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Abstract

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastro-

intestinal tract that usually manifests as either ulcerative colitis or Crohn’s disease. He-

licobacter hepaticus (Hh)-induced colitis is a mouse model of intestinal inflammation

whereby IL-10 knock out mice are infected with Hh, resulting in pathology similar to

that seen in Crohn’s disease.

Following the Complex Systems Modelling and Simulation (CoSMoS) process, a prin-

cipled approach to the engineering of simulations of complex systems, we have developed

IBDSim, a computational model of the processes active in the intestinal tract during Hh-

induced colitis. IBDSim is a hybrid agent-based model (ABM) that combines agent-based

modelling with systems biology and quantitative systems pharmacology approaches, to

capture both cell- and system-level behaviours. In combining these approaches, the Auto-

mated Simulation Parameter Alteration and SensItivity Analysis toolkit (ASPASIA) was

developed to aid in the calibration and analysis of models written in Systems Biology

Mark-up Language (SBML), where the addition of an intervention is required for key be-

haviours to emerge. SBML models generated using this toolkit could then be incorporated

into IBDSim.

IBDSim was calibrated to reproduce behaviours such as the dynamics of Hh burdens

and increasing cell infiltration seen in vivo in the Hh colitis model and validatory ex-

periments demonstrated that IBDSim can be used as a predictive tool. We present two

examples of explorative in silico experimentation using IBDSim. The first experiment

examined the effects of blocking lymphocyte egress from the lymph node on intestinal

inflammation. The second experiment investigated how altering the composition of the

microbial flora can contribute to intestinal inflammation, both in the absence and pres-

ence of Hh. IBDSim can be used to study the immunological processes involved in the

development of intestinal inflammation, predict targets for therapeutic treatments, and

examine the effects of drug intervention on disease outcome.

3





Contents

Abstract 3

Table of Contents 3

List of Tables 7

List of Figures 11

Acknowledgements 17

Declaration 19

1 Introduction 21

1.1 Background Immunology and an Introduction to the Helicobacter hepaticus-

Induced Colitis Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Inflammatory Bowel Disease (IBD) . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Mouse Models of Mucosal Inflammation . . . . . . . . . . . . . . . . . . . . 26

1.4 Modelling Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Modelling Tools and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6 The Automated Simulation Parameter Alteration and SensItivity Analysis

(ASPASIA) Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.7 Existing Computational Models of Intestinal Inflammation . . . . . . . . . . 44

1.8 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.9 Dynamic Tuneable Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 50

1.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.11 Thesis Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



Contents

2 A Computational Model of Intestinal Inflammation 53

2.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 A Domain Model for Hh-Induced Colitis . . . . . . . . . . . . . . . . . . . . 55

2.3 A Platform Model for Hh-Induced Colitis . . . . . . . . . . . . . . . . . . . 70

2.4 Simulation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.5 Calibrating the Inflammation Score . . . . . . . . . . . . . . . . . . . . . . . 120

2.6 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.7 Results Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

2.8 Confirmative Experimentation Using IBDSim . . . . . . . . . . . . . . . . . 131

2.9 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.10 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3 Exploring the Effects of FTY720 on Hh-Induced Intestinal Inflammation137

3.1 Pharmacokinetic (PK) Model for FTY720 in Mice . . . . . . . . . . . . . . 138

3.2 Single Cell Pharmacodynamic (PD) Model for FTY720 in Mice . . . . . . . 146

3.3 FTY720 significantly reduces cell numbers but not intestinal inflammation

in Helicobacter hepaticus (Hh)-induced colitis . . . . . . . . . . . . . . . . . 150

4 Exploring the Effects of microbial composition on disease outcome in

Hh-induced intestinal inflammation 167

4.1 Extending IBDSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.2 Exploring the Effects of Different Microbiota on Hh-Induced Colitis . . . . 179

5 Discussion 211

5.1 Development of a Computational Model of Hh-Induced Colitis . . . . . . . 211

5.2 Biological Hypotheses Explored by IBDSim . . . . . . . . . . . . . . . . . . 214

5.3 Contribution to the wider Systems Biology Field . . . . . . . . . . . . . . . 217

5.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.5 Further Challenges in the Systems Biology Field . . . . . . . . . . . . . . . 220

Appendices 223

A Model Parameters 223

B FTY720 Mouse PK Model Parameter Table 229

6



Contents

C Equations for T-cell polarisation and cytokine secretion 233

D Ranges for LHC Sampling for the T Cell Transcription Factor Model 235

E Definitions of Parameters and Measures in Microbial Composition Mod-

els and Experiments 241

F Correlation Tables of SBML Model Parameters with Measures from

IBDSim 243

Abbreviations 253

References 257

7





List of Tables

1.1 Experimental colitis models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Areas of application of different modelling methodologies. . . . . . . . . . . 35

1.3 Framework for overview, design concepts, and details (ODD) . . . . . . . . 36

1.4 Examples of computational modelling toolkits. . . . . . . . . . . . . . . . . 43

1.5 Examples of simulation toolkits available for developing agent-based models

(ABMs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1 Cells and cytokines by compartment. . . . . . . . . . . . . . . . . . . . . . . 73

2.2 Parameters in the grid-based representation of Hh in the cecal and colonic

lumen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 Parameters in epithelial barrier model. . . . . . . . . . . . . . . . . . . . . . 99

2.4 Biological data used to inform and validate the model. . . . . . . . . . . . . 101

2.5 In silico inflammation scoring system. . . . . . . . . . . . . . . . . . . . . . 103

2.6 Calibration of Hh death and compartment switching rates. . . . . . . . . . 108

2.7 In silico inflammation scoring system. . . . . . . . . . . . . . . . . . . . . . 121

2.8 Simulation adequately reflects biology distributions. . . . . . . . . . . . . . 127

3.1 The positive effects of fingolimod (FTY720) in disease. . . . . . . . . . . . . 139

3.2 The negative effects of FTY720 in experimental diseases. . . . . . . . . . . . 140

3.3 Ranges used for ASPASIA parameter estimation. . . . . . . . . . . . . . . . 142

3.4 Fitted model parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.1 Parameter values used for ASPASIA generated Systems Biology Mark-up

Language (SBML) models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.1 Parameters in IBDSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

D.1 Ranges used in T cell transcription factor model calibration . . . . . . . . . 235

9





List of Figures

1.1 CD4+ T cells differentiate into unique subsets following stimulation with

different cytokines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2 Factors controlling CD4+ T-cell phenotype switching in vivo . . . . . . . . 25

1.3 Possible transitions of two clonotypes competing for survival signals from a

signal APC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Stages of model development under the Complex Systems Modelling and

Simulation (CoSMoS) process. . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5 Using a graphical approach to determine the number of replicates. . . . . . 47

1.6 Using the confidence interval method to determine the number of replicates. 48

1.7 Example of spatial and temporal scales in biology. . . . . . . . . . . . . . . 50

2.1 Unified Modelling Language (UML) notation for an activity diagram. . . . 57

2.2 UML notation for a state diagram. . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 Expected behaviors diagram for Hh-induced colitis. . . . . . . . . . . . . . . 60

2.4 Activity diagram describing interactions in the gut during Hh-induced in-

testinal inflammation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Domain model state diagram for bacteria. . . . . . . . . . . . . . . . . . . 66

2.6 Domain model state diagram for antigen-presenting cells (APCs) in the

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.7 Domain model state diagrams for T cells in the model. . . . . . . . . . . . . 69

2.8 Domain model state diagrams for epithelial cells in the model. . . . . . . . 70

2.9 Different grids that can be used in an ABM. . . . . . . . . . . . . . . . . . . 72

2.10 Cartoon of the mouse intestinal tract. . . . . . . . . . . . . . . . . . . . . . 73

2.11 Dimensions of the mesenteric lymph node (MLN), cecum and colon. . . . . 75

2.12 Compartments of the model and transitions of cells between them . . . . . 75

11



List of Figures

2.13 Activity diagram describing interactions between entities in the model dur-

ing Hh-induced intestinal inflammation. . . . . . . . . . . . . . . . . . . . . 76

2.14 Representation of cell movement in silico. . . . . . . . . . . . . . . . . . . . 80

2.15 How T cell:dendritic cell (DC) interactions lead to T cell activation. . . . . 81

2.16 Platform model state diagram for bacteria. . . . . . . . . . . . . . . . . . . 86

2.17 Quantification of Hh colonisation levels from cecal washes. . . . . . . . . . . 86

2.18 Platform model state diagram for DCs. . . . . . . . . . . . . . . . . . . . . 87

2.19 Linear regression model of total Interleukin (IL)12 produced by 5×105 DCs. 89

2.20 Probability that a macrophage will be regulatory depends on the amount

of Inteferon-γ (IFN-γ) in the tissue. . . . . . . . . . . . . . . . . . . . . . . 90

2.21 Calculation of the amount of IFN-γ to secrete per time step by a macrophage. 91

2.22 T cell state diagram platform model . . . . . . . . . . . . . . . . . . . . . . 93

2.23 Factors controlling CD4+ T-cell differentiation in vivo and in silico. . . . . 94

2.24 ODE model of T cell polarisation and phenotype switching. . . . . . . . . . 95

2.25 ASPASIA-generated model reflects observed biological behaviours of Th17-

polarised CD4+ T cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.26 ASPASIA-generated model reflects observed biological behaviors of Th1-

polarised CD4+ T cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.27 Types of grid that are used in the model. . . . . . . . . . . . . . . . . . . . 104

2.28 Depiction of cell and cytokine grids that make up each compartment. . . . . 105

28 (Cont.)Parameter calibration for the grid-based model of Hh. . . . . . . . . . . . . 110

2.29 Parameter calibration for the abstraction that bacteria switch compartment

at a rate dependant of the number of secreting epithelial cells. . . . . . . . . 111

2.30 Calibrating maxBugs parameter for macrophages. . . . . . . . . . . . . . . . 113

2.31 Modelling cytokine secretion by macrophages. . . . . . . . . . . . . . . . . . 114

2.32 Calibrating maxBugs parameter for DCs. . . . . . . . . . . . . . . . . . . . 115

2.33 Cytokine secretion by dendritic cells in the model is representative of biology.116

2.34 Levels of Tbet, Retinoic-acid Related Orphan Receptor-γt (ROR-γt), IFN-

γ, and IL17 in simulations of a single cell in the absence or presence of

polarising cytokines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2.35 Calibration of T-cell movement. . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.36 Comparison of biological and simulated measures of inflammation. . . . . . 122

2.37 Determining the number of simulation replicates that need to be performed. 123

12



List of Figures

2.38 Sensitivity of simulated measures to variations in all model parameters. . . 128

2.39 Effect of one at a time parameter alteration on simulation measures. . . . . 129

2.40 Comparison between in vivo and in silico data. . . . . . . . . . . . . . . . . 130

2.41 In silico inflammation score gives similar results to the biological histology

score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2.42 Inheritance structure of Java classes in IBDSim. . . . . . . . . . . . . . . . 134

2.43 Using dynamic time warping to identify similar time course results. . . . . . 135

3.1 Maximum concentration of FTY720 in the lymph node of rats depends on

Qrob, Rrob, and CL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.2 Reduced pharmacokinetic model adequately represents biological concen-

trations of FTY720 in the rat lymph node. . . . . . . . . . . . . . . . . . . 144

3.3 Schematic representation of the reducedpharmacokinetic (PK) model. . . . 144

3.4 Concentration of FTY720 in the lymph node of mice. . . . . . . . . . . . . 147

3.5 Sensitivity of the concentration of FTY720 in the lymph node to changes

in organ volumes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.6 Procedure for in silico FTY720 experiments. . . . . . . . . . . . . . . . . . 153

3.7 Daily administration of FTY720 significantly reduces cell numbers in the

cecum (Experiment 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.8 Daily administration of FTY720 significantly reduces cell numbers in the

colon (Experiment 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3.9 There is no significant difference in the inflammation score in the colon

following daily administration of FTY720 (Experiment 1). . . . . . . . . . 156

3.10 There is no significant difference in cell numbers in the cecum following daily

administration of FTY720 from 6 days prior to Hh infection when compared

to concurrent Hh infection and FTY720 innoculation (Experiment 2). . . . 158

3.11 There is no significant difference in cell numbers in the colon following daily

administration of FTY720 from 6 days prior to Hh infection when compared

to concurrent Hh infection and FTY720 innoculation (Experiment 2). . . . 159

3.12 There is no significant difference in the inflammation score in the colon

following daily administration of FTY720 (Experiment 2). . . . . . . . . . 160

3.13 Daily administration of FTY720 significantly reduces cell numbers in the

inflammed cecum (Experiment 3). . . . . . . . . . . . . . . . . . . . . . . . 162

13



List of Figures

3.14 Daily administration of FTY720 significantly reduces cell numbers in the

inflammed colon (Experiment 3). . . . . . . . . . . . . . . . . . . . . . . . . 163

3.15 There is no significant difference in the inflammation score in the colon

following daily administration of FTY720 from 14 days post infection (Ex-

periment 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.1 Numbers of T cells of each phenotype in IBDSim. . . . . . . . . . . . . . . . 169

4.2 Competition between bacterial species in the colon of IL10 KO mice follow-

ing infection with Hh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.3 Amount of Hh-, IFN-γ-, IL12-, IL6- and Transforming Growth Factor-β

(TGF-β)- inducing bacteria as a proportion of the total population of bac-

teria in each of the 34 models that were selected as suitable candidates for

microbial compositions in silico. . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4 Numbers of bacteria in the cecum following infection with Hh. . . . . . . . 173

4.5 Total numbers of Hh-, IFN-γ-, IL12-, IL6- and TGF-β inducing bacteria iin

each of the 34 models that were selected as suitable candidates for microbial

compositions in silico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.6 Integration of commensal bacteria model with IBDSim. . . . . . . . . . . . 175

4.7 Predicted death rate of Hh at different time points post Hh infection. . . . 176

4.8 T cell polarisations in the updated model. . . . . . . . . . . . . . . . . . . . 178

4.9 Concentration of cytokines secreted by 100 simulated DCs in silico. . . . . . 179

4.10 Numbers of cells in the cecum and the level of inflammation differ depending

on the initial composition of microbiota in the absence of Hh. . . . . . . . . 182

4.11 Specific compositions of microbiota differentially effect the cell numbers and

cytokine levels in the cecum. . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.12 Specific compositions of microbiota differentially effect the cell numbers and

cytokine levels in the colon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.13 Cluster analysis that demonstrates how specific compositions of microbiota

result in differences in the mean numbers of cells and levels of cytokines in

the cecum and colon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.14 Inflammation in the absence of Hh is predominantly driven by Th1 cells. . . 188

4.15 Partial-rank correlation coefficients (PRCCs) between the ordinary differ-

ential equation (ODE) parameters and the corresponding simulated measures.189

4.16 Phenotypes of inflammation observed following infection with Hh. . . . . . 191

14



List of Figures

4.17 Cluster analysis that demonstrates how specific compositions of microbiota

result in differences in the time course of the numbers of cells and levels of

cytokines in the cecum and colon. . . . . . . . . . . . . . . . . . . . . . . . 192

4.18 Specific compositions of microbiota differentially effect the cell numbers in

the cecum over the course of Hh infection. . . . . . . . . . . . . . . . . . . . 201

4.19 Specific compositions of microbiota differentially effect cytokine concentra-

tions in the cecum over the course of Hh infection. . . . . . . . . . . . . . . 203

4.20 Specific compositions of microbiota differentially effect the cell numbers and

cytokine levels in the colon over the course of Hh infection. . . . . . . . . . 205

4.21 Specific compositions of microbiota differentially effect cytokine concentra-

tions in the colon over the course of Hh infection. . . . . . . . . . . . . . . . 207

4.22 T cell populations change over the course of Hh-infection but similar trends

are observed for all phenotypes. . . . . . . . . . . . . . . . . . . . . . . . . . 209

4.23 PRCCs between the ODE parameters and the corresponding simulated mea-

sures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15





Acknowledgements

There are a number of people to whom I owe my sincere thanks.

• To my supervisors Marika Kullberg, Jon Timmis, and Lourdes Cucurull-Sanchez for

your excellent supervision throughout this project, and for turning a mathematician

into an immunologist, computer scientist, systems pharmacologist, and all things in

between.

• To my thesis advisory panel members Mark Coles and Susan Stepney for your advice.

• To Denise Kirschner, and your lab, for your help and kindness during my visit to

the lab.

• To Shraddha Kamdar for sharing your biological expertise, and for your friendship

over the last four years

• To the members of the Timmis lab past and present, especially Kieran Alden, James

Butler, Johnny Leonov, and Jason Cosgrove for always being there to troubleshoot,

and for creating a sense of camaraderie within the lab.

• To my husband Richard for your patience and understanding.

• To my parents Lynn and Steve for always supporting my decisions, even if you don’t

always understand them!

17





Declaration

I declare that the research described in this thesis is original work, which I undertook at

the University of York during 2012 - 2016. Except where stated, all of the work contained

within this thesis represents the original contribution of the author.

19





Chapter 1

Introduction

The goal of this thesis was to generate a computational model that will provide novel

insight into the inflammatory processes active in the gut during intestinal inflammation.

This chapter provides an introduction to both the immunology behind the model, and to

mathematical and computational techniques for the modelling of biological systems.

1.1 Background Immunology and an Introduction to the

Helicobacter hepaticus-Induced Colitis Model

1.1.1 Overview of the Immune System

The immune system is a highly evolved biological system whose function is to identify and

eliminate foreign material (Farmer et al., 1986). It is made up of cells, tissues, and organs

that work together to defend against pathogens. In mammals, the immune response is

generated by white blood cells that originate in the bone marrow, and either circulate in

the blood or migrate to lymphoid organs around the body. Lymphoid organs are organised

tissues containing large numbers of cells, and can be divided into primary (central) lym-

phoid organs, and secondary (peripheral) lymphoid organs. Primary lymphoid organs are

sites like the thymus where lymphocytes become mature, and secondary lymphoid organs

include the many types of lymph nodes, where the adaptive immune response is initiated

(Janeway et al., 2001). The mammalian immune response can be divided into two arms

known as the innate and the adaptive immune system.
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Chapter 1: Introduction

1.1.1.1 Innate Immunity

The innate immune system is the first line of immune defence against an invading pathogen

and responds immediately with a non-specific response. When a pathogen penetrates a

barrier for the first time it is met by cells of the innate immune system and an innate im-

mune response is mounted. The innate response is mediated by phagocytic cells including

dendritic cells (DCs), macrophages and neutrophils, among others. DCs and macrophages

become activated by recognising pathogen-associated molecular patterns (PAMP) on the

surface of pathogens via germline-encoded pattern-recognition receptors (PRRs) on their

surface (Akira et al., 2006). Innate immune responses are non-specific, meaning that

there is an immediate, maximal response to a pathogen, regardless of antigen-specificity

or whether the host has seen it before

1.1.1.2 Adaptive immunity

Following the initiation of the innate immune response, antigen-presenting cells (APCs)

including DCs and macrophages trigger the adaptive immune response. The adaptive

immune system is highly specific and requires a sophisticated rearrangement of receptor

genes and this means that unlike the innate response that is immediately activated when a

pathogen enters the body, the adaptive immune response takes days to develop. Adaptive

immune responses are induced by white blood cells called lymphocytes, including B cells

that produce antibodies and T cells that produce a cell-mediated response. B-cell secreted

antibodies circulate in the blood stream and act by binding to the type of antigen that

stimulated their initial production. This binding blocks the ability of that specific antigen

to bind to receptors on host cells and marks it for destruction, making it easier for the cells

of the innate immune system to identify and ingest it. In the cell-mediated T-cell response,

activated T cells react directly with antigen that is presented to them by APCs. Activated

T cells produce signalling molecules called cytokines that can activate macrophages in the

periphery and cause them to destroy the pathogens they have engulfed (Alberts et al.,

2002).

T cells derive from hematopoietic stem cells in the bone marrow and migrate to the

thymus where they become mature. They express a unique antigen binding receptor on

22



1.1 Background Immunology and an Introduction to the Helicobacter hepaticus-Induced Colitis
Model

their surface known as a T-cell receptor (TCR) that can interact with the peptide-major

histocompatibility complex (MHC) complexes on the surface of an APC. There are two

types of MHC molecules, class I that are expressed by all nucleated cells, and class II

that are found on certain immune cells including DCs, macrophages and B cells, so called

professional APCs. When an APC has broken down and processed an antigen, it presents

small antigenic fragments called peptides on the MHC molecules on its surface. MHC-I

molecules present endogenous peptides while exogenous peptides are presented by MHC-

II (Bonilla and Oettgen, 2010; Janeway et al., 2001). In the thymus, peptide-MHC:TCR

interactions result in the maturation of immature T cells into either a CD4+ or CD8+

lineage (Bosselut, 2004). CD8+ T cells are known as cytotoxic, and are primarily involved

in the destruction of infected cells, whereas CD4+ T cells are T-helper (Th) cells that

have no cytotoxic or phagocytic ability and cannot kill infected cells or clear pathogens.

CD4+ cells have an important role in establishing and maximising the immune response

by secreting chemicals called cytokines that direct other immune cells to become phago-

cytic or cytotoxic (Warrington et al., 2011). Th cells are activated through interaction

of their TCR with a peptide-MHC-II molecule on the surface of an APC in a secondary

lymphoid organ. Activated Th cells secrete a different array of cytokines depending on

the cytokine stimulation received from their local environment. Activated Th cells can be

classified as either Th1, Th2, Th17 or Treg cells by the types of cytokine they produce (Fig-

ure 1.1). If an activated CD4+ T cell is in the presence of Interleukin (IL)-12 it will adopt

a Th1 phenotype. Th1 cells were first described by Mosmann et al. (1986) and secrete

high amounts of Inteferon-γ (IFN-γ) and other inflammatory cytokines including Tumour

Necrosis Factor-α (TNF-α). IFN-γ protects against intracellular pathogens by inducing

antimicrobial mechanisms of macrophages as well as up-regulating antigen processing and

presentation pathways (Schroder et al., 2004). Alternatively, in mice, activated CD4+

T cells in the presence of a combination of Transforming Growth Factor-β (TGF-β) and

either IL-6 or IL-21 develop into Th17 cells (Korn et al., 2009). Following polarisation,

Th17 cells secrete inflammatory cytokines IL-17 and IL-21 (Wei et al., 2007) and upregu-

late the IL-23 receptor. IL-23 is required to maintain the Th17 cell population (Stritesky

et al., 2008). IL-17 protects against extracellular pathogens by recruiting neutrophils to

the site of infection (Griffin et al., 2012). It also promotes the formation of tight junctions
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between epithelial cells in the gut (Reynolds et al., 2012). Unlike Th1 cells that maintain a

robust phenotype, the Th17 phenotype is plastic with Th17 cells switching from an IL-17

to an IFN-γ producing phenotype in the presence of IFN-γ and IL-12 in vitro. In vivo, the

mechanism driving phenotype switching in yet to be elucidated, but the presence of IL-23

is required as it has been shown that CD4+ T cells lacking the IL-23R fail to switch pheno-

types (Ahern et al., 2010; Morrison et al., 2011; O’Shea and Paul, 2010) (Figure 1.1). Th2

cells are induced when activated CD4+ T cells are in the presence of IL-4. They protect

against extracellular parasites, including helminths, and play a major role in allergic in-

flammatory conditions such as asthma by enhancing IgE production by B cells, recruiting

and activating eosinophils, and increasing mucus production (Pulendran and Artis, 2012;

Deo et al., 2010). The main effector cytokine produced by Th2 cells is IL-4. Treg cells

develop in the presence of TGF-β and/or IL-10. They are non-inflammatory cells and

secrete anti-inflammatory cytokines IL-10 and TGF-β that reduce inflammation by sup-

pressing the expression of proinflammatory cytokines, chemokines, adhesion molecules, as

well as antigen-presenting and costimulatory molecules on macrophages, neutrophils, and

T cells (Moore et al., 2001). In addition to their protective functions, CD4+ T cells have

been implicated in causing inflammatory bowel disease (IBD), as well as autoimmune dis-

eases including experimental autoimmune encephalomyelitis (EAE), type 1 diabetes, and

rheumatoid arthritis (Fletcher et al., 2010; Phillips et al., 2009; Cope et al., 2007; Zenewicz

et al., 2009). A balance between regulatory and effector subsets is essential to avoid in-

appropriate immune responses to self antigens, (Belkaid et al., 2013) but a breakdown of

this balance can lead to conditions such as IBD (Powrie, 2004).
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Figure 1.1: CD4+ T cells differentiate into unique subsets following stimulation
with different cytokines. Cartoon shows the different effector subsets that a CD4+ T
cell can differentiate into following activation. The cytokines driving polarisation are
shown on the arrows and the cytokines produced by each subset are shown below each
cell.
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Figure 1.2: Factors controlling CD4+ T-cell phenotype switchingin vivo. Upon
activation, an unpolarised CD4+ T cell (red) can differentiate into a Th1 (blue) or a Th17
(yellow) cell dependent on the cytokine millieu. Th17 cells can subsequently transition
through a double-positive (DP) (green) cell to an ex-Th17 cell (blue). Labels on each
arrow indicate cytokines involved in this process in vivo. Yellow cells secrete IL-17 and
IL-21, blue cells secrete IFN-γ, and green cells secrete a combination of IL-17, IL-21 and
IFN-γ.

1.2 Inflammatory Bowel Disease (IBD)

In humans, IBD refers to a group of inflammatory conditions that target the gastroin-

testinal tract, the main forms being Crohn’s disease and ulcerative colitis. Both Crohn’s
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disease and ulcerative colitis are relapsing conditions, meaning patients may experience

long periods of remission followed by relapses where the symptoms become more active.

The symptoms of these diseases include abdominal pain, recurring diarrhoea, weight loss,

and extreme tiredness. The exact cause of IBD is unknown but it is caused in part by

an abnormal immune response to intestinal flora, micro-organisms such as bacteria that

live in the digestive tract (Podolsky, 2002; Xavier and Podolsky, 2007). During IBD shifts

are seen in the microbiota composition; a decrease in anaerobes such as firmicutes and

bacteroidetes and an increase in proteobacteria is observed in both animal models of the

disease and in patients (Elson and Cong, 2012; Frank et al., 2011). Is is not known if these

shifts in microbiota are a cause or effect of IBD; however, it is thought that the microbiota

plays a key role in IBD pathogenesis (Sartor and Mazmanian, 2012). Metabolic and ge-

netic studies have been used to shed light on the role of microbiota in IBD (Guinane and

Cotter, 2013; Davenport et al., 2015), but animal and computational models can also play

a key part in understanding how the microbiota effects the immune response (Suerbaum

et al., 2003; Martin et al., 2007).

1.3 Mouse Models of Mucosal Inflammation

Several mouse models have been used to investigate the pathogenesis of intestinal inflam-

mation. These include chemically induced inflammation by dextran sulfate sodium (DSS)

or 2,4,6-trinitrobenz- enesulfonic acid (TBNS) as well as several different gene knock out

(KO) mouse models of colitis, including the IL-10 KO model, and the CD45RB trans-

fer model where CD45RBhi T cells are transferred into severe combined immunodeficiency

(SCID) or recombination activating gene (RAG) KO mice model (Jurjus et al., 2004). The

various colitis models are discussed at length by (Strober et al., 2002) and summarised in

Table 1.1.

1.3.1 Hh-Induced Colitis

Helicobacter hepaticus (Hh) is a Gram-negative bacteria the colonises the gastrointestinal

tract of mice. Hh has been found to be associated with the development of intestinal in-

flammation in both IL-10 KO mice and wild type mice treated with a blocking antibody to
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Table 1.1: Experimental colitis models. Taken from (Kamdar, 2015).

Type Description Reference

Spontaneous Models

C3H-HeJBir mouse Restricted to ileocecal lesions. Inflammation
is similar to Crohn’s disease in that it involves
a Th1 response.

Cong et al.
(1998)

SAMP1/Yit mouse Develop severe inflammation similar to CD
in the colon and ileum.

Matsumoto
et al. (1998)

Chemically-Induced Models

TBNS TBNS is a hapten administered rectally in
ethanol as an enema. There is disruption of
the mucosal barrier and intestinal inflamma-
tion is similar to both ulcerative colitis and
Crohn’s disease.

Morris
et al.
(1989)

DSS DSS is given in drinking water to disrupt the
epithelial barrier and induce acute colitis re-
sembling ulcerative colitis.

Okayasu
et al.
(1990)

Transgenic or Knock-out Models

IL-2 KO Mice develop chronic inflammation similar to
ulcerative colitis. Display increased T- and
B-cell activation, secretion of anti-colon anti-
bodies and dysregulated MHC II expression.

Sadlack
et al.
(1993)

IL-10 KO Develop enterocolitis similar to CD, charac-
terised by a Th1 response. Loss of IL-10 re-
sults in loss of regulation of normal immune
responses to enteric antigens leading to over-
production of TNF-α and IFN-γ.

Khn et al.
(1993)

STAT4 transgenic Mice develop chronic inflammation charac-
terised by overproduction of TNF-α and IFN-
γ

Wirtz et al.
(1999)

SCID Models

CD45RBhigh CD4+ T
cells to RAG KO or
SCID mice

Transfer of naive CD4+ T cells into lym-
phopenic mice results in chronic colitis and
wasting disease characterised by elevated lev-
els of IFN-γ.

Powrie
et al.
(1993);
Morrissey
et al. (1993)

C3H/HeJBir CD4+ T
cells to C3H/HeSnJ
SCID mice

C3H/HeJBir CD4+ T cells are inherently
reactive to microflora-derived antigens and
drive the development of chronic colitis when
transfered into SCID mice.

Cong et al.
(1998); El-
son et al.
(2000)
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the IL-10R, but wild type mice infected with Hh alone do not develop intestinal inflamma-

tion, demonstrating that there is a requirement for the absence of IL-10, IL-10R signalling

in disease establishment (Kullberg et al., 1998). Commensal flora has also been shown to

play a role in Hh-induced colitis since IL-10 KO mice housed in germ free (GF) conditions

do not develop inflammation (Sellon et al., 1998). Further, studies by Nagalingam et al.

(2013) and Yang et al. (2013) that show that the microbiota changes over Hh-infection,

and that there are differences in the microbiota between IL-10 KO mice that are suscep-

tible or non-susceptible to inflammation, that the authors hypothesise are responsible for

causing pathogenesis following infection with Hh.

CD4+ T cells have also been shown to be essential for the development of Hh-induced

colitis as Hh-infected RAG KO mice do not develop intestinal inflammation unless they

are given CD4+ T cells by adoptive transfer (Kullberg et al., 2002).

It has also been shown that mice that lack IL12-p40, a subunit shared between cy-

tokines IL12 and IL23, do not develop intestinal inflammation following infection with

Hh, but that IL-12p35 KO mice (that only lack IL12, not IL23) still develop inflamma-

tion (Kullberg et al., 2006), thus IL-23 is an important cytokine in disease development.

Kullberg et al. (2001) showed that administration of an anti-IFN-γ antibody, concurrent

with Hh, blocks the development of Hh-induced intestinal inflammation, but that admin-

istration of an anti-IFN-γ antibody at 28 days post infection could not resolve established

inflammation. This suggests that IFN-γ plays a key role in disease establishment, but not

in disease maintenance. Finally, Brucklacher-Waldert et al. (2016) showed that unlike in

EAE, the presence of ex-Th17 cells is not required for the development of pathology in

Hh-induced colitis.

1.4 Modelling Biological Systems

Models have been used to inform biology through in silico experimentation for decades,

a famous example being Watson and Cricks model that defined the structure of DNA

(Watson and Crick, 1953). Modelling and simulation techniques provide novel biologi-

cal insight by facilitating experimentation that is impractical to perform in vivo either

due to cost, ethical constraints or gaps in the availability of experimental tools (Efroni
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et al., 2003). Recently a combination of wet lab experimentation and modelling have

been used to provide fundamental understanding in the field of immunology (Chakraborty

et al., 2003; Leonov, 2015). The use of computational modelling and simulation in biology

builds on the concepts of the mathematical and statistical models that have previously

been developed by allowing for the creation of hybrid models that incorporate several

modelling techniques. Compared with real-world experimentation, modelling is time and

cost-effective. Most laboratory experiments are expensive and have to be in agreement

with ethical specification. Furthermore, in a simulation environment, it is possible to

systematically generate different scenarios, conduct and replicate experiments. Although

computational models can take a reasonable length of time to develop, as long as the data

behind the model already exists, computational modelling is an ethical, efficient way of

generating insight into biological systems.

1.4.1 Mathematical models

Mathematical modelling has been used in the context of biological research for many

decades (Wooley, 2005). Mathematical models can be divided into two classifications,

deterministic and stochastic. In a deterministic model, every variable alters according to

a mathematical function with no random fluctuations. This means that given the same

input, a deterministic model will always produce the same results. Deterministic models

are commonly used in immunology in the form of ordinary differential equations (ODEs)

and, less commonly as partial differential equations (PDEs).

ODE models have been used to describe a variety of immunological systems at a

highly abstracted level by capturing interactions between populations of entities that are

represented as real numbered variables. Such models are widely used in immunology and

have found applications in tuberculosis (Marino et al., 2010), influenza (Lee et al., 2009)

and cancer immunology (Kuznetsov, 2004), as well as many other systems. The following

example uses a simple model of human immunodeficiency virus (HIV) infection where only

the key players in infection are considered Perelson and Ribeiro (2013). The model is an

extension of the basic susceptible, infected, recoved (SIR) model that is commonly used

to describe the spread of disease in the field of epidemiology.

The model includes uninfected target cells, T , infected cells I and free virus V and can
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be represented by the following system of ODEs;

dT

dt
=λ− dTT − βV T, (1.1)

dI

dt
=βV T − δI, (1.2)

dV

dt
=pI − cV. (1.3)

In this model, target cells are assumed to be produced at a constant rate λ, die with

rate δT , and become infected at a rate that is dependent on the amount of free virus, βV .

Infected cells die at rate δ and produce new virus cells with rate p. The virus is cleared

from the system at rate c. This model can be solved to find when the number of cells in

each population remains constant, called a steady state, by setting the ODEs equal to 0

and solving to reveal the steady states of the system.

λ− dTT − βV T = 0 =⇒ βV T = λ− δTT,

=⇒ V =
λ− δTT
βT

.

βV T − δI = 0 =⇒ δI = βV T,

=⇒ I =
λ− δTT

δ
.

pI − cV = 0 =⇒ 0 = p

(
λ− δTT
βT

)
− c

(
λ− δTT

δ

)
,

=⇒ 0 = p (λ− δTT ) δ − c (λ− δTT )βT,

=⇒ 0 = (λ− δTT ) (pδ − cβT ) ,

=⇒ T =
λ

δT
or T =

pδ

cβ
,

so the steady states S(T, I, V ) are

S1 = (
λ

δT
, 0, 0),
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and

S2 = (
pδ

cβ
,
λcβ − δT pδ

δcβ
,
λcβ − δT pδ

βpδ
).

S1 is a state where there are no infected cells and no virus present. Linear stability analysis

reveals that this state is stable if and only if βvδcδT
> 0. S2 is the infected state and is stable

when (λcβ−δT pδ)c
p3δ

> 0. Finding biological parameters for this model would identify whether

there is a chance of recovery from the infected state and bifurcation theory can be used

to predict the effect of different parameter values on virus dynamics during HIV infection

(Kuznetsov, 2004). This model demonstrates a way in which ODE models can be used to

gain insight in immunology.

PDE models extend ODEs by adding a spatial component. PDEs, like ODEs treat

populations of cells as homogeneous, and as they are also deterministic, will produce

the same output every time given an identical input. PDE models have been used in

immunology to model antigen-independent proliferation of CD8+ T cells (Antia et al.,

2003) and neutrophil gradient sensing and polarisation (Onsum and Rao, 2007).

Stochastic models incorporate a degree of randomness. Allen (2003) defines a stochastic

process as a collection of random variables {Xt : t ∈ T, s ∈ S}, where T is some index set,

usually time, and S is the sample space of the random variables. For each t ∈ T,Xt(s)

is a single random variable defined on S. An example of a stochastic model that has

been used in an immunological setting is a continuous-time Markov chain. Markov chains

are state based models where the transition from state n at time t to (n + 1) at time

t + ∆t only depends on the previous state and not on the history of the model and ∆t

is sufficiently small that only one event can occur in the time interval. The following

example demonstrates a simple application of Markov chains in an immunological setting.

The example used here considers a simplified version of the model presented by Stirk et al.

(2010) and is a model of two T-cell clonotypes competing for a survival signal from an

APC. At each time step, the model considers five possible transitions between states;

• The population of clonotype 1 can increase by 1.

• The population of clonotype 1 can decrease by 1.

• The population of clonotype 2 can increase by 1.
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• The population of clonotype 2 can decrease by 1.

• Both populations remain the same.

The probabilities of these transitions are defined as

pn,m(∆t) =





λ
(1)
n1,n2 + o(∆t) m = (n1 + 1, n2),

λ
(2)
n1,n2 + o(∆t) m = (n1, n2 + 1),

µ
(1)
n1,n2 + o(∆t) m = (n1 − 1, n2),

µ
(2)
n1,n2 + o(∆t) m = (n1, n2 − 1),

o(∆t) otherwise.

