and has a large influence

on the ranking of suggestions which appear in dialogs, initial rank-

ing is very important in order to reduce the cognitive load on users.

We have implemented an algorithm which combines string similarity

with synonym detection (see Section 9.1.5), and the evaluation of this

algorithm reaches the MRR of 0.76 (see Section 9.7.3).

• Identification of the answer type dynamically. This algorithm com-

bines syntactic parsing with several heuristic rules in order to identify

the focus or the Answer Type Identifier of the question. These are

further combined with ontology-based lookup in order to identify the

answer type. If necessary, the user is engaged in the dialog in order to

solve ambiguities and precisely identify the answer type (Section 9.2).

Our evaluation with 250 questions from the Mooney GeoQuery dataset

shows that the answer type is correctly identified for 98.18% of ques-

tions, including 37.36% which required one dialog with the user (see

Section 9.7.4). Identification of the question category is usually based

on static rules which categorise questions based on their syntax. For

example, questions starting with Where would be in a different cat-

egory from questions starting with What. This approach is used in

various guises in many similar NLIs to ontologies such as ORAKEL

[Cimiano et al., 2007], PANTO [Wang et al., 2007], Querix [Kaufmann

et al., 2006], and AquaLog [Lopez et al., 2007]. Our approach is differ-

ent in that we try to avoid strict adherence to syntax, while engaging

the user in dialog in order to map certain syntactic structures into the

ontology concepts.

• Learning from the users incrementally. The system is able to learn
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from the user’s selections and train itself to perform better by inte-

grating the knowledge of its users. Our learning model (inspired by

Reinforcement Learning, see Section 9.5) evaluated using the Mooney

GeoQuery dataset showed an improvement of our initial ranking by

6% (see Section 9.7.3). In addition, as presented in Section 9.7.2, for

the Mooney GeoQuery dataset 10-fold cross-validation measurement

has shown that the precision of the baseline model has been improved

by 23.24%. While learning to map syntax trees to semantics has not

been extensively researched in the domain of NLIs to ontologies, sev-

eral promising approaches have been tried and evaluated in some other

domains such as NLIs to databases (e.g., [Ge and Mooney, 2009]). Su-

pervised approaches such as learning the semantic parser based on

statistical machine translation [Wong and Mooney, 2007], statistical

disambiguation models [Ge and Mooney, 2009], or a hidden-variable

approach for learning to interpret sentences in context [Zettlemoyer

and Collins, 2009] could all be seen as a complementary to our semi-

supervised approach.

Finally, our approach to portability shifts some effort from application de-

velopers to end users. The knowledge of the end-users is used to train and

improve the system for others. This knowledge is used to update the learn-

ing model, which is also preserved for sharing with other similar systems.

Therefore FREyA is not only incrementally enriching its own lexicon, but

it is also preserving it in a way that other NLI systems can benefit from it.

The portability and the suitability of FREyA to be used in the real scenario

for querying the Linked Data is tested through the experiments using the

QALD-1 challenge datasets, MusicBrainz and DBpedia (Section 9.7.5).
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Future Challenges

The work described in this thesis can be improved in many aspects. Here

we outline some ideas.

11.1 Scalability

The availability of Linked Open Data changed the way we think about

ontologies and structured data. In that respect, there are several challenges

which remain to be addressed or improved in comparison to how they have

been addressed in the course of this thesis. In addition to the previously

discussed issue of ontologies not being perfect, the scale becomes an issue, and

also incompleteness, heterogeneity, and noise inherent in these data. A huge

number of ontologies interlinked with each other means a high probability

that there is the redundant information, which needs to be filtered out by

the systems used for querying these data. Moreover, with such enormous

knowledge base queries can return thousands or millions of hits, e.g. show

fungi. The result to this query is more than 2000 instances of different types

of fungi. The question is which ones to show first and how to filter out

duplicates – this is an important direction towards the increased quality

of LOD in the nearest future, which will lead to the better performance of

interfaces used to query these data. In addition, the ranking algorithms (e.g.,

[Lopez et al., 2009a]) become increasingly important.

