
Evolving Security Policies

Yow Tzu Lim

Doctor of Philosophy

Department of Computer Science

2010

To my parents, Kong Woon and Ai Lim

Abstract

As computer system size and complexity grow, formulating effective

policies require more sophistication. There are many risk factors that

need to be considered, some of which may be in conflict. Inevitably,

unpredictable circumstances that demand decisions will arise during

operation. In some cases an automated response may be imperative;

in other cases these may be ill-advised. Manual decisions are often

made that override the current policy and serve effectively to redefine

it. This matter is further complicated in highly dynamic operational

environments like mobile ad-hoc networks, in which the risk factors

may be changing continually. Thus, security policies must be able to

change and adapt to the operational needs.

This study investigates the potential of evolutionary algorithms as a

tool in determining the optimal security policies that suit such envi-

ronments. This thesis reviews some fundamental concepts in related

domains. It presents three applications of evolutionary algorithms

in solving problems that are of direct relevance. These include the

inference of security policies from decision examples, the dynamic

adaptation of security policies, and the optimisation of security poli-

cies for a specific set of missions. The results show that the inference

approaches based on evolutionary algorithms are very promising.

The thesis concludes with an evaluation of the work done, the extent

to which the work justifies the thesis hypothesis and some possible

directions on how evolutionary algorithms can be applied to address

a wider range of relevant problems in the domain of concern.

ii

Contents

1 Introduction 1

1.1 Motivation . 2

1.1.1 Many risk factors to be considered 2

1.1.2 Operational needs change 2

1.1.3 Deriving effective security policies is hard 3

1.1.4 One size (policy) does not fit all 4

1.2 Technical approach . 5

1.3 Thesis hypothesis . 8

1.4 Thesis organisation . 9

2 Computer Security 11

2.1 Computer security objectives . 12

2.1.1 Confidentiality . 12

2.1.2 Integrity . 13

2.1.3 Availability . 13

2.1.4 Authenticity . 14

2.1.5 Accountability and non-repudiation 15

2.1.6 Summary . 15

2.2 Security risk analysis . 16

2.2.1 Assets, vulnerabilities and threats identification 16

2.2.2 Risk assessment . 17

2.2.3 Selection of controls . 18

2.2.4 Re-evaluation . 19

2.2.5 Summary . 19

iii

CONTENTS

2.3 Dynamic coalitions and MANETs 20

2.3.1 MANETs . 21

2.3.2 Security challenges of MANETs 23

2.4 Conclusions . 25

3 Security Policy Models 26

3.1 Mandatory access control policy models 27

3.1.1 Bell-LaPadula model . 27

3.1.2 Biba model . 29

3.1.3 Chinese wall model . 29

3.1.4 Clark-Wilson model . 31

3.2 Discretionary access control policy models 31

3.3 Role based access control policy models 32

3.4 Flexible access control policy models 34

3.4.1 Fuzzy MLS model . 35

3.4.2 Economics based models 40

3.4.3 Top-down hierarchical models 48

3.5 Summary . 54

3.6 Conclusions . 55

4 Learning Techniques 56

4.1 Evolutionary algorithms (EAs) . 56

4.1.1 Evaluation . 57

4.1.2 Selection . 57

4.1.3 Reproduction . 59

4.1.4 Implementations of EAs 59

4.2 Genetic Programming (GP) . 60

4.2.1 Extensions on GP . 61

4.3 Grammatical Evolution (GE) . 63

4.3.1 Genotype-phenotype mapping 64

4.3.2 Extensions on GE . 66

4.4 Multi-objective evolutionary algorithms (MOEAs) 67

4.4.1 Weighted sum of fitness functions 67

iv

CONTENTS

4.4.2 Pareto front based approaches 69

4.4.3 Advantages of Pareto front based approaches 71

4.4.4 Implementations of Pareto front based approaches 71

4.5 Relevant applications of GP and GE 74

4.5.1 Rule inference system . 74

4.5.2 Intrusion and anomaly detection systems 75

4.5.3 Security protocols . 75

4.5.4 Cryptography . 76

4.6 Fuzzy expert systems . 76

4.6.1 Fuzzy set theory . 76

4.6.2 Inference process . 79

4.7 Conclusions . 80

5 Static Policy Inference 82

5.1 Experimentation on binary decision policies 83

5.1.1 Experiment 5.1: Partial MLS Bell-LaPadula policy 87

5.1.2 Experiment 5.2: Full MLS Bell-LaPadula policy 92

5.1.3 Experiment 5.3: Budgetised MLS policy 94

5.2 Experimentation on multi-decision policies 95

5.2.1 Experiment 5.4: Rule based approach 98

5.2.2 Experiment 5.5: Regression based approach 100

5.2.3 Experiment 5.6: Grammatical evolution 101

5.2.4 Experiment 5.7: Fuzzy set ensemble 102

5.2.5 Experimental results and evaluation 106

5.3 Example Security Policies Inferred 111

5.4 Evidence for the thesis and future work 112

5.5 Conclusions . 115

6 Dynamic Policy Inference 116

6.1 Data stream classification . 117

6.2 A dynamic security policy model 119

6.3 Experimentation . 122

6.3.1 Static policy learning . 123

v

CONTENTS

6.3.2 Dynamic policy learning 131

6.4 Evidence for the thesis and future work 144

6.5 Conclusions . 149

7 Mission-specific Policy Discovery 150

7.1 Scenario: travelling across a battlefield 151

7.1.1 Movement strategy . 152

7.1.2 Risk-budget based security policy 157

7.2 Experimentation . 159

7.2.1 Experiment 7.1: Minimising casualty toll with fdead 160

7.2.2 Experiment 7.2: Minimising casualty toll with fmsd 160

7.2.3 Experiment 7.3: Minimising casualty toll with DOO 161

7.2.4 Experiment 7.4: Multi-objective optimisation 161

7.3 Experimental results and evaluation 162

7.4 Example security policies inferred 167

7.5 Evidence for the thesis and future work 167

7.6 Conclusions . 172

8 Evaluation and conclusions 173

8.1 Evaluation . 173

8.1.1 Static policy inference . 174

8.1.2 Dynamic policy inference 175

8.1.3 Mission-specific policy discovery 176

8.1.4 Thesis contributions . 176

8.2 Envisaged future work . 177

8.2.1 Policy fusion . 177

8.2.2 The robustness of a security policy 178

8.2.3 Scalability with the training set size 179

8.2.4 More complex security policies 179

8.2.5 More complex scenarios 180

8.2.6 Other deployment domains 180

8.3 Closing remarks . 180

References 181

vi

List of Tables

3.1 The differences between the model based on the command eco-

nomic system and the model based on the market economic system. 45

5.1 The experimental result summary of the inferred policies using GP

and GE. 110

5.2 Some of the optimal security policies inferred with GP and GE. . 111

6.1 The values of α and its changes, δα, at every 500 generations. . . 135

7.1 The experimental result summary on the performances of the op-

timal policies with respect to the casualty toll of blue agents found

using GP/MOGP and DOO. 164

vii

List of Figures

2.1 The conceptual model of a security risk analysis process [1]. . . . 20

3.1 An access control matrix example. 32

3.2 The Fuzzy MLS model [2]. 36

3.3 The ITA policy model [3]. 51

4.1 A GP individual that represents a formula (X × Y) + (4− (Y + 1)). 60

4.2 The crossover and mutation operations in GP. 62

4.3 A mapping between solution space S to objective space O. 68

4.4 The set of solutions that lie at the concave part of the feasible

region can never be discovered. 69

4.5 The objective of a Pareto front based approach is to approximate

the Pareto front of the solutions with the individuals in the popu-

lation. 70

4.6 The archive truncation process in SPEA2 removes the non-dominated

individuals that are closest to others iteratively until these individ-

uals can fit into the archive. Assuming the archive size is 10, the

truncation process removes the individuals that are crossed out. . 73

4.7 Various interpretations of the fuzzy operations. 78

4.8 The inference process of a fuzzy expert system [4]. 81

5.1 Some well typed individuals that represent the conditions in the

MLS Bell-LaPadula policy model. 85

5.2 Some examples of inferred policies in Experiments 5.1. 89

viii

LIST OF FIGURES

5.3 The predefined values for each Mj based on the triangular fuzzy

membership function. 104

5.4 The predefined values for each Mj based on the Gaussian distri-

bution curve. 105

5.5 The output risk bands of the target reference model defined in (5.10).113

5.6 The output risk bands of the inferred policies shown in Table 5.2. 114

6.1 The distributions of the best individuals in all three experiments

at different error rate intervals. 128

6.2 Some examples of the security policies learnt. 129

6.2 Some examples of the security policies learnt. 130

6.3 The median error rate of the best policies learnt in Experiment 6.4. 134

6.4 In the DOO setting, all individuals are at the Pareto front. SPEA2

removes individuals that are closest to others iteratively until they

can fit into the archive. The individual at each corner is guaranteed

to be in the archive. 138

6.5 The median error rates of the best policies learnt in Experiment 6.4

(light pink) and Experiment 6.5 (dark blue). 139

6.6 The median error rates of the best policies learnt in Experiment 6.5

(light pink) and Experiment 6.6 (dark blue). 142

6.7 The median error rates of the ultimate ensemble models constructed

from the models learnt in Experiment 6.4. 145

6.8 The median error rates of the ultimate ensemble models constructed

from the models learnt in Experiment 6.5. 146

6.9 The median error rates of the ultimate ensemble models constructed

from the models learnt in Experiment 6.6. 147

7.1 The risk posed to each square by a red agent located at the centre. 154

7.2 The mapping between the indices of a DSM and the movement

directions they represent. 154

7.3 The simulated battlefield grid map. 155

7.4 The non-dominated solutions in one run using different initial bud-

gets. 165

7.5 The Pareto optimal solution set. 166

ix

LIST OF FIGURES

7.6 The optimal policy with respect to the casualty toll of blue agents. 168

7.7 The optimal policy with respect to the mission completion time. . 169

7.8 The optimal policy with respect to the casualty toll of blue agents

given the constraint that the mean of mission completion time has

to be within 70 time steps. 170

x

Acknowledgements

I would like to express my gratitude to all who have provided support

in accomplishing this thesis. I would like to thank my Ph.D. super-

visor, John A. Clark, for the opportunity given to carry out this re-

search and also for his guidance, expertise and encouragement during

the course of this research. I would like to thank John A. McDermid

and Robert I. Damper for their critical comments and suggestions

given in their roles as the assessors.

I am grateful for having had two internship opportunities and one

research visit to the IBM T. J. Watson Research Center in Hawthorne,

New York, and be acquainted with many bright and nice people. They

have provided insightful feedback and suggestions regarding my work.

In particular, I would like to thank my manager Pankaj Rohatgi and

my mentor Pau Chen Cheng. They have not only guided me with

their expertise, but also trained me to think critically through one-to-

one discussions and helped to build my confidence in having my own

ideas and in presenting them to others. Many thanks also go to Wei

Fan and Charu C. Aggarwal, who have provided invaluable insight

and direction in the data stream mining domain and to Vugranam

C. Sreedhar, Charanjit S. Jutla and Suresh N. Chari in the security

domain.

I would like to thank the research members in my department, espe-

cially Juan E. Tapiador, Sevil Sen, David R. White and Chen Hao,

who have provided constructive discussions on my research. I would

also like to thank the support staff, especially Mark Hewitt, Aaron

Turner and James Carter, who have maintained the grid servers, on

which my experiments have been carried out. A special thank you

xi

also goes to Grace Shiao En Chng in spending her valuable time to

proofread this thesis.

I would also like to express my appreciation to my wife Ka Ki Lai, my

parents Kong Woon Lim and Ai Lim Chum, my sisters Sien Sin Lim,

Wan Sin Lim and Kai Xin Lim, for their endless support and care in

my personal life during the course of my Ph.D. study. I would like

to thank God Almighty, who has given me the strength and peace to

work hard on this project.

Lastly, I am indebted to the US Army Research laboratory and the

UK Ministry of Defence for the provision of financial support under

the Project 6: Trust and Risk Management in Dynamic Coalition

Environments in the International Technology Alliance in Network

and Information Sciences (ITA) Project.

xii

Declaration

The work submitted in this thesis is the result of my own investigation.

Work appearing here has appeared in print as follows:

• Yow Tzu Lim, Pau Chen Cheng, John A. Clark, and Pankaj

Rohatgi. IBM Research Report RC24442: Policy Evolution with

Genetic Programming. Technical report, 2007.

• Yow Tzu Lim, Pau Chen Cheng, John A. Clark, and Pankaj

Rohatgi. Policy Evolution with Genetic Programming: A Com-

parison of Three Approaches. In 2008 IEEE World Congress on

Computational Intelligence, Hong Kong, 1-6 June 2008. IEEE

Computational Intelligence Society, IEEE Press.

• Yow Tzu Lim, Pau Chen Cheng, Pankaj Rohatgi, and John A.

Clark. MLS Security Policy Evolution with Genetic Program-

ming. In GECCO ’08: Proceedings of the 10th annual conference

on Genetic and evolutionary computation, pages 1571–1578, At-

lanta, GA, USA, 12-16 July 2008. ACM.

• Yow Tzu Lim, Pau Chen Cheng, John A. Clark, and Pankaj

Rohatgi. Policy Evolution with Grammatical Evolution. In

The Second Annual Conference of the International Technology

Alliance, Adelphi, Maryland, USA, 2008.

• Yow Tzu Lim, Pau Chen Cheng, John A. Clark, and Pankaj

Rohatgi. Policy Evolution with Grammatical Evolution. In

Proceedings of the 7th International Conference on Simulated

Evolution And Learning (SEAL ’08), volume 5361 of Lecture

Notes in Computer Science, pages 71–80, Melbourne, Australia,

December 7-10 2008. Springer.

xiii

• Yow Tzu Lim, John A. Clark, Pau Chen Cheng, and Juan E.

Tapiador. Mission Specific Security Policy Discovery. In The

Third Annual Conference of the International Technology Al-

liance, Adelphi, Maryland, USA, 2009.

• Yow Tzu Lim, Pau Chen Cheng, John A. Clark, and Pankaj

Rohatgi. IBM Research Report RC24865: Dynamic Security

Policy Learning. Technical report, 2009.

I am the primary author of all work reported in this thesis. Advice

on specific aspects of the work was provided by my Ph.D. supervisor,

John A. Clark and other co-authors.

The research was sponsored by US Army Research Laboratory and

the UK Ministry of Defence and was accomplished under Agreement

Number W911NF-06-3-0001. The views and conclusions contained in

this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of the

US Army Research Laboratory, the US Government, the UK Ministry

of Defence, or the UK Government. The US and UK Governments

are authorised to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation hereon.

xiv

Chapter 1

Introduction

Information security is not a new concept. Information has always been of value

and has been something to protect. The computer age has merely increased

the volume and nature of information stored and processed, and has provided

enhanced opportunities for creating and accessing that information. As compu-

tational equipment becomes increasingly embedded in the fabric of our environ-

ment and information processing permeates ever more aspects of our lives, we are

forced to continually assess the risk taken with respect to such information.

We have now moved significantly away from the mainframe computer era.

Much modern computation is built around highly distributed resources. There

are many advantages to providing resources in a distributed fashion. However,

securing resources in such environments is distinctly non-trivial.

A recent development in this area has been the emergence of dynamic coali-

tions. Whereas present distributed systems might comprise a variety of agents

and nodes that we know about and largely have control over, dynamic coalitions

may arise where parties with little or no experience of each other need to work

together to achieve their goals. These coalitions give rise to significant issues

concerning how the risk of interaction may feasibly and effectively be managed.

A significant tool in the risk management of existing system has been security

policies. Security policies are often defined to restrict the information accesses

to restricted groups of users. For example, the Multi-Level Security (MLS) Bell-

LaPadula model [5] is concerned with the information confidentiality in a com-

puter system processing classified information. This model is a very simply stated

1

1.1 Motivation

and implementable policy. It has been adopted in military computer systems.

1.1 Motivation

However, as system size and complexity grow, creating and implementing effective

policies require more sophistication. In the context of large distributed systems,

the concept of policy hierarchy has been introduced in [6]. This concept suggests

that high-level policies can be derived from business goals and refined into low-

level policies, which can then be executed by the system [6, 7]. Since then,

there has been a proliferation of research work carried out in this domain, mainly

focussing on the security policy analysis and refinement processes. This has led

to the birth of many policy refinement models, languages and tools.

1.1.1 Many risk factors to be considered

Even with the aid of these tools, formulating an optimal security policy remains

a difficult problem because there are many factors that need to be considered,

some of which are in conflict. The tradeoffs among these factors are often made by

the security administrators based on their experiences and intuitions. Inevitably,

there is some degree of subjectivity and arbitrariness in this assessment. The

security risk analysis may also be incomplete and some risk factors may be left

out of consideration.

1.1.2 Operational needs change

Additionally, in current practice, security is typically managed in terms of fixed,

rigid security policies. There is a growing acceptance that current security mech-

anisms are not appropriate for many future network systems, for example, mobile

ad-hoc networks (MANETs). This problem has recently received increasing atten-

tion in the research community. Inevitably, unpredictable circumstances that de-

mand decisions will arise during operation. In some cases an automated response

may be imperative; in other cases these may be ill-advised. Manual decisions

are often made that override the current policy and serve effectively to redefine

it. (It is accepted that a policy may not be suited to all circumstances, and in

2

1.1 Motivation

particular, not suited to the current one.) This matter is further complicated in

highly dynamic operational environments like MANETs, where the risk factors

are constantly changing. A new requirement is thus needed: the security policy

has to be able to change and adapt to the operational needs or else will inevitably

be circumvented in creative ways (often referred to as workarounds) [2, 8].

A common solution to this problem is manually creating exceptions to policies

by granting the required permissions to the users to meet operational needs [8].

This process can be tedious and time consuming. Worse, the exceptions granted

are often never revoked when they should be [8]. People with goals to meet

will find ways around policies. For example, information is sometimes classified

at a lower sensitivity level than it should be to facilitate information sharing.

The security policy is thus being tweaked and used in such a way as to fit the

operational needs. A more principled and conceptually clear approach taking this

requirement into account would therefore be advantageous.

1.1.3 Deriving effective security policies is hard

The interaction between the security administrators and the decision makers is

often able to elicit, at best, a partial description of the security policy. These

stakeholders may well be able to give specific decisions to specific instances of

authorisation requests, but may not always be adept at generalising these deci-

sions to a security policy, especially when the complexities of MANETs are taken

into account. The matter is further complicated by the fact that the operational

benefit as well as risk must eventually be taken into account. There is currently

no coherent way forward on this issue. It would be very useful to be able to

codify what a “principled basis” consists of, since this serves to document “good

practice” and facilitates its propagation. We might ask whether we can leverage

the knowledge, experience and decision-making abilities of the stakeholders in

a creative fashion to elicit more generally applicable security policies. We shall

address this issue later.

3

1.1 Motivation

1.1.4 One size (policy) does not fit all

In addition to these problems, the security requirements may differ on a case-

by-case basis. Recent research [8] has provided excellent articulation of why

precanned one-size-fits-all security policies and mechanisms are inappropriate to

many modern day operations. Many more abstract frameworks for access control

systems are being proposed to cope with the realities of modern systems. An

example of these is the risk-budget based approach [8]. In this framework, users

are given risk budgets that they can spend to access information. Riskier accesses

cost more. We believe such approaches raise several issues: what initial budgets

should be given? Should we allow an unfettered free market? If not, then what

constraints should we impose? Should there be minimum costs associated with

specific accesses?

We can see that the risk-budget based approach is not a single policy; it

is really a policy family. Each policy instance constrains operations in its own

way and affects operational behaviour and effectiveness. The question arises: for

a specific mission (with all its nuances and characteristics), which of this vast

family of policies will lead to the best overall results? Currently there is no way

of knowing. We believe that such a policy must be found rather than specified

without investigation and finding a policy would appear to be a computationally

hard task. This shifts the emphasis away from specifying and refining a one-size-

fits-all policy towards searching for a policy that has beneficial and acceptable

outcomes from a family of policies. We believe this is entirely novel.

This problem resonates elsewhere. Current governments use macroeconomic

levers such as setting interest and taxation rates to achieve overall economic

goals. The economy is a complex system with emergent properties and there

is often no agreement amongst economists about the consequences of particular

choices of system parameters. Different countries also have different sorts of

economy: there is no one policy fit for all. This is precisely the situation we

are in for military operations. The goals and capabilities of organisations and

missions will vary, as will capabilities and staffing characteristics. Why would

we expect a one-size-fits-all security policy to satisfy our needs and allow us to

make appropriate risk decisions in all cases? Parts of a given security policy

4

1.2 Technical approach

may apply across settings but some notion of mission or organisational specificity

needs to be taken into account. We observe that it may be difficult to determine

the effect a particular economics based policy may have on attaining mission

goals. (Indeed, predicting the operational effects of almost any security policy

may be hard. Emergent properties are recognised as a major difficulty across the

system engineering discipline.)

Similar problems appear in many other domains. Consider, for example, the

proliferation of social networking websites and the privacy issues that arise with

regard to the information published. Coming up with a default privacy policy to

suit all users is inherently difficult; yet simply providing fine grained controls that

allow users to set their preferences is neither sufficient nor realistic to solve the

problem [9]. The process of specifying who is allowed to access which information

can be cumbersome and becomes a usability nightmare. Consequently, users are

unlikely to use these privacy controls even if they are made available to them.

As discussed earlier, the task is far from being straightforward. Even if the users

were dedicated in spending time to set up their custom privacy policy, they might

not be adept in doing so.

1.2 Technical approach

Our approach to the above problems is a radical one. We view security policy

management as a control problem. Authorisation to carry out particular actions

is usually given before an action is carried out. However, operational needs may

well require that local decisions be taken that are subsequently subject to review.

Thus, security management may say “yes, you were in a tough situation and

that was acceptable”. Policy change is thus understood as a control problem,

with security management giving feedback to define and redefine the acceptable

envelope.