Here λ
(1)
(n1,n2) is the birth rate of T cells of clonotype 1. It is the transition rate from state

(n1, n2) to (n1 + 1, n2). Similarly, λ
(2)
(n1,n2) is the birth rate of T cells of clonotype 2 and

represents the rate of transitions from state (n1, n2) to (n1, n2 + 1), µ
(1)
(n1,n2) is the death

rate of T cells of clonotype 1 and represents the rate of transitions from state (n1, n2) to

(n1− 1, n2) and µ
(2)
(n1,n2) is the death rate of T cells of clonotype 2 and represents the rate

of transitions from state (n1, n2) to (n1, n2 − 1). In this model o(∆t) represents a small

error term that is proportional to the size of the time step, ∆t. When a population is

equal to 0, the probability of death or division of that population is also 0. This means

that λ
(1)
(0,j) = λ

(2)
(0,j) = µ

(1)
(0,j) = µ

(2)
(0,j) = 0, ∀j and (0, 0) is an absorbing state meaning

that if the process enters that state it cannot leave. This process is represented by a

diagramatically in Figure 1.3. Unlike an ODE model, running this model with the same

initial conditions does not result in the same output because the model is probabilistic. To

combat this, multiple runs should be performed and average results taken. An application

of this kind of model would be to determine if and when extinction of a clonotype will

occur, and if there can be a homeostatic balance between the populations, and a similar

model was used by Lythe et al. (2016) to predict the maximum number of clonotypes that

the human body can maintain.
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Figure 1.3: Possible transitions of two clonotypes competing for survival sig-
nals from a signal APC. The labels on each arrow represent the rates of transitions

between states. In the diagram λ
(1)
(n1,n2) is the birth rate of T cells of clonotype 1. λ

(2)
(n1,n2)

is the birth rate of T cells of clonotype 2 µ
(1)
(n1,n2) is the death rate of T cells of clonotype

1and µ
(2)
(n1,n2) is the death rate of T cells of clonotype 2.

1.4.2 Agent-based Models

Mathematical models have an underlying assumption that every cell in the population is

identical. Sometimes this approach is not appropriate, and each entity in a population

requires its own discrete representation. Where this is the case, the agent-based modelling

paradigm can be used to allow for the emergence of heterogeneity in a population (Germain

et al., 2011; An et al., 2009). In an agent-based model (ABM), the behaviour of each entity

is described by a set of rules that determine how the entity can interact with other agents

in the system and with its environment, and the overall system behaviour emerges as a

result of each agents individual dynamics and interactions (Bauer et al., 2009). ABMs

permit for the explicit modelling of space and thus allow for the exploration of hypotheses
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that cannot be modelled using ODEs, for example modelling of systems with complex

spatial or temporal patterns (Bauer et al., 2009). Explicit spatial modelling opens up

the opportunity for developing models where the spatial distribution of environmental

factors effect system behaviour such as simulating the structure within lymphoid organs

(Alden, 2012) or granuloma formation in the lung during Tuberculosis (Linderman and

Kirschner, 2015). Further, modelling at an individual rather than a population level allows

the modeller to detect additional features of the system that may be missed with an ODE

model (Figueredo et al., 2013). ABMs have successfully been used to model the onset of

EAE (Read, 2011), lower respiratory tract infections with Aspergillus fumigatus (Pollmcher

and Figge, 2014) and infection with the human gut pathogen Helicobacter pylori (Carbo

et al., 2013).

1.4.3 Hybrid Models

The modelling techniques previously discussed can be combined to create models called

hybrids. Hybrid models in immunology combine any number of modelling methodologies

including ODEs, PDEs and agent-based modelling techniques. Such models have been

used in wound healing (Ziraldo et al., 2013), neuron signalling (Grein et al., 2014), and

for modelling cell-cycle dynamics (Eriksson et al., 2011).

1.4.4 Comparing Modelling Techniques

ODE models are an efficient way of capturing system dynamics. There are many ad-

vantages to using ODE models. These models can represent large numbers of cells or

molecules very efficiently, they require fewer parameters than ABMs so there is less un-

certainty, and techniques for analysing system behaviour are well defined (Bauer et al.,

2009). If the system under consideration is not spatially resolved and cellular homogeneity

can be assumed as is often the case when modelling metabolic networks (Francke et al.,

2005) then ODE models are the sensible choice. However, many biological systems are

naturally multi-scale and often to fully capture their behaviour the interaction of a number

of processes that may occur on diverse temporal and spatial scales must be understood

(Twycross et al., 2010). If cellular homogeneity can be assumed but the distribution of

entities across the environment affects system behaviour then a PDE approach is more
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appropriate (Onsum and Rao, 2007). PDEs can deal with both spatial and temporal

dependencies but a disadvantage of these models is that they can be computationally in-

tensive and thus slow. State-based models are useful for modelling heterogeneity in cell

populations but do not incorporate spatial representation. Finally ABMs are very useful

for representing spatial and temporal aspects of biological systems but there are challenges

associated with studying the interconnectivity between the agent rules and the dynamics

of the biological system (Mc Auley et al., 2015). The appropriateness of each modelling

methodology is summarised in Table 1.2.

Spatially Resolved

NO YES

C
e
ll
u

la
r

H
e
tr

o
g
e
n

e
it

y

NO ODE PDE

YES
State-Based

Model
ABM

Hybrid-ABM

Table 1.2: Areas of application of different modelling methodologies. Taken
from (Cosgrove et al., 2015).

1.5 Modelling Tools and Protocols

In the field of computational modelling protocols allow models to be shared and extended

by clearly laying out the details of a model in a way that can be easily understood. A

number of frameworks and toolkits have been created to aid model development, and to

bridge the gap between a real world complex system and a model being used to study it.

This section reviews the techniques and tools that are currently available to assist with

the modelling of complex systems.

There are three frameworks for building a computational model reviewed here. These

are overview, design concepts, and details (ODD) protocol for building ABMs, the Com-

plex Systems Modelling and Simulation (CoSMoS) process for developing computational

models of complex systems, and Systems Biology Mark-up Language (SBML) for devel-
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oping ODE models to describe processes in biology and biochemistry.

1.5.0.1 The ODD Protocol

The ODD protocol is a standard protocol specifically for describing ABMs, that was

developed for the field of ecology by Grimm et al. (2006) and has since been applied to

several ABMs (Schreinemachers and Berger, 2011; Franz and Nunn, 2009; Larsen et al.,

2010). The idea of the protocol is to always structure the information about a model in

the same way. As the name suggests, the protocol focusses around three blocks, overview,

design concepts, and details.

Overview: The overview block is broken down into submodels of purpose, state variables

and scales, and process overview and scheduling. The aim of this section is to provide

an outline of the purpose and high level structure of the model.

Design Concepts: The design concepts block describes the thoughts underlying the de-

sign of the model and its purpose is to link model design to general concepts identified

in the complex system under study.

Details: The details block includes three further elements, initialization, input and sub-

models. This section extends the overview to give a more comprehensive description

of how the model was implemented and should be able to act as a blueprint to the

model.

Table 1.3: Framework for ODD

Overview
Purpose
State variables and scales
Process overview and scheduling

Design Concepts Design concepts

Details
Initialisation
Input
Submodels

Each block is divided into elements that are designed to define a structure to be used

when describing an ABM (Table 1.3). The elements all contain information relating to

specific parts of the model. These elements are:

36



1.5 Modelling Tools and Protocols

Purpose This is the first element that needs to be defined because it is essential in

identifying the simplifications that can be made. It is here that information about

why the model has been developed, and what the model is going to be used for are

defined.

State variables and scales The full set of state variables should be defined with this

element. That is, the variables that characterise the entities and environments of

the model for example an environment might be characterised by location, size,

chemical composition, and multiple other factors. Information gathered at this stage

in the protocol is low-level, and are elementary properties of the model, so detailed

descriptions of entities are not initially required here. Once this information has been

collected for all entities in the model higher-level relationships should be described.

Finally scales and dimensions of time and space must be defined for all entities.

Process overview and scheduling This element is concerned with defining the pro-

cesses that are built into the model without defining the way in which these pro-

cesses will be represented. Orders of processes are also defined and the schedule for

updating the state of an agent is recorded.

Design concepts The design concepts provide a common framework for designing and

communicating ABMs. Grimm et al. (2006) gives a check list of questions that might

be asked during this phase of model development that cover the topics of emergence,

adaptation, fitness, prediction, sensing, interaction, stochasticity and collectives.

Initialisation This is where the initial conditions are defined and it is an important

feature in making ABMs reproducible.

Input Changes in environmental conditions over time or space are defined under the input

element. Output of a model gives the response of the model to a specified input.

Submodels Here, submodels representing the processes listed in the process overview and

scheduling element are developed. The models should be explained in detail and all

parameters should be defined. It is proposed that two versions of the detailed model

description be written. The first is the mathematical description of the model that

consists of the equations, rules and parameters with their dimensions, that describe
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the entities in them model. The second is a full model description that has the same

structure as the mathematical skeleton given in the previous question that is, the

same equation number and subtitles are used. This submodel can be very long and

complex.

An example of ODD being used in practice is demonstrated by Grimm et al. (2006). ODD

was designed specifically for the field of ecology but there is no reason it cannot be applied

to any other field where an ABM is being developed. An example of ODD being used

outside of the field of ecology is given by Franz and Nunn (2009) who uses the tool to

describe a model that used network-based diffusion analyses to detect social learning.

1.5.0.2 The CoSMoS Process

The CoSMoS process (Andrews et al., 2010) provides a framework for developing com-

putational models of complex systems. It was not designed for any specific field but has

found many applications in biological systems (Garnett et al., 2008; Read, 2011), as well

as in ecological and social systems (Polack et al., 2010). The framework proposed by the

CoSMoS process has three key stages;

Discovery Phase: The discovery phase establishes the scientific basis of the model. The

overall research context is established, and then the domain of interest, is identified

and modelled, and scientific questions are determined that give the model a specific

purpose. These questions are important to have in mind when building the model

to ensure that it is fit for purpose. The discovery phase focusses on science and

questions rather than simulation, and involves a lot of reading around the subject

area to develop a solid understanding of the complex processes involved in the system.

Development Phase: Once the discovery stage has been completed, the next stage is to

use the conceptual models developed in the discovery phase to develop a simulation

platform.

Exploration Phase: After the simulation platform has been developed, it can be used

to explore the scientific questions established during the discovery phase.

Building an executable model using the CoSMoS process requires the development of a
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series of non-executable models that need to be modified iteratively throughout the devel-

opment process (Figure 1.4). These non-executable models underpin the understanding

of the system that is to be modelled and provide a description of what has been included

in the model. Developed in collaboration with experimentalists, the models contain sys-

tem and implementation specific details including justifications on any abstractions or

assumptions that have been made.The models developed under the CoSMoS process are:

Research Context: that asks what the motivation is for creating such a model, formu-

lates the questions to be addressed by the simulation platform and the requirements

for validation and evaluation. It is here that the research domain is identified.

Domain Model: that brings together the important aspects of the domain focussing on

scientific understanding with no simulation implementation details considered.

Platform Model: that focusses on how aspects of the domain model will be implemented

in the simulation and how the questions defined in the research context will be an-

swered. This stage may require further simplification of the model details if imple-

mentation is not possible due to a lack of data or a gap in modelling functionality.

Simulation Platform: that requires the platform model to be encoded into a software

from which simulations can be performed.

Results Model: that contains the answers to the questions determined in the exploration

phase. It is where ideas that need to be verified in vivo are generated.

Figure 1.4: Stages of model development under the CoSMoS process. Models
created under the CoSMoS process are linked to the domain of interest through the research
context. Figure taken from Andrews et al. (2010)
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An example of CoSMoS being used in practice is demonstrated by Read et al. (2012);

Alden (2012); Moyo (2014).

1.5.1 Systems Biology Mark-up Language (SBML)

SBML was developed in 2002 to provide a methodology that would allow models of bi-

ological processes to be evaluated, developed and exchanged(Hucka et al., 2003). SBML

is represented in the eXtensible Markup Language (XML) (Bray, 1998), a language that

is accepted as a standard data language in bioinformatics (Achard et al., 2001). Compu-

tational models of a range of processes, including cell signalling and metabolic pathways

(Dias et al., 2015), biochemical reactions (Bois, 2010), and gene regulation (Feist et al.,

2007), have been described via SBML. A model definition in SBML consists of lists of one

or more components from the following list (Hucka et al., 2003);

Compartment A container of finite volume where reactions take place. The distribution

of substances across a compartment is assumed to be homogeneous.

Species A chemical substance or entity that takes part in a reaction.

Reaction An equation describing the interaction that occurs between species, described

using rate laws.

Parameter The numbers governing reaction rates. These can be global, that is they

apply to the whole model, or local, applying to one specific reaction.

Unit Definition The name for a unit used to express the quantities of a model.

Rule A mathematical expression to model effects that are not represented as reactions.

The usage of a standardised markup language facilitates the deposition of models in repos-

itories in repositories, such as BioModels (Li et al., 2010), and numerous software tools

have been released to aid design and implementation. These tools allow SBML models

to be simulated over time. As the name suggests SBML was developed specifically for

biological and biochemical models and has found little application outside of those fields.
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1.6 The Automated Simulation Parameter Alteration and

SensItivity Analysis (ASPASIA) Toolkit

Automated Simulation Paramater Alteration and SensItivity Analysis toolkit (ASPASIA)

was developed as a tool for parameter alteration and sensitivity analysis of SBML models

(Evans, submitted) but has also been useful for parameter estimation. To estimate model

parameters using ASPASIA parameter values are varied over a range that is based on data

from the literature and a number of SBML models are created with different parameter

sets. These models are solved for a specific length of time after which ASPASIA can be used

to add any required interventions. Sensitivity analyses can be performed on the results of

these simulations to determine the important parameters and models that match specific

biological criteria can be identified by plotting the results against known data. These plots

can then be used to determine more accurate ranges for sensitive parameters or to select

a single model on which a local sensitivity analysis can be performed to determine how

robust the model is to small changes in parameter values.

1.6.1 Immune System Simulation Platforms

The frameworks mentioned above aid in the specification of a model but do not specify how

the model should be implemented. A number of platforms have been developed to enable

the interactions between cells to be specified and responses to these interactions to be

simulated. The objective behind the creation of such tools is to allow biologists to develop

ODE or ABM simulations without needing an in depth knowledge of the mathematics or

computer programming involved in generating the model. There are a number of these

platforms have been developed for ODEs and ABMs (Table 1.4), but here we discuss

CellDesigner (Funahashi et al., 2008) and Biocellion (Kang et al., 2014).

CellDesigner is a process diagram editor for gene-regulatory and biochemical networks

(Funahashi et al., 2008). It facilitates the development of SBML diagrams from process

diagrams that are developed using the user interface. Genes, receptors, RNAs and proteins

are created and interactions are symbolised by arrows between the interacting species and

the parameters governing each interaction label the arrows. Once created, these diagrams

can be saved in the format of an SBML model that can be simulated using COmplex
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PAthway SImulator (COPASI) (Hoops et al., 2006) resulting in a time course of the levels

of each species in the model over time and find a steady state as well as multiple other

analyses. The advantage to this approach is that it is much easier for a biologist with no

modelling experience to design a diagram detailing interactions, than for them to develop

a model in SBML. A disadvantage to using this approach only works for ODE models so

no spatial aspects can be considered in such a model.

Biocellion is a platform for developing agent-based models of biological systems. It has

three computational modules to i) update individual discrete agent states, ii) evaluate

direct physico-mechanical interactions between discrete agent pairs in close proximity and

iii) track changes in extracellular space to model indirect interactions among cells via dif-

fusible molecules and interactions between cells and their environment (Kang et al., 2014).

It has been used to reproduce models several biological scenarios including cell sorting,

microbial patterning in communities of different yeast strains engaging in metabolic in-

teractions and a bacterial system in complex soil structures (Kang et al., 2014). Models

developed in Biocellion are restricted to predefined local behavioral rules. Global processes

such as blood flow can not be modelled using biocellion. Further it does not include a full

range of ODE solvers, and a mathematical background would be required to implement

such methods. This makes it more difficult for a biologist to adapt models using such

platforms.

1.6.2 Simulation Toolkits

The simulation platforms listed above are very useful for developing models that do not

require spatial representations (CellDesigner, Simmune), or for grid-based ABMs that

do not require the inclusion of global processes, or multi-agent representations of cells

(ImmunoGrid, IMMSIM, Reactive Animation, Biocellion). However, often these platforms

fall short of the functionality required to model specific systems in detail and, in this case

a bespoke simulation platform must be developed. Several toolkits have been developed

to aid model development. In the case where an ABM is most appropriate to capture

system dynamics, a range of simulation toolkits are publicly available (Table 1.5). All of

the toolkits listed provide a basic functionality upon which complex simulatons can be

built. This includes tools to create environments and agents as well as a framework for
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Table 1.4: Examples of computational modelling toolkits.

Platform Reference Models Applications

CellDesigner Funahashi et al. (2008) ODE Molecular interactions
in Rheumatoid Arthritis
(Dampier and Tozeren,
2007)

Simmune Meier-Schellersheim et al. (2006) ODE Signalling networks for
eukaryotic chemosens-
ing (Meier-Schellersheim
et al., 2006)
Signalling network in G-
protein coupled-receptors
(Zhang et al., 2013)
Circadian rhythms in
Drosophilia (Xie and
Kulasiri, 2007)

ImmunoGrid Pappalardo et al. (2009) ABM Vaccine administration
(Pappalardo et al., 2009)

IMMSIM Celada and Seiden (1992) ABM Immunological memory
generation Celada and
Seiden (1992)
Hypermutation (Celada
and Seiden, 1996)
S1P chemosensing by
macrophages (Manes
et al., 2015)

Reactive Animation Efroni et al. (2005) ABM Development of T cells in
the thymus (Efroni et al.,
2005)
Neural simulations (Lytton
et al., 2008)

Biocellion Kang et al. (2014) ABM Pouch Metaplasia (Cock-
rell et al., 2015)

specifying rules that agents can follow but the modeller is required to actually specify

what the rules are, and thus the user must have some level of knowledge of the language

the tool is written in. Simulations of models created in this toolkit are executed in discrete

time steps during which every agent in the system performs the behaviours specified by

its rules. All of the toolkits listed have found application in modelling biological scenarios

in a range of areas. Examples include modelling Payers Patch development using Multi-

Agent Simulation Of Neighbourhoods (MASON) (Alden, 2012), modelling immune defence

against spores of pathogenic fungi using NetLogo (Tokarski et al., 2012), investigating the

function of a group of non coding RNAs, microRNAs, that regulate gene expression at a
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Table 1.5: Examples of simulation toolkits available for developing ABMs

Toolkit Reference Description

MASON Luke et al. (2005) A discrete-event multi-agent
simulation library written in
Java, designed to be the foun-
dation for large custom-built
Java simulations

NetLogo Tisue and Wilensky (2004) A multi-agent programming
language and modelling envi-
ronment for simulating natu-
ral and social phenomena.

Repast North et al. (2013) A widely used, free, and open
source environment for agent-
based modeling of complex
adaptive systems.

FLAME D’Souza (2008) A very general system for
building detailed agent-based
models that generates highly
efficient simulation software
that can run on any com-
puting platform, in particu-
lar it can be run directly on
High Performance parallel su-
percomputers

post-transcriptional level using Repast (Leonov, 2015), and modelling the nuclear factor-

kappa B (NF-KB) signalling pathway using Flexible Large-scale Agent-based Modelling

Environment (FLAME)(Williams et al., 2014).

1.7 Existing Computational Models of Intestinal Inflamma-

tion

This thesis focusses on the design and utility of a computational model of the processes

active in the gut following infection of IL-10 KO mice with Hh. The aim of this study is

to gain insight into the factors contributing to human IBD. Several mathematical models

of intestinal inflammation have been developed (Arciero et al., 2010; Leber et al., 2015;

Marchuk, 2013) but few consider autoimmunity and specifically IBD. Lo et al. (2013) de-

veloped an ODE model describing the roles of T cells in IBD, focussing on the balance

between Th1, Th2 and T-reg cells in the pathology of IBD. The model was developed

to provide a conceptual framework as a basis for future investigations and as such was
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not used for experimentation. The other available model of IBD was developed by Wen-

delsdorf et al. (2010) and focussed on immune modulatory mechanisms in inflammatory

bowel disease. This complex mathematical model describes several different populations of

cells in the gut during IBD but considers cytokines as only ”activating” or ”deactivating”.

ENteric Immunity SImulator (ENISI) is an ABM simulator for modelling gastrointestinal

immune infections caused by immune responses to an invading microbe including com-

mensal bacteria and pathogens (Wendelsdorf et al., 2012). In this system, bacteria and

immune cells are represented as agents that move around and interact with their environ-

ment. ENISI does not contain a framework for explicit representation of cytokine and gene

regulation networks, nor does it allow for dynamic addition or removal of agents meaning

that all cells in the system must be specified at the initial starting time.

1.8 Model Validation

Experimental systems are an abstraction of the real-world biology that can be used to

study a specific part of a bigger problem. Implementing a computational model of a

biological system, e.g. of an animal model of human disease, adds further uncertainty as

the end result is a model of a model and is therefore even further removed from the original

biological system than the animal model. This does not mean that computational models

of experimental systems are not useful as models do not need to be a full representation

of a system to generate understanding into how interactions between factors lead to an

overall emergent behaviour (Germain et al., 2011). When generating mathematical and

computational models, it is important that the assumptions and abstractions are well

documented and are taken into account when analysing model results in the context of their

impact on the wider biological system that the model is contributing to the understanding

of. Read (2011) developed several methods that can be employed to increase confidence in

computational results from models of biological systems including aleatory and sensitivity

analysis, and model validation.
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1.8.0.1 Ensuring a Model Adequately Represents Biology

For a computational model to be useful, the modeller must be able to prove that the results

of simulations adequately represent biology. Computational models of biological systems

often contain large numbers of parameters and calibration is required to establish a set of

parameter values that produce an expected system behaviour. Sensitivity analysis around

these parameter values can be used to determine which parameters have the greatest effect

on simulated behaviours. Parameters that are deemed to be important should be the most

strongly grounded in biology. In addition, performing uncertainty analysis on a model can

help to quantify implementation-based error.

1.8.0.2 Aleatory Uncertainty

Aleatory uncertainty is the effect of implementation-induced stochasticity on the results of

the simulation. It is critical that the effect of inherent simulation stochasticity on results

be understood for modelling and simulation techniques give meaningful biological output

(Helton, 2008). In agent-based simulations the use of a pseudo-random number generators

to dictate agent behaviour can produce different simulation results despite use of identical

parameter values (Alden et al., 2013). To mitigate the effects of this uncertainty, several

runs of the simulation must be performed and average results taken. There are many

techniques for determining the number of runs that should be performed (Robinson, 2014),

that have been implemented in the Simulation Parameter Analysis R Toolkit ApplicatioN

(Spartan) toolkit (Alden et al., 2013).

Law and McComas (1991) advocate a rule of thumb approach where they reccomend

that at least three to five replications are performed. This approach does not take into

account the characteristics of a model’s output and in reality many more replications need

to be performed to reduce variability of highly stochastic data.

Another approach is the graphical method described by Robinson (2014). This method

requires the modeller to plot the cumulative mean of results increasing the number of runs

until the mean becomes relatively stable. Figure 1.5 shows an example of how a plot like

this might look. In the example, 50 is deemed to be a sufficient number of replicates, since

performing additional replicates after this point does not further reduce variability.
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Figure 1.5: Using a graphical approach to determine the number of replicates.
The mean value of a simulated measure was calculated increasing the number of replicates
from 1 to 200.

This final method discussed by (Robinson, 2014) is the confidence interval method.

Using this method, a confidence interval (CI) is developed to show how accurately the

mean result is being estimated (Equation (1.4)). A narrower interval means the result is

more accurate, a wider interval less so. The formula for the confidence interval is calculated

as follows:

CI = X̄ ± tn−1,α/2
s√
n
, (1.4)

where X̄ is the mean output from the replicated runs, tn−1,α/2 is the value for the signifi-

cance level of α/2 from a Student’s t-distribution with n− 1 degrees of freedom, S is the

standard deviation, and n is the number of replications. The adequate number of runs

can be determined by finding the percentage by which the width of the confidence interval

deviates from the mean and choosing the value where this reaches an appropriate level,

5% say. In the results shown in Figure 1.6, an adequate number of runs would be 10,

chosen by finding when the deviation of confidence interval from the mean result is less

than 5%.
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Figure 1.6: Using the confidence interval method to determine the number of
replicates. The confidence interval (grey) and mean (red) of the data value was calculated
increasing the number of replicates from 1 to 200.

1.8.0.3 Sensitivity Analysis

Sensitivity analysis is a method for quantifying uncertainty in a complex model by deter-

mining how input factors such as parameters or initial conditions impacts model outcome

(Marino et al., 2008). Local sensitivity analysis determines how a small perturbation of

input parameters influences model behaviour. It is a one at a time technique meaning

that it looks at the effect of varying each parameter in turn. Performing an effect size

magnitude test, such as the A-test or Cohens D test, on results from executing models

with each parameter set reveals how robust the model outcomes are to this variation of

each parameter.

The effect that one parameter has on a simulated measure can be highly dependent

on values of other parameters in the system. In this case a global sensitivity analysis

is a more appropriate measure of uncertainty (Read et al., 2012). Global sensitivity

analysis examines the relative effect of a each parameter on the simulated measures when

multiple parameters are varied simultaneously. To quantify the effect that uncertainty

around the parameters in the model affects the output from a simulation, partial-rank

correlation coefficient (PRCC) are calculated. Partial correlation characterise a linear

relationship between input xi and output y after the linear effects of xj , j 6= i on y have

been discounted. Performing partial correlation on rank-transformed data, that is data

48



1.8 Model Validation

where the inputs are sorted by magnitude, results in a set of PRCCs that can be used to

determine the parameters that have the greatest effect on the simulated output (Marino

et al., 2008).

Parameter generation for both of the sensitivity analysis techniques is done using a

sampling-based approach. For the local, one at a time analysis, the parameters values

are sampled at uniformly spaced increments between the maximum and minimum values

(Alden et al., 2013) and for global sensitivity analysis, the sampling method used is Latin-

hypercube sampling (McKay et al., 1979; Helton, 2008).

The Spartan toolkit aids generation and analysis of the parameter sets for performing

sensitivity analysis (Alden et al., 2013) of ABMs and ASPASIA has been developed to

allow similar analysis to be performed on SBML models Evans et al. (submitted)

1.8.1 Calibration and Establishment of Baseline Behaviour

Calibrating computational models of biological systems, assigning parameter values to

ensure the model reflects behaviours observed biologically, can greatly impact the strength

of hypotheses the model generates. A calibrated model provides baseline behaviour upon

which sensitivity analysis techniques can be used to analyse potential pathways impacting

model response. However, the stochastic nature of biological systems results in significant

uncertainty and variance in data (Read et al., 2012). The calibration process of IBDSim

involves the simulation being executed with a set of ”best guess” parameters that are set

either from data in the literature or by estimating sensible values from responses observed

when parameter scans were performed on individual pathways within the model. After

these parameters were set, average results from a series of simulations were collected to

mitigate aleatory uncertainty, and the modeller and domain expert examine by eye how

the simulated data compares to that from biology. Once a suitable set of parameters had

been determined, the model was validated by simulating the effect of biological problems

for which the outcome was already known. This approach increases confidence that the

model can be used to perform experimentation into situations where the outcome is yet

to be determined.
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Figure 1.7: Examples of spatial and temporal scales in biology. Arrows represent
decreasing granularity

1.9 Dynamic Tuneable Resolution

During the course of a biological experiment, data is often collected different scales. In

the Hh-induced colitis model for example, data collected includes body weight of mice

(whole body scale), length of cecum or colon (organ scale), concentration of cytokine in

the cecum or colon (tissue level) and phenotype of CD4+ T cells in cecum or colon (cell

level). Although different wet-lab techniques are required to collect the data relevant

to each scale, the overall model used to generate the data is the same. Kirschner et al.

(2014) argues that a computational model should have the same capabilities. The tuneable

resolution approach proposes that multi-scale models should be built with multiple levels

of granularity so that a fine or course-grained version of the model can be employed at the

users discretion. This allows the resolution to be adjusted in order to answer a specific

question or to replicate a specific biological experiment without becoming unsustainable

and expands options for model validation and increases model usability.

In addition to providing the flexibility to span varying aspects and scales of interest,

tuneable resolution enables a more comprehensive model validation by increasing the va-

riety of ways that in silico experiments can be validated against biological data. Further,

fine-graining a model can result in an improved course-grained model by providing the

opportunity to re-implement the way that abstracted aspects were coded during the first

iteration. Tuneable resolution can help identify model flaws through detailed exploration

of aspects of the model.

Dynamic tuneable resolution allows different parts of a model to be switched on or

off depending on their state. Dynamic tuneable resolution in complex model development
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has two main uses, modify the frequency at which parts of a model are run, known as

an adaptive time steps and modify or remove parts of the model that are in steady state

and temporarily replace them with an abstracted version that results in the same effects.

Adaptive time steps are commonly used when solving systems of differential equations

numerically to reduce running time and there are several algorithms for determining how

large the time step should be at a particular point in the simulation (Minkoff and Kridler,

2006). A similar approach can be used in agent-based modelling to switch between spa-

tially resolved and simplified model compartments using agent behaviours as a trigger for

switching compartments on and off.

1.10 Summary

The basic immunology that needs to be understood before developing a model of Hh-

induced intestinal inflammation has been introduced in this chapter. A variety of modelling

techniques that could be used to capture the dynamics of cells and cytokines in the model

have also been discussed. Further, previous in silico models of intestinal inflammation

have bee examined, and it has been determined that neither of these models capture the

multi-scale and spatial aspects of inflammation, or allow for the addition of Hh, or the

recalibration to data from the Kullberg lab. Finally, methods for grounding simulations in

biology, and for model validation have been discussed as well as a technique for reducing

the computational burden of large multi-scale computational models.

1.11 Thesis Aims

This thesis details the development and utility of a computational model of Hh-induced

intestinal inflammation and focusses on three main aims:

Aim 1: Develop a computational model that captures the processes active in the gut

during Hh-induced intestinal inflammation.

Aim 2: Explore the therapeutic effects of a lymphocyte blocking antibody on Hh-induced

colitis
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Aim 3: Determine whether alterations in microbiota alone are sufficient to cause alter-

ations in the phenotypes of disease in intestinal inflammation.
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Chapter 2

A Computational Model of

Intestinal Inflammation

IBD affects over million people in the developed world and usually manifests as either

ulcerative colitis or Crohns disease (Kaplan, 2015). Although the exact cause of IBD is

unknown, a dysregulated immune response to the intestinal flora is thought to play a role in

disease pathogenesis and genome wide association studies have recognised 71 susceptibility

loci for Crohns disease. Genetic factors including defects in IL10 production have also been

identified as contributory factors. Several mouse models have been used to investigate the

pathogenesis of IBD (Table 1.1). These include chemically induced inflammation by DSS

or TBNS as well as KO models (DeVoss and Diehl, 2014). Mice that are deficient in IL10,

an anti-inflammatory cytokine, spontaneously develop inflammation of the lower intestinal

tract (Khn et al., 1993) (Section 1.3.1).

As defined in Chapter 1, the aim of this project is to develop a computational model

of intestinal inflammation based on the in vivo Hh-induced colitis model. This chapter

details the development of such a model that captures the processes active in the gut

during the induction of intestinal inflammation in IL-10 KO mice infected with Hh. In

this thesis, the model has been used for exploring the effects of potential therapeutic targets

and identify the best time course for treatment, and also to explore the factors driving

intestinal inflammation in the Hh-induced colitis model to drive in vivo experimentation

(Chapters 3,4).

The model was developed following the CoSMoS process (Andrews et al., 2010) that
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provides a framework for developing computational models of complex systems. Within

the CoSMoS process, the research context must be defined prior to model development.

The research context identifies the questions that the model is being built to address

and establishes the aspects of intestinal inflammation, and health, that are important in

answering these questions. Once the research context has been established, a series of

models are developed that are modified iteratively throughout the modelling process to

aid production of an executable model that adequately reflects the biological system. The

models created following this process form several modules, also referred to as models,

that are detailed in Section 1.5.0.2. These modules underpin the understanding of the

research domain that is to be modelled in relation to the research context and provide

a blueprint from which an executable model can be built. Developed in collaboration

with experimental immunologists the modules, or models, of the CoSMoS process contain

biological- and implementation-specific details including justifications of any abstractions

or assumptions that have been made.

Unified Modelling Language (UML) notation is widely used in software engineering

for specifying what is required of a system and how it may be implemented, as well as

providing a guide during the software development process. Where the CoSMoS framework

has been applied in similar biological applications (Read et al., 2012; Alden, 2012; Moyo,

2014), the use of a series of diagrams developed using a subset of UML diagrams (Fowler,

2003) has proven advantageous for describing the biological background of the model, as

well as for identifying model-specific details. The advantage of using UML in this context

is that it has a predefined structure that can be learned and understood by users from all

disciplines, and that it provides a framework for describing interactions and behavioural

changes that is clear, concise and consistent between models.

This chapter describes the non-executable domain and platform models, details of the

simulation platform that describes how the model has been built, and the results model

in which simulation output is compared with in vivo data collected in the Kullberg lab.

The techniques used to develop, calibrate, and validate the model ensuring it is fit for the

purpose of this study, are also discussed here.
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2.1 Research Context

The aim of defining a research context is to set the scope and purpose of the model. The

domain of study for this model is the large intestine before and after infection of IL-10

KO mice with Hh. As discussed in Section 1.3.1, the organs involved in the development

of Hh-induced colitis are the cecum, colon and mesenteric lymph node (MLN) and in-

flammation within these compartments is dependent on the presence of both innate cells

and lymphocytes. Innate cell and lymphocyte subsets and their roles in contributing to

inflammation are discussed in Section 1.1.1.1 and it can be concluded that the cells of

interest from the research domain can be reduced to CD4+ T cells, DCs, macrophages

and the cecum, colon and T-cell zone of the MLN.

2.2 A Domain Model for Hh-Induced Colitis

As previously stated in Section 1.5.0.2, the domain model is a non-executable model

detailing what is known, or hypothesised, to occur in a biological or experimental system

of interest. This model focusses on scientific understanding of the biological system and

on the research questions that need to be addressed At this stage of the modelling process,

no thought is given to how an executable model will be implemented. Previous studies,

for example those by Bersini (2006); Read et al. (2009) and Alden (2012), have used three

types of diagram to model the biological domain:

Expected behaviours diagram: This diagram is indicates how interactions between

the entities identified in the research context contribute to system-level behaviours.

The phenomena expected to emerge from any model of the biological system of inter-

est, and the time scales on which these phenomena occur, are stated, and hypotheses

of how the phenomena manifest are developed. Each phenomena is joined to a hy-

pothesis that is then linked to the cell types whose interactions are thought to cause

the phenomena to develop, if this information is known. This type of diagram helps

to set the scope of what entities need to be in the model and what can be excluded

and ties the scope of the model to observations and data collected in vivo. This type

of diagram is not a UML diagram.
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Activity diagram: These diagrams are used to represent work flows, and are written

in UML. In this context, they describe actions and interactions between cellular

components in biology. A guide to understanding UML in the context of activity

diagrams is shown in Figure 2.1. Activity diagrams elaborate on the interactions

defined in the expected behaviours diagram by defining the conditions under which

these interactions to take place. Further, activity diagrams highlight any other events

that occur as a result of this interaction happening, or as a result of the interaction

not happening.

State diagram: These diagrams define the physical behavioural changes an entity can

be in and identify the factors governing the emergence of these behaviours. Like the

activity diagrams, the state diagrams are also written using UML, and a guide to

understanding additional UML notation in the context of state diagrams is shown

in Figure 2.2. State diagrams give more detail about the behaviours an entity can

exhibit and are useful for explaining behaviour at an individual rather than a popula-

tion level. These diagrams help a modeller to fully understand the types of behaviour

each entity can exhibit in vivo.

The diagrams presented in this chapter were developed following a detailed literature

search and in close collaboration with experimental immunologists. Through creating the

domain model, biological parameters were identified and where they existed values for

known biological parameters such as life spans and velocities of cell types, were recorded.

