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Abstract

The detection in multiuser (MUD) and multiple-input multiple-output (MIMO) systems can increase the

spectral efficiency, and therefore is of great interest. Although multiuser and MIMO detection is mature in

theory, the real-time implementation is still an open issue. Many suboptimal detection schemes have been

proposed, possessing low computational load, but also having poorer detection performance compared to

the optimal detector. Multiuser detection can be described as a solution of an optimisation problem; in

most cases it is the quadratic optimisation problem. Unconstrained quadratic optimisation is known to re-

sult in decorrelating and MMSE multiuser detection, which cannot provide high detection performance.

The optimal detection is equivalent to the solution of a constrained problem. However, such detection is

too complex for practical systems. In this work, we propose several detectors which possess low com-

plexity and high detection performance. These detectors are based on Dichotomous Coordinate Descent

(DCD) iterations, which are multiplication and division free, and therefore are attractive for real-time im-

plementation. We propose a box-constrained DCD algorithm, and apply it to multiuser detection. We also

design an FPGA architecture of the box-constrained DCD detector and implement it in an FPGA. This

design requires a very small area usage. The fixed-point implementation offers a constant throughput over

the signal-to-noise ratio (SNR) and provides almost same detection performance as that of a floating-point

implementation. We further exploit the box-constrained DCD algorithm and propose a complex-valued

box-constrained DCD algorithm. A box-constrained MIMO detector based on the DCD algorithm shows

a better detection performance than the MMSE detector. The proposed FPGA design requires a small area

usage, which is significantly less than that required by known designs of the MMSE MIMO detector. Since

the box-constrained DCD algorithm could not offer the optimal detection performance, while the sphere

decoder encounters high complexity at low SNRs, we suggest a combination of the box-constrained DCD

algorithm with the sphere decoder (fast branch and bound algorithm). The combined detection results in

reduced complexity at low SNRs while retaining outstanding detection performance at all SNRs. As the

box-constrained DCD algorithm is efficient for hardware implementation, we apply it to the nonstationary

iterative Tikhonov regularization and propose a DCD-BTN detector. The DCD-BTN detector shows the

detection performance very close to the optimal performance. It also shows the lowest complexity among

the most advanced detectors. An architecture of the detector has been developed. This detector has been

implemented on an FPGA platform. The design requires a small number of FPGA slices. Numerical results

have shown that the fixed-point FPGA implementation and a floating-point implementation have similar

detection performance. The DCD-BTN detector can only be applied in systems with BPSK modulation.

Therefore, we also propose a multiple phase decoder (MPD), which is based on a phase descent search

(PDS) algorithm. The PDS algorithm uses coordinate descent iterations, where coordinates are unknown

symbol phases, while constraining the symbols to have a unit magnitude. The MPD is investigated in ap-

plication to detection of M-PSK symbols in multiuser and MIMO systems. In the multiuser detection, the

MPD is applied to highly loaded scenarios and numerical results show that it provides the near-optimal per-

formance at low complexity. The MPD significantly outperforms such advanced detector as the semidefinite

relaxation detector in both the detection performance and complexity. In MIMO systems, the MPD exhibits

more favorable performance/complexity characteristics and can be considered as a promising alternative



to the sphere decoder. The matrix inversion is required in many applications. The complexity of matrix

inversion is too high and makes its implementation difficult. To overcome the problem, we propose an

approach based on the DCD algorithm to simplify the matrix inversion. This approach obtains separately

the individual columns of the inverse matrix and costs a very small number of slices, which is suitable for

application, e.g. in MIMO-OFDM systems.
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1.1 Research Area

In CDMA systems, all users operate in the same frequency band, so multiple-access in-

terference (MAI) occurs in code-division channels. Multiuser detection (MUD) is used to

demodulate one user’s data stream from a non-orthogonal multiplex, which can achieve

a significant increase in the spectral efficiency of the systems [2] [3]. The conventional

approach is the matched filter (MF), however, it is vulnerable to near-far problem and

the performance is far from the ideal [3]. Maximum likelihood (ML) multiuser detector

provides the optimal detection performance, however it is highly complex [3]. The decor-

relating and the minimum mean squared error (MMSE) linear detectors take into account

MAI and enforce near-far resistance, which is ignored in the matched filter [4]. However,

they require matrix inversion which costs intensive complexity.
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CHAPTER 1. INTRODUCTION 2

Recently, wireless communication research has focused on multiple-input multiple-output

(MIMO) communication systems. The previous work showed that by using multiple an-

tennas at the transmitting and the receiving ends allowed to increase the capacity and

reliability [5]. It is believed that MIMO and multiuser detection techniques will play

an important role in the development of wireless mobile systems. MIMO communica-

tion system is mathematically formulated similarly to CDMA MUD system but normally

deals with small size systems. The sphere decoding algorithm approaches the optimal ML

performance while reducing the complexity significantly [6, 7], however the complexity

of the sphere decoder depends on SNR and the modulation/ constellation, i.e. , its worst-

case computational complexity is exponentially proportional to the number of users (or

transmit antennas), especially at low signal-to-noise ratios (SNRs) [3].

Overall, when these algorithms are not computationally efficient, and a great deal of hard-

ware resources will be consumed, that limit their practical real-time applications. This is

especially true when systems with many users are of interest and over loaded systems are

considered. This work is focused on the development of efficient multiuser and MIMO

detectors. The attention is concentrated on algorithms derived from the Dichotomous Co-

ordinate Descent (DCD) algorithm [8]. The DCD algorithm is based on the coordinate

descent technique with power of two variable step-size, which is easily realized by us-

ing the bit-shift operation in hardware implementation. Therefore this algorithm can be

considered as a promising technique for multiuser and MIMO detection. The goal of this

work is to explore state-of-the-art algorithms for the multiuser detection and MIMO sys-

tems. For this purpose, the FPGA architectures for various detectors have been developed

in this thesis.

1.2 Overview of Advanced Multiuser Detection and

MIMO Technologies

1.2.1 System Models for Multiuser Detection

We first describe the channel model corresponding to an additive white Gaussian noise

(AWGN). Then, we show that this system model also describes flat and frequency-

selective channels, channels with multipath propagation, fast and slow fading channels.
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CHAPTER 1. INTRODUCTION 3

Various channel models can be converted into a synchronous CDMA system as a generic

system model for multiuser detection. The spreading sequence in DS-CDMA multiuser

detection is similar to the spatial signature in MIMO systems. Solving the MIMO commu-

nication problems is mathematically similar to that of the multiuser detection, therefore

the model for multiuser detection can be extended for the MIMO systems.

Synchronous CDMA Systems

In a synchronous CDMA system, the received signal is given by

y(t) =
K∑

k=1

Akhksk(t) + n(t) , (1.1)

where

• sk(t) is a signature waveform for the kth user. In CDMA systems, the signature

waveform sk(t) is represented by

sk(t) = [p(t), p(t− Tc), · · · , p(t− (m− 1)Tc)]sk , (1.2)

where p(t) is the chip waveform and Tc is the chip period, sk is a m× 1 vector and

known as the spreading sequence for user k; m is the spreading factor [9].

• hk is the input symbol of the kth user.

• Ak is the received amplitude of the kth user symbol.

• n(t) is the zero-mean additive white Gaussian noise with power spectral density σ2.

The cross-correlation of the signature waveform is defined as

ρij =

∫ Ts

0

si(t)sj(t)dt , (1.3)

where Ts is the symbol duration. We define the cross-correlation matrix as: R = {ρij};

R is a K ×K symmetric, non-negative definite matrix.
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Asynchronous CDMA Systems

In the case of asynchronous transmission, the received signal is given by [9]

y(t) =
K∑

k=1

N∑
i=0

Akhk[i]sk(t− iTs − τk) + n(t) , (1.4)

where t is the transmission time, τk is the delay in transmission of the kth user, hk[i] is

the ith transmitted symbol of the kth user, (N + 1) is the data block length. We assume

that users send a stream of symbols: hk[0], · · · , hk[N ]. If the channel is known, i.e. the

receiver knows all the delays τk and channel gains Ak, we can consider an asynchronous

CDMA system as a special case of the synchronous CDMA when the number of users is

K(N + 1). The modified spreading sequence is given by

s̃k,i(t) = sk(t− iTs − τk). (1.5)

The modified channel gain is Ãk,i = Ak and the modified data symbols are h̃k,i = hk[i],

where k = 1, · · · , K and i = 0, · · · , N . The modified signal model can be represented as

y(t) =

K(N+1)∑

k=1

Ãkh̃ks̃k(t) + n(t). (1.6)

Therefore, the asynchronous CDMA system can be referred to as a special case of the

synchronous CDMA system model in (1.1) when the number of users increases from K

to K(N + 1) [9].

1.2.2 Channel Models

When the broadband wireless connection is concerned, the symbol rate must be increased

further which to some extend will lead to a frequency selective channel. The recent de-

velopment of the communication technology has built on great interest in multi-antenna

systems as an effective technique to combat fading and reduce the effect of channel inter-

ference. For help understanding these techniques, this section gives a brief introduction

to fading channels.
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Flat Fading

Flat fading is caused when the radio channel coherence bandwidth is greater than the

bandwidth of the transmitted signal and the channel has a constant gain and linear phase

response. Slow frequency-flat fading affects the received amplitude without introducing

signature waveform distortion. Therefore, the mathematical formula for representing the

synchronous CDMA system model (1.1) is also suitable for characterizing the slow fre-

quency flat fading channels. Fast frequency-flat fading affects the received amplitudes and

introduces signature waveform distortion. The modified signature waveform is introduced

as

s̃k(t) = Ak(t)sk(t) , (1.7)

hence the synchronous CDMA model (1.1) is still applicable in fast frequency flat fading

channels:

y(t) =
K∑

k=1

hks̃k(t) + n(t) , t ∈ [0, Ts]. (1.8)

Frequency Selective Fading

The flat fading channel model assumes that the symbols of one signal propagating through

different paths reach the receiver simultaneously. However, in practical systems, different

paths normally have distinct path delays. It is known as the frequency-selective fading

channel. In frequency-selective fast fading channel, the signature waveform of the kth

user undergoes a linear time-variant transformation characterized by an impulse response:

rk(τ, t). The transformed signature waveform in the frequency selective fading channel

s̃k(t) can be represented by

s̃k(t) =

∫ ∞

−∞
rk(τ, t)sk(t− τ)dτ. (1.9)

Then the synchronous CDMA model can still be used as

y(t) =
K∑

k=1

hks̃k(t) + n(t). (1.10)

Equation (1.10) indicates that the frequency selective fading channel model can be trans-

formed into a synchronous CDMA system model.
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1.2.3 Multiuser Detectors

Multiple access interference significantly limits the performance and capacity of trans-

mission systems. Multiuser detection reduces the interference and combats the near-far

problems [10]. The optimal, i.e. Maximum Likelihood (ML) multiuser detector [9] pro-

vides detection performance close to that of the single user detection but the complexity is

exponentially proportional to the number of users. The decorrelating detector eliminates

the MAI but enhances the noise power [10]. Minimum Mean Square Error (MMSE)

detector [9] has better performance than the decorrelating detector but it requires the esti-

mation of amplitudes and the matrix inversion. The Decision-Feedback (DF) detector [9]

is one of the most popular methods because of the simplicity and good performance.

Sphere constrained and box-constrained algorithms allow the solutions to lie within a

closed convex set [11]; this significantly improves the performance. Semi-definite re-

laxation (SDR) [12] relaxes the ML problem into a semi-definite problem, and provides

a BER performance very close to the ML detector. The Probabilistic Data Association

(PDA) detector treats MAI as Gaussian noise with matched mean and covariance, and

offers a detection performance close to the ML detector [13, 14]. The Sphere Decoding

(SD) and branch and bound (BB) detectors achieve optimal performance, however, its

worst-case computational complexity is too high. A comparison of these advanced mul-

tiuser detection techniques in [15], in terms of complexity and detection performance, has

shown that an “efficient frontier” of multiuser detectors is primarily composed of the DF

detector, PDA detector, and BB detector.

Conventional Matched Filter

The conventional detector known as the matched filter detector, correlates the received

signal with the desired user’s spreading waveform as presented in Fig.1.1. The output θk

of the kth matched filter is given by:

θk =

∫ Ts

0

y(t)sk(t)dt , (1.11)

where y(t) is the received signal. Therefore we can write

θk =

∫ Ts

0

{
K∑

j=1

Ajhjsj(t) + n(t)

}
sk(t)dt . (1.12)
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Figure 1.1: Conventional Matched Filter Detector

Applying equation (1.3) to (1.12), we obtain

θk =
K∑

j=1

Ajhjρjk + nk , (1.13)

where

nk =

∫ Ts

0

n(t)sk(t)dt. (1.14)

Thus, we have

θk = Akhk +
K∑

j=1
j 6=k

Ajhjρjk + nk. (1.15)

The second term in (1.15) is the multiple access interference. The matched filter treats the

MAI as additive white Gaussian noise. Nevertheless, the existence of MAI has signifi-

cant impact on the capacity and performance of the conventional matched filter detectors.

When the number of interfering users increases, the effect of MAI is significantly en-

hanced. In addition, users with large amplitudes result in more MAI effects to the users

with low amplitudes. The signals of closer transmitting users have less amplitude atten-

uation than signals of transmitting users which are further away. That is known as the

near-far problem [9] [16]. The conventional matched filter detector requires no knowl-

edge beyond the spreading sequences. However, when the number of users increases, the

matched filter will result in poor detection performance [9].
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Maximum Likelihood Detector

Consider a K-user symbol synchronous CDMA system in AWGN channel. The output of

the matched-filter is given by

θ = RAh + n , (1.16)

where (for BPSK modulation) the vector h ∈ {−1, +1}K contains the information sym-

bols transmitted by K users, R is a positive definite spreading sequence correlation ma-

trix, A is a diagonal matrix whose kth diagonal element, Akk, is the square root of the

received signal energy per bit of the kth user, and n is a real-valued zero-mean Gaussian

random vector with covariance matrix σ2R.

The optimal ML multiuser detector estimates the vector h by minimizing the following

quadratic function [9]

ĥ = arg min
h∈{−1,+1}K

J(h) , (1.17)

where the quadratic function J(h) is represented by

J(h) = ‖θ −Rh‖2 =⇒ hTARAh− 2hTAθ. (1.18)

The computational complexity of the ML detection is O(2K) arithmetic operations. Al-

though the ML detector provides the best detection performance, its complexity is expo-

nential in the number of users and makes it difficult for hardware implementation.

Decorrelating Detector

In the model (1.16), the transmitted data can be recovered as

ĥ = sign(R−1(RAh + n))

= sign(Ah + R−1n). (1.19)

If σ = 0, then ĥ = sign(h). This detector is called decorrelating detector. The advantage

of the decorrelating detector is that it does not require knowledge of the received signal

amplitudes. However, when the matrix R is ill-conditioned, the term of R−1n in (1.19)

results in noise power enhancement and as a result the error probability increases.
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MMSE Detector

The MMSE detector takes into account the background noise and uses the knowledge of

the received signal powers, which leads to a better detection performance compared to the

decorrelating detector for low values of SNR. The MMSE detector minimizes the mean

squared error between the actual symbol and the decision output of the detector [17]. The

inverse of matrix R in the decorrelating detection is now replaced by:

[R + σ2A−2]−1. (1.20)

The MMSE detector has a trade-off between MAI elimination and noise enhancement.

This detector obtains the performance similar to the conventional MF when the noise

variance tends to infinity. When the SNR goes to infinity, the MMSE detector will con-

verge to the decorrelating detector [9,18]. The MMSE detector is resistant to the near-far

problem.

Decision Feedback Detector

The Decision Feedback (DF) detectors have been examined in successive interference

cancellation [19–21], parallel interference cancellation [22–24] and multistage or iterative

DF detectors [23], [24]. The DF detector with successive interference cancellation (S-

DF) is optimal, in the sense that it achieves the sum capacity of the the synchronous

AWGN channel [20]. The S-DF scheme is capable of alleviating the effects of error

propagation despite it generally leads to non uniform performance over the users. In

particular, the user ordering plays an important role in the performance of S-DF detectors.

Studies on decorrelator DF detectors with optimal user ordering have been reported in [21]

for imperfect feedback and in [25] for perfect feedback. The problem with the optimal

ordering algorithms in [21], [25] is that they represent a very high computational burden

for practical receiver design. On the contrary, the DF receiver with parallel interference

cancellation (P-DF) [22–24] satisfies the uplink requirements, i.e. , cancellation of intra-

cell interference and suppression of the remaining other-cell interference, and provides,

in general, uniform performance over the user population even though it is more sensitive

to error propagation. The multistage or iterative DF schemes presented in [23, 24] are

based on the combination of S-DF and P-DF schemes in multiple stages in order to refine

the symbol estimates, resulting in improved performance over conventional S-DF, P-DF

and mitigation of error propagation [26].
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Semi-definite Relaxation Detector

Relaxation is an effective approximation technique for certain difficult optimization prob-

lems. Relaxing some constraints will simplify the problem solving. The semi-definite

relaxation algorithm reduces computational complexity without losing performance. For

solving the Boolean QP problem [27–29]

arg min
x

xTBx (1.21)

where B is any symmetric matrix. Since xTBx = Trace(xxTB), problem (1.21) can be

restated as
arg min

X
Trace(BX)

s.t. diag(X) = e

X = xxT .

(1.22)

where e is the vector all ones and where

B =

[
RTR −RT θ

−θTR θT θ,

]
, x =

[
h

1

]
. (1.23)

The constraint X = xxT implies that X is symmetric, positive semi-definite and of rank-

1. Because of the constraint X = xxT , problem (1.22) is a non-convex optimization

problem. When the rank-1 constraint is removed from (1.22), we can get the following

problem
arg min

X
Trace(BX)

s.t. X º 0

Xjj = 1, j = 1, · · · , K.

(1.24)

where X º 0 means that X is symmetric and positive semi-definite. Problem (1.24) is

the relaxation of problem (1.22) because the feasible set in (1.22) is a subset of that in

(1.24). The problem in (1.24) is considered as the semidefinite relaxation of (1.22). The

problem of (1.24) can be solved in the order of O(K3.5) operations. The semi-definite

relaxation detector provides a BER performance close to that of the ML detector, even

when the cross-correlations between users are strong or the near-far effect is significant.

However, the semi-definite relaxation detector is very complex for large systems [15,28].
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Constrained Multiuser Detectors

The ML detector for BPSK modulation finds a solution constrained to h ∈ {−1, +1}K ,

where {−1, +1}K denotes the set of all binary symbols and each symbol is either +1 or

−1. However the ML detector has been proved to be too complex for practical use [10].

A simple limitation by constraining the symbol estimate vector to be within a closed

convex set often reduces the complexity. Constraining the symbol estimate to lie within

a hypercube leads to a box-constrained quadratic problem (e.g. K = 2) and is shown in

Fig.1.2a [30]. When applying the box-constraint to solve the ML problem in a CDMA

1
h

2
h

+1

-1

+1-1

(a)

1
h

2
h

2

2-

22-
2

+1

+1

-1

-1

(b)

Figure 1.2: (a) Projection onto a box region; (b) Projection onto a sphere region

system with BPSK, the problem is reformulated as

ĥ = arg min
h∈[−1,+1]K

J(h). (1.25)

We define an orthogonal projection operation PB on a hypercube closed convex set B
(B = [−1, +1]), which is represented as

PB(ĥ) = arg min
h∈B

‖h− ĥ‖ , (1.26)

where PB(hk) is represented as




hk if −1 < hk < 1

−1 if hk ≤ −1

+1 if hk ≥ +1.

(1.27)
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The sphere-constraint ML problem [31] is described in Fig.1.2b:

ĥ = arg min
h∈S

J(h) , (1.28)

where S = {h ∈ RK : ‖h‖2 ≤ K}. We assume PS(hk) is the kth element of the

orthogonal projection onto a sphere, which is represented as




αhk if ‖h‖2 > K

hk if ‖h‖2 ≤ K ,
(1.29)

where α =
√

K/‖h‖, and 0 < α ≤ 1. A multiuser detector with sphere constraint pro-

vides a detection performance similar to the MMSE detector [32]. Furthermore, Fig.1.2b

also shows that the sphere region contains the box-region [−1, +1], which means the de-

tector with the box constrained having a more restricted condition, thus resulting in a

better performance than the sphere constrained detector [15, 32, 33].

Probabilistic Data Association Detector

When multiplying A−1R−1 both sides of the matched filter output vector θ in (1.16), the

result can be represented as [14]

θ̄ = h + n̄ = hiei +
∑

j 6=i

hjej + n̄ , (1.30)

where θ̄ = A−1R−1θ, n̄ = A−1R−1n and ei is a column vector with a one in the kth

position and zeros elsewhere. The equation (1.30) is in fact a normalized version of the

decorrelator output before the hard decision. The decision on user i can be considered as

binary variables +1 or−1, with the currently estimated probabilities Ph(i) and 1−Ph(i),

respectively. i.e. Ph(i) is the current estimate of the probability that hi = 1 and 1− Ph(i)

is the corresponding estimate for hi = −1. For an arbitrary user signal hi, we treat the

other user signals hj(j 6= i) as binary random variables and treat
∑

j 6=i hjej + n̄ as the

effective noise. Based on the decorrelated model, the basic multistage PDA algorithm is

described as follows [14].

1. Sort users according to the user ordering principle for the decision feedback detector

in [21].

2. For all users, initializing Ph(i) = 0.5 and stage counter k = 1.
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3. Initialize the user counter i = 1.

4. According to the current Ph(j)(j 6= i) for user i, update Ph(i) by

Ph(i) = P{hi = 1|θ̄, {Ph(j)}j 6=i} (1.31)

5. If i < K, let i = i + 1 and go to step 4.

6. If ∀i, Ph(i) has converged, go to step 7. Otherwise, let k = k + 1 and return to step

3.

7. ∀i, make a decision on user signal i, i.e. hi via




1 Ph(i) ≥ 0.5

−1 Ph(i) < 0.5.
(1.32)

Since the computational cost of obtaining (1.31) is exponential in the number of users.

We define

n̆i =
∑

j 6=i

hjej + n̄ . (1.33)

We denote the mean and covariance matrix of n̆i as

E(n̆i) =
∑

j 6=i

ej(2Ph(j)− 1)

Cov(n̆i) =
∑

j 6=i

[4Ph(j)(1− Ph(j))eje
T
j ] + σ2R−1 . (1.34)

Correspondingly we define Φi = E(n̆i) and Ψi = Cov(n̆i). The updated probability

Ph(i) is given by
Ph(i)

1− Ph(i)
= exp{−2ΦT

i Ψ−1
i ei} (1.35)

The algorithm continues till all the probabilities {Phi
} have converged. The detection

performance approaches the single user performance over high SNRs. More details are

shown in [14]. The overall complexity of the PDA detector is O(K3) [34, 35].

Dichotomous Coordinate Descent Algorithm

In many communications systems, the detection is based on the solution of a system

Rh = θ, where R is a K ×K symmetric positive definite matrix and both h and θ are

K × 1 vectors. The matrix R and vector θ are known, solution h is unknown. The DCD
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Table 1.1: Dichotomous Coordinate Descent Algorithm

Initialization: h = h̄ , r = θ −Rh̄, d = H , p = 0.

for m = 1 : Mb

1. d = d/2

2. Flag = 0 · · · pass

3. for j = 1 : K · · · iteration

4. if |r(j)| > (d/2)R(j, j) then

5. h(j) = h(j) + sign(r(j))d

6. r = r− sign(r(j)) · d ·R(:, j)

7. Flag = 1, p = p + 1

8. if p > Nu end algorithm

9. end j-loop

10. if Flag=1, go to 2

end m-loop

algorithm [8] is designed to offer a simple solution for the vector h, without explicit mul-

tiplications and divisions. The accuracy of the solution vector h depends on the number

of bits (Mb), which is the number of the bits used for the representation of elements of the

vector h within an amplitude range [−H, H]. The first set of iterations in the algorithm

determines the most significant bit (m = 1) for all elements of h using a step size param-

eter d. The subsequent sets of iterations determine the less significant bits up to a suitable

number of bits (maximally Mb). The initial residual vector is given by r = θ−Rh̄, where

h̄ is the initialization of h. Table 1.1 describes the DCD algorithm. We denote h(j) and

r(j) the elements of the vectors h and r respectively. In case the vector h̄ is set to zero,

r is equal to θ. The step-size is set to H and successful iteration counter p is set to 0.

The step-size d is reduced by power of two at step 1, and so, no explicit multiplication or

division is carried out as all the multiplications and divisions can be replaced by simple

bit shifts. If an element of the solution vector is updated at an iteration, such an iteration

is labeled “successful”. For every step size update, the algorithm repeats successful it-

erations until all elements of the residual vector r become so small that the condition at

step 4 is not met for all j. The computational load of the algorithm mainly depends on

these successful update iterations p and the number of bits Mb. A limit for the number of

successful iterations Nu can be predefined and used as a stopping condition. If there is

no such limit, or the limit is high enough, the accuracy of the solution is 2−Mb+1. In our

work, wherever the DCD algorithm is used, we denote it as DCD(h̄,R, θ, Nu,Mb). The

complexity of the DCD algorithm for a particular system of equations depends on many
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factors. However, for given Nu and Mb, the worst-case scenario complexity is presented

as K(2Nu + Mb) shift-accumulation (SAC) operations [36].

