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Abstract 

This Thesis describes the occlusion of nanoparticles (either diblock copolymer nanoparticles or 

polymer modified metal sols) within either CaCO3 (calcite) or ZnO (wurtzite). 

First, new spherical diblock copolymer nanoparticles were synthesised via reversible addition-

fragmentation chain transfer (RAFT) aqueous dispersion polymerisation of 2-hydroxypropyl 

methacrylate at 70 °C and 20 % w/w solids using either poly(carboxybetaine methacrylate) or 

poly(proline methacrylate) as the steric stabiliser block. Both these stabilisers contain carboxylic 

acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas 

poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals 

are grown at an initial pH 9.5 in the presence of these two types of nanoparticles, it is found that 

the anionic poly(proline methacrylate)-stabilised particles are occluded uniformly throughout the 

crystals (up to 6.8 % by mass, 14.0 % by volume). In contrast, the zwitterionic 

poly(carboxybetaine methacrylate)-stabilised particles show no signs of occlusion into calcite 

crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore 

does not guarantee efficient occlusion: overall anionic character is an additional prerequisite. 

Second, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-

poly(benzyl methacrylate) diblock copolymer nanoparticles can be prepared with either high or 

low poly(ammonium 2-sulfatoethyl methacrylate) stabiliser surface densities using either RAFT 

dispersion polymerisation in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion 

polymerisation, respectively. We then use these model nanoparticles to gain new insight into a 

key topic in materials chemistry - the occlusion of organic additives into inorganic crystals. 

Substantial differences are observed for the extent of occlusion of these two types of anionic 

nanoparticles into calcite, which serves as a suitable host crystal. A low poly(ammonium 2-

sulfatoethyl methacrylate) stabiliser surface density leads to uniform nanoparticle occlusion 

within calcite at up to 7.5 % w/w (16 % v/v), while minimal occlusion occurs when using 

nanoparticles with a high poly(ammonium 2-sulfatoethyl methacrylate) stabiliser surface density. 

This counter-intuitive observation suggests an optimum anionic surface density is required for 

efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of 

nanoparticles within crystals. 

Third, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by 

polymerisation-induced self-assembly (PISA) via RAFT aqueous emulsion polymerisation and 

then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. 

Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or 

carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block 

play vital roles in determining the crystal morphology. In particular, sulfate-functionalised 

nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-

functionalised nanoparticles are excluded. Moreover, the extent of nanoparticle occlusion within 

the ZnO phase can be as high as 23 % by mass depending on the sulfate-based nanoparticle 

concentration. The optical properties, chemical composition and crystal structure of the resulting 

nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the 

observed evolution of the ZnO morphology in the presence of these sulfate-based anionic 

nanoparticles.  

Last, we describe an efficient aqueous route that enables the direct occlusion of non-ionic 

poly(glycerol monomethacrylate)70-stabilised gold nanoparticles (G70-AuNPs) at remarkably 

high levels (~20 % w/w) during the in situ growth of ZnO crystals under relatively mild 

conditions. Depending on the synthesis protocol, the G70-AuNPs can be (i) solely located within 

a central region, (ii) uniformly distributed throughout the ZnO host crystal or (iii) confined to a 

surface layer. The G70 stabiliser is essential for successful occlusion: its pendent cis-diol side-

groups bind Zn
2+

 cations, which promotes nanoparticle interaction with the growing ZnO crystal 

surface. XPS studies indicate significant shifts in the Au4f and Zn2p binding energies, which 

suggests an intimate interaction between the G70-AuNPs and the host ZnO crystals. Finally, we 

demonstrate that occlusion of G70-AuNPs throughout the whole ZnO is beneficial for the 

enhanced photocatalytic decomposition of rhodamine B, which serves as a model dye. 
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Nomenclature 

DP                    - Degree of polymerisation 

CMC                - Critical micelle concentration 

IEP                                   - Isoelectric point 

LCST                             - Lower critical solution temperature 

Mn                           - Number-average molecular weight 

Mw                                   - Weight-average molecular weight 

Ð - Dispersity (Ð = Mw/Mn) 

CTA               - Chain transfer agent 

RAFT                                - Reversible addition-fragmentation chain transfer polymerisation 

PISA  - Polymerisation-induced self-assembly 

DMSO - Dimethyl sulfoxide 

THF                            - Tetrahydrofuran 

DCM                          - Dichloromethane 

ZnO - Zinc oxide 

CaCO3 - Calcium carbonate 

DLS - Dynamic light scattering 

PDI                             - Polydispersity index 

1
H NMR                                    - Proton nuclear magnetic resonance spectroscopy 

DCP                - Disc centrifuge photosedimentometry 

FE-SEM                       - Field emission scanning electron microscopy 

TEM - Transmission electron microscopy 

FT-IR                              - Fourier transform infra-red 

GPC                                   - Gel permeation chromatography 

XPS                               - X-ray photoelectron spectroscopy 

XRD                           - X-ray diffraction 

TGA - Thermogravimetric analysis 

   

   

    

   

   



Nomenclature 

 

vii 
 

ACVA               - 4,4’-azobis(4-cyanovaleric acid) 

                                       

CPCP - 4-Cyano-4-(phenylcarbonothioylthio)-pentanoic acid 

                                      

PETTC - 4-Cyano-4-(2-phenylethane sulfanylthiocarbonyl) 

sulfanylpentanoic acid  

                                     

S 

monomer 

- Ammonium 2-sulfatoethyl methacrylate 

  

 

G 

monomer                          

- Glycerol monomethacrylate 

  

 

H 

monomer                                   

- 2-Hydroxypropyl methacrylate 
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B 

monomer 

- Benzyl methacrylate 

  

 

P 

monomer 

- O-Methacryloyl-trans-4-hydroxy-L-proline 

  

 

C 

monomer 

- Carboxybetaine methacrylate 
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Occlusion of nanoparticles within inorganic crystalline hosts not only provides a 

model for understanding the crystallisation process, but also offers a direct route for 

the preparation of nanocomposite materials in which nanoparticles are distributed 

within the crystal matrix.
1-4

 The incporpation of nanoparticles into the crystals can be 

in situ monitored by atomic force microscopy (AFM) and examined by electron 

microscopy (EM).
5-7

 Compared to single component materials, hybrid nanostructures 

can exhibit superior properties or new functionalities derived from synergistic 

interactions between the host and guest components.
8-10

 It is widely recognised that 

metal oxide semiconductors such as ZnO or TiO2 are promising materials for energy 

conversion and storage, photocatalysis, sensors, solar cells and nanodevices.
11-17

 

Over the past decade or so, considerable attention has focused on noble 

metal/semiconductor hybrid materials because combining plasmonic noble metals 

with metal oxide semiconductors can, in principle, extend the lifetime of electron-

hole pairs and enhance light absorption efficiency, thereby improving 

performance.
8,9

 

Crystallisation, a common phenomenon in Nature, is an important process in a wide 

range of scientific disciplines including chemistry, physics, biology, geology, and 

materials science.
18

 With the recent development of the latter discipline, considerable 

research effort is now focused on combining synthetic materials with design 

concepts adapted from Nature, since this is a promising and bio-green route to 

achieve new materials with either unique or enhanced mechanical properties at 

ambient conditions. Biominerals such as bones, teeth and seashells provide an 

important inspiration for this approach.
19-22

 A key feature of these biomaterials, 

which sets them apart from synthetic crystals, is their nanocomposite structure, 

which derives from the intimate association of organic molecules with the mineral 

host.
19-23

 However, precisely how these organic molecules are incorporated into the 

mineral and the associated structure-property relationships remain poorly understood. 

Although considerable progress has been made in the last few years in producing 

artificial biominerals containing various occluded additives,
1-3,5-7,24

 the synthetic 

routes remain largely empirical, such that targeting desired morphologies, 

compositions, and structures typically relies on time-consuming trial-and-error 

experiments. To gain a deeper understanding of biomineralisation and thus mimic its 
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occlusion mechanism for the synthesis of new materials with enhanced properties is 

highly desirable.  

With the rapid development of synthetic polymer chemistry, especially reversible-

addition fragmentation chain transfer (RAFT) polymerisation, a wide range of 

functional polymers, such as homopolymers, block copolymers and star polymers 

can be readily prepared. These copolymers can be hydrophilic, hydrophobic or 

amphiphilic depending on the nature of the monomers utilised. Recently, 

polymerisation-induced self-assembly (PISA) based on RAFT polymerisation has 

proven to be a versatile and efficient route for the synthesis of various types of 

diblock copolymer spheres, worms or vesicles.
25-30

 More importantly, the surface 

chemistry of such nano-objects can be readily controlled by using non-ionic,
31-34

 

anionic,
35,36

 cationic
37,38

 or zwitterionic
39-41

 blocks as the steric stabiliser for the 

PISA formulation. Therefore, in principle, we are able to prepare copolymers with 

desired functionalities and systematically evaluate their interaction with inorganic 

crystals. 

In this Thesis, we seek to synthesise bespoke block copolymer nanoparticles or 

polymer stabilised-inorganic nanoparticles with appropriate surface functionality and 

then incorporate these nanoparticles into inorganic crystals in order to probe the 

occlusion mechanism as well as producing novel nanocomposite materials. 

 

1.1 Fundamentals of Polymer Science 

A polymer, or macromolecule, is a long-chain molecule whose structure is composed 

of multiple repeating units with a characteristically high relative molecular mass. 

The average number of repeat units is defined by the mean degree of polymerisation 

(DP). There are several parameters used to describe the molecular weight of a 

polymer. Two common terms will be discussed herein: the number-average 

molecular weight (Mn) and weight-average molecular weight (Mw). They are defined 

by the following equations. 
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𝑀𝑛 =  
∑ 𝑛𝑖𝑀𝑖

∑ 𝑛𝑖
                                       (1.1) 

where 𝑛𝑖 is the number of chains containing i repeat units, and 𝑀𝑖 is the molecular 

weight of these chains.  

𝑀𝑤 =  
∑ 𝑤𝑖𝑀𝑖

∑ 𝑤𝑖
=  

∑ 𝑛𝑖𝑀𝑖
2

∑ 𝑛𝑖𝑀𝑖
                               (1.2) 

where 𝑤𝑖 is the weight fraction of chains with i repeat units, which is equal to the 

product of 𝑛𝑖𝑀𝑖. 

 

Polymer chains rarely possess a unique DP, hence there is always a distribution 

around an average value, which differs from pure small molecules. Thus the 

molecular weight distribution (MWD) is used to describe the relationship between 

the number of moles of each polymer species (𝑛𝑖) and the molar mass (𝑀𝑖) of that 

species. The width of the MWD can be crudely characterised by the dispersity (Ð), 

as indicated in equation 1.3.
42

 

Ð =  
𝑀𝑤

𝑀𝑛
                                                        (1.3) 

𝑀𝑤  tends to give a skewed view of the molecular weight distribution of chains, 

representing the higher molecular weight species to a greater extent than the 𝑀𝑛. As 

a result, the Ð is always greater than unity (since 𝑀𝑤 > 𝑀𝑛). 

 

1.2 Polymer Architectures 

Given that a single polymer chain can be composed of several different monomer 

residues, many polymer architectures can be accessed. Figure 1.1 shows a range of 

polymers with different architectures. A homopolymer, which is only composed of a 

single type of repeat unit, is the simplest architecture. The development of synthetic 

polymer chemistry has enabled the synthesis of a wide range of copolymers with 

unique architectures (i.e. block, random(statistical), graft, alternating, star-like, 
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comb-like, brush-like etc.). In particular, block copolymers will be the focus of this 

Thesis and will be discussed in more detail in the following text. 

 

Figure 1.1. Several examples of polymer architectures. 

 

1.3 Polymer Synthesis 

1.3.1 Free Radical Polymerisation (FRP) 

FRP involves the formation of polymer chains by the successive addition of 

monomer units via free radical active centres.
43

 It is a key synthetic route for 

obtaining a wide range of different copolymers. The highly reactive nature of free 

radicals makes this one of the most versatile forms of polymerisation available and 

allows facile polymerisation of many functional monomers. The mechanism of FRP 

is summarised in Figure 1.2. 

FRP mainly involves initiation, propagation, chain transfer and termination (see 

Figure 1.2). In the initiation stage, the initiating free radicals (I˙) are created by 

thermal or UV homolytic cleavage of an initiator (I2, see Figure 1.2). These reactive 

radicals will immediately react with monomer (M), forming a new active centre (I-

M˙ or P1˙). Further addition of monomer to these new active radical centres is termed 

propagation and proceeds with a rate constant kp; the rate of propagation is much 

faster than the rate of initiator decomposition (kd). Chain termination can proceed via 

two termination mechanisms (see termination step (4) in Figure 1.2).  
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Figure 1.2. Fundamental steps including initiation, propagation and termination for 

free radical polymerisation (FRP) and the corresponding rate equations of each 

step.
44,45

 I2 represents the initiator, M means the monomer, P
• 
stands for the polymer 

radical, R and k are the rate of reaction and rate constant, respectively. 

 

One mechanism is combination, in which two polymer radicals couple together to 

form a “dead” polymer. The other mechanism is disproportionation, in which one 

chain radical supplies a hydrogen atom to a second polymer radical, resulting in one 

chain with an unsaturated terminus (Pn=) and a second “dead” chain bearing a 

saturated terminus (Pm-H). The effective overall rate constant for termination (kt) can 

be described as the sum of ktc and ktd. In addition, chain transfer can also occur, but 

such side reactions do not result in the net loss of radicals. Chain transfer can 
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proceed via various pathways, such as transfer to initiator, monomer, polymer or 

solvent, as shown in Figure 1.2. The relevant rate equation for each chain transfer 

reaction is also summarised in Figure 1.2. 

Assuming these chain transfer side reactions are negligible, the rate of initiation is 

equal to the rate of termination (Ri = Rt, the so-called ‘steady state’ approximation), 

and the number of monomer units consumed during initiation is negligible compared 

to those consumed during propagation, the overall rate of polymerisation (Rpolym) is 

given by the following equation: 

𝑅𝑝𝑜𝑙𝑦𝑚 = 𝑘𝑝[𝑀]√
𝑓𝑘𝑑[𝐼]

𝑘𝑡
                           (1.4) 

where kp is the rate of propagation, [M] is the monomer concentration, f, is the 

initiator efficiency, kd is the rate of decomposition, [I] is the initiator concentration 

and kt is the rate of termination. 

 

Based on equation (1.4), the rate of polymerisation follows first-order kinetics with 

respect to the monomer concentration, [M], and depends on the square root of the 

initiator concentration, [I]. Given that the rate of initiation is much slower than that 

of propagation (Ri << Rp, because the active radicals interact with monomer 

molecules much faster than the rate of initiator decomposition)
46

 and the two 

termination mechanisms discussed above, polymers prepared via FRP usually 

exhibit characteristically broad MWDs (𝑀𝑤/𝑀𝑛 ≥ 2.0). 

The kinetic chain length (Dk) is defined as the mean number of monomer molecules 

consumed per active radical centre and equates to Rp/Ri. (N.B. Ri = Rt, hence [P˙] = 

(fkd[I]/kt)
0.5

). 

𝐷𝑘 =  
𝑘𝑝[𝑀]

2(𝑓𝑘𝑡𝑘𝑑[𝐼])0.5                                  (1.5) 

Termination leads to a relatively short lifetime for the propagating polymer radicals 

during FRP. Thus it is not possible to synthesise well-defined block copolymer 

architectures by this technique.
46
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1.3.2 Living Anionic Polymerisation (LAP) 

Unlike FRP, LAP utilises an anionic active centre. A typical mechanism for anionic 

polymerisation is shown in Figure 1.3. Mutual electrostatic repulsion between the 

growing polymer chain-ends occurs, hence no intrinsic termination is possible.
47

 

This results in a so-called ‘living’ polymerisation under ideal conditions, i.e. when 

conducted using a suitable monomer in a dry, inert solvent. Initiation is essentially 

complete before any propagation occurs, because the rate of initiation (Ri) is much 

faster than the rate of propagation (Rp). Therefore, the molecular weight increases 

linearly with monomer conversion and polymers with narrow MWDs can be 

achieved (Mw/Mn ≲ 1.10). Meanwhile, the rate of propagation (Rp) can be simply 

given by the following equation.  

𝑅𝑃 =  𝑘𝑝[𝑀−][𝑀]                                 (1.6) 

where kp is the propagation rate constant, [M
-
] is the total concentration of all of the 

types of living anionic propagating centres (including free ions and ion pairs) in the 

system and [M] is the monomer concentration.
48

  

 

LAP can be used to prepare well-defined block copolymers with narrow MWDs via 

sequential monomer addition. Unfortunately, LAP is very sensitive to protic 

impurities (rigorous purification of the monomer, solvent, initiator and reaction 

vessel is required) and the range of vinyl monomers that are suitable for LAP is 

rather limited. All these drawbacks restrict the wide application of LAP for the 

industrial manufacture of polymers. 

 

Figure 1.3. Typical mechanism for a living anionic polymerisation (LAP), where n-

butyl lithium is the initiator. Y represents the pendant functionality of the polymer 

chains, e.g. phenyl or CH=CH2 in the case of styrene or butadiene, respectively.
43
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1.3.3 Reversible Deactivation Radical Polymerisation (RDRP) 

RDRP refers to polymerisations that have controlled “living” character.
49

 It bridges 

FRP and LAP, maintaining most of their advantages while eliminating some of their 

inherent disadvantages. For example, FRP can be used to polymerise many vinyl 

monomers and is highly tolerant of functionality in both monomer and solvent. It can 

also be conducted under various conditions (e.g., bulk, solution, dispersion, emulsion, 

mini-emulsion, precipitation and suspension) in either water or organic solvents.
46

 

However, FRP cannot be used to precisely target molecular weight, achieve narrow 

MWDs, or prepare well-defined block copolymers. Conversely, LAP allows the 

synthesis of polymers with narrow MWDs and well-defined block copolymers. 

However, it requires stringent reaction conditions (LAP cannot tolerate even traces 

of H2O or other protic impurities) and is confined to the use of relatively few vinyl 

monomers in inert, non-protic solvents.
43

 In contrast, RDRP enables good control to 

be achieved over the target molecular weight, the MWD and the copolymer 

architecture for many functional monomers.
49

 

Although there are a number of RDRP techniques,
46

 the most commonly used are 

Nitroxide-Mediated Polymerisation (NMP),
50

 Atom Transfer Radical Polymerisation 

(ATRP)
51,52

 and Reversible Addition-Fragmentation chain Transfer (RAFT)
53

 

polymerisation. The common feature of such RDRP processes is the existence of a 

dynamic (and rapid) equilibrium between the propagating radicals and a ‘dormant’ 

or deactivated species during the polymerisation,
54

 which reduces the instantaneous 

concentration of propagating polymer radicals. In turn, the termination rate is 

suppressed relative to that of propagation because the former is proportional to the 

square of the radical concentration, while the latter is proportional to the radical 

concentration. 

 

1.3.3.1 Nitroxide-Mediated Polymerisation (NMP) 

NMP was first reported by Solomon and Rizzardo in 1986
55

 and involves the 

reversible reaction of a stable free radical (a nitroxide) with the growing polymer 

radical.
56

 As shown in Figure 1.4, the equilibrium favours the capped dormant 

chains and leads to a relatively low concentration of propagating polymer radicals 
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(P˙), thus reducing the probability of the bimolecular termination reactions that are 

so prevalent in conventional FRP. 

 

Figure 1.4. Reversible deactivation/activation equilibrium for NMP.
56

  

 

However, NMP is probably still the least versatile technique for the synthesis of 

block copolymers. The controlled homopolymerisation of methacrylates via NMP 

has yet to be achieved, although statistical copolymerisation with relatively small 

amounts of styrene has been reported.
57,58

 In addition, NMP is also quite sensitive to 

the order of polymerisation for two or more monomer classes.
58

 

 

1.3.3.2 Atom Transfer Radical Polymerisation (ATRP) 

ATRP was developed in 1995 and has attracted tremendous attention due to its 

controlled synthesis of well-defined polymeric materials and broad scope for 

polymerising a wide range of functional monomers.
51,52,59

 In ATRP, the dormant 

species in the deactivation/activation dynamic equilibrium is usually a halide-capped 

polymer chain (Pn-X, see Figure 1.5).
52

 This dormant species is activated via 

reaction with a transition metal complex in its lower oxidation state (e.g. Cu
I
/Ligand), 

resulting in the formation of active propagating polymer radicals (Pn
•
) and a 

transition metal complex in a higher oxidation state (e.g. X-Cu
II
/Ligand).

60
 The 

polymer radicals propagate by addition of multiple monomer units prior to reversible 

deactivation. The equilibrium for this process lies in favour of the deactivated 

halogen-capped polymer chains. Thus rapid reversible chain capping ensures that 

only a relatively low concentration of polymer radicals exists at any given time, 

giving rise to “living character”. 
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Figure 1.5. Reversible deactivation/activation equilibrium for Cu-mediated ATRP 

together with recent advances for Cu(I) regeneration, including activator 

(re)generated by electron transfer (ARGET), initiators for continuous activator 

regeneration (ICAR) or electrochemically-mediated ATRP (eATRP).
61

 X represents 

a halide atom. 

 

Subsequent ATRP research has led to in situ regeneration of the metal catalyst, 

which can be achieved in several ways, including ‘Activator Regenerated by 

Electron Transfer’ (ARGET) ATRP,
62,63

 ‘Initiators for Continuous Activator 

Regeneration (ICAR) ATRP,
64

 and electrochemically-mediated ATRP (eATRP).
65

 

These developments essentially reduce the concentration of copper catalyst required 

for the polymerisation, which consequently has greater tolerance to the presence of 

trace oxygen. Unfortunately, the synthesis of block copolymers is still subject to 

some limitations and cost-effective removal of the catalyst is potentially problematic 

for applications where even trace amounts of copper are unacceptable. The latter 

drawback is particularly problematic when contemplating block copolymer 

nanoparticle syntheses. 

 

1.3.3.3 Reversible Addition-Fragmentation Chain Transfer (RAFT) 

RAFT was first described by Moad and co-workers in 1998.
53

 Since then, several 

review papers concerning RAFT polymerisation have appeared in the literature.
66-68 

 

RAFT polymerisation has received considerable attention. It has revolutionised the 

field of polymer synthesis because it provides a versatile tool for the production of 

complex polymeric architectures, which is a decisive advantage compared to 
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conventional free radical polymerisation.
68

 RAFT polymerisation enables the 

synthesis of functional copolymers with desired compositions or architectures, such 

as gradient copolymers,
69

 diblock copolymers,
70

 triblock copolymers,
71,

 
72

 star 

copolymers,
73

 microgels,
74

 polymer brushes or graft copolymers.
75

 

 

Figure 1.6 General chemical structures of RAFT chain transfer agents: (a) 

dithiobenzoates, (b) trithiocarbonates and (c) xanthates. (d) Chemical structure of 4-

cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPCP), which is a type of the 

CTAs used in this Thesis. 

 

All the polymers described in this Thesis are synthesised via RAFT polymerisation, 

so its mechanism will be discussed in detail. The main difference between RAFT 

polymerisation and conventional free radical polymerisation is the presence of the 

RAFT chain transfer agent (CTA). These CTAs are organic compounds possessing a 

thiocarbonylthio moiety (see Figure 1.6, which describes the three main types of 

chain transfer agent). The nature of the R and Z groups are of critical importance for 

a successful RAFT polymerisation. The role of the Z group is to activate the 

thiocarbonyl bond towards radical addition and stabilise the resulting radical adduct, 

while the R group should be able to not only efficiently reinitiate the monomer in its 
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radical form, but it also should be a better leaving group than the propagating radical. 

This is important during the pre-equilibrium stage of the polymerisation. Although 

some details of the precise mechanism of RAFT polymerisation remain controversial, 

the basic mechanism shown in Figure 1.7 is widely accepted. 

 

Figure 1.7. Mechanism of reversible addition-fragmentation chain transfer (RAFT) 

polymerisation according to Rizzardo and co-workers.
66-68

 

 

RAFT polymerisation also involves initiation, propagation, transfer and termination 

steps as in conventional radical polymerisation. The first step is initiation, in which 

radicals are created by thermal decomposition of initiator. These radicals then react 

with monomer to form oligomeric radicals, which are reversibly capped by the 
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RAFT chain transfer agent. It is worth noting that the RAFT agent should be fully 

consumed before any propagation commences.
76

 This is because its C=S bond is 

highly reactive, which means that radical addition is favoured over addition to vinyl 

monomer. 

The propagating radical (Pn
•
) reacts with the thiocarbonylthio compound [RSC(Z)=S 

(1), see Figure 1.7], followed by fragmentation of the intermediate radical to provide 

a polymeric thiocarbonylthio compound [PnS(Z)C=S (3), Figure 1.7] and a new 

radical (R
•
). This new radical can reinitiate polymerisation by reaction with further 

monomer to form another propagating polymer radical Pm
•
. Rapid equilibrium 

between these active propagating radicals (Pn
•
 and Pm

•
) and the dormant polymeric 

thiocarbonylthio compounds (3) ensures that all chains grow with equal probability 

and suppresses termination. This unique mechanism explains why polymers with 

narrow MWDs can be obtained via RAFT polymerisation. Although termination is 

limited, it still occurs via combination or disproportionation, as shown in Figure 1.7. 

Based on this mechanism, most of the polymer chains retain their RAFT end-groups 

after the polymerisation is complete (or quenched at intermediate conversion). 

 

Figure 1.8. Guidelines for selection of an appropriate RAFT CTA for various 

monomer types. Solid lines indicate that good control can be achieved, whereas 

dashed lines indicate that only partial control (e.g. broad MWD or substantial 

retardation) can be achieved. For Z groups, addition rates decrease and 

fragmentation rates increases from left to right. For R groups, fragmentation rates 

decrease from left to right.
66
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RAFT polymerisation typically avoids the use of protecting group chemistry and 

tolerates both polar and non-polar solvents. It can be used to polymerise a wide 

range of vinyl monomers such as styrene, acrylates and acrylamides, methacrylates 

and methacrylamides, and vinyl esters. This opens up the design of well-defined 

copolymers with a wide range of functionality and with various copolymer 

architectures. The precise nature of the Z and R groups on the CTA plays a vital role 

in controlling RAFT polymerisations. Moad et al.
66

 reported an extensive set of 

guidelines for selection of an appropriate RAFT CTA for a particular monomer class 

(Figure 1.8). 

 

1.4 Emulsion Polymerisation 

Emulsion polymerisation was developed
77

 in the 1920s and has been widely used in 

industry to produce a wide range of latex copolymers due to its inherent advantages 

(i.e. low viscosity, high heat capacity, efficient heat dissipation, and use of a non-

toxic solvent, water) over other polymerisation techniques.
78

 Notably, emulsion 

polymerisation allows high molecular weight polymers to be generated at fast 

polymerisation rates and very high monomer conversions can be achieved.  

The mechanism of emulsion polymerisation can be depicted as follows. At the 

beginning of emulsion polymerisation, surfactant-stabilised monomer droplets are 

dispersed in aqueous solution (see Figure 1.9). Although the monomer is largely 

water-insoluble, a very small amount is nevertheless present in the aqueous phase, 

which reacts with the water-soluble radials derived from the initiator to generate 

oligoradicals. Such oligomers are initially soluble in water until a critical chain 

length is attained. Thereafter, these insoluble oligoradicals can either transfer into 

pre-existing micelles (heterogeneous nucleation) or aggregate and adsorb free 

surfactant to produce new micelles (homogeneous nucleation).
79

 The precise 

nucleation mechanism depends on the surfactant concentration and the aqueous 

solubility of the monomer. In either case, the polymerisation proceeds rapidly 

because the monomer concentration inside the micelles is much higher than that in 

the bulk solution and the polymerisation rate, as well as particle number, increases 

during the polymerisation. When particle nucleation is complete, polymerisation 
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continues inside the monomer-swollen latex particles with further monomer 

diffusing from the monomer droplets. Ideally, the polymerisation continues until all 

the monomer has been consumed.
80,81

 

 

Figure 1.9. Schematic representation of the three main intervals in emulsion 

polymerisation. Stage I: Monomer droplets stabilised by surfactant are dispersed in 

water and the free radicals generated in the aqueous phase react with trace monomer 

dissolved in water, forming oligomers. These oligomers then migrate into the 

surfactant-stabilised monomer droplets; Stage II: Monomer continually transports 

from the monomer droplets into the swollen latex particles; Stage III: Polymerisation 

continues inside the monomer-swollen particles until the monomer is depleted.
80,81

 

 

Disadvantages of emulsion polymerisation include: (i) surfactants and other 

polymerisation adjuvants either remain in the formulation or are difficult to remove; 

(ii) for dry (isolated) polymers, water removal is an energy-intensive process; (iii) 

emulsion polymerisations are usually designed to operate at high monomer 

conversion. This can result in significant chain transfer to polymer. 

 

1.5 Dispersion Polymerisation 

Depending on the nature of the solvent, dispersion polymerisation can be simply 

categorised as aqueous dispersion polymerisation, non-aqueous dispersion 

polymerisation or mixed aqueous dispersion polymerisation. However, in all cases, 

the common feature is that the monomer is dissolved in the initial reaction solution 

while the resulting polymer is not. The first description of dispersion polymerisation 

was reported in 1962,
82

 whereby sterically-stabilised latexes were synthesised in 
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non-polar solvents. This technique has since been extended to include polar solvents, 

such as water,
83,84

 alcohols
85,86

 and water/alcohol solvent mixtures.
87-89

 

 

Figure 1.10. Schematic representation of a typical dispersion polymerisation. Stage I: 

The monomer, initiator and stabiliser are dissolved in solvent. Stage II: 

Homopolymerisation occurs with phase separation from solution to form primary 

particles at some critical chain length; Stage III: Polymerisation continues within 

these monomer-swollen primary particles, eventually resulting in sterically-stabilised 

polymer latexes.
90

 

 

The generally accepted mechanism of latex formation via dispersion polymerisation 

can be briefly summarised as follows (see Figure 1.10). All components, including 

initiator, monomer and polymeric stabiliser, are dissolved in the solvent (continuous 

phase) prior to polymerisation. Free radicals are generated by thermal decomposition 

of the initiator and interact with monomers to form oligomeric radicals. The 

solubility of these oligomers decreases with increasing molecular weight and 

precipitation occurs at a critical chain length to form primary particles. The stabiliser 

physically adsorbs or chemically grafts (by transfer reactions) onto the colloidally 

unstable nascent particles. When all particles have acquired sufficient stabiliser to 

confer colloidal stability, the monomer-swollen particles grow by diffusive capture 

of oligomers and very small polymeric nuclei precursors, as well as further monomer. 

Ideally, the polymerisation continues until all monomer is consumed. It is worth 

noting that a suitable stabiliser for dispersion polymerisation must meet two 

conflicting requirements: it must have some affinity for the surface of the polymer 

particles and also be soluble in the chosen solvent.
90

 However, dispersion 

polymerisation is important because it can produce nearly monodisperse polymer 
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particles of 0.1~15 µm, which fills the gap between particle size generated by 

conventional emulsion polymerisation (0.006~0.7 µm) in batch process and that of 

suspension polymerisation (50~1000 µm).
90

 

 

Figure 1.11. Schematic representation of the geometric packing of surfactant 

molecules inside a colloidal aggregate. The packing parameter (p), as defined by the 

equation, determines the aggregate morphology.
91

 

 

1.6 Self-Assembly 

Self-assembly is a process in which a disordered system of components forms an 

organised structure or pattern. It is a ubiquitous phenomenon in Nature, such as the 

formation of membranes in living cells by the self-assembly of amphiphilic 

phospholipids. Such microcompartmentalisation is essential for life itself. In the 

present Thesis, surfactant self-assembly, block copolymer self-assembly and 

polymerisation-induced self-assembly (PISA) will be discussed. 

 

1.6.1 Surfactant Self-Assembly 

Surfactant molecules are composed of a polar (or hydrophilic) head that is 

compatible with water and a non-polar (or hydrophobic) tail that is compatible with 
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oil. This amphiphilic character enables surfactants to undergo self-assembly to 

reduce the interfacial tension between two phases.
92

 Depending on the type of 

surfactant and the solution conditions, various self-assembled architectures can be 

achieved, including spherical, globular, rod-like or spherical bilayers.
91,93

 The closed 

aggregates with hydrophobic interiors are known as micelles while the spherical 

bilayers containing an encapsulated aqueous phase are called vesicles.
94

  

It is primarily the packing parameter (p, see equation in Figure 1.11), that 

determines the morphology of the colloidal aggregates, where v is the volume of the 

hydrophobic segment, ao is the contact area of the head group, and lc is the length of 

the hydrophobic segment.
91

 When p < 1/3, spheres are formed; when 1/3 < p < 1/2, 

cylinders are obtained; when 1/2 < p < 1, vesicles or bilayers are produced; when p = 

1, planar lamellae are obtained finally, if p > 1, inverted structures can be observed. 

 

1.6.2 Block Copolymer Self-Assembly 

The ability of amphiphilic block copolymers to self-assemble in selective solvents 

has been intensively studied for decades.
95-98

 Amphiphilic diblock copolymers 

comprise a hydrophilic and a hydrophobic block, which enables the formation of 

various copolymer morphologies by self-assembly (either in the bulk or in 

solution)
99-105

 based on similar principles to those for the self-assembly of small-

molecule amphiphiles. Compared to small-molecule aggregates, copolymer 

aggregates exhibit higher stability and greater durability, which suggests potential 

industrial applications.
96

  

Although block copolymer self-assembly is known in the bulk, the present Thesis 

will focus on block copolymer self-assembly in solution. Block copolymer self-

assembly can lead to a wide range of morphologies, including spherical micelles, 

rods, bicontinuous structures, lamellae, vesicles, hexagonally-packed hollow hoops 

(HHHs), large compound micelles (LCMs), etc.
97

 As shown in Figure 1.12, 

Eisenberg and co-workers have shown that a wide range of morphologies can be 

achieved via the self-assembly of polystyrene-poly(acrylic acid)  diblock copolymers. 

The morphology is mainly dependent on the copolymer composition,
98

 copolymer 
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concentration,
106

 water content,
107,108

 nature of the common solvent
109,110

 and 

presence of certain additives (such as ions,
105

 or homopolymer
98

). 

 

Figure 1.12. Transmission electron microscopy (TEM) images and corresponding 

cartoons for a range of copolymer morphologies formed by the self-assembly of 

asymmetric amphiphilic polystyrene-poly(acrylic acid) diblock copolymers in 

selective solvents (x and y represent the DPs of the PS and PAA blocks, 

respectively). In the cartoons, red denotes the hydrophobic PS block, while blue 

represents the hydrophilic PAA block.
97

 

 

Block copolymer self-assembly can be thermodynamically induced or kinetically 

controlled.
96

 During self-assembly of amphiphilic block copolymers, progressive 

addition of the precipitant induces aggregation of the insoluble block, while the 

soluble block acts as a stabiliser. During self-assembly, the relatively high entropy of 

single chains is sacrificed. However, a larger enthalpic penalty caused by 

energetically unfavourable hydrophobe-water interactions is avoided. Hence, self-

assembly lowers the total free energy of the system (ΔG < 0).
96

 Under 

thermodynamic control, the block copolymer composition and/or temperature of the 

system are the main factors that dictate the copolymer morphology.
98,111

 When self-

assembly occurs under kinetic control,
106,108

 the rate of  formation of kinetically-
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controlled aggregates depends on the hydrodynamic interactions between the 

aggregates and/or copolymer chains, as well as the chain dynamics within the 

hydrophobic domains of the aggregates. 

In addition to the phase separation discussed above, self-assembly can also be driven 

by a pH switch,
112

 thin film rehydration
113

 or crystallisation processes.
114,115

 

Unfortunately, well-defined morphologies can usually only be achieved in dilute 

solution using such methods, which significantly limits their practical applications. 