These parameters are listed in Appendix A.
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2.2 A Domain Model for Hh-Induced Colitis

Figure 2.1: UML notation for an activity diagram. The syntax used to describe bi-
ological processes as activity diagrams in both the domain and platform models: Rounded
rectangles represent actions or activities, diamonds represent decisions, forks and joins
represent the start and end, respectively, of acitivities that occur concurrently, a black
circle represents the start of the processes for that system while a double circle represents
the final state after which no further activities can occur. Expressions in square brackets
([]) define conditions that must be satisfied for the next activity to occur.
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Figure 2.2: UML notation for a state diagram. The syntax used to describe bio-
logical properties in a state diagram in both the domain and platform models. Rounded
rectangles represent states. A rounded rectangle inside of another one is a substate and
means that if the object is in the state of the outer rectange then it can also be in the inner
state. A black circle represents the initial state of the object while a double circle repre-
sents the final state. As in the domain model expressions in square brackets can be used
to define conditions that must be satisfied for an object to proceed into that particular
state. A dashed line represents concurrent states.
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2.2 A Domain Model for Hh-Induced Colitis

2.2.1 Expected Behaviours Diagram

The first task in developing the domain model for Hh-induced colitis was to identify

the key observable phenomena that the model should capture, and determine how these

phenomena emerge as a result of entities, such as cells, cytokines and any other factors,

in the system interacting with each other and with their environment. Meaningful links

between the phenomena observed and the entities in the system, along with hypotheses of

how these behaviours manifest in vivo were captured in an expected behaviours diagram

(Figure 2.3). In the Hh-induced colitis model, there are two key observable biological

phenomena:

1. The bacterial load in the cecal lumen is undetectable before Hh inocula-

tion, peaks at around 4 days post infection, is low by day 14, and remains

low at all further time points (Morrison et al., 2013). It is hypothesised

that there are different biological processes responsible for causing this trend. For

a new bacterial species to colonise the gut, the bacterium must find an appropriate

niche and multiply (Meurant, 2012). Thus, it is expected that a bacterial growth

phase between 2 and 4 days post infection is a result of Hh finding its niche in the

lumen. Following this growth phase there is a decline in the population of Hh in the

cecal lumen. It is thought that it is due to the the adaptive immune response that

causing a reduction in Hh burdens between 4 and 14 days post infection. This is

consistent with the knowledge that it takes around 4 days for the adaptive response

to be initiated following an infection (Janeway et al., 2001), and with the fact that

RAG KO mice that do not have any adaptive immune cells have higher bacterial

burdens when infected with Hh than conventional IL10 KO mice (Kullberg et al.,

2002). After 14 days post infection, it is thought that the levels of Hh remain steady

due to competition for resources with commensal bacteria.

2. The level of inflammation in the large intestine is moderate by 7 days post

Hh infection, severe by day 14. Between 0 and 7 days post infection, there is a

10-fold increase in the number of CD4+ T cells in the cecum and colon, and 5-fold

increase in the total number of immune cells in the cecum and colon. By day 14

there is a 25-fold increase in CD4+T cells compared to day 0, and a 10-fold increase
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Figure 2.3: Expected behaviors diagram for Hh-induced colitis. The observable
phenomena from the biological domain have been linked to the time that they occur, and
to hypotheses of how each behavior manifests in vivo. A dashed line is used where there
are multiple hypothesised causes of an observable phenomena.
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2.2 A Domain Model for Hh-Induced Colitis

in the total immune cells (Morrison et al., 2013). This increase in immune cells is

accompanied by an increase in inflammatory cytokines, and both of these factors are

hypothesised to cause disease pathology including, features of severe inflammation

such as goblet cell depletion and crypt abscesses.

2.2.2 Activity Diagrams

The cellular components and the interactions between them that are hypothesised to

cause intestinal inflammation in Hh-infected IL10-KO mice have now been defined by the

expected behaviours diagram (Figure 2.3). To determine the way in which each interaction

contributes to inflammation, activity diagrams have been developed. These diagrams

describe the interactions that can occur between cells both in the gut and in the MLN

(Figure 2.4). To aid description of the activity diagram in Figure 2.4, activities involving

Hh, APCs, T cells, epithelial cells and neutrophils have been denoted A1-5 respectively.

Activites involving Hh (A1)

The first event in the development in Hh-induced colitis is intragastric inoculation of

IL10-KO mice with Hh (A1a). Hh colonises the cecal and colonic lumen by binding to its

mucus layer and proliferating a a rate determined by its local environment (A1b,c,), (Fox

et al., 1994; Belzer et al., 2005). Following colonisation, epithelial cells recognise Hh and

begin to secrete antimicrobial peptides (AMPs) and cytokines (A4a) (Ostaff et al., 2013;

Sterzenbach et al., 2007). This leads to APCs migrating the epithelial barrier to sample

Hh in the lumen (A2ai) (Nicoletti et al., 2010).

Activities involving APCs (A2)

In steady state, the majority of APCs are resident macrophages but there is a small pop-

ulation of migratory APCs present at the epithelial barrier in the intestine that patrol the

epithelium for commensal antigens (Farache et al., 2013). Following a bacterial challenge,

more of these DCs are recruited to the barrier to phagocytose and process bacteria using

intraepithelial dendrites (Farache et al., 2013). These cells were thought to be DCs until

it was shown that these cells are likely to be CX3CR1+ macrophages sampling bacteria in

the intestinal lumen by extending transepithelial dendrites through tight junctions in the
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Chapter 2: A Computational Model of Intestinal Inflammation

epithelial layer (Rescigno, 2002; Niess et al., 2005). These macrophages are non-migratory

and it is thought that they transfer antigen to DCs to process and present on MHC-II

molecules on their surface. APCs that have taken up antigen also begin to secrete cytokine

in response to the bacteria they have phagocytosed. In the activity diagram (Figure 2.4),

APCs refer to both DCs and macrophages in the gut. These cells are responsible for

sampling commensal bacteria at the epithelial barrier and can extend dendrites into the

intestinal lumen for bacterial uptake (Farache et al., 2013; Niess et al., 2005; Rescigno,

2002) (A2ai,ii). While both types of APC share many features including phagocytosis

(A2b), antigen presentation (A2ci) and cytokine secretion (A2cii), only DCs can migrate

to the lymph node to activate and polarise naive T cells (A2d,e).

Activities involving T cells (A3)

In the diagram, the term ”T cells” refers to CD4+ and their involvement in the inflam-

matory process begins in the MLN. T cells scan the MLN for DCs presenting a peptide of

the protein for which the TCR is specific for. If a T cell recognises the antigen presented

on the MHC-II molecule on the surface of a DC then it will bind (A3a), and if the T cell

receives sufficient costimulatory signals then it will become activated and undergo several

rounds of proliferation (A3b) (Bousso, 2008). While in an activated state, T cells respond

to cytokine secreted by APCs or by other T cells. If the stimulation is strong enough,

Janus kinase-signal tranducer and activator of transcription (JAK-STAT) pathways are

activated and T cells undergo polarisation into one of several subsets (Figure 1.1) and

begin to secrete effector cytokines (A3c). Upon activation T cells downregulate the S1p1

receptor leaving them unable to respond to CCL19 and CCL21, therefore sequestering

them in the lymph nodes (Graeler et al., 2002). Sphingosine 1-phosphate (S1P)1 receptor

expression is gradually restored in effector cells (Rivera et al., 2008) and these cells can

leave the lymph node via the efferent lymph vessels and home to the gut (A3d) (Koboziev

et al., 2010). In the gut, T cells can be restimulated by APCs, restarting proliferation and

causing the T cell to recommence cytokine secretion (A3e-g) (Mann and Li, 2014).

Activities involving epithelial cells (A4)

Epithelial cells are the first line of defence against mucosal commensal bacteria and
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2.2 A Domain Model for Hh-Induced Colitis

pathogens, forming a barrier between bacteria in the lumen and APCs in the lamina

propria. They contribute to inflammation by secreting an array of cytokines and antimi-

crobial peptides in response to a bacterial challenge (A4a) (Haller et al., 2000; Bona and

Revillard, 2001). Cytokines in the gut such as IFN-γ and TNF-α have been shown to

alter the proliferation and induce apoptosis of epithelial cells (Yan et al., 2004; Kaiser and

Polk, 1997; Peterson and Artis, 2014). This causes damage to the epithelial barrier (A4b),

allowing bacteria to enter the lamina propria underneath the barrier (A4b) and activate

APCs, increasing the level of cytokine and amplifying this barrier damaging loop (Belkaid

and Hand, 2014).

Activities involving neutrophils (A5)

In the absence of Hh, and inflammation, only a small number of neutrophils are present

in the gut but the number increases rapidly during inflammation (Bain, Unpublished).

Neutrophils are attracted to the gut by IL17-induced chemokines (A5a) and promote

pathogenic immune responses by phagocytosing and presenting bacteria (A5b,c) (Ko-

laczkowska and Kubes, 2013).

63



Chapter 2: A Computational Model of Intestinal Inflammation

Figure 2.4: Activity diagram describing interactions in the gut during Hh-
induced intestinal inflammation. APCs are considered to be DCs and macrophages,
bacteria refers to both commensal bacteria and Hh, and T cells are considered to be CD4+.
Guards are placed below horizontal arrows and right of vertical arrows.
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2.2.3 State Diagrams

Following on from the activity diagrams, state diagrams were developed to define the

different states a cell can be in and to identify the factors governing transitions between

these states. Diagrams have been developed for every cell type that is directly involved in

the inflammatory process as identified by the expected behaviours and activity diagrams

(Figure 2.3, Figure 2.4) and are described below. To aid description of the state diagrams,

bacteria, APCs, T cells and epithelial cells have been denoted B, A, T, and E respectively.

2.2.3.1 Bacteria

Figure 2.5 describes the properties that a single bacterium can have. Under the defined

research context there are just two initial states for a bacterium, Hh (B1a) or commensal

(B1b). If a bacterium is of type Hh, then it enters the system through the intragastric

route (Kullberg et al., 1998) and is therefore initially uncolonised (B2bi), but becomes

colonised by binding to the mucus layer as it reaches the gastrointestinal tract (B2bii). Any

bacteria that is of type Hh that does not become colonised is removed in the faecal matter

(B4a). Commensal bacteria are always considered to be colonised (B2bii) as they are

first introduced to the mouse at birth (Belkaid and Hand, 2014), and as the experimental

model considers adult mice. All bacteria regardless of the type are initially luminal (B2a),

that is they are located on or above the mucus layer or epithelial barrier rather than

in the lamina propria. Colonised bacteria (B2bii) alternate between being proliferative

and non-proliferative depending on space and nutrients in the environment (B2ci,ii). A

colonised bacterium can leave the lumen to become tissue resident (B3), entering the

lamina propria through gaps in the epithelial barrier created by apoptosis of epithelial

cells (Schulzke et al., 2006), or be removed from the system following phagocytosis by an

APC (B4d). Both, tissue resident and luminal bacteria can die due to lack of nutrients

(B4c).

2.2.3.2 Antigen-presenting cells (APCs)

Section 2.2.3.2 describes the properties that APCs can have. APCs enter the gut lamina

propria from the blood (A1) as either DCs (A2a) or macrophages (A3a). DCs are initially

immature (A2bi) and phagocytic (A2ci). Immature DCs are also non-migratory (A2cii),
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Figure 2.5: Domain model state diagram for bacteria.

that is, while they express chemokine receptors such as CCR2, CCR5, CCR6, CXCR1,

and CXCR2 that allow them to respond to inflammatory signals and traffic within the

tissue of which they are resident, they do not express CCR7 that allows them leave the

tissue and migrate to the lymph node (Cravens and Lipsky, 2002; Riol-Blanco et al., 2005).

Following exposure to antigen, DCs become mature (A2bii) (Janeway et al., 2001) and lose

the expression of phagocytic receptors (Platt et al., 2010), making them non-phagocytic

(A2ciii). Mature DCs also downregulate chemokine receptors responsible for keeping them

in the gut and upregulate CCR7. DCs that express CCR7 can respond to CCL19 and

CCL21 that are expressed by the T-cell stroma in the lymph node and to CCL21 produced

by endothelial cells of afferent lymphatic vessels and high endothelial veins (Gunn et al.,

1998; Stein et al., 2000; Warnock et al., 2000), and are therefore in a migratory state

(A2civ). Mature DCs present antigen to T cells by upregulation of the MHC-II:peptide

complex along with costimulatory molecules B7 (A2cv), and can also secrete an array of
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cytokines in response to the antigen that have acquired (A2cvi).

Macrophages begin in a precursor state (A3bi). Once they have taken up and processed

antigen they become conditioned to their environment (A3bii) adopting either an inflam-

matory (A3biii) or regulatory (A3biv) phenotype. Both types of macrophages secrete cy-

tokines, with inflammatory macrophages secreting an array of pro-inflammatory cytokines

including IL12, IFN-γ and IL6 and regulatory macrophages secreting anti-inflammatory

cytokines such as TGF-β and IL10. They also both express MHC-II molecules to present

antigen (A3bv) but only inflammatory macrophages also express co-stimulatory molecules

(Bain et al., 2013). Both types of APCs are removed from the system by apoptosis.

2.2.3.3 T Cells

T cells in the model refer to CD4+ T cells. They enter the lymph node from the blood (T1)

and are initially in a naive state (T2). T cells scan the lymph node looking for DCs and be-

come partially activated (T3) following the binding of the TCR MHC-II:peptide complex

on a DC. Partially activated T cells that do not receive costimulatory signals become un-

responsive to further stimulation and this ultimately results in cell death (T6) (Schwartz,

2003). However if a partially activated T cell receives costimulation via CD28:B7 interac-

tion, it will become activated (T4a) and enter a proliferative state (T4bii). An activated

cell can enter an effector state (T4bi) following multiple rounds of proliferation (Jelley-

Gibbs et al., 2000), and once in an effector state it can become polarised into one of several

subsets depending on the cytokine millieu. In Hh-induced colitis, effector cells become ei-

ther a Th1, Treg, or Th17 cell depending on their environment (T4ci-iii, Figure 1.1).

Subsequently Th17 cell can switch phenotypes entering either a double positive (T4civ)

or an ex-Th17 state (T4cv, Figure 1.1) (Morrison et al., 2013). During proliferation, an

activated T cell may also enter a memory state (T5). A memory T cell can return to

an activated state following restimulation by an APC expressing MHC-II. In the absence

of stimulation T cells will undergo apoptosis or die from activarion-induced cell death

(AICD) (T6) (Bertolino et al., 1999).
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Figure 2.6: Domain model state diagram for APCs (DC or macrophage) in
the model.

2.2.3.4 Epithelial Cells

Intestinal epithelial cells constitute a barrier surface that separates commensal and pathogenic

bacteria from cells in the lamina propria (Peterson and Artis, 2014). At steady state, the

majority of epithelial cells are in a resting state (E2) meaning that they are non-secreting

(Figure 2.8). Epithelial cells use PRRs to identify bacterial PAMPs in the intestine. If an
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Figure 2.7: Domain model state diagrams for T cells in the model.
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epithelial cell identifies a commensal species it will not elicit a strong immune response,

but on recognising foreign antigen, it will secrete cytokines and AMPs that can cause

distruption of bacteria (Mukherjee et al., 2014; Muniz et al., 2012; Gallo and Hooper,

2012). In the presence of inflammatory cytokines, epithelial cells become damaged (E4),

inducing apoptosis (E5), and resulting in the epithelial barrier becoming compromised

(Brown et al., 1999; Zolotarevsky et al., 2002; Mankertz et al., 2000).
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E2:	

E5	

E1	

E3:	

E4:	

Figure 2.8: Domain model state diagrams for epithelial cells in the model.

2.3 A Platform Model for Hh-Induced Colitis

Within the CoSMoS process, the second stage of model development is to establish how

an executable model of the biological domain will be developed and implemented. The

modelling methodology must first be determined, before simulation specific details includ-

ing methods and functions that will be used for model implementation can be developed.

Cellular interactions are represented here as activity diagram, and state machine diagrams

describing individual cell-level behaviours have also been developed. Cellular behaviours

will be encoded into the model on the basis of these state machine diagrams, but the

interactions from the activity diagrams will not be hard coded, as they are expected to

emerge as a result of cellular behaviours being correctly captured. If the activities were
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coded into the model, the result would be a an over-fitted model that adequately described

the biological system but that could not be used for in silico experimentation.

2.3.1 Modelling Methodology

The advantages of different techniques for modelling biological systems have been ex-

amined in Chapter 1. Cells in the gut are highly autonomous, and each individual cell

responds to its environment in a different way depending on the previous interactions with

other cells and with the environment. A key example of this phenomena is the phenotype

switching of Th17 cells into double positive and then ex-Th17 cells (Morrison et al., 2013)

(Figure 1.1). The exact cause of this switch in vivo is unknown but as not all Th17 cells

switch phenotype, the history of a cell is potentially important in determining its fate.

Further, it has been observed that inflammation in the Hh-induced colitis model does not

develop uniformly across the gut and so it is important that a model of inflammation is

spatially resolved. With this in mind, the most suitable methodology for a computational

model to capture the dynamics of cells in the gut is a hybrid ABM that is able to in-

corporate systems of ODEs to model processes that are not represented at a spatial level

(Table 1.2). Using such a model allows ODEs to be incorporated into the system as well as

allowing cells to be represented at an individual level rather than as a uniform population

allowing for stochasticity. This is an advantage over a full ODE model where there is no

spatial resolution or a PDE model where populations are considered to be homogeneous.

When developing an ABM, or hybrid ABM, both spatial and temporal considerations

must be taken into account.

2.3.2 Spatial Considerations for the Hh-Induced Colitis Model

ABMs allow cells to exist in environments consisting of a series of grids that can be either

continuous or discrete. In two dimensions, discrete grids are divided into spaces and agents

can be in any location (x, y), x, y ∈ N. A grid space can take the form of any tessellating

shape (Figure 2.9), but using squares makes the location system more intuitive. For

continuous spaces, x, y ∈ R+.

In 3D environment, a z coordinate is added so the locations become (x, y, z) where

x, y, z ∈ N for discrete spaces, and x, y, z ∈ R+ for continuous. In this model the compart-
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ments will be created by the layering of different grids of equal size, to allow for multiple

cell types.
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Figure 2.9: Different grids that can be used in an ABM. Examples of discrete
grids in 2D (a,b) and 3D (c), and continuous grids in 2D (d) and 3D (e)

The environment identified in the research context for this model is the gastrointestinal
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tract, in particular the cecum and colon, and the gut associated lymph node, the MLN

(Figure 2.10). To determine the best way to model each organ, the types of cells and

cytokines that will be located there must be considered (Table 2.1).

Figure 2.10: Cartoon of the mouse intestinal tract. Diagram shows small and
large intestine, comprising on the cecum and ascending colon, that is the focus of the
computational model.
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Cecum X X X X X X X X X
Colon X X X X X X X X X
MLN X X
Cecal Lumen X
Colonic Lumen X
Lymph X

Table 2.1: Cells and cytokines by compartment. The cells and cytokines that reside
in each compartment are listed in the table.
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2.3.2.1 Mesenteric Lymph Node (MLN)

Several models have been developed to predict the cellular dynamics in lymph nodes.

Some of these models use a 2D representation (Beltman et al., 2007; Riggs et al., 2008)

and others 3D (Zheng et al., 2008; Kislitsyn et al., 2015). Gong et al. (2013) compared

2D and 3D representation in a model that predicts output efficiency of a lymph node and

concluded that the efficiency of cognate T-cell searching is highly dependent on model

dimensionality, with the 3D model being more efficient. Despite this, 2D modelling has

proved useful in characterising the priming of CD4+ T cells in the lymph node (Linderman

et al., 2010). In the current domain of study, the purpose of the MLN is to act as the

site for T-cell activation by DCs (Figure 2.13) and this means that a 2D representation

similar to that used by Linderman et al. (2010) is sufficient for the requirements of this

model. The dimensions of the lymph node in the model will be comparable to those in

biology (measured in Figure 2.11a). In the model the MLN will be represented in 2D as a

rectangle where the cells are allowed to pass over each other rather than collide, creating

a pseudo 3D space.

2.3.2.2 Cecum and Colon

The murine cecum and colon are 3D structures with a luminal space that contains the

faecal matter. The lumen contains bacteria, including Hh in an infected mouse, and is

separated from the lamina propria by a mucus layer and a single layer of epithelial cells. In

the computational model, the luminal and lamina propria compartments will be abstracted

into two overlaying compartments of the same dimensions. Like the MLN, the cecum and

colon compartments will be represented in 2D with dimensions comparable to those in

biology (measured in Figure 2.11b). The cecal and colonic luminal compartments are the

sites of Hh colonisation and bacteria are passed from the lumen into the lamina propria

compartments with a probability that depends on the amount of damage to the epithelial

barrier (Figure 2.12). In order for the 2D section of the cecum and colon to be spatially

representative of the lamina propria, the lumen and lamina propria compartments must sit

perpendicular to each other, meaning that the epithelial barrier must be one dimensional,

i.e. a line. This organ will be modelled in 2D as a rectangle where the cells are allowed to
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pass over each other rather than collide creating a pseudo 3D space.

(a) (b)

Figure 2.11: Dimensions of the MLN, cecum and colon. The MLN (a), cecum and
colon (b) were removed from five 24 day old uninfected IL10 KO mice and the height and
the width were measured and averaged. Figure shows one representative set of tissues.

MLN

Cecum ColonLymph

Cecal
Lumen

Colonic
Lumen

Figure 2.12: Compartments of the model and transitions of cells between
them. Legend: : Naive T cells , : Activated T cells, : DCs, : Macrophages, :
Commensal Bacteria, : Hh.
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Figure 2.13: Activity diagram describing interactions between entities in the
model during Hh-induced intestinal inflammation. APCs are considered to be
DCs and macrophages and bacteria refers to both commensal bacteria and Hh. Guards
are placed below horizontal arrows and right of vertical arrows.

2.3.3 Activity Diagrams

Figure 2.13 shows the activity diagram for the platform model. The activities for Hh,

APCs, T cells, epithelial cells and neutrophils are depicted as A1-5 respectively.

76



2.3 A Platform Model for Hh-Induced Colitis

Activities Involving Hh and Commensal Bacteria (A1)

Inflammation in vivo is initiated by infection with Hh. This initiation step is modelled

in the ABM by the addition of Hh-type bacteria to the cecal lumen compartment (A1a).

These bacteria become colonised at a constant rate with probability p(colonise) (A1b)

and proliferate with probability p(prolif) (A1c). This leads to some of the bacteria enter-

ing the lamina propria compartment with probability p(switch) (A4d). Simultaneously,

commensal bacteria enter the lumen with probability p(comm) (A1e). An abstraction has

been made that commensal bacteria will not be represented in the lumen, but will enter

the lamina propria directly. Consequently, APCs cannot directly sample bacteria in the

lumen so all bacteria:APC interactions will be in the lamina propria. The rational for

this abstraction is that it would be difficult to develop and calibrate a model of the com-

mensal bacteria in the lumen as little is known about specific species present under this

particular experimental set up or the interactions between them. Tissue resident bacteria

move randomly around the cecum and colon until they contact an APC when they become

stationary and, following a short time delay, are removed (A2a). This activity induces two

simultaneous state changes in the APC with it becoming both antigen presenting (A2bi)

and cytokine secreting (A2bii).

Activities Involving APCs (A2)

A DC that is in an antigen-presenting state and has removed its maximum number of

bacteria that it is allowed to from the lamina propria will migrate to the MLN (A2c,

Figure 2.12). Unpublished data from the Kullberg lab show that at peak inflammation,

less than 5% of T cells in the MLN secrete IFN-γ or IL17, compared to 50% of T cells

in the cecum (Morrison et al., 2013). Further more cytokine levels in the MLN are low

compared to those of the cecum and colon, so it is sensible that the cecum and colon

serve as the main site of T-cell polarisation while the MLN functions as the site for T-cell

activation. Thus an abstraction has been made that DCs will not secrete cytokines in the

MLN.

Activities Involving T Cells (A3)

T cells become activated by contacting and then binding to a DC that is presenting the
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antigen that the T cell is specific for (A3a). Activated T cells proliferate with a rate

of 1/p(prolif) where p(prolif) is the probability that a single T cell spawns a single

daughter cell per minute (A3b). During proliferation a T cell develops into a memory

cell with probability p(mem). When a T cell has undergone a number of proliferations it

becomes an effector cell and exits the MLN to the gut (A3d). Here a T cell commences its

scanning behaviour looking for APCs presenting its cognate antigen so that it can resume

its proliferative state (A3e,f). T cells in the gut can respond to cytokines to become

polarised.

Activities Involving Epithelial Cells (A4)

Since the lamina propria and lumen compartments in the gut are separated for the cecum

and colon compartments, the epithelial barrier does not explicitly exist between the com-

partments. However, the level of cytokine in the tissue acts to drive the switch of epithelial

cells from resting to inflammatory (A4a, p(inflamepithelial)). This allows more bacteria

to enter the lamina propria (A4b), therefore exacerbating the inflammatory process.

Activities Involving Neutrophils (A5)

A major abstraction from the domain to the platform model is that neutrophils will not

be modelled. This is because they mainly act by removing bacteria and dead cells from

the environment, something can be incorporated into the death rate of bacteria in the

lamina propria compartments.

Summary of Activities

The processes described in the activity diagrams contain a small set of distinct activities,

some of which are common between cell types. Here we define what these activities

represent for agents in the model and how they will be implemented.

Contact: Two cells at locations (x1, y1) and (x2, y2), with radii r1 and r2 respectively,

are defined as being in contact with each other if the inequality (r2 − r1)2 <=

(x2 − x1)2 + (y2 − y1)2 <= (r2 + r1)2 is satisfied. This means that all cells in the

model require a radius parameter.
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Move: There are three ways in which a cell in the model can move from point A (xa, ya)

to point B (xb, yb), all of which are described in Figure 2.14. Under any of these

methods, the average distance travelled per time step can be calculated using the

equation d =
√

(xb − xa)2 + (yb − ya)2. For a cell to move, it must have a parameter

representing average step size, and for directed random movement, the standard

deviation of the angle travelled at each step.

Proliferate: When a cell in the model proliferates it will create an identical copy of itself

within a small radius of its current location. The new cell must inherit all states

from the parent cell, as well as its age and lifespan. The only exception to this

rule is when a T cell proliferates and its daughter cell becomes a memory cell but

the parent cell stays activated, resulting in the lifespans and activation status being

different between parent and daughter cells.

Colonise: When a bacterium is colonised, it remains stationary in the lumen and interacts

with the nutrients in the environment.

Phagocytose: Phagocytosis in the model is performed by APCs when they are being

contacted by a bacterium. The APC causes the bacterium to become stationary

for a time delay, and then remove the bacterium from the model. If the APC dies

while contacting a bacterium then the bacterium will be released and recommence

migratory behaviour.

Present antigen: To model antigen presentation by APCs, each bacterium will have a

numerical ”type” variable and upon being phagocytosed, this number is added to

a list of antigens to be presented on the APC. When a T cell contacts the APC it

searches the list of presented antigen for a number that matches its own numeric

specificity (Figure 2.15).

Secrete: In the model, secretion means increasing the number representing the concen-

tration of cytokine in a discrete grid square by a value calculated by a function that

is distinct for each cell type.

Die: When a cell dies, it is removed from the simulation. All cells in the model must die

eventually, either probabilistically or by exceeding a specified lifespan.
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• If y =GridHeight, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ 2π

• If x = 0, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π
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Figure 2.14: Representation of cell movement in silico. (a) True random motion,
where a cell may travel in any direction at the next step regardless of its previous direction,
(b) Directed random motion, where a cell moves in the same direction for a period of time
with some stochasticity, (c) Cells that reach a wall will bounce back into the compartment.
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Figure 2.15: How T cell:DC interactions lead to T cell activation. If a naive
T cell (green) binds to a DC (red) that is not presenting that antigen that the T cell is
specific for, that T cell binds transiently and is not activated (a). If the T cell binds to a
DC that is presenting the right antigen for its specificity, the T cell can become activated
(b)
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2.3.4 State Diagrams

As in the domain model, platform model state diagrams were developed to define the

different states a cell can be in and to identify the factors governing transitions between

these states. Diagrams have been developed for every cell type that is included in the

model and are described below. To aid description of the state diagrams, bacteria, APCs,

T cells and epithelial cells have been denoted B, A, T, and E respectively.

2.3.4.1 Bacteria

Hh enters the model in the cecal lumen (B1a). In the transition from the domain to

the platform model an abstraction has been made that only Hh, and not commensal

bacteria, will be modelled in the lumen (B2a). Hh is initially in a non-colonised state

(B2bi) meaning that it travels with direction random motion (Figure 2.14). A bacterium

that remains uncolonised will travel through the cecal lumen and into the colonic lumen.

As described in the previous section, for a cell to move, the average step size must be

determined. In biology, Hh is contained in the faecal matter and not free flowing, so the

velocity at which it traverses the cecal and colonic lumen is not known. However, the

velocity can be estimated based on the dimensions of the cecum and colon (Figure 2.11b)

and the rate of gastric emptying, that is assumed to be 60 mins (Bennink et al., 2003).

Under these assumptions the velocity of Hh in the lumen is modelled as 15µm/min.

The probability of Hh colonisation in biology has been estimated from levels of Hh in

cecal contents that has previously been quantified by Morrison et al. (2013), who measured

the Hh burdens in IL10 KO mice using the concentration of Hh DNA. For comparison

between in vivo and in silico data, the bacterial burdens have been transformed into bac-

terial counts (Figure 2.17), assuming that 20 fg of Hh DNA is equivalent to approximately

14 copies of the Hh genome, i.e. 14 Hh bacteria, as described by Ge et al. (2001). Compar-

ing the number of Hh bacteria given on day 0 to the number of bacteria present at 2 days

post infection gives an estimated value of p(colonise) ≈ 0.01. Hh that is colonised (B2bii),

alternates between a proliferative and non-proliferative state (B2ci,ii) and proliferates ac-

cording to the space and nutrients in the environment. Doubling times of approximately

12 hours have been abstracted from live bacterial counts of in vitro Hh cultures from
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unpublished observations in the Kullberg lab. The data shows that plating 103 bacteria

on agar plates results in approximately 2.2 × 106 live Hh after 24hrs and 4.0 × 106 live

Hh after 48hrs. Hence in silico, the proliferation time of a single bacterium should follow

a Gaussian distribution with a mean of 12hrs (=720 mins), resulting in the proliferation

probability p(prolif) being 0.00138 per minute.

Following colonisation, Hh in the lumen is modelled using a grid-based approach. The

cecal and colonic lumen compartments each contain two grids, one containing the number

of Hh bacteria in each square, and another containing the corresponding concentration of

nutrients. Using this approach, nutrients will be added to the grid at a set rate that will

be calibrated using the simulation platform. If the concentration of nutrients is above a

certain level then each bacterium in the square can proliferate and increase the number in

either its current square, or any surrounding square, by 1. Alternatively, when the nutrient

level is below a certain threshold, also to be calibrated using the simulation platform, each

Hh bacterium can be removed from the lumen causing the number in that specific grid

square to be decreased by 1. Before colonisation Hh can be removed from the lumen

by exiting the gut when it reaches the end of the colonic lumen compartment (B4a).

The removal of colonised bacteria from the lumen could be by a bacterium switching

compartments to become tissue resident (B3), or dying due to either the lack of nutrients

or the immune response (B4b). The parameters involved in the grid-based representation

are listed in Table 2.2.

As specified in the activity diagram (Figure 2.13), the arm of the immune response that

reduces the number of Hh in the lumen is generated by the epithelial barrier in response to

inflammatory cytokines. In the model, the rate of immune response-induced Hh death will

depend linearly on the amount of secreting epithelial cells, as suggested by Wendelsdorf

et al. (2010), who linked the removal of bacteria in the lumen to both secreting epithelial

cells and also to the number of so-called luminal DCs, an APC subset that is not present

in this model. The relationship between the death rate of Hh and the number of secreting

epithelial cells Ep will be modelled as:

p(death) = −dc + db1Ep, (2.1)
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where, dc and db1 are parameters to be identified through model calibration. Similar

to the death probability, the probability that a Hh bacterium will switch compartments

from the cecal or colonic lumen

s(Ep) = sc + sb1Ep, (2.2)

where, sc and sb1 are parameters to be determined in the model calibration stage (Sec-

tion 2.4.1.1).

A similar relationship is required to bring in commensal bacteria (B1b). Commensal

bacteria enters the system in either the cecal or colonic lamina propria compartment

directly as it enters the system in a tissue resident, migratory state (B3ai).

Bacteria, both Hh and commensal, that are in a tissue resident migratory state become

stationary upon contacting an APC (B3bii), thus a radius for binding with other cells is

required. As bacteria are less than 1µm in size, the radius is abstracted to be 0. From a

stationary state, bacteria can leave the system by being phagocytosed by an APC, if the

two cells bind for a sufficient time for removal to occur (B4c). Tissue resident bacteria that

remain migratory can die due to a lack of nutrients (B4d) and as this is not a biological

parameter, the probability of this death occurring will need to be determined in the model

calibration stage.
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Table 2.2: Parameters in the grid-based representation of Hh in the cecal and
colonic lumen. Values for these parameters will be determined in the cailbration phase.

Parameter Description

prolifProb Probability of a single Hh bacterium in the
lumen proliferating (min−1)

nutLowDeathProb Probability that a single Hh bacterium
will die when the level of nutrients in the
environment is low (min−1).

nutLow Level of nutrients below which Hh bac-
teria will die at with probability nut-
LowDeathProb (dimensionless).

removeNut Amount of nutrients removed by a single
Hh bacteria (cell−1 min−1)

addNut Amount of nutrient added every addNut-
Time (min)

addNutTime Time at which every grid square is in-
creased by addNut (dimensionless)

nutLowProlifThresh The threshold above which Hh will prolif-
erate with probability prolifProb (dimen-
sionless)

incNut Amount of nutrients added to the nutrient
grid square corresponding to that of the
Hh bacterium when it dies (dimensionless)
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Figure 2.16: Platform model state diagram for bacteria.
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Figure 2.17: Quantification of Hh colonisation levels from cecal washes. Ap-
proximate Hh counts assuming 20 fg of Hh DNA is equivalent to 14 Hh bacteria calculated
using the data on pg/mg of Hh DNA/total DNA, combined with total DNA amounts re-
covered from cecal washes, collected by Morrison et al. (2013)
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2.3.4.2 Antigen-Presenting Cells

APCs enter the system as either DCs (A2a) or macrophages (A3a) (Figure 2.18). For

ease of understand this section discusses the behaviours of these two cell types separately

although in practice there are a lot of shared methods between them.
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Figure 2.18: Platform model state diagram for DCs. Diagrams represent the states
that a cell in the DC subset state of the APC type.

DCs

Figure 2.18 shows the state diagram for the DC subset of the APCs type. In the platform

model DCs have been simplified to be phagocytic (A2bi), antigen-presenting (A2bii) cells

that have the ability to secrete cytokines (A2biii). Abstractions have been made that

assume that DCs are stationary cells because in vivo they move slowly with speeds of 2-5

µm/min (Bousso, 2008). It is also a necessary abstraction that DCs only phagocytose

87



Chapter 2: A Computational Model of Intestinal Inflammation

tissue resident bacteria because commensal bacteria in the lumen will not be included in

the model. For phagocytosis to take place, a contact between the DC and a bacterium

must occur and this requires DCs in the model to have a radius parameter. In vivo, DCs

have a radius of 7µm with long dendrites that can reach up to 20 µm when searching

for antigen (Miller et al., 2004). With this in mind, DCs in the model will be considered

to be circular, with a radius of 25µm. For a DC to become cytokine secreting it must

have taken up antigen. In the model, DCs will decide which type of cytokine they are

going to secrete based on the type variable of bacteria that they have taken up. Kranzer

et al. (2004) looked at the amount of IL12 secreted over time in vitro by human DCs

in response to either lipopolysaccharide (LPS) or bacterium Helicobacter pylori. Using

this data, a model that represents the rate at which DCs secrete cytokines in response

to different stimulations has been developed. The model uses non-linear regression, with

time in minutes and amount of stimulation as independent variables. It has been assumed

that the amount of stimulation can be quantified from low to high using a scale of 0-1.

The model is

il12 = (−5384 + 1.298t− 2235t2) ∗ stimulation, (2.3)

and the results from the model when compared to biology are shown in Figure 2.19. A

kolmogorov-smirnov test reveals no difference in the distribution of cytokines over time in

vitro and in silico (p=0.7714).

The model shown in (2.3) will be used to estimate the contribution of IL12 from a

single DC in the simulation. It can be generalised to other cytokines by multiplying by

different scaling factors that will be calibrated using the simulation platform, once it has

been developed. In the ABM, DCs will secrete a combination of IL12, IL6 and TGF-β

depending on the type of bacteria they phagocytose. Enzyme-linked immunosorbent assay

(ELISA) results suggest that there is little difference in the levels of IL12 and IL6 secreted

by DCs following stimulation with LPS (Tada et al., 2004) so it can be assumed that the

maximum secretion rate of IL12 and IL6 is the same. Similarly, it has been shown that

DCs are able to produce approximately 1.5 times more TGF-β produced than IL12 (Abdi

et al., 2012) so the secretion rate can be calibrated using the simulation platform, once it

has been developed.
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Figure 2.19: Linear regression model of total IL12 produced by 5 × 105 DCs.
Concentrations of IL12 produced by 5 × 105 DCs in response to LPS (black) or Heli-
cobacter pylori (red) were measured in vitro (circles) by Kranzer et al. (2004) and using
Equation (2.3) in silico (squares).

When a DC has taken up a specified number of bacteria in the model, it will leave

the cecum or colon compartments and enter the lymph compartment where it will wait

for a time period of 8hrs before migrating to the MLN, appearing at a random location.

In the MLN DCs are non-secreting (Figure 2.18, A2biv). The time spent in the lymph

compartment is representative of the time taken for DCs to reach the lymph node under

CCR7-mediated DC trafficking in vivo (Randolph et al., 2005). DCs are removed from

the simulation when they exceed their lifespan of 3 days (Kamath et al., 2002).