Large datasets introduce other challenges such as data ambiguity. Unlike
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language ambiguity where one term might have several different meanings,

the data ambiguity arises when one term refers to several URIs in the seman-

tic repository, while all of them have the identical meaning. This happens

when, for example, one term refers to several Ontology Concepts, each be-

longing to a different ontology namespace. Ideally, all these concepts should

be related by owl:sameAs, however, based on the current state of the Linked

Data, this is often not the case, and the systems that query this data need

to handle these situations properly.

11.2 What to Show?

As NLIs for querying ontologies have the goal to find the answer to a question

posed in Natural Language, most of the existing approaches focus on the

problem of translating NL into the formal languages. However, once the

answer is found, it is very important to present it to the user in a user-

friendly manner. The way the the answer is shown to the user has a large

impact on their confidence when using the system, and there is a room

for researching this topic more carefully. One interesting approach would be

using Natural Language Generation Tools such as the one described in Davis

et al. [2008]. That means that instead of rendering a graph or a list of results

as in FREyA, the user would receive the answer in Natural Language. For

example:

USER: Which countries are located in Europe?

SYSTEM: There are countries. Countries are

France and Austria. Countries are Belgium and Serbia.

11.3 Learning

We discussed previously the disadvantages of our learning model (see Sec-

tion 9.7.2). Namely, the simplicity which makes the model attractive and

re-usable across similar but not identical questions, is at the same time a

drawback as it might cause ambiguities. Our current model is in the form

of:
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if

POC or OC appears in the context with the closest OC

then

map it to

candidate, function

This model can be relaxed so that instead of a POC, we can preserve the

phrase (e.g. noun phrase) in which it appears. This would enable more

precise mappings and would solve the problem of point being mapped to

geo:HiPoint or geo:LoPoint depending on whether it is preceded by lowest

or highest which was discussed in Section 9.7.2.

11.4 Personalised Vocabulary

All discussed methods in this thesis can be employed (and potentially im-

proved) in combination with quality user profiles. However, creating and

maintaining quality user profiles requires analysing the domain space (e.g.,

available domain knowledge) and user space (e.g., user interests and prefer-

ences) and making the connection between the two. The nature of ontologies

is convenient for designing and intersecting these two spaces and could be

accomplished through:

1. Creating domain space: creating or locating the domain ontology with

defined concepts and relations between them so that they explain the

domain precisely. Instantiating the concepts and creating relations

between the instances.

2. Creating user space: creating or locating the user ontology with defined

concepts and relations between them so that they explain user inter-

ests, preferences and activities precisely. Instantiating the concepts

and creating relations between the instances.

3. Intersection of two spaces: connecting the two spaces would result in

defining user profiles. In practice, this would mean defining relations

between concepts from the domain and user space i.e. domain and

user ontologies.
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11.5 Using FREyA in the Open-Domain Scenario

While FREyA is tested with large and diverse datasets through the experi-

ments with DBPedia and MusicBrainz, the approach still differs from a truly

open-domain scenario, where users ask questions using the system that would

crawl the whole Web, or rather, the whole Semantic Web in order to find

answers. In this section we outline the obvious next steps that would need

to be taken in order to use FREyA in that kind of scenario. We identify two

approaches that are feasible.

The first approach requires less investigation in FREyA, in a sense that

all algorithms and methods can be reused, with a potential requirement for

optimisation due to scale. However, the approach requires development of

an infrastructure that would:

• Crawl the whole Web – this could be performed using the existing

semantic search engines such as Watson [d’Aquin et al., 2007] or Sindice

([Tummarello et al., 2007].

• Load all crawled files into the centralised repository.

• Repeat the previous two steps regularly in order to update the existing

data.

However, developing this infrastructure might be extremely expensive and

it is even questionable whether it would be possible to update the data

regularly to follow updates of the RDF documents available on the Web.