 

1.6.3 Polymerisation-Induced Self-Assembly (PISA) 

In the past several years, PISA has received intensive attention and become widely 

recognised as a robust and efficient method to prepare block copolymer nano-objects 

of controlled size, morphology, and surface chemistry.
26-28

 PISA possesses several 

advantages: (i) it enables the formation of nano-objects at high copolymer 

concentrations, which is an important advantage over conventional block copolymer 

self-assembly routes; (ii) block copolymer nano-objects can be readily prepared with 

a wide range of morphologies, including spheres, worms or vesicles, simply by 

tuning the DP of the core-forming and stabiliser blocks; (iii) the surface chemistry of 

the nano-objects can be readily tuned by varying the chemical nature of the stabiliser 

chains. As a result, PISA offers an unprecedented opportunity to investigate the 

relationship between the surface chemistry of block copolymer nanoparticles and 

their occlusion within inorganic crystals. This is the main topic of this Thesis. 

Figure 1.13 shows a schematic representation of the synthesis of diblock copolymer 

spheres, worms, and vesicles. PISA involves a soluble macro-CTA, which is chain-

extended using the monomer that forms the insoluble core-forming insoluble block. 

Micellar nucleation occurs when the core-forming block reaches a critical DP. 

Because the core-forming block DP increases with monomer conversion, the packing 

parameter for the diblock copolymer chains also increases during the polymerisation. 

Generally, the morphology of the diblock copolymer nanoparticles evolves from 

spheres to worms to vesicles during PISA, as described by Blanazs and co-

workers.
33,34
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Figure 1.13. Schematic representation of the synthesis of diblock copolymer nano-

objects via PISA. The macro-CTA is soluble in the continuous phase, which can be 

polar solvents (such as water, ethanol) or non-polar solvents (such as n-alkanes).
27

 

 

In principle, the surface chemistry (e.g. non-ionic,
31,33,116-120

 anionic,
35,121

 

cationic
37,122

 or zwitterionic
39,40,123

) of the block copolymer nanoparticles can be 

controlled by using appropriate macro-CTAs. Based on the initial core-forming 

monomer solubility, there are two main PISA formulations: RAFT dispersion 

polymerisation and RAFT emulsion polymerisation. 

 

1.7 PISA via RAFT Dispersion Polymerisation 

RAFT dispersion polymerisation refers to those polymerisations that are conducted 

in a solvent which can dissolve the macro-CTA, initiator and core-forming 

monomers, but cannot dissolve the core-forming block once it reaches a critical DP. 

In this formulation, a RAFT macro-CTA is used as the stabiliser block, which 

remains soluble in the continuous phase both before and after polymerisation. The 

second block is generated via polymerisation of the soluble monomer which forms 
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an insoluble block in situ.
26-28

 Such RAFT mediated PISA syntheses can be 

conducted in either polar or non-polar solvents.
28,31,36,124-126

 

 

Figure 1.14. (a) Scanning electron microscopy (SEM) image of poly(glycerol 

monomethacrylate)65-poly(2-hydroxypropyl methacrylate)300 (G65-H300) spheres 

prepared at 10 % solids. (b) TEM image of G65-H300 vesicles prepared at 20 % 

solids.
31

 

 

1.7.1 PISA via RAFT Dispersion Polymerisation in Aqueous Solution 

Li et al. reported the preparation of a range of sterically-stabilised nanoparticles or 

vesicles (see Figure 1.14) by RAFT aqueous dispersion polymerisation of 2-

hydroxypropyl methacrylate under surfactant-free conditions using a poly(glycerol 

monomethacrylate) macro-CTA (G macro-CTA) as a steric stabiliser.
31

 The mean 

size of the spherical nano-objects could be precisely controlled in the range of 20 ~ 

105 nm diameter simply by varying the target DP of the hydrophobic poly(2-

hydroxypropyl methacrylate) block.
31

 In this formulation, the G macro-CTA and azo 

initiator are fully dissolved, but 2-hydroxypropyl methacrylate monomer (H 

monomer) is not necessarily fully dissolved because the solubility of H monomer in 

water is around 13 % w/w at room temperature. However, the reaction solution 

gradually turns transparent at the reaction temperature of 70 °C because of the 

gradual consumption of H monomer. 
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Figure 1.15. Nanoparticle morphology evolution as the DP of the poly(2-

hydroxypropyl methacrylate) core-forming block is systematically increased when 

targeting G47-H200 diblock copolymer nano-objects via RAFT aqueous dispersion 

polymerisation of 2-hydroxypropyl methacrylate at 70 °C and 10 w/v % solids.
34 

TEM images of (a) spheres, (b) short worms, (c) long worms, (d) branched worms, 

(e, f) partially coalesced worms, (g) jellyfish, and (h~j) vesicles. Scale bars = 200 nm. 

 

In a later study of this particular G-H diblock copolymer system, the full range of 

copolymer morphologies (spheres, worms and vesicles) were obtained.
11,12

 To gain a 

deeper understanding of PISA, the gradual evolution of the nano-object morphology 

(from spheres to worms to vesicles) was examined by carefully monitoring the whole 

2-hydroxypropyl methacrylate polymerisation (see Figure 1.15). Micellar nucleation 

of nascent spheres occurred at a poly(2-hydroxypropyl methacrylate) DP of ~92. As 

the poly(2-hydroxypropyl methacrylate) block DP increases, a mixture of spheres 
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and linear worms are observed. Intermediate nanostructures such as linear or 

branched worms are formed, and the number of branch points and extent of worm 

clustering increases when the DP of the poly(2-hydroxypropyl methacrylate) block 

increases up to 150. So-called “jellyfish” and finally pure vesicles were obtained at 

high poly(2-hydroxypropyl methacrylate) DPs (~200).  

It is worth noting that this morphology evolution is particularly well-established for 

G47-H200 prepared by RAFT aqueous dispersion polymerisation at 70 °C and 10 w/v % 

solids. Although the nano-object morphology is governed by the packing parameter, 

it is also dependent on the copolymer concentration, as well as the DP of the 

stabiliser block.
33,36,124,126

 More interestingly, G-H diblock copolymer nanoparticles 

exhibit thermo-responsive behaviour,
32,127

 with pH-responsive behaviour being 

observed when using a pH-responsive macro-CTA.
128,129

 This suggests potential 

applications in drug release, cell storage, etc.
130

 

 

1.7.2 PISA via RAFT Dispersion Polymerisation in Alcoholic Solution 

Pan and co-workers have reported that PISA can be conducted via RAFT dispersion 

polymerisation of styrene in alcoholic solution.
131-134

 However, in all cases the rate 

of polymerisation was relatively slow and the final monomer conversion was rather 

low (only 30 – 70 %) within 48 h at 80 °C. These disadvantages unfortunately limit 

the industrial application of such formulations due to the high cost of removing the 

excess styrene monomer. This slow rate of polymerisation is related to the relatively 

low propagation rate constant for styrene.
135-137

 However, Semsarilar et al. have 

shown that high monomer conversions can be achieved for the RAFT dispersion 

polymerisation of benzyl methacrylate (B) in alcoholic media within 24 h at 70 °C.
36

 

Moreover, the MWD of these diblock copolymers can be relatively narrow (Mw/Mn ≤ 

1.30) and the steric stabiliser block utilised can be either non-ionic poly(glycerol 

monomethacrylate), anionic poly(methacrylic acid), cationic poly(2-

(dimethylamino)ethyl methacrylate), and zwitterionic poly(2-(methacryloyloxy)ethyl 

phosphorylcholine) . 

As shown in Figure 1.16, a detailed phase diagram can be achieved by fixing the DP 

of the poly(methacrylic acid) stabiliser, while varying the total solids concentration 
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and the DP of the core-forming poly(benzyl methacrylate) block. Based on this 

phase diagram, pure phases of either spheres, or worms, or vesicles can be 

reproducibly targeted by choosing appropriate conditions. 

 

Figure 1.16. (a) Synthesis of poly(methacrylic acid)x-poly(benzyl methacrylate)y 

(Mx-By) diblock copolymer nanoparticles via RAFT alcoholic dispersion 

polymerisation; (b) TEM images of spheres, worms or vesicles of Mx-By diblock 

copolymer nanoparticles; (c) Phase diagram for the M71-By diblock copolymer nano-

objects prepared by RAFT dispersion polymerisation of BzMA in ethanol. (Note: S 

represents spheres; W represents worms; V represents vesicles).
36

 ACVA is the 

initiator. 
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1.7.3 PISA via RAFT Dispersion Polymerisation in Aqueous Alcoholic Solution 

RAFT dispersion polymerisation can also be conducted in aqueous alcoholic 

solution.
88,138-141

 It has been shown that the solvent composition not only influences 

the polymerisation kinetics, but also the final copolymer morphology. Increasing the 

proportion of water content significantly accelerates the rate of benzyl methacrylate 

polymerisation but inhibits the formation of so-called higher order morphologies.
138

 

Jones et al. investigated the effect of water content on the diblock copolymer 

morphology.
141

 More specifically, poly(2-(dimethylamino)ethyl methacrylate)43-

poly(benzyl methacrylate)y (D43-By) diblock copolymer nanoparticles were prepared 

via RAFT-mediated PISA in various water/ethanol mixtures. Higher order 

morphologies such as vesicles and worms could only be obtained when using 

relatively low water contents (see Figure 1.17) for a given target D-B block 

composition.
141

 The copolymer morphology was restricted to spheres due to the 

build-up of cationic charge in the poly(2-(dimethylamino)ethyl methacrylate) 

stabiliser chains on addition of water. In related work, it was shown that diblock 

copolymer nanoparticles prepared by PISA in aqueous media are typically limited to 

spheres when using polyelectrolytic stabilisers.
35,37

 

 

Figure 1.17. TEM images of poly(2-(dimethylamino)ethyl methacrylate)43-

poly(benzyl methacrylate)120 (D43-B120) nano-objects prepared via RAFT dispersion 

polymerisation at 15 % w/w solids at 70 °C in (a) 100 % ethanol; (b) 95:5 v/v 

ethanol/water; (c) 90:10 v/v ethanol/water; (d) 85:15 v/v ethanol/water.
141 
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Figure 1.18. (a) RAFT dispersion polymerisation synthesis of poly(lauryl 

methacrylate)16-poly(benzyl methacrylate)x (L16-Bx) diblock copolymer nano-objects; 

(b) Cartoons depicting spheres, worms or vesicles; (c) thermo-responsive behavior of 

a 20% w/w dispersion of L16-B37 diblock copolymer nanoparticles from a free-

standing worm gel at 20 °C to a dispersion of spheres on heating to 70 °C in n-

dodecane.
126

 

 

1.7.4 PISA via RAFT Dispersion Polymerisation in Non-polar Solvents 

Fielding et al. 
124,126

 reported the first example of an efficient all-methacrylic RAFT 

dispersion polymerisation formulation conducted in non-polar solvents (n-heptane 

124
 or n-dodecane

126
). It was demonstrated that the stabiliser DP strongly influenced 

the copolymer morphology. In these formulations, a poly(lauryl methacrylate) 

macro-CTA was chain-extended with benzyl methacrylate in n-heptane at 90 °C or 

in n-dodecane at 70 °C (see Figure 1.18). Again, such worm dispersions proved to 

be thermo-responsive: a worm-to-sphere transition was observed when heating from 

20 °C to 90 °C as a result of surface plasticisation of the worms leading to a 

reduction in the effective packing parameter. 

The poly(lauryl methacrylate) macro-CTA is soluble in n-heptane (and n-dodecane) 

during the benzyl methacrylate polymerisation, whereas the growing poly(benzyl 

methacrylate) block becomes insoluble at a critical DP, thus leading to PISA. It was 

found that only kinetically-trapped spherical nanoparticles could be prepared when 

utilising a relatively long poly(lauryl methacrylate) macro-CTA. The nanoparticle 
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sphere diameter was systematically increased as longer core-forming block DPs were 

targeted. Nevertheless, higher order morphologies such as worms and vesicles can be 

produced by using a sufficiently short poly(lauryl methacrylate) macro-CTA. A 

detailed phase diagram constructed for poly(lauryl methacrylate)x-poly(benzyl 

methacrylate)y nanoparticles in n-dodecane is shown in Figure 1.19. 

 

Figure 1.19. A detailed phase diagram constructed for poly(lauryl methacrylate)x-

poly(benzyl methacrylate)y (Lx-By) diblock copolymer nanoparticles prepared by 

RAFT dispersion polymerisation of benzyl methacrylate using AIBN initiator at 

70 °C in n-dodecane at a total solids concentration of 20 % w/w. TEM images of the 

three pure morphologies (spheres, worms or vesicles) are indicated as (a), (b), and 

(c), respectively.
126

 Note: dash line means predicted phase boundary. 
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PISA formulations conducted in non-polar solvents were further investigated by 

Derry et al
125,142

 and Lopez-Oliva et al.
143

 Notably, a range of poly(stearyl 

methacrylate)-poly(benzyl methacrylate) diblock copolymer nano-objects were 

prepared at 90 °C in mineral oil and the evolution of nanoparticle morphology was 

monitored using in situ small-angle X-ray scattering (SAXS).
125

 This sophisticated 

technique confirmed the evolution of copolymer morphology from spheres to worms 

to vesicles during PISA. 

 

1.8 PISA via RAFT Aqueous Emulsion Polymerisation 

As discussed previously, traditional aqueous emulsion polymerisations via FRP 

involve a water-immiscible monomer, a water-soluble initiator, surfactant and water. 

Conversely, RAFT aqueous emulsion polymerisation utilise a water-soluble macro-

CTA rather than surfactants, eliminating any requirement for the post-polymerisation 

removal of excess surfactant. This is potentially advantageous for industrial 

applications. However, RAFT emulsion polymerisation may suffer from side 

reactions
144

 (e.g. undesired homogeneous nucleation when the reactivity of the 

macro-CTA or the concentration of the macro-CTA is too low). Under such 

conditions, the primary radicals rapidly react with hydrophobic monomer and the 

nascent polymer chains precipitate to form nuclei, leading to poor control over the 

RAFT polymerisation.
144

  

Hawkett et al. pioneered the first ab initio RAFT emulsion polymerisation of n-butyl 

acrylate.
145-148

 A hydrophilic poly(acrylic acid) was first prepared using a 

trithiocarbonate CTA. Then this PAA macro-CTA was chain-extended with n-butyl 

acrylate, resulting in self-assembly of poly(acrylic acid)-poly(n-butyl acrylate) 

chains to form micelles when the hydrophobic poly(n-butyl acrylate) block reaches 

its critical DP. Good living character (e.g. narrow MWDs) is maintained and the 

final latexes exhibited good colloidal stability due to the covalently-bonded 

hydrophilic poly(acrylic acid) stabiliser blocks. This protocol was also utilised to 

prepare ABC triblock copolymers by chain-extending with a second hydrophobic 

monomer (styrene), which forms the third block.
148

 



Chapter 1: Introduction 

 

31 
 

More recently, Charleux and co-workers showed that RAFT emulsion 

polymerisation can be performed using a wide range of hydrophilic stabiliser blocks 

based on methacrylic acid,
149

 PEO,
150,151

 or acrylamide
152

 and hydrophobic core-

forming  blocks based on methyl methacrylate
153

 or benzyl methacrylate
154

. The first 

example of preparing higher order morphologies via RAFT aqueous emulsion 

polymerisation was also reported by the same research group.
155

 A series of 

poly(acrylic acid-co-poly(ethylene oxide) methyl ether acrylate) macro-CTAs with 

varying acrylic acid/poly(ethylene oxide) methyl ether acrylate molar ratios were 

synthesised and subsequently chain-extended with hydrophobic monomer (styrene) 

under various conditions, including differing solution pH and salt concentration. 

Spheres, fibres and vesicles were successfully prepared under appropriate conditions.  

 

Figure 1.20. Phase diagrams constructed for poly(methacrylic acid-co-poly(ethylene 

oxide) methyl ether acrylate)-polystyrene block copolymer nano-objects prepared 

using two poly(methacrylic acid-co-poly(ethylene oxide) methyl ether acrylate) 

macro-CTAs (methacrylic acid/poly(ethylene oxide) methyl ether acrylate = 50/50 (a) 

and 67/33 (b) at pH 5). TEM images of block copolymer nano-objects, (c) spherical 

micelles, (d) nanofibers, (e) vesicles.
156

 

 

More specifically, only spherical micelles of 20 to 80 nm diameter can be obtained 

when chain-extending pure poly(acrylic acid) macro-CTA or pure poly(methacrylic 
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acid) macro-CTA with styrene monomer. Nevertheless, higher order morphologies 

can be achieved by using a 50/50 poly(acrylic acid-co-poly(ethylene oxide) methyl 

ether acrylate) RAFT agent at acidic pH or in the presence of added salt 

(NaHCO3).
155

 Similarly, pure spheres, worms or vesicles can be targeted using all-

methacrylic PISA formulation, as shown in Figure 1.20.
156

 Spherical micelles, 

nanofibers or vesicles can be accessed for either 50/50 or 67/33 methacrylic 

acid/poly(ethylene oxide) methyl ether acrylate compositions, depending on the 

molar masses of the hydrophilic and hydrophobic blocks. It was found empirically 

that pH 5 enabled the formation of higher order morphologies while maintaining 

good control over the chain growth.
156

 

 

Figure 1.21. Poly(glycerol monomethacrylate)51-poly(benzyl methacrylate)x (G51-Bx) 

diblock copolymer nanoparticles prepared via RAFT aqueous emulsion 

polymerisation at 10% w/w solids (70 °C): (a) TEM images showing the increasing 

size of spherical nanoparticles with higher DP of the core-forming block; (b) 

corresponding DLS intensity-average size distributions; (c) comparison of mean 

particle diameters reported by DLS and TEM.
154

 

 

Armes and co-workers reported the RAFT emulsion polymerisation of benzyl 

methacrylate using a non-ionic poly(glycerol monomethacrylate)51 macro-CTA.
154

 A 

series of G-B diblock copolymer spheres with diameters ranging from 20 to 200 nm 

were readily prepared in aqueous media (see Figure 1.21). Purely spherical 

nanoparticles were obtained even when targeting a very high DP for the poly(benzyl 
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methacrylate) block. Such diblock copolymer nanoparticles could be efficiently 

produced at high solids (up to 50% w/w) without sacrificing control over the RAFT 

polymerisation. Because of the cis-diol functionality on the poly(glycerol 

monomethacrylate)51 stabiliser chains, these copolymer nanoparticles can bind 

reversibly with phenylboronic acid derivatives. Indeed, it was demonstrated that G51-

B100 nanoparticles are selectively adsorbed onto a micro-patterned planar surface 

functionalised with phenylboronic acid units by forming a cyclic boronate ester at 

pH 10.
154

 

 

1.9 Occlusion of Nanoparticles within Inorganic Crystals 

Block copolymer self-assembly can lead to nano-objects with various morphologies, 

as discussed above. Similarly, in inorganic chemistry, the self-assembly of atoms, 

ions or molecules results in crystals with well-defined polymorphs and morphologies. 

Moreover, the size of these crystals can be generated by controlling the relative rates 

of nucleation and growth. As a major stage of a crystallization process, crystal 

growth involves the addition of new atoms, ions, or polymer strings into the 

characteristic arrangement of a crystalline Bravais lattice. The growth typically 

follows an initial stage of either homogeneous or heterogeneous nucleation, unless a 

"seed" crystal was purposely added to start the growth. Although crystallisation is 

traditionally used as a means of purification,
24

 certain “impurities” can be occluded 

within a crystal lattice under appropriate conditions, thus creating bicomponent 

hybrid materials.
24

 Biominerals such as bones, teeth and seashells are naturally-

occurring materials that are composed of brittle inorganic components and flexible 

macromolecules.
19-22

 It is worth to point out that the organic macromolecule content 

within those biominerals is quite low. It is a challenge to locate their location within 

the crystal and systematically evaluate their occlusion mechanisms.
19-22

  

 

1.9.1 Double-hydrophilic Block Copolymers as Crystal Modifiers 

As one of the most abundant minerals on Earth, calcium carbonate (CaCO3) exists in 

various polymorphs, including calcite, aragonite and vaterite. Calcite has a 
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rhombohedral crystal structure with space group R3̅c, aragonite has an orthorhombic 

crystal structure with space group Pmcn, and vaterite is hexagonal with space group 

P63. Vaterite is a metastable form of calcium carbonate and believed to be a 

precursor for calcite and aragonite.
18,157-159

 

 

Figure 1.22. Chemical structure of poly(ethylene oxide)x-poly(ammonium 2-

sulfatoethyl methacrylate)y and poly(ethylene oxide)x-poly(sodium 4-

styrenesulfonate)y. The left-hand black column shows SEM images of BaSO4 

particles precipitated under various conditions: (a) without any additive; (b) 

poly(ammonium 2-sulfatoethyl methacrylate) homopolymer at [SO4
2+

]polymer: [Ba
2+

] 

= 1 : 1; (c) poly(ammonium 2-sulfatoethyl methacrylate) homopolymer at 2 : 1; (d) 

poly(ethylene oxide)45-poly(ammonium 2-sulfatoethyl methacrylate)11 at 1 : 10; (e) 

poly(ethylene oxide)45-poly(ammonium 2-sulfatoethyl methacrylate)42 at 2 : 1 and (f) 

poly(ethylene oxide)113-poly(ammonium 2-sulfatoethyl methacrylate)40 at 2 : 1. The 

angular and rounded particles are indicated as 1 and 2 respectively in (e). The right-

hand red column depicts SEM images of CaCO3 precipitated from a solution 

containing Ca
2+

 and poly(ethylene oxide)22-poly(sodium 4-styrenesulfonate)49 at a 

fixed [Ca
2+

]:[ SO3
-
]polymer molar ratio of 1.25:1 and Ca

2+
 concentrations of (A) 10, (B) 

5, (C) 2.5, (D) 1, (E) 0.5, and (F) 0.1 mM. [SO4
2+

]polymer and [SO3
-
]polymer stand for 

the molar concentrations of polymerised sulfate and sulfonate groups, 

respectively.
2,160
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Crystallisation is generally sensitive to additives, especially those that can strongly 

interact with the growing crystal.
18

 The groups of Cölfen and Qi have utilised 

poly(ethylene oxide)-based block copolymers as crystallisation modifiers to 

investigate their effect on the crystallisation behaviour of calcium carbonate,
161-163

 

barium sulfate,
164

 barium tungstate
165

 and calcium oxalate dehydrate.
166

 

An effective additive can modify the crystallisation behaviour, crystal morphology, 

and crystal size, etc. For example, Robinson and co-workers reported that 

poly(ethylene oxide)-poly(ammonium 2-sulfatoethyl methacrylate) diblock 

copolymers can effectively change the crystallisation habit for the in situ 

precipitation of BaSO4 particles (see Figure 1.22).
160

 Depending on the relative 

block DPs, near-monodisperse BaSO4 particles with a “lozenge” morphology could 

be prepared in aqueous solution. Systematic studies suggested that only the highly 

anionic poly(ammonium 2-sulfatoethyl methacrylate) block, which contains multiple 

sulfate groups, can directly interact with the growing BaSO4 crystals. However, the 

poly(ethylene oxide) block also plays a vital role in controlling the crystal growth by 

acting as a steric stabiliser, as evidenced by independent variation of the 

poly(ethylene oxide) and poly(ammonium 2-sulfatoethyl methacrylate) block DPs. 

The morphology, particle size distribution and crystalline structure of the inorganic 

phase are all sensitive to these two parameters. 

In 2007 Kulak and co-workers examined double-hydrophilic diblock copolymers, 

poly(ethylene oxide)x-poly(sodium 4-styrenesulfonate)y, as additives during the in 

situ crystallisation of calcium carbonate particles.
2
 The formation of single crystals, 

mesocrystals, and polycrystalline aggregates were observed in the presence of this 

diblock copolymer (see Figure 1.22). This work strongly suggests a unifying model 

of copolymer-directed crystallisation, demonstrating experimentally for the first time 

that a continuous transition in particle structures and crystallisation mechanisms 

occurs between polycrystalline aggregates, mesocrystals and single crystals.
2
  

 

1.9.2 Occlusion of 3D Hydrogels within Crystals 

Given the small size and radiation sensitivity of occluded organic molecules and the 

lack of well-developed methods for preparing electron-transparent samples from 
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micron-sized specimens that are required for high resolution imaging, it is a 

formidable technical challenge to study the internal structure of these 

organic/inorganic hybrid materials at atomic resolution and in 3 dimensions using 

traditional electron microscopy and X-ray diffraction.
167

 Taking advantage of 

advances in focused ion beam (FIB), annular dark-field scanning TEM (ADF-STEM) 

and annular dark-field electron tomography for three-dimensional imaging, Estroff 

and co-workers have visualised the internal structure of calcite crystals incorporated 

with agarose hydrogel, which is a linear polysaccharide consisting of alternating 1,3-

linked ß-D-galactopyranose and 1,4-linked 3,6-anhydro-α-L-galactopyranose (see 

Figure 1.23).
168

 An inter-connected network of darker fibres (average diameter of 13 

± 5 nm) within a brighter matrix can be observed by low-angle ADF-STEM 

(LAADF-STEM) images of a thin section of gel-grown calcite (Figure 1.23c). 

These fibrous structures are assigned to be the agarose fibers owing to the difference 

in the elastic scattering cross-section of the two materials. The lower mean atomic 

number (Z) of the organic polymer compared with that of the calcite results in the 

observed difference in electron-contrast between the two materials. Meanwhile, 

tomographic reconstruction generated from a tilt series of high-angle ADF-STEM 

images indicates that the incorporated polymer formed a 3D random network 

throughout the section of the calcite crystal (see Figures 1.23e and 1.23f).  

This protocol was further extended to incorporate gold nanoparticles (AuNPs) and 

Fe3O4 nanoparticles into calcite crystal.
169

 Briefly, the pre-made AuNPs and/or 

Fe3O4 nanoparticles were dispersed in agarose hydrogel, followed by crystallisation 

of calcite via ammonium carbonate diffusion method. These nanoparticles were 

successfully incorporated into (rather than expelled from) the calcite because they 

were physically trapped within the gel. Notably, the resulting composite crystals 

were infused with colour (ascribed to the AuNPs) and/or superparamagnetism (due 

to the magnetic Fe3O4 nanoparticles) and the crystalline lattice of the host calcite was 

not substantially disrupted.
169
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Figure 1.23. (a) An SEM image of a gel-grown calcite crystal. (b) A model of a 

calcite crystal expressed by six {101̅4} faces. (c) A low-angle annular dark field-

scanning transmission electron microscopy (LAADF-STEM) image of a thin section 

cut from a gel-grown calcite crystal by means of FIB. (d) A LAADF-STEM lattice 

image viewed down the [202̅1̅] zone axis of calcite. (Inset) a selected area electron 

diffraction (SAED) pattern of the cut section. The examined area (diameter of 800 

nm) contains both crystal and fibers. Tomographic reconstructions of (e) an agarose 

network inside a section of as-prepared crystal and (f) cavities inside a section of 

annealed crystal.
168

 

 

1.9.3 Occlusion of Polymeric Nanoparticle within Crystals  

Compared to the occlusion of water-soluble block copolymers, occluding a 3D 

hydrogel
168

 (as well as nanoparticles entrapped within a 3D hydrogel
169

) within 

crystals represents significant scientific progress. However, direct incorporation of 

polymeric nanoparticles into crystals is challenging. It is an interesting research topic, 
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because polymeric nanoparticles differ from the above-mentioned water-soluble 

block copolymers in their mode of interaction with growing crystals. Water-soluble 

polymers can either bind or physically interact with the growing crystals. However, 

sterically-stabilised copolymer nanoparticles have far fewer degrees of freedom. 

Nevertheless, it is much easier to examine the localisation of occluded nanoparticles 

within crystals because they are large enough to be readily detected using electron 

microscopy. 

In 2005 Qi and co-workers used monodisperse polystyrene latex particles with 

carboxylate surface functionality prepared by traditional radical polymerisation as 

effective colloidal templates for the controlled crystallisation of calcium carbonate 

(or Cu2O) in aqueous solution.
170

 Unfortunately, such particles are only occluded 

within the surface layer of the crystal, as shown Figures 1.24a~1.24c. This surface 

occlusion was also observed by Hanisch et al.,
121

  who demonstrated that not only 

block copolymer spheres, but also worms and vesicles decorated with surface 

phosphate groups can be incorporated into the surface layer of calcite crystals.  

Meldrum and co-workers have used commercially available polystyrene 

nanoparticles with a high surface density of carboxylate groups as crystallisation 

additives and successfully incorporated these latexes into calcite single crystals.
1
 

This was the first example of polymeric nanoparticles are homogeneously 

incorporated into calcite single crystals. As shown in Figures 1.24d and 1.24e, the 

internal structure of the composite crystals confirmed that quite efficient occlusion of 

these latex particles could be achieved. Cross-sections prepared using FIB enabled 

clear visualisation of the location of individual particles, revealing a uniform 

distribution throughout the crystal. Image analysis suggested that the particles were 

incorporated at up to approximately 20 % v/v, while thermogravimetric analysis 

(TGA) indicated a loading of ~9 % w/w. However, only polystyrene latexes with a 

high content of surface carboxylic acid groups can be uniformly occluded within 

calcite. As it is very difficult to precisely control the surface chemistry via 

conventional polymerisation, correlation of the surface density of such acid groups 

with occlusion efficiency is rather problematic. 
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Figure 1.24. SEM images of polystyrene latex particles and corresponding latex 

particle-CaCO3 composites. (a) latex particles with a particle size of approximately 

380 nm; (b) as-prepared latex particle-CaCO3 composite; (c) internal structure of 

latex particle-CaCO3 composite, showing that latex particles were only occluded 

within the surface layer of CaCO3;
170

 (d) calcite incorporated with polystyrene 

particles functionalised with surface carboxylate groups (with mean latex diameters 

of 220-250 nm); (e) a cross-section created by FIB, showing a high density of 

particles uniformly distributed throughout the crystal.
1
 The arrows in (c) indicate 

inner pores templated by the latex particles incorporated inside the composite 

particles. 

 

To more precisely control the surface functionality, ATRP was utilised to design a 

precursor diblock copolymer: poly(2-hydroxypropyl methacrylate)-poly(2-

(diisopropylamino)ethyl methacrylate) (H-P). This copolymer was then reacted with 

succinic anhydride, converting the 2-hydroxypropyl methacrylate residues into 

carboxylic acid groups via esterification (see chemical structure shown in Figure 

1.25a). As a zwitterionic diblock copolymer, it forms a poly(2-

(diisopropylamino)ethyl methacrylate)-core micelles with coronal chains containing 

carboxylate group in basic aqueous solution.
7
 These anionic copolymer micelles 

were therefore co-precipitated with calcium carbonate. Using X-ray diffraction and 

infrared spectroscopy, these occluded micelles led to an increase in the level of 
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atomic disorder at the inorganic-organic interface and a compressive-strain gradient 

within the calcite lattice. Examination of cross-sections of crystals revealed 

occlusion of the copolymer micelles via both FE-SEM and TEM. The micelles 

undergo a change in shape during their incorporation within the crystal lattice 

(Figure 1.25d). The mechanism for this change in morphology was further studied 

in detail by Cho et al.,
5
 who used in situ atomic force microscopy (AFM) to monitor 

the nanoparticle occlusion process. 

 

Figure 1.25. (a) Chemical structure and schematic cartoon of the block copolymer; 

(b) TEM image of the micelles at pH > 7; (c) cross-section through a fractured 

crystal revealing occluded copolymer micelles as voids and elongated particles; (d) a 

thin section cut through the nanocomposite crystal, showing the occluded copolymer 

micelles. This low-magnification image shows that the copolymer particles undergo 

a change in shape during occlusion, and examples of particles cut to give a smaller 

cross-section are arrowed.
7
 

 

ATRP is a versatile method to prepare well-defined block copolymers. However, it is 

not as convenient as RAFT polymerisation particularly in the context of PISA. 
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Semsarilar et al has shown that poly(methyl methacrylate)-poly(benzyl methacrylate) 

nanoparticles can be readily synthesised in ethanol by RAFT dispersion 

polymerisation.
6,36

 A range of morphologies, including spheres, worms, and vesicles, 

can be achieved by simply varying the DP of the core-forming block. These nano-

objects are highly anionic above pH 7 after transferring from ethanol to water via 

dialysis, because the ionised steric stabiliser.
36

 Remarkably, the vesicle nano-objects 

can be uniformly occluded within calcite at loading of up to ~20 % w/w.
6
  

Occlusion of such a high level of organic nanoparticles within calcite single crystals 

provides a unique opportunity for conducting a comprehensive, multiscale 

investigation of the structure and properties of the resulting nanocomposite materials. 

The mechanical properties of the nanocomposite crystals were investigated using 

nanoindentation, which revealed that this artificial biomineral exhibited analogous 

texture and defect structures to biogenic calcite crystals and was harder than pure 

calcite of geological origin (see Figure 1.26).
1,6,7

  

 

Figure 1.26. SEM and AFM images obtained for pure calcite (a) and nanocomposite 

crystals (b); AFM profiles of nano-indentation marks on a calcite control crystal (c) 

and a nanocomposite crystal after nanoindentation (d). Step formation around the 

indent in pure calcite was observed, as indicated by the arrows. However, this was 

not observed for the nanocomposite crystal.
7
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As a well-known II–VI compound semiconductor, ZnO has three common crystal 

structures: rocksalt, zinc blende and wurtzite.
13

 Wurtzite ZnO is thermodynamically 

stable under ambient conditions while zinc blende ZnO is less stable unless grown 

on cubic substrates.
13

 The rocksalt form of ZnO has been reported to be metastable at 

atmospheric pressure and can be obtained via transformation from wurtzite under 

high pressure.
15

 In wurtzite ZnO structure, each O
2-

 anion is surrounded by four Zn
2+

 

cations at the corners of a tetrahedron, and vice versa. ZnO is a promising material 

for semiconductor device application because it has a direct and wide band gap and a 

large free-exciton binding energy hence excitonic emission processes persists at or 

even above room temperature.
171,172

 

Wegner and co-workers systematically investigated surface-functionalised latex 

particles as occlusion additives for the mineralisation of ZnO in aqueous solution.
173-

175
 Polystyrene latexes with varying hydrophilic functional groups, including acrylic 

acid, maleic acid, and ethylene glycol methacrylate phosphate, were prepared by 

miniemulsion polymerisation. Latex with acrylic acid surface functionality was 

studied in particular detail. The effect of the chemical nature of the surface 

functionalisation and the latex concentration on the crystal growth, morphology, and 

crystalline structure of the resulting zinc oxide particles were analysed.  

Using zinc nitrate hexahydrate as a soluble precursor and hexamethylenetetramine as 

a pH buffer, control ZnO particles with a hexagonal prismatic rod morphology were 

typically obtained. It was further shown that acrylic acid functionalised polystyrene 

latexes were incorporated into ZnO, giving a rod-like but hollow surface structure 

based on electron microscopy analysis (Figure1.27b). ZnO is sensitive to latexes 

functionalised with maleic acid or ethylene glycol methacrylate phosphate, as can be 

seen from Figures 1.27c and 1.27d. The extent of occlusion of acrylic acid-

functionalised polystyrene latex within the ZnO host crystals could be up to ~10 % 

w/w when using a relatively high initial latex concentration (such as 9 g L
-1

). 
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Figure 1.27. Zinc oxide samples crystallised (a) without additive; (b) 6 g L
-1

 

polystyrene latex surface-functionalised with acrylic acid; (c) 6 g L
-1

 polystyrene 

latex surface-functionalised with maleic acid; (d) 6 g L
-1

 polystyrene latex surface-

functionalised with ethylene glycol methacrylate phosphate.
173

 

 

1.9.4 Occlusion of Copolymer-Modified Inorganic Nanoparticles 

within Crystals 

Obviously, it is the nanoparticle surface functionality that promotes interaction with 

the growing crystal and hence dictates the extent of occlusion. Thus, in principle any 

nanoparticles with appropriate surface functionality should be incorporated into 

crystals under appropriate conditions. 

As presented in Figure 1.28, a novel double-hydrophilic diblock copolymer, 

poly(methacrylic acid)-poly(sodium 4-styrenesulfonate), was synthesised using 

RAFT solution polymerisation and thereafter magnetite nanoparticles (MNP) were 

precipitated in the presence of this anionic copolymer. The weakly acidic 

poly(methacrylic acid) is believed to adsorb onto the surface of the MNPs as an 
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anchor block, while the poly(sodium 4-styrenesulfonate) block acts as the anionic 

stabiliser block. 