We investigate interactions between real-time decision making and security

management control actions. In particular, we investigate how a specific set of

decisions may be generalised into an applicable security policy. Thus, if manage-

ment authorises a specific instance (either in real-time or post facto), which the

underlying security policy does not, we might reasonably conclude there are many

5

1.2 Technical approach

difficult but similar examples that might also be authorised. Similarly, wider con-

straints would seem to follow for refusals. What should those wider relaxations

or restrictions be? We propose to investigate a variety of inference techniques. A

developed inference system could generate policy rules and then pose interesting

instances to confirm or contradict generalisation. We would envisage that there

would be limits on how far or how fast that system policy can evolve without

security management intervention.

Essentially, we are seeking learning techniques to partition the risk-decision

space, with each partition defining an appropriate risk-related response, e.g., yes,

no, yes but only if additional requirements are met. A presented vector of risk-

related information associated with a request will be categorised in order to de-

termine the appropriate response. There is considerable flexibility available in the

way we may choose to recognise and codify appropriateness of yes/no/conditional

yes responses. Traditionally, security policies are generally developed on the basis

of human reviewable rules of one form or another. This seems rather restrictive;

there are many instances where relaxing the requirement of human comprehensi-

bility enables more effective solution. For example, bio-inspired techniques such

as evolutionary algorithms (EAs) and artificial immune systems can outperform

traditional techniques in many engineering domains [10, 11].

In this thesis, we investigate the potential of using EAs as the means of de-

termining the optimal, or at least excellent, security policies for initial system

configuration and also the means of adapting the security policies in the light

of changing circumstances. EAs are heuristic optimisation techniques that draw

loose inspiration from the natural selection process of the biological world. EAs

often begin with an initial population of individuals that are randomly gener-

ated. Each individual represents a candidate solution to the problem in question.

This population is then repeatedly subjected to the evolutionary process, which

evaluates the fitness of each individual (i.e., how good the solution is) and se-

lects these individuals according to their fitnesses to breed the population of the

next generation. This process produces populations that are increasing better in

solving the problem. This process is often iterated until the predefined maximum

number of generations has been reached or a “good enough” solution has been

found.

6

1.2 Technical approach

The main reason that we choose EAs is that these techniques make very

weak assumptions on the solution space and have the ability to search for so-

lutions of unknown or controlled size and shape in vast, discontinuous solution

spaces. Moreover, these techniques have achieved many significant successes in

their applications on many other domains, especially when the problems are com-

putationally hard. Other data mining algorithms and heuristic search techniques

are also potentially applicable.

Two EAs chosen here for investigation are Genetic Programming (GP) and

Grammatical Evolution (GE). These techniques were originally proposed to evolve

computer programs; security policies are essentially decision making programs.

The individual representations that these techniques use fit the problem very

well. The tree based individual structure in GP and the use of grammar rules to

map binary individuals to programs in GE are both very flexible in presenting a

program. The use of grammar rules in GE also provides the ability to constrain

the search space efficiently and the advantage of decoupling the search compo-

nent from the solution representation (programming language). Additionally, GP

has been shown to be very effective in evolving competitive artifacts. There are

currently more than forty human-competitive artifacts successfully evolved [10].

To investigate this approach, we need decision examples. Ideally, these exam-

ples should be from the real world. This could be from monitoring manual deci-

sion making or else as part of a more standard requirements elicitation activity.

However, it is very difficult to obtain such examples. From a security perspec-

tive, revealing such information, to an organisation, can be very risky. (Having

said that, we had tried without success to acquire such decision examples from

various organisations and research collaboration partners.) Moreover, MANETs

of the sorts we envisage do not really exist right now. Aiming to acquire decision

examples from such environments is doomed to fail.

To overcome this problem, we generate these decision examples by running

known, standard policies. Using these examples, we attempt to use EAs to infer

the original policies. We start with some simple binary decision policies, e.g., MLS

Bell-LaPadula policy model and budgetised MLS policy model and then continue

with a multi-decision model, e.g., Fuzzy MLS policy model. We also investigate

the performance of various EAs. To investigate how well EAs can mould and

7

1.3 Thesis hypothesis

shape the policies to adapt with new decision criteria with new decision examples,

we design a simple, yet non-trivial policy that varies with time. This time-varying

policy has two purposes: generating training decision examples and serving as the

benchmark against which the security policies learnt are evaluated. Lastly, we

show how simulation runs can be used in place of a set of decision examples to

learn the optimal security policies for a specific set of missions of concern.

1.3 Thesis hypothesis

Formally, the hypothesis of the thesis is stated as follows:

Evolutionary algorithms (EAs) have the potential to be an effective

means of determining the security policies that suit dynamic challeng-

ing environments.

By effective we mean the ability to determine the (near) optimal security policy

that fits the needs of the mission in its operational environment. We attempt to

examine this hypothesis from three different perspectives:

• Exploring the potential of EAs in inferring the (near) optimal static security

policies from a set of decision examples.

• Exploring the potential of EAs in dynamically updating security policies

with new decision examples.

• Exploring the potential of EAs in searching for the (near) optimal policies

that fit a specific set of missions using simulation runs.

Our approach is radical and arguably targets systems that, in a real sense, will

not exist in practice for several years yet. However, we believe it is appropriate to

investigate the above in order to be prepared when such systems come on stream.

We will not be able to evaluate our approach on full scale policies (because they

do not yet exist). However, we do aim to establish the plausibility or, at the very

least, a greater understanding of the strengths and weakness of our approach.

8

1.4 Thesis organisation

1.4 Thesis organisation

The subsequent chapters of this thesis are organised as follows:

Chapter 2 presents the fundamental computer security concepts that are re-

lated to this thesis. It begins with a brief introduction to security objec-

tives and security risk analysis. It then presents the concept of dynamic

coalitions, with an emphasis placed on MANETs and the challenges they

impose on current security mechanisms.

Chapter 3 firstly reviews some influential security policies and models. It then

presents some recently proposed risk-budget based models that aim to pro-

vide more flexibility and discusses the top-down policy hierarchical develop-

ment model that enables policy composition and refinement. The chapter

concludes with an identification of those research issues in security policy

development that we will attempt to address in this thesis.

Chapter 4 introduces the learning techniques used in this thesis. The first part

introduces EAs; it begins with a brief introduction to the common features

shared among all EAs followed by the concept of multi-objective evolu-

tionary algorithms (MOEAs). It then details two EAs used in this thesis,

namely GP and GE. The second part introduces fuzzy expert systems.

Chapter 5 details the experiments in using EAs to infer static security policies

from a set of training decision examples. It begins with experiments that

attempt to infer some simple binary decision policies and continues with

experiments that attempt to infer a more complicated multi-decision pol-

icy. Lastly, it details an experiment that demonstrates how the fuzzy set

concept can be integrated into the policy inference framework to improve

the performance.

Chapter 6 begins with the design of a time-varying, risk-budget based security

policy model. This model is used to generate decision examples that are

to be used for training as well as evaluation purposes. It then details the

experiments carried out in using MOEAs to continually infer the dynamic

9

1.4 Thesis organisation

policy from the generated decision examples, i.e., evolves and adapts a

policy as new decision examples are obtained.

Chapter 7 presents the experiments in using MOEAs to discover the (near)

optimal policies that fit a specific mission (or at least a specific family of

missions). The experiment also shows how simulation runs can be used in

place of a set of decision examples in evaluating the fitness of a policy with

respect to the specified high-level objectives.

Chapter 8 concludes the thesis by evaluating the degree to which the hypothesis

has been justified and outlines potential work for the future.

10

Chapter 2

Computer Security

Security is about the protection of assets against threats [12]. This definition im-

plies that we need to know what assets require protection. As computer systems

have evolved, the nature of specific assets and threats has changed [13]. Prior to

the invention of the personal computer, computer security was mainly concerned

with the protection of computer mainframes. Here, particular threats could be

countered by simple physical controls. For example, storing a mainframe in a

room with effective physical access controls to prevent unauthorised access.

In recent years, computer and network hardware has grown cheaper; using

a computer has now become commonplace. Individuals use computers to store

their private information, e.g., credit card numbers, bank account passwords, pri-

vate diaries. Organisations use computers to increase their operational efficiency.

There is an increasing amount of valuable information stored in computers. The

sheer ubiquity of valuable information signifies the importance of security as an

issue for us all.

This chapter presents the fundamental computer security concepts related to

this thesis. It begins with a brief introduction to common security objectives and

security risk analysis. It then presents the concept of dynamic coalitions, with an

emphasis placed on MANETs and the challenges they impose on current security

mechanisms.

11

2.1 Computer security objectives

2.1 Computer security objectives

Traditionally, the objectives of computer security are commonly summarised as

confidentiality, integrity and availability; often collectively known as the C-I-A

triad [13]. Over time, many security practitioners have realised the incomplete-

ness of the triad and attempted to augment it with new objectives. These objec-

tives include authenticity, accountability and non-repudiation. In [14], Donn B.

Parker introduced the Parkerian hexad, which adds three more objectives to the

C-I-A triad: possession (control); authenticity; and utility.

The following sections briefly summarise each of these objectives and their

established scopes respectively. For extensive discussion, refer to [15–17].

2.1.1 Confidentiality

Confidentiality is concerned with the protection of information from unauthorised

disclosure. In computer systems, confidentiality is about preventing unautho-

rised subjects from reading information. Confidentiality is often confused with

the terms “secrecy” and “privacy”. Gollmann clarifies these terms in [15]. He

views both secrecy and privacy as forms of confidentiality. Whilst privacy is con-

cerned with the confidentiality of personal data, secrecy is concerned with the

confidentiality of organisational data. For example, a privacy violation happens

when an organisation shares the personal information of its customers with other

organisations without the knowledge (or permission) of the customers.

Sometimes, it is necessary to protect the confidentiality of subject identities.

This objective is often known as anonymity. More formally, anonymity is the

state in which a subject’s true identity remains unknown by other subjects [18].

An example to show why anonymity is necessary is the traffic analysis attack [15].

The attackers can derive information such as the relationship between the parties

from patterns in communication, even when messages are encrypted. In order to

preserve the anonymity of the subject identities, there needs to be a property of

unlinkability between identities of the participants and the communication.

12

2.1 Computer security objectives

2.1.2 Integrity

In computer security, integrity is concerned with the protection of assets from

unauthorised modification [15], as opposed to “the quality of having strong moral

principles” defined in the Oxford Dictionary of English [19]. In computer sys-

tems, integrity is typically about preventing unauthorised subjects from writing

information. For this reason, integrity is sometimes perceived as the dual of con-

fidentiality and similar techniques can be expected to be used in achieving this

objective, e.g., the Biba model [20] has the mirror properties of the Bell-LaPadula

model [5].

Further interpretations and constraints on what integrity implies have also

been made in the literature. Clark and Wilson argued that the usage of a data

modification method, which causes data loss or corruption, should not be per-

mitted even by an authorised subject [21]. The integrity requirement is split into

two parts: internal and external consistency. Internal consistency is concerned

with ensuring the consistency of data representation and modification within the

computer systems; external consistency is concerned with ensuring that the data

reflect the real-world objects that they represent. The Clark-Wilson definition is

more sophisticated and reflects the subtleties present in commercial environments.

On the other hand, the definition of integrity given in the Trusted Computer Sys-

tem Evaluation Criteria (TCSEC) is concerned only with external consistency;

integrity is defined as “the state that exists when computerised data is the same

as the source documents and has not been exposed to accidental or malicious

alteration or destruction” [22].

2.1.3 Availability

Availability is concerned with the likelihood of a system is able to provide some

services. In particular, the availability at time t, usually denoted by A(t), is the

probability that the system can provide a specific service at time t under stated

conditions [23].

Availability may be compromised by a variety of mechanisms. A simple ex-

ample is hardware failure. Traditionally, the threat from such failure is countered

by the use of redundancy [24]. Redundancy can be made in two forms: either the

13

2.1 Computer security objectives

redundant components act as backups that are activated should one component

fail, or all duplicate components run concurrently and form a voting system, in

which the consensus output is the majority vote. Denial of service (DoS) attacks,

which aim to make a system unavailable to the authorised users, may take many

forms. At one extreme, an army of compromised hosts may be used to clog up

a large network by wide-scale consumption of resources. At the other, a smart

attacker may target a specific server aiming only to issue service requests at the

rate they are dispatched but in a manner that keeps the service request queue

full, and hence unavailable. This is usually known as a low-rate DoS attack [25].

2.1.4 Authenticity

Authenticity is concerned with the genuineness of the identity a subject claims

to be. Something is said to be authentic when it really is what it claims to be.

Authentication is the verification of such claims [17]. We may be interested in

verifying that the user at a terminal is who he claims to be. This is personal

identity authentication. Authentication is clearly a prerequisite for many other

aspects of security. Access control is used to dictate the access given to subjects

with regard to specific objects. However, it makes the assumption that the subject

in question really is the person concerned or acts legitimately on that person’s

behalf, e.g., a process started by that user.

There are a great many means of authenticating the identity of a person.

These can be loosely categorised into three groups as follows:

1. Something the user has, e.g., a token card.

2. Something the user knows, e.g., a password, a pin, a signature.

3. Something the user is (giving rise to biometrics such as fingerprints, iris

patterns, and various behavioural characteristics such as dynamic signature

properties).

An example of authenticity violation is an attacker logging in as an ordinary user

using a stolen password.

In many security protocols, received messages may seem to be recently created.

However, we know that messages can be recorded and replayed and thus it is

14

2.1 Computer security objectives

often required to verify any such claims to recency. This is a form of message

authentication. Often, we may also wish to verify the sender identity of a received

message, e.g., the sender of an email that requests a bank statement.

2.1.5 Accountability and non-repudiation

The security objectives discussed so far have sought to prevent unwanted events

from happening. What if these preventions fail? Accountability attempts to

answer this by ensuring the actions that affect security can be traced to the

responsible subject [15]. In other words, accountability attempts to establish

the links between the subjects and the actions made. This often conflicts with

anonymity that strives to unlink them. A common way to achieve accountability

is to keep a secure audit trail on the systems. Illicit modification or deletion of an

audit trail would clearly compromise accountability. A DoS attack on the audit

server provides an alternative and possibly easier way to achieve the same goal.

Non-repudiation is a strong form of accountability. Non-repudiation is con-

cerned with the ability to ensure that a subject is unable to deny carrying out

the action [15]. This objective is commonly achieved with the use of digital sig-

natures. In signing a piece of data with a private key, an unforgettable binding is

established between the subject and the data. Disclosure of a private key would

clearly compromise any claims to legitimacy of binding [15]. Thus, users must

keep their private keys secure.

2.1.6 Summary

The security objectives discussed in the section can be summarised as follows:

1. Confidentiality — Prevention of unauthorised disclosure of information.

2. Integrity — Prevention of unauthorised modification of information.

3. Availability — Prevention of the DoS.

4. Authenticity — Verification of identity one claims to be.

5. Accountability and non-repudiation — Prevention of the denial of actions

made.

15

2.2 Security risk analysis

2.2 Security risk analysis

Security risk analysis is the process of ensuring that the security of a system is

commensurate with the risk it is exposed to. All protection measures come at a

price. Security risk analysis provides a means to justify the tradeoff between cost

and benefit for the security controls implemented. Despite the various method-

ologies in conducting security risk analysis and some of them being tailored to a

particular discussion, they all share a common framework composed of the fol-

lowing steps: assets, vulnerabilities and threats identification, risk assessment,

selection of control, and re-evaluation.

2.2.1 Assets, vulnerabilities and threats identification

Assets are resources that have values in a system [13]. Assets in a computer sys-

tem can be mainly categorised into three groups: hardware, software and infor-

mation. At times, the workforce and the reputation of a company are considered

as part of the assets [15]. To do risk assessment, all assets are first identified with

their values evaluated. Whilst the values of tangible assets are easy to quantify

by considering the monetary replacement cost, the values of intangible assets are

difficult to estimate. For example, the loss of confidential information on sup-

pliers and clients may affect the reputation of the company. In addition, any

damage to the assets in the above categories can cause damage to the quality of

service. One possible way to estimate the values of these assets is based upon

their importance [26].

Vulnerabilities are the weaknesses of a system. Attackers attempt to discover

the vulnerabilities of a system in order to cause damage to assets, either ac-

cidentally or intentionally [15]. Vulnerabilities can exist at different levels and

places in a computer system, e.g., operational environments, operating systems,

application software, networks, communication media and operational practices.

Threats are the potential actions that can be used by attackers to exploit

vulnerabilities in order to cause damage to assets [1]. Threats are caused by

threat agents, which can be both internal and external to the system. Examples

of threat agents may be hackers, system administrators or viruses that exploit

bugs in a software to launch attacks on a system. In the literature, the term

16

2.2 Security risk analysis

“threat” is often used where the term “threat agent” should be. One example

is the definition of threat as “the party with the capabilities and intentions to

exploit a vulnerability in an asset” [27].

The relationship between these terms is best illustrated by the following ex-

ample. In a computer network, a possible vulnerability is the use of a default

password at the network router (asset). A hacker (threat agent) can exploit this

vulnerability to take control over the router and launch a DoS attack to prevent

authorised computers from connecting to the network.

2.2.2 Risk assessment

The definition of risk varies considerably in the literature depending on the do-

main in which it is considered for. For example, risk can be the standard deviation

on the return of an investment in finance [28], or a function on the amount of loss

and the probability of the loss [2, 29]. Nevertheless, there is a common theme

behind these definitions. Risk is always related to expected loss, which can be

caused by an action and the estimated probability of such loss arising.

In security, risk is defined as a function of the value of assets, vulnerabilities

and threats [15]. This definition is coherent with the engineering definition of

risk by considering the amount of loss as a function of the value of assets and

vulnerabilities in the system. Based on this definition, the risk assessment of a

computer system can be carried out quantitatively or qualitatively [15].

In a quantitative assessment, the values are calculated using various math-

ematical theories and formulae [30]. For example, risk can be calculated based

on the monetary replacement values of assets and the probabilities of threats

happening. The advantage of this analysis is that it provides a precise numerical

risk value, which is useful for cost-benefit analysis of recommended controls [30].

However, the precise meaning that a given numerical risk value represents can

become unclear, e.g., a high risk value can be due to the high value of the asset,

the high probability of threats happening, or both factors. This may cause prob-

lems in selecting suitable controls to protect the system assets because different

assets may require different protection mechanisms.

In contrast, a qualitative assessment uses descriptive variables to represent

17

2.2 Security risk analysis

risk [30]. For example, each asset is given a value on a scale of cheap, medium

and expensive; criticality of vulnerabilities is given a value on a scale of very low,

low, medium, high and very high; and each threat is given a value on a scale of

very low chance, low chance, medium chance, high chance and very high chance.

The mapping of these values to the risk can be obtained by using a mapping

table based on the advices of security experts [26]. There are also other qualita-

tive analysis techniques, including scenario analysis and questionnaires [15]. The

advantages and disadvantages of using a qualitative analysis are more or less the

mirror of using a quantitative approach. This analysis provides a means to iden-

tify the vulnerabilities of the systems in a relatively short time [15]. However, the

cost-benefit analysis of recommended controls becomes difficult in the absence of

a precise numerical risk value [15].

2.2.3 Selection of controls

Controls, also known as countermeasures, are the ways to protect a system against

threats. The controls selected must be commensurate with the risk identified.

Controls for the computer systems can be categorised into three types: adminis-

trative, physical and logical.

Administrative controls are concerned with the relationship between security

and human factors [31]. Administrative controls specify how a system can be

used. Examples of administrative controls include organisational security policies,

user registration processes, business continuity plans and disaster recovery plans.

For example, the computing service in a university defines the security policy

that students must agree and abide by. It is often the case that this high level

security policy, defined in administrative control documents, forms the basis of

the selection of logical and physical controls. In other words, the logical and

physical controls implement and manifest the administrative controls.

Physical controls protect the physical hardware of computer systems from

physical and environmental threats. Some examples include locks, closed circuit

surveillance cameras (CCTV) or security guards (protection from unauthorised

accesses), cooling systems (protection from heat) and backup sites (protection

from natural disasters).

18

2.2 Security risk analysis

Logical controls protect computer systems using software and data measures.

Some examples include data encryption, access controls, firewalls and intrusion

detection systems. In recent years, logical controls have received much attention

from the security community and have achieved significant advancement. Con-

sequently, the knowledge gained in logical controls has also been transferred to

protect and to improve physical controls, e.g., the use of PINs in conjunction

with door entry cards.

Security is only as strong as the weakest link [32]. In practice, all three types

of controls have to be implemented and balanced in order to achieve security

objectives of concern. For example, for availability, strong physical controls such

as a reliable cooling system and backup site are needed to protect the physical

hardware of a computer system from physical threats. At the same time, strong

logical controls such as a strong user authentication process and a good access

control policy are also needed to protect the system from unauthorised accesses

to the services provided. The lack of either control can easily result in the system

becoming unavailable.

2.2.4 Re-evaluation

A detailed security risk analysis on large computer systems is not feasible for every

organisation as it requires significant resources (time and cost) [1]. Furthermore,

new threats and vulnerabilities emerge each day because the operational envi-

ronment is constantly changing. Therefore, security risk analysis is an ongoing

iterative process and must be indefinitely repeated.

2.2.5 Summary

A conceptual model that summarises a security risk analysis process is shown

in Figure 2.1. In a security risk analysis process, the system owners attempt

to quantify the risk of the system exposed to by analysing vulnerabilities of the

system and identifying the threats to system. Based on the risk, appropriate

security controls are then selected to protect the system. The ultimate objective

of the process is to ensure that the security controls of a system implemented are

commensurate with the risk that the system is exposed to.

19

2.3 Dynamic coalitions and MANETs

Figure 2.1: The conceptual model of a security risk analysis process [1].