Lattice Detection: Branch and Bound Detector

The universal lattice decoding problem dates back to at least the early 1990s [6]. The

principle of universal lattice decoding can trace its roots back to the theory and algorithms

developed for solving the shortest/closest lattice vector problem for integer programming

problems. The closest (lattice) vector problem (CVP) (also called the nearest lattice point

problem) is a class of nearest neighbor searches or closest-point queries, in which the

solution set to be searched consists of all the points in a lattice. Very efficient algorithms

for solving the CVP [37] have been derived for the root lattices, which are generated by

the root system of certain Lie algebras. These algorithms are important for implementing

low-complexity lattice quantizers and coding schemes for Gaussian channels. From a

lattice point of view, ML decoding corresponds to solving the closest vector problem in

a lattice. However, the optimal multiuser detection is NP-hard (i.e. there is hardly to

be a polynomial time algorithm), however, there exist some sub-optimal algorithms that

can be solvable with polynomial complexity. Branch and bound (BB) is a divide and

conquer structure for the hard combinatorial optimization problem [38]. The main idea

is to separate the solution set of a discrete optimisation problem into successive smaller

subsets (branch), bound the cost function value over each subset and use the bounds to

remove some subsets. The process stops when the entire solution set has been totally

searched. The best solution of the BB algorithm is a global optimum since it effectively

searches the whole solution space. This method is most efficient when it is possible to

remove many subsets as early as possible during the branching procedure without really

calculating them. Luo et al. [39] proposed a detector based on depth-first BB [40] and

showed that the sphere decoder is a type of depth-first BB [41]. The BB can be seen as

a tree search algorithm where each subset is indicated by a node in a tree, and the root

of the tree indicates the whole solution space. Each node is related with a cost that is a

lower bound to the global optimum. Accordingly, if a node cost exceeds the current best

solution, the node can be pruned, i.e. the children of the node can be removed without a

loss. The algorithm maintains a list (queue) of nodes to be processed. When a node is

remained, its children branches are made and their costs are evaluated. Those children

nodes whose cost is less than the current best solution are added to the list. Unfortunately,

this algorithm may have to save the whole tree in a worst-case scenario. Its memory
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requirements are exponential in terms of the number of levels in the search tree [42].

As a summary, Table 1.2 compares some multiuser detection algorithms. The benefits,

complexity and shortcomings of these detectors are emphasized in this table. The opti-

mal maximum likelihood detector unfortunately has an exponential complexity O(2K).

The traditional matched filter detector comes straight from single user design with a low

complexity O(K). However since it does not take into account any other users in the

system, it cannot provide good performance. The decorrelating detector essentially ap-

plies the inverse of the correlation matrix of user spreading sequences to the output of the

conventional detector. The complexity of decorrelating detector is O(K3). This detector

does not require the power of the each user estimation or controlling, however the noise is

enhanced by R−1n. The MMSE detector minimizes the squared error in the presence of

channel noise and has a better performance than the decorrelator in the low SNRs. How-

ever it requires matrix inversion which is complicated in FPGA implementation. The

decision feedback detector is one of the most popular methods in multiuser detection, be-

cause of its simplicity and outstanding performance in comparison with the linear detec-

tors. However, its performance mainly depends on the detection order. The zero-forcing

DF detector requires the Cholesky decomposition and matrix inversion which are hard for

implementation. The semidefinite relaxation detector is a complexity-constrained alter-

native for the exact ML detector, but the complexity is still very high in large systems.

The box-constrained detector is corresponding to nonlinear successive and parallel inter-

ference cancelation structures. The sphere-constrained maximum likelihood detector is

verified to have a close relationship to the MMSE detector. The PDA detector approaches

the single user detector performance, but it requires matrix inversion to obtain the covari-

ance of the noise. The DCD detector is multiplication and division free which is efficient

for hardware implementation, however its performance is not as good as that of the PDA

detector. The branch and bound detector has low average complexity at high SNRs, how-

ever its worst-case computational complexity is identical to that of the optimal multiuser

detector, i.e. it grows exponentially as increasing K.

1.2.4 MIMO Detection

MIMO communication exploits multi-paths, and turns multipath propagation (tradition-

ally a drawback) into an advantage. There are many advanced techniques for the trade-off

between the Diversity and Spatial Multiplexing in MIMO systems [43,44]. Adding redun-
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Table 1.2: Comparison of multiuser detection algorithms

Name Complexity Benefits Shortcomings
Maximum Likeli-

hood

O(2K) Optimal detection

performance.

Exponential computational

complexity.

Matched filter O(K) Simplicity Poor performance.

Decorrelating

detector

O(K3) No requirement for the

knowledge of power of

the interference

Requires matrix inversion.

MMSE O(K3) Better performance than

that of decorrelating

detector at low SNRs.

Requires matrix inversion,

estimation of user’s amplitude

and noise variance.

Decorrelating

Decision Feedback

Detector

O(K2) (no

Cholesky de-

composition)

Better performance than

that of the linear

detectors.

Performance strongly relies

on the detection order.

Requires the Cholesky

decomposition and the matrix

inversion.

Semidefinite

Relaxation

O(K3.5) Close to ML detector

performance.

Complexity is too high for

large systems.

Sphere constrained

detector

O(K3) Close to the MMSE

detector

Not optimal performance.

Box-constrained

detector

O(K3) Similar to the soft

interference cancellation;

Better performance than

that of the

sphere-constrained

detector

Not optimal performance

Probabilistic Data

Association

O(K3) Close to the single user

performance.

Requires matrix inversion.

Branch and Bound the worst case

complexity is

exponentially

in K

Low average complexity Worst-case complexity is too

high at low SNRs.

Dichotomous coor-

dinate descent

K(2Nu +

Mb)

Multiplication and

division free; Efficient for

FPGA implementation

Not optimal performance.
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dancy to the transmitted binary data, and so, the diversity and the transmission quality are

increased. The spatial multiplexing divides the input data stream into several sub-streams

that are transmitted over different antennas. This architecture can increase the system

capacity. In this work, we consider the MIMO communications with spatial multiplexing.

Fig.1.3 shows a MIMO system with MT transmit and MR receive antennas. The received

signal vector is given by

y = Gh + n , (1.36)

where

G =




g11 g21 · · · gMR1

g12 g22 · · · gMR2

...
...

...
...

g1MT
g2MT

· · · gMRMT




(1.37)

is MR×MT channel matrix composed of independent identically distributed (i.i.d.) com-

plex Gaussian random elements with zero mean and unit variance, h is an MT × 1 trans-

mitted complex vector whose entries have real and imaginary parts that are integers, n is

the MR × 1 i.i.d. complex AWGN vector with zero-mean and covariance matrix σ2I.

Assuming G is known at the receiver, the ML detection is given by [45]

ĥ = arg min
h∈AMT

‖y −Gh‖2

= arg min
h∈AMT

(
hHRh− 2<{θHh}) . (1.38)

We denote

J(h) = hHRh− 2<{θHh} (1.39)

as the quadratic cost function, R = GHG and θ = GHy. Since the computational

complexity of the ML decoder is O(AMT ) arithmetic operations (alphabet A is the order

of digital modulation), it becomes too complex for high A and MT .

The MIMO system detection for spatial multiplexing is analogous to the multiuser detec-

tion as long as we assume that MT is equivalent to the number of users K in the multiuser

detection, MR is equivalent to the spreading factor. The matrix GHG is considered to be

equivalent to the spreading waveform correlation matrix R in multiuser detection.
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Figure 1.3: MIMO Wireless System

In addition, the complex matrix equation (1.36) can be written in the real matrix repre-

sentation
[
<(y)

=(y)

]
=

[
<(G) −=(G)

=(G) <(G)

][
<(h)

=(h)

]
+

[
<(n)

=(n)

]
. (1.40)

Solving (1.39) is impractical and exhaustive for high transmission rate, and the complexity

grows exponentially [46, 47].

Instead of solving (1.39), the QU decomposition of G, i.e. G = QU, is used to alleviate

computations [48], Q is unitary, and U is an upper triangular matrix. Left-multiplying

(1.36) using QH , we can get the modified model as

ŷ = Uh + QHn , with ŷ = QHy . (1.41)

Therefore the maximum likelihood detection can be substituted with

ĥ = arg min
h∈AMT

d(h) = arg min
h∈AMT

‖ŷ −Uh‖ . (1.42)

We set a partial candidate symbol vector h(i) = [hi hi+1 · · · hMT
] , i = 1, 2, · · · ,MT , and

the h(i) can be arranged in a tree that has its root on level i = MT + 1 and leaves which

correspond to the set of all possible candidate vector symbols at level i = 1.

The vector norm in (1.42) can be calculated recursively as d(h) = d1 with the partial

Euclidean distances (PEDs)

di = di+1 + |ei|2 (1.43)

where dMT +1 = 0, start from MT , and the distance increments

|ei|2 = |ŷi −
i+1∑

j=MT

Uijhj − Uiihi|2 (1.44)
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The computation of d(h) can be interpreted as a traversal of the tree from the root to the

leaf corresponding to h.When proceeding from a node on level i+1 to one of its children

on level i, the detector increments the PED by the nonnegative quantity |ei|2.

The ML solution (1.42), can now be found by an exhaustive tree traversal that searches

for the leaf associated with the smallest d(h). Efficient tree-search algorithms reduce the

search space by pruning the tree below certain nodes, such that the path leading to the

ML solution is preferably not discarded. Pruning criteria are typically based on the PED

and resource constraints. There are two algorithms i.e. sphere decoding (SD) and K-best,

which both have their origins in [49, 50]. With the effect of the searching radius, the

SD algorithm has variable throughput and complexity, which is difficult in real-time sys-

tems. The K-best detection demonstrates fixed-complexity and fixed-throughput, while

the choice of the design parameter K effects a balance between the throughput and BER

performance. Computational complexity grows with increasing K, but the BER perfor-

mance also improves [48].

MIMO OFDM Systems

In broadband wireless systems, the issue of the frequency-selective fading channels be-

comes an important subject. However, the equalizer is much more complex in MIMO

channels because the channel must be equalized over both space and time [51]. The or-

thogonal frequency-division multiplexing (OFDM) is an attractive approach to reduce the

complexity of equalization and decoding [52, 53]. The OFDM divides spectrum into a

number of equally spaced sub-carriers and allocates a portion of system information on

each subcarrier. The OFDM can be viewed as a form of frequency division multiplex-

ing (FDM) [54]. It allows that the data over narrow-band carriers transmitted in parallel.

High bandwidth is achieved by using these parallel sub-channels that are spaced apart at

precise frequencies while being as close as possible without overlapping or interfering.

Table 1.3: Comparison of implementations for 4× 4 16QAM MIMO detection

Techniques BER
Hardware Clock Throughput at FPGA no. slices or
platform frequency SNR = 20 dB(Mbps) gate ASIC

K-best 1 [1, 55] close ML ASIC 100MHz 10 52000

K-best 2 [1, 56] close ML ASIC 100MHz 52 91000

Depth-first SD 1 (`2-norm) [1, 57] ML ASIC 51MHz 73 117000

Depth-first SD 2 (`1-norm) [1, 57] close ML ASIC 71MHz 169 50000

Depth-first SD 3 [1] ML FPGA 50MHz 114.5 21467
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1.2.5 Hardware Implementation of MIMO and Multiuser Detectors

Starting from the early work by Foschini, Gans, Teletar, and Paulraj [58–61], many papers

have been published in the area of MIMO-based information theory, algorithms, codes,

and so on. Much work have been focused on the algorithms and protocols that deliver

superior BER for a given SNR. Little attention is given to the real-time implementation

of these algorithms. The hardware complexity of the algorithms needs to be concerned

so that the MIMO detector can be integrated with the rest of the system. So far the

MIMO algorithms are generally implemented in digital signal processors (DSPs), and it

is difficult to achieve high data-rate performance. Field-programming gate-array (FPGA)

devices are widely used in signal processing, communications, and network applications

because of their reconfigurability and support of parallelism.

The FPGA platform has at least three advantages over a DSP processor: the inherent

parallelism of the FPGA is equipped for vector processing; it has reduced instruction

overhead; the processing capacity is scalable when the FPGA resource is sufficient [62].

The disadvantage is that the development cycle of the FPGA design is usually longer

than the DSP implementation. But once an efficient architecture is developed and the

parallel implementation is explored, the FPGA design is able to significantly improve the

processing speed because of its intrinsic density advantage [63].

In addition, the FPGA platform has several advantages over an application-specific inte-

grated circuit (ASIC) implementation: an FPGA device is reconfigurable to accommo-

date system configuration changes even in run-time; it has significantly reduced latency

comparing to ASIC; it is a cost-effective solution. Furthermore, ASIC implementation is

generally applied for a fixed number of antennas and a certain signal constellation. The

limitation of an ASIC implementation is lack of flexibility when the number of antennas

or the signal constellation changes [62].

The MIMO detectors are generally implemented on DSPs, such as the Bell Labs layered

space-time (BLAST) system [64, 65]. Because it does not support parallel computation,

the speed of DSP implementation is often limited, especially as the number of antennas

increases. Recently many ASIC and FPGA implementations of the SD or close-to-ML

detectors were reported in [55–57, 66]. The VLSI design of depth-first detectors using

sphere decoding algorithms [67, 68] and breadth-first detectors using the M -algorithm

[69] have both attracted many recent attention [55,56,70]. For a 4×4 MIMO transmission
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with 16-QAM, hard-output depth-first detectors [57] achieve much higher throughput than

their breadth-first counterparts [55,56]. In general, the average computational complexity

of depth-first hard-output detection is lower than its breadth-first counterpart due to its

ability to adaptively tighten the search radius constraint. For soft-output detection, it is

not trivial to adaptively change the search radius for both depth-first search and breadth-

first search, while the breadth-first search has the advantage that it can naturally generate

an ordered candidates list for a posteriori probability (APP) calculation [71].

Table 1.3 gives an overview and comparison of the relevant hardware implementations of

4× 4 16-QAM MIMO detection algorithms [70], and most hardware implementations of

the MIMO communications so far deal with the small size systems. The depth-first SD1

and SD2 are based on the ASICs implementation. The SD2 implementation has twice

the throughput of the SD1 at half chip area. Depth-first tree transversal is implemented

in a sequential and non-pipelined, while the K-best algorithm is based on a parallel and

pipelined hardware structure with reduced chip area. Besides, the K-best approach is

guaranteed constant throughput but with the expense of the performance lose. The average

throughput of the depth-first approach could match that of the K-best approach, but the

throughput of worst-case of it may drop severely. The FPGA SD3 [57] has a similar

performance to the SD1, however its complexity is significantly reduced. It also needs

to mention that these real-time implementations of SD in Table 1.3 do not include the

channel matrix preprocessing such as QR decomposing, or Cholesky factorization, which

consume much more hardware resources.

The multiuser detector implementation is more difficult because they mainly perform for

large size systems. Here are some references available e.g. the FPGA implementation of

an adaptive MMSE algorithm is presented in [72], the FPGA multiuser detector based on

a cascade of adaptive filters for asynchronous WCDMA systems is presented in [73].

1.2.6 Summary

From above preliminaries for this work, we believe that the synchronous CDMA system

model could be considered as a general model for more complex scenarios e.g. frequency

selective fading, fast and slow fading channels. In addition, we also showed that solving

the MIMO communications is mathematically similar to that of the multiuser detection,

and so, the multiuser detection model can also be converted to a MIMO communication
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system.

In addition, we know that the traditional matched filter provides poor detection perfor-

mance. The decorrelating and MMSE detectors improve the detection performance.

However, they require matrix inversion which is complicated for real-time implemen-

tation i.e. hardware implementation. Advanced algorithms e.g. semi-definite relaxation,

constrained, PDA and BB detectors can provide near or exact ML detection performance,

however, the complexity issue is still a challenge for the real-time implementation. The

current existing hardware implementation designs only deal with small size systems.

Therefore, providing efficient algorithms, which have high throughput while occupying

the low cost of the resources, has become our motivation for this work.

1.3 Outline of the Thesis

Rest of the thesis is organized as follows.

Chapter 2 presents a box-constrained DCD algorithm. An efficient FPGA implemen-

tation of the box-constrained DCD algorithm based multiuser detector is proposed.

Numerical results show that the box-constrained DCD detector can be implemented for

large size system with small FPGA slices account, and guarantees outstanding detection

performance.

Chapter 3 presents an FPGA design of a box-constrained DCD MIMO detector.

This design requires significantly lower area usage than known designs of the MMSE

MIMO detector. In addition, this detector can achieve significantly better detection

performance than the MMSE detector, especially for large MIMO systems.

Chapter 4 presents the DCD-BTN multiuser detector. The fixed-point DCD-BTN

detector has a very close detection performance to the floating-point implementation,

even for a large system size. Compared with the box-constrained DCD multiuser detector,

the DCD-BTN multiuser detector significantly improves the detection performance only

with small increase in the number of slices.

Chapter 5 presents the DCD-BTN-M detector for M-PSK symbols detection. This

detector is based on the DCD-BTN algorithm with some modifications. The numerical
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results show that the DCD-BTN-M detector offers the detection performance close to the

single user bound.

Chapter 6 proposes a multiple phase decoder for M-PSK symbols. The proposed

detector provides a solution to the quadratic optimization problem with the constraint

that forces elements of the solution to have unit magnitudes. In highly loaded multiuser

detection scenarios, the proposed detector has a better performance and a lower com-

plexity than the semi-definite relaxation detector. In the MIMO communication, the

proposed detector offers a very similar performance to the sphere decoder with QPSK

modulation. The complexity of the proposed detector grows linearly in the system

size, the complexity of the sphere decoder is predicted as exponential at the low SNRs.

Therefore the proposed detector can be considered as a promising alternative to the

sphere decoder for ML decoding in MIMO detection.

Chapter 7 presents a combined DCD-BB detector based on the box-constrained

DCD algorithm and the BB algorithm. The BB detector provides the optimal detection

performance. However, the worst-case computational complexity of the BB detector is

prohibitive, which makes the BB algorithm difficult for real-time applications. While the

box-constrained DCD algorithm has a low computational complexity at any SNR because

of its property of free multiplication/division operations, its detection performance is

inferior to the BB detector. A combination of the BB detector and the box-constrained

DCD detector can be used in a highly loaded scenario, the complexity of the DCD-BB

detector is reduced significantly with only a small loss in detection performance with

respect to the ML detector.

Chapter 8 proposes an approach based on the DCD algorithm to simplify the in-

version operations. The idea of the approach is that the DCD algorithm obtains separately

the individual columns of the inverse of the matrix. Due to the low complexity of

hardware implementation of the individual DCD algorithm, a block of DCD processors

can be used to obtain the columns of the inverse of the channel correlation matrix in

parallel.

Chapter 9 concludes the thesis.

In this thesis, the results obtained from FPGA platform are fixed-point; others obtained

from MATLAB are floating-point. When the two kind of results are shown in the simulation
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figures simultaneously, we will use the name of fixed-point and floating-point to differ

them. For other performance figures, the results are all from MATLAB unless we specify

they are from FPGA platform.

1.4 Notations

Throughout this thesis, matrices and vectors are denoted by uppercase letters and low-

ercase letters unless otherwise noted. Vectors and matrices are in bold font. AM×N is

M -row N -column matrix. AT is the transpose of A. AH is the Hermitian transpose

of A. An element of the matrix is denoted as Ap,n. I is an identity matrix. In general,

notations are introduced at first occurrence.

1.5 Contributions

The goal of our work is to improve the performance of the detection methods of multiuser

and MIMO communication, to develop efficient detection algorithms which give high per-

formance with a relatively low computational complexity, which is applicable for FPGA

implementation. Throughout the thesis, we have made the following major contributions.

1. Designed the FPGA architectures of the box-constrained DCD algorithm, which

can be applied to the detection in the multiuser and MIMO communications. These

designs enable a good trade-off between FPGA resources and the transmission

throughput. The error rate performance of the FPGA fixed-point implementation

of the box-constrained DCD based detector is close to the floating-point solution.

2. Developed the FPGA architecture for the optimal DCD-BTN algorithm. The FPGA

DCD-BTN detector shows a good BER performance close to its floating implemen-

tation solution and to the optimal ML performance.

3. A multiple phase decoder (MPD) which is based on the phase descent search al-

gorithm for M-PSK modulation is proposed. When the MPD is applied to mul-

tiuser detection, it provides an error probablity performance close to the single-user
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boundary. In the MIMO communication, the MPD offers a performance which is

similar to that of the sphere decoder in QPSK modulation.

4. Designed a matrix inversion approach based on the DCD algorithm. This approach

obtains separately the individual columns of the inverse of the matrix and costs a

very small number of slices, which is suitable for a large size matrix inversion.

5. Proposed a detector based on combining the box-constrained DCD algorithm and

the sphere decoder (branch and bound algorithm). The efficient combined detector

provides a better detection performance than the DCD box constrained detector,

and also has a lower worst-case complexity than the sphere decoder, especially in

low value of SNRs.
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2.1 Introduction

In CDMA systems, multiuser detection is capable of providing a high detection perfor-

mance [9]. The use of multiuser detection significantly increases the spectral efficiency

of wireless communication systems. This technology has now been developed into an

important field in multi-access communications. The conventional detector (matched fil-

ter), performs poorly in situations where the energies of the multi-user signals are differ-

ent or there are many users. The exponential computational complexity of the optimal

maximum-likelihood (ML) detector makes it infeasible in the real-time operations. The
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sphere decoding algorithm has been proved to simplify the ML multiuser detection [1].

However, the matrix factorizations, such as Cholesky decomposition or QR decomposi-

tion, are difficult for hardware implementation [62, 74]. Therefore, the sphere decoding

algorithm is suitable only for small size systems.

The box-constrained dichotomous coordinate descent (DCD) algorithm allows achiev-

ing a multiplication and division free solution of the normal equations, which makes it

more suitable for real-time implementation. In this chapter, the box-constrained DCD

algorithm [75] will be studied. The box-constrained DCD-based multiuser detector is

proposed for solving large size systems. The performance of the box-constrained DCD

based multiuser detector applied in systems with a large number of users will be pre-

sented. The box-constrained DCD algorithm is implemented on an FPGA board. Two

FPGA architecture designs will be described in this chapter. The serial implementation

of the box-constrained DCD algorithm has much less complexity than that of the FPGA

implementation of the sphere decoders because the algorithm is free of explicit multi-

plications and divisions and only requires addition and bit-shift operations. The parallel

architecture design can improve the data throughput compared to the serial-based design.

Therefore, a parallel FPGA design of the box-constrained DCD detector is also proposed.

The rest of this chapter is organized as follows. Section 2.2 presents the multiuser detec-

tion system model. Section 2.3 describes the box-constrained DCD algorithm. Section 2.4

shows the FPGA serial architecture of the box-constrained DCD algorithm, and the cor-

responding numerical results. Section 2.5 presents the FPGA parallel architecture design

for the box-constrained DCD algorithm. Section 2.6 concludes this chapter.

2.2 Formulation of Multiuser Detection Problem

We consider a K-user synchronous CDMA system using BPSK modulation in an AWGN

channel. The matched filter output in the receiver is given by:

θ = Rh + n , (2.1)

where the vector h ∈ {−1, +1}K contains the bits transmitted by K users, R is a real-

valued K × K matrix, h and θ are real-valued K × 1 vectors and n is a real-valued

zero-mean Gaussian random vector with the covariance matrix σ2R. The optimal ML

multiuser detector estimates the vector h by minimizing the following quadratic function
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with integer constraint:

ĥ = arg min
h∈{−1,+1}K

{
1

2
hTRh− θTh

}
. (2.2)

Although the ML detector provides the best detection performance, it is not practical

due to its high complexity. The sphere decoder can provide a performance identical to

that of the ML detector with significantly reduced average complexity. However, at low

SNRs, the worst-case complexity of the sphere decoder is exponentially proportional to

the number of users, which prevents the use of the sphere decoder in systems with a large

number of users [76].

2.3 Box-constrained DCD Algorithm

Table 2.1: Box-constrained DCD algorithm

Initialization: h = h̄ , r = θ −Rh̄, H = 1, p = 0.

for m = 1 : Mb

1. d = 2−m+1

2. Flag = 0 · · · pass

3. for j = 1 : K · · · iteration

4. if |r(j)| > (d/2)R(j, j) then

5. x = h(j) + sign(r(j))d

6. if |x| ≤ H then

7. h(j) = x

8. r = r− sign(r(j)) · d ·R(:, j)

9. Flag = 1, p = p + 1

10. if p > Nu end algorithm

11. end j-loop

12. if Flag=1, go to 2

end m-loop

The box-constrained DCD-based multiuser detector [75] uses the box-constraint h ∈
[−1, +1]K in the quadratic minimization (2.2). Table 2.1 presents the box-constrained

DCD algorithm. The box-constrained DCD algorithm is designed to offer a simple solu-

tion for the vector h, without explicit multiplications and divisions. The final accuracy of

the solution vector h depends on the number of bits (Mb), the number of iterations, and the
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conditional number of the system matrix, ect. The first set of iterations in the algorithm

determines the most significant bit (m = 1) for all elements of h using a step size param-

eter d. The subsequent sets of iterations determine the less significant bits up to a suitable

number of bits (maximally Mb). The residual vector is given by r = θ −Rh̄, where h̄ is

the initialization of h. In this chapter, h̄ is set to zero, and r is equal to θ. The step-size d

is reduced by power of two at step 1, and so, no explicit multiplication or division is car-

ried out as all the multiplications and divisions can be replaced by simple bit shifts. If an

element of the solution vector is updated at an iteration, such an iteration is labeled “suc-

cessful”. For every step size update, the algorithm repeats successful iterations until all

elements of the residual vector r become so small that the condition at step 4 is not met for

all j or h overflows the range [−H, +H] at step 6, where H = 1 for BPSK modulation.

The computational load of the algorithm mainly depends on these successful iterations

Nu and the number of bits Mb. A limit for the number of successful iterations Nu can be

predefined and used as a stopping condition (at step 10). If there is no such limit, or the

limit is high enough, the accuracy of the solution is 2−Mb+1. In our work, wherever the

box-constrained DCD algorithm is used, we denote it as DCD-B(h̄,R, θ, H, Nu,Mb).