 

Figure 1.28. Schematic representation of the synthesis of magnetite nanoparticles 

surface-modified using a poly(methacrylic acid)-poly(sodium 4-styrenesulfonate) 

diblock copolymer, and their occlusion within calcite single crystals. (a) SEM image 

of the cross-section through a calcite single crystal prepared in the presence of 

copolymer-modified MNPs. (b) TEM image of a thin section through the 

nanocomposite crystal, and (c) a high resolution TEM image showing the continuity 

of the crystal lattice around an isolated occluded magnetite particle.
2
  

 

Spatial distribution of the MNPs throughout the calcite crystals was confirmed by 

electron microscopy analysis. In Figure 1.28a, the FE-SEM image shows a cross-

section of a fractured crystal, indicating a uniform distribution of copolymer-

modified MNPs throughout the host matrix. Moreover, this uniform distribution was 
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further evidenced by TEM images shown in Figures 1.28b and 1.28c. Similarly, 

AuNPs stabilised using suitable copolymer can also be occluded within calcite. 

However, in this latter case the Au loading is relatively low (about 3 % w/w).
3
 

Compared to the incorporation of biomacromolecules into crystals, efficient 

occlusion of nanoparticles within crystal produces a unique ‘artificial biomineral’, in 

which nanoparticles act as “pseudo-proteins”.
1,2,5-7

 High level of occlusion facilitates 

comprehensive studies of the influence of additives on the structure and properties of 

the resulting nanocomposite crystals. However, the occlusion mechanism is clearly 

complex and depends on many factors, including the wetting of the crystal face by 

the nanoparticles, the mean size of the nanoparticles, and the rate of crystallisation.
1
 

Thus, progress in incorporating nanoparticles into inorganic cyrtals to date has 

mainly relied on empirical trial-and-error experiments and a robust set of design 

rules for efficient occlusion has not yet been established. 
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1.10 Project Motivation 

RAFT polymerisation is now a well-established method for the synthesis of a range 

of functional block copolymers.
66-68

 Moreover, RAFT-mediated PISA enables the 

facile synthesis of a wide range of bespoke organic diblock copolymer nano-objects 

of controllable size, morphology and surface functionality.
26-28

 Although the 

incorporation of soluble (macro)molecules within inorganic crystals has been 

intensively studied, the occlusion of polymeric nanoparticles within such host 

matrices is still an emerging research area.
1-3,5-7

  

We aim to test a number of hypotheses regarding nanoparticle occlusion within 

inorganic crystals in the present Thesis. 

(1) According to the literature, carboxylic acid functionality seems to be crucial for 

efficient nanoparticle occlusion within calcite. In this context, we will examine 

whether there is any difference between anionic carboxylate groups and carboxylate 

groups that are present in the form of zwitterionic carboxybetaines. 

(2) We wish to harness the advantages of RAFT polymerisation to precisely tailor 

copolymer structures and/or compositions, and hence identify the key parameters 

that dictate nanoparticle occlusion within host crystals. In particular, the effect of 

varying the surface stabiliser density on nanoparticle occlusion will be studied for 

the first time. 

(3) One intriguing question is whether the selection of appropriate anionic stabiliser 

chains can promote greater nanoparticle occlusion within certain host crystals. For 

example, a relatively modest level of occlusion has been previously reported for 

carboxylated latexes within ZnO. Are there more effective anionic stabilisers that are 

more colloidally stable under the in situ crystallisation conditions that could promote 

higher levels of occlusion? 

(4) In principle, any inorganic nanoparticles with the appropriate surface chemistry 

can be occluded into any given crystal. We seek to extend the concept of 

nanoparticle occlusion to include other functional materials, such as plasmonic gold 

nanoparticles as guests and semiconductor ZnO crystals as a host. This should open 

up a generic route to a diverse range of inorganic-inorganic nanocomposite materials. 
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1.11 Thesis Outline 

In Chapter 2, two types of diblock copolymer nanoparticles are synthesised via 

RAFT aqueous dispersion polymerisation of 2-hydroxypropyl methacrylate using 

either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric 

stabiliser block. Both these stabilisers contain carboxylic acid groups, but 

poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine 

methacrylate) has zwitterionic character at this pH. The following occlusion 

experiments indicate that apparently minor structural differences can lead to 

profoundly different occlusion outcomes.  

Chapter 3 describes the synthesis of poly(ammonium 2-sulfatoethyl methacrylate)-

poly(benzyl methacrylate) diblock copolymer nanoparticles with either high or low 

stabiliser surface densities using either RAFT dispersion polymerisation in a 2:1 v/v 

ethanol/water mixture or RAFT aqueous emulsion polymerisation, respectively. 

These model nanoparticles are then used to gain new insight into a key topic in 

materials chemistry - the occlusion of organic additives into inorganic crystals. 

Substantial differences are observed for the extent of occlusion of these two types of 

anionic nanoparticles into calcite (CaCO3). This is rationalised in terms of differing 

stabiliser surface densities. 

Chapter 4 presents the synthesis of poly(ammonium 2-sulfatoethyl methacrylate)-

poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion 

polymerisation and the as-prepared nanoparticles were directly used as nanoparticle 

additives for the growth of wurtzite ZnO crystals. 

Finally, instead of incorporating copolymer nanoparticles into inorganic crystals, 

Chapter 5 shows that the occlusion of surface-modified AuNPs within ZnO crystals 

using poly(glycerol monomethacrylate) as a steric stabiliser. Evidence is presented 

for the complexation of Zn
2+

 by the cis-diol groups on this non-ionic water-soluble 

polymer. Depending on the synthesis protocol, the G70-AuNPs can be uniformly 

distributed throughout the ZnO host crystal, solely located within a central region, or 

confined to a surface layer. XPS studies indicate an intimate interaction between the 

G70-AuNPs and the host ZnO crystals, which leads to enhanced photocatalytic 

performance.  



Chapter 1: Introduction 

 

48 
 

1.12 References  

(1) Kim, Y.-Y.; Ribeiro, L.; Maillot, F.; Ward, O.; Eichhorn, S. J.; Meldrum, F. C. 

Bio-Inspired Synthesis and Mechanical Properties of Calcite-Polymer Particle 

Composites. Advanced Materials 2010, 22, 2082-2086. 

(2) Kulak, A. N.; Semsarilar, M.; Kim, Y.-Y.; Ihli, J.; Fielding, L. A.; Cespedes, O.; 

Armes, S. P.; Meldrum, F. C. One-pot synthesis of an inorganic heterostructure: 

uniform occlusion of magnetite nanoparticles within calcite single crystals. Chemical 

Science 2014, 5, 738-743. 

(3) Kulak, A. N.; Yang, P.; Kim, Y.-Y.; Armes, S. P.; Meldrum, F. C. Colouring 

crystals with inorganic nanoparticles. Chemical Communications 2014, 50, 67-69. 

(4) Kulak, A. N.; Grimes, R.; Kim, Y.-Y.; Semsarilar, M.; Anduix-Canto, C.; 

Cespedes, O.; Armes, S. P.; Meldrum, F. C. Polymer-Directed Assembly of Single 

Crystal Zinc Oxide/Magnetite Nanocomposites under Atmospheric and 

Hydrothermal Conditions. Chemistry of Materials 2016, 28, 7528-7536. 

(5) Cho, K.-R. K., Y.-Y.; Yang, P.; Cai, W.; Pan, H.; Kulak, A. N.; Lau, J. L.; 

Kulshreshtha, P.; Armes, S. P.; Meldrum, F. C.; De Yoreo, J. J. Direct observation of 

mineral-organic composite formation reveals occlusion mechanism. Nature 

Communications 2016, 7, 10187. 

(6) Kim, Y.-Y.; Semsarilar, M.; Carloni, J. D.; Cho, K. R.; Kulak, A. N.; Polishchuk, 

I.; Hendley, C. T.; Smeets, P. J. M.; Fielding, L. A.; Pokroy, B.; Tang, C. C.; Estroff, 

L. A.; Baker, S. P.; Armes, S. P.; Meldrum, F. C. Structure and Properties of 

Nanocomposites Formed by the Occlusion of Block Copolymer Worms and Vesicles 

Within Calcite Crystals. Advanced Functional Materials 2016, 26, 1382-1392. 

(7) Kim, Y.-Y.; Ganesan, K.; Yang, P.; Kulak, A. N.; Borukhin, S.; Pechook, S.; 

Ribeiro, L.; Kroeger, R.; Eichhorn, S. J.; Armes, S. P.; Pokroy, B.; Meldrum, F. C. 

An artificial biomineral formed by incorporation of copolymer micelles in calcite 

crystals. Nature Materials 2011, 10, 890-896. 

(8) Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor Hybrid Nanostructures 

for Plasmon‐Enhanced Applications. Advanced Materials 2014, 26, 5274-5309. 

(9) Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the 

interaction of light with noble metal-metal oxide semiconductor nanostructures for 

various photophysical applications. Chemical Society Reviews 2013, 42, 8467-8493. 

(10) Tjong, S. C. Novel nanoparticle‐reinforced metal matrix composites with 

enhanced mechanical properties. Advanced Engineering Materials 2007, 9, 639-652. 

(11) Wang, Z. L. Zinc oxide nanostructures: growth, properties and applications. 

Journal of Physics: Condensed Matter 2004, 16, 829-858. 

(12) Liu, D.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure 

prepared using room-temperature solution processing techniques. Nature Photonics 

2014, 8, 133-138. 

(13) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical 

energy conversion and storage devices. Advanced Materials 2008, 20, 2878-2887. 

(14) Janotti, A.; Van de Walle, C. G. Fundamentals of zinc oxide as a semiconductor. 

Reports on Progress in Physics 2009, 72, 126501. 



Chapter 1: Introduction 

 

49 
 

(15) Hochbaum, A. I.; Yang, P. Semiconductor nanowires for energy conversion. 

Chemical Reviews 2009, 110, 527-546. 

(16) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental 

applications of semiconductor photocatalysis. Chemical Reviews 1995, 95, 69-96. 

(17) Fine, G. F.; Cavanagh, L. M.; Afonja, A.; Binions, R. Metal oxide semi-

conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469-5502. 

(18) Meldrum, F. C.; Cölfen, H. Controlling Mineral Morphologies and Structures in 

Biological and Synthetic Systems. Chemical Reviews 2008, 108, 4332-4432. 

(19) Belcher, A. M.; Wu, X. H.; Christensen, R. J.; Hansma, P. K.; Stucky, G. D.; 

Morse, D. E. Control of crystal phase switching and orientation by soluble mollusc-

shell proteins. Nature 1996, 381, 56-58. 

(20) Berman, A.; Hanson, J.; Leiserowitz, L.; Koetzle, T. F.; Weiner, S.; Addadi, L. 

Biological control of crystal texture: a widespread strategy for adapting crystal 

properties to function. Science 1993, 259, 776-779. 

(21) Mann, S. Biomineralization, Principles and Concepts in Bioinorganic Materials 

Chemistry; Oxford University Press: Oxford, 2001. 

(22) Lowenstam, H. A.; Weiner, S. On biomineralization; Oxford University Press: 

New York, 1989. 

(23) Kim, Y.-Y.; Carloni, J. D.; Demarchi, B.; Sparks, D.; Reid, D. G.; Kunitake, M. 

E.; Tang, C. C.; Duer, M. J.; Freeman, C. L.; Pokroy, B. Tuning hardness in calcite 

by incorporation of amino acids. Nature Materials 2016, 15, 903-910. 

(24) Kahr, B.; Gurney, R. W. Dyeing crystals. Chemical Reviews 2001, 101, 893-

951. 

(25) Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-Assembled Block Copolymer 

Aggregates: From Micelles to Vesicles and their Biological Applications. 

Macromolecular Rapid Communications 2009, 30, 267-277. 

(26) Warren, N. J.; Armes, S. P. Polymerization-Induced Self-Assembly of Block 

Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Journal of 

the American Chemical Society 2014, 136, 10174-10185. 

(27) Canning, S. L.; Smith, G. N.; Armes, S. P. A Critical Appraisal of RAFT-

Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985-

2001. 

(28) Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-induced self-

assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion 

polymerization. Progress in Polymer Science 2016, 52, 1-18. 

(29) Sun, J.-T.; Hong, C.-Y.; Pan, C.-Y. Recent advances in RAFT dispersion 

polymerization for preparation of block copolymer aggregates. Polymer Chemistry 

2013, 4, 873-881. 

(30) Cunningham, M. F. Controlled/living radical polymerization in aqueous 

dispersed systems. Progress in Polymer Science 2008, 33, 365-398. 

(31) Li, Y.; Armes, S. P. RAFT Synthesis of Sterically Stabilized Methacrylic 

Nanolatexes and Vesicles by Aqueous Dispersion Polymerization. Angewandte 

Chemie-International Edition 2010, 49, 4042-4046. 



Chapter 1: Introduction 

 

50 
 

(32) Blanazs, A.; Verber, R.; Mykhaylyk, O. O.; Ryan, A. J.; Heath, J. Z.; Douglas, 

C. W. I.; Armes, S. P. Sterilizable Gels from Thermoresponsive Block Copolymer 

Worms. Journal of the American Chemical Society 2012, 134, 9741-9748. 

(33) Blanazs, A.; Ryan, A. J.; Armes, S. P. Predictive Phase Diagrams for RAFT 

Aqueous Dispersion Polymerization: Effect of Block Copolymer Composition, 

Molecular Weight, and Copolymer Concentration. Macromolecules 2012, 45, 5099-

5107. 

(34) Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. Mechanistic 

Insights for Block Copolymer Morphologies: How Do Worms Form Vesicles? J Am 

Chem Soc 2011, 133, 16581-16587. 

(35) Semsarilar, M.; Ladmiral, V.; Blanazs, A.; Armes, S. P. Anionic 

Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion 

Polymerization. Langmuir 2012, 28, 914-922. 

(36) Semsarilar, M.; Jones, E. R.; Blanazs, A.; Armes, S. P. Efficient Synthesis of 

Sterically-Stabilized Nano-Objects via RAFT Dispersion Polymerization of Benzyl 

Methacrylate in Alcoholic Media. Advanced Materials 2012, 24, 3378-3382. 

(37) Semsarilar, M.; Ladmiral, V.; Blanazs, A.; Armes, S. P. Cationic 

Polyelectrolyte-Stabilized Nanoparticles via RAFT Aqueous Dispersion 

Polymerization. Langmuir 2013, 29, 7416-7424. 

(38) Smith, A. E.; Xu, X.; Kirkland-York, S. E.; Savin, D. A.; McCormick, C. L. 

“Schizophrenic” Self-Assembly of Block Copolymers Synthesized via Aqueous 

RAFT Polymerization: From Micelles to Vesicles. Macromolecules 2010, 43, 1210-

1217. 

(39) Doncom, K. E. B.; Warren, N. J.; Armes, S. P. Polysulfobetaine-based diblock 

copolymer nano-objects via polymerization-induced self-assembly. Polymer 

Chemistry 2015, 6, 7264-7273. 

(40) Sugihara, S.; Blanazs, A.; Armes, S. P.; Ryan, A. J.; Lewis, A. L. Aqueous 

Dispersion Polymerization: A New Paradigm for in Situ Block Copolymer Self-

Assembly in Concentrated Solution. Journal of the American Chemical Society 2011, 

133, 15707-15713. 

(41) Sun, J.-T.; Yu, Z.-Q.; Hong, C.-Y.; Pan, C.-Y. Biocompatible Zwitterionic 

Sulfobetaine Copolymer-Coated Mesoporous Silica Nanoparticles for Temperature-

Responsive Drug Release. Macromolecular Rapid Communications 2012, 33, 811-

818. 

(42) Stepto, R. F. T. Dispersity in polymer science. Pure and Applied Chemistry 

2009, 81, 351-353. 

(43) Odian, G. Principles of Polymerization, 4th ed., John Wiley & Sons, Inc.: New 

York, 2004. 

(44) Hiemenz, P. C.; Lodge, T. P. Polymer Chemistry, second edition, CRC Press, 

Bosa Roca, 2007. 

(45) Matyjaszewski, K. G., Y.; Leibler, L. Macromolecular Engineering: Precise 

Synthesis, Materials Properties, Applications. Wiley-VCH Verlag GmbH & Co. 

KGaA, Weinheim, 2007. 



Chapter 1: Introduction 

 

51 
 

(46) Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: 

features, developments, and perspectives. Progress in Polymer Science 2007, 32, 93-

146. 

(47) Szwarc, M. ‘Living’ polymers. Nature 1956, 178, 1168-1169. 

(48) Odian, G. Principles of Polymerization, McGraw-Hill, New York, 1970. 

(49) Jenkins, A. D. J., R. G.; Moad, G. Terminology for reversible-deactivation 

radical polymerization previously called "controlled" radical or "living" radical 

polymerization (IUPAC Recommendations 2010). Pure and Applied Chemistry 2010, 

82, 483. 

(50) Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide 

mediated living radical polymerizations. Chemical Reviews 2001, 101, 3661-3688. 

(51) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of 

methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) 

ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: 

possibility of living radical polymerization. Macromolecules 1995, 28, 1721-1723. 

(52) Wang, J.-S.; Matyjaszewski, K. Controlled/"living" radical polymerization. 

Atom transfer radical polymerization in the presence of transition-metal complexes. 

Journal of the American Chemical Society 1995, 117, 5614-5615. 

(53) Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, 

R. T.; Meijs, G. F.; Moad, C. L.; Moad, G. Living free-radical polymerization by 

reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 

1998, 31, 5559-5562. 

(54) Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Progress in 

Polymer Science 2004, 29, 329-385. 

(55) Solomon, D. H.; Rizzardo, E.; Cacioli, P.  1986; Vol. US Patent 4,581,429,. 

(56) Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K. Narrow 

molecular weight resins by a free-radical polymerization process. Macromolecules 

1993, 26, 2987-2988. 

(57) Nicolas, J.; Mueller, L.; Dire, C.; Matyjaszewski, K.; Charleux, B. 

Comprehensive modeling study of nitroxide-mediated controlled/living radical 

copolymerization of methyl methacrylate with a small amount of styrene. 

Macromolecules 2009, 42, 4470-4478. 

(58) Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. 

Nitroxide-mediated polymerization. Progress in Polymer Science 2013, 38, 63-235. 

(59) Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chemical 

Reviews 2001, 101, 2921-2990. 

(60) di Lena, F.; Matyjaszewski, K. Transition metal catalysts for controlled radical 

polymerization. Progress in Polymer Science 2010, 35, 959-1021. 

(61) Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status 

and future perspectives. Macromolecules 2012, 45, 4015-4039. 

(62) Jakubowski, W.; Matyjaszewski, K. Activator generated by electron transfer for 

atom transfer radical polymerization. Macromolecules 2005, 38, 4139-4146. 



Chapter 1: Introduction 

 

52 
 

(63) Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators regenerated by electron 

transfer for atom transfer radical polymerization of styrene. Macromolecules 2006, 

39, 39-45. 

(64) Pintauer, T.; Matyjaszewski, K. Atom transfer radical addition and 

polymerization reactions catalyzed by ppm amounts of copper complexes. Chemical 

Society Reviews 2008, 37, 1087-1097. 

(65) Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. 

Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 

81-84. 

(66) Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the 

RAFT Process - A Second Update. Australian Journal of Chemistry 2009, 62, 1402-

1472. 

(67) Moad, G.; Rizzardo, E.; Thang, S. H. Living radical polymerization by the 

RAFT process - A first update. Australian Journal of Chemistry 2006, 59, 669-692. 

(68) Moad, G.; Rizzardo, E.; Thang, S. H. Living radical polymerization by the 

RAFT process. Australian Journal of Chemistry 2005, 58, 379-410. 

(69) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, 

S. H. Living radical polymerization with reversible addition-fragmentation chain 

transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. 

Macromolecules 1999, 32, 6977-6980. 

(70) Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. A more 

versatile route to block copolymers and other polymers of complex architecture by 

living radical polymerization: The RAFT process. Macromolecules 1999, 32, 2071-

2074. 

(71) Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Krstina, J.; Moad, G.; Postma, 

A.; Thang, S. H. Living polymers by the use of trithiocarbonates as reversible 

addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by 

radical polymerization in two steps. Macromolecules 2000, 33, 243-245. 

(72) Chambon, P.; Blanazs, A.; Battaglia, G.; Armes, S. P. Facile Synthesis of 

Methacrylic ABC Triblock Copolymer Vesicles by RAFT Aqueous Dispersion 

Polymerization. Macromolecules 2012, 45, 5081-5090. 

(73) Moad, G.; Mayadunne, R. T. A.; Rizzardo, E.; Skidmore, M.; Thang, S. H. 

Synthesis of novel architectures by radical polymerization with reversible addition 

fragmentation chain transfer (RAFT polymerization). Macromolecular Symposia 

2003, 192, 1-12. 

(74) Lord, H. T.; Quinn, J. F.; Angus, S. D.; Whittaker, M. R.; Stenzel, M. H.; Davis, 

T. P. Microgel stars via Reversible Addition Fragmentation Chain Transfer (RAFT) 

polymerisation - a facile route to macroporous membranes, honeycomb patterned 

thin films and inverse opal substrates. Journal of Materials Chemistry 2003, 13, 

2819-2824. 

(75) Edmondson, S.; Osborne, V. L.; Huck, W. T. S. Polymer brushes via surface-

initiated polymerizations. Chemical Society Reviews 2004, 33, 14-22. 

(76) McLeary, J. B.; Calitz, F. M.; McKenzie, J. M.; Tonge, M. P.; Sanderson, R. D.; 

Klumperman, B. A H-1 NMR investigation of reversible addition-fragmentation 



Chapter 1: Introduction 

 

53 
 

chain transfer polymerization kinetics and mechanisms. Initialization with different 

initiating and leaving groups. Macromolecules 2005, 38, 3151-3161. 

(77) Stevens, M. P. Polymer Chemistry: An Introduction. 3rd edition.; Oxford 

University Press: Oxford, 1999, 175. 

(78) Hunter, R. J. Introduction to Modern Colloid Science. Oxford University Press: 

Oxford, 1993. 

(79) Morse, A. J.; Dupin, D.; Thompson, K. L.; Armes, S.; Ouzineb, K.; Mills, P.; 

Swart, R. Novel Pickering emulsifiers based on pH-responsive poly (tert-

butylaminoethyl methacrylate) latexes. Langmuir 2012, 28, 11733-11744. 

(80) Gilbert, R. G. Emulsion Polymerisation - A Mechanistic approach. Academic 

Press: London, 1995. 

(81) Lovell, P. A. E.-A., M. S., Emulsion Polymerisation and Emulsion Polymers. 

John Wiley and Sons, Chichester UK, 1997. 

(82) Osmond, D. W. J. T., H. H. GB893429(A) 1962. 

(83) Qiu, J.; Charleux, B.; Matyjaszewski, K. Controlled/living radical 

polymerization in aqueous media: homogeneous and heterogeneous systems. 

Progress in Polymer Science 2001, 26, 2083-2134. 

(84) Ali, A. I.; Pareek, P.; Sewell, L.; Schmid, A.; Fujii, S.; Armes, S. P.; Shirley, I. 

Synthesis of poly (2-hydroxypropyl methacrylate) latex particles via aqueous 

dispersion polymerization. Soft Matter 2007, 3, 1003-1013. 

(85) Almog, Y.; Reich, S.; Levy, M. Monodisperse polymeric spheres in the micron 

size range by a single step process. British Polymer Journal 1982, 14, 131-136. 

(86) Baines, F. L. D., S.; Billingham, N. C.; Armes, S. P. Use of block copolymer 

stabilizers for the dispersion polymerization of styrene in alcoholic media. 

Macromolecules 1996, 29, 3096-3102. 

(87) Ahmad, H.; Dupin, D.; Armes, S. P.; Lewis, A. L. Synthesis of Biocompatible 

Sterically-Stabilized Poly(2-(methacryloyloxy) ethyl phosphorylcholine) Latexes via 

Dispersion Polymerization in Alcohol/Water Mixtures. Langmuir 2009, 25, 11442-

11449. 

(88) Xiao, X.; He, S.; Dan, M.; Su, Y.; Huo, F.; Zhang, W. Brush macro‐RAFT 

agent mediated dispersion polymerization of styrene in the alcohol/water mixture. 

Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, 3177-3190. 

(89) Sugihara, S.; Sugihara, K.; Armes, S. P.; Ahmad, H.; Lewis, A. L. Synthesis of 

Biomimetic Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Nanolatexes via 

Atom Transfer Radical Dispersion Polymerization in Alcohol/Water Mixtures. 

Macromolecules 2010, 43, 6321-6329. 

(90) Kawaguchi, S.; Ito, K. In Polymer Particles; Springer, 2005. 

(91) Israelachvili, J. N. Intermolecular and surface forces: revised third edition; 

Academic press: New York, 2011. 

(92) Tanford, C. The Hydrophobic Effect, Wiley: New York. 1973. 

(93) Fong, C.; Le, T.; Drummond, C. J. Lyotropic liquid crystal engineering–ordered 

nanostructured small molecule amphiphile self-assembly materials by design. 

Chemical Society Reviews 2012, 41, 1297-1322. 



Chapter 1: Introduction 

 

54 
 

(94) Nagarajan, R.; Ruckenstein, E. Theory of surfactant self-assembly: a predictive 

molecular thermodynamic approach. Langmuir 1991, 7, 2934-2969. 

(95) Zhang, L.; Eisenberg, A. Multiple morphologies of "crew-cut" aggregates of 

polystyrene-b-poly (acrylic acid) block copolymers. Science 1995, 268, 1728-1731. 

(96) Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chemical Society 

Reviews 2012, 41, 5969-5985. 

(97) Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. 1998 EWR Steacie Award 

Lecture Asymmetric amphiphilic block copolymers in solution: a morphological 

wonderland. Canadian Journal of Chemistry 1999, 77, 1311-1326. 

(98) Zhang, L.; Eisenberg, A. Multiple morphologies and characteristics of “crew-

cut” micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers 

in aqueous solutions. Journal of the American Chemical Society 1996, 118, 3168-

3181. 

(99) Alexandridis, P.; Lindman, B. Amphiphilic block copolymers: self-assembly and 

applications; Elsevier, Amsterdam. 2000. 

(100) Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Periodic area-

minimizing surfaces in block copolymers. Nature 1988, 334, 598-601. 

(101) Bates, F. S. Polymer-polymer phase behavior. Science 1991, 251, 898-905. 

(102) Bates, F. S.; Fredrickson, G. Block copolymers-designer soft materials. 

Physics Today 1999, 52, 32-38. 

(103) Van Hest, J.; Delnoye, D.; Baars, M.; Van Genderen, M.; Meijer, E. 

Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent 

aggregation. Science 1995, 268, 1592-1595. 

(104) Zhang, L. F.; Eisenberg, A. Multiple morphologies of "crew-cut" aggregates of 

polystyrene-b-poly (acrylic acid) block copolymers. Science 1995, 268, 1728-1731. 

(105) Zhang, L.; Yu, K.; Eisenberg, A. Ion-induced morphological changes in" crew-

cut" aggregates of amphiphilic block copolymers. Science 1996, 272, 1777. 

(106) Zhang, L.; Eisenberg, A. Thermodynamic vs kinetic aspects in the formation 

and morphological transitions of crew-cut aggregates produced by self-assembly of 

polystyrene-b-poly (acrylic acid) block copolymers in dilute solution. 

Macromolecules 1999, 32, 2239-2249. 

(107) Discher, D. E.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967-973. 

(108) Zhang, L.; Shen, H.; Eisenberg, A. Phase separation behavior and crew-cut 

micelle formation of polystyrene-b-poly (acrylic acid) copolymers in solutions. 

Macromolecules 1997, 30, 1001-1011. 

(109) Yu, Y.; Zhang, L.; Eisenberg, A. Morphogenic effect of solvent on crew-cut 

aggregates of apmphiphilic diblock copolymers. Macromolecules 1998, 31, 1144-

1154. 

(110) Bhargava, P.; Zheng, J. X.; Li, P.; Quirk, R. P.; Harris, F. W.; Cheng, S. Z. 

Self-Assembled Polystyrene-b lock-poly (ethylene oxide) Micelle Morphologies in 

Solution. Macromolecules 2006, 39, 4880-4888. 

(111) Jain, S.; Bates, F. S. On the origins of morphological complexity in block 

copolymer surfactants. Science 2003, 300, 460-464. 



Chapter 1: Introduction 

 

55 
 

(112) Bütün, V.; Armes, S. P.; Billingham, N. C. Synthesis and aqueous solution 

properties of near-monodisperse tertiary amine methacrylate homopolymers and 

diblock copolymers. Polymer 2001, 42, 5993-6008. 

(113) Howse, J. R.; Jones, R. A.; Battaglia, G.; Ducker, R. E.; Leggett, G. J.; Ryan, 

A. J. Templated formation of giant polymer vesicles with controlled size 

distributions. Nature materials 2009, 8, 507-511. 

(114) Qiu, H.; Gao, Y.; Boott, C. E.; Gould, O. E.; Harniman, R. L.; Miles, M. J.; 

Webb, S. E.; Winnik, M. A.; Manners, I. Uniform patchy and hollow rectangular 

platelet micelles from crystallizable polymer blends. Science 2016, 352, 697-701. 

(115) Qiu, H.; Hudson, Z. M.; Winnik, M. A.; Manners, I. Multidimensional 

hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 2015, 

347, 1329-1332. 

(116) Warren, N. J.; Mykhaylyk, O. O.; Mahmood, D.; Ryan, A. J.; Armes, S. P. 

RAFT Aqueous Dispersion Polymerization Yields Poly(ethylene glycol)-Based 

Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. 

Journal of the American Chemical Society 2014, 136, 1023-1033. 

(117) Zhou, W.; Qu, Q.; Xu, Y.; An, Z. Aqueous Polymerization-Induced Self-

Assembly for the Synthesis of Ketone-Functionalized Nano-Objects with Low 

Polydispersity. ACS Macro Letters 2015, 4, 495-499. 

(118) Shen, W.; Chang, Y.; Liu, G.; Wang, H.; Cao, A.; An, Z. Biocompatible, 

antifouling, and thermosensitive core− shell nanogels synthesized by RAFT aqueous 

dispersion polymerization. Macromolecules 2011, 44, 2524-2530. 

(119) Ladmiral, V.; Semsarilar, M.; Canton, I.; Armes, S. P. Polymerization-Induced 

Self-Assembly of Galactose-Functionalized Biocompatible Diblock Copolymers for 

Intracellular Delivery. Journal of the American Chemical Society 2013, 135, 13574-

13581. 

(120) Jiang, Y.; Xu, N.; Han, J.; Yu, Q.; Guo, L.; Gao, P.; Lu, X.; Cai, Y. The direct 

synthesis of interface-decorated reactive block copolymer nanoparticles via 

polymerisation-induced self-assembly. Polymer Chemistry 2015, 6, 4955-4965. 

(121) Hanisch, A.; Yang, P.; Kulak, A. N.; Fielding, L. A.; Meldrum, F. C.; Armes, 

S. P. Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via 

Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion 

into Calcite Crystals. Macromolecules 2016, 49, 192-204. 

(122) Williams, M.; Penfold, N. J. W.; Armes, S. P. Cationic and reactive primary 

amine-stabilised nanoparticles via RAFT aqueous dispersion polymerisation. 

Polymer Chemistry 2016, 7, 384-393. 

(123) Ladmiral, V.; Charlot, A.; Semsarilar, M.; Armes, S. P. Synthesis and 

characterization of poly(amino acid methacrylate)-stabilized diblock copolymer 

nano-objects. Polymer Chemistry 2015, 6, 1805-1816. 

(124) Fielding, L. A.; Derry, M. J.; Ladmiral, V.; Rosselgong, J.; Rodrigues, A. M.; 

Ratcliffe, L. P. D.; Sugihara, S.; Armes, S. P. RAFT dispersion polymerization in 

non-polar solvents: facile production of block copolymer spheres, worms and 

vesicles in n-alkanes. Chemical Science 2013, 4, 2081-2087. 



Chapter 1: Introduction 

 

56 
 

(125) Derry, M. J.; Fielding, L. A.; Warren, N. J.; Mable, C. J.; Smith, A. J.; 

Mykhaylyk, O. O.; Armes, S. P. In situ small-angle X-ray scattering studies of 

sterically-stabilized diblock copolymer nanoparticles formed during polymerization-

induced self-assembly in non-polar media. Chemical Science 2016, 7, 5078-5090. 

(126) Fielding, L. A.; Lane, J. A.; Derry, M. J.; Mykhaylyk, O. O.; Armes, S. P. 

Thermo-responsive Diblock Copolymer Worm Gels in Non-polar Solvents. Journal 

of the American Chemical Society 2014, 136, 5790-5798. 

(127) Mable, C. J.; Gibson, R. R.; Prévost, S.; McKenzie, B. E.; Mykhaylyk, O. O.; 

Armes, S. P. Loading of silica nanoparticles in block copolymer vesicles during 

polymerization-induced self-assembly: encapsulation efficiency and thermally-

triggered release. Journal of the American Chemical Society 2015, 137, 16098-

16108. 

(128) Penfold, N. J. W.; Lovett, J. R.; Warren, N. J.; Verstraete, P.; Smets, J.; Armes, 

S. P. pH-Responsive non-ionic diblock copolymers: protonation of a morpholine 

end-group induces an order-order transition. Polymer Chemistry 2016, 7, 79-88. 

(129) Lovett, J. R.; Warren, N. J.; Ratcliffe, L. P. D.; Kocik, M. K.; Armes, S. P. pH-

Responsive Non-Ionic Diblock Copolymers: Ionization of Carboxylic Acid End-

Groups Induces an Order-Order Morphological Transition. Angewandte Chemie-

International Edition 2015, 54, 1279-1283. 

(130) Canton, I.; Warren, N. J.; Chahal, A.; Amps, K.; Wood, A.; Weightman, R.; 

Wang, E.; Moore, H.; Armes, S. P. Mucin-Inspired Thermoresponsive Synthetic 

Hydrogels Induce Stasis in Human Pluripotent Stem Cells and Human Embryos. 

ACS Central Science 2016, 2, 65-74. 

(131) Cai, W.; Wan, W.; Hong, C.; Huang, C.; Pan, C. Morphology transitions in 

RAFT polymerization. Soft Matter 2010, 6, 5554-5561. 

(132) He, W.-D.; Sun, X.-L.; Wan, W.-M.; Pan, C.-Y. Multiple morphologies of 

PAA-b-PSt assemblies throughout RAFT dispersion polymerization of styrene with 

PAA Macro-CTA. Macromolecules 2011, 44, 3358-3365. 

(133) Huang, C.-Q.; Pan, C.-Y. Direct preparation of vesicles from one-pot RAFT 

dispersion polymerization. Polymer 2010, 51, 5115-5121. 

(134) Wan, W.-M.; Pan, C.-Y. One-pot synthesis of polymeric nanomaterials via 

RAFT dispersion polymerization induced self-assembly and re-organization. 

Polymer Chemistry 2010, 1, 1475-1484. 

(135) Mahabadi, H. K.; O'driscoll, K. Absolute rate constants in free-radical 

polymerization. III. Determination of propagation and termination rate constants for 

styrene and methyl methacrylate. Journal of Macromolecular Science-Chemistry 

1977, 11, 967-976. 

(136) Buback, M.; Gilbert, R. G.; Hutchinson, R. A.; Klumperman, B.; Kuchta, F. D.; 

Manders, B. G.; O'Driscoll, K. F.; Russell, G. T.; Schweer, J. Critically evaluated 

rate coefficients for free‐radical polymerization, 1. Propagation rate coefficient for 

styrene. Macromolecular Chemistry and Physics 1995, 196, 3267-3280. 

(137) Matheson, M. S.; Auer, E.; Bevilacqua, E. B.; Hart, E. Rate Constants in Free 

Radical Polymerization. III. Styrene1. Journal of the American Chemical Society 

1951, 73, 1700-1706. 