2.3 Dynamic coalitions and MANETs

A coalition is defined as a “temporary alliance for combined action, especially of

political parties forming a government” in the Oxford Dictionary of English [19].

This definition underpins two important characteristics of a coalition. Firstly, a

coalition is temporary; the alliance between parties is not permanent and will

cease to exist in the future. How long the coalition lasts depends on the type of

coalition. Secondly, an alliance is formed to achieve a common objective, which

may be difficult or even impossible to achieve alone by each individual party.

This implies that sharing of resources such as objects, applications and services

is an integral part of a coalition. Without common objectives, each party may

not be willing to share their resources [33].

A dynamic coalition is a coalition that allows parties to join or leave during the

lifetime of the coalition. Some examples of dynamic coalitions are as follows [33,

34]:

1. In a war, two or more countries may come together in an alliance to

strengthen their forces. These countries may decide to share some classified

information such as locations of forces and bases to increase the efficiency

20

2.3 Dynamic coalitions and MANETs

of the operation. However, a friend today might become a foe tomorrow;

an alliance member can change sides and become an opponent at any point

in time. The opposite can also occur.

2. A real-time systems research group in a university discovers a new highly

efficient scheduling algorithm and wishes to form an alliance with a private

automobile manufacturer and an embedded chip company for evaluating

the performance of the algorithm in the real world. Given the interest, all

three parties come together, form an alliance and share all research data

generated. After the coalition is set up, other organisations may decide to

join in or some of the initial members may decide to leave.

3. In the aftermath of an earthquake, the police department, the military forces

as well as voluntary organisations such as the Red Cross come together and

form a rescue operation alliance. The police moves refugees to a safe place,

whilst the Red Cross provides the medical and food aid. The military forces

provide transport to make the rescue operation more efficient. Eventually,

there is a recovery phase and basic infrastructure is rebuilt to get the region

back to normality.

4. MANETs are a type of network that can be rapidly deployed without relying

on existing infrastructure. The nodes in MANETs can dynamically join and

leave the network, often without warning, and possibly without disruption

to communication of other nodes, refer to Section 2.3.1.

Resource sharing is at the heart of every dynamic coalition. Each party in a

coalition hesitates to share its resources including information with other parties

in order to minimise its risk, yet sharing is necessary to achieve the common objec-

tive of the coalition. This problem is commonly known as the Dynamic Coalition

Problem [35]; having well designed access control policies and mechanisms are

vital in solving this problem.

2.3.1 MANETs

Wireless networks have grown and changed rapidly in the last decade. Wireless

networks can be categorised into two groups: infrastructure based networks and

21

2.3 Dynamic coalitions and MANETs

ad-hoc networks. In infrastructure based networks, there are some preinstalled

equipments, i.e., base stations to which all the mobile nodes are connected. All

communication between the nodes passes through base stations. A base station

may also serve as the gateway of a wireless network to a wired network. When a

mobile node moves out of the range of a base station into the range of another,

a hand off process is executed automatically and the mobile node continues its

connection seamlessly with the network [36]. Mobile phone service networks are

good examples of this type of network.

In ad-hoc (infrastructureless) networks, there is no preinstalled infrastructure

that the nodes can rely on to connect to each other. The nodes in an ad-hoc

network dynamically connect to form a multi-hop network. Each node plays the

role of a router, discovering the route and forwarding the data for other nodes

dynamically [36]. Ad-hoc networks are also self-configuring and self-organising

networks. Self-configuring in the sense that an ad-hoc network can be formed

on the fly; self-organising in the sense that the network can change based on

its needs, either by partitioning or merging the network with few administrative

actions. The two common types of ad-hoc networks are MANETs and sensor

networks.

MANETs are a subset of ad-hoc networks with highly dynamic network topolo-

gies [37]. Historically, MANETs have been pioneered by the military. The first

two projects on MANETs were the Public Radio Network (PRNet) [38] and

its follow up project, Survivable Radio Networks (SURAN) [39], both funded

by Defence Advanced Research Projects Agency (DARPA)1. Most existing non-

military MANETs have been developed in academic environments. The notion

of MANETs in the commercial world can be traced to the emergence and suc-

cess of the IEEE 802.11 Wireless Local Area Networks (WLANs) and Bluetooth

technologies in the 1990s. Due to the popularity of MANETs, the term “ad-hoc

networks” is often used interchangeably with “mobile ad-hoc networks” in the

literature.

Sensor networks are high density networks with a large number of sensor nodes

deployed in an area to monitor phenomena of interest. The discussion on sensor

1DARPA is an agency of the US Department of Defence that is responsible for the devel-
opment of new technology for use by the military.

22

2.3 Dynamic coalitions and MANETs

networks is beyond the scope of this thesis. For a comprehensive survey on sensor

networks, refer to [40].

2.3.2 Security challenges of MANETs

The flexibility that MANETs offer comes at a price. The infrastructureless nature

presents many security challenges that are specific to MANETs as follows [37, 41,

42]:

1. Lack of trusted entities — Lack of infrastructure is a fundamental charac-

teristic of MANETs. The lack of a trusted, centralised entity in MANETs

requires network administrative tasks to be distributed among the nodes

in the networks. This results in increased security risk as there are more

possible access points for intrusion. Moreover, many of the existing secu-

rity protocols, authentication and access control mechanisms rely on the

existence of a trusted, centralised entity, e.g., the public key infrastruc-

ture (PKI) requires a centralised trusted certification authority (CA).

2. Routing attacks — Nodes in MANETs organise themselves to communicate

with their neighbours in such a way as to provide connectivity across the

networks. As the nodes are mobile and have the freedom to move in an

arbitrary manner, the network topology changes frequently in an unpre-

dictable fashion. Consequently, communication routes between nodes also

change and network partitioning may happen if there is no overlap in net-

work coverage of two or more sets of nodes. The routing algorithm has to be

highly adaptive and robust to accommodate these frequent changes. There

are many possible attacks on routing identified in the literature. In the

simplest case, the routing table in the nodes can be directly modified once

they are captured by adversaries. Packets can also be maliciously created,

modified or dropped to change the routing table. Additionally, attacks on

routing can be launched by making the nodes inactive or by making them

behave selfishly (using services but not cooperating in routing tasks).

3. Resource attacks — Mobile nodes have constraints on their resources, in

terms of power sources, processing power and network bandwidth. The effi-

23

2.3 Dynamic coalitions and MANETs

ciency in using these resources is an important factor in designing MANETs.

Often, the nodes in MANETs are allowed to switch themselves into a sleep

mode to conserve energy. However, this in turn leads to the routing prob-

lem mentioned earlier. In contrast, “sleep deprivation” is another type of

attack that aims to exhaust the power resource of the nodes by keeping

the nodes active at all times. Furthermore, the bandwidth of wireless links

is significantly less compared to wired links due to noise and interference.

Consequently, there is a constraint on the amount of data that can be

transmitted at one time in the networks.

4. Incompatibility of traditional cryptographic techniques — Many traditional

cryptographic techniques cannot be directly implemented in MANETs for

two main reasons. Firstly, many of these techniques require a centralised

entity, which is not present in MANETs. Indeed, it is often the case that no

node in the network may be assumed to be fully trustworthy because of the

hostile operational environment. Secondly, many traditional cryptographic

techniques may be computationally intensive, yet the nodes in MANETs

often only have limited computational and power resources.

5. Inherent problems in wireless communication — MANETs inherit all the se-

curity problems of wireless networks. The wireless communication medium

is less reliable than the wired medium. It is necessary for the networks to

be able to distinguish the variation in physical link performance and the

possible forms of malicious attacks, e.g., DoS attacks. These attacks can

happen at various network layers. Additionally, wireless communication is

broadcast in open air and no physical security protection can be used to

protect the communication channels. It is necessary to assume that ad-

versaries can eavesdrop and possibly perform some interpretations on the

transmitted signals, e.g., traffic analysis. The broadcast signal can also be

used by adversaries to determine the location of the networks/nodes.

6. Operational environments — MANETs are often deployed in risky and

hostile environments such as battlefields. Therefore, it is safe to assume that

the networks may face more challenging security attacks than conventional

24

2.4 Conclusions

networks. Attackers can, for example, capture the nodes in MANETs and

use them to launch internal attacks.

7. Security policy issues — The dynamic nature of the networks can cause

the risk factors to be constantly changing. Current static security policies

that consist of static rules are unable to cope with this. For example, the

risk that a node is exposed to may change depending on the operational

environment (e.g., time and location) and the remaining resources (e.g.,

network bandwidth and battery power) of the node.

2.4 Conclusions

This chapter presents a brief overview of computer security. It discusses some

major security objectives, namely confidentiality, integrity, availability, authen-

ticity and accountability. It then discusses security risk analysis, which involves

the process of identifying assets and their vulnerabilities to threats, the risk as-

sessment process, and the selection of security controls. Next, it presents the

concept of dynamic coalitions and MANETs. Lastly, it presents a review on the

limitations of current security mechanisms in relation to MANETs.

25

Chapter 3

Security Policy Models

A security policy is

a set of rules (or principles) that direct how a system (or an organisa-

tion) provides security services to protect sensitive and critical system

resources [43].

A security policy must therefore specify all necessary control measures for en-

suring system security, including how authentication should be done and what

responses should be made to a security violation, etc.

Access control specification is typically a major component of a security pol-

icy. Access control protects the resources of a system (objects) against unau-

thorised access by restricting the use of system resources only to the authorised

users (subjects) according to the security policy of the system [43]. Access can

be in many modes; the common ones include read, write, append and execute.

The access mode that a subject has on the objects in the system is known as

the “privilege” the subject has. The set of high-level rules that specifies which

accesses are to be authorised and which are not is known as the access control

policy [44]. The study of access control policies has resulted in various useful

models. Most of these models are formal, i.e., formal analysis can be carried out

to prove the models are secure with respect to the security objectives concerned.

There are also some models consisting of informal high-level principles such as

the Clark-Wilson model [21].

26

3.1 Mandatory access control policy models

This chapter first reviews some traditional influential security policies and

models in the literature. It then presents some recently proposed risk-budget

based models that aim to provide more flexibility. Next, it introduces the top-

down policy hierarchical model that enables policy composition and refinement,

with an emphasis on the problems encountered in the refinement and conflict

analysis processes. Lastly, it summarises the current state of the art in security

policy development and reiterates the research objectives of the thesis.

3.1 Mandatory access control policy models

The Multi-Level Security (MLS) system was first developed in the defence com-

munity as a means to manage information with different sensitivities. In the

system each object such as a file is given a classification label that represents

its sensitivity and each user is assigned a clearance level which is on the same

scale as the classification. The clearance level a user has depends on the user’s

background, e.g., rank and the results of checks into the user’s behaviour and

lifestyle. Essentially, these factors are used to establish the trustworthiness of the

user and the information the user needs to know. The clearance level of the user

is then subsequently determined and granted. Mandatory Access Control (MAC)

policies enforce access control to objects by comparing the classification labels of

the information (objects) with the clearance levels of the users (subjects) [22].

This is typified by the Bell-LaPadula Model [5].

3.1.1 Bell-LaPadula model

The Bell-LaPadula model is concerned with the confidentiality of objects in an

information system. In this model, each entity in the system is either a subject or

an object. Each entity is associated with a security label of the form 〈classification

level, category set〉. The set of classification levels consists of names that form

a dominance (>) relation based on the sensitivity or the clearance. An exam-

ple of classification levels can be {top secret, secret, confidential, unclassified},

where top secret > secret > confidential > unclassified. Here > means “is more

sensitive than”. The set of categories contains names that form compartments

27

3.1 Mandatory access control policy models

which provide a means to the creators of the objects to control and restrict the

distribution of the objects. An example of categories can be {investment banking,

equity, technology} in a financial institute.

With such setting, a dominance, � relation can be defined on security labels

as follows:

Dominance, �. Let 〈sa, ca〉 and 〈sb, cb〉 be the security labels of a and b, label(a) �

label(b)⇔ (sa ≥ sb) ∧ (ca ⊇ cb).

This relation forms a partial order set (poset) on the security labels. Two

properties are defined to ensure the system remains secure with respect to the

confidentiality of the objects:

1. The simple security property (no read up) — no subject can read any object

with a higher security label than its own security label. This can be rewrit-

ten in a non-negated form as ∀s ∈ Subject, o ∈ Object : s can read o ⇔

label(s) � label(o).

2. The *-property (no write down) — no subject can write to any object

with a lower security label than its own. Formally, this can be written

as ∀s ∈ Subject, o ∈ Object : s can write o⇔ label(s) � label(o).

In other words, the Bell-LaPadula model restricts information to flow from low

confidentiality to equal or higher confidentiality. Later, a tranquillity property is

added to explicitly state that security labels of the entities in the system cannot

change during system operation to rebut some criticisms received in [45, 46]. (If

security labels can change arbitrarily under system operation, then clearly secu-

rity can be compromised. Consider a system in which the security labels of all

subjects are changed to the maximum possible levels allowing all files to be read

by everyone.)

Whilst MAC is often associated with the Bell-LaPadula model, they are not

the same. MAC really means that the security policy which governs the system is

enforced by the system itself, as implied by the term “mandatory”. The subjects

cannot manipulate access control attributes of the objects they own at their own

discretion. The Bell-LaPadula model is just an instance of MAC.

28

3.1 Mandatory access control policy models

3.1.2 Biba model

A model that is closely related to the Bell-LaPadula model is the Biba model [20],

which is concerned with the integrity of the objects in a system. It is essentially

the inverse model of the Bell-LaPadula model, i.e., the information is restricted

to flow from high integrity to equal or lower integrity. Two properties are defined

to ensure integrity of the system:

1. The simple security property (no write up) — ∀s ∈ Subject, o ∈ Object :

s can write o⇔ label(s) � label(o).

2. The *-property (no read down) — ∀s ∈ Subject, o ∈ Object : s can read o⇔

label(s) � label(o).

The Biba model also introduced two new concepts: the dynamic security label

and the invocation operation. The dynamic security label relaxes the constraint

of static security classification in the Bell-LaPadula model. An access to a low

integrity object by a subject operating at high integrity causes the operation of

the subject to be dynamically downgraded to low integrity. The new invocation

operation enables subjects to invoke other subjects (probably software processes)

to access objects. To remain consistent, the invocation property is defined such

that subjects are only allowed to invoke other subjects with lower or equal security

labels1.

3.1.3 Chinese wall model

The security models introduced so far are inspired from military applications.

The Chinese wall model [47] is a commercially inspired model which is concerned

with confidentiality by ensuring that information flow in the system does not

have any conflict of interest. A classic scenario example is the services offered

by a financial institution to different clients, some of which are competitors to

1The ring property is an alternative property defined such that there is no restriction set
for all read accesses, i.e., any subject can read any object regardless of their security labels,
but a subject s1 can write an object o1 ⇔ label(s1) � label(o1) and a subject s1 can invoke
a subject s2 ⇔ label(s1) � label(s2). However this property is inconsistent with the other
properties defined here. One must choose which is more appropriate to use depending on the
application.

29

3.1 Mandatory access control policy models

the others. A conflict of interest can arise when an analyst in the institution is

involved with two companies in the same market because the insider knowledge

that the analyst gains in one company may result in an unfair treatment of the

other and vice versa.

The Chinese wall model groups all objects related to a company in a com-

pany dataset. Datasets with conflicts of interest are grouped under the same

conflict class. If necessary, company datasets can be “sanitised” into a dataset

containing no critical information. No one should be authorised to access more

than one “unsanitised” dataset from the same conflict class. As the conflict de-

pends not only on the current object to be accessed but also all other previously

accessed objects, the access history of each subject must be kept.

Two properties are defined to ensure valid access control:

1. The simple security property — a subject can access an object only if the

object is within a currently held dataset, or an entirely different conflict

class. However, this property in itself does not prevent indirect information

leakage. A subject can read information from one dataset and write in

another dataset for other subjects to read. Therefore the *-property is

defined to prevent this kind of violation.

2. The *-property — a subject can write an object only if the subject does not

have read access to any other company datasets which are not “sanitised”.

This property ensures that the unsanitised information flow is restricted

within its own company dataset whereas the sanitised information flow is

not restricted throughout the system.

In contrast to the Bell-LaPadula model which assumes that access rights are

static, the Chinese wall model assumes that access rights are dynamic and there-

fore have to be reexamined during all state transitions. The identification of

the importance of access history also proliferates the research into history based

access control.

30

3.2 Discretionary access control policy models

3.1.4 Clark-Wilson model

The Clark-Wilson model [21] is a commercially inspired model which is concerned

with integrity. Unlike other models, the emphasis of this model is not on what

a subject can access, but how the access is done. The core of the model is

based on the two well established principles in the commercial world: well-formed

transactions and separation of duty.

A well-formed transaction is a series of operations which changes the data

in the system from one valid state to another. This is to preserve the internal

consistency of data in the system. The separation of duty principle requires that

the entity that certifies a transaction and the entity that executes the transaction

be different. Provided that these entities do not conspire, this principle should

preserve the external consistency of the system, i.e., the data in the system reflects

the data it represents in the real world.

The objects in the Clark-Wilson model are divided into either constrained

data items (CDIs) or unconstrained data items (UDIs). Five certification rules

and four enforcement rules are defined to constrain how to validate integrity of

CDIs, how and who can change CDIs and how to change UDIs to CDIs.

3.2 Discretionary access control policy models

Unlike MAC, Discretionary Access Control (DAC) policies restrict access to ob-

jects based on the identity of the subjects and/or the groups to which the subjects

belong. The resource owners can delegate the access privileges to other subjects

at their own discretion; hence the name.

DAC policies can be represented using an access control matrix [48]. An

access control matrix is a two dimensional matrix, in which the rows correspond

to subjects and the columns correspond to objects. An element in the matrix

specifies the privileges a subject has on an object. Let r, w and x represent read,

write and execute access respectively. Then, an example access control matrix is

depicted in Figure 3.1.

Whilst the access matrix provides a convenient way of expressing DAC poli-

cies, it is likely to be too large and also too sparse to be stored efficiently in

31

3.3 Role based access control policy models

File 1 File 2 Device
Alice rwx rwx rwx
Bob r r rwx
Charles rw rw −

Figure 3.1: An access control matrix example.

practice. Consequently, it is usually stored either by columns or rows, resulting

in access control lists (ACLs) and capability lists respectively.

ACLs store the access matrix by columns. Each entry in an ACL stores the

access privileges a subject has on the objects in the system. This object-centred

decoupling makes ACLs suitable for operating environments where the protection

is central to the objects, e.g., operating systems. Conversely, if the number of

subjects in an operating environment is large and constantly changing, ACLs

become less suitable. The way ACLs store information is inefficient when one

needs to find all the objects that a particular subject has permission to access,

since a check on the ACLs of all objects in the system is required.

Capability lists store the access matrix by rows. The strengths and weaknesses

of capability lists are more or less the opposite of ACLs. The decoupling is

subject-centred; it is easy to check what privileges a subject has but it is tedious

to check the privileges granted on a particular object.

3.3 Role based access control policy models

DAC policy models, however, pose several challenges to the privilege adminis-

trations, especially when the information system becomes large. An interesting

observation is that the objects in the system are often not owned by the users

themselves, but the organisations they work for. The access control decisions

to the objects are often determined by the responsibilities of the roles the users

hold [49]. This gives rise to the role based access control (RBAC) in which the

access privileges in the system are defined in terms of the role a subject has,

rather than the identity of the subject itself [49].

The basic components of RBAC are: users, permissions, roles and sessions.

Two relations are defined: user assignment (UA) that associates users with roles,

32

3.3 Role based access control policy models

and permission assignment (PA) that associates roles with permissions. Both rela-

tionships are many-to-many mappings. Permissions are granted to users through

roles. At any time, a user can choose to activate a subset of roles that he has been

assigned; the permissions then available to the user are those associated with the

roles activated in that session.

There have been many extensions made to RBAC. The focus of discussion

here is on the American National Institute of Science and Technology (NIST)

RBAC reference model [50] which has later been revised to become the American

National Standards Institute (ANSI) standard (ANSI/INCITS 359-2004) [51].

The ANSI RBAC reference model consists of four components: Core RBAC,

Hierarchical RBAC, Static Separation of Duty Relations and Dynamic Separa-

tion of Duty Relations. The Core RBAC defines the fundamental elements in a

RBAC system. These include all the functional capabilities of RBAC presented

so far, i.e., user assignment and permission assignment relations, session as well

as support for user-role review (the ability to determine which role is given to a

user and vice versa).

Hierarchical RBAC introduces the concept of role hierarchies, which allows

roles to inherit the permissions of other roles, e.g., a senior role inherits all the

permissions of a junior role. This often improves administrative efficiency through

the reduction in the number of permission mappings. However, the permission

inheritance based on the seniority hierarchy in the real world is not always suit-

able. In [52], Moffett presented some examples of how this can be in conflict with

some control principles such as the separation of duty principle, decentralisation,

supervision and review. Whilst various ad-hoc methods such as the use of private

roles [53] or exceptions [54] can be introduced to overcome this problem, these

methods defeat the original intent of improving the administrative efficiency.

Static Separation of Duty Relations introduces the concept of constraints on

user assignments. As this concept may conflict with the concept of role hier-

archies, it is specified in both the presence and absence of the concept of role

hierarchies. Dynamic Separation of Duty Relations introduce the concept of con-

straints on the role activation in a session for users.

A common alternative reviewed in the literature is the original NIST standard

which defines four conceptual models: Flat RBAC, Hierarchical RBAC, Con-

33

3.4 Flexible access control policy models

strained RBAC and Symmetric RBAC. Flat RBAC is essentially the same as the

Core RBAC component; Hierarchical RBAC is Flat RBAC with role hierarchy

support; Constrained RBAC is Hierarchical RBAC with constraints on the user

assignments and role activation in a session for users; Symmetric RBAC is Con-

strained RBAC with support for permission-role review. In the ANSI standard

specification, the support for permission-role review is left as an optional feature

because it is intrinsically difficult to implement in large distributed systems [50].