Macrophages

The state diagram for the macrophage subset of the APC type is shown in Figure 2.18. The

model only considers polarised macrophages (A3a) that are inflammatory (A3b) or regu-

latory (A3c) according to the environment at the time they enter the cecum or colon com-

partment. On entering the cecum or colon compartment, a macrophage decides whether

it will become inflammatory with a probability that depends on the amount of IFN-γ in

the compartment (Figure 2.20). If it does not become inflammatory, the macrophage will

automatically adopt a regulatory phenotype. Inflammatory macrophages present antigen

(Figure 2.18, A3bi) and secrete cytokines (A3bii) following contact with bacteria. Inflam-

matory macrophages secrete cytokines IL12, IFN-γ, IL6 and TGF-β with secretion rates

89



Chapter 2: A Computational Model of Intestinal Inflammation

that are enhanced by IFN-γ (Marzio et al., 1994) A macrophage calculates the amount of

cytokine to secrete at each time step by using a non-linear regression model that has been

fitted to data from Marzio et al. (1994). Equation (2.4) represents the amount of IFN-γ

produced by 106 macrophages in vivo;

ifng = (−0.7831 + 0.0012805t− 0.0000003706t2 + 0.00005205i)×mc. (2.4)

The independent variables in the model are: t, the time since a macrophage started

secreting the cytokine, i, the concentration of IFN-γ in the environment, and as with

cytokine production by DCs, a modifier mc, will be added to set the rate for each specific

cytokine. All macrophages in the model are phagocytic (A3c) and the maximum number

of bacteria that can be taken up by a macrophage will need to be determined in the

calibration stage.
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Figure 2.20: Probability that a macrophage will be regulatory depends on the
amount of IFN-γ in the tissue. The probability of a macrophahe being regulatory at a
single time point was calculated using the amount of IFN-γ in the tissue in vivo measured
by Morrison et al. (2013)

.

90



2.3 A Platform Model for Hh-Induced Colitis

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

500

1000

6 24 48
Time (hrs)

IF
N

 p
ro

du
ce

d

Figure 2.21: Calculation of the amount of IFN-γ to secrete per time step by
a macrophage. Where t is the length of time that the macrophage has been secreting
IFN-γ, i is the local concentration of IFN-γ. Graph shows in silico (black dots) calculated
using Equation (2.4) to biological data (red dots) when 5 ∗ 106 macrophages have been
pre-stimulated with 100 U/ml of IFN-γ and cultured with LPS in vitro (Marzio et al.,
1994).

2.3.4.3 T Cells

T-cell state changes are defined in Figure 2.22. On entering the model, T cells are naive

(T2), scanning the MLN for DCs at speeds of 11 µm/min (Miller et al., 2004). Previous

models of T-cell migration in lymph nodes have represented T-cell motility as a true ran-

dom walk (Molina-Pars and Lythe, 2011; Beauchemin et al., 2007; Mirsky et al., 2011)

or a directed random walk (Linderman et al., 2010). Riggs et al. (2008) compared simu-

lated random motion and with in vivo chemotaxis and showed that using random motion

to determine T-cell motility adequately captures the dynamics of T-cell priming in the

lymph node. Further, Mandl et al. (2012) measured the time taken for CD4+ T cells to

traverse the MLN as 9.6hrs (=576mins). This can be used to calibrate the dynamics of

T-cell migration. T cells become activated after binding to a DC that is presenting antigen

(T3a).

A T cell that has entered an activated state can be proliferating (T3bi) or non-

proliferating (T3bii) depending on the length of time that has elapsed since it was last stim-

ulated. The proliferation time for each cell is approximately 11hrs (=660 mins) (De Boer

et al., 2003) and during proliferation, a T cell can become a memory cell (T5). Following

the rules described by Gong et al. (2013), a T cell that has divided four times becomes an

effector cell (T4a) and can leave the lymph node. Effector T cells enter the gut and secrete
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cytokines (T4b). The type of cytokine they secrete depends on the polarisation of the T

cell. In the model T cells can only adopt a polarisation as either a Th1 or a Th17 cell, and

Th17 cells can switch phenotypes to become double positive cells, and then again to be-

come ex-Th17 cells that have a Th1-like phenotype (Figure 2.23). Other T cell phenotypes

are ignored as they are not prevalent during inflammation inHh infected IL10 KO mice.

The polarisation of T cells into either a Th1 or Th17 phenotype, as well as phenotype

switching, will be represented by a set of ODEs 2.24. The model was developed using

the COPASI software tool (Hoops et al., 2006), and builds on work by Yates et al. (2004)

and Schulz et al. (2009) to capture the dynamics of transcription factors T-box transcrip-

tion factor T (T-bet) and Retinoic-acid Related Orphan Receptor-γt (ROR-γt) in a single

CD4+ T cell undergoing polarisation and phenotype switching following stimulation with

exogenous cytokines (Figure 2.24). The dynamics between transcription factors in the

model can be understood as follows;

The rate of change in T-bet or ROR-γt

dTbet

dt

dRORgt

dt
(2.5)

The rate of increase in T-bet or ROR-γt expression through external stimulation


 s1 · C1

(k1 + C1)) ·
(

1 +
RORγt
g2

)





 s2 · C17

(k2 + C17)) ·
(

1 + Tbet
g1

)


 (2.6)

The rate of increase of T-bet or ROR-γt through autoactivation


 a1 · Tbetn

(kn3 + Tbetn) ·
(

1 +
RORγt
g2

)





 a2 ·RORnγt(

kn3 +RORnγt
)
·
(

1 + Tbet
g1

)


 (2.7)

The rate of baseline transcription or T-bet or ROR-γt

β1 β2 (2.8)

The rate of removal of T-bet or ROR-γt through natural decay or degradation
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Figure 2.22: T cell state diagram platform model

Previous models of T-cell polarisation have considered the Th1/Th2 axis, focussing on

transcription factors T-bet (for Th1) and GATA-3 (for Th2) Yates et al. (2004); Schulz

et al. (2009). We utilised ASPASIA to reparameterise these models to capture the dynam-

ics of Th17 polarisation and phenotype switching, using ROR-γt and T-bet as markers of

a particular phenotype (Figure 2.23b). A cell in the model is considered to be polarised

if one of the transcription factors is stably expressed above baseline level. A cell that

expresses both transcription factors at a higher level than at baseline is considered to be

a double-positive cell.

As many of the parameters relating to polarisation of Th17 cells were unknown, AS-

PASIA was used to generate 200 unique SBML models using Latin-hypercube sampling

over ranges defined in Appendix D. The models were solved using an SBML solver imple-
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Figure 2.23: Factors controlling CD4+ T-cell differentiation in vivo and in
silico. Upon activation, an unpolarised CD4+ T cell (red) can differentiate into a Th1
or a Th17 cell dependent on the cytokine milleu. Th17 cells can subsequently transition
through a double-positive (DP) cell to an ex-Th17 cell. Labels on each arrow indicate
cytokines involved in this process in vivo (a) and the model species that correspond to
these cytokines in silico (b). In both cartoons yellow cells secrete IL17 and IL21, blue
cells secrete IFN-γ, and green cells secrete a combination of IL17, IL21 and IFN-γ.

menting libSBMLSim Takizawa et al. (2013), with a step size of 0.12 for sufficient time

until stable baseline levels of T-bet and ROR-γt were reached. ASPASIA was then used

to generate an SBML model with parameters and species concentrations set to baseline

values, and interventions introduced representing stimulation with either type 17 (C17) or

type 1-polarising cytokine (C1) (Figure 2.23b). From the 200 models generated we iden-

tified the one that best captured the behaviours observed in a CD4+ T cell undergoing

Th17 polarisation, i.e. i) no expression of either T-bet or ROR-γt in the absence of polar-

ising cytokines (Figures 2.25a,2.26a), ii) stable expression of ROR-γt following stimulation

with type 17 polarising cytokines (Figure 2.25b), and iii) stability of the Th17 phenotype

when introduced to type 1 polarising cytokine after initial polarisation has taken place

(Figure 2.25c). This same model also met the criteria for a CD4+ T cell adopting a Th1

polarisation (Figure 2.26).
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dC1

dt
=


 s1 · C1

(k1 + C1)) ·
(

1 +
RORγt
g2

)


+ d1 · IFNγ − µ3 · C1 (2.10)

dC17

dt
=


 s2 · C17

(k2 + C17)) ·
(

1 +
RORγt
g1

)


+ d2 · IFNγ − µ4 · C1 (2.11)

dTbet

dt
=


 s1 · C1

(k1 + C1)) ·
(

1 +
RORγt
g2

)


+ b1 − µ1 · Tbet+


 a1 · Tbetn

(kn3 + Tbetn) ·
(

1 +
RORγt
g2

)




(2.12)

dRORγt
dt

=


 s2 · C17

(k2 + C17)) ·
(

1 + Tbet
g1

)


+ b2 − µ2 ·RORγt +


 a2 ·RORnγt(

kn3 +RORnγt
)
·
(

1 + Tbet
g1

)




(2.13)

dIFNγ

dt
=


 a3 · Tbet

(k5 + Tbet)) ·
(

1 +
RORγt
g3

)


− µ5 · IFNγ (2.14)

dIL21

dt
=


 a4 ·RORγt

(k5 +RORγt)) ·
(

1 + Tbet
g3

)


− µ6 · IL21 (2.15)

Figure 2.24: ODE model of T cell polarisation and phenotype switching. Tran-
scription factors T-bet and ROR-γt, indogenous cytokines IFN-γ and IL21 and exogenous
cytokines C1 and C17 have been modelled to adequately represent the dynamics of T-cell
polarisation. ai is the autostimulation rate for transcription factors and cytokines, bi is the
basal transcription rate for transcription factors, di is the cytokine-induced stimulation
of transcription factors, gi is the level of inhibition of transcription factors and cytokines
by opposing transcription factors, µi is the decay rate for transcription factors and cy-
tokines, n is the hill-coefficinet, and ki is the inhibition constant for transcription factors
and cytokines.
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Figure 2.25: ASPASIA-generated model reflects observed biological be-
haviours of Th17-polarised CD4+ T cells. From 200 ASPASIA-generated models,
a single model was selected that best captured biological behaviours. Shown are con-
centration of polarisating cytokines (left panels) and levels of transcription factor mRNA
(right panels) in (a) the absence of type-1 polarising cytokines (C1) and type-17 polarising
cytokines (C17), (b) following stimulation with C17, and (c) following subsequent restim-
ulation with a C1. Black lines represent C17 (left panels) and ROR-γt (right panels), red
dashed lines represent C1 (left panels) and T-bet (right panels).
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Figure 2.26: ASPASIA-generated model reflects observed biological behaviors
of Th1-polarised CD4+ T cells. The model shown in Figure 3 was examined under
Th1-polarising conditions. Shown are concentration of polarisating cytokines and levels of
transcription factor mRNA in the absence of type-1 polarising cytokines (C1) and type-17
polarising cytokines (C17)(a), following stimulation with C1 (b), and following subsequent
restimulation with a C17 (c). Black lines represent C17 (left panels) and ROR-γt (right
panels), red dashed lines represent C1 (left panels) and T-bet (right panels)

97



Chapter 2: A Computational Model of Intestinal Inflammation

2.3.4.4 Epithelial Cells

Epithelial cells will be modelled using a subset of differential equations from a mathe-

matical model of immune modulatory mechanisms in IBD by Wendelsdorf et al. (2010).

These authors model the dynamics of 12 populations of cells and two cytokines in the gut

during intestinal inflammation. The equations for two of these cell types, epithelial cells

and pro-inflammatory epithelial cells, that is epithelial cells that secrete inflammatory cy-

tokines, have been abstracted from this set of equations and will be included in the model

of Hh-induced colitis (Equations (2.16) to (2.18)). The rate of change per 6 hrs of CEa , E,

and Ep are given by

d CEa
dt

= λc ( ( TEh +ME
1 ) +DE

e + Ep )− µc CEa , (2.16)

d E

dt
= E (λE − φE (E + Ep − µE − νEC CEa ) ) + µE Ep, (2.17)

d Ep
dt

= ηEC E CEa − Ep (µE + µce C
E
a ), (2.18)

where CEa is the concentration of activating cytokine, E is the number of regular ep-

ithelial cells, Ep is the number of secreting epithelial cells, and all other model parameters

are as defined in Table 2.3. Stability analysis was performed and a time step of 1 minute

was deemed to be adequate when simulating this model using the Runge-Kutta algorithm

with a step size of 0.012.
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Table 2.3: Parameters in epithelial barrier model. Values for paramters Equa-
tions (2.16) to (2.18) taken from Wendelsdorf et al. (2010). Values denoted by * will be
calculated in the calibration stage.

Parameter Measure Value Units

λE Birth rate of epithelial cells 2 E−1

φE Crowding coefficient, epithe-
lial cells

0.00015 Dimensionless

νEC Rate of cell switching from
epithelial to pro-inflammatory
epithelial cell

5× 10−9 C−1
a t−1

µce Death rate of epithelial cells
due to inflammatory factors

5× 10−10 C−1
a t−1

λc Rate of cytokine production 0.25 cells−1t−1

µc Rate of cytokine degradation 0.075 t−1

TEh Number of T cells * Dimensionless
DE
c Number of T cells * Dimensionless

ME
1 Number of T cells * Dimensionless

2.3.4.5 Cytokines

Cytokines are secreted by DCs and macrophages in response to bacteria, and by activated

T cells in the cecum and colon compartment. They exist on discrete grids, one for each

type of cytokine in each compartment, and the compartments in the model consist of

several layers of these grids. In continuous space, chemical diffusion can be modelled

using the heat equation (Barnes and Fulford, 2011).

∂φ(x,y,t)

∂t
= D

(
∂2φ(x,y,t)

∂x2
+
∂2φ(x,y,t)

∂y2

)
(2.19)

To model cytokine diffusion in discrete space, a discretised version of the heat equation
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has been developed (Equation (2.23)).

φ(x,y,t) − φ(x,y,t−∆t)

∆t
≈
∂
(
φ(x,y,t)−φ(x−∆x,y,t)

∆x

)

∂x
+
∂
(
φ(x,y,t)−φ(x,y−∆y,t)

∆y

)

∂y
, (2.20)

≈
φ(x+∆x,y,t)−φ(x,y,t)

∆x − φ(x,y,t)−φ(x−∆x,y,t)

∆x

∆x
+

φ(x,y+∆y,t)−φ(x,y,t)

∆y − φ(x,y,t)−φ(x,y−∆y,t)

∆y

∆y
,

(2.21)

=
φ(x+∆x,y,t) − 2φ(x,y,t) + φ(x−∆x,y,t)

∆x2
+
φ(x,y+∆y,t) − 2φ(x,y,t) + φ(x,y−∆y,t)

∆y2
,

(2.22)

=
φ(x+∆x,y,t) + φ(x−∆x,y,t) + φ(x,y+∆y,t) + φ(x,y−∆y,t) − 4φ(x,y,t)

∆L2
,

(2.23)

where ∆L is the length of an edge of a square in the discretised grid. Cells in the model

interact with each other and with cytokines by constantly checking their location on related

grids to identify and cells or cytokines present.

2.3.5 Mapping Simulation Output to Biology

To determine if the model adequately reflects biology, simulation output will need to be

compared to data from the Kullberg lab. There are two comparisons that can be made,

firstly cell counts can be compared to in vivo raw data, and secondly a score can be

developed that quantifies the level of inflammation in the system at each time point that

can be compared to in vivo histology scores.

2.3.5.1 Comparing In silico and In vivoData

To determine the kind of data that should be output from the simulation at each time

point, relevant biological data collected in the Kullberg lab has been collated (Table 2.4).

This data can be used to determine what kind of data should be recorded in the simulation.

Agreement between simulation output and raw data from biology would confirm that

the model adequately captures what is known in biology. From Table 2.4, there are 15

simulation measures per time point that should be collected for direct comparison with in

vivo data, corresponding to the measures listed.
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Data Time point (days post Hh innoculation
0 2 4 7 14 21

Cecum
CD4 + T cells Total 0.1 0.1 0.2 1.0 2.8 2.7
(×106) Th1 0.003 0.004 0.007 0.134 0.535 0.486

Th17 0.003 0.004 0.007 0.091 0.290 0.201
Double-
Positive

0.001 0.000 0.000 0.066 0.549 0.471

Hh pg/ng
total
DNA

0.00 3.35 20.83 17.16 4.26 2.41

Colon
CD4 + T cells Total 0.1 0.1 0.1 1.0 3.5 3.7
(×106) Th1 0.003 0.003 0.008 0.177 0.786 0.792

Th17 0.003 0.003 0.007 0.114 0.312 0.271
Double-
Positive

0.001 0.000 0.001 0.062 0.776 0.697

Macrophage (×104) Inflammatory 5 8
Regulatory 10 65

Cytokines IFN-γ 1187 5430 50542 322186 14566 263178
(pg/ml) IL17 37 0 630 12030 7392 8682

MLN
CD4 + T cells (×106) Total 0.1 0.1 0.2 1.0 2.8 2.7

(% of CD4+) CD44hi 4.8 5.4 8.5 15.4 12.4 9.5

Table 2.4: Biological data used to inform and validate the model. Data was
taken from Morrison et al. (2013), and Bain and Kullberg, unpublished. Days 0 and 14
were used for information and remaining timepoints for validation.

2.3.5.2 Development of a Scoring System to Measure Inflammation in silico

The level of inflammation in a tissue in vivo is determined by a histology score. Tissues

are fixed in buffered 10% formalin, embedded in paraffin and stained with hematoxylin

and eosin. Samples are then scored blindly from 0–3 for each of hyperplasia of the ep-

ithelium, and lamina propria infiltrating cells, and 0–1 for markers of severe inflammation

(submucosal inflammation, goblet cell depletion, crypt abscesses, ulcers). The total score

is calculated by adding up the individual scores for each marker of inflammation with a

maximum score of 11.

To generate meaningful output from the model, inflammation in the model should be

quantified in a similar way to biology. To do this, a scoring system similar to the histology
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score has been developed to determine the level of inflammation in a simulation at any time

point. As the epithelial barrier in the model is represented by an ODE, hyperplasia cannot

be observed. Hyperplasia of the epithelium in silico, will be graded from 0–3 based on

the number of secreting epithelial cells that are expected to increase with increasing levels

of inflammation in the tissue. Mapping the infiltrating immune cells to the simulation

is straight forward, as for this part of the score the total number of immune cells (both

regulatory and inflammatory) can be counted and scored in the range 0–3. Finally, as

the model does not contain every cell type in biology, the severe markers of inflammation

will not be observed; however, it is known that goblet cell depletion is caused by IFN-γ

(Chan et al., 2013), and that crypt abscesses are caused by IL17 (Fournier and Parkos,

2012). These severe markers of inflammation will each be graded from 0–1 based on total

amount of IFN-γ and the amount of IL17 in the compartment, respectively (Table 2.5).

This scoring system will need to be properly calibrated once the simulation platform has

been developed to ensure that the score qualitatively reflects what is happening in the

simulation with respect to the features that would be observed in biology. Using this

method to quantify inflammation requires the collection of several additional measures

in the simulation than those required for comparison with the data in Table 2.4. The

additional measures are: the number of inflammatory epithelial cells in the cecum and

colon, the number of macrophages and DCs in the cecum, and the concentrations of

cytokine in the cecum.
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2.3 A Platform Model for Hh-Induced Colitis

Biological
Measure

Score Simulation Measure

Lamina
Propria
infiltration

0-3 Total number of immune cells in
compartment

Epithelial
Hyperpla-
sia

0-3 Number of inflammatory epithelial
cells

Goblet cell
depletion

0-1 Amount of IFN-γ in compartment

Crypt
abscesses

0-1 Amount of IL17 in compartment

Table 2.5: In silico inflammation scoring system. Scoring system used to compare
output from in silico experiments to in vivo histology score.

2.3.5.3 Platform Model Summary

In the model, all compartments will be represented in 2D. There will be one grid for every

cell type in each compartment with the exception of the cecal and colonic lumen where

the Hh is modelled by integers on a discrete grid with a further grid containing nutri-

ent concentrations that control the proliferation and death of the bacteria (Figure 2.27c).

Each cell in the model will be considered to be representative of 5000 cells in biology, but

the compartments in the model will be full scale. The scale was chosen to allow adequate

cell numbers to achieve statistical significance when comparing between experimental sce-

narios while reducing computational burden. There is a danger that the scaling down of

cell counts in a computational model could lead to some rare events been over or under

represented. Although untested, it is believed that a 1:5000 scale is sufficient to observe

all possible cellular behaviours in the population, given that no events with a probability

below 0.05 are defined in IBDSim. Each grid square will be representative of 50 µm, the

diameter of a single DC, to ease calculations of distances; thus, a compartment with length

1cm in biology would be 200 grid squares (10000 µm) long in the model. Figure 2.28 shows

the types of grid that make up the environment in each compartment in the model, as

well as the cells that are located on each grid, and the equivalent biological dimensions.

In the cecum Figure 2.28a, the first grid is a continuous space that contains APCs (DCs

and macrophages), the second grid is a continuous space that contains T cells, the third
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is a continuous space that contains bacteria, and the final four grids are discrete grids

that each contain one of the cytokines IFN-γ, IL12, IL6 + TGF-β, and IL12. IL17 is not

modelled using the explicit grid-based representation and is instead contained inside each

compartment as a number representing the total concentration of IL17 in the compart-

ment. Time in the model will be represented in discrete steps, each one representing 1

minute in biology. This means that a cell travelling with a speed of 10 µm a minute in

biology would step 0.2 squares per time step.

(a) (b)

(c)

Figure 2.27: Types of grid that are used in the model. (a) Continuous grids are
used for all cells in the model and allow agents to have any location (x, y), x, y ∈ R.
(b) Discrete grids are used for cytokines and available locations (x, y), x, y ∈ N and
each square is 50µm. The darker the colour in the square, the higher the concentration
of cytokine. To secrete cytokines a cells location is discretised by rounding to the nearest
whole number so the cell shown in (a) would secrete cytokines to the darkest location in
(b). (c) Is another version of the discrete grid but here there are a pair of grids, one for
cells and one for nutrients. This representation is used for bacteria in the lumen.
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27.2mm

6.8mm

(a) Cecum

67.4mm

3.0mm

(b) Colon

11.4mm

1.8mm

(c) MLN

50µm

50µm

(d) Lymph

27.2mm

6.8mm

(e) Cecal Lumen

67.4mm

3.0mm

(f) Colonic Lumen

Figure 2.28: Depiction of cell and cytokine grids that make up each compart-
ment. The types of grid that make up the environment of each compartment in the
model, as well as the cells that are located on each grid, and the equivalent biological
dimensions are shown. Continuous grids contain cells and unique grids exist for APCs
(DCs (blue), macrophage (green)), T cells (red), and bacteria (black). Cytokine grids are
discrete and represent IFN-γ (blue), IL12 (yellow), IL6 + TGF-β (red) and IL21 (green),
with darker colours representing higher concentrations of cytokines. Bacteria and nutrient
grids for the cecal and colonic lumen compartments are shown as discrete grids coloured
in gray with darker squares representing higher bacteria and nutrient concentrations (note
that squares with higher numbers of bacteria correspond to squares with lower number of
nutrients).
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2.4 Simulation Platform

The simulation platform deals with the development and calibration of an executable

model (Section 2.4.1). It is in this module of the modelling process that the ABM de-

scribed by the platform model in the previous section will be built and executed. This

model, IBDSim, has been implemented using the Java programming language and MASON

simulation environment, a cross-platform toolkit for the creation of multi-agent simula-

tions (Luke et al., 2005). A full description of the architecture of the simulation can be

found in Section 2.10.1.

2.4.1 Model Calibration

Calibrating computational models of biological systems, assigning parameter values to en-

sure the model reflects behaviours observed biologically, can greatly impact the strength

of hypotheses the model generates. The calibration process of IBDSim involves the simu-

lation being executed with a set of ”best guess” parameters that are set either from data

in the literature or by estimating sensible values from responses observed when parameter

scans were performed for individual pathways within the model. After these parameters

were set, average results from a series of simulations were collected to mitigate aleatory

uncertainty, and the modeller and domain expert examine by eye how the simulated data

compares to that from biology. Once a suitable set of parameters had been determined,

the model was validated by simulating the effect of biological problems for which the out-

come was already known. This approach increases confidence that the model can be used

to perform experimentation into situations where the outcome is yet to be determined.

This section discusses how each cellular behaviour described in the platform model

has been coded into a hybrid ABM simulation platform, and compares data from in silico

simulations of each behaviour to its biological equivalent. The calibration of unknown or

non-biological parameters specified in the platform model is also explained. It is important

to note that individual calibration of the behaviours of each type of agent in the simulation

will be crude, as when behaviours of additional agents are calibrated slight variations may

occur. Only when each agent has been approximately calibrated can the whole system be

studied and the parameter values fine tuned.
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2.4.1.1 Bacteria

The platform model states that Hh in the model proliferates with a mean time of 660 mins,

where sufficient nutrients are available. The grid-based model described in Section 2.2.3.1

has been calibrated by generating Latin-hypercube samples of unknown parameters and

comparing them to biological data between days 2 and 4 post-infection. The effects of

varying each parameter is shown in Figure 28 (Cont.). The most influential of these pa-

rameters were removeNut (Figure 28 (Cont.)c), and addNut (Figure 28 (Cont.)c), with

PRCC of 0.544, and 0.404 respectively, and p-values less than 0.05. Altering other values

did not result in statistically significant correlations. As these parameters are not biolog-

ically verifiable, the values are selected to produce the correct number of Hh. at 4-5 days

post infection, which is approximately 20,000.

In the platform model, it was decided that the rate of immune response-induced Hh

death would depend linearly on the amount of secreting epithelial cells, as suggested by

Wendelsdorf et al. (2010). The relationship was determined to be

d(Ep) = −dc + db1Ep, (2.24)

where, dc and db1 are parameters to be identified. Similarly, it was determined that

the probability that a Hh bacterium will switch compartments from the cecal or colonic

lumen to the corresponding lamina propria compartment would be modelled using a linear

relationship,

s(Ep) = sc + sb1Ep, (2.25)

where, sc and sb1 are parameters to be determined. Parameters dc, db1 , sc, and sb1

were varied over ranges defined in Table 2.6 where the maximum and minimum values

were estimated based on the reduction of Hh in the lumen between days 7 and 14 post

infection. Using these ranges, 200 parameter sets were generated using Spartan (Alden

et al., 2013). Executing the model a number of times for each parameter set revealed

parameter constraints for producing biologically relevant output, and a suitable parameter
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set that resulted in a model that adequately captured the decline of the number of Hh

cells in the cecal lumen, was determined within these constraints. Performing a sensitivity

analysis (Figure 28 (Cont.)) on the results of these simulations revealed that the most

important parameter in controlling the amount of Hh present in the lumen is db1, the rate

at which a change in the number of secreting epithelial cells (Ep) affects the probability

that a Hh bacterium in the cecal or colonic lumen compartment will die in a given time

step. db1 is the only parameter that had highly significant (p<0.01) correlations with the

number of bacteria at all time points post Hh infection (Figure 2.29a). Figure 2.29 (b-f)

show the how the spartan-generated values for parameter db1 compare to the approximate

in vivo Hh counts at days 2, 4, 7, 14, and 21 post Hh infection. Potential parameter sets

are identified as those that sit closest to the grey area in all plots.

As there is no sampling of Hh in the lumen by APCs in the model, the number of

bacteria in the lamina propria is an important factor in controlling behaviours of other

agents in the model. The parameters relating to the switching rate, as well as the lifespan

of the bacteria, were calibrated to produce adequate tissue dynamics during the fine tuning

stage of model development. The lifespan of a bacteria (both Hh and commensal) in the

lamina propria was calibrated by hand to a value of 840 mins by trying values in the

range of 750-1000 mins, and exploring the effect that the lifespan of bacteria in the lamina

propria had on cell counts.

Parameter Range (min, max) Value

dc (3.29× 10−6, 3.29× 10−3) 3.29× 10−6

db1 (8× 10−9, 8× 10−3) (8× 10−9

sc (2.91× 10−8, 2.91× 10−3) 2.91× 10−8

sb1 (6.54× 10−9, 6.54× 10−3) 6.54× 10−9

Table 2.6: Calibration of Hh death and compartment switching rates. 200
parameter sets were generated within the ranges specified and values from the model that
best matched biological data were recorded.

108



2.4 Simulation Platform

540 560 580 600 620 640 660

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

LHC Analysis for Parameter: nutLowDeathProb
Measure: bugs

Correlation Coefficient: 0.131 Timepoint: 5 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(a)

10 20 30 40 50 60

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

LHC Analysis for Parameter: removeNut
Measure: bugs

Correlation Coefficient: 0.544 Timepoint: 5 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(b)

0 5 10 15 20

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

LHC Analysis for Parameter: addNut
Measure: bugs

Correlation Coefficient: 0.404 Timepoint: 5 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(c)

30 40 50 60 70 80 90

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

LHC Analysis for Parameter: addNutTime
Measure: bugs

Correlation Coefficient: −0.1 Timepoint: 5 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(d)

109



Chapter 2: A Computational Model of Intestinal Inflammation

100 150 200 250 300 350 400 450

15
00

0
20

00
0

25
00

0
30

00
0

35
00

0
40

00
0

LHC Analysis for Parameter: nutLowProlifThresh
Measure: bugs

Correlation Coefficient: −0.197 Timepoint: 5 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(a)

10 20 30 40 50

40
00

45
00

50
00

55
00

60
00

LHC Analysis for Parameter: incNut
Measure: bugs

Correlation Coefficient: 0.0964 Timepoint: 3 Days

Parameter Value

M
ed

ia
n 

V
al

ue
 A

cr
os

s 
R

un
s 

D
ay

s

(b)

Figure 28 (Cont.): Parameter calibration for the grid-based model of Hh. 200
parameter sets were generated using latin hypercube sampling and simulations were run
using each parameter set. Partial rank correlation coefficients between the maximum
number of Hh bacteria between days 4 and 5 post infection, and each non biologically
verifiable parameter in the model. (a) nutLowDeathProb, (b)removeNut, (c) addNut, (d)
addNutTime, (e) nutLowProlifThresh, and (f) incNut.
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Figure 2.29: Parameter calibration for the abstraction that bacteria switch
compartment at a rate dependant of the number of secreting epithelial cells.
200 parameter sets were generated using latin hypercube sampling and simulations were
run using each parameter set. (a) Partial rank correlation coefficients between the max-
imum number of Hh bacteria and each parameter in the model. (b-f) Simulation results
of running the bacteria model with different parameter sets (black dots) and in vivo Hh
counts at each time point.
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2.4.1.2 Macrophages

The platform model highlighted a set of macrophage-specific parameters for which calibra-

tion using the simulation platform is required. The first of these parameters is maxBugs,

the number of bacteria that a macrophage can ingest before dying. As this parameter in-

creases, the death rate of macrophages decreases, resulting in the number of macrophages

in the tissue at a given time point post infection also increasing (Figure 2.30). Unpub-

lished data estimates the number of inflammatory macrophages in the colon at days 0 and

14 to be approximately 0.5× 105 and 8× 105 respectively, and the number of regulatory

macrophages at the same time points to be approximately 1 × 105 and 6.5 × 105 (Bain

and Kullberg, unpublished). The parameter maxBugs was calibrated by comparing the

number of macrophages in the cecum and colon in the simulation to this biological data,

and was set to 125 .

The next thing to calibrate was the amount of cytokine to be secreted in different envi-

ronmental conditions. In the platform model, non-linear regression was used to model the

total amount of IFN-γ secreted by 106 macrophages in biology (Equation (2.4)). In the sim-

ulation platform, the total number of macrophages in the lamina propria has been trans-

formed so that one simulated cell represents 5000 in biology, thus 106 in vitro macrophages

200 in silico macrophages. The amount of cytokine to be secreted was determined using

the Equation (2.4) but dividing the parameters in the model by 200 so that a population of

uniformly secreting in silico macrophages replicate the in vitro data shown in Figure 2.21.

An additional scaler term was added to reflect the fact that the amount of cytokine in

the environment depends not only on the secretion rate, but also the decay rate of that

cytokine, something that is known in biology. Thus just dividing the total amount by the

secretion rate results in a model that widely overestimates the concentration that should

actually be secreted by a macrophage in the model. Figure 2.31 shows the concentration of

IFN-γ secreted by 106 macrophages in biology (Figure 2.31a), and of IFN-γ, IL12, and IL6

+ TGF-β secreted by 200 simulated macrophages over time (Figures 2.31b to 2.31d). The

models assume that all macrophages are inflammatory and have been pre-stimulated with

IFN-γ to ensure maximum cytokine production. As determined in the platform model,

the secretion rates of IFN-γ and IL12 are similar (Figures 2.31b,2.31c). The secretion rate
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for IL6 + TGF-β has been modelled to be the same as that for IL6, i.e. three times the

level of IL12 and IFN-γ since the purpose of this cytokine in the model is to polarise T

cells into a Th17 phenotype and the in vitro polarisation protocols advocate a significantly

higher concentration of IL6 than TGF-β (Bedoya et al., 2013) (Figure 2.31d).
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Figure 2.30: Calibrating maxBugs parameter for macrophages. Infections were
simulated allowing the maxBugs parameter to take values ranging from 1-200. The total
number of inflammatory and regulatory macrophages were counted in the cecum (a, b)
and in the colon (c,d) at several timepoints post infection. Each point represents average
counts from 25 runs for each parameter set.
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Figure 2.31: Modelling cytokine secretion by macrophages. (a) Amount of IFN-γ
secreted by 106 macrophages that have been pre-stimulated with the highest concentration
of IFN-γ in vivo. (b)-(d) 200 in silico macrophages stimulated with the highest concen-
tration of IFN-γ were placed in an empty simulated compartment and allowed to secrete
either IFN-γ (b), IL12 (c) or IL6/ TGF-β (d) for 48hrs and total concentration of cytokine
in the compartment was recorded.

DCs

From developing the platform model it was determined that the number of bacteria to

be taken up and presented by a single DC needed to be calibrated using the simulation

platform. Once a DC has taken up the specified number of bacteria, it will migrate to the

MLN so increasing this parameter also leads to an increase in the number of DCs in the

lamina propria compartments Figure 2.32. Setting the maximum number of bacteria to be

taken up and presented by a single DC to 17 resulted in an adequate distribution of DCs

across the system at each time point. When a DC takes up a bacterium it will secrete IL12
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or IL6/TGF-β depending on the integer type variable of the bacterium. If the bacterium is

of type 1:numberOfSpecificities/2, the DC will secrete IL12, else it will secrete IL6/TGF-

β d. In the platform model, an equation representing IL12 secretion by 5 × 106 DCs in

response to high or low stimulation was generated Equation (2.3). To use this equation

to model the amount of cytokine to be secreted by a single DC in the ABM, an additional

multiplier term has been added to capture the dynamics of secretion for any cytokine by

adding a multiplier to the equation. The multiplier is in the form mc
n to give an individual

rather than population based model where m is the fold change between the observed

concentration of cytokine c and the concentration of IL12 and n is the simulation equivalent

of the number of DCs that were secreting the cytokine, where 5×106 DCs in biology ≈ 1000

cells in the model. The amount of stimulation was related to the number of bacteria the

DChas phagocytosed. To keep the level of stimulation in the 0-1 range, the level of

stimulation was rescaled as total number of cytokine c-inducing bacteria phagocyosed
maximum number of bacteria that can be phagocytosed . Allowing 1000

DCs to secrete IL12 at the highest level, that is when 16 bacteria have been phagocytosed

since 17 would cause the DC to migrate to the MLN, and lowest levels, 4 bacteria, result

in concentrations of IL12 that are statistically similar to biology (Figure 2.33,p = 0.2286).
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Figure 2.32: Calibrating maxBugs parameter for DCs. Infections were simulated
allowing the maxBugs parameter to take values ranging from 1-20. The total number
of DCs were counted in the cecum (a) and in the colon (c) at several timepoints post
infection. Each point represents average counts from 25 runs for each parameter set.
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Figure 2.33: Cytokine secretion by dendritic cells in the model is representa-
tive of biology. 200 DCs (representative of 5 × 105 in biology) secreted cytokine IL12
at an amount determined by the length of time they had been secreting and based on
the assumption they had injested their full complement of bacteria (red squares) or LPS
(black squares)and the level of cytokine in the compartment was recorded and compared
to data from Kranzer et al. (2004) (red and black circles).

T Cells

The platform model states that T cells travel under directed random motion with an

average speed of 11µm/min. Each time step in the simulation is representative of 1

minute in real time, and the grid is measured in 50µm squares that are each displayed

as 1 pixel, so the average distance travelled by a T cell per time step is 0.2 pixels. The

average distance to travel in the next time step from location B (xb, yb) depends on the

previous location, A (xb, yb), as shown in Figure 2.14b. In each time step, the distance to

travel is calculated by:

d =
√

(xb − xa)2 + (yb − ya)2

=
√

(0.2 · sin(θ + sθ)− xa)2 + (0.2 · sin(φ+ sφ)− ya)2.

Variables xa and ya, and angles θ and phi, are determined by the current location and the

previous location but sθ and sφ, the standard deviation in the angle of travel, are unknown

and must be calibrated. The platform model states that T cells spend an average of 9.6hrs
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in the MLN, so the standard deviation in the angle of movement is determined such that in

the simulation each T cell spends an average of 9.6hrs (576mins) in the MLN compartment.