A successful iteration requires one addition for comparison (at step 4), and (K + 1) ad-

ditions for updating the residual vector r and the element h(j). For an unsuccessful

iteration, only one addition is used for the comparison. The worst-case complexity corre-

sponds to an unlikely situation, which occurs when only the last mth bit has Nu successful

iterations. This means that the calculation of the first (Mb − 1) bits do not contain any

successful iteration, and so, require (Mb− 1)K additions. The worst-case complexity for

calculating the last bit (corresponds to m = Mb) occurs when only one successful itera-

tion happens among the K iterations (j = 1, · · · , K). This requires K additions for the

comparison and (K + 1) additions to update the residual vector r (at step 8) and element

h(j) (at step 5). In total, Nu successful iterations require Nu(2K + 1) additions.

Therefore, the complexity of the box-constrained DCD algorithm is upper bounded by

K(2Nu +Mb− 1)+Nu additions. However in a typical situation, there should be several

successful iterations in each pass, and the average complexity will be close to 2KNu.
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Figure 2.1: DCD Processor Block Diagram

2.4 Fixed-point Serial Implementation of the Box-

constrained DCD Algorithm

The fixed-point box-constrained DCD algorithm is implemented directly in VHDL on an

FPGA platform. The development board is Xilinx Virtex-II Pro Development System [77]

with an FPGA chip XC2VP30 (FFT896 package, speed grade 7). The fixed-point DCD

algorithm is synthesized and downloaded to this FPGA chip through the Xilinx ISE 8.1i

running at the clock frequency 100MHz. The design uses 16-bit Q15 number format to

represent elements of the matrix R. To avoid overflow errors, 32-bit fixed-point integers

are used for representation of elements in vectors θ and h. These elements are limited to

the range [−216, 216). We treat the vector stored in θ RAM as the residual vector r.

Table 2.2 describes the real-valued serial implementation of the fixed-point box-

constrained DCD algorithm. There are six states of the fixed-point box-constrained DCD

algorithm as shown in Table 2.2. Fig 2.1 shows the block-diagram of the DCD processor.

The transition among these states in the fixed-point box-constrained DCD algorithm is

presented in Fig.2.2. The vectors h and r are stored in RAM h and RAM θ, respectively.

Vectors h, r, bit counter m, successful iteration counter p, pre-scaling counter ∆m, ele-

ment index j and Flag are initialized in state 0. In state 1, if m 6= 0, the algorithm chooses

the step-size d to be equal to d = 2m, decrements the bit counter m by one and increments
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Table 2.2: Fixed-point real-valued box-constrained DCD algorithm

State Operation Cycles
0 Initialization: h = 0, r = θ, m = Mb, p = 0,

∆m = 0, j = 1, Flag= 0

1
if m = 0, algorithm stops

1
else, m = m− 1, d = 2m, ∆m = ∆m + 1

2

c = R(j, j)/2− |r(j)| × 2∆m

ht = h(j) + sign(r(j)) · d
1

if |ht| ≤ H , then α = 0; else, α = 1

3
if c < 0 and α = 0, then goto state 4

1
else, goto state 5

4

h(j) = ht

K
r = r× 2∆m − sign(r(j)) ·R(:, j)

∆m = 0, p = p + 1, Flag = 1

if p = Nu, algorithm stops

5

j = (j)mod(K) + 1

if j = 1 and Flag = 1, then Flag = 0, goto state 2

elseif j = 1 and Flag = 0, then goto state 1
1

else, goto state 2

Total ≤ 4KNu + 3K(Mb − 1) + Mb

the prescaling factor 4m by one. If the least significant bit of the solution is achieved

(m = 0), the algorithm stops.

In state 2, two cycles are needed before each comparison because of a latency delay when

reading from the RAM. The RAM Controller asserts the addresses of r(j), R(j, j) and

h(j), which are stored in θ RAM, R RAM and h RAM, respectively. At the same time,

r(j) is scaled by 24m by bit-shifting. In addition, the h Update Logic reads h(j) from

h RAM, pre-updates h(j) and keeps the updated element in a register ht. It also checks

whether ht is in the range [−H, H] (α = 0) or not (α = 1) before proceeding to the state

3.

In state 3, the Master State Machine checks the result of the comparison from the state 2 to

decide whether the iteration is “successful”. If the iteration is “successful”, the algorithm

goes to state 4 to update h and r; otherwise, it proceeds to the state 5.

In state 4, the r-Update Logic updates all elements of the vector r. The RAM Controller

indicates addresses of elements of the column R(:, j) and vector r. The corresponding

elements of r and R(:, j) are loaded to the r-Update Logic. h(j) is updated by directly
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Figure 2.2: DCD Master State Machine

copying the value from the register ht. Meanwhile, 4m is cleared to 0; the iteration

counter p is incremented by one and the binary variable Flag is set to 1 which indicates

that the current iteration is “successful”. The “successful” iteration counter p needs to be

checked whether it reaches the maximum number Nu. If p is less than Nu, the Master

State Machine proceeds to state 5, otherwise, it stops.

State 5 firstly updates index j. Then, it decides whether to update the Flag and which next

state to proceed depending on j and Flag.

The number of clock cycles required for each state is shown in Table 2.2. By using the

pipeline technology, state 4 requires K cycles for updating all elements in the vector r and

the element in h. Other states only require one cycle to execute. State 2 also needs 2 clock

cycles more because there is a latency when reading data from the RAM. The total cycles

required mainly depend on these successful update iterations and the number of bits. The

upper number of cycles in Table 2.2 can be considered as the worst case complexity of the

fixed-point box-constrained DCD algorithm. We can consider the worst case situation,

which occurs when only the last mth bit has Nu successful iteration. This means that

the calculation of the first (Mb − 1) bits do not contain any successful iteration, and so,

require (Mb − 1)3K cycles. The worst-case for calculating the last bit (m = 1) occurs

when only one successful iteration happens among the K iterations (j = 1, · · · , K). This

requires 3K cycles for the comparison and K cycles for update of the residual vector r
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and element h(j). In total, Nu successful passes require Nu(4K) cycles. In addition to the

above cycles needed, there also requires Mb cycles for the step size update in the whole

process.

Therefore, the maximum clock cycles of the fixed-point box-constrained DCD algorithm

is 4KNu + 3K(Mb − 1) + Mb clock cycles.

Fig.2.1 presents the FPGA architecture of the box-constrained DCD algorithm. There are

five sub-modules: Master State Machine, RAM Controller, Comparator, r Update Logic,

and h Update Logic [78]. The matrix R, vector r, and vector h are saved in R RAM, θ

RAM and h RAM, respectively.
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Figure 2.3: Comparator architecture.

Master State Machine: The Master State Machine is required to track the current iter-

ation, select and update the step size and decide which state to execute.

RAM Controller: The RAM Controller drives one of the address ports of θ RAM and

R RAM, and both address ports of h RAM. During the “Comparison” in an iteration, the

RAM Controller provides the address of R(j, j), r(j), and h(j). The update operation

is conditional; if the iteration is “successful”, then the RAM controller will sequentially

increment addresses in the vector r and matrix R so that all K elements in the vector r

are updated. Meanwhile, the RAM Controller indicates the address of h(j) in the h RAM
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for element h(j) update. The RAM Controller then indicates the addresses r(j + 1) and

R(j + 1, j + 1) for the next comparison. However, if the iteration is “unsuccessful”, the

RAM controller immediately indicates the address r(j + 1) and R(j + 1, j + 1) (without

update) for the next comparison.

Comparator: Fig.2.3 shows the Comparator architecture. It is used for comparing r(j)

and (d/2)R(j, j) at step 4 in Table 2.1. The comparator also scales r(j) to compensate for

d at state 2 in Table2.2 and passes the sign bit of the result c to the Master State Machine.
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Figure 2.4: Architecture of DCD r-Update logic.

r Update Logic: Fig.2.4 presents the architecture of the r Update Logic. The initial-

ization vector r and h are stored concurrently in θ RAM and h RAM, respectively. The

θ RAM is filled with scaled data, whilst the h RAM is cleared to zeros. Each element is

read from θ RAM, updated as r = r× 2∆m − sign(r(j)) ·R(:, j), and written back to θ

RAM.

h Update Logic: Fig.2.5 shows the h Update Logic. The h Update Logic reads the

element h(j) from h RAM. h(j) is updated by adding or subtracting the step size d

according to the sign of r(j). The updated h(j) is written back in the h RAM.
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2.4.1 Detection Performance of the DCD-based Box-constrained De-
tector

The BER performance of the box-constrained DCD detector is evaluated using 105 sim-

ulation trials. We assumed the simulation scenario is AWGN channel with perfect power

control, where the users employ randomly generated spreading sequences. We consider a

high loaded scenario, for which the number of users K = 50 and the spreading factor SF

= 53, and a less loaded scenario, for which K = 20 and SF = 31. We also investigate the

detector using both the fixed-point and floating-point implementations for these scenar-

ios. The floating-point implementation results are obtained from MATLAB, and the fixed

point implementation results are obtained from FPGA board.

Fig.2.6 shows the BER performance as a function of SNR for a high loaded scenario and

different Mb. It is seen that there is no distinguishable difference between the fixed-point

FPGA results and the floating-point results. The box-constrained DCD detector even

with two-bit representation (Mb = 2), still outperforms the MMSE detector over the SNR

range from 0 dB to 17.5 dB. Furthermore, when BER = 10−3, the box-constrained DCD

detector with Mb = 4 demonstrates a 7.5 dB improvement of the BER performance in

comparison with the MMSE detector. When Mb = 14, the BER performance is not much

improved in comparison with the case Mb = 4. It shows that a further increase in the

number of bits Mb will not achieve much improvement of the BER performance.
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Figure 2.6: BER performance of the DCD based box-constrained multiuser detector for different

number of bits Mb in a highly loaded multiuser scenario; K = 50, SF = 53.

Fig.2.7 shows the BER performance for a less loaded scenario. The parameter Mb in the

box-constrained DCD algorithm can be chosen any integer to represent the estimate data.

In this simulation, we use different Mb i.e. 2, 4, 14 to show the detection performance.

It shows that the BER performance of the FPGA fixed-point implementation of the box-

constrained DCD detector is close to the floating-point solution. The box-constrained

DCD detector even with two-bit representation (Mb = 2), outperforms the MMSE de-

tector over the SNR range from 0 dB to 20 dB. Moreover, Fig.2.7 also shows that the

detection performance of the box-constrained DCD detector with Mb = 4 is almost sim-

ilar to that with Mb = 14. Therefore, only Mb = 4 is enough for implementation of the

box-constrained DCD detector.

Table 2.3: FPGA resources needed for the sphere decoding algorithm [1] K = 4;

FPGA Resources Total available Usage
Slices 33088 12721

Multipliers 328 160

Block RAMs 328 82
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Figure 2.7: BER performance of the box-constrained DCD detector with different Mb; K = 20,

SF = 31.

Table 2.4: FPGA resources needed for the DCD box-constrained algorithm K = 50,

Mb = 4.

FPGA Resources Total available Usage
Slices 13696 387

Multipliers 136 0

Block RAMs 136 4

2.4.2 FPGA Resources and Maximum Clock Cycles Required for the
Serial DCD-based Box-constrained Detector

Table 2.3 summarizes the resources needed for the FPGA implementation of sphere de-

coding algorithm for K = 4 [1]. This does not take into account the computational com-

plexity of the pseudoinverse, and the Cholesky decomposition which are very complex for

hardware implementation. It is also difficult to provide results for higher K because of the

infeasibility to implement this algorithm for more users. In comparison, Table 2.4 sum-

marizes the FPGA resources needed for the DCD box-constrained algorithm for K = 50

and Mb = 4. This algorithm uses a much larger number of users than that used for the

sphere decoding algorithm, and so, it is not an equivalent comparison; however, it is still
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Table 2.5: Worst-case number of clock cycles required for the box-constrained DCD

algorithm for different Mb.

HHHHHHHMb

K
4 20 50 110

2 16Nu+14 80Nu+62 200Nu+152 440Nu+332

4 16Nu+40 80Nu+184 200Nu+454 440Nu+ 994

14 16Nu+170 80Nu+794 200Nu+1964 440Nu+ 4304

a worth comparison since the sphere detector can provide optimal detection performance.

The number of multipliers used in the box-constrained DCD algorithm implementation is

zero, because multiplication operations are achieved by simple bit-shift operations. The

number of slices used in the sphere decoding algorithm implementation is approximately

33 times greater than that used in the box-constrained DCD algorithm. Furthermore, the

number of RAMs used in the box-constrained DCD detector implementation is approx-

imately 20 times less than that used in the sphere decoder. We have also implemented

box-constrained DCD detector when K = 4 (not show in this thesis). We found that that

the number of slices used in the box-constrained DCD algorithm does not vary signifi-

cantly when changing the system size, i.e. K from 4 to 50, however the RAM storage for

the equation operands will be increased when the system size increases.

Table 2.5 shows the maximum number of clock cycles of the box-constrained DCD algo-

rithm for different K and different Mb. For the same K, the maximum number of clock

cycles required increases as Mb increases. For the same Mb, the maximum number of

clock cycles needed increases as K increases. In conclusion, the update time increases as

either Mb or K increases.

2.5 Fixed-point Parallel Implementation of the Box-

constrained DCD Algorithm

We have shown that the serial implementation of the box-constrained DCD algorithm

requires very few hardware resources even for the large number of users. However, due to

the sequential processing, this architecture might not provide satisfactory data throughput.

In section 2.4, we considered that elements of the vector r are stored in θ RAM and are

updated sequentially, one-by-one. In this section, we consider a change in the way of
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Table 2.6: Parallel Implementation of Box-constrained DCD Algorithm

State Operation Cycles
0 Initialization: h = 0, r = θ, m = Mb,

p = 0, j = 1 , Flag = 0

1
if m = 0, algorithm stops

1
else, m = m− 1, d = 2m, r = 2r

2 rt = r− sign(r(j))R(:, j) 1

3

c = R(j, j)/2− |r(j)|
ht = h(j) + sign(r(j)) · d

1
if |ht| ≤ H , then α = 0; else, α = 1

4
if c < 0 and α = 0

h(j) = ht

1
r = rt

p = p + 1, Flag = 1

if p = Nu, algorithm stops

j = (j)mod(K) + 1

if j = 1 and Flag = 1, then Flag = 0, goto state 2

elseif j = 1 and Flag = 0, then goto state 1

else, goto state 2

Total: ≤ 3KNu + 3K(Mb − 1) + Mb

storing elements of the residual vector r. These elements are now stored in registers,

which allows all K elements of r to be updated in one clock cycle for each “successful”

iteration. In addition, all elements in the column R(:, j) are accessible simultaneously,

which can be done in two ways. One way is that when the elements of the column R(:, j)

are stored in registers, it is called the R-in-Register. Another one is, when the elements of

the column R(:, j) are stored in block-RAMs, it is called R-in-RAM [79].

The box-constrained DCD algorithm in parallel architecture is presented in Table 2.6. In

state 0, the control signals are initialized. Elements of the vector r are stored into the

registers and elements of the matrix R are stored into registers or RAMs. In state 1, if

m 6= 0, the operations of left-shifting of the elements of r are executed simultaneously

in one cycle. Meanwhile, the step-size d is updated and the bit counter m is decremented

by one in the same clock cycle. In state 2, the Master State Machine passes the elements

of R(:, j), and vector r to the r Update Logic. The time needed here for accessing the

elements and computing rt is about two clock cycles. In state 3, the Master State Machine

compares R(j, j) (right-shifted) and r(j). In addition, the h Update Logic reads h(j) from

h RAM, pre-updates h(j) and keeps the updated element in a register ht. It also checks

whether ht is in the range [−H, H] (α = 0) or not (α = 1) before proceeding to the state
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4. State 4 checks c and α to decide whether the iteration is successful. If it is successful,

r, h(j) and index j are updated. Elements of vector r are updated at the same clock

cycle because they are already stored in the registers. In addition, the iteration counter

p is incremented by one and the binary variable Flag is set to 1 which indicates that the

current iteration is “successful”. The “successful” iteration counter p needs to be checked

whether it reaches the maximum number Nu, and if so, the algorithm stops. If not, it

decides whether to update the Flag and which next state to proceed depending on j and

Flag.

The number of clock cycles required for each state is shown in Table 2.6. In each itera-

tion, three clock cycles are needed. The upper number of the cycles in Table 2.6 can be

considered as the worst case complexity of the parallel implementation of the fixed-point

box-constrained DCD algorithm. We can consider the worst case situation, which occurs

when only the last bit has Nu successful iteration. This means that the calculation of the

first (Mb − 1) bits do not contain any successful iteration, and so, require (Mb − 1)3K

cycles. The worst-case for calculating the last bit (m=1) occurs when only one successful

iteration happens among the K iterations (j = 1, · · · , K). This requires 3K cycles for the

comparison, and pre-update residual vector r and element h(j). In total, Nu successful

passes require 3KNu cycles. Besides above cycles needed, there also requires Mb cycles

for the step size update in the whole process. Therefore, the clock cycles of the fixed-point

box-constrained DCD algorithm is upper bounded by 3KNu + 3K(Mb − 1) + Mb clock

cycles.

R-in-Register: Elements of the matrix R and vector r are stored in registers (see

Fig.2.8). In state 1, the process of one-bit left shift of the vector r and the update of

step size d are performed. In state 2, the elements in vector r and R(:, j) are read out to

update the residual vector r. In state 3, the comparison of r(j) and R(j, j) and pre-update

of h(j) are executed in one clock cycle. In state 4, the final updated elements in the vector

r and h(j) are obtained in one clock cycle. In this case, there is a high area expense since

all elements of the matrix R are stored in registers. To further improve the design, we

consider storing R in a block of RAM.

R-in-RAM: A row of elements of the matrix R are stored in an array of RAMs instead

of registers. This achieves a significant reduction in the required number of slices com-

pared to that required for the case where elements of R are stored in registers. This design
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Figure 2.8: r Update Logic Architecture in R-in-Register.

is represented in Fig.2.9.

Table 2.7: FPGA resources of parallel implementation of the box-constrained DCD algo-

rithm for K = 16 and Mb = 15.

FPGA Resources R-in-Register R-in-RAM
Slices 7176 1465

D-FFs 5123 802

LUT4s 5646 2754

Block RAMs 2 18

The parallel designs have improved the throughput in comparison with the serial design of

the box-constrained DCD detector in FPGA implementation. However, the two parallel

design implementations are more applicable for scenarios with a small number of users

due to the high hardware resources usage.

The FPGA resources of both R-in-Register and R-in-RAM implementations are pre-

sented in Table 2.7 for the case of K = 16 and Mb = 15. The FPGA resources of

the R-in-Register implementation is higher than that of the R-in-RAM implementation,

because it needs more registers. Therefore R-in-Register implementation is suitable for

Z. Quan, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 2. BOX-CONSTRAINED DCD-BASED MULTIUSER DETECTOR 44

±

±

±

Block RAM

r(1)

MUX

r(2)

r(k)

MUX

MUX

Master

State

Machine

Data bus

Control bus

)1,1(R

)2,1(R

),1( KR

)1,2(R

)2,2(R

),2( KR

)1,( KR

)2,(KR

),( KKR

)1(
t

r

)2(
t

r

)(Kr
t

Figure 2.9: r Update Logic in R-in-RAM.

small size systems. The R-in-RAM implementation reduces the area usage in comparison

with that of the R-in-Register implementation. However it still requires more slices than

that of the serial architecture box-constrained DCD algorithm implementation.

2.6 Conclusions

In this chapter, we have investigated the box-constrained DCD-based multiuser detec-

tor. This algorithm is multiplication-free and division-free; therefore, it is suitable for

hardware implementation. We have presented and compared the serial and parallel im-

plementations of the FPGA architecture of the box-constrained DCD algorithm. The

proposed fixed-point implementation of the box-constrained DCD algorithm provides a

high-accuracy performance which is very close to that of floating-point implementation.

This algorithm outperforms the well-known MMSE detector in differently loaded scenar-

ios, and even using a small number of bits Mb.

When the box-constrained DCD algorithm is applied in the multiuser detection, the serial

implementation of the FPGAarchitecture requires less than 400 FPGA slices for a number
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of users as large as 50. However, the throughput of this design can be further improved

by using an alternative parallel implementation. Two efficient designs for FPGA parallel

implementation have been proposed as: R-in-Register design and R-in-RAM design.

The parallel implementation of the algorithm provides higher data throughput than that

of the serial implementation. The drawback of the parallel implementation designs is

that when the system size increases, the FPGA resources required in the R-in-Register

based implementation increase significantly; e.g. it needs 7176 slices when K = 16. The

number of slices used in the R-in-RAM design is reduced at the expense of a few more

RAM blocks.
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3.1 Introduction

Multiple-Input Multiple-Output (MIMO) communication systems with spatial multiplex-

ing allow the channel capacity to be increased compared to Single-Input Single-Output

(SISO) communication systems [59]. This requires efficient detection techniques to be

used at the receiver. In practical scenarios, we need to consider a reasonable way for

hardware implementation of MIMO detectors, e.g. using an FPGA platform. The maxi-

mum likelihood (ML) MIMO detector provides optimal performance; however, it is com-

plicated for real-time implementation. The ML detector can be directly implemented in
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hardware only for small size MIMO systems with low order modulation (e.g. for a 4

transmit and 4 receive antennas MIMO system with QPSK modulation) [80].

The sphere decoder is considered as a good candidate for hardware implementation of the

optimal detector. However, it also becomes more complicated when the size of the sys-

tem and modulation order increases. In addition, this algorithm requires high complexity

at low SNRs. Usually, the decoder’s throughput is given at an SNR of 20 dB [70, 81],

whereas at lower SNRs the throughput becomes significantly lower. This is why the

sphere decoders are usually implemented on FPGA platforms for small size MIMO sys-

tems, such as 4× 4 systems [81, 82]. Moreover, a matrix factorization, such as Cholesky

decomposition or QR decomposition, and decorrelating detection are required before ap-

plying the sphere decoder. This is difficult for real-time hardware implementation [74,81].

The optimal detector and its sub-optimal approximations such as sphere decoders [46,70]

provide hard decisions. However, the soft decisions are of interest as they allow fur-

ther efficient decoding. The MIMO detection with soft decision can be based on MMSE

detection. Recently, different FPGA designs of the MMSE MIMO detection were re-

ported [83–85]. However, the hardware complexity of a MIMO system increases rapidly

with the number of antennas, and only MMSE MIMO detectors with small size were im-

plemented on FPGA platform. Moreover, the performance of MMSE detectors can be

significantly inferior to the optimal detection performance in large size systems.

In this chapter, we consider box-constrained MIMO detection that also provides soft out-

put. The box-constrained detection is well known in application to multiuser CDMA

systems [86]. It shows a better detection performance compared to the MMSE detection

performance. Moreover, it can be efficiently implemented using dichotomous coordi-

nate descent (DCD) iterations [75]. An FPGA design of a box-constrained DCD-based

multiuser detector was presented in Chapter 2. However, that design can only be used

for real-valued systems, e.g. for systems with BPSK modulation and real-valued sys-

tem matrix R. In MIMO systems, complex-valued modulation schemes, such as QPSK,

16-QAM and others, are of interest. In this chapter, we present an FPGA design of a

complex-valued DCD-based box-constrained MIMO detector of symbols with various

QAM modulations and compare it with designs of MMSE MIMO detectors in terms of

the design area, throughput and detection performance.

This chapter is organized as follows. In Section 3.2, the signal and channel model for

MIMO systems are presented. In Section 3.3, the FPGA implementation of the box-
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constrained DCD detector is described. Simulation results and performance analysis are

given in Section 3.4, and Section 3.5 concludes the chapter.

3.2 System Model and Box-constrained MIMO Detector

We consider an MT ×MR (MT = MR) MIMO system with MT transmit and MR receive

antennas in frequency-flat Rayleigh fading channels. The received signal is given by

y = Gh + n , (3.1)

where G is an MR ×MT channel matrix whose entries are independent identically dis-

tributed (i.i.d.) zero mean Gaussian random numbers, h is an MT×1 vector of transmitted

data from a QAM constellation A, and n is the noise vector whose entries are i.i.d. zero

mean Gaussian random numbers. The ML detector solves the quadratic optimization

problem with integer constraints:

ĥML = arg min
h∈AMT

{||y −Gh||2}

= arg min
h∈AMT

{
hHRh− 2θHh

}
, (3.2)

where R = GHG and θ = GHy. The box-constrained detector relaxes the constraint

h ∈ AMT into <{h} ∈ [−H, H]MT and ={h} ∈ [−H, H]MT , where H is the maximum

magnitude among real and imaginary elements of the constellation A. For example, for

16-QAM modulation, H = 3. Thus, the box-constrained MIMO detector solves the

problem

ĥbox = arg max
<{h}&={h}∈[−H,H]MT

{
hHRh− 2θHh

}
. (3.3)

This solution provides a soft output ĥbox, which is then mapped into AMT . Solving (3.3)

is equivalent to solving the normal equations

Rh = θ (3.4)

with the box-constraint in solution h.

