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Abstract
Approximate Bayesian Computation is a family of Monte Carlo methods

used for likelihood-free Bayesian inference, where calculating the likelihood

is intractable, but it is possible to generate simulated data, and calculate

summary statistics. While these methods are easy to describe and implement,

it is not trivial to optimise the mean square error of the resulting estimate.

This thesis focuses on asymptotic results for the rate of convergence of abc

to the true posterior expectation as the expected computational cost increases.

Firstly, we examine the asymptotic efficiency of the “basic” versions of abc,

which consists of proposal generation, followed by a simple accept-reject step.

We then look at several simple extensions, including the use of a random accept-

reject step, and the use of abc to make kernel density estimates.

The asymptotic convergence rate of the basic versions of abc decreases

as the summary statistic dimension increases. A näıve conclusion from this

result would be that, for an infinite-dimensional summary statistic, the abc

estimate would not converge. To show this need not be the case, we look at

the asymptotic behaviour of abc in the case of an observation that consists of

a stochastic process over a fixed time interval. We find partial results for two

different criteria for accepting proposals.

We also introduce a new variant of abc, referred to in the thesis as the

abcloc estimate. This belongs to a family of variants, in which the parameter

proposals are adjusted, to reduce the difference between the distribution of the

accepted proposals and the true posterior distribution. The abcloc estimate

does this using kernel regression. We give preliminary results for the asymptotic

behaviour of the abcloc estimate, showing that it potentially has a faster

asymptotic rate of convergence than the basic versions for high-dimensional

summary statistics.
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Chapter 1

Introduction

Monte Carlo methods, where a large set of random samples is used rather than

an exact calculation, have become increasingly popular with the increase in

computer processing power, and with the desire to use more complex models.

This allows us to approach problems that are infeasible to solve exactly.

Often we have some observation from a process, and some model of the

process with unknown model parameters. Ideally, we start with a Bayesian

prior over possible values for those parameters, and use the observation to

update our posterior belief in the values. This requires use of the likelihood

function, which is not available, or not tractable, in complicated problems.

Instead, we can take random data samples from model simulations, and use

these to inform our updating.

One family of such Monte Carlo methods has become known as Approximate

Bayesian Computation, or abc, and contains many variants with a simple

common idea. Put briefly, we draw random proposed values for the model

parameters from our prior parameter distribution, and use these in the model

to generate new data samples. We then compare these new data samples to

the original observation, and use this comparison to inform how we use their

associated parameter value proposals to form our estimate for the property of

interest for the posterior distribution.

The simplicity – or näıveté – of the approach results in easy implementation,

even in problems with complex models, but efficient implementation has several

significant difficulties. In addition to issues common to all of Bayesian statistics,

such as choice of prior, the most prominent difficulties are the following.

1



2 CHAPTER 1. INTRODUCTION

• The algorithm is highly computationally inefficient, especially if the data

used is high-dimensional. The latter fact is an instance of a problem

referred to as the curse of dimensionality, and is commonly mitigated by

using a lower-dimension summary statistic, rather than the data, to make

the comparisons between the samples and the observation. However,

usually the chosen summary statistic is not sufficient, so information is

lost in the process. This affects the error of the algorithm in a way that

cannot easily be analysed.

• The algorithm usually requires the choice of a “tolerance” parameter,

or similar, that determines the algorithm’s tolerance for discrepancies

between the samples and the observation. We would like to choose

the tolerance value that minimises the expected error of the estimate.

However, unless we consider some specific problem, finding this value is

difficult. Some variants use a k-nearest neighbours approach to determine

which parameter proposals are used, rather than a tolerance parameter,

but this raises a similar question regarding the choice of k.

This text solely addresses the latter problem, assuming any summary statistics

used are sufficient. In Chapter 2, we define the basic form of the abc algorithm,

and the class of properties of the posterior parameter distribution that we will

be interested in estimating. We will be interested in minimising the error of

the abc estimate for these properties by choosing a tolerance value, so we

also define the measure of error. This measure, the mean square error, has a

natural decomposition into two sources of error. Changing the tolerance value

will decrease the error from one source, but increase the error from the other,

so choosing a tolerance value is a problem of balancing the error from these two

sources. We also define some variants on the abc algorithm, which we return

to later, and discuss previous results for the error.

In Chapter 3, we consider whether, and how quickly, the abc estimate

converges to the correct answer as the available computational running time

increases. Finding the expected error for an abc estimate is difficult, because

it is very problem-specific. However, we can more easily consider asymptotic

results, where the estimate is shown to converge to the truth at a certain rate,

at worst, as the running time increases to infinity. We find conditions under
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which the estimate converges to the correct value, and find the asymptotic

rate of the convergence. We also find the asymptotic rate of convergence for

the variants given in Chapter 2. In practice, the running time might be small

enough that these asymptotic rates are not dominant, but they are useful when

considering which aspects of the problem are important. For example, the rates

of convergence cast light on the curse of dimensionality, by showing how we

expect the dimensionality of the summary statistic to affect the estimate’s rate

of convergence.

When a parameter proposal is used in an abc estimate, error is introduced,

due to the fact that the associated summary statistic does not have to be equal

to the observation. One class of abc variants, the first of which was proposed

by Beaumont et al. [2002], attempts to mitigate this error, by adjusting the

proposals, according to the difference between the sample and the observation,

before using them in an estimate. In Chapter 4, we propose a new variant in

this class. Where Beaumont et al. determined the proposal adjustments using

a single kernel regression, the new variant does a kernel regression centred at

the observation, plus another regression for each of the accepted proposals.

This substantially increases the computational cost. However, we also present

some early theoretical results, which indicate that this variant might have a

faster rate of convergence than the basic abc algorithm for summary statistics

with a high dimension. It is also hoped that the new variant will be more

robust when the posterior expectation function is non-linear.

When using asymptotic rates of convergence, it must be remembered that

the “big O” notation, that is usually used to denote asymptotic rates, does not

conserve the relevant proportionality constants, which can depend on variables

that are kept constant in the asymptotic analysis. Therefore, when using

asymptotic results, it must be kept in mind what is tending to a limit, and

what is kept constant. For example, the asymptotic rates in Chapter 3 assume

that the dimensionality of the summary statistic is kept constant. Ignoring this

leads to the näıve suggestion that, for infinite-dimensional summary statistics,

the algorithm would not converge at all. In Chapter 5, we look at an example

problem where the statistic is infinite-dimensional, but the algorithm still

converges. Specifically, we look at the case where the observed statistic is a
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Brownian motion, plus a linear trend with unknown rate. This rate is then the

parameter of interest. While we do not find the asymptotic rate of convergence

for this problem, we do find bounds for the rate, so it is shown that the abc

algorithm still converges.



Chapter 2

Introduction to abc

In this chapter, we introduce the basic version of the abc algorithm, the type

of problems it is used to approach, and the issues considered when optimising

its use.

2.1 Method and Variants

2.1.1 Basic Method

We suppose that we are interested in some process that has produced the

observed data x∗. Using some summary statistic function s, we describe this

data with the observed summary statistic s∗ := s(x∗) ∈ Rq. We have some

model function fS|θ for the probability density of observed data, given some

model parameter θ ∈ Rp. However, θ is unknown. Instead, we have some prior

density fθ that describes our belief in possible values for the parameter. We

wish to obtain the posterior density fθ|S(· | s∗) for the parameter condition on

the observed summary statistic. Alternatively, instead of the entire posterior

density, we may be interested in certain properties of the posterior density,

such as the expectation.

Before we proceed, we define some notation for concepts that we will refer

to regularly.

Definition 2.1. We refer to the summary statistic as the statistic, eschewing

the word “summary”. For example, we refer to s∗ as the observed statistic.

Notation 2.2. Any expectation E (· |S = s) that is conditional on a value s

of the statistic will be written as E (· | s) . If some parameter θ has density f

5



6 CHAPTER 2. INTRODUCTION TO ABC

conditional on another parameter S being equal to s, we write θ | s ∼ f, rather

than θ |S = s ∼ f. An event is said to happen for fS-almost all s if the set

of values of s for which the event happens has measure one with respect to the

marginal distribution function of S.

Definition 2.3. A parameter proposal is a sample value for the parameter θ

sampled from the prior parameter distribution. A data sample is a set of data

generated with a model simulation. A statistic sample is the summary statistic

of a data sample. The word statistic will be used to mean summary statistic,

and will be assumed to refer to a sufficient statistic, unless stated otherwise. A

sample consists of a parameter proposal, and the statistic sample for the data

sample generated using the parameter proposal for parameter values.

We assume, unless stated otherwise, that we are interested in the posterior

mean

m(s∗) := E (h(θ) | s∗) = E (h(θ) |X = x∗) (2.1)

of some function h : Rp → R of interest on the parameter θ. We also assume that

calculating the conditional density fS|θ is infeasible or impossible. Therefore,

it is also infeasible to calculate the true posterior distribution, which satisfies,

by Bayes’s Theorem,

fθ|S(t | s) ∝ fθ(t)fS|θ(s | t).

Instead, we would like an estimate Z for the value of m(s∗). Finally, we assume

that we assess the estimate Z according to its mean square error (mse),

mse(Z) := E
(

(Z −m(s∗))2
)

= E
(

(Z − E (Z) + E (Z)−m(s∗))2
)

= E
(

(Z − E (Z))2
)

+ (E (Z)−m(s∗))2

= Var (Z) + bias (Z)2 .

For example, if we can take n proposals from the true posterior distribution

fθ|S(· | s∗), and the estimate Z is their mean, then Z has expectation

E (Z) = E

(
1

n

n∑
k=1

h(θk)

∣∣∣∣∣ s∗
)

= E (h(θ) | s∗) = m(s∗).

Therefore, Z is unbiased, and has mse equal to the variance

Var (Z) = Var

(
1

n

n∑
k=1

h(θk)

∣∣∣∣∣ s∗
)

=
1

n
Var (h(θ) | s∗) =

v(s∗)

n
,
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Estimate with sampling from true posterior

Input is data x∗ ∈ Rd, summary function s : Rd → Rq, prior parameter

density fθ for θ∈Rp, conditional statistic density fS|θ, tolerance parameter

δ > 0, and a required number n of accepted proposals.

1. Set k = 1.

2. Generate parameter proposal θk ∼ fθ, and data sample

Xk | θk ∼ fX|θ(· | θk).

3. s∗ = S(x∗), sk = s(Xk), accept θk if sk = s∗.

4. If less than n proposals have been accepted, increase k by one, and

return to Step 2.

Output is estimate Z = 1
n

∑n
j=1 h(θkj ), the mean of the function values for

the accepted proposals.

Algorithm 2.1.1: Example algorithm for exact sampling from the true posterior

distribution. This assumes that, instead of sampling directly from the distribution

for θ |S, we can only generate samples from the distributions for θ and S | θ.

where

v(s) := Var (h(θ) | s) (2.2)

is the posterior variance. The mse is therefore inversely proportional to the

number of samples used.

One possible algorithm for this estimate is given in Algorithm 2.1.1: we

generate a proposed value for θ, and then use this to generate a value for s. If

this is equal to s∗, we accept the proposal.

While this samples exactly from the true posterior, the algorithm will take

a long time to accept a proposal, even in small discrete sample spaces for S.

In our problem, acceptance will almost never occur. To deal with this, we can

relax the acceptance condition, so that s need only be within a small distance

from s∗. This is the most basic version of abc.

It is common practice to measure the distance between a statistic sample s
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and the observed statistic s∗ using the Euclidean norm. Specifically, we choose

a tolerance parameter δ, then accept a sample if

‖s− s∗‖ ≤ δ.

Alternatively, we can write the acceptance condition with respect to the ball

around s∗, as defined below.

Definition 2.4. The ball of radius δ with centre s∗ is equal to the set

Bδ(s
∗) := {s : ‖s− s∗‖ ≤ δ} ,

and has volume |Bδ| .

Therefore, the acceptance condition ‖s− s∗‖ ≤ δ can also be written as

s ∈ Bδ(s∗).

In addition to the tolerance δ, we must also decide on a stopping condition

for the algorithm. One simple choice is to stop after accepting n samples.

This prevents cases where our estimate is based on a very low number of

samples. In particular, it prevents the case where no samples are accepted.

However, the variance of the computational cost can be large: in the case where

the computational cost of each proposal is fixed, the cost follows a negative

binomial distribution, usually with a small success probability. This can make

the running time of the algorithm unreliable. We refer to the estimate with

this stopping condition as the abcacc estimate Yn, whose algorithm is given

in Algorithm 2.1.2.

Alternatively, we can decide to stop after generating N samples. The

variance of the computational cost then depends only on the variance of the cost

of generating a single sample, so this stopping condition makes the algorithm’s

running time more predictable. However, the number of accepted samples is

binomially distributed, and the number of accepted samples may be small. In

particular, it is possible to accept no samples, so, to use this stopping condition,

we must also choose a default value for the estimate if no samples are accepted.

We refer to the estimate with this stopping condition as the abcbas estimate

ZN , whose algorithm is given in Algorithm 2.1.3.
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abcacc estimate Yn

Input is data x∗ ∈ Rd, summary function s : Rd → Rq, prior parameter

density fθ for θ∈Rp, conditional statistic density fS|θ, tolerance parameter

δ > 0, and a required number n of accepted proposals.

1. Set k = 1.

2. Generate parameter proposal θk ∼ fθ and data sample

Xk | θk ∼ fX|θ(· | θk).

3. s∗ = S(x∗), sk = s(Xk), accept θk if ‖sk − s∗‖ ≤ δ.

4. If less than n proposals have been accepted, increase k by one, and

return to Step 2.

Output is estimate Yn = 1
n

∑n
j=1 h(θkj ), the mean of the function values

for the accepted proposals.

Algorithm 2.1.2: Algorithm for basic abc estimate with a fixed number n of

accepted samples.
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abcbas estimate ZN

Input is data x∗ ∈ Rd, summary function s : Rd → Rq, prior parameter

density fθ for θ∈Rp, conditional statistic density fS|θ, tolerance parameter

δ > 0, default estimate c, and a required number N of proposals.

1. Set k = 1.

2. Generate parameter proposal θk ∼ fθ and data sample

Xk | θk ∼ fX|θ(· | θk).

3. s∗ = S(x∗), sk = s(Xk), accept θk if ‖sk − s∗‖ ≤ δ.

4. If k < N, increase k by one, and return to Step 2.

If n > 0, output is estimate ZN = 1
n

∑n
j=1 h(θkj ), the mean of the function

values for the n accepted proposals. If n = 0, output is estimate ZN = c.

Algorithm 2.1.3: Algorithm for basic abc estimate with a fixed number N of

samples, both accepted and rejected.

For both of these abc estimates, the accepted proposals are no longer

sampled from the true posterior distribution, but are instead drawn from the

distribution defined below.

Definition 2.5. The abc posterior distribution for tolerance parameter δ is

the conditional distribution of θ |S ∈ Bδ(s∗).

For small values of the tolerance δ, we can expect this distribution to be

similar to the true posterior. However, this also results in a small probability

of samples being accepted. As δ increases, the two posterior distributions will

become less alike, but the acceptance probability will increase. In particular,

as δ tends to infinity, the abc posterior distribution will tend towards the prior

distribution, since all proposals will be accepted. Thus, choosing a value for δ

involves a balance between the acceptance probability and the similarity of the

two posterior distributions.

In terms of the mse, the bias is equal to the difference between the posterior
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expectations,

E (h(θ) |S ∈ Bδ(s∗))−m(s∗),

which will, in general, increase with δ. The variance is equal to the abc posterior

variance

1

n
Var (h(θ) |S ∈ Bδ(s∗)) .

For the abcacc estimate, where n is fixed, this will also generally increase with

δ, as the information in the acceptance condition decreases. Therefore, the mse

will increase as δ increases, but the expected computational cost will decrease,

and vice versa. The behaviour of the variance of the abcbas estimate is more

complicated: since the expectation of n will increase with δ, the variance may

change in either direction.

Example 2.6. To illustrate the challenge of choosing a tolerance, we look at

the simple case where the parameter θ has a N(0, 1) prior distribution, h is the

identity function, and the data observation is a vector of q independent and

identically distributed (iid) variables (Xk)
q
k=1, where Xk | θ ∼ N(θ, 1). In this

case, we can find the posterior for θ exactly, since, by Lemma A.1, this has

density

fθ|X(t |x) ∝ exp

(
−1

2
t2
)

exp

(
−1

2

q∑
i=1

(xi − t)2

)

∝ exp

(
−q + 1

2

(
t− q

q + 1
x̄

)2
)
,

and so the posterior distribution is θ |X ∼ N( q
q+1X̄,

1
q+1), where X̄ is the data

mean, and is therefore a minimal sufficient statistic for X.

Now consider an abc estimate that uses the sufficient statistic s(X) = X̄.

For positive δ, we accept samples whose statistic samples are in the ball Bδ(s
∗),

and the abc posterior has a density proportional to

fabc(t | s∗) ∝
∫
Bδ(s∗)

fS|θ(s | t) ds fθ(t)

∝ (Φ (
√
q (s∗ + δ − t))− Φ (

√
q (s∗ − δ − t)))φ (t) ,

where Φ is the standard normal distribution function. By Taylor expansion,
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using Theorem A.2, this is equal to

fabc(t | s∗) ∝
(
φ (
√
q(s∗ − t)) +

1

6
δ2φ′′ (

√
q(s∗ − t)) +O

(
δ4
))

φ(t)

=

(
φ (
√
q(s∗ − t)) +

q(s∗ − t)2 − 1

6
φ (
√
q(s∗ − t)) δ2 +O

(
δ4
))

φ(t)

= φ (
√
q(s∗ − t))φ(t)

(
1 +O

(
δ2
))

∝ exp

(
−q + 1

2

(
t− q

q + 1
s∗
)2
)(

1 +O
(
δ2
))

∝ fθ|S(t | s∗)
(
1 +O

(
δ2
))

as δ ↓ 0, where φ(x) is the standard normal density at x, and O (·) is defined in

Definition A.4. The expected value of the estimate will therefore have a bias of

order O
(
δ2
)
. We show two examples of the resulting abc posterior distribution

in Figures 2.1.1 and 2.1.2.

On the other hand, the probability of accepting a proposal is equal to

P (S ∈ Bδ(s∗)) =

∫
P (S ∈ Bδ(s∗) | t) fθ(t) dt

=

∫
(Φ (
√
q(s∗ + δ − t))− Φ (

√
q(s∗ − δ − t)))φ(t) dt

=
√
q

∫ (
2δφ(
√
q(s∗ − t)) +O

(
δ3
))
φ(t) dt

= O (δ) ,

as δ ↓ 0. Therefore, lowering the tolerance will lower the acceptance probability,

which will increase the expected computational cost for the abcacc estimate Yn,

and will increase the variance for the abcbas estimate ZN . Therefore, lowering

the tolerance will decrease the bias, but increase either the computational cost

or the variance, and vice versa. Choosing a tolerance value requires finding a

balance between these two issues.

For the rest of this chapter, we look at other variants of the abc algorithm.

2.1.2 Generalisations of the Acceptance-Rejection Step

This section addresses what can be considered as a generalisation, rather than

a variant. It covers two changes we can make to the basic algorithms:

1. Instead of a proposal whose statistic s is in a ball around s∗, we can

accept in a differently-shaped region around s∗. For example, instead of
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Figure 2.1.1: Plot of prior, true posterior, and abc posterior densities, for h(t) = t,

s∗ = 5, and δ = 1, in Example 2.6

accepting when ‖s− s∗‖ = (s− s∗)T (s− s∗) ≤ δ2, we can accept when

(s− s∗)TH−1(s− s∗) ≤ 1,

for some positive definite, symmetric matrix H. The matrix H then

describes an ellipsoidal acceptance region, and H has an equivalent rôle

to δ2. More generally, we can define a region such that some acceptance

function is equal to one inside the region, and zero outside it.

2. Instead of the accept-reject scheme used so far, we can use random

acceptance, where the distance between the statistic sample and s∗ is

used to determine an acceptance probability for the sample.

3. Instead of using the distance between the statistic sample and s∗ to

determine whether a sample is accepted, we can use the distance to weight
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Figure 2.1.2: Plot of prior, posterior, and abc posterior densities, for h(t) = t,

s∗ = 5, and δ = 5, Example 2.6.

the samples in the estimate.

We can express cases 1 and 2 with the same notation.

Definition 2.7. The function K : Rq → R is a kernel function if the following

conditions hold:

1. K(·) is non-negative;

2. K is symmetric;

3.
∫
K(u) du = 1.

The bandwidth matrix H determines the scaled kernel function KH , where

KH(u) := |H|−1/2K(H−1/2u).

The matrix H is the square-bandwidth matrix.
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We then accept a proposal with probability KH(S − s∗)/maxuKH(u). For

accept-reject algorithms, K is proportional to a discrete indicator function, so

that the acceptance probability is either zero or one.

Notation 2.8. We write indicator functions in Iverson bracket notation:

[A] :=


1 A true,

0 A false.

Example 2.9 (Acceptance on a ball). Let K be the kernel function with domain

Rq,

K(u) =
1

|B1|
[u ∈ B1(0)].

Additionally, let H = δ2I for some δ. Then the scaled kernel function is equal

to

KH(u) =
1

|B1| δq
[δ−1u ∈ B1(0)] =

1

|Bδ(0)|
[u ∈ Bδ(0).]

Samples are then accepted if the statistic sample is in Bδ(s
∗), and rejected

otherwise, giving the original acceptance condition. Therefore, the square-

bandwidth matrix H can be considered as a generalisation of the square of

the tolerance, δ2.

If H is diagonal, and the diagonal elements are not all equal, then the

acceptance region becomes an ellipsoid, whose principal axes correspond to

elements of the statistic vector. If H is not diagonal, then the acceptance

region is an ellipsoid, where the principal axes correspond to a different basis.

We will be interested in several properties of kernel functions, which we

define now.

Definition 2.10. The second moment matrix of the kernel function K is equal

to ∫
Rq
K(u)uuT du.

The roughness of the kernel function K is defined as

R(K) :=

∫
Rq
K(u)2 du.

Lemma 2.11. Let the kernel function K have second moment matrix M(K)

and roughness R(K). Then the scaled kernel function KH has second moment

matrix

M(KH) = H1/2M(K)H1/2.
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In particular, if M(K) = µ2(K)I for some scalar µ2(K) > 0, then K has

second moment matrix M(KH) = µ2(K)H. The roughness of the scaled kernel

function is equal to

R(KH) = |H|−1/2R(K).

Later, we will be interested in kernel functions with second moment matrix

of the form µ2(K)I mentioned above. This includes kernel functions that

are spherically symmetric, or products of one-dimensional symmetric kernel

functions. Many commonly-used kernels are in this category, including the

uniform kernel, as described in Example 2.9, the Gaussian kernel, equivalent

to the simple normal density function, and the Epanechnikov kernel. The

second moment matrix for such a kernel function has a convenient form when

accounting for the introduction of the bandwidth, as shown below.

Proof. The scaled kernel function has second moment matrix

M(KH) =

∫
Rq
KH(u)uuT du =

∫
Rq
|H|−1/2K(H−1/2u)uuT du.

Changing variables to v = H−1/2u,

M(KH) =

∫
Rq
K(v)

(
H1/2v

)(
H1/2v

)T
dv = H1/2

∫
Rq
K(v)vvT dv H1/2,

as required. The general scaled kernel function has roughness

R(KH) =

∫
Rq
KH(u)2 du = |H|−1

∫
Rq
K(H−1/2u)2 du.

By the same change of variables,

R(KH) = |H|−1/2
∫
Rq
K(v)2 dv = |H|−1/2R(K).

Example 2.12. The uniform kernel in Example 2.9 has second moment matrix

1

|B1|

∫
B1(0)

uuT du.

Since B1(0) is spherically symmetric, non-diagonal elements will be equal to

zero, and the diagonal elements are equal to

µ2(K) =
1

|B1|

∫
B1(0)

u2
1 du =

1

q |B1|

∫
B1(0)

‖u‖2 du.

The general uniform kernel function has roughness

R(K) =

∫
B1(0)

1/ |B1|2 du = 1/ |B1| .

We further evaluate these in Section 3.2.1, when calculating the asymptotic

bias for the abcacc estimate.
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Since we define kernel functions to be non-negative, µ2(K), if it exists, is

positive, and is zero only if K is a Dirac delta function. This is equivalent to

only accepting if s = s∗, giving the true posterior sampling estimate described

in Algorithm 2.1.1.

Kernel functions can be defined without the non-negativity condition. In

this case, M(K) and µ2(K) can be zero for kernels other than the Dirac delta

function. In kernel density estimation, such kernels are called higher-order

kernels, or bias-reducing kernels. For example, the Silverman kernel contains

a sine function that allows it to take negative values, and the resulting second

moment matrix is equal to zero.

While it is not possible to use such kernels to give acceptance probabilities,

they can be used in other cases. For example, in case 3, where we weight

samples in the estimate, instead of either accepting or rejecting them, the

weight “kernel” function J can take negative values, giving negative weights.

This can give implausible estimates: for example, if the parameters θ can only

be positive, the weights can result in a strictly-negative estimate. We briefly

discuss why using such a kernel here might be useful in Section 3.4.3.

It is also possible to use such a kernel in kernel regression.However, we do

not consider this possibility when using kernel regression in Chapter 4, because

the asymptotic analysis indicates that it is not necessary for improving the rate

of convergence.

2.1.3 Generalised Ball Acceptance Regions

We will be measuring distances on the statistic space Rq using the Euclidean

norm ‖ · ‖2, but there are other possible choices: for example, we can use the

Manhattan norm ‖ · ‖1, or the supremum norm ‖ · ‖∞. More generally, we can

use generalised balls as our acceptance regions, where we can use a different

norm for each dimension of the statistic space.

Definition 2.13. Let l be the q-dimensional vector l := (l1, . . . , lq), and let δ

be a similar vector with elements δk, where lk, δk > 0 for all k. Then we define

the associated generalised ball at s∗ to be

B
(l)
δ (s∗) :=

{
s :

q∑
k=1

∣∣∣∣sk − s∗kδk

∣∣∣∣lk ≤ 1

}
.
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In the case lk ↑ ∞, the relevant summand is equal to

lim
lk↑∞
|u|lk =


0 |u| < 1,

1 |u| = 1,

∞ |u| > 1.

Note that, if 0 < lk < 1 for some k, the resulting ball is not convex. For

example, if l = (2/3, 2/3), then the acceptance region is the astroid for the

circle of radius δ. On the other hand, if all lk tend to infinity, the ball will tend

towards the q-dimensional hypercube, minus the vertices. Figures showing

other examples are given in Wang [2005].

2.1.4 Kernel Density Estimates

There is often interest in some property of the true posterior distribution that

can not be expressed as E (h(θ) | s∗) for some one-dimensional function h. For

example, there is no such expression for the posterior quantiles, and there is

also no such expression for points on the posterior density function. A common

alternative approach to estimate such properties is to use an estimate of the

posterior density function fθ|S . This is done using a kernel density estimate: we

choose a kernel function K̃, and a square-bandwidth matrix H̃. The estimate

for fθ|S(θ0 | s∗) is then

Z(θ0) =
1

n

n∑
j=1

K̃H̃

(
θkj − θ0

)
.

For a fixed K̃ and H̃, this is the abc estimate for

E
(
K̃H̃(θ − θ0) | s∗

)
.

This can be thought of either as the abc estimate with parameter function

h(t) = K̃H̃(t− θ0), or as the abc estimate for an infinite-sample kernel density

estimate. However, H̃ is chosen when setting up the algorithm, so can be

dependent on the choice of n in the abcacc estimate, or on the choice of N in

the abcbas estimate.

2.1.5 Discrete Data

All of the above variants, and all of the results that follow, assume that the

statistic space is continuous. However, we can consider the case where the
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statistics are in Nq, or some subset, resulting in a discrete statistic space. We

can then accept proposals in the same region as before. Alternatively, since

the probability of generating a statistic equal to s∗ can now be non-zero, we

can use the exact posterior sampler in Algorithm 2.1.1, where fS|θ is now a

probability mass function.

2.2 Previous Results

While there were previous papers that had a similar approach to abc, such as

Diggle and Gratton [1984] and Rubin [1984], the paper that began interest in

the topic is generally considered to be Tavaré et al. [1997], which introduced

a rejection algorithm for inference on coalescence times in phylogenetics, as

described in Section 2.3.7. Here, the algorithm generating parameter proposals

θ also generates an intermediate data sample L. While the conditional data

distribution X | θ is not known, the distribution X |L is a simple Poisson

distribution. Once θ and L have been generated, this intermediate likelihood

can be used to give an acceptance probability. The algorithm, therefore,

samples from the true posterior distribution, but has an intermediate data

sampling step. This algorithm is given in Algorithm 2.3.1.

Pritchard et al. [1999] later expanded on this algorithm to do inference on

human coalescence times, introducing the first example of abc. This involved

full data sampling, with a summary statistic s, and acceptance condition∥∥∥∥s− s∗s∗

∥∥∥∥
∞
< δ,

where the division on the left hand side is element-wise. Beaumont et al. [2002]

established the name and definition of the abc approach. Since then, it has

spread into areas outside of population genetics. Reviews can be found in

Beaumont [2010], Bertorelle et al. [2010], Csilléry et al. [2010], and Marin et al.

[2012].

There are many papers introducing new variants, some of which we describe

in this section. The variants with parameter adjustment in Section 2.2.3, and

the results in Section 2.2.4, have special importance in this text, as they are

referred to in later chapters.
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2.2.1 abc Within Other Methods

One way of viewing the abc is as a likelihood estimator. For this reason, and

because abc is simple to understand and implement, abc is often inserted into

other Monte Carlo methods that otherwise require knowledge of the likelihood.

The sampling is then split between the methods, with abc generating statistic

samples, and the other method generating parameter proposals.

A simple example is abc within rejection sampling or importance sampling,

where the parameters are sampled from a distribution different to the prior,

and accepted proposals are weighted to account for the difference between

the two distributions. This is useful if the prior distribution is not trivial to

draw samples from. For an example of an algorithm for abc with importance

sampling, see Fearnhead and Prangle [2012].

The most common example is abc within Markov Chain Monte Carlo

(mcmc), where abc is used to give an approximate acceptance probability.

mcmc methods generate parameter proposals from a Markov chain, rather than

independently from the prior distribution. This approach can not make as much

use of parallel computing as simpler variants, and shares the usual weakness

of mcmc methods, such as highly-autocorrelated proposals, and a tendency to

get stuck in low-probability regions of the parameter space. However, mcmc

methods have the advantage of more efficient sampling over high-dimensional

parameter spaces: see, for example, MacKay [2002] and Voss [2013].

abc within mcmc usually refers to abc within the Metropolis-Hastings

algorithm, first proposed by Marjoram et al. [2003]. Each time a new proposal

is generated, an acceptance probability is calculated. Specifically, if the old

proposal is equal to t, and the new proposal is equal to t′, then the Metropolis-

Hastings acceptance probability for sampling for the posterior distribution is

equal to

α(t′ | t) := min

{
1,
fθ|S(t′ | s∗)q(t′ | t)
fθ|S(t | s∗)q(t | t′)

}
= min

{
1,
fθ(t

′)fS | θ(s
∗ | t′)q(t′ | t)

fθ(t)fS|θ(s∗ | t)q(t | t′)

}
,

where q(t′ | t) is the probability density for a Markov Chain currently at t to

move to t′. If t′ is rejected, then t is used again instead.

Since α(t′ | t) contains two unknown likelihoods, abc can be used to estimate
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the acceptance probability. Marjoram et al. [2003] use the approximation

α̂(t′ | t) := min

{
1,
fθ(t

′)q(t′ | t)
fθ(t)q(t | t′)

[‖s− s∗‖ ≤ δ]
}
.

This is equivalent to using the Metropolis-Hastings algorithm to sample from

the prior distribution, and requiring an accepted new proposal to also pass an

accept-reject step on its statistic sample. For the case where δ = 0, Marjoram

et al. [2003] show that the resulting stationary distribution for proposals is the

true posterior distribution.

Other examples of usage of abc within mcmc include Bortot et al. [2007],

Wegmann et al. [2009], and Meeds and Welling [2014], where the latter two

also do proposal adjustment, described in Section 2.2.3. A simple example of

abc within mcmc is abc within the Gibbs sampler, a type of mcmc method

whose Markov chain traverses over one dimension of the parameter space at a

time.

Another common variant is abc within sequential Monte Carlo, proposed

by [Sisson et al., 2007]. Here, the algorithm generates T populations of N

samples, where the population distributions are intended to tend gradually

toward the target distribution. In this case, the target distribution is the abc

posterior.

The first population is drawn from some initial density q(·), and accepted

with an accept-reject step, using tolerance δ1. These initial proposals θk,1 are

assigned weights wk,1 = fθ(θk,1)/q(θk,1), as in importance sampling. For the

remaining populations, a proposal θk,t for population t consists of drawing a

sample θ∗k,t from the previous population, with weights w·,t−1, and generating

the new proposal θk,t ∼ Kt(θk,t | θ∗k,t) for some transition kernel Kt. We then

generate a statistic sample, and run an accept-reject step with tolerance δt. If

accepted, the new proposal is assigned, according to the correction in Sisson

et al. [2009] , the weight

wi,t = fθ(θi,t)/
N∑
j=1

wj,t−1Kt (θk,t | θj,t−1) .

There is another round of sampling within a population if the weights w·,t

are dominated by a small number of large weights. This is done to keep the

effective sampling size of each population above a specified threshold.
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One important feature of this variant is that there are now T tolerances δt

to specify, with the condition that the tolerances decrease as the population

number t increases. The final population is expected to be sampled from the

abc posterior distribution for tolerance δT .

abc within smc is also used by Del Moral et al. [2012], by Toni et al. [2009]

on both parameter inference and model selection, and by Jasra et al. [2012] on

hidden Markov models.

2.2.2 Approximate Data and Statistic Samples

Most of the computational cost of an abc estimate, and therefore most of its

inefficiency, is due to the need for a large number of model simulations, often

from highly complex models. This has led to several proposals to replace the

original model with an approximate model that is faster to simulate. This is

commonly done by forming an approximate model from a pilot sample, and

using it to generate all the samples. While this introduces bias, the high cost

of the original model often means that the variance is a larger part of the error,

so introducing bias to reduce the variance is an acceptable trade-off.