However, by locating and transforming the decentralised data on the Web

into the centralised repository, it is possible to fully reuse the existing algo-

rithms and methods in FREyA, as the index necessary for performing the

ontology-based lookup can be generated, and also the centralised repository

can be used to evaluate the final SPARQL query generated by FREyA in

order to find the answer. However, due to the large amount of data available

on the Semantic Web, some existing algorithms might need to be optimised.

The most obvious optimisations are as follows:

The learning model. The learning model in FREyA is saved to the file

system using the JSON format. The model can easily grow and cause
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scalability issues if the system is used with the large-scale data. This

can be solved by using a more scalable implementation, for example,

the one that is based on Lucene.

Presentation of dialogs and answers. While this is not a mandatory

requirement for using FREyA in the open-domain scenario, it would

be worth exploring the user-friendly ways of showing URIs to the user.

By default, FREyA uses values of rdf:label instead of URIs. This can

also be customised/configured for specific datasets as there often is the

case that some special properties are used for names, instead of labels.

It would be worth developing a service that would return the preferred

label for each URI, which is extracted from all available labels and

named properties.

In the second approach, while majority of the methods and algorithms avail-

able in FREyA can be reused, in addition to the optimisations mentioned

above, the following aspects would require further investigation:

Ontology-based Lookup currently requires generating an index offline,

which is then used at the query analysis time. This is currently per-

formed using a gazetteer which attaches semantic annotations to the

question terms which is characterised by a URI for classes, instances

and properties, and an instance URI and a property URI for literals.

Using FREyA in the open-domain scenario would require a reliable

service for semantic annotation with regard to the semantic resources

available on the open Web. This would be a replacement for the cur-

rently used gazetteer, and one possibility is to use services such as

Watson. This approach has been taken by PowerAqua, however, as

pointed out in Lopez et al. [2011], the resources in the open Web that

can be accessed through Watson seem to have quality issues: many on-

tologies are not populated, and there are many redundant, noisy and

incomplete data (for example, the schemas could be missing). While

this scenario is extremely powerful and can be a great demonstration

of what can be done with the large amount of structured knowledge,

the current tools and services seem to lack the full potential largely

because of the low quality of the available data. Hence, one interesting
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direction for future work should go in this direction (e.g., Hartig and

Zhao [2009]).

Finding and loading relevant triples on the fly would need to be im-

plemented, as currently, FREyA either generates a new semantic repos-

itory and populates it using the data available from the predefined

URLs (either from the local system or from the Web), or it can con-

nect to the existing repository which can be local or remote. However,

the assumption behind the current implementation is that all data are

loaded into the centralised repository – the same one from which the

index for the Ontology-based Lookup is generated. FREyA then gen-

erates the SPARQL query, which is evaluated against the centralised

repository in order to answer the question. As in the truly open-

domain scenario triples are distributed on the Web, FREyA would

need to implement a mechanism to locate and load the relevant triples

into its repository before it generates and executes SPARQL. One way

to implement this is using so called virtual documents as suggested in

Damljanovic et al. [2011]. However, the real question here is how to

identify only the relevant triples. The easiest would probably be to

query Sindice using query terms as keywords, and then load all RDF

documents identified as relevant. However, this approach is problem-

atic as the list of identified documents might be large, and also the

content of each RDF document, hence loading them might be time-

consuming.
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User-centric Evaluation with

QuestIO

This section includes questionnaires given to the subjects in the evaluation

described in Section 7.5. Figure A.1 presents the pre-task background ques-

tionnaire. Figure A.2 shows the questionnaire which is answered by partic-

ipants after each task, and Figure A.3 shows the Standard Usability Scale

(SUS) answered by each participant at the end of the experiment.
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Appendix B

User-centric Evaluation with

FREyA

This section includes questionnaires given to the subjects in the evaluation

described in Section 8.2, including questionnaires completed after finishing

each task, followed by the background questionnaire and the SUS usability

survey.
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DO NOT DO BOTH TASK 1a and TASK 1b, BUT CHOOSE ONE OF THEM
Task 1a: Find part of speech taggers which exist in GATE. Find out which param-
eters exist for the POS Tagger of your choice.