Chapter 1: Introduction 

 

57 
 

(138) Zhang, X.; Rieger, J.; Charleux, B. Effect of the solvent composition on the 

morphology of nano-objects synthesized via RAFT polymerization of benzyl 

methacrylate in dispersed systems. Polymer Chemistry 2012, 3, 1502-1509. 

(139) Wang, X.; Xu, J.; Zhang, Y.; Zhang, W. Polymerization of styrene in 

alcohol/water mediated by a macro‐RAFT agent of poly (N‐isopropylacrylamide) 

trithiocarbonate: From homogeneous to heterogeneous RAFT polymerization. 

Journal of Polymer Science Part A: Polymer Chemistry 2012, 50, 2452-2462. 

(140) Huo, F.; Wang, X.; Zhang, Y.; Zhang, X.; Xu, J.; Zhang, W. RAFT dispersion 

polymerization of styrene in water/alcohol: the solvent effect on polymer particle 

growth during polymer chain propagation. Macromolecular Chemistry and Physics 

2013, 214, 902-911. 

(141) Jones, E.; Semsarilar, M.; Wyman, P.; Boerakker, M.; Armes, S. Addition of 

water to an alcoholic RAFT PISA formulation leads to faster kinetics but limits the 

evolution of copolymer morphology. Polymer Chemistry 2016, 7, 851-859. 

(142) Derry, M. J.; Fielding, L. A.; Armes, S. P. Industrially-relevant 

polymerization-induced self-assembly formulations in non-polar solvents: RAFT 

dispersion polymerization of benzyl methacrylate. Polymer Chemistry 2015, 6, 3054-

3062. 

(143) Lopez-Oliva, A. P.; Warren, N. J.; Rajkumar, A.; Mykhaylyk, O. O.; Derry, M. 

J.; Doncom, K. E.; Rymaruk, M. J.; Armes, S. P. Polydimethylsiloxane-Based 

Diblock Copolymer Nano-objects Prepared in Nonpolar Media via RAFT-Mediated 

Polymerization-Induced Self-Assembly. Macromolecules 2015, 48, 3547-3555. 

(144) Charleux, B.; Delaittre, G.; Rieger, J.; D’Agosto, F. Polymerization-induced 

self-assembly: from soluble macromolecules to block copolymer nano-objects in one 

step. Macromolecules 2012, 45, 6753-6765. 

(145) Ferguson, C. J.; Hughes, R. J.; Pham, B. T.; Hawkett, B. S.; Gilbert, R. G.; 

Serelis, A. K.; Such, C. H. Effective ab initio emulsion polymerization under RAFT 

control. Macromolecules 2002, 35, 9243-9245. 

(146) Ferguson, C. J.; Hughes, R. J.; Nguyen, D.; Pham, B. T. T.; Gilbert, R. G.; 

Serelis, A. K.; Such, C. H.; Hawkett, B. S. Ab Initio Emulsion Polymerization by 

RAFT-Controlled Self-Assembly. Macromolecules 2005, 38, 2191-2204. 

(147) Sprong, E.; Leswin, J. S.; Lamb, D. J.; Ferguson, C. J.; Hawkett, B. S.; Pham, 

B. T.; Nguyen, D.; Such, C. H.; Serelis, A. K.; Gilbert, R. G. Molecular 

Watchmaking: ab initio Emulsion Polymerization by RAFT‐controlled Self‐

assembly. Macromolecular Symposia 2005, 231, 84-93. 

(148) Ganeva, D. E.; Sprong, E.; De Bruyn, H.; Warr, G. G.; Such, C. H.; Hawkett, 

B. S. Particle formation in ab initio RAFT mediated emulsion polymerization 

systems. Macromolecules 2007, 40, 6181-6189. 

(149) Chaduc, I.; Zhang, W.; Rieger, J.; Lansalot, M.; D'Agosto, F.; Charleux, B. 

Amphiphilic Block Copolymers from a Direct and One‐pot RAFT Synthesis in 

Water. Macromolecular Rapid Communications 2011, 32, 1270-1276. 

(150) Rieger, J.; Osterwinter, G.; Bui, C.; Stoffelbach, F.; Charleux, B. Surfactant-

free controlled/living radical emulsion (co) polymerization of n-butyl acrylate and 



Chapter 1: Introduction 

 

58 
 

methyl methacrylate via RAFT using amphiphilic poly (ethylene oxide)-based 

trithiocarbonate chain transfer agents. Macromolecules 2009, 42, 5518-5525. 

(151) Rieger, J.; Stoffelbach, F.; Bui, C.; Alaimo, D.; Jérôme, C.; Charleux, B. 

Amphiphilic poly (ethylene oxide) macromolecular RAFT agent as a stabilizer and 

control agent in ab initio batch emulsion polymerization. Macromolecules 2008, 41, 

4065-4068. 

(152) Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Surfactant-free RAFT 

emulsion polymerization using poly (N, N-dimethylacrylamide) trithiocarbonate 

macromolecular chain transfer agents. Macromolecules 2010, 43, 6302-6310. 

(153) Zhang, W.; D'Agosto, F.; Dugas, P.-Y.; Rieger, J.; Charleux, B. RAFT-

mediated one-pot aqueous emulsion polymerization of methyl methacrylate in 

presence of poly (methacrylic acid-co-poly (ethylene oxide) methacrylate) 

trithiocarbonate macromolecular chain transfer agent. Polymer 2013, 54, 2011-2019. 

(154) Cunningham, V. J.; Alswieleh, A. M.; Thompson, K. L.; Williams, M.; 

Leggett, G. J.; Armes, S. P.; Musa, O. M. Poly(glycerol monomethacrylate)-

Poly(benzyl methacrylate) Diblock Copolymer Nanoparticles via RAFT Emulsion 

Polymerization: Synthesis, Characterization, and Interfacial Activity. 

Macromolecules 2014, 47, 5613-5623. 

(155) Boisse, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M.-H.; 

Charleux, B. Amphiphilic block copolymer nano-fibers via RAFT-mediated 

polymerization in aqueous dispersed system. Chemical Communications 2010, 46, 

1950-1952. 

(156) Zhang, W.; D’Agosto, F.; Boyron, O.; Rieger, J.; Charleux, B. Toward a better 

understanding of the parameters that lead to the formation of nonspherical 

polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. 

Macromolecules 2012, 45, 4075-4084. 

(157) Leeuw, N. H.; Parker, S. C. Surface structure and morphology of calcium 

carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. The 

Journal of Physical Chemistry B 1998, 102, 2914-2922. 

(158) Meldrum, F. C.; Ludwigs, S. Template-directed control of crystal 

morphologies. Macromolecular Bioscience 2007, 7, 152-162. 

(159) Mann, S.; Archibald, D. D.; Didymus, J. M.; Douglas, T.; Heywood, B. R.; 

Meldrum, F. C.; Reeves, N. J. Crystallzation at inorganic-organic interfaces - 

biominerals and biomimetic synthesis. Science 1993, 261, 1286-1292. 

(160) Robinson, K. L.; Weaver, J. V. M.; Armes, S. P.; Marti, E. D.; Meldrum, F. C. 

Synthesis of controlled-structure sulfate-based copolymers via atom transfer radical 

polymerisation and their use as crystal habit modifiers for BaSO4. Journal of 

Materials Chemistry 2002, 12, 890-896. 

(161) Cölfen, H.; Antonietti, M. Crystal design of calcium carbonate microparticles 

using double-hydrophilic block copolymers. Langmuir 1998, 14, 582-589. 

(162) Sedlák, M.; Cölfen, H. Synthesis of double-hydrophilic block copolymers with 

hydrophobic moieties for the controlled crystallization of minerals. Macromolecular 

Chemistry and Physics 2001, 202, 587-597. 



Chapter 1: Introduction 

 

59 
 

(163) Cölfen, H.; Qi, L. A Systematic Examination of the Morphogenesis of 

Calcium Carbonate in the Presence of a Double‐Hydrophilic Block Copolymer. 

Chemistry–A European Journal 2001, 7, 106-116. 

(164) Qi, L.; Cölfen, H.; Antonietti, M. Control of barite morphology by double-

hydrophilic block copolymers. Chemistry of Materials 2000, 12, 2392-2403. 

(165) Shi, H.; Qi, L.; Ma, J.; Cheng, H. Polymer-directed synthesis of penniform 

BaWO4 nanostructures in reverse micelles. Journal of the American Chemical 

Society 2003, 125, 3450-3451. 

(166) Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Morphological control of calcium oxalate 

dihydrate by a double-hydrophilic block copolymer. Chemistry of Materials 2002, 

14, 2450-2457. 

(167) Li, H.; Xin, H. L.; Kunitake, M. E.; Keene, E. C.; Muller, D. A.; Estroff, L. A. 

Calcite Prisms from Mollusk Shells (Atrina Rigida): Swiss-cheese-like Organic-

Inorganic Single-crystal Composites. Advanced Functional Materials 2011, 21, 

2028-2034. 

(168) Li, H.; Xin, H. L.; Muller, D. A.; Estroff, L. A. Visualizing the 3D Internal 

Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science 2009, 326, 

1244-1247. 

(169) Liu, Y.; Yuan, W.; Shi, Y.; Chen, X.; Wang, Y.; Chen, H.; Li, H. 

Functionalizing Single Crystals: Incorporation of Nanoparticles Inside Gel-Grown 

Calcite Crystals. Angewandte Chemie-International Edition 2014, 53, 4127-4131. 

(170) Lu, C. H.; Qi, L. M.; Cong, H. L.; Wang, X. Y.; Yang, J. H.; Yang, L. L.; 

Zhang, D. Y.; Ma, J. M.; Cao, W. X. Synthesis of calcite single crystals with porous 

surface by templating of polymer latex particles. Chemistry of Materials 2005, 17, 

5218-5224. 

(171) Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; 

Avrutin, V.; Cho, S. J.; Morkoc, H. A comprehensive review of ZnO materials and 

devices. Journal of Applied Physics 2005, 98, 041301. 

(172) Janotti, A.; Van de Walle, C. G. Fundamentals of zinc oxide as a 

semiconductor. Reports on Progress in Physics 2009, 72, 126501. 

(173) Muñoz-Espí, R.; Qi, Y.; Lieberwirth, I.; Gómez, C. M.; Wegner, G. Surface-

functionalized latex particles as controlling agents for the mineralization of zinc 

oxide in aqueous medium. Chemistry-A European Journal 2006, 12, 118-129. 

(174) Muñoz-Espí, R.; Chandra, A.; Wegner, G. Crystal perfection in zinc oxide 

with occluded carboxyl-functionalized latex particles. Crystal Growth & Design 

2007, 7, 1584-1589. 

(175) Muñoz-Espí, R.; Jeschke, G.; Lieberwirth, I.; Gomez, C. M.; Wegner, G. ZnO-

latex hybrids obtained by polymer-controlled crystallization: A spectroscopic 

investigation. The Journal of Physical Chemistry B 2007, 111, 697-707. 



Chapter 2: Expermental and Characterisation 

60 

 

2. Chapter Two 

 

 

 

 

 

 

 

 

 

 

2. Expermental and Characterisation 

 

 

 

 

 

 

 

 

 

  



Chapter 2: Expermental and Characterisation 

61 

 

2.1 Experimental 

2.1.1 Materials 

Carboxybetaine methacrylate (C) was kindly donated by Dr. Saruwatari of the Osaka 

Organic Chemical Company, Japan. O-Methacryloyl-trans-4-hydroxy-L-proline (P) 

was synthesised as previously reported by Kristensen et al.
1
 4-(2-

Aminoethyl)morpholine (99%) was purchased from Sigma Aldrich (UK) and 

distilled under vacuum before use. Ammonium 2-sulfatoethyl methacrylate (S, 

Bisomer SEM® solution, supplied as a 25.0 % w/v aqueous solution) and glycerol 

monomethacrylate (G; 99.8%) were supplied by GEO Specialty Chemicals (Hythe, 

UK) and used without further purification. Methacrylic acid (M) and benzyl 

methacrylate (B) were purchased from Alfa Aesar and passed through a basic 

aluminum oxide column to remove inhibitor prior to use. 4,4′-Azobis(4-cyanovaleric 

acid) (ACVA, 99 %) and 2-hydroxypropyl methacrylate (H, 98 %) were obtained 

from Alfa Aesar (UK). N-hydroxyl succinimide (98%), N,N’-

dicyclohexylcarbodiimide (99%), 4-cyano-4-(phenylcarbonothioylthio)pentanoic 

acid (CPCP), ammonium carbonate, calcium chloride hexahydrate, zinc nitrate 

hexahydrate, hexamethylenetetramine, rhodamine B (RhB), sodium citrate tribasic 

dihydrate, sodium borohydride and HAuCl4·3H2O were all purchased from Sigma-

Aldrich (UK) and used as received. Deuterium oxide (D2O), deuterated methanol 

(CD3OD) and dichloromethane (CD2Cl2) were obtained from Cambridge Isotope 

laboratories (UK). Dialysis tubing was received from SpectraPor. Deionised water 

was used in all cases and was obtained from an Elgastat Option 3A water 

purification unit. 
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2.1.2 Synthesis of Monomers, macro-CTAs, Diblock Copolymer 

Nanoparticles and Inorganic Nanoparticles 

2.1.2.1 Synthesis of Morpholine-Functional Trithiocarbonate-based 

RAFT Chain Transfer Agent (MPETTC)  

Step one: 

4-Cyano-4-(2-phenylethanesulfanyl-thiocarbonyl)sulfanylpentanoic acid 

(PETTC) was synthesised in-house according to a previous protocol.
2
 All 

glassware was dried in a 150 °C oven overnight, then flame-dried under 

vacuum before use to remove trace water. To synthesise 4-cyano-4-(2-

phenylethanesulfanylthiocarbonyl)sulfanyl pentanoic succinimide ester 

(SPETTC), a 50 mL one-neck round-bottom flask was charged with PETTC 

(1.60 g, 4.71 mmol) and N-hydroxyl succinimide (0.54 g, 4.71 mmol), which 

were then dissolved in anhydrous dichloromethane (20.0 g, 15.0 mL). N,N’-

Dicyclohexylcarbodiimide (0.97 g, 4.71 mmol) was added and then stirred in 

the dark for 16 h. The insoluble N,N’-dicyclohexylurea was removed by 

filtration. The organic solution was washed with water (four 10 ml portions), 

dried with MgSO4, concentrated under vacuum and purified by 

recrystallisation from a 4:1 (v/v) ethyl acetate/n-hexane mixture to yield 4-

cyano-4-(2-phenylethanesulfanylthiocarbonyl)sulfanyl pentanoic succinimide 

ester (SPETTC, 1.90 g, 92% yield). 
1
H NMR (400 MHz, CD2Cl2, 25 °C): δ 

1.89 (s, 3H, -(CN)CH3), 2.51 – 2.68 (m, 2H, -(CH3)(CN)CH2CH2C(=O)O), 

2.81 (s, 4H, -(C=O)(CH2)2(C=O), 2.90 – 2.96 (t, 2H, -

(CH3)(CN)CH2CH2C(=O)), 2.97 – 3.03 (t, 2H, PhCH2CH2S(C=S)S), 3.56 – 

3.64 (t, 2H, PhCH2CH2S(C=S)S), 7.20 - 7.36 (m, 5H, PhCH2CH2S(C=S)S). 

13
C NMR (400 MHz, CDCl3, 25 °C): δ 24.8 (CH3), 25.7 (-

C(=O)(CH2)2C(=O)), 26.9 (-CH2CH2C(=O)ON), 33.2 (PhCH2CH2S), 34.1 (-

CH2CH2C(=O)O), 38.1 (PhCH2CH2S), 46.2 (-SC(CH3)(CN)CH2), 118.7 -

SC(CH3)(CN)CH2), 126.9, 128.6, 128.8, 139.2 (PhCH2), 167.2 (C=O),  168.9 

(-C(=O)(CH2)2C(=O)), 216.4 (C=S). HRMS (ES
+
) m/z calcd: 437.0658 Found: 

437.0658 Microanalyses: calculated for C19H20N2O4S3: C, 52.27; H, 4.62; N, 

6.42; S, 22.03; found C, 52.65; H, 4.72; N, 6.39; S, 21.93.  
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Step two: 

A 500 ml one-neck round-bottom flask containing a magnetic stirrer bar was charged 

with SPETTC (5.35 g, 12.3 mmol), which was dissolved in anhydrous chloroform 

(250 mL). In a separate 50 ml one-neck round-bottom flask, freshly distilled 4-(2-

aminoethyl)morpholine (1.52 g, 1.53 mL, 11.7 mmol) was dissolved in anhydrous 

chloroform (25 mL), then added in one portion to the solution of SPETTC. The 

yellow reaction mixture was heated at 30 °C for 90 min, filtered and washed with 

saturated NaHCO3 solution (3 x 400 mL) to remove residual N-hydroxysuccinimide, 

before being dried with MgSO4. After solvent removal, the yellow oil was purified to 

remove any residual SPETTC via column chromatography using silica gel 60 

(Merck) as the stationary phase and a 95:5: v/v dichloromethane/methanol mixed 

eluent, followed by drying in a vacuum oven overnight to isolate a viscous yellow oil 

(MPETTC, 4.75 g, 86%). 
1
H NMR (400 MHz, CD2Cl2, 25 °C): δ 1.89 (s, 3H, -

(CN)CH3), 2.31 – 2.56 (m, 10H, -S(C(CH3)(CN))CH2CH2C(=O), -

CH2NCH2(CH2)), 2.96 – 3.03 (t, 2H, PhCH2CH2S(C=S)S), 3.27 – 3.34 (q, 2H, -

C(=O)NHCH2CH2), 3.56 – 3.62 (t, 2H, PhCH2CH2S(C=S)S), 3.64 – 3.71 (t, 4H, -

CH2NCH2CH2O) 5.98 – 6.13 (s, 1H, CONH), 7.20 - 7.36 (m, 5H, 

PhCH2CH2S(C=S)S). 
13

C NMR (400 MHz, CDCl3, 25 °C): δ 25.1 (-CH3), 31.8 (-

CH2CH2CONH), 34.6 (PhCH2CH2S), 34.5 (-CH2CH2CONH), 35.7 (-

CONHCH2CH2N), 37.9 (PhCH2CH2S), 46.8 (-SC(CH3)(CN)CH2), 53.3 (-

NCH2CH2O), 56.9 (-CONHCH2CH2N), 66.9 (-NCH2CH2O), 119.2 (-

SC(CH3)(CN)CH2), 126.8, 128.5, 128.7, 139.1 (PhCH2), 170.1 (C=O), 216.8 (C=S). 

HRMS (ES
+
) m/z calcd: 452.1495 Found: 452.1495. Microanalyses: calculated for 

C21H29N3O2S3: C, 55.85; H, 6.47; N, 9.30; S, 21.29; found C, 55.47; H, 6.48; N, 

9.08; S, 21.09. 

 

2.1.2.2 Synthesis of Poly(carboxybetaine methacrylate)52 macro-CTA (C52 

macro-CTA) 

MPETTC RAFT agent (0.97 g, 2.3 mmol), C monomer (30.0 g, 140 mmol) and 

ACVA (130 mg, 0.46 mmol, CTA/ACVA molar ratio = 5.0) were weighed into a 

500 ml round-bottomed flask containing a stir bar. Deionised water (120 g) was 

added and the pH slowly adjusted to ca. pH 3.5 using a dilute aqueous solution of 

HCl. The solution was purged with nitrogen for 45 min and sealed with a rubber 
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septum under a positive nitrogen pressure. The flask was then immersed in a pre-

heated oil bath set at 70 °C. The polymerisation was quenched after 40 min by rapid 

cooling in liquid nitrogen (final monomer conversion = 83 %). The crude macro-

CTA was purified by exhaustive dialysis (SpectraPor membrane, MWCO = 3.5 kDa) 

against water, followed by lyophilisation with an 80 % yield; Mn NMR = 11,600 g 

mol
-1

, Mn SEC = 9,500 g mol
-1

, Mw/Mn = 1.17.  

 

2.1.2.3 Synthesis of Poly(carboxybetaine methacrylate)52-Poly(2-hydroxypropyl 

methacrylate)250 (C52-H250) via RAFT Aqueous Dispersion Polymerisation of 

HPMA 

C52 macro-CTA (0.22 g, 0.019 mmol), 2-hydroxypropyl methacrylate (H monomer, 

0.68 g, 4.7 mmol), ACVA (1.0 mg, 0.004 mmol, CTA/ACVA molar ratio = 5.0) and 

water (5.1 g) were weighed into a glass vial containing a stir bar. The solution was 

purged with nitrogen for 30 min and sealed with a rubber septum under a positive 

nitrogen pressure, prior to immersion in a pre-heated oil bath at 70 °C for 6 h. 

The reaction was quenched by exposure to air and rapid cooling at 20 °C. For kinetic 

studies, aliquots were periodically removed for analysis by 
1
H NMR spectroscopy. 

 

2.1.2.4 Synthesis of O-Methacryloyl-trans-4-hydroxy-L-proline (P monomer) 

P monomer was synthesised as previously reported by Kristensen et al.
1
 A brief 

description of the synthesis is as follows: a 500 mL round-bottomed flask was 

charged with CF3CO2H (120 mL) and immersed in an ice bath. Trans-4-hydroxy-L-

proline (34 g, 0.26 mol) was added in small portions with vigorous stirring. After 5 

minutes stirring, the ice bath was removed and CF3SO3H (4.5 mL) was added. After 

a further 5 min, methacryloyl chloride (50 mL, 0.51 mol) was added in a single 

portion. A loose glass stopper was fitted and the reaction allowed to proceed at room 

temperature for 3 h. The reaction vessel was then cooled by immersion in an ice bath 

and diethyl ether (360 mL) was added slowly, over a period of 15 min with vigorous 

stirring. After stirring for a further 15 min in the ice bath, the white precipitate was 

separated by filtration, washed with diethyl ether and dried overnight under vacuum 

to yield P monomer in 62% yield. A small amount of the starting material, trans-4-
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hydroxy-L-proline, was detected by 
1
H NMR spectroscopy. However, the monomer 

was used in the synthesis of the P macro-CTA with no further purification. 
1
H NMR 

spectroscopy (400 MHz, CD3OD, 298 K): δ = 1.92 (s, 3H, -CH3), 2.48 (m, 1H, -

OCHCHHCH), 2.72 (m, 1H, -OCHCHHCH), 3.65 (m, 1H, -OCHCHHNH), 3.75 (m, 

1H, -OCHCHHNH), 4.65 (m, 1H, -OCHCH2CH), 5.56 (t, 1H, -OCHCH2CH), 5.77 

(s, 1H, -CH3CH=CHH), 6.17 (s, 1H, -CH3CH=CHH).  

 

2.1.2.5 Synthesis of Poly(O-Methacryloyl-trans-4-hydroxy-L-proline)50 macro-

CTA (P50 macro-CTA) 

MPETTC RAFT agent (0.81 g, 1.9 mmol), P monomer (20.0 g, 96 mmol) and 

ACVA (100 mg, 0.36 mmol, CTA/ACVA molar ratio = 5.0) were weighed into a 

500 ml round-bottomed flask containing a stir bar and deionised water (60 g) was 

added. The solution was purged with nitrogen for 45 min and sealed with a rubber 

septum under a positive nitrogen pressure. The flask was then immersed in a pre-

heated oil bath set at 70 °C. The polymerisation was quenched after 2 h by rapid 

cooling in liquid nitrogen (final monomer conversion = 92 %). The crude macro-

CTA was purified by precipitation into first iso-propanol and then diethyl ether with 

an overall recovered yield of 85 %; Mn NMR = 11,600 g mol
-1

, Mn SEC = 11,400 g mol
-

1
, Mw/Mn = 1.18. 

  

2.1.2.6 Synthesis of Poly(O-Methacryloyl-trans-4-hydroxy-L-proline)50-Poly(2-

hydroxypropyl methacrylate)300 (P50-H300) via RAFT Aqueous Dispersion 

Polymerisation 

P50 macro-CTA (0.14 g, 0.012 mmol), H monomer (0.76 g, 5.3 mmol), ACVA (1.0 

mg, 0.004 mmol, CTA/ACVA molar ratio = 5.0) and water (5.1 g) were weighed 

into a glass vial containing a stir bar. The solution was purged with nitrogen for 30 

min and sealed with a rubber septum under a positive nitrogen pressure, prior to 

immersion in a pre-heated oil bath at 70 °C for 6 h. The reaction was quenched by 

exposure to air and rapid cooling at 20 °C. 
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2.1.2.7 Synthesis of Poly(glycerol monomethacrylate)70 macro-CTA (G70 macro-

CTA) via RAFT Solution Polymerisation 

To a round-bottomed flask containing CPCP RAFT agent (0.96 g, 3.43 mmol), G 

monomer (38.44 g, 0.24 mol) and anhydrous ethanol (59.40 g, 1.28 mol) were added 

to afford a target degree of polymerisation (DP) of 70. To this, ACVA initiator (0.19 

g, 0.69 mmol, CTA/ACVA molar ratio = 5.0) was added and the resulting pink 

solution was sparged with N2 for 20 minutes, before the sealed flask was immersed 

into an oil bath set at 70 °C. After 2.5 h (conversion 88 % as judged by 
1
H NMR) the 

polymerisation was quenched by immersion of the flask in an ice bath and opening it 

to air. The polymerisation solution was then precipitated into a ten-fold excess of 

DCM and washed three times in the precipitation solvent before being placed under 

high vacuum for three days at 40 °C. 
1
H NMR analysis indicated a DP of 70 for this 

macro-CTA. DMF GPC analysis indicated Mn and Mw/Mn values of 16,500 g mol
-1

 

and 1.11, respectively. 

 

2.1.2.8 Synthesis of Poly(glycerol monomethacrylate)70-Poly(benzyl 

methacrylate)x (G70-Bx) via RAFT Emulsion Polymerisation 

A typical protocol for the synthesis of G70-B100 is given as below: G70 macro-CTA 

(115 mg, 10 µmol) and ACVA initiator (0.9 mg; 3.3 µmol, macro-CTA/ACVA 

molar ratio = 3.0) were weighed into a vial containing a magnetic stirrer bar. 

Thereafter, deionised water (2.6 g) and benzyl methacrylate (B monomer, 176 mg, 1 

mmol, target DP = 100) were added, giving a final solid concentration of 10 % w/w. 

The vial was sealed and purged with N2 for 30 min prior to transfer to a preheated oil 

bath set at 70 °C for 24 h. To prepare G70-B300 diblock copolymer nanoparticles, the 

usage of benzyl methacrylate should be increased to 3 mmol and deionized water 

should also be tuned to target desired solid concentrations. 

 

2.1.2.9 Synthesis of Poly(ammonium 2-sulfatoethyl methacrylate)x macro-CTA 

(Sx macro-CTA) 
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Briefly, a typical protocol for the synthesis of S73 macro-CTA is as follows: a 25 % 

w/v aqueous solution of S monomer (136.0 g, 0.15 mol; target DP = 60) was 

weighed into a 250 mL round-bottomed flask equipped with a magnetic stirrer. 

Before addition of the CPCP RAFT agent (0.70 g, 2.50 mmol) and ACVA initiator 

(0.14 g, 0.50 mmol; CPCP/ACVA molar ratio = 5.0), the solution pH was adjusted to 

pH 6 by dropwise addition of 1 M NaOH solution. The flask was sealed using a 

rubber septum and degassed with N2 for 30 min and then transferred to an oil bath 

preheated to 70 °C. After 2 h, the RAFT polymerisation was quenched by cooling 

the flask in ice followed by exposure to air. The reaction mixture was then placed in 

a -20 °C freezer overnight. The remaining polymer was dissolved in methanol and 

filtered to remove any excess insoluble monomer; thereafter, the filtrate was added 

dropwise to excess dichloromethane with continuous stirring to precipitate the 

polymer. The solvent was carefully decanted, the precipitate was redissolved in 

water and freeze-dried overnight to obtain the Sx macro-CTA. 
1
H NMR studies 

indicated 90% conversion and the CTA efficiency was calculated to be 74 %. 

Aqueous GPC analysis (vs. poly(ethylene oxide) standards) indicated Mn and Mw/Mn 

values of 14,900 g mol
-1

 and 1.12, respectively. 

 

2.1.2.10 Synthesis of Poly(ammonium 2-sulfatoethyl methacrylate)x-Poly(benzyl 

methacrylate)y (Sx-By) Diblock Copolymer Nanoparticles 

The synthesis of S73-B300 at 10 % w/w solids is representative and was conducted as 

follows. S73 macro-CTA (337 mg, 20.0 µmol) and ACVA initiator (1.9 mg; 6.7 µmol, 

macro-CTA/ACVA molar ratio = 3.0) were weighed into a vial containing a 

magnetic stirrer bar. B monomer (1057 mg, 6.0 mmol, target DP = 300) was added, 

followed by 12.5 g of either deionized water for aqueous emulsion polymerisation or 

a 2:1 v/v ethanol/water mixture for dispersion polymerisation. The vial was sealed 

and purged with N2 for 30 min prior to transfer to a preheated oil bath set at 70 °C 

for 24 h. For diblock copolymer nanoparticles prepared by RAFT dispersion 

polymerisation, the ethanol co-solvent was removed by dialysis against deionised 

water (dialysis tubing MWCO = 5,000). 
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2.1.2.11 Synthesis of [0.5 Poly(ammonium 2-sulfatoethyl methacrylate)73 + 0.5 

Poly(glycerol monomethacrylate)70]-Poly(benzyl methacrylate)300 [0.5 S73 + 0.5 

G70]-B300 Diblock Copolymer Nanoparticles 

S73 macro-CTA (84 mg, 5 µmol), G70 macro-CTA (57 mg, 5 µmol) and ACVA 

initiator (0.9 mg; 3.3 µmol, total macro-CTA/ACVA molar ratio = 3.0) were 

weighed into a vial containing a magnetic stirrer bar. Thereafter, deionised water and 

B monomer (529 mg, 3 mmol, target DP = 300) were added, targeting a final 

copolymer concentration of 10 % w/w solids. The vial was sealed and purged with 

N2 for 30 min prior to transfer to a preheated oil bath set at 70 °C for 24 h.  

 

2.1.2.12 Synthesis of Poly(methacrylate acid)68 macro-CTA (M68 macro-CTA) 

The synthesis of poly(methacrylate acid) macro-CTAs has been described in detail 

elsewhere.
3
 A typical synthesis of M68 macro-CTA was conducted as follows. A 50 

ml round-bottomed flask was charged with M monomer (7.00 g; 81.4 mmol), CPCP 

(0.325 g; 1.16 mmol; target DP = 70), ACVA (0.065 g, 0.23 mmol, CPCP/ACVA 

molar ratio = 5.0), and ethanol (11.0 g). The sealed reaction vessel was purged with 

nitrogen and placed in a pre-heated oil bath at 70 °C for 3 h. The resulting macro-

CTA (monomer conversion = 74 %; Mn = 9 300 g mol
-1

, Mw/Mn = 1.08) was purified 

by dialysis against water and freeze-dried overnight. The mean degree of 

polymerisation (DP) of this macro-CTA was determined to be 68 using 
1
H NMR 

spectroscopy and the CTA efficiency was calculated to be 76 %. 

 

2.1.2.13 Synthesis of Poly(methacrylic acid)68-Poly(benzyl methacrylate)300 

(M68-B300) Nanoparticles by RAFT Aqueous Emulsion Polymerisation  

M68 macro-CTA (122 mg, 20 µmol) was weighed in a 17 mL vial containing a 

magnetic stirrer bar, followed by water (10.6 g). The pH was carefully adjusted to 

around 5 by 0.1 M NaOH. Thereafter, ACVA initiator (1.9 mg, 6.7 µmol, macro-

CTA/initiator mole ratio = 3.0) was added and B monomer (1060 mg, 6.0 mmol) was 

weighed into the vial. The vial was sealed and purged with N2 for 30 min prior to 

transfer to a preheated oil bath set at 70 °C for 24 h. 
1
H NMR studies indicated a 
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final B monomer conversion of > 99 %. The resulting M68-B300 were used without 

further purification. 

 

2.1.2.14 Synthesis of [0.5 Poly(ammonium 2-sulfatoethyl methacrylate)73 + 0.5 

Poly(methacrylic acid)68]-Poly(benzyl methacrylate)300 ([0.5 S73 + 0.5 M68]-B300) 

Nanoparticles by RAFT Aqueous Emulsion Polymerisation  

M68 macro-CTA (61 mg, 10 µmol) and S73 macro-CTA (168 mg, 10 µmol) were 

weighed into a 17 mL vial containing a magnetic stirrer bar and then water (12.8 g) 

was added. The pH was carefully adjusted to around 5 using 0.1 M NaOH. 

Thereafter, ACVA initiator (1.9 mg, 6.7 µmol, macro-CTA/initiator mole ratio = 3.0) 

was added and B monomer (1057 mg, 6 mmol) was weighed into the vial. The vial 

was sealed and purged with N2 for 30 min prior to transfer to a preheated oil bath set 

at 70 °C for 24 h.
1
H NMR studies indicated a final B monomer conversion of > 99 %. 

The resulting [0.5 S73 + 0.5 M68]-B300 were used without further purification. 

 

2.1.2.15 Synthesis of Poly(glycerol monomethacrylate)70-stabilised Gold 

Nanoparticles (G70-AuNPs)  

The synthesis of gold nanoparticles has previously been reported elsewhere.
4
 In the 

present study, 480 mL deionised water was charged into a 1000 mL beaker and then 

5.0 mL of 10 g L
-1

 gold(III) chloride trihydrate was added and stirred for 5 minutes. 

Thereafter, sodium citrate aqueous solution (10 mL, 38.8 mM) was added and stirred 

for another 5 minutes before rapid addition of sodium borohydride aqueous solution 

(5.0 mL, 0.075 % w/w), containing sodium citrate tribasic dehydrate (57 mg, 38.8 

mM). G70 macro-CTA (100 mg) was dissolved in 10 mL deionised water and added 

to the gold sol. Excess G70 macro-CTA and sodium citrate were removed by 

centrifugation, followed by dialysis against deionised water for 7 days, using dialysis 

tubing with a molecular weight cut-off of 50 kD. 

For the 14 nm gold nanoparticles, 500 mL deionised water was mixed with 30.0 mL 

1 % w/w sodium citrate solution in a 1000 mL beaker and heated to boiling for 5 

minutes, followed by the rapid addition of 5.0 mL 10 mg mL
-1

 gold(III) chloride 
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trihydrate. The reaction was allowed to proceed for 15 minutes. 100 mg G70 macro-

CTA dissolved in 10.0 mL water was then added and the G70 modified gold 

nanoparticles were purified by centrifugation. 

 

2.1.3 Occlusion of Nanoparticles within Crystals 

2.1.3.1 Precipitation of Calcium Carbonate Crystals in the Presence of Block 

Copolymer Nanoparticles 

CaCO3 crystals were precipitated onto glass slides via the ammonium diffusion 

method. Specifically, a glass slide (pre-treated with Piranha solution) was placed in a 

1.5 mM calcium chloride solution containing copolymer nanoparticles or without 

any additives at pH 9.5. 10 mL of this solution was placed within a sealed desiccator 

containing 2.0 g of solid ammonium carbonate for 24 h. Crystallisation was triggered 

by the slow decomposition of ammonium carbonate, producing CO2 and ammonia. 

The CO2 provides a source of CO3
2-

 ions, which therefore reacts with Ca
2+

 ions to 

form CaCO3 crystals. CO2 diffusion alone would result in a pH reduction within the 

reaction solution. The solubility of CaCO3 is greater at low pH, thus the CaCO3 

crystal frmation will be prevented because supersaturation would never be reached at 

low pH. Fortunately, the ammonia acts as a buffer agent and maintains the pH of the 

reaction solution at ~ 9.5, reducing the solubility of CaCO3 crystals and hence 

promoting their growth. After crystallisation, the glass slide was removed from the 

aqueous solution and thoroughly washed with deionised water and ethanol. 