A common approach is to approximate the likelihood as being normally

distributed, and is comparable to the indirect inference approach proposed in

Wood [2010], where fS|θ is modelled as a normal distribution N (µθ,Σθ) , and

µθ and Σθ are determined from statistic samples for θ using the method of

moments.

Variants that use this approach include Fan et al. [2013], where fS|θ is

approximated as a mixture of normal distributions, and Wilkinson [2014],

where the log-likelihood is approximated as a normal distribution.

A more complex example of such a variant is gps-abc, proposed by Meeds

and Welling [2014], where generated samples are stored in a training set, and

used to estimate the acceptance probability for future proposals. For each

new proposal, the algorithm makes M estimates of the acceptance probability

α(t′ | t), using M pairs of estimates for fS|θ(s
∗ | t) and fS|θ(s

∗ | t′). The two

densities fS|θ(· | t) and fS|θ(· | t′) are estimated as products of q independent

normal distributions, where the distributions for element k of the statistic have
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means

µk,t′ ∼ N
(
µ̄k,t′ , σ

2
k,t′
)

andµk,t ∼ N
(
µ̄k,t, σ

2
k,t

)
,

and variance σ2
k + δ2. The likelihood estimate parameters µ̄k,·, σ

2
k, and σ2

k,·

are estimated from all of the samples generated so far, assuming that each

dimension k is a Gaussian process.

Once the M estimates of α(t′ | t) are obtained, the algorithm looks for the

acceptance probability τ that would minimise the probability of making the

wrong accept-reject choice, in comparison to the unknown exact value of α.

This is equal to the empirical median of α. Additionally, an estimate is made

for the resulting probability E of a wrong accept-reject decision. If this is

higher than some fixed threshold ξ, then another sample is generated for some

informative value of θ, and added to the training set. The likelihood estimate

parameters are re-calculated, and a new set of M estimates of α(t′ | t) are

generated. This continues until E < ξ. The new proposal is then accepted with

probability τ.

While this algorithm makes many assumptions on the statistic distribution,

it has the advantage samples are only generated when needed, and that less

new samples need to be generated over time, so the computational cost of

obtaining new accepted proposals decreases. This behaviour is clearly seen

in the numerical experiments in Meeds and Welling [2014], where the mse

of several abc estimates is compared against both the number of proposals

and the number of samples generated. The gps-abc algorithm is comparable

to other abc estimates with respect to error against number of proposals.

However, when the error is compared against number of samples generated,

gps-abc reaches a point at no more samples are required, and the error rapidly

reaches its minimum.

A non-parametric approach is taken by Buzbas and Rosenberg [2015], in

a variant called Approximate Approximate Bayesian Computation, that has

similarities to the Bayesian bootstrap proposed by Rubin [1981]. In the case

where the data consists of J iid observations x∗1, . . . , x
∗
J , aabc begins by

generating a test set of M proposals (t̂1, . . . , t̂M ), and, for each test proposal

t̂m, a test set of data (x̂m,1, . . . , x̂m,J). This test set is used to generate data

samples, rather than using the original model.
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When a new proposal t is generated, the distances
∥∥t− t̂m∥∥ are calculated

for all m, and are used to assign weights to the test proposals. Specifically, the

kth nearest neighbour, t̂mk , is assigned the weight

w(mk) = KH

(∥∥t− t̂mk∥∥) [k ≤ K] ,

where KH is the Epanechnikov kernel with bandwidth K =
∥∥t− t̂mK+1

∥∥ .
Each of the K nearest neighbours is then assigned a drawing probability for

the bootstrap step, where the probabilities are sampled from the Dirichlet

distribution, p ∼ Dir (w(m1), . . . , w(mK)) . Next, each of the M data samples

for t is then drawn independently from the data samples x̂m,j , in two steps.

First, the test set m to draw from is chosen from the K nearest neighbours, with

probabilities p. Second, the data sample is drawn uniformly from the J data

samples in test set m. Once the M data samples for tk, these are summarised

with a statistic sk, which is used for accept-reject as usual.

aabc is shown by Buzbas and Rosenberg [2015] to give similar results to

both abcbas and mcmc with respect to number of proposals. As with gps-

abc, however, it is shown to be more efficient with respect to number of samples

generated from the original model.

2.2.3 Other Variants

Proposal Adjustments and Density Estimation

If a sample has statistic sk, the parameter proposal θk has distribution θ | sk,

rather than θ | s∗, and expectation m(sk), rather than m(s∗). Beaumont et al.

[2002] proposed adjusting the proposal values before using them in the estimate,

attempting to account for this discrepancy. In particular, they assumed the

linear model

θk = α̂+ β̂T (sk − s∗) + εk, E (εk) = 0, Var (εk) = σ2.

where the residual εk is independent of sk. For one-dimensional parameters, α̂

and β̂ are chosen to minimise

N∑
k=1

(
θk − α̂− β̂T (sk − s∗)

)2
K̂Ĥ(sk − s∗),
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for some kernel function K̂, and some square-bandwidth matrix Ĥ. Then the

estimated conditional expectation function is m̂(sk) := α̂+ β̂T (sk−s∗). Rather

than use the regression point estimate m̂(s∗) = α̂, the adjusted proposals

θ̂k = θk − m̂(sk) + m̂(s∗) = m̂(s∗) + εk

are used to form the estimate

Z =

∑N
k=1 K̂Ĥ(sk − s∗)θ̂k∑N
k=1 K̂Ĥ(sk − s∗)

= m̂(s∗) +

∑N
k=1 K̂Ĥ(sk − s∗)εk∑N
k=1 K̂Ĥ(sk − s∗)

.

Alternatively, the adjusted proposals can be used to estimate the posterior

density, using kernel density estimation. In this case, the estimate density at

θ0 is equal to

Z(θ0) =

∑N
k=1 K̂Ĥ(sk − s∗)K̃H̃(θ̂ − θ0)∑N

k=1 K̂Ĥ(sk − s∗)
,

for some kernel function K̃, and some square-bandwidth matrix H̃. In both

cases, using Ĥ = δ2I and K̂(u) = 1
2 [|u| ≤ 1] gives an accept-reject method, as

in the abcbas estimate.

Blum [2010] proposes using quadratic adjustment, which uses quadratic

polynomial regression, rather than simple linear regression, to estimate m.

Biau et al. [2015] propose a similar estimate to Blum [2010], that uses an

accept-reject method instead of weights. Rather than using a square-tolerance

Ĥ to define an acceptance region, both N and n are fixed, so the algorithm

accepts the n nearest neighbours to s∗.

Blum and François [2010] propose adjustments using non-linear regression,

via neural networks, that uses the model

θk = m̂(sk) + σ̂(sk)εk,

where Var (εk) = 1, and σ̂(sk) is the estimate of v(sk). The adjusted proposals

are then equal to

θ̂k = m̂(s∗) +
σ̂(s∗)

σ̂(sk)
εk.

The authors claim increased computational efficiency compared to the linear

adjustment variant, as well as a decreased sensitivity to the value of Ĥ.

Proposal adjustment is also used by Wegmann et al. [2009] on proposals

from abc within mcmc, described in Section 2.2.1. A variation is used by

Leuenberger and Wegmann [2010], where a general linear model is used on the

accepted proposals and the observed statistic to estimate the true likelihood.
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Early Stopping of Simulations

Another approach for reducing the computational cost of model simulations is

to stop the generation of a set of data that is unlikely to be accepted. Lazy

abc proposed by Prangle [2016] and summarised in Prangle [2015], adds an

intermediate step to abc with importance sampling. For some intermediate

data r, the sample generation is stopped, and the proposal t rejected, with

probability 1 − α(t, r). If the sample is fully generated, and the proposal

is accepted, then the weight is adjusted by the factor 1/α(t, r), to target

the same distribution. This increases the variance, but reduces the expected

computational cost.

Theoretical results are given for the asymptotically optimal choice of α,

expressed in terms of optimising the effective sample size of the estimate, but

it is noted that a heuristic choice may result in significantly less computational

time spent on unpromising samples. It is also possible to have multiple stopping

decision points during data generation.

Summary Selection

A large amount of abc research has focused on good choice of summary

statistics. Since this is highly problem-specific, there has been some research

into taking a starting set of statistics, chosen by hand, and choosing an efficient

transformation to a lower-dimension statistic set. This includes Fearnhead and

Prangle [2012], where the new statistic is an estimate of m(s).

More recently, there has been research into choosing summary statistics,

or accepting proposals, in an fully non-parametric approach, removing the

need for the initial statistics used in Fearnhead and Prangle [2012]. Some of

this research brings ideas from the field of sufficient dimension reduction sdr:

this includes Park et al. [2015], Mitrovic et al. [2016], and Zhong and Ghosh

[2016]. More specifically, Zhong and Ghosh note the similarity in goals. In

abc summary selection, the aim is to find a summary function s such that θ ⊥

X | s(X). By comparison, sdr, a topic usually associated more with classical

statistics, aims to find a transformation φ on the predictors X for a response

Y such that Y ⊥ X |φ(X). It therefore seems reasonable to use sdr methods

in abc.
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In Zhong and Ghosh [2016] the q-dimensional data is reduced by passing

the samples into a support vector machine. The reduced data then consists of

the first q principal components, where q is any value between 1 and d.

Other non-parametric approaches include Zhou and Fukumizu [2016].

2.2.4 Theoretical Results

Results regarding good practices when running abc generally split into two

types: theoretical asymptotic convergence results, for both the tolerance value

and the resulting error, and methods to choose good summary statistics. We

address the former below. For the latter, Blum et al. [2013] is a recent review

of dimension reduction techniques in general. Also of note is Wilkinson [2013],

where an abc algorithm with proposal acceptance probability proportional to

KH(s− s∗) is shown to be equivalent to exact inference in the case where the

observations are subjected to noise with density function KH . This is described

as abc giving exact inference for the wrong model.

Since choosing a good set of summary statistics and tolerance value for

abc is highly problem-specific, most theoretical results are asymptotic rates

of convergence for the tolerance and the mse. These are usually given as

asymptotic rates as the number of samples N tends to infinity, since the latter

is usually roughly proportional to the computational cost. For the abcacc and

abcbas estimates, Barber et al. [2015] show the optimal rate of convergence

for the mse to be of order O
(
N
− 4
q+4

)
, as N tends to infinity, as defined in

Definition A.4. For comparison, the mse for unbiased Monte Carlo methods is

of order O
(
N−1

)
. A similar result is given in [Prangle, 2011, Appendix A.4],

for the case where the summary statistic is equal to the true posterior m(x) :

s = S(x) := m(x).

Blum [2010] examines three variants of abc for kernel density estimation

on a one-dimensional parameter space, with differing methods for parameter

adjustment, as described in Section 2.2.3. In all three variants, the kernel

density estimation requires a bandwidth parameter, in addition to the abc

tolerance. This causes a decrease in the rate of convergence: all three are

shown to have an pointwise mse convergence rate of order O
(
N
− 4
q+5

)
. The

three proportionality constants have no fixed order, so whether the variants
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with adjustment decrease the error is problem-specific, and depends on the

non-linearity of the statistic density function at s∗.

Biau et al. [2015] consider the convergence rate for the n-nearest-neighbours

abc density estimate for general parameter dimension p, as is described in

Section 2.2.3, and show it to be equal to

mse(Z) =


O
(
N
− 4
p+8

)
q < 4,

O
(
N
− 4
p+8 log(N)

)
q = 4,

O
(
N
− 4
p+q+4

)
q > 4.

This is the same rate as that in Blum [2010] for q > 4, and worse otherwise.

Fearnhead and Prangle [2012] propose a variant called Noisy abc, where

noise is added to the original observations before running the algorithm. This

ensures the estimate converges to the correct answer as the observational

information tends to infinity, for a fixed tolerance, including estimates for

properties of the posterior not expressible as E (h(θ) | s∗) for some function

h, such as the posterior variance. However, the noise reduces the convergence

rate to order O
(
N
− 2
q+2

)
. This assumes the statistic form s(x) = E (θ |x) ,

as in Prangle [2011], and is given as the motivation for using some conditional

expectation estimate m̂ as the summary function. They suggest obtaining such

an estimate by doing quartic polynomial regression on a test set of summary

statistics.

More recently, there have been results on the asymptotic behaviour of the

abc posterior distribution, as q ↑ ∞, rather than a point estimate. These

include Dean and Singh [2011], Frazier et al. [2015], and Li and Fearnhead

[2016]. These are conditioned on the statistic distribution being O (f(q)) for

some function f. Specifically, the limit of f(q) (S − s∗ | θ) , as q ↑ ∞, is normally

distributed, with zero mean and a covariance matrix dependent on θ.

2.3 Applications

We now give some example problems to which abc can be applied. We begin

with some simple theoretical examples, useful for comparing abc estimates to

the known exact answer. We then progress to more complicated problems,

where abc has been used in practice. We also give some examples of summary
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statistics used for these problems by other authors.

2.3.1 Conjugate Normal Inference

Since any problem with a normal prior distribution and a normal conditional

statistic density has a normal posterior distribution, a simple inference problem

to test abc with is where θ ∼ N(0, 1) and q iid data elements Xi ∼ N(θ, 1).

This problem is described in Example 2.6.

More complicated is the case where we wish to estimate the variance θ of a

normal distribution, where the mean is known to be zero, based on q samples.

In this case, we can take a conjugate prior, so that we have densities

fθ(t) ∝ t−1, fX | θ((x1, . . . , xq), t)) ∝ t−q/2 exp

(
−
∑q

k=1 xk
2

t−1

)
,

resulting in sufficient statistic s∗ =
∑q

k=1 x
2
k, and posterior density

fθ|S(t | s∗) ∝ t−q/2−1 exp

(
−s
∗

2
t−1

)
.

Therefore, the true posterior distribution is scaled inverse chi-squared [Lee,

2012],

θ | s∗ ∼ s∗χ−2
q .

Fearnhead and Prangle [2012] remark that, if we use a normal acceptance kernel

with variance δ < σ2, the basic abc estimates tend to a point estimate at σ2−δ

as the q tends to infinity.

We can further consider the case where the mean µ is unknown, with normal

prior distribution µ ∼ N(0, σ2), and the variance has prior σ2 ∼ χ2
1. One

sufficient summary statistic is the empirical mean and variance of the sample

[Blum, 2010]. An example is the Iris dataset, of petal lengths for the virginica

species, with statistic elements x̄ = 5.552 and s2 = 0.304.

2.3.2 g-and-k Distribution

The g-and-k distribution can be used to accurately approximate many common

distributions [Haynes et al., 1997]. It has no closed-form density, and is instead

defined by its inverse distribution,

F−1(x |A,B, c, g, k) = A+B

(
1 + c

1− e−gz(x)

1 + e−gz(x)

)
(1 + z(x)2)kz(x),
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where z(x) := Φ−1(x) is the xth quantile of a standard normal distribution. A

and B > 0 are location and scale parameters. The parameters g and k > −1/2

are related to skewness and kurtosis; setting them to zero results in a normal

distribution. The parameter c is usually set to 0.8. It is possible to calculate

likelihoods numerically, but this is computationally expensive. However, since

we have the inverse distribution, drawing from it is straightforward, so we can

use abc to do inference on the distribution parameters A,B, g and k. This

example is used in Fearnhead and Prangle [2012].

2.3.3 Ricker Model

Here, we consider the ecological model where the population Nt changes over

time according to the equation

Nt+1 = Ntre
−Nt+εt ,

where εt ∼ N(0, σ2
e) are independent, and N0 = 1. The parameter is equal to

θ = (log r, σe, φ), and the data consists of Poisson observations xt ∼ Po(φNt)

at time-points 50 to 100 [Wood, 2010]. This example is used in Fearnhead and

Prangle [2012].

2.3.4 M/G/1 Queue

Here we consider a single queue that is initially empty, where the times between

two people joining the queue are exponentially distributed with rate θ3. The

service time for each person is uniformly distributed in the interval [θ1, θ2], and

the observation is the vector of times between people leaving. This example is

used in Blum [2010] and Fearnhead and Prangle [2012].

2.3.5 Stochastic Kinetic Networks

Here we begin with a certain amount of two types of molecule, and consider how

the amounts change over time as the molecules interact. The Lotka-Volterra

model from Boys et al. [2008] contains two types of molecules, with counts y1

and y2. The possible events are birth of a type-1 molecule, death of a type-2

molecule, and interaction between one of each molecule, that turns the type-1

molecule into a type-2 molecule. These events occur as independent Poisson

processes, with respective transition rates θ1y1, θ2y2, and θ3y1y2.
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Cluster size 1 2 3 4 5 8 10 15 23 30

Frequency 282 20 13 4 2 1 1 1 1 1

Table 2.3.1: Observed cluster sizes in tuberculosis outbreak in San Francisco, 1991-

1992.

This process can be described with a stochastic Petri net, as described

by Baez and Fong [2014], and has a simple equilibrium distribution, and

expected rate of change, by the Anderson–Craciun–Kurtz Theorem [Anderson

et al., 2010]. However, we do not observe the general equilibrium distribution.

Instead, we observe the number of molecules at given time points, and these

observations are used to do inference on the transition rate constants θk. This is

far more complicated, as the likelihood for the observed counts is intractable.

Fearnhead and Prangle [2012] consider the case where the number of type-

1 molecules is observed at discrete time points, and the number of type-2

molecules is only observed at the initial time point.

2.3.6 Tuberculosis Transmission Example

From Tanaka et al. [2006], this is an sir model with mutation. The observation

is the tuberculosis genotype present in 473 infected individuals, categorised into

cluster sizes, as shown in Table 2.3.1. To model the spread of the disease, we

begin with a single infected individual. In continuous time, we then have three

possible events, distributed according to three independent Poisson processes,

similarly to Section 2.3.5. Possible events are:

1. An infection spreading to a new individual, with the same genotype. This

has rate constant α, called the birth rate. We assume a large, roughly-

constant susceptible population, whose effect on the total birth rate is

included in α, so the total birth rate for an infected population of size I

is equal to αI.

2. An individual recovering from the disease. This has rate constant δ, called

the death rate.

3. An infection in one individual mutating into a new genotype. We assume

a genotype almost never has more than one origin. This has rate constant
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µ, called the mutation rate.

All three rate constants are assumed to be the same for all genotypes. This

process is continued until the total population is 10000. A sample of the

genotype present in 473 infected individuals is taken. These are sorted into

their respective clusters, and the data sample is the number of clusters of each

size, as in the observation.

There are some improvements we can make to speed up the simulations.

Since the time to process completion is not of importance, we are only interested

in the order of events, so we can simulate the above process using a discrete-

time Markov chain, with an event at each time step [Tanaka et al., 2006]. We

can re-parametrise the rate constants to given event probabilities a = α
α+δ+θ ,

d = δ
α+δ+θ , and m = 1− a− d. The likelihood then only depends on a and d.

Possible parameter properties of interest are the net transmission rate α−δ,

the doubling time log(2)/(α− δ), and the reproduction number α/δ. The latter

is the expected number of people an individual will infect before they recover,

and is often used to measure the difficulty of controlling an epidemic.

Tanaka et al. [2006] choose the summary statistics to be the number of

genotypes, and the gene diversity 1 −
∑

i(ni/n)2, where ni is the number of

organisms in genotype i and n = 473 is the total number of organisms.

2.3.7 Phylogenetic Tree Example

This is the problem considered in Tavaré et al. [1997]. We begin with n

contemporary individuals from a large population of size N, from each of which

we have sampled some set of characteristics, which they will only inherit from

one parent. These characteristics are most commonly taken to be disjoint

genetic sequences. For example, we can observe only the male population, and

look at the male-specific part of the y chromosome [Tavaré et al., 1997], or

observe the female population, and look at mitochondrial dna. Alternatively,

we can observe some collection of phenotypes.

We consider the genealogical tree of these individuals. For simplicity, we

assume that each generation will have the same size N : these generations are

discrete, and do not overlap [Kingman, 1982]. We begin with the generation

that includes the observed individuals, then recursively add parent generations.
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For each new parent generation, individuals in the child generation are assumed

to be equally likely to descend from each parent, independently of the parentage

for the other children. Consequently, as we add parent generations, the n

observed individuals will begin to share ancestors, and eventually there will

be only one common ancestor. The parameter of interest is how long ago this

occurred, which is known as the time to most recent common ancestor (tmrca).

If we now begin at the common ancestor, and move forwards in time, the

observed individuals’ ancestors’ characteristics can be subject to mutations,

which will then be carried forward in time. The observation is the set of

characteristics for each of the n observed individuals, and the summary statistic

is the number of segregating sites where mutations have resulted in differences

between the samples.

For simulations, we make the following assumptions.

1. There are infinitely many characteristics. Each site will, therefore, almost

never be subject to more than one mutation. This makes the number of

segregating sites sufficient for the tmrca.

2. Each characteristic is equally likely to be the target of a mutation.

3. Characteristics do not overlap. In the case of dna, this requires observed

sequences to be distinct.

4. Characteristics are independent with respect to mutations.

5. The mutation rate is the same between all individuals.

6. The general population size N is assumed to tend to infinity. This model

is known as Kingman’s n-coalescent.

First, we decide on a prior. We measure time by number of generations,

divided by N, which we refer to as the scaled time. The tmrca is equal to

Tn =
∑n

k=2Wk, a sum of independent variables Wk, where Wk is the length

of scaled time in which the observed individuals have k distinct ancestors.

The distribution for W2 is simple to calculate: for finite N, the number of

generations in W2 is negative binomial with success probability 1/N. The

probability density for W2, in scaled time, is therefore equal to

P (W2 = k) =
1

N

(
1− 1

N

)Nk−1

.
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Since we assume that N tends to infinity, the resulting probability density for

W2 is equal to

fW2(t) = lim
N↑∞

P (W2 ≤ t+ 1/N)− P (W2 ≤ t)
1/N

= lim
N↑∞

NP (W2 = t+ 1/N)

= lim
N↑∞

(
1− 1

N

)Nt
= e−t,

so W2 ∼ Exp(1). By more complicated reasoning, the distribution for Wk at

the limit is Wk ∼ Exp
((

k
2

))
. Therefore, Tn is the sum of exponential variables

with rate parameters
(
k
2

)
for k ∈ {2, . . . , n}.

For statistic generation, we can again use the intervals Wk. If we assume a

mutation rate of µ per generation, then the number of segregating sites can be

simulated as a Poisson process with rate Nµ on each branch. Consequently,

if we let Ln =
∑n

k=1 kWk be the total length of the tree, then the number of

segregating sites follows a Poisson distribution with rate NµLn.

From the results above, we can see that a simple rejection algorithm for

inference on Tn, given s∗ segregating sites, is to simulate Wk, calculate the

tmrca Tn =
∑n

k=1Wk and total tree length Ln =
∑n

k=1 kWk, and accept Tn

with probability equal to

u =
(NµLn)s

∗
/s∗!

maxλ λs
∗/s∗!

= (NµLn/s
∗)s
∗
.

This is given as Algorithm 1 in Tavaré et al. [1997]. This is followed by explicit

equations for the posterior expectation of Tn. The final algorithm, reproduced

in Algorithm 2.3.1, has additional steps to account for two complications.

1. We usually do not know the values of N and µ, so we must generate

sample values for them.

2. We are usually interested in the tmrca of all N of the current generation,

rather than the n individuals we observe. This requires us to track the

remaining number of ancestors for both the observed individuals and

the general population. Once the observed individuals have a common

ancestor, we check for sample acceptance. If a sample is accepted, we then

simulate the remaining time to the tmrca of the general population.
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Rejection-sampling Method for Infinite-Site Phylogenetic Trees

Input is statistic s∗∈R of number of segregating sites, prior density fN for

population size N ∈R+, prior density fµ for mutation rate µ∈R+.

1. Generate proposals Nk ∼ fN and µk ∼ fµ for k ∈ C ⊂ N.

2. For each proposal k, set N = Nk, µ = µk, n
′ = n. generate coalescence

time WN,k ∼ Exp
((

N
2

))
. Reduce n′ by one with probability

n′(n′−1)/N(N−1). Reduce N by one. Repeat until n′ = 1. Calculate

Tn and Ln.

3. Accept (N,µ, Tn) with probability e−θLn/2(θLn/2)k/k!
e−kkk/k!

.

4. For accepted samples, if N = 1, return TN = Tn. Else, generate

coalescence times Wj ∼ Exp (j(j − 1)/2) for j = 2 to N, and set

TN = Tn +WN +WN−1 + . . .+W2.

5. Repeat until the required number of proposals or accepted proposals

is reached.

Output is accepted proposals N̂j = Nkj and µ̂j = µkj , and tmrca TN .

Algorithm 2.3.1: Rejection-sampling method from Tavaré et al. [1997], for the

problem described in Section 2.3.7
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For the prior distribution of N and µ, Tavaré et al. [1997] give several

examples, where N and µ are independently distributed, and each has either a

Gamma or a log-normal distribution.

Tavaré et al. [1997] also note that Wk are no longer independent in the

case where the general population varies in size over time. This, in addition

to complications with regard to modelling mutations, is the motivation for the

abc approach used in Pritchard et al. [1999].



Chapter 3

Convergence of Basic abc

In this chapter, we look at the abcacc estimate Yn described in Algorithm

2.1.2, where the algorithm stops after accepting a fixed number n of samples.

We analyse the effect of the tolerance δ, and the number n of accepted proposals,

on the mse and expected cost of the estimate. In particular, we look at the case

where our expected computational cost is fixed, and we would like to minimise

the mse by our choice of δ and n. We later consider how variants affect this

optimisation.

Finding the exact optimum values for δ and n is highly problem-specific.

Instead, we look for optimal rates of change for δ and n as the cost increases,

which leads to more general, asymptotic results. Firstly, we look for conditions

under which the estimate converges to the true posterior expectation as δ ↓ 0

and n ↑ ∞. Secondly, we find asymptotic expressions for the mse and the

expected computational cost. Finally, we use these asymptotic expressions to

find the optimal asymptotic rates of convergence for δ, n, and the mse.

3.1 Convergence Conditions

Before we look at the asymptotic convergence rate of Yn, we would like to

know whether the estimate converges to the correct value, the true posterior

expectation m(s∗) = E (h(θ) | s∗) , as the expected computational cost tends to

infinity.

First, we introduce the functions φh and φ
(δ)
h , which are useful for looking

at convergence conditions and the asymptotic bias. Later, we look at their

37
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equivalents for other abc variants, which is a convenient way to examine how

choice of variant affects the asymptotic bias.

Definition 3.1. Let φh(s) :=
∫
h(t)fS,θ(s, t) dt = m(s)fS (s) , where m is

defined in Equation 2.1, and

φ
(δ)
h (s∗) :=

1

|Bδ(s∗)|

∫
Bδ(s∗)

φh(s) ds = E (h(θ)[S ∈ Bδ(s∗)]) ,

where the ball B is defined in Definition 2.4. In particular, φh and φ
(δ)
h are

such that, for the estimates Yn and ZN ,

m(s∗) =
φh(s∗)

φ1(s∗)
, E (h(θ) |S ∈ Bδ(s∗)) =

φ
(δ)
h (s∗)

φ
(δ)
1 (s∗)

,

where φ1(s) = fS(s).

Theorem 3.2. Let the function h : Rp → R be such that E (|h(θ)|) <∞. Then,

for fS-almost all s∗ ∈ Rp, the abcacc estimate Yn satisfies

1. lim
n↑∞

Yn = E (Yn) almost surely for all δ > 0; and

2. lim
δ↓0

E (Yn) = m(s∗) for all n ∈ N.

Proof. Since E (|h(θ)|) <∞, we have

E (|Yn|) ≤ E (|h(θ)| | s∗) =
φ|h|(s

∗)

φ1(s∗)
<∞

whenever φ1(s∗) = fS(s∗) > 0, and, by the law of large numbers, Yn converges

to E (Yn) almost surely.

For the second statement, since φ1 ∈ L1(Rq), we can use the Lebesgue

differentiation theorem (Theorem A.6) to conclude that φ
(δ)
1 (s∗) → φ1(s∗) as

δ ↓ 0 for almost all s∗ ∈ Rq. Similarly, since∫
Rq
|φh(s)| ds ≤

∫
Rp
|h(t)|

∫
Rq
fS,θ(s, t) dsdt =

∫
Rp
|h(t)| fθ(t) dt <∞,

and thus φh ∈ L1(Rq), we have φ
(δ)
h (s∗) → φh(s∗) as δ ↓ 0 for almost all

s∗ ∈ Rq. Using Definition 3.1, we get

lim
δ↓0

E (Yn) = lim
δ↓0

φ
(δ)
h (s∗)

φ
(δ)
1 (s∗)

=
φh(s∗)

φ1(s∗)
= m(s∗)

for almost all s∗ ∈ Rq. This completes the proof.
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Note that if the support of fθ for a one-dimensional parameter covers all of

R, then the above theorem might not guarantee convergence in the case where

h is the identity function. For example, if θ has a prior Cauchy distribution,

then E (|θ|) is unbounded.

In addition to the conditional expectation m(s) of h(θ), we will also be

interested in the conditional variance v(s) = Var (h(θ) | s) , since it will appear

frequently when considering the estimate’s asymptotic variance.

Corollary 3.3. Assume that E
(
h(θ)2

)
< ∞. Then, for almost all s∗, the

abcacc estimate Yn satisfies

lim
δ↓0

nVar (Yn) = v(s∗),

uniformly in n, where v is defined in Equation 2.2.

Proof. From the definition of the variance, we know that

Var (Yn) =
1

n
Var (h(θ) |S ∈ Bδ(s∗))

=
1

n

(
E (g(θ) |S ∈ Bδ(s∗))− E (h(θ) |S ∈ Bδ(s∗))2

)
.

where g is the function such that g(·) = h(·)2. Applying Theorem 3.2 to the

function g, we see that

lim
δ↓0

E
(
h(θ)2 |S ∈ Bδ(s∗)

)
= E

(
h(θ)2 | s∗

)
.

Since E
(
h(θ)2

)
<∞ implies E (|h(θ)|) <∞, h satisfies

lim
δ↓0

E (h(θ) |S ∈ Bδ(s∗)) = m(s∗),

and thus

lim
δ↓0

nVar (Yn) = E
(
h(θ)2 | s∗

)
−m(s∗)2

= v(s∗).

This completes the proof.

3.2 Asymptotic Rates of Convergence

Now that we have a condition for the abcacc estimate to correctly converge,

we examine the rate at which it converges. In Chapter 2, we showed that the
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mean square error (mse) of an estimate consists of a variance term and a square

bias term. In this section, we will analyse the asymptotic behaviour of the bias

and the variance separately, and then go on to look at the implications for the

rate of convergence.

3.2.1 Asymptotic Bias

We first look for an expression for the asymptotic bias of Yn.

Theorem 3.4. Let the function h : Rp → R be bounded, m(s) have continuous

third-order derivatives with respect to s, and fS|θ have a Hessian matrix with

a spectral radius bounded on the ball Bq
δ (s) for all possible θ and s. Then, for

almost all s∗, there is a constant c such that

bias(Yn) = E (h (θi1) | s∗)−m(s∗) = c(s∗)δ2 +O
(
δ3
)

as δ ↓ 0.

Proof. By Definition 3.1, the bias is equal to

bias(Yn) = bias(Y1) =
φ

(δ)
h (s∗)

φ
(δ)
1 (s∗)

− φh(s∗)

φ1(s∗)
.

Expanding φh(s) around s∗, using Theorem A.2, we get

φh(s) = φh(s∗) +∇φh(s∗)(s− s∗) +
1

2
(s− s∗)THφh(s∗)(s− s∗) + . . . .

Substituting this expansion into φ
(δ)
h (s∗), the first-order term vanishes, since

its integral is equal to
∫
Bδ(s∗)

(s− s∗) ds = 0, and we are left with

φ
(δ)
h (s∗) =

1∣∣Bq
δ

∣∣
(
φh(s∗)

∣∣Bq
δ

∣∣+
1

2

∫
Bqδ (s∗)

(s− s∗)THφh(s∗)(s− s∗) ds+ . . .

)
.

The second-order integrand is scalar, so we use the fact that the trace is

invariant under cyclic permutations, we obtain∫
Bqδ (s∗)

(s− s∗)THφh(s∗)(s− s∗) ds =

∫
Bq1(0)

xTHφh(s∗)x dx δq+2

=

∫
Bq1(0)

Tr
(
xxTHφh(s∗)

)
dx δq+2

= Tr

(∫
Bq1(0)

xxT dxHφh(s∗)

)
δq+2.
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Since B1(0) is symmetric on each axis,
∫
B1(0) xx

T dx is diagonal. Furthermore,

since B1(0) is spherically symmetric, all the diagonal elements are identical, so

that ∫
B1(0)

xxT dx =

∫
B1(0)

x2
1 dxI.

Therefore, the integrand is equal to∫
Bqδ (s∗)

(s− s∗)THφh(s∗)(s− s∗) ds =

∫
Bq1(0)

x2
1 dx∆φh(s∗)δq+2

=
∆φh(s∗)

q

∫
Bq1(0)

‖x‖2 dx δq+2.

The integral
∫
Bq1(0) ‖x‖

2 dx is equal to
∫ 1

0 r
2SAq−1(r) dr, where SAq−1(r) is the

surface area of the q-dimensional ball with radius r. We now use the formulae

from Huber [1982], for the volume and surface area of a ball:

|Bq
1| =

π
q
2

Γ(1 + q
2)
, SAq−1(r) =

2π
q
2

Γ( q2)
rq−1.

Therefore,
SAq−1(r)

|Bq
1|

= qrq−1,

and

φ
(δ)
h (s∗) = φh(s∗) +

∆φh(s∗)

2q |Bq
1|

∫
Bq1(0)

‖x‖2 dx δ2 +O
(
δ3
)

= φh(s∗) +
∆φh(s∗)

2

∫ 1

0
rq+1 dr δ2 +O

(
δ3
)

= φh(s∗) +
∆φh(s∗)

2(q + 2)
δ2 +O

(
δ3
)
.