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Did you find Identified context:

• Confusing

• Helpful

• Other:

Enter any comments/suggestions/problems you may have:

1



DO NOT DO BOTH TASK 1a and TASK 1b, BUT CHOOSE ONE OF THEM
Task 1b: Find mountains which exist in United States. Find out in which state is
the mountain of your choice located.

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Did you find Identified context:

• Confusing

• Helpful

• Other:

Enter any comments/suggestions/problems you may have:

2



DO NOT DO BOTH TASK 2a and TASK 2b, BUT CHOOSE ONE OF THEM
Task 2a: Imagine that you are a GATE developer who needs to extend the RASP
Parser. Your task is to find out the names of init parameters.

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Was it clear for you that there are no init parameters for RASP Parser?

• Yes

• No If you tick this box indicate why:

Enter any comments/suggestions/problems you may have:

3



DO NOT DO BOTH TASK 2a and TASK 2b, BUT CHOOSE ONE OF THEM
Task 2b: Find out which states border hawaii.

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Was it clear from the answer that there are no border states?

• Yes

• No If you tick this box indicate why:

Enter any comments/suggestions/problems you may have:

4



DO NOT DO BOTH TASK 3a and TASK 3b, BUT CHOOSE ONE OF THEM
Task 3a: What are the parameters of the PRs which are included in the same plugin
as the Morhper?

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Did you find Identified context:

• Confusing

• Helpful

• Other:

Enter any comments/suggestions/problems you may have:

5



DO NOT DO BOTH TASK 3a and TASK 3b, BUT CHOOSE ONE OF THEM
Task 3b: Which rivers flow through the state in which the mountain harvard is
located?

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Did you find Identified context:

• Confusing

• Helpful

• Other:

Enter any comments/suggestions/problems you may have:

6



Task 4: Try exploring the knowledge available in the system. Either search for
various components of GATE such as PRs, plugins, LRs, VRs, or explore geogra-
phy of United States by inquiring about: cities, states, rivers, mountains, highways
just to get the idea of what you can search for. Then ask some questions in order
to connect these concepts such as ’which states border georgia?’ or ’which rivers
flow through states which border california’. Input as many queries as you like.

After you finish the task answer the following questions:

1. Which of the following is truth:

• I completed the task with ease

• I completed the task with difficulty

• I failed to complete the task If you ticked this box please provide
the reasons for this:

– System provided no useful output so I could not figure out what to
do

– System provided confusing output so I could not figure out what
to do

– System provided no output

– Other reasons:

2. Was it easy to formulate the query for this task:

• Yes

• No

3. Did you find Identified context:

• Confusing

• Helpful

• Other:

Enter any comments/suggestions/problems you may have:

7
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Do you have any specific problems to report?

Do you have any suggestions for improving the system?

3
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Appendix C

Using Large Ontologies

In this section we present the SPARQL queries used to initialise FREyA, and

in particular the LKB gazetteer which is used by FREyA, with the DBPedia

dataset. Loading the DBPedia lexicon is performed in several phases. The

first phase is finding filter classes using the SPARQL query:

SELECT ?T ?T1 WHERE {

?T <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class>.

# Selects only the top level classes of DBPedia

OPTIONAL

{ ?T <http://www.w3.org/2000/01/rdf-schema#subClassOf> ?T1.

FILTER (regex(str(?T1), "^http://dbpedia\\.org/.*$", "i")).

FILTER (?T1!=?T).}

FILTER (!bound(?T1)).

# DBPedian namespace filter

FILTER (regex(str(?T), "^http://dbpedia\\.org/.*$", "i")).

}

When this query is executed against FactForge SPARQL endpoint (http:

//factforge.net/sparql) it resulted in 2803 filter classes. For each filter

class one SPARQL query is further executed in order to generate the domain

lexicon. The SPARQL query looked similar to the following:

SELECT DISTINCT ?E ?T ?L ?P
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WHERE {

{ ?E <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?T.

# Label Retrieval sub-component

OPTIONAL {

?E ?P ?L.

FILTER (?P = <http://www.w3.org/2000/01/rdf-schema#label>).