Z. Quan, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 3. BOX-CONSTRAINED DCD ALGORITHM FOR MIMO DETECTION OF

COMPLEX-VALUED SYMBOLS 49

Table 3.1: Complex-valued box-constrained DCD algorithm
State Operation Cycles

0 Initialization: h = h̄, r = θ −Rh̄, m = Mb, p = 0

∆m = 0, s = 1, j = 1, Flag= 0

1
if m = 0, algorithm stops

1
else, m = m− 1, d = 2m, ∆m = ∆m + 1

2

if s = 1, then rt = <(r(j)); else, rt = =(r(j))

1
c = R(j, j)/2− |rt| × 2∆m

ht = h(j) + sign(rt)sd

if |<(ht)| ≤ H and |=(ht)| ≤ H , then α = 0; else, α = 1

3
if c < 0 and α = 0, then goto state 4

1
else, goto state 5

4

h(j) = ht

MT

r = r× 2∆m − sign(rt)sR(j)

∆m = 0, p = p + 1, Flag = 1

if p = Nu, algorithm stops

5

if s = 1, then s = i, goto state 2

1

else, s = 1, j = (j)mod(MT ) + 1

if j = 1 and Flag = 1, then Flag = 0, goto state 2

elseif j = 1 and Flag = 0, then goto state 1

else, goto state 2

Total: ≤ 7MT Nu + 6MT (Mb − 1) + Mb cycles

3.3 FPGA Implementation of DCD-based Box-

constrained MIMO Detector

The DCD algorithm solves the normal equations (3.4) using coordinate descent iterations

with a varying power-of-two step-size [8]. There are two types of iterations: successful

and unsuccessful. At a successful iteration, one element of the solution vector h and

all elements of the residual vector r = θ − Rh are updated; these iterations contribute

most in the algorithm complexity. At an unsuccessful iteration, there is no update. The

maximum number of successful iterations (updates) Nu is predefined. Another parameter

Mb is predefined, which indicates the number of bits representing elements of h, and so,

controls the final accuracy of the solution. It also decides how many times the step-size d

is reduced by a factor of two.

The structure of the box-constrained DCD algorithm for complex valued modulation

schemes is optimized for FPGA implementation and presented in Table 3.1. The archi-
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Figure 3.1: Block-diagram of the DCD processor

tecture of the DCD processor is shown in Fig. 3.1.

A DCD Core State Machine controls the operations of the algorithm. In state 0, it ini-

tializes several control signals as shown in Table 3.1. The residual vector r = θ − Rh̄,

where h̄ is the initialization of h. In this chapter, h̄ is set to zero, and r is equal to θ. Bit

counter m is set to Mb, successful iteration counter p is set to 0, pre-scaling counter ∆m

is set to 0, signal s is set to 1 for real or set to i for imaginary component of the element

r(j), element index j is set to 1 and successful iteration indicator ‘Flag’ is set to 0.

In state 1, it updates a bit counter m, step size d = 2m, and prescaling counter ∆m. The

condition m = 0 implies that the least significant bits of elements of the solution vector

have been decided and the DCD processor stops; otherwise, the algorithm proceeds to

state 2.

In state 2, RAM Reader asserts addresses of r(j) in θ RAM, R(j, j) in R RAM, and h(j)

in h RAM. Then, according to s, the Comparator selects the real (if s = 1) or imaginary

(if s = i) component of the element r(j). If the vector r has not been prescaled for a new

mth bit, the Comparator scales rt. It then performs the comparison and passes the sign bit

of the result c to DCD Core State Machine. Simultaneously, h Updater reads h(j) from

h RAM, pre-updates the (real or imaginary according to s) component of h(j), keeps the

updated element as ht in a register, and checks whether it is in the range [−H, H] (α = 0)

or not (α = 1), where the value of H depends on the modulation, i.e. H = 1 for M-PSK.
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In state 3, DCD Core State Machine examines the comparison results c and α to decide

which step to proceed. If c < 0 and α = 0 (the iteration is successful), the algorithm

proceeds to state 4 to update h(j) and r; otherwise, it proceeds to state 5 without updates

(the iteration is unsuccessful).

In state 4, r Updater updates r. RAM Reader generates addresses of elements of the col-

umn R(:, j) and vector r in R RAM and θ RAM, respectively. r Updater reads elements

of r from θ RAM, updates them, and writes the result back. r Updater has two adders for

simultaneous updating real and imaginary components of r. h Updater writes ht into h

RAM to replace h(j). Then DCD Core State Machine sets the prescaling counter ∆m to

0 and the variable Flag to 1, indicating a successful iteration. The counter p of successful

iterations is also updated; if p is equal to the predefined limit Nu, the DCD processor

stops; otherwise, it proceeds to state 5.

In state 5, DCD Core State Machine firstly tests s to decide which component of h should

be analyzed next. Then, it updates the index j and signal s. After that, it decides whether

to update the Flag and which next state to proceed depending on j and Flag.

The number of clock cycles required in each state is shown in Table 3.1. Pipelining is used

in state 4, and so, the design requires MT cycles to update h(j) and all elements in r. The

other states require a single cycle each. The total number of cycles for solving a system of

equations varies depending on the system size, the condition number of the system matrix,

and the algorithm parameters, Nu and Mb. For a given MT , Nu and Mb, the number of

cycles can be considered to be a random number with an upper bound corresponding to a

worst-case scenario. The upper bound can be shown to be 7MT Nu +6MT (Mb−1)+Mb,

or for high Nu we have approximately 7MT Nu. This corresponds to an unlikely situation

when, in every pass, only one successful iteration (one update) happens. In a typical

situation, there are many successful iterations in every pass, and so, the average number

of clock cycles will be smaller as explained below.

Each element of a complex-valued system of equations is represented using two 16-bit

Q15 numbers [87] for representing real and imaginary components, these are limited to

the range [−1, 1). To avoid overflow, real and imaginary components of r and h are stored

using the 32-bit fixed-point Q15 format and are limited to the range [−216, 216). To obtain

a high update rate, the real and imaginary components of r are processed in parallel. R

RAM has a 32-bit data width and β RAM has a 64-bit data width. This enables them to

support both components simultaneously at each read or write operation. h RAM has a
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Table 3.2: FPGA resources required for box-constrained DCD-based MIMO detector of

complex-valued symbols.

Resources MT = 4 MT = 8 MT = 16

Slices 637 (4.7%) 658 (4.8%) 667 (4.9%)

D-FFs 305 (1.1%) 318 (1.2%) 329 (1.2%)

LUT4s 1033 (3.8%) 1062 (3.9%) 1084 (4.0%)

Block RAMs 5 (3.7%) 5 (3.7%) 5 (3.7%)

32-bit data width, since only one component of h(j) is required at each iteration.

Table 3.2 presents FPGA resources required for box-constrained DCD-based MIMO

detector of complex-valued symbols. It can be seen that the area usage for the box-

constrained DCD-based algorithm is very small, and is 637 to 667 slices for systems of

equations of the size MT = 4 to MT = 16, respectively. In all the cases, the design

occupies less than 5% of the chip area, and it does not use any built-in multipliers. This

design has a significantly lower area usage compared to the designs of the MMSE detec-

tor for 4 × 4 MIMO systems reported in [83–85], which require 8513, 7679, and 9474

slices, respectively. In addition, the MMSE detectors presented in [83, 84] use 64 and 58

area-expensive multipliers, respectively, compared to the zero number of multipliers in

the DCD-based algorithm.

3.4 Numerical Results

In the AWGN channel, we will present numerical results that allow us to estimate the

throughput of the proposed design. Specifically, the convergence speed of the design, in

terms of the number of updates and number of clock cycles, is demonstrated for 4 × 4,

8× 8, and 16× 16 MIMO systems with 16-QAM modulation.

By solving (3.3), the DCD algorithm (Mb = 15) obtains a solution ĥbox. The misalign-

ment between estimated data vectors ĥbox and transmit data vector h is calculated as

ξ =
||ĥbox − h||2

||h||2 . (3.5)

The misalignment is averaged over a number of T = 1000 simulation trials and is given
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Figure 3.2: Misalignment vs number of updates Nu in 16-QAM MIMO systems.

in decibels by

ξ̄ = 10 lg

{
1

T

T∑
t=1

∑MT

j=1 |ĥbox(j)− h(j)|2
∑MT

j=1 |h(j)|2

}
. (3.6)

This misalignment is plotted against the number of updates Nu in Fig.3.2, which is ob-

tained from MATLAB. For the purpose of comparison, we also show results for the

MMSE MIMO detector, which is implemented using the DCD algorithm. This MMSE

detector algorithm is different than the box-constrained detector in that the comparison

with the threshold H in states 2 and 3 in table 3.1 is removed and the matrix R is re-

placed by R + 1
SNRI, where I is an MT × MT identity matrix. It can be seen that the

box-constrained solution provides significantly lower misalignment than the MMSE so-

lution, and the difference in the performance increases as the system size MT increases.

Fig.3.3 shows the misalignment against the number of cycles, which is obtained from

FPGA platform. Comparing Fig.3.3 and Fig.3.2 for a fixed misalignment i.e. −25 dB, we

can conclude that one update on average requires approximately 2.5MT , 2MT and 1.7MT

cycles for 4 × 4, 8 × 8 and 16 × 16 MIMO systems, respectively. This is significantly

lower than that in the worst-case scenario discussed above. Thus, the total number of

clocks required is approximately 2.5MT Nu for 4 × 4 MIMO systems, 2MT Nu for 8 × 8

MIMO systems, and 1.7MT Nu for 16× 16 MIMO systems.
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Figure 3.3: Misalignment vs number of clock cycles in 16-QAM MIMO systems.

0 10 20 30 40 50

10
−3

10
−2

10
−1

10
0

SNR, dB

B
E

R

 

 

DCD−Box
DCD−MMSE
 MMSE

N
u
=64

N
u
=256

N
u
=1024

N
u
=2048

Figure 3.4: BER performance of the detectors in 4× 4 MIMO systems.
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Figure 3.5: BER performance of the detectors in 8× 8 MIMO systems.
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Figure 3.6: BER performance of the detectors in 16× 16 MIMO systems.
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Figure 3.7: BER vs number of updates Nu in 16-QAM MIMO systems.

Fig.3.4, Fig.3.5 and Fig.3.6 show the bit-error-rate (BER) performance against SNR for

the box-constrained detector compared with that of the DCD-based MMSE detector and

the classical MMSE detector implemented in floating point for 4× 4, 8× 8, and 16× 16

MIMO systems, respectively. The figures show that the box-constrained detector can

significantly outperform the MMSE detectors, especially for large MIMO systems. For a

fixed Nu, the detectors based on DCD iterations exhibit a BER floor, which is reduced as

Nu increases.

Fig.3.7 shows improvement in the BER performance achieved by the box-constrained de-

tector as the number of updates increases for 4×4, 8×8, and 16×16 MIMO systems. For

the 4×4 case, it can be seen from Fig.3.4 that the BER of the MMSE detector is 0.18, 0.05

and 0.006 at SNR = 10 dB, 20 dB and 30 dB, respectively. Fig.3.7 shows that the box-

constrained detector can achieve these BERs with about Nu = 27, 47 and 410 updates

corresponding to 270, 470 and 3800 cycles, respectively. We can conclude that, from

the viewpoint of the throughput (refers to the amount of data that is processed per clock

cycle), the proposed design is inferior to the MMSE designs in [83–85], that require from

270 to 388 cycles. However, due to the very low area usage of our design (less than 5%

of the Xilinx Virtex-II Pro Development System [77] with an XC2VP30 (FFT896 pack-
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Table 3.3: Number of cycles required by the box-constrained DCD-based MIMO detector

to achieve BER performance of the MMSE detector

SNR 4× 4 8× 8 16× 16

10 dB 270 650 1800

20 dB 470 1100 2600

30 dB 3800 4800 4600

age, speed grade 7), we can implement approximately 20 DCD-based box-constrained

detectors using the entire area of this FPGA chip. By having 20 box-constrained detec-

tors working in parallel, we can reduce the average number of cycles for detection of one

MIMO symbol to 14, 24 and 190 cycles at SNR = 10 dB, 20 dB and 30 dB, respectively.

These are significantly lower than those of the MMSE detector. The use of more advanced

FPGA chips, such as Virtex-5 XCE5VLX330 [88], would allow increasing the number of

parallel DCD-based MIMO detectors to 200. Note that in OFDM MIMO systems, imple-

mentation of a number of detectors working in parallel, e.g. one detector per a subcarrier,

can be beneficial.

As the size of the MIMO system increases, the proposed design becomes relatively more

efficient. In particular, for the 8×8 MIMO system, at SNR = 10 dB, 20 dB and 30 dB, the

BER performance of the MMSE detector (BER = 0.22, 0.07 and 0.01) is achieved with

Nu = 40, 68 and 297 updates, i.e. approximately 650, 1100 and 4800 cycles, respectively.

For 16×16 MIMO systems, the box-constrained detector needs about 1800 cycles (Nu =

68) at SNR = 10 dB, 2600 cycles (Nu = 95) at SNR = 20 dB and 4600 cycles (Nu = 170)

at SNR = 30 dB to achieve the BER performance of the MMSE detector (BER = 0.25, 0.1

and 0.02, respectively). Table 3.3 shows the cycle count results. It can be seen that the

proposed design can be especially useful for large MIMO systems.

3.5 Conclusions

In this chapter, an FPGA design of a box-constrained MIMO detector based on DCD

iterations has been presented. This design requires significantly lower area usage than

known designs of the MMSE MIMO detector. Moreover, the box-constrained detector

can achieve significantly better detection performance than that of the MMSE detector,

especially for large MIMO systems. For small (4 × 4) MIMO systems, our design may

require a higher cycle count than the MMSE designs. However, the parallel implemen-
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tation of many box-constrained detectors (due to its low area usage) in one FPGA chip

can proportionally increase the throughput and make it higher than that of the MMSE

designs. Since SNR decreases, the required number of cycles for the DCD-based box-

constrained detector is significantly reduced, therefore, a combined detector that uses the

sphere decoding for high SNRs, and uses the proposed detector for low SNRs, can be a

useful practical solution for MIMO detection. This is similar to a combined multiuser

detector as proposed in Chapter 7 below. The proposed design provides a soft output and

requires a relatively small number of cycles at low SNRs, and so, is attractive for MIMO

systems based on coded transmission (which can operate at low SNRs and usually require

a soft output from the detector).
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4.1 Introduction

An iterative multiuser detection technique based on box-constrained solution with Gauss-

Seidel iterations and nonstationary iterative deregularization (GS-BD) has been proposed

in [89]. This multiuser detection is based on the iterated Tikhonov regularization [90].

In [89], deregularization is used. However, the deregularization maximizes the energy

of the solution, in opposite to minimizing it in the Tikhonov regularization. Combined

with box-constraints, the deregularization forces the solution to be close to the binary set
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and improves the “efficient frontier” with the complexity as low as K3.2 FLOPS. In this

chapter, we further develop the GS-BD technique by exploiting the box-constrained DCD

algorithm and adapting it to the nonstationary iterative Tikhonov regularization to propose

the DCD-BTN detector. As a result, the worst-case and average complexity are reduced

down to K2.8 and K2.5 FLOPS, respectively. In this chapter, the implementation of the

proposed detector will be discussed. The detection performance obtained from the fixed-

point FPGA implementation shows a good match to the floating-point implementation.

This chapter is organised as follows. In Section 4.2, the signal and channel models for

multiuser detection are presented. In Section 4.3, the Non-stationary Tikhonov Iterative

Regularization is described. In Section 4.4, the detectors with Box-Constrained Relax-

ation are presented. In Section 4.5, the detector based on the nonstationary Tikhonov

iterations with box-constraint and negative diagonal loading (DCD-BTN) is derived. In

Section 4.6, the way of updating residual vector is derived. In Section 4.7, the simulation

results for the DCD-BTN detector are presented. In Section 4.8, the hardware architec-

ture design of the DCD-BTN detector is described and corresponding numerical results

for FPGA implementation are given. Section 4.9 concludes the chapter.

4.2 Problem Formulation of Multiuser detection

The matched-filter output at a symbol synchronous CDMA receiver is given by the K-

length vector

θ = Rh + n , (4.1)

where the vector h ∈ {−1, +1}K contains bits transmitted by the K users, R is a positive

definite signature waveform correlation K ×K matrix, and n is a real-valued zero-mean

Gaussian random vector with covariance matrix σ2R. The optimal ML multiuser detector

estimates the vector h by minimizing the following quadratic function

ĥ = arg min
h∈{−1,+1}K

{
1

2
hTRh− θTh

}
(4.2)

with binary constraints h ∈ {−1, +1}K . Although the ML detector provides the best

detection performance, it is not practical due to its high complexity.
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4.3 Non-stationary Iterative Tikhonov Regularization

The MMSE detector solves the unconstrained quadratic optimization problem [9]

ĥ = arg min
h∈RK

{
1

2
hTRh− θTh +

λ

2
hTh

}
(4.3)

using the regularization term (λ/2)hTh, where R = (−∞, +∞). This regularization

is also known as diagonal loading [91], which promotes a solution with a small energy.

A more accurate solution to the problem (4.2) can be obtained using the non-stationary

Tikhonov iterative regularization [92,93]. Instead of solving (4.3), a sequence of (N + 1)

unconstrained optimization problems can be solved, with the nth unconstrained optimiza-

tion problem

ĥ(n) = arg min
h∈RK

{
1

2
hTRh− (θ + λh̃(n−1))Th +

λ

2
hTh

}
, (4.4)

where n = 0, · · · , N is the Tikhonov iteration index, h̃(−1) = 0, h̃(n−1) = ĥ(n−1) and

λ > 0.

The solution of (4.4) can be regarded as an unconstrained solution to the equation

(R + λI)ĥ(n) = θ + λh̃(n−1). (4.5)

When N = 0, we obtain the MMSE detector where the final solution is ĥ = sign[h̃(0)].

When N ≥ 1, the described multiuser detector provides a better performance than the

MMSE detector [94], and in this case, the final solution is given by the hard decision

ĥ = sign{h̃(N)}.

As proposed in [94], λ varies with n and according to

λn =

{
σ2 : n = 0

nσ2 : n = 1, · · · , N ,
(4.6)

h̃(n) is a semi-hard version of ĥ(n), for which the kth element is given by [94]

h̃
(n)
k =





+1 : if ĥ
(n)
k > nα

−1 : if ĥ
(n)
k < −nα

ĥ
(n)
k : otherwise ,

(4.7)

and α < 0 is a pre-defined coefficient.
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Obtaining a direct solution of (4.5) requires approximately K3 FLOPS. Consequently, a

direct implementation of the detector with N Tikhonov iterations requires (N + 1)K3

FLOPS. In our simulation below, we call this direct implementation Direct-T detector.

This detector achieves a good detection performance [89]; however, its complexity is

high. In order to reduce the complexity, equation of (4.5) can be solved approximately

using the classical Gauss-Seidel (GS) iterations [89]. In most cases, the GS iterations can

significantly reduce the detector complexity without a significant degradation in perfor-

mance. We call the Direct-T detector using GS iterations as GS-T detector. The GS-T

detector approaches the “efficient frontier” (described in (1.2.3)), but does not improve it.

4.4 Detectors with Box-constrained Relaxation

The complicated optimization problem (4.2) can be approximately solved by relaxing

the binary constraint h ∈ {−1, +1}K . A multiuser detector with sphere constraint pro-

vides a detection performance similar to that of the MMSE detector [33]. Using the

box-constraint h ∈ [−1, +1]K results in a better performance than the sphere-constrained

minimization [11, 15, 33]. A multiuser detector with box-constraint solves the convex

optimization problem given as

ĥ = arg min
h∈[−1,+1]K

{
1

2
hTRh− θTh

}
. (4.8)

The solution to (4.8) can be regarded as a box-constrained solution to the equation

Rh = θ. (4.9)

The equation (4.9) can be solved by nonlinear GS iterations [95]. Each iteration consists

of two steps. At the first step, the classical GS iteration is performed as

ĥ
(j)
i =

1

Rii

{
θi −

i−1∑

k=1

Rikh̃
(j)
k −

K∑

k=i+1

Rikh̃
(j−1)
k

}
, (4.10)

where j = 1, · · · , NGS is the iteration index, ĥ(j)
i and h̃

(j)
i are elements of vectors ĥ(j) and

h̃(j), respectively, h̃(0) = 0 and Rik is the (i, k)th element of the matrix R. At the second

step, the semi-hard update is performed as

h̃
(j)
i =





+1 : if ĥ
(j)
i > +1

−1 : if ĥ
(j)
i < −1

ĥ
(j)
i : otherwise.

(4.11)
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The final solution is obtained by applying the hard decision: ĥ = sign[h̃(NGS)].

The coordinate descent iterations used by the box-constrained DCD algorithm, which was

described in Chapter 2, can also solve equation (4.9).

4.5 Nonstationary Tikhonov Iterations with Box-

constraint and Negative Diagonal Loading

In this section, we introduce the regularization with negative loading and justify the use

of the regularization together with the box-constraint. Then, we introduce the detector

that performs Tikhonov iterations with such regularization and box-constraint. Finally,

we show how the proposed DCD based detector can be further simplified by exploiting

inherent properties of the DCD algorithm.

The box-constraint tightens the solution set, which results in a better detection perfor-

mance compared to that with the unconstrained solutions. An additional tightening of the

solution could further improve the performance. The binary constraint h ∈ {−1, +1}K

implies that h2
i = 1, where hi is the ith element of the vector h, hence hTh = K. Within

the K dimensional box [−1, +1]K , the solution h satisfies the inequality (K−hTh) ≥ 0.

Therefore, for forcing the vector h ∈ [−1, +1]K to be close to the binary set h ∈
{−1, +1}K , we need to minimise the term (K − hTh). Thus an additional tightening

of the solution set can be achieved by introducing the following optimization problem

h̃ = arg min
h∈[−1,+1]K

{
1

2
hTRh− θTh +

λ

2
(K − hTh)

}

= arg min
h∈[−1,+1]K

{
1

2
hT (R− λI)h− θTh

}
, (4.12)

where λ > 0. The solution in (4.12) can be considered as a box-constrained solution to

the equation

(R− λI)h = θ. (4.13)

The matrix R in (4.9) is now replaced by the matrix (R−λI), which implies that the joint

box-constraint and regularization with negative diagonal loading are used. The regular-

ization parameter λ is chosen as in the MMSE detector, i.e. λ = σ2. The final solution ĥ is

obtained by projecting the vector h̃ to the binary set as ĥ = sign[h̃]. The solution to (4.13)
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can be found either by using nonlinear GS iterations as in [89] or by using the DCD algo-

rithm with the matrix R replaced by R− λI. The GS iterations with box-constrained and

negative diagonal loading (GS-BN) detector uses the orthogonal projection operation to

perform the semi-hard update. In the DCD box constrained detector, the projection is not

used. Instead, before deciding whether an iteration is “successful” or “unsuccessful”, the

box-constraint test is applied to a possible solution (i.e. pre-update of h). If the possible

solution is outside the box, the iteration is considered as “unsuccessful” and the update is

cancelled. Consequently, we obtain the GS-BN or DCD box-constrained negative load-

ing (DCD-BN) detectors with improved performance compared to the box-constrained

multiuser detectors.

Now we take the Tikhonov iterations into account. At zero Tikhonov iteration, we solve

the optimization problem (4.12) that corresponds to the GS-BN or DCD-BN detectors. In

further Tikhonov iterations, we find the solution of the optimization problem

h̃(n) = arg min
h̃∈[−1,+1]K

{
1

2
hTRh− (θ + λnh̃

(n−1))Th− λn

2
hTh

}
, (4.14)

which can be considered as a box-constrained solution of the equation

(R− λnI)h̃
(n) = θ + λnh̃

(n−1), n = 1, · · · , N. (4.15)

The regularization parameter λn is determined as in equation (4.6). The final solution is

obtained by using the hard decision ĥ = sign[h̃(N)]. The equation (4.15) can be solved

either by the GS iterations or the DCD algorithm. Consequently, we obtain the GS-Boxed

constraint with negative diagonal loading and Tikhonov iterations (GS-BTN) or DCD-

Boxed constraint with negative diagonal loading and Tikhonov iterations (DCD-BTN)

detectors.

So far, it was assumed that the box-constrained DCD algorithm is implemented with zero-

initialization of the solution vector h and an initialization of the residual vector as r = θ.

However, a non-zero initialization vector h can also be used, for which the initialization

of the residual vector becomes as r = θ−Rh. If the initialization vector h is close to the

final solution, the number of “successful” updates in the box-constrained DCD algorithm

can be reduced, resulting in a reduction in the detection complexity. For the proposed

DCD-BTN detector, and after each Tikhonov iteration, the accuracy of the solution is

improved in general, and so, it can be used for initializing the vector h in the following

Tikhonov iteration. It is expected that with such initialization, the complexity of the box-

constrained DCD algorithm decreases as n increases. However, this also requires extra
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2NK2 FLOPS for initialization of the residual vector in the N Tikhonov iterations, which

can be substantial for a large N . To avoid this complication, we first use zero initialization

for h (i.e. θ initialization for r) in the box-constrained DCD algorithm, where the solution

h̃(0) and the residual vector r(0) will be used later in the Tikhonov iterations of the DCD-

BTN algorithm. The proposed DCD-BTN detector can be implemented according to the

following steps:

1. Solve the equation (R − λ0I)h = θ by using the box-constrained DCD algorithm

with the zero-initialization of h and matrix R is replaced by R − λ0I, i.e. using

DCD-B(0,R − λ0I, θ, H, Nu,Mb), to obtain a solution vector h̃(0) and a residual

vector r(0).

2. For n = 1, · · · , N , solve (4.15) by using the box-constrained DCD algorithm with

h̃(n−1) as an initialization of the solution and

r(n) =

{
r(0) + λ0h̃

(0) : if n = 1

r(n−1) − λn−1h̃
(n−2) + (2λn − λn−1)h̃

(n−1) : if n ≥ 2,
(4.16)

as an initialization of the residual vector and matrix R is replaced by R− λnI, i.e.

using DCD-B(h̃(n−1),R− λnI, r
(n), H, Nu,Mb), to obtain a solution vector h̃(n).