Substituting this result into the bias, we find that

bias(Yn) =
φ

(δ)
h (s∗)

φ
(δ)
1 (s∗)

− φh(s∗)

φ1(s∗)

=
φ

(δ)
h (s∗)φ1(s∗)− φ(δ)

1 (s∗)φh(s∗)

φ
(δ)
1 (s∗)φ1(s∗)

=
∆φh(s∗)φ1(s∗)− φh(s∗)∆φ1(s∗)

2(q + 2)φ1(s∗)2
δ2 +O

(
δ3
)

=
∆φh(s∗)−m(s∗)∆φ1(s∗)

2(q + 2)φ1(s∗)
δ2 +O

(
δ3
)
.

We therefore have the desired result, with constant

c(s∗) =
∆φh(s∗)−m(s∗)∆φ1(s∗)

2(q + 2)φ1(s∗)
=

∆m(s∗) + 2∇m(s∗)∇ log fS(s∗)T

2(q + 2)
. (3.1)
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If m(s∗) has continuous fourth-order derivatives, then it is straightforward

to show that

bias(Yn) = c(s∗)δ2 +O
(
δ4
)
,

since all the odd-order terms in the Taylor expansion of φh will vanish, due to

the symmetry of the acceptance region Bδ(s
∗).

Example 3.5. We continue the problem from Example 2.6, for q = 1, which

has true posterior θ | s∗ ∼ N

(
1

2
s∗,

1

2

)
, and data samples S ∼ N (0, 2) . We

look at the case where h(θ) = [θ ∈ [−1/2, 1/2]], and would like to know the

asymptotic bias for the abcacc estimate of

m(s∗) = P (θ ∈ [−1/2, 1/2] | s∗)

= Φ

(√
2

(
1

2
− s∗

2

))
− Φ

(√
2

(
−1

2
− s∗

2

))
= Φ

(
1√
2

(1− s∗)
)
− Φ

(
− 1√

2
(1 + s∗)

)
.

Taking derivatives, we find that

m′(s∗) =
1√
2
φ

(
− 1√

2
(1 + s∗)

)
− 1√

2
φ

(
1√
2

(1− s∗)
)
,

m′(s∗) log (fS(s∗))′ = −s
∗

2
m′(s∗)

= − s∗

2
√

2
φ

(
− 1√

2
(1 + s∗)

)
+

s∗

2
√

2
φ

(
1√
2

(1− s∗)
)
,

and

m′′(s∗) = −1

2
φ′
(
− 1√

2
(1 + s∗)

)
+

1

2
φ′
(

1√
2

(1− s∗)
)

= − 1

2
√

2
(1 + s∗)φ

(
− 1√

2
(1 + s∗)

)
− 1

2
√

2
(1− s∗)φ

(
1√
2

(1− s∗)
)
.

Substituting these into Equation 3.1, we find that the bias coefficient is equal

to

c(s∗) =
(−1− 3s∗)φ

(
1√
2

(1 + s∗)
)

+ (−1 + 3s∗)φ
(

1√
2

(1− s∗)
)

12
√

2
.

The behaviour of this constant, with respect to the value of s∗, is not trivial, but

it is easy to show that c is symmetric, and takes a negative value when s∗ = 0.

This is expected: since m(s) is largest when s = 0, a non-zero tolerance will

introduce abc samples with a reduced chance of being in the relevant interval.
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s∗

c(s∗)

−0.04

(2.33, 0.08)(−2.33, 0.08)

0.84−0.84

Figure 3.2.1: Plot of bias parameter c(s∗) against s∗ for Example 3.5.

Figure 3.2.1 shows some other points of interest. Notably, c becomes positive

before it tends to zero, so there are two values of s∗ where c(s∗) = 0. In this

case, the bias is asymptotically proportional to a higher order of δ.

3.2.2 Asymptotic Variance

Theorem 3.6. Let E
(
h(θ)2

)
< ∞, and fS|θ have a Hessian matrix with a

spectral radius bounded on the ball Bδ(s) for all possible θ and s. For almost

all s∗, the variance of the estimate Yn is equal to

Var (Yn) =
v(s∗)

n
(1 +O

(
δ2
)
)

as δ ↓ 0, where v(s∗) is defined in Equation 2.2.

Proof. The variance is clearly equal to

Var (Yn) =
Var (h(θ) |S ∈ Bδ(s∗))

n
.

Since

E (m(S) |S ∈ Bδ(s∗)) =

∫
Bδ(s∗)

m(s)f(s) ds∫
Bδ(s∗)

f(s) ds

=
m(s∗)f(s∗) +O

(
δ2
)

f(s∗) +O (δ2)

= m(s∗) +O
(
δ2
)
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as δ ↓ 0, then, by the law of total variance, the numerator is equal to

Var (h(θ) |S ∈ Bδ(s∗)) =E (v(S) |S ∈ Bδ(s∗)) + Var (m(S) |S ∈ Bδ(s∗))

=

∫
Bδ(s∗)

v(s)fS(s) ds∫
Bδ(s∗)

fS(s∗) ds

+

∫
Bδ(s∗)

(
m(s)−m(s∗) +O

(
δ2
))2

fS(s) ds∫
Bδ(s∗)

fS(s∗) ds

=

∫
B1(0) v(s∗ + δε)fS(s∗ + δε) dε∫

B1(0) fS(s∗ + δε) dε

+

∫
B1(0)

(
m(s∗ + δε)−m(s∗) +O

(
δ2
))2

fS(s∗ + δε) dε∫
B1(0) fS(s∗ + δε) dε

= v(s∗) +O
(
δ2
)

as δ ↓ 0. The result follows.

3.2.3 Optimising the Error and Cost

Combining the bias and variance from Theorems 3.4 and 3.6 gives the mean

square error

mse(Yn) =
v(s∗)

n

(
1 +O

(
δ2
))

+ c(s∗)2δ4 +O
(
δ5
)
, (3.2)

as δ ↓ 0. This is asymptotically decreasing in δ, but must be balanced against

the expected computational cost of generating the samples. The cost is negative

binomial, with n required success, and success probability

p(s∗) =

∫
Bδ(s∗)

fS(s) ds = |B1|fS(s∗)δq(1 +O
(
δ2
)
) (3.3)

as δ ↓ 0, so the expected cost takes the form [Voss, 2013, Lemma 5.9]

C = E (Cost of n accepted proposals | s∗) (3.4)

=
nE (Cost of one proposal)

p(s∗)

=
E (Cost of one proposal)

|B1| fS(s∗)

n

δq
(1 +O

(
δ2
)
) (3.5)

= k(s∗)nδ−q(1 +O
(
δ2
)
).

We want to know, given a desired value C for the expected computational

cost, which values of δ and n will minimise the mse of Yn. We do this in

two steps. First, in Theorem 3.7, we show that δ and n can be chosen so that
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mse(Yn) = O
(
C
− 4
q+4

)
as C tends to infinity. Second, in Theorem 3.8, we show

that this rate cannot be improved upon, only the proportionality constant.

Theorem 3.7. Let δ ↓ 0 and n ↑ ∞ as C ↑ ∞, such that D := limC↑∞ nδ
4

exists, and is strictly positive. Let E
(
h(θ)2

)
<∞, fS|θ have a Hessian matrix

with a spectral radius bounded on the ball Bδ(s) for all possible θ and s, and

v(s∗) > 0. Then the error and expected cost are such that

lim
C↑∞

nmse(Yn), lim
C↑∞

n−(1+q/4)C, and lim
C↑∞

C4/(q+4)mse(Yn)

exist, and are non-zero and finite.

Before we prove Theorem 3.7, we give a rough approach that justifies the

introduction of D. If we wish to show that mse(Yn) = cCα + O
(
Cα+1

)
as

C ↑ ∞, for some constant c > 0 and some α < 0, then we require the limit of

C−αmse(Yn) =
(
k(s∗)nδ−q

)−α (
1 +O

(
δ2
))−α(v(s∗)

n
+ c(s∗)2δ4 +O

(
δ5
))

,

as C ↑ ∞, to be non-zero and finite. By rearranging, and noting the fact that(
1 +O

(
δ2
))k

= 1 + O
(
δ2
)

as δ ↓ 0 for all k > 0, we see that we require the

limit of

C−αmse(Yn) = k(s∗)−α(n−1−αδαq)
(
v(s∗) + c(s∗)2nδ4 +O

(
δ5
)) (

1 +O
(
δ2
))
,

as C ↑ ∞, to be non-zero and finite. This holds if the limits for n−1−αδαq and

nδ4 exist, and are finite. If we assume that the latter limit D := limC↑∞ nδ
4 > 0

is finite, then the former limit exists if α ≥ −4/(q + 4), and is equal to

D2 := lim
C↑∞

n−1−αδαq = Dαq/4 lim
C↑∞

n−1−α(1+q/4).

Since we wish to maximise the rate of convergence, we minimise α by setting

it equal to −4/(q+ 4). Then D2 = D−q/(q+4), and mse(Yn) = O
(
C−4/(q+4)

)
as

C ↑ ∞, with proportionality constant

lim
C↑∞

C4/(q+4)mse(Yn) = k(s∗)4/(q+4)D−q/(q+4)
(
v(s∗) + c(s∗)2D

)
> 0.

Proof. Using Corollary 3.3 and Theorem 3.4, we find that

lim
K↑∞

nmse(Yn) = lim
C↑∞

n
(
Var (Yn) + bias(Yn)2

)
= v(s∗) + lim

C↑∞
n
(
c(s∗)δ2 +O

(
δ3
))2

= v(s∗) + lim
C↑∞

(c(s∗) +O (δ))2nδ4

= v(s∗) + c(s∗)2D.
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For the expected cost, using Equation 3.4, we find that

lim
C↑∞

n−(1+q/4)C = k(s∗) lim
C↑∞

n−(1+q/4)nδ−q(1 +O
(
δ2
)
)

= k(s∗) lim
C↑∞

n−q/4δ−q(1 +O
(
δ2
)
)

= k(s∗)D−q/4.

Finally, combining the above results for cost and error, we get the result

lim
C↑∞

C4/(q+4)mse(Yn) = lim
C↑∞

(
n−(1+q/4)C

)4/(q+4)
nmse(Yn | s∗)

= k(s∗)4/(q+4)D−q/(q+4)
(
v(s∗) + c(s∗)2D

)
,

(3.6)

which is non-zero and finite.

Some remarks:

1. Since we can choose the value of D, we can choose its value to minimise

the proportionality constant. This value is D = qv(s∗)/4c(s∗)2, which

gives

lim
C↑∞

C4/(q+4)mse(Yn) =

(
qv(s∗)k(s∗)

4c(s∗)2

)−q/(q+4)

(1 + q/4)v(s∗)k(s∗).

Theoretically, we can also choose the summary statistic function s that

minimises this leading term for a fixed q. This is equivalent to minimising

(v(s∗)k(s∗))2 /c(s∗)q However, since this requires knowledge of the values

of k(s∗), v(s∗), and c(s∗), finding the optimal D and s is rarely feasible.

2. If c(s∗) = 0, the bias has a faster rate of convergence, and this allows a

faster rate for the mean square error. Specifically, if bias(Yn) = O (δr) ,

it can be shown that mse = O
(
C
− 2r
q+2r

)
.

3. If considered näıvely, the statement mse(Yn) = O
(
C−4/(q+4)

)
would

suggest that there is no convergence when we use a minimal statistic that

is infinite-dimensional. However, the proportionality constant depends on

c(s∗), and therefore on q, and this can prevent the convergence rate from

vanishing. An example is examined in Chapter 5

We now show that, in the case where c(s∗) is non-zero, no other choice of

δ can lead to a better asymptotic convergence rate.
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Theorem 3.8. Let δ ↓ 0 and n ↑ ∞ as C ↑ ∞. Let E
(
h(θ)2

)
<∞, fS|θ have a

Hessian matrix with a spectral radius bounded on the ball Bδ(s) for all possible

θ and s, and v(s∗) and c(s∗) be non-zero. Then, for almost all s∗ ∈ Rq,

lim inf
n↑∞

C4/(q+4)mse(Yn) > 0.

Proof. We know that

mse(Yn) = Var (Yn) + bias(Yn)2

=
Var (h(θ) |S ∈ Bδ(s∗))

n
+
(
c(s∗)δ2 +O

(
δ3
))2

=
Var (h(θ) |S ∈ Bδ(s∗))

n
+ c(s∗)2δ4 +O

(
δ5
)

≥ Var (h(θ) |S ∈ Bδ(s∗))
n

+
c(s∗)2

2
δ4

(3.7)

for all sufficiently large n, and thus all sufficiently small δ. By Lemma A.3, this

is bounded by

mse(Yn) ≥
(

4

q + 4

Var (h(θ) |S ∈ Bδ(s∗))
n

)4/(q+4)( q

q + 4

c(s∗)2

2
δ4

)q/(q+4)

=A(δ)4/(q+4)Bq/(q+4)
(
nδ−q

)−4/(q+4)
,

where

A(δ) :=
4

q + 4
Var (h(θ) |S ∈ Bδ(s∗)) , B :=

q

q + 4

c(s∗)2

2
.

For the expected cost, we have

(nδ−q)−1C ≥ 1

2
k(s∗),

for all sufficiently large n, and so

(nδ−q)−4/(q+4)C4/(q+4) ≥
(

1

2
k(s∗)

)4/(q+4)

.

Therefore, for sufficiently large n, we have

C4/(q+4)mse(Yn) ≥ A(δ)4/(q+4)Bq/(q+4)

(
1

2
k(s∗)

)4/(q+4)

.

Since the right hand side is greater than zero, we have the required result.

3.3 Numerical Experiments

To demonstrate the above results, we consider the following toy problem.
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1. We choose p = 1, and assume that our prior belief in the value of the

single parameter θ has a standard normal distribution.

2. We assume that the data X consists of two iid samples, X1 and X2, each

with conditional distribution N(θ, 1).

3. We choose q = 2, and the (non-minimal) sufficient statistic to be S(x) = x

for all x ∈ R2.

4. We consider the test function h(θ) = 1[−1/2,1/2](θ), i.e. the indicator

function for the region [−1/2, 1/2]. The abc estimate is thus an estimate

for the posterior probability P (θ ∈ [−1/2, 1/2] | s∗).

5. We fix the observed data to be s∗ = (1, 1).

This problem is simple enough that all the quantities of interest can be

determined explicitly. In particular, we have the conditional distributions

θ |S ∼ N ((s1 + s2)/3, 1/3) and θ | s∗ ∼ N(2/3, 1/3), and S is bivariate normally

distributed with mean 0 and covariance matrix

Σ =

2 1

1 2

 .

To find the value of the bias coefficient c(s∗), we proceed as in Example 3.5.

From the above, we can see that

m(s∗) = Φ

(
1√
3

(
3/2− 1T s∗

))
− Φ

(
− 1√

3

(
3/2 + 1T s∗

))
,

with derivatives

∇m(s∗) =
1√
3

1Tφ

(
− 1√

3

(
3/2 + 1T s∗

))
− 1√

3
1Tφ

(
1√
3

(
3/2− 1T s∗

))
=

1√
3

1Tφ
(
−7/2

√
3
)
− 1√

3
1Tφ

(
−1/2

√
3
)
,

∆m(s∗) =
2

3
√

3
(3/2 + 1T s∗)φ

(
− 1√

3

(
3/2 + 1T s∗

))
− 2

3
√

3
(3/2− 1T s∗)φ

(
1√
3

(
3/2− 1T s∗

))
=

7

3
√

3
φ
(
−7/2

√
3
)

+
1

3
√

3
φ
(
−1/2

√
3
)
.

Additionally, we can show the statistic has marginal log density

log(fS(s∗)) = −1

2
log(2π |Σ|)− 1

2
s∗TΣ−1s∗,
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with derivative

∇ log(fS(s∗)) = −s∗TΣ−1 = −1

3

(
1 1

)
.

The bias coefficient c(s∗) is thus equal to

c(s∗) =
3φ
(
−7/2

√
3
)

+ 5φ
(
−1/2

√
3
)

24
√

3
.

It can be shown numerically that the prior and posterior expectation for h(θ)

are E (h(θ)) = 0.3829 and m(s∗) = 0.3648, respectively, and that the bias

coefficient is c(s∗) = 0.0323.

The function

φ1(s) = fS(s) =
1

2π
√

3
e−

1
3

(s21−s1s2+s22)

is multivariate normal, so its third derivatives exist, and are bounded and

continuous, as do those for the function

φh(s) =

∫ 1/2

−1/2
fθ,S(t, s)dt ≤ φ1(s).

Thus, the assumptions hold.

The figures in this section were plotted using scripts in the R programming

language, which are given in Appendix B.1.1.

Experiment 1

This experiment demonstrates the statement of Theorem 3.4. For fixed δ, we

generate k independent abc estimates, each based on n accepted proposals. For

each of the k estimates, we calculate its discrepancy from the true posterior

expectation. We then calculate the discrepancies’ mean and standard error, to

obtain a Monte Carlo estimate of the bias.

Repeating this procedure for several values of δ, we can produce a plot

of the estimated bias against δ, with 95% error bars. Figure 3.3.1 shows the

result of a simulation, using n = 500 accepted proposals for each abc estimate,

and using k = 5000 abc estimates for each value of δ. For comparison, the

figure includes the theoretically predicted asymptotic bias c(s∗)δ2, using the

value c(s∗) = 0.0323. The plot shows that the theoretical curve is indeed a

good fit to the numerical estimates of the bias for small values of δ. For larger

values of δ, the bias tends towards the difference between the prior and true

posterior expectations.
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Figure 3.3.1: Simulation results for Experiment 1. The error bars indicate mean

±1.96 standard errors, estimated from using 5000 samples for each value of δ. The

parabola uses the theoretical constant from Theorem 3.4.

Experiment 2

This experiment demonstrates the statement of Theorems 3.7 and 3.8, by

numerically estimating the optimal choice of δ and the corresponding abc.

For fixed values of expected computational cost and δ, we estimate the mean

squared error by generating k different abc estimates, and taking the mean of

their squared distance from the true posterior expectation. This reflects how

the bias is estimated in Experiment 1. Repeating this procedure for several

values of δ, the estimates of the mse are plotted against δ.

Our aim is to determine the optimal value of δ for fixed computational cost.

From [Voss, 2013, Lemma 5.9], we know that the expected cost is O
(
nδ−2

)
,

as n ↑ ∞ and δ ↓ 0, and thus we choose n = O
(
δ2
)

in this example. From

Theorem 3.4, we know that bias(Yn) = O
(
δ2
)
. Thus, we expect the mse for

constant expected cost to be of the form

mse(Yn) =
Var(Yn)

n
+ bias(Yn)2 ' aδ−2 + bδ4

for some constants a and b. Thus, we fit a curve of this form to the numerically

estimated values of the mse. The result of one such simulation, using k = 500
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Figure 3.3.2: The estimated mse as a function of δ (for fixed expected cost),

together with the fitted curve and the location of the optimal δ. This figure is for

the time constant 16000. We set k = 500 instead of 5000. However, the error

bars are already relatively small.

samples for each δ, is shown in figure 3.3.2, and shows the curve to be a good

fit.

This good fit between the fitted curve and the empirical mse justifies

estimating the optimal values of δ and mse, given the expected computational

cost, as those at the minimum of the fitted curve.

Repeating the above procedure for a range of values of expected cost gives

corresponding estimates for the optimal values of δ and the mse as a function

of expected cost. We expect the dependency of the optimal δ and the mse

on the cost to take the form x = A · costB. To demonstrate the statements

of Theorem 3.8 we numerically estimate the exponent B from simulated data.

The result of such a simulation is shown in figure 3.3.3. The data are roughly

on straight lines, as expected, and the gradients are close to the theoretical

gradients, shown as smaller lines. The numerical results for estimating the

exponent B are given in the following table.
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Figure 3.3.3: Numerically found dependency of the optimal δ and the corresponding

mse on the computational cost. The computational cost is given in arbitrary units,

chosen such that the smallest sample size under consideration has cost 1. For

comparison, the additional line above the fit has the gradient expected from the

theoretical results.

Plot Gradient Standard error Theoretical gradient

δ −0.167 0.0036 −1/6 ≈ −0.167

MSE −0.671 0.0119 −2/3 ≈ −0.667

The table shows an an excellent fit between the empirical values and the

theoretically predicted values.

3.4 Convergence of abc Variants

In this section, we look at some simple variants on the algorithm for the

abc estimate Yn, as given in Algorithm 2.1.2, and examine their effect on

the estimate’ optimal rate of convergence, as given in Theorem 3.8.

3.4.1 Constant Number of Proposals

We first consider the estimate ZN , as described in Algorithm 2.1.3: instead

of stopping the algorithm after a fixed number of acceptances, we stop it

after a fixed number of proposals. For cases where the cost of one sample

is roughly constant, this is roughly equivalent to fixing the computational cost.
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To consider this estimate, we need to consider the distribution of the number of

accepted proposals, and what to do when none of the proposals are accepted.

For the fixed number of proposals N, the number n of accepted proposals

is binomial, with parameters

n ∼ Bin(N, p(s∗)).

For the case where no proposals are accepted, we can use the expectation

of the prior density, E (h (θ)) . In this case, the mean square error is equal to

(E (h (θ))−m(s∗))2 .

Theorem 3.9. Let the function h : Rp → R be such that E (|h(θ)|) <∞. Then,

for fS-almost all s∗ ∈ Rp, the abcbas estimate ZN satisfies

1. lim
N↑∞

ZN = E (Yn) almost surely for all δ > 0; and

2. lim
δ↓0

E (Yn) = m(s∗) for all n ∈ N.

Proof. The probability of ZN converging to limn↑∞ Yn satisfies

P
(

lim
N↑∞

ZN = lim
n↑∞

Yn

)
≥ P

(
lim
N↑∞

n =∞
)

= P (accept infinitely often) .

Since each sample is accepted with the same non-zero probability, it follows

that
∑

k P (Sk accepted) = ∞, and therefore P (limN↑∞ ZN = limn↑∞ Yn) = 1

by the second Borel-Cantelli Lemma.

The proof of the second statement is the same as for Theorem 3.2.

If n > 0 proposals are accepted, the bias is the same as for Yn, and the

expected cost is NE (Cost of 1 proposal) . For the variance, we know that

Var (ZN |n) =
Var (h(θ) |S ∈ Bδ(s∗))

n
.

We now show that ZN has the same order of convergence as Yn. This is proved

slightly differently in Barber et al. [2015]

Lemma 3.10. Let n ∼ Bin(N, p(s∗)). Then

lim
Np(s∗)↑∞

Np(s∗)E
(

1

n
[n > 0]

∣∣∣∣ s∗) = 1.
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Proof. For any 0 < ε < 1, we split the expectation into three parts:

E
(

1

n
[n > 0]

∣∣∣∣ s∗) =E
(

1

n
[0 < n ≤ (1− ε)Np(s∗)]

∣∣∣∣ s∗)
+ E

(
1

n
[n ≥ (1 + ε)Np(s∗)]

∣∣∣∣ s∗)
+ E

(
1

n
[(1− ε)Np(s∗) < n < (1 + ε)Np(s∗)]

∣∣∣∣ s∗) .
The first term satisfies the bound

E
(

1

n
[0 < n ≤ (1− ε)Np(s∗)]

∣∣∣∣ s∗) ≤ P (0 < n ≤ (1− ε)Np(s∗) | s∗) ,

and, by Lemma A.10, therefore satisfies

E
(

1

n
[0 < n ≤ (1− ε)Np(s∗)]

∣∣∣∣ s∗) ≤ exp
(
−ε2Np(s∗)/2

)
,

which tends to zero exponentially quickly. The second term satisfies the bound

E
(

1

n
[n ≥ (1 + ε)Np(s∗)]

∣∣∣∣ s∗) ≤ 1

(1 + ε)Np(s∗)
P (n ≥ (1 + ε)Np(s∗) | s∗) ,

and, by Lemma A.11, therefore satisfies

E
(

1

n
[n ≥ (1 + ε)Np(s∗)]

∣∣∣∣ s∗) ≤ 1

(1 + ε)Np(s∗)
exp

(
−ε2Np(s∗)/3

)
,

and vanishes exponentially quickly. We are left with the final term, which is

E
(

1

n
[(1− ε)Np(s∗) < n < (1 + ε)Np(s∗)]

∣∣∣∣ s∗) = E
(

1

n

[∣∣∣∣ n

Np(s∗)
− 1

∣∣∣∣ < ε

] ∣∣∣∣ s∗) .
This satisfies the lower bound

E
(

1

n

[∣∣∣∣ n

Np(s∗)
− 1

∣∣∣∣ < ε

] ∣∣∣∣ s∗) >
1

(1 + ε)Np(s∗)
P
(∣∣∣∣ n

Np(s∗)
− 1

∣∣∣∣ < ε

∣∣∣∣ s∗) ,
and the upper bound

E
(

1

n

[∣∣∣∣ n

Np(s∗)
− 1

∣∣∣∣ < ε

] ∣∣∣∣ s∗) <
1

(1− ε)Np(s∗)
P
(∣∣∣∣ n

Np(s∗)
− 1

∣∣∣∣ < ε

∣∣∣∣ s∗) .
The probability P

(∣∣∣ n
Np(s∗) − 1

∣∣∣ < ε
∣∣∣ s∗) tends to one, so the final term in the

limit is bounded in [1/(1 + ε), 1/(1− ε)] . Letting ε tend to zero gives the result.

Lemma 3.11. The variance of the estimate ZN satisfies

lim
Nδq↑∞

Np(s∗)Var (ZN ) = v(s∗).
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Proof. The variance is equal to

Var (ZN ) =E (Var (ZN |n)) + Var (E (ZN |n))

=E
(

Var (h(θ)[n > 0] |S ∈ Bδ(s∗))
n

)
+ Var (E (h(θ) |S ∈ Bδ(s∗)) [n > 0] + E (h(θ)) [n = 0])

= Var (h(θ) |S ∈ Bδ(s∗))E
(

[n > 0]

n

)
+ Var (E (h(θ)) + (E (h(θ) |S ∈ Bδ(s∗))− E (h(θ)))B) ,

where B is a Bernoulli variable with success probability pB(s∗), such that

1− pB(s∗) = P (n = 0 | s∗) ≤ exp (−Np(s∗)/2) ,

by Lemma A.10. The variance of B satisfies

lim
Np(s∗)↑∞

Np(s∗)pB(1− pB) ≤ lim
Np(s∗)↑∞

Np(s∗) exp (−Np(s∗)/2) = 0,

so the second term vanishes exponentially quickly. By Lemma 3.10, the first

term satisfies

lim
Np(s∗)↑∞

Np(s∗)Var (h(θ) |S ∈ Bδ(s∗))E
(

[n > 0]

n

∣∣∣∣ s∗) = v(s∗),

as required.

The mse of the estimate ZN is, therefore, equal to

mse(ZN ) =

(
v̂(s∗)

Nδq
+ c(s∗)2δ4

)
(1 + o (1)), (3.8)

as Nδq ↑ ∞, where v̂(s∗) := v(s∗)/fS(s∗)|B1|, and the computational cost is

clearly proportional to the number of proposals. Therefore, we can prove the

following theorem.

Theorem 3.12. Let δ ↓ 0 and N ↑ ∞ as C ↑ ∞, such that D := limC↑∞Nδ
q+4

exists, and is strictly positive. Let E
(
h(θ)2

)
<∞, fS|θ have a Hessian matrix

with a spectral radius bounded on the ball Bδ(s) for all possible θ and s, and

v(s∗) > 0. Then the error mse(ZN ) and expected cost C are such that

lim
C↑∞

Nδq mse(ZN ), lim
C↑∞

N−(1+q/4)δ−q(1+q/4)C, and lim
C↑∞

C4/(q+4)mse(ZN )

exist, and are non-zero and finite.
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Proof. Using Lemma 3.11, we find that

lim
C↑∞

Nδq mse(ZN ) = lim
C↑∞

Nδq
(
Var (ZN ) + bias(ZN )2

)
= v̂(s∗) + lim

C↑∞
Nδq

(
c(s∗)2δ4 +O

(
δ5
))

= v̂(s∗) + c(s∗)2 lim
C↑∞

Nδq+4

= v̂(s∗) + c(s∗)2D.

For the expected cost C = k2(s∗)N, we find that

lim
C↑∞

N−(1+q/4)δ−q(1+q/4)C = k2(s∗) lim
C↑∞

N−q/4δ−q(1+q/4)

= k2(s∗)D−q/4.

Finally, combining the above results for cost and error, we get the result

lim
C↑∞

C4/(q+4)mse(ZN ) = lim
C↑∞

(
N−(1+q/4)δ−q(1+q/4)C

)4/(q+4)

×Nδq mse(ZN )

= k2(s∗)4/(q+4)D−q/(q+4)
(
v̂(s∗) + c(s∗)2D

)
,

which is non-zero and finite.

Theorem 3.13. Let δ ↓ 0 and N ↑ ∞ as C ↑ ∞, in such a way that Nδq ↑ ∞.

Let E
(
h(θ)2

)
<∞, fS|θ have a Hessian matrix with a spectral radius bounded

on the ball Bδ(s) for all possible θ and s, and v(s∗) and c(s∗) be non-zero.

Then, for fS-almost all s∗ ∈ Rq,

lim inf
N↑∞

C4/(q+4)mse(ZN ) > 0.

Proof. We know that

mse(ZN ) = Var (ZN ) + bias(ZN )2

=
Var (h(θ) |S ∈ Bδ(s∗))

NδqfS(s∗)|B1|
+
(
c(s∗)δ2 +O

(
δ3
))2

=
Var (h(θ) |S ∈ Bδ(s∗))

NδqfS(s∗)|B1|
+ c(s∗)2δ4 +O

(
δ5
)

≥ Var (h(θ) |S ∈ Bδ(s∗))
NδqfS(s∗)|B1|

+
c(s∗)2

2
δ4,

for all sufficiently large N and Nδq. By Lemma A.3, this is bounded by

mse(ZN ) ≥
(

4

q + 4

Var (h(θ) |S ∈ Bδ(s∗))
NδqfS(s∗)|B1|

)4/(q+4)( q

q + 4

c(s∗)2

2
δ4

)q/(q+4)

=A(δ)4/(q+4)Bq/(q+4)N−4/(q+4),



3.4. CONVERGENCE OF ABC VARIANTS 57

where

A(δ) :=
4

q + 4

Var (h(θ) |S ∈ Bδ(s∗))
fS(s∗)|B1|

, B :=
q

q + 4

c(s∗)2

2
.

For the expected cost, we have

N−1C = k(s∗),

and so

N−4/(q+4)C4/(q+4) = k(s∗)4/(q+4).

Therefore, for sufficiently large N and Nδq, we have

C4/(q+4)mse(Yn) ≥ A(δ)4/(q+4)Bq/(q+4)k(s∗)4/(q+4).

Since the right hand side is greater than zero, we have the required result.

3.4.2 Non-Ball Norms and Random Acceptance

If we use the generalised algorithm in Section 2.1.2, the proof for the asymptotic

convergence rate is similar to before, with small changes. Instead of using φ
(δ)
h

from Definition 3.1, we define the following:

Definition 3.14.

φ
(δ,H)
h (s∗) :=

∫
KH(s− s∗)φh(s) ds∫
KH(s− s∗) ds

=

∫
K(u)φh(s∗ +H1/2u) du∫

K(u) du

=

∫
K(u)φh(s∗ +H1/2u) du.

In particular, φ
(δ,H)
h is such that, for the estimate with kernel function K and

square-bandwidth matrix H,

E (h(θ) |S accepted wrt s∗) =
φ

(δ,H)
h (s∗)

φ
(δ,H)
1 (s∗)

.

We then expand as before, using the known values for the lower-order

moments of K from Section 2.1.2:
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φ
(δ,H)
h (s∗) =

∫
K(u)φh(s∗) du+

∫
K(u)∆φh(s∗)H1/2udu

+

∫
K(u)

(
1

2
uH1/2Hφh(s∗)H1/2u

)
du+O

(
Tr(H)2

)
=φh(s∗) +

1

2
Tr

(∫
K(u)uuT duH1/2Hφh(s∗)H1/2

)
+O

(
Tr(H)2

)
=φh(s∗) +

1

2
µ2(K)Tr (HHφh(s∗)) +O

(
Tr(H)2

)
.

We can now follow the same steps as in the proof for Theorem 3.4 to find

that the bias for the random acceptance version is equal to

bias(Z) =
µ2(K) (Tr(HHφh(s∗))−m(s∗)Tr(HHφ1(s∗)))

2φ1(s∗)
+O

(
Tr(H)2

)
=

1

2
µ2(K)Tr

(
H
[
Hm(s∗) + 2∇m(s∗)∇ log fS(s∗)T

])
+O

(
Tr(H)2

)
.

The abcacc and abcbas estimates are then the case where H = δ2Iq, and

where K(u) = [u ∈ B1(0)]/|B1|, with µ2(K) = 1/(q + 2).

For the acceptance probability, we take account of the kernel’s scaling:

p(s∗) =

∫
KH(s− s∗)fS(s) ds

maxuKH(u)
=

∫
K(u)fS(s∗ +H1/2u) du

|H|−1/2 maxuK(u)

=
fS(s∗)

maxuK(u)
|H|1/2(1 +O (Tr(H))).

(3.9)

If H = δ2I, then p(s∗) = O (δq) , as before. For the abcbas estimate, we now

require N |H|1/2 ↑ ∞ as N ↑ ∞, where before we required Nδq ↑ ∞, and the

variance is of order O
(

1

N |H|1/2

)
as N |H|1/2 ↑ ∞.

For either basic estimate, optimising the asymptotic rate of convergence of

the estimate now involves an equation that includes both Tr(H) and |H|1/2.

This is not trivial to solve for general sequences of values for H. However, if H

is of the form

H = f(δ)H0,

for some non-zero constant matrix H0, where f(δ) ↓ 0 as δ ↓ 0, then the two

H terms are Tr(H) = f(δ)Tr(H0) and |H|1/2 = f(δ)q/2|H0|, and the optimal

rate can be found with a similar argument to that in Theorems 3.7 and 3.8.