Filter(lang(?L)="en")

}

} UNION

#### Query component extracting the entities knowledge

{ ?E <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?T.

FILTER (regex(str(?T), "^http://dbpedia\\.org/.*$", "i")).

# Direct-type enforcing criterion

OPTIONAL

{ ?E <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?T1.

?T1 <http://www.w3.org/2000/01/rdf-schema#subClassOf> ?T.

FILTER (?T1!=?T).}

FILTER (!bound(?T1)).

# Label Retrieval sub-component

?E ?P ?L.

# Remove sub-properties because they duplicate the base property

OPTIONAL

{ ?P <http://www.w3.org/2000/01/rdf-schema#subPropertyOf> ?P1.

FILTER (regex(str(?P1), "^http://dbpedia\\.org/.*$", "i")). }

FILTER (!bound(?P1)).

# Forces predicates to be from the DBPedia domain OR rdfs:label

FILTER (regex(str(?P), "^http://dbpedia\\.org/.*$", "i") ||

(?P = <http://www.w3.org/2000/01/rdf-schema#label>)).

FILTER isLiteral(?L).

# Forces labels to have at least one latin letter

FILTER (regex(str(?L), "^.*[A-Z].*$", "i")).

# Forces label to have english language tag

FILTER (langMatches(lang(?L), "en")).

Filter(lang(?L)="en")
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}

# General domain name filter for the Entity

FILTER (regex(str(?E), "^http://dbpedia\\.org/.*$", "i")) .

?E <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class>.}

#LIMIT 10

The only difference between the 2803 SPARQL queries was in the last filter

statement were FILTER-CLASS is the URI of the class:

?E <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> FILTER-CLASS.}

Loading DBpedia dictionary took 19 days, and resulted in extracting

2022854 terms into the domain lexicon. The experiment is conducted on

a CentOS 5.2 Linux virtual machine running on a AMD Opteron 2431

2.40GHz CPU with 2 cores and 20G RAM allocated to that particular

instance.

279



Using Large Ontologies

280



Bibliography

Bruce W. Ballarda Alan W. Biermanna and Anne H. Sigmon. An Experi-

mental Study of Natural Language Programming. International Journal

of Man-Machine Studies, 18(1):71–87, 1983.

James F. Allen, Bradford W. Miller, Eric K. Ringger, and Teresa Sikorski.

A Robust System for Natural Spoken Dialogue. In Proceedings of the

34th annual meeting on Association for Computational Linguistics, pages

62–70, Morristown, NJ, USA, 1996. Association for Computational Lin-

guistics. doi: http://dx.doi.org/10.3115/981863.981872.

Ion Androutsopoulos, Graeme D. Ritchie, and Peter Thanisch. Natural

Language Interfaces to Databases - An Introduction. Journal of Natural

Language Engineering, 1:29–81, 1995.

Grigoris Antoniou and Frank van Hermelen. A Semantic Web Primer. MIT

Press, 2nd edition, 2008.

Bob Bailey. Getting the Complete Picture with Usability Testing. Usability

Updates Newsletter, U.S. Department of Health and Human Services,

March 2006. URL http://www.usability.gov/articles/newsletter/

pubs/030106news.html.

Madeleine Bates. Rapid Porting of the PARLANCE Natural Language Inter-

face. In HLT ’89: Proceedings of the workshop on Speech and Natural Lan-

guage, pages 83–88, Morristown, NJ, USA, 1989a. Association for Com-

putational Linguistics. doi: http://dx.doi.org/10.3115/100964.100966.

Marcia J. Bates. The Design of Browsing and Berrypicking Techniques for

281

http://www.usability.gov/articles/newsletter/pubs/030106news.html
http://www.usability.gov/articles/newsletter/pubs/030106news.html


Bibliography

the Online Search Interface. Online Review, 13(5):407–424, 1989b. URL

http://www.gseis.ucla.edu/faculty/bates/berrypicking.html.

Sean Bechhofer, Robert Stevens, Gary Ng, Alex Jacoby, and Carole Goble.