3. Apply the hard decision to h̃(N) to obtain the final solution ĥ = sign[h̃(N)].

4.6 Simplified Implementation of DCD-BTN Multiuser

Detector

In the DCD-BTN detector, at the zero Tikhonov iteration, we solve the equation (R −
λ0I)h = θ with respect to h by using the DCD algorithm with zero-initialization of

the solution vector and initialization of the residual vector r by the vector θ. The DCD

algorithm provides a solution vector ĥ(0) and the residual vector

r(0) = θ − (R− λ0I)ĥ
(0). (4.17)

If at the first Tikhonov iteration, the vector ĥ(0) is used for initialization the solution vector

of the equation (R − λ1I)h = θ + λ1ĥ
(0), the residual vector r should be initialized by

the vector

θ(1) = (θ + λ1ĥ
(0))− (R− λ1I)ĥ

(0) = r(0) + λ0ĥ
(0) , (4.18)
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where the last equality is due to (4.17). The DCD algorithm produces a solution vector

h(1) and the residual vector

r(1) = θ + λ1ĥ
(0) − (R− λ1I)ĥ

(1). (4.19)

At the 2nd Tikhonov iteration, we solve the problem (R − λ2I)h = θ + λ2ĥ
(1). For

initializing the solution of this equation by the vector ĥ(1), we should also initialize the

residual vector r by the vector

θ(2) = (θ + λ2h
(1))− (R− λ2I)h

(1)

= r(1) − λ1ĥ
(0) + (2λ2 − λ1)ĥ

(1) , (4.20)

where the last equality is due to (4.19). The DCD algorithm produces a solution vector

ĥ(2) and the residual vector r(2) = θ +λ2h
(1)− (R−λ2I)ĥ

(2). Similarly, at the (n− 1)th

Tikhonov iteration, n ≥ 3, the DCD algorithm produces a solution vector ĥ(n−1) and the

residual vector

r(n−1) = θ + λn−1ĥ
(n−2) − (R− λn−1I)ĥ

(n−1). (4.21)

At the nth Tikhonov iteration, n ≥ 3, we solve the problem (R− λnI)h = θ + λnĥ
(n−1).

For initializing the solution by the vector ĥ(n−1), we should also initialize the residual

vector r by the vector

θ(n) = (θ + λnĥ
(n−1))− (R− λnI)ĥ

(n−1)

= r(n−1) − λn−1ĥ
(n−2) + (2λn − λn−1)ĥ

(n−1) (4.22)

where the last equality is due to (4.21). Combining (4.18), (4.20) and (4.22) together, we

obtain (4.16).

4.7 Simulation Results for the DCD-BTN Detector

In this section, we present numerical results that show the detection performance and com-

plexity of the DCD-BTN multiuser detector. We use the same simulation environment

(AWGN channel), with randomly generated binary spreading codes and highly loaded

scenarios as in [15]. For the box-constrained DCD algorithm, we use the maximum num-

ber of successful iterations Nu = 1000. Although using a smaller Nu can reduce the

complexity of the algorithm, we set Nu at a high value to ensure the best detection perfor-

mance. In Fig.4.1, we study the performance of the DCD-BTN algorithm with respect
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Figure 4.1: BER Performance of DCD-BTN in different Mb; K = 64, SF = 67 and N = 5.

to different numbers of bits Mb in the scenario of the number of user K = 64 and the

random binary spreading codes SF = 67. It shows that the detection BER performance of

the DCD-BTN algorithm is significantly improved when Mb = 3. The performance of the

DCD-BTN algorithm with Mb = 5 and Mb = 6 is approximately the same. Therefore, we

choose Mb = 6 for the following simulation scenarios. It is also seen that the detection

performance of the DCD-BTN detector is close to the single-user bound.

We further compare the proposed DCD-BTN algorithm with the “efficient frontier” which

was presented in [15]. We use a highly loaded scenario (as in [15]), for which K = 60

and SF = 63. Fig.4.2 shows the group detection error (probability of at least one error

among all K user data) as a function of the detector worst-case complexity for SNR = 10

dB. The known BB, PDA, and DF detectors form the “efficient frontier”, i.e. they provide

the best trade-off in terms of the complexity and detection performance. The Direct-T

detector exploits the nonstationary Tikhonov iterative regularization as described in [94].

The case of N = 0 corresponds to the MMSE detector whose performance is poor. As

N increases, the detection performance significantly improves, but is still worse than that

of the BB detector. The performance improvement with respect to the MMSE detector

is achieved at the expense of an increase in the complexity. We have run simulations
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Figure 4.2: Group detection error vs worst-case complexity; K = 60, SF = 63, SNR = 10 dB.

for high N beyond 30, but the performance is not be improved, which is still worse than

that of the BB detector. The results marked ‘GS-T’ are related to the GS implementation

of the detector using Tikhonov iterative regularization as described in [96]. Within each

Tikhonov iteration, GS iterations reduce the complexity without degrading the detection

performance. However, even with GS iterations, the detector cannot improve the “efficient

frontier”.

The GS-BTN detector that uses GS iterations to implement Tikhonov regularization with

negative diagonal loading and box-constraint, outperforms the GS-T detector in terms of

the group detection error. When N = 5, the GS-BTN detector achieves the same perfor-

mance of the BB detector, which also presents the optimal ML detection performance.

Compared to the Direct-T and GS-T detectors, the GS-BTN detector allows a significant

improvement in the detection performance. It also allows a reduction in the required

number of Tikhonov iterations (to achieve the best reached performance) from N = 30 to

N = 5, which results in a lower complexity. The complexity of the GS-BTN detector is

as low as approximately K3.2 FLOPS. (When we run the simulations, we also calculated

the corresponding complexity.)
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Figure 4.3: Group detection error vs average complexity; K = 60, SF = 63, SNR = 10 dB.

The DCD-BTN detector also achieves the lowest group detection error after N = 5

Tikhonov iterations. Its performance is similar to that of the GS-BTN detector. How-

ever, the worst-case complexity of the DCD-BTN detector with N = 5 Tikhonov itera-

tions is only K2.8 FLOPS, which is lower than that of the GS-BTN detector. Thus, the

DCD-BTN detector allows the reduction of the worst-case complexity, compared to the

GS-BTN detector without degrading the detection performance.

Fig.4.3 shows the group detection error as a function of the average complexity for the

number of user K = 60, the random binary spreading codes SF = 63 and SNR = 10 dB.

The DCD-BTN detector has a lower average complexity than the other detectors. The

only exception is the DF detector, but its detection performance is poor. Moreover, the

DF detector requires computing the Cholesky decomposition of the matrix R (not taken

into account in Fig.4.2 and Fig.4.3). For N = 5, the DCD-BTN detector achieves the

same detection performance as the BB detector, i.e. it achieves the performance of the

optimal ML detector. In this case, the average complexity of the DCD-BTN detector is

approximately K2.5 FLOPS, which is lower than that of the BB detector.

Fig.4.4 demonstrates the group detection error of the BB and DCD-BTN detectors as
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Figure 4.4: Group detection error vs. worst-case complexity complexity; K = 60, SF = 63,

SNR = 7 dB.

a function of the worst-case complexity for the number of user K = 60, the random

binary spreading codes SF = 63 and SNR = 7 dB. Simulation results are shown for a BB

detector with upper bounded complexity for several complexity bounds (5× 105, 106 and

5× 106). This is due to the high worst-case complexity of the BB detector for low SNRs.

The detection performance of the DCD-BTN is significantly better than that of the BB

detector. In addition, the complexity of the DCD-BTN detector is significantly lower than

that of the BB detector.

Fig.4.5 use the computer simulation to show the BER performance of the detectors DF,

PDA and DCD-BTN with N = 5 compared to that of the single-user bound as a function

of SNR for the number of user K = 60 and the random binary spreading codes SF = 63.

It can be seen that the DCD-BTN detector outperforms the other detectors, especially at

high SNRs. In this case, its BER performance is close to that of the single user bound.

The DCD-BTN multiuser detector has the lowest complexity among detectors provid-

ing the ML performance. It significantly improves the “efficient frontier” in multiuser
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Figure 4.5: BER performance of the DF, PDA, and DCD-BTN detectors against single-user

bound; K = 60, SF = 63.

detection. An extra benefit of the proposed DCD-BTN detector is that it is essentially

multiplication-free and division-free. Multiplications are only required for calculation

of the vector r(n) and diagonal elements of the matrix in (4.15). Most operations in the

detector are additions and bit-shifts. This makes the proposed technique attractive for

fixed-point hardware implementation.

4.8 Hardware Architecture of the DCD-BTN Algorithm

Fig.4.6 depicts the top level block diagram for the DCD-BTN algorithm. This block di-

agram is a general architecture representing the data dependency and data flow between

sub-blocks. The Master State Machine is in charge of initialising DCD-BTN transactions

and controls the operation of other modules, i.e. the destination of the modules’ input

stream and the source of its output stream. The Transceiver is responsible for the data flow

between the FPGA board and the MATLAB end. Tikhonov Iteration Module computes
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Data BusSignal Control λRegisters Rh

Figure 4.6: Block-diagram of the FPGA design of the DCD-BTN algorithm.
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the vector r in (4.16) and introduces the negative diagonal loading of R (i.e. R − λnI).

The box-constrained DCD module solves the equation (4.15) with zero initialization of

h. All other necessary parameters (i.e. R, θ and λ) are received from a MATLAB soft-

ware and stored in an Input RAM, which is not shown in Fig.4.6 and is located in the

Transceiver. This Transceiver then sends these parameters to the corresponding R, θ

RAMs and λ Registers. The multiplexers (MUX) select the module (Tikhonov Iteration

or Box-constrained DCD) to which the elements in h, θ and R RAMs are connected.

After the nth Tikhonov iteration, a solution h(n) is obtained and copied to a single-port

Pre-h RAM which is used for the (n + 1)th Tikhonov iteration. Elements in the matrix

R and vector h are 16-bit data width, whereas the elements in the vector θ are 32-bit data

width.

4.8.1 Tikhonov Iteration Module

The Tikhonov Iteration Module includes r Update Module, which performs the residual

vector r updating, and Deregularization Module, which is used for obtaining (R − λnI)

at the nth Tikhonov iteration.

)2( −nh( )1-nh

1
)2(

−
− × n

n λh
( )

1
1

+
− × n

n λh Address BusData Bus
1−nλ1n+λ

Pre-h RAMRegistersh RAMRAM λθ
( )1−nr

( )nr

Master State Machine
Figure 4.7: Architecture of the r Update Module.

r Update Module: r Update Module updates the residual vector r as given in (4.16)

when the number of Tikhonov iterations n ≥ 1. The architecture block diagram of this
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module is shown in Fig.4.7. This module consists of two adders/substractors and two real

multipliers. The module deals with the three RAMs (θ,h, pre-h) and λ registers. The

Master State Machine controls addressing, operands to adder/subtractor, i.e. the Master

State Machine selects the element r in θ RAM, chooses the regularization parameter λ

and selects element h in h RAM. The pipelining technique allows the residual vector r to

be updated using K cycles. Besides, 3 cycles of latency for RAM reading and 2 cycles

of latency for multiplication are required. Therefore in total, the r update requires K + 5

cycles. λR RAMData BusControl Bus
RegistersMaster State Machine

Figure 4.8: Architecture of the Deregularization Module.

Deregularization Module: Deregularization Module updates the diagonal elements in

matrix R as shown in (4.15). The architecture diagram is presented in Fig.4.8. This

module contains a subtractor and deals with R RAM and λ registers. The operation of

(R − λn · I) updates the diagonal elements of matrix R only by using a subtractor. This

module requires K cycles for regularization. Thus, in total K + 3 cycles are required

including 3 latency clock cycles. Moreover, when the system size is small, e.g. 4× 4, the

diagonal elements of the matrix R can be stored in registers, and so, the R deregulariza-

tion can be realized in one clock cycle.

4.8.2 Box-constrained DCD Module

The FPGA architecture of the box-constrained DCD algorithm has been presented in

Chapter 2. The Master State Machine controls the number of times this module is in
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use. Before the Tikhonov iterations start, the box-constrained DCD module is used first

to obtain the solution h̃(0) and the residual vector r(0) (corresponding to step 1) using

the parameters stored in h, θ and R RAMs. Initially, h RAM is set to zero, R and θ

RAMs get the R and θ values from Input RAM in the Transceiver. However, the R RAM

needs to be updated as R− λ0I, using the Deregularization Module. After that, the box-

constrained DCD is used again for N times in cooperation with the Tikhonov Iteration

Module.

4.8.3 Numerical Results for the DCD-BTN Detector FPGA Imple-
mentation

In this section, we present the detection performance and complexity of the fixed-point

DCD-BTN detector implemented on the FPGA (XC2VP30) platform.
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Figure 4.9: BER performance between DCD-BTN floating-point and fixed-point; K = 64, SF

= 67, N = 5 and Mb = 6.
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Figure 4.10: Clock cycles distribution for fixed-point DCD-BTN detector implementa-

tion: (a) K = 32, SF = 34; (b) K = 64, SF = 67, Mb = 6; SNR = 7 dB.

Fig.4.9 compares the BER performance of the fixed-point DCD-BTN implementations

against their floating-point implementations, obtained in 104 simulation trails. The num-

ber of users is K = 32, 64, and the spreading factor is SF = 34, 67, the number of bits

is Mb = 6 and the number of Tikhonov iterations is N = 5. It shows that the two

implementations have similar detection performance.

Fig.4.10(a), (b) displays the clock cycles distribution for fixed-point DCD-BTN detector

implementation in the scenarios of K = 32, SF = 34 and Mb = 6, and K = 64, SF

= 67 and Mb = 6, respectively. Fig.4.11(a), (b) displays the clock cycles distribution for

fixed-point DCD-BTN detector implementation in the scenarios of, K = 32, SF = 34,

Mb = 4 and K = 64, SF = 67, Mb = 4, respectively. According to the figures, we can

estimate the average and worst-case number of clock cycles for each scenario.

Table 4.1: The clock cycles required for the DCD-BTN detector with different number of

bits for worst and average cases; K = 64, SF = 67, N = 5 and SNR = 7 dB.
Mb 1bit 2bits 3bits 4bits 5bits 6bits

Worst(α) 14912 (2.31) 23616(2.42) 32448(2.49) 57008(2.63) 73600(2.69) 86208(2.73)

Average(α) 10314(2.22) 14293(2.30) 17404(2.34) 20748(2.39) 24319(2.42) 28032(2.46)

Table 4.1 shows the required clock cycles for the DCD-BTN detector with different num-

ber of bits Mb for K = 64, SF = 67, SNR = 7 dB, in the worst-case and average-case

scenarios. For simplicity, the required clock cycles are represented as Kα, where α is an

exponent of K. The results show that the required clock cycles in the detector is maxi-
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Figure 4.11: Clock cycles distribution for fixed-point DCD-BTN detector implementa-

tion: (a) K = 32, SF = 34, Mb = 4; (b) K = 64, SF = 67,Mb = 4; SNR = 7

dB.

mally (i.e. for Mb = 6) K2.46 for the average-case and K2.73 for the worst-case.

Table 4.2: FPGA resources and update rates for DCD-BTN detector; Mb = 6 and N = 5

.

System Size K = 4 K = 32 K = 64

Slices 973 1162 1233(9%)

Block RAM 8 10 18

Multiplier 3 3 3

Update Rate(kHz) 28 12.5 3

Table 4.2 compares the FPGA resources required for the design and update rates for the

DCD-BTN detector for K = 4, SF = 4, K = 32, SF = 34 and K = 64, SF = 67 with

Mb = 6 and N = 5. The area usage of the Transceiver module is not included in these

figures. Results show that this design requires at most 9% of the resources available on

the FPGA chip. The increase of K has no much effect on the slice count, but affects the

size of memory. The FPGA resources increase slightly when the system size increases

from K = 4 to K = 64. At the same time, the update throughput slows down when K

is increased. To improve the update throughput, we can implement the box-constrained

DCD algorithm in the parallel architecture (as described in chapter 2) instead of the serial

architecture.
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4.9 Conclusions

A known iterative multiuser detection technique based on box-constrained solution with

Gauss-Seidel iterations and nonstationary iterative deregularization (GS-BD) provides a

better trade-off between complexity and detection performance than the “efficient fron-

tier”, which is formed by the decision-feedback (DF), probabilistic data association

(PDA), and the branch and bound (BB) detectors. Using DCD iterations instead of the

Gauss-Seidel iterations, we have proposed the DCD-boxed constraint with negative diag-

onal loading and Tikhonov iterations (DCD-BTN) multiuser detector.

The performance of the DCD-BTN detector, in terms of group detection error and com-

plexity, has been compared with that of the existing advanced multiuser detection tech-

niques, which are the DF, BB and PDA detectors. The DCD-BTN detector shows the

lowest complexity among these detectors (except for the DF detector, which has poor de-

tection performance) while providing almost an ML-like performance. Most operations

in the DCD-BTN detector can be implemented using additions and bit-shifts. This makes

it easy to be implemented in the real-time hardware. The multiplications are only required

for the calculation of the residual vector r update. However, this involves a very small

number of multiplications.

This design has been implemented on an FPGA board. This design only requires 1233

slices when K = 64, SF = 67, Mb = 6 and N = 5. We have compared the fixed-point

FPGA DCD-BTN detection performance with its floating point detection performance.

The results have shown that the two BER performance curves are very close to each other.

The DCD-BTN detector considered in this chapter allows detection of BPSK symbols. A

multiuser detector using the similar approach, but also suitable for detection of M-PSK

symbols, is considered in the next chapter.
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5.1 Introduction

The DCD-BTN detector has shown a detection performance close to the single user bound

for BPSK symbols in chapter 4. In this chapter, we extend the DCD-BTN algorithm by

making some modifications and propose a DCD-BTN-M detector. The proposed detector

is designed for M-PSK symbols with M > 2. Numerical results show that the DCD-

BTN-M detector provides a good detection performance with a reasonable complexity

for M-PSK symbols.

This chapter is organised as follows. In Section 5.2, the channel model for M-PSK mul-

tiuser detection is presented. In Section 5.3, the DCD-BTN-M detector is described. The
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numerical results for the DCD-BTN-M detector are shown in Section 5.4. Section 5.5

concludes the chapter.

5.2 Problem Formulation

For M-PSK symbols, the optimal ML multiuser detector estimates the vector h by mini-

mizing the quadratic function

ĥ = arg min
h∈AK

{
1

2
hTRh− θTh

}
, (5.1)

where h, θ are K×1 vectors, R is a K×K symmetric positive definite matrix. Alphabet

A stands for M-PSK constellation. To solve this problem, by using box-constraint and

the negative loading, and with the Tikhonov iterations, we can find the solution of the

optimization problem

h̃(n) = arg min
|hk|<1,k=1,··· ,K

{
1

2
hTRh− (θ + λnh̃

(n−1))Th− λn

2
hTh

}
, (5.2)

which can be considered as a box-constrained solution of the equation

(R− λnI)h̃
(n) = θ + λnh̃

(n−1), n = 1, · · · , N. (5.3)

where N is the number of the Tikhonov iterations, λn is the diagonal loading regulariza-

tion parameter.

5.3 DCD Box-constrained Detector with Negative Diag-

onal Loading and Tikhonov Iterations for M-PSK

Symbols

The DCD-BTN detector has shown an outstanding detection performance for BPSK sym-

bols. In this section, we further exploit the DCD-BTN detector, and make some refine-

ments to enable it dealing with complex-valued symbols. These refinements are described

as follows: the regularization parameter λn varies with iterations n, constant c and accord-

ing to

λn =

{
σ2 : n = 0

cnσ2 : n = 1, · · · , N .
(5.4)
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Table 5.1: Complex-valued box-constrained DCD algorithm
State Operation

0 Initialization: h = h̄, r = θ −Rh̄, m = Mb, p = 0

∆m = 0, s = 1, j = 1, Flag= 0

1
if m = 0, algorithm stops

else, m = m− 1, d = 2m, ∆m = ∆m + 1

2

if s = 1, then rt = <(r(j)); else, rt = =(r(j))

c = R(j, j)/2− |rt| × 2∆m

ht = h(j) + sign(rt)sd

if |ht| ≤ 1, then α = 0; else, α = 1

3
if c < 0 and α = 0, then goto state 4

else, goto state 5

4

h(j) = ht

r = r× 2∆m − sign(rt)sR(j)

∆m = 0, p = p + 1, Flag = 1

if p = Nu, algorithm stops

5

if s = 1, then s = i, goto state 2

else, s = 1, j = (j)mod(MT ) + 1

if j = 1 and Flag = 1, then Flag = 0, goto state 2

elseif j = 1 and Flag = 0, then goto state 1

else, goto state 2

Table 5.1 shows the complex-valued box-constrained DCD algorithm (DCD-B-CMPLX)

applied for this detector. It is similar to the complex-valued DCD algorithm in chapter 3,

but in state 2 |<(ht)| ≤ H and |=(ht)| ≤ H is replaced by |ht| ≤ 1. The DCD-B-CMPLX

algorithm provides an initial solution; the initial solution is mapped to the constellation

A, and then is used in the Tikhonov iterations of the DCD-B-CMPLX algorithm. The

proposed detector is named DCD-BTN-M and described as follows.

1. Solve the equation (R − λ0I)h = θ by using the box-constrained complex valued

DCD algorithm with the zero-initialization of h and matrix R replaced by R−λ0I,

i.e. we use DCD-B-CMPLX(h̄,R, θ, H, Nu,Mb) to obtain a solution vector h̄(0).

2. Mapping h̄(0) into the M-PSK constellation to obtain ĥ(0).

3. For n = 1, · · · , N , the box-constrained complex valued DCD algorithm uses h̃(n−1)

as an initialization of the solution and

θ(n) = θ − λnh̃
(n−1) (5.5)

as an initialization of the residual vector and matrix R is replaced by R−λnI, i.e. we

use DCD-B-CMPLX(h̃(n−1),R, θ(n), H, Nu,Mb) to obtain a solution vector h̃(n).
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Figure 5.1: BER performance of the DCD-BTN detector in the scenario of K = 4, SF = 4,

Mb = 15.

4. Mapping h̃(N) into the M-PSK constellation to obtain ĥ(N).

5.4 Simulations for the DCD-BTN-M Detector

In this section, we present computer simulation examples to show the detection perfor-

mance and the complexity of the proposed multiuser detector for QPSK symbols. We

assume the simulation channel is perfect power control with AWGN, where the users em-

ploy randomly generated spreading codes. We choose Mb = 15 and Nu = 300. The

Single-user BER performance is obtained by theoretical calculation. Fig. 5.1 shows the

BER performance of the DCD-BTN-M detector. The number of users is K = 4, the

spreading factor is SF = 4. It can be seen that the performance is poor. Therefore, the

DCD-BTN-M detector is not suited for the small system size.

Fig. 5.2 shows the bit error rate (BER) performance of the proposed multiuser detector in

comparison with MMSE detector in the scenario of K = 40 and SF = 63. It shows that
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Figure 5.2: The effect of the constant c on BER performance of the DCD-BTN-M detector when

N = 1 in the scenario of K = 40, SF = 63, Mb = 15.

MMSE detector is inferior to the proposed detector. The simulation results also show the

effect of the constant c on the BER performance of the proposed detector. It shows that

when N = 1, the increase of c can slightly improve the BER performance of this proposed

detector at high SNRs. The performance cannot be further improved when c > 4. When

c = 4, the difference in the performance compared to the single user bound is 1.5 dB at

BER of 10−4.

Fig. 5.3 shows the effect of the number of Tikhonov iterations N and the constant c on

the BER performance of the proposed detector in the scenario of K = 40, SF = 63.

When c varies from 1 to 4, increase in N can slightly improve the BER performance of

the proposed detector at high SNRs. The symbol error rate (SER) performance in Fig. 5.4

and the group detection error (GDE) performance in Fig. 5.5 also show this.

Fig. 5.6 shows the complexity of the proposed detector in the scenario of K = 40 and SF

= 63. It can be seen that when N = 4, this detector with c = 4 significantly reduces the

complexity compared to that with c = 1. When N = 1, the detector with c = 4 has lower

average complexity than that with c = 1, and also has a lower worst-case complexity at
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Figure 5.3: BER performance of the DCD-BTN-M detector in the scenario of K = 40, SF = 63,

Mb = 15.

low SNRs.

Fig. 5.7 shows the BER performance of the proposed multiuser detector in comparison

with MMSE detector in the highly loaded scenario of K = 60 and SF = 63. It shows that

MMSE detector is inferior to the proposed detector. Increase in N cannot significantly

improve the performance of this detector. Fig. 5.8 and Fig. 5.9 show the SER and GDE

performance of the proposed detector, respectively. At SER = 10−4, this proposed de-

tector has approximately 2 dB difference to the single user bound. Increase in N cannot

significantly improve the detection performance of proposed detector. Fig. 5.10 shows

that the complexity of this proposed detector linearly increases with the increase of N .

We also can see that this proposed detector with c = 4, and N = 1 has almost constant

complexity when SNR > 8 dB.
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Figure 5.4: SER performance of the DCD-BTN-M detector in the scenario of K = 40, SF = 63,

Mb = 15.

5.5 Conclusions

In this chapter, we further exploit the DCD-BTN detector and propose the DCD-BTN-

M detector for M-PSK symbols. Numerical results show that the DCD-BTN-M detector

is suitable for detection of the complex-valued symbols and provides better detection

performance in comparison with the MMSE detector. The type of constrained used in

the DCD-BTN-M detector is most suitable for M-PSK constellation. It can also be used

for QAM symbols. However, for QAM symbols, this constrained is not tight enough.