Furthermore, since the leading term of the asymptotic error depends on the

choice of K and H0, we can consider the choice of one, or both, to minimise

the leading term.
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Example 3.15. If we suppose that the sequence of square-tolerance matrices

H is such that H = δ2I, then we find that the variant has bias coefficient

ĉ(s∗) =
1

2
µ2(K)

(
4m(s∗) + 2∇m(s∗)∇ log fS(s∗)T

)
,

and acceptance probability

p(s∗) =
fS(s∗)

maxuK(u)
δq(1 +O

(
δ2
)
),

where µ2(K) = 1/(q + 2) and maxuK(u) = 1/|B1| in the basic estimates. By

comparison to the proof for Theorem 3.12, we can show that the mean square

error satisfies

lim
C↑∞

C4/(q+4)mse(ZN ) = lim
K↑∞

(
N−(1+q/4)δ−q(1+q/4)C

)4/(q+4)

×Nδq mse(ZN )

= k2(s∗)4/(q+4)D−q/(q+4)
(
v̂(s∗) + ĉ(s∗)2D

)
,

where v̂(s∗) := v(s∗)
fS(s∗) maxuK(u). The value of D that minimises this expression

is D = qv̂(s∗)/4c(s∗)2, giving a minimal value of

lim
C↑∞

C4/(q+4)mse(ZN ) =
1 + q/4

(q/4)q/(q+4)
k2(s∗)4/(q+4)v̂(s∗)4/(q+4)ĉ(s∗)2q/(q+4)

∝ v̂(s∗)4/(q+4)ĉ(s∗)2q/(q+4).

While this still requires knowledge of the values of v̂(s∗) and ĉ(s∗), we can

consider the choice of kernel that further minimises this optimal leading mse

term. We therefore want the kernel K that minimises the kernel inefficiency

In(K) := µ2(K)q/2 max
u

K(u).

For example, we compare the kernel inefficiency for three q-dimensional

distributions: the uniform kernel K1(u) = [uTu ≤ 1]/|B1|, the normal kernel

K2(u) = (2π)−q/2 exp
(
−uTu/2

)
, and the q-dimensional Epanechnikov kernel

K3(u) := q+2
2|B1|(1− u

Tu)[uTu ≤ 1].

For the uniform kernel, in Example 2.12 and the proof of Theorem 3.4, we

showed that µ2(K1) = 1
q+2 . Since the kernel is uniform over a region of size

|B1|, we also know that maxuK1(u) = 1/|B1|. The uniform kernel therefore

has kernel inefficiency

In(K1) =
1

(q + 2)q/2|B1|
=

Γ(1 + q/2)

πq/2(q + 2)q/2
.
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The normal kernel can be shown to have µ2(K2) = 1 and maxuK2(u) =

(2π)−q/2, giving a kernel inefficiency of

In(K2) = 1/(2π)q/2,

and the Epanechnikov kernel satisfies

µ2(K3) =
q + 2

2|B1|

∫
‖u‖≤1

‖u‖2 (1− ‖u‖2) du =
q

2

(
1− q + 2

q + 4

)
=

q

q + 4
,

and maxuK3(u) = (q + 2)/2|B1|, giving a kernel inefficiency of

In(K3) =
qq/2(q + 2)

2(q + 4)q/2|B1|
=
qq/2(q + 2)Γ(1 + q/2)

2(q + 4)q/2πq/2
.

For q = 1, the inefficiencies given above are equal to 1/
√

12, 1/
√

2π, and

3/4
√

5, respectively, so the uniform kernel is the more efficient kernel. More

generally, we can calculate the inefficiency ratios

In(K2)

In(K1)
=

(1 + q/2)q/2

Γ(1 + q/2)
,

In(K3)

In(K1)
=
qq/2(q + 2)q/2(1 + q/2)

(q + 4)q/2
,

which are monotonically increasing, and tend to infinity, as q tends to infinity.

Therefore, the uniform kernel has the better asymptotic efficiency for any q,

and its relative performance increases with q.

Some remarks:

1. The choice of kernel to minimise some measure of kernel inefficiency

also occurs in kernel density estimation, as proposed by Parzen [1962].

However, the resulting choice of kernels is very different: in kernel density

estimation, for a one-dimensional density, the kernel inefficiency is defined

to be µ2(K)1/2R(K), and the Epenechnikov kernel is optimal. For abc

posterior mean estimation, the maxuK(u) is used instead of R(K).

2. It should be noted that this choice of kernel is for the case where we

are only interested in estimating the posterior expectation. If we are

also interested in other properties of the posterior distribution, or in

estimating the entire distribution, then another choice of kernel may

be preferable. Even in the case of posterior mean expectation, random

acceptance is still useful for other reasons, such as the use of importance

sampling over the prior.
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3. It is expected that the uniform kernel can be shown to minimise the

kernel inefficiency. Since the kernel inefficiency is invariant with respect

to the bandwidth, we can constrain µ2(K) to be equal to one, as done by

Epanechnikov [1969] for kernel density estimation, and seek to minimise

maxuK(u).

3.4.3 Weighted Proposals

If we weight the proposals by JH(S − s∗)for some kernel function J, we then

replace φ
(δ)
h with

φ
(δ,J)
h (s∗) :=

∫
JH(s− s∗)φh(s) ds =

∫
J(u)φh(s∗ +H1/2u) du.

Proposals are then considered as accepted if S − s∗ ∈ supp(JH). The effect on

the bias is similar to that for K, except that J(·) can now be negative. This

means that the second moment matrix M(J) of J can be zero, which allows

for a higher-order rate of convergence for the bias.

3.4.4 Generalised Ball Acceptance Regions

Suppose that, instead of accepting proposals inside the 2-ball

B
(2)
δ (s∗) := Bδ(s

∗) =

{
s :

q∑
i=1

|si − s∗i |2/δ2 ≤ 1

}
,

we accept proposals inside the generalised ball B
(l)
δ , as defined in Definition

2.13, where lk, δk > 0 for all k. We then use the modified φ
(δ)
h function

φ
(δ,l)
h (s∗) :=

1

|B(l)
δ |

∫
B

(l)
δ (s∗)

φh(s) ds.

Since there is a straight line from s∗ to each point in B
(l)
δ (s∗), we can use the

Taylor expansion for φh around s∗ to show that

φ
(δ,l)
h (s∗) = φh(s∗) +

1

2|B(l)
δ |

∫
B

(l)
δ (s∗)

(s− s∗)THφh(s∗)(s− s∗) ds+R(s∗, δ, l)

= φh(s∗) +
1

2|B(l)
δ |

∫
Blδ(0)

uTHφh(s∗)udu+R(s∗, δ, l)

= φh(s∗) +
1

2|B(l)
δ |

Tr

(∫
Blδ(0)

uuT duHφh(s∗)

)
+R(s∗, δ, l),

where R(s∗, δ, l) is the remainder term. Note that the first-order term still

disappears, because generalised balls are symmetric on each axis.

We now require evaluations of |B(l)
δ | and

∫
Blδ(0) uu

T du.
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Lemma 3.16. Let δ be a positive vector of elliptic radii, and l be a strictly

positive vector, with elements 0 < lk ≤ ∞. Then the generalised ball B
(l)
δ (0)

has volume

|B(l)
δ | = 2q

∏q
k=1 Γ(1 + 1/lk)

Γ(1 +
∑q

k=1 1/lk)

q∏
k=1

δk.

Furthermore,
∫
B

(l)
δ (0)

uuT du is diagonal, with diagonal elements

∫
B

(l)
δ (0)

|uk|2 du =
1

3
|B(l)

δ |
Γ(1 + 3/lk)

Γ(1 + 1/lk)

Γ
(

1 +
∑q

j=1 1/lj

)
Γ
(

1 +
∑q

j=1 1/lj + 2/lk

)δ2
k.

Proof. The proof for the volume follows Wang [2005]. Firstly, suppose that

pk <∞ for all k. The volume of |B(l)
δ | is equal to

|B(l)
δ | =

∫
∑q
k=1 |uk/δk|

lk≤1
du.

We now change variables from the vector u to the vector r, with elements equal

to rk := (uk/δk)
lk/2 for all k [Wang, 2005]. Using the resulting substitution

uk = r
2/lk
k δk, we find that

|B(l)
δ | = 2q

∫
∑q
k=1 |rk|2≤1

q∏
k=1

r
2/lk−1
k dr

q∏
k=1

δk/lk,

where the integral is now over the regular ball of radius 1. If we define the

function I, where I(a1, . . . , aq) :=
∫
B1(0)

∏q
k=1 |rk|

ak drk, then the volume is

equal to

|B(l)
δ | = 2qI(2/l1 − 1, . . . , 2/lq − 1)

q∏
k=1

δk/lk.

By recursion [Wang, 2005], we can show that

I(a1, . . . , aq) =

∏q
k=1 Γ (bk)

Γ
(
1 +

∑q
k=1 bk

) ,
where bk := (ak + 1)/2. Therefore, the volume is equal to

|B(l)
δ | = 2q

∏q
k=1 Γ(1/lk)

Γ(1 +
∑q

k=1 1/lk)

q∏
k=1

δk/lk = 2q
∏q
k=1 Γ(1 + 1/lk)

Γ(1 +
∑q

k=1 1/lk)

q∏
k=1

δk. (3.10)

For the term
∫
B

(l)
δ (0)

|uk|2 du, we can again change variables to see that

∫
B

(l)
δ (0)

|uk|2 du = 2q

 q∏
j=1

l−1
j

∫
B1(0)

|rk|4/li
q∏
j=1

|rj |2/lj−1 dr

q∏
j=1

δj δ
2
k

= 2q
∏q
j=1 δj∏q
j=1 lj

I

(
2 + 4[k = 1]

l1
− 1, . . . ,

2 + 4[k = q]

lq
− 1

)
δ2
k.
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We again use the explicit form of I(a1, . . . , aq) to see that

∫
B

(l)
δ (0)

|uk|2 du = 2q

 q∏
j=1

l−1
j

 ∏q
j 6=k Γ (1/lj) Γ (3/lk)

Γ
(

1 +
∑q

j=1 1/lj + 2/lk

) q∏
j=1

δj δ
2
k

=
2q

3

∏
j 6=k Γ (1 + 1/lj) Γ(1 + 3/lk)

Γ
(

1 +
∑q

j=1 1/lj + 2/lk

) q∏
j=1

δj δ
2
k

=
1

3
|B(l)

δ |
Γ(1 + 3/lk)

Γ(1 + 1/lk)

Γ
(

1 +
∑q

j=1 1/lj

)
Γ
(

1 +
∑q

j=1 1/lj + 2/lk

) δ2
k,

(3.11)

as required.

Now, suppose that lk =∞ for some k. Then the generalised ball is the set

B
(l)
δ (0) =

u :

|uk| = δ ∩
∑
j 6=k
|uj | = 0

 ∪
|uk| < δk ∩

∑
k 6=j
|uj/δj |lj ≤ 1

 .

Therefore, the volume is equal to

|B(l)
δ | =

∫ δk

−δk

∫
B

(l−k)
δ−k

du−k duk = 2 |B(l−k)
δ−k
| δk. (3.12)

If lk = ∞ for all k, the volume is equal to |B(l)
δ | = 2q

∏q
k=1 δk. Similarly, the

integral
∫
B

(l)
δ (0)

uuT du has diagonal elements

∫
B

(l)
δ (0)

|uk|2 du =

∫ δk

−δk
|uk|2 duk |B

(l−k)
δ−k
| = 2

3
|B(l−k)

δ−k
| δ3
k, (3.13)

and∫
B

(l)
δ (0)

|uj |2 du =

∫ δk

−δk

∫
B

(l−k)
δ−k

(0)
|uj |2 du−k duk = 2

∫
B

(l−k)
δ−k

(0)
|uj |2 du−k δk.

(3.14)

for all j 6= k. If lk =∞ for all k, the integral has diagonal elements∫
B

(l)
δ (0)

|uk|2 du =
2q

3

q∏
j=1

δj δ
2
k. (3.15)

Comparing Equations (3.12)–(3.15) to the results for finite l in Equations 3.10

and 3.11, the results for l with infinite-valued elements can be treated as the

limit of the results for finite l. Therefore, we have the result for 0 < lk ≤ ∞.

Lemma 3.17. Let the function h : Rp → R be bounded, m(s) have continuous

third derivatives with respect to s, and fS|θ have a Hessian matrix with a spectral

radius bounded on the ball B
(l)
δ (s) for all possible θ and s. Then, for almost all
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s∗, there is a constant vector ck, such that the abcbas estimate ZN that accepts

samples (θk, sk) whose statistic sample sk is in the generalised ball B
(l)
δ (s∗)

satisfies

bias(ZN ) =

q∑
k=1

ck(s
∗)δ2

k +O
(
‖δ‖4

)
,

as δ ↓ 0.

Proof. Let γk(l) := Γ(1+3/lk)
Γ(1+1/lk)

Γ(1+
∑q
j=1 1/lj)

Γ(1+
∑q
j=1 1/lj+2/lk)

. Then, by Lemma 3.16,

φ
(δ)
h (s∗) = φh(s∗) +

1

2|B(l)
δ |

Tr

(∫
B

(l)
δ

uuT duHφh(s∗)

)
+O

(
q∑

k=1

δ4
k

)

= φh(s∗) +
1

6

q∑
k=1

γk(l)
∂2

∂s2
k

φh(s∗)δ2
k +O

(
‖δ‖4

)
,

as δ ↓ 0. Substituting this into the expression for the bias gives

bias(ZN ) =
φ

(δ)
h (s∗)

φ
(δ)
1 (s∗)

− φh(s∗)

φ1(s∗)

=
φ

(δ)
h (s∗)φ1(s∗)− φh(s∗)φ

(δ)
1 (s∗)

φ1(s∗)φ
(δ)
1 (s∗)

=

1
6

∑q
k=1 γk(l)

(
∂2

∂s2k
φh(s∗)φ1(s∗)− φh(s∗) ∂

2

∂s2k
φ1(s∗)

)
δ2
k +O

(
‖δ‖4

)
φ1(s∗)

(
φ1(s∗) +O

(
‖δ‖2

))
=

∑q
k=1 γk(l)

(
∂2

∂s2k
φh(s∗)φ1(s∗)− φh(s∗) ∂

2

∂s2k
φ1(s∗)

)
δ2
k

6φ1(s∗)2
+O

(
‖δ‖4

)
=

∑q
k=1 γk(l)

(
∂2

∂s2k
(m(s∗)fS(s∗))−m(s∗) ∂

2

∂s2k
fS(s∗)

)
δ2
k

6fS(s∗)
+O

(
‖δ‖4

)
=

1

6

q∑
k=1

γk(l)

(
∂2

∂s2
k

m(s∗) + 2
∂

∂sk
m(s∗)

∂

∂sk
log (fS(s∗))

)
δ2
k +O

(
‖δ‖4

)
,

as δ ↓ 0. This is the required result, with bias constant

ck(s
∗) =

1

6
γk(l)

(
∂2

∂s2
k

m(s∗) + 2
∂

∂sk
m(s∗)

∂

∂sk
log (fS(s∗))

)
.

Example 3.18. We can consider the case where the elements of δ are identical,

and the elements of l are also identical. The resulting acceptance region is an

l-ball. In this case, if we instead write δ and l for the equivalent scalars, the

asymptotic bias is equal to

bias(ZN ) =
1

6
γk(l)

(
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

)
δ2 +O

(
δ4
)

=
1

6

Γ(1 + 3/l)

Γ(1 + 1/l)

Γ(1 + q/l)

Γ(1 + (q + 2)/l)

×
(
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

)
δ2 +O

(
δ4
)
,
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as δ ↓ 0. For the case where l = 2, this is equal to

bias(ZN ) =
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

2(q + 2)
δ2 +O

(
δ4
)
.

This is the case where we accept on a 2-ball, and agrees with the result in

Theorem 3.4. Two other simple choices are l = 1, which gives

bias(ZN ) =
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

(q + 1)(q + 2)
δ2 +O

(
δ4
)
,

and l =∞, which gives

bias(ZN ) =
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

6
δ2 +O

(
δ4
)
.

The latter, where the acceptance region is a hypercube centred on s∗, has a bias

that is especially sensitive to the statistic dimension q, since increasing q does

not increase the denominator in the bias constant.

The bias for other l-balls, where l is an integer, is more difficult to evaluate,

because the gamma function ratios do not simplify easily. However, any version

of the special case where l = 2/m, and m is an integer, has a bias easily

expressible in terms of falling powers. Specifically, the resulting bias is equal to

bias(ZN ) =
1

6

Γ(1 + 3m/2)

Γ(1 +m/2)

Γ(1 +mq/2)

Γ(1 +m(q + 2)/2)

×
(
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

)
δ2 +O

(
δ4
)

=
(3m/2)m

6(1 +mq/2)

(
4m(s∗) + 2∇m(s∗)∇ log (fS(s∗))T

)
δ2 +O

(
δ4
)
,

as δ ↓ 0, where um :=
∏m−1
k=0 (u − k) is the mth falling power of u. This case

includes the astroid mentioned in Section 2.1.3, which has q = 2 and m = 3.

There are some other simple acceptance regions that have a simple bias

expression. For example, the estimate with a cylindrical acceptance region has

l = (2, 2,∞). If the elliptic radii are all equal to δ, the asymptotic bias is equal

to

bias(ZN ) =
1

8

2∑
k=1

(
∂2

∂s2
k

m(s∗) + 2
∂

∂sk
m(s∗)

∂

∂sk
log (fS(s∗))T

)
δ2

+
1

6

(
∂2

∂s2
3

m(s∗) + 2
∂

∂s3
m(s∗)

∂

∂s3
log (fS(s∗))T

)
δ2 +O

(
δ4
)
.

For the asymptotic variance, we can use the result from Lemma 3.11, where

the success probability is now equal to

p(s∗) =

∫
B

(l)
δ (s∗)

fS(s) ds = |B(l)
(1,...,1)|

q∏
k=1

δk

(
1 +O

(
‖δ‖2

))
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as δ ↓ 0. Therefore, the generalised form of the mse in Equation (3.8) is

mse(ZN ) =

(
v(s∗)

N
∏q
k=1 δk

+

q∑
k=1

ck(s
∗)δ2

k

)
(1 + o (1)) (3.16)

as N
∏q
k=1 δk ↑ ∞. The expected computational cost is linear with respect to

N, as before.

Optimising the rate of convergence for ZN , using Equation (3.16), now

involves optimising an expression that includes both
∏q
k=1 δk and

∑q
k=1 δk. This

optimisation problem is similar to that in Section 3.4.2, where we have a square-

tolerance matrix H, and wish to optimise an expression that includes both

|H|1/2 and Tr(H). For the same reasons as in Section 3.4.2, the optimisation

problem is not trivial to solve for general sequences of values for the tolerance

vector δ.

3.4.5 Discrete Data

If the data is discrete, or a mixture of discrete and continuous, then we cannot

use Taylor expansions. One possible alternative, if the data space is one-

dimensional, is to use the discrete equivalent to the Taylor series, which is

the Newton series. This expresses a function in terms of difference operators,

and is outlined in Lemma A.7. However, this leaves the issue of summing

over the points inside the acceptance region. Specifically, we can consider the

discrete equivalent of the φ functions,

φ̃h(s) := m(s)P (S = s) , φ̃
(δ)
h (s∗) :=

1

#{s : s ∈ Bδ(s∗)}
∑

s∈Bδ(s∗)

φ̃h(s).

If the possible values of s are on a uniform grid, then the acceptance region

will, again, be symmetric, and we have, for k > 0, the expansions

φ̃h(s∗ + k) =

k∑
i=0

(
k

i

)
∆iφ̃h(s∗)

and

φ̃h(s∗ − k) =
k∑
i=0

(−1)i
(
k

i

)
∇iφ̃h(s∗),

so that

φ̃h(s∗ + k) + φ̃h(s∗ − k) =
k∑
i=0

(
k

i

)(
∆i + (−1)i∇i

)
φ̃h(s∗).
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While this is not useful in the general case, it can be useful if values for φ̃h(·)

and φ̃1(·) follow some known difference equation.

In practice, if the data space is discrete, then we will often be in either a

very small space – in which case we can set δ to zero without much loss of

efficiency – or a very large space, in which case the space can be approximated

as a continuous one.

3.5 Discussion and Comparison to Previous Results

In Sections 3.2 and 3.4.1, we showed that the basic abc estimates have an

asymptotic convergence rate either of order O
(
n−4/(q+4)

)
or of O

(
N−4/(q+4)

)
,

depending on whether n or N is fixed.

We can compare this to the convergence rate of exact, unbiased Monte Carlo

methods, which is O
(
N−1

)
. For one-dimensional statistics, where q = 1, abc

has asymptotic rate O
(
N−4/5

)
, already a noticeable reduction in efficiency.

If the statistic dimension is increased to q = 4, then the rate is reduced

to O
(
N−1/2

)
at best, already half the rate of convergence of exact Monte

Carlo methods. The rate of convergence therefore decreases rapidly as q

is increased, so much effort is put into dimension reduction when choosing

summary statistics.

In Section 3.4.2, we considered the effect on the asymptotic convergence rate

from using random acceptance: the asymptotic rate is the same, but the choice

of kernel affects the magnitude of the leading term. However, Example 3.18

demonstrates that the uniform kernel is likely to minimise the leading term, so

we gain no advantage from using random acceptance, if we are only interested

in estimating the posterior expectation. In practice, there are still reasons to

use random acceptance, even when estimating the posterior expectation. These

reasons include making use of rejection and importance sampling on the prior,

as mentioned in Section 2.2.1.

The asymptotic rates of convergence found in Sections 3.2 and 3.4.1 are

similar to the rates in Section 2.2.4 for other abc variants, to which we now

compare them. Most of the variants mentioned in the following fix the total

number N of proposals, so we will compare them to the rate for the abcbas

estimate ZN . Since all the variants that will be discussed have an expected cost



68 CHAPTER 3. CONVERGENCE OF BASIC ABC

C that is linear with respect to N, the comparisons given below in terms of N

are equivalent to comparisons in terms of C.

It should be remembered that these convergence rates are asymptotic.

While they can be used to compare long-term performance between different

algorithms, a variant with slower asymptotic convergence can be more accurate

for practical computational running times. In particular, many variants are

designed to be used on specific types of models, so will perform better in those

cases.

Prangle [2011] found the same asymptotic rate of O
(
N−q/q+4

)
, in the case

where the summary statistic is S(x) = m(x), the true conditional expectation.

Although this is a similar result, there are two differences to note:

1. This summary statistic is not sufficient, since it is not necessarily true

that fθ|S(t |S(x)) = fθ|X(t |x), for all x, so Prangle’s results are in a

different setting to the one in this text. However, this summary statistic

is sufficient in the more limited sense that E (θ |S(x)) = E (θ |x) , which

is sufficient for estimating the posterior mean.

2. The parameter θ is not reduced by some one-dimensional function h.

Instead, the estimate is for E (θ | s∗) , and the error is minimised with

respect to the expectation of the quadratic loss function

L(θ, Z;A) := (Z − θ)TA(Z − θ),

where Z is the estimate, and A is a positive-definite matrix of full rank.

This has posterior expectation

E (L(θ, Z;A) | s∗) = Tr(ACov(Z | s∗)) + Tr(ACov(θ | s∗))

+ bias(Z | s∗)TAbias(Z | s∗).

Although similar to the mean square error, this can not, in general, be

rewritten as minimising the mean square error with respect to some one-

dimensional function h, so these results also have a different goal for

optimisation.

Blum [2010] found an asymptotic rate of O
(
N−q/(q+5)

)
when using abc

for kernel density estimation on a one-dimensional parameter θ. This is a more
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general estimate, at the cost of a slightly slower asymptotic rate. Note that

this is the asymptotic rate for pointwise convergence, rather than uniform

convergence. More specifically, for tolerance δ and density estimate bandwidth

b, the bias is shown to beO
(
δ2 + b2

)
, and the variance is shown to beO

(
1

Nδqb

)
.

The asymptotic bias is roughly equivalent to that of the basic abc estimates,

but the asymptotic variance is affected by the addition of the bandwidth

constant. In effect, the bandwidth constant has the same effect as increasing

the statistic dimension q by one.

The asymptotic rate in Blum [2010] was found to be the same when using

either local-linear regression or local-quadratic regression to adjust proposals.

However, these methods of proposal adjustment do affect the bias coefficient.

Which method has the smaller coefficient, and thus a smaller asymptotic upper

bound on the bias, depends on the shape of the bandwidth matrix, and on

the behaviour of the function m(s) = E (θ | s) in the neighbourhood of s. For

example, using local-linear or local-quadratic adjustment is better if m is linear,

because their bias coefficients are zero, and so their asymptotic bias is higher-

order. Furthermore, if m is non-linear, but the distribution of the residual

θ−m(s) is independent of s, then the bias coefficient for the variant with local-

quadratic adjustment is still zero. This leads Blum to consider transformations

of the summary statistics that reduce the dependence of the residual on s. We

will return to the results from this paper in the discussion section of Chapter 4.

Biau et al. [2015] also considered using abc for kernel density estimation,

but let the parameter θ be multi-dimensional. Additionally, they accepted

samples using a nearest-neighbours approach, rather than a fixed acceptance

region. For direct comparison to other results, we can consider the case where

the parameter dimension is p = 1. The estimate has three different asymptotic

rates of convergence, depending on the statistic dimension q. At best, when

q < 4, the estimate convergence rate is O
(
N−4/9

)
, a much slower rate than

any other variant we consider. At best, when q > 4, the convergence rate is the

same as that in Blum [2010]. However, this rate is not directly comparable to

the others, since Biau et al. define the error as the mean integrated square error

E
(∫

(Z(t)− fθ|S(t | s∗)2 dt | t
)
, where Z(t) is the abc estimate of fθ|S(t | s∗),

rather than the pointwise mean square error considered in Blum [2010] and
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elsewhere.

Finally, Fearnhead and Prangle [2012] found that use of Noisy abc results in

an asymptotic rate of O
(
N−2/(q+2)

)
, because the asymptotic bias is now O (δ) ,

rather than O
(
δ2
)
. This is slower than the basic variant, about the equivalent

of doubling the statistic dimension. Again, although this is a similar result to

that in Section 3.4.1, there are two differences to consider:

1. As in Prangle [2011], the algorithm estimates the posterior expectation

of parameter θ, not of some one-dimensional function of θ, and minimises

error with respect to a quadratic loss function.

2. Noisy abc is designed to be calibrated: specifically, if the abc posterior

assigns a probability p to being in a certain region, then proposals from

the prior will be within this region with the same probability. While

useful, in the sense that it guarantees Noisy abc will converge to the

correct value of θ, this calibration is done by adding noise to the original

observations before using them. This reduces the information available

from the observations, so Noisy abc gives less accurate estimates then

basic abc for small δ. Fearnhead and Prangle therefore suggest using

Noisy abc when the statistic dimension, and hence δ, are very large,

particularly when combining abc analyses of large datasets.



Chapter 4

abc with Local-Linear

Regression

The previous chapter looked at the asymptotic error for the basic abc estimates

Yn and ZN . We now introduce, and analyse, a new estimate, that we will refer

to as the abcloc estimate ẐN . The algorithm includes both an accept-reject

step and a proposal adjustment step, and involves two kernels: one is used

for random acceptance, as described in Section 2.1.2, and the other is used

to weight samples in the linear regression used for proposal adjustment, as

described in Section 2.2.3.

4.1 Algorithm

Instead of using the accepted abc samples directly in the estimate, we can first

adjust them, to account for the difference between their generated statistic and

the observed statistic. These adjustments are commonly made using simple or

local polynomial regression (Beaumont et al. [2002], Fearnhead and Prangle

[2012]). We first describe the general approach, look at the version proposed

by Beaumont et al. [2002], and then describe the version we propose in this

chapter.

4.1.1 General Proposal Adjustment

To do proposal adjustment we begin by defining an estimate m̂(s; Ĥ) for the

conditional expectation function m(s), as defined in Equation (2.1), where Ĥ

71
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denotes the estimate parameters. Then, as in Section 2.1.2, we can express

the proposals θk as θk = m̂(sk; Ĥ) + εk, so that εk is the empirical residual.

We then use the adjusted proposals θ̂k := m̂(s∗; Ĥ) + εk, which will roughly

be sampled from the true conditional distribution. Substituting in the value of

the residuals gives

θ̂k = θk − m̂(sk; Ĥ) + m̂(s∗; Ĥ).

Using these adjusted proposals results in the estimate

ẐN :=
1

n

n∑
j=1

h(θ̂kj ) =
1

n

n∑
j=1

h(θkj − m̂(skj ; Ĥ) + m̂(s∗; Ĥ)),

where θkj are the n proposals that are accepted. In this chapter, we will

consider the special case h(x) = x, where the above equation simplifies to

ẐN = ZN +AN , AN := m̂(s∗; Ĥ)− 1

n

n∑
j=1

m̂(skj ; Ĥ),

so that AN describes the adjustment to the original estimate.

4.1.2 Local-Linear Adjustment

Beaumont et al. [2002] defined m̂(s; Ĥ) to be the value at s of a local-linear

regression centred at s∗. Specifically, for some kernel function K̂, and some

square-tolerance matrix Ĥ, both as defined in Definition 2.7, they found the

coefficients α̂ and β̂ such thatα̂
β

 := argmin
α,β

N∑
k=1

(θk − α− β(sk − s∗))2K̂Ĥ(sk − s∗).

They then let m̂(s; Ĥ) = α̂+ β̂T (sk − s∗), resuliting in adjusted proposals

θ̃k = θk − β̂T (sk − s∗).

An example of the adjustment is given in Figure 4.1.1.

The kernel function K̂ and square-bandwidth matrix Ĥ were also used to

weight the adjusted proposals in the abc estimate, as in case 3 in Section 2.1.2.

The full algorithm is given in Algorithm 4.1.1.

4.1.3 Multiple Regression Adjustment

In this chapter, for the proposed abcloc estimate, we define m̂(s; Ĥ) to be

the value at s of a kernel linear regression centred at s. Note this now uses a

separate regression for s∗, and for each accepted sample.
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Local-linear abc estimate from Beaumont et al. [2002]

Input is data x∗ ∈ Rd, summary function s : Rd → Rq, prior density fθ

for θ ∈ Rp, conditional statistic density fS|θ, weight kernel function K̂,

square-bandwidth matrix Ĥ, and a required number N of proposals. Let

s∗ = S(x∗).

1. Set k = 1.

2. Generate proposal θk ∼ fθ and data Xk ∼ fX|θ(· | θk).

3. Let sk = S(Xk), calculate weight wk = K̂Ĥ(sk − s∗).

4. If k < N, increase k by one, and return to Step 2.

5. Form a local-linear regression with predictors sk, responses θk, and

weights wk, for k ∈ {1, . . . , N}, to get estimate regression coefficients

α̂ and β̂ in the expression

θk = α̂+ (sk − s∗)T β̂ + εk.

6. Calculate adjusted proposals θ̂k = θk − (sk − s∗)T β̂.

Output is estimate ZN =
∑N

k=1wkh(θ̂k)/
∑N

k=1wk, the weighted mean of

the function values for the adjusted proposals.

Algorithm 4.1.1: Algorithm for the estimate used in Beaumont et al. [2002].
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Specifically, we choose two kernel functions, K and K̂, and two square-

bandwidth matrices, H and Ĥ. We will use K and H for random acceptance,

as described in Section 3.4.2, and K̂ and Ĥ to adjust the accepted proposals. In

practice, we will set K = K̂ and H = Ĥ, but for now we let them be different.

We then do a local-linear regression centred on s∗, as in Section 4.1.2.

However, we are only interested in the estimated conditional mean at the centre

point s∗, which is equal to m̂(s∗; Ĥ) = α. By Lemma A.8, this is equal to

m̂(s∗; Ĥ) = eT1

(
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗Θ,

where

Xs =


1 (s1 − s)T
...

...

1 (sN − s)T

 , Ŵs = diag
(
K̂Ĥ(s1 − s), . . . , K̂Ĥ(sN − s)

)
,

and Θ is the vector of proposals.

It now remains to determine the estimated conditional mean m̂(skj ; Ĥ) for

each of the accepted statistic samples. Therefore, for each of the accepted

statistics skj , we will do an additional local-linear regression, centred at skj

rather than s∗. By Lemma A.8, the resulting conditional mean estimates are

equal to

m̂(s; Ĥ) = eT1

(
XT
s ŴsXs

)−1
XT
s ŴsΘ, (4.1)

where s = skj .

If we accept n proposals, then we do a total of n + 1 separate local-linear

regressions: one centred on each accepted proposal, and one centred on s∗.

The full algorithm for the abcloc estimate is given in Algorithm 4.1.2. An

example of the proposal adjustment is given in Figure 4.1.2.

Before we proceed to the asymptotic results, we make some remarks:

1. The abcloc estimate uses a fixed number N of proposals, rather than

a fixed number n of accepted proposals. The latter would require us

to consider two sets of conditional statistic densities: one for accepted

proposals, and one for rejected proposals.

2. The number of accepted samples can be zero. In this case, we define

ẐN to be equal to some predetermined value c, as we do for ZN . The

adjustment term AN is zero in this case.
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abcloc estimate ẐN

Input is data x∗ ∈ Rd, summary function s : Rd → Rq, prior density fθ

for θ ∈ Rp, conditional statistic density fS|θ, acceptance kernel function

KH , weight kernel function K̂, square-bandwidth matrix Ĥ, and a required

number N of proposals. Let s∗ = S(x∗).

1. Set k = 1.

2. Generate proposal θk ∼ fθ and data Xk ∼ fX|θ(· | θk).

3. Let sk = S(Xk), and calculate weight wk = K̂Ĥ(sk − s∗). Accept θk

with probability KH(sk − s∗)/maxuKH(u).

4. If k < N, increase k by one, and return to Step 2.

5. Form a local-linear regression with inputs sk, responses θk, and

weights wk, for k ∈ {1, . . . , N}, to get estimated regression coefficients

α̂ and β̂ in the expression

θk = α̂+ (sk − s∗)T β̂ + εk.

6. For each accepted statistic skj , form a local-linear regression j with

inputs sk, responses θk, and weights wk,j = K̂Ĥ(sk − skj ), for all

k ∈ {1, . . . , N}, to get estimated regression coefficients α̂j and β̂j in

the expression

θk = α̂j + (sk − skj )
T β̂j + εk,j .