The main advantage of RBAC is that it eases the administration task [49, 55].

Once the role-permission mapping is established, it is likely to remain constant.

The administrative task of assigning roles to users is very much easier and less

prone to error as compared to assigning permissions to the users directly.

There have been many other extensions proposed for RBAC. The extension

to the group or team concept is a common one. In the same way that roles are

used to group privileges, users can be grouped based upon the group or team

they belong to. Each team then is associated with roles. Team based access

control [56] and coalition based access control [57] are examples of this. Tem-

poral RBAC (TRBAC) is proposed in [58] to introduce the concept of temporal

constraints to RBAC. It allows the use of temporal constraints to specify the

periodic role activation and also the dependencies between the role activation via

role trigger mechanisms.

3.4 Flexible access control policy models

Whilst DAC and RBAC policy models provide better flexibility through per-

mission delegation and role abstraction, the permission assignments to the users

remain static. In practice, the permission assignments and the protection require-

ments of the objects may change over time. The task of administering the access

control policy can easily become unmanageable, especially when the operational

environment is highly dynamic.

Here we review some access control models that aim to provide more flexibil-

ity, namely the Fuzzy MLS model introduced in [2, 29] and the economics based

models introduced in [8]. The intuition of these models is based upon the ob-

servation that access control is governed by the risk incurred and the benefit an

34

3.4 Flexible access control policy models

organisation can gain from the access. An access is authorised only if the benefit

outweighs the risk incurred. The risk-benefit tradeoff assessment of the models

presented so far is implicitly and statically encoded in the models. These two

models advocate the use of an explicit model to dynamically estimate the risk to

make better informed decisions.

3.4.1 Fuzzy MLS model

The Fuzzy MLS model is an adaptive extension of the read access aspect of the

Bell-LaPadula model. In the latter model, a subject can read an object if and

only if the security label of the subject dominates the security label of the object,

i.e., the sensitivity level of the subject (sl) is greater than the sensitivity level

of the object (ol) and the category set of the subject (sc) is a superset of the

category set of the object (oc). This can be interpreted informally as a subject

can read an object if and only if the subject is trustworthy enough and has the

legitimate “need-to-know” to access the object. The policy encoded in this model

essentially divides each access as either having an acceptable amount of risk or

an unacceptable amount of risk; only the accesses with acceptable amount of risk

are authorised [2].

The Fuzzy MLS model continues to employ this risk based rationale, but it

changes the access control from a risk avoidance system (inherent in the binary

decision-making process) to a risk management system by computing the “quan-

tified risk” estimated by the “gap” between the security labels of the subject and

object.

The model consists of a risk scale that is divided into three parts: top, middle

and bottom, as shown in Figure 3.2. Each access is mapped to a point on the scale.

An access that is mapped to a point in the top region is denied because the risk is

too high; an access that is mapped to a point in the bottom region is authorised.

The middle region is further divided into multiple risk bands such that each band

is associated with a risk mitigation measure; an access that is mapped to this

region is authorised only if the associated risk mitigation measure can be applied

to reduce the risk level to the bottom region. There is a change from a binary

model of risk (acceptable/unacceptable) to one that embraces a more refined and

35

3.4 Flexible access control policy models

continuous assessment of risk. The new model explicitly acknowledges that a risk

decision need not be immediately clear-cut and the description “Fuzzy MLS” [2]

is intended in part to convey this. (There is a vague analogy with the way the

fuzzy logic replaces the classically clear-cut notion of set membership with one

based on probabilities or continuous distributions. However, anyone expecting a

more concrete inspiration from fuzzy logic will be disappointed.)

Figure 3.2: The Fuzzy MLS model [2].

Two alternative risk management systems, the credit card system and eco-

nomics based system, are also discussed in [2]. In the credit card system, each

subject is given a risk credit. When a subject makes an exceptional access, the

difference between the risk and the soft boundary will be charged to the risk credit

of the user. Periodically, the return on investment (ROI) of each user is evaluated

to determine the future risk credit of the user, based on the risk credit charged

36

3.4 Flexible access control policy models

and the results delivered by the user. Activities can also be logged to periodically

refine the access control policy. This provides a way of governing the long-term

behaviours of users, yet still maintaining sufficient flexibility as provided by the

use of risk credit. In the economics based system, the notion of pseudo-currency

is introduced in place of risk credit. Each user is given an amount of pseudo-

currency which can be used to purchase information accesses. Riskier accesses

cost more. Similar to the credit card system, the amount of pseudo-currency

allocated to a user in the future depends on the ROI of the user. This is very

similar to the economics based models that will be reviewed in Section 3.4.2.

Risk computation

The Fuzzy MLS model defines risk of a read access as the expected value of

damage caused by unauthorised disclosure of information:

risk = (value of damage, V)× (probability of incurring the damage, P) (3.1)

The value of V can be estimated from ol. As ol typically corresponds to the order

of damage, V is defined as an exponential function of ol:

V = aol, a > 1 (3.2)

The value of P can be estimated by quantifying two “gaps”: one between the

sensitivity levels of the subject and the object, and the other between the category

sets of the subject and the object. In the Bell-LaPadula model, P can be viewed

as:

P = P1 + P2 − P1P2 (3.3)

where P1 and P2 are:

P1 =







0 if sl ≥ ol

1 otherwise

P2 =







0 if sc ⊇ oc

1 otherwise

37

3.4 Flexible access control policy models

The Fuzzy MLS model continues to use (3.3) to estimate these probabilities,

but allows these probabilities to take real values in [0, 1] instead of only being

expressed as binary values.

To determine the probabilities P , P1 and P2 precisely is impossible as no one

knows the future for certain. However, risk indices can be formulated by having an

assessment on the likelihood of misuse in different access operations. The higher

the likelihood of misuse, the higher the risk index. Thereafter, these risk indices

can be mapped onto probabilities based on previous experiences and intuitions.

The use of risk indices is doubly useful. Firstly, it removes the constraints imposed

by the probability theory, e.g., the sum of probabilities of all possible outcomes

must be equal to one. This provides a more fine-grained view on risk. Secondly,

it makes the fine tuning task easier in the future. Risk indices, once determined,

can be kept fixed; only the mapping function is required to be tuned over time.

P1 is defined as the probability of a subject failing to resist the temptation of

unauthorised information disclosure. The Bell-LaPadula model can be viewed as

taking a binary view on temptation: temptation happens if the sensitivity level

of subject (sl) is less than the sensitivity level of the object (ol) and information

disclosure always happens (P1 = 1) if temptation exists.

To formulate P1 for Fuzzy MLS Model, the temptation index TI is first de-

rived. There are many different ways to relate TI to sl and ol, but it would seem

intuitive that the relation must satisfy the following properties [29]:

• As the sensitivity level of an object increases, the temptation increases.

• As the sensitivity level of a subject increases, the temptation decreases.

• Every subject faces temptation, i.e., there is no 100% trustworthy subject.

• TI is biased towards more sensitive objects.

A simple formula [2] that satisfies these properties is:

TI(sl, ol) =
a−(sl−ol)

m− ol
(3.4)

where a, m ∈ R, a > 1.0, m > max{ol | ol ∈ OL}, where OL is the set consisting

of each possible ol in the system. Here aol represents the estimated value of

38

3.4 Flexible access control policy models

an object and asl represents the trustworthiness of a subject. TI approaches

infinity (temptation becomes very large and difficult to resist) as ol approaches m.

To relate P1 to TI, a sigmoid function:

P1 =
1

1 + exp((−k)× (TI − n))
(3.5)

is derived. Here n is the value of TI that makes P1 = 0.5; k controls the slope of

the P1 curve with regard to TI. This function is chosen because of its similarity

with the step function in the Bell-LaPadula model.

P2 corresponds to the difference between the probability of unintentional dis-

closure and the probability of disclosure which the organisation is willing to accept

for an access of a subject to an object. In the case that an object being accessed

belongs to multiple categories, a simplified assumption is made such that the ob-

ject is a monolithic entity, in which the differences among all the categories are

computed and the maximum difference is used as P2. Instead of a binary value,

a fuzzy membership value is assigned to each subject to represent the “need-to-

know” level of a subject for the object in each category.

The willingness index, WI can be computed using (3.4) with the fuzzy mem-

berships in place of the sensitivity levels. Then the willingness of acceptance

for an organisation when a subject accesses an object, Wc can be computed us-

ing (3.5) with WI in place of TI. Let Pidc
be the probability of unintentional

disclosure for category c. Then, P2 is defined as follows:

P2 = max{Pidc
(1−Wc) | c is a category} (3.6)

Finally, the risk of a read access is computed using (3.1).

Review

The Fuzzy MLS model draws inspiration from fuzzy set theory to estimate and

quantify risk in the traditional Bell-LaPadula model. This model continues to

employ the risk based rationale, but it changes the access control model from a

risk avoidance system to a risk management system by estimating the risk of each

access with a risk scale.

39

3.4 Flexible access control policy models

This risk scale allows the model to adapt to environmental changes in several

ways. Firstly, the boundaries between regions can be dynamically adjusted to

control the system’s global risk tolerance. Secondly, accesses that would have

been denied under the traditional model may now be allowed if the associated

mitigation measures can be provided. Thirdly, the risk function that maps each

access to a point on the risk scale can be updated periodically to reflect the

changes in the operational environment.

In practice, the security labels of the objects in a system are often set with a

tendency towards higher secrecy to minimise the operational risk. Consequently,

information sharing becomes more difficult. This over-classification problem can

be addressed by making the label take uncertainty into account [2]. This is not

possible in the traditional Bell-LaPadula model.

The Fuzzy MLS model however has some shortcomings; it only uses the se-

curity labels to estimate risk. As outlined in [8], there are many other factors

that can affect the risk of an access, e.g., the access method (softcopy vs. hard-

copy), the operational environment and the risk mitigation measures employed.

The best way to identify, quantify and aggregate these factors remains an open

research topic. Risk aggregation can be tricky as the sensitivity of a piece of

information provided to a subject does not solely depend on itself, but also on

other information that the subject can access [2]. Additionally, accesses to multi-

ple pieces of low sensitivity information may allow a subject to infer information

that is far more sensitive.

3.4.2 Economics based models

The idea of managing risk in access control using economic concepts is proposed

in [8]. Each user in an organisation is allocated a number of risk tokens, which

can be spent for operational needs. The number of risk tokens a user will get

in the future depends on the return of investment of the user. Essentially, risk

is viewed as a type of limited resource in an organisation and the access control

problem is transformed into a resource allocation problem. Two economics based

models are introduced: one based on the command economic system and the

other based on the market economic system.

40

3.4 Flexible access control policy models

Definition of risk, damage and harm

New definitions for risk and two new terms, “damage” and “harm” are introduced

in [8]. Risk is defined as the unnormalised probability of an access which can cause

the loss of a secret, damage is defined as the cost of the loss, and harm is defined

as the expected cost of the loss. These terms are related as follows:

harm = damage× risk (3.7)

The definition of risk is different from the one in the Fuzzy MLS model (3.1),

which is restated as follows for ease of reference:

risk = (value of damage, V)× (probability of incurring the damage, P)

A careful examination of both equations allows us to establish a mapping

between the terms: the term “harm” here corresponds to the term “risk” in the

Fuzzy MLS model; the term “damage” holds the same meaning in both cases; and

the term “risk” here corresponds to the term “probability of incurring a damage”

in the Fuzzy MLS model. In this thesis, the terms are used in the sense of the

original report for ease of reference.

Three guiding principles

The author suggests that the new information protection systems should be risk

based and outlines three principles that should be followed in building them.

These principles are as follows:

1. Measure risk — The amount of risk associated with each access should be

measured or at least estimated.

2. Mark an acceptable risk level — Risk avoidance (setting the acceptable risk

level to zero) effectively stops all the information accesses because every

access has an inherent amount of risk associated with it. The acceptable

risk level should be set to a value that optimises the long-term benefit.

3. Maximise the information flow up to the acceptable level — In contrast to

current systems which attempt to minimise the total risk, information in the

41

3.4 Flexible access control policy models

system should flow to the greatest extent compatible with the acceptable

risk level in order to optimise gain.

Risk model

A risk model is required to estimate the risk of each access. The following factors

should be considered in building this model:

Individual factors — User roles, security clearances, previous positions, etc.

Situational factors — Operational environment, access time, etc.

Technical factors — Hardware/software security measures, etc.

Types of accesses — Access method (softcopy vs. hardcopy), access duration,

whether access is auditable, whether information can be redistributed, etc.

Temporal effects of consequences — Leaking the information on the budget

allocated for a small project may result in a short-term risk but leaking the

information on a national secret weapon may result in a long-term risk.

These factors have to be combined in a mathematical way to yield a formula that

can be used to assign a risk value to each information access.

Model based on command economic system

In this model, the value of a token is pegged to risk [8]. For example,

1 token is pegged to the risk associated with softcopy access for a day

to a document by an individual who is cleared to the secret level.

The value of the token is associated with the estimated risk incurred in the access,

including the type and duration of the access and the security clearance of the

individual. Yet, it does not consider the value of the document (the damage

factor).

Using the risk model presented in Section 3.4.2, each access can be associated

with a certain number of risk tokens. Higher risk accesses cost more. For example,

42

3.4 Flexible access control policy models

• Softcopy access for a day to a document by an individual who is cleared to

top secret level costs 0.2 token.

• Hardcopy access to a document with a restriction on further distribution

by an individual who is cleared to secret level costs 50 tokens.

When a piece of information is being produced, the producer will create the

number of tokens that is commensurate with the acceptable risk level of the piece

of information. For example, the production of a document that may be viewed

in softcopy for 500 times by an individual who is cleared to secret level is always

accompanied by the creation of 500 tokens. If the 500 tokens are spent by an

individual who is cleared to secret level to print the document in hardcopy format

for 10 times with a restriction of no further distribution, the acceptable risk level

of the document would still be considered reached.

Additionally, the use of different types of tokens is necessary for different types

of information. This is because all tokens are pegged using the same baseline.

More sensitive information has less tolerable risk level and therefore has fewer

tokens created with it.

To increase the liquidity of the market, a secondary market can be introduced

to allow token exchange. This does not require any change of the model because

the tolerable risk of the information has been controlled by the number of tokens

created with it and other risk factors have been taken care of in the cost associated

to each information access.

To distribute the risk tokens, the information producers create and distribute

the risk tokens to different organisations based on their needs. Within an organ-

isation, risk tokens are pushed down through the management hierarchy. Peri-

odically, the distribution is reviewed based on the return on investment function.

Other metrics can also be used to adjust the distribution of the risk tokens. An

example of such metric is the utilisation function that measures the fraction of

tokens that have been spent to purchase information accesses. This function can

also serve as a measure on the merits of the information producers. If the utili-

sation fraction is near 100%, it means the organisation is almost reaping the full

benefit of the information produced and vice versa.

43

3.4 Flexible access control policy models

Model based on market economic system

The main aspect that differentiates this model from the model based on the

command economic system is the collapse of information specific tokens into two

general types. This removes the controls that the producers have in setting the

tolerable risk associated with the information (via manipulation of the number

of tokens created). The reason for having more than one type of token is that

different types of information require different protection profiles over time. This

change requires the value of a risk token and the token distribution mechanism

to be redefined.

In the model based on the command economic system, accessing to any infor-

mation, regardless of its sensitivity level, would cost the same number of token

for all individuals with the same clearance level. This is because the risk of an

information access is only associated with the probability of causing unauthorised

disclosure of the information. However, the amount of damage caused by unau-

thorised disclosure of information with different sensitivity levels are likely to be

different. More sensitive information is likely to cause more damage. To control

the amount of damage, the information producer can limit the number of tokens

created along with an information. With the change from information-specific

tokens to generic tokens, this is no longer possible.

To overcome this problem, the value of a token in this new model is changed

to be associated with harm (damage×risk) as defined in (3.7). To calculate harm,

an additional damage model is required. For risk token creation and distribution,

a new central authority that plays a similar role to the central bank in the real

world is introduced. This central authority is also responsible for monitoring

the health of the tokens by balancing demand and supply, and controlling the

inflation and deflation rates.

Review

Although the author believes that the model based on the market economic sys-

tem is superior to the model based on the command economic system, there are

interesting features and tradeoffs in both models. As shown in Table 3.1, the

value of a token is defined in different ways. The model based on the command

44

3.4 Flexible access control policy models

Command economic system Market economics system
Token value pegged with risk pegged with harm
Token type information-specific two generic types: short-

term and long-term
Token creator information producer central authority (central

bank)
Model required a risk model only a risk model and a damage

model
Information risk managed by limiting the

number of tokens created
with information

managed by maintaining the
equilibrium of the informa-
tion market

Table 3.1: The differences between the model based on the command economic
system and the model based on the market economic system.

economic system has been deliberately simplified to introduce the new concept

and to make way for the model based on the market economic system.

To have a fair comparison, the value of a token in the model based on the

command economic system is associated with the amount of damage. The only

remaining difference now is the controls the producers have in setting the toler-

able damage associated with information in the model based on the command

economic system. The information producers can be dishonest in their claims of

the sensitivity levels of information by manipulating the number of tokens cre-

ated with them. This may result in market dislocation. The model based on the

market economic system is proposed to alleviate this problem by the introduction

of a central bank, thus making the credibility of the central bank a key factor

for this new model to operate properly. In other words, the author assumes that

the risk of the central bank in being compromised is smaller than the risk of

market dislocation caused by the dishonest behaviours of the information pro-

ducers. This assumption may not hold true in certain operational environments,

e.g., MANETs do not have a central trusted node and all nodes are exposed to

security attacks.

Having said that, the three guiding principles in building a protection sys-

tem as outlined in Section 3.4.2 are inspiring. Current protection systems always

attempt to minimise the risk incurred in each access in the hope that the total

45

3.4 Flexible access control policy models

risk of all accesses is below the acceptable risk threshold limit. These principles

recognise that risk is inevitably incurred in each access and thus advocate man-

aging the global risk. The acceptable risk threshold limit is first determined and

information flow is encouraged all the way up to the acceptable limit to max-

imise the gain. This provides greater short-term flexibility in the access control.

Information is made available to any user who is willing to pay the cost, yet the

long-term behaviours of users remain under control as the token distribution is

subject to the return on investment of each user.

Additionally, the distribution of risk tokens based on the return on invest-

ment encourages users to opt to access information in safer ways so as to reduce

expenses. Thus, the levels of risk tolerance can be controlled in the number of

tokens given to individuals; the fewer tokens, the more conservative the risk toler-

ance is. If the tokens are spent in the usage of a riskier (expensive) way to access

information, individuals may not have sufficient tokens to accomplish other duties

assigned to them.

There is a natural reluctance for human users to make decisions that have

far reaching consequences, e.g., revoking the clearance of a user. The risk model

helps by redefining the responsibilities of a human user in terms of security and

operational duties. The security duty encompasses ensuring the integrity of the

information entered to the risk model. This incremental information input to

the risk model, which gradually changes the trust levels of a user, becomes less

daunting in comparison to the immediate revocation of the clearance of a user.

The operational duty is to ensure that the tokens are used or distributed wisely

in the organisation/team, e.g., a manager may make an economic decision in

distributing the tasks to his employees. However, the use of the risk model leads

to an accountability issue: who is going to be responsible when something goes

wrong? The risk model, the user or the higher level organisation? There is

no obvious answer. Without accountability, the number of misuses is likely to

increase.

In economics based models, the availability of information access is tightly

linked to the risk tokens. A user who has spent all his budget is rendered useless

until the next token distribution cycle. This can happen due to the use of an

imperfect risk model, an imbalanced distribution of risk tokens or misbehaviours

46

3.4 Flexible access control policy models

of users. In the former two cases, continual refinements have to be employed in

a timely manner to avoid causing market dislocation. If it is due to the misbe-

haviours of users, simply denying the user’s access request can be a logical answer

but inappropriate in certain scenarios. For example, denying an information ac-

cess to a front-line commander in a battlefield who has no budget left may result

in fatalities.

Both models also assume that entities are rational and therefore will make the

best decision among given choices. However, psychological and social research

suggests otherwise; the human decision-making process is often suboptimal and

irrational. For example, the “heuristics and biases” programme was started to

investigate the idea of whether the decision-making process under uncertainty

often rests on a limited number of simplified heuristics1 or a complicated algo-

rithm [59]. One of the results was the framing effect, which showed that the way

a problem is formulated can have influence on the decision-making process [60].

A problem can emphasize a gain (30% of the people will pass the examination)

or a loss (70% of the people will fail the examination). The former case generally

leads to risk aversion behaviour while the latter case generally leads to risk seek-

ing behaviour. Relationships among people can also affect the decision-making

process. For example, a captain may choose not to report the misuse of authority

among his soldiers to protect his soldiers from punishment or to preserve the rep-

utation of his team. Other factors such as emotion, bias, mistake or incapability

in judgement [61] can also creep into the decision-making process and cause chaos

in the system.

Additionally, the report does not present any implementation example of core

components, e.g., the models to calculate risk and damage. These models are

inherently complicated to design and build. The contributing factors are difficult

to measure, quantify, calculate and aggregate, e.g., how secure is an operating

system? Should an access to a secret document be considered a short-term risk,

a long-term risk or both? If both, what is the proportion of each risk? Even

if building such models is possible, the task of fine tuning these models in a

timely manner can be challenging. Furthermore, other security prerequisites on

the infrastructures required to implement the system, as discussed in [8], ranging

1Heuristics are the simple yet efficient informal rules that humans use to make decisions.

47

3.4 Flexible access control policy models

from network protocol to technologies on tamper proof hardware, are difficult to

engineer. The security of a system is only as strong as its weakest component.