Therefore, for QAM symbols, the detection performance can be worse than that for M-

PSK symbols.
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Figure 5.5: GDE performance of the DCD-BTN-M detector in the scenario of K = 40, SF = 63,

Mb = 15.
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Figure 5.6: The complexity of the DCD-BTN-M detector in the scenario of K = 40, SF = 63,

Mb = 15.
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Figure 5.7: BER performance of the DCD-BTN-M detector in the scenario of K = 60, SF = 63,

Mb = 15.
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Figure 5.8: SER performance of the DCD-BTN-M detector in the scenario of K = 60, SF = 63,

Mb = 15.
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Figure 5.9: GDE performance of the DCD-BTN-M detector in the scenario of K = 60, SF = 63,

Mb = 15.
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Figure 5.10: Complexty of the DCD-BTN-M detector in the scenario of K = 60, SF = 63,

Mb = 15.
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Multiple Phase Detection of M-PSK
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6.1 Introduction

In multiple-access CDMA systems, multiuser detection is capable of providing high de-

tection performance [9]. However, the complexity of multiuser detectors that are capable

of approaching the optimal performance is still a very important issue. For a small-size

problem, sphere decoding achieves a nearly optimal performance [97], but becomes com-

plicated when the size of the problem increases [98]. Semi-definite relaxation (SDR)

has also been proposed and investigated for joint detection of a number of symbols with
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M-PSK modulation [12]. Although, promising for multiuser detection, SDR is still com-

plicated for practical implementation [99].

In the MIMO wireless systems, ML decoder offers performance advantages over sophisti-

cated sub-optimal detectors [100, 101]. The sphere decoders using depth-first tree search

can provide the optimal ML decoding performance, while retaining a lower complex-

ity [102]. Branch and bound based ML decoders have also been proposed for implemen-

tation of ML detectors [39]. However, the computational complexity of depth-first sphere

decoders and branch and bound decoders rely on a careful choice of initial sphere radius;

if the initial radius is too small, new search has to be restarted and redundant computations

occur [103].

In this chapter, we propose a new technique, multiple phase decoder (MPD), for solv-

ing the quadratic optimization problem. The MPD is based on a phase descent search

(PDS) algorithm. The PDS algorithm is based on coordinate descent iterations, where

coordinates are unknown symbol phases, while constraints the symbols to have a unit

magnitude. The MPD is investigated for detection of M-PSK symbols in multiuser and

MIMO systems. In the multiuser detection, the MPD can be applied to highly loaded

scenarios and the numerical results show that the MPD can provide the near-optimal per-

formance and allow low complexity. In the MIMO detection, the MPD exhibits more

favorable performance/complexity characteristics and can be considered as a promising

alternative to the sphere decoder for decoding in MIMO systems.

This chapter is organized as follows. In Section 6.2, the problem formulation is presented.

In Section 6.3 proposes the phase descent search algorithm. Section 6.4 proposes the

multiple phase detection for M-PSK symbols. Section 6.5 presents the simulation results

of the multiple phase detection in multiuser, and the simulation results of the multiple

phase detection in MIMO system are shown in section 6.6. Section 6.7 proposes the

hardware implementation issues for the multiple phase detection. Section 6.8 concludes

the chapter.
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6.2 Problem Formulation

The multiuser and MIMO detection deal with the channel model can be considered to

z = Gh + n , (6.1)

where h, z are K × 1 vectors, G is a K × K symmetric positive definite matrix, n is a

K × 1 zero mean Gaussian random vector with variance σ2. The vector h can be found

by

ĥ = arg min
h∈AK

‖z−Gh‖2

= arg min
h∈AK

(
hHRh− 2<{θHh}) . (6.2)

We denote

J(h) = hHRh− 2<{θHh} , (6.3)

the quadratic cost function, R = GHG, and θ = GHz. The ML detector provides the op-

timal detection performance. However the complexity of the ML detector is exponential

in the constellation set A and the number of users K (in multiuser detection) or transmit

antennas (in MIMO communications).

6.3 Phase Descent Search Algorithm

The phase descent search (PDS) algorithm is based on coordinate descent iterations with

respect to the unknown symbol phases and a constraint that forces the symbols to have a

unit magnitude. Specifically, elements of the solution are given by

hk = ejφk , k = 0, . . . , K − 1, φk ∈ [−π, π] . (6.4)

The coordinate descent iterations are applied to the phases φk. The derivation below is

based on a general coordinate descent method described in [104] (see also [8]). Here, we

apply this method to the cost function (6.3) with elements hk from (6.4).

Let h(i − 1) be a solution obtained at the (i − 1)th iteration; elements of h(i − 1) are

denoted as hk(i− 1), k = 0, . . . , K − 1. At the ith iteration, the solution h(i) may differ

from h(i− 1) in the pth element only. This element may be updated as

hp(i) = hp(i− 1)e±jd , (6.5)
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where d ∈ [0, 2π] is a step-size parameter (we call such an iteration successful), or it

may stay unchanged (we call such an iteration unsuccessful). Depending on a sequence

of unsuccessful iterations, the step-size parameter can be reduced; this will be explained

below. We can express the update (6.5) as

h(i) = h(i− 1) + ∆ ,

where ∆ = uhp(i− 1)ep, ep is a vector whose elements are zeros except the pth element

which is equal to 1, and

u ∈ {u1, u2}, u1 = e−jd − 1, u2 = ejd − 1.

The update is applied (i.e. the iteration is successful) if the cost function (6.3) is reduced,

i.e.

∆J(i) = J [h(i)]− J [h(i− 1)] < 0 .

The decrement ∆J(i) of the cost function can be written as

∆J(i) = [h(i− 1) + ∆]HR[h(i− 1) + ∆]− hH(i− 1)Rh(i− 1)

−2<{θH [h(i− 1) + ∆]}+ 2<{θHh(i− 1)} . (6.6)

The first two terms in (6.6) can be represented as

∆HR∆ + 2<{∆HRh(i− 1)}.

It is easy to see that ∆HR∆ = Rp,p|u|2 and

<{∆HRh(i− 1)} = <
{

u∗h∗p(i− 1)
K−1∑

k=0

Rp,khk(i− 1)

}
,

where Rp,k are elements of the matrix R. As the last two terms in (6.6) can be represented

as −2<{∆Hθ} = −2<{u∗h∗p(i− 1)θp}, we finally obtain

∆J(i) = Rp,p|u|2 − 2<{
u∗h∗p(i− 1)rp(i− 1)

}
, (6.7)

where rp(i − 1) = θp −
∑K−1

k=0 Rp,khk(i − 1) is the pth element of the residual vector

r(i− 1) = θ−Rh(i− 1) and θp is the pth element of θ. It shows that the residual vector

can be recursively updated as

r(i) = r(i− 1)− uhp(i− 1)R(:, p) (6.8)

with an initialization r(0) = θ−Rh0, where h0 is an initialization for the solution vector,

and R(:, p) is the pth column of R.
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From (6.7), we conclude that the ith iteration is successful if

Rp,p|u|2 < 2<{
u∗h∗p(i− 1)rp(i− 1)

}
. (6.9)

Now we summarize the iterative Phase Descent Search (PDS) algorithm as shown in

Table 6.1, where p is chosen in a circle order, i.e. p = i mod K, p = 0, . . . , K − 1, and

we take into account that |u|2 = 2[1− cos(d)].

If one of the inequalities at steps 8 or 14 is satisfied, the iteration is successful. The

element hp and the residual vector r are updated (steps 10-11 or 16-17, respectively); oth-

erwise, they are not changed. The index n denotes the number of successful updates; it is

used for introducing the stopping criterion at step 19, where Nu is a predefined parameter

that limits the maximum number of successful updates. In a pass for achieving mth bit,

including K iterations with p = 0, . . . , K − 1, if there is no successful update, the step-

size is reduced at step 2: d = d0λ
m, 0 < λ < 1, where d0 is an initial value of d. It is

natural to choose d0 = 2π. The choice of λ may depend on the modulation scheme used;

this will be addressed below. The parameter Mb indicates the number of reductions of the

step-size d and, thus, the final phase resolution d0λ
Mb; e.g. in the case of λ = 1/2 and

Mb = 8, the final phase resolution is 2π/2Mb = π/128.

Table 6.1 also shows the complexity of different steps of the PDS algorithm in terms of

real multiplications and additions, as well as the maximum complexity. The computa-

tional load of the algorithm mainly depends on the system size, and the condition number

of the system matrix, as well as Nu and Mb.

A successful iteration requires 4 real multiplications and 8 additions for comparison, 4K

multiplications and 4K additions for updating r. For an unsuccessful iteration, only 4 real

multiplications and 8 additions are used for the comparison. The worst case complexity

corresponds to an unlikely situation, which occurs when only the last bit has Nu successful

iterations. This means that the calculation of the first (Mb − 1) bits do not contain any

successful iteration, and so, require 4K(Mb − 1) real multiplications, and 8K(Mb − 1)

additions. The worst-case complexity for calculation of the last bit (corresponds to m =

Mb) occurs when only one successful iteration happens among the K iterations (p =

0, 1, · · · , K − 1). This requires 4K real multiplications and 8K real additions for the

comparison, 4K real multiplications and 4K real additions to update r. In addition, for

all Mb bits, MbK real multiplications are required for calculating ψ at step 3. In total, Nu

successful iterations require Nu(4K + 4K) + MbK real multiplication, Nu(8K + 4K)

additions.
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Table 6.1: Phase Descent Search algorithm
Step Equation × +

Init. h = h0, φ = φ0, r = θ −Rh0, d = d0, n = 0

1 for m = 1 : Mb

2 d = λd − −
3 ψ = diag{R}[1− cos(d)] K −
4 Flag= 0 − −
5 for p = 0 : (K − 1) − −
6 φp,1 = φp + d, hp,1 = ejφp,1 − 1

7 ∆1 = hp,1 − hp, T1 = <{∆∗
1rp} 2 2

8 if ψp < T1 − 1

9 n = n + 1, Flag= 1 − −
10 r = r−∆1R(:, p) 4K 4K

11 φp = φp,1, hp = hp,1 − −
12 φp,2 = φp − d, hp,2 = ejφp,2 − 1

13 ∆2 = hp,2 − hp, T2 = <{∆∗
2rp} 2 2

14 if ψp < T2 − 1

15 n = n + 1, Flag= 1 − −
16 r = r−∆2R(:, p) 4K 4K

17 φp = φp,2, hp = hp,2 − −
18 end the loop over p − −
19 if n > Nu the algorithm stops − −
20 if Flag= 1 go to step 4 − −
21 end the loop over m − −

Total complexity: ≤ 8KNu + 5KMb real multiplications

and ≤ 12KNu + 8KMb real additions
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Table 6.2: Multiple Phase Algorithm
Step equation

for q = 1 : Q

1 Initialize the PDS algorithm with

Mb > 1, λ = 1/2, φ = φq, h = hq, r = θ −Rhq

Apply the PDS algorithm to obtain a solution h

2 Map h into the M-PSK constellation to obtain φ̃ and h̃

3 Initialize the PDS algorithm with

Mb = 1, λ = 1/M , φ = φ̃, h = h̃, r = θ −Rh̃

Apply the PDS algorithm to obtain a solution h

4 Calculate the cost function for the solution h

end

Choose the solution with the minimum cost

Therefore, the complexity of the PDS algorithm is upper bounded by 8KNu +

5KMb − 4K ≈ 8KNu + 5KMb real multiplications, 12KNu + (8K + 1)Mb − 8K ≈
12KNu + 8KMb additions. However in a typical situation, there should be several suc-

cessful iterations in each pass (m = 1, · · · ,Mb), and the average complexity will be close

to 8KNu real multiplications and 12KNu additions.

6.4 Multiple Phase Decoder

The PDS algorithm with a consequent mapping of the solution to the constellation A is

shown to provide a good detection performance for highly loaded BPSK systems. How-

ever, for M-PSK systems with M > 2, the performance can be improved by multiple use

of the PDS algorithm in the multiple phase algorithm as shown in Table 6.2.

The PDS algorithm is used Q times with different initializations of the solution vector. To

obtain a solution for the qth initialization hq, we apply the PDS algorithm twice. Among

the Q solutions, the one that has the smallest cost function J(h) is selected. In the first

PDS, we use a high Mb and λ = 1/2. With the consequent mapping (Step 2) to the

constellation A, the first PDS algorithm provides an initial solution for the second PDS

algorithm. The second PDS algorithm performs a descent local search moving from one

ML feasible solution to another in the neighborhood of the initial solution [99]. We use

Mb = 1 and λ = 1/M , h̃ = exp(jφ̃), and the PDS algorithm performs M-PSK symbol-
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flipping. For initialization of the solution vector, we use the following vectors

hq = exp

(
j
πq

Q

)
1 = exp (jφq), (6.10)

where 1 is a K-length vectors of ones and φq = (πq/Q)1.
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Figure 6.1: BER performance of MPD-based multiuser detector; BPSK modulation, K =

60, SF = 63.

6.5 Simulation Results for MPD in Multiuser Detection

Fig.6.1 shows the BER performance of the proposed detector for BPSK modulated sig-

nals against the single-user bound, obtained in 106 simulation trials. The user signature

waveforms have equal energies. They are binary and chosen randomly in each simulation

trial. The number of users is K = 60 and the spreading factor is SF = 63. The case

Q = 0 corresponds to the PDS algorithm with a consequent mapping of the solution to

the set A (steps 1 and 2 in Table 6.2). The case Mb = 1 with λ = 1/2 corresponds to

bit-flipping, i.e. changing the pth coordinate of the solution vector between +1 and −1.

The bit-flipping provides a good performance at low SNRs, but at high SNRs, there is a
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Figure 6.2: BER performance of MPD-based multiuser detector; 8-PSK modulation, K =

60, SF = 63.

BER floor. As Mb increases, the BER floor level is reduced; however, the performance

at low SNRs becomes worse. In the case of Q = 1, the PDS algorithm is used again at

step 3, now with Mb = 1, i.e. the second PDS algorithm provides the bit-flipping, which

results in significant improvement in the BER performance. For a highly loaded scenario,

the performance becomes very close to the single-user bound. We compare the perfor-

mance with the single-user bound (instead of the ML performance) because simulation of

the ML detector with K = 60 users would be impractical.

Fig.6.2 shows the BER performance for a scenario with 8-PSK modulation. For this

scenario, the use of Q = 0 or Q = 1 does not allow the detection performance to approach

the single-user bound. For Q = 4, as Mb increases, the BER floor level is reduced,

whereas the BER curves slightly depart from the single-user bound. However, for Q = 8

and Mb = 6 at high SNRs, the BER performance of the MPD is very close to the single-

user bound.

Fig.6.3 compares the symbol-error-rate (SER) performance of the MPD against the SDR

detector for 8-PSK modulation. The results for the SDR detector are taken from [105],
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Figure 6.3: SER performance of the multiple phase detector against the SDR detector;

8-PSK modulation, Q = 4,Mb = 8, SF = 31, SNR = 17 dB.

where the simulation has been done with Gold signature waveforms of length SF = 31.

We also use the Gold signature waveforms in the same scenarios, where the number of

users varies from K = 20 to K = 30. Fig.6.3 shows that the MPD significantly out-

performs the SDR detector and the performance of the proposed detector is very close to

the single-user bound. The Gold signature waveforms have good correlation properties,

however, the good correlation properties are easily distorted due to the complex environ-

ment in practical transmission. The random signature waveform can proximately imitate

the sequences in real systems. Therefore, we have also repeated the simulation for bi-

nary signature waveforms randomly chosen in each simulation trial; it can be seen that

the performance is similar or better than that of the SDR detector with Gold signature

waveforms.

Fig.6.4 shows the BER performance of the MPD in overloaded multiuser scenarios with

BPSK modulation where the number of users exceeds the spreading factor. The signature

waveforms are random binary with equal energies. It is seen that the proposed detec-

tor allows reliable detection even in these difficult situations. However, this requires an

increase in the number of initializations Q.
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Figure 6.4: BER performance of the multiple phase detector in overloaded scenarios;

BPSK modulation, SF = 31.

Finally, we provide simulation results that demonstrate near-far resistance of the proposed

detector. We consider scenarios where all but the first user has the same SNR [99]. In

Fig.6.5, the BER performance of the first user is shown against the ratio of the strength

of the interfering user signals to the first user signal for BPSK modulation. In the case

of K = 10 and SF = 31 (this case and the case K = 24 and SF = 31 are similar to

that considered in [99]), the near-far resistance of the proposed detector is close to that of

the ML detector. In this case, increase in Q does not improve the BER performance. In

the case of K = 24, increase in Q results in a slight improvement. Note that the direct

simulation of the ML detector for K = 24 is impractical, therefore we cannot compare

our results with the ML performance. In [99], the BER performance of an ML detector

implemented using a branch and bound algorithm based on SDR is given for the same

scenario. However, our results show slightly better near-far resistance compared to the

ML performance presented in [99]. It is seen that with further increase of the load (the

case of K = 60 and SF = 63), the proposed detector demonstrates small variations in

the near-far resistance. Fig.6.6 shows that the proposed detector has also good near-far

resistance for 8-PSK modulation.
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Figure 6.5: BER performance of the multiple phase detector in near-far scenarios; BPSK

modulation, SNR(1) = 6 dB.
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Figure 6.6: BER performance of the multiple phase detector in near-far scenarios; 8-PSK

modulation, SNR(1) = 16 dB.
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Figure 6.7: BER performance of the multiple phase decoder using different Q against the

ML decoder in a 4× 4 MIMO system with QPSK modulation; Mb = 6.

In the simulation, we computed the average number of multiplications in the proposed

detector with the best performance in Fig.6.2, i.e. Q = 8 and Mb = 6. On average, the

detector requires approximately 5 ·105 multiplications to detect all K = 60 user symbols.

Note that the complexity of the decorrelator (one of the simplest detectors) is approxi-

mately K3 ≈ 2 · 105 multiplications, i.e. the complexity of the proposed multiple phase

detector with Q = 8 branches in such a highly loaded scenario is close to that of the

decorrelator. In [105], complexity results for the SDR detector are presented; specifically,

for K = 10, the SDR detector requires approximately 2 · 106 multiplications. Our simu-

lation results have shown that, in the case of K = 10, Q = 8, and Mb = 6, the proposed

detector requires on average 1.2 · 104 multiplications, i.e. two orders of magnitude lower

than that of the SDR detector.
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Figure 6.8: BER performance of the multiple phase decoder using different Q against the

sphere decoder in a 8× 8 MIMO system with QPSK modulation; Mb = 6.

6.6 Simulation Results for MPD in MIMO Detection

In this section, MPD is applied to solve the detection problem in MIMO systems, with

near optimal ML performance and low complexity.

Fig.6.7 and Fig.6.8 show the detection performance of the multiple phase decoder for

4 × 4 and 8 × 8 MIMO systems with QPSK modulation. The performance of the MPD

with various Q is compared to the performance obtained from ML decoder and the sphere

decoder. The simulation trials is 106. Fig.6.7 and Fig.6.8 show that the MPD with Q =

1 does not provide a good performance. When Q = 8, the MPD makes a significant

performance improvement in comparison with the case of Q = 1, but there is a BER floor

at high SNRs. As Q increases, the BER floor level is reduced. When Q = 32, the MPD in

the 4×4 MIMO system shown in Fig.6.7 performs near the ML detector boundary. Fig.6.8

shows that the BER performance of the MPD in the 8 × 8 MIMO system is close to that

of the sphere decoder; the BER performance of the sphere decoder is taken from [106].

Fig.6.9 shows the average complexity and the worst case complexity of the multiple phase
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Figure 6.9: Computational complexity versus the SNR of the multiple phase decoder for

4× 4 and 8× 8 MIMO systems with QPSK modulation; Q = 16.

decoder in the 4 × 4 and 8 × 8 MIMO systems with Q = 16. It can be seen that the

average complexity keeps stable for the whole region of SNRs. The average complexity

of the MPD in the 8× 8 MIMO system is about six times higher than that of MPD in the

4× 4 MIMO system. The worst-case complexity varies over the SNR range, however the

variations are insignificant. It can be seen that the worst-case complexity of the MPD in

the 8×8 MIMO system is about four times higher than that of the MPD in the 4×4 MIMO

system. The worst-case complexity of the sphere decoder is known to be an exponential

function of system size [107].

Fig.6.10 shows the decoding complexity of the proposed decoder and the sphere decoder

in MIMO communication. The complexity of the sphere decoder is taken from [108].

Fig.6.10(a) shows that the complexity of the sphere decoder is exponentially propor-

tional to MT at low SNRs [109]. The proposed decoder with Q = 4 offers a much

lower complexity than the sphere decoder by providing a similar decoding performance

of BER ≈ 2× 10−2. Fig.6.10(b) demonstrates that in the higher SNR region corre-

sponding to 3 × 10−5 < BER < 9 × 10−5, the complexity of the sphere decoder is

similar to that of the proposed decoder with Q = 32 when the number of transmit an-
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Figure 6.10: Decoding complexity verses the number of transmit antennas with QPSK

modulation for sphere decoder and multiple phase decoder; a) BER = 2 × 10−2 and for

MPD with Q = 4, b) 3× 10−5 < BER < 9× 10−5 and for MPD with Q = 32.

tennas is less than 20. However, the sphere decoder still shows higher complexity than

the proposed decoder when the number of transmit antennas increases. Overall, the av-

erage computational complexity of the proposed decoder is lower than that of the sphere

decoder.

6.7 MPD Implementation Issues

In this section, we discuss the implementation of the proposed multiple phase detector

in hardware. This detector can be implemented as Q identical parallel branches as in

Fig. 6.11, each containing two PDS blocks (corresponding to steps 1 and 3 in Table 6.2),

a mapping block (step 2 in Table 6.2) and a block for computation of the cost function

(step 4 in Table 6.2). Table 6.3 shows the PDS algorithm in a form suitable for FPGA

implementation.
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Table 6.3: PDS in a form suitable for an FPGA implementation
Step Operation × +

0 φ = φq, hq = exp(jφq), m = 0, n = 0, p = 1 − −
1 r = θ −Rhq, K K(K − 1)

2 if m = Mb, algorithm stops − −
else, m = m + 1, d = 2−m, − 1

3 ρ = 1−<(exp(jd)) − −
ψ = ρ·diag{R} K −

4 φq,p1 = φ + d − 1

4hq,p1 = exp(jφq,p1)− exp (jφq,p) − 1

T1 = <(4hq,p1 · rq,p) 1 −
c1 = ψp + T1 − 1

5 if c1 < 0, then goto state 6 − −
else, goto state 7 − −

6 hq,p1 = exp(jφq,p1) − −
r = r +4hq,p1 ·R(:, p) K K

n = n + 1, Flag = 1 − −
if n = Nu, algorithm stops − −
else goto state 9 − −

7 φq,p2 = φq,p − d − 1

4hq,p2 = exp (jφq,p2)− exp (jφq,p) 1 1

T2 = <(4hq,p2 · rq,p) 1 −
c2 = ψp + T2 − 1

8 if c2 < 0, then goto state 9 − −
else, goto state 10 − −

9 hq,p2 = exp(jφq,p2) − −
r = r +4hq,p2 ·R(:, p) K K

n = n + 1, Flag = 1 − −
if n = Nu, algorithm stops − −
else goto state 10 − −

10 p = pmodK + 1 − 1

if p = 1 and Flag = 1, then Flag = 0, goto state 3 − −
elsif p = 1 and Flag = 0, then goto state 2 − −
else, goto state 3 − −
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Figure 6.11: Block diagram of the multiple phase decoder.

The first PDS blocks in the branches use different initialization of the phase vector φ and,

accordingly, different initialization of the solution vector h and the residual vector r. The

initial vector hq in the qth branch should satisfy the constraint (6.4) and therefore it can be

represented as hq = exp(jφq). For a fixed vector φq, the initial vector hq can be obtained

using a look-up table, which contains samples of the complex. The size of the look-up

table is as small as 2Mb; e.g. for Mb = 6, it contains 64 complex numbers. To initialize

the residual vector (step 1 in Table 6.3), one has to calculate the matrix-vector product

Rhq, which, in the general case, would require K2 complex-valued multiplications and

K(K − 1) complex-valued additions in each branch. This computation is significantly

simplified if all elements of the phase vector φq are the same, i.e. Rhq = cqR1, where

cq is a complex-valued constant and 1 is a K-length vector of ones. In this case, the

vector R1 is calculated once for all Q branches and this calculation does not require

multiplications. Then, for initialization of the residual vector for each branch is as small

as K complex-valued multiplications and K(K − 1) complex-valued additions. Multiple

simulations with different initialization have shown that the use of cq = exp(j πq
Q

) provides

good detection performance.

Since the PDS algorithm provides phases of the solution, the mapping at step 2 in Table

6.2 becomes a simple operation. It includes quantization of Mb-bit elements of the phase

vector φq into log2(M)-bit elements of the vector φ̃ and the use of a look-up table of

size M to obtain h̃. These two vectors are used for initialization of the second PDS
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blocks in the branches. Note that the proposed choice of the parameters Mb = 1 and

λ = 1/M makes the second PDS simple for implementation and, also, it removes the need

for symbol mapping after the second PDS. Our simulation results have shown that, in the

second PDS blocks, the parameter Nu limiting the number of updates can be significantly

lower than that in the first PDS block.

In the PDS algorithm presented in Table 6.1, there are two stopping criteria: 1) at step 19

upon performing Nu updates; and 2) at step 21 upon achieving a predefined phase resolu-

tion d0λ
Mb . When implementing in hardware (e.g. on an FPGA platform), other stopping

criteria can be used; e.g. the PDS can stop after a predefined number of clock cycles (or

execution time). Table 6.1 shows the complexity of different steps of the PDS algorithm

in terms of real multiplications and additions, as well as the maximum complexity. At

step 3, the values 1− cos(d) for Mb values of d can be precomputed. Thus, this step only

requires K complex-valued multiplications (corresponding to the step 3 in Table 6.3). For

transforming phases φp,1 and φp,2 into complex numbers hp,1 and hp,2 (at steps 6 and 12,

respectively), a look-up table of size 2Mb can be used as explained above. The maximum

complexity corresponds to a scenario where, for every pass, only one successful itera-

tion happens and the PDS algorithm stops at step 19, i.e. due to reaching a predefined

maximum number of successful updates Nu. If, in a pass, there are several successful

iterations and/or the PDS algorithm stops at step 21, i.e. due to reaching the predefined

phase resolution, the complexity will be lower. In the simulation above, we used Nu high

enough to guarantee that the PDS algorithm stops at step 21.