7. Calculate adjusted proposals θ̂kj = θkj − α̂j + α̂.

Output is estimate ZN = 1
n

∑n
j=1 h(θ̂kj ), the mean of the function values

for the accepted, adjusted proposals.

Algorithm 4.1.2: Algorithm for the abcloc estimate, with an accept-reject step

and a proposal adjustment step.
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θ

s∗ Ss∗

Figure 4.1.1: Example of the proposal adjustments in the estimate used

in Beaumont et al. [2002]. The larger black dots are the original samples. For

the local-linear regression, we use the kernel function K̂(u) = [u ∈ [−1, 1]] /2, and

choose Ĥ so that m̂(s, Ĥ) is the value at s of a linear regression, which uses the

samples in the interval marked by the two solid lines. The adjustment then consists

of subtracting the values predicted from the regression, shown as the sloped dashed

line, and adding the predicted value at s∗, shown as the horizontal dashed line.

The resulting adjusted samples are shown as white dots.
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θ

s∗ Ss∗

θ

s∗ Ss∗

θ

s∗ Ss∗

θ

s∗ Ss∗

Figure 4.1.2: Example of the proposal adjustments in the abcloc estimate, using

kernel functions K(u) = K̂(u) = [u ∈ [−1, 1]] /2, and square-bandwidth matrices

H = Ĥ.

Top-left: Local-linear regression centred on s∗. The samples are shown as black

dots. The observation s∗, and the boundaries of the region in which the regression

includes samples, are shown as dotted lines. This region includes four of the

samples. The regression line is the dashed line, with the centre point (s∗, m̂(s∗; Ĥ))

marked by the white dot. This is the only part of the regression that will be used.

Top-right: Local-linear regression on one of the accepted samples, s′. The

regression region, enclosed by dotted lines, is now centred on s′. This affects

which samples are used, so the regression line is different. The point (s′, m̂(s; Ĥ))

is marked by the white dot.

Bottom-left: All required regression centre points are shown as white dots. The

dotted lines represent the acceptance region. Since K = K̂ and H = Ĥ, this is

the same as the region used for the regression in the top-left panel.

Bottom-right: Samples and regression centre points are now greyed out. The new

black dots represent the adjusted samples. Each proposal is shifted according to the

vertical difference between its white dot and that of the observation. For example,

the first proposal to the left from s∗ has little difference between the respective

white dots, so its adjustment is small, compared to that of the others.
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3. We must account for the randomness introduced by the acceptance kernel

function K. In what follows, we define Ws to be the random diagonal

matrix whose kth diagonal element is a Bernoulli variable wk with success

probability KH(sk − s)/maxuKH(u). Then the basic abc estimate is

written as ZN = (1TWs1)−11TWsΘ, and the adjustment term is equal to

AN = m̂(s∗; Ĥ)− (1TWs1)−11TWs


m̂(s1; Ĥ)

...

m̂(sN ; Ĥ)

 .

4.2 Asymptotics

We begin with an asymptotic result for local-linear regression. Our estimate

m̂(s; Ĥ) for m(s) was shown by Ruppert and Wand [1994] to have conditional

bias

E
(
m̂(s; Ĥ)−m(s)

∣∣∣ s1, . . . , sN

)
=

1

2
µ2(K̂)Tr(ĤHm(s)) + oP (Tr(Ĥ)), (4.2)

and conditional variance

Var
(
m̂(s; Ĥ)

∣∣∣ s1, . . . , sN

)
=

R(K̂)

N |Ĥ|1/2
v(s)

fS(s)
(1 + oP (1)), (4.3)

where Hm(s) is the Hessian matrix of m at the point s, v(s) = Var (θ | s) is the

conditional variance of θ, and µ2(K̂) and R(K̂) are as defined in Definition 2.10.

The term oP (·) is defined in Definition A.9.

We now give a set of assumptions, based on those for the results in Ruppert

and Wand [1994], that will be sufficient for our following results to hold.

Definition 4.1. The condition number κ(A) of a matrix A is equal to the ratio

between its largest eigenvalue and its smallest eigenvalue.

Assumption 4.2 (Based on A-1 to A-4 in Ruppert and Wand [1994]). All of

the following conditions hold:

1. The kernel function K̂ is compactly-supported and bounded, and is such

that µ2(K̂) is non-zero, and such that all odd-order moments of K̂ vanish.

2. All regression centre points s are in supp(fS). For all such s, v(s) is

strictly positive and continuous, fS is continuously differentiable, all of

the fourth-order moments of m are continuous, and there is a convex

subset of supp(fS) around s with non-null interior.
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3. The sequence of square-bandwidth matrices Ĥ is such that N−1|Ĥ|, and

all elements of Ĥ, tend to zero as N ↑ ∞, and Ĥ remains symmetric and

positive definite. Addtionally, κ(Ĥ) is bounded by some fixed constant L

for all N.

Equations 4.2 and 4.3 also raise the following points:

• The form of the conditional bias and variance given in Equations 4.2 and

4.3 assumes that each regression centre point s is an interior point of fS ,

in the sense that there is some M such that supp(K̂Ĥ(· − s)) ⊂ supp(fS)

for all N ≥ M. If this is not the case, then supp(K̂Ĥ(· − s)) ∩ supp(fS),

the space in which statistic proposals are used for the regression, need

not be symmetric. Ruppert and Wand [1994] note that this increases the

asymptotic order of the bias of m̂(s; Ĥ), and the smaller size of the usable

space increases the asymptotic variance.

• If only the accepted proposals are used for each regression, we use points

in the support of the density function for accepted samples. In the simple

case where supp(K) is finite, K̂ = K, and Ĥ = H, this result in s∗ being

the only interior point. To prevent this, we allow each regression to also

use the rejected samples. In this case, all accepted statistics are interior

points if the set of all points that could be used in a regression,

{u : ∃s ∈ supp(KH) such that u ∈ supp(K̂Ĥ(· − s))}, (4.4)

is in supp(fS). In the simple case where K = K̂ and H = Ĥ, this

condition simplifies to supp(K4H(· − s∗)) ⊂ supp(fS).

• Ruppert and Wand [1994] note that the unconditional expectation of the

oP (1) term in Equations 4.2 and 4.3 has an undefined absolute value,

because, in the case where no points contribute to the regression, so that

Ŵs = 0, the authors leave the estimate m̂(s; Ĥ) undefined. However,

in the abcloc estimate, the regression centred at sk always includes

the sample (θk, sk), and the regression centred at s∗ always includes the

accepted samples if supp(KH) ⊂ supp(K̂Ĥ), so this is not an issue if there

are any accepted samples. If there are no accepted samples, then ẐN is

set to a pre-determined value c, and no regression is done.
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• The results from Ruppert and Wand [1994] are for when the regression

centre point s is a fixed value. In the abcloc algorithm, this holds

for the regression at s∗, but the other regressions use random centre

points in supp
(
K̂Ĥ(· − s∗)

)
. Additionally, each centre point may also

be used in other regressions. We must determine the effect this has on

the asymptotic behaviour.

The goals of this section are to make a rigorous statement about the

asymptotic bias, variance, and expected cost of ẐN , and to find the new optimal

rate for the mse. Before we begin, we give a brief sketch of why the asymptotic

bias for ẐN might have a higher order than that for the abcbas estimate ZN .

This suggests ẐN might have a faster rate of convergence, which motivates

asymptotic analysis of ẐN .

The bias for ZN can be expressed as

bias(ZN ) = E (m(S) |S accepted)−m(s∗),

and the expectation for the adjustment term can be expressed as

E (AN ) = E
(
m̂(s∗; Ĥ)

)
− E

(
m̂(S; Ĥ)

∣∣∣S accepted
)
.

Since ẐN = ZN +AN , this means that

bias(ẐN ) = bias(m̂(s∗; Ĥ))− E
(

bias(m̂(S; Ĥ))
∣∣∣S accepted

)
.

Using Equation 4.2, this is roughly equal to

bias(ẐN ) ' 1

2
µ2(K̂)Tr

(
Ĥ [Hm(s∗)− E (Hm(S) |S accepted)]

)
.

The expression in the square brackets is proportional to the asymptotic bias

of the abcbas estimate for some variable with conditional expectation Hm(·).

Therefore, the bias is O(Tr(Ĥ)Tr(H)) as H and Ĥ tend to zero element-wise,

a clear improvement on the bias of the abcbas estimate, which is O (Tr(H)) ,

and of the local regression estimate m̂(s∗; Ĥ),, which is O(Tr(Ĥ)). However,

the computational cost will rise at a faster rate due to the regressions, and we

do not yet know how the variance is affected.

4.2.1 Bias

We suppose that we use kernel function K and square-bandwidth matrix H

for acceptance, and K̄ and H̄ for regression weighting. Then we would like to
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know bias(ẐN ). To do this, we write the three components of ẐN in matrix

notation. In Equation 4.1, we expressed the component for the regression at

s∗ as

m̂(s∗; Ĥ) = eT1

(
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗Θ,

and, in Section 4.1, we expressed the abcbas estimate ZN as

ZN =
(

1T Ŵs∗1
)−1

1T Ŵs∗Θ, (4.5)

and the remaining term as

−(AN − m̂(s∗; Ĥ)) =
1

n

n∑
j=1

m̂(skj ) =
(

1T Ŵs∗1
)−1

1T Ŵs∗


m̂(s1; Ĥ)

...

m̂(sN ; Ĥ)

 ,

where

m̂(sk; Ĥ) = eT1

(
XT
sk
ŴskXsk

)−1
XT
sk
ŴskΘ.

These components include many terms of the form

Z =


Y −1X |Y | 6= 0,

0 |Y | = 0,

where the denominator Y is a square matrix, and where the numerator X is

either a matrix or a vector. Additionally, X and Y have expectations with

simple Taylor expansions, so we would like to reduce the asymptotic analysis

of E (Z) to that of the ratio of expectations E (Y )−1 E (X) . The näıve approach

would be to use the Taylor expansion

E (Z) = E
(
X

Y

)
= E

(
E (X)

E (Y )
+
X − E (X)

E (Y )
− E (X) (Y − E (Y ))

E (Y )2 + . . .

)
=

E (X)

E (Y )
+O (Cov(X,Y ) + Var (Y )) .

However, Z has a special form when |Y | = 0, so this Taylor expansion does not

hold. We therefore require an approach that accounts for this special case, but

allows us to use the ratio of expectations.

For this section, we approach the problem by showing that E
(
Y −1X

)
tends

to E (Y )−1 E (X) , as N tends to infinity. It then follows that

lim
N↑∞

E
(
Y −1X

)
=

(
lim
N↑∞

E (Y )

)−1

lim
N↑∞

E (X) ,

if the limits of E (X) and E (Y ) are finite, and the latter is non-zero.
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abcbas Estimate

Using the approach described above, the expectation for the abcbas estimate

ZN has a numerator X and a denominator Y that are scalar. This makes

the abcbas term the easiest to evaluate under this approach, so we begin by

re-finding the asymptotic bias of ZN .

First, we find conditions under which E (Z) tends to E (X) /E (Y ) .

Lemma 4.3. Let XN be the sum of N iid scalar random variables, and YN be

a binomial variable YN ∼ Bin(N, pN ), such that

E
(
X2
N

)
N2p2

N

= O (1) , and
E (YN )

NpN
→ 1,

as N ↑ ∞. Let g(XN , YN ) = c, for some constant c, in the case where the

binomial variable YN is zero, and g(XN , YN ) = XN/YN otherwise. Let pN

tend to zero, and NpN tend to infinity, as N ↑ ∞. Then

lim
N↑∞

E (g(XN , YN )) = lim
N↑∞

E (XN )

E (YN )
.

Proof. Similar to the proof for Lemma 3.10. We first note that

E (g (XN , YN )) =E
(
XN

YN
[YN > 0]

)
+ cP (YN = 0)

=E
(
XN

YN
[YN ≥ (1 + ε)NpN ]

)
+ E

(
XN

YN
[0 < YN ≤ (1− ε)NpN ]

)
+ E

(
XN

YN
[(1− ε)NpN < YN < (1 + ε)NpN ]

)
+ cP (YN = 0) .

Since YN is binomial,

logP (YN = 0) = N log(1− pN ) ≤ −NpN ,

so cP (YN = 0) ≤ c exp−NpN , which vanishes exponentially quickly as N ↑ ∞.

By Hölder’s inequality and Lemma A.11, the first term satisfies the bound

E
(
XN

YN
[YN ≥ (1 + ε)NpN ]

)
≤ 1

(1 + ε)NpN
E (XN [YN > (1 + ε)NpN ])

≤
E
(
X2
N

)1/2
(1 + ε)NpN

P (YN > (1 + ε)NpN )1/2

≤
E
(
X2
N

)1/2
(1 + ε)NpN

exp

(
−ε

2

6
NpN

)
.
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Since E
(
X2
N

)1/2
= O (NpN ) , this term vanishes exponentially quickly.

Similarly, by Lemma A.10, the second term satisfies the bound

E
(
XN

YN
[0 < YN < (1− ε)NpN ]

)
≤ E (XN [0 < YN < (1− ε)NpN ])

≤ E
(
X2
N

)1/2 P (0 < YN < (1− ε)NpN )1/2

≤ E
(
X2
N

)1/2
exp

(
−ε

2

4
NpN

)
,

which also vanishes exponentially quickly as N ↑ ∞. Finally, the middle term

satisfies the bounds

E
(
XN

YN
[(1− ε)Np < YN < (1 + ε)Np]

)
≤ 1

(1− ε)Np
E
(
XN

[∣∣∣∣YNNp − 1

∣∣∣∣ < ε

])
→ E (XN )

(1− ε)Np

=
1

(1− ε)
E (XN )

E (YN )
,

and

E
(
XN

YN
[(1− ε)Np < YN < (1 + ε)Np]

)
≥ 1

(1 + ε)Np
E
(
XN

[∣∣∣∣YNNp − 1

∣∣∣∣ < ε

])
→ E (XN )

(1 + ε)Np

=
1

(1 + ε)

E (XN )

E (YN )
,

since P
(∣∣∣YNNp − 1

∣∣∣ < ε
)
↑ 1 as N ↑ ∞. We get the result by letting ε ↓ 0.

We can now derive the asymptotic bias of ZN in the new matrix notation.

Lemma 4.4. Let Assumption 4.2 hold, and the sequence of matrices H be such

that N |H|1/2 ↑ ∞ as N ↑ ∞, and such that limN↑∞N |H|1/2T 4
H > 0, where

TH := Tr

(
H

[
Hm(s∗) + 2∇m(s∗)

∇fS(s∗)

fS(s∗)

])
.

Then the abcbas estimate ZN satisfies

bias(ZN ) =
1

2
µ2(K)TH +O

(
Tr(H)2

)
,

as N tends to infinity.

Proof. Let

XN :=
n(ZN −m(s∗)− 1

2µ2(K)TH)

T 2
H

=
N∑
k=1

θk −m(s∗)− 1
2µ2(K)TH

T 2
H

[Sk accepted] .
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We then observe that

E
(
X2
N

)
N2p(s∗)2

=

E
((∑N

k=1(θk −m(s∗)− 1
2µ2(K)TH) [Sk accepted]

)2
)

N2p(s∗)2T 4
H

=
E
(
(θ −m(s∗)− 1

2µ2(K)TH)2 |S accepted
)

Np(s∗)T 4
H

+

(
N

2

)(E (θ |S accepted)−m(s∗)− 1
2µ2(K)TH

)2
N2T 4

H

.

This tends to a finite limit, since

E (θ |S accepted) = m(s∗) +
1

2
µ2(K)TH +O

(
Tr(H)2

)
,

and E
(
(θ −m(s∗)− 1

2µ2(K)TH)2 |S accepted
)

tends to v(s∗), as N tends to

infinity. Therefore, the conditions for Lemma 4.3 hold, and so

E (ZN )→ E (XN )

E (n)
, (4.6)

as N ↑ ∞. The expectation for XN is equal to

E (XN ) = E (n)

(
E (θ |S accepted)−m(s∗)− 1

2
µ2(K)TH

)
/T 2

H ,

which is equal to

E (XN ) = E (n)O
(
T 2
H

)
/T 2

H = E (n)O (1) , (4.7)

as N ↑ ∞. Substituting Equation 4.7 into Equation 4.6 gives the result

lim
N↑∞

bias(ZN )− 1
2µ2(K)TH

T 2
H

= lim
N↑∞

O (1) ,

or

lim
N↑∞

bias(ZN ) =
1

2
µ2(K)TH +O

(
T 2
H

)
.

Since TH = O (Tr(H)) as N ↑ ∞, this completes the proof.

This marks the end of the finished part of the proof. We now give an outline

of the rest of the proof.

Partial Result for Regression Term

We next look at the regression term m̂(s∗; Ĥ) = eT1

(
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗Θ.

We first aim to find conditions under which

E
(
m̂(s∗; Ĥ)

)
→ eT1 E

(
XT
s∗Ŵs∗Xs∗

)−1
E
(
XT
s∗Ŵs∗Θ

)
,
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as N ↑ ∞. This requires a matrix version of Lemma 4.3.

The proof of Lemma 4.3 involves decomposing the space of possible values

for ZN into several subspaces, based on the proximity of n to its expectation.

This raises the question of whether we can define “proximity” so as to obtain a

similar decomposition for the space of possible values for m̂(s;H), based on the

value of XT
s∗Ŵs∗Xs∗ . In this section, we consider defining proximity in terms

of the induced matrix norm.

Definition 4.5. The induced matrix norm for the vector norm ‖·‖ , for the

matrix A, is

‖A‖ := sup
x:‖x‖=1

{‖Ax‖} = sup
x:‖x‖6=0

{‖Ax‖ / ‖x‖} .

Example 4.6. For the Euclidean norm ‖·‖2 , the induced norm for the real

matrix A is the square root of the solution to the minimisation problem

MinimisexTATAx such thatxTx = 1.

By Lagrange multipliers, this solution satisfies

ATAx = λx, xTx = 1,

for some Lagrange multiplier λ. Therefore, λ is equal to some eigenvalue of

ATA, and

xTATAx = λxTx = λ,

which is maximised if λ is equal to the largest eigenvalue of ATA. Therefore,

‖A‖2 is the square root of the largest eigenvalue of ATA.

Definition 4.7. The condition number κ(A) := ‖A‖2
∥∥A−1

∥∥
2

of the matrix A

is equal to the square root of the ratio between the largest eigenvalue of ATA

and the smallest eigenvalue of ATA.

Lemma 4.8. Let ‖·‖ be the induced matrix norm for the vector norm ‖·‖ , and

κ(A) be the condition number of the matrix A. Let the random matrix Y have

expectation µ and

1ε(Y ) :=

[
‖Y − µ‖ ≤ ε ‖µ‖

κ(µ)

]
.

Then ∥∥E ((Y −1X − µ−1X
)

1ε(Y )
)∥∥ ≤ ε

1− ε
E
(∥∥µ−1X

∥∥)
for all 0 < ε < 1.
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Proof. Since the vector norm is convex,∥∥E ((Y −1X − µ−1X
)

1ε(Y )
)∥∥ ≤ E

(∥∥Y −1X − µ−1X
∥∥ 1ε(Y )

)
.

If ‖Y−µ‖‖µ‖ κ(µ) ≤ ε < 1, it follows that∥∥Y −1X − µ−1X
∥∥

‖µ−1X‖
≤ κ(µ) ‖Y − µ‖ / ‖µ‖

1− κ(µ) ‖Y − µ‖ / ‖µ‖
≤ ε

1− ε
,

and therefore [Stoer and Bulirsch, 2002, Theorem 4.4.15]

E
(∥∥Y −1X − µ−1X

∥∥ 1ε(Y )
)
≤ ε

1− ε
E
(∥∥µ−1X

∥∥ 1ε(Y )
)
≤ ε

1− ε
E
(∥∥µ−1X

∥∥) ,
as required.

Lemma 4.9. Let the random matrix Y have expectation µ, and ‖ · ‖ be some

induced matrix norm. Then Y is invertible if

‖Y − µ‖ ≤ ε ‖µ‖
κ(µ)

,

for some 0 ≤ ε < 1.

Proof. Let F = µ−1(Y − µ). Then

‖F‖ ≤
∥∥µ−1

∥∥ ‖Y − µ‖ ≤ ε∥∥µ−1
∥∥ ‖µ‖

κ(µ)
= ε < 1.

Therefore [Stoer and Bulirsch, 2002, Theorem 4.4.14], I + F is invertible, and

so is Y = µ(I + F ).

We can now begin a proof of the matrix equivalent of Lemma 4.3.

Conjecture 4.10. Let the (q+1)-length random vector XN := ATBv, and the

random (q + 1)-square matrix YN := ATBA with expectation µN , be such that

the N × (q + 1) matrix A has iid rows, and almost surely has full rank, such

that B is an N -square diagonal matrix with iid positive diagonal elements, that

are non-zero with probability p̂(s∗), and such that the vector v has iid elements.

Additionally, let XN and YN be such that

E
(
X2
N

)
N2p2

N

= O (1) , and
E (YN )

NpN
= O (1) ,

as N ↑ ∞. Let g be the function

g(XN , YN ) :=


Y −1
N XN YN has full rank,

ce1 YN is rank deficient, for some c.
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Additionally, let p̂(s∗) tend to zero, and Np̂(s∗) tend to infinity, as N ↑ ∞.

Then

lim
N↑∞

eT1 E (g(XN , YN )) = lim
N↑∞

eT1 µ
−1
N E (XN ) .

The conditions given above for Conjecture 4.10 to hold are taken from the

conditions for Lemma 4.3 to hold, and may require alteration once the proof

is completed.

Partial proof. The desired result is equivalent to

d∞ := lim
N↑∞

∥∥eT1 (E (g (XN , YN ))− µ−1
N E (XN )

)∥∥ = 0. (4.8)

Let 1F (YN ) := [YN invertible], and 1CF (YN ) := [YN rank-deficient] = 1−1F (YN )

be its complement. Then d∞ satisfies the bound

d∞ ≤ ‖e1‖ lim
N↑∞

∥∥E (ce11CF (YN ) + Y −1
N XN1F (YN )

)
− µ−1

N E (XN )
∥∥

≤ lim
N↑∞

∥∥E ((ce1 − µ−1
N E (XN )

)
1CF (YN )

)∥∥
+ lim
N↑∞

∥∥E ((Y −1
N XN − µ−1

N E (XN )
)

1F (YN )
)∥∥

≤ lim
N↑∞

∥∥ce1 − µ−1
N E (XN )

∥∥P (YN rank-deficient)

+ lim
N↑∞

∥∥E ((Y −1
N XN − µ−1

N E (XN )
)

1F (YN )
)∥∥ .

(4.9)

The matrix YN is rank-deficient in the case where the number of non-zero

diagonal elements in B is no more than q, and in the zero-probability case

where used rows of A are not linearly independent. Therefore, if we denote the

number of non-zero diagonal elements in B by n̂, the probability of YN being

rank-deficient satisfies the bound

P (YN rank-deficient) = P (n̂ ≤ q) ≤ exp

(
−(Np̂(s∗)− q)2

2Np̂(s∗)

)
,

by Lemma A.10. Since Np̂(s∗) tends to infinity as N ↑ ∞,

P (n̂ ≤ q) = O
(

exp

(
−1

2
Np̂(s∗)

))
,

and vanishes exponentially, as N ↑ ∞.

We now decompose the invertible case according to the deviation of YN
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from µN . Let ε be some constant such that 0 < ε < 1. Then

d∞ ≤ lim
N↑∞

∥∥E ((Y −1
N XN − µ−1

N XN

)
1F (YN )

)∥∥
≤ lim

N↑∞

∥∥∥∥E((Y −1
N XN − µ−1

N XN

)
1F (YN )

[
‖YN − µN‖ ≤ ε

‖µN‖
κ(µN )

])∥∥∥∥
+ lim
N↑∞

∥∥∥∥E((Y −1
N XN − µ−1

N XN

)
1F (YN )

[
‖YN − µN‖ > ε

‖µN‖
κ(µN )

])∥∥∥∥
≤ ε

1− ε
lim
N↑∞

E
(∥∥µ−1

N XN

∥∥)
+ lim
N↑∞

∥∥∥∥E((Y −1
N XN − µ−1

N XN

)
1F (YN )

[
‖YN − µN‖ > ε

‖µN‖
κ(µN )

])∥∥∥∥ ,
where 1F (YN )

[
‖YN − µN‖ ≤ ε ‖µN‖κ(µN )

]
=
[
‖YN − µN‖ ≤ ε ‖µN‖κ(µN )

]
, and the last

inequality follows from Lemma 4.8.

This marks the end of current progress on the proof, with two terms for

which it remains to prove vanishment. For ε
1−ε limN↑∞ E

(∥∥µ−1XN

∥∥) , the first

remaining term, ε will later be taken to zero, so it will suffice to show that

limN↑∞ E
(∥∥µ−1XN

∥∥) is finite.

If Conjecture 4.10 holds, then we can consider the asymptotic behaviour of

m̂(s∗;H) in a similar way to that of ZN .

Conjecture 4.11. Let Assumption 4.2 hold, and N |Ĥ|1/2 ↑ ∞ as N ↑ ∞.

Then the expression

m̂(s∗; Ĥ) = eT1

(
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗Θ.

has expectation

E
(
m̂(s∗; Ĥ)

)
= m(s∗) +

1

2
µ2(K̂)Tr

(
ĤHm(s∗)

)
+O

(
Tr(Ĥ)2

)
as N ↑ ∞.

Partial proof. Given that Conjecture 4.10 is true, E (m̂(s∗;H)) satisfies

lim
N↑∞

E (m̂(s∗;H)) = lim
N↑∞

eT1 D
−1
s∗ Ms∗ , (4.10)

where Ds∗ := E
(

1
NX

T
s∗Ŵs∗Xs∗

)
, and Ms∗ := E

(
1
NX

T
s∗Ŵs∗Θ

)
. We proceed in

a way similar to that used in [Ruppert and Wand, 1994, Theorem 2.1]. The
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denominator is equal to

Ds∗ =

 E
(
K̂Ĥ(S − s∗)

)
E
(
K̂Ĥ(S − s∗)(S − s∗)T

)
E
(
K̂Ĥ(S − s∗)(S − s∗)

)
E
(
K̂Ĥ(S − s∗)(S − s∗)(S − s∗)T

)


=

 ∫
K̂(u)fS(s∗ + Ĥ1/2u) du

∫
K̂(u)uT Ĥ1/2fS(s∗ + Ĥ1/2u) du∫

K̂(u)Ĥ1/2ufS(s∗ + Ĥ1/2u) du
∫
K̂(u)Ĥ1/2uuT Ĥ1/2fS(s∗ + Ĥ1/2u) du


=

 fS(s∗) µ2(K̂)∇fS(s∗)Ĥ

µ2(K̂)Ĥ∇fS(s∗)T µ2(K̂)fS(s∗)Ĥ

(1 +O
(

Tr(Ĥ)
))

,

as N ↑ ∞, and so, by Lemma A.12,

D−1
s∗ =

 fS(s∗)−1 −∇fS(s∗)fS(s∗)−2

−∇fS(s∗)T fS(s∗)−2 µ2(K̂)−1fS(s∗)−1Ĥ−1.

(1 +O
(

Tr(Ĥ)
))

.

(4.11)

For the numerator, we first note that the conditional expectation is equal to

E
(
XT
s∗Ŵs∗Θ

∣∣∣ s1, . . . , sN

)
= XT

s∗Ŵs∗E (Θ | s1, . . . , sN ) .

The conditional expectation of Θ is equal to

E (Θ | s1, . . . , sN ) =
(
m(s1) . . . m(sN )

)T
= Xs∗

 m(s∗)

∇m(s∗)T

+
1

2
d(2)
m (s∗) +Rm(s∗),

where Rm(s∗) is a remainder term, and

d(2)
m (s∗) :=


(s1 − s∗)THm(s∗)(s1 − s∗)

...

(sN − s∗)THm(s∗)(sN − s∗)

 . (4.12)
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The unconditional expectation of Ms∗ is therefore equal to

Ms∗ =E

 1

N
XT
s∗Ŵs∗Xs∗

 m(s∗)

∇m(s∗)T

+
1

2
E
(

1

N
XT
s∗Ŵs∗d

(2)
m (s∗)

)

+ E (Rm(s∗))

=Ds∗

 m(s∗)

∇m(s∗)T


+

1

2
E

 1

N

 ∑q
k=1 K̂Ĥ(sk − s∗)(sk − s∗)THm(s∗)(sk − s∗)∑q

k=1(sk − s∗)K̂Ĥ(sk − s∗)(sk − s∗)THm(s∗)(sk − s∗)


+ E (Rm(s∗))

=Ds∗

 m(s∗)

∇m(s∗)T


+

1

2

 E
(
K̂Ĥ(S − s∗)(S − s∗)THm(s∗)(S − s∗)

)
E
(
K̂Ĥ(S − s∗)(S − s∗)(S − s∗)THm(s∗)(S − s∗)

)


+ E (Rm(s∗)) ,

where the middle term is proportional to

E
(

1

N
XT
s∗Ŵs∗d

(2)
m (s∗)

)
=

 E
(
K̂Ĥ(S − s∗)(S − s∗)THm(s∗)(S − s∗)

)
E
(
K̂Ĥ(S − s∗)(S − s∗)(S − s∗)THm(s∗)(S − s∗)

)


=

 ∫
K̂(u)uT Ĥ1/2Hm(s∗)Ĥ1/2uf

(
s∗ + Ĥ1/2u

)
du∫

K̂(u)Ĥ1/2uuT Ĥ1/2Hm(s∗)Ĥ1/2uf
(
s∗ + Ĥ1/2u

)
du


=

µ2(K̂)Tr
(
ĤHm(s∗)

)
f(s∗)

(
1 +O

(
Tr(Ĥ)

))
O
(
Ĥ3/2

)
 ,

as N ↑ ∞. Therefore, Ms∗ is equal to

Ms∗ =Ds∗

 m(s∗)

∇m(s∗)T


+

1

2

µ2(K̂)Tr
(
ĤHm(s∗)

)
f(s∗)

(
1 +O

(
Tr(Ĥ)

))
O
(
Ĥ3/2

)


+O
(

Tr(Ĥ)2
)
.

(4.13)

Substituting Equations 4.11 and 4.13 into Equation 4.10 gives

E
(
m̂(s∗; Ĥ)

)
→ m(s∗) +

1

2
µ2(K̂)Tr

(
ĤHm(s∗)

)
+O

(
Tr(Ĥ)2

)
,
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as N ↑ ∞, as required.

We note that this partial proof currently only shows that E
(
m̂(s∗; Ĥ)

)
tends to eT1 D

−1
s∗ Ms∗ as N ↑ ∞, but we require

E
(
m̂(s∗; Ĥ)

)
= eT1 D

−1
s∗ Ms∗ +O

(
Tr(Ĥ)2

)
.

This is also the case for partial proofs in following sections.

Partial Result for Remainder Term

Conjecture 4.12. Let Assumption 4.2 hold, and N |Ĥ|1/2 tend to infinity as

N does. Then the expression

BN :=
1

n

n∑
j=1

m̂(skj ; Ĥ) =
(
1TWs∗1

)−1
1TWs∗


m̂(s1; Ĥ)

...

m̂(sN ; Ĥ)


has expectation

E (BN ) =E (ZN ) +
1

2
µ2(K̂)Tr

(
ĤHm(s∗)

)
+O

(
Tr(H)Tr(Ĥ)

)
+O

(
Tr(Ĥ)2

)
=m(s∗) +

1

2
µ2(K)Tr (HHm(s∗))

+
1

2
µ2(K̂)Tr

(
Ĥ

[
∇m(s∗)T

∇f(s∗)

f(s∗)
+Hm(s∗)

])
+O

((
Tr(H) + Tr(Ĥ)

)2
)
,

as N ↑ ∞.

Partial proof. By Lemma 4.3,

E (BN )→

E

1TWs∗


m̂(s1; Ĥ)

...

m̂(sN ; Ĥ)




E (1TWs∗1)
,

as N ↑ ∞, where E
(
1TWs∗1

)
= E (n) and

E

1TWs∗


m̂(s1; Ĥ)

...

m̂(sN ; Ĥ)


 = E (n)E

(
eT1 (XT

s1Ŵs1Xs1)−1XT
s1Ŵs1Θ

∣∣∣ s1 accepted
)
,
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so that E (BN ) → E
(
m̂(s1; Ĥ)

∣∣∣ s1 accepted
)

as N ↑ ∞. Again, we assume

Conjecture 4.10 is true. The individual regression estimate

m̂(s1; Ĥ) = eT1

(
XT
s1Ŵs1Xs1

)−1
XT
s1Ŵs1Θ,

then has expectation

E
(
m̂(s1; Ĥ)

∣∣∣ s1 accepted
)
→ eT1 D

−1M,

as N ↑ ∞, where

D :=
1

N
E
(
XT
s1Ŵs1Xs1

∣∣∣ s1 accepted
)
, M :=

1

N
E
(
XT
s1Ŵs1Θ

∣∣∣ s1 accepted
)
.

The denominator D is equal to

D =
N − 1

N

 K̂Ĥ(0)

N−1 + E
(
K̂Ĥ(sk − s1)

)
E
(
K̂Ĥ(sk − s1)(sk − s1)T

)
E
(
K̂Ĥ(sk − s1)(sk − s1)

)
E
(
K̂Ĥ(sk − s1)(sk − s1)(sk − s1)T

)


where all the expectations are conditional on s1 being accepted. The numerator

M is equal to

M = E
(

1

N
XT
s1Ŵs1Θ

∣∣∣∣ s1 accepted

)

=
N − 1

N

 1
N−1K̂Ĥ(0) + E

(
K̂Ĥ(sk − s1)θ

∣∣∣ s1 accepted
)

E
(
K̂Ĥ(sk − s1)θ(sk − s1)

∣∣∣ s1 accepted
)

 ,

The proof will then expand D and M, in a similar way to the expansions for

Ds∗ and Ms∗ in the proof for Conjecture 4.11. This is complicated by the

1
N−1K̂Ĥ(0) term, which is O

(
1

N |Ĥ|1/2

)
as N ↑ ∞.