Guiding the User: an Ontology Driven Interface. User Interfaces to Data

Intensive Systems, 1999. Proceedings, pages 158–161, 1999. doi: 10.1109/

UIDIS.1999.791472.

Richard K. Belew. Finding Out About: A Cognitive Perspective on Search

Engine Technology and the WWW. Cambridge University Press, Cam-

bridge, United Kingdom, 2000. ISBN ISBN-13: 9780521630283 — ISBN-

10: 0521630282.

Tim Berners-Lee. Weaving the Web. Orion Business Books, 1999.

Abraham Bernstein and Esther Kaufmann. GINO – A Guided Input Natural

Language Ontology Editor. In 5th International Semantic Web Conference

(ISWC2006), 2006.

Abraham Bernstein, Esther Kaufmann, and Christian Kaiser. Querying the

Semantic Web with Gingseng: A Guided Input Natural Language Search

Engine. In 15th Workshop on Information Technologies and Systems,

pages 112—126, Las Vegas, NV, 2005.

Patrick Blackburn and Johan Bos. Working with Discourse Representation

Structures. In Representation and Inference for Natural Language: A First

Course in Computational Linguistics, volume 2, September 1999.

Harold Boley. The Rule Markup Language: RDF-XML Data Model, XML

Schema Hierarchy, and XSL Transformations. In Proceedings of the Ap-

plications of Prolog 14th international conference on Web knowledge man-

agement and decision support, INAP’01, pages 5–22, Berlin, Heidelberg,

2003. Springer-Verlag. ISBN 3-540-00680-X. URL http://portal.acm.

org/citation.cfm?id=1767370.1767373.

Jeen Broekstra and Arjohn Kampman. SeRQL: A Second Generation RDF

Query Language. In In Proceedings of the SWAD-Europe Workshop on

Semantic Web Storage and Retrieval, pages 13–14, 2003.

282

http://www.gseis.ucla.edu/faculty/bates/berrypicking.html
http://portal.acm.org/citation.cfm?id=1767370.1767373
http://portal.acm.org/citation.cfm?id=1767370.1767373


Natural Language Interfaces to Conceptual Models

John Brooke. SUS: a “Quick and Dirty” Usability Scale. In P.W. Jordan,

B. Thomas, B.A. Weerdmeester, and A.L. McClelland, editors, Usability

Evaluation in Industry. Taylor and Francis, London, UK, 1996. URL

http://www.usabilitynet.org/trump/documents/Suschapt.doc.

Joe Bullock. Informed Navigation: Description Logic Based Hypermedia

Linking. PhD thesis, University of Manchester, UK, 1999.

Robin D. Burke, Kristian J. Hammond, Vladimir Kulyukin, Steven L. Lyti-

nen, Noriko Tomuro, and Scott Schoenberg. Question Answering from

Frequently-Asked Question Files: Experiences with the FAQ Finder Sys-

tem. Technical report, AI Magazine, 1996.

David Chin. An Analysis of Scripts Generated in Writing Between Users and

Computer Consultants. National Computer Conference, pages 637–642,

1984.

Kenneth Church and Ramesh Patil. Coping with Syntactic Ambiguity or

How to Put the Block in the Box. American Journal of Computational

Linguistics, 8(3-4), 1982.

Philipp Cimiano, Peter Haase, and Jörg Heizmann. Porting Natural Lan-

guage Interfaces Between Domains: an Experimental User Study with

the ORAKEL System. In IUI ’07: Proceedings of the 12th international

conference on Intelligent user interfaces, pages 180—189, New York, NY,

USA, 2007. ACM. ISBN 1-59593-481-2. doi: http://doi.acm.org/10.1145/

1216295.1216330.

Philipp Cimiano, Peter Haase, Jörg Heizmann, Matthias Mantel,

and Rudi Studer. Towards Portable Natural Language Inter-

faces to Knowledge Bases – the Case of the ORAKEL Sys-

tem. Data and Knowledge Engineering, 65(2):325—354, May 2008.

doi: http://www.sciencedirect.com/science/article/B6TYX-4R68N7K-2/

1/cb51e20a3f7e9877671960f8a1336595.