To identify the value that results in the correct standard deviation, a calibration ex-

periment was performed. It was assumed that sθ = sφ so the standard deviation of the

angle of movement was allowed to take values s =
(
0, π32 ,

π
16 ,

3π
32 ,

π
8 ,

5π
32 ,

3π
16 ,

7π
32 ,

π
4

)
. For each

value of s, 1000 T cells were placed in the MLN and the time that each cell exited was

recorded. To eliminate aleatory uncertainty the experiments were performed 100 times

for each value of the parameter. The mean time taken for a cell to leave the lymph node

was calculated for each of the 100 runs, for each value of s, and a t test was performed

for each si, i ∈ [1, 9], where the hypotheses being tested was that the mean lymph node

transit time under parameter set angSD i was significantly different to 9.6hrs (Figure 2.35).

Usually when performing multiple t tests a multiplicity correction should be applied to

reduce type I error, that is, the chance of seeing a false positive. Here, the desired re-

sult is one where there is no significant difference between the observed and hypothesised

means so a multiplicity correction is not appropriate. Performing a t test reveals that

the standard deviation of π
16 is the only value that results in a transit time that is not

significantly different from the 9.6hrs observed in vivo by Mandl et al. (2012). To calibrate

the number of T-cell specificities, the parameter was varied by hand to values in the range

[1000, 3000]. The correct phenomena emerged when the numberOfSpecificities parameter

was set to 2000.

The ODE model developed in the platform model was added to the TCell class by

first discretising the equations and then replacing C1 and C17 with actual levels of IL12

and IFN-γ or IL6/TGF-β and IL21 respectively. The parameter values selected from the

ODE model were retained and used in the ABM and the dynamics of polarisation were

examined under a range of conditions (Figure 2.34). The experiments performed were

representative of in vitro experiments. For polarisation in vivo to be possible with the

correct dynamics, cells must travel with true random motion so that they remain close

to a cytokine source for long enough for the transcription factor governing polarisation to

become stably expressed at a level higher than that of the unpolarised state, i.e. in the

absence of polarising cytokine, denoted by ”none” in Figure 2.34. In the presence of a

high concentration of IL12 and IFN-γ, T cells expressed high levels of T-bet and IFN-γ,
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therefore exhibiting a Th1 phenotype. If the environment consisted of IL6 and TGF-β,

the T cells became Th17 cells and expressed high levels of ROR-γt and IL17.
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Figure 2.34: Levels of Tbet, ROR-γt, IFN-γ, and IL17 in simulations of a
single cell in the absence or presence of polarising cytokines. 1000 T cells were
polarised in the presence of either no external cytokines, 1000 pg/ml of IL12 and IFN-γ
or 1000pg/ml or IL6/TGF-β, IL23 and IL21 and amounts of (a) T-bet, (b) ROR-γt, (c)
IFN-γ and (d) IL17 mRNA were measured in each cell after 48hrs.

2.4.1.3 Epithelial Cells

The platform model defined the subset of the ODE model by (Wendelsdorf et al., 2010)

given by Equations (2.16) to (2.18) for estimating the total number of epithelial cells (E)

and the number of secreting epithelial cells (Ep). These equations give the rate of change
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Figure 2.35: Calibration of T-cell movement. The standard deviation of the angle
that a cell travels in at each time step in the lymph node was varied and the transit time of
1000 cells was recorded for 50 simulations with each parameter set. The mean transit time
was calculated and a t test was performed to identify whether the mean transit time was
significantly different to 9.6hrs. (a) Box plots of transit times of 1000 cells. Results shown
are from one representitive experiment with each parameter set. (b) T test was performed
on means of 50 simulation runs with each parameter set and results were compared to
9.6hrs ∗ ∗ ∗, p < 0.001.

in the numbers of epithelial cells and secreting epithelial cells per 6 hours, in terms of

the number of T cells, DCs and macrophages that have been calculated using additional

ODEs in the system in the full model (Wendelsdorf et al., 2010). To use the subset

Equations (2.16) to (2.18), to calculate the numbers of the two types of epithelial cell in
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mice, the terms for the number of T cells, macrophages and DCs will be replaced with

equivalent measures from the simulation. The counts of T cells, DCs and macrophages in

the simulation must be multiplied by a scale factor that makes them comparable with the

actual cell counts from the mouse model, since the cell numbers in the simulation have

been scaled down by a factor of 5000. The time step dt in Equations (2.16) to (2.18) is

representative of 6 hours, but each time step in the simulation is only 1 minute so any

parameters dependent on time must be scaled down by a factor of 360 to modify the

time scale to 1 minute time steps. Finally, Wendelsdorf et al. (2010) estimates several

parameters in the model to fit the data and produce adequate results. These parameters

have been refined to better fit the expected output of the simulation.

2.5 Calibrating the Inflammation Score

In the platform model, a description of a scoring system to quantify inflammation in the

model was developed. Using the simulation platform, two different implementations of the

simulation scoring system were developed (Table 2.7). In implementation 1, the number

of cells in the cecum or colon at a given time point were turned into an inflammation score

by summing up the number of cells and concentrations of cytokines, and dividing by the

maximum counts or concentrations expected from the in vivo data presented in Table 2.4.

The results were scaled up to give a score within the ranges defined by Table 2.7 so that it

can be used to compare how inflammation has developed. Using this method of calculating

the inflammation score results in data that matches the biology reasonably well in early

and late inflammation but not at day 7 (Figure 2.36c). Comparison with unpublished

data by Bain and Kullberg suggests that this discrepancy most likely occurred because at

day 7 there are a large number of cell macrophage precursors in the cecum and colon that

are not included in the model. These precursors do not interact with other cells directly

to cause inflammation but as histology scoring is done by looking at sections of tissue

in which all immune cells are considered, regardless of whether they are inflammatory,

regulatory or precursors. This means that both regulatory cells, which are acting to

reduce inflammation, and precursors, which are not yet involved in the inflammatory

process, contribute to the histology score in the same way as inflammatory cells. To make
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the scoring system better reflect biology we needed to introduce a representation of these

cells. By fitting a linear model of the form

precursors = a+ b× inf mac

to predict the relationship between inflammatory macrophages and precursor populations

in biology, it was determined that precursors can be approximated to 6.798 × number

of inflammatory macrophages (Figure 2.36a). When a term is added to the simulated

inflammation score that represents these additional cells that are counted in biology, the

score at day 7 more closely captures the behaviours observed in biology (Figure 2.36c),

thus implementation 2 will be used representative biological behaviours.

Biological
Measure

Score Implementation 1 Implementation 2

Lamina
Propria
infiltration

0-3 Total number of immune
cells in compartment

Total number of immune cells in
compartment + 6.798 ×number of
inflammatory macrophages

Epithelial
damage

0-3 Number of inflammatory
epithelial cells

Number of inflammatory epithelial
cells

Goblet cell
depletion

0-1 Amount of IFN-γ in
compartment

Amount of IFN-γ in compartment

Crypt
abscesses

0-1 Amount of IL17 in
compartment

Amount of IL17 in compartment

Table 2.7: In silico inflammation scoring system.
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Figure 2.36: Comparison of biological and simulated measures of inflammation.
(a) Actual ( ) and predicted (#) numbers of macrophage precursors in the colon of Hh
infected IL10 KO mice. (b) Biological histology score for the ascending colon taken from
Morrison et al. (2013). (c) Simulated inflammation score using implementation 1 (#)
implementation 2 ( ).

2.6 Model Analysis

As discussed in Section 1.8.0.1, before a model can be used for experimentation, uncer-

tainty and sensitivity analyses should be performed.

2.6.1 Aleatory Analysis

Aleatory analysis was performed using the confidence interval method described in Sec-

tion 1.8.0.2 (Robinson, 2014) to determine the number of simulated replicates that needed

to be performed Figure 2.37. Although some measures like the number of T cells in the

MLN only require 5 replicates to reach a 5% deviation of the confidence interval from

the mean (Figure 2.37a), the maximum number of replicates required for all simulated

measures to be accurately represented in the results is 35 (Figure 2.37b,c).

2.6.2 Sensitivity Analysis

Using the results from the previous section to identify the number of replicates required

to get a representative result, a sensitivity analysis can be performed to determine the

model parameters that have the greatest effect on output.
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Figure 2.37: Determining the number of simulation replicates that need to be
performed. The confidence interval method (Robinson, 2014) was used with a confidence
level of 5%. The confidence interval (black), mean value over the specified number of runs
(red) and 5% deviation level from the mean (blue, dashed) are shown for the least variable
measure (a), and the most variable measure (b). The number of replicates required for
the deviation of the confidence interval to be less than 5% of the mean for each simulated
measure is also shown (c).
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Chapter 2: A Computational Model of Intestinal Inflammation

Latin Hypercube Analysis

For a full model, global sensitivity analysis, 200 parameter sets were generated using ranges

of 10% either side of the accepted baseline levels from Appendix A, and 35 replicates were

performed with each parameter set to eliminate aleatory uncertainty. The most important

parameters in determining overall model behaviour are defined as those that significantly

affect the highest number of simulated measures at peak inflammation (14 days post

infection). Of the 72 parameters examined the average number measures significantly

affected by any parameter was 15, and only 4 parameters were significantly correlated

with 20 or more of the 29 simulated measures (Figure 2.38a). These were

• maxBugsD: the maximum number of bacteria that a DC can phagocytose before

migrating to the lymph node.

• Sb1: The coefficient of t in the secretion equation (Equation (2.3)).

• phagT ime: The time it takes for an APC to phagocytose a bacterium.

• inRateDC: The baseline rate at which DCs enter the cecum and colon.

Increasing any of these these parameters increased the number of all cells in the cecum,

colon, and MLN, and decreased the number of Hh in the cecal and colonic lumen (Fig-

ure 2.38b). These parameters are all model-derived, and therefore cannot be biologically

verified so it is important to see how strongly these parameters effect the model output.

A one at a time analysis to determine changes that can be attributed to each specific

parameter, will be performed in the next section.

Parameter Robustness

The compound effects of altering parameters have been identified. One at a time param-

eter alteration has been used to determine how robust the important parameters are to

variation around the value that was assigned through calibration. The parameters iden-

tified as important in the previous section have been varied over ranges, 10% either side

of their calibrated value and a Cohen’s D test has been used to determine the size of the

effect of setting each parameter to the new value, compared to the baseline calibrated

value.
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2.6 Model Analysis

• maxBugsD: This parameter is an integer so taking a 10% range either side of the

calibrated value of 17, and rounding to the nearest integer meant that the parameter

could take values 16, 17, 18, and 19. The analysis showed that overall, the majority

of simulated measures are not too sensitive to alterations in the maxBugsD param-

eter, over a small range (Figure 2.39a). Setting the value of maxBugsD 16 had a

reasonably sized effect on all measures, with a mean effect size magnitude over all

simulated measures of 0.16. Setting the parameter to either 17 or 18 had no signifi-

cant effect with mean effect size magnitudes of 0.046, and 0.037, respectively. When

the value of maxBugsD was 19, there was a very small effect with mean effect size

magnitude of 0.091. This means that selecting a value of 17, rather than 16, 18 or

19, through calibration does not dramatically effect the output of IBDSim.

• phagT ime: This parameter is also an integer and can therefore only take on integer

values. Taking a 10% range either side of the calibrated value of 180, and rounding

to the nearest integer meant that the parameter could take values within the range

of 165 to 201. At lower values, this parameter has a small to medium effect on

the output of IBDSim, but once the threshold of around 180 is reached there is no

longer a significant effect (Figure 2.39b). The average effect size magnitude over all

measures ranges from 0.17 to 0.03 as the parameter value increases. The results of

this robustness analysis suggests that the calibrated value of 180, is the threshold

value for which Macrophages die from phagocytic burst at a rate slow enough that

they are replaced in the population. This would explain the fact that there are no

significant effects from altering the parameter above this value. Further these results

could suggest that inducing macrophage death could reduce the level of inflammation

in the system because lowering bug tolerance has been shown to reduce the total

number of cells and cytokines in the model.

• nutLow: This parameter can take on integer values in the range 28 to 33. There is

only significant effect of changing the parameter over these values is when nutLow=33

when there is an average effect size magnitude of 0.16. This means that over a very

small (< 10%) range the parameter is robust, but increasing the parameter by 10%

or above can strongly affect the behaviour of the system.

125



Chapter 2: A Computational Model of Intestinal Inflammation

• sb1: This parameter can take on any real numbered values in the range 1.858 to

2.259, and its baseline value is 2.024. Lower values of sb1 negatively effect the

number of cells and cytokines with a mean effect size magnitude over all measures of

0.13. At values greater than 2, there is no significant effect. This means that if the

cytokine secretion rate has been under estimated, increasing it would not significantly

alter behaviour. Figure 2.19 shows that for IL12 at least, although there is no

significant difference between the concentration of IL12 secreted by DCs in IBDSim

when compared to in vitro data for the same stimulation level, the concentration

secreted by DCs in silico is slightly lower at certain time points. The result from

this parameter scan shows that increasing the secretion rate would not effect the

simulation results so the calibrated level does not need to be changed.

2.7 Results Model

Following on from simulation development, the CoSMoS process dictates that the simu-

lation output must be compared to real-world data to form a results model. Data from

simulations is collected and then compared with real-world data collected in the Kullberg

lab.

2.7.1 Experimental Procedure

Each compartment in the simulation starts in an empty state. Simulations start from

day -20, allowing the compartments time to reach an uninfected steady state before Hh is

added to the cecal lumen compartment at day 0. Several data points are collected from

each compartment every 1440 time steps, equal to 1 day, for 21 simulated days. The

counts of all cells and total amounts of all cytokines in each compartment are collected

resulting in 29 data points in total for each time point, as specified in Section 2.3.5.

2.7.2 Comparing In silico Results to Biology

Figure 2.40 shows how the simulation output compares to the available in vivo data. Data

shown are means and standard error of 100 simulated runs in silico and of 3 mice in biology.

There are five simulated measures that can be directly compared with biology data, total
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numbers of T cells in the cecum and colon, numbers of Hh bacteria in the cecal lumen, and

the number of T cells and percentage of activated T cells in the MLN. Paired t-tests reveal

no significant differences between simulated and biological data distributions (Table 2.8)

suggesting that the model adequately reflects what is observed in biology. Despite the

results of the statistical analysis, it is clear that there is some discordance between what is

observed in silico and in vivo when considering the percentage of activated T cells in the

MLN. It is expected that this is a result of the simulation not containing all of the cell types

that are present in the MLN in biology, thus the percentage is skewed, and also a result

of inaccurate measurements in vivo. This is especially true when inflammation becomes

more severe when the markers used to distinguish between cell types in biology can become

more difficult to separate using flow cytometry. While other simulated measures have been

recorded and are shown for transparency, they cannot be compared to biological data as

none is available. The simulation platform satisfactorily reproduces the in vivo dynamics

of the development of intestinal inflammation in Hh-infected IL10 KO mice.

Measure P-value
T cells (cecum) 0.9883
T cells (colon) 0.1181
T cells (MLN) 0.2386
T cells (activated) 0.5913
Hh (cecal lumen) 0.05502

Table 2.8: Simulation adequately reflects biology distributions.
.
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Figure 2.38: Sensitivity of simulated measures to variations in all model pa-
rameters. (a) The number of simulated measures that each parameter was significantly
correlated with (p < 0.05). (b) PRCC between each measure and parameter in the simu-
lation.
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Figure 2.39: Effect of one at a time parameter alteration on simulation mea-
sures. Parameters maxBugsD (a), phagT ime (b), nutLow (c), and sb1 (d) were varied
over ranges that were 10% either side of their calibrated value and the Cohens D effect
size calculated, using the calibrated value as a baseline. Data shown is from the average
of 35 runs.
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Figure 2.40: Comparison between in vivo and in silico data. Black lines and
grey bars show mean and standard error of 100 runs of the simulated model. Means and
standard error of biological data, collected by Morrison et al. (2013), are shown in red.
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2.8 Confirmative Experimentation Using IBDSim

Before the model can be used to drive in vivo experimentation, it is important to perform

experiments for which the biological outcome is already known. This helps to demonstrate

that the model adequately represents the behaviours of the system rather than just fits to

the data for a specific case. Therefore, two confirmative experiments have been performed

with the aim of replicating two known results from biology;

Experiment 1 Uninfected IL10 KO mice do not develop inflammation when kept in

specific pathogen free (SPF) facilities (Berg et al., 1996)

Experiment 2 IL10 KO mice kept in germ-free conditions, which lack commensal flora,

display little pathology following Hh infection (Dieleman et al., 2000)

For Experiment 1, it was expected that running the simulation without adding Hh

would not result in the inflammation score remaining at the steady state level throughout

inflammation, and for Experiment 2, if commensal bacteria is removed from the model

there should not be a significant increase in the inflammation score following infection

with Hh

2.8.1 Confirmative Experiment 1: Uninfected IL10KO mice housed in

SPF conditions do not develop inflammation in silico

The first experiment was performed by setting the parameter CecLum.inTimeBug=step+1

meaning that the instance to bring in a new bacterium to the cecal lumen compartment

is always bigger than the current time step. The compartments all started with no cells

in them and the simulation ran for 28800 time steps (20 days) to allow a base line to

emerge before the data collector was initialised. 50 simulations, representative of 50 mice,

were then allowed to run for 30240, steps which is the equivalent of 21 simulated days.

An inflammation score was developed from the scoring system developed in the previous

section and the results showed that over the 21 day modelling period, no inflammation

developed (Figures 2.41c,2.41d, blue circles). Further examination of the full simulation

output showed that there was no change in the number of inflammatory cells and cytokines

in the absence of Hh. This experiment shows that inflammation in the system is induced
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by Hh and not hard coded to develop at a given time point, and also that the baseline

reached 28800 time steps after initialisation is a stable steady state.

2.8.2 Confirmative Experiment 2: Germ-free IL10KO mice in SPF con-

ditions do not develop inflammation following Hh infection in sil-

ico

To perform this experiment, the method that adds commensal bacteria to the cecal and

colonic compartments was removed, stopping the occurrence of commensal bacteria in the

system. As in the previous experiment the simulation was allowed 28800 steps (10 days) to

reach a base line in the absence of Hh. At this time point Hh was added to the cecal lumen,

the data collector was initialised, and data was generated for 50 simulations, representative

of 50 mice per time point for 30240 time steps (21 days). The inflammation score was

used to determine the level of inflammation in the simulation (Figures 2.41c,2.41d, yellow

squares). Analysis of the full data showed that there is a slight change in the number of

inflammatory cells and cytokines but it is significantly less than the infected case. This

result verifies that inflammation in silico depends, as it does in vivo, on the presence of

both commensal bacteria and Hh.

2.9 Materials and Methods

The infrastructure and methods used to develop and run IBDSim are listed in this section.

2.10 Infrastructure

The model presented in this thesis was written in Java using the MASON toolkit (Luke

et al., 2005). Simulations were executed using a Linux Cluster running Fedora 22. The

Linux Cluster has a SUN Grid Engine, SGE, that is made up 64 CPU 256GB memory

nodes.

2.10.1 Simulation Architecture

A executable model was created from the specification in the platform model. This model

has been implemented using the Java programming language and MASON simulation en-
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Figure 2.41: In silico inflammation score gives similar results to the biological
histology score.(a) Biological histology scores from the ascending colon with 3 mice per
timepoint (taken from (Morrison et al., 2013)). (b) In silico inflammation score calculated
from the average of 100 simulation runs, 5 samples per timepoint. (c), (d)In silico inflam-
mation score from colon (c) and cecum (d) in a Hh-infected IL10KO experiment (green
triangles), a germ free experiment (yellow squares) and an uninfected experiment (blue
circles)

vironment, a cross-platform toolkit for the creation of multi-agent simulations (Luke et al.,

2005). Each of the cell types detailed in the previous sections have been implemented as

individual Java classes and methods have been created to mirror the processes in the state

machine diagrams described in the previous section. MASON simulations are executed in

steps. At every step, each agent performs a behaviour set by its current state, as defined

in the platform model, each simulated time step to represent one minute of real time. All

parameter values listed in Appendix A are stored in an external parameter file.

Figure 2.42 depicts the organisation of classes in the simulation platform. The simu-

lation ultimately consists of cells that inherit methods from the abstract Cell class, and

spatial compartments in which they exist, that inherit from the Compartment class. All
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(a)

(b)

Figure 2.42: Inheritance structure of Java classes in IBDSim. Diagrams shown
represent inheritance of methods by cells (a) and compartments (b). Arrows indicate the
direction in which methods are shared, so a phagocyte shares its methods with both DCs
and macrophages.

non-abstract classes implement Steppable, the MASON interface required for execution

within the simulation engine. The class IBDSim is the driver of the simulation, and is

responsible for its initialisation.

2.10.2 Dynamic Time Warping

Dynamic time warping is a technique commonly used in speech recognition. It allows a

non-linear mapping of one signal to another by minimizing the distance between them

and allows sequences that are similar despite having slight time dependent variations to

be analysed (Ratanamahatana and Keogh, 2004). This technique is useful for simulation

data where the behaviours occur at slightly different time scales. An example of data

that would be deemed to be similar under the dynamics time warping method is shown

in Figure 2.43a, while Figure 2.43b shows a case where the data is highly dissimilar.

2.10.3 SBML Model Development and Java Integration

SBML was developed in 2002 to provide a methodology that would allow models of biolog-

ical processes to be evaluated, developed and exchanged (Hucka et al., 2003). LibSBML

is an application programming interface library for reading, writing, manipulating and
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(a) (b)

Figure 2.43: Using dynamic time warping to identify similar time course re-
sults. An example of data that is similar (a) and dissimilar (b) using the dynamic time
warping approach.

validating content expressed in the SBML format (Bornstein et al., 2008). It is written in

ISO C and C++ but provides bindings for many other programming languages including

Java. However, libSBML does not have any functionality for solving or simulating SBML

models. To do this, packages such as LibSBMLSim (Takizawa et al., 2013) must be used.

LibSBMLSim contains a method simulateSBML that uses a user-defined method to solve

systems of ODEs numerically (Butcher, 1996). In this work, the 4th order Runge-Kutta

method is used to reduce stiffness. The Java bindings in both of these libraries meant that

they that could be integrated into the simulation environment to allow SBML models to

be simulated directly within the ABM. This allows SBML models to be developed, cal-

ibrated and tested outside the ABM environment before incorporating them but can be

computationally expensive. To reduce computational burden brought by the addition of

SBML models into IBDSim, the concept of dynamic tuneable resolution was developed.

2.10.4 The Simulation Parameter Analysis R Toolkit ApplicatioN (Spar-

tan)

Spartan is a toolkit for performing model analysis in R (Alden et al., 2013). It was

developed to determine how representative a simulation is of its biological system and to

understanding of how in silico results can be interpreted in the context of the biological
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domain. Spartan is a compilation of four statistical techniques previously described by

Read et al. (2012)Marino et al. (2008), and Saltelli and Bollardo (1998). These techniques

are consistency analysis, robustness analysis and two different sensitivity analysis methods,

providing both global and local analyses. Of these methods, aleatory analysis, robustness

analysis, and Latin-hypercube sampled sensitivity analysis have been performed on the

models presented here. The methods provided by spartan assume that a model has been

calibrated to a steady state and uses parameter sampling techniques to determine how

perturbations in parameter values or differences in the number of replicates of a simulation

can affect the outcome. It has found uses in a variety of systems biology models, a variety

of which are discussed by Alden et al. (2013).

2.10.5 Model Fitting with Mathematica

Models that were fitted using Mathematica (Wolfram Research, Inc, 2016) were done so

using the NonLinearModelFit command. This fits model parameters using the quasi-

newton method (Shanno, 1970).

2.11 Summary

In this chapter, an ABM that captures the processes active in the gut during Hh-induced

intestinal inflammation in IL10 KO mice has been developed. The model was developed

following the CoSMoS process (Section 1.5.0.2) and been grounded in biology using a

series of diagrams, that have been developed in collaboration with a domain expert. The

executable model can be used for performing in silico experimentation by varying the

model parameters to reflect a different experimental set up, or can be expanded to add

in the effects of other cells and cytokines on the system, or to look at intervention with a

therapeutic treatment, as will be performed in the next chapter.
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Chapter 3

Exploring the Effects of FTY720

on Hh-Induced Intestinal

Inflammation

Lymphocyte egress from both primary and secondary lymphoid tissue requires the lipid

mediator S1P (Ley and Morris, 2005). Signals initiated by S1P are transduced by five

G protein-coupled receptors, named S1P1-5 (Chun et al., 2010). Combinations of these

receptors are expressed on almost all immune cell types including DCs, macrophages, ep-

ithelial cells, endothelial cells, and lymphocytes (Blaho and Hla, 2014). CD4+ T cells are

specifically known to express the receptor S1P1 (Allende et al., 2004). S1P1 agonists have

been shown to be immunosupressive and there are two alternative hypotheses about how

they accomplish this. One hypothesis, referred to as functional antagonism, states that

agonists directly bind to S1P1 receptors on lymphocytes, causing receptor internalisation

and degradation, resulting in lymphocytes being unable to respond to endogenous S1P

(Matloubian et al., 2004). The second hypothesis states that S1P1 agonists target the

endothelial cells around the sinus region of the lymph node effectively closing the stromal

gate through which lymphocytes would usually exit (Wei et al., 2005). Studies investi-

gating the effects of blocking lymphocyte egress with S1P1 agonists, such as Fingolimod

(FTY720) have reported a reduction in inflammation in many autoimmune diseases (Ta-

ble 3.1). Conversely, other studies have observed S1P1 agonoists exacerbating disease
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(Table 3.2).

This chapter describes the development of a pharmacokinetic (PK) model that pre-

dicts the concentration of FTY720 in the gut draining MLN in mice, the main lymph node

involved in the induction of Hh-induced colitis. The model is based on an established PK

model for FTY720 in rats (Meno-Tetang et al., 2006). The development of a pharmacody-

namics (PD) model under the hypothesis of functional antagonism is also discussed here.

A combination of these mouse PK and PD models incorporated into IBDSim have been

used to examine in silico the effects of blocking lymphocyte egress from lymph nodes on

Hh-induced colitis.

3.1 Pharmacokinetic (PK) Model for FTY720 in Mice

PK models quantify the absorption, distribution, and elimination of drug in the body,

leading to the understanding, interpretation, and prediction of blood concentration-time

profiles (Aarons, 2005). To determine the concentration of FTY720 in the MLN of IL10

KO mice, a PK model has been developed. The new PK model is based on an existing

PK model that describes the distribution of FTY720 in rats over 5 days, following a single

intravenous administration of FTY720, and considering 13 organs with the remaining sites

being combined into one rest of the body compartment (Meno-Tetang et al., 2006). The

mouse PK model has been developed following a two-step approach. First the output from

the rat model has been reproduced in a reduced system representing the organs that are

important in Hh-induced colitis, and then allometric scaling has been used to transform

the reduced rat model into one that is sufficient for predicting drug concentrations in mice.

In all models concentrations of drug within each of these organs are described using either

one or two ODEs, depending on whether the drug is assumed to distribute instantly and

homogeneously throughout the organ (a ’well stirred’ model, applied to organs such as

lungs, liver and spleen ((3.1)) or to distribute into the organ via a rate-limited process (as

is the case of the lymph nodes (3.2)-(3.3)). In the latter case, the two equations represent

the drug concentration in the blood (3.2) and in the interstitial and intracellular space

(3.3).
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Table 3.1: The positive effects of FTY720 in disease.

Model Genus Drug Details Ref

EAE Mouse FTY720 Daily 0.1−1mg/kg doses from
start of infection and daily on
established disease results in
amelioration of disease and in-
hibition of relapse.

(Kataoka
et al., 2005)

Collagen-Induced
Arthritis

Mouse TASP0277308 Daily 100mg/kg from start of
infection blocks disease

(Fujii et al.,
2012)

Alzheimer’s
disease

Rat SEW2871 Daily 0.5mg/kg doses from
first day after surgery. Im-
provement in cognitive func-
tion.

(Asle-
Rousta
et al., 2013)

Multiple sclerosis Human FTY720 Doses of either 1.25mg or
5.0mg given daily reduced re-
lapse of disease compared to
placebo.

(Chun and
Hartung,
2010)

Psoriasis Human Ponesimod 20mg and 40mg daily doses
reduced severity of disease

(Ryan and
Menter,
2014)

IL10 KO colitis Mouse FTY720 Daily doses of o.3mg/kg ame-
liorated established disease

(Mizushima
et al., 2004)

CD4+CD62L
transfer colitis

Mouse FTY720 0.3mg/kg daily from one day
before T-cell transfer sup-
pressed colitis

(Fujii et al.,
2006)

DSS colitis &
CD4+CD62L

Mouse FTY720 Daily doses of 0.3mg/kg of
drug from start of infection re-
duced inflammation

(Deguchi
et al., 2006)

Oxazolone colitis Mouse FTY720 Daily administration of
1mg/kg or 3mg/kg of
FTY720 from 2 hours before
oxazolone for 3 days blocked
disease from developing.
Daily dosing of FTY720
from 3-5 days post infection,
that is on established disease
also significantly ameliorated
disease.

(Daniel
et al., 2007)
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Table 3.2: The negative effects of FTY720 in experimental diseases.

Model Genus Drug Details Ref

Citrobacter ro-
dentium induced
colitis

Mouse FTY720 Daily 3mg/kg doses from 6
days prior to start of infec-
tion increases pathogen bur-
den and impairs bacterial
clearance.

(Kataoka
et al., 2005)

Influenza Mouse FTY720 Daily 3mg/kg doses doubled
mortality rate.

(Ntranos
et al., 2014)

Traumatic brain
injury

Mouse FTY720 Single 1mg/kg dose of drug
immediately before induction
of focal cryolesion or diffuse
weight drop injury does not
prevent injury.

(Mencl
et al., 2014)

Well stirred:

dXT

dt
= QT ×

Xart

VT
−QT ×

XT

(RT × VT )
. (3.1)

Permeability rate-limited, blood:

dXT1

dt
= QT ×

Xart

VT1

−QT ×
XT1

VT1

− PST × fub ×
XT1

VT1

+ PST ×
fub
RT
× XT2

VT1

. (3.2)

Permeability rate-limited, intracellular and interstitial space:

dXT2

dt
= PST × fub ×

XT1

VT2

− PSM × fub ×
XT2

VT2

. (3.3)

In all models, XT represents the concentration of FTY720 in organ T , measured in ng/ml,

QT is the blood flow rate into organ T , VT is the volume of organ T , Xart is the input

from arterial blood, PST is the permeability-surface area product, RT is the tissue-to-

blood partition coefficient, and fub is the free fraction of FTY720 in the blood. The value

of these parameters in rats can be found in Meno-Tetang et al. (2006).

The only compartment not modelled by any of these equations is the the concentration

of FTY720 in arterial blood, Xart, that has been fitted to an exponential equation of the
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form

Cart = Aeαt +Beβt + Ceγt, (3.4)

where A, B, C, α, β and γ are constants and t represents time. For a single dose, fitting

data to a model of this form adequately captures drug concentrations in arterial blood.

However, for the model to be able to capture the dynamics of multiple doses of FTY720,

the concentration in arterial blood must be represented by an ODE that captures the

dependency of the concentration of drug in arterial blood as a function of drug dose.

This is because the explicit representation in (3.4) is based only on time, and not on

the administered concentration of drug, and so cannot be used for repeated doses. The

equation for the concentration of drug in arterial blood can be calculated from the model

equations (3.2)-(3.3) and is given by the following equation

dXart

dt
= Qtot ×

Xlung

Rlung
−

∑

T∈ organs

QT ×Xart, (3.5)

where Qtot is the blood flow rate from the lung, Xlung is the concentration of FTY720 in

the lung, and Rlung is the tissue-to-blood partition coefficient, as specified in equations

(3.2)-(3.3). For Hh-induced colitis, the concentration of FTY720 in some of the organs

modelled by Meno-Tetang et al. (2006) is not important. Thus for modelling purposes the

PK model was reduced to nine equations; one for each of the well mixed compartments,

(lungs, spleen, liver and gut), one for each of the veneous and arterial blood compartments,

two for the the lymph nodes that represent the concentrations in the blood (LN1) and

interstitial space (LN2), and one for the rest of the body (Figure 3.3). Reducing the number

of compartments was done by increasing the size of the rest of the body compartment,

and then reparameterising the equations governing the flow of drug into and out of this

compartment. Implementing these changes to the model should not alter the concentration

of drug in any remaining compartments when compared to the original model. To develop

the reduced model, parameters that relate to the rest of the body were varied over ranges

shown in Table 3.3, and models were simulated for 120 hours, on a minute time scale, using

the Runge-Kutta algorithm with step size 0.012 for stability. These parameters were the
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tissue to blood partition coefficient (Rrob) and the blood flow rate for the rest of the body

compartment (Qrob). The clearance rate of drug in the liver (CL) was also altered to

account for any clearance coming from compartments that have been absorbed into the

rest of body compartment. In all models, the initial concentration of drug in the veneous

blood compartment was set to be 6637ng/ml, representing a single intravenous dose of

0.3mg/kg of FTY720, assuming that adult rats weigh 250g and have 11.3ml of venous

blood as these were the parameters used by (Meno-Tetang et al., 2006). Comparing the

results of the parameter scan to biological data that has estimated from Meno-Tetang

et al. (2006) allowed the model that best represented the dynamics in rats to be identified.

The three parameters scanned significantly affected the maximum concentration in the

lymph node following inoculation with FTY720, and the strongest correlation was between

the maximum concentration in the lymph node and Qrob (Figure 3.1), making this the

key parameter to consider when selecting the parameter set that best matches the data.

To determine if the selected model was an adequate representation of the dynamics of

FTY720 in rats in general, rather than for just the specific 0.3mg/kg dose, a higher dose

of 2.0mg/kg was simulated, and the concentration of FTY720 in the lymph node compared

to the data reported in the original publication (Meno-Tetang et al., 2006). The model

that was previously selected to represent the lower 0.3mg/kg dose successfully represented

the concentration of FTY720 in the rat lymph node following a higher dose of 0.2mg/kg

(Figure 3.2). Taken together this means that the refitted model can adequately simulate

the concentration of FTY720 in a rat lymph node following intravenous administration of

the drug.

Table 3.3: Ranges used for ASPASIA parameter estimation. Parameter ranges
were chosen to be 10 times either side of values used by Meno-Tetang et al. (2006) to
ensure that a global parameter space was sampled.

Parameter Range Value

CL
Min: 0.00001
Max: 0.1

0.0769

Rrob
Min: 0.00001
Max: 2000

1894.43

Qrob
Min: 0.00001
Max: 2000

1958.83

To transform the calibrated rat PK model into a model that could be used to predict the
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Figure 3.1: Maximum concentration of FTY720 in the lymph node of rats de-
pends on Qrob, Rrob, and CL. Parameters were varied over ranges defined in Table 3.3
and maximum concentrations of FTY720 in the lymph node compartment were recorded
and plotted against Qrob, the rate of blood flow into the rest of the body compartment
(a), Rrob, the tissue-to-blood partition coefficient for the rest of the body compartment
(b), and CL, the clearance rate of the drug from the liver (c).

FTY720 dynamics in mice, allometric scaling was used. Allometric equations are equations

of the form Y = aM b where Y is a biological variable, M is a measure of body size, and a

and b are scaling constants. Here, Y was taken to be PST , the permeability-surface area

product, and a and b were assumed to be the same in mice as in rats. Meno-Tetang et al.

(2006) do not explicitly define values for a and b in rats so these parameters had to be

determined by model fitting.

Before a and b could be determined in the allometric equation, the unknown constants

in equation (3.4) must be determined. The concentration of FTY720 in arterial blood at

10 timepoints following inoculation with FTY720 were estimated from Meno-Tetang et al.

(2006) and a non-linear model was fitted to this data to determine values for A, B, C, α,

β and γ in equation (3.4) using Mathematica (Wolfram Research, Inc, 2016). Next the

ODEs for FTY720 in the lymph node were used to fit a and b in the allometric equation

using the equation for Cart (3.4) in place of that for Xart (3.5). The parameters identified

using this method are shown in Table 3.4.

In addition to using the allometric equation, for every parameter in the model equiv-

alent parameters in mice have been identified (Appendix B).

The PK model that was developed in the previous section can be used to simulate

the concentration of FTY720 in mice following either single or multiple interventions

(Figure 3.4b) by replacing the rat specific parameters with those described in Appendix B.
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Figure 3.2: Reduced pharmacokinetic model adequately represents biological
concentrations of FTY720 in the rat lymph node. The model selected using AP-
SASIA was run with initial concentrations of FTY720 in veneous blood set to 6637ng/ml
(solid line) and 44246ng/ml (dashed line), representative of a single dose of 0.3mg/kg and
2.0mg/kg of drug, respectively. Biological concentrations of FTY720 in rat lymph nodes
are shown for low dose (red) and high dose (blue), estimated from Meno-Tetang et al.
(2006).
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Figure 3.3: Schematic representation of the reducedPK model. 7 of the com-
partments used by Meno-Tetang et al. (2006) have been removed and incorporated into
the rest of body compartment.
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Parameter Equation Value

A (3.4) 81.53
B (3.4) 29.50
C (3.4) 23.96
α (3.4) -6.68
β (3.4) -0.15
γ (3.4) -0.15
a Allometric 188.84
b Allometric 0.67

Table 3.4: Fitted model parameters. Model parameters were fitted to data estimated
from Meno-Tetang et al. (2006) and used to determine the allometric scaling constants.