In summary, the use of economic concepts may provide greater flexibility to

protect information systems. However, there are doubts arising from its imple-

mentation and also with regard to some practical issues of the system. Indeed,

the author also commented that “(they) fully expect that much of what (they)

suggest can be proved unworkable, or no better than some different approach”

and “(this) model may seem too extreme” [8]. Further research is required to

further investigate this idea. Having said that, the 3M principles of building an

information protection system: measure risk, mark the acceptable risk and max-

imise the information distribution to the acceptable level are inspiring thoughts.

3.4.3 Top-down hierarchical models

The models presented so far have access control policies which are specified in

terms of the low-level corresponding enforcement mechanisms, e.g., protection

bits, capabilities and access control lists. Each model implements a single speci-

fied policy but does not often capture all the protection requirements of a system.

The requirements of the policy languages

In [62], Woo et al. proposed two ideas: a logic based language that allows access

control policies to be specified independently from the implementation mech-

anisms; and two composition operators that can be used to combine multiple

access control policies. They also outlined a list of requirements for a language

to be suitable for specifying access control policy. The language should:

1. be declarative and semantically independent from the implementation mech-

anisms.

2. be efficiently computable, hence allowing efficient authorisation evaluation.

3. allow the intended security properties to be easily specified.

48

3.4 Flexible access control policy models

4. allow the ways to handle authorisation to be easily specified when poli-

cies are non-monotonic, inconsistent, incomplete (coverage) or combined

together.

Although it has been found later in [63] that the language proposed does not

impose sufficient constraints to ensure that the specified policy is Turing decidable

and therefore may not be implementable, their work has pioneered the use of high-

level languages to specify abstract policies independently from the implementa-

tion mechanisms. In [64, 65], the Authorisation Specification Language (ASL),

which is based on the stratified first order logic, became the first complete and

computable policy specification language. There exist also other policy specifi-

cation languages in the literature, e.g., Security Policy Language (SPL) [66] and

XACML [67]. Refer to [68] for detail.

Policy hierarchy

In network management research, policies have become increasingly popular as

a means of managing distributed systems. Here the term “policies” carries a

much broader meaning; policies are “rules governing the choices in behaviour of a

system (in general)” [69]. Therefore, policies encompass not only security-related

rules, but also general management rules. For example, obligation policies which

have the form of event triggered condition-action rules can be used to define

adaptive management actions, e.g., change in the quality of service provided,

resource allocation and backup policy and software installation. This difference

is not important in the discussion of this thesis.

To cope with the growth in size and complexity of large distributed systems,

there is a trend towards automating many aspects of management across dis-

tributed components. The concepts of viewing policy as an object and of policy

hierarchy are first proposed in [6] and refined further in [7, 70]. The concept of

viewing a policy as an object is about decoupling the policy from the compo-

nents that are responsible for enforcing it (the implementation mechanisms) and

viewing the policy as an independent reusable component [6]. This enables the

behaviour of the system to change by simply changing the rules in the policy.

49

3.4 Flexible access control policy models

The concept of policy hierarchy recognises that policies exist at different levels

of abstraction. It suggests that high-level policies can be derived from business

goals and form the basis of multiple low-level policies [6, 7]. The ultimate ob-

jective is to develop a mechanism that allows the specification of a high-level

policy to be analysed and translated automatically to low-level policies which

can then be executed by the system. The number of policy hierarchy levels may

vary among different models, yet the intuition remains the same. The high-level

policies are refined to form low-level policies.

As an example, the policy model proposed in the International Technology

Alliance (ITA) project is shown in Figure 3.3 [3]. The model consists of four lay-

ers: specification layer, abstract layer, concrete layer and executable layer. The

specification layer consists of authoring and analysis tools that support the spec-

ification of high-level security policies in constrained natural languages. These

policies are then refined into abstract policies. At the next layer, various formal

methods are used to check the correctness and consistency of these abstract poli-

cies. The concrete layer is then responsible for refining the analysed policies into

concrete policies which are then upheld by different components to meet the pol-

icy goals. The executable layer transforms these concrete policies into executable

policies and distributes them to the implementation devices that are responsible

for enforcing the policies. This bottom layer is also responsible for reporting the

status and device discovery information back up to the concrete policy layer.

Policy refinement and policy conflict analysis

Policy refinement is the process of transforming high-level security goals into

low-level policies that can be enforced by a system [6]. The refinement process

involves the analysis of policy conflict, policy coverage and the determination of

resources required to implement the policies [6].

One widely accepted policy refinement approach is the goal refinement ap-

proach proposed in [71]. The goal refinement approach consists of the process

of identifying, recognising and instantiating refinement patterns. Once a refine-

ment pattern has been identified and analysed for completeness and conflict, any

policy that matches this pattern is certain to be complete and correct. Whilst it

50

3.4 Flexible access control policy models

Figure 3.3: The ITA policy model [3].

51

3.4 Flexible access control policy models

is desirable to have a fully automated refinement process, Moffett et al. argued

that it is often infeasible to do this in many situations other than the most trivial

scenarios [70].

Policy conflict analysis is the process of verifying whether the security policy is

consistent and complete [69]. By consistent we mean that there is no conflict be-

tween the rules in the policies and with the capabilities of the underlying system.

By complete we mean the policy implements all the high-level goals specified.

There are two categories of conflicts: modality conflicts and semantic conflicts.

Modality conflicts arise when the rules in the security policies are inconsistent

with one another. Modality conflicts can be divided into the following three

categories based on the types of rules that are in conflict [72]:

1. Authorisation conflicts — conflicts that arise because both positive and

negative authorisation rules exist for the same action, subject and object

tuple. In other words, a subject is authorised (by the positive authorisation

rule) as well as forbidden (by the negative authorisation rule) to perform

the same action on an object.

2. Obligation conflicts — conflicts that arise because there is an obligation

rule and a refrain (negative obligation) rule defined for an action that a

subject is obligated to perform as well as refrained from performing on an

object.

3. Unauthorised obligation conflicts — conflicts that arise when there are an

obligation rule and a negative authorisation rule defined for an action that

a subject is obligated but forbidden to perform on an object.

Having a positive authorisation rule and a refrain rule defined for the same action

for a subject and an object is not considered as a conflict.

Poor policy specification is not the only cause of policy conflict. Organisation

goals may be ambiguous and conflicting in nature, e.g., maximising resource

utilisation vs. maximising resource availability. This will inevitably result in

conflicts among policies that are derived from it.

To detect these conflicts, syntactic analysis can be applied to the policies to

determine the overlap of subjects, targets and actions [72]. However, the existence

52

3.4 Flexible access control policy models

of overlap only reveals the potential modality conflict because other constraints,

such as time, might limit the applicability of the rules. Moreover, syntactic

analysis is unable to detect application-specific conflicts, e.g., the separation of

duty principle described in Section 3.1.4. To detect these conflicts, the conditions

that may cause the conflicts are required to be specified as additional constraints

on the policies. The occurrence of the conflicts may also depend on the state

of the system. Analysing all these states to check for possible conflicts is often

infeasible and therefore run-time analysis is still necessary.

Once these conflicts are detected, it is necessary to resolve them. Jajodia et

al. suggested a few ways to handle the conflicts in [64]. The simplest way is to

do nothing but flag an error condition. A better solution is to allow the positive

authorisation policy to override the negative authorisation policy or vice versa.

Often, the priority is given to the negative authorisation policy based on the

assumption that preventing actions would incur less risk. Obviously this is not

always true. For example, a positive authorisation policy can be an exception to

a more general negative authorisation policy.

To alleviate this issue, priorities can be assigned to different policies explic-

itly [72]. When conflicts arise among policies, the highest priority policy is en-

forced. However, the task of priority assignment in itself is difficult. There is

also a problem of breaking a tie if there are two or more policies with the same

level of priority. This problem is exacerbated when there are multiple parties

involved in defining and assigning policies. Inconsistency can easily arise as each

party can have different preferences. An alternative approach is to define priority

based on the specificity of the policy [73]. At the other extreme, meta policies

are also being proposed as a way to define the precedence relationship among

policies [72]. Whilst these resolution mechanisms provide more flexibility, they

also make the task of ensuring policy consistency more complicated. There is still

no known general mechanism that is able to detect and resolve conflicts among

policies when arbitrary conditions are allowed.

53

3.5 Summary

3.5 Summary

Recent research [8] suggests that current static security policy models are not

appropriate for many modern systems, especially when the operational environ-

ment is highly dynamic. Some models that provide more flexibility have been

proposed [2, 8, 29]. These models are different from the static ones in two im-

portant aspects. Firstly, the risk-benefit tradeoff assessment on an information

access request is not encoded in the security policy itself. Instead, an explicit risk

model is used in these models to dynamically estimate the risk of an information

access request to make better informed decisions. Secondly, the new model at-

tempts to manage the total risk of a system as a whole, as opposed to the risk

of each access individually in the traditional models. Users are allocated with

an initial budget of risk tokens, which they may use on their discretion to access

different information. The budget distribution is reviewed periodically based on

the benefit gained from information access of each user. However, the models

proposed are rather abstract. Many aspects of the models require further investi-

gation. These include the way to allocate initial budget, the type of the market,

the cost of the access, etc.

In the network management research, the top-down policy refinement ap-

proach has received much attention recently. The idea of this approach is to

refine business goals to high-level security policies, which in turn are refined into

low-level policies automatically. Whilst this conceptual idea is useful, the current

policy conflict resolution mechanisms are still rather primitive. There is no gen-

eral mechanism that is able to detect and resolve conflicts among policies when

arbitrary conditions are allowed. As modern systems become more distributed,

the distribution of the analysis procedures across the system can be problematic.

The system may have a complex structure, with subsystems owned by differ-

ent domains. This makes the policy refinement process much more complicated.

In MANETs, subsystems can join, leave and rejoin at any time. This dynamic

behaviour can easily cause conflicts among the policies.

The way we choose to approach the problem is a radical one. Here we investi-

gate how a specific set of decisions may be generalised into an applicable security

policy using Evolutionary Algorithms (EAs). A developed policy inference sys-

54

3.6 Conclusions

tem could be doubly useful. The generated policy rules can be used on their

own or used to verify the correctness of existing policies. We also explore the

potential of EAs in dynamically updating security policies with the use of new

decision examples. This feature will be essential in a highly dynamic operational

environment like MANETs, where the risk factors are constantly changing.

Additionally, we observe that the risk-budget based policy models reviewed

in Section 3.4 are really families of policies. Each instance in a policy family

constrains the system and therefore affects the operational behaviour and effec-

tiveness of the system in its own way. We introduce the notion of mission-specific

policy and demonstrate how EAs can be used to search for the (near) optimal

policies that fit a specific set of missions using simulation runs (instead of a set

of decision examples).

3.6 Conclusions

This chapter summarises various influential security policies and models in the

literature. It then introduces the top-down hierarchical policy model in which

allows policies to be specified using high-level languages and then refined into

low-level policies. Various issues related to the policy refinement and conflict

analysis process are discussed. Lastly, it reviews the current state of the art in

security policy development and reiterates the research objectives of the thesis.

55

Chapter 4

Learning Techniques

This chapter details the learning techniques used in this thesis. It begins with

a brief introduction to evolutionary algorithms (EAs) and discusses two imple-

mentations of EAs, namely Genetic Programming (GP) [74] and Grammatical

Evolution (GE) [75]. It then discusses how EAs can be extended to solve multi-

objective optimisation (MOO) problems. The last section introduces fuzzy expert

systems. These are used as examples in Section 5.2.4 to show how other learning

techniques can be used in conjunction with EAs to improve the learning perfor-

mance.

4.1 Evolutionary algorithms (EAs)

Evolutionary algorithms (EAs) are a set of heuristic search algorithms inspired

by natural selection1. An initial population of individuals, which represents can-

didate solutions to the problem in question, is generated. This is typically done

in a random fashion or, even better, seeded with some known good solutions

to provide better search guidance. The individuals in the population are then

repeatedly subjected to the evolutionary process that consists of the following

steps:

1Loosely speaking natural selection states that individuals that are best adapted to the
environment have better chances to survive and reproduce for the next generation [76].

56

4.1 Evolutionary algorithms (EAs)

1. Evaluation — Each individual is associated with a fitness value that mea-

sures how well it solves the problem.

2. Selection — Individuals are selected for reproduction according to their

fitnesses (natural selection). This implements the notion of “survival of the

fittest” [77].

3. Reproduction — Selected individuals are used to breed the population of

the next generation using evolutionary operators.

This evolutionary process produces populations of individuals (candidate solu-

tions) that are increasingly better suited to the environment (problem). Com-

monly, the stopping criterion is either that the maximum number of generations

has been reached or a “good enough” solution has been found.

4.1.1 Evaluation

Each individual is associated with a fitness value that measures how well that

individual solves the problem. In many applications this is formed by the appli-

cation of some defined function to the candidate solution. In others, the “real

world” acts as the cost function. For example, it is far easier to see how much

power a program consumes by running the program and measuring its power

consumption than by deriving and using a predictive model of power consump-

tion (provided one has the electronics skills to carry out such measurements).

The fitness value assigned to each individual provides a bias that is used to guide

the search algorithm. Without this bias, the search is no better than random

search [78]. From a practical perspective, the computational complexity of the

fitness evaluation must be limited.

4.1.2 Selection

Individuals are selected based on their fitness values from the current popula-

tion to breed individuals of the next generations; fitter individuals are selected

preferentially over weaker ones. There are many selection techniques, the most

commonly used of which are:

57

4.1 Evolutionary algorithms (EAs)

Roulette wheel selection technique [79] — This technique is also known as

fitness proportional selection. The probability of an individual being se-

lected is proportional to its fitness value. This technique is simple but the

selection pressure is highly sensitive to the scaling effect of the fitness values.

Typically, the variance of fitness values in the population at the beginning

of a run is very high; there is only a small number of individuals that are

much fitter than others. This technique heavily selects these individuals.

Consequently, the diversity of the population decreases at a very high rate,

often resulting in premature convergence. Towards the end of a run, the

variance of fitness values in the population becomes very small as the indi-

viduals are very similar to one another. Thus, the selection becomes similar

to random selection.

Rank based selection technique [80] — This technique uses fitness ranks in-

stead of fitness values to determine the probability of an individual being

selected. A typical implementation would assign probabilities according to

an inverse linear relationship with rank. Thus, the probability of select-

ing the k-th fittest individual in a population of size n is given by (n+1−k)
N

,

where N = n(n+1)
2

. To determine the fitness rank, however, requires sorting

on the fitness values, which can be expensive if the population size is large.

Tournament selection technique [81] — This technique selects individuals

by holding multiple tournaments. In each tournament, n individuals from

the population are considered and the winner of the tournament (the one

with the best fitness value) is selected. n is a tunable parameter known as the

tournament size. The selection pressure increases with the tournament size.

Binary tournament selection is the name given to this technique when n = 2.

Elitist selection technique [82, 83] — The selection method is not necessar-

ily probabilistic. Elitist selection is an example of deterministic selection

in which n of the fittest individuals in the current population are selected.

Often, this technique is incorporated with other techniques so that a small

portion of top performing individuals are guaranteed to be selected and

58

4.1 Evolutionary algorithms (EAs)

copied to the population of the next generation. Other good performing

individuals are selected probabilistically.

4.1.3 Reproduction

Evolutionary operators are applied on these selected individuals (commonly known

as parents) probabilistically to produce individuals of the next generation (com-

monly known as children). Some common evolutionary operators used are:

Crossover — Elements within two or more selected individuals are exchanged

to form new individuals.

Mutation — Elements within the selected individual are perturbed in some

way. This serves to diversify solution elements in the population. Given

an initial population, repeated applications of selection and crossover alone

might otherwise not be able to reach parts of the search space.

Clone (Reproduce) — The selected individual is passed on to the next gen-

eration unchanged. This serves to preserve the best performing individu-

als (since specific instances of applying evolutionary operators do not reli-

ably produce better individuals).

4.1.4 Implementations of EAs

Traditionally, EAs can be divided into the following four categories based on the

individual representation adopted [84]:

1. Genetic Algorithm that uses fixed length binary string individuals.

2. Genetic Programming that uses tree structured individuals.

3. Evolution Strategies that use real valued vector individuals.

4. Evolutionary Programming that uses finite state machine individuals.

However, the boundaries between these categories become increasingly blurred.

Often the properties from different categories are combined to suit the problem

in question. For example, Binary Genetic Programming (BGP) [85] uses binary

59

4.2 Genetic Programming (GP)

string individuals that encode tree structures and Cartesian Genetic Program-

ming (CGP) [86] uses binary string individuals that encode graphs.

4.2 Genetic Programming (GP)

Genetic Programming (GP) is a form of EA in which an individual is typically

a program represented by a tree structure. An example that implements the

formula (X × Y) + (4− (Y + 1)) is shown in Figure 4.1.

�

�

�

�
X

�

�

�

�
Y

�

�

�

�
×

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
1

�

�

�

�
+

�

�

�

�
−

�

�

�

�
+

Figure 4.1: A GP individual that represents a formula (X × Y) + (4− (Y + 1)).

The tree nodes can be classified into two groups: the terminal set T and the

function set F . The terminal set T consists of constants and variables (the leaf

nodes) and the function set F consists of functions, operators and statements (the

non-leaf nodes). An example of terminal set T and function set F which is

sufficient to allow a description of the tree in Figure 4.1 is:

T = {X, Y } ∪ {1, 2 . . . 10}

F = {+,−,×,÷, min, max}

These sets must fulfil the sufficiency and closure properties. The sufficiency prop-

erty requires that the target solution for the problem in question can be repre-

sented with the elements in the sets. The closure property requires that the

elements in the function set F can accept any value they may receive as input,

including all the elements in terminal set T and any return values from other

60

4.2 Genetic Programming (GP)

functions or operators. Practically, it is important to keep both sets small to

prevent the search space from becoming too large.

In GP, the crossover operator is performed on two trees. A subtree in each

tree is chosen randomly and swapped with the other. An example of crossover

operation is depicted in Figure 4.2a, where the marked subtrees in the two trees

are swapped with each other, resulting in two new trees. The mutation operator

is performed on one tree. A node in a tree is randomly chosen and replaced with

a randomly generated new node or subtree. An example of mutation operation is

depicted in Figure 4.2b, where the marked node is replaced with a new subtree.

Other operators also exist. For example, the reproduction operator copies the

selected individual to the population of the next generation without changes and

the permutation operator changes the node values of a subtree randomly.

4.2.1 Extensions on GP

In the standard form of GP, there is no way to ensure that all the functions

in each tree have inputs of the appropriate types (children). Strongly Typed

Genetic Programming (STGP) is introduced in [87]. STGP augments each node

with a type. A set of type rules is defined to specify how nodes in a tree can

be connected with one another. For example, we may require that the “≥” node

to take two floating point inputs and return a Boolean value. The population

initialisation and evolutionary operations must obey the type rules and only well

typed individuals are maintained in the population.

Another way to ensure type conformance is to use a grammar to control the

individual tree structure. However, the run-time grammar conformance checking

is very expensive. In Section 4.3, Grammatical Evolution (GE), a technique that

is able to evolve individuals in a grammar compliant way, is presented.

Automatically Defined Functions (ADFs) [88] are “building blocks” observed

during the evolution process. They can be recognised and subsequently made

available as units in the evolutionary process, effectively implementing an on-

the-fly modularisation process.

Alternative individual representations have also been proposed. For example,

Cartesian Genetic Programming (CGP) [86] uses integer strings as individuals

61

4
.2

G
e
n
e
tic

P
ro

g
ra

m
m

in
g

(G
P

)

�

�

�

�
X

�

�

�

�
Y

�

�

�

�
3

�

�

�

�
+

+

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
−

�

�

�

�
+

+ �

�

�

�
3

�

�

�

�
X

�

�

�

�
Y

×

�

�

�

�
−

→

�

�

�

�
X

�

�

�

�
Y

×

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
−

�

�

�

�
+

+ �

�

�

�
3

�

�

�

�
X

�

�

�

�
Y

�

�

�

�
3

�

�

�

�
+

+

�

�

�

�
−

(a) Crossover operation.

�

�

�

�
Y

�

�

�

�
Y

�

�

�

�
×

�

�

�

�
2

�

�

�

�
4

�

�

�

�
+

×

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
−

�

�

�

�
+

→

�

�

�

�
X

�

�

�

�
Y

�

�

�

�
3

�

�

�

�
+

+

�

�

�

�
4

�

�

�

�
Y

�

�

�

�
−

�

�

�

�
+

(b) Mutation operation.

Figure 4.2: The crossover and mutation operations in GP.

62

4.3 Grammatical Evolution (GE)

with each encoding a graph representation of a program. Constraints are placed

on how the integer strings can evolve in order to ensure the validity of the under-

lying artifacts. This concept is very similar to the use of integer strings, which

serve as indices to select which grammar rules are to be expanded in GE. Lin-

ear Genetic Programming [78, 89] uses individuals, which have variable length

sequences of simple instructions that operate on one or two indexed variables (reg-

isters) or constants from a predefined set. PushGP [90], on the other hand, is

proposed to evolve stack based execution instructions.

4.3 Grammatical Evolution (GE)

Grammatical Evolution (GE) uses variable length binary string individuals which

serve as indices that map a set of Backus Naur Form (BNF) language grammar

rules to programs [75]. These programs can be executed for fitness evaluation

purposes. To solve a problem using GE, the language grammar must first be

specified in BNF. The grammar of a language in BNF is represented as a tu-

ple {N , T , S, P} where N is the non-terminal set, T is the terminal set, S is a

special element of N called start symbol which is expanded first, P is the set of

production rules (also called derivation rules) that is used to guide the expansion

from N to T . A production rule has the following format:

<non-terminal> ::= <expr-of-symbols-1>

| <expr-of-symbols-2>

| ...

The production rule states how the non-terminal symbol on the left hand side

of the rule is to be substituted by one of the symbolic expressions on the right

hand side of the rule. The “|” symbol is used to indicate the choice of expressions.