4.2.2 Variance

We now give an outline of the intended approach for finding the asymptotic

variance. The variance can be decomposed into variance terms for the separate

components of the estimate ẐN , and their covariance terms:

Var
(
ẐN

)
= Var

ZN + m̂(s∗; Ĥ)− 1

n

n∑
j=1

m̂(skj ; Ĥ)


= Var (ZN ) + Var

(
m̂(s∗; Ĥ)

)
+ Var

 1

n

n∑
j=1

m̂(skj ; Ĥ)


+ 2Cov

(
ZN , m̂(s∗; Ĥ)

)
− 2Cov

(
ZN , m̂(s1; Ĥ) | s1 accepted

)
.
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Variance Terms

The variance terms for ZN and m̂(s∗; Ĥ) are more straightforward, as the

approach is similar to that used for the bias terms in Section 4.2.1. The initial

motivation is the result, from Ruppert and Wand [1994], that

Var
(
m̂(s∗; Ĥ)

∣∣∣ s1, . . . , sN

)
= Var

((
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗Θ

∣∣∣∣ s1, . . . , sN

)
=
(
XT
s∗Ŵs∗Xs∗

)−1
XT
s∗Ŵs∗V Ŵs∗Xs∗

(
XT
s∗Ŵs∗Xs∗

)−1
,

where V := Var (Θ | s1, . . . , sN ) = diag (v(s1), . . . , v(sN )) . The asymptotic

expansion for E
(

1
NX

T
s∗Ŵs∗V Ŵs∗Xs∗

)
, as N ↑ ∞, can be found with the same

approach as used in Section 4.2.1. It is then hoped that, for some term

Z =


W−1XY −1 |Y | 6= 0,

0 |Y | = 0,

where W,X, and Y are matrices, we can find conditions under which

E (Z)→ E (W )−1 E (X)E (Y )−1 ,

as N ↑ ∞, similar to those in Lemma 4.3. This would allow us to find an

asymptotic expansion for E (Var (Z | s1, . . . , sN )) , where Z can be equal to

any of the components: ZN , m̂(s∗; Ĥ), or BN . The asymptotic expansion for

Var (Z) could then be found using the law of total variance,

Var (Z) = E (Var (Z | s1, . . . , sN )) + Var (E (Z | s1, . . . , sN )) .

As an example, we now give a proof for the variance of the abcbas estimate

ZN .

Lemma 4.13. Let Assumption 4.2 hold, and the sequence of matrices H be

such that N |H|1/2 ↑ ∞ as N ↑ ∞. Then ZN satisfies

Var (ZN )→ R(K)

N |H|1/2
v(s∗)

f(s∗)
(1 +O (Tr(H))) ,

as N ↑ ∞.

Proof. We note that

Var (ZN ) = E (Var (ZN | s1, . . . , sN ,Ws∗)) + Var (E (ZN | s1, . . . , sN ,Ws∗)) ,
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by the law of total variance. If we let V = diag(v(s1), . . . , v(sN )), then [Ruppert

and Wand, 1994]

Var (ZN | s1, . . . , sN ,Ws∗) =
(
1TWs∗1

)−1
1TWs∗VWs∗1

(
1TWs∗1

)−1
,

where

E
(

1

N
1TWs∗1

)
=

∫
KH(s− s∗)
maxuKH(u)

fS(s) ds

= |H|1/2 fS(s∗)

maxuK(u)
(1 +O (Tr (H))) ,

and

E
(

1

N
1TWs∗VWs∗1

)
=

∫
KH(s− s∗)2

(maxuKH(u))2 v(s)fS(s) ds

= |H|1/2
∫

K(u)2

(maxuK(u))2 v(s∗ +H1/2u)fS(s∗ +H1/2u) du

= |H|1/2R(K)
v(s∗)fS(s∗)

(maxuK(u))2 (1 +O (Tr(H))) ,

as N ↑ ∞. Therefore, the expectation of the conditional variance tends to

E
(

1
N 1T Ŵs∗V Ŵs∗1

)
NE

(
1
N 1T Ŵs∗1

)2 =
R(K)

|H|1/2
v(s∗)

fS(s∗)
(1 +O (Tr(H))) , (4.14)

as N ↑ ∞. For the variance of the conditional expectation, we know that

[Ruppert and Wand, 1994]

E (ZN | s1, . . . , sN ,Ws∗) =
(
1TWs∗1

)−1
1TWs∗


m(s1)

...

m(sN )


= m(s∗) +

1

2
d(2)
m (s∗) +O

(
Tr(H)2

)
,

where d
(2)
m (s∗) is defined in Equation 4.12. The variance of this conditional

expectation tends to

Var (E (ZN | s1, . . . , sN ,Ws∗)) =
Var (θ |S accepted)

N |H|1/2
(1 + o (1))

=
v(s∗)

N |H|1/2
(1 + o (1)),

(4.15)

as N ↑ ∞. Adding Equations 4.14 and 4.15 gives the required result.



4.2. ASYMPTOTICS 95

Covariance Terms

The covariance terms are less trivial, as the resulting kernel integrals require

more knowledge about the kernel functions K and K̂.

For example, finding the value of Cov
(
m̂(s∗; Ĥ), m̂(s1; Ĥ) | s1 accepted

)
,

by a similar approach to the other results in this chapter, requires finding the

value of E
(

1
NX

T
s∗Ŵs∗V Ŵs1Xs1 [s1 accepted]

)
, the top-left element of which is

equal to

E

(
1

N

N∑
k=1

K̂Ĥ(sk − s∗)K̂Ĥ(sk − s1)v(sk) [s1 accepted]

)

=
1

N
K̂Ĥ(0)

∫
KH(s1 − s∗)K̂Ĥ(s1 − s∗)v(s1)fS(s1) ds1

+

(
1− 1

N

)∫∫
KH(s1 − s∗)K̂Ĥ(s− s∗)K̂Ĥ(s− s1)v(s)f(s) ds1 ds

=
1

N |Ĥ|
K̂(0)

∫
K(u)K̂(Ĥ−1/2H1/2u)v(s∗ +H1/2u)fS(s∗ +H1/2u) du

+
N − 1

N |Ĥ|

∫∫
K(u)K̂(v)K̂(Ĥ−1/2H1/2u+ v)v(s∗ +H1/2u+ Ĥ1/2v)

× f(s∗ +H1/2u+ Ĥ1/2v) dudv.

In the case that H = Ĥ, this simplifies to

E

(
1

N

N∑
k=1

K̂Ĥ(sk − s∗)K̂Ĥ(sk − s1)v(sk) [s1 accepted]

)

=
1

N |H|
K̂(0)

∫
K(u)K̂(u) du v(s∗)fS(s∗) (1 +O (Tr(H)))

+
N − 1

N |H|

∫∫
K(u)K̂(v)K̂(u+ v) dudv v(s∗)f(s∗) (1 +O (Tr(H))) ,

(4.16)

since the matrix ∫∫
K(u)K̂(v)K̂(u+ v)

1

u

1

v

T

dudv

is block-diagonal. The evaluation of Equation 4.16 requires knowledge of the

value of
∫∫

K(u)K̂(v)K̂(u + v) dudv, an integral of higher order than the

roughness.

4.2.3 Optimising the Error and Cost

For the expected computational cost C, the cost of generating and accepting

samples is linear in N. This results in n = O
(
N |H|1/2

)
accepted proposals.
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Each of the n+ 1 resulting linear regressions then has an expected cost that is

proportional to the number of samples used, the magnitude of which depends

on the support of the regression kernel function K̂. In the case where K̂ has

finite support, each regression uses O
(
N |Ĥ|1/2

)
samples. In the case where

K̂ has infinite support, each regression uses all N samples. The computational

cost is therefore equal to

C = c1(s∗)N + c2(s∗)N2|H|1/2|Ĥ|1/2(1 + o (1)),

or

C = c1(s∗)N + c2(s∗)N2|H|1/2(1 + o (1)),

respectively, as N ↑ ∞.

To optimise the rate of convergence, we must optimise an expression that

includes both |H|1/2 and Tr(H), and that includes both |Ĥ|1/2 and Tr(Ĥ). This

presents the same difficulties as in Section 3.4.2. We therefore assume that the

square-bandwidth matrices have the forms H = Ĥ = δ2I, so that

mse(ẐN ) =

(
v(s∗)

Nδq
+ d(s∗)δ8

)
(1 + o (1)), (4.17)

and, if the regression kernel function K̂ has finite support,

C = c1(s∗)N + c2(s∗)N2δ2q(1 + o (1)),

as C ↑ ∞. For this simple case, we can prove the following two theorems for

the rate of convergence.

Theorem 4.14. Let Assumption 4.2 hold, K̂ have finite support, and the

square-bandwidth matrices be H = Ĥ = δ2I. Let E
(
h(θ)2

)
< ∞, fS|θ have a

Hessian matrix with a spectral radius bounded on the ball Bδ(s) for all possible

θ and s, and v(s∗) > 0. Then the following statements hold:

1. Let q < 8, and N ↑ ∞ as the expected computational cost C tends to

infinity, such that the limit D2 := limC↑∞Nδ
2q is strictly positive and

finite. Then the error and expected cost are such that

lim
C↑∞

Nδq mse(ẐN ), lim
C↑∞

N−2δ−2qC, and lim
C↑∞

C1/2mse(ẐN )

are strictly positive and finite.
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2. Let q ≥ 8, and N ↑ ∞ as the expected computational cost C tends to

infinity, such that the limit D := limC↑∞Nδ
q+8 is strictly positive and

finite. Then the error and expected cost are such that

lim
C↑∞

Nδq mse(ẐN ), lim
C↑∞

N−(1+q/4)δ−q(1+q/4)C, lim
C↑∞

C8/(q+8)mse(ẐN )

are strictly positive and finite.

As for Theorem 3.7, we first give a rough approach. We require the limit

of

C−αmse(ẐN ) =
(
c1(s∗)N + c2(s∗)N2δ2q

)−α(v(s∗)

Nδq
+ d(s∗)δ8

)
(1 + o (1))

= c1(s∗)−α(N−1−αδ−q)

(
1 +

c2(s∗)

c1(s∗)
Nδ2q

)−α (
v(s∗) + d(s∗)Nδq+8

)
,

as C ↑ ∞, to be non-zero and finite, for some negative α. This holds if the

limits for N−1−αδ−q, Nδq+8, and Nδ2q exist. The order of the latter two limits

depends on the value of q, so we must consider two cases.

First, we rewrite the limit as

lim
C↑∞

C−αmse(ẐN ) = c1(s∗)−αD1

(
1 +

c2(s∗)

c1(s∗)
D2

)−α
(v(s∗) + d(s∗)D) ,

where the order of the limits D := limC↑∞Nδ
q+8 and D2 := limC↑∞Nδ

2q

depends on the value of q. Additionally, the limit D1 := limC↑∞N
−1−αδ−q

must exist. Since D1 satisfies

D1 = D−q/(q+8) lim
C↑∞

N−8/(q+8)−α = D
−1/2
2 lim

C↑∞
N−1/2−α,

and must be non-zero, either D or D2 must be non-zero.

If q ≥ 8, D must be non-zero, so we can proceed as in Theorem 3.7. For

D1 to exist, we therefore require α ≥ −8/(q + 8). We therefore minimise α by

setting it equal to −8/(q + 8). Then D1 = D−q/(q+8) and D2 = D[q = 8], and

mse(ẐN ) = O
(
C−8/(q+8)

)
as C ↑ ∞.

If q < 8, D2 must be non-zero, and D = 0. For D1 to exist, we therefore

require α ≥ −1/2. The minimal value of α is therefore −1/2, so that D1 =

D
−1/2
2 , and the mean square error satisfies mse(ẐN ) = O

(
C−1/2

)
as C ↑ ∞.
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Proof. Using Equation 4.17, we find that

lim
C↑∞

Nδq mse(ẐN ) = lim
C↑∞

Nδq
(

Var(ẐN ) + bias(ẐN )2
)

= v(s∗) + d(s∗) lim
C↑∞

Nδq+8

= v(s∗) + d(s∗)D.

We first consider the case where q ≥ 8. For the expected cost

C = c1(s∗)N + c2(s∗)N2δ2q(1 + o (1)),

we find that

lim
C↑∞

(Nδq)−1−q/8C = c1(s∗) lim
C↑∞

N−q/8δ−q(1+q/8) + c2(s∗) lim
C↑∞

N1−q/8δ(1−q/8)q

= c1(s∗)D−q/8 + c2(s∗)D−q/8 lim
C↑∞

Nδ2q

= c1(s∗)D−q/8 + c2(s∗)D1−q/8[q = 8].

Finally, combining this result for the cost with that for the error, we get the

result

lim
C↑∞

C8/(q+8)mse(ẐN ) = lim
C↑∞

(
(Nδq)−1−q/8C

)8/(q+8)
Nδq mse(ẐN )

= (c1(s∗) + c2(s∗)D[q = 8])8/(q+8)

×D−q/(q+8) (v(s∗) + d(s∗)D) ,

which is non-zero and finite.

For the case where q < 8, we observe that

lim
C↑∞

(Nδq)−2C = c1(s∗) lim
C↑∞

N−1δ−2q + c2(s∗)

= c1(s∗)D−1
2 + c2(s∗).

Combining this result for the cost with that for the error, and noting that

D = 0, we get the result

lim
C↑∞

C1/2mse(ẐN ) = lim
C↑∞

(
(Nδq)−2C

)1/2
Nδq mse(ẐN )

=
(
c1(s∗)D−1

2 + c2(s∗)
)1/2

v(s∗),

which is non-zero and finite.
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Theorem 4.15. Let Assumption 4.2 hold, K̂ have finite support, and the

square-bandwidth matrices be H = Ĥ = δ2I. Let E
(
h(θ)2

)
< ∞, fS|θ have a

Hessian matrix with a spectral radius bounded on the ball Bδ(s) for all possible

θ and s, and v(s∗) and d(s∗) be non-zero. Then the following statements hold:

1. Let q < 8, and N ↑ ∞ as the expected computational cost C tends to

infinity, such that Nδq ↑ ∞. Then, for fS-almost all s∗ ∈ Rq,

lim inf
C↑∞

C1/2mse(ẐN ) > 0.

2. Let q ≥ 8, and N ↑ ∞ as the expected computational cost C tends to

infinity, such that Nδq ↑ ∞. Then, for fS-almost all s∗ ∈ Rq,

lim inf
C↑∞

C8/(q+8)mse(ẐN ) > 0.

Proof. We know that

mse(ẐN ) = Var
(
ẐN

)
+ bias(ẐN )2

=
Var (h(θ) |S ∈ Bδ(s∗))

Nδq
+ d(s∗)δ8 +O

(
δ9
)

≥ Var (h(θ) |S ∈ Bδ(s∗))
Nδq

+
d(s∗)

2
δ8,

for all sufficiently large N and Nδq.

First, we consider the case where q ≥ 8. By Lemma A.3, the error is bounded

by

mse(ẐN ) ≥
(

8

q + 8

Var (h(θ) |S ∈ Bδ(s∗))
Nδq

)8/(q+8)( q

q + 8

d(s∗)

2
δ8

)q/(q+8)

=A(δ)8/(q+8)Bq/(q+8)N−8/(q+8),

where

A(δ) :=
8

q + 8
Var (h(θ) |S ∈ Bδ(s∗)) , B :=

q

q + 8

d(s∗)

2
.

For the expected cost, we have

N−1C ≥ 1

2
c1(s∗),

for all sufficiently large N, and so

N−8/(q+8)C8/(q+8) ≥
(

1

2
c1(s∗)

)8/(q+8)

.
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Therefore, for sufficiently large N and Nδq, we have

C8/(q+8)mse(ẐN ) ≥ A(δ)8/(q+8)Bq/(q+8) (c1(s∗)/2)8/(q+8) .

Since the right hand side is greater than zero, we have the required result.

For the case where q < 8, the error is bounded by

mse(ẐN ) ≥ Var (h(θ) |S ∈ Bδ(s∗))
Nδq

.

For the expected cost, we have

N−2δ−2qC ≥ 1

2
c2(s∗),

for sufficiently large N and Nδq, and so

N−1δ−qC1/2 ≥
(

1

2
c2(s∗)

)1/2

.

Therefore, for sufficiently large N and Nδq, we have

C1/2mse(ẐN ) ≥ Var (h(θ) |S ∈ Bδ(s∗))
(

1

2
c2(s∗)

)1/2

.

Since the right hand side is greater than zero, we have the required result.

We now show what happens if the support of K̂ is not finite.

Theorem 4.16. Let Assumption 4.2 hold, K̂ have infinite support, and the

square-bandwidth matrices be H = Ĥ = δ2I. Let E
(
h(θ)2

)
< ∞, fS|θ have a

Hessian matrix with a spectral radius bounded on the ball Bδ(s) for all possible

θ and s, and v(s∗) > 0. Let N ↑ ∞ as the expected computational cost C tends

to infinity, such that the limit D := limC↑∞Nδ
q+8 is strictly positive and finite.

Then the error and expected cost are such that

lim
C↑∞

Nδq mse(ẐN ), lim
C↑∞

N−(2+q/8)δ−q(2+q/8)C, and lim
C↑∞

C8/(q+16)mse(ẐN )

are strictly positive and finite.

Proof. Using Equation 4.17, we find that

lim
C↑∞

Nδq mse(ẐN ) = lim
C↑∞

Nδq
(

Var(ẐN ) + bias(ẐN )2
)

= v(s∗) + d(s∗) lim
C↑∞

Nδq+8

= v(s∗) + d(s∗)D.
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For the expected cost

C = c1(s∗)N + c2(s∗)N2δq(1 + o (1)),

we find that

lim
C↑∞

(Nδq)−2−q/8C = c1(s∗) lim
C↑∞

N−1−q/8δ−(2+q/8)q + c2(s∗) lim
C↑∞

N−q/8δ−(1+q/8)q

= c1(s∗)D−q/8 lim
C↑∞

N−1δ−q + c2(s∗)D−q/8

= c2(s∗)D−q/8.

Combining this result for the cost with that for the error, we get the result

lim
C↑∞

C8/(q+16)mse(ẐN ) = lim
C↑∞

(
(Nδq)−2−q/8C

)8/(q+16)
Nδq mse(ẐN )

= c2(s∗)8/(q+16)D−q/(q+16) (v(s∗) + d(s∗)D) ,

which is non-zero and finite.

Theorem 4.17. Let Assumption 4.2 hold, K̂ have infinite support, and the

square-bandwidth matrices be H = Ĥ = δ2I. Let E
(
h(θ)2

)
< ∞, fS|θ have

a Hessian matrix with a spectral radius bounded on the ball Bδ(s) for all

possible θ and s, and v(s∗) and d(s∗) be non-zero. Let N ↑ ∞ as the expected

computational cost C tends to infinity, such that theNδq ↑ ∞. Then, for fS-

almost all s∗ ∈ Rq,

lim inf
C↑∞

C8/(q+16)mse(ẐN ) > 0.

Proof. We know that

mse(ẐN ) = Var(ẐN ) + bias(ẐN )2

=
Var (h(θ) |S ∈ Bδ(s∗))

Nδq
+ d(s∗)δ8 +O

(
δ9
)

≥ Var (h(θ) |S ∈ Bδ(s∗))
Nδq

+
d(s∗)

2
δ8,

for all sufficiently large N and Nδq.

By Lemma A.3, the error is bounded by

mse(ẐN ) ≥
(

8

q + 16

Var (h(θ) |S ∈ Bδ(s∗))
Nδq

)8/(q+16)( q + 8

q + 16

d(s∗)

2
δ8

)(q+8)/(q+16)

=A(δ)8/(q+16)B(q+8)/(q+16)N−8/(q+16)δ64/(q+16),
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where

A(δ) :=
8

q + 16
Var (h(θ) |S ∈ Bδ(s∗)) , B :=

q

q + 16

d(s∗)

2
.

For the expected cost, we have

N−1δ8C ≥ 1

2
c2(s∗)D,

for all sufficiently large N, and so

N−8/(q+16)δ64/(q+16)C8/(q+16) ≥
(

1

2
c1(s∗)D

)8/(q+16)

.

Therefore, for sufficiently large N and Nδq, we have

C8/(q+16)mse(ẐN ) ≥ A(δ)8/(q+16)B(q+8)/(q+16) (c2(s∗)D/2)8/(q+16) .

Since the right hand side is greater than zero, we have the required result.

We therefore have three sets of optimal rate of convergence for the abcloc

estimate ẐN . Firstly, suppose that K̂ has finite support. For q ≥ 8, the error

is O
(
C−8/(q+8)

)
as the expected cost C tends to infinity, so ẐN has a faster

asymptotic rate of convergence for q ≥ 8. For q < 8, the error is O
(
C−1/2

)
as C tends to infinity. This is a faster asymptotic rate than that of the basic

estimates Yn and ZN in the case where

4

q + 4
<

1

2
.

This holds if q > 4.

Now, suppose that K̂ has infinite support. In this case, for any q, the error

is mse(ẐN ) = O
(
−C8/(q+16)

)
. Since 4

q+4 <
8

q+16 if q > 8, ẐN still has a faster

rate of convergence for q > 8. A summary of the asymptotic rates is given in

Figure 4.2.1.

If the bias and variance have the asymptotic forms that we suggest, then

we can, therefore, make the following statement:

Proposition 4.18. Let Assumption 4.2 hold, and let the square-bandwidth

matrices satisfy H = Ĥ = δ2I. Let E
(
h(θ)2

)
<∞, fS|θ have a Hessian matrix

with a spectral radius bounded on the ball Bδ(s) for all possible θ and s, v(s∗) be

non-zero, and the bias coefficient c(s∗) for the abcacc and abcbas estimates

be non-zero. Then the following statements hold:
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Rate exponent

q

0

−1/2

−4/5

−1
1 4 8 30

abcloc, finite support

abcacc and abcbas

abcloc,
infinite support

Figure 4.2.1: Rate exponents for the abcacc and abcbas estimates from

Section 3, and the abcloc estimate, against the statistic dimension q. The

abcloc estimate has two sets of rate exponents, depending on whether the

regression kernel function K̂ has finite or infinite support. For finite support,

we use the exponents from Theorems 4.14 and 4.15. For infinite support, we use

the exponents from Theorems 4.16 and 4.17. A larger negative exponent indicates

a faster asymptotic rate of decay for the mean square error. For comparison, exact,

unbiased Monte Carlo methods have rate exponent −1. Note that the exponents

for the basic estimates and abcloc are equal at 4 for a finite support, and at

q = 8 for an infinite support.



104 CHAPTER 4. ABC WITH LOCAL-LINEAR REGRESSION

1. If K̂ has finite support, and the limit of Nδq+min{q,8}, as the expected cost

C tends to infinity, be non-zero and finite, then the abcloc estimate has

a superior asymptotic rate of convergence to the abcacc and abcbas

estimates if the statistic dimension is greater than four.

2. If K̂ has infinite support, and the limit of Nδq+8, as the expected cost C

tends to infinity, be non-zero and finite, then the abcloc estimate has

a superior asymptotic rate of convergence to the abcacc and abcbas

estimates if the statistic dimension is greater than eight.

4.2.4 Final Remarks

We finish by discussing the details of the asymptotic rates for the abcloc

estimate: in particular, how the rate of convergence is affected by the regression

kernel K̂ and the statistic dimension q. Use of the term dominated in this section

refers to being asymptotically dominated, for the sake of brevity.

First, we consider the case where the support of K̂ is finite. In the rough

solution given before the proof for Theorem 4.14, there are two asymptotic

limits, D = limC↑∞Nδ
q+8 and D2 = limC↑∞Nδ

2q. that must exist. The

additional limit D1 that prevents both D and D2 from being zero.

Unless q = 8, only one of D and D2 is zero. Since they are associated

with the square-bias term and the regression adjustment term respectively, the

value of q therefore determines which of these terms is dominated. If q < 8,

the square-bias term is dominated, so the abcloc estimate functions as if it

is unbiased when doing asymptotic analysis. If q > 8, the regression term is

dominated: for asymptotic analysis, we can treat the abcloc estimate as an

abcbas estimate that has a bias of order O
(
δ4
)
, and therefore has a higher

rate of convergence.

If the support of K̂ is infinite, writing a rough solution for Theorem 4.16

would show that there is no equivalent to D2: the sample generation term in

the expected cost is dominated for all values of q, because the regression term

is equal to the sample generation term times some factor of order O (Nδq), or

O (n) , which will tend to infinity. There is, therefore, no change in the rate

of convergence dependent on the value of q. However, the cost now increases

rapidly, so the result is an inferior asymptotic convergence rate.
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Estimate Kernel support q Dominant error term Dominant cost term

abcbas Either Any Both Sample generation

abcloc Finite < 8 Variance Both

abcloc Finite = 8 Both Both

abcloc Finite > 8 Both Sample generation

abcloc Infinite Any Both Regression

Table 4.2.1: Asymptotically dominant terms in the mean square error and the

expected computational cost. The basic abcbas estimate, which has no regression

cost term, is included for comparison. Note that the abcloc with a finite support

and q > 8 has the same dominant terms as abcbas, so the only asymptotic

difference is the order of the bias.

We can also consider the case where the kernel is used for weighting the

proposals, as in Beaumont et al. [2002] and Blum [2010], rather than for random

acceptance. The effect depends on the support of the kernel. If the support is

finite, the number and cost of regressions performed are still O (Nδq) , so this is

equivalent to random acceptance with a finite support. However, if the support

is infinite, all of the proposals are adjusted and used in the estimate. In this

case, both the number of regressions and the number of samples used in each

regression are O (N) , rather than Nδq, and the expected cost is dominated

by a O
(
N2
)

regression term. The resulting asymptotic error is of order

O
(
C−4/(q+8)

)
, which is asymptotically inferior to the abcbas estimate. This

further motivates the use of a kernel with finite support, such as the uniform

and Epanechnikov kernels, rather than one with infinite support, such as the

Gaussian kernel, for estimating the posterior mean.

An overview of which terms are asymptotically dominant, under which

circumstances, when random acceptance is used, is given in Table 4.2.1.

4.3 Discussion

4.3.1 Comparison to Previous Results

We now compare the results to the theoretical results from Section 4.2.3 to

theoretical results for similar variants, described in Section 2.2.4.
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Beaumont et al. [2002] and Blum [2010] used a similar approach to do

proposal adjustment, with Blum using the adjusted proposals to do kernel

posterior density estimation, as described in Section 2.1.4. For this section,

we refer to the abc estimate with this version of proposal adjustment as the

abcreg estimate.

The most significant methodological difference is that abcreg uses a single

regression, centred at s∗, for all the adjustments. As previously mentioned,

from Ruppert and Wand [1994], the bias of regression points that are not at the

centre of the regression, for Ĥ = δ2I, is O (δ) , rather than O
(
δ2
)
. Therefore,

the asymptotic bias of the adjusted proposals will not be higher-order, and

might be worse, than the bias of the non-adjusted proposals if the posterior

expectation function m is highly non-linear.

There are two other main differences between the abcloc variant and the

variant used by Beaumont et al. [2002] and Blum [2010], which we expect to

have no asymptotic effect:

1. Beaumont et al. [2002] and Blum [2010] use the kernel for regression

and weighting, whereas we use the kernel for regression and random

acceptance. In Section 4.2.4, we discussed the asymptotic effect on the

abcloc estimate of this change in the use of the kernel. However, this

is dependent on the use of multiple regressions, whereas the variants

in Beaumont et al. [2002] and Blum [2010] only use one. In this case,

weighting and random acceptance are asymptotically equivalent if done

with the same kernel and the same square-bandwidth matrix, so this

difference in usage is not expected to have a significant effect.

2. For small values of q, the rate of convergence for the abcloc estimate is

different for a kernel with finite support, due to the computational cost

added by the use of regression. The effect of the computational cost is

not accounted for in the asymptotic analysis in Blum [2010]. However,

accounting for the cost does not have any asymptotic effect: since there

is only one regression, the regression term in the computation cost is

either O
(
Nδ2

)
or O (N) , depending on whether the support of K̂ is

finite or infinite. In both cases, the expected cost is still O (N) . Since

Blum found the error to be O
(
N−4/(q+5)

)
, the error in terms of expected
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cost is therefore O
(
C−4/(q+5)

)
, as expected.

Blum [2010] discusses how single-regression proposal adjustments can make

an abc estimate worse, rather than better. This comes from examining the

leading term in the asymptotic expansion of the error. While it is possible that

the estimate can also be worse from the adjustment increasing the cost, as it

can be in abcloc, this would be due to differences in the leading term, rather

than in the asymptotic order.

4.3.2 Practical Use

While the abcloc estimate has a higher asymptotic rate of convergence than

the basic abc variants for large q, it is expected that, for practical expected

computational costs, abcloc’s performance is likely to be much worse. This is

because, before the estimate runs long enough for the error reduction to take

effect, the main effect of using abcloc is the large increase in the computation

cost due to the regressions. However, this needs to be investigated with

numerical experiments.
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Chapter 5

abc for Infinite-Dimensional

Statistics

In Chapter 3, we saw that the abcbas estimate ZN from Algorithm 2.1.3, that

uses a sufficient statistic of dimension q, and runs for time C, has a mean square

error of order O
(
C−4/(q+4)

)
as K tends to infinity. Considered näıvely, this

might lead to the conclusion that using a statistic of infinite dimension prevents

the algorithm from converging as the cost increases. However, the constant

limC↑∞C
4/(q+4)mse(ZN ) in Equation 3.6 depends on the bias coefficient c(s∗),

and therefore on q. At the limit q ↑ ∞, there might, therefore, be cases where

the asymptotic convergence rate is different to the rate given in Theorem 3.13.

This chapter looks at such a problem.

5.1 Problem and Exact Inference

For finite-dimensional statistics, we consider a set of parameters θ ∈ Rp, and

a set of observational data x∗ with summary statistic s∗ = S(x∗) ∈ Rq. Here,

we consider a set of observational data x∗ ∈ C([0, 1],R), that is a continuous

process on the time interval [0, 1]. Specifically, we observe a diffusion process

that satisfies the equations

dXt = θdt+ dBt, X0 = 0,

where the drift rate θ is unknown, with a normal prior distribution, and Bt

is a standard Brownian motion. The inference for this problem can be done

exactly, as described below.

109
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Lemma 5.1. If we last observe the process dXt = θdt + dBt at time T, and

the drift rate θ of the linear trend has a simple normal prior distribution, then

the trend θ has the normal posterior distribution

θ |X ∼ N (XT /(T + 1), 1/(T + 1)) .

This result holds for both a finite-dimensional observation, where the process is

observed at certain time points, including time T, and a infinite-dimensional

observation, consisting of the entire process up to time T.

Proof. For the finite-dimensional case, we have the linear filtering problem

Xtn+1 = Xtn + θ(tn+1 − tn) + εn+1, εn+1 ∼ N (0, tn+1 − tn) ,

where t1 < t2 < . . . < tq = T are the q time points at which the process is

observed. Thus, the sequence of posterior expectations θ̃n = E (θ | t1, . . . , tn) of

the drift rate satisfies the recurrence relation [Williams, 1991]

θ̃n
Vn

=
θ̃n−1

Vn−1
+ (Xn −Xn−1), θ̃0 = 0,

where the sequence of posterior varianes Vn = E
(

(θ − θ̃n)2 | t1, . . . , tn
)

satisfies

the recurrence relation

1

Vn
=

1

Vn−1
+ tn − tn−1, V0 = 1.

For the infinite-dimensional case, we have the linear filtering problem

dXt = θ dt+ dBt,

and our posterior expectation θ̄ of the drift rate obeys the stochastic differential

equation [Øksendal, 2003, Example 6.2.9]

dθ̄t = −Wtθ̄t dt+Wt dXt, θ̄0 = 0,

where Wt = E
(
(θ − θ̄t)2

)
obeys the equation

W ′t = −W 2
t ,

with initial condition W0 = 1 determined from the prior variance.

The equation for Vn can be written as ∆ 1
Vn

= ∆tn, and applying the discrete

anti-derivative gives the solution 1
Vn
− 1

V0
= tn − t0. Similarly, the differential

equation for Wt can be written as

− dWt

W 2
t

= dt,
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and integrating gives the solution 1
Wt
− 1
W0

= t. Therefore, the variance behaves

as either Vn = 1/(tn + 1) or Wt = 1/(t+ 1), and the solution for θ̃ is

θ̃n =
Xtn

tn + 1
, or θ̄t =

Xt

t+ 1
.

In either case, θ thus has posterior θ |X ∼ N
(
XT
T+1 ,

1
T+1

)
.

By Lemma 5.1, letting T = 1, the problem has a one-dimensional sufficient

statistic X1. We could also form a summary statistic of arbitrary dimension,

by taking additional observations before time 1.

While, in practice, an infinite-dimensional observation is computationally

infeasible, considering it is useful to see what to expect as the dimension of the

summary statistic tends to infinity.

The structure of this chapter is as follows: we first discuss two common

choices of norm that can be used to determine whether a proposal is accepted.

We then present asymptotic results for each norm separately. For one of these

choices, we construct a sequence of inference problems, such that the observed

process x∗(q) for problem q has a q-dimensional summary statistic. This sequence

converges to the original problem, with observation x∗ = limq↑∞ x
∗
(q). We find

the asymptotic bias for a problem with finite q, then let q tend to infinity.

5.1.1 Choice of Acceptance Criterion

To use abc in an infinite-dimensional space, we must reconsider when to

accept proposals. In the finite-dimensional case, we accept a proposal with

a q-dimensional statistic s if ‖s− s∗‖2 ≤ δ, where ‖·‖2 is the Euclidean norm.

In Section 3.4.4, we showed the effect on the asymptotic bias when using a

different norm: the effect was relatively small, since different L-norms are

equivalent in finite dimensions. For infinite dimensions, this no longer holds,

so the choice has more effect.

We can again use the Euclidean norm on the interval [0, 1], which, for the

infinite-dimensional case, is equal to

‖X‖2 =

(∫ 1

0
x2
t dt

)1/2

,

where xt is the value of the process X at time t, and then accept a path X if

the integral of its square distance from the original motion x∗ up to time t is
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no greater than δ2 :

‖X − x∗‖2 ≤ δ.