6.8 Conclusions

In this chapter, a novel iterative technique, the phase descent search algorithm, for joint

detection of M-PSK symbols has been proposed. The technique provides a solution to the

quadratic optimization problem with the constraint that forces elements of the solution

to have unit magnitudes. The technique is used multiple times in the proposed multiple

phase detector.

The multiple phase detector has been applied to the multiuser detection and MIMO com-

munication. In multiuser detection, the multiple phase detector has been investigated in

highly loaded and overloaded scenarios. The numerical results have shown that in highly

loaded scenarios, the multiple phase detector has offered a detection performance which
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was close to the single-user bound. The multiple phase detector has also shown a better

performance and a lower complexity than those of the semi-definite relaxation detector. In

the MIMO communication, the multiple phase detector has been shown to offer a perfor-

mance which was similar to that of the sphere decoder in QPSK modulation. Furthermore,

it has been shown that the worst-case complexity of the multiple phase detector slightly

varies with SNR, but the variation is insignificant. In addition, its complexity linearly

increases with the number of transmit antennas. While at low SNRs, the complexity of

the sphere decoder is predicted as exponential. Therefore the multiple phase detector ex-

hibits more favorable performance/complexity characteristics and can be considered as a

promising alternative to the sphere decoder for ML decoding in MIMO detection.

This proposed detector is especially designed for the M-PSK symbols detection. We

have not run the simulation to show if the proposed detector can provide good detection

performance for QAM symbols. This detector might provide good detection performance

for QAM symbols after adjusting the searching structure for the QAM constellation.
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7.1 Introduction

In CDMA systems, since multiple users share the same bandwidth to transmit data, user

signal may interfere with each other if orthogonality is not maintained and causes Multi-

ple Access Interference (MAI). MAI degrades the performance of the system. Multiuser

detection has received a considerable attention as a technique used to solve the problem of

MAI. However, the optimal multiuser detection is generally NP (nondeterministic poly-
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nomial time)-hard. Since the computational complexity of the optimal multiuser detector

grows exponentially as the number of users K increases [110, 111], it is impossible for

the optimal receiver to be implemented in a practical system. Consequently, many sub-

optimal receivers with a relatively lower computational complexity have been proposed.

The box-constrained dichotomous coordinate descent (DCD) algorithm, which is pro-

posed in chapter 2, provides a good detection performance with a low complexity over all

the SNRs, even in highly loaded systems. In addition, this algorithm is multiplication and

division free, and so, is efficient for real-time implementation.

The fast optimal algorithm based on branch and bound (BB) method (i.e. fast BB) has

shown optimal ML detection performance and low average complexity at high SNRs [41].

In multiuser detection, the BB method has two searching approaches which are depth-first

search and width-first search. In [41], the popular sphere decoding algorithm has been

shown actually a type of the depth-first BB algorithm. However, its worst-case computa-

tional complexity is identical to that of the ML optimal multiuser detector, which grows

exponentially as K increases. In practice, the worst-case computational complexity is

taken into account when the receiver is designed. In order to be implemented in real-time

systems, the worst-case computational complexity of a receiver needs to be within the

polynomial complexity [112]. Therefore, the worst-case complexity of the BB algorithm

prevents it from being implemented in practical systems.

In this chapter, we propose a novel method for multiuser detection, based on combining

the BB algorithm and the box-constrained DCD algorithm, to overcome the complexity

barrier at low SNRs of the BB detector. The results show that the combined detector

significantly reduces the worst-case computational complexity in comparison with that of

the BB detector and outperforms the box-constrained DCD algorithm. As a result, the

“complexity-detection” performance is improved.

This chapter is organized as follows. In Section 7.2, the problem formulation of the

multiuser detection is described. The depth-first branch and bound algorithm, sphere

decoding algorithm and the fast branch and bound algorithm are introduced in Section

7.3. In Section 7.4, the detection performance and complexity of the box-constrained

DCD detector and the BB detector are presented. In Section 7.5, the combined BB-DCD

algorithm is presented. Simulation results and performance analysis are also given in this

section. Section 7.6 concludes the chapter.
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7.2 Problem Formulation

We assume a K-user synchronous CDMA system using BPSK modulation in an AWGN

channel. The matched filter output in the receiver is given by

θ = Rh + n , (7.1)

where h ∈ {−1, +1}K denotes the K-length vector of bits transmitted by K users, R is

a K × K symmetric correlation matrix, n is a real-valued zero-mean Gaussian random

vector with a covariance matrix σ2R. Using Cholesky decomposition, we assume that

R = LTL, where L is a lower triangular matrix (i.e. Lij = 0 if i < j ). The system can

also be represented by a white noise model

θ̃ = L−T θ = Lh + n0 , (7.2)

where n0 = L−Tn is a white Gaussian noise with zero mean and covariance matrix σ2I.

The optimal solution of (7.1) is given by

ĥ = arg min
h∈{−1,+1}K

{hTRh− 2θTh}. (7.3)

The solution of the decorrelating detector [113] is obtained in two steps. First, the uncon-

strained solution h̃ = R−1θ is computed. Then, it is projected onto the binary constraint

set via ĥi = sign(h̃i).

The decorrelating decision feedback (DF) method is described in [21]. If we denote the

ith component of a vector θ by θi, and denote the (i, j)th component of a matrix A by

aij , the decorrelating DF detector can be characterized by

ĥ = Ph̃ ; h̃i = sign

(
K∑

j=1

fij[Pθ]j −
i−1∑
j=1

aijh̃j

)
(7.4)

where F = U
(
[PRPT ]−1

)
, A = L(FPRP), U(·) represents the upper triangular part

of a matrix, L(·) represents the strictly lower triangular part of a matrix, and P is a per-

mutation matrix. The choice of P has been discussed in [21].

Z. Quan, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 7. COMBINED MULTI-USER DETECTION WITH IMPROVED

“COMPLEXITY-DETECTION” PERFORMANCE 115

7.3 Existing Method

7.3.1 Depth-first Branch and Bound Algorithm

In [41], the relationship between the decorrelating DF, the sphere decoding algorithms

and the depth-first BB algorithm has been clearly drawn. It shows that the decorrelating

DF detector corresponds to a “one-pass” depth-first BB detector, and the sphere decoding

algorithm actually is a type of the depth-first BB detector [41]. For the convenience

of understanding the fast BB algorithm, we first present the BB algorithm based on the

depth-first search in this section.

Since R−1 = L−1(L−1)T , equation (7.3) can be written as

ĥ = arg min
h∈{−1,+1}K

(h−R−1θ)TR(h−R−1θ)

= arg min
h∈{−1,+1}K

‖L(h−R−1θ)‖2
2

= arg min
h∈{−1,+1}K

‖Lh− (L−1)T θ‖2
2. (7.5)

We define θ̃ = (L−1)T θ and T = Lh. We consequently get

ĥ = arg min
h∈{−1,+1}K

‖T− θ̃‖2
2

= arg min
h∈{−1,+1}K

K∑

k=1

(Tk − θ̃k)
2
, (7.6)

where Tk and θ̃k are the kth component of T and θ̃, respectively. Since L is a lower

triangular matrix, Tk depends only on (h1, h2, · · · , hk). When the decisions for the first k

users are fixed, the term

`k =
k∑

j=1

(Tj − θ̃j)
2 (7.7)

can serve as a lower bound of (7.6). When the binary constraints on (hk+1, hk+2, · · · , hK)

are disregarded, the lower bound can be obtained easily. In the depth-first branch and

bound algorithm, the following terms are defined. A node stack is named as OPEN,

and a scalar named as UPPER that is equal to the lower bound of the temporary solu-

tion. The level of a node is labeled as k, where the virtual root node has the level 0.

The branch which connects the two nodes (h1, · · · , hk−1) and (h1, · · · , hk) is termed as

Tk(h1, h2, · · · , hk). The node (h1, · · · , hk) is termed as the lower bound `k. The vector zk
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is defined as zk = θ̃−∑k
j=1 hjlj , where lj is the jth column of L. The jth component of

the vector zk is denoted as [zk]j . The depth-first BB algorithm proceeds as follows [39].

1. Order users according to theorem 1 of [21]. Pre-compute θ, R and L.

2. Precompute θ̃ = L−T θ.

3. Initialise k = 0, zk = θ̃, `k = 0, UPPER= +∞ and OPEN= NULL.

4. Set k = k + 1. For both nodes, let zk = zk−1 and `k = `k−1. Choose the node in

level k such that hk = sign([zk]k) and set flag f = 1.

5. Compute [zk]k = [zk]k − hklkk.

6. Compute `k = `k + (Tk − θ̃k)
2 = `k + [zk]

2
k.

7. If `k ≥ UPPER, and the OPEN list is not empty, drop this node. Pick the node from

the end of the OPEN list, set k, `k and zk equal to the stored values corresponding

to this node. Set f = 0 and go to step 5.

8. If `k < UPPER and k < K, ∀j > k precompute [zk]j = [zk]j − hkljk. If f = 1,

append the other node with hk = −sign([zk]k) to the end of the OPEN list, and

store the associated k, `k, and zk together with this node, go to step 4.

9. If `k < UPPER, k = K, and the OPEN list is not empty, update the provisional

solution and UPPER= `k. Pick the node from the end of the OPEN list, set k, `k

and zk equal to the stored values corresponding to this node. Set f = 0 and go to

step 5.

10. If `k < UPPER, k = K, and the OPEN list is empty, update the provisional solution

and UPPER= `k.

11. Stop and report the provisional solution.

7.3.2 Sphere Decoder

The sphere decoder [50] is a well known efficient algorithm that can achieve the optimal

ML performance in the multiuser detection. This decoder is considered as a type of the

depth-first BB algorithm and is described as follows [39].
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1. Precompute the Cholesky decomposition R = LTL.

2. Precompute θ̃, C = αKσ2, where α is chosen, so that an expected lattice point can

be found with a high probability.

3. Initialize k = 0, zk = θ̃, `k = 0, UPPER = C and OPEN = NULL.

4. Set k = k + 1. For both nodes, let zk = zk−1, `k = `k−1. Choose the node in level

k such that hk = −1. Append the nodes with hk = +1 to the end of the OPEN list,

and store the corresponding k, `k and zk together with this node.

5. Compute [zk]k = [zk]k − hklkk.

6. Compute `k = `k + (Tk − θ̃k)
2 = `k + [zk]

2
k.

7. If `k ≥ UPPER, and the OPEN list is not empty, drop this node. Pick the node from

the end of the OPEN list, set k, `k and zk equal to the stored values corresponding

to this node and go to step 5.

8. If `k < UPPER and k < K, for j = k + 1, precompute [zk]j = [zk]j −
∑k

i=1 hilji.

Got to step 4.

9. If `k < UPPER and k = K, and the OPEN list is not empty, update the provisional

solution and UPPER= `k. Pick the node from the end of the OPEN list, set k, `k,

zk equal to the stored valued associated with this node and go to step 10.

10. If `k < UPPER, k = K, and the OPEN list is empty, update the provisional solution

and UPPER= `k.

11. If no solution is available yet, let C = 2C and go to step 3. Otherwise, stop and

report the provisional solution.

Although, described in a different way, we can see that the sphere decoding algorithm is

similar to the depth-first BB algorithm. The main difference between the sphere decoding

and the depth-first BB algorithms are in steps 1, 3, 4 and 8. In the depth-first BB algo-

rithm, step1 orders the users. Step 3 initializes the upper bound. The choice of hk in step

4 of the depth-first BB algorithm is actually the solution of the DF detector. When the

system is noise-free, this solution guarantees a minimum computational complexity. Step

8 calculates the lower bound.
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7.3.3 Fast Branch and Bound Algorithm

The fast BB algorithm is based on the depth-first BB algorithm, and makes some refine-

ments to speed up the proecessing. These refinements are described as follows.

1. The first feasible solution in the fast BB algorithm is the decision feedback (DF)

solution. The decorrelation based DF detector lowers the probability of detection

error by applying a successive cancelation technique on users. The choice of user

ordering discussed in [21] shows that the easiest or the most powerful user is de-

tected first [15]. In the DF detector, Pe(k) denotes the probability of error on user

k and all the decisions on users 1, · · · , k − 1 are correct. Pe(k) is defined as [21]

Pe(k) = Q

(
lkk

σ

)
, (7.8)

where Q(x) =
∫∞

x
1√
2π

e−t2/2dt [114].

In high SNRs, the probability of error of the DF detector solution is dominated by

the user corresponding to the minimum diagonal element of L.

2. The user ordering maximizes the probability that the first solution is optimal, how-

ever there is still a probability that it is not optimal. In the high SNR region, we

denote Pe(1
st) as the probability of error of the first feasible solution that is repre-

sented as

Pe(1
st) =

K∑

k=1

Q

(
lkk

σ

)
. (7.9)

We define the indices of the minimum and subsequent (ith) minimums diagonal

elements of L, respectively, as

n1 = arg min
j

ljj

ni = arg min
j 6=n1,··· ,ni−1

ljj . (7.10)

If the first given feasible solution is not optimal, user n1 has a high probability

to be an erroneous user because Q
(

ln1n1

σ

)
dominates Pe(1

st). Accordingly, the

best option is to change the decision on user n1 and use the DF detection to obtain

the second feasible solution. The probability that neither the first nor the second

feasible solution is optimal is given by Pe(2
nd) =

∑
i6=n1

Q( lii
σ

). As a result, we

should next search for the n2th user, and then for the n3th, n4th, etc.

Z. Quan, Ph.D. Thesis, Department of Electronics, University of York 2009



CHAPTER 7. COMBINED MULTI-USER DETECTION WITH IMPROVED

“COMPLEXITY-DETECTION” PERFORMANCE 119

3. If a branch on the level k is accepted, then the corresponding sub-branches on levels

k + 1, · · · , k + n may also be accepted with a high probability as long as ∀k < j ≤
k + n, ljj < lkk. For user k, we define

uk =





arg min0<i<k(∀i ≤ j < k, ljj < lkk)

k if no solution can be found from above
(7.11)

dk =





arg maxk<i≤K(∀k < j ≤ i , ljj ≤ lkk)

k if no solution can be found from above
(7.12)

Therefore when computing the lower bound `k, we need to precompute for users

k + 1, · · · , dk

∀k < j ≤ dk , [zk]j = [zk−1]j −
k∑

i=uk

bilji (7.13)

i.e. the precomputing involves only the block in L with rows [k+1, dk] and columns

[uk, k].

The fast BB algorithm is similar to the depth-first BB algorithm, the user ordering is

pre-computed, and all matrices are properly precomputed for the ordered system. In

order to implement the new search strategy, instead of using the OPEN stack, the fast BB

algorithm has K queues, termed q1, · · · ,qK . Queue qk is associated with user k. The

nodes in a queue follow the “first-in-first-out” rule, i.e. nodes enter from the tail and are

taken from the head of the queue. In addition, the queues are ordered according to the

values of the diagonal elements of L, i.e. in the BB search, the nodes are taken from the

queues in the order [qn1 , · · · ,qnK
], where n1, · · · , nK are defined in (7.10). The user

ordering is corresponding to step 1, the lower bound computations is corresponding to

step 8, the upper bound initialization is corresponding to step 3. The choice of hk in step

4 corresponds to the solution of the DF detector. The full version of the fast optimal BB

algorithm is described as following [39, 112].

1. Order users in the ascending order. Compute θ, R and L; pre-compute the vectors

d and u.

2. Pre-compute θ̃ = L−T θ.

3. Initialize k = 0, zk = θ̃, `k = 0, UPPER= +∞, and initialize K queues by

∀k,qk = NULL.
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4. Set k = k + 1. For both nodes, let zk = zk−1, `k = `k−1, choose the node in level

k such that hk = sign([zk]k). Set flag f = 1.

5. Compute [zk]k = [zk]k − hklkk.

6. Compute `k = `k + (Tk − θ̃k)
2 = `k + [zk]

2
k.

7. If `k ≥ UPPER and not all the queues are empty, drop this node. Goto step 11.

8. If `k < UPPER and k < K, do

• if f = 1 for both nodes in level k,

– If dk > k, precompute ∀k < j ≤ dk, [zk]j = [zk]j −
∑k−1

i=uk
hilji.

– If dk = k, precompute j = k + 1, [zk]j = [zk]j −
∑k−1

i=uk+1
hilji.

– Append the node hk = −sign([zk]k) to the tail of the queue qnk
, and store

the associated k, `, and zk together with this node;

• if dk > k, precompute ∀k < j ≤ dk, [zk]j = [zk]j − hkljk.

• if dk = k, pre-compute j = k + 1, [zk]j = [zk]j − hkljk.

• Go to step 4.

9. If `k < UPPER, k = K and not all the queues are empty, update the provisional

solution and UPPER= `k. Go to step 11.

10. If `k < UPPER, k = K and all the queues are empty, update the provisional solution

and UPPER = `k. Go to step 12.

11. Pick one node from the queues (note that we should check queues in the order of

qn1 · · ·qnK
). Set k, `k and zk equal to the stored values associated with this node.

Set f = 0, goto step 5.

12. Stop and report the provisional solution.

7.4 Numerical Results for Box-constrained DCD and

Fast BB Algorithms

In this section, we present computer simulation results to show the detection performance

and the complexity for the box-constrained DCD and fast BB algorithms. We assume
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Figure 7.1: BER performance of the box-constrained DCD and BB algorithms in the

scenarios of K = 4, SF = 4 and K = 10, SF = 31.

the simulation channel is perfect power control with AWGN, where the users employ

randomly generated spreading codes. Fig.7.1 shows the BER performance of the box-

constrained DCD detector and the fast BB detector. When K = 4 and SF = 4, the

detection performance of the BB detector is better than that of the box-constrained DCD

detector. When K = 10 and SF = 31, the fast BB detector also outperforms the box-

constrained DCD detector but does not show much improvement.

Fig.7.2 shows the worst-case complexity of the box-constrained DCD and the fast BB al-

gorithms in the scenarios of K = 4, SF = 4 and K = 10, SF = 31. The worst complexity

of the box-constrained DCD detector is less than that of the fast BB detector. Further-

more, its worst-case complexity is approximately invariant over the SNRs. Fig.7.2 also

presents the fast BB algorithm complexity with the matrix inversion complexity O(K3).

The results show that the worst complexity of the fast BB detector at low SNRs is almost

10 times of that of the box-constrained DCD detector. In a practical system, transmission

is continuous, and the channel is not static, which leads to the difficulty of channel matrix

decomposition.
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Figure 7.2: Worst complexity of box-constrained DCD algorithm vs. BB algorithm with

& without inverse calculation of matrix inverse: (1) K = 4, SF = 4; (2) K = 10, SF

= 31.

Fig.7.3 shows the complexity (in terms of the number of multiplications and additions)

distribution for the fast BB algorithm and the box-constrained DCD algorithm in a highly

loaded system with K = 28 and SF = 31, where X-axis represents complexity and Y-axis

represents the number of occurrence. The Fig.7.3(a , c) show that when SNR is low i.e.

SNR = 7 dB, the fast BB algorithm has a heavy-tailed complexity distribution, while the

complexity distribution of the box-constrained DCD algorithm is concentrated around its

mean. Fig.7.3(b , d) show that when SNR is high i.e. SNR = 13 dB, the complexity dis-

tribution of the box-constrained DCD algorithm does not significantly change, while the

fast BB algorithm has a much more concentrated complexity distribution than the box-

constrained DCD algorithm. Therefore, a combination of the fast BB algorithm and the

box-constrained DCD algorithm might efficiently solve the problem of the high complex-

ity of the fast BB detector at low SNRs while still provide a performance superior to that

of other detectors.
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Figure 7.3: Complexity distribution for fast BB and box-constrained DCD detectors:

(a) fast BB detector at SNR = 7 dB;

(b) fast BB detector at SNR = 13 dB;

(c) box-constrained DCD detector at SNR = 7 dB;

(d) box-constrained DCD detector at SNR = 13 dB.

7.5 A Combined Detector Based On the Fast BB and

Box-constrained DCD Algorithms

Fig.7.4 shows the proposed detector that combines the fast BB algorithm and the box-

constrained DCD algorithm using a complexity threshold control. Firstly, the fast BB

detector processes the output of the matched filters. The number of the operations (mul-

tiplications and additions) is computed. During the whole process, if the number of op-

erations obtained is less than a pre-defined threshold Tr, the solution will be obtained

from the fast BB detector. If the number of operations obtained from the fast BB detector

is beyond the threshold Tr, then the fast BB detector stops the current detection opera-

tion and the box-constrained DCD detector continues until obtaining the box-constrained

data estimate ĥDCD. The output data estimate is h̃BB−DCD = h̃BB in the first case, and

h̃BB−DCD = h̃DCD in the second case.
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Figure 7.4: Combined fast BB and box-constrained DCD detector.

In addition, we suggest another combined approach which is described as follow. After

the matched filter, the first feasible solution of the fast BB detector can be obtained by

the box-constrained DCD algorithm instead of using the decorrelating decision feedback

detector, thus reducing the complexity and improving the precision of the initial solution.

In this chapter, we only investigate the first combination approach.

7.5.1 Simulation Results for The Combined Fast BB and The Box-
constrained DCD Algorithms

We consider a high-loaded scenario with K = 28 and SF = 31 in an AWGN channel. The

spreading sequences are randomly generated in every simulation trial. Fig.7.5 compares

the performance of the combined BB-DCD detector with various complexity thresholds,

with that of the box-constrained DCD detector, and the fast BB detector in terms of group

detection error (GDE), which represents the probability that at least one user symbol is

incorrect. As the DF detector is one of the simplest receivers, the detection performance

of the DF detector is also shown under identical conditions for the purpose of compari-

son. It can be seen that the DF detector provides a poor performance in the highly-loaded

scenario. The box-constrained DCD detector gives a better performance but not as good

as that of the fast BB detector. The BB-DCD detector with the threshold Tr = 104 offers

a better performance than the box-constrained DCD detector. With the increase of the

complexity threshold by Tr = 2 × 104, Tr = 5 × 104 and Tr = 10 × 104, the GDE per-

formance of the BB-DCD detector is improved and approaches the optimal performance.

For the complexity threshold of Tr = 5× 104 FLOPS, the difference compared to the fast

BB detector in the performance is 0.1 dB at GDE = 10−5.
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Figure 7.5: Group detection error of the BBD-DCD vs. box-constrained DCD, fast BB

and DF; K = 28, SF = 31.

Fig.7.6 shows the worst-case complexity of the combined detector for this scenario.

Though the DF detector offers the lowest complexity compared with other detectors, it

performs poorly for all SNRs. The box-constrained DCD detector shows a nearly con-

stant complexity for all SNRs. The worst-case complexity of the fast BB detector in-

creases when the SNR decreases. At SNR = 0 dB, its worst-case complexity is 1000

times of complexity of the box-constrained DCD detector. It can be seen that the worst-

case complexity of the BB-DCD detector increases when the threshold increases by Tr

= 104, Tr = 2 × 104, Tr = 5 × 104, Tr = 10 × 104 for SNR ≤ 13dB and is close to the

complexity of the fast BB detector for SNR ≥ 13 dB.

7.6 Conclusions

The fast BB detector provides the optimal detection performance. However, the worst-

case computational complexity of the fast BB detector is prohibitive, which makes the

fast BB algorithm difficult for real-time application. The box-constrained DCD algorithm
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Figure 7.6: Worst-case complexity of the BB-DCD detector vs. the box-constrained DCD,

fast BB and DF detectors; K = 28, SF = 31.

shows a low computational complexity at any value of SNR. However, its detection per-

formance is inferior to that of the fast BB detector. In order to give a good trade-off

between the performance and the complexity, we proposed a combination of the fast BB

detector and the box-constrained DCD detector. This approach has shown that in a highly

loaded scenario, the complexity of the BB-DCD detector is reduced significantly with

only a small loss in detection performance with respect to the ML detector, while still

better than that of the box-constrained DCD detector.
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8.1 Introduction

Multiple Input Multiple Output (MIMO) systems have received much attention in recent

years as a promising method for next-generation communication systems, because the use

of multiple transmit and receive antennas significantly increases the system capacity and

diversity [115]. The use of orthogonal frequency-division multiplexing (OFDM) drasti-

cally simplifies receiver design in MIMO wireless systems when the channel is frequency

selective [116]. In such systems, the linear MIMO receivers including zero-forcing (ZF)

and minimum mean square error (MMSE) receivers need to perform channel correlation
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inversion. The MMSE detector, however, requires a high computational complexity. The

main complexity of the MMSE-based detector is for the inversion calculation. In this

chapter, we present an approach based on the DCD algorithm to simplify the inversion

operations in MIMO-OFDM systems. The idea of the approach is that the DCD algo-

rithm obtains separately the individual columns of the inverse of the matrix. Due to the

low complexity of hardware implementation of the DCD algorithm, a block of DCD pro-

cessors can be used to obtain the columns of the inverse of the channel correlation matrix

in parallel.

In slow fading channels, the DCD-based inverse of the channel correlation matrix needs

only to be performed in one OFDM symbol, and then the same solution can be used for

other symbols over an OFDM frame. However, in fast fading channels, the DCD-based

inverse needs to be performed separately for each symbol in the OFDM frame.