An example of BNF grammar is as follows:

N = {<expr>, <op>, <var>}

T = {+,−,×,÷, X, Y, (,)}

S = <expr>

63

4.3 Grammatical Evolution (GE)

and P consists of a set of production rules as follows:

<expr> ::= <expr> <op> <expr> (0)

| (<expr> <op> <expr>) (1)

| <var> (2)

<op> ::= + (0)

| − (1)

| × (2)

| ÷ (3)

<var> ::= X (0)

| Y (1)

This grammar defines a set of arithmetic expressions over the variables X and Y .

4.3.1 Genotype-phenotype mapping

The mapping process between the variable length binary string individuals and

programs using BNF grammar is known as genotype-phenotype mapping1. This

is best illustrated with an example. In each individual (genome), every eight

consecutive bits are viewed as an integer which is more commonly known as a

codon. Consider an individual with the following codons:

{10, 5, 51, 8, 16, 49, 30, 18}

As mentioned, the mapping process begins with the start symbol. The codon

value is read to determine the usage of a certain production rule to expand the

symbol using a modulus mapping function as follows:

rule = (codon value) mod (total number of applicable production rules)

1In the biological world, a genotype is the internally coded information (genes) that is
inherent in an individual. The phenotype is the “observable characteristics” of an individual
that can be influenced by the genotype and environment. For example, the genotype of human
being is the DNA and an example of the phenotype is his eye colour.

64

4.3 Grammatical Evolution (GE)

Assuming the start symbol is <expr>, the first codon value is 10 and there are

three immediately applicable production rules for <expr>, therefore 10 mod 3 =

1. The production rule 1 is used to replace <expr> with (<expr> <op> <expr>).

Assuming leftmost derivation is used, the leftmost <expr> is first expanded as “(”

is a terminal. The second codon value is used to select the production rules.

As 5 mod 3 = 2, the production rule 2 is selected and the leftmost <expr> is

replaced by <var> resulting in (<var> <op> <expr>). The next non-terminal to

be expanded is <var>. As the next codon is 51 and the number of rule choices

now available is 2, <var> is replaced with Y .

The mapping process continues until a complete program is generated, i.e.,

when all the non-terminals have been transformed into terminals. However, some

problems may arise during this process. Firstly, there is a possibility that the

codon values may run out before the entire mapping process is complete. To

overcome this problem, an individual can be wrapped around to reuse the codon

value, i.e., the reading of the last codon (18 in the example) will be followed by

the first codon (10 in the example).

If the context free grammar used is recursive, the mapping process can also

be indefinitely long. Consider the production rules for <expr>. If the codon value

always maps onto the production rule 0 or 1, the mapping process is never ending.

The <expr> is replaced by either <expr> <op> <expr> or (<expr> <op> <expr>).

In both cases, the next leftmost non-terminal is again <expr> itself. This problem

can be resolved by setting an upper bound on the number of times the production

rules can be performed. In the original algorithm, this is achieved indirectly by

setting a limit on the number of times the individual can be wrapped around and

thus a limit on the number of codons available. If a complete program is not

fully generated (the non-terminals have not been transformed to terminals) when

the wrap around threshold is reached, this individual is given the lowest possi-

ble fitness value to decrease the probability of this individual being subsequently

selected.

65

4.3 Grammatical Evolution (GE)

4.3.2 Extensions on GE

The greatest advantage of GE is that it allows artifacts to be evolved in a gram-

mar compliant way and many solution spaces can be defined using a grammar.

Mechanisms for explicit prevention or repair of invalid artifacts are therefore not

required.

The use of a grammar also makes the languages and search algorithms be-

come independent components. The program generation in arbitrary languages

is possible by simply changing the BNF grammar. The search algorithm can be

replaced with other algorithms. Instead of using Genetic Algorithm, it is possi-

ble to use other search techniques. For example, Grammatical Swarm [91] uses

Particle Swarm Optimisation to carry out the search. This feature allows GE to

reap the advantages of improvements in any evolutionary algorithm.

Although the lengths of individuals can be set within a predefined range, this

does not mean that the sizes of the generated programs will be similar. In many

problems, it has been found that many of the randomly generated individuals fail

to complete the genotype-phenotype mapping in the initial population generation,

even when the individuals are allowed to wrap around up to thirty times [92].

To overcome this problem, a sensible method [92] is proposed to take the

grammar into account in the initialisation process. It is modelled after the popular

ramp-half-and-half initialisation method [88], which is able to generate an initial

population that consists of 50% full trees and the other 50% partial trees with

various heights and shapes within a predefined height range. This is achieved

by first assigning each rule in the grammar with two properties: the minimum

number of mappings required for the non-terminal on the left hand side of the

rule to be completely mapped to terminals and whether the rule is recursive. As

each derivative tree is built, only rules that can fit the remaining height of the

tree are selected. To generate a full tree, the recursive rules are always chosen

whenever possible. To generate a partial tree, the recursive and non-recursive

rules are chosen with equal probabilities. The final step in the initialisation is to

reverse map the nodes of the tree to the corresponding codons.

Additionally, the traditional one-point crossover, which randomly chooses a

point on each of the two selected individuals and swaps all data beyond that

66

4.4 Multi-objective evolutionary algorithms (MOEAs)

point, may not be very effective in GE. This is because the chosen crossover

point may be at a position that is after the effective length of an individual (the

portion of the individual that is actually used to select the rules) and render the

crossover operation ineffective. To overcome this problem, effective crossover is

introduced. This operation restricts the crossover points chosen to be within the

effective length of the selected individuals.

4.4 Multi-objective evolutionary algorithms

In many practical problems, a desire to optimise more than one objective is

common, some of which can be in conflict with others. Instead of having a single

fitness score, each possible solution has a vector of fitness scores, one per objective.

This is typically referred to as a multi-objective optimisation (MOO) problem.

To visualise this, the concepts of the solution space S and objective space O are

used. An example of S and O for a minimisation with two objectives is shown

in Figure 4.3. Each point s ∈ S represents a possible solution to the problem in

question1. The fitness function f maps a point s ∈ S to a point o ∈ O such that

the location of the point o represents how well s meets the objectives. The fitness

function f is surjective (onto) but not injective (one-to-one); each point in S is

mapped to one point in O and multiple points in S can be mapped to the same

point in O. The region in which all the implementable solutions reside is known

as the feasible solution region.

The aim of multi-objective evolutionary algorithms (MOEAs) is to discover

the set of solutions with the optimal tradeoffs between all the objectives. Re-

ferring to the above example, these solutions are on the dotted lines in O in

Figure 4.3.

4.4.1 Weighted sum of fitness functions

One widely used approach to solve MOO problems is to use a weighted sum of

the individual fitness functions as the overall fitness function for the problem, as

1For ease of illustration, our solution space comprises individuals with two factor values.
However, the solution and objective spaces need not have the same number of dimensions.

67

4.4 Multi-objective evolutionary algorithms (MOEAs)

factor 1

fi
tn

es
s

2

fa
ct

or
 2

Objective spaceSolution space f

fitness 1

Figure 4.3: A mapping between solution space S to objective space O.

indicated below:

f(x) =

n
∑

m=1

wmfm(x) (4.1)

where wm is a positive scalar weight for fm. However, this approach requires the

relative weights of all the objectives to be predefined. This is often difficult. For

example, how many times higher/lower is the risk of an unauthorised disclosure

of one information element in comparison to the risk of a soldier being killed?

This is like comparing apples with oranges; there is inevitably some degree of

subjectivity and arbitrariness in the weight assignments. A more principled and

conceptually clearer approach would be advantageous.

Each chosen set of weights essentially defines a problem landscape via the

single fitness function defined in (4.1). The space can then be searched using

any appropriate technique. If the tradeoffs among objectives change, the tech-

nique has to be rerun to search for the new optimum solution. This can be very

inefficient.

Additionally, for a certain set of problems, this approach is unable to discover

all solutions with different levels of tradeoffs. Consider a two objective minimi-

sation problem with its objective space shown in Figure 4.4. For a chosen set

of weights (w1, w2), a line with gradient −w2/w1 can be drawn to represent the

set of solutions that have the same fitness value. Geometrically, the process of

68

4.4 Multi-objective evolutionary algorithms (MOEAs)

minimising the fitness value can been seen as shifting this line towards the origin

as shown in Figure 4.4. The optimal solution for any given set of weights would

be the point that lies at the tangent to the feasible region. By changing the

relative weights of the objectives, different solutions may be considered as the

optimal. However, as there is no such line which can be defined such that the

line passes through the points in the concave region, the set of solutions that lie

at the concave part of the feasible region can never be discovered.

fi
tn

es
s

2

fitness 1

optimisation

Figure 4.4: The set of solutions that lie at the concave part of the feasible region
can never be discovered.

4.4.2 Pareto front based approaches

Pareto front based approaches search for multiple optimal solutions in one single

evolutionary run using the Pareto dominance concept in the fitness evaluation of

each solution (individual). A Pareto dominance, ≻ relation between two solu-

tions, x and y is defined as follows:

Pareto dominance, ≻. Let fx and fy be the fitness vectors of x and y, > denote

“is fitter than” relation, x ≻ y ⇔ (∀i · fx[i] ≥ fy[i])∧ (∃i · fx[i] > fy[i]) where f [i]

is the fitness score of the i-th objective.

69

4.4 Multi-objective evolutionary algorithms (MOEAs)

In other words, x dominates y if and only if x is better than y in at least one

aspect and is at least equally good in all other aspects. This defines a partial

order relation on the solution space. There always exists a subset of solutions

that are not dominated by any other solutions. This subset represents the best

solutions possible and is known as the Pareto front or the Pareto optimal set.

The aim of Pareto front based approaches is to converge the individuals in

the population to the Pareto optimal set of solutions. Within the population of

each generation, there is always a subset in which solutions are not dominated

by any other solution in the population. The aim is to make this non-dominated

subset a better approximation of the Pareto optimal set than the one in the

previous generation. To have a good approximation to the Pareto optimal set,

these approaches also attempt to maximise the diversity among the solutions in

the non-dominated subset. Consider an optimisation problem with two objectives

such as in Figure 4.5. Let the curved line represent all the solutions with the best

possible achievable tradeoffs between the two objectives, i.e., the real Pareto front.

Then, MOEAs attempt to converge the individuals (points) in the population to

be as near to the Pareto front as possible and also as diversely spread on the

Pareto front as possible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

2

Fitness 1

Figure 4.5: The objective of a Pareto front based approach is to approximate the
Pareto front of the solutions with the individuals in the population.

70

4.4 Multi-objective evolutionary algorithms (MOEAs)

4.4.3 Advantages of Pareto front based approaches

Pareto front based approaches have several advantages over the traditional weighted

sum of fitness functions approach:

• The weights that define the tradeoffs among different objectives are no

longer required to be determined a priori. Such a determination is difficult

as it requires a deep understanding of the problem domain.

• The Pareto front can reveal the relationship between different objectives,

which may be difficult to obtain otherwise. Such information is helpful in

guiding a decision maker to choose the optimal solution for the problem

from the Pareto optimal set.

• The set of Pareto optimal solutions can be saved and be retrieved later.

Such a retrieval may be necessary if a change in circumstance requires a

different set of tradeoffs and therefore a different solution.

• Optimising for multiple fitness scores tends to preserve the diversity of the

population, which prevents the population from being trapped in a local

optima and increases the chance of finding better solutions.

4.4.4 Implementations of Pareto front based approaches

There are many different implementations. Two of the most popular implemen-

tations, SPEA2 [93] and NSGA2 [94], are presented here. As EAs are stochastic

in nature, there is no guarantee that the population will converge to the real

Pareto front, i.e., the output is only an approximation of the real Pareto front.

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

As suggested by its name, SPEA2 is an improvement over its previous implemen-

tation, SPEA [95]. SPEA2 is an elitist approach which uses a fixed size archive

to maintain non-dominated individuals found in each generation. Binary tourna-

ment selection is then used to select individuals to produce offspring population

using evolutionary operators. The best n individuals from the union of the archive

71

4.4 Multi-objective evolutionary algorithms (MOEAs)

and offspring population become the population of the next generation, where n

is the population size.

As the archive size is fixed, three possible cases can arise: the number of non-

dominated individuals is equal to, less than, or more than the archive size. In

the first case, there is no additional work required.

If the number of non-dominated solutions is less than the archive size, the

remaining vacancies are filled with non-dominated solutions. The selection is

based on the fitness values of the individuals. The fitness value of an individual

is determined by two factors:

1. Raw fitness — the sum of the strength of individuals it is dominated by.

The strength of an individual is the number of individuals it dominates.

2. Density estimation — the inverse of the Euclidean distance of the individual

to the k-th nearest neighbour in the objective space, where k is usually set

to be the square root of the sum of population size and archive size.

In SPEA2, a smaller fitness value means fitter.

If the number of non-dominated solutions is more than the archive size, the

non-dominated solution that has the shortest Euclidean distance to another indi-

vidual in the objective space is dropped. If two solutions have the same distance

to their nearest neighbours, the tie is broken by comparing their distances to

their second nearest neighbours and so forth. This process is iterated until the

non-dominated solutions can fit into the archive. Essentially, the goal is to fill the

archive with non-dominated solutions as uniformly and widely distributed over

the objective space as possible. Referring to Figure 4.6, an example of the formed

Pareto front and the solutions that are to be kept in the archive is depicted.

Non-dominated Sorting Genetic Algorithm 2 (NSGA2)

Similarly to SPEA2, NSGA2 is an improvement algorithm over its previous im-

plementation, NSGA [96]. NSGA2 is also an elitist algorithm that uses an archive

to preserve the non-dominated solutions. The main distinction between these two

algorithms is in the way they preserve the elites.

72

4.4 Multi-objective evolutionary algorithms (MOEAs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

F
itn

es
s

1

Fitness 2

Figure 4.6: The archive truncation process in SPEA2 removes the non-dominated
individuals that are closest to others iteratively until these individuals can fit into
the archive. Assuming the archive size is 10, the truncation process removes the
individuals that are crossed out.

In each generation, NSGA2 uses the Pareto dominance relation to divide the

population into partitions with different rank levels. The non-dominated solu-

tions in the population are first assigned to partition rank 1; the non-dominated

solutions in the remaining population are assigned to partition rank 2, and so

forth. This process is continued until all solutions are assigned to a partition.

The rank of the partition is then used as the order to admit solutions into the

archive; partitions with better (lower) rank are admitted first. Solutions are ad-

mitted on a partition by partition basis until the archive is filled or has exceeded

its maximum capacity.

If the archive size has exceeded its maximum capacity, some of the solutions

from the last admitted partition are removed based on the crowding distance. The

crowding distance of a solution is the average distance of two adjacent solutions

on either side of the solution along each of the objectives in the objective space.

The individual with the smallest crowding distance is removed iteratively until

the solutions can fit the archive.

Individuals are then selected from the archive using crowded binary tour-

73

4.5 Relevant applications of GP and GE

nament to produce an offspring population of the same size using evolutionary

operators. The crowded binary tournament selects the better of two randomly

selected individuals, where better means the individual with lower rank or the

one with lower density measure (higher crowding distance) in cases where both

of them have equal rank. The union of the archive and the offspring population

forms the population of the next generation.

4.5 Relevant applications of GP and GE

This section reviews some of the applications of GP and GE in security related do-

mains including rule inference system, intrusion and anomaly detection systems,

security protocols and cryptography.

4.5.1 Rule inference system

Rule inferencing is the process of extracting a set of rules from a set of obser-

vations. In [97] a GP based rule inference system called LOGENPRO (LOGic

grammar based GENetic PROgramming rule inference system) is proposed. In

the experiment, the results show that LOGENPRO is able to outperform some

Induction Logic Programming (ILP) systems in inferring rule sets. In [98] an

experiment on coevolution between rules and fuzzy membership variables using

GP is designed. The experimental results show that the output set of rules and

variables are well adapted to one another. In [99] an attempt is made to invent

a generic rule induction algorithm using grammar based GP. The results are

found to be competitive with some well known manually designed rule induction

algorithms.

GE is used to learn investment strategy (trading rules) using the market stock

indices in [100–102]. The results show the investment strategy inferred yields

profitable performance for the trading periods analysed. In [103, 104] GE is used

to evolve rules for foreign exchanges. The rules learnt outperform the benchmark

buy and hold strategy over all the trading periods analysed.

74

4.5 Relevant applications of GP and GE

4.5.2 Intrusion and anomaly detection systems

EAs have also been used to discover useful patterns of system features that de-

scribe the behaviour of a system. These discovered features are then used to

recognise anomalies and intrusions.

In [105] GP is used to evolve an intrusion detection program. In comparison

with the results obtained using other machine learning techniques (more precisely,

support vector machine (SVM) and decision tree techniques), GP is found to

be able to generate a program that is more compact, efficient and selective in

choosing the relevant input features. In [106] GP is shown to be able to evolve

a set of autonomous agents that are used to implement an intrusion detection

system. In [107] GE is also shown to be effective in generating an intrusion

detection program.

Evolving an intrusion detection system or a computer program for MANETs

using EAs is a relatively new domain. Often, MOEAs are used to search for

programs that are not only optimal in accomplishing functional objectives, but

are also optimal against other non-functional objectives, e.g., the program size,

memory requirement and power consumption. These objectives are important

considering that the operational environment may have very limited resources.

In [108] an MOEA based framework that is able to evolve efficient distributed

programs for sensor networks is presented. The node election problem (selecting

one node from a group of nodes in the network) with the aim of minimising

the number of message transmissions is used to demonstrate the feasibility of

the framework. In [109] GE is used to evolve an intrusion detection system for

MANETs. The results show that the approach is promising.

4.5.3 Security protocols

Genetic Algorithm has been used to synthesise abstract security protocols in a

small subset of the Burrows-Abadi-Needham (BAN) logic automatically [110].

This work has been extended to cover more complicated protocols in the BAN

logic [111] as well as in the more sophisticated Syverson-van-Oorschot (SvO)

logic [112]. The results show that Genetic Algorithm is able to synthesise abstract

security protocols that are provably correct with respect to the logic used.

75

4.6 Fuzzy expert systems

The use of binary string individuals which are treated as integer strings, the

use of modulus operator to convert these integers to multiple indices within

bounded ranges, and the use of these indices to select which element it repre-

sents in each protocol component are very similar to GE.

4.5.4 Cryptography

In [113] GP is applied to evolve a block cipher. In [114] an extremely lightweight

and fast block cipher is successfully evolved using GP. This block cipher is

competitive with the well respected Tiny Encryption Algorithm (TEA) [115] in

terms of security strength and speed.

In [116] GE is shown to be able to evolve Boolean functions with crypto-

graphic significance. The design of Boolean functions for cryptographic schemes

is difficult because the desired properties of the functions are complicated and

often conflicting with one another.

In [117] GP is shown to be able to evolve a circuit for the Quantum Fourier

Transform, which is an important building block in Shor’s algorithm [118, 119].

The discovery of this algorithm is significant as it is able to solve factorisation

and discrete logarithms in polynomial time. Many widely respected encryption

algorithms rely on these problems being computationally intractable.

4.6 Fuzzy expert systems

Unlike in the computer world where all the operations are essentially binary, our

world is full of ambiguities. The concept of fuzzy logic was conceived by Zadeh

as a way to deal with this ambiguity [120]. Instead of determining a statement as

being either true or false, a degree of truth is associated with the statement using

a real value in the range [0, 1] where 0 means absolute falsehood and 1 means

absolute truth.

4.6.1 Fuzzy set theory

In classical set theory, an element x can either be in a set S, or in the complement

of the set S ′, but not both. Fuzzy set theory extends the classical set theory to

76

4.6 Fuzzy expert systems

allow partial membership. A value in the range [0, 1] is introduced to describe the

membership of x, with 0 representing complete non-membership, 1 representing

absolute complete membership and values in between representing the degree of

partial membership [121]. Often, this membership assignment is achieved using

a function called the membership function.

Three basic fuzzy set operators, namely union (∪), intersection (∩) and com-

plement (′) are defined. These are the analogues of the classical set operators.

Let µA(x) and µB(x) be the fuzzy membership functions of the fuzzy sets A

and B. Then, these operators are defined as follows [120]:

µA∪B(x) = max(µA(x), µB(x)) (4.2)

µA∩B(x) = min(µA(x), µB(x)) (4.3)

µA′(x) = 1− µA(x) (4.4)

There is a shortcoming with these definitions: the result of the operations

depends only on one of the potentially many operands [122]. There are other

definitions proposed for these operators. Many of these proposals attempt to

redefine the union and intersection operators, but leave the complement operator

unchanged.

In the same paper, two additional operators, namely algebraic sum (⊕) and

algebraic product (⊗), are introduced and defined as:

µA⊕B(x) = µA(x) + µB(x)− µA(x)µB(x) (4.5)

µA⊗B(x) = µA(x)µB(x) (4.6)

As the ⊕ and ⊗ are equivalent operators to ∪ and ∩ in classical set theory

respectively, these operators are sometimes viewed as alternative definitions for ∪

and ∩ operators. Indeed, these definitions are used in the Fuzzy MLS model

introduced in Section 3.4.1. These operators are different in fuzzy set theory

as µ(x) is no longer a binary value.

Yager proposed an alternative set of interpretations for ∪ and ∩ operators

77

4.6 Fuzzy expert systems

in [123] as follows:

µA∪B(x) = min(1, (µA(x)w + µB(x)w)
1

w) (4.7)

µA∩B(x) = 1−min(1, ((1− µA(x))w + (1− µB(x))w)
1

w) (4.8)

with w ≥ 1. A comparison of the behaviours of these interpretations is shown in

the Figure 4.7 [122]. Refer to [124, 125] for other interpretations.

Figure 4.7: Various interpretations of the fuzzy operations.