An alternative would be to use the supremum norm, and accept a proposal

if its generated process stays within a ball around the observed process in the

interval [0, 1] :

‖X − x∗‖∞ := max {|xt − x∗t | : t ∈ [0, 1]} ≤ δ.

These two norms have different advantages when calculating asymptotic results

for the estimate. We will therefore consider the use of both norms separately.

5.2 Asymptotic Results for the Supremum Norm

In this section, we look at the asymptotic results we have obtained for the

case where we accept using the supremum norm. Accepted processes are thus

always within a certain distance of the observed process x∗, staying inside an

envelope around it.

5.2.1 Convergence Conditions

We begin by looking for conditions for the abcbas estimate ZN to converge as

the computation cost C ↑ ∞ tends to infinity, similarly to Theorem 3.2.

Theorem 5.2. Let the function h : Rp → R be such that E (|h(θ)|) < ∞, and

the likelihood function FS|θ(s | t) be bounded over all t and all s ∈ Bδ(s∗) for

sufficiently small δ∗. Then, for fS-almost all s∗ ∈ Rp, the abcbas estimate ZN

satisfies

1. lim
N→∞

ZN = E (ZN |n > 0) almost surely for all δ > 0; and

2. lim
δ↓0

E (ZN |n > 0) = m(s∗) for all N ∈ N,

where n is the number of accepted proposals.

Proof. As N tends to infinity, the probability of no proposals being accepted

tends to zero. Therefore, since E (|h(θ)|) <∞, we have

E (|ZN |) ≤ E (|h(θ)| | s∗) =
φ|h|(s

∗)

φ1(s∗)
<∞
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whenever φ1(s∗) = fS(s∗) > 0, and, by the law of large numbers, ZN converges

to E (ZN |n > 0) almost surely.

For the second statement, we first define

φ̂h(s) := m(s)fS1(s1)/fS1|θ(s1 | 0) =

∫
h(t)fθ(t) exp

(
−1

2
t2 + s1t

)
dt,

and

φ̂
(δ)
h (s∗) :=

∫
h(t)fθ(t)

P (‖S − s∗‖∞ ≤ δ | θ = t)

P (‖B − s∗‖∞ ≤ δ)
dt,

so that

m(s∗) =
φ̂h(s∗)

φ̂1(s∗)
, E (h(θ) | ‖S − s∗‖∞ ≤ δ) =

φ̂
(δ)
h (s∗)

φ̂
(δ)
1 (s∗)

.

It is then sufficient to show that

lim
δ↓0

φ̂
(δ)
h (s∗) = φ̂h(s∗).

To show this, we note that the absolute difference d(s∗) between φ̂
(δ)
h (s∗) and

φ̂h(s∗) satisfies

d(s∗) =
∣∣∣φ̂(δ)
h (s∗)− φ̂h(s∗)

∣∣∣
=

∣∣∣∣∫ h(t)fθ(t)

(
P (‖S − s∗‖∞ ≤ δ | θ = t)

P (‖S − s∗‖∞ ≤ δ | θ = 0)
− exp

(
−1

2
t2 + s∗1t

))
dt

∣∣∣∣
≤
∫
|h(t)|fθ(t)

∣∣∣∣P (‖S − s∗‖∞ ≤ δ | θ = t)

P (‖S − s∗‖∞ ≤ δ | θ = 0)
− exp

(
−1

2
t2 + s∗1t

)∣∣∣∣ dt.

Using Theorem A.13, we observe that

P (‖S − s∗‖∞ ≤ δ | θ = t) = EQ

(
[‖S − s∗‖∞ ≤ δ] exp

(
−1

2
t2 + S1t

))
= E

(
[‖B − s∗‖∞ ≤ δ] exp

(
−1

2
t2 +B1t

))
,

where Q is the measure under which S is a martingale, and B is standard

Brownian motion. Since ‖B − s∗‖ ≤ δ requires that |B1 − s∗1| ≤ δ, it follows

that∣∣∣∣exp

(
−1

2
t2 +B1t

)
− exp

(
−1

2
t2 + s∗1t

)∣∣∣∣ ≤ exp

(
−1

2
t2 + s∗1t

)(
eδ|t| − 1

)
.

Specifically, there is some random variable

η(δ, t) =

∫
C([0,1],R)

[‖B − s∗‖∞ ≤ δ]
∣∣∣eδ|t| − 1

∣∣∣ dW(ω),
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that is bounded for small δ and tends to zero as δ tends to zero, such that∣∣∣∣P (‖S − s∗‖∞ ≤ δ | θ = t)

P (‖S − s∗‖∞ ≤ δ | θ = 0)
− exp

(
−1

2
t2 + s∗1t

)∣∣∣∣ ≤ η(δ, t) exp

(
−1

2
t2 + s∗1t

)
.

Therefore,

lim
δ↓0

∣∣∣φ̂(δ)
h (s∗)− φ̂h(s∗)

∣∣∣ ≤ lim
δ↓0

∫
|h(t)|fθ(t)η(δ, t) exp

(
−1

2
t2 + s∗1t

)
dt

The integrand is bounded above by

g(t) := |h(t)|fθ(t) exp

(
−1

2
t2 + (s∗1 + 1)t

)
for all δ < 1 and all t. Since

∫
|g(t)| dt < ∞ for fS-almost all s∗, the result

follows from the dominated convergence theorem.

5.2.2 Asymptotic Variance

For the asymptotic variance, we require the value of the acceptance probability

P (‖X‖∞ ≤ δ) . In the case where the sample process is a simple Brownian

motion B with no trend, this satisfies [Li and Shao, 2001, Theorem 6.3]

lim
δ↓0

δ2 logP (‖B‖∞ ≤ δ) = −π2/8.

In particular, the acceptance probability in this case is equal to [Feller, 1968]

P (‖B‖∞ ≤ δ) =
4

π

∑
k≥0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

8δ2

)
. (5.1)

For general X, we can use the following lemma.

Lemma 5.3. Let X be the motion Xt = Bt + θt, a simple Brownian motion

plus a linear trend. Then the probability that ‖X‖ ≤ δ is equal to

P (‖X‖∞ ≤ δ | θ) = exp

(
−1

2
θ2

)
E ([‖B‖∞ ≤ δ] exp (θB1)) .

Proof. By the Girsanov theorem (Theorem A.13), X is a martingale with

respect to the measure

dQ = exp

(
−θB1 −

1

2
θ2

)
dP.

Therefore, the acceptance probability is equal to

P (‖X‖∞ ≤ δ | θ) = E ([‖X‖∞ ≤ δ])

= EQ

(
[‖X‖∞ ≤ δ] exp

(
θB1 +

1

2
θ2

))
= exp

(
1

2
θ2

)
EQ ([‖X‖∞ ≤ δ] exp (θB1))

= exp

(
−1

2
θ2

)
EQ ([‖X‖∞ ≤ δ] exp (θX1)) ,
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where EQ is the expectation with respect to Q, rather than P. Since X is a

martingale with respect to Q,

P (‖X‖∞ ≤ δ | θ) = exp

(
−1

2
θ2

)
E ([‖B‖∞ ≤ δ] exp (θB1)) ,

as required.

Further analysis, that accounts for staying near s∗ rather than 0, is difficult,

as adjusting for an additional trend process with Girsanov requires the process

to be differentiable. The process s∗ will almost never be differentiable, due to

its being a Brownian path, so the acceptance probability cannot account for s∗

by use of Girsanov.

However, we can more easily make progress if we consider the asymptotic

behaviour of the abc estimate over all values of s∗. In this case, we consider

the mean acceptance probability p̄, and we can show the following results.

Corollary 5.4. Let Xt be the motion Xt = Bt + θt, a simple Brownian

motion plus a linear trend, and X∗t be the motion X∗t = B∗t + θ∗t, where θ θ∗

have independent simple normal distributions, and Bt and B∗t are independent

Brownian motions. Then the probability that ‖X −X∗‖∞ ≤ δ is equal to

p̄ := P (‖X −X∗‖∞ ≤ δ) = P
(
‖B‖∞ ≤

δ

2

)
=

4

π

∑
k≥0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

2δ2

)
.

Proof. The processes Xt/
√

2 and X∗t /
√

2 are independent Brownian motions,

and so the process Yt := (Xt −X∗t ) /2 is a Brownian motion. Since the required

probability is equal to P (‖Y ‖∞ ≤ δ/4) , the result follows from Equation 5.1.

Lemma 5.5. The mean acceptance probability p̄ has upper bound

p̄ ≤ 4

π
exp

(
− π2

2δ2

)
+

(
1− 4

π

)
exp

(
−9π2

2δ2

)
.

Proof. The series in Corollary 5.4 has upper bound

∑
k≥0

(−1)k

2k + 1
exp

(
−(2k + 1)2π2

2δ2

)
≤ exp

(
− π2

2δ2

)
+ exp

(
−9π2

2δ2

)∑
k≥1

(−1)k

2k + 1
.

Since
∑

k≥0(−1)k/(2k + 1) = π/4, the result follows.
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5.3 Asymptotic Results for the Euclidean Norm

In this section, we look at the asymptotic results we have obtained for the case

where we accept using the Euclidean norm. Here, we approach the bias of

the abcbas estimate ZN by constructing a series of problems Pq, which use a

q-dimensional summary statistic, finding the bias for Pq with finite q, and then

letting q ↑ ∞.

5.3.1 Choice of Summary Statistic

We will consider the asymptotic error for a sequence of finite-dimensional

problems, which tend to the infinite-dimensional problem. This requires a

choice of a sequence of summary statistics with increasing dimension.

The simple choice would be for each statistic to be a set of observations at

evenly-distributed points. While this allows the use of the asymptotic results

from Chapter 3, we would have to account for the finite-dimensional Euclidean

norm not tending to the infinite-dimensional Euclidean norm. Specifically, if

we let r(q) := (x1/q, x2/q, . . . , x1) be the resulting q-dimensional statistic, then

the limit of the sequence of Euclidean distances is

lim
q↑∞
‖r(q)‖2 = lim

q↑∞

(
q∑

k=1

x2
k/q

)1/2

,

which is not equal to

‖X‖2 =

(∫ 1

0
x2
t dt

)1/2

= lim
q↑∞

(
q∑

k=1

x2
k/q

q

)1/2

,

the infinite-dimensional Euclidean distance. In particular, at the limit q ↑ ∞,

‖s(q)‖2 would almost surely be infinitely large, so the abc algorithm would

almost always reject proposals. For the algorithm to scale properly to the

infinite-dimensional case, we would therefore need to introduce an adjustment

factor 1/q to the norm.

To avoid this adjustment factor, we instead choose the Karhunen-Loève

decomposition, which we introduce now.

By the Mercer theorem, for any stochastic processX with an autocovariance

function K, we can construct a decomposition

Xt =
∑
k≥1

αkψk(t),
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where (ψk(t))k≥0 is a sequence of orthogonal functions with respect to some

inner product. If X has a covariance function K(·, ·), we can choose these to

be the eigenfunctions of K, satisfying∫ 1

0
K(s, t)ψk(s) ds = λkψk(t).

If we define the inner product

〈f, g〉 :=

∫ 1

0
f(s)g(s) ds

on L2[0, 1], and let Vt(s) := K(s, t), then we can rewrite
∫ 1

0 K(s, t)ψk(s) ds as

an inner product,

〈Vt, ψk〉 = λkψk(t),

and λkψk(0) = 0 in particular, since V0(·) = 0. The coefficients are then equal

to

α = 〈X,ψk〉.

Example 5.6. In the case of the motion X being a Brownian motion plus a

fixed linear trend θ, X has covariance function

Vt(s) = min(s, t) = s+ (t− s)Ht(s),

where Ht(s) = H(s − t) is the Heaviside step function. Differentiating once

with respect to t, we then see that

∂

∂t
Vt(s) = Ht(s)− (t− s)δ(s− t).

Since the latter term disappears inside the inner product, we have

λkψ
′
k(t) = 〈Ht, ψk〉, λkψ

′
k(1) = 0.

Differentiating again, and ignoring terms that disappear in the inner product,

we obtain

λkψ
′′
k(t) = 〈δt, ψk〉 = ψk(t),

where δt(s) = δ(s− t). Therefore, ψk(t) = A sin
(

t√
λk

)
, where

A
√
λk cos

(
1√
λk

)
= 0,

by the boundary condition on the first derivative, and so

λk =

(
1

(k − 1/2)π

)2

for k ≥ 1. (5.2)
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To have 〈ψk, ψk〉 = 1, we then require that A =
√

2. Therefore, we have

eigenfunctions

ψk(t) =
√

2 sin ((k − 1/2)πt) , k ≥ 1. (5.3)

Since the observations have a linear trend θξ(t), where

ξ(t) := t, (5.4)

the coefficients αk have conditional expectation

E (αk | θ) = E (〈X,φk〉 | θ)

= 〈E (X | θ) , φk〉

= θ〈ξ, φk〉

= (−1)k−1θ
√

2λk,

and conditional variance

E ((αj − E (αj))(αk − E (αk)) | θ) = E (〈B,φj〉〈B,φk〉)

= E
(∫ 1

0

∫ 1

0
BsBtφj(s)φk(t) ds dt

)
=

∫ 1

0

∫ 1

0
E (BsBt)φj(s)φk(t) ds dt

=

∫ 1

0

∫ 1

0
K(s, t)φj(s)φk(t) ds dt

=

∫ 1

0
λjφj(t)φk(t) dt

= λj [j = k].

Therefore, the coefficients are independent, given the parameter value θ, and

have the distributions

αk | θ ∼ N
(

(−1)k−1
√

2θλk, λk

)
.

We can now form a sequence of problems, where the the q-dimensional

problem has generated statistics consisting of the first q coefficients αk.

Definition 5.7. The q-dimensional spectral problem Pq is the problem of

finding the posterior distribution θ |X(q) = x∗(q), given some prior distribution,

where the observed process x∗(q) is the spectral approximation

x∗(q)(t) :=

q∑
k=1

α∗kψk(t)
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of x∗, and the functions ψk are defined in Equation 5.3. This process has

sufficient statistic

s∗(q) := (α∗1, . . . , α
∗
q)
T ,

whose elements α∗k are independent, and have conditional distributions

α∗k | θ ∼ N((−1)k−1
√

2θλk, λk),

where λk = ((k − 1/2)π)−2 . Data samples s(q) are then generated from the same

distribution. The original problem of finding the distribution for θ |X = x∗ is

written as P = limq↑∞ Pq.

Using this decomposition has two advantages.

1. Conditionally on θ, the coefficients αk are independent of each other, and

of q, and have a simple distribution. The observed statistic for problem

Pq+1 will thus be that for the previous problem Pq, plus a new element

α∗q+1 that is independent of the previous ones.

2. The acceptance criterion, when using the 2-norm, has a simple definition

in terms of the Karhunen-Loève coefficients, since the distance between

the two truncated processes is equal to

‖X(q) − x∗(q)‖2 = 〈X(q) − x∗(q), X(q) − x∗(q)〉
1/2

=

(
q∑

k=1

(αk − α∗k)
2

)1/2

= ‖s(q) − s∗(q)‖2.

Therefore, if we use the Karhunen-Loève coefficients as the summary

statistic, the acceptance condition is the same as for the abcbas estimate

ZN .

We now look for the sequence of true posterior distributions for the sequence

(θ | s∗(q))q.

Lemma 5.8 (Exact inference for k-l approximation). Let θ ∼ N
(
µ0, σ

2
0

)
, and

x∗(q) be a process on the time interval [0, 1] whose value at time t is equal to

x∗(q)(t) =

q∑
k=1

α∗kψk(t),
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where ψk(t) are defined in Equation 5.3, and the α∗k are independent conditional

on θ, with conditional distributions

α∗k | θ ∼ N
(

(−1)k+1
√

2θλk, λk

)
, (5.5)

where λk are defined in Equation 5.2, and have sum

Lq :=

q∑
k=1

λk. (5.6)

Then θ has posterior distribution

θ | s∗(q) ∼ N
(
µq, σ

2
q

)
,

where

σ−2
q = σ−2

0 + 2Lq, µqσ
−2
q = µ0σ

−2
0 + x∗(q)(1). (5.7)

Proof. The log-likelihood for the sufficient statistic s(q) = (α1, . . . , αq)
T is equal

to

log fS|θ(s(q) | t) = c1 −
1

2

q∑
k=1

(αk − (−1)k+1
√

2tλk)
2

λk

= c1 −
1

2

q∑
k=1

2λk(t− (−1)k+1αk/
√

2λk)
2

= c2 −
1

2
(2Lq)

(
t− (2Lq)

−1
q∑

k=1

(−1)k+1
√

2αk

)2

,

by Lemma A.1, for some c1 and c2 that are constant with respect to t. Since

ψk(1) = (−1)k+1
√

2, this is equal to

log fS|θ(s(q) | t) = c2 −
1

2
(2Lq)

(
t− (2Lq)

−1x∗(q)(1)
)2
,

and so S | θ ∼ N
(
x∗(q)(1)/2Lq, 1/2Lq

)
. Therefore, θ has posterior distribution

θ | s∗(q) ∼ N
(
µq, σ

2
q

)
,

where

σ−2
q := σ−2

0 + 2Lq, µqσ
−2
q := µ0σ

−2
0 +

√
2

q∑
k=1

(−1)k+1αk.

Since ψk(1) = (−1)k+1
√

2, the result follows.

Note that the endpoint value of the process x(q) is still a minimal sufficient

statistic.
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5.3.2 Bias

We consider the sequence of biases. The asymptotic bias for problem q is equal

to

bias(Z
(q)
N ) = E

(
h(θ) | s(q) ∈ Bδ(s∗(q))

)
− E

(
h(θ) | s(q) = s∗(q)

)
=
φ

(δ)
h (s∗(q))

φ
(δ)
1 (s∗(q))

−
φh(s∗(q))

φ1(s∗(q))
,

where φh and φ
(δ)
h are defined in Definition 3.1. By Theorem 3.4, for finite

values of q, this satisfies

lim
δ↓0

δ−2bias(Z
(q)
N ) = c(s∗(q)),

with bias coefficient

c(s∗(q)) =
∆φh(s∗(q))−m(s∗(q))∆φ1(s∗(q))

2(q + 2)φ1(s∗(q))
.

To find the Laplacian for φh, we recall that

αk | θ ∼ N
(

(−1)k+1
√

2θλk, λk

)
.

Therefore, φh has second derivatives

∂2

∂α2
k

φh(s(q)) =
∂2

∂α2
k

∫
h(t)pθ(t)pS|θ(s(q) | t) dt

=

∫
h(t)pθ(t)

(αk − (−1)k+1
√

2λkt

λk

)2

− 1

λk

 pS|θ(s(q) | t) dt

=

(
α2
k

λ2
k

− 1

λk

)
φh(s(q))− 2

√
2(−1)k+1αk

λk
φg(s(q)) + 2φf (s(q)),

where g(t) := th(t) and f(t) := t2h(t). The Laplacian for φh is then equal to

4φh(s(q)) =

q∑
k=1

(
α2
k

λ2
k

− 1

λk

)
φh(s(q))− 2

√
2

q∑
k=1

(−1)k−1αk
λk
φg(s(q))

+ 2qφf (s(q)),

and so the bias coefficient c(s∗(q)) has numerator

4φh(s∗(q))−m(s∗(q))4φ1(s∗(q)) =

q∑
k=1

(
α2
k

λ2
k

− 1

λk

)(
φh(s∗(q))−m(s∗(q))φ1(s∗(q))

)
− 2
√

2

q∑
k=1

(−1)k−1α
∗
k

λk

(
φg(s

∗
(q))−m(s∗(q))φt(s

∗
(q))
)

+ 2q
(
φf (s∗(q))−m(s∗(q))φt2(s∗(q))

)
.
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Since φh(s∗(q)) = m(s∗(q))φ1(s∗(q)) for general h, the first term above is equal to

zero, and the bias coefficient is equal to

c(s∗q) =
(
E(θ2h(θ) | s∗(q))− E(θ2 | s∗(q))m(s∗(q))

) q

q + 2

−
√

2
(
E(θh(θ) | s∗(q))− E(θ | s∗(q))m(s∗(q))

) Cq
q + 2

=
q

q + 2
Cov(θ2, h(θ) | s∗(q))−

√
2
Cq
q + 2

Cov(θ, h(θ) | s∗(q)),

(5.8)

where

Cq :=

q∑
k=1

(−1)k−1α∗k/λk. (5.9)

Therefore, if the limit for the bias coefficient exists, it is equal to

lim
q↑∞

c(s∗(q)) = lim
q↑∞

Cov(θ2, h(θ) | s∗(q))−
√

2 lim
q↑∞

Cq
q + 2

Cov(θ, h(θ) | s∗(q)).

Whether this is bounded depends on the value of limq↑∞Cq/(q + 2).

Lemma 5.9. Let θ have a conjugate normal prior, θ ∼ N(µ0, σ
2
0). Then the

abcbas estimate Z
(q)
N for E(θ | s∗(q)), where q is finite, is such that

bias(Z
(q)
N ) = c(s∗(q))δ

2 +O
(
δ3
)
,

as δ ↓ 0, for some constant c.

Proof. By Lemma 5.8,

θ | s∗(q) ∼ N
(
µq, σ

2
q

)
,

where

σ−2
q = σ−2

0 + 2Lq,

Lq is defined in Equation (5.6), and

µqσ
−2
q = µ0σ

−2
0 +

√
2
∑
k

(−1)k−1α∗k = µ0σ
−2
0 + x∗(q)(1).

We observe that

E(θ | s∗(q)) = µq, E(θ2 | s∗(q)) = µ2
q + σ2

q , E(θ3 | s∗(q)) = µ3
q + 3µqσ

2
q .

Substituting these into Equation (5.8) shows the bias coefficient to be

c(s∗(q)) = 2µqσ
2
q

q

q + 2
−
√

2σ2
q

Cq
q + 2

= 2σ4
q (µ0σ

−2
0 + x∗1,(q))

q

q + 2
−
√

2σ2
q

Cq
q + 2

,

where Cq is defined in Equation (5.9).
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If the limit for c(s∗(q)) as q ↑ ∞ exists, then it is equal to

lim
q↑∞

c(s∗(q)) = 2
µ0σ

−2
0 + x∗1

(σ−2
0 + 1)2

−
√

2

σ−2
0 + 1

lim
q↑∞

Cq
q + 2

.

Example 5.10. The observed process X∗t = t has Karhunen-Loève coefficients

α∗k = (−1)k+1
√

2λk,

and the resulting true posterior distribution is θ | s∗(q) ∼ N
(
µσ−2

0 +1

σ−1
0 +1

, 1
σ−1
0 +1

)
.

We can show that

x∗(q)(1) = 2Lq, Cq =
√

2q,

and so the sequence of bias coefficients is equal to

c(s∗(q)) = 2
µ0σ

−2
0 + 2Lq

(σ−2
0 + 2Lq)2

q

q + 2
− 2

1

σ−2
0 + 2Lq

q

q + 2

= 2(µ0 − 1)
σ−2

0

(σ−2
0 + 2Lq)2

q

q + 2
.

This sequence has the limit

c(s∗) = 2(µ0 − 1)
σ2

0

(σ2
0 + 1)2

,

which is absolutely bounded by 1
2 |µ0 − 1| .

For most generated processes, such as depicted in Figure 5.3.1, the resulting

bias coefficient, plotted against the number of spectral coefficients used, as in

Figure 5.3.2, resembles a stochastic process.

This raises the question of whether the bias coefficient will tend to a finite

limit.

Lemma 5.11 (Non-Boundedness of bias coefficient). Let the sequence Cq be

defined as in Equation (5.9), and θ have a simple normal distribution. Then

Cq/(q + 2) almost never converges to a finite value.

Proof. For a fixed value of θ, the components of Cq are independent, with

conditional distributions

(−1)k−1αkλ
−1
k | θ ∼ N

(√
2θ, λ−1

k

)
,

by Equation (5.5), and so Cq has conditional distribution

Cq | θ ∼ N

(
√

2θq,

q∑
k=1

λ−1
k

)
= N

(
√

2θq,
π2

4

q∑
k=1

(2k − 1)2

)
.
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Figure 5.3.1: A spectral approximation of a generated process, using 1000

coefficients.

The sum on the right hand side is equal to

q∑
k=1

(2k − 1)2 = 4

q∑
k=1

k2 + q,

where n2 = n(n− 1) is the second falling power of n. By the calculus of finite

differences [Graham et al., 1994], this is equal to

4

q+1∑
1

k2 dk + q =
4

3
(q + 1)3 + q

= q

(
4

3
(q2 − 1) + 1

)
=

4

3
q3 − 1

3
q,

and so Cq has conditional distribution

Cq | θ ∼ N

(√
2θq,

π2

3
q3 − π2

12
q

)
.
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Figure 5.3.2: Plot depicting the value of c(x∗(q)) for the process in Figure 5.3.1, as

the number of Karhunen-Loève coefficients used increases.

Therefore, since θ ∼ N(0, 1), Cq has unconditional distribution

Cq ∼ N

(
0,
π2

3
q3 + 2q2 − π2

12
q

)
,

and the expression Cq/(q + 2) has unconditional distribution

Cq/(q + 2) ∼ N

(
0,
π2

3

q3

(q + 2)2
+ 2

q2

(q + 2)2
− π2

12

q

(q + 2)2

)
.

Since the variance diverges as q ↑ ∞, and

P
(∣∣∣∣ Cqq + 2

− x
∣∣∣∣ ≤ ε) ≤ P

(
Cq
q + 2

≤ x+ ε

)
for all x, and all ε > 0, we can find, for all finite x, ε, η > 0, a value Q, such

that

P
(∣∣∣∣ Cqq + 2

− x
∣∣∣∣ ≤ ε) < η
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for all q > Q. Therefore, Cq/(q+2) diverges in probability, which implies almost

sure divergence.

Corollary 5.12. The bias for the infinite-dimensional case is such that, for

P-almost all s∗,

lim
δ↓0

δ−1bias(ZN ) = 0,

and such that δ−2bias(ZN ) diverges, as δ ↓ 0, for P-almost all s∗.

Therefore, the bias is no longer O
(
δ2
)

as δ ↓ 0, so it vanishes more slowly

than in the finite-dimensional case. However, it is at least o (δ) .

5.3.3 Asymptotic Variance

For the asymptotic variance, we require the value of the acceptance probability

P (‖X‖2 ≤ δ) . In the case where the sample process is a simple Brownian

motion B with no trend, this satisfies [Li and Shao, 2001, Theorem 6.3]

lim
δ↓0

δ2 logP (‖B‖2 ≤ δ) = −1/8.

For general X, we can use the following lemma.

Lemma 5.13. Let X be the motion Xt = Bt + θt, a simple Brownian motion

plus a linear trend. Then the probability that ‖X‖2 ≤ δ is equal to

P (‖X‖2 ≤ δ | θ) = exp

(
−1

2
θ2

)
E ([‖B‖2 ≤ δ] exp (θB1)) .

Proof. By the Girsanov theorem (Theorem A.13), X is a martingale with

respect to the measure

dQ = exp

(
−θB1 −

1

2
θ2

)
dP.

Therefore, the acceptance probability is equal to

P (‖X‖2 ≤ δ | θ) = E ([‖X‖2 ≤ δ])

= EQ

(
[‖X‖2 ≤ δ] exp

(
θB1 +

1

2
θ2

))
= exp

(
1

2
θ2

)
EQ ([‖X‖2 ≤ δ] exp (θB1))

= exp

(
−1

2
θ2

)
EQ ([‖X‖2 ≤ δ] exp (θX1)) ,
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where EQ is the expectation with respect to Q, rather than P. Since X is a

martingale with respect to Q,

P (‖X‖2 ≤ δ | θ) = exp

(
−1

2
θ2

)
E ([‖B‖2 ≤ δ] exp (θB1)) ,

as required.

As in Section 5.2.2, analysis that accounts for staying near s∗ rather than

0 is difficult. However, we can again consider the asymptotic behaviour of the

abc estimate over all s∗, and consider the mean acceptance probability p̄.

Lemma 5.14. Let Xt be the motion Xt = Bt + θt, a simple Brownian motion

plus a linear trend, and X∗t be the motion X∗t = B∗t + θ∗t, where θ and θ∗

have independent simple normal distributions, and Bt and B∗t are independent

Brownian motions. Then the probability that ‖X −X∗‖2 ≤ δ is equal to

p̄ := P (‖X −X∗‖2 ≤ δ) = P
(
‖B‖2 ≤

δ

2

)
,

and satisfies

lim
δ↓0

δ2 log(p̄) = −1/2.

Proof. Similar to Corollary 5.4.

Theorem 5.15. Let Xt be the motion Xt = Bt+θt, a simple Brownian motion

plus a linear trend, and X∗t be the motion X∗t = B∗t + θ∗t, where θ and θ∗

have independent simple normal distributions, and Bt and B∗t are independent

Brownian motions. Let N ↑ and δ ↓ 0, such that N exp
(
−1/2δ2

)
↑ ∞. Then

the variance of the abcbas estimate ZN satisfies

lim
N exp(−1/2δ2)↑∞

Np̄Var (ZN ) = v

P-almost surely, where v := E (v(X∗)) is the prior variance.

Proof. By the proof of Lemma 3.11, we know that the mean variance of the

abcbas estimate ZN for the observation X∗ satisfies

lim
Np̄↑∞

Np̄Var (ZN ) = v

P-almost surely, where p̄ = exp
(
−1/2δ2 + o

(
1/δ2

))
, as δ ↓ 0, by Lemma 5.14.
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5.3.4 Optimising the Error

We have found the asymptotic order of the bias to be O (δr) , where r > 1,

and r < 2 P-almost surely, and the asymptotic variance to be O
(
e1/2δ2/N

)
,

as δ tends to zero. However, this does not necessarily allow us to optimise

the asymptotic error. In Theorem 3.12, we assume the stricter condition

that the associated limits exist. Here, the associated limits are those for

the expressions bias(ZN )/δr and Var (ZN ) /N exp
(
−1/2δ2

)
, and we can not

determine whether these limits exist. For example, whether the associated

limit for the variance exists depends on the behaviour of

A(δ) := p̄/ exp
(
−1/2δ2

)
= exp

(
o
(
1/δ2

))
as δ tends to zero. Specifically, the condition N exp

(
−1/2δ2

)
↑ ∞ that is

sufficient for the variance to be O
(
1/N exp

(
1/2δ2

))
is only sufficient for the

associated limit to exist if A(δ) converges as δ tends to zero.

To get an idea of how the statistic being a diffusion process affects the

optimal asymptotic error, we suppose that bias(ZN ) = cδr(1+o (1)) as δ tends

to zero, and that A(δ) tends to some constant A > 0 as δ tends to zero. In this

case, if D := limN exp(−1/2δ2)↑∞Nδ
4 exp

(
−1/2δ2

)
exists, the error satisfies

lim
N exp(−1/2δ2)↑∞

N exp
(
−1/2δ2

)
mse(ZN ) = v/A+ c2D.

To prove the equivalent of Theorem 3.12, since the expected cost is equal to

C = kN for some k > 0, we now require some function f such that the limit

lim
C↑∞

N exp
(
−1/2δ2

)
f(kN)

exists, and is non-zero. This would give the result that

lim
C↑∞

f(C)−1mse(ZN ) > 0,

and so that the error is O (f(C)) as C tends to infinity. More generally, if A(δ)

does not necessarily converge, then we require the limit D̄ := limC↑∞Nδ
4p̄ to

exist, and look for a function f̄ such that

lim
C↑∞

Np̄f̄(kN)

exists, and is non-zero.
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Finding such a function f, or f̄ , and so finding the asymptotic order of the

error, is not trivial. However, it is clear, from the presence of the exponential

tolerance term, that the order of convergence is much slower than those found

in Chapter 3.

5.4 Discussion

There has recently been research on the behaviour of abc estimates as the

statistic dimension tends to infinity. However, the focus has been on the

consistency of the estimate, rather than its asymptotic convergence. More

specifically, the statistic is taken to consist of q independent observations, and

the estimate is coherent if the estimate converges to the true value as q tends

to infinity, with N and δ fixed. Some examples are discussed in Section 2.2.4.

Under current computational limitations, observing a continuous process is

only possible with the loss of information, or with the use of finite sufficient

statistics, such as described in Section 5.1. However, the sequence Pq of spectral

problems are feasible, so the results in Section 5.3 are of some use. In particular,

they demonstrate that, even for small q, a change in q can greatly affect the

bias coefficient. This further emphasises the point that the asymptotic results

should not be used to directly compare estimates with different values of q :

increasing q decreases the asymptotic rate, but can greatly decrease the leading

term.

It should be noted that some of the results given in this chapter – in

particular, those for the asymptotic bias under the Euclidean norm – make use

of the problem having a simple one-dimensional minimal statistic. It would

be much more complicated to consider problems where the lowest-dimension

minimal statistic has a higher dimensional, or is even infinite-dimensional.
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Chapter 6

Conclusion

This text has focused on the asymptotic behaviour of Approximate Bayesian

Computation, when used to estimate the posterior expectation. In Chapter 3,

we looked at the asymptotic order of the mean square error for basic variants

of abc, when estimating the posterior expectation. The basic variants were

shown to have asymptotic error of optimal order O
(
C−4/(q+4)

)
, for a choice

of tolerance with order O
(
C−1/(q+4)

)
, where C is the expected computational

cost and tends to infinity, and q is the dimension of the sufficient summary

statistic. By comparison, exact Monte Carlo methods have error of order

O
(
C−1

)
. We extended the analysis to look at the asymptotic error when

using a kernel K for random acceptance of proposals. The error is of the same

asymptotic order, and the leading asymptotic term of the error is likely to be

optimised by using a uniform kernel, which is the same as using the standard

accept-reject scheme. We also looked at some other minor variations, which

have the same asymptotic order with a different leading term. The dependence

of the asymptotic error on q motivates the use of low-dimensional summary

statistics in practice.