 

2.1.3.2 Precipitation of Zinc Oxide Crystals in the Presence of Copolymer 

Nanoparticles 

Various volumes of aqueous nanoparticle dispersions (5.0 % w/w, 0 – 2 ml) were 

added to a two-necked flask containing 90 – 88 ml of an aqueous solution of zinc 

nitrate hexahydrate (0.446 g, 1.50 mmol). The initial pH was measured to be around 

5 for all the above experiments prior to the reaction. This flask was connected with a 

condenser and transferred to a preheated oil bath set at 90 °C and the reaction 

mixture was magnetically stirred to achieve thermal equilibrium (typically 30 min). 
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ZnO formation commenced on addition of 10 ml of an aqueous solution of 

hexamethylenetetramine (HMTA, 0.210 g, 1.50 mmol), which thermally 

decomposes to form ammonia and formaldehyde at 90 ºC. After 90 min at this 

temperature, the reaction was quenched by cooling in an ice-water bath and the final 

pH was measured to be around 6. The precipitate was isolated by centrifugation and 

washed several times using water or ethanol, followed by drying under vacuum at 

40 °C. 

 

2.1.3.4 Synthesis of G70-Au/ZnO Nanocomposite Crystals 

Aqueous G70-AuNP dispersions (0.5 g L
-1

, 2.0 – 30.0 mL) were added to a two-

necked flask containing 96.0 – 68.0 ml of an aqueous solution of zinc nitrate 

hexahydrate (0.446 g, 1.50 mmol) to give a total volume of 98.0 mL. This flask was 

connected to a condenser and transferred to a preheated oil bath set at 90 °C and the 

reaction mixture was magnetically stirred to achieve thermal equilibrium (typically 

30 min). ZnO formation was commenced on slow addition of 2.0 mL of an aqueous 

solution of HMTA (0.210 g, 1.50 mmol). The reaction was quenched after 90 

minutes by cooling in an ice-water bath. The precipitate was isolated by 

centrifugation and washed several times using water or ethanol, followed by drying 

under vacuum at 40 °C. For G70-Au occluded within the surface layer of ZnO, G70-

AuNPs were added into the reaction solution 30 min later. 

 

2.1.4 Photocatalytic Activity Test 

Au/ZnO nanocomposites (10 mg) were dispersed in deionised water (18.0 mL) with 

the aid of an ultrasonic bath for 10 minutes. 2.0 mL of a 1.0 × 10
−4

 M RhB stock 

solution was added and continuously stirred in the dark for 30 minutes before 

irradiation using a UV lamp 6 cm above the solution (6 W, peak emission = 254 nm). 

Aliquots were extracted at various times and centrifuged prior to recording the 

visible absorption spectrum of the supernatant solution. The photodegradation of the 

RhB dye was monitored via the gradual reduction in its absorption maximum at 553 

nm. Photocatalysis experiment was conducted at pH 7 under room temperature and 

repeated in triplicate. 
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2.2 Characterisation 

2.2.1 
1
H NMR Spectroscopy  

1
H NMR spectra were recorded using a Bruker Avance 400 spectrometer operating 

at 400 MHz using either D2O, CD3OD or CD2Cl2 as solvents. 

 

2.2.2 Dynamic Light Scattering (DLS) and Aqueous Electrophoresis 

DLS measurements were conducted using a Malvern Zetasizer NanoZS instrument 

by detecting back-scattered light at an angle of 173°. The concentration used for the 

DLS test may vary in this Thesis. If otherwise mentioned, it means the concentration 

is ~ 0.1 % w/w. Aqueous electrophoresis measurements were conducted in 

disposable folded capillary cells supplied by Malvern (DTS1070) using the same 

instrument and each measurement was repeated three times and averaged to give the 

mean zeta potential. 

 

2.2.3 Gel Permeation Chromatography (GPC) 

Aqueous GPC measurements were performed using an Agilent Technologies Infinity 

1260 set-up equipped with two Agilent PL Aquagel-OH 30 8 µm columns running at 

35 °C. Phosphate buffer eluent was used as GPC eluent at a flow rate of 1.0 mL min
-

1
 (refractive index detector). Calibration was achieved using a series of near-

monodisperse poly(ethylene oxide) standards ranging from 4.1 x 10
3
 to 6.92 x 10

5
 g 

mol
-1

. The THF GPC system was equipped with two 5 µm (30 cm) Mixed-C 

columns; a WellChrom K-2301 refractive index detector operating at 950 ± 30 nm, a 

Precision detector PD 2020 light scattering detector (with scattering angles of 90º 

and 15º), and a BV400RT solution viscosity detector. The THF eluent containing 2 % 

v/v triethylamine and 0.05 % w/v butylhydroxytoluene (BHT) at a flow rate of 1.0 

mL min
-1

; A series of ten near-monodisperse poly(methyl methacrylate) standards 

ranging from 1.28 x 10
3
  to 3.3 x 10

5
 g mol

-1
 were employed as calibration standards 

with the above refractive index detector. The DMF GPC set-up was operated at 

60 °C with the instrument comprising two Polymer Laboratories PL gel 5 µm Mixed 

C columns and one PL polar gel 5 µm guard column connected in series to a Varian 
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390-LC multi-detector suite (refractive index detector only) and a Varian 290-LC 

pump injection module. The GPC eluent was HPLC-grade DMF containing 10 mM 

LiBr and was filtered prior to use. The flow rate was 1.0 mL min
-1

 and DMSO was 

used as a flow-rate marker. Calibration was conducted using a series of ten near-

monodisperse poly(methyl methacrylate) standards (Mn = 6.25 × 10
2
 – 6.18 × 10

5
 g 

mol
-1

, K =  2.094 × 10
-3

, α = 0.642). Chromatograms were analysed using Varian 

Cirrus GPC software. 

 

2.2.4 Transmission Electron Microscopy (TEM) 

TEM images were obtained by adsorbing a 0.15 % w/w aqueous dispersion of 

copolymer nanoparticles onto palladium-copper grids (Agar Scientific, UK) coated 

with carbon film. The grids were treated with a plasma glow discharge for about 30 

seconds to create a hydrophilic surface prior to addition of the aqueous nanoparticle 

dispersion (5 µL). Excess solvent was removed via blotting and the grid was stained 

with uranyl formate for 30 seconds. Excess stain was removed via blotting and the 

grid was carefully dried under vacuum. Imaging was performed using a FEI Tecnai 

G2 Spirit instrument. To examine internal structures, the G70-Au/ZnO 

nanocomposites were embedded in Araldite resin mixture and cured at 60 °C for 48-

72 h. Ultrathin sections, approximately 85 nm in thickness, were cut using a Leica 

UC 6 ultramicrotome equipped with a Diatome diamond knife onto 200 mesh copper 

grids. TEM images were performed using either a FEI Tecnai G2 Spirit instrument 

(120 kV) or a high resolution TEM (Philips FEG-CM200) operating at an 

accelerating voltage of 200 kV. 

 

2.2.5 Field Emission Scanning Electron Microscopy (FE-SEM) 

The crystal morphology was investigated using a high-resolution field emission 

scanning electron microscope (Nova NanoSEM 450) or FEI Inspect F. Glass slides 

supporting these crystals were mounted onto SEM stubs using adhesive conducting 

pads with no further coating. The samples were fractured by placing a clean glass 

slide on top of the glass slide supporting the calcite crystals and pressing down and 
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twisting gently. A relatively low voltage (2-3 kV) was used in order to prevent 

sample charging. 

 

2.2.6 Disk Centrifuge Photosedimentometry (DCP) 

Particle size distributions of the S73-B300/ZnO nanocomposite particles and calcined 

ZnO particles were assessed using a disc centrifuge photosedimentometer (CPS 

DC24000 instrument). This technique reports a weight-average particle diameter 

(Dw). Dilute aqueous dispersions (0.10 ml at 0.10 % w/w) were injected into an 

aqueous spin fluid (15 mL) comprising an 8 - 24 % w/w sucrose gradient. The 

densities of the S73-B300/ZnO and ZnO particles were determined at 20 °C by helium 

pycnometry (Micrometrics AccuPyc 1330 helium pycnometer). 

 

2.2.7 Analytical Centrifugation 

LUMiSizer® instrument has similar basic principles compared with disc centrifuge 

photosedimentometry (DCP).
5-7

 The LUMiSizer® employs STEP™-Technology 

(Space- and Time-resolved Extinction Profiles), which enables the measurement of 

the intensity of transmitted light as a function of time and position over the entire 

cell length at the same time. The progression of the transmission profiles contains 

information on the rate of sedimentation. Given the particle density, the particle size 

distribution of the particles can be readily obtained via this instrument. Volume-

average particle size distribution of ZnO particles mineralized in the presence of 0.50 

g L
-1

 S73-B300 copolymer particles was determined via analytical centrifugation using 

a LUMiSizer® instrument (LUM GmbH, Berlin, Germany) at 20 °C. The 

measurements were carried out on 2 % w/v aqueous dispersions in polyamide cells 

(path length = 2 mm) using centrifugation rate of 500 rpm. 

 

2.2.8 X-ray Photoelectron Spectroscopy (XPS) 

XPS samples were prepared by adding a drop of nanocomposite aqueous dispersion 

onto clean indium foil and left overnight at room temperature. The powder samples 
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were directly pressed on a clean indium foil. The instrument used to collect the XPS 

data was a Kratos Axis Ultra DLD equipped with a monochromatic Al X-ray 

radiation at 6.0 mA and 15 kV at a typical base pressure of 10
-8

 Torr. The step size 

was 0.5 eV for the survey spectra (pass energy = 160 eV) and 0.05 eV for the high 

resolution spectra (pass energy = 20 eV). The raw data was corrected by a 

transmission function characteristic of the instrument, determined using software 

from the National Physical Laboratory. The adjusted data was then quantified using 

the theoretically derived Scofield relative sensitivity factors. 

 

2.2.9 Other Measurements 

Optical microscopy images were recorded using a Motic DMBA300 digital 

biological microscope equipped with a built-in camera and analysed using Motic 

Images Plus 2.0 ML software. Raman studies were conducted using a Renishaw 

2000 Raman microscope operating with a 785 nm diode laser. Thermogravimetric 

analysis (TGA) was conducted using a Perkin-Elmer Pyris 1 TGA instrument. FT-IR 

spectra were recorded on KBr pellets using a Perkin Elmer spectrum 100 

spectrometer at 4 cm
-1

 resolution. The elemental analysis was conducted using a 

Perkin Elmer 2400 Series II CHNS/O Elemental Analyser. Powder X-ray diffraction 

(XRD) measurements were made using a Bruker D2 Phaser Desktop X-ray 

diffractometer equipped with Ni-filtered Cu Kα radiation (λ = 1.542 Å) operating at 

an accelerating voltage and emission current of 30 kV and 10 mA, respectively. The 

amount of calcium chelated by the diblock copolymer was measured using a 

calcium-selective electrode (Ion selective combination electrode Eutech Calcium, 

Fisher Scientific). The calcium-selective electrode was then immersed into the 

polymer solutions to measure the free Ca
2+

 concentration. A calibration curve was 

produced prior to the measurement using a range of CaCl2 standard solutions (0.0001, 

0.001, 0.01, and 0.1). The samples were then quantified by means of the calibration 

curve (y = 25.41x + 452.3, R
2 

> 0.999). The amount of polymer-bound calcium was 

calculated from the total amount of Ca
2+

 added and the amount of free Ca
2+

 

measured. The Au content of G70-Au/ZnO nanocomposite particles was determined 

by a Hewlett-Packard 4500 inductively-coupled plasma mass spectrometry (ICP-MS, 

Hewlett-Packard, Yokogawa Corporation, Japan). UV-vis spectra were recorded at 
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20 °C for the nanocomposite aqueous dispersion using a Perkin-Elmer Lambda 25 

instrument operating between 200 and 800 nm. Specific surface areas were 

determined via BET surface area analysis using N2 as an adsorbate at 77 K. The 

densities of the G70-Au and G70-Au/ZnO nanocomposites were determined by 

helium pycnometry at 20 °C (Micrometrics AccuPyc 1330 helium pycnometer). The 

number-average mean diameter of the Au nanoparticles was determined by analysing 

TEM images using Image j software, whereby more than 200 AuNPs were counted. 
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3.1 Introduction 

Based on studies to date, it seems that carboxylate functionality at the nanoparticle 

surface promotes efficient occlusion within calcite.
1-4

 However, the design rules for 

occlusion are not yet understood. This lack of detailed molecular level understanding 

is a significant barrier to optimising the occlusion efficiency for calcite and also for 

extending occlusion to include alternative inorganic host crystals. Ultimately, this is 

the key to producing new copolymer/crystal nanocomposites that exhibit a range of 

tailored properties. In this Chapter, we examine the ‘carboxylate surface 

functionality’ design rule in more detail. 

Here, RAFT-mediated PISA is used to design two new examples of diblock 

copolymer nanoparticles. More specifically, either a poly(carboxybetaine 

methacrylate)52 (C52 macro-CTA) or a poly(proline methacrylate)50 (P50 macro-CTA)  

is chain-extended with 2-hydroxypropyl methacrylate (H) via RAFT aqueous 

dispersion polymerisation at 70 °C and 20 % w/w solids. In both cases the stabiliser 

block contains carboxylate groups. However, P50 stabiliser is anionic above pH 9.2, 

whereas C52 stabiliser possesses zwitterionic character. Thus the design rule 

hypothesis that will be tested herein is the following: is the presence of carboxylate 

groups alone sufficient to promote efficient nanoparticle occlusion within calcite, or 

is overall anionic character also required? 

 

3.2 Results and Discussion 

3.2.1 Synthesis of RAFT Agent (MPETTC) 

A water-soluble (pH < 4.5) trithiocarbonate-based RAFT CTA (MPETTC) 

containing a morpholine group was prepared via a two-step synthesis, as recently 

described by Penfold and co-workers (see Scheme 3.1).
5
 First, 4-cyano-4-(2-

phenylethanesulfanylthiocarbonyl)sulfanylpentanoic succinimide ester 

(SPETTC) was obtained by conjugation of N-hydroxylsuccinimide with 4-

cyano-4-(2-phenylethanesulfanyl-thiocarbonyl)sulfanylpentanoic acid 

(PETTC), as shown in Scheme 3.1. Thereafter, SPETTC was further reacted 

with 4-(2-aminoethyl)morpholine because amines react preferentially with 

succinimidyl esters rather than with the RAFT trithiocarbonate group. To maximise 
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the RAFT agent fidelity, the amine/succinimidyl ester molar ratio was maintained 

below unity (0.95 eq.).
6,7

 Below pH 4.5, the protonated morpholine group facilitates 

the dissolution of MPETTC in water. This is important for the subsequent RAFT 

polymerisation of P and C monomers.  

 

Scheme 3.1. A two-step way for synthesis of morpholine-functionalised 

trithiocarbonate-based RAFT chain transfer agent (MPETTC). Note: DCC = N, N’-

dicyclohexylcarbodiimide. 

 

3.2.2 Synthesis and Characterisation of C52 and P50 macro-CTAs 

C monomer (see chemical structure shown in Scheme 3.2) was kindly donated by Dr. 

Saruwatari of the Osaka Organic Chemical Company, Japan. P monomer was 

synthesised as previously reported by Kristensen et al.
8
 As shown in Scheme 3.2, 

this one-step, inexpensive method enables large-scale P monomer to be prepared 
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without recourse to protecting-group chemistry (detailed synthesis route can be 

found in the Experimental section). 8,9
 

 

Scheme 3.2. Chemical structure of carboxybetaine methacrylate (C) and synthesis of 

O-methacryloyl-trans-4-hydroxy-L-proline (P). 

 

Base titration of the carboxylic acid group in C monomer indicated a pKa of ~ 2.3 

(see Figure 3.1a). The quaternary ammonium group in C confers permanent cationic 

charge, so this molecule becomes zwitterionic after deprotonation of its carboxylic 

acid group.
10-12

 In contrast, P monomer exhibits two pKa values (pKa1 ~ 1.5, pKa2 ~ 

9.0, see Figure 3.1b) owing to its carboxylic acid groups and secondary amine 

groups. On addition of base, the carboxylic acid group becomes deprotonated first, 

followed by deprotonation of the amine group, giving two distinct pKa values. 

C52 and P50 macro-CTAs were readily synthesised via RAFT polymerisation in 

aqueous solution using MPETTC and ACVA as chain transfer agent and initiator, 

respectively. The pKa values of C52 and P50 are slightly higher compared to their 

corresponding monomers, as shown in Figures 3.1 c and 3.1d. 
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Figure 3.1. Titration curves obtained for dilute aqueous solutions of (a) C monomer; 

(b) P monomer; (c) C52-H250 diblock copolymer nanoparticles; (d) P50-H300 diblock 

copolymer nanoparticles. The pKa calculated for C monomer is ~ 2.3 and pKa1 and 

pKa2 of P monomer are ~ 1.5 and ~ 9.0, respectively; The pKa’ value found for C52-

H250 nanoparticles is ~ 2.4 and pKa1’ and pKa2’ of P50-H300 nanoparticles are ~ 1.6, 

and ~ 9.2, respectively; During titration, the solution pH was first adjusted to about 

pH 2.0 using 1.0 M HCl and then the solution was titrated by adding 0.01 M NaOH. 

Note: the crystallisation of calcium carbonate was carried out at pH 9.5. 

 

Kinetic studies of the homopolymerisation of C confirmed that high conversions (> 

90 %) could be obtained within 3 h. Moreover, there was a linear evolution of 

molecular weight with conversion, as expected for a well-controlled RAFT 

polymerisation (see Figure 3.2).
13

 Similarly, kinetic studies of the 

homopolymerisation of P indicated that high conversions (> 90 %) could also be 

achieved within 3 h and a linear evolution of molecular weight with conversion was 

also obtained, as shown in Figure 3.3b. 
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Figure 3.2. (a) Kinetics of the polymerisation of C monomer using a MPETTC chain 

transfer agent at 70 °C. Approximately 90 % conversion was achieved within 80 min 

and the semi-logarithmic plot exhibited a linear relationship. (b) Evolution of 

molecular weight (Mn) and Mw/Mn with conversion. (c) Gel permeation 

chromatograms (phosphate buffer eluent, refractive index detector) obtained for 

samples taken during the polymerisation of C monomer using MPETTC at 70 °C. 

Calibration was achieved using a series of near-monodisperse poly(ethylene oxide) 

standards. 

 



Chapter 3: Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do 

Anionic Carboxylate Groups Alone Ensure Efficient Occlusion? 

84 

 

 

Figure 3.3. (a) Kinetics of the polymerisation of P using a MPETTC chain transfer 

agent at 70 °C. Approximately 90 % conversion was achieved within 3 h and the 

semi-logarithmic plot exhibited a linear relationship. (b) Evolution of molecular 

weight (Mn) and Mw/Mn with conversion. (c) Gel permeation chromatograms 

(phosphate buffer eluent, refractive index detector) obtained for samples taken 

during the polymerisation of P using MPETTC at 70 °C. Calibration was achieved 

using a series of near-monodisperse poly(ethylene oxide) standards. 

 

Aqueous GPC studies indicated both C52 and P50 macro-CTAs possess relatively low 

molecular weight distribution (Mw/Mn < 1.2). It is worth noting that these two 

macro-CTAs have similar degrees of polymerisation. Hence the stabiliser layer 

thicknesses of the resulting copolymer nanoparticles should be relatively comparable. 

Given the lack of a suitable GPC eluent for analysis of the C-H and P-H copolymers, 
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the blocking efficiency of these two macro-CTAs were examined by self-blocking 

experiments. Briefly, addition of a further charge of the corresponding monomer i.e. 

C to the C52 macro-CTA or P to the P50 macro-CTA leads to chain extension. In both 

cases a relatively high blocking efficiency was achieved, suggesting that the majority 

of trithiocarbonate RAFT chain-ends remained intact (see Figure 3.4). 

 

Figure 3.4. Gel permeation chromatography curves (phosphate buffer eluent, 

refractive index detector) obtained for chain extension of (a) C52 or (b) P50 with the 

corresponding C or P monomer. 

 

3.2.3 Synthesis and Characterisation of C52-H250 and P50-H300 Diblock 

Copolymer Nanoparticles 

Sterically-stabilised C52-H250 and P50-H300 diblock copolymer nanoparticles were 

readily synthesised by chain extension of each macro-CTA in turn with H using a 

RAFT aqueous dispersion polymerisation formulation (see Scheme 3.3). C52-H250 

and P50-H300 were targeted since preliminary experiments indicated that such diblock 

copolymer compositions gave almost identical mean particle diameters. Indeed, as 

shown in Figures 3.5a and 3.5b, TEM analysis indicated that both types of 

nanoparticles possessed narrow particle size distributions with a mean diameter of 

34.5 ± 3.4 nm for C52-H250 and 33.6 ± 4.4 nm for P50-H300.  

Aqueous electrophoresis measurements revealed that both types of nanoparticles 

were cationic at low pH but became anionic at high pH, with C52-H250 and P50-H300 

exhibiting isoelectric points (IEPs) at around pH 6.6 and pH 4.1, respectively (see 
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Figure 3.5c). The effect of addition of [Ca
2+

] on nanoparticle zeta potential was also 

examined at pH 9.5 (Figure 3.5d). 

 

Scheme 3.3. Synthesis of (a) C52-H250 and (b) P50-H300 diblock copolymer 

nanoparticles via RAFT aqueous dispersion polymerisation of H at 70 °C. The 

cartoons depict the surface charge on these two types of sterically-stabilised 

nanoparticles at approximately pH 1.0 and pH 9.5, respectively.
14

 

 

In both cases, the initial highly anionic character observed in the absence of any salt 

was significantly reduced, suggesting extensive Ca
2+ 

binding to the steric stabiliser 

chains.
3
 However the P50-H300 nanoparticles retained a relatively high net negative 

zeta potential of -25 mV at [Ca
2+

] = 1.5 mM, whereas the zeta potential for the C52-

H250 was reduced to just about -3 mV under the same conditions. This difference 
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appears to be decisive in dictating the nanoparticle occlusion efficiency in each case 

(see below). 

 

Figure 3.5. TEM images recorded for (a) C52-H250 and (b) P50-H300 diblock 

copolymer nanoparticles; (c) zeta potential versus pH and (d) zeta potential versus 

[Ca
2+

] obtained at pH 9.5 for C52-H250 and P50-H300 nanoparticles. Note: the zeta 

potential versus pH titration test was conducted without adding salt background and 

the pH was first tuned to pH 11 by NaOH. 

 

Given that both C52 and P50 macro-CTAs have high blocking efficiency and the final 

conversion of HPMA monomer is very high (> 99%), thus the resulting diblock 

copolymer nanoparticles were used directly without further purification in the 

subsequent occlusion experiments. Meanwhile, dynamic light scattering studies (see 

Figure 3.6) confirmed that both types of nanoparticles exhibited essentially 

unchanged hydrodynamic diameters in the absence and presence of 1.5 mM [Ca
2+

], 

which indicated good colloidal stability under the conditions typically used for 

calcium carbonate formation.
2-4,15,16

 Good colloidal stability is an essential 



Chapter 3: Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do 

Anionic Carboxylate Groups Alone Ensure Efficient Occlusion? 

88 

 

prerequisite for the occlusion studies. If the nanoparticles aggregate in the presence 

of [Ca
2+

], they are unlikely to be efficiently incorporated into the host crystal. 

 

Figure 3.6. Hydrodynamic diameters recorded for (a) C52-H250 and (b) P50-H300 

nanoparticles in aqueous solution and also in the presence of 1.5 mM [Ca
2+

]. 

Dynamic lighting scattering studies were conducted using 0.1 % w/w copolymer at 

pH 9.5. These results indicated that both the C52-H250 and P50-H300 nanoparticles are 

colloidally stable in the presence of [Ca
2+

] = 1.5 mM. 

 

3.2.4 Incorporation of C52-H250 and P50-H300 Diblock Copolymer Nanoparticles 

into Calcium Carbonate Crystals 

Calcium carbonate crystals were precipitated at an initial pH 9.5 by exposing an 

aqueous solution of 1.5 mM [Ca
2+

] containing 0.01 % w/w C52-H250 or P50-H300 

nanoparticles to ammonium carbonate vapour at 20 °C for 24 h.
17

 As expected, 

experiments conducted in the absence of any nanoparticles resulted in the formation 

of 30 - 50 µm rhombohedral crystals, which is typically characteristic of calcite (see 

Figures 3.7a and 3.7b). The internal structure of these crystals was examined by 

FE-SEM after crushing the crystals. As expected, smooth cross-sections were 

observed, as shown in Figures 3.7c and 3.7d.  
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Figure 3.7. Calcium carbonate crystals prepared in the absence of any additives. (a) 

optical micrograph; (b) SEM image; (c)  SEM image showing the crushed crystal; (d) 

magnified SEM image showing the dashed rectangle area indicated in (c). Note: the 

crystallisation was conducted at an initial pH of 9.5. 

 

In addtion, G70-B100 diblock copolymer nanoparticles with a mean diameter of ~20 

nm (see Figures 3.8a and 3.8b) were also prepared by RAFT aqueous emulsion 

polymerisation. The G70 stabiliser block is non-ionic and the calcium carbonate 

crystals produced in the presence of these nanoparticles exhibited a characteristic 

rhombohedral morphology (see Figure 3.8c). Observation of the internal crystal 

structure by SEM confirmed that there was no occlusion (see Figures 3.8d and 3.8e). 

This is not really surprising, because previous studies suggest that anionic character 

is usually essential for nanoparticle occlusion.
1-4,15,16

 It is emphasised that the C52-

H250 and P50-H300 nanoparticles have comparable mean diameters and coronal 

stabiliser thicknesses. Both types of nanoparticles possess carboxylic acid groups, 

which are normally considered to be a pre-requisite for efficient occlusion.
1-4,15,16
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Although the carboxylic acid groups of C52-H250 and P50-H300 are deprotonated above 

pH 9, the former nanoparticles are zwitterionic under these conditions (which 

correspond to those used for occlusion) while the latter are anionic. This subtle 

difference offers an opportunity to ask an interesting question: are anionic 

carboxylate groups alone sufficient to ensure efficient occlusion? 

 

Figure 3.8. (a) Synthesis of poly(glycerol monomethacrylate)70-poly(benzyl 

methacrylate)100 (G70-B100) diblock copolymer nanoparticles. (b)~(e) Calcium 

carbonate crystals prepared in the presence of G70-B100 diblock copolymer 

nanoparticles: (b)  TEM of G70-B100 nanoparticles; (c) optical micrograph of calcium 

carbonate precipitated in the presence of G70-B100; (d) representive SEM image of 

calcium carbonate precipitated in the presence of G70-B100; (e) magnified SEM 

image showing the area indicated in (d). Several crystals were examined by SEM 

and consistent results were obtained. 
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Similarly, calcium carbonate precipitation in the presence of the C52-H250 

nanoparticles also yielded a rhombohedral morphology, but along with a minor 

population of vaterite crystals (red arrows indicated in Figures 3.9a and 3.9b). 

Crystals grown in the presence of P50-H300 nanoparticles were also rhombohedral but 

had smaller dimensions of 10 ~ 30 µm (see Figures 3.9d and 3.9e). Meanwhile, 

roughened faces and truncation of the edges were also observed (see inset in Figure 

3.9e), which is different from the crystals precipitated in the presence of C52-H250 

(see inset in Figure 3.9b). 

The internal crystal morphology was evaluated by examining cross-sections of 

deliberately-fractured crystals. There was no evidence of any nanoparticle occlusion 

within crystals grown in the presence of C52-H250 nanoparticles (Figure 3.9c). 

However, when P50-H300 nanoparticles were used as an additive, FE-SEM images of 

the internal crystal structure confirmed that P50-H300 nanoparticles were uniformly 

distributed throughout the whole crystal (Figure 3.9f). Further, the apparent 

voids/occluded particles were comparable in diameter to the P50-H300 particles prior 

to occlusion. Moreover, the voids are isolated, indicating there are no nanoparticle 

aggregates. This observation further confirmed the copolymer nanoparticles are 

colloidal stable. 

Raman spectroscopy studies (Figure 3.10a) indicated that crystals containing P50-

H300 nanoparticles possessed various spectral features that are known to be 

characteristic of calcite; bands at 154 cm
-1

 and 280 cm
-1

 are lattice modes, while 

bands at 712 cm
-1

 (υ4) and 1086 cm
-1

 (υ1) have been assigned to the in-plane bending 

and symmetric stretching of carbonate, respectively.
17,18

  

Bulk crystal structures were confirmed by powder XRD studies (Figure 3.10b). In 

particular, calcium carbonate precipitated in the presence of C52-H250 nanoparticles 

results in a mixture of calcite and vaterite phases. This is probably because the C52-

H250 nanoparticles can act as an ‘impurity’ that slightly perturbs normal calcite 

growth. In contrast, only calcite was detected for calcium carbonate prepared in the 

presence of P50-H300 nanoparticles. 
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Figure 3.9. Left column: calcium carbonate crystals precipitated in the presence of 

0.01 % w/w C52-H250: (a) optical micrograph; (b) FE-SEM image; (c) FE-SEM 

image showing cross-sections of calcium carbonate. Right column: calcium 

carbonate crystals precipitated in the presence of 0.01 % w/w P50-H300: (d) optical 

micrograph; (e) FE-SEM image; (f) FE-SEM image showing cross-sections of 

calcium carbonate. The insets in (b) and (e) show the surface morphologies of the 

crystals. The insets in (c) and (f) show low magnification images of the same crystals 

(Note: dashed red squares indicates the areas shown in (c) and (f)). The red arrow in 

(f) indicates the rough surface of the calcite. Clearly, there is no nanoparticle 

occlusion in (c), whereas there is extensive occlusion in (f). 
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Figure 3.10. (a) Raman spectra recorded for a calcite crystal control and calcite 

containing occluded P50-H300 nanoparticles; (b) XRD patterns recorded for calcite 

precipitated in the presence of C52-H250 (C denotes calcite and V de-notes vaterite) 

and P50-H300. 

 

Thermogravimetric analysis (TGA; Figure 3.11) studies confirmed that there was no 

detectable occlusion of C52-H250 while the P50-H300/calcite crystals comprised 6.8 % 

w/w nanoparticles. It was found that heating P50-H300 copolymer to 900 °C resulted 

in approximately 0.3 % w/w residue due to either residual salt and/or ash. Heating 

pure calcium carbonate led to its decomposition above 625 °C leaving an oxide 

residue (56.4 % w/w) at 900 °C (theoretical value = 56 % w/w). TGA studies 

indicated that P50-H300/calcite nanocomposite crystals contained 1.0 % w/w water by 

mass and exhibited a 4.0 % weight loss between 250 °C and 500 °C. This is due to 

copolymer pyrolysis located near the outer surfaces of the crystals. The additional 

43 % weight loss observed between 500 °C and 800 °C is due to both copolymer 

pyrolysis and CO2 evolution from the thermal decomposition of CaCO3. As the P50-

H300 salt/ash residue is negligible (for example, if the copolymer content of the 

composite crystals is 50 % w/w, then the final polymer ash will be 50 x 0.3 = 0.15 % 

w/w), we assume that all of the 52.0 % w/w residue is CaO, which is derived from 

the decomposition of CaCO3, corresponding to 40.5 % w/w CO2. Thus the 

copolymer nanoparticle content of the original nanocomposite crystals can be 

calculated to be 6.8 % w/w [extent of occlusion = 4.0 % w/w + (43 % w/w - 40.2 % 

w/w)]. Assuming a copolymer density of 1.22 g cm
-3

, this corresponds to 14 % v/v 

copolymer nanoparticle occlusion. Nanoparticle occlusion was further confirmed by 
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FT-IR spectroscopy by monitoring –C=O stretching vibration ascribed from the 

copolymer P50-H300 nanoparticles (see Figure 3.12). 

 

Figure 3.11. TGA curves recorded for P50-H300 and C52-H250 nanoparticles alone, 

calcite crystals grown in the presence of either C52-H250 or P50-H300, and a pure 

calcite control. 

 

According to the literature, anionic nanoparticles containing surface carboxylate 

groups could be occluded within calcite.
1-4

 Furthermore, it was suggested that this 

motif played a key role in promoting occlusion. In the present study, both C52-H250 

and P50-H300 nanoparticles also possess surface carboxylate groups. However, the 

former zwitterionic nanoparticles exhibit no signs of occlusion, while the overall 

anionic P50-H300 copolymer nanoparticles are homogeneously incorporated into 

calcite crystals at approximately 6.8 % w/w. These observations indicate that both 

the presence of carboxylic acid groups and overall anionic character are required for 

successful nanoparticle occlusion. 
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Figure 3.12. FT-IR spectra recorded for P50-H300 nanoparticles alone and P50-

H300/calcite nanocomposite crystals. A weak carbonyl ester band at 1728 cm
-1

 is 

discernible in latter spectrum, confirming successful occlusion of copolymer 

nanoparticles within the calcite crystals. 

 

A reasonable explanation for these observations is as follows. Ca
2+

 ions interact 

strongly with the anionic carboxylate groups on both the zwitterionic C52 and the 

anionic P50 stabiliser chains at pH 9.5. However, the overall zeta potential is reduced 

to around -3 mV in the presence of 1.5 mM [Ca
2+

] in the former case (Figure 3.5d), 

which is insufficient to ensure strong electrostatic adsorption of the C52-H250 

nanoparticles onto the growing crystal surface.
19

 In contrast, P50-H300 nanoparticles 

retain an anionic zeta potential of -25 mV under the same conditions, which enables 

their strong electrostatic binding onto the growing crystal surface.
1,3,16

 Thus the 

subtle structural differences between these two types of sterically-stabilised 

nanoparticles has a dramatic effect on their interactions with growing calcite crystals. 
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3.3 Conclusions 

C52 and P50 macro-CTAs were readily synthesised by using MPETTC RAFT agent, 

which is water-soluble below pH 4.5. These two macro-CTAs possess relatively low 

polydispersities (Mw/Mn < 1.2), as determined by aqueous GPC analysis. C52-H250 

and P50-H300 nanoparticles were prepared at 70 °C by chain extension via RAFT 

aqueous dispersion polymerisation of H at 20% w/w solids. 

These two diblock copolymer nanoparticles were subsequently used as additives 

during the in situ crystallisation of calcium carbonate crystal. FE-SEM studies 

indicated that C52-H250 nanoparticles cannot be occluded within such crystals while 

P50-H300 nanoparticles are uniformly incorporated throughout the host crystal. Raman 

spectroscopy and XRD analysis confirmed that calcium carbonate containing P50-

H300 formed single crystals of calcite. The extent of occlusion of P50-H300 

nanoparticles within calcite was determined to be 6.8 % w/w (which corresponds to a 

volume fraction of 14 %). 

In summary, this study demonstrates that anionic carboxylate functionality is a 

necessary but not sufficient condition for efficient nanoparticle occlusion within 

calcite. Overall anionic character appears to be an additional prerequisite, because 

essentially no occlusion is observed when zwitterionic polycarboxybetaine-stabilised 

nanoparticles are employed. This work provides a deeper understanding of the 

design rules for efficient nanoparticle occlusion within this particular inorganic host 

crystal. 
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4.1 Introduction 

In Chapter 3, we demonstrated that overall anionic surface charge of the guest 

nanoparticles is essential for their occlusion. However, in some cases, no occlusion 

is observed even when this condition is satisfied. For example, Wooley and co-

workers used poly(acrylic acid)-stabilised copolymer nanoparticles as additives for 

the in situ crystallisation of halite but found that such nanoparticles were solely 

located on the crystal surface, with little or no occlusion.
1
 Qi and co-workers showed 

that carboxylic acid-functionalised polystyrene latexes can only be incorporated into 

the surface layer of calcite.
2
 Similar results were observed by Hanisch et al., who 

utilised anionic phosphonate functionalised vesicles as additives.
3
 A robust set of 

design rules for efficient nanoparticle occlusion remains elusive. As a result, 

progress in incorporating nanoparticles into inorganic crystals to date has mainly 

relied on empirical trial-and-error experiments.  

Clearly, the surface character of the nanoparticles must play a crucial role in 

occlusion because this dictates the nature of the host-guest interaction. However, the 

influence of surface composition on the extent of occlusion is poorly understood. 