In all these interpretations, the behaviours of the operators are the same as

in the classical set theory if the membership value is restricted to only binary

value (0 or 1). Therefore, fuzzy set theory and logic can be thought of as a gen-

eralisation of classical set theory and logic. Many of the interpretations proposed

attempt to preserve the laws defined in classical set theory, e.g., commutative

law, distributivity law and de Morgan’s law. However, the law of contradic-

tion A ∪A′ ≡ U (a set and its complement must establish the universe) and law

of excluded middle, A∩A′ ≡ ∅ (an element can either be in a set or not, but not

both) are not established in fuzzy set theory. Indeed, fuzzy set theory can exist

only if these two laws do not hold.

Lastly, fuzzy set theory ought not to be confused with probability theory.

While they are similar mainly because of the use of values in the range [0, 1],

there is no restriction on fuzzy set theory to enforce the concept that the sum of

all memberships has to be equal to 1, as in probability theory.

78

4.6 Fuzzy expert systems

4.6.2 Inference process

One major application of fuzzy logic is to build fuzzy expert systems. A fuzzy

expert system consists of a set of fuzzy membership functions and inference rules

that are used to reason about data [121]. These systems have achieved many suc-

cesses in different fields, including automatic control systems, pattern recognition

and data analysis. The inference rules take the following form:

IF X is low and Y is medium THEN Z is high

where X, Y are the input variables and Z is the output variable. The low, medium

and high are the membership functions defined on X, Y and Z respectively. The

antecedent (the part between IF and THEN) is the condition that describes the

degree of truth and the degree of application of this rule. The conclusion (the

part after THEN) assigns membership functions to the output variables.

Applying these inference rules to the data, we can infer the values of output

variables for any given specific values of input variables. This inference process

consists of the following steps [4, 121]:

1. Fuzzification — The input values are mapped to fuzzy membership values

using the membership functions. In each rule, if the antecedent consists

of more than one input variable, the input fuzzy membership values are

aggregated using fuzzy set operators. The interpretation of these operators

is a design issue for the system.

2. Inference — The aggregated fuzzy membership value is used to determine

the degree of application of each rule. The fuzzy membership value is

applied to each output variable for each rule. There are two commonly

used inference methods: min and product, which are equivalent to Zadeh’s

intersection and algebraic product fuzzy operators respectively.

3. Composition — The fuzzy membership values assigned to the output vari-

ables in all the rules are combined to form a single fuzzy membership

value. There are two commonly used composition methods, max and sum.

The choice of composition method used often depends on which inference

method is employed in the previous step. If the min inference method

79

4.7 Conclusions

is used, the max composition method, which is essentially equivalent to

Zadeh’s union operator, is typically used. If the product inference method

is used, the sum composition method, which is essentially equivalent to

Zadeh’s algebraic sum operator, is typically used. An alternative interpre-

tation of the sum composition method is the sum of the fuzzy membership

values of the output variables in all the rules. This interpretation has the

advantage of a simpler computation at the price of a lower accuracy.

4. Defuzzification — This is simply the reverse process of fuzzification. The

fuzzy output membership value is converted into a discrete output value.

There are many defuzzification methods; the common ones are centroid,

max and average of max methods. In the centroid method, the output

value is the centre of gravity of the fuzzy output membership value. In

the max method, the output value is one of the variable values in which

the fuzzy output membership value is maximum. In the average of max

method, the output value is the average of all the variable values in which

the fuzzy output membership value is maximum.

An example of the inference process is shown in Figure 4.8.

4.7 Conclusions

This chapter presents a survey on the learning techniques that are used in this

thesis. It begins with a discussion on EAs with an emphasis on the two imple-

mentations: GP and GE. It then discusses how EAs can be extended to solve the

multi-objective optimisation problems. The last section discusses fuzzy expert

systems that are built on the ground of fuzzy inference rules. The fuzzy set con-

cept is used as an example in Section 5.2.4 to show how other learning techniques

can be used in conjunction with EAs to improve the learning performance.

80

4.7 Conclusions

Figure 4.8: The inference process of a fuzzy expert system [4].

81

Chapter 5

Static Policy Inference

In computer systems a security policy is essentially a set of rules specifying the

way to secure a system for the present and the future. Forming a security policy is

a challenging task: the system may be inherently complex with many potentially

conflicting factors. Traditionally, security policies have had a strong tendency

to encode a static view of risk and how it should be managed (most typically

in a pessimistic or conservative way) [8]. Such an approach will not suffice for

many dynamic systems which operate in highly uncertain, inherently risky envi-

ronments. In many military operations, for example, we cannot expect to predict

all possible situations.

Much security work is couched in terms of risk but in the real world there is

benefit to be had from the use of such system. In military operations you may be

prepared to risk a compromise of confidentiality if not doing so could cost lives.

There is a need for operational flexibility in the decision-making processes, yet we

cannot allow recklessness. Decisions need to be defensible and so must be made

on some principled basis. It is very useful to be able to codify what a “principled

basis” consists of since this serves to document “good practice” and facilitates its

propagation.

The above discussion has been couched in terms of human decision-making

processes. In some environments the required speed of system response may

force an automated decision. Such automated decisions must also be made on

a “principled basis”, and some of these decisions may be very tricky. Automated

support must be provided with decision strategies or rules to apply.

82

5.1 Experimentation on binary decision policies

We investigate in this chapter how EAs can be used to extract security policy

rules automatically from examples of decisions made in specified circumstances.

This is an exercise in policy inference. The automation aspect of the inference

is doubly useful: automated inference techniques can discover rules that humans

would miss; and policies can be dynamically inferred as new examples of tricky

decisions become available. Thus, the current policy can evolve to reflect the

experience with the system. For example, if a human determines what the proper

response should be based upon the information available, either in real-time or

post facto, a conclusion is drawn that similar responses should be given under

similar circumstances. Essentially, we attempt to partition the decision space

such that each partition is associated with a response that is commensurate with

the risk-benefit tradeoff for that partition.

In practice, different decision makers may come to different decisions in the

same circumstances, particularly when the circumstances are tricky. They may

use data that is not available to the inference engine to reach a decision, or else one

may simply have a different appetite for risk. Therefore, the inference technique

used must be able to handle sets of decision examples that do not seem entirely

consistent.

This chapter documents some proof of concept experiments in using EAs to

infer security policy models. All results suggest that the idea of inferring security

policy using EAs is feasible. The rest of the chapter is organised as follows:

Sections 5.1 and 5.2 present various experimentation details and results on using

EAs to infer various security policy models from decision examples, namely the

MLS Bell-LaPadula model, the budgetised MLS model and the Fuzzy MLS model.

Section 5.4 summarises the main contributions and points out some potential

avenues for future research. Finally, Section 5.5 concludes this chapter with a

summary of results.

5.1 Experimentation on binary decision policies

Many security policies can be represented as a set of IF <condition> THEN

<decision> rules. For example, the MLS Bell-LaPadula policy model presented

83

5.1 Experimentation on binary decision policies

in Section 3.1.1 can be represented as:

IF (access = read ∧ sl ≥ ol ∧ sc ⊇ oc)∨

(access = write ∧ sl ≤ ol ∧ sc ⊆ oc)

THEN decision = allow

IF (access = read ∧ (sl < ol ∨ sc 6⊇ oc))∨

(access = write ∧ (sl > ol ∨ sc 6⊆ oc))

THEN decision = deny (5.1)

where sl and ol are subject and object sensitivity levels and sc and oc are subject

and object category sets.

Here we choose to use Strongly Typed Genetic Programming (STGP) to dis-

cover an expression for the condition corresponding to each possible decision.

Each tree based individual represents a candidate condition for an action. The

leaf nodes of a tree are elements of the terminal set. These nodes can be ei-

ther a variable that represents one of the decision-making factors or a constant.

These nodes are joined together with operators which themselves are joined to-

gether with other operators recursively. The operators generally can be divided

into three layers. The operators at the lowest layer evaluate the child nodes and

return a value of the same type as them. Those of the next layer are logic rela-

tional operators such as < or ∈; these operators compare two typed values and

return a Boolean value. These Boolean values are combined at the highest layer

by means of logical operators such as ∧ (AND), ∨ (OR) or ¬ (NOT). The root

node in a tree must evaluate to a Boolean. Some well typed individuals that

represent the conditions in the MLS Bell-LaPadula policy model are depicted in

Figure 5.1. The leftmost individual resembles the condition of read access in the

policy, i.e., (sl > ol ∨ sl = ol) ∧ (sc ⊃ oc ∨ sc ≡ oc). The other two are logically

equivalent individuals and deal only with the sensitivity aspect of the read access

condition, i.e., (sl > ol ∨ sl = ol).

Using this representation, the security policy inference problem can be trans-

formed into an n-class classification problem, in which n is the number of possible

decisions in the policy. STGP is used to search for the <condition> part of each

84

5
.1

E
x
p
e
rim

e
n
ta

tio
n

o
n

b
in

a
ry

d
e
c
isio

n
p
o
lic

ie
s

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∨

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
⊃

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
≡

�

�

�

�
∨

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
<

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∧

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
=

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
=

�

�

�

�
∨

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
>

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
>

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
=

�

�

�

�
∧

�

�

�

�
∧

�

�

�

�
∨

�

�

�

�
∨

�

�

�

�
∨

Figure 5.1: Some well typed individuals that represent the conditions in the MLS Bell-LaPadula policy model.

85

5.1 Experimentation on binary decision policies

rule. Therefore, the number of STGP runs increases linearly with the policy size.

Having said that, all runs can be carried out in parallel as they are indepen-

dent from one another. In a single processor scenario, the binary decomposition

method1 can be employed to solve this problem in n− 1 STGP runs.

The initial population is generated randomly using the ramp-half-and-half

method popularised by Koza [88]. The individual fitness is computed using de-

cision examples in a training set. Each example is represented by a vector of

variables which corresponds to a set of decision-making factors and the decision

itself. The fitness of the individual is based on the number of decision exam-

ples that it agrees with. In an ideal world, it might be desirable to match all

examples. However, it is often the case in practice that there are a few poor

decisions and many good decisions. The system might be expected to evolve a

policy that agrees with the majority. 100% agreement is not essential. A lower

degree of agreement may simply turn the spotlight on those specific individuals

with decisions inconsistent with the inferred policy. In a sense, the fitness pro-

vides a measure of how well a candidate policy agrees with examined decisions,

but also acts as anomaly detector. The accumulated total score after evaluating

all examples becomes the fitness score of an individual.

After the fitness calculation stage, a new generation of individuals is produced

with the use of evolutionary operators. Individuals with higher fitness scores have

better chances to be selected to pass their “genes” (subtrees) to the next gen-

eration. Further crossover and mutation operators are applied probabilistically.

The evolution process continues until an individual with a “high enough” fitness

score is found or a preset number of generations have elapsed.

All GP based experiments in this chapter are carried out using ECJ2 18 [126].

The default parameter file in ECJ, i.e., koza.params, is used, unless otherwise

specified. The GE based experiment presented in Section 4.3 is carried out using

1Binary decomposition method decomposes the n-class classification problem into n − 1
binary classification problems. Let cn represent class n. Then, the first classification problem is
between c1 and c1

′ (c1
′ is the complement class of c1), the second one is between c2 and c2

′ (c2
′ =

c1
′ − c2) and so on with the last one is between cn−1 and cn−1

′ (cn−1
′ = cn−2

′ − cn−1 = cn).
The algorithm is inherently sequential such that the n-th binary classification problem can only
be solved after the n− 1 previous problems are solved.

2ECJ is a popular evolutionary computation framework that includes the implementations
of many popular EAs written in Java.

86

5.1 Experimentation on binary decision policies

libGE1 0.26 [127] and GAlib2 2.4.7 [128] with all the parameter settings remaining

as the default values unless specified otherwise.

5.1.1 Experiment 5.1: Partial MLS Bell-LaPadula policy

In the first experiment, we concentrate only on the “no read up” property (often

known as the simple security property) of the MLS Bell-LaPadula model. This

model is simple, unambiguous, and serves to demonstrate some interesting prop-

erties of our method of inference. For a read access, the model can be summarised

as:

IF sl ≥ ol ∧ sc ⊇ oc THEN decision = allow

IF sl < ol ∨ sc 6⊇ oc THEN decision = deny (5.2)

where sl and ol are subject and object sensitivity levels and sc and oc are subject

and object category sets. Since the decision is binary (either allow or deny),

the GP algorithm only needs to be run once to search for the condition and the

other condition can be simply obtained by logical negation. Here the condition

for allow is chosen to be the learning target in this experiment.

The terminal set consists of four variables, namely sl, ol, sc and oc but no

constant value. The sl and ol are positive integers and tagged with the type “sen-

sitivity”, for which three operators are defined: =, < and >. The sc and oc are

sets and given the type “category”, for which three operators are defined: ≡, ⊂

and ⊃. The ¬, ≤, ≥, ⊆ and ⊇ operators are intentionally omitted to make the

search more difficult. Each category in sc or oc is represented by a positive in-

teger. The target condition, TC(sl, ol, sc, oc), to be learnt in this experiment is:

(sl > ol ∨ sl = ol) ∧ (sc ⊃ oc ∨ sc ≡ oc) (5.3)

In each run of the experiment, the maximum value of sensitivity levels for sl

and ol, SNSmax, and the total number of categories, CATmax, are defined. Here

1libGE is a GE library written in C++. It was the only GE library available at the time
the GE based experiment presented in Section 5.2.3 was carried out.

2GAlib is a popular GA library written in C++. It is used as the search algorithm in GE.

87

5.1 Experimentation on binary decision policies

SNSmax and CATmax are both set to be 5. We then randomly generate 100

examples to form the training set. Each example is a tuple consists of five

attributes: sl, ol, sc, oc and decision. The values of sl and ol are randomly

chosen from {1 .. SNSmax}; the elements of sc and oc are randomly chosen

from {1 .. CATmax} such that the probability that any particular category is

included in a specific set is 1/2; and the decision is set to be either 1 (allow)

or 0 (deny) in accordance with (5.2). Thus, all decision examples here are correct

as far as the MLS Bell-LaPadula policy model is concerned.

The fitness of an individual (candidate policy) is simply the sum of the

matches between the decision made by the individual policy and the decision

recorded in each example in the entire training set. Formally, let di,x be the de-

cision an individual i made for an example x with True as 1 and False as 0. The

fitness of an individual i is then defined as follows:

f(i) =
∑

∀ example x

(di,x ≡ decisionx) (5.4)

Experimental results and evaluation

GP (and EAs in general) is stochastic in nature. The resulting policies depend on

the random seed used. Thus, for each experimental setup here, 10 independent

runs are carried out. Each run is initialised with a different random seed.

In all runs, logically equivalent conditions of TC in (5.3) can be learnt. Some

examples of the evolved individuals are shown in Figure 5.2. The leftmost indi-

vidual resembles TC with minimal possible tree size (number of nodes) whereas

the other two individuals consist of some components that can be logically simpli-

fied, e.g., ol > ol that appears in the rightmost individual is logically equivalent

to False.

To investigate the robustness of this technique, the following changes are made

to the experimental setup:

• Scaling up SNSmax and CATmax;

• Inclusion of “wrong” examples in the training set, i.e., inconsistent decision

examples;

88

5
.1

E
x
p
e
rim

e
n
ta

tio
n

o
n

b
in

a
ry

d
e
c
isio

n
p
o
lic

ie
s

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∨

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
⊃

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
≡

�

�

�

�
∨

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
<

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∨

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
≡

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
⊃

�

�

�

�
∨

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
≡

�

�

�

�
∨

�

�

�

�
∧

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
>

�

�

�

�
ol

�

�

�

�
sl

�

�

�

�
<

�

�

�

�
sl

�

�

�

�
ol

�

�

�

�
=

�

�

�

�
∨

�

�

�

�
sl

�

�

�

�
sl

�

�

�

�
<

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
⊃

�

�

�

�
∨

�

�

�

�
sc

�

�

�

�
oc

�

�

�

�
≡

�

�

�

�
∨

�

�

�

�
∧

�

�

�

�
∨

Figure 5.2: Some examples of inferred policies in Experiments 5.1.

89

5.1 Experimentation on binary decision policies

• Changing other parameters including training set size, population size and

tree height.

Scaling up SNSmax and CATmax This experiment is repeated with six dif-

ferent settings of (SNSmax, CATmax). These settings are (10, 5), (20, 5), (30, 5),

(5, 10), (5, 20) and (5, 30). In the first three settings, in which SNSmax is scaled

up to 30, logical equivalent conditions of TC can still be found. However, in the

latter three settings, in which CATmax is scaled to 30, only weaker conditions TC ′

are found. More precisely, the conditions learnt using the (5, 10) setting are log-

ically equivalent to (sc ⊃ oc ∨ sc ≡ oc); the conditions learnt using the (5, 20)

setting are either logically equivalent to (sc ⊃ oc∨sc ≡ oc) or simply sc ⊃ oc; and

the conditions learnt using the (5, 30) setting are logically equivalent to sc ⊃ oc.

Randomly generated category sets pose interesting problems from a training

point of view. In our example generation process, the probability of randomly

generating a pair (sc, oc) where sc ≡ oc is small, 1/(2CATmax) in fact. Thus, the ex-

pected number of category equality examples in a sample of size n is n/(2CATmax).

Unless the system sees examples of how equality should be handled, it cannot be

expected to infer how to handle it. Inference summarises rather than speculates.

As usual, the training set characteristics are important. To validate this intuition,

examples are manually created to cover the equality case and the experiment is

repeated. The results agree with this intuition; logically equivalent conditions

of TC are learnt for settings with CATmax equal to 10, 20 and 30.

To further investigate the effect of training set coverage, Three runs with

extreme settings are carried out. A training set with nine examples that cover all

nine possible relationships between (sl, ol) and (sc, oc) in TC, namely (>, =, <)×

(⊃,≡,⊂), is used. The learnt condition is logically equivalent to TC. At the other

extreme, an experimental setup using all examples with deny decision (decision =

0) yields a logically equivalent condition of False. Conversely, if all examples in

the training set are examples with allow decisions, then a logically equivalent

condition of True is learnt. Thus, a mixture of correct allow and deny examples

is required to evolve credible policies.

90

5.1 Experimentation on binary decision policies

Inclusion of “wrong” examples This experiment is repeated with the in-

troduction of wrong examples in the training set. We first started to intro-

duce 1% “wrong” examples and then 10%, 20%, 25% and 30%. In all cases, the

conditions learnt are similar to those learnt with all correct examples. This is

because the search for the condition is guided by the fitness function which is

defined as the number of matches between decisions made by an individual and

the ones encoded in examples. In order to have maximum fitness, the search will

tend to model the correct examples (which are in the majority) and choose to be

inconsistent with the others. This is encouraging because 100% agreement is not

the actual goal as mentioned earlier. Highlighting anomalous behaviours is also

important1.

Parameter changes This experiment is repeated with different parameter val-

ues. Firstly, the size of the training set is set to be 500 and 1000. In both cases,

the conditions learnt are very similar to the ones learnt with only 100 examples.

Secondly, the experiment is repeated with various population sizes: 50, 100,

500 and 5000. When the population size is 500 or larger, logically equivalent

conditions of TC are learnt, and there is no significant difference in terms of

the number of generations required. However, the execution time per generation

increases significantly because of the increase in the number of evolutionary op-

erations and fitness evaluations performed. When the population size is set to

be 50 or 100, the desired condition cannot be learnt in all cases. Manual inves-

tigation on the population reveals that the diversity in the population is lost in

early generations, i.e., premature convergence in the population occurs. Many of

these individuals get stuck at local optima such as ((sl > ol∨sl = ol)∧(sc ⊃ oc))

or simply (sc ⊃ oc).

Lastly, we investigate the effect of tree size of each individual. The experiment

is repeated with different maximum tree heights allowed. In each experiment, the

maximum tree height is set to be one less than that of the previous experiment;

the first experiment has maximum tree height of 17. We observe that the target

1The identification of anomalies is not the focus of the research, but the ability to identify
such cases as a consequence of attempting inference is clearly of some potential use. They
either point to errant behaviour, or else identify difficult situations where information outside
the model might have been useful in the decision-making process.

91

5.1 Experimentation on binary decision policies

condition cannot be learnt if the tree height is less than 4, which is the minimum

height to represent TC.

5.1.2 Experiment 5.2: Full MLS Bell-LaPadula policy

We extend Experiment 5.1 to evolve the MLS Bell-LaPadula policy model as a

whole for both read access and write access. The rules that represent this policy

model is shown in (5.1) and are restated as follows for ease of reference:

IF (access = read ∧ sl ≥ ol ∧ sc ⊇ oc)∨

(access = write ∧ sl ≤ ol ∧ sc ⊆ oc)

THEN decision = allow

IF (access = read ∧ (sl < ol ∨ sc 6⊇ oc))∨

(access = write ∧ (sl > ol ∨ sc 6⊆ oc))

THEN decision = deny

where sl and ol are subject and object sensitivity levels and sc and oc are subject

and object category sets.

The experimental setup remains to be the same except for the following.

Firstly, a new type “access” is introduced to the type set and the terminal set is

expanded to include three new terminals of this type: access , read and write. Sec-

ondly, the function set is extended to include ≤, ≥, ⊆ and ⊇ operators. Thirdly,

the training set size is increased to 500 randomly generated examples with the

equality cases guaranteed as described in Section 5.1.1. All other parameter set-

tings including the fitness function remain the same as before.

Here the target condition, TC(access, sl, ol, sc, oc), to be learnt in this exper-

iment is:

(access = read ∧ sl ≥ ol ∧ sc ⊇ oc)∨

(access = write ∧ sl ≤ ol ∧ sc ⊆ oc) (5.5)

92

5.1 Experimentation on binary decision policies

Experimental results and evaluation

As in Experiment 5.1, 10 independent runs of this experiment are carried out.

Each is initialised with a different random seed. In all runs, logically equivalent

conditions of TC in (5.5) can be learnt. The evolved individuals do not always

resemble TC with minimal tree size. Some of the subtrees in the evolved indi-

viduals are redundant and may be simplified to simpler logical expressions. We

then investigate the robustness of this inference technique as before by scaling

up SNSmax and CATmax, inclusion of “wrong” examples in the training set and

changing of parameter values.