Peter Clark, Philip Harrison, Thomas Jenkins, John Thompson, and

Richard H. Wojcik. Acquiring and Using World Knowledge Using a Re-

stricted Subset of English. In Ingrid Russell and Zdravko Markov, editors,

283

http://www.usabilitynet.org/trump/documents/Suschapt.doc


Bibliography

Proceedings of the 18th International FLAIRS Conference (FLAIRS’05),

pages 506–511. AAAI Press, 2005. ISBN 1-57735-234-3. URL http:

//www.cs.utexas.edu/users/pclark/papers/flairs.pdf.

Peter Clark, Shaw-Yi Chaw, Ken Barker, Vinay Chaudhri, Philip Har-

rison, James Fan, Bonnie John, Bruce Porter, Aaron Spaulding,

John Thompson, and Peter Yeh. Capturing and Answering Ques-

tions Posed to a Knowledge-Based System. In Proceedings of the

4th International Conference on Knowledge Capture (K-CAP’07), 2007.

URL http://www.cs.utexas.edu/users/pclark/papers/kcap07.pdf.

http://www.cs.utexas.edu/users/pclark/papers/kcap07.ppt.

Edgar F. Codd. Seven Steps to Rendezvous with the Casual User. In IFIP

Working Conference Data Base Management, pages 179–200, 1974.

Michael Collins. Head-Driven Statistical Models for Natural Language Pars-

ing. PhD thesis, University of Pennsylvania, 1999.

Anne Cregan, Rolf Schwitter, and Thomas Meyer. Sydney OWL Syntax -

Towards a Controlled Natural Language Syntax for OWL 1.1. In OWLED,

2007.

Bruce Croft, Donald Metzler, and Trevor Strohman. Search Engines: In-

formation Retrieval in Practice. Addison Wesley, 1 edition, February

2009. ISBN 0136072240. URL http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20&path=ASIN/0136072240.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin

Tablan. GATE: A Framework and Graphical Development Environment

for Robust NLP Tools and Applications. In Proceedings of the 40th

Anniversary Meeting of the Association for Computational Linguistics

(ACL’02), 2002.

Paulo Cesar G. da Costa, Kathryn B. Laskey, Kenneth J. Laskey, and

Michael Pool, editors. End-User Evaluations of Semantic Web Technolo-

gies, 2005.

Danica Damljanovic. Towards Portable Controlled Natural Languages for

Querying Ontologies. In Michael Rosner and Norbert Fuchs, editors, Pro-

284

http://www.cs.utexas.edu/users/pclark/papers/flairs.pdf
http://www.cs.utexas.edu/users/pclark/papers/flairs.pdf
http://www.cs.utexas.edu/users/pclark/papers/kcap07.pdf
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0136072240
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0136072240


Natural Language Interfaces to Conceptual Models

ceedings of the 2nd Workshop on Controlled Natural Language, Lecture

Notes in Computer Science. Springer Berlin / Heidelberg, Marettimo Is-

land, Sicily, September 2010.

Danica Damljanovic and Kalina Bontcheva. Enhanced Semantic Access to

Software Artefacts. In Workshop on Semantic Web Enabled Software

Engineering (SWESE), Karlsruhe, Germany, October 2008.

Danica Damljanovic and Vladan Devedzic. Applying semantic web to e-

tourism. In Zongmin Ma and Huaiqing Wang, editors, The Semantic

Web for Knowledge and Data Management: Technologies and Practices.

Information Science Reference (IGI Global), 2008.

Danica Damljanovic and Vladan Devedzic. Semantic Web and E-tourism.

In Mehdi Khosrow-Pour, editor, Encyclopedia of Information Science and

Technology, Second edition. IGI Global, 2009.

Danica Damljanovic, Valentin Tablan, and Kalina Bontcheva. A Text-based

Query Interface to OWL Ontologies. In 6th Language Resources and

Evaluation Conference (LREC), Marrakech, Morocco, May 2008. ELRA.