In the single dose scenario, a dose of 0.3mg/kg of drug was added to the veneous blood

compartment and the model was simulated for 10 days (Figure 3.4a). For multiple doses,

a dose of 0.3mg/kg was added to the concentration of FTY720 in the veneous blood at

the start of day 0 and then the model was simulated for 24hours before another dose of

the drug was added using ASPASIA (Evans, Stephanie et al.). This was repeated for 10

days and Figure 3.4b shows that by 6 days the concentrations of FTY720 in the lymph

node have reached maximum levels.

During colitis, the number of cells in the MLN, and therefore the volume of the in-

terstitial and intracellular space significantly increases (Dieleman et al., 2000). Although

there is no data available for the volume of the lymph node during inflammation, unpub-

lished data from the Kullberg lab shows that there is a 3.4-fold change in cell numbers

in the MLN between uninfected and 21 day Hh-infected IL10KO mice. Morrison et al.

(2013) showed that during inflammation there is up to a 9-fold increase in total lamina

propria (LP) cells in the cecum. The PK model described by equations (3.1)-(3.5) uses

organ volumes as parameter inputs so before integrating it into IBDSim it was important

to determine how much of an affect altering the organ volume has on the distribution of

drug around the body. Figure 3.5a shows that altering the organ volume of the MLN had

very little effect on the concentration of drug in the blood in any of the compartments in

the model with all PRCC between −0.1 and 0.1, and all pvalues greater than 0.1. This is

verified for the MLN in Figure 3.5b, that shows how Xln1, the maximum concentration of

FTY720 in the blood compartment of the MLN, varies very little when the volume of the

compartment is increased, and by Figure 3.5c, that shows the time course of Xln1 over

time with daily doses of FTY720 over the range of organ volumes simulated. Conversely,
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increasing the volume of the MLN causes the amount of drug in the cellular and interstitial

compartment to significantly increase, with a PRCC between MLN volume and the peak

concentration of drug in the MLN of 0.575 (Figure 3.5d) with a p-value of less than 0.001.

This relationship is further demonstrated in Figure 3.5e that shows a strong positive cor-

relation between Xln2, the concentration of FTY720 in the intracellular and interstitial

space of the MLN, and the volume of the compartment, and by Figure 3.5f), that shows

a time course of multiple doses of the drug over a range of values for the volume of the

MLN. Importantly, both Figure 3.5a and Figure 3.5d show that increasing the volume of

other compartments does not have a significant effect on the concentration of FTY720 in

the MLN, with all PRCCs being smaller than 0.1, and all p-values being greater than 0.05,

so for modelling purposes only the increased volume of the MLN needs to be considered.

Using data collected from IBDSim in Chapter 2, the change in the volume of the MLN

during inflammation can be modelled. Data from IBDSim shows that there is a 2.3-fold

change in the total number of immune cells modelled in the MLN during inflammation.

A linear relationship between the volume of the MLN and the number of immune cells in

the MLN can be developed and the resulting model is shown in Equation (3.6).

Vln2 = −0.643842 + 0.001568× total MLN cells. (3.6)

3.2 Single Cell Pharmacodynamic (PD) Model for FTY720

in Mice

Once the concentration of drug in the lymph node has been calculated, a PD model was

developed to determine the amount of drug taken up by each T cell. PD models are

commonly composed of a system of mass balance ODEs of the form;

dR

dt
= koff ×D : R− kon ×D ×R, (3.7)

dD : R

dt
= kon ×D ×R− koff ×D : R, (3.8)
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Figure 3.4: Concentration of FTY720 in the lymph node of mice. Either single
(a) or daily (b) doses of 0.3mg/kg of FTY720 were added to the PK model that was
reparameterised with mouse data from Appendix B and the concentration of FTY720 in
the MLN in silico was recorded over 10 days.

where R is free receptor, D is free drug, D : R is the drug receptor complex, kon is

the rate at which the drug receptor complex is formed, and koff is the rate at which

this complex breaks down. The units of the species and parameter values must all be

coherent. To use this model within IBDSim, the total number of S1P1 receptors on a

T cell had to be calculated, and kon and koff determined. The concentration of drug in

the PK model presented in the previous section is measured in units of ng/ml but it is

sensible to calculate receptor numbers in terms of absolute number of moluecules and as

such, all parameter values for the PD model will be calculated using dimensions number

of molecules, grid squares, and minutes.

3.2.1 Total number of S1P1 receptors on a T cell

To calculate the number of receptors per cell there were several assumptions that had to

be made. Sykes et al. (2014) give the value of Bmax, the total concentration of receptors

in Chinese hamster ovary (CHO) cells, an epithelial cell line, in units of pmol/mg. As

there is no data relating to the number of S1P1 receptors in a T cell, it has been assumed

that there is the same number of receptors in 1mg of T cells as in 1mg of CHO cells.

Under this assumption there are 2.64pmol of receptors per mg of T cells, which can be
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Figure 3.5: Sensitivity of the concentration of FTY720 in the lymph node to
changes in organ volumes. Organ volumes were varied up to 10 times their normal
size and daily doses of 0.3mg/kg of FTY720 were simulated for 10 days. (a) PRCC
between Xln1, the volume of FTY720 in the blood compartment of the MLN and all other
organ volumes. (b) Correlation between Xln1 and the volume of the MLN, Vln for all 200
values of Vln that were simulated. (c) Time course of concentrations of Xln1 for a range of
values of Vln. (d) PRCC between Xln2, the concentration of FTY720 in the interstitial and
intracellular spaces of the MLN and all other organ volumes. (e) Correlation between Xln2

and Vln for all 200 values of Vln that were simulated. (f) Time course of concentrations of
Xln2 for a range of values of Vln.

converted to molecules per T cell as follows;

Although in reality they are slightly larger, assuming that T cells are the same weight

as red blood cells, that is 27pg = 2.7× 10−8mg, (Phillips et al., 2012), gives the amount

of receptor in pmol as;

2.64× 2.7× 10−8 = 7.128× 10−8. (3.9)
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This can be turned into the number of molecules per cell using a number called the

Avogadro constant. This is defined as the number of molecules per mole of substance,

denoted NA, and NA = 6.022× 1023 mol−1. Since 1 pmol = 10−12 mol,

7.128× 10−8pmol = 7.128× 10−20 mol (3.10)

=⇒ 7.128× 10−20 ×NA ≈ 42910 molecules, (3.11)

so there are approximately 43000 receptors per cell.

3.2.2 Rates of FTY:Receptor complex formation

Sykes et al. (2014) give the dissociation constant, Kd, to be 0.238nM , and koff to be 17.2

min−1. Using the relationship kd = koff
kon

implies that kon = 72.3 min−1nM−1. To make

these units compatible with uptake by T cells, the units of kon had to be converted to

molecules−1 gridsquare−1 min−1.

1 nM = 10−9 M =⇒ kon = 72.3 nM−1min−1 (3.12)

= 72.3× 109 M−1min−1, (3.13)

and using the Avogadro constant the number of molecules per litre can be calculated,

6.022× 1023 molecules mol−1 and 1 M = 1 mol litre−1. (3.14)

Hence,

kon = 72.3 ∗ 109/(6.022× 1023) (3.15)

= 1.20048× 10−13molecules−1 litre−1 min−1. (3.16)

As a T cell in the ABM will determine the concentration of drug from its local pool rather

than the overall concentration, kon had to be reported in units per grid square, not per
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litre. It can be estimated that the volume of a grid square is in litres, Vgl, is

Vgl = (total volume of MLN)/(number of grid squares)

=
V

36× 228
(3.17)

=⇒ kon = 1.20048× 10−13/

(
V

36× 228

)
molecules−1 gridsquare−1 min−1, (3.18)

where V is the volume of the lymph node, that changes during inflammation and 36×228

are the dimensions of the lymph node compartment in IBDSim.

3.3 FTY720 significantly reduces cell numbers but not in-

testinal inflammation in Hh-induced colitis

To examine the effect of blocking lymphocyte egress with FTY720 on Hh-induced colitis,

the PK and PD models described in this chapter have been integrated into the ABM of

intestinal inflammation, IBDSim. Using this hybrid ABM, FTY IBDSim, the effects of

FTY720 administration at three different time points has been examined (Figure 3.6).

At each time point, the number of T cells in the cecum and colon has been compared

with in silico cell counts in simulations of conventional Hh-infected IL10 KO mice, and

with simulations of uninfected mice. The conventional and uninfected simulations were

performed using IBDSim as described in the previous chapter.

3.3.1 Experimental Procedure

The integration of the PK model describing the dynamics of FTY720 into IBDSim, was

done by adding an SBML-model simulator to the MLN compartment, details are given in

Section 2.10.3

As described in the previous chapter, each compartment in IBDSim starts in an empty

state and simulations start from day -20, allowing the compartments time to reach an

uninfected steady state by day 0. The effects of beginning FTY720 administration at

three different time points has been examined. The first experiment looked at the effect of

beginning FTY720 administration concurrently with Hh-infection to determine if FTY720

can effectively block inflammation from occurring. The next experiment was an extension
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of the previous case where FTY720 is added 6 days before Hh. This allowed FTY720 to

reach saturating levels in the MLN prior to infection. The final experiment looked at the

ability of FTY720 to resolve or reduce established inflammation by beginning administra-

tion of FTY720 at 14 days post-infection. In all experiments, Hh was added to the cecal

lumen compartment at the start of day 0. Depending on the experiment, at the start of

either 0, -6, or 14 days post infection, the PK model describing the dynamics of FTY720

in the lymph node was simulated for one day, on a minute time scale, with step size 0.012.

For the next 1440 time steps, equal to one day, the concentration of drug in each grid

square in the MLN was set to the value of Xln2
Number of grid squares At the end of this time

period the model describing the blood profile of FTY720 was updated to reflect the levels

at the end of the previous days simulation and a new dose of drug was added to the value

for Xven, the concentration of FTY720 in the veneous blood. At the beginning of each

subsequent day, i.e. after 1440 time steps, the PK model was run again and the process

repeated.

3.3.2 Results

Following the experimental procedure defined in the previous section, 20 simulations were

run and the average number of all immune cells in the simulation, that is DCs, inflam-

matory and regulatory macrophages, and CD4+ T cells, were recorded at each time point

post infection with Hh with or without daily administation of FTY720 (Figure 3.7) at

time points defined in Figure 3.6.

3.3.2.1 Experiment 1: FTY720 given at day 0 significantly reduces cell num-

bers in Hh-induced colitis

An in silico experiment has been performed to examine the effects of daily administration

at doses of doses of 0.3mg/kg of FTY720 starting from day 0, the time of Hh infection.

Performing a one-way ANOVA comparing in silico cell numbers following Hh infection

between FTY720+ and FTY720- experiments showed that total cell numbers were signifi-

cantly reduced in the cecum (p < 0.01, Figure 3.7a). A post-hoc Tukey test was performed

to identify differences in numbers of each cell type over time due to the addition of FTY720.

After using a bonferoni correction to account for the multiple tests that were performed,
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significant differences in cell numbers were observed for all populations at days 14, 21

and 45, at day 7 for T cells and both inflammatory and regulatory macrophages, and at

day 4 for T cells (p < 0.001). As expected, FTY720 has the greatest effect on the T cell

population with a 2.5-fold reduction in numbers at day 7 and a 4-fold decrease by day 45.

The second largest change was in the number of regulatory macrophages with as many

as 1.6 times more regulatory macrophages entering the gut in FTY720+ mice. Blocking

lymphocyte egress from the MLN also affects the cytokine concentrations (Figure 3.7b),

with up to 1.5 fold decrease in total tissue cytokine, a 5-fold decrease in the amount of

IFN-γ and up to a 3-fold decrease in IL17 observed in the cecum between Hh alone and

Hh with FTY720. Similar trends were seen in the colon (Figure 3.8). Although a reduc-

tion is observed in the cell numbers and cytokine concentrations in both the cecum and

colon compartments following FTY720 administration compared to Hh alone, they are

still significantly higher than those in an uninfected case, at day 0 (p < 0.001). When

taken together, the changes in cell counts and cytokine levels are not sufficient to reduce

overall inflammation in the tissue as measured by the inflammation score developed in

Section 2.5(Figure 3.9).
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Day:

-6 0 14 21 45

Hh

Hh

+FTY

Hh

+FTY

Hh

+FTY

Conventional
Hh Infection

Experiment 1

Experiment 2

Experiment 3

Figure 3.6: Procedure for in silico FTY720 experiments.
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Figure 3.7: Daily administration of FTY720 significantly reduces cell num-
bers in the cecum (Experiment 1). Counts of immune cells (a) and concentration
of cytokines (b) in the cecum, following infection with Hh alone (left) and with daily
administration of FTY720 from the start of Hh infection (right).
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Figure 3.8: Daily administration of FTY720 significantly reduces cell num-
bers in the colon (Experiment 1). Counts of immune cells (a) and concentration of
cytokines (b) in the colon, following infection with Hh alone (left) and with daily admin-
istration of FTY720 from the start of Hh infection (right).
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Figure 3.9: There is no significant difference in the inflammation score in
the colon following daily administration of FTY720 (Experiment 1). The
inflammation score developed in Section 2.5 was calculated for the colon compartment
following infection with Hh alone (black circles) and with daily administration of FTY720
from the start of Hh infection (red squares).

156



3.3 FTY720 significantly reduces cell numbers but not intestinal inflammation in Hh-induced
colitis

3.3.2.2 Experiment 2: FTY720 given 6 days prior to Hh infection does not

have a significant advantage over FTY720 given at day 0 in Hh-

induced colitis

The second in silico experiment to be performed examined the effects of daily adminis-

tration at doses of doses of 0.3mg/kg of FTY720 starting six days before Hh infection to

allow the drug to saturate the MLN. This experiment further examines the effectiveness of

FTY720 for preventing intestinal inflammation from developing in IL10 KO mice following

Hh infection. Performing a one-way ANOVA to compare in silico cell numbers following

Hh infection between FTY720+ day -6, and FTY720+ day 0 experiments showed that

neither cell numbers nor cytokine levels are significantly reduced in the cecum or colon

when FTY720 is added 6 days prior to Hh infection, FTY720 treatment beginning on the

same day as Hh infection (p = 0.078, Figure 3.10a). Thus the changes in cell counts and

cytokine levels following FTY720 administration either from 6 days, or 0 days, before Hh

infection are not sufficient to reduce overall inflammation in the tissue as measured by the

inflammation score developed in Section 2.5(Figure 3.12).
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Figure 3.10: There is no significant difference in cell numbers in the cecum
following daily administration of FTY720 from 6 days prior to Hh infection
when compared to concurrent Hh infection and FTY720 innoculation (Exper-
iment 2). Counts of immune cells (a) and concentration of cytokines (b) in the cecum
from the point of Hh infection following daily administration of FTY720 from the start of
Hh infection (left) and from 6 days before Hh (right).
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Figure 3.11: There is no significant difference in cell numbers in the colon
following daily administration of FTY720 from 6 days prior to Hh infection
when compared to concurrent Hh infection and FTY720 innoculation (Exper-
iment 2). Counts of immune cells (a) and concentration of cytokines (b) in the colon
from the point of Hh infection following daily administration of FTY720 from the start of
Hh infection (left) and from 6 days before Hh (right).
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Figure 3.12: There is no significant difference in the inflammation score in
the colon following daily administration of FTY720 from 6 days prior to Hh
infection (Experiment 2). The inflammation score developed in Section 2.5 was
calculated for the colon compartment following infection with Hh alone (black circles)
and with daily administration of FTY720 starting from 6 days prior to Hh infection (red
squares).

160



3.3 FTY720 significantly reduces cell numbers but not intestinal inflammation in Hh-induced
colitis

3.3.2.3 Experiment 3: FTY720 given 14 days after Hh infection can signifi-

cantly reduce inflammation in Hh-induced colitis

The final in silico experiment to be performed examined the ability of FTY720 to re-

solve established inflammation by administering daily doses of 0.3mg/kg of FTY720 from

14 days post-Hh infection to allow inflammation to develop before the drug was added.

Performing a one-way ANOVA to compare in silico cell numbers following Hh infection

without FTY720 and with FTY720+ from day 14 shows that both cell numbers and cy-

tokine levels are significantly reduced in the cecum and colon by 21 days post-infection

(p < 0.001, Figure 3.13). Performing A post-hoc Tukey test identified where the differ-

ences in cell numbers appear. As with the first experiment, the biggest reduction was seen

in the number of T cells with significant differences at both 21 and 45 days post-infection,

that is 7 and 31 days after commencing treatment with FTY720 (p < 0.001). Unlike

the first experiment where the DC population did not see any effect until 21 days post-

addition of FTY720, adding the drug at day 14 caused the number of DCs in the cecum

to be significantly reduced by 21 days post-infection, that is 7 days after beginning drug

administration (p < 0.001). By 45 days post infection, both inflammatory and regulatory

macrophages showed significant reductions in numbers (p < 0.001). This differs from the

results when FTY720 was added from day 0, where the number of regulatory macrophages

had significantly increased 21 days after commencing treatment with FTY720. The same

trends were also observed in the colon (Figure 3.14). The inflammation score developed

in Section 2.5 shows that 7 days after starting FTY720 administration in this experiment

(21 days post infection), the level of inflammation in the colon is reduced Figure 3.15,

however, by 45 days post infection there is no difference between the inflammation score

with or without FTY720.
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Figure 3.13: Daily administration of FTY720 significantly reduces cell num-
bers in the inflammed cecum (Experiment 3). Counts of immune cells (a) and
concentration of cytokines (b) in the cecum, following infection with Hh alone (left) and
with daily administration of FTY720 from the 14 days post Hh infection (right).
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Figure 3.14: Daily administration of FTY720 significantly reduces cell num-
bers in the inflammed colon (Experiment 3). Counts of immune cells (a) and
concentration of cytokines (b) in the colon, following infection with Hh alone (left) and
with daily administration of FTY720 from the 14 days post Hh infection (right).
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Figure 3.15: There is no significant difference in the inflammation score in
the colon following daily administration of FTY720 from 14 days prior to Hh
infection (Experiment 3). The inflammation score developed in Section 2.5 was
calculated for the colon compartment following infection with Hh alone (black circles) and
with daily administration of FTY720 starting from 14 days post infection with Hh (red
squares).
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3.3 FTY720 significantly reduces cell numbers but not intestinal inflammation in Hh-induced
colitis

3.3.3 Summary

This chapter details the development of a PK-PD model to describe the dynamics of

FTY720 in the lymph node of mice, and the effect that the drug has on T-cells. The

PK model is based on a previous model by Meno-Tetang et al. (2006) that predicted the

concentration of FTY720 in several organs in rats, at different time points. The PD part

of the model follows a standard framework for modelling receptor-binding dynamics in

systems pharmacology, however, it is not certain that this modelling approach accurately

captures the dynamics in this system. As this case study focusses on the affect of lympho-

cytes being sequestered in the lymph node has on intestinal inflammation, it is sufficient in

this case that the dynamics of T-cell recirculation from the lymph node were calibrated to

biological data, given the chosen model. However, if this study had instead focussed on the

change in the level of receptor in the lymph node, or in determining the required efficacy

of FTY720 to reduce inflammation, the choice of PD model would be more important,

and biological experiments would have to be performed to allow a more accurate model to

be developed and parameterised. The results presented in this section demonstrate that

FTY720 has the potential to reduce the cell numbers in the cecum and colon but not to

resolve intestinal inflammation in Hh-infected IL10 KO mice. Further, FTY720 cannot

completely block inflammation from occurring in the Hh colitis model as it has done in

other models of inflammation (Table 3.1). The outcome of FTY720 on Hh-induced inflam-

mation is more similar to that observed by Murphy et al. (2012) following infection of wild

type mice with bacteria Citrobacter rodentium. Murphy et al. (2012) saw that FTY720

has an adverse effect in this experimental scenario because it inhibited the clearance of

the bacteria by lowering the immune response, something that also happens in the model

presented in this thesis. To increase confidence in this result, the inflammation scoring

system needs to be properly calibrated using a Hh-infected IL10KO as a control, before

the experiments can be ran again, and the output re-evaluated.
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Chapter 4

Exploring the Effects of microbial

composition on disease outcome in

Hh-induced intestinal

inflammation

An alteration of microbial community structure has been associated with intestinal disease

in both human and animal models of IBD (Seksik et al., 2003; D’Argenio et al., 2013; Buffie

et al., 2012; Nagalingam et al., 2013). In the Hh-induced colitis model, the composition of

gut microbiota has been implicated in determining susceptibility to intestinal inflammation

(Yang et al., 2013). Moreover, Morrison et al. (2013) observed that inflammation in the

Hh-induced colitis model begun to resolve by 45 days post infection and was fully resolved

by 91 days, however earlier work by Kullberg et al. (1998) using the same experimental

system showed that inflammation persisted up to at least 77 days post infection. In both

cases, the experiments were performed using the same strain of mice and Hh, thus the key

differences between the experiments were the food the mice were fed and the facilities they

were kept in. It has been shown that both of these factors can be responsible for shaping

the microbiota (Jakobsson et al., 2015), and also that the composition of microbiota has

significant effects on mucus thickness and on barrier function (Littman and Pamer, 2011;

Silva et al., 2015; Lopetuso et al., 2013).
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Chapter 2 details the development of IBDSim, a computational model that captures

the development of intestinal inflammation in Hh-induced colitis. IBDSim assumes that

the gut microbiota can be modelled as evenly distributed bacteria that cause either type-

1 or type-17-inducing responses from DCs and macrophages. Under this assumption,

the model adequately captures the development of inflammation following Hh infection.

However the resolution and switch in response from predominantly Th1 to predominantly

Th17 at later time points post infection, as observed by Morrison et al. (2013) is not

captured (Figure 4.1). Analysis of the literature reveals that the assumption of evenly

distributed, homogeneous commensal flora used in IBDSim is incorrect.

Nagalingam et al. (2013); Yang et al. (2013) looked at the composition of microbiota

in IL10 KO mice with and without Hh infection and showed that different bacterial phe-

notypes are not evenly distributed in vivo. Nagalingam et al. (2013) showed that infection

with Hh changed the composition of the microbial communities in the gut, and that

treatment with either broad-spectrum or gram positive-specific antibiotics did not cause

inflammation to resolve. Moreover, the authors conclude that the presence of Hh altered

the composition of commensal flora in the gut. Moreover, the specific composition of com-

mensal flora has been shown to be important in susceptibility to Hh-induced colitis. Yang

et al. (2013) observed that IL10 KO mice kept different facilities had different microbial

communities and suggested that these differences could be responsible for the different

susceptibility to Hh-induced inflammation.

To examine whether altering the composition of commensal flora alone is sufficient

to produce different disease phenotypes, both in an uninfected scenario and following

Hh infection, IBDSim has been extended to capture behaviours in all of these cases.

IBDSim Microbiota considers different populations of microbiota as initial conditions, and

the development of this model is discussed here. Unlike in the previous iteration of IBDSim

where cytokines were considered to be only Th1- or Th17-inducing, to gain insight into the

contributions of different types of bacteria, the cytokines need to be decoupled into IFN-γ,

IL12, TGF-β and IL6. This means that an implicit representation of cytokine-inducing

bacterial species in the cecal and colonic lumen must be developed.
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Figure 4.1: Numbers of T cells of each phenotype in IBDSim. Counts of double
negative (double negative (DN)) cells (coral), Th1 cells (green), Th17 cells (turquoise) and
double positive (DP) cells (purple) are shown at 0, 2, 7, 14, and 21 days post infection
(PI), as estimated by the level of transcription factors T-bet and ROR-γt.

4.0.1 Mathematical Model

Suitable combinations of cytokine-inducing bacterial species were generated using a math-

ematical model that represents competition between the bacterial species. This bacterial

composition model was developed using SBML, assuming that the commensal flora can

be categorised by the type of cytokine they induce. The bacterial competition was based

on the basic Lotka-Volterra competition model (Cushing, 1986) with a single carrying

capacity representing the nutrients available to bacteria, causing indirect competition for

resources between the species. The model also incorporates direct competition between

species. The source of this direct competition could be factors secreted by certain species

that are either beneficial or harmful to other specific species. Analysing direct correla-

tions between bacterial species in the colon of Hh-infected IL10 KO mice suggests that

this phenomenon of direct competition exists in biology (Figure 4.2) Incorporating the

two types of competition (indirect and direct) into a standard logistic population growth

model results in a set of equations, one for each bacterial species in the model, that take

the form;

dXi

dt
= aiXi

(
1− Xi

K −∑n
j=1,j 6=iXj

)
+

n∑

j=1,j 6=i
bijXiXj − µiXi, (4.1)
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Figure 4.2: Competition between bacterial species in the colon of IL10 KO
mice following infection with Hh. Correlations were calculated using SPARCC (Fried-
man and Alm, 2012) on data taken from Nagalingam et al. (2013). Red represents negative
correlation coefficients, while green represents positive correlation coefficients.

where Xi is the number of bacteria of species i, K is the carrying capacity for all of the

bacteria, n is the total number of species being modelled, bij is the rate of promotion or

inhibition of bacteria i by bacteria j, ai is the proliferation rate of species i and µi is the

death rate of species i.

Using ASPASIA (Evans et al., submitted) to vary the parameters as defined in Ta-

ble 4.1, and solving the equations on a minute scale using the Runge-Kutta algorithm

with a step size of 0.012, 1000 models were generated that each represent a potential

microbial composition. Of these 1000 models, 158 were numerically unstable, due to the

stiffness of the equations, in the absence of Hh, and were therefore excluded. Moreover,

it was determined that suitable candidates for potential compositions of microbiota must

contain all species in steady state. Removing models that did not meet this criterion

left 34 models to be used as initial conditions (Figure 4.3a). To add Hh to the model,

the rules governing interactions between Hh and all other populations had to be defined.

The values of bHh,j and bj,Hh were the same for all j and for all models, and 3 possible
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Table 4.1: Parameter values used for ASPASIA generated SBML models.

Parameter Min Max

a ifng 1.38E-4 1.38×10−2

a il12 1.38E-4 1.38×10−2

a il6 1.38E-4 1.38×10−2

a tgfb 1.38E-4 1.38×10−2

b ifng il12 -2×10−12 2×10−12

b ifng il6 -2×10−12 2×10−12

b ifng tgfb -2×10−12 2×10−12

b il12 ifng -2×10−12 2×10−12

b il12 il16 -2×10−12 2×10−12

b il12 tgfb -2×10−12 2×10−12

b il6 ifng -2×10−12 2×10−12

b il6 il12 -2×10−12 2×10−12

b il6 tgfb -2×10−12 2×10−12

b tgfb ifng -2×10−12 2×10−12

b tgfb il12 -2×10−12 2×10−12

b tgfb il6 -2×10−12 2×10−12

mu ifng 1.4×10−5 1.4×10−2

mu il12 1.4×10−5 1.4×10−2

mu il6 1.4×10−5 1.4×10−2

mu tgfb 1.4×10−5 1.4×10−2

X ifng prop 0.5 1

X il12 prob 0.5 1

X il6 prob 0.5 1

X tgfb prob 0.5 1

171



Chapter 4: Exploring the Effects of microbial composition on disease outcome in Hh-induced
intestinal inflammation

values were chosen by using Mathematica to vary parameter values. Nagalingam et al.

(2013) suggested that there was no significant difference in total bacterial burdens before

and after infection with Hh, and similar results have been demonstrated by the Kullberg

lab (Figure 4.4). Simulations of the models generated showed that when Hh inhibits the

growth of other phenotypes there is a significant change in the total number of bacteria;

thus, Hh cannot inhibit other species in the model (Figure 4.5b). However, when Hh has

no direct effect on other commensal species (Figure 4.5c), there is a non-significant change

in the total number of bacteria. Allowing Hh to promote the growth of commensal species

(Figure 4.5d) also results in a non-significant change in the total number of bacteria but in

this case, further numerical instability is induced. Therefore, it was decided that Hh will

not directly compete with other species in the model. The proportions of each bacterial

species in the 34 resulting models, following the addition of Hh is shown in Figure 4.3a
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Figure 4.3: Amount of Hh-, IFN-γ-, IL12-, IL6- and TGF-β- inducing bacteria
as a proportion of the total population of bacteria in each of the 34 models
that were selected as suitable candidates for microbial compositions in silico.
Proportions were calculated using steady state levels of each group of bacteria using the
model described in Equation (4.1) in the absence (a), or presence (b) of Hh.

4.1 Extending IBDSim

The bacterial composition models described in the previous section were subsequently

integrated with the ABM to determine the differential effects of microbiota on simulation
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4.1 Extending IBDSim

Figure 4.4: Numbers of bacteria in the cecum following infection with Hh.
Counts of bacteria estimated from total DNA yields from cecal contents in vivo (Kullberg
lab, unpublished). Calulations assume that all bacteria follow the relationship that 14
bacteria contain 20 fg of DNA, as with Hh (Ge et al., 2001).

behaviour. This integration was done by replacing the cecal and colonic lumen with an

SBML model simulator that runs the SBML model for 1 minute using the Runge-Kutta

method, with a step size of 0.012, in line with each time step in the ABM (Figure 4.6).

Integrating this new implementation of the commensal flora into IBDSim, and simulating

over a longer time period, required several changes to be made to the model.

4.1.1 Recruitment of bacteria into the Cecum and Colon

In the previous version of IBDSim, bacteria entered the cecum and colon at a rate de-

termined by the level of damage to the epithelial wall, a concept that was represented

by the number of epithelial cells that were secreting cytokines (Section 2.3.4). In IBD-

Sim Microbiota, the cecal and colonic lumen compartments were replaced by the system

of ODEs, with the number of agents that enter the cecum and colon being determined as a

fraction of the number of bacteria removed from the lumen at each time point, represented

by the µiXi term in the ODE model.

To maintain the behaviours from the previous iteration of IBDSim, the removal rate

µi, and thus the number of bacteria entering the cecum and colon increases with the

level of epithelial damage but the fraction of µiXi that enter the tissue compartments

remains constant. This parameter was calibrated using the dynamics of the number of

epithelial cells from the previous iteration of the cecum compartment. Under the previous

173



Chapter 4: Exploring the Effects of microbial composition on disease outcome in Hh-induced
intestinal inflammation

0

500000

1000000

1500000

To
ta

l N
um

be
rs Type

hh
ifng
il12
il6
tgfb

(a) No Hh

0

500000

1000000

1500000

To
ta

l N
um

be
rs Type

hh
ifng
il12
il6
tgfb

(b) Hh inhibitits other bacterial species

0

500000

1000000

1500000

To
ta

l N
um

be
rs Type

hh
ifng
il12
il6
tgfb

(c) No competition between Hh and other
species

0

500000

1000000

1500000

To
ta

l N
um

be
rs Type
hh
ifng
il12
il6
tgfb

(d) Hh promotes other bacterial species

Figure 4.5: Total numbers of Hh-, IFN-γ-, IL12-, IL6- and TGF-β inducing
bacteria iin each of the 34 models that were selected as suitable candidates for
microbial compositions in silico. Counts are shown at steady state levels using the
model described in Equation (4.1) in the absence of Hh (a), or under different hypotheses
of how Hh interacts with the rest of the bacterial species (b-d). (b) represents inhibition
of all species, (c) represents no interaction with any other species, and (d) represents
promotion of all other species

representation, in an uninfected state, bacteria entered the tissue at a rate of 1 bacterium

every 1.7 minutes. This equates to approximately 0.588 bacteria per minute. Taking the

mean value of
∑

i µi ×
∑

iXi reveals that on average, 21656 bacteria are removed per

minute in the ODE model, thus the proportion of removed bacteria that enters the cecum

or colon from the cecal and colonic lumen can be estimated to be 2.7 × 10−5. At each
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MLN

Cecum ColonLymph

dXi

dt = aiXi
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j=1,j 6=i bijXiXj � µiXi

Figure 4.6: Integration of commensal bacteria model with IBDSim. Legend: :
Naive T cells , : Activated T cells, : DCs, : Macrophages, : Commensal Bacteria,

: Hh.

simulated time step the rate of bacteria switching compartments in the ABM are updated

according to the numbers of bacteria estimated from the results of simulating the SBML

model and the death rate of Hh in the SBML model is modified in accordance with the

ABM. The death rate of Hh is calculated using the following equation, calibrated to match

the switching probability defined in IBDSim (Equation (4.2), Figure 4.7).

µhh = 0.0017 + 0.0000039× Ep (4.2)
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Figure 4.7: Predicted death rate of Hh at different time points post Hh infec-
tion. Values of parameter µHh were calculated using equation (4.2) for the average value
of Ep (the number of secreting epithelial cells) in the original version of IBDSim to predict
what the death rate might look like in the new iteration of IBDSim.

4.1.2 Decoupling of T-cell Polarisation Pathways

The implementation of new cytokines meant that the T-cell polarisation model had to be

updated to take into consideration all 4 types of cytokine included in the new iteration of

IBDSim. Thus the addition of a Treg like T-cell phenotype, defined by the expression of the

transcription factor forkhead-box protein 3 (Foxp3) was necessary to adequately represent

the response of a single cell to any well mixed cytokine millieu. A Treg phenotype arises

in response to TGF-β in the absence of IL6, and secretes only TGF-β. This is because

IBDSim is calibrated to data from IL10 KO mice, so no IL10 can be produced. Adding

an additional pathway to the model described in Section 2.3.4, required the model to be

recalibrated, using additional biological data relating to the ROR-γt-Foxp3 and T-bet-

Foxp3 interactions. The original equations (Section 2.3.4.3) also needed to be modified so

that the response to C1 and C17 can be decoupled into a response to IFN-γ and IL12, or

TGF-β and IL6, respectively (Figure 4.8). As in the previous version of the polarisation

model, cytokine secretion is separated into internal mRNA production and external protein

secretion using the following equations. The new model becomes a system of 14 ODEs

(Appendix C). The dynamics between transcription factors in the model can be understood

as follows;
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The rate of change in T-bet, ROR-γt or Foxp3

dTbet

dt

dRORgt

dt

dFOXp3

dt

The rate of increase in T-bet, ROR-γt or Foxp3 expression through external

stimulation

(
stil12

· eIL12

(etil12
+ eIL12)

+
stifng · eIFNg(
etifng + eIFNg

)
)
· 1(

1 +
RORγt
gtr

)
·
(

1 + Foxp3
gtf

)

(
sril6,tgfb · eIL6 · eTGFb

(eril6 + eTGFb) ·
(
ertgfb + eTGFb

) +
sril21

· eIL21

(eril21
+ eIL21)

)
· 1(

1 + Tbet
grt

)
·
(

1 + Foxp3
grf

)


 sftgfb · eTGFb(

ertgfb + eTGFb
) · 1(

1 + Tbet
gft

)
·
(

1 + ROR−γt
gfr

)




The rate of increase of T-bet,ROR-γt, Foxp3 through self stimulation


 at · Tbetn

(knt + Tbetn)
· 1(

1 +
RORγt
gtr

)
·
(

1 + Foxp3
gtf

)





 ar ·RORnγt(

knr +RORnγt
) · 1(

1 + Tbet
grt

)
·
(

1 + Foxp3
grf

)





 af · Foxp3n(

knf + Foxp3n
) · 1(

1 + Tbet
gft

)
·
(

1 +
RORγt
gfr

)




The rate of baseline transcription or T-bet, ROR-γt and Foxp3

βt βr βf

The rate of removal of T-bet or ROR-γt through natural decay or degradation
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Figure 4.8: T cell polarisations in the updated model. The cytokines and tran-
scription factors are modelled by the equations in Appendix C.

µtTbet µrRORγt µfFoxp3

where ai is the autostimulation rate for transcription factor i, βi is the basal tran-

scription rate for transcription factor i, eij is the inhibition constant for stimulation of

transcription factor i by cytokine j, sij is the cytokine j-induced stimulation of transcrip-

tion factor i, gij is the level of inhibition of transcription factor i by opposing transcription

factor j, µi is the decay rate for transcription factor i, n is the hill-coefficinet, ki is the

inhibition constant for transcription factor i.

4.1.3 Alterations to DCs

The DCs in the model have to be modified to separate out secretions of TGF-β and

IL6 in line with the new bacteria model. To do this, the non-linear model described in

Section 2.3.4 was recalibrated to match biological data from (Kranzer et al., 2004). The

equation modelling secretion of IL12 is the same as in IBDSim but there are now additional

modifiers for IFN-γ, TGF-β, and IL6.

There is evidence that DCs secrete 1.5 times as much TGF-β as they do IL12 and

the concentration of IL6 should be similar to the concentration of IL12 at 24hrs (Abdi
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Figure 4.9: Concentration of cytokines secreted by 100 simulated DCs in silico.
Concentrations are shown using the model modified version of the model described in
Section 2.3.4. Data is shown for low (a) and high (b) levels of stimulation and cell counts
are the equivalent of 5× 105 in vivo.

et al., 2012; Kranzer et al., 2004) thus the modeifier for TGF-β in the model defined in

Chapter 2 was calibrated to produce such a result (Figure 4.9).

4.2 Exploring the Effects of Different Microbiota on Hh-

Induced Colitis

This section discusses the experiments that were performed to explore the effect of altering

the microbiota on system behaviour.