This is in part because precise control over the nanoparticle surface composition is 

somewhat problematic.
4-6

 As mentioned previously, PISA-mediated by RAFT 

enables the facile synthesis of a wide range of sterically-stabilised diblock 

copolymer nanoparticles with controllable size, tunable morphology and adjustable 

surface functionality.
7-19 

By varying the stabiliser macro-CTA, a range of non-

ionic,
8,11,12,14,15,17-20

 anionic,
21,22 

cationic
23-25 

and zwitterionic
26,27 

nanoparticles can be 

readily prepared by chain extension with a core-forming block monomer in either 

polar or non-polar solvents. Moreover, Armes and co-workers demonstrated that the 

surface charge density can be tuned by using a binary mixture of macro-CTAs.
22,23,25

 

This is an attractive means of adjusting the stabiliser charge density by introducing 

an uncharged stabiliser macro-CTA. As far as we are aware, no other strategies that 

enable stabiliser charge density to be conveniently fine-tuned via PISA formulation 

have been reported. 

In this Chapter we seek to precisely tune the surface composition of anionic diblock 

copolymer nanoparticles to extend our understanding of the design rules that govern 



Chapter 4: Occlusion of Poly(ammonium 2-sulfatoethyl methacrylate)-Poly(benzyl 

methacrylate) Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the 

Surface Density of Anionic Stabiliser Chains 

 

101 
 

nanoparticle occlusion within a model single crystal (calcite). More specifically, we 

show for the first time that PISA can be used to prepare copolymer nanoparticles 

with differing stabiliser surface densities. This is achieved by preparing 

poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) (S-B) 

nanoparticles using either RAFT dispersion polymerisation in a 2:1 v/v 

ethanol/water mixture or RAFT aqueous emulsion polymerisation (see Scheme 4.1). 

This approach offers an unprecedented opportunity to examine the relationship 

between the stabiliser surface density and the extent of nanoparticle occlusion. For 

the sake of brevity, a shorthand notation is utilised: ‘Sx-By (emulsion)’ denotes 

poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate)  diblock 

copolymer prepared by RAFT emulsion polymerisation, where x and y indicate the 

mean DP of each block. 

 

Scheme 4.1. Synthesis of poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl 

methacrylate) (S-B) diblock copolymer nanoparticles at 10 % w/w solids by chain 

extension of a S macro-CTA via either RAFT dispersion polymerisation or RAFT 

aqueous emulsion polymerisation of benzyl methacrylate (B) at 70 °C for 24 h. The 

schematic cartoons indicate subtle differences in the mean aggregation number and 

stabiliser surface density when using these two PISA formulations.
28
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4.2 Results and Discussion 

4.2.1 Copolymer Synthesis and Characterisation. 

As far as we are aware, prior to this Thesis, there were no previous reports 

describing the RAFT polymerisation of ammonium 2-sulfatoethyl methacrylate. 

Herein two poly(ammonium 2-sulfatoethyl methacrylate) macro-CTAs with mean 

DPs of either 32 or 73 were prepared via RAFT aqueous solution polymerisation of 

ammonium 2-sulfatoethyl methacrylate monomer at 25 % w/v solids and 70 °C. 

Figure 4.1a shows the conversion vs. time curve obtained for the RAFT 

polymerisation of ammonium 2-sulfatoethyl methacrylate with a target DP of 60. 

Typically, 80 % conversion can be achieved within 2 h at this temperature. Aqueous 

GPC studies indicated a linear evolution in number-average molecular weight 

against conversion (Figure 4.1b), which is consistent with the expected pseudo-

living character of a RAFT polymerisation.
29

 Moreover, each macro-CTA had a 

relatively narrow molecular weight distribution (Mw/Mn < 1.15, see Figures 4.2a and 

4.2b), which in principle enables the preparation of sterically-stabilised nanoparticles 

with a uniform corona thickness. Unfortunately, GPC cannot be used to analyse Sx-

By diblock copolymers because no suitable eluent was available for such amphiphilic 

chains. Instead, chain extension experiments were conducted using these S macro-

CTAs. These studies indicated high blocking efficiencies on addition of a second 

charge of S monomer, which suggests a high degree of RAFT end-group 

functionalisation (see Figures 4.2a and 4.2b). These observations are consistent with 

UV-visible spectroscopy analysis, which indicate degrees of RAFT end-group 

functionality of more than 99%, see Figures 4.2c and 4.2d. CPCP has a maximum 

absorbance at a wavelength of 301 nm, so the end-group functionality can be 

calculated as follows: the absorbance at a given concentration of S macro-CTA is 

divided by the theoretical absorbance calculated from the Beer-Lambert calibration 

plot, 𝐴 = 𝜀𝑐𝑙 (Figure 4.2d). For example, the experimental absorbance for 5 × 10
-5

 

M S73 is 0.719, while the theoretical absorbance is 0.724, thus the RAFT end-group 

functionality for S73 is given by (0.719/0.724) × 100%, or ~ 99.3%. 
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Figure 4.1. (a) Conversion vs time curve calculated from 
1
H NMR spectra (D2O) for 

the RAFT synthesis of S macro-CTA in water at 70 °C (target DP = 60; 

CTA/initiator molar ratio = 5.0). (b) Evolution of the number-average molecular 

weight Mn (calculated using PEO standards) and molecular weight distribution 

(Mw/Mn) of S macro-CTA (target DP = 60; CTA/initiator molar ratio = 5.0) with 

monomer conversion as judged by aqueous GPC. 

 

As illustrated in Scheme 4.1, a series of anionic S-B diblock copolymer 

nanoparticles were prepared by either RAFT dispersion polymerisation in a 2:1 v/v 

ethanol/water mixture or RAFT aqueous emulsion polymerisation. The B monomer 

conversion was monitored by 
1
H NMR spectroscopy, which indicated that high 

conversions (> 99 %) were achieved after 24 h at 70 
o
C in all cases. Such PISA 

formulations enable the particle size to be readily controlled by systematic variation 
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of the target DP of the core-forming block.
30-33

 Furthermore, the nature of the steric 

stabiliser block dictates the surface chemistry.
30-33

 Thus in the present Chapter 

choosing S macro-CTA should lead to anionic nanoparticles. 

 

Figure 4.2. Aqueous GPC curves obtained for (a) S32 macro-CTA and (b) S73 macro-

CTA and their subsequent chain extension via RAFT aqueous solution 

polymerisation using S monomer. This ‘self-blocking’ experiment was conducted in 

aqueous solution at 70 °C using ACVA initiator and a S macro-CTA/ACVA molar 

ratio of 5.0. Relatively high blocking efficiencies are obtained for these two macro-

CTAs, which indicates high RAFT chain-end fidelity. (c) UV-visible spectra 

obtained for the CPCP chain transfer agent at concentrations ranging from 1.0 × 10
-5

 

M to 1.0 × 10
-4

 M; (d) Beer-Lambert plot for this CPCP RAFT agent recorded in 

methanol in order to calculate the degree of end-group functionality of each S 

macro-CTA.  

 

Figure 4.3 shows representative TEM images of sterically-stabilised S-B diblock 

copolymer nanoparticles prepared via PISA using either S32 or S73 macro-CTAs. In 

each case, the target DP of the core-forming B block was fixed at 300. However, the 

precise nature of the PISA formulation determines the final particle diameter.
21,30,33,34
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S-B nanoparticles prepared via RAFT dispersion polymerisation are significantly 

larger than those obtained by RAFT aqueous emulsion polymerisation. This suggests 

a higher mean aggregation number in the former case (see Table 4.1), which is 

presumably because the repulsive electrostatic forces operating between neighboring 

copolymer chains are significantly weaker in a 2:1 ethanol/water mixture (εr ~ 43 at 

298 K) compared to pure water (εr = 79.5 at the same temperature).
35

 Moreover, 

using a shorter S stabiliser block for RAFT dispersion polymerisation produces 

larger S-B nanoparticles (compare Figures 4.3a and 4.3c). Similar results have been 

reported for other PISA formulations.
13,15 

 

Figure 4.3. Representative TEM images obtained for various anionic diblock 

copolymer nanoparticles produced via RAFT-mediated PISA. (a) S32-B300 

(dispersion); (b) S32-B300 (emulsion); (c) S73-B300 (dispersion); (d) S73-B300 

(emulsion). 

 

Figure 4.4 shows dynamic light scattering (DLS) and aqueous electrophoresis data 

for various diblock copolymer nanoparticles as a function of either pH or Ca
2+

 

concentration.  
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Table 4.1. Summary of TEM diameters, DLS diameters, XPS elemental 

compositions, mean aggregation number and calculated S stabiliser surface densities 

obtained for various diblock copolymer nanoparticles prepared via PISA. Note: well 

defined S73-B100 (emulsion) diblock copolymer nanoparticles cannot be prepared by 

RAFT emulsion polymerisation because the core-forming B100 block is relatively 

short.

 

According to Figure 4.4a, the hydrodynamic diameter of the nanoparticles is 

independent of the solution pH, which is indicative of good colloidal stability. Such 

behavior differs qualitatively from that of poly(methacrylic acid)-stabilised diblock 

copolymer nanoparticles, since in the latter case the weak polyelectrolyte stabiliser 

chains become protonated at low pH, resulting in aggregation.
4,5

 Figure 4.4b shows 

that Sx-By diblock copolymer nanoparticles exhibit highly anionic pH-independent 

zeta potentials, as expected for a strong polyelectrolyte stabiliser.
12,22,23

 This pH-

independent character enables aggregation to be avoided during attempted occlusion, 

even if crystallisation involves some variation in solution pH. It is emphasised that 

good colloidal stability of the nanoparticles is an essential prerequisite for successful 

occlusion. This point will be further discussed in the following Chapters. Comparing 

Sx-By nanoparticles prepared by dispersion polymerisation and emulsion 

polymerisation, the former exhibit more negative zeta potentials than the latter. The 

physical reason for this difference in electrophoretic behavior is examined later.  

Sample ID 

TEM 

diameter 

(nm)
a
 

DLS 

diameter 

(nm)  

XPS data 

Aggregation 

number 

(Nagg) 

Stabilizer surface 

density (10-2 

chain per nm2) 
c
 

S2p 

atom 

% 

C1s 

atom 

% 

S2p/C1s 

atomic ratio 

(10-3) 

Normalized 

S2p/C1s 

atomic ratio 

(%)
b
 

S32 homopolymer N/A N/A 8.2 47.6 172.3
e
 100.0 N/A N/A 

S32-B300 (dispersion) 56 ± 5 80 (0.07)
d
 1.3 74.2 17.5 10.6 1204 10.9 

S32-B300 (emulsion) 18 ± 4 31 (0.12) 0.7 71.8 9.7 5.9 40 3.4 

S32-B500 (dispersion) 100 ± 16 129 (0.03) 1.6 73.4 21.8 13.2 4114 12.4 

S32-B500 (emulsion) 26 ± 6 36 (0.17) 0.6 72.4 8.3 5.0 72 3.2 

S73 homopolymer N/A N/A 8.3 48.5 171.1
e
 100.0 N/A N/A 

S73-B100 (dispersion) 19 ± 2 42 (0.27) 1.5 73.2 20.5 12.0 141 6.5 

S73-B300 (dispersion) 32 ± 3 52 (0.07) 1.3 72.1 18.0 10.5 224 5.4 

S73-B300 (emulsion) 18 ± 3 35 (0.10) 0.7 78.8 8.9 5.2 40 3.1 

S73-B500 (dispersion) 53 ± 12 96 (0.07) 1.4 74.9 18.7 10.9 612 6.0 

S73-B500 (emulsion) 21 ± 4 45 (0.27) 0.6 73.4 8.2 4.8 38 2.3 

[0.5 S73+0.5 G70]-

B300 (emulsion) 
21 ± 3 45 (0.22) 0.4 72.4 5.5 3.2 64 1.9

f
 

PBzMA300 N/A N/A 0.0 84.9 0.0 0 N/A N/A 

a
 Mean TEM diameter determined by analyzing more than 200 particles using ImageJ software. 

b
 [S2p/C1s (particle)]/[ S2p/C1s (stabilizer)] (%). 

c 
Stabiliser surface density was calculated using equation (4.1). 

d 
The number in brackets represents the DLS polydispersity. 

e 
Theoretical values are 175.3 and 170.5 for S32 and S73, respectively. 

f
 There are two types of stabilizer in this case; the calculated value refers only to the PSEM73 chains to aid comparison. 
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Figure 4.4. DLS and aqueous electrophoresis data obtained for spherical diblock 

copolymer nanoparticles conducted at a copolymer concentration of ~ 0.1 % w/w: (a) 

hydrodynamic diameter vs. pH; (b) zeta potential vs. pH in the presence of 1 mM 

NaCl as background electrolyte and (c) zeta potential vs. Ca
2+

 concentration, 

conducted at a copolymer nanoparticle concentration of 0.01 % w/w (which 

corresponds to the occlusion conditions). The inset in (c) shows the zeta potentials 

observed for nanoparticles at CaCl2 concentrations ranging from 0 to 0.1 mM. 
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Although the zeta potential for the Sx-By diblock copolymer nanoparticles is pH-

independent, this parameter is affected by the addition of CaCl2, even at a relatively 

low concentration (0.1 mM) as shown in Figure 4.4c. Indeed, all nanoparticles 

exhibit a significant reduction in zeta potential in the presence of Ca
2+

, although an 

overall zeta potential of around -15 mV is maintained at 1.5 mM CaCl2 or higher. In 

addition, the intensity-average diameters recorded for S73-B300 (emulsion) and S73-

B300 (dispersion) nanoparticles in the presence of 1.5 mM CaCl2 are smaller than 

those determined in the absence of Ca
2+

 ions (see Figure 4.5). This is most likely the 

result of charge screening caused by the presence of salt, although it is worth noting 

that the divalent Ca
2+

 cations can bind strongly to the anionic sulfate groups on the S 

stabiliser chains. Importantly, the presence of 1.5 mM CaCl2 does not cause any 

aggregation or precipitation (see Figure 4.5). Such S stabiliser-Ca
2+

 ion interactions 

are likely to be important for occlusion during in situ crystallisation, because they 

should promote nanoparticle adsorption onto the crystal surface.
4-6,36-38

 

 

Figure 4.5. DLS diameters recorded for (a) S73-B300 (emulsion) and (b) S73-B300 

(dispersion) copolymer nanoparticles in the absence or presence of 1.5 mM CaCl2. 

 

4.2.2 Calcium Carbonate Precipitation 

Calcium carbonate crystals were precipitated at pH 8-9 by exposing an aqueous 

solution containing 1.5 mM CaCl2 and 0.0-0.10 % w/w diblock copolymer 

nanoparticles to ammonium carbonate vapor at 20 °C for 24 h.
39

 A mixture of calcite 

and vaterite was precipitated at a copolymer concentration of 0.10 % w/w (Figure 

4.6a), which is consistent with previous reports.
5,36,37

 Thus a lower copolymer 
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concentration of 0.01 % w/w was selected for more detailed studies. Precipitation 

under the above conditions yielded 30 - 50 µm rhombohedral calcite crystals in 

either the absence or presence of S-B diblock copolymer nanoparticles or S73 

homopolymer, see Figures 4.6b ~ 4.6d.  

 

Figure 4.6. Optical micrographs recorded for calcium carbonate crytsals obtained 

under various conditions: (a) 0.1 % w/w S73-B300 (emulsion) diblock copolymer 

nanoparticles; (b) control calcium carbonate without any additive; (c) calcium 

carbonate precipitated in the presence of S73 homopolymer (same number of moles 

as that used for the S73-B300 diblock copolymer nanoparticle studies); (d) calcium 

carbonate precipitated in the presence of 0.01 % w/w S73-B300 (emulsion). The insets 

show the corresponding FE-SEM images. N.B. Figure 4.6a shows a mixture of 

calcite and vaterite and the corresponding inset represents a vaterite crystal. Unless 

otherwise stated, calcium carbonate crystals were precipitated at pH 8~9 in all cases. 

 

It is also worth noting that each of these rhombohedral calcite crystals possesses a 

smooth surface. This is significantly different from the crystals precipitated in the 

presence of P50-H300 diblock copolymer nanoparticles, as shown in Chapter 3. The 

reason for these observations is still not clear, but most probably it is related to the 
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differing surface functionalities of these two diblock copolymer nanoparticles. As far 

as we are aware, the presence of carboxylic acid groups promotes a relatively rough 

crystal surface.
4,5,36

  

 

Figure 4.7. (a) Synthesis of non-ionic G70-B300; (b) [0.5 S73 + 0.5 G70]-B300 diblock 

copolymer nanoparticles at 10 % w/w solids by chain extension with B monomer at 

70 °C for 24 h; (c) FE-SEM image of fractured calcium carbonate crystals 

precipitated in the presence of 0.01 % w/w of G70-B300 (emulsion); (d) FE-SEM 

image obtained for fractured calcium carbonate crystals prepared in the presence of 

0.01 % w/w [0.5 S73 + 0.5 G70]-B300 copolymer nanoparticles. The insets in (c) and 

(d) show TEM images of the corresponding diblock copolymer nanoparticles. 
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Figure 4.8. Representative FE-SEM images obtained for fractured calcium 

carbonate crystals prepared in the presence of (a) S32-B300 (dispersion) nanoparticles, 

(c) S73-B300 (dispersion) nanoparticles and (e) S32-B300 (emulsion) nanoparticles at a 

fixed copolymer concentration of 0.01 % w/w. (b), (d) and (f) present the magnified 

FE-SEM images showing the corresponding areas indicated in (a), (c) and (e), 

respectively. The insets in (b) and (d) are magnified images corresponding to the 

labeled rectangular areas. 

 

Particle occlusion within the calcite crystals was investigated by imaging fractured 

crystals with FE-SEM. It is worth noting that no occlusion was observed for G70-B300 

copolymer nanoparticles as expected (see Figures 4.7a and 4.7c). This is because the 

G70 stabiliser is non-ionic, hence there is no favorable electrostatic interaction with 

the growing crystal. This observation is in good agreement with the previous 
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occlusion experiments, in which smaller G70-B100 diblock copolymer nanoparticles 

of approximate 20 nm diameter were used as additives (see Figure 3.8, Chapter 3). 

Some degree of occlusion did occur when 50 % of the non-ionic G70 stabiliser chains 

were replaced with anionic S73 stabiliser for the synthesis of [0.5 S73 + 0.5 G70]-B300 

(emulsion) nanoparticles using a binary macro-CTA mixture,
22,23,25

 see Figures 4.7b 

and 4.7d. Here the binary macro-CTA mixture means two types of macro-CTAs 

were used as stabilisers during the PISA syntheses. The advantage of this method is 

that it provides fine control over the anionic charge density, as shown in Figure 4.7b. 

Some degree of occlusion was also observed for S32-B300 and S73-B300 nanoparticles 

prepared via RAFT dispersion polymerisation, but this appears to be rather 

inhomogeneous (see Figures 4.8a-4.8b and Figures 4.8c-4.8d). In contrast, the S32-

B300 nanoparticles obtained using RAFT aqueous emulsion polymerisation are much 

more uniformly incorporated within calcite (see Figures 4.8e and 4.8f). Similarly, 

S73-B300 diblock copolymer nanoparticles prepared via RAFT emulsion 

polymerisation can also be densely incorporated into calcite, as shown in Figure 4.9. 

The calcite crystals precipitated in the presence of 0.01 % w/w S73-B300 (emulsion) 

were examined in more detail. The internal structure of a fractured crystal is shown 

in Figure 4.9: these images demonstrate that the nanoparticles are both non-

aggregated and uniformly occluded throughout the crystal. It is also noteworthy that 

all nanoparticle cavities are spherical and comparable in size to the original S73-B300 

(emulsion) nanoparticles (Figure 4.9d). Kim et al. previously reported that relatively 

soft anionic diblock copolymer spherical micelles deform and flatten during their 

occlusion into calcite.
5
 This phenomenon was recently studied in detail by Cho et al., 

who used AFM and micromechanical simulations to rationalise the in situ change in 

copolymer morphology.
4
 Presumably, the relatively high glass transition temperature 

of the B core-forming block prevents deformation of the S73-B300 (emulsion) 

nanoparticles examined hereby. 

The crystal structure can be readily assigned using Raman spectroscopy. 

Characteristic bands for calcite were detected at 154 and 280 cm
-1

 (lattice modes), 

712 cm
-1 

(υ4) and 1086 cm
-1

 (υ1) for both a CaCO3 control and a S73-B300 

(emulsion)/calcite nanocomposite, as shown in Figure 4.10a.
40,41

 Although no 

characteristic band could be observed by Raman spectroscopy, a weak ester carbonyl 

band at 1729 cm
-1

 originating from S73-B300 (emulsion) diblock copolymer 
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nanoparticles is discernible in the FT-IR spectrum recorded for S73-B300 

(emulsion)/calcite, which supports successful occlusion of these copolymer 

nanoparticles within the calcite crystals (see Figure 4.10b).  

 

Figure 4.9. Representative FE-SEM images obtained for fractured calcium 

carbonate crystals prepared in the presence of (a) S73-B300 (emulsion), showing 

fractured crystals at low magnification. The inset in (a) shows an optical micrograph 

obtained for intact rhombohedral calcite crystals prior to fracture. (b) and (c) depict 

magnified images of selected areas as indicated in (a), confirming that such 

nanoparticles are efficiently and uniformly occluded within calcium carbonate 

crystals. (d) Magnified image showing the rectangular area indicated in (c). The inset 

in (d) is a TEM image obtained for the S73-B300 (emulsion) nanoparticles prior to 

their occlusion. Clearly, the dimensions of the occluded features observed in (d) are 

consistent with the diameter of the original nanoparticles. 
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Figure 4.10. (a) Raman spectra recorded for a calcite control (black spectrum) and a 

S73-B300 (emulsion)/calcite nanocomposite crystal (red spectrum). (b) FT-IR spectra 

recorded for S73-B300 (emulsion) nanoparticles alone and nanocomposite crystals 

comprising S73-B300 (emulsion) nanoparticles occluded within calcite. 

 

The extent of occlusion was quantified using TGA (Figure 4.11a), which showed 

that the S73-B300 (emulsion) diblock copolymer nanoparticles were completely 

pyrolysed on heating in air up to 550 °C, while pure calcite decomposed to give a 

CaO residue of 56.4 % w/w, which is close to its theoretical CaO content of 56.0 % 

w/w. Based on these data, it is calculated that the occlusion is almost negligible for 

S73-B300 (dispersion) nanoparticles. For the [0.5 S73 + 0.5 G70]-B300 nanoparticles, the 

extent of occlusion is ~ 2 % w/w. The TGA curve obtained for the S73-B300 

(emulsion)/calcite nanocomposite crystals exhibited three distinct features. First, a 

3.7 % mass loss was observed up to 600 °C which is assigned to decomposition of 

S73-B300 (emulsion) nanoparticles located in the outer regions of the host crystal. 

Second, the TGA curve was shifted to a higher temperature, suggesting enhanced 

thermal stability for the nanocomposite crystal. Finally, the final residue of 52.2 % 

w/w was significantly lower than 56 % w/w, which indicates successful occlusion. 

The degree of occlusion calculated for S73-B300 (emulsion) nanoparticles is 7.5 % 

w/w, or approximately 16 % v/v (assuming a copolymer density of 1.18 g cm
-3

). The 

occlusion of S73-B300 (emulsion) diblock copolymer nanoparticles within calcite was 

also confirmed by FT-IR spectroscopy, as previous discussed in Figure 4.10b.  
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Figure 4.11. (a) TGA data obtained for S73-B300/calcite nanocomposite crystals and 

corresponding control samples. Calcite control shows the expected approximate 44% 

mass loss as a result of CaO formation via loss of CO2. S73-B300 (dispersion)/calcite 

nanocomposite crystals exhibit a slightly greater weight loss compared to the calcite 

control; this indicates a relatively low level of copolymer nanoparticle occlusion and 

is consistent with FE-SEM studies (see Figure 4.8). [0.5 S73+0.5 G70]-B300 

(emulsion)/calcite nanocomposite crystals show more weight loss and S73-B300 

(emulsion)/calcite nanocomposite crystals exhibit a significantly greater weight loss. 

Original S73-B300 diblock copolymer nanoparticles show complete pyrolysis of this 

purely organic component. (b) plots of extent of occlusion versus stabiliser surface 

density. Figure 4.11b indicates that the extent of occlusion of copolymer 

nanoparticles within calcite depends on the surface density of the anionic stabiliser 

chains. Neither a low nor a high surface density affords efficient occlusion. Instead, 

an optimal stabiliser surface density is required to achieve the maximum extent of 

occlusion. 
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4.2.3 Investigation of Nanoparticle Occlusion Behavior 

These two sets of nanoparticles possess apparently the same surface chemistry but 

exhibit substantial differences with regard to their extents of occlusion within calcite 

crystal. Initially, this discrepancy was considered to be possibly a particle size effect. 

However, control experiments ruled out this explanation. More specifically, a series 

of Sx-By (dispersion) nanoparticles ranging in size from 18 nm to 100 nm diameter 

were prepared by varying the DP of B block at 10 % w/w solids and evaluated for 

occlusion into calcite under the same conditions.  

Remarkably, all Sx-By nanoparticles prepared by RAFT dispersion polymerisation 

are either not occluded or only weakly occluded within calcite (see Figure 4.12), 

whereas all Sx-By nanoparticles prepared by RAFT emulsion polymerisation can be 

uniformly incorporated into calcium carbonate regardless of their particle size (see 

Figure 4.9 and Figure 4.13). 

 

Figure 4.12. FE-SEM images obtained for fractured calcium carbonate crystals 

prepared in the presence of 0.01 % w/w Sx-By diblock copolymer nanoparticles 

prepared by RAFT dispersion polymerisation: (a) S32-B100 (dispersion); (b) S73-B100 

(dispersion); (c) S32-B500 (dispersion); (d) S73-B500 (dispersion). Insets show TEM 

images of the corresponding Sx-By diblock copolymer nanoparticles prior to 

occlusion. 
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Figure 4.13. FE-SEM images obtained for fractured calcium carbonate crystals 

prepared in the presence of 0.01 % w/w Sx-By diblock copolymer nanoparticles 

prepared by RAFT emulsion polymerisation: (a) S32-B100 (emulsion); (b) S32-B500 

(emulsion); (c) S73-B500 (emulsion). (d), (e) and (f) show the magnified images as 

indicated in (c). Insets show TEM images of the corresponding Sx-By diblock 

copolymer nanoparticles prior to occlusion. [N.B. Well-defined S73-B100 (emulsion) 

cannot be prepared as the core-forming block is too short] 

 

Thus it seems that occlusion is not sensitive to the nanoparticle dimensions. In fact, 

Kim and co-workers reported that anionic carboxylated latexes of approximately 

220-250 nm diameter could be occluded within calcite.
6
 Recently, poly(methacrylic 

acid)-poly(benzyl methacrylate) worms and vesicles have been incorporated into 
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calcite.
36

 These two types of nano-objects are obviously much larger compared to the 

nanoparticles used in the present work. Moreover, occlusion does not appear to be 

particularly sensitive to the stabiliser DP because both S32-By and S73-By 

nanoparticles prepared via RAFT aqueous emulsion polymerisation can be uniformly 

occluded within calcite, see Figure 4.13. 

As discussed above, the zeta potential for nanoparticles prepared by RAFT 

dispersion polymerisation is significantly more negative than that for nanoparticles 

prepared via RAFT aqueous emulsion polymerisation (see Figure 4.4b). This 

observation led us to determine the stabiliser surface densities for these two types of 

nanoparticles, because we hypothesised that this parameter might explain their 

differing occlusion behavior. Given a high blocking efficiency, full B conversion and 

a relatively narrow particle size distribution, the stabiliser surface density can be 

obtained via the following equations: 

Mass of each nanoparticle (𝑚): 

𝑚 = 𝜌𝑉 =  
4

3
𝜋𝜌𝑟3 

 

The number of nanoparticles (𝑁): 

𝑁 =
𝑚𝑠 + 𝑚𝑏

𝑚
=  

3(𝑚𝑠 + 𝑚𝑏)

4𝜋𝜌𝑟3
 

 

Surface area of each particle (𝑆𝐴): 

𝑆𝐴 = 4𝜋𝑟2 

 

Total surface area of all particles (𝑆𝑇𝐴): 

𝑆𝑇𝐴 = 𝑆𝐴 × 𝑁 = 4𝜋𝑟2𝑁 =
3(𝑚𝑠 + 𝑚𝑏) 

𝜌𝑟
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Thus the stabiliser surface density (𝐷𝑆, chain per nm
2
) is given by: 

𝐷𝑆 =
𝑛𝑃𝑆𝐸𝑀𝑁𝐴

𝑆𝑇𝐴
=

𝑛𝑃𝑆𝐸𝑀𝑁𝐴𝜌𝑟

3(𝑚𝑠 + 𝑚𝑏)
 × 10−21          (4.1) 

Here Ds is the stabiliser surface density expressed as the number of chains per nm
2
 

and nPSEM, NA, ρ and r denote the number of moles of S macro-CTA (mol), 

Avogadro’s number (mol
-1

), the solid-state density of the dried nanoparticles (g cm
-3

) 

and the mean nanoparticle radius (nm), respectively. The masses (g) of the S macro-

CTA and poly(benzyl methacrylate) are given by ms and mb, respectively. 

 

Using equation (4.1), the stabiliser surface densities of the diblock copolymer 

nanoparticles were determined from the nanoparticle dimensions and these data are 

summarised in Table 4.1. In all cases, Sx-By nanoparticles prepared via RAFT 

dispersion polymerisation have significantly higher surface stabiliser densities than 

the corresponding nanoparticles prepared via RAFT emulsion polymerisation. Direct 

experimental evidence of this finding was also provided by X-ray photoelectron 

spectroscopy (XPS), which is an established analytical technique for determining 

surface chemical compositions. XPS has excellent inter-element  resolution and is 

highly surface-specific, with a typical sampling depth of 2-10 nm.
42

 For the current 

study, the S stabiliser chains provide a unique source of sulfur atoms. Hence higher 

sulfur contents indicate higher stabiliser surface densities (see Figure 4.14). Both the 

S stabiliser and the B core-forming block contain carbon atoms, which give rise to 

C1s signals in XPS. All samples were run under the same conditions and the 

S2p/C1s atomic ratios calculated from XPS analysis of the Sx homopolymers are 

very close to theoretical values (see Table 4.1). Thus the level of surface carbon 

contamination is low (and assumed to be negligible). Normalised atomic ratios, 

[S2p/C1s (particle)]/[S2p/C1s (stabiliser)], were calculated to compare stabiliser 

surface densities for the nanoparticles, as summarised in Table 4.1. As expected, no 

sulfur signals were detected for the B300 control and the S73 control had the highest 

sulfur content (strongest S2p signal). More importantly, Sx-By nanoparticles prepared 

via RAFT dispersion polymerisation exhibit consistently higher normalised 
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[S2p/C1s (particle)]/[S2p/C1s (stabiliser)] atomic ratios (by a factor of 

approximately two) compared to the equivalent nanoparticles prepared via RAFT 

emulsion polymerisation. This indicates that the former nanoparticles have a higher 

stabiliser surface density than the latter.  

 

Figure 4.14. X-ray photoelectron survey spectra recorded for a S73 homopolymer 

control, S73-B300 (dispersion), S73-B300 (emulsion), and a B300 homopolymer control. 

The red rectangle highlights the relative S2p intensities, which are in the order: B300 

homopolymer < S73-B300 (emulsion) < S73-B300 (dispersion) < S73 homopolymer. 

 

This difference is consistent with the theoretical stabiliser surface densities 

calculated using equation (4.1) and can be ascribed to two reasons. Firstly, the 

relatively low dielectric constant for the 2:1 v/v ethanol/water mixture (compared to 

pure water) reduces electrostatic repulsion between neighboring highly anionic S 

stabilisers during nanoparticle formation via PISA, which results in a more densely-

packed coronal layer. Secondly, the B chains are likely to be slightly more solvated 

(and hence more stretched, leading to more closely-packed copolymer chains in the 

nanoparticle cores) when grown in the 2:1 v/v ethanol/water mixture, compared to 

PISA syntheses conducted in pure water.
43

  



Chapter 4: Occlusion of Poly(ammonium 2-sulfatoethyl methacrylate)-Poly(benzyl 

methacrylate) Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the 

Surface Density of Anionic Stabiliser Chains 

 

121 
 

 

Figure 4.15. Schematic cartoon representing the proposed occlusion mechanism. (a) 

Crystallisation in the presence of Sx-By (dispersion) nanoparticles. The relatively 

high stabiliser surface density means that Ca
2+

 ions primarily act as ionic cross-

linkers between adjacent stabiliser chains and the ensuing loss of conformational 

entropy reduces nanoparticle interactions with the growing crystal. (b) 

Crystallisation in the presence of Sx-By (emulsion) nanoparticles. In this case the 

relatively low stabiliser density reduces the degree of ionic cross-linking between 

stabiliser chains and enables the nanoparticles to interact more strongly with the 

growing crystals, hence promoting efficient occlusion. 

 

Naively, a higher stabiliser surface density should provide stronger nanoparticle 

binding to the crystal surface and hence lead to higher levels of occlusion. However, 
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less occlusion is actually observed, which at first sight appears to be counter-

intuitive. The present study shows that efficent occlusion actually requires an 

optimum (rather than maximum) stabiliser surface density. A tentative occlusion 

mechanism is as follows. Prior to precipitation of calcium carbonate, Ca
2+

 ions bind 

to the anionic stabiliser chains of Sx-By nanoparticles in aqueous solution, as 

indicated by their significantly lower zeta potential compared to nanoparticles in the 

absence of CaCl2
 
(see Figure 4.4c). Under otherwise identical conditions (i.e. 1.5 

mM CaCl2 and 0.01 % w/w copolymer at 20 °C), the extent of Ca
2+

 ion binding to 

the anionic sulfate groups on the S73-B300 (emulsion) and S73-B300 (dispersion) 

nanoparticles is estimated to be 5.9 ± 1.2 mg g
-1

 and 6.1 ± 1.4 mg g
-1

 respectively, as 

determined using a calcium ion-selective electrode.
44 

If the stabiliser chains are 

closely packed, the relatively high stabiliser surface density means that Ca
2+

 ions 

primarily act as ionic cross-linkers between adjacent S chains. Thus the ensuing loss 

of conformational entropy reduces the ability of these sterically-stabilised 

nanoparticles to interact with the growing crystal, see Figure 4.15a. However, such 

ionic cross-linking is much less likely to occur if the stabiliser surface density is 

relatively low, which allows the nanoparticles prepared via RAFT emulsion 

polymerisation to retain more conformational entropy. Thus a greater proportion of 

the stabiliser chains are able to relax, which enables these nanoparticles to bind more 

effectively on the growing calcite surface (see Figure 4.15b).  

This interpretation is consistent with recent in situ AFM studies, which demonstrate 

that anionic block copolymer micelles uniquely bind at calcite step edges prior to 

their incorporation.
4
 A further reduction in the S stabiliser surface density can be 

achieved by introducing non-ionic G stabiliser chains. Such [0.5 S73 + 0.5 G70]-B300 

(emulsion) nanoparticles exhibit an extent of occlusion of just 2 % w/w. One 

possible explanation is that the presence of the non-ionic G stabiliser chains restricts 

the ability of the anionic S stabiliser chains to interact efficiently with the growing 

calcite crystals. Alternatively, the (diluted) S surface density is now simply too low 

to ensure efficient interaction between such copolymer nanoparticles and the 

growing calcite crystals. 
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Figure 4.16. SEM images obtained for ZnO precipitated in the presence of 

copolymer nanoparticles. (a) ZnO control (without any additive); (b) ZnO 

precipitated in the presence of 0.01 % w/w S73-B100 (dispersion) copolymer 

nanoparticles; (c) ZnO precipitated in the presence of 0.01 % w/w S73-B300 (emulsion) 

copolymer nanoparticles; (d) TGA curves recorded for these three samples as well as 

for the S73-B300 (emulsion) copolymer nanoparticles alone. The insets shown in (b) 

and (c) are TEM images of the corresponding S73-B100 (dispersion) and S73-B300 

(emulsion) copolymer nanoparticles. N.B. The former nanoparticles were chosen for 

the ZnO occlusion experiments, because their mean diameter is comparable with that 

of the S73-B300 (emulsion) copolymer nanoparticles (see Table 4.1).  