In the frequency-selective channels, the channel is decomposed into parallel flat channels

in the frequency domain. The change of the channel frequency response can be slow

between neighbouring subcarriers especially if the multipath delay spread is significantly

smaller than the duration of an OFDM symbol. The DCD-based inverse of the channel

correlation matrix obtained from the first-subcarrier can be used as an initialization for

that of the second subcarrier, and so on, up to that of the last sub-carrier. This reduces the

complexity compared to the case where the inverse of the channel correlation matrix is

initialized to zero for each subcarrier.

This chapter is organised as follows. In Section 8.2, the MIMO-OFDM model is pre-

sented. In Section 8.3, two detectors which require matrix inversion, are introduced. In

Section 8.4, the DCD-based matrix inversion for MIMO-OFDM symbol is proposed. Var-

ious situation results of this inversion approach are presented in Section 8.5. In Section

8.6, the DCD-based inversion is applied to the underwater acoustic communication. Sec-

tion 8.7 concludes the chapter.

8.2 MIMO-OFDM Model

We consider a MIMO-OFDM system with MT transmit antennas, MR receive anten-

nas and K subcarriers. We assume that the frequency selective fading channels between

each pair of transmit and receive antennas have L independent delay paths and the same
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power delay profile. In frequency-selective channels, OFDM is effective in mitigating

the intersymbol interference (ISI) caused by multipath. This is achieved by converting

the frequency selective channel into a set of parallel narrow-band flat fading channels,

or subcarriers. Therefore, the frequency-response of each narrow-band channel can be

assumed to be constant. In the MIMO systems, the received signal in the kth subcarrier is

presented as follows:

yu
k =

MT∑
v=1

Gu,v
k hv

k + nu
k , (8.1)

where hv
k denotes the transmitted symbols at the kth subcarrier of the vth transmit antenna,

Gu,v
k denotes the channel response of the kth subcarrier between the uth receive antenna

and the vth transmit antenna. The channel frequency response is given by

Gu,v
k =

L−1∑

l=0

gu,v
l e−j2πτu,v

l k/T , (8.2)

where 1/T is subcarrier spacing and T is the OFDM symbol duration without a cyclic

prefix, gu,v
l is the zero-mean complex Gaussian random variables with a power-delay

profile ϑk. In this work, two power-delay profiles are considered: uniform and exponential

power delay profiles. The exponential power delay profile is given by ϑk = e−τk/τrms ,

where τrms is the root-mean square width of ϑk. The time delay at lth multipath τu,v
l is

uniformly and independently distributed. nu
k denotes the additive complex-valued white

Gaussian noise (AWGN) with zero mean and variance σ2. Hereafter, the received signal

can simply be written as:

yk = Gkhk + nk , (8.3)

where yk = [y1
k, · · · , yMR

k ]T , the (u, v)th element of Gk is Gu,v
k , hk = [h1

k, · · · , hMT
k ]T

and nk = [n1
k, · · · , nMR

k ]T .

8.3 MIMO OFDM Detection Scheme

Linear detection methods invert the channel correlation matrix when using a zero forcing

(ZF) or minimum mean squared error (MMSE) criterion. The matrix representation of

the detection scheme at the kth subcarrier is denoted as Jk = {Ju,v
k }.

In a ZF linear detector, the output of the matched filter is multiplied with the matrix

Jk = Rk
−1 = (Gk

HGk)
−1 , (8.4)
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which is an inverse of the channel correlation matrix for the kth subcarrier.

The MMSE detector minimizes the mean square error between the actually transmitted

symbols and the output of the linear detector that is implemented by using the matrix

Jk = Rk
−1 = (Gk

HGk + σ2I)−1 , (8.5)

which is an inverse of the diagonally loaded channel correlation matrix the kth subcarrier,

where σ2 indicates the noise variance and I is an MT ×MT identity matrix.

We can estimate the data in a subcarrier of an OFDM transmitted symbol by linear detec-

tion as

hk = D(Jk · θk) , (8.6)

where D(·) is the detection operation for the constellation and θk = Gk
Hyk. As a result,

the detection problem can be converted into the problem of finding the inverse of the

matrix Rk.

8.4 DCD-based Inversion for MIMO-OFDM Systems

In frequency selective MIMO channels, the channel can be decomposed into parallel flat

channels in the frequency domain. The change of the channel frequency response is

usually slow between neighbouring subcarriers. The matrix Jk, (k = 1, · · · , K) obtained

from the kth subcarrier can be used as an initialization for that of the (k +1)th subcarrier,

and so on, up to that of the last subcarrier. The DCD algorithm can obtain separately

the individual columns of the inverse of the matrix Rk. Due to the low complexity of

the DCD algorithm, a block of DCD processors can be used to obtain the columns of the

inverse of the Rk simultaneously.

Table 8.1 shows the DCD algorithm for solving the inverse of Rk in one OFDM symbol,

where J
(j)
k and I(j) are the jth columns of the matrices Jk and I, respectively. In the

first sub-carrier (k = 1), the initialization vector J̄
(j)
k is set to 0. Nu1 is the number of

the successful iterations for the first sub-carrier. This number is set to a relatively large

number (i.e. Nu = 600). The MT ×MT matrix R is set to Rk. Then, the DCD algorithm

obtains separately the individual columns of the matrix Ĵk, which is an estimate of the

inverse matrix Rk by using J̄
(j)
k , Nu, R and I(j). For the other subcarriers (k > 1), J

(j)
k
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Table 8.1: DCD-based inversion algorithm for an OFDM symbol
Step operation

1 k = 1

for j = 1 : MT

J̄(j)
k = 0, Nu = Nu1 , R = Rk

Ĵ(j)
k = DCD(J̄(j)

k ,R, I(j), Nu,Mb)

j-loop end

2 for k = 2 : K

for j = 1 : MT

J̄(j)
k = Ĵ(j)

k−1, Nu = Nu2 , R = Rk

Ĵ(j)
k = DCD(J̄(j)

k ,R, I(j), Nu,Mb)

j-loop end

k-loop end

is initialized to the solution for the previous subcarrier (i.e. J̄
(j)
k = J

(j)
k−1). In this case,

Nu2 can be chosen as a relatively small value; i.e. smaller than Nu1 . The matrix R is set

to the corresponding Rk. By using the J̄
(j)
k , Nu, R and I(j), the DCD algorithm obtains

separately individual columns of the matrix Ĵk.

The inverse matrix Jk corresponding to each subcarrier can be obtained by using one

DCD processor. However, in order to speed up the operation, we can also use a block of

MT DCD processors to obtain the MT columns of Jk simultaneously. Fig.8.1 presents

a block of MT DCD processors performing matrix inversion for an OFDM symbol. The

inverse of the matrix Rk is divided into MT columns. For the first subcarrier, J
(j)
1 = 0,

I(j), R1 and Nu1 are sent to the jth DCD processor, where j = 1, 2, · · · ,MT . All the

MT DCD processors are used for computing the first solution J1 corresponding to the

first subcarrier. For the successive subcarriers, the same MT DCD processors are used

consecutively for obtaining the inverse matrix Jk corresponding to the kth subcarrier,

where k = 2, 3, · · · , K. For each subcarrier k, Jk−1 (i.e. initialization from the previous

solution), I, Rk and Nu2 are sent to the block of DCD processors. In comparison with the

implementation using one DCD processor, a block of MT DCD processors performs the

inversion operation MT times faster.

The estimated number of slices needed for the FPGA implementation of the DCD-based

(Mb = 15) inversion algorithm in each subcarrier for 4 × 4 MIMO systems, are pre-

sented in Table 8.2. The estimation is according to the resources required for the FPGA

implementation of a single complex-valued DCD algorithm, which has been presented

in [117]. The FPGA implementation of the complex-valued DCD algorithm [117] re-
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Figure 8.1: A block of MT DCD processors performing matrix inversion for an OFDM

symbol.
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Table 8.2: FPGA resources required for each subcarrier for parallel DCD-based inversion

algorithms
Resources MT = 4

Slices 2344 (17%)

D-FFs 193 (2.8%)

LUT4s 2388(8.8%)

Block RAMs 3 (2.2%)

quires 586 slices of the FPGA chip (Xilinx XC2VP30). Therefore, we estimate that for

the 4× 4 MIMO system, a block of 4 DCD processors requires 586× 4 = 2344 slices. In

comparison with the matrix inversion for 4× 4 MIMO systems reported in [85,118], and

requiring 9117 and 9474 slices, respectively, the proposed approach has a significantly

lower slice usage.

8.5 Simulation Results
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Figure 8.2: Effect of the number of multipath L: the misalignment vs. the number of

clock cycles in the 1st sub-carrier; MT = 4, K = 128, Nu1 = 400.
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By solving (8.5), the DCD algorithm obtains a solution Ĵ. The misalignment between

matrices Ĵk and Jk is calculated as

ξk =
||Ĵk − Jk||2
||Jk||2 . (8.7)

For many simulation trials, the misalignment is averaged over a number of T = 104

simulation trials and is given in decibels by

ξ̄k = 10 lg

{
1

T

T∑
t=1

∑MT

j=1

∑MT

n=1 |Ĵk(n, j)− Jk(n, j)|2
∑MT

j=1

∑MT

n=1 |Jk(n, j)|2

}
. (8.8)

In a 4 × 4 MIMO-OFDM system with frequency selective channel, we assume that the

DCD-based inversion is evaluated for a uniform power-delay profile and an exponential

power-delay profile at SNR = 20 dB.

First we investigate the effect of the number of paths L on the misalignment in Fig.8.2,

Fig.8.3, Fig.8.4 and Fig.8.5. We set MT = 4, K = 128, Nu1 = 400, Nu2 = 10.
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Figure 8.3: Effect of the number of multipath L: the misalignment vs. the number of

successful iterations for the 1st sub-carrier; MT = 4, K = 128, Nu1 = 400.

Fig.8.2 shows the misalignment against the number of clock cycles for the 1st sub-carrier.

The results show that the various multipath L do not significantly affect the inversion
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misalignment in the 1st sub-carrier. The inversion requires approximately 20K clock

cycles to achieve the misalignment of −32 dB.
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Figure 8.4: Effect of the number of multipath L: the misalignment vs. the number of

clock cycles for the k > 1 sub-carriers ; MT = 4, K = 128, Nu1 = 400, Nu2 = 10.

Fig.8.3 shows the misalignment against the total number of successful iterations for the

1st sub-carrier. We assume Nu1 = 400 for the DCD processor, a 4 × 4 matrix inversion

requires at most 400 × 4 successful iterations, to achieve the misalignment of −32 dB.

In a channel with an exponential power-delay profile or uniform power-delay profile, the

misalignments are not significantly affected by the number of L.

Fig.8.4 shows the misalignment against the number of clock cycles for every other (k > 1)

sub-carrier. The results show that when L increases (i.e. L = 2, 3, 4), the misalignment

is increased. In a channel with a uniform power-delay profile, when L = 2 the proposed

inversion approach obtains the misalignment of −14 dB using approximately 1000 clock

cycles. In a channel with an exponential power-delay profile, when L = 2 it obtains the

misalignment of −15 dB using approximately 1000 clock cycles.

Fig.8.5 shows the misalignment against the number of iterations for every other (k > 1)
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Figure 8.5: Effect of the number of multipath L: the misalignment vs. the number of

successful iterations for every other (k > 1) sub-carrier; MT = 4, K = 128, Nu1 = 400,

Nu2 = 10.

sub-carrier. The results show that when L increases, the misalignment of the DCD-based

inversion is increased. In a channel with a uniform power-delay profile, when L = 2 the

proposed inversion obtains the misalignment of −14 dB using 40 iterations. In a channel

with an exponential power-delay profile, when L = 2 the proposed inversion obtains the

misalignment of −15 dB.

Secondly, we investigate the effect of the number of sub-carriers K on the misalignment,

which are presented in Fig.8.6, Fig.8.7, Fig.8.8 and Fig.8.9. We set MT = 4, L = 4,

Nu1 = 400 and Nu2 = 10.

Fig.8.6 shows the misalignment against the number of clock cycles in the 1st sub-carrier.

The results show that the misalignments of the DCD-based inversion in the 1st sub-carrier

are not affected by the different number of K. Using approximately 2× 104 clock cycles,

the proposed inversion approach in the channel with a uniform power-delay profile or an

exponential power-delay profile, obtains the misalignment of −32 dB.
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Figure 8.6: Effect of the number of sub-carriers K on the misalignment: the misalignment

vs. the number of clock cycles for the 1st sub-carrier; MT = 4, L = 4, Nu1 = 400.

Fig.8.7 presents the misalignment against the total number of successful iterations for

the 1st sub-carrier. The results show that the misalignments of the DCD-based inversion

in the 1st sub-carrier are not affected significantly by the different number of K. The

misalignment of the DCD-based inversion could achieve −32 dB using approximately

1600 successful iterations. The misalignment of the DCD-based inversion in the channel

with an exponential power-delay profile is smaller than that of it in the channel with a

uniform power-delay profile.

Fig.8.8 shows the misalignment against the number of clock cycles for every other (k > 1)

sub-carrier. The results show that increase in K (e.g. K = 64, 128, 256), the misalignment

of the DCD-based inversion is reduced. The results also show that the misalignment

obtained in a channel with an exponential power-delay profile is smaller than that of it in

the channel with a uniform power-delay profile with the same K.

Fig.8.9 presents the misalignment against the number of iterations for every other (k > 1)

sub-carrier. The results show that increase in K, the misalignment of the DCD-based

inversion is reduced. By using 40 successful iterations in total, the DCD-based inversion
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Figure 8.7: Effect of the number of sub-carriers K on the misalignment: the misalignment

vs. the number of successful iterations for the 1st sub-carrier; MT = 4, L = 4, Nu1 = 400.

algorithm in the channel with a uniform power-delay profile obtains the misalignment

of −14 dB when K = 256; the DCD-based inversion in a channel with an exponential

power-delay profile obtains the misalignment of −15 dB when K = 256.

We evaluate the effects of Nu1 on the misalignment. We set MT = 4, K = 128, L = 4

and Nu2 = 10. Fig.8.10 and Fig.8.11 show the misalignment against the number of clock

cycles for the 1st sub-carrier, and every other (k > 1) sub-carrier, respectively, with the

different Nu1 . Fig.8.12 and Fig.8.13 show the misalignment against the number of total

iterations used in the 1st sub-carrier, and every other (k > 1) sub-carrier, respectively.

We can see that increase in Nu1 , the misalignment of the DCD-based inversion is reduced

in the 1st sub-carrier, however, the misalignments in every other (k > 1) sub-carrier

are not affected significantly. By using the same number of iterations or clock cycles, the

misalignment of the DCD-based inversion in the channel with an exponential power-delay

profile is 2 dB lower than that of it in the channel with a uniform power-delay profile.

Fig.8.14 shows the misalignments against the number of clock cycles for every other (k >
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Figure 8.8: Effect of the number of sub-carriers K on the misalignment: the misalignment

vs. the number of clock cycles for every other (k > 1) sub-carrier; MT = 4, L = 4,

Nu1=400, Nu2 = 10.

1) sub-carrier with the different number of Nu2 . Fig.8.15 show the misalignments against

the number of total iterations used for every other (k > 1) sub-carrier with different Nu2 .

We can see that increase in Nu2 , the misalignment of the DCD-based inversion is reduced

for every other (k > 1) sub-carrier.

8.6 Discussion on application of the DCD based matrix

inversion

According to the simulation results above for an OFDM symbol with 128 sub-carriers,

we can see that the inversion in the first sub-carrier approximately requires 2× 104 clock

cycles using Nu1 = 400. The inversion for every other (k > 1) sub-carrier, approximately

requires 103 clock cycles when using Nu2 = 10. Therefore, the inversion for a complete

OFDM symbol needs 103×127+2×104 ≈ 1.47×105 clock cycles in total. A processor
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Figure 8.9: Effect of the number of sub-carriers K on the misalignment: the misalignment

vs. the number of successful iterations for every other (k > 1) sub-carrier; MT = 4,

L = 4, Nu1 = 400, Nu2 = 10.
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Figure 8.10: Effect of Nu1 on the misalignment: the misalignment vs. the number of

clock cycles for the 1st sub-carrier; MT = 4, L = 4, K = 128.

with clock frequency 100 MHz, requires roughly 1.47 × 105/108 = 1.47 ms for such an

OFDM symbol inversion. Thus it is not suitable for radio systems with very high data

rates, e.g. if the duration of an OFDM symbol is 100 us or less.

However, it is suitable in systems with low data rates, e.g. the underwater acoustic (UWA)

channel is characterized by frequency-selective, (multipath) channel [119]. The use of

OFDM signals is now considered as a promising technique for data transmission in the

underwater acoustic channel [119–121]. Furthermore, the MIMO techniques have been

also applied to UWA communication [122, 123]. The combination of MIMO and OFDM

leads to an appealing solution for high data rate transmission. Due to the high complex-

ity of the inversion, the existing inversion approaches can only be implemented for small

size systems. Because the typical OFDM symbol duration in UWA is 1 s [124], the pro-

posed approach can be efficiently used in UWA communication systems. Some numerical

results are given in the following.

We assume L = 20, K = 1024 and T = 1 s. The required number of FPGA slices (i.e.

in Xilinx XC2VP30, where 13696 slices are available) and clock cycles for an OFDM

symbol inversion in systems of different size at the misalignment of−30 dB are presented
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Figure 8.11: Effect of Nu1 on the misalignment: the misalignment vs. the number of the

clock cycles for every other (k > 1) sub-carrier; MT = 4, L = 4, K = 128, Nu2 = 10.

Table 8.3: Slices and clock cycles required for the DCD-based matrix inversion for

MIMO-OFDM systems of size 4 × 4, 8 × 8 and 16 × 16 at the misalignment of −30

dB.
System size FPGA slices Clock cycles

4× 4 (Nu1 = 300, Nu2 = 20) 586 (4.2%) 1.75M

8× 8 (Nu1 = 1000, Nu2 = 60) 592 (4.3%) 12.3M

16× 16 (Nu1 = 1200, Nu2 = 100) 610 (4.5%) 72M

in Table 8.3. According to the DCD algorithm FPGA design in [117], the DCD-based

matrix inversion requires the number of FPGA slices of 586, 592 or 610 for the system

sizes of 4×4, 8×8 or 16×16. Since the DCD algorithm implementation costs only a very

small number of slices, the matrix inversion can be performed by using MT DCD blocks

working in parallel, which results in at most 4.5%× 16 = 72% slices usage, however, the

throughput will be significantly increased.
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Figure 8.12: Effect of Nu1 on the misalignment: the misalignment vs. the number of the

successful iterations for the 1st sub-carriers; MT = 4, L = 4, K = 128.

8.7 Conclusions

In this chapter, we have proposed an approach based on the DCD algorithm to simplify

the matrix inversion. This approach obtains separately the individual columns of the in-

verse of the matrix and costs a very small number of slices, which is suitable for a large

size matrix inversion. However, the experiment results show that the throughput of this

approach is not high for the standard wireless transmission. Compared to the radio wire-

less communications, the underwater acoustic communications requires less throughput,

which the proposed approach can be applied for. In addition, since this proposed approach

requires a very small hardware area, a block of DCD processors can be used in parallel to

improve the throughput.
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Figure 8.13: Effect of Nu1 on the misalignment: the misalignment vs. the number of the

successful iterations for every other (k > 1) sub-carrier; MT = 4, L = 4, K = 128.
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Figure 8.14: Effect of Nu2 on the misalignment: the misalignment vs. the number of the

clock cycles for every other (k > 1) sub-carrier; MT = 4, L = 4, K = 128, Nu1 = 400.
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Figure 8.15: Effect of Nu2 on the misalignment: the misalignment vs. the number of the

successful iterations for every other (k > 1) sub-carrier; MT = 4, L = 4, K = 128,

Nu1 = 400.
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Chapter 9

Summary

In this thesis, we have carried out an analysis and optimization of algorithms for multiuser

and MIMO detection, and investigated various architecture and implementations of these

algorithms on an FPGA platform. The following is a specific summary on the methods

and results shown in each chapter:

In Chapter 1, we have identified the challenges to the algorithm design for multiuser and

MIMO detection. The signal and channel models have been introduced. In the multiuser

detection field, various channels can be converted into a synchronous CDMA channel

with modified signature waveforms. The complex channels are transformed to a syn-

chronous CDMA channel, which simplifies the problem analysis. A brief literature survey

of the suboptimal multiuser and MIMO receivers have been introduced, which constitute a

trade-off compromise in terms of the achievable performance and the associated complex-

ity. These suboptimal detection algorithms however, cannot provide a satisfying trade-off

between detection performance and complexity. They are also complicated for hardware

implementation.

In Chapter 2, a box-constrained multiuser detector based on the DCD algorithm has been

investigated. It is efficient for real-time implementation since it is multiplication and di-

vision free. The performance and complexity of this algorithm have been investigated.

The results have shown that the hardware area of the box-constrained DCD algorithm is

very low even for a high number of users. The performance of the FPGA design of this

algorithm has shown to be very close to the floating-point detection performance. Further-

more, two parallelisation architecture designs enable the elements in residual vector to be
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updated in one clock cycle, instead of successive clock cycles, and so, could improve the

throughput significantly.

In Chapter 3, the box-constrained DCD algorithm has been applied to the MIMO detec-

tion. The box-constrained DCD MIMO detector of symbols with QAM modulation has

been compared with the MMSE MIMO detector in terms of the design area, throughput,

and detection performance. The proposed box-constrained DCD MIMO detector provides

a better detection performance than the MMSE detector. Since the DCD MIMO detector

has shown relatively low complexity at the the low SNRs region, where the sphere de-

coding algorithm has exponential complexity, we suggested a combined detector, which

at high SNRs region, the sphere decoding algorithm is used for MIMO detection, and the

box-constrained DCD algorithm can be used for the detection at low SNRs region.

In Chapter 4, we have proposed an advanced multiuser detection algorithm, the DCD-

BTN detector, which is based on box-constrained relaxation, iterated regularization with

negative diagonal loading, and DCD iterations. The DCD-BTN algorithm has been com-

pared to a variety of advanced detectors in terms of detection performance and complex-

ity. The DCD-BTN detector has shown the lowest complexity among these detectors and

provided the optimal ML performance. The DCD-BTN detector has been implemented

on an FPGA board. The fixed-point FPGA DCD-BTN detector has shown a very close

detection performance to that of the floating-point implementation. In addition, compared

to the DCD detector the DCD-BTN multiuser detector has made a significantly improve

on the detection performance with a very low increase in the number of slices.

In Chapter 5, we have proposed a multiuser detector for M-PSK symbols. This pro-

posed detector DCD-BTN-M, is based on the DCD-BTN with some refinements. For

large number of users, the proposed detector has been shown to provide a good detection

performance close to the single user bound.

In Chapter 6, we have proposed a multiple phase decoder (MPD) for joint detection of M-

PSK symbols. The decoder is based on a phase descent search. In the multiuser detection,

the MPD has shown a very close detection performance to the single-user bound even in

highly loaded scenarios. In comparison to the semi-definite relaxation detector, the MPD

has a better detection performance, with a lower complexity. In the MIMO systems, for

the QPSK signals, the MPD achieves a very similar performance as that of the sphere

decoder. The complexity analysis has shown that the worst-case complexity of the MPD

did not vary with SNR, significantly lower than that of the sphere decoder, especially at
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low SNRs.

In Chapter 7, we have proposed to combine the box-constrained DCD detector with the

fast branch and bound detector (fast BB). The fast BB detector can provide the opti-

mal detection performance, however, the prohibitive worst-case computational complex-

ity makes it difficult for real-time applications. The box-constrained DCD detector has

a low computational complexity. But its detection performance is inferior to the fast BB

detector. Simulation results have shown that the combined BB-DCD detector provides

a better detection performance than the box-constrained DCD detector. In addition, the

BB-DCD detector provides a significant reduction in complexity in comparison to the fast

BB detector with only a small loss in the detection performance with respect to the ML

detector.

In Chapter 8, we have proposed an efficient method based on DCD algorithm which sim-

plifies the matrix inversion operation in MIMO-OFDM systems. The DCD-based inverse

for the OFDM system consumes a lower number of slices in the FPGA implementation

than other existing advanced matrix inversion techniques. The results show that even for

the high system size e.g. 8×8 and 16×16, the DCD-based inverse is also applicable with

small FPGA slices. In addition, using the implementation of the parallel DCD algorithm

could significantly improve the throughput, while the complexity is still acceptable for

the FPGA implementation.

9.1 Future Work

In this section, we present several ideas to extend the proposed detectors in our future

research.

The box-constrained DCD detector in Chapter 2, the DCD-BTN detector in Chapter 4

have been investigated in AWGN channel only. Other channels, such as Rayleigh or

multipath, can also be considered to explore detection performance of these detectors.

In Chapter 6, the hardware architecture of the MPD has been introduced. Most critical

steps in PDS algorithm has been clearly given the idea how to implement. Due to the

limit time, the proposed detector has not be practically implemented. The detector could

be implemented in FPGA board according to the description of the FPGA architecture
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design. In addition, the MPD is especially designed for M-PSK symbols detection. We

haven’t provided the simulation results to show if the MPD provides the good detection

performance for QAM symbols detection. The MPD can be optimized by changing the

constrained structure for QAM symbols detection.

In Chapter 7, we briefly introduced another combination of the multiuser detection. After

the matched filter, the first feasible solution of the fast BB detector can be obtained by

the box-constrained DCD algorithm instead of using the decorrelating decision feedback

detector. We expect this will reduce the complexity and improve the precision of the

initial solution. Moreover, the proposed combination of multiuser detection has not been

verified by hardware implementation. The FPGA architecture design has been given in

the Chapter 2 and the hardware design information of the branch and bound detector are

available from reference.
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