In Chapter 4, we proposed a new variant of abc for posterior expectation

estimation, called abcloc. This is a variation on the regression adjustment

introduced by Beaumont et al. [2002], where we use a regression centred on

the original observed statistic, and an additional regression centred on each of

the accepted statistic samples, to adjust the accepted proposals. Additionally,

the kernel is used for regression and random proposal acceptance, rather than

regression and proposal weighting. While the asymptotic analysis of abcloc

131
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is not complete, the variant is thought to have two advantages. First, the use

of multiple regressions improves the asymptotic order of the bias. Second, the

resulting improvement in the order, with respect to the number of proposals,

is enough to make up for the increased computational cost introduced by the

regressions. The order is thought to be O
(
C−8/(8+max{q,8})) or O

(
C−8/(q+16)

)
,

depending on whether the support of the kernel is finite.

In Chapter 5, we looked at the hypothetical case where the observation is

a path of a Brownian motion with an unknown linear trend, and no summary

statistic is used. Since the asymptotic rate of decay for the error slows as

q increases, we look at this case to refute the näıve thought that using an

infinite-dimensional statistic results in no convergence. Instead, we find that

the bias is order O (δr) , for some r such that 1 < r < 2, and that the variance

is exp
(
−1/2δ2 + o

(
1/δ2

))
, as the tolerance parameter δ tends to zero. While

this would result in a very slow rate of convergence, the estimate still converges.

6.1 Brief Comment on Practical Usage

Little discussion has been given in this text on practical consequences of the

results. This because, due to the asymptotic nature of the results, there are

few such consequences: optimal usage for practical running times need not be

that which is optimal as the computational running time tends to infinity. As

mentioned in Chapter 1, it can also be highly problem-specific.

For example, while the main results of the text give asymptotic rates for

the optimal choice of tolerance parameter δ, and the resulting optimal mean

square error of the estimate, this gives no guidance on the choice of tolerance

for a single abc estimate. In practice, a common rule of thumb for choosing the

tolerance value, mentioned by Beaumont et al. [2002], is to choose the tolerance

so that a small fixed proportion – one percent, for example – of the proposals

are accepted. This can be done either by generating a pilot run of samples and

fixing the tolerance so that a fixed proportion of the pilot proposals would be

accepted, or by choosing the tolerance after the samples have been generated,

if the number N of proposals is fixed. The latter approach is equivalent to

using n-nearest neighbours rather than a tolerance value, and the asymptotic

behaviour of the error for this approach is discussed by Biau et al. [2015].
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There are some possible practical consequences of the results, such as

the use of abcloc from Chapter 4, or using accept-reject instead of random

acceptance, based on Example 3.15. However, suggesting these for practical

usage should be done based on more numerical experiments, conducted on more

complicated example problems, than were done for this text.

6.2 Planned Extensions

The planned extensions focus on the new abcloc estimate, with the main

priority being to complete the asymptotic analysis given in Chapter 4. This

requires proving the remaining corollaries in that chapter, and finding the

asymptotic behaviour of the variance. Running numerical experiments is also

needed, to determine whether abcloc is likely to be useful in practice.

Since abcloc is a variation on the regression step used in Beaumont et al.

[2002] and Blum [2010], it may then be possible to adapt the analysis of abcloc

to variations of other abc variants that make use of regression. For example,

Fearnhead and Prangle [2012] consider the case where we begin with an initial

summary statistic function, s. They then generate a preliminary set of samples,

and use regression to determine a one-dimensional summary statistic m̂ that is

approximately sufficient for s. We can, therefore, consider a variant, where m̂

is determined using multiple regressions on the preliminary samples, similarly

to abcloc. If we assume the initial statistic s is sufficient, then it might be

possible to determine the asymptotic effect of using m̂ rather than s.

The asymptotic rates given for the mean square error of different variants of

abc are given in terms of the expected computational cost. Since some of the

variants, such as abcacc, and abcloc, have a large variance in their cost, one

extension would be to find the asymptotic error in terms of the actual cost. As

a more practical alternative, we could bring the algorithm closer to how abc

is used in practice: the algorithm is given a strict upper bound on its running

time, or on the time taken to generate samples.
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Appendix A

Miscellaneous Theorems

This appendix contains definitions, theorems, and lemmas that are not included

in the main text. This has been done either because they are commonly-known,

because they are trivial (Lemma A.1), or because they appear in reference to

previous results, and are not used in this thesis (Definition A.9).

Lemma A.1.

N∑
k=1

ak (x− ck)2 =

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

+

∑
k<j akaj(ck − cj)2∑N

k=1 ak
.

Proof.

N∑
k=1

ak (x− ck)2 =

(
N∑
k=1

ak

)
x2 − 2

(
N∑
k=1

akck

)
x+

N∑
k=1

akc
2
k

=

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

−

(∑N
k=1 akck

)2

∑N
k=1 ak

+
N∑
k=1

akc
2
k

=

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

−

(∑N
k=1 akck

)2
−
∑N

k=1 ak
∑N

k=1 akc
2
k∑N

k=1 ak

=

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

−
∑N

k,j=1 akajckcj −
∑N

k,j=1 akajc
2
j∑N

k=1 ak

=

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

−

∑
k<j

(
2akajckcj − akaj(c2

k + c2
j )
)

∑N
k=1 ak

=

(
N∑
k=1

ak

)(
x−

∑N
k=1 akck∑N
k=1 ak

)2

+

∑
k<j akaj(ck − cj)2∑N

k=1 ak
.
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Theorem A.2 (Multiple-Dimensional Taylor’s Theorem). [Burkill, 1962, an

extension from Theorem 8.7] Let f be a function f : Rd → R, whose partial

derivatives are continuous up to order n in a region around x containing x + h.

Then there exists a constant 0 < φ < 1 such that

f (x + h) = f (x1 + h1, . . . , xd + hd)

= f (x1, . . . , xd) +

(
h1

∂

∂x1
+ · · ·+ hd

∂

∂xd

)
f (x1, . . . , xd)

+
1

2

(
h1

∂

∂x1
+ · · ·+ hd−1

∂

∂xd−1
+ hd

∂

∂xd

)2

f (x1, . . . , xd)

+ · · ·

+
1

(n− 1)!

(
h1

∂

∂x1
+ · · ·+ hd

∂

∂xd

)n−1

f (x1, . . . , xd)

+
1

n!

(
h1

∂

∂x1
+ · · ·+ hd

∂

∂xd

)n
f (x1 + φh1, . . . , xd + φhd)

= f (x) + h
d

dx
f (x) + · · ·

+
1

(n− 1)!

(
h

d

dx

)n−1

f (x) +
1

n!

(
h

d

dx

)n
f (x + φh) .

Remark: In the case n = 2, this can also be written in matrix notation as

f (x + h) = f (x) + hT∇f (x) + hTHf (x + φh) h,

where Hf (x + φh) is the Hessian matrix for f (x + φh).

Proof. We define F (t) = f (x + th), parametrizing along the line between x and

x + h. Then, by the one-dimensional Taylor’s theorem, for some 0 < φ < 1,

F (1) = F (0) + F ′(0) + · · ·+ 1

(n− 1)!
F (n−1)(0) +

1

n!
F (n)(φ).

In terms of the original notation,

d

dt
f (x) =

n∑
i=1

hi
∂

∂xi
f (x) = h

d

dx
f (x) ,

f (x + h) = f (x) + h
d

dx
f (x) + · · ·+ 1

n!

(
h

d

dx

)n
f (x + φh) .

Lemma A.3 (Young’s Inequality). Let a and b be positive real numbers, and

p and q be positive real numbers such that 1/p+ 1/q = 1. Then

ab ≤ ap

p
+
bq

q
.
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Definition A.4 (Big O notation). Functions f and g satisfy f(x) = O (g(x))

as x ↑ ∞, with respect to function g, if, and only if, there is some positive

constant ε such that |f(x)| ≤ ε |g(x)| for all sufficiently large values of x.

Functions f and g are such that f(x) = O (g(x)) as x→ x0, for some finite

x0, if, and only if, there are some constants δ, ε > 0 such that |f(x)| ≤ ε |g(x)|

if |x− x0| ≤ δ.

Definition A.5 (Little O notation). Functions f and g satisfy f(x) = o (g(x))

as x ↑ ∞ if, for all ε > 0, |f(x)| ≤ ε |g(x)| for all sufficiently large x.

Functions f and g are such that f(x) = o (g(x)) as x→ x0 if, for all ε > 0,

there is some constant δ > 0 such that |f(x)| ≤ ε |g(x)| if |x− x0| > δ.

Lemma A.6 (Lebesgue Differentiation Theorem). Let f : Rn → R be some

real-valued function. Then the derivative

lim
B→x

1

‖B‖

∫
B
f dµ,

where B is the ball centred at x, exists and is equal to f(x) for almost all

x ∈ Rn.

Proof. See [Rudin, 1987, Theorem 7.7].

Lemma A.7 (Newton Series). Graham et al. [1994] Let f be some function

f : N→ R, and the forward and backward differences

∆nf(x) =
n∑
k=0

(−1)n−k
(
n

k

)
f(x+ k), ∇nf(x) =

n∑
k=0

(−1)k
(
n

k

)
f(x− k)

exist up to order h. Then

f(x+ h) =


∑h

k=0

(
h
k

)
∆kf(x) h ≥ 0,∑h

k=0(−1)k
(
h
k

)
∇kf(x) h ≤ 0.

Proof. By the summation inversion formula,

(−1)h∆hf(x) =

h∑
k=0

(−1)k
(
h

k

)
f(x+ k) ⇐⇒ f(x+ h) =

h∑
k=0

(
h

k

)
∆kf(x),

∇hf(x) =

h∑
k=0

(−1)k
(
h

k

)
f(x− k) ⇐⇒ f(x− h) =

h∑
k=0

(−1)k
(
h

k

)
∇kf(x).
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Lemma A.8. The minimisation problem

argmin
α,β

N∑
i=1

(θi − α− β(si − s∗))2w(si − s∗)

has solution α
β

 =
(
XT
s∗Ws∗Xs∗

)−1
XT
s∗Ws∗Θ,

where

Xs∗ =

 1 . . . 1

(s1 − s∗) . . . (sN − s∗)

T

,

and Ws∗ = diag (w(s1 − s∗), . . . , w(sN − s∗)) .

Proof. If we let γ := (αβT )T , and Θ be the vector such that (Θ)i = θi, the

minimisation problem can be written as

argmin
γ

(Θ−Xs∗γ)T Ws∗ (Θ−Xs∗γ) .

Differentiating by γ, we get

−2XT
s∗Ws∗ (Θ−Xs∗γ) = 0.

Rearranging, we get

XT
s∗Ws∗Xs∗γ = XT

s∗Ws∗Θ.

Left-multiplying by the inverse of XT
s∗Ws∗Xs∗ gives the required result.

Definition A.9 (Little OP notation). The functions f and g are such that

f(x) = oP (g(x)) as x ↑ ∞ if, for all δ, ε > 0, there is some constant γ > 0,

such that

P (f(x) ≥ δg(x)) ≤ ε

for all x ≥ γ. The sequence f(x)/g(x) is said to converge in probability.

Lemma A.10 (Chernoff bound for lower tail). Let X be a Bin(N, p) variable.

Then, for ε > 0,

P (X ≤ (1− ε)Np) ≤ exp

(
−ε

2Np

2

)
.

Proof. By the Markov inequality,

P (X ≤ (1− ε)Np) = P
(
e−tX ≥ e−t(1−ε)Np

)
≤ et(1−ε)NpE

(
e−tX

)
,
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where E
(
e−tX

)
=
(
1 + p(e−t − 1)

)N ≤ exp
(
Np(e−t − 1)

)
, so

P (X ≤ (1− ε)Np) ≤ exp
(
t(1− ε)Np+Np(e−t − 1)

)
.

Minimising with regard to t gives t = − log(1 − ε) if ε > 0, giving the upper

bound

P (X ≤ (1− ε)Np) ≤ exp (−(1− ε) log(1− ε)Np− εNp)

= exp (−Np ((1− ε) log(1− ε) + ε))

≤ exp

(
−1

2
ε2Np

)
,

by taking the Taylor expansion of the logarithm.

Lemma A.11 (Chernoff bound for upper tail). Let X be a Bin(N, p) variable.

Then, for ε > 0,

P (X ≥ (1 + ε)Np) ≤ exp

(
−ε

2Np

3

)
.

Proof. By similar reasoning to that in the proof for Lemma A.10,

P (X ≥ (1 + ε) ≤ exp
(
−t(1 + ε)Np+Np

(
et − 1

))
,

Minimising with regard to t gives t = log(1 + ε) for ε > 0, giving the upper

bound

P (X ≤ (1− ε)Np) ≤ exp (−(1 + ε) log(1 + ε)Np+ εNp)

= exp (−Np ((1 + ε) log(1 + ε)− ε)) .

Taking the Taylor expansion of the logarithm, we have, since 0 < ε < 1,

(1 + ε) log(1 + ε) ≤ (1 + ε)

(
ε− 1

2
ε2 +

1

3
ε3
)
≤ ε+

1

2
ε2 − 1

6
ε3 ≤ ε+

1

3
ε2.

Substituting this into the previous inequality gives the result.

Lemma A.12 (Block matrix inversion).A B

C D

−1

=

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 .
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Proof. Let M =

A B

C D

 , and M/A = D−CA−1B and M/D = A−BD−1C

be the Schur complement of A and D, respectively. Then it can be shown that

M =

 I 0

CA−1 I

A 0

0 M/A

I A−1B

0 I


=

I BD−1

0 I

M/D 0

0 D

 I 0

D−1C I

 . (A.1)

Taking the inverse, we see that

M−1 =

 I 0

−D−1C I

M/D−1 0

0 D−1

I −BD−1

0 I

 .

The result easily follows.

Theorem A.13 (Girsanov). [Øksendal, 2003] Let X be a stochastic process

obeying the equation

dXt = a(Xt, t) dt+ dBt, t ≤ T, X0 = 0,

where Bt is a Brownian motion, for t ≤ T and X0 = 0. Define the process Mt

as

Mt = exp

(
−
∫ t

0
a(s, ω) dBs −

1

2

∫ t

0
a(s, ω)2 ds

)
, t ≤ T,

and define the measure Q such that

dQ = MT dP.

Then, if a satisfies Novikov’s condition

E
(

exp

(
1

2

∫ T

0
a(Xs, s)

2 ds

))
<∞,

X is a Brownian motion with respect to the probability law Q on t ≤ T.



Appendix B

Code

This is a general repository for code used in the main text.

B.1 Problem and Error

B.1.1 Bias and Variance Plots

These scripts generate the data, and plot, Figures 1-4.

Figure 1

# fig1.R - generate data for figure 1.

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#

# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

141
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# along with this program. If not, see <http://www.gnu.org/licenses/>.

set.seed(52228)

sigma.theta <- 1

sigma.x <- 1

ind.lower <- -0.5

ind.upper <- 0.5

q <- 2

s.star <- c(1, 1)

# Generate n ABC samples for the posterior distribution of theta.

GenerateABCSamples <- function(n, delta) {

accepted <- 0

samples <- numeric(n)

while (accepted < n) {

theta <- rnorm(1, sd = sigma.theta)

X <- rnorm(q, mean = theta, sd = sigma.x)

if (sum((X - s.star)^2) <= delta^2) {

accepted <- accepted + 1

samples[accepted] <- theta

}

}

return(samples)

}

# Return one ABC estimate, using n ABC samples.

GetABCEstimate <- function(n, delta) {

theta <- GenerateABCSamples(n, delta)

Z <- ind.lower <= theta & theta <= ind.upper

est <- mean(Z)

return(est)
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}

# Compute the exact result of the estimation problem.

# This is used to assess the quality of the ABC estimates.

GetTruePosterior <- function() {

inter <- q * sigma.theta^2 + sigma.x^2

inter2 <- q * mean(s.star) * sigma.theta^2/inter

inter3 <- sigma.theta * sigma.x/sqrt(inter)

lower <- pnorm(ind.lower, mean = inter2, sd = inter3)

upper <- pnorm(ind.upper, mean = inter2, sd = inter3)

return(upper - lower)

}

# Return a Monte Carlo estimate of the bias, using k ABC estimates.

# Returns the estimate and its standard error.

EstimateBias <- function(delta, k, n) {

exact <- GetTruePosterior()

biases <- replicate(k, GetABCEstimate(n, delta)) - exact

return(c(mean(biases), sd(biases)/sqrt(k)))

}

deltas <- seq(0.05, 2, by = 0.05)

k <- 5000

n <- 10

biases <- t(sapply(deltas, EstimateBias, k, n))

write.table(cbind(deltas, biases), "fig1.dat", row.names = F,

col.names = c("delta", "bias", "sd"))

# fig1-plot.R - draw figure 1, using data generated by fig1.R

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#

# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by
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# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program. If not, see <http://www.gnu.org/licenses/>.

data <- read.table("fig1.dat", header = T)

deltas <- data[, 1]

biases <- data[, 2]

ses <- data[, 3]

pdf("fig1.pdf", width = 4.6, height = 3, family = "serif",

pointsize = 10)

par(oma = c(0, 0, 0, 0), mai = c(0.8, 0.8, 0.15, 0.1))

plot(deltas, biases, xlim = c(0, max(deltas)),

ylim = range(biases + 1.96 * ses, biases - 1.96 * ses),

xlab = expression(delta), ylab = "bias", cex = 0.7)

arrows(deltas, biases - 1.96 * ses, deltas, biases + 1.96 * ses,

0.7 * 0.05, 90, 3)

C.parabola <- -0.018338 - 0.3647609 * (-0.138889)

t <- seq(0, max(deltas), length.out = 100)

lines(t, C.parabola * t^2)

invisible(dev.off())
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Figure 2

# fig2.R - generate data for figure 2.

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#

# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program. If not, see <http://www.gnu.org/licenses/>.

set.seed(52228)

sigma.theta <- 1

sigma.x <- 1

ind.lower <- -0.5

ind.upper <- 0.5

GetTruePosterior <- function(q, s.star) {

inter <- q * sigma.theta^2 + sigma.x^2

inter2 <- q * mean(s.star) * sigma.theta^2/inter

inter3 <- sigma.theta * sigma.x/sqrt(inter)

lower <- pnorm(ind.lower, mean = inter2, sd = inter3)

upper <- pnorm(ind.upper, mean = inter2, sd = inter3)

return(upper - lower)

}
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# generate n ABC samples for the posterior distribution of theta

GenerateABCSamples <- function(n, q, delta, s.star) {

accepted <- 0

samples <- numeric(n)

while (accepted < n) {

theta <- rnorm(1, sd = sigma.theta)

X <- rnorm(q, mean = theta, sd = sigma.x)

if (sum((X - s.star)^2) <= delta^2) {

accepted <- accepted + 1

samples[accepted] <- theta

}

}

return(samples)

}

ComputeABCEstimate <- function(delta, n, q, s.star) {

theta <- GenerateABCSamples(n, q, delta, s.star)

return(mean(ind.lower <= theta & theta <= ind.upper))

}

EstimateMSE <- function(delta, k, q, s.star, const) {

exact <- GetTruePosterior(q, s.star)

n <- round(const * delta^q)

print(c(delta, n))

estimates <- replicate(k, ComputeABCEstimate(delta, n, q, s.star))

tmp <- (estimates - exact)^2

return(c(mean(tmp), sd(tmp)/sqrt(k)))

}

deltas <- seq(0.1, 1, by = 0.1)

MSEs <- t(sapply(deltas, EstimateMSE, 500, 2, c(1, 1), 16000))
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write.table(cbind(deltas, MSEs), "fig2.dat", row.names = F,

col.names = c("delta", "MSE", "se"))

# fig2-plot.R - draw figure 2, using data generated by fig2.R

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#

# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program. If not, see <http://www.gnu.org/licenses/>.

data <- read.table("fig2.dat", header = T)

deltas <- data[, 1]

errors <- data[, 2]

ses <- data[, 3]

q <- 2

pdf("fig2.pdf", width = 4.6, height = 3, family = "serif",

pointsize = 10)

par(oma = c(0, 0, 0, 0), mai = c(0.8, 0.8, 0.15, 0.1))

plot(deltas, errors, xlim = c(0, max(deltas)),

ylim = range(errors + 1.96 * ses, errors - 1.96 * ses),

xlab = expression(delta), ylab = "mean square error")
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arrows(deltas, errors - 1.96 * ses, deltas, errors + 1.96 * ses, 0.05,

90, 3)

deltas.nq <- deltas^(-q)

deltas.4 <- deltas^4

fit <- lm(errors ~ deltas.nq + deltas.4 + 0, weights = 1/ses^2)

plot.deltas <- seq(min(deltas)/2, max(deltas),

length.out = length(deltas) * 10)

lines(plot.deltas, predict(fit,

data.frame(deltas.nq = plot.deltas^(-q),

deltas.4 = plot.deltas^4)))

coef.nq <- fit$coefficients[1]

coef.4 <- fit$coefficients[2]

# curve is ad^(-q)+bd^4,

# so opt at -qad^(-q-1)+4bd^3=0 => d=(aq/4b)^(1/(q+4))

opt.delta <- (coef.nq * q/(4 * coef.4))^(1/(q + 4))

abline(v = opt.delta)

invisible(dev.off())

print(paste("Optimal delta is", opt.delta))

print(paste("Optimal MSE is",

predict(fit,

data.frame(deltas.nq = opt.delta^(-q),

deltas.4 = opt.delta^4))))

Figure 3

# fig3.R - generate data for figure 3.

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#
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# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program. If not, see <http://www.gnu.org/licenses/>.

set.seed(52228)

sigma.theta <- 1

sigma.x <- 1

ind.lower <- -0.5

ind.upper <- 0.5

GetTruePosterior <- function(q, s.star) {

inter <- q * sigma.theta^2 + sigma.x^2

inter2 <- q * mean(s.star) * sigma.theta^2/inter

inter3 <- sigma.theta * sigma.x/sqrt(inter)

lower <- pnorm(ind.lower, mean = inter2, sd = inter3)

upper <- pnorm(ind.upper, mean = inter2, sd = inter3)

return(upper - lower)

}

# generate n ABC samples for the posterior distribution of theta

GenerateABCSamples <- function(n, q, delta, s.star) {

accepted <- 0

samples <- numeric(n)
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while (accepted < n) {

theta <- rnorm(1, sd = sigma.theta)

X <- rnorm(q, mean = theta, sd = sigma.x)

if (sum((X - s.star)^2) <= delta^2) {

accepted <- accepted + 1

samples[accepted] <- theta

}

}

return(samples)

}

ComputeABCEstimate <- function(delta, n, q, s.star) {

theta <- GenerateABCSamples(n, q, delta, s.star)

return(mean(ind.lower <= theta & theta <= ind.upper))

}

EstimateMSE <- function(delta, k, q, s.star, const) {

exact <- GetTruePosterior(q, s.star)

n <- round(const * delta^q)

print(c(delta, n))

estimates <- replicate(k, ComputeABCEstimate(delta, n, q, s.star))

tmp <- (estimates - exact)^2

return(c(mean(tmp), sd(tmp)/sqrt(k)))

}

OptimalDeltaAndMSE <- function(expected.cost, k, q, s.star) {

deltas <- seq(0.1, 1, by = 0.1)

MSEs <- sapply(deltas, EstimateMSE, k, q, s.star, expected.cost)

deltas.nq <- deltas^(-q)

deltas.4 <- deltas^4

fit <- lm(MSEs[1, ] ~ deltas.nq + deltas.4 + 0,

weights = MSEs[2, ])
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coef.nq <- fit$coefficients[1]

coef.4 <- fit$coefficients[2]

# curve is ad^(-q)+bd^4,

# so opt at -qad^(-q-1)+4bd^3=0 => d=(aq/4b)^(1/(q+4))

opt.delta <- (coef.nq * q/(4 * coef.4))^(1/(q + 4))

opt.MSE <- coef.nq * opt.delta^(-q) + coef.4 * opt.delta^4

return(c(expected.cost, opt.delta, opt.MSE))

}

costs <- 2^(0:8) * 500

data <- t(sapply(costs, OptimalDeltaAndMSE, 500, 2, c(1, 1)))

write.table(data, "fig3.dat", row.names = F,

col.names = c("exp. cost", "opt. delta", "opt. MSE"))

# fig3-plot.R - draw figure 3, using data generated by fig3.R

#

# Copyright (C) 2013 S. Barber, J. Voss, M. Webster

#

# This program is free software: you can redistribute it and/or modify

# it under the terms of the GNU General Public License as published by

# the Free Software Foundation, either version 3 of the License, or

# (at your option) any later version.

#

# This program is distributed in the hope that it will be useful,

# but WITHOUT ANY WARRANTY; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

# GNU General Public License for more details.

#

# You should have received a copy of the GNU General Public License

# along with this program. If not, see <http://www.gnu.org/licenses/>.

data <- read.table("fig3.dat", header = T)

q <- 2

costs <- data[, 1]/min(data[, 1])



152 APPENDIX B. CODE

deltas <- data[, 2]

errors <- data[, 3]

num.c <- length(costs)

short.c <- costs[floor(1 + num.c/4):ceiling(num.c * 3/4)]

pdf("fig3.pdf", width = 4.6, height = 2.5, family = "serif",

pointsize = 10)

par(oma = c(0, 0, 0, 0), mai = c(0.5, 0.5, 0.1, 0.1), mfrow = c(1, 2))

plot(costs, deltas, log = "xy", xlab = "expected cost",

ylab = expression(delta), mgp = c(1.8, 0.6, 0))

ld <- log(deltas)

lc <- log(costs)

fit <- lm(ld ~ lc)

coefs <- summary(fit)$coefficients

lines(costs, exp(fitted.values(fit)))

expected.gradient <- -1/(q + 4)

lines(short.c,

exp(coefs[1, 1] + expected.gradient * log(short.c) + 0.1))

print(paste("Delta order is", coefs[2, 1], "s.e.", coefs[2, 2]))

print(paste("Expected order is", expected.gradient))

plot(costs, errors, log = "xy", xlab = "expected cost", ylab = "MSE",

mgp = c(1.8, 0.6, 0))

le <- log(errors)

lc <- log(costs)

fit <- lm(le ~ lc)

coefs <- summary(fit)$coefficients

lines(costs, exp(fitted.values(fit)))

expected.gradient <- -4/(q + 4)

lines(short.c,

exp(coefs[1, 1] + expected.gradient * log(short.c) + 0.4))

print(paste("Error order is", coefs[2, 1], "s.e.", coefs[2, 2]))
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print(paste("Expected order is", expected.gradient))

invisible(dev.off())

Figure 4

set.seed(52228)

sigma.theta <- 1

sigma.x <- 1

ind.lower <- -0.5

ind.upper <- 0.5

d <- 2

q <- 1

x.star <- c(1, 1)

s.star <- 1

# Generate n ABC samples for the posterior distribution of theta.

GenerateABCSamples <- function(n, delta) {

accepted <- 0

samples <- numeric(n)

while (accepted < n) {

theta <- rnorm(1, sd = sigma.theta)

X <- rnorm(q, mean = theta, sd = sigma.x)

if (sum((X - s.star)^2) <= delta^2) {

accepted <- accepted + 1

samples[accepted] <- theta

}

}

return(samples)

}

# Return one ABC estimate, using n ABC samples.
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GetABCEstimate <- function(n, delta) {

theta <- GenerateABCSamples(n, delta)

Z <- ind.lower <= theta & theta <= ind.upper

est <- mean(Z)

return(est)

}

# Compute the exact result of the estimation problem.

# This is used to assess the quality of the ABC estimates.

GetTruePosterior <- function() {

inter <- d * sigma.theta^2 + sigma.x^2

inter2 <- d * mean(x.star) * sigma.theta^2/inter

inter3 <- sigma.theta * sigma.x/sqrt(inter)

lower <- pnorm(ind.lower, mean = inter2, sd = inter3)

upper <- pnorm(ind.upper, mean = inter2, sd = inter3)

return(upper - lower)

}

# Return a Monte Carlo estimate of the bias, using k ABC estimates.

# Returns the estimate and its standard error.

EstimateBias <- function(delta, k, n) {

exact <- GetTruePosterior()

biases <- replicate(k, GetABCEstimate(n, delta)) - exact

return(c(mean(biases), sd(biases)/sqrt(k)))

}

deltas <- seq(0.05, 2, by = 0.05)

k <- 5000

n <- 10

biases <- t(sapply(deltas, EstimateBias, k, n))

write.table(cbind(deltas, biases), "fig4.dat", row.names = F,

col.names = c("delta", "bias", "sd"))

data <- read.table("fig4.dat", header = T)
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deltas <- data[, 1]

biases <- data[, 2]

ses <- data[, 3]

pdf("fig4.pdf", width = 4.6, height = 3, family = "serif",

pointsize = 10)

par(oma = c(0, 0, 0, 0), mai = c(0.8, 0.8, 0.15, 0.1))

plot(deltas, biases, xlim = c(0, max(deltas)),

ylim = c(0, max(biases + 1.96 * ses)),

xlab = expression(delta), ylab = "bias", cex = 0.7)

arrows(deltas, biases - 1.96 * ses, deltas, biases + 1.96 * ses,

0.7 * 0.05, 90, 3)

C.parabola <- -0.018338 - 0.3647609 * (-0.138889)

t <- seq(0, max(deltas), length.out = 100)

lines(t, C.parabola * t^2)

invisible(dev.off())

B.1.2 ABC Posterior Plots

The code given below includes a tcl/tk section, allowing interactive sliders

to change the observation and the tolerance. Compiling only the commands

given before the tcltk package is required will give functions to make static

plots, like those in the main text. The tcl/tk section is modified from the

eponymous package’s demo code.

cdfs <- function(x.star,delta,cmean,cvar) {

# cdf of x*+delta-cmean/sqrt(cvar) minus that of

# x*-delta-cmean/sqrt(cvar)

pnorm(x.star,

mean=cmean-delta,

sd=sqrt(cvar)) - pnorm(x.star,

mean=cmean+delta,
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sd=sqrt(cvar))

}

dabcpost <- function(x,x.star,pmean,pvar,datvar,delta) {

dnorm(x, mean=pmean, sd=sqrt(pvar) ) *

cdfs(x.star, delta, x, datvar) /

cdfs(x.star, delta, pmean, pvar+datvar)

}

ABCplot <- function(x.star,delta,xlim,ylim) {

curve(dnorm(x,mean=x.star/2,sd=1/sqrt(2) ) ,

lty="dashed",xlab=expression(theta) ,

ylab="Density",main="ABC Posterior Error",

xlim=xlim,ylim=ylim)

curve(dnorm,lty="dotted",add=T)

curve(dabcpost(x,x.star,pmean=0,pvar=1,datvar=1,

delta=delta) ,

add=T)

legend(x="topright",

c("Prior","True posterior","ABC posterior") ,

lty=c("dotted","dashed","solid") )

}

require(tcltk) || stop("tcltk support is absent")

require(graphics); require(stats)

local({

have_ttk <- as.character(tcl("info", "tclversion")) >= "8.5"

if(have_ttk) {

tkbutton <- ttkbutton

tkframe <- ttkframe

tklabel <- ttklabel

tkradiobutton <- ttkradiobutton

}
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xlim <- c(-5,5)

ylim <- c(0,0.6)

x.star <- tclVar(3)

x.star.sav <- 3

bw <- tclVar(1)

bw.sav <- 1 # in case replot.maybe is called too early

replot <- function(...) {

bw.sav <<- b <- as.numeric(tclObj(bw))

x.star.sav <<- xs <- as.numeric(tclObj(x.star))

eval(substitute(ABCplot(xs,b,xlim,ylim)))

}

replot.maybe <- function(...)

{

if (as.numeric(tclObj(bw)) != bw.sav ||

as.numeric(tclObj(x.star)) != x.star.sav) replot()

}

regen <- function(...) {

xlim <<- c(min(0,as.numeric(tclObj(x.star) ) /2) -5,

max(0,as.numeric(tclObj(x.star) ) /2) +5)

replot()

}

grDevices::devAskNewPage(FALSE) # override setting in demo()

tclServiceMode(FALSE)

base <- tktoplevel()

tkwm.title(base, "Density")

spec.frm <- tkframe(base,borderwidth=2)

right.frm <- tkframe(spec.frm)
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frame3 <-tkframe(right.frm,relief="groove",borderwidth=2)

tkpack(tklabel(frame3,text="Observation") )

tkpack(tkscale(frame3,command=replot.maybe,from=1,to=10,

showvalue=T,variable=x.star,

resolution=0.1,orient="horiz") )

frame4 <-tkframe(right.frm, relief="groove", borderwidth=2)

tkpack(tklabel (frame4, text="Tolerance"))

tkpack(tkscale(frame4, command=replot.maybe, from=0.05, to=16.00,

showvalue=T, variable=bw,

resolution=0.05, orient="horiz"))

tkpack(frame3,frame4, fill="x")

tkpack(right.frm,side="left", anchor="n")

## ‘Bottom frame’ (on base):

q.but <- tkbutton(base,text="Quit",

command=function() tkdestroy(base))

tkpack(spec.frm, q.but)

tclServiceMode(TRUE)

regen()

})



Bibliography

D. F. Anderson, G. Craciun, and T. G. Kurtz. Product-form stationary

distributions for deficiency zero chemical reaction networks. Bulletin of

Mathematical Biology, 72(8):1947–1970, 2010.

J. C. Baez and B. Fong. Quantum techniques for studying equilibrium in

reaction networks. Journal of Complex Networks, 2014.

S. Barber, J. Voss, and M. Webster. The rate of convergence for approximate

Bayesian computation. Electronic Journal of Statistics, 9:80–105, 2015.

M. A. Beaumont. Approximate Bayesian computation in evolution and ecology.

Annual Review of Ecology, Evolution, and Systematics, 41:379–406, 2010.

M. A. Beaumont, W. Zhang, and D. J. Balding. Approximate Bayesian

computation in population genetics. Genetics, 162(4):2025–2035, 2002.

G. Bertorelle, A. Benazzo, and S. Mona. abc as a flexible framework to estimate

demography over space and time: some cons, many pros. Molecular Ecology,

19(13):2609–2625, 2010.

G. Biau, F. Cérou, and A. Guyader. New insights into approximate

Bayesian computation. Annales de l’Institut Henri Poincaré, Probabilités
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