 

4.2.4 Effect of Stabiliser Surface Density on the Extent of Occlusion within ZnO 

To examine the effect of varying stabiliser surface density for other inorganic crystal 

hosts, we also performed some preliminary occlusion experiments using ZnO instead 

of calcite. S73-B300 nanoparticles prepared by RAFT emulsion polymerisation 

exhibited a higher extent of occlusion (13.9 % w/w vs 7.2 % w/w, see Figure 4.16) 
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compared to S73-B100 (dispersion) nanoparticles of comparable size. This is in good 

agreement with the calcite system and further suggests that an optimum stabiliser 

surface density is required to maximise the extent of occlusion. These copolymer 

nanoparticle/ZnO nanocomposite crystals were heated up to 900 °C in air to remove 

the copolymer component via pyrolysis and then gold-coated prior to scanning 

electron microscopy imaging. 
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4.3 Conclusions 

In summary, a range of well-defined highly anionic diblock copolymer nanoparticles 

with tunable surface density have been prepared via RAFT-mediated PISA. The 

stabiliser surface density depends on the solvent quality for the stabiliser chains, 

which offers an unprecedented opportunity to examine the relationship between 

nanoparticle surface composition and the corresponding extent of occlusion within 

calcite crystals. Up to 7.5 % w/w (or ~ 16 % v/v) S73-B300 (emulsion) nanoparticles 

can be incorporated within calcite (CaCO3) even when using a relatively low 

copolymer concentration (0.01 % w/w). Surprisingly, more anionic nanoparticles 

prepared via RAFT dispersion polymerisation using a 2:1 v/v ethanol/water mixture 

are occluded much less efficiently into calcite under identical crystallisation 

conditions. This suggests that there is an optimum (rather than a maximum) surface 

density of anionic stabiliser chains for occlusion into this host crystal matrix. This 

finding indicated that higher stabiliser density does not afford higher extent of 

occlusion. Thus this work provides important new insights regarding the rather 

subtle role played by the nanoparticle surface stabiliser density in determining 

occlusion efficiencies within calcite.  

Calcite is an interesting crystal host for the occlusion of diblock copolymer 

nanoparticles. However, there are only rather limited practical applications for such 

nanocomposite crystals. Moreover, scale-up syntheses based on the ammonium 

carbonate diffusion method are problematic. In view of these problems, in the next 

Chapter we extend the concept of nanoparticle occlusion to include alternative host 

crystals, e.g. ZnO.   
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5.1 Introduction 

It is well-known that ZnO is a semiconductor that exhibits a wide band gap, a large 

excitation binding energy, near-UV emission, high electron mobility, high thermal 

conductivity, and piezoelectricity.
1-4

 Polymer-directed growth of ZnO is of particular 

interest. For example, Zhang et al. demonstrated that a wide range of nanostructures, 

including monolayer, bilayer and multilayer ZnO, can be prepared by utilising 

poly(N-vinylpyrrolidone) (PVP) as an additive.
5
 Under appropriate conditions, ZnO 

with various morphologies can be prepared.
5
 Peng et al. employed polyacrylamide 

(PAM) and carboxyl-functionalised polyacrylamide (PAM-COOH) as modifiers for 

the crystallisation of ZnO. Ring-like ZnO was produced when using the former 

polymer, while the latter generated a near-monodisperse disc-like ZnO.
6
 Double-

hydrophilic diblock copolymers are particularly useful crystal modifiers.
7-13

 Ideally, 

one block of such copolymers serves as an anchor block, which adsorbs onto the 

crystal surface. The other block acts as a stabiliser, preventing agglomeration.
12

  

The main focus of this Thesis lies in the modification of ZnO crystallisation using 

diblock copolymer nanoparticles as additives, rather than soluble polymers. Wegner 

and co-workers were the first to show that anionic polystyrene latexes could be 

occluded within ZnO.
14-16

 In this seminal work, styrene was copolymerised with 

acrylic acid, maleic acid or ethylene glycol methacrylate phosphate using a 

miniemulsion formulation. The effect of surface functionalisation and latex 

concentration on the crystal growth, morphology, and crystallinity of the resulting 

ZnO composite crystals was examined, with particular attention being paid to the 

acrylic acid/styrene copolymer latex. However, the extent of occlusion achieved was 

relatively low (< 10 % by mass) even when using a copolymer latex concentration of 

9 g L
-1

.  

Herein we prepare a series of novel diblock copolymer nano-objects via RAFT 

aqueous emulsion polymerisation of benzyl methacryalte using either a 

poly(methacrylic acid) macro-CTA (M68 macro-CTA) or a poly(ammonium 2-

sulfatoethyl methacrylate) macro-CTA (S32 macro-CTA or S73 macro-CTA), or a 

binary mixture of M68 and S73 macro-CTAs. Such RAFT PISA formulations enable 

spherical nanoparticles with narrow size distributions to be obtained and the surface 

chemistry of the resulting nanoparticles can be precisely tailored as desired.
17-19
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Benzyl methacrylate was selected as hydrophobic core-forming monomer.
20-26

 

Moreover, this surfactant-free emulsion polymerisation avoids introducing unwanted 

impurities. This is important for the subsequent crystal occlusion studies because 

impurities could affect the crystallisation behaviour.
4,7

 These diblock copolymer 

nanoparticles are examined for their occlusion into growing ZnO crystals and novel 

copolymer nanoparticle/ZnO nanocomposite materials can be obtained (see Scheme 

5.1). Where occlusion is observed, the resulting nanocomposite crystals are 

characterised in terms of their evolution in morphology, optical properties, crystal 

structure, and occlusion mechanism.  

 

Scheme 5.1. RAFT aqueous emulsion polymerisation of benzyl methacrylate (B) 

using a S73 macro-CTA at 70 °C to produce S73-B300 diblock copolymer 

nanoparticles and associated cartoon showing S73-B300 spherical nanoparticles and 

their occlusion within ZnO.
27

 

 

5.2 Results and Discussion 

5.2.1 Synthesis and Characterisation of Copolymer Nanoparticles 

Poly(ammonium 2-sulfatoethyl methacrylate) is an example of a strong 

polyelectrolyte, remaining highly anionic even at relatively low pH. Atom transfer 
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radical polymerisation (ATRP) has been used by Weaver et al. to polymerise 

ammonium 2-sulfatoethyl methacrylate in aqueous media. However, this protocol 

only afforded relatively polydisperse poly(ammonium 2-sulfatoethyl methacrylate)  

chains.
11

 Nevertheless, a poly(ammonium 2-sulfatoethyl methacrylate)-based diblock 

copolymer prepared using a poly(ethylene glycol) macro-initiator proved to be an 

effective crystal habit modifier for the preparation of micron-sized barium sulfate 

crystals.
11

  

 

Figure 5.1. Representative TEM images obtained for: (a) M68-B300 copolymer 

nanoparticles; (b) [0.50 S73 + 0.50 M68]-B300 copolymer nanoparticles; (c) S32-B300 

copolymer nanoparticles; (d) S73-B300 copolymer nanoparticles. 
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Four types of nano-objects with differing surface chemistries and mean DPs were 

prepared via RAFT aqueous emulsion polymerisation-mediated PISA. The RAFT 

polymerisation of S monomer was conducted in aqueous solution using a 

dithiobenzoate-based RAFT agent to afford two S macro-CTAs with mean DPs of 

either 32 or 73 in high yield within 2 h at 70 °C. S macro-CTAs were chain-extended 

in turn with B monomer via surfactant-free RAFT aqueous emulsion polymerisation 

to obtain a series of S-B diblock copolymer nanoparticles (see Scheme 5.1). 
1
H 

NMR spectroscopy was used to monitor the B polymerisation and more than 99 % 

conversion was typically attained. Such high conversions meant that purification of 

the resulting diblock copolymer nanoparticles was deemed unnecessary, which 

facilitated the subsequent occlusion studies. Indeed, all the diblock copolymer 

nanoparticles prepared in the present Chapter are directly used without any further 

purification prior to occlusion experiments. TEM images shown in Figures 5.1a-

5.1d indicate that well-defined, near-monodisperse spherical nanoparticles with a 

diameter of around 20 nm were obtained when using the various macro-CTAs. M68-

B300 is pH-responsive because poly(methacrylic acid) is a weak polyelectrolyte, 

which acquires anionic character via ionisation at around neutral pH but becomes 

uncharged at low pH as a result of protonation.
27

 This explains why the z-average 

diameter of M68-B300 is around 50 nm at relatively high pH, while a large increase in 

apparent particle size as a result of flocculation is observed at low pH, as shown in 

Figure 5.2a. At the same time, the zeta potential for these nanoparticles was changed 

from around -40 mV to around 0 mV as the solution pH is lowered from pH 10 to 

pH 3 (Figure 5.2b). In striking contrast, both the particle size and zeta potential were 

found to be essentially pH-independent for [S73 + M68]-B300, S32-B300, and S73-B300, 

as indicated in Figures 5.2a and 5.2b. This is ascribed to the strong anionic 

polyelectrolyte character of the poly(ammonium 2-sulfatoethyl methacrylate)  

stabiliser. 
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Figure 5.2. (a) Z-average diameter versus pH curves (note the apparent change in 

particle size for the M68-B300 nanoparticles as a result of their flocculation at low pH) 

and (b) zeta potential versus pH curves recorded for the four aqueous nanoparticle 

dispersions corresponding to the TEM images shown in Figure 5.1. The zeta 

potential versus pH curve recorded for [0.5 S73 + 0.5 M68]-B300 was unexpectedly 

pH-independent. This suggests that the electrophoretic mobility is dominated by the 

strong S73 polyelectrolyte stabiliser, rather than the weak M68 polyelectrolyte 

stabiliser. 

(a)  

(b)  



Chapter 5: Sulfate-based Anionic Diblock Copolymer Nanoparticles for Efficient Occlusion 

within ZnO  

136 

 

5.2.2 Occlusion of Copolymer Nanoparticles within ZnO Crystals 

In the absence of any anionic nanoparticles, hexagonal prismatic ZnO rods were 

obtained (see Figure 5.3a), as expected.
14

 In addition, we also examined whether 

poly(ammonium 2-sulfatoethyl methacrylate) homopolymer (S73 macro-CTA) alone 

could act as a crystal habit modifier for ZnO. As shown in Figure 5.3b, ZnO 

generated in the presence of the S73 macro-CTA has a unique ‘diablo’ morphology, 

which clearly differs substantially from the native ZnO morphology. Similar 

observations were also made for ZnO crystals prepared in the presence of the S32 

macro-CTA (data not shown). This suggests that the anionic poly(ammonium 2-

sulfatoethyl methacrylate) chains do indeed interact with the growing ZnO crystals 

(it will be further discussed in the following occlusion mechanism section). Then the 

aforementioned four types of diblock copolymer nanoparticles were examined in 

turn as crystal habit modifiers for ZnO. Figure 5.3c shows the ZnO crystals formed 

in the presence of M68-B300 diblock copolymer particles at a copolymer 

concentration of 0.50 g L
-1

. Somewhat ill-defined cone-shaped ZnO clusters were 

obtained, but there is no evidence of particle occlusion in this case. This negative 

observation is perhaps surprising in the context of Wegner’s data,
23

 in which 

carboxylic acid-modified polystyrene latexes clearly played an active role during 

ZnO mineralisation. In our occlusion experiments, ZnO formation commenced at pH 

5, which is close to the pKa of PMAA.
23

 Thus the carboxylic acid groups on the 

stabiliser chains become partially protonated, which leads to a reduction in anionic 

charge density and hence weak flocculation of the M68-B300 nanoparticles, as judged 

by visual inspection and DLS studies (see Figure 5.4). This is likely to reduce the 

interaction between the nanoparticles and the ZnO lattice, which may explain why 

occlusion is not observed under these conditions. In contrast, in the earlier study by 

Wegner et al.,
14

 the carboxylic acid groups are statistically incorporated into the 

surface of the polystyrene latex particles, which makes them less susceptible to 

protonation under these conditions. The unsuccessful attempted occlusion of M68-

B300 within ZnO suggests that it is vital for the copolymer particles to maintain 

colloidal stability during the initial stages of the ZnO synthesis. To test this 

hypothesis, we also examined using an equimolar binary mixture of S73 and M68 

macro-CTAs in order to target [0.5 S73 + 0.5 M68]-B300 diblock copolymer 

nanoparticles so as to reduce their pH-dependent character. As expected, such hybrid 
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nanoparticles can be successfully occluded within ZnO, as evidenced by the 

uniformly distributed voids that are visible in the inset shown in Figure 5.3d.  

 

Figure 5.3. FE-SEM images of ZnO particles mineralised under various conditions 

after calcination at 700 °C: (a) without any additive; (b) in the presence of 0.12 g L
-1 

S73 homopolymer (i.e. the number of moles of S73 homopolymer is equivalent to the 

number of moles of S73-B300 nanoparticles used in (f)); (c) 0.50 g L
-1 

M68-B300; (d) 

0.50 g L
-1 

[0.5 S73 + 0.5 M68]-B300; (e) 0.50 g L
-1 

S32-B300; (f) 0.50 g L
-1 

S73-B300. The 

insets present the corresponding magnified images. 
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Figure 5.4. (a) Digital photograph recorded for 0.50 g L
-1

 M68-B300 and 0.50 g dm
-3

 

S73-B300 dispersed in aqueous zinc nitrate solution; (b) TEM images obtained for 

0.50 g L
-1

 S32-B300 nanoparticles dispersed in aqueous zinc nitrate solution (inset 

shows the corresponding digital photograph); A white precipitate was formed 

immediately on addition of S32-B300, but a stable homogeneous aqueous dispersion is 

maintained for long time periods (months) in the presence of S73-B300 nanoparticles. 

Note: pH is around 5 before the crystallisation of ZnO. 

 

Clearly, the introduction of 50 % S73 stabiliser chains plays a key role in conferring 

sufficient anionic character (see Figure 5.2) to ensure colloidal stability at pH 5 and 

hence allow occlusion to occur in situ. Figure 5.3e indicates that ZnO formation in 

the presence of S32-B300 produces multi-hollow porous structures after calcination. In 

this case the void size is significantly larger than the original S32-B300 nanoparticle 

dimensions, which is consistent with the white precipitate (see Figure 5.4b; [S32-

B300] = 0.50 g L
-1

) observed for these nanoparticles immediately after addition of 

zinc nitrate, i.e. prior to ZnO formation. Thus it seems that nanoparticle aggregates 

are incorporated within the ZnO crystals. In contrast, addition of S73-B300 

nanoparticles to an aqueous solution of zinc nitrate did not lead to any precipitation 

(see Figure 5.4a). This suggests that, unlike the S73 stabiliser, the S32 stabiliser block 

is too short to maintain colloidal stability in the presence of zinc nitrate. Meanwhile, 

in the presence of an aqueous dispersion of 0.50 g L
-1

 S73-B300 nanoparticles, a 

strikingly different ZnO morphology was obtained, as indicated in Figure 5.3f. 

Interestingly, twinned ZnO crystals are observed, with one side smaller than the 

other (see Figure 5.3f, inset) and the aspect ratio appears to be reduced (aspect ratio 

equals length of the ZnO rod divides width of the ZnO rod). Moreover, S73/ZnO 

retains a hexagonal basal face, whereas the hexagonal prismatic structure completely 
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disappears for S73-B300/ZnO. Although the mean length of the S73-B300/ZnO crystal is 

significantly reduced (to just 200 nm), the mean width remains more or less the same 

as that of the control ZnO crystals (see Figure 5.3a and Figure 5.3f). As shown in 

the inset of Figure 5.3f, voids are located within both the lateral and basal faces and 

the void dimensions are in good agreement with those of the original nanoparticles. 

However, some voids appear to be slightly elliptical rather than purely spherical, 

which suggests that some degree of nanoparticle distortion occurred during occlusion.  

This is not unreasonable, because the reaction temperature of 90 °C employed to 

generate the ZnO crystals significantly exceeds the glass transition temperature of 

the core-forming block (~55 °C). The voids appear to be isolated, rather than inter-

connected, suggesting that the nanoparticles do not become aggregated during 

occlusion. Indeed, the strongly anionic character of the S73-B300 nanoparticles is 

expected to confer effective electrosteric stabilisation (and hence good colloidal 

stability) under these conditions. 

 

5.2.3 Effect of Diblock Copolymer Nanoparticle Concentration on the Extent of 

Occlusion 

In the light of the above observations, S73-B300 was selected for more detailed studies. 

Figure 5.5 shows the SEM images of ZnO prepared at various S73-B300 nanoparticle 

concentrations ranging from 0 to 1.00 g L
-1

. Mixed phases containing both long and 

short ZnO rods were observed at relatively low concentrations (0.01 g L
-1

, Figure 

5.5b). However, there was no evidence for occlusion under these conditions. Porous 

ZnO particles were obtained at a S73-B300 concentration of 0.05 g L
-1

, which 

indicates that a certain minimum nanoparticle concentration is required for successful 

(or detectable) occlusion (Figure 5.5c). Inspecting Figures 5.5d to 5.5f, the ZnO 

morphology becomes more uniform as the S73-B300 nanoparticle concentration is 

increased.  

There is no distinct morphology change between the ZnO precipitated in the 

presence of S73-B300 nanoparticles when used at 0.50 and 1.00 g L
-1

. Particle size 

distributions for 0.50 g L
-1 

S73-B300/ZnO particles and thermal treated S73-B300/ZnO 
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determined via disc centrifuge photosedimentometry (DCP) are shown in Figure 

5.6a.  

 

Figure 5.5. Representative FE-SEM images showing ZnO particles prepared in the 

presence of various concentrations of S73-B300 copolymer nanoparticles: (a) 0.0 g L
-1

; 

(b) 0.01 g L
-1

; (c) 0.05 g L
-1

; (d) 0.10 g L
-1

; (e) 0.50 g L
-1

; (f) 1.00 g L
-1

. 
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Provided that the particle density is accurately known, this high resolution technique 

reports a weight-average diameter. Using relatively high nanoparticle concentrations 

(e.g. ≥ 0.50 g L
-1

) clearly leads to the formation of ZnO particles with relatively 

narrow size distributions.  

 

Figure 5.6. (a) Weight-average particle size distributions determined for ZnO 

particles prepared in the presence of 0.50 g L
-1

 S73-B300 copolymer nanoparticles 

before and after thermal treatment (calcination), as determined by disc centrifuge 

photosedimentometry. Particle densities were measured to be 3.17 and 5.31 g cm
-3

 

for the S73-B300/ZnO precursor nanocomposite particles and calcined ZnO particles, 

respectively. (b) Volume-average particle size distribution determined for the S73-

B300/ZnO nanocomposite before calcination, as determined by analytical 

centrifugation (LUMiSizer® instrument). Note: S73-B300/ZnO nanocomposites after 

calcination cannot be analised by LUMiSizer due to their low colloidal stability. 
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As shown in Figure 5.6a, the mean size of S73-B300/ZnO nanocomposite crystals 

before and after thermal treatment were approximately the same, indicating that 

these nanocomposites are colloidally stable. Analytical centrifugation (LUMiSizer® 

instrument) was also utilised to further assess the nanocomposite particle size 

distribution prior to calcination, which was in reasonably good agreement with the 

DCP data (see Figure 5.6b). It is noted that calcined ZnO cannot be analysed by this 

technique because the colloidal stability of the calcined ZnO is relatively poor. The 

superior colloidal stability of 0.50 g L
-1

 S73-B300/ZnO nanocomposites over calcined 

ZnO is ascribed to the S73-B300 nanoparticles that occluded within the ZnO surface. 

This is supported by the observation that there are voids on the surface of the ZnO 

crystal surface, as shown in the insets in Figure 5.3f. 

Thermogravimetry analysis was used to assess the S73-B300 content within the S73-

B300/ZnO nanocomposite particles. Complete pyrolysis of the organic component 

was achieved on heating to 550 °C in air (see inset, Figure 5.7), whereas essentially 

no mass loss was observed for a ZnO control sample under the same conditions. 

Thus any observed mass loss for the series of nanocomposites can be solely 

attributed to the organic nanoparticle component. The extent of nanoparticle 

occlusion within ZnO systematically increased when using higher S73-B300 

concentrations, with a limiting value of 23 % w/w being obtained at a nanoparticle 

concentration of 0.50 g L
-1

, see Figure 5.7. This value is significantly higher than 

those reported by Wegner et al., for which the highest extent of latex occlusion was 

9.5 % w/w even when using a much higher latex concentration of 9.0 g L
-1

.
14

 In the 

present study, if it is assumed that all of the zinc nitrate precursor is fully converted 

into ZnO and that all of the nanoparticles (1.0 g L
-1

) are incorporated into the ZnO 

crystals, the theoretical maximum extent of occlusion is 29 % w/w. Thus the 

occlusion efficiency is estimated to be approximately 86 % under the conditions 

described herein. In principle, crystallisation should lead to the expulsion of 

impurities, rather than their occlusion.
7,28-30

 Thus this relatively efficient occlusion is 

most likely the result of a strong electrostatic interaction between the highly anionic 

nanoparticles and the ZnO host crystal. 
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Figure 5.7. S73-B300 mass contents within S73-B300/ZnO nanocomposites prepared 

using various S73-B300 nanoparticle concentrations, as determined by 

thermogravimetry. Inset shows the weight loss curves obtained for ZnO alone, a S73-

B300/ZnO nanocomposite prepared using 0.50 g L
-1

 S73-B300 nanoparticles, and the 

precursor S73-B300 nanoparticles. 

 

5.2.4 Optical Properties of S73-B300/ZnO nanocomposite 

The optical properties of the as-prepared S73-B300/ZnO nanocomposite particles were 

evaluated by FT-IR spectroscopy and UV-visible spectroscopy. According to the 

literature, the IR band at 437 cm
–1

 corresponds to the Raman-active E2 mode of 

hexagonal ZnO.
31,32

 A strong absorption band was also observed at 525 cm
–1

 for the 

ZnO control (see Figure 5.8a), which may be associated with either oxygen 

deficiency and/or oxygen vacancy (VO) defects in ZnO.
33

 However, this feature is 

much less intense in the spectra recorded for the four copolymer/ZnO 

nanocomposites. A number of bands assigned to the copolymer nanoparticles are 

observed in these latter samples, including an intense C=O stretch at 1727 cm
-1

 and 

an aromatic C-H out-of-plane bending mode at 752 cm
-1

 and 697 cm
-1

. In each case 

the copolymer band intensities correlate well with the nanoparticle concentration 



Chapter 5: Sulfate-based Anionic Diblock Copolymer Nanoparticles for Efficient Occlusion 

within ZnO  

144 

 

used to prepare these nanocomposites. Two features are apparent from the UV-

visible absorption spectra (see Figure 5.8b). First, the absorption maximum is red-

shifted at higher levels of nanoparticle occlusion, while the absorbance in the visible 

region is systematically reduced. This may be caused by the change in size and/or 

absorption states (defect energy bands) for ZnO prepared in the presence of a 

relatively low concentration of diblock copolymer nanoparticles.
33

  

 

Figure 5.8. (a) FT-IR spectra recorded for ZnO nanocomposites prepared using 

various S73-B300 nanoparticle concentrations and also a reference spectrum for S73-

B300 nanoparticles alone. (b) UV-visible absorption spectra recorded for ZnO 

particles prepared in the presence of various S73-B300 nanoparticle concentrations 

after calcination. 
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According to the XRD data shown in Figure 5.9, there are no significant changes in 

the microcrystalline structure of this wurtzite form of ZnO, which is consistent with 

earlier reports.
14,34

 

 

Figure 5.9. XRD patterns obtained for ZnO particle prepared in the presence of 

various S73-B300 nanoparticle concentrations. 

 

5.2.5 Occlusion Mechanism 

In contrast to individual (macro)molecules, S73-B300 nanoparticles are sufficiently 

large to enable their occlusion to be studied directly using electron microscopy in the 

present work.
35

 Thus offers an opportunity to study the crystal growth mechanism. 

Accordingly, aliquots were extracted from the reaction solution at various time 

points and examined by FE-SEM. Figure 5.10 depicts the evolution in ZnO 

morphology with time in the presence of 0.50 g L
-1 

S73-B300 nanoparticles. Initially, 

irregular ZnO sheets are formed (see 5 min time point in Figure 5.10a). Thereafter, 

S73-B300 nanoparticles adsorb onto these sheets, see Figure 5.10b. The final ZnO 

morphology was attained within just 15 min at 90 °C. Some impurities are observed 
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(see red arrows in Figures 5.10c ~ 5.10e), but these worm-like features disappear 

towards the end of the mineralisation process (see Figure 5.10f). Thus these 

impurities are most likely to be intermediate species that are not yet fully converted 

into ZnO. 

 

Figure 5.10. Representative FE-SEM images showing the evolution in morphology 

for ZnO prepared in the presence of S73-B300 copolymer nanoparticles at various 

reaction times: (a) 5 min; (b) 10 min; (c) 15 min; (d) 30 min; (e) 60 min; (f) 75 min. 

The red arrows indicate the presence of impurities. 
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It is well known that ZnO contains a cationic (0001) plane rich in Zn
2+

, an anionic 

(000 1̅ ) plane rich in O
2-

 anions, and a non-polar (01 1̅ 0) plane.
36-38

 The long 

hexagonal prismatic crystal observed in the control experiment suggests that the 

basal face growth rate is faster than that of the lateral face. Actually, based on the 

literature, the relative growth velocity, V, follows the order V[0001] > V[101̅0] > V[0001̅].
5
 

Thermal decomposition of HMTA gives ammonia and formaldehyde, with the 

former acting as a pH buffer.
14

 In the early stages of ZnO crystallisation, anionic 

ZnO2
2-

 units are preferentially absorbed onto cationic (0001) faces.
39

 Meanwhile, 

HMTA forms a highly cationic (fully protonated) complex in aqueous solution,
40

 

which interacts with the (0001̅) face. Moreover, this cationic complex also interacts 

with the ZnO2
2-

 precursor species.
39,41

 This leads to the formation of ZnO crystals on 

the (0001̅) surface. Thus, a twin structure is gradually formed via preferential growth 

in two opposing directions.
39,41

 We hypothesise that the highly anionic S73-B300 

nanoparticles are preferentially adsorbed onto the cationic basal face, thereby 

blocking the positions from which the crystal would normally tend to grow. Thus the 

rate of crystal growth of this face is suppressed, leading to a reduction in the aspect 

ratio, as well as formation of an asymmetric twin structure. Lateral growth is also 

suppressed during nucleation, but is apparently not affected during the subsequent 

crystal growth stage. This perhaps explains why the final ZnO particles have 

concave character, but their mean width is comparable to that observed for the ZnO 

control synthesis performed in the absence of any S73-B300 nanoparticles. 
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5.3 Conclusions 

In summary, we report the synthesis of new highly anionic diblock copolymer 

nanoparticles via RAFT aqueous emulsion polymerisation of benzyl methacrylate 

using a poly(ammonium 2-sulfatoethyl methacrylate) macro-CTA. These sulfate-

based nanoparticles possess a well-defined spherical morphology and relatively 

narrow size distributions. Efficient nanoparticle occlusion occurs during the in situ 

synthesis of ZnO, leading to the formation of novel copolymer/ZnO nanocomposite 

particles. The effect of nanoparticle concentration and surface chemistry on ZnO 

mineralisation is examined and a tentative crystallisation mechanism is suggested 

based on the observed evolution of morphology. Moreover, it is also shown that the 

equivalent poly(methacrylic acid)-poly(benzyl methacrylate) nanoparticles are not 

occluded within ZnO crystals. Thus anionic character is a necessary but not 

sufficient condition for efficient occlusion. However, analogous nanoparticles 

prepared using a 1:1 binary mixture of poly(ammonium 2-sulfatoethyl methacrylate) 

and poly(methacrylic acid) stabiliser blocks can also be incorporated within ZnO, so 

significant dilution of the essential sulfate character is possible while retaining 

occlusion.  

PISA syntheses of bespoke organic nanoparticles offer a facile and efficient means 

of tuning surface chemistry, which is the key to the successful preparation of novel 

nanocomposite crystals via in situ nanoparticle occlusion during mineralisation. In 

the next Chapter, occlusion of polymer-modified gold nanoparticles within ZnO will 

be exmined. 
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6.1 Introduction 

A wide range of metal/semiconductor hybrid nanostructures have been reported, 

including metal nanoparticle-decorated semiconductor particles,
1-9

  

metal/semiconductor core/shell (or yolk/shell) particles
10-16

 and Janus particles.
16-18

 

Metal nanoparticle-decorated semiconductor particles have been extensively 

studied.
1-7

 Two common methods have been applied to decorate semiconductors 

with metal nanoparticles. First, metal nanoparticles can be grown on the 

semiconductor by in situ reduction of a soluble metal precursor.
1-7

 The metal 

nanoparticle diameter can be tuned by controlling the reaction time and 

concentration of the soluble metal precursor. Unfortunately, the metal nanoparticle 

size distribution is usually broad. Second, both semiconductor crystals and metal 

nanoparticles are prepared separately.
8,9

 The metal nanoparticles are assembled onto 

the semiconductors by cross-linking via bifunctional molecules, such as dithiol.
17,18

 

Given that the size of the metal nanoparticles can be finely controlled, this method 

enables metal nanoparticles with uniform size distribution to be adsorbed onto 

semiconductors. 

Metal/semiconductor core/shell nanostructures have attracted a wide range of 

attention due to their unique properties, as well as their potential applications in the 

areas of photocatalysis, biotechnologies and optical devices.
10-16

 The properties of 

core/shell hybrid nanomaterials can be adjusted by tuning the core component, shell 

morphology and shell thickness.
11,13-16

 The core materials can be Ag, Au or Pt, while 

the shell can be ZnO, ZnS, TiO2, Cu2O, CeO, Fe3O4 or MnO.
19,20

 The preparation of 

core-shell structures usually involves a wet chemistry approach, in which the 

semiconductor shell has been grown on metal particle cores.
10-15

  

Janus particles, whose two sides or surfaces are different in terms of chemical and/or 

physical properties, are of considerable scientific interest.
21

 Although many types of 

Janus particles have been reported, there are only a few examples of the preparation 

of metal/semiconductor Janus particles.
16-18

 Typically, the pre-grown metal 

nanoparticles were used as seeds to mediate the formation of the semiconductor, 

resulting in a Janus morphology.
16-18
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It is worth noting that so far as we are aware the efficient incorporation of metal 

nanoparticles within growing semiconductor crystals with fine control over the 

spatial location of the nanoparticles has not yet been achieved. Biominerals provide 

many wonderful examples of the occlusion of biomacromolecules within crystals.
22-

25
 As mentioned in the previous Chapters, various anionic nanoparticles with 

appropriate surface functionality (such as carboxylic acid
26-30

 or sulfonate
31

) have 

been incorporated into calcite, while sterically-stabilised diblock copolymer 

nanoparticles with carboxylic acid
32

 have been occluded within ZnO crystals. Such 

wholly synthetic systems provide a new way to prepare organic/inorganic 

nanocomposites and also offer an excellent opportunity to elucidate structure-

property relationships.
26,27,30

 However, at best only one of the two components in 

such occlusion formulations can be regarded as functional. In this context, targeting 

noble metal nanoparticle/semiconductor hybrid nanostructures is extremely desirable, 

because the interaction between such plasmonic nanoparticles embedded within an 

optically active crystal host may lead to emergent properties that cannot be achieved 

for either component in isolation. However, this ambitious goal clearly requires the 

development of robust new occlusion protocols.  

Herein we report the efficient incorporation of poly(glycerol monomethacrylate)70-

stabilised gold nanoparticles (G70-AuNPs; where the subscript denotes the mean 

degree of polymerisation of the polymeric stabiliser) within ZnO single crystals 

generated in aqueous solution at 90 °C (see Scheme 6.1). The effect of varying the 

G70-AuNP concentration on the morphology, extent of occlusion and internal 

structure of the resulting G70-Au/ZnO nanocomposites is systematically investigated. 

Remarkably, tuning the reaction conditions enable three types of nanocomposite 

crystals to be produced: (i) G70-AuNPs localised mainly in the central region of the 

ZnO rod-like crystals, (ii) uniform occlusion of G70-AuNPs throughout the host 

crystal, or (iii) G70-AuNPs occluded solely within the surface layer of ZnO crystal 

(denoted as G70-Au(central)/ZnO, G70-Au(uniform)/ZnO and G70-Au(surface)/ZnO, 

respectively, see Scheme 6.1). The interaction between G70-AuNPs and the ZnO 

crystals is examined by XPS and FT-IR spectroscopy and an occlusion mechanism is 

proposed. Preliminary data for the UV-induced photocatalytic decomposition of a 

model dye (Rhodamine B) are also presented. 
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Scheme 6.1. Schematic representation of spatially-controlled occlusion of 

poly(glycerol monomethacrylate)70-stabilised gold nanoparticles (G70-AuNPs) within 

ZnO crystals. The left-hand cartoon indicates a ZnO rod-like crystal prepared in the 

absence of G70-AuNPs, while the other sectioned rods indicate the AuNP distribution 

both within the ZnO and on its surface (with the right-hand cartoon indicating a 

surface-confined AuNP layer). Judicious variation of the concentration of G70-

AuNPs allows fine control over their spatial distribution within ZnO single crystals.  
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6.2 Results and Discussion 

6.2.1 Synthesis and Characterisation of G70-AuNPs 

Poly(glycerol monomethacrylate)70 (see chemical structure in Figure 6.1a) was 

synthesised via RAFT polymerisation in ethanol using 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid (CPCP) and 4,4’-azobis(4-cyanovaleric 

acid) as RAFT chain transfer agent and initiator, respectively. G70 homopolymer is 

hydrophilic and contains a dithiobenzoate and a carboxylic acid end-group. The 

former group enables the facile surface modification of plasmonic gold nanoparticles. 

The as-prepared G70 possesses a narrow molecular weight distribution (Mn = 17 000 

g mol
-1

, Mw/Mn = 1.10), as confirmed by gel permeation chromatography (GPC, see 

Figure 6.1b). 

 

Figure 6.1. Characterisation of poly(glycerol monomethacrylate)70 (G70) and G70-

stabilised AuNPs. (a) Chemical structure of the G70 polymeric stabiliser used in this 

work; (b) GPC data obtained for G70 using a series of poly(methyl methacrylate) 

calibration standards; (c) representative TEM image obtained for G70-AuNPs; (d) 

particle size distribution determined for G70-AuNPs from TEM image analysis. 
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An aqueous dispersion of AuNPs was readily prepared as described elsewhere.
33,34

 

G70-AuNPs were prepared via chemisorption of G70 chains conducted in aqueous 

solution; the dithiobenzoate end-group is known to bind strongly to gold via ligand 

change with citrate.
35

 As shown in Figures 6.1c and 6.1d, the as-synthesised G70-

AuNPs had a mean TEM diameter of 4.8 ± 0.9 nm. According to DLS studies (see 

Figure 6.2), the mean hydrodynamic diameters of the citrate-stabilised AuNPs and 

G70-AuNPs were 6 ± 2 nm and 12 ± 3 nm, respectively. This difference indicates a 

G70 stabiliser layer thickness of ~ 3 nm, which is consistent with recent small-angle 

X-ray scattering studies.
36

 The hydrodanymic diameter of gold nanoparticle 

determined by DLS is slightly bigger compared to that determined by TEM. This is 

because the stabiliser corona contributes to the DLS measurement. 

 

Figure 6.2. Mean hydrodynamic number-average diameter (left-band) and optical 

photograph (right-hand) obtained for aqueous dispersions of (a) citrate-stabilised 

AuNPs (gold nanoparticles prepared using sodium citrate); (b) citrate-stabilised 

AuNPs in the presence of 15 mM zinc ions; (c) G70-AuNPs; (d) G70-AuNPs in the 

presence of 15 mM zinc ions. 