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Usabil-

ity of Natural Language Interfaces for Querying Ontologies (poster). In

Workshop on Controlled Natural Language (CNL 2009), 2009.

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Iden-

tification of the Question Focus: Combining Syntactic Analysis and

Ontology-based Lookup through the User Interaction. In 7th Language

Resources and Evaluation Conference (LREC), La Valletta, Malta, May

2010a. ELRA.

Danica Damljanovic, Milan Agatonovic, and Hamish Cunningham. Natural

Language Interfaces to Ontologies: Combining Syntactic Analysis and

Ontology-based Lookup through the User Interaction. In Proceedings of

the 7th Extended Semantic Web Conference (ESWC 2010), Lecture Notes

in Computer Science, Heraklion, Greece, June 2010b. Springer-Verlag.

Danica Damljanovic, Johann Petrak, Mihai Lupu, Hamish Cunningham,

Mats Carlsson, Gunnar Engstrom, and Bo Andersson. Random Indexing

285



Bibliography

for Finding Similar Nodes within Large RDF graphs . In Proceedings of the

Fourth International Workshop on Resource Discovery, Collocated with the

8th Extended Semantic Web Conference (ESWC 2011), Heraklion, Greece,

June 2011.

Hoa Trang Dang. Overview of the TAC 2008 Opinion Question Answering

and Summarization Tasks, 2008.

Hoa Trang Dang, Jimmy Lin, and Diane Kelly. Overview of the TREC 2006

Question Answering Track. In Proceedings of the Fifteenth Text REtrieval

Conference, 2006.

Hoa Trang Dang, Diane Kelly, and Jimmy Lin. Overview of the TREC 2007

Question Answering Track. In Proceedings of the Sixteenth Text REtrieval

Conference, 2007.

Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia An-

geletou, Marta Sabou, and Enrico Motta. Watson: A Gate-

way for Next Generation Semantic Web Applications. Poster,

ISWC 2007,, 2007. URL http://iswc2007.semanticweb.org/papers/

Paper366-Watson-poster-ISWC07.pdf.

John Davies, Dieter Fensel, and Frank van Harmelen, editors. Towards the

Semantic Web: Ontology-driven Knowledge Management. Wiley, 2002.

Brian Davis, Ahmad Ali Iqbal, Adam Funk, Valentin Tablan, Kalina

Bontcheva, Hamish Cunningham, and Siegfried Handschuh. RoundTrip

Ontology Authoring. In Amit P. Sheth, Steffen Staab, Mike Dean, Mas-

simo Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad

Thirunarayan, editors, International Semantic Web Conference, volume

5318 of Lecture Notes in Computer Science, pages 50–65. Springer, 2008.

ISBN 978-3-540-88563-4.

Ronald Denaux, Vania Dimitrova, Anthony G. Cohn, Catherine Dolbear,

and Glen Hart. Rabbit to OWL: Ontology Authoring with a CNL-Based

Tool. In Norbert E. Fuchs, editor, CNL, volume 5972 of Lecture Notes in

Computer Science, pages 246–264. Springer, 2009. ISBN 978-3-642-14417-

2.

286

http://iswc2007.semanticweb.org/papers/Paper366-Watson-poster-ISWC07.pdf
http://iswc2007.semanticweb.org/papers/Paper366-Watson-poster-ISWC07.pdf


Natural Language Interfaces to Conceptual Models

Yihong Ding, David Embley, and Stephen Liddle. Automatic Creation

and Simplified Querying of Semantic Web Content: An Approach Based

on Information-Extraction Ontologies. In Proceedings of the 1st Asian

Semantic Web Conference, pages 400–414. Springer Berlin/Heidelberg,

September 2006.

Samuel S. Epstein. Transportable Natural Language Processing through

Simplicity—the PRE System. ACM Trans. Inf. Syst., 3(2):107–120, 1985.

ISSN 1046-8188. doi: http://doi.acm.org/10.1145/3914.3985.

Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database.

MIT Press, 1998.

Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn, Gerold Schneider, Loic
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