4.2.1 Experimental Procedure

As described in Section 2.7, each compartment in the simulation starts in an empty state

and simulations start from day -20, allowing the compartments time to reach an uninfected

steady state by day 0. To integrate the SBML models describing the microbiota that

were developed in this chapter into IBDSim, an SBML-model simulator was added to the

cecal and colonic lumen compartments. Details are given in Section 2.10.3. The SBML

model was allowed to run for 1 minute, the result was stored and then the numbers of

each type of bacteria (IL12-, IFN-γ-, IL6-, TGF-β-, inducing and Hh) in the ABM were

updated. Following the introduction of Hh to the cecal and colonic lumen, the death rate

of Hh was modified in the file using the number of secreting epithelial cells as defined in

Equation (4.2), and both the SBML model and the ABM were stepped for 1 more minute.
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This process was repeated at every timestep throughout the simulation, with tuneable

resolution applied to modify the computational burden where necessary (Section 1.9) The

ABM was simulated 10 times with each of the 34 models selected in section 4.0.1, and

an average result under each unique SBML model were generated, both in the absence

and presence of Hh from the simulated day 0, i.e. the day of Hh-infection. Analyses were

performed on the results of these simulations to try and identify groups of parameters that

were influential in determining the susceptibility to, or severity of intestinal inflammation,

in the absence or presence of Hh.

4.2.2 Alteration of the Microbiota Can Cause Intestinal Inflammation

in the Absence of Hh

Running the updated version of IBDSim with different initial microbial compositions re-

sults in differences in the numbers of cells in MLN as well as in the cecum and colon

(Figure 4.10). The level of inflammation in each group can be estimated from the cell

counts and cytokine levels that emerge from simulations with each composition of mi-

crobiota. Inflammation is classified as ”low”, meaning that the cell counts are slightly

higher than expected in an uninfected case, ”moderate” meaning that the cell counts are

higher than in those models classified as ”low”, and ”medium” that is the highest level of

inflammation observed in an uninfected mouse, but the cell counts are not as high as in an

infected mouse. From Figure 4.10 it can be determined that the group highlighted in blue

corresponds to a single parameter set that resulted in a medium level of inflammation, the

group highlighted in green corresponds of two parameter sets that resulted in a moderate

level of inflammation, the group highlighted in red corresponds to six sets with a low level

of inflammation and the 25 remaining sets that have similar cell counts to those observed

under the previous iteration of IBDSim in the absence of Hh, displayed in black, are not

considered to result in inflammation (Figure 4.10). To try and identify distinct inflam-

matory phenotypes from the results, a hierarchical cluster analysis was performed, using

average linkage, on the mean results of the 10 simulations with each parameter set. The

analysis was performed on the mean value over time for the measures collected. The mean

is an appropriate measure to take for clustering uninfected data because each set of runs

has reached a stable level by day 0. Figure 4.13a shows that there are four distinct groups
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of unequal sizes but there is no obvious link between the initial microbial compositions in

each group. Comparison with the groups that emerged when the compositions themselves

were clustered indicates that groups of similar microbial compositions cannot be used to

predict the level of inflammation that will arise in the simulations (Figure 4.13b).

The microbial compositions that resulted in inflammation (blue, red, green) saw a

dramatic increase in the the numbers of T cells, inflammatory macrophages and DCs

compared to the microbial compositions that did not induce inflammation (black) in both

the cecum (Figure 4.11a),a and the colon (Figure 4.12a). Further, the cecum and colon

of the non-inflamed parameter sets were mainly populated by regulatory macrophages

suggesting a lack of IFN-γ to drive macrophage polarisation into an inflammatory state.

This suggestion was confirmed by Figures 4.11b,4.12b that show lower levels of IFN-γ in the

non-inflamed sets than in those that develop inflammation. Many of the compositions that

did not result in inflammation in an uninfected state, those shown in black in Figure 4.13,

have a high proportion of IFN-γ-inducing bacteria, and conversely some of the inflamed

subset have relatively low proportions of IFN-γ-inducing bacteria. Thus it is expected

that in simulations that correspond to inflamed sets there must be a high number of IFN-

γ-secreting cells. T cells in IBDSim can be classified as DN if they do not have high levels

of mRNA of any cytokine, Th1 if they have high levels of IFN-γ mRNA, Th17 if they have

high levels of IL17 mRNA, or DP if they express high levels of both IFN-γ and IL17. The

relative numbers of T cells of each type were calculated using the level of iIFN-γ and iIL17

inside the cell, according to the equations that represent T-cell polarisation (Appendix C).

In the absence of Hh, all of the microbial compositions that resulted in inflammation had

a large number of Th1 cells present in the cecum, and the highest level of inflammation

was correlated with a large number of DP (Figure 4.22a).

As it appeared that no clear link could be established between the initial microbial

composition and the level of inflammation in the absence of Hh (Figure 4.13), a sensitivity

analysis was performed to identify any significant correlations between all parameters in

the ODE model describing the competition between the species and the output measures

that arise from simulations using each parameter set. The PRCCs obtained through

sensitivity analysis are shown in Figure 4.15. The significant PRCCs are defined as those

with a p-value of less than 0.05 and the key parameters are listed in Appendix F. Using
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Figure 4.10: Numbers of cells and the level of inflammation in the cecum differ
depending on the initial composition of microbiota in the absence of Hh. The
average number of (a) T cells, (b) DCs, (c) inflammatory, and (d) regulatory macrophages,
as well as the inflammation score (e) in the cecum with different compositions of micro-
biota.
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these correlations, the role of certain cells and cytokines in contributing to intestinal

inflammation can be understood.

IFN-γ is implicated in playing a role in inducing intestinal inflammation

in the absence of Hh

Several of the PRCCs generated from the sensitivity analysis that was performed, indi-

rectly suggest that IFN-γ could be an important cytokine in causing intestinal inflamma-

tion in the absence of Hh. The positive correlation of bifng,il12 and negative correlation of

bil12,ifng with the number of T cells in the cecum, colon and MLN means that the more

IL12-inducing bacteria promote IFN-γ-inducing bacteria, and the more IFN-γ-inducing

bacteria inhibit IL12-inducing bacteria, the higher the number of T cells in the system

is likely to be (Figure 4.15,Appendix F). This suggests that overall, IFN-γ is more im-

portant in causing inflammation than IL12. A possible reason for this that IL12 in the

simulation is only directly responsible for the initial polarisation of T cells, whereas IFN-γ

is responsible for polarising inflammatory macrophages and increasing cytokine secretion

by macrophages. This means that although increasing bifng,il12, or decreasing bil12,ifng did

not lead to a significant increase in the number of inflammatory macrophages, it is likely

that the inflammatory macrophages that were present secreted higher levels of cytokines.

This assertion is supported at least in part by the significant increase in IL12, TGF-β

and IL6 in the tissue in the colon, and the increase IL17 and IL21 that are only produced

in the system by polarised T cells (Figure 4.15,Appendix F). The results presented here

suggest that the increased number of Th1 and DP cells observed in Figure 4.14 are driving

inflammation in the absence of Hh.

Inflammation in an uninfected state correlated with factors that drive

the development of Th17 cells

The PRCCs generated from the sensitivity analysis also indirectly suggest that Th17

cells could be important in causing intestinal inflammation in the absence of Hh. The

positive correlation between btgfb,ifng and the number of T cells in the cecum, colon and

MLN means that the more TGF-β is promoted by IFN-γ, the more T cells there are

in the tissue. It is interesting that increasing the number of bacteria that induce TGF-
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β, typically thought to be an anti-inflammatory cytokine, increases the concentration of

inflammatory cytokines. However, as the models that were considered to be potential

microbial compositions contain all four species of cytokine-inducing bacteria, IL6 will be

present in all of them, and TGF-β is required to induce Th17 cells in the presence of IL6.

Therefore, it would be expected that in the cases where the concentration of TGF-β are

high, the number of Th17 cells will also increase.

There is also a positive correlation between il6, that is the number of IL6-inducing

bacteria that are present in the lumen at the start of infection (Xil6), and the number of

T cells and regulatory macrophages in the tissue. IL6 has a similar role in the system to

IL12, but acts to induce Th17 cells instead of Th1. This means that unlike the previous

important correlations that can be possibly be explained by the duel functionality of IFN-

γ in the model, IL6 only directly affects the population of Th17 cells. However, Th17

cells can switch phenotypes during inflammation to begin secreting IFN-γ, meaning that

although there is no significant correlation between il6 and the concentration of IFN-γ in

the tissue it is likely that in the subsets where il6 is higher, IFN-γ will be increased just not

statistically significantly. This supports the idea that phenotype switching of Th17 cells

is important in inducing more severe inflammation and correlates with the trend observed

in Figure 4.14.
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Figure 4.11: Specific compositions of microbiota differentially effect the cell
numbers and cytokine levels in the cecum. Counts of immune cells (a) and concen-
tration of cytokines (b) for each initial microbial composition in the cecum in the absence
of Hh. Data represented is the mean of 10 simulations for each of the 34 initial microbial
compositions in the absence of Hh. Parameter sets are coloured to correspond to the
groups identified in the cluster analysis presented in Section 4.2.2.
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Figure 4.12: Specific compositions of microbiota differentially effect the cell
numbers and cytokine levels in the colon. Counts of immune cells (a) and concen-
tration of cytokines (b) for each initial microbial composition in the cecum in the absence
of Hh. Data represented is the mean of 10 simulations for each of the 34 initial microbial
compositions in the absence of Hh. Parameter sets are coloured to correspond to the
groups identified in the cluster analysis presented in Section 4.2.2.
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Figure 4.13: Cluster analysis that demonstrates how specific compositions of
microbiota result in differences in the mean numbers of cells and levels of
cytokines in the cecum and colon. (a) Dendrogram clustering the mean results
under the 34 initial compositions generated in Section 4.0.1. The parameter sets in each
of the four distinct clusters are highlighted in different colours. (b) Dendrogram of the
same results as in (a) clustered by the initial microbial compositions. Parameter set colours
are representative of the cluster in (a) that the results belonged to. Data represented is
the mean of 10 simulations for each of the 34 initial microbial compositions.
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Figure 4.15: PRCCs between the ODE parameters and the corresponding
simulated measures. Correlations shown are between the average results of 10 simu-
lated runs with each parameter set with strong negative correlation indicated in red and
strong positive correlation in green with white representing no correlation. Definitions of
parameters on the X and measures on the Y axis are given in Appendix E.
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4.2.3 Alteration of the Microbiota Affects Disease Outcome in Hh-

Induced Intestinal Inflammation

Once the level of inflammation in the absence of Hh had been explored, the model was

used to explore whether the differences in microbial composition would result in differences

in disease phenotype following infection with Hh. Looking at the numbers of cells over all

potential microbial compositions gave an idea of the disease phenotypes that can emerge

following infection with Hh (Figure 4.16). Three distinct patterns could be identified

by looking at how the number of cells change over time. One group had no change in

cell numbers throughout infection and is highlighted in red (Figure 4.16, left panels).

There are two subsets of this group in terms of Hh, the first is a case where Hh failed to

colonise, and the second is a case where Hh did colonise but never reached sufficiently high

levels in the population of microbiota to cause inflammation to occur. The second group

that could be identified from looking at the how the numbers of cells change over time

corresponded to non-resolving disease phenotype and is highlighted in green (Figure 4.16,

middle panels). In this group, cell numbers showed an initial increase in response to Hh

that peaked early on in infection and remained at a higher stable level throughout the

remainder of the simulation. The Hh load in this group either peaked early in infection and

fell to lower levels where it remains throughout the rest of the simulation, or reached its

peak and then remained there for the rest of the simulation. The final group, highlighted

in blue, appeared to be a Hh-driven relapsing remitting phenotype, highlighted in blue

(Figure 4.16, right panels). In this group, both cell numbers and Hh burdens oscillate over

time and there was a huge amount of variation in the change in the number of cells over

time.

Performing a cluster analysis on all of the simulated data would determine if there was

a relationship between the initial microbial compositions and the level of inflammation

that developed following infection with Hh. In the absence of Hh, a cluster analysis could

be performed on the mean value of the cell numbers and cytokine levels in the tissue

as they had reached a steady state prior to infection. However, following infection with

Hh, the cell numbers changed significantly over time (Figure 4.16), thus the mean is not

an appropriate representation of model behaviour in this case. Instead, cluster analysis
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Figure 4.16: Phenotypes of inflammation observed following infection with
Hh. Groups were selected by looking at numbers of (a) T cells, (b) DCs, (c) inflammatory
macrophages, and (d) regulatory macrophages in the cecum. The dynamics of Hh bacteria
in the cecal lumen are also shown for each group (e). Colours represent non-inflamed results
(red), non-resolving inflammation (green), and relapsing remitting inflammation (blue).
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Figure 4.17: Cluster analysis that demonstrates how specific compositions of
microbiota result in differences in the time course of the numbers of cells and
levels of cytokines in the cecum and colon. (a) Dendrogram using dynamic time
warping to cluster the time courses of results under the 34 initial compositions generated
in Section 4.0.1. The parameter sets in each of the four distinct clusters are highlighted
in different colours.

was performed, using the technique of dynamic time warping to generate a distance met-

ric (Section 2.10.2), to compare the shape of simulations. Using cluster analysis on the

distances obtained from using dynamic time warping on the data resulted in six clusters

being identified (Figure 4.17). Each cluster corresponded to a group of microbial compo-

sitions that when simulated within IBDSim, resulted in each of the measures described in

Section 2.5 following similar patterns over time. As discussed with the uninfected case in

the previous section, the number of cells and cytokines could be used to determine what

each of the groups identified by the dendrogram in Figure 4.17 represented.

The first two clusters (Figure 4.17) contain only one parameter set each and are shown

in red and pink. Further exploration of the parameter sets in these two clusters revealed

that they represented the two subsets identified in Figure 4.16 that do not develop inflam-

mation following infection with Hh.

The cluster highlighted in green (Figure 4.17) represents models that exhibited dif-

192



4.2 Exploring the Effects of Different Microbiota on Hh-Induced Colitis

ferent levels of non-relapsing inflammation, and corresponds to the subsets identified in

Figure 4.16 that do not develop inflammation. The simulations in this cluster had a higher

concentration of cytokines early in inflammation than the other clusters in both the cecum

and colon but by 21 days post infection, the concentration of cytokines in the green clus-

ter was much lower than the concentration in the the light blue or purple clusters. The

green cluster also has the highest population of polarised T cells at days 0 and 7, mostly

displaying a Th1 and DP phenotype (Figures 4.22a,4.22b).

The remaining three clusters (Figure 4.17) represent relapsing-remitting inflammation,

and all correspond to the group highlighted in blue in Figure 4.16. This means that

cluster analysis has led to the identification of three subsets within the relapsing remitting

group in Figure 4.16 that are phenotypically distinct from each other. The cluster that is

highlighted in dark blue (Figure 4.17, far right hand side) represents less severe relapsing-

remitting inflammation than the two groups highlighted in light blue and purple. Looking

at the changes in the cells and cytokines in the cecum (Sections 4.2.3,4.2.3) and colon

(Sections 4.2.3,4.2.3) during inflammation can help to determine the differences between

the cases of relapsing remitting inflammation. The inflammation in the cluster highlighted

in dark blue differs from the other clusters of relapsing-remitting inflammation in a number

of ways. Firstly, the number of cells and concentrations of cytokines at day 0 are higher

under the microbial compositions in the dark blue cluster than in the other two clusters

that represent relapsing-remitting inflammation in both the cecum (Figures 4.18a,4.19a)

and colon (Figures 4.20a,4.21a). This is also true at day 45, during the resolution phase

(Figures 4.18e,4.19e, Figures 4.20e,4.21e). Secondly, the number of cells and levels of

cytokines at peak inflammation, at day 21, are lower in the simulations that are in the

dark blue cluster than in the light blue or purple clusters in both the cecum (Figure 4.18d),

and the colon (Figure 4.19d). Specifically, simulations that fall into the dark blue cluster

have less inflammatory macrophages when compared to those in the light blue and purple

clusters, suggesting a lack of IFN-γ. This is not surprising since most of the parameter

sets in the dark blue cluster are the same as those that induced moderate inflammation

in the absence of Hh in the previous section, where the same trend was identified.

The light blue and purple clusters are more similar to each other than to the dark

blue cluster in terms of total cell numbers, especially up to day 21 post infection (Fig-
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ures 4.20d,4.21d). However, by day 45 during the remission phase (Figures 4.18e,4.19e,

Figures 4.20e,4.21e) and at day 91 during the relapse (Figures 4.18f,4.19f, Figures 4.20f,4.21f),

the total cell numbers are higher in the cluster highlighted in light blue than those high-

lighted in purple. Further, at later time points in infection, the number of regulatory

macrophages is significantly higher in the cluster highlighted in light blue than those

highlighted in purple, suggesting a much lower level of IFN-γ in the light blue cluster.

However there is no evidence that the microbial compositions that were used in simula-

tions that were clustered into the light blue cluster have a lower number of IFN-γ-inducing

bacteria . Exploring the T-cell populations did not lead to any further insight into the

cause of the increased population of regulatory macrophages in the light blue group (Sec-

tion 4.2.3). Conversely, the number of regulatory macrophages is higher in the light blue

group than in the purple one throughout inflammation (Section 4.2.3). This could be due

to a slight increase in the number of cells that are double positive for both IFN-γ and

IL17 in the dark blue group at days 21 and 45 (Section 4.2.3).

As with the uninfected case, the initial microbial compositions cannot be used to pre-

dict the kind of inflammation that will occur following Hh infection. Neither can the

microbial compositions be used to identify the cause of the differences in the severity of

inflammation (in terms of cell numbers and cytokine concentrations) between the clusters.

Exploring the significant correlations at different time points post Hh infection can help to

elucidate the important processes governing each phase of inflammation. Correlations were

analysed at 7, 14, 21, 45, and 91 days post-Hh infection, however significant correlations

were only found at days 7, 14, and 91 (Figure 4.23, Appendix F). At day 7, Hh-induced

inflammation is in the development phase (Figure 4.18b,Figure 4.20b). Significant corre-

lations at this time point give information into parameters that are responsible for how

quickly or slowly inflammation develops. At day 14, cell numbers in Hh-induced non-

relapsing inflammation have peaked and the number of cells in the two most severe group

of relapsing-remitting phenotypes have reached a higher level (Figure 4.18c,Figure 4.20c).

Significant correlations at this time point give information into parameters responsible for

the severity of inflammation in the system. At day 91, Hh-induced relapsing remitting

inflammation is in a remission phase, and is starting to relapse (Figure 4.18f,Figure 4.20f).

Significant correlations at this time point give information into parameters responsible for
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the resolving inflammation in the system.

IFN-γ is implicated in determining the onset of inflammation, as well as

the severity

As in the uninfected case, the positive correlation of bifng,il12 and negative correlation of

bil12,ifng with the number of T cells in the cecum, colon and MLN at day 7 means that

the more IL12-inducing bacteria promotes IFN-γ-inducing bacteria, and the more IFN-γ-

inducing bacteria inhibits IL12-inducing bacteria, the higher the number of T cells in the

system is likely to be. Conversely, the number of Hh bacteria in the system is expected to

be lower since it has a negative correlation with bifng,il12 and a positive correlation with

bil12,ifng . This suggests that overall, IFN-γ is more important than IL12 in causing an

immune response earlier in inflammation that will quickly reduce the bacterial burden.

The positive correlation with IL17 and IL21 is most likely to be a result of the increasing

T cell numbers in the tissue caused by IFN-γ. In addition, parameter btgfb,ifng is strongly

positively correlated with an increase in the number of DCs and the concentration of

IFN-γ, IL17, and IL21 in the cecum, an increase in the number of T cells and regulatory

macrophages in the colon, and the number of activated cells in the MLN. This further

demonstrates that IFN-γ plays an important role in T cell induced inflammation because

IL17 and IL21 are only produced by T cells in the model.

At day 14, bifng,il12 and bil12,ifng are positively and negatively correlated with the

number of T cells in the same way as at day 7. These parameters are also significantly

correlated with the total concentration of activating cytokine CaE . This suggests that a

non-significant increase in IFN-γ can lead to an increase in other cytokines that lead to

a significant difference in the total amount. This is most likely due to the non-significant

increases in IFN-γ stimulating macrophages to secrete a higher concentration cytokines

and due to increasing the level of Th1-cell polarisation.
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IL6 is implicated in determining both the onset of inflammation, and in

increasing the severity of inflammation, but is not expected to play a key

role in disease induction

At day 7, the proliferation rate of Xil6 in the competition model, ail6, is positively cor-

related with with the number of T cells and inflammatory and regulatory macrophages

as well as the concentration of cytokines IL17 and IL21 in the cecum. In the colon, ail6

positively correlates with the number of secreting epithelial cells, and in the MLN, there is

a positive correlation between ail6 and the numbers of both DCs and T cells (Figure 4.23,

Appendix F). This means that the faster IL6-inducing bacteria proliferate, the more of

these cells and cytokines emerge in the system by day 7. No significant correlations were

identifies for the proliferation rates of other bacterial species indicating that the prolifer-

ation rate of IL6-inducing bacteria, but not the proliferation rate of any other bacterial

populations, is partly responsible for controlling the onset of inflammation.

As IL6 is responsible for the development of Th17 cells, these result suggests that the

presence of Th17 cells early in inflammation leads to an immune response that develops

quicker than inflammation with a smaller number of these cells. This is evidenced by the

fact that the models where inflammation reaches a stable level early in inflammation have

a large number of cells that are double positive for IFN-γ and IL17 at 7 days post-infection

(Figure 4.22c) that can only occur following the development of Th17 cells. In addition,

at day 7 there is a negative correlation bil6,il12 and the number of T cells in the cecum

meaning that the more IL6 is inhibited by IL12, the less T cells and cytokines there are

in the tissue. The reason for these trends occurring are similar to those observed in an

uninfected state, and further confirms that IL6 is an important component in controlling

the speed at which the immune response to Hh is mounted.

At day 14, ail6 was positively correlated with the number of T cells and inflammatory

macrophages in the cecum as it was at day 7 Figure 4.23, Appendix F). At day 14, ail6 was

also correlated with the number of secreting epithelial cells (Ep), as well as the concen-

trations of cytokines IFN-γ, IL12, IL17, TGF-β, and IL21, and the overall concentration

of activating cytokine CaE (Figure 4.23, Appendix F). In the colon ail6 was positively

correlated with the total number of T cells, inflammatory and regulatory macrophages
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and epithelial cells, as well as the concentration of cytokines IL17 and IL21, and the total

concentration of activating cytokine CaE Figure 4.23, Appendix F). This suggests that

the proliferation rate of IL6-inducing bacteria is important in determining the severity of

inflammation, and that it causes a large number of Th17 cells to occur. This is further ev-

idenced by the number of Th17 and double positive cells in simulations that have resulted

in a high level of inflammation infection with Hh (Figure 4.22c).

At day 91, ail6 is only significantly positively correlated with the number of DCs in

the cecum and colon as well as with the number of activated T cells in the MLN. This

suggests that ail6 is not as much of an important factor in causing a relapse in inflammation

following resolution.

The positive correlation between il6, the number of IL6-inducing bacteria that are

present in the lumen at the start of infection (Xil6), and the number of T cells in the

tissue, and the negative correlation of this parameter with the number of DCs agrees

with what was observed for ail6. Interestingly at day 91, this parameter is negatively

correlated with cell numbers and cytokine concentrations indicating that during relapsing

phase, suggesting that a large level of IL6 later on in inflammation may be responsible for

inducing resolution.

TGF-β plays a role in controlling the onset of inflammation, but not in

determining the severity or inducing a relapse.

The positive correlation btgfb,ifng and the number of T cells in the colon and MLN at day

7 means that the more TGF-β is promoted by IFN-γ, the more T cells and cytokines there

are in these compartments Figure 4.23, Appendix F). As TGF-β is an anti-inflammatory

cytokine, and does not contribute to epithelial cell wall damage, it is expected that this

trend links strongly with an increase in the number of Th17 cells in the tissue. Thus, in

the context of severe inflammation where there is a well mixed cytokine milieu, TGF-β

actually serves as an inflammatory cytokine. This idea has also been suggested by Sanjabi

et al. (2009). The parameter btgfb,ifng does not significantly effect cell numbers in the

cecum or colon at days 14, or 21 post infection.
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4.2.4 Conclusion

Th17 cells are important in determining both the onset of inflammation, and in increasing

the severity of inflammation, but do not play a key role in disease induction. This is

demonstrated by the PRCCs listed above that show that both IL6 and TGF-β increase

at days 7 and 14 post Hh infection when inflammation is being induced, but not at days

0 or 91 post Hh infection when inflammation is developing or relapsing. In fact, there is

evidence that Th17 cells play a role in reducing inflammation at day 91 post infection,

meaning that these cells could be responsible for inducing the remission of disease seen by

Morrison et al. (2013). This idea correlates with data presented by Morrison et al. (2013)

that shows that Th17 cells are increased (compared to Th1 cells) in resolving and resolved

disease.

In addition, Th1 cells are also important in inducing inflammation and it has been

shown that IFN-γ is important in the induction but not necessarily the maintenance of

Hh-induced intestinal inflammation, and in particular the role of IFN-γ is more important

than IL12.

4.2.5 Summary

Taken as a whole the results in this chapter demonstrate that an alteration of the mi-

crobiota alone is sufficient to produce different phenotypes of inflammation. This chapter

also demonstrates the importance of both Th1 and Th17 cells in driving, maintaining, and

resolving Hh intestinal inflammation.

The model of the commensal bacteria presented in this chapter is highly theoretical

and although it captures total numbers of different groups of bacteria in the cecal and

colonic lumen, in reality a spatial model similar to that used in the original representation

of Hh in Chapter 2 would better represent the dynamics of an invading species of bacteria.

Such a model would include several species of bacteria each with their own growth, death

and competition parameters and currently there is insufficient data to support a model of

this kind. Further, for a more complex model to be integrated into the system a better

understanding of how each type of bacteria interacts with the immune system would be

required.
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The concept of grouping of bacteria by the cytokine responses it induces in innate

immune cells as has been done in this work removes the requirement of knowing exactly

how each species reacts with the environment but it is not known if in biology a single

species of bacterium can induce more than one type of cytokine response from the innate

cells. However, because the total number of bacteria in the cecal and colonic lumen are only

estimates, it is possible that each bacterium contributes to a number of different groups.

In an ABM of the bacteria in the lumen it would be possible to assign multiple cytokine-

inducing types to each agent in the model resulting in a model that was much closer to

biology but collecting the data behind the model would be extremely time consuming and

involve several in vitro experiments to examine the response of polarised APCs to species

of bacteria that had been isolated from the gut of IL10KO mice.
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Figure 4.18: Specific compositions of microbiota differentially effect the cell
numbers in the cecum over the course of Hh infection. Counts of immune cells for
each initial microbial composition in the cecum are shown at days (a) 0, (b) 7, (c) 14, (d)
21, (e) 45 and (f) 91 days post infection with Hh (PI). Data represented is the mean of 10
simulations for each of the 34 initial microbial compositions developed in Section 4.0.1.
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Figure 4.19: Specific compositions of microbiota differentially effect cytokine
concentrations in the cecum over the course of Hh infection. Concentrations of
cytokines for each initial microbial composition in the cecum are shown at days (a) 0, (b)
7, (c) 14, (d) 21, (e) 45 and (f) 91 days post infection with Hh (PI). Data represented is
the mean of 10 simulations for each of the 34 initial microbial compositions developed in
Section 4.0.1.
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Figure 4.20: Specific compositions of microbiota differentially effect the cell
numbers and cytokine levels in the colon over the course of Hh infection.
Counts of immune cells for each initial microbial composition in the cecum are shown at
days (a) 0, (b) 7, (c) 14, (d) 21, (e) 45 and (f) 91 days post infection with Hh (PI). Data
represented is the mean of 10 simulations for each of the 34 initial microbial compositions
developed in Section 4.0.1.
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Figure 4.21: Specific compositions of microbiota differentially effect cytokine
concentrations in the colon over the course of Hh infection. Concentrations of
cytokines for each initial microbial composition in the cecum are shown at days (a) 0, (b)
7, (c) 14, (d) 21, (e) 45 and (f) 91 days post infection with Hh (PI). Data represented is
the mean of 10 simulations for each of the 34 initial microbial developed in Section 4.0.1.
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Figure 4.22: T cell populations change over the course of Hh-infection but
similar trends are observed for all phenotypes. The number of double-negative
(DN, pink), Th1 (green), Th17 (blue) and double-positive (DP, purple) cells in the cecum
are shown at days 0 (a), 7 (b), 14 (c), 21 (d) and 45 (e) days post Hhinfection for each
microbial composition developed in Section 4.0.1. The data shown is the mean ± standard
deviation of 10 runs
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Figure 4.23: PRCCs between the ODE parameters and the corresponding
simulated measures. Correlations shown are between the average results of 10 simulated
runs with each microbial composition generated in Section 4.0.1, with strong negative
correlation indicated in red and strong positive correlation in green with white representing
no correlation. Correlations are shown at 0 (a), 7 (b), 14 (c) and 45 (d) days post infection
with Hh.
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Chapter 5

Discussion

This thesis aimed to develop a computational model of the processes active in the gut

during Hh-induced intestinal inflammation that could be used for performing in silico

experimentation. The purpose of the model was to explore the effects of a lymphocyte

blocking drug, and determine whether differences in microbiota alone are sufficient to

cause alterations in the phenotypes of disease in Hh-induced colitis. This chapter reviews

the ways in which these aims have been met and how this study has contributed to the

wider field of systems biology by the development of the ASPASIA toolkit.

5.1 Development of a Computational Model of Hh-Induced

Colitis

Chapter 2 of this thesis details the development of IBDSim, a computational model of the

inflammatory processes active in the intestinal tract during Hh-induced colitis The CoS-

MoS process (Andrews et al., 2010), reviewed in Section 1.5.0.2, has provided a framework

for developing and validating the model, and a series of diagrams have been developed

to document the way in which the biological domain has been modelled. These diagrams

make up the domain and platform models for IBDSim (Section 2.2 and Section 2.3, re-

spectively), and have been developed as a result of a collaboration between experimental

immunologists and computational modellers. The diagrams shown in this thesis are the

final result of several iterations of models that were developed to ensure that the model

adequately captured the important aspects of biology, and to highlight gaps in biological
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knowledge. The domain model that describes the biology behind IBDSim (Section 2.2)

was approved by the domain expert, and it was decided that what was known about the

biological processes driving the development of intestinal inflammation in Hh-induced col-

itis had been captured in the diagrams. Subsequently, the platform model (Section 2.3)

was developed, and IBDSim was implemented using the platform model diagrams as a blue

print. During the model development phase as part of the simulation platform, unknown

parameters were calibrated so that each individual cell type behaved as expected using

methods previously utilised by (Read et al., 2012). The parameter values found through

calibration led to model output that was statistically similar to data collected from in vivo

studies by Morrison et al. (2013). Moreover, IBDSim captured the emergent behaviours

defined in Section 2.2.1:

Emergent Behaviour 1 The bacterial load in the cecal lumen is undetectable before Hh

inoculation, peaks at around 4 days post infection, is low by day 14, and remains

low at all further time points.

Emergent Behaviour 2 The level of inflammation in the large intestine is moderate by

7 days post Hh infection, and severe by day 14.

Emergence of the first behaviour was important to ensure that the mechanisms causing

inflammation were adequately captured. The Hh bacterial load in infected RAG KO

mice is higher than in infected IL-10 KO mice, thus there is evidence that adaptive cells

in the lamina propria contribute to the immune response against Hh. If Hh dynamics

were hard-coded into the model, rather than emerging as a result of interactions between

other cells in the system, IBDSim would not adequately capture this concept. In this

instance, there would be no confidence that the behaviours of cells that contribute to

the immune response against Hh had been adequately captured, and it would be unclear

whether results obtained through explorative experimentation were truly representative

of the conditions under which the experiment was performed, or whether they were an

artefact of misrepresenting the bacterial burden.

The second emergent behaviour was intentionally vaguely defined to reduce bias that

could be introduced by predefining what is contributing to inflammation at these time

points. Morrison et al. (2013) demonstrated that there is a 10-fold increase in immune
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cells, and a 4-fold increase in CD4+ T cells in the cecum and colon by 14 days post infection

with Hh. It has also been shown by ELISA that the concentration of IFN-γ and IL17 in

the colonic lamina propria is increased at day 14, and the distribution of Th1 and Th17

cells at these time points have been recorded (Morrison et al., 2013). Any of these features

could have been defined as an observable phenomena, but this assumes that relationships

identified between these observations and the level of inflammation recorded by histology

scoring are causative. Had the observable phenomena that the model was expected to

reproduce been defined in terms of specific cell types or cytokines, instead of more broadly,

in terms of inflammation, it would have led to a biased assumption of the important factors

that drive inflammation. The development of an in silico inflammation scoring system that

can be directly linked to features of inflammation in biology has provided a less biased

way to determine how predicted alterations in cell counts and cytokine levels from in silico

experimentation would relate to the overall level of inflammation in the in vivo system.

After the emergent behaviours had been adequately captured, validation experiments

were performed to assess the predictive capabilities of IBDSim (Section 2.8). The aim

was to perform a set of experiments where the in vivo results had already been published

so that conclusions drawn from in silico experimentation could be verified. The in vivo

results chosen to be replicated using IBDSim were:

Experiment 1 Uninfected IL-10 KO mice do not develop inflammation when kept in

SPF facilities (Berg et al., 1996)

Experiment 2 IL-10 KO mice kept in germ-free conditions, which lack commensal flora,

display little pathology following Hh infection (Dieleman et al., 2000)

These experiments validated that the inflammation in the model was emergent. In-

flammation did not develop in the absence of either Hh or commensal bacteria. Thus, the

mechanisms defined to govern the interactions between cells and cytokines were deemed

to appropriately represent what occurs in vivo. Further, direct comparison of in silico

cell numbers and cytokine levels with in vivo data, as well as the simulated inflammation

score with the in vivo histology score, verified that the in silico inflammation score that

had been developed adequately captured the level of inflammation.

As a result of model calibration and confirmative experimentation, IBDSim was con-
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sidered to be an appropriate tool for performing in silico experimentation that informed

the in vivo Hh-induced colitis model.

Chapter 1 detailed previous models for studying intestinal inflammation. None of

these models were appropriate for this case study as they did not have the flexibility to

incorporate changes to the model required to investigate the impact of therapeutic drugs.

Neither did they capture the phenomena of Th17-cell phenotype switching that was im-

portant in capturing the dynamics in our model. Instead, concepts from these models,

were integrated into a bespoke simulation, IBDSim. A toolkit for experimentation, as well

as the source code for the simulation will be made available from the York Computational

Immuology Lab website (https://www.york.ac.uk/computational-immunology/ ). By mak-

ing the toolkit and the source code available, there is potential for this model to be used

to drive further insight into biology without any additional modelling required, or to be

redeveloped and integrated into other models by someone with the right expertise.

5.2 Biological Hypotheses Explored by IBDSim

The experiments outlined in Chapter 3 and Chapter 4 are examples of how the model can

be used for testing therapeutic targets, and for increasing understanding of the processes

driving inflammation. In Chapter 3, the effects of blocking lymphocyte egress from the

MLN on inflammation using an S1P agonist, FTY720, were explored. FTY720 has been

used in several animal disease models with varying effects, but its efficacy in Hh-induced

colitis had not yet been analysed. To perform this experiment a PK model of the distribu-

tion of FTY720 in mice was developed, and a PD model was also developed to examine the

effect that the drug had on an individual T cell. These two models were integrated with

IBDSim and the effects of the drug on the level of inflammation in silico was examined in

three different scenarios.

1. FTY720 as a treatment for blocking the development of intestinal in-

flammation The first scenario explored the suitability of FTY720 to block the

development of intestinal inflammation when FTY720 was administered daily from

the same time point as Hh. In this case, FTY720 significantly reduced cell numbers

compared to Hh alone but did not significantly reduce inflammation.
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2. FTY720 as a treatment for blocking the development of intestinal inflam-

mation (early administration)

The second scenario explored the suitability of FTY720 as a therapeutic treatment

to blocking the development of intestinal inflammation when administered daily from

6 days prior to Hh inoculation. This allowed FTY720 to saturate the lymph node

before infection. The results demonstrated that allowing FTY720 to saturate be-

fore Hh administration does not result in a more effective blocking of Hh-induced

intestinal inflammation than if FTY720 was given from day 0.

3. FTY720 as a treatment for resolving established disease (late adminis-

tration)

The final scenario explored the suitability of FTY720 as a therapeutic treatment

for blocking established disease. In this study FTY720 was administered daily from

14 days post Hh infection, when peak inflammation had developed. In this case

FTY720 administration significantly reduced cell numbers and cytokine levels in the

lamina propria, but did not effectively resolve inflammation back to the levels seen

at day 0.