 

TGA was employed to determine the amount of G70 stabiliser of G70-AuNPs. As 

shown in Figure 6.3, G70 homopolymer is completely pyrolysed on heating up to 

~550 °C, while approximately 39 % residue is observed for G70-AuNPs. It is 

calculated that the G70 stabiliser comprised approximately 40% by mass of the G70-

AuNPs. This composition was corroborated by carbon microanalyses, which 

indicated a G70 content of ~ 41%. 
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Figure 6.3. TGA of G70 homopolymer (red) and G70-AuNPs (blue). As expected, 

G70 homopolymer is pyrolysed completely above 550 °C. Given the presence of 2.7 % 

w/w water in the G70-AuNPs trace, the G70 content in G70-AuNPs can be calculated 

to be 40.0 % w/w. 

 

Colloidal stabilities of citrate-stabilised AuNPs and G70-AuNPs in the presence of 

zinc ions were examined. It is worth noting that surface grafting of the G70 chains led 

to a subtle change in colour from pink to purple for the AuNP dispersion (see Figure 

6.2). The colour of citrate-stabilised AuNPs in aqueous solution changed from pink 

to grey immediately after addition of zinc nitrate hexahydrate. This is due to the 

aggregation of the gold nanoparticles in the presence of zinc ions. This aggregation 

was confirmed by dynamic light scattering (DLS) measurements (see Figure 6.2), 

whereby the DLS diameter increased from 6.4 nm up to ~700 nm. In contrast, the 

colour remains the same regardless of the presence of zinc ions for G70-AuNPs. 

Indeed, the mean hydrodynamic diameter of the G70-AuNPs in the presence of 15 

mM zinc ions was slightly reduced from 11.5 nm to 9.7 nm, which is probably the 

result of coronal shrinking caused by the zinc ions.  
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Figure 6.4. Visible absorption spectra recorded for as-synthesised citrate-AuNPs or 

G70-AuNPs in either water or an aqueous solution of 15 mM Zn(NO3)2. The inset 

shows that the surface plasmon band for G70-AuNPs is red-shifted by 4 nm 

compared to citrate-AuNPs. Notably, there is no further change in the presence of 15 

mM zinc ions, indicating good colloidal stability for the G70-AuNPs under these 

conditions. 

 

It is well-known that the surface plasmon band of AuNPs of a given size is sensitive 

to surface modification.
37

 Indeed, the surface plasmon band was red-shifted by 4 nm 

after surface-grafting the G70 chains (see inset in Figure 6.4). As discussed above, 

the citrate-stabilised AuNPs aggregate immediately in the presence of zinc ions. This 

salt-induced coagulation is corroborated by the disappearance of the surface plasmon 

absorbance (see Figure 6.4) and the observation of ~ 700 nm aggregates by DLS 

(see Figure 6.2). In contrast, the surface plasmon band observed for G70-AuNPs 

remains unchanged in the presence of zinc ions. Thus G70-AuNPs retain their 

colloidal stability in the presence of 15 mM Zn(NO3)2, which is an essential 

prerequisite for their subsequent efficient occlusion within ZnO crystals.  
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6.2.2 Occlusion of G70-AuNPs within ZnO Crystals 

G70-AuNPs (4.8 nm Au core diameter) were occluded within the host crystal by 

heating an aqueous solution containing Zn(NO3)2·6H2O and HMTA at 90 °C for 1.5 

h. In the absence of any G70-AuNPs, twin-structured hexagonal prismatic ZnO rods 

were typically obtained, see Figures 6.5a and 6.5e. When using 0.01 g L
-1 

G70-

AuNPs, nanoparticle occlusion was mainly confined to the central region of the ZnO 

rods, as indicated by the red brackets shown in Figures 6.5b and 6.5f. 

In addition, larger G70-AuNPs were also prepared to aid visualisation of the 

nanoparticles within the central region of the ZnO rods by electron microscopy. Thus 

14 nm AuNPs were prepared by using sodium citrate as both a stabiliser and a 

reducing agent. This route is slightly different from that of 4.8 nm AuNPs, which 

were stabilised by sodium citrate but reduced using sodium borohydride (see 

Experimental section). The as-prepared 14 nm AuNPs were further modified by G70 

via ligand exchange. As shown in Figure 6.6a, near-monodisperse AuNPs can be 

readily obtained. Meanwhile, the gold nanoparticles localised in the central region of 

the rod-like ZnO crystals can be clearly identified, as indicated by the red arrows in 

Figure 6.6b. 

Using a higher concentration of 4.8 nm G70-AuNPs (0.05 g L
-1

) led to a larger central 

zone (see Figure 6.5g, indicated using red brackets) and, when used at 0.075 g L
-1

,
 

essentially all
 
the

 
G70-AuNPs are more or less uniformly distributed throughout the 

ZnO crystals, as indicated in Figure 6.6c. It is worth mentioning here that no excess 

G70-AuNPs were observed after centrifugation of the resulting G70-Au/ZnO crystals. 

At 0.10 g L
-1

, the G70-AuNPs are uniformly distributed throughout the whole ZnO 

crystal (see Figures 6.2d and 6.2h) and excess non-occluded G70-AuNPs in the 

supernatant were also observed after centrifugation of G70-Au/ZnO crystals. 
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Figure 6.5. SEM images (left column) and TEM images (right column) obtained for 

ZnO crystals prepared in the presence of various concentrations of G70-AuNPs. (a) 

and (e), 0 g L
-1

 G70-AuNPs (pure ZnO control); (b) and (f), 0.01 g L
-1

; (c) and (g), 

0.05 g L
-1

; (d) and (h), 0.10 g L
-1

. The inset in (d) is a magnified SEM image, 

showing ZnO rods surface-decorated with gold nanoparticles (white dots). The inset 

shown in (f) is a magnified TEM image of the indicated region. The insets in (e) and 

(h) represent selected-area electron diffraction (SAED) patterns recorded for each 

corresponding sample. SEAD pattern shown in (e) indicates a single crystalline 

nature of ZnO. As well as the expected diffraction spots for ZnO, a ring of 

diffraction spots assigned to the Au (111) planes was also observed for G70-Au/ZnO 

nanocomposites, see inset in (h). The red brackets shown in (f) and (g) indicate the 

spatial location of the AuNPs within the central region of the ZnO rods. 
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Figure 6.6. (a) TEM image recorded for 14 nm G70-AuNPs. (b) SEM image 

recorded for G70-Au/ZnO nanocomposite crystals prepared using these 14 nm 

AuNPs with a G70-AuNP concentration of 0.10 g L
-1

. (c) TEM image recorded for an 

ultramicrotomed cross-section of G70-Au/ZnO nanocomposites prepared in the 

presence of 0.075 g L
-1

 G70-AuNPs. N.B. This TEM specimen was obtained by 

slicing G70-Au/ZnO nanocomposites embedded within epoxy resin with the aid of an 

ultramicrotome. Further cross-section of various samples will be presented in the 

following Figures. 

 

Although the G70-Au/ZnO nanocomposites retain the characteristic rod-like 

morphology of the ZnO control (see Figure 6.5), systematically lower aspect ratios 

were observed on increasing the G70-AuNP concentration (see Figure 6.7a). More 

specifically, the mean length was dramatically reduced compared to the mean width 

(see Figure 6.7b). Aqueous electrophoresis studies (see Figure 6.7c) indicated zeta 

potentials of +4 mV and -33 mV for the ZnO control crystals and the G70-AuNPs, 

respectively. Notably, lower zeta potentials and electrophoretic mobilities were 

obtained for G70-Au/ZnO nanocomposites prepared at higher G70-AuNPs 

concentrations. This suggests that there are G70-AuNPs adsorbed at the surface of the 

ZnO crystals (see inset in Figure 6.5d), because the terminal carboxylic acid groups 

located on the G70 stabiliser chains lead to negative zeta potentials.
38

 

The surface presence of G70-AuNPs was also confirmed by XPS.
39

 As expected, the 

Au 4d signal intensity was systematically increased when employing higher G70-

AuNP concentrations (see Figure 6.7d). Powder XRD studies confirmed that the 

crystalline form of ZnO was invariably wurtzite, whether prepared in the presence or 

absence of G70-AuNPs. Moreover, the gradual increase in Au signal intensity when 

using a higher G70-AuNP concentration indicates that greater degrees of occlusion 

are obtained under these conditions (Figure 6.7e). 
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Figure 6.7. (a) Effect of varying G70-AuNP concentration on G70-Au/ZnO aspect 

ratio; (b) mean length and width of G70-Au/ZnO nanocomposites versus G70-AuNP 

concentration. Both the length and width decrease as the G70-AuNP concentration 

increases. However, the length decreases more sharply, leading to an overall 

decrease of aspect ratio. (c) Zeta potential and electrophoretic mobility (conducted at 

pH 7) vs. G70-AuNP concentration; (d) XPS spectra recorded for G70-Au/ZnO 

nanocomposites prepared using a range of G70-AuNP concentrations. The Au4d 

signal intensity systematically increased when using higher G70-AuNP 

concentrations, as indicated by the red dotted lines. (e) Powder X-ray diffraction 

analysis for a ZnO control, G70-AuNPs and ZnO precipitated in the presence of 

various concentrations of G70-AuNPs; (f) UV-visible absorption spectra recorded for 

a ZnO control, G70-AuNPs and ZnO precipitated in the presence of various 

concentrations of G70-AuNPs. 
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UV-visible absorption spectra (Figure 6.7f) indicate that ZnO control crystals 

exhibit a relatively weak band gap absorption at ~375 nm. This spectral feature 

(along with generally stronger absorption in the UV region) was significantly 

enhanced for the series of G70-Au/ZnO nanocomposites. Moreover, the AuNP 

surface plasmon band was red-shifted from a local maximum at 516 nm to a shoulder 

at around 550 nm. This is not due to aggregation, but instead reflects a change in the 

local environment of the AuNPs, which subtly influences their dielectric 

constant.
40,41

 However, the latter feature remains rather weak even for relatively high 

levels of G70-AuNP incorporation. This suggests that AuNP occlusion within ZnO 

leads to a subtle change in the electronic states of the two components.
42

 

 

Figure 6.8. TEM images of ultramicrotomed cross-sections (parallel to the c axis) of 

G70-Au/ZnO nanocomposite crystals. (a-c) 0.05 g L
-1 

G70-Au(central)/ZnO, with (b) 

and (c) representing  magnified regions, as indicated in (a); (d-f) 0.10 g L
-1

 G70-

Au(uniform)/ZnO, with (e) and (f) again representing magnified regions, as indicated 

in (d). The inset shown in (f) depicts the fast Fourier transform (FFT) obtained for 

this image. AuNPs are evidently occluded within the ZnO crystals and their spatial 

location can be controlled simply by varying the G70-Au concentration; higher 

concentrations produce a uniform distribution, whereas lower concentrations restrict 

occlusion to within a central region. Moreover, AuNP occlusion does not appear to 

cause any distortion of the ZnO lattice, see Figure 6.8e. 
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High-resolution TEM images recorded for ultramicrotomed G70-Au/ZnO 

nanocomposite crystals embedded in epoxy resin confirmed that the G70-AuNPs 

were incorporated within the host matrix, rather than merely deposited on the ZnO 

surface (see Figure 6.8). By imaging the cross-section parallel to the c axis of G70-

Au/ZnO nanocomposite crystals (Figures 6.8a-6.8c), AuNPs (which appear darker 

than the host crystal as a result of their greater electron density) are clearly 

preferentially located within the centre of the ZnO rods when prepared at a G70-

AuNP concentration of 0.05 g L
-1

. In contrast, doubling this concentration led to the 

uniform distribution of AuNPs throughout the ZnO crystal (Figures 6.8d-6.8f). The 

ZnO lattice fringes can be clearly observed, as indicated in Figure 6.8e. Moreover, 

AuNP occlusion does not disrupt the lattice continuity of ZnO and fast Fourier 

transform (FFT) confirmed the highly crystalline nature of the host matrix (see inset 

of Figure 6.8f). Given the presence of the G70 stabiliser chains at the surface of the 

AuNPs, It is perhaps surprising that no distinct interfacial region is observed 

between the AuNPs and the ZnO matrix. One likely explanation is that the surface 

density of the G70 stabiliser chains is relatively low. Indeed, the surface density of 

the G70 chains on the AuNPs is calculated to be approximately 0.54 chains nm
-2

, 

which is 2-3 times lower than that reported by Liang and co-workers for certain 

polymer-stabilized AuNPs.
41

 Moreover, Kulak et al.
38

 also observed no interfacial 

host-guest region (and minimal disruption of the crystalline host lattice) for block 

copolymer-stabilised magnetite sols occluded within calcite. 

Figure 6.9 shows the AuNP distribution within the cross-section of G70-

Au(central)/ZnO and G70-Au(uniform)/ZnO rods. In each case the AuNP distribution 

can be compared by plotting the number of AuNPs per nm
2 

against the distance from 

the middle of the ZnO rods. For the G70-Au(uniform)/ZnO system, AuNPs are 

uniformly distributed throughout the whole rod, although there are somewhat fewer 

at the edge of the c axis. In contrast, the number of AuNPs in the central part of the 

rod is significantly less for G70-Au(central)/ZnO (~ 20 × 10
-3

 per nm
2
) compared to 

G70-Au(uniform)/ZnO (~ 35 × 10
-3

 per nm
2
) and graduately decreases to zero before 

reaching the edge of the c axis. These observations suggest that the density of the 

occluded G70-AuNPs is graduately reduced during ZnO growth. This is reasonable 

because the concentration of remaining G70-AuNPs decreases during their gradual 

incorporation into ZnO.  
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Figure 6.9. Comparison of the AuNP distribution within the cross-section of G70-

Au(central)/ZnO and G70-Au(uniform)/ZnO rods. Note: schematic cartoons are 

drawn to approximate scale. 

 

Uniform occlusion was further confirmed when imaging cross-sections 

perpendicular to the c axis of the G70-Au/ZnO rods (see Figure 6.10). 

Ultramicrotomed ZnO rod-like crystals prepared in the absence of any AuNPs 

exhibited a hexagonal plate structure (Figure 6.10a). G70-AuNPs were 

homogeneously occluded throughout these ZnO rods when using 0.10 g L
-1 

G70-

AuNPs (Figure 6.10b). Selected electron area diffraction (SEAD) patterns obtained 

for the ZnO control confirmed its single crystal nature, while diffraction spots 
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corresponding to AuNPs can be observed for G70-Au/ZnO nanocomposite crystals 

(inset in Figure 6.10b). At this point, we hypothesised that ZnO crystals might also 

be prepared in which G70-AuNPs are solely located within a surface layer. This 

objective was achieved via delayed addition of the G70-AuNPs during ZnO 

formation (see Figure 6.10). Simply, the G70-AuNPs were added 30 min later after 

the commencement the ZnO crystallisation. Under such conditions, ultramicrotomed 

cross-sections indicate that G70-AuNPs are mainly confined to a ~35 nm surface 

layer within the ZnO crystal, as shown in Figures 6.10c and 6.10d. 

 

Figure 6.10. TEM images obtained for G70-Au/ZnO nanocomposite crystals 

ultramicrotomed perpendicular to the c axis. (a) ZnO control; (b) 0.10 g L
-1

 G70-

Au(uniform)/ZnO nanocomposites with uniformly-distributed G70-AuNPs; (c) G70-

AuNPs occluded within ZnO rod-like crystals in the form of a ~35 nm surface layer; 

(d) magnified image of the corresponding area indicated in (c). The insets in (a) and 

(b) represent the SAED patterns recorded for each corresponding sample.  
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Inductively-coupled plasma mass spectrometry (ICP-MS) was used to analyse the 

gold content of these nanocomposite crystals (see Table 6.1). Remarkably, ZnO 

crystals containing up to 11.9 % w/w gold can be prepared, which corresponds to 

19.9 % w/w occluded G70-AuNPs. This is approximately nine times higher compared 

to that recently reported for AuNPs encapsulated within a zeolitic imidazolate 

framework (ZIF-8).
40

 Alternatively, given the solid-state densities of the ZnO control 

(5.45 g cm
-3

) and the G70-AuNPs (3.85 g cm
-3

), the G70-AuNP content of these 

nanocomposite crystals can be determined by measuring their solid-state density via 

helium pycnometry. These density data are summarised in Table 6.1 and are in fairly 

good agreement with the ICP-MS results. FT-IR spectra (Figure 6.11a) also 

confirmed that systematically higher G70-AuNP contents occluded within these ZnO 

crystals: the carbonyl absorption band at 1723 cm
-1

 assigned to the G70 stabiliser 

chains became progressively more intense for nanocomposite crystals prepared in the 

presence of higher concentrations of G70-AuNPs. Meanwhile, the intensities of C-O-

C, primary C-OH and secondary C-OH stretching vibrations are systematically 

increased when there is a higher extent of G70-AuNP incorporation. These IR bands 

remain in the same positions, although their intensities depend on the extent of 

occlusion of the G70-AuNPs. However, the observations made for in-plane bending 

vibrations of primary C-OH and secondary C-OH are qualitatively different and will 

be discussed in the following section. 

 

Figure 6.11. SEM image (a) and TEM image (b) of intact G70-Au(surface)/ZnO 

nanocomposites. This sample was prepared by adding the G70-AuNPs in a delayed 

time of 30 minutes. N.B. The cross-section perpendicular to the c axis can be easily 

prepared via ultramicrotome (see Figure 6.10). However, it is technically difficult to 

obtain a cross-section parallel to the c axis (with similar observations for control 

ZnO and 0.01 g L
-1

 G70-Au/ZnO) when the G70-Au/ZnO nanocomposites have a 

larger aspect ratio.  
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Figure 6.12. FT-IR spectra recorded for (a) three G70-Au/ZnO nanocomposite 

crystals and three reference materials (ZnO crystals alone, G70 homopolymer and the 

G70-AuNPs). The carbonyl band absorbance correlates well with the G70-AuNP 

contents of the ZnO crystals, as determined by ICP-MS. Moreover, two C-OH in-

plane bending modes merge to form a single band (see inset), suggesting that the cis-

diol side-groups on the G70 chains act as coordinating ligands for Zn
2+

 cations; (b) 

FT-IR spectra recorded for G70, G70 plus ZnO ad-mixture, G70 plus Zn(NO3)2 

mixture (prepared by freeze-drying a binary aqueous solution overnight), and 

Zn(NO3)2 alone. 
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Table 6.1. Summary of Au4d/Zn2p atomic ratio (%), solid-state density, BET 

specific surface area, extent of occlusion of G70-AuNPs within ZnO crystals, and 

pseudo-first-order rate constant for the UV photodegradation of a model dye 

(rhodamine B). 

 

 

6.2.3 Occlusion Mechanism 

Incorporation of nanoparticles into single crystals at such a high level is quite 

remarkable.
27

 Clearly, a deeper understanding of the occlusion mechanism is 

desirable. In addition to non-polar {101̅0} faces, it is well-known that hexagonal 

ZnO crystals possess polar (0001) and (0001̅) planes, with the former being rich in 

zinc atoms, while the latter is rich in oxygen atoms.
43

 In the present Au/ZnO system, 

ZnO crystallisation in the presence of G70-AuNPs follows the twin-structure 

formation mechanism as discussed in Chapter 5. However, compared to the ZnO 

control prepared in the absence of G70-AuNPs, the mean length and width of the 

Au/ZnO nanocomposite crystals are systematically reduced at higher G70-AuNPs 

concentrations (see Scheme 6.1 and Figure 6.7b). This is because G70-AuNPs bind 

to the growing ZnO crystal surface, blocking the sites from which the crystal would 

normally tend to grow, thereby retarding its growth rate.
32

 At a relatively low G70-

AuNP concentration (i.e. < 0.05 g L
-1

), nanoparticle occlusion is complete before 

ZnO crystallisation has ceased, leading to G70-AuNPs being confined within a 

central region. At a relatively high G70-Au concentration (> 0.075 g L
-1

), G70-AuNPs 

 

Sample 
Au4d/Zn2p 

atomic ratio 

(%) 

Density 

(g cm
-3

)
a
 

BET 

surface area  

(m
2
 g

-1
) 

Extent of occlusion (% w/w) 
Rate 

constant   

(k, h
-1

)
b
 

ICP-MS 
Helium 

pycnometry 

Au G70-Au Au G70-Au 

ZnO control 0 5.45 4.2 ± 0.2 - - - - 0.18 

0.01 g L
-1

  

G70-Au/ZnO 
0.9 5.41 3.8 ± 0.3 1.3 2.2 1.1 1.9 0.27 

0.05 g L
-1

  

G70-Au/ZnO 
7.4 5.22 7.3 ± 0.2 7.0 11.6 6.4 10.7 0.63 

0.10 g L
-1

  

G70-Au/ZnO 
39.0 5.05 8.4 ± 0.1 11.9 19.9 11.5 19.1 0.84 

G70-Au 

(surface)ZnO 
15.0 5.31 3.1 ± 0.4 3.4 5.7 3.9 6.4 0.42 

a
 G70-AuNPs have a density of 3.85 g cm

-3
, therefore the higher the  G70-Au content, the lower the density 

of the nanocomposite crystals. 
b 
Pseudo-first-order rate constant (k) is derived from –ln(C/Co) = kt 
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are occluded throughout the host crystal, with the ZnO growth being significantly 

suppressed under these conditions. Moreover, G70-AuNPs can not only absorb on the 

polar (0001) face, but also on the six non-polar {101̅0} faces. This explains why the 

delayed addition of G70-AuNPs leads to near-surface occlusion. 

 

Figure 6.13. Occlusion of G48-AuNPs (prepared using a poly(glycerol 

monomethacrylate)48 (G48) stabiliser containing no carboxylic acid end-groups 

within ZnO crystals. (a) Chemical structure of G48; (b) TEM image of as-synthesised 

G48-Au/ZnO nanocomposite crystal; (c) TEM image obtained for G48-Au/ZnO 

nanocomposite crystals after ultramicrotome perpendicular to the c axis. Clearly, 

G48-AuNPs are uniformly distributed throughout the whole ZnO crystal.  

 

The G70 stabiliser chains play a key role in the interaction between the AuNPs and 

the host crystal. At first sight this appears rather counter-intuitive, because the non-

ionic nature of the glycerol monomethacrylate repeat units might be expected to 

produce little or no interaction with the ZnO lattice. Indeed, previous reports suggest 

that an anionic surface charge density is required for efficient interaction of 

copolymer nanoparticles within crystals.
26-32

 Although the G70 chains used in this 

study contain a carboxylate acid end-group, this anionic end-group does not appear 

to promote occlusion within ZnO (see Figure 6.13). In this control experiment, G48 

was prepared via RAFT polymerisation in ethanol using 2-cyano-2-propyl 

benzodithioate (CPB) and 2,2’-azobis(isobutylnitrile) (AIBN) as RAFT chain 

transfer agent and initiator, respectively. This protocol produces G48 stabiliser chains 

with no carboxylic acid end-group (see Figure 6.13a). Apparently, uniform 

occlusion of G48-AuNPs within ZnO can be achieved without carboxylic acid end-

groups, as shown in Figures 6.13b and 6.13c. Thus it is safe to conclude that such 

anionic end-groups do not promote occlusion.  
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So how do the G70-AuNPs interact with ZnO? The most likely interaction between 

the G70-AuNPs and the growing ZnO involves chelation between the Zn
2+

 cations 

and the cis-diol groups on the non-ionic G70 stabiliser chains.
44-46

 Experimental 

evidence for this complexation is provided by vibrational spectroscopy studies 

(Figure 6.12a). In FT-IR spectra recorded for G70-AuNPs and G70 homopolymer, the 

absorption bands at 1255 cm
-1

 and 1275 cm
-1

 are due to the in-plane bending 

vibrations of primary and secondary C-OH, respectively.
47

 These two bands merge 

to form a single new band at 1264 cm
-1

 (see inset shown in Figure 6.12a), which 

supports the postulated chelation of Zn
2+

 cations by the G70 chains.
48

 Moreover, this 

interaction was further confirmed by control experiments, as shown in Figure 6.12b. 

Clearly, the G70 plus Zn(NO3)2 spectrum is a combination of the G70 and Zn(NO3)2 

reference spectra, except that the two in-plane bending vibrations of δC-OH are 

merged into a single band, as indicated by the dotted red box. This strongly suggests 

chelation between Zn
2+

 ions and the cis-diol groups on the G70 stabiliser chains. 

Notably, for the G70 plus ZnO control, the δC-OH in-plane bending vibrations remain 

as two distinct bands, confirming that no interaction occurs on simple physical 

mixing of these two components. 

 

6.2.4 XPS Studies and Dye Photodecomposition Experiments 

These G70-Au/ZnO nanocomposite crystals were also examined by high resolution 

XPS, which has a typical sampling depth of 2-10 nm.
39

 As shown in Figure 6.14a, 

the signal intensity of two binding energy (BE) peaks corresponding to the electronic 

states of Au4f5/2 (87.30 eV) and Au 4f7/2 (83.60 eV) was systematically enhanced 

at higher AuNP contents. Importantly, each signal was shifted to a lower BE for the 

G70-Au/ZnO nanocomposite crystals, whereas the two Zn2p signals were shifted to 

higher BE (see Figure 6.14b). These observations suggest significant charge transfer 

between the two components, indicate an intimate interaction between the AuNPs 

and the ZnO host crystal.
42
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Figure 6.14. High resolution X-ray photoelectron spectra recorded for various G70-

Au/ZnO nanocomposite crystals and appropriate reference materials: (a) Au4f; (b) 

Zn2p. 

 

It is well-known that Au/ZnO nanostructures can exhibit superior photocatalytic 

performance compared to ZnO alone.
20

 We do not expect to achieve higher rates of 

photocatalysis than those reported for core-shell Au/ZnO nanoparticles or Au-

decorated ZnO particles,
2,18,49

 because these systems possess a significantly higher 

specific surface area compared to our nanocomposite crystals. Nevertheless, our new 

system provides a unique opportunity to examine whether uniform occlusion of gold 
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nanoparticles inside ZnO leads to enhanced photocatalytic performance relative to 

that observed for the near-surface occlusion of gold nanoparticles.  

 

Figure 6.15. The rate of photocatalytic dye decomposition recorded for RhB in the 

presence of G70-Au(surface)/ZnO and 0.10 g L
-1 

G70-Au(uniform)/ZnO. The amount 

of 0.10 g L
-1 

G70-Au(uniform)/ZnO crystals used in these experiments was reduced 

to produce approximately the same total surface area as that for the G70-Au 

(surface)/ZnO crystals, but this had almost no discernible effect on the observed rate 

of dye decomposition. 
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Hence the rate of photodecomposition for a model dye (rhodamine B, or RhB) was 

studied using a UV wavelength of 254 nm (6 W, UV lamp). As expected, G70-

AuNPs alone produce no detectable dye decomposition, whereas the rate of 

photocatalysis increases monotonically with AuNP content of the G70-Au/ZnO 

nanocomposite crystals (Figure 6.15a and Table 6.1). More importantly, the 

catalytic efficiency obtained for 0.10 g L
-1

 G70-Au(uniform)/ZnO significantly 

exceeds that of G70-Au(surface)/ZnO within the experimental 4 h time frame. Given 

that such dye decomposition involves heterogeneous catalysis, the total available 

surface area could potentially affect photocatalytic performance. However, a control 

experiment conducted at constant surface area revealed little or no change in the rate 

of dye decomposition (Figure 6.15b). Meanwhile, 0.05 g L
-1

 G70-Au(central)/ZnO 

also exhibits a higher catalytic efficiency compared to G70-Au(surface)/ZnO (8.0% 

vs. 20% dye remains after 4 h). As shown in Table 6.1, 0.05 g L
-1

 G70-

Au(central)/ZnO has approximately twice the Au content compared to G70-

Au(surface)/ZnO, but the Au4d/Zn2p surface atomic ratio for the former is around 

half that of the latter. This observation indicates that the photocatalytic performance 

mainly depends on the bulk Au content, rather than the surface Au content. In other 

words, the incorporated AuNPs contribute significantly to the rate of photocatalysis. 

This suggests that a higher extent of AuNP occlusion within ZnO provides a larger 

number of electron ‘sinks’, which facilitate charge carrier separation and extending 

the lifetime of the electron-hole pair,
1,2,19,20 

thus in turn produces a more effective 

photocatalyst. 
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6.3 Conclusions 

In summary, we report an efficient, versatile and scalable route to incorporate 

polymer-functionalised noble metal nanoparticles within semiconductor crystals. 

More specifically, both the spatial distribution and extent of occlusion of AuNPs 

within ZnO crystals can be controlled, which provides an unprecedented opportunity 

to elucidate synthesis-structure-property relationships and establish robust design 

rules for efficient occlusion. This study provides the first example of effective 

occlusion facilitated by a non-ionic polymer stabiliser. This represents an important 

paradigm shift, since all prior literature reports of occlusion into inorganic host 

crystals involve the use of anionic polymeric stabilisers. We propose an occlusion 

mechanism and further show that incorporation of AuNPs into ZnO crystals 

enhances photocatalytic performance. In principle, appropriate surface modification 

of various other metal nanoparticles should enable their efficient occlusion within 

ZnO (and perhaps other host crystals), thus providing access to a range of new 

functional nanocomposite materials exhibiting emergent properties. 
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7.1 Conclusions and Future Work 

In this Thesis, various diblock copolymer nanoparticles have been prepared via 

RAFT-mediated PISA. The occlusion of these nanoparticles within calcite or ZnO 

enables hybrid nanomaterials to be generated by rational design. Importantly, this 

Thesis provides a deeper understanding of the design rules required for efficient 

nanoparticle occlusion within inorganic host crystals. 

Two diblock copolymer nanoparticles have been synthesised using either 

poly(proline methacrylate) or poly(carboxybetaine methacrylate) macro-CTAs as 

steric stabilisers. Both macro-CTAs contain carboxylic acid groups, but the former 

becomes anionic above pH 9.2, whereas the latter has zwitterionic character at this 

pH. The anionic poly(proline methacrylate)-stabilised particles are occluded 

uniformly throughout the crystals (up to 6.8 % by mass, 14.0 % by volume). In 

contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilised particles 

show no signs of occlusion into calcite crystals grown under identical conditions. 

Therefore, the presence of carboxylic acid groups alone does not guarantee efficient 

occlusion: overall anionic character is an additional prerequisite. 

For the first time we demonstrate that S-B diblock copolymer nanoparticles can be 

prepared with either high or low S stabiliser surface densities using either RAFT 

dispersion polymerisation in a 2:1 v/v ethanol/water mixture or RAFT aqueous 

emulsion polymerisation, respectively. This difference in stabiliser surface density 

offers an unprecedented opportunity to investigate how this parameter affects the 

extent of nanoparticle occlusion. Substantial differences are observed for the extent 

of occlusion of these two types of anionic nanoparticles into calcite. Surprisingly, a 

low S stabiliser surface density leads to uniform nanoparticle occlusion within 

calcite at up to 7.5 % w/w (16 % v/v), whereas minimal occlusion occurs when using 

nanoparticles with a high S stabiliser surface density. This counter-intuitive 

observation suggests that an optimum anionic surface density is required for efficient 

occlusion. This unexpected design rule for the incorporation of nanoparticles within 

crystals also applies to ZnO host crystals. In future work, how to precisely control 

the stabiliser surface density using PISA formulations should be systematically 

investigated by varying the solvent composition of ethanol/water mixture. 
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Extending the nanoparticle occlusion protocol to other functional crystal hosts is 

highly desirable. S-B diblock copolymer nanoparticles prepared by RAFT aqueous 

emulsion polymerisation are then used as additives for the in situ formation of 

semiconductor ZnO crystals. Some other well-defined anionic diblock copolymer 

nanoparticles are also prepared by PISA-mediated RAFT aqueous emulsion 

polymerisation and then evaluated for occlusion in control experiments. Systematic 

studies indicated that both the chemical nature (i.e. whether sulfate-based or 

carboxylate-based) and the mean degree of polymerisation (DP) of the anionic 

stabiliser block play vital roles in determining the crystal morphology. S-B 

nanoparticles are efficiently incorporated within the ZnO crystals, leading to a 

substantial change in morphology from twin-structure hexagonal prismatic rod-like 

ZnO crystals to twin-structure “diablo” ZnO crystals. Moreover, the extent of 

nanoparticle occlusion within the ZnO phase can be as high as 23 % by mass. The 

optical properties, chemical composition and crystal structure of the resulting 

nanocomposite crystals are evaluated and an occlusion mechanism is proposed based 

on the observed evolution of the ZnO morphology in the presence of the sulfate-

based anionic nanoparticles. 

Diblock copolymer nanoparticles offer an excellent model for studying the effect of 

surface chemistry/composition on the nanoparticle occlusion within crystals. The 

ultimate goal is to incorporate functional nanoparticles (such as noble nanoparticles, 

magnetic nanoparticles etc.) into functional crystal hosts (such as semiconductors) to 

produce a range new functional hybrid materials with superior/emergent properties. 

In this context, we explored an efficient aqueous route that enabled the direct 

incorporation of non-ionic G70-AuNPs at remarkably high levels (~20 % w/w) 

during the in situ growth of ZnO crystals under relatively mild conditions. 

Depending on the synthesis protocol, the localisation of G70-AuNPs can be readily 

controlled in three ways: (i) solely located within a central region, (ii) uniformly 

distributed throughout the ZnO host crystal or (iii) confined to a surface layer of 

approximately 35 nm. The G70 stabiliser is essential for successful occlusion: its 

pendent cis-diol side-groups bind Zn
2+

 cations, which promote nanoparticle 

interaction with the growing ZnO crystal surface. The intimate interaction between 

the G70-AuNPs and the host ZnO crystals is demonstrated by XPS studies. Finally, 

we demonstrate that occlusion of G70-AuNPs throughout the whole ZnO crystal is 
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beneficial for the enhanced photocatalytic decomposition of rhodamine B, which 

serves as a model dye. This study provides the first example of effective occlusion 

facilitated by a non-ionic polymer stabiliser. This represents an important paradigm 

shift, since all prior literature reports of occlusion into inorganic host crystals 

involved the use of anionic polymeric stabilisers. 

Currently, the occlusion of nanoparticles within host crystals is in its preliminary 

stage. Compared with traditional methods, such as mechanically mixing, annealing 

or alloying, uniformly distributing nanoparticles within a crystal host during its 

formation is of considerable scientific interest. This versatile strategy offers great 

potential to revolutionalise the preparation of hybrid nanomaterials with a uniform 

distribution of guest nanoparticles within a crystal host. Given appropriate surface 

modification, a wide range of organic/inorganic nanoparticles can be occluded 

within various desired host crystals. 

 

Topics worthy of further exploration include the following: 

i), Expanding the scope of guest nanoparticles and host crystals is highly desirable. 

For example, Pt nanoparticles, Pd nanoparticles, Ag nanoparticles, bimetallic 

nanoparticles (AuAg, PtPd etc.), magnetic nanoparticles, quantum dots etc. are of 

great interest due to their unique properties. Similarly, TiO2, Cu2O, MnO2, Fe3O4, 

SrTiO3, MnCO3 etc. are potential host crystals. Combination of these functional 

components could generate a wide range of novel nanocomposite materials. 

ii), It is of great interest to investigate occlusion of nanoparticles with specific 

morphology (such as cubic, rod-like, porous, hollow, lamellae, anisotropic etc.) 

within host crystal. Such unique morphologies may well affect the crystallisation 

habit of the host crystals and assembly/alignment of the host nanoparticles is likely 

during their incorporation. 

iii), To date, all occluded nanoparticles have been surface-functionalised with 

desired polymers in order to promote their interaction with the growing crystal 

surface. This means modification of the nanoparticles is essential prior to their 

occlusion. Can we find a general way to incorporate nanoparticles into crystals via a 

generic “carrier”? Recently, it has been reported that silica nanoparticles can be 
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loaded within diblock copolymer vesicles during the formation of the latter via 

PISA.
1
 Moreover, anionic poly(methacrylic acid)-poly(benzyl methacrylate) vesicles 

can be incorporated into calcite.
2
 In principle, this means that dyes, organic 

nanoparticles or inorganic nanoparticles could be incorporated into crystals as long 

as these substances can be loaded into appropriate anionic vesicles. This could be a 

wholly generic approach to incorporate nanoparticles into crystals. 
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