Unlike other colitis models where FTY720 has proved to be effective in both blocking

inflammation and resolving established disease (Daniel et al., 2007; Deguchi et al., 2006;

Fujii et al., 2006; Mizushima et al., 2004), in Hh-induced colitis the drug failed to have any

significant overall effect. Thus, the results suggest that FTY720 is not a good therapeu-

tic treatment for Hh-induced intestinal inflammation. The results observed for FTY720

treatment using IBDSim are not the first to find FTY720 to have no effect on disease. For

example an in vivo study by Kataoka et al. (2005), showed that treating with FTY720

enhanced disease symptoms in mice infected with Citrobacter rodentium. In that case

study, the Citrobacter load was increased following administration of FTY720, leading to

a worsening of disease symptoms (Kataoka et al., 2005). Taken together, the results from

the in silico experimentation, combined with the Citrobacter rodentium study by Kataoka

et al. (2005), present the case that FTY720 treatment is not appropriate for bacterially-

driven disease, because it impairs clearance of the bacterium. However, in humans, IBD

is not thought to be driven by a specific type of bacteria thus this does not rule out the
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efficacy of FTY720 in human disease.

Intestinal inflammation in Hh-induced colitis in IL-10 KO mice in vivo has been shown

to be dependent on the presence of commensal bacteria (Dieleman et al., 2000). Further,

Yang et al. (2013) hypothesised that the composition of the microbiota in IL-10 deficient

mice could contribute to the susceptibility to Hh-induced colitis. IBDSim was used to

explore the way in which different microbial compositions could contribute to the suscep-

tibility to, and severity of Hh-induced intestinal inflammation (Chapter 4). The model

developed in Chapter 4 to describe the compositions of intestinal microbiota was highly

theoretical. As the bacterial species in the model are representative of several species

combined in biology, the model cannot be calibrated to biological data, and has instead

had to be phenomenologically linked to in vivo data. A similar approach was used to look

at the interactions between the mucosal immune system and the gut microbiome during

Clostridium difficile infection (Leber et al., 2015). However, in that model, the commensal

flora was divided into a population of infection-exacerbating commensal species, a popu-

lation of protective species, and the Clostridium difficile population (Leber et al., 2015).

In the model of Clostridium difficile infection, the protective species can grow and die

at rates defined by the parameter value, but the infection exacerbating species only has

a death rate, not a birth rate, so its population is constantly declining, an abstraction

that could bias the model and force resolution. In the model presented in Chapter 4, the

bacterial species are grouped by the cytokine that they induce in DCs and macrophages.

The groups were defined as IFN-γ-inducing, IL-12-inducing, IL-6-inducing and TGF-β-

inducing, with the intention that they would be used to induce Th1 (IFN-γ, and IL-12),

Th17 (IL-6 + TGF-β), and Treg (TGF-β alone) cells. Unlike the Clostridium difficile

infection model where the microbiome was biased to become purely protective, the dual

functionality of TGF-β to induce either a Th17, or a Treg phenotype in the models used

in Chapter 4 meant that it is not possible to predict how a simulation will react by purely

increasing the proportion of supposedly protective bacteria in the population. Using this

model, it was shown that alteration of the microbiota alone is sufficient to cause changes

in pathology following Hh infection, as proposed by Yang et al. (2013). Performing sensi-

tivity analyses on the parameters used in the competition models suggested that, in the

absence of Hh, an increased concentration of IFN-γ, and the the development of Th17
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cells were essential for inducing intestinal inflammation. Further, it was suggested that

following Hh infection,

• IFN-γ is important in determining the speed at which inflammation develops, as

well as the severity of disease.

• IL-6 is important in determining both the speed at which inflammation develops,

and in increasing its severity, but does not play a key role in the induction of disease.

• TGF-β plays a role in controlling the speed at which inflammation develops but not

in determining its severity, or inducing a relapse of resolved inflammation.

The role of IFN-γ early in infection identified by the model supports results by Kullberg

et al. (2001), who found that blocking IFN-γ could not resolve established inflammation,

but that mice treated with an anti-IFN-γ antibody did not develop inflammation following

infection with Hh. The inability of IL6 and TGF-β to induce inflammation fit with results

by (Morrison et al., 2013) who observed an increase in the proportion of Th17 cells in the

cecum and colon when during severe inflammation, and when inflammation was resolving

but not during the initial development phase.

5.3 Contribution to the wider Systems Biology Field

Through creating IBDSim, developments have been made that will benefit the wider sys-

tems biology field. ASPASIA was developed by Evans et al. (submitted) to allow sensi-

tivity analysis of SBML models where an intervention was required to adequately model

behaviours. The ASPASIA toolkit was initially developed to aid calibration of the T-cell

polarisation model demonstrated in Section 2.3.4.3. It was later used to calibrate the PK

model to capture the dynamics of FTY720 in Chapter 3, and again to generate a set of

models for the experiments performed in Chapter 4. This toolkit will be of use to the wider

systems biology field and complements other tools available to allow detailed analysis of

SBML models.

Following the development of SBML models to represent certain aspects of IBDSim,

a system was developed for simulating SBML models inside agents in the ABM, a novel

development in the field. Thus, this work details a system for modular module development
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in which parts of a hybrid ABM can be developed and the behaviours explored individually

before being integrated to form a more complex hybrid model. Two examples of the

advantages to this approach are demonstrated by the use of the T-cell polarisation model

in Chapter 2, and the PK model of the distribution of FTY720 in Chapter 3. The T-cell

polarisation model was developed and tested by Evans et al. (submitted), where it was

used to generate insight into the properties that a receptor hypothetically responsible for

driving phenotype switching of Th17 cells must possess. Through the development of

the SBML-Java integration framework, this model was able to be directly incorporated

into T-cell agents in IBDSim, and the same tests performed on the integrated model.

Furthermore, using this approach allowed data on the phenotype of T cells to be collected

using similar methods in silico to in vivo flow cytometry.

The PK model of the distribution of FTY720 in Chapter 3 was developed and tested

as a self-contained SBML model, allowing for experimentation into how the increasing

volume of a compartment during inflammation might effect the pharmacokinetics of the

drug. Integrating this model with the ABM using the SBML-Java integration framework

allowed the compartment volume to be dynamically updated. This was important as the

concentration of FTY720 in each compartment was shown to be highly sensitive to the

compartment volume (Section 3.1), and the effects of FTY720 on compartment volumes

were unknown a priori.

5.4 Future Directions

5.4.1 Verifying model predictions in vivo

The prediction that FTY720 reduces cell numbers and inflammation to a moderate level

has been generated by simulating cell behaviour and recording cell counts and cytokine

concentrations at different time points post Hh infection. To build confidence in future

predictions generated by the model, the best practice is to verify predictions in vivo. The

results of comparing in vivo and in silico data could then be used to better inform the

next iteration of the model, as advocated by the CoSMoS process (Andrews et al., 2010).

Comparison of in vivo and in silico data would also be a way to validate the inflammation

scoring system generated in Chapter 2. Work is currently in progress to complete this
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experimentation in vivo.

5.4.2 Improving IBDSim

The theoretical model used to represent the microbiota in Chapter 4 resulted in three

different phenotypes of inflammation. While the non-inflammed case matches what has

been observed by Yang et al. (2013), and the non-resolving phenotype matches what

was observed by (Kullberg et al., 1998), the relapsing remitting phenotype has not been

observed in vivo. However, there is no evidence to suggest that this phenotype cannot

develop in vivo, and in some circumstances this might occur, as this phenotype of disease

is most similar to human IBD. It would however be an interesting problem to try and

calibrate this model to replicate what was observed by Morrison et al. (2013) in the

University of York facility, that inflammation develops and spontaneously resolves. In

this model, inflammation cannot be re-induced after resolution by infecting with another

dose of Hh (unpublished data). To fit the model to a specific case, there are two options,

either the model can be recalibrated so that the dynamics of Hh are correct and then the

parameter set that gives results that are most similar to those observed by Morrison et al.

(2013) can be identified and experimentation can be performed, or if data was available

for the composition of intestinal flora of IL-10 KO mice at the University of York, a

more complex microbiota model could be developed that can be used to determine which

types of bacteria are correlated with more or less severe disease progression, and with

the appearance of resolving inflammation. Such a model would incorporate metabolites

such as butyrate, acetate and propionate, and environmental factors such as the pH of

the gut environment to accurately capture the processes that shape the composition of

the intestinal microbiota. A similar model has recently been developed for human data

by Kettle et al. (2015).

Integration of a more complicated model would drive experimentation into the factors

influencing disease resolution and subsequent resistance in Hh-induced colitis. This infor-

mation could lead to the development of new therapeutic targets for inducing resolution

and resistance of humans to IBDs.
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5.4.3 Extending IBDSim

The BioModels data base (Li et al., 2010) hosts a wide variety of SBML models that can

easily be extended or modified. Through the use of the SBML-Java integration model,

any existing SBML model can be imported into the ABM to extend the model; however,

the interactions between the simulation and the SBML model would need to be coded in

every time. Nevertheless, this method provides the opportunity for IBDSim to be extended

in numerous ways. Firstly, any PK-PD model can be integrated into the simulations to

quickly and ethically explore the effects of a drug on intestinal inflammation. Based on the

correlations observed in Chapter 4, treatments that target IFN-γ early in disease, or work

to flip the balance of Th1 to Th17 cells in established inflammation, could help reduce the

level of inflammation, or lower the chance of a relapse.

Another potential extension would be to better model the epithelial barrier. The cur-

rent representation is crude and deterministic. A mechanistic model of barrier development

and function could be linked to the microbiota models discussed in Chapter 4 to help gain

a better understanding of how barrier function is altered during disease progression. Com-

puGut (Moorthy et al., 2015) is a newly developed tool for modelling the gut environment.

Integrating a system like this into IBDSim, in place of the current representation of the

cecal and colonic lumen compartments, would greatly increase the complexity of the gut

environment and introduce into the model more causative factors, such as the type of diet

that the mice are being fed. This would allow the IBDSim to predict the effects of diet

on disease development.

5.5 Further Challenges in the Systems Biology Field

5.5.1 Confidence in Simulation

Building confidence in a newly developed simulation is one of the greatest challenges mod-

ellers face. Uncertainty in a model is present throughout the modelling process including

variability the underlying data, the stochastic nature of a model and in the suitability of

abstractions made throughout the modelling process. Documenting the model following

protocols such as ODD or the CoSMoS framework go some way towards providing trans-

parency and traceability throughout the modelling process but there is still a degree of
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scepticism surrounding the results of computational models of biological systems. By us-

ing the spartan toolkit to provide techniques to quantify aleatory uncertainty and model

sensitivity, confidence can increase further. However, quantifying uncertainty does not

remove it from the system and it is important that modelling results are always given

in the context of a suitable margin of error in which confidence in the way in which the

results effect the biological system is high.

5.5.2 Standardising Modelling Frameworks

A key challenge in the development of computational models is that there is no standard-

ised framework that can be adopted by modellers to ensure that models can be shared,

and understood, between different groups and fields. While the development of SBML

(Hucka et al., 2003) has partly bridged this gap for systems modelling using ODEs, the

existence of other frameworks such as CellML (Lloyd et al., 2004), SED-ML (Bergmann

et al., 2015), and PharmML (Swat et al., 2015) means that there is still not one consistent

language used by modellers. Although packages for developing ABMs do exist, they do

not have any functionality to directly interact with other modelling languages. Addressing

the challenge of standardisation and integration of modelling techniques, although not a

trivial task, would allow computational approaches to be more widely used in biology, and

increase confidence in results. Moreover, increasing model portability has the potential to

dramatically speed up the modelling process.
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Model Parameters

Table A.1: Parameters in IBDSim

Parameter Definition Value Evidence

IBDSim

heightMLN Length of shortest edge of MLN

compartment

36sq

(1.8mm)

Figure 2.11a

widthMLN Length of longest edge of MLN

compartment

228sq

(11.4mm)

Figure 2.11a

heightCecum Length of shortest edge of Cecum

compartment

136sq

(6.8mm)

Figure 2.11b

widthCecum Length of longest edge of Cecum

compartment

544sq

(27.2mm)

Figure 2.11b

heightColon Length of shortest edge of Colon

compartment

60sq

(3.0mm)

Figure 2.11b

widthColon Length of longest edge of Colon

compartment

1348sq

(67.4mm)

Figure 2.11b

LaminaPropria

inRateDC Minimum rate of entry of the

DCs into the cecum or colon

compartments

3.8 × 10−5

(cell/min)

(Jaensson et al.,

2008)

inRateM Minimum rate of entry of the

macrophages into the cecum or

colon compartments

5 × 10−5

(cell/min)

(Bain et al.,

2013)
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inRateB Minimum rate of entry of the

bacteria into the cecum or colon

compartments

0.092

(cell/min)

Arbitrary

TCell

stepSizeT The velocity of a T cell 0.25 sq/min

(11µm)

(Miller et al.,

2004)

angSDT The standard deviation of the

angle of travel away from the

straight line

0.13 rad

Section 2.4.1.2

Figure 2.35

Figure 2.14

avrgLifespanT The average lifespan of a T cell

that is in an activated state

5760 mins (Gong et al.,

2013)

lifespanSDT The standard deviation of the

lifespan of a T cell that is in an

activated state

240 mins (Gong et al.,

2013)

effectorLifespanT The average lifespan of a T cell

that is in an effector state

5760 mins Estimated from

(Westera et al.,

2013)

effectorLifespanSDT The standard deviation of the

lifespan of a T cell that is in an

effector state

5760 mins Estimated from

(Westera et al.,

2013)

effectorLifespanSDT The average lifespan of a T cell

that is in an effector state

5760 mins Estimated from

(Westera et al.,

2013)

numberOfSpecificities number of different types of anti-

gens that the total pool of T cells

can detect.

2000 Section 2.4.1.2

tcellRadius Radius of a T cell 0.1sq (5µm) (Lokeshwar,

2003)

detachTime Minimum amount of time for a

T cell to be separated from a DC

before it can bind again

60 Estimated

longBindMean Mean time that a T cell can bind

to a cognate DC

240 (Gong et al.,

2013)
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longBindSD Standard deviation of the time

that a T cell can bind to a cog-

nate DC

30 mins (Gong et al.,

2013)

prolifMean Mean time for a proliferating

T cell to produce an identical

daughter cell

720 mins (De Boer et al.,

2003)

prolifSD Standard deviation of the time

that a T cell can bind to a cog-

nate DC

60 mins (Gong et al.,

2013)

memoryProb Probability that proliferation re-

sults in a T cell entering a mem-

ory state

0.05 (Gong et al.,

2013)

DC

avrgLifespanD Lifespan of a DC 6000 mins (Chen et al.,

2007)

avrgLifespanSDD Standard deviation of the lifes-

pan of a DC

1080 mins Estimated from

Chen et al.

(2007)

DCradius Radius of a DC 0.5sq (25µm) (Miller et al.,

2004)

migrateTime The time it takes for a DC to en-

ter the MLN from the gut

480 mins (Martn-

Fontecha et al.,

2003)

sa Parameter in secretion equation 89.9 ??

sb1 Parameter in secretion equation 2.024 ??

sb2 Parameter in secretion equation 3.7× 10−4 ??

sm12 Scaling parameter for IL-12 in se-

cretion equation

6.5× 10−5 Section 2.3.4.2

sm6 Scaling parameter for IL-6 alone

in secretion equation

3.6× 10−4 Section 2.3.4.2

sm6tgfb Scaling parameter for IL-6 +

TGF-β in secretion equation

3.6× 10−4 Section 2.3.4.2

Macrophage

avrgLifespanD Lifespan of a Macrophage 14400 mins

(10 days)

(Italiani and

Boraschi, 2014)
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avrgLifespanSDM Standard deviation of the lifes-

pan of a Macrophage

1440 mins Estimated from

(Italiani and

Boraschi, 2014)

Mradius Radius of a DC 0.1sq (10µm) (Krombach

et al., 1997)

msa Parameter in secretion equation 89.9 Equation (2.4)

msb1 Parameter in secretion equation 2.024 Equation (2.4)

msb2 Parameter in secretion equation 3.7× 10−4 Equation (2.4)

msm12 Scaling parameter for IL-12 in se-

cretion equation

5 Section 2.3.4.2

msm12 Scaling parameter for IFN-γ in

secretion equation

64 Section 2.3.4.2

msm12 Scaling parameter for IL-6 alone

in secretion equation

8.0 Section 2.3.4.2

msm6tgfb Scaling parameter for IL-

6+TGF-βin secretion equation

8.0 Section 2.3.4.2

Bug

stepSizeB The velocity of Hh in the lumen 4 sq/min Section 2.3.4.1

angSDB The standard deviation of the

angle of travel away from the

straight line

0.3 rad
Section 2.3.4.1

Figure 2.14

avrgLifespanTissue The average lifespan of a bac-

terium in the tissue compart-

ment

6600 mins Section 2.3.4.1

avrgLifespanTissueSDB The standard deviation of the

lifespan of a bacterium in a tissue

compartment

30 mins Section 2.3.4.1

phagTime The time taken for a bacterium

to be phagocytosed by a DC

180 mins Figure 2.39c

Lumen

prolifProb Probability of a single Hh bac-

terium in the lumen proliferating

0.0011 /min Section 2.4.1.1

226



nutLowDeathProb Probability that a single Hh bac-

terium will die when the level of

nutrients in the environment is

low

8.35 × 10−4

/min

Section 2.4.1.1

nutLow Level of nutrients below which

Hh bacteria will die at with prob-

ability nutLowDeathProb

8.35× 10−4 Section 2.4.1.1

removeNut Amount of nutrients removed by

a single Hh bacteria

15 /cell/min Section 2.4.1.1

addNut Amount of nutrient added every

addNutTime

3 Section 2.4.1.1

addNutTime Time at which every grid square

is increased by addNut

30 mins Section 2.4.1.1

nutLowProlifThresh The threshold above which Hh

will proliferate with probability

prolifProb

250 Section 2.4.1.1

incNut Amount of nutrients added to

the nutrient grid square corre-

sponding to that of the Hh bac-

terium when it dies

15 Section 2.4.1.1

switch c Constant term in switching equa-

tion

2.9× 10−5 Section 2.4.1.1

switch b1 Rate term in switching equation 6.5× 10−8 Section 2.4.1.1

switch c Constant term in death equation 3.9× 10−6 Section 2.4.1.1

switch b1 Rate term in switching equation 8× 10−9 Section 2.4.1.1

Epithelium

lambda E Rate of duplication of an epithe-

lial cell

1.85 Section 2.4.1.3

mu E Death rate of an epithelial cell 0.5/min Section 2.4.1.3

phi E Rate of removal of non-secreting

epithelial cells due to the lack of

space caused by the presence of

secreting and non-secreting cells

(aka. crowding coefficient of ep-

ithelial cells)

1.8 × 10−4

/min/cell

Section 2.4.1.3
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eta EC Rate of duplication of an epithe-

lial cell

1.85/min/cell Section 2.4.1.3

mu CE death rate of secreting epithelial

cells due to the presence of cy-

tokines in the environment

/ml/min/cell Section 2.4.1.3
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FTY720 Mouse PK Model

Parameter Table

Parameters used in PK model of FTY720 in mice.

Parameter Meaning Value Reference

CO Cardiac output 20ml/min (Janssen et al., 2002)

Qtot Blood flow into lung

(ng/ml)

35 (ml/min/100g)

36% of CO

(Brown et al., 1997)

(Freitas et al., 1983)

Qln Blood flow into MLN
0.32% of CO

0.064ml/min
(Freitas et al., 1983)

Qrob Blood flow into rest of

body (ml/min)

158.34 Assume 1/10 of rat

Qgut Blood flow into

splanchic (ml/min)

131 (ml/min/100g)

8.82% of CO

0.5-0.792ml/min

(Brown et al., 1997)

(Freitas et al., 1983)

Qspleen Blood flow into spleen

(ml/min)

0.92% of CO (Freitas et al., 1983)

229



Chapter B: FTY720 Mouse PK Model Parameter Table

Rlung

Rln

Rgut

Rliv

Rspleen

Rrob

Tissue to blood parti-

tion coefficient in lung

Tissue to blood parti-

tion coefficient in MLN

Tissue to blood parti-

tion coefficient in gut

Tissue to blood parti-

tion coefficient in liver

Tissue to blood parti-

tion coefficient in spleen

Tissue to blood parti-

tion coefficient in rest-

of-body

41.4

22.9

11.1

34.9

34.7

1965.4

(Meno-Tetang et al.,

2006) Partition coeffi-

cients are dimensionless

and therefore do not

need scaling (Hayes and

Kruger, 2014)

Vlung Volume of lung (taken

to be equal to mass)

5.49% of BW

1.3725g
(Brown et al., 1997)

Vln Volume of MLN 12mg (Kim et al., 2008)

Vgut Volume of gut
2.53% of BW

0.5875g
(Brown et al., 1997)

Vliv Volume of liver
1.67% of BW

0.4175g
(Brown et al., 1997)

Vspleen Volume of spleen
0.35% of BW

0.0875g
(Brown et al., 1997)

Vart

Vven

Volume of arterial

blood

Volume of venous

blood

0.485

0.978
58.5ml/kg total

(NC3Rs). Assume

proportions of arterial

and venous blood are

same as in rat (5.6:11.3)
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fub Free fraction of FTY720

in blood

0.000333 Assumed to be same

as rats (Meno-Tetang

et al., 2006)

PSln Interspecies scale

down for MLN,

PSln = A(M)b.

B = 0.67

A = 188.84

M = 12mg
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Appendix C

Equations for T-cell polarisation

and cytokine secretion

dTbet

dt
=

(
at · Tbetn

(knt + Tbetn)
+

stil12
· eIL12

(etil12
+ eIL12)

+
stifng · eIFNg(
etifng + eIFNg

)
)
· 1(

1 +
RORγt
gtr

)
·
(

1 + Foxp3
gtf

)

+ βt − µt · Tbet

(C.1)

dROR− γt
dt

=

(
ar ·ROR− γtn

(knr +ROR− γtn)
+

sril6,tgfb · eIL6 · eTGFb
(eril6 + eIL6) ·

(
ertgfb + eTGFb

)
)
· 1(

1 + Tbet
grt

)
·
(

1 + Foxp3
grf

)

+ βr − µr ·ROR− γt

(C.2)

dFoxp3

dt
=


 af · Foxp3n(

knf + Foxp3n
) +

sftgfb · eTGFb(
eftgfb + eTGFb

)


 · 1(

1 + Tbet
gft

)
·
(

1 + ROR−γt
gfr

)

+ βf − µf · Foxp3

(C.3)
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diIFNg

dt
=

(
aiifng · Tbet
kiifng + Tbet

)
− µiifng · iIFNg − diifng · iIFNg (C.4)

diIL17

dt
=

(
aiil17 ·ROR− γt
kiil17 +ROR− γt

)
− µiil17 · iIL17− diil17 · iIL17 (C.5)

diIL21

dt
=

(
aiil21 ·ROR− γt
kiil21 +ROR− γt

)
− µiil21 · iIL21− diil21 · iIL21 (C.6)

diTGFb

dt
=

(
aitgfb · Foxp3
kitgfb + Foxp3

)
− µitgfb · TGFb− ditgfb · iTGFb (C.7)

deIFNg

dt
=diifng · iIFNg −mueifngeIFNg (C.8)

deIL17

dt
=diil17 · iIL17−mueiil17eIl17 (C.9)

deIL21

dt
=diil21 · iIL21−mueil21eIL21 (C.10)

deTGFb

dt
=ditgfb · iTGFb−mueitgfbeTGFb (C.11)
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Appendix D

Ranges for LHC Sampling for the

T Cell Transcription Factor Model

Table D.1: Ranges used in T cell transcription factor model calibration

ID Description Value Range Data

a1 Maximum auto-

activation rate of

T-bet

0.203833 Yates et al. (2004)

a2 Maximum auto-

activation rate of

ROR-γt

0.815603
Min: 0.00203833

Max: 2.03833
10 × either side

of value for T-

betYates et al.

(2004)

a3 Maximum pro-

duction rate of

IFN-γ

0.007497877
Min: 0.00203833

Max: 2.03833
10 × either side

of value for IFN-

γ Schulz et al.

(2009)

a4 Maximum pro-

duction rate of

IL21

0.019987613
Min: 0.000203833

Max: 0.0203833
10 × either side

of value for IFN-

γ Schulz et al.

(2009)
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a5 Maximum stimu-

lation rate of re-

ceptor X

0.019987613
Min: 5

Max: 30
Schulz et al.

(2009)

a6 Rate of T-bet pro-

motion or ROR-

γt inhibition

0.304618
Min: 0.002

Max: 2
10 × either side

of value for IL12

Schulz et al.

(2009)

b1 Basal transcrip-

tion rate of T-bet

(per min)

0.00203833 Yates et al. (2004)

b2 Basal transcrip-

tion rate of

ROR-γt

0.0172893
Min: 0.00203833

Max: 0.203833
10 × either side

of value for T-

betYates et al.

(2004)

g1 Level of ROR-γt

when transcrip-

tion of T-bet is at

half maximum

0.456596
Min: 0.0001

Max: 1.0
10 × either

side of value for

T-bet/GATA-3

Yates et al. (2004)

g2 Level of T-bet

when transcrip-

tion of ROR-γt is

at half maximum

0.83170631
Min: 0.0001

Max: 1.0
10 × either

side of value for

T-bet/GATA-3

Yates et al. (2004)

g3 Level of ROR-γt

when transcrip-

tion of IFN-γ is

at half maximum

0.625864154
Min: 0.0001

Max: 1.0
10 × either

side of value for

T-bet/GATA-3

Yates et al. (2004)
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g4 Level of T-bet

when transcrip-

tion of IL21 is at

half maximum

0.760239275
Min: 0.0001

Max: 1.0
10 × either

side of value for

T-bet/GATA-3

Yates et al. (2004)

µ1 Decay rate of T-

bet mRNA

0.096016199
Min: 0.00020833

Max: 0.020833
10 × either side

of value for T-

betYates et al.

(2004)

µ2 Decay rate of

ROR-γt mRNA

0.18586844
Min: 0.00020833

Max: 0.020833
10 × either side

of value for T-

betYates et al.

(2004)

µ3 Decay rate of C1 0.1734 Decay rate of

IL12

Bajetta et al.

(1998)

µ4 Decay rate of C17 2.038828189
Min: 0.4026

Max: 2.082
Range of decay

rates of TGF-β,

IL-6 and IL-23

Kaminska et al.

(2005); Waage

et al. (1989)

µ5 Decay rate of

IFN-γ mRNA

0.18586844
Min: 0.00020833

Max: 0.020833
10 × either side

of value for T-

betSchulz et al.

(2009)

µ6 Decay rate of

IL21 mRNA

0.18586844
Min: 0.00020833

Max: 0.020833
10 × either side

of value for T-

betSchulz et al.

(2009)
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µ7 Decay rate of

IL21 mRNA

0.633595
Min: 0.004026

Max: 2.082
10 × either side of

value for IL12R

Schulz et al.

(2009)

µ8 Decay rate of re-

ceptor X-CX com-

plex

0.527035
Min: 0.004026

Max: 2.082
10 × either side of

value for IL12R

Schulz et al.

(2009)

µ9 Decay rate of CX 0.125304
Min: 0.004026

Max: 2.082
10 × either side

of range for IL12,

IL6 and TGF-β

Schulz et al.

(2009)

k1 Level of C1 at

which T-bet tran-

scription is at half

maximum

1 Yates et al.

(2004); Schulz

et al. (2009)

k2 Level of C17 at

which ROR-γt

transcription is at

half maximum

1 Same as T-bet

Yates et al.

(2004); Schulz

et al. (2009)

k3 Level of T-bet at

which T-bet tran-

scription is at half

maximum

1 Same as T-bet

Yates et al.

(2004); Schulz

et al. (2009)

k4 Level of ROR-γt

at which ROR-γt

transcription is at

half maximum

1 Same as T-

betYates et al.

(2004); Schulz

et al. (2009)
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k5 Level of Tbet at

which transcrip-

tion of IFN-γ

mRNA is at half

maximum

1 Schulz et al.

(2009)

k6 Level of RORgt

at which tran-

scription of IL21

mRNA is at half

maximum

1 Same as T-bet

Schulz et al.

(2009)

k7 Rate of con-

version of IL21

mRNA into

protein

0.481067361 Yates et al.

(2004); Schulz

et al. (2009)

k8 Rate of conver-

sion of IFN-γ

mRNA into

protein

0.307552055 Yates et al.

(2004); Schulz

et al. (2009)

k9 Level of RORgt at

which transcrip-

tion of receptor X

is at half maxi-

mum

66.7474
Min:1

Max: 100
× either side of

value for T-bet

and IL12 Schulz

et al. (2009)

k10 Level of CX-

receptor X at

which promotion

of T-bet or inhibi-

tion of RORγt is

at half maximum

2.60342
Min: 0.5

Max: 5
10× either side

of value used

by Schulz et al.

(2009)

239



Chapter D: Ranges for LHC Sampling for the T Cell Transcription Factor Model

k11 Rate of formation

of CX-receptor X

complex

0.545609
Min: 0.01

Max: 1
10 × value used

by Schulz et al.

(2009) for IL12R

s1 Rate of stimu-

lation of T-bet

by external

cytokines

0.208033 Yates et al.

(2004); Schulz

et al. (2009)

s2 Rate of stimula-

tion of RORgt

by external

cytokines

1.35863
Min: 0.020833

Max: 2.08033
Yates et al.

(2004); Schulz

et al. (2009)
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Appendix E

Definitions of Parameters and

Measures in Microbial

Composition Models and

Experiments

Parameter Definition

Xi Total number of bacteria of species i, where i = ifng, il12, il6, tgfb.

ai Proliferation rate of species i, where i = ifng, il12, il6, tgfb.

µi Death rate of species i, where i = ifng, il12, il6, tgfb.

bi,j Rate of promotion (if > 0) or inhibition (if < 0) of species i by species

j where i, j = ifng, il12, il6, tgfb, and j 6= i.

Cec TCells Total number of T cells in the cecum.

Cec DCs Total number of DCs in the cecum.

Cec RegMPs Total number of regulatory macrophages in the cecum.

Cec InfMPs Total number of inflammatory macrophages in the cecum.

Cec Eps Total number of inflammatory epithelial cells in the cecum.

Cec Ca E Total number concentration of inflammatory cytokine.

Cec totalIL12 Total concentration of IL12 in the cecum

Cec totalIFNg Total concentration of IFN-γ in the cecum
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Cec totalIL21 Total concentration of IL21 in the cecum

Cec totalIL17 Total concentration of IL17 in the cecum

Cec totalIL6TGFb Total concentration of IL6 + TGF-β the cecum

Cec totalSum Total concentration of cytokines in the cecum.

Col TCells Total number of T cells in the colon.

Col DCs Total number of DCs in the colon.

Col RegMPs Total number of regulatory macrophages in the colon.

Col InfMPs Total number of inflammatory macrophages in the colon.

Col Eps Total number of inflammatory epithelial cells in the colon.

Col Ca E Total number concentration of inflammatory cytokine.

Col totalIL12 Total concentration of IL12 in the colon.

Col totalIFNg Total concentration of IFN-γ in the colon.

Col totalIL21 Total concentration of IL21 in the colon.

Col totalIL17 Total concentration of IL17 in the colon.

Col totalIL6TGFb Total concentration of IL6 + TGF-β the colon.

Col totalSum Total concentration of cytokines in the colon.

mln TCells Total number of T cells in MLN.

mln ActTCells Total number of activated and effector T cells in MLN.

mln DCs Total number of DCs in MLN.
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Correlation Tables of SBML

Model Parameters with Measures

from IBDSim

ail6: the proliferation rate of IL6-inducing bacteria. Significantly correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 0.68 0.80 0.74 0.69 0.72

14 0.71 0.71 0.81 0.74 0.67 0.75 0.67 0.72

91 0.68

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 0.68

14 0.67 0.67 0.76 0.8 0.66 0.70 0.69

91 0.82

MLN
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Day DCs T cells Activated T cells

0 0.78 0.68

7 0.81 0.83

14 0.72 0.70

91 0.81
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bifng,il12: the rate at which species Xifng is inhibited or promoted by Xil12. Signifi-

cantly correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 0.76 0.68 0.66 NA 0.71

7 0.87 0.84 -0.81 0.85 0.89 0.91

14 0.76 0.75 -0.75

91

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 0.80 -0.82 0.76 0.74

7 0.80 -0.82 0.76 0.74

14 0.80 -0.82 0.76 0.74

91 -0.89 -0.85

MLN

Day DCs T cells Activated T cells

0 0.76 0.82 0.80

7 0.78 0.83

14

91
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bil12,ifng:the rate at which species Xil12 is inhibited or promoted by Xifng. Signifi-

cantly correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 -0.71 -0.66 -0.67 NA -0.72

7 -0.75 -0.82 0.66 -0.84 -0.86

14 -0.74

91

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 -0.67 -0.74 -0.82 NA -0.73 -0.74 0.74

7 -0.77 - 0.74

14 -0.73

91

MLN

Day DCs T cells Activated T cells

0 0.76 0.82 0.80

7 -0.79 -0.80

14

91
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bil6,il12:the rate at which species Xil6 is inhibited or promoted by Xil12 Significantly

correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 -0.75 -0.82 0.66 0.76 0.74

14 -0.70 -0.66

91

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 -0.74

14 -0.73

91

MLN

Day DCs T cells Activated T cells

0

7 -0.73

14

91
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bil6,tgfb: the rate at which species Xil6 is inhibited or promoted by Xtgfb Significantly

correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 0.74 0.74

14 0.66 0.71 0.68

91 0.70 0.68

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7

14 0.67 0.76 0.68 0.68

91 0.89 0.66

MLN

Day DCs T cells Activated T cells

0

7 0.66

14 0.71 0.7

91 0.76

btgfb,ifng: the rate at which species Xtgfb is inhibited or promoted by Xifng Signifi-

cantly correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 0.69 0.71 NA 0.7

7 0.88 0.74 0.87 0.89 0.89

14 0.72 0.78 0.66 0.68 0.70

91

Colon
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Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 0.81 -0.67 0.72 0.82 0.84

14 0.78 0.70

91

MLN

Day DCs T cells Activated T cells

0

7 0.78 0.73

14 0.79 0.73

91
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btgfb,il12: the rate at which species Xtgfb is inhibited or promoted by Xil12 Signifi-

cantly correlated with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7 0.67 0.71

14 0.67

91

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 NA

7

14 0.69 0.68

91 -0.67 -0.67 -0.73

MLN

Day DCs T cells Activated T cells

0

7 0.66

14 0.71 0.71

91
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ifng: the initial proportion of species Xifng in the population. Significantly correlated

with

Cecum

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 0.69 0.71 NA 0.67

7 -0.85 0.75 0.68 -0.86 0.68 0.71 0.71

14 -0.76

91 -0.80 -0.69 -0.83 -0.71 -0.72 -0.71

Colon

Day DCs T cells Inf Macs Reg Macs CaE Ep Hh IFN-γ IL12 IL17 TGF-β IL21

0 0.68 0.71 0.73 NA 0.67

7 -0.72 0.69 -0.82

14 0.69

91 -0.93 -0.73 -0.82 -0.85 -0.76 -0.71

MLN

Day DCs T cells Activated T cells

0 74 71

7 0.71 0.64

14

91 -0.80 -0.77
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Abbreviations

µm microns.

Hh Helicobacter hepaticus.

ABM agent-based model.

AICD activarion-induced cell death.

AMP antimicrobial peptide.

APC antigen-presenting cell.

ASPASIA Automated Simulation Paramater Alteration and SensItivity Analysis toolkit.

BCR B-cell receptor.

CHO Chinese hamster ovary.

COPASI COmplex PAthway SImulator.

CoSMoS Complex Systems Modelling and Simulation.

DC dendritic cell.

DN double negative.

DP double positive.

DSS dextran sulfate sodium.

EAE experimental autoimmune encephalomyelitis.
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Abbreviations

ELISA enzyme-linked immunosorbent assay.

ENISI ENteric Immunity SImulator.

FBA flux balance analysis.

FLAME Flexible Large-scale Agent-based Modelling Environment.

Foxp3 forkhead-box protein 3.

FTY720 fingolimod.

GATA-3 GATA binding protein 3.

HIV human immunodeficiency virus.

IBD inflammatory bowel disease.

IFN-γ Inteferon-γ.

IL Interleukin.

ILC innate lympoid cell.

JAK-STAT Janus kinase-signal tranducer and activator of transcription.

KO knock out.

LP lamina propria.

LPS lipopolysaccharide.

MASON Multi-Agent Simulation Of Neighbourhoods.

MHC major histocompatibility complex.

MLN mesenteric lymph node.

NF-KB nuclear factor-kappa B.

ODD overview, design concepts, and details.
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Abbreviations

ODE ordinary differential equation.

PAMP pathogen-associated molecular patterns.

PD pharmacodynamics.

PDE partial differential equation.

PK pharmacokinetic.

PRCC partial-rank correlation coefficient.

PRR pattern-recognition receptor.

RAG recombination activating gene.

ROR-γt Retinoic-acid Related Orphan Receptor-γt.

S1P sphingosine 1-phosphate.

SBML Systems Biology Mark-up Language.

SCID severe combined immunodeficiency.

Spartan Simulation Parameter Analysis R Toolkit ApplicatioN.

SPF specific pathogen free.

STAT signal tranducer and activator of transcription.

T-bet T-box transcription factor T.

TBNS 2,4,6-trinitrobenz- enesulfonic acid.

TCR T-cell receptor.

TGF-β Transforming Growth Factor-β.

Th T-helper.

TNF-α Tumour Necrosis Factor-α.

UML Unified Modelling Language.
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Abbreviations

XML eXtensible Markup Language.
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