Scaling up SNSmax and CATmax The SNSmax and CATmax are scaled up

as in Experiment 5.1 using six different settings of (SNSmax, CATmax): (10, 5),

(20, 5), (30, 5), (5, 10), (5, 20) and (5, 30). As the training set used covers the

category equality cases, logically equivalent conditions of TC in (5.5) are learnt

in all cases.

Inclusion of “wrong” examples Here we introduced 1%, 10%, 20%, 25%

and 30% “wrong” examples. In all but the 30% cases, the conditions learnt are

similar to those learnt with all correct examples. In the 30% case, the number of

successful runs decreases to 7 out of 10 runs. Investigation of the best individuals

in unsuccessful runs shows that these individuals generally represent conditions

that are slightly weaker or stronger than TC. Some of these individuals after

manual logical simplification are shown as follows:

(access = read ∧ sl ≥ ol ∧ sc ⊇ oc)∨

(access = write ∧ sl ≤ ol ∧ sc ⊆ oc)∨

(sc = oc) (5.6)

(access = read ∧ sl > ol ∧ sc ⊃ oc)∨

(access = write ∧ sl < ol ∧ sc ⊆ oc) (5.7)

93

5.1 Experimentation on binary decision policies

Although these conditions are not logically equivalent to TC, these conditions

agree with more than 90% of the examples in the training set. In other words,

the models that these individuals represent are very good approximations to the

MLS Bell-LaPadula policy model.

Parameter changes This experiment is repeated with different parameter val-

ues as described in Section 5.1.1. In all cases, similar results are found. The

change of training set size does not affect the results. If the population size is set

to be too small, i.e., 50 or 100, the population may prematurely converge and get

stuck at local optima. The only difference here is that the minimum tree heights

required is increased to 5, which is the minimum tree height required to represent

the more complicated TC defined in this experiment.

5.1.3 Experiment 5.3: Budgetised MLS policy

Overall, it would seem that the approach taken is easily capable of summarising or

distilling a policy from a given set of examples, even in the presence of “noise”.

However, the fitness function used (number of agreements) is very blunt. All

decisions are considered equal. This is not the case in practice. Granting an

uncleared user access to a top secret document is much riskier than granting him

access to a secret document. We need to investigate the approach from a more

genuinely risk based perspective. In this experiment, we designed a simple risk

based policy with intuition drawn from [2, 8]. For a read access, the budgetised

MLS policy is as follows:

IF (pos(ol − sl) + #(oc \ sc)) ≤ offer THEN decision = allow

IF (pos(ol − sl) + #(oc \ sc)) > offer THEN decision = deny (5.8)

where pos(x) returns max(x, 0); x \ y is the set difference between set x and

set y; #(x) is the cardinality of the set x and offer is the amount the requester

is willing to pay for the requested access. For this experiment, the target condi-

tion, TC(sl, ol, sc, oc, offer), becomes:

pos(ol − sl) + #(oc \ sc) ≤ offer (5.9)

94

5.2 Experimentation on multi-decision policies

Note that there are two cost components here. We have decided, for the sake

of simplicity, to equate the cost of a single band difference in sensitivity level

with the cost of a single set difference in category. (Other weightings are clearly

possible.)

The experimental setup is similar to Experiment 5.2 except for the following.

All the terminals of the “access” type are removed from terminal set. A new

type, “numeric”, is added to the type set. A new terminal offer of this type is

added to terminal set and eight new operators that return values of this type are

added to function set. These operators are pos(x), #(x), \(x, y), +, −, ×, ÷1,

exp(x).

Experimental results and evaluation

As in previous experiments, 10 independent runs of the experiment are carried

out. Each run is initialised with a different random seed. In all cases, the results

show that the logically equivalent conditions of TC in (5.9) can be learnt in all

cases. The investigation on the robustness of this inference technique by scaling

up SNSmax and CATmax, inclusion of “wrong” examples in the training set and

changing of parameter values produce similar results. The only difference is

that the minimum tree size required now is increased to 8 because of the higher

complexity of the TC.

5.2 Experimentation on multi-decision policies

Up to this point, we have only considered binary decision policies. In this exper-

iment, we attempt to infer policies that have more than two decisions. Here the

Fuzzy MLS security policy model presented in Section 3.4.1 is used as the refer-

ence model. This policy uses the risk based rationale of the MLS Bell-LaPadula

policy to compute a quantified risk estimate by quantifying the “gap” between a

subject’s label and an object’s label in an MLS system. Quantified risk estimates

are numbers and therefore can be used to build a risk scale (refer to Figure 3.2).

1x÷ y =

{

x/y if y 6= 0

1 otherwise

95

5.2 Experimentation on multi-decision policies

This risk scale is divided into multiple bands. Each band is associated with a

decision. The risk in the bottom band is considered low enough so the access

decision is simply allow whereas the risk in the top band is considered too high

so the decision is deny. Each band between the top and bottom is associated

with a allow decision with different risk mitigation measures.

The Fuzzy MLS model defines risk as the expected value of damage caused

by unauthorised disclosure of information in (3.1). This definition is restated as

follows for ease of reference:

risk = (value of damage, V)× (probability of incurring the damage, P)

The value of damage is estimated from the sensitivity level of the object and

is defined to be aol. The probability of incurring the damage is estimated by

quantifying two “gaps”: one between the sensitivity levels of the subject and the

object, and the other between the category sets of the subject and the object.

For simplicity, this experiment only looks at the sensitivity levels and assumes

the category sets are the same1. The probability of incurring the damage is thus

defined as a sigmoid function in (3.5). This is restated as follows:

P (sl, ol) =
1

1 + exp((−k)× (TI(sl, ol)− n))

where TI(sl, ol) is called the temptation index which indicates how much the

subject with sensitivity of sl is tempted to leak information with sensitivity level

of ol. It is defined in (3.4) and is restated as follows:

TI(sl, ol) =
a−(sl−ol)

m− ol

The intuition for P (sl, ol) and TI(sl, ol) can be found in Section 3.4.1. In our

experiments, the settings of a = 10, k = 3, n = 4 and m = 11 are used here.

These are the values used in [2].

Long standing convention groups risk by “order of magnitude”. Thus, if we

want to avail ourselves of a linear banding scale, taking the logarithm of the risk

1Therefore the gap between category sets is 0.

96

5.2 Experimentation on multi-decision policies

values seems in order. The following formula is defined to map a risk number to

a risk band:

band(risk(sl, ol)) = max(min(⌊loga(risk(sl, ol))⌋, a− 1), 0) (5.10)

where the function risk(sl, ol) is defined in (3.1). Base-a logarithm is used to

compute the order of magnitude of risk as the band number. Since each band is

associated with a decision, a risk band number computed using (5.10) represents

a possible decision in the policy.

To generate the data required for training and testing purposes, SNSmax is

set to be 10. A data set is generated, consisting of the 100 possible (sl, ol, band)

examples, where sl and ol are integers in [0, 9] and band is calculated using (5.10).

In other words, all the examples used are assumed to be correct. As the data are

limited, the leave-one-out cross validation evaluation method (LOOCV) is used

to evaluate the performance.

In the traditional hold-out evaluation method, the data set is separated into

two subsets: the training set and the testing set. The model is learnt using the

data in the training set and then is evaluated using the data in the testing set.

This method has the merit of being computationally cheap. However, it wastes

a lot of data and its evaluation can have a high variance depending on how the

data are split.

k-fold cross validation can be used to improve the hold-out method. Instead

of two subsets, the data set is split into k subsets. The hold-out method is then

repeated k times, each using data in k − 1 subsets as the training set and the

data in the remaining one as the testing set. The evaluation is done using the

average performance across all k trials. The method is less sensitive to the way

the data are split and therefore results in a smaller variance in the evaluation.

However, the training process has to be repeated k times, which can be costly.

LOOCV takes k-fold cross validation to its extreme, with k equal to the number

of examples in the data set. The evaluation obtained using LOOCV is very good

but extremely expensive to compute, especially in EAs.

To evaluate the performance of the policies inferred, each experiment is re-

peated 100 times with a different random seed. The performance is evaluated by

97

5.2 Experimentation on multi-decision policies

two criteria:

1. The median LOOCV error rate of the best individuals in the 100 runs.

The best individual in a run is the one with the lowest error rate in the

last generation of the run. The median is used instead of the mean as it

does not assume that the error rate distribution will have a suitably normal

distribution. Confidence intervals based on the standard deviation of the

mean are no longer valid. The 95% confidence interval of the median is

calculated using the Thompson-Savur formula presented in [129] instead.

2. The median of the average distances between all the predicted bands of the

best individuals and the target bands encoded in all the examples in the

data set in the 100 runs.

These measurements indicate the quality of the security policy that can be learnt

in each experiment.

5.2.1 Experiment 5.4: Rule based approach

In this experiment, we continue to employ the same view as in previous exper-

iments: a security policy is a set of IF-THEN rules. As the risk scale is divided

into 10 bands, each band is associated with a decision action, 10 STGP runs are

required to search for conditions for all the bands. We will seek for each risk

band j, a target condition TCj(sl, ol) that returns allow for examples in risk

band j and deny for those not in risk band j. Thus, TCj(sl, ol) is a membership

classifier for band j.

We observe that the reference model for calculating the risk is actually rather

complicated. We might reasonably seek to evolve sets of membership classifiers

that are nearly correct, e.g., very good at classifying examples in the appropriate

band, but which occasionally consider examples from near-by bands as being

within the band. Examples from bands significantly different to the one at hand

should be rejected from membership by the membership classifier.

To give a good chance of classifying appropriately, we adopt a “high water-

mark” approach. The final band classification is the highest band j for which the

corresponding membership classifier TCj returns allow . Formally, if TCj ≡ allow

98

5.2 Experimentation on multi-decision policies

and TCk ≡ allow and j > k, then band j instead of band k is used. Additionally,

if there is no TC evaluated to allow , the highest band is used again for security

concerns. In a future run-time deployment of our inference approach, it would

be possible to involve human interaction. An alert can be given to the security

administrator and the administrator can decide which band an input should be

mapped to. This decision can then be used as a new training example.

Here we use only float typed nodes to avoid the overhead in checking the

type conformance of the nodes in STGP. We assume that an individual rep-

resents allow if its evaluated value is 1 and deny if its evaluated value is 0.

Individuals with any other evaluated value are assumed to be invalid and there-

fore are assigned with the lowest possible fitness to increase their chances of

being eliminated in the evolution process. The terminal set consists of sl, ol

and Ephemeral Random Constants (ERCs)1, which take real values in [−10, 10].

The function set consists of +, −, ×, ÷, protectedlog10(x)2, exp(x), pow(x, y),

max(x, y), min(x, y), ceil(x), floor(x), sin(x) and cos(x).

Two principles are used to determine the fitness score for a decision made by

an individual. For an example x and an individual i, if i evaluates x to be in

band j, then:

• For a correct decision, reward more the higher the risk band, i.e., reward

higher j more than lower j. (We care more about higher risk bands.)

• For an incorrect decision, punish more the more the decision deviates from

the target; i.e., punish more as |bandx−j| becomes larger, where bandx is the

decision encoded in the example x. Additionally, punish under-estimation

of a risk band more than over-estimation of it; i.e., punish more if bandx > j.

Based on these principles, let di,x be the decision made by an individual i for

example x. Then, the fitness function of an individual in the run that search for

1An ERC is a constant that its value is randomly generated during its creation.

2protectedlog10(x) =

{

log10(|x|) if x 6= 0

0 otherwise

99

5.2 Experimentation on multi-decision policies

the condition of band j, TCj, is defined as follows:

fj(i) =
∑

{x|bandx≡j}

wtp{di,x ≡ allow}+
∑

{x|bandx 6≡j}

wtn{di,x ≡ deny}

−
∑

{x|bandx 6≡j}

wfp{di,x ≡ allow} −
∑

{x|bandx≡j}

wfn{di,x ≡ deny} (5.11)

where

wtp = j + 1,

wtn = (j + 1)/10,

wfp =







bandx − j if bandx > j,

(j − bandx)/2 if bandx < j,

wfn = j + 1

5.2.2 Experiment 5.5: Regression based approach

In this experiment, we take an alternative view on a policy. We view a policy as

a function that maps a set of decision-making factors to a decision. In the Fuzzy

MLS model, this mapping function is the composition band and risk function

in (5.10). GP is used to search for an equivalent function of this composition

function. This is essentially an exercise of symbolic regression based upon decision

examples.

The experimental setup is very similar to Experiment 5.4 except for the fitness

function used. Here the fitness function is defined to be the reciprocal of one plus

the sum of squared errors between the value an individual is evaluated to and

each of the correct band encoded in the example set1. Formally, let jx be the

value an individual i evaluates an example x to, the fitness of an individual i, is

defined as follows:

f(i) =
1

1 +
∑

∀ example x(bandx − jx)2
(5.12)

1One is added to the sum of squared errors before inversion to avoid division by zero.

100

5.2 Experimentation on multi-decision policies

To determine the band of a particular (sl, ol) pair, the output value of the

learnt policy is rounded to the nearest integer value. The learnt policy might not

be perfect; sometimes the policy may map a particular (sl, ol) pair to a value that

is out of band range. To overcome this, we assume that all out-of-range values

represent the highest band, i.e., any output value that is not in the range [0, 9]

is assumed to be 9. This is consistent with the usual attitude to security which

favours over-estimation of risk rather than under-estimation.

5.2.3 Experiment 5.6: Grammatical evolution

In this experiment, Grammatical Evolution (GE) is used as an example to show

that other EAs can also be used to search for security policies. Experiment 5.5

presented in Section 5.2.2 is repeated here with minimal changes. A policy is

viewed as a function that maps a set of decision-making factors to a decision and

GE is used to search for this function. The BNF grammar that describes the

search space is defined as follows:

N = {<expr>, <sub expr>, <unary op>, <binary op>, <var>, <const>, <digit>}

T = {sin, cos, exp, protectedlog10, ceil, floor, min, max,−, +,−,×,÷,−, sl, ol,

., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

S = <expr>

and P consists of a set of production rules as follows:

<expr> ::= <unary_op>(<expr>) | <binary_op>(<expr>, <expr>)

| <sub_expr>

<sub_expr> ::= <var> | <const>

<unary_op> ::= sin | cos | exp | protectedlog | ceil | floor | −

<binary_op> ::= + | − | × | ÷ | min | max

<var> ::= sl | ol

<const> ::= <digit>.<digit><digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The primitive operators are wrapped as a function call to prevent any bias

from being introduced among the operators. Instead of using ERCs, the <const>

101

5.2 Experimentation on multi-decision policies

and <digit> rules are used to generate random constants in the range (−10, 10).

Generating random constants in such a fashion enables random numbers to par-

take in the evolutionary process.

The evolutionary operators used are crossover and mutation with probabil-

ities of 0.9 and 0.01 respectively. Two different implementations of crossover,

namely one-point crossover and effective crossover, are investigated. One-point

crossover randomly chooses a point on each of the two selected individuals and

swaps all data beyond that point, whereas effective crossover restricts the chosen

crossover point in the range of effective length of each individual (the portion of

an individual that is actually used to select the rules).

Two different ways of initialising the population of individuals are investi-

gated: random initialisation and sensible initialisation [92]. The former takes

two parameters, lengthmin and lengthmax, and produces a population of indi-

viduals with lengths evenly distributed over a range [lengthmin, lengthmax]. The

settings of lengthmin = 15 and lengthmax = 25 are used here. The latter method

takes two parameters, heightmin and heightmax, and produces a population of in-

dividuals that correspond to programs with derivative trees of the size between

a range [heightmin, heightmax]. The settings of heightmin = 1 and heightmax = 10

are used here.

The steady state genetic algorithm is used as the search algorithm with 25%

replacement rate (the percentage of the population that is replaced at each iter-

ation). The roulette wheel selection scheme is used as the selection scheme.

As in Experiment 5.5, to determine the band of a particular (sl, ol) pair, the

output value of the learnt policy is rounded to the nearest integer value and all

out-of-range output values of the learnt policy are assumed to be 9.

5.2.4 Experiment 5.7: Fuzzy set ensemble

In this experiment, we aim to provide some degree of smoothing to our search

space by adopting a fuzzy inspired approach. As opposed to traditional ap-

proaches whereby EAs are often used in searching for the optimal weighting

among some predefined fuzzy rules, we view each possible risk band as a fuzzy

set and use EAs to learn the fuzzy membership function for each of the bands.

102

5.2 Experimentation on multi-decision policies

Once these functions have been learnt, the most appropriate risk band for a

given input (sl, ol) can be determined by feeding the input to all learnt functions

and aggregating all the outputs using a predefined voting based defuzzification

mechanism.

This approach has several advantages. The estimation of a risk band is likely

to be more accurate with the use of multiple functions. For example, if each

membership value indicates that an input should be mapped to band 5, then with

very high confidence we can say the input belongs to band 5. This is analogous

to drawing the final conclusion by examining the input from various different

perspectives, which is more likely to be accurate than examining the input from

one perspective. Additionally, as will become clear in Section 5.2.4, the learning

process of each fuzzy membership function is essentially a curve fitting exercise,

which is naturally more tolerant to incomplete coverage in the training set because

it uses interpolation and extrapolation to compensate for the “missing points”. It

is also more resilient to the outliers in the training set.

Fuzzification

To learn the fuzzy membership function for band j, Mj(sl, ol), we first define

several values, each represents the value Mj should map to for an input with a

particular band. In our case, 10 values are defined (because a = 10). Essentially,

these values define the shape and location of the Mj function. We then use EAs

to search for a curve that best fits the 10 values, using all the examples in the

training set.

To define the 10 values for each Mj , we choose to use values between [−1, 1]

with 0 representing the value for band j. For example, the values for M5(sl, ol)

that correspond to each band, starting from band 0, can be defined as:

[−0.5,−0.4,−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3, 0.4]

The sign of the value allows information about the direction of the band it rep-

resents to be encoded (positive implies it is greater than band j while negative

implies it is less than band j) and the magnitude of the value increases with the

distance between the band it represents and band j. Note that risk band j al-

103

5.2 Experimentation on multi-decision policies

ways has the value of 0. This information is useful in designing the defuzzification

mechanism. The 10 values for other Mj 6=5 can be defined similarly.

Two different predefined sets of values are setup to validate this concept. In

the first setup, the 10 values are defined using the following function:

Mj [k] ≡ (k − j)/10 (5.13)

where k is the index of each element, having an integer value in the range [0, 9].

This is like mapping a traditional triangular fuzzy membership function, which

has the range [0, 1] and Mj [j] ≡ 1 as the tip of the triangle, to a straight-line

membership function with the range [−1, 1] and Mj [j] ≡ 0. Figure 5.3 shows

the values for all 10 bands using (5.13). In the second setup, the bell-shaped

Gaussian distribution curve is used in a similar fashion and the values for all 10

bands are shown in Figure 5.4.

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

V
al

ue

Band Number

M0
M1
M2
M3
M4
M5
M6
M7
M8
M9

Figure 5.3: The predefined values for each Mj based on the triangular fuzzy
membership function.

104

5.2 Experimentation on multi-decision policies

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

V
al

ue

Band Number

M0
M1
M2
M3
M4
M5
M6
M7
M8
M9

Figure 5.4: The predefined values for each Mj based on the Gaussian distribution
curve.

Individual representation and fitness evaluation

The same terminal and function sets in Experiment 5.4 are used here. It follows

that the structure of the individuals remains similar. However, what each indi-

vidual represents varies from one experiment to another. Here each individual

resembles the membership function of a particular band whereas each individual

in Experiment 5.4 resembles the Boolean condition of a particular band and each

individual in Experiments 5.5 and 5.6 resembles a function corresponding to the

policy as a whole.

The fitness function is the sum of squared differences between the predicted

membership and the predefined value for each band. More formally, let M ′
j,i

represent an individual i in the search for the membership function for band j,

the individual fitness is defined as follows:

fj(i) =
1

1 +
∑

∀ example x

(

M ′
j,i(slx, olx)−Mj [bandx]

)2 (5.14)

105

5.2 Experimentation on multi-decision policies

Defuzzification

After all 10 membership functions are learnt and feeding an input x ≡ (slx, olx)

to these functions, we need a defuzzification mechanism to map all 10 values

returned by these functions to a risk band number. Three voting based defuzzifi-

cation algorithms which use the information about the direction and distance to

determine the target band have been designed. The target band is predicted by

adding the estimated distance (calculated from the output value and rounded to

an integer) to the band of the membership function. Votes are then given to a

small range of bands around the predicted target band. The difference between

these algorithms lies in the weighting of the votes.

Algorithm 5.1 forces the predicted target band to be in the range [0, 9]. Votes

are then given in the following ways: 3 votes to the predicted target band, 2 votes

to the nearest neighbour band and 1 vote to the second nearest neighbour band,

i.e., the nearest neighbour band on the other side of the predicted target band.

Algorithm 5.2 is very similar to Algorithm 5.1, except for the following.

Firstly, the predicted target band is no longer forced to be in the range [0, 9].

Secondly, votes with equal weight are given to the nearest neighbour bands on

both sides of the predicted target band. Thirdly, the weighting of the votes is in-

spired from the standard Gaussian Distribution, in which 0.3829250 vote is given

to the predicted target band, 0.2417300 vote is given to the nearest neighbour

band on each side and 0.0605975 vote is given to the second nearest neighbour

band on each side.

Algorithm 5.3 attempts to simplify these algorithms. The estimated distance

is first calculated as before but it is not rounded to an integer. This algorithm

then gives votes to the upper bound and lower bound of the predicted target

band, with the weighting of these votes inversely proportional to the distance.

5.2.5 Experimental results and evaluation

The results of Experiments 5.4– 5.7 are summarised in Table 5.1. In all GP based

experiments (except for the rule based approach in Experiment 5.4), the results

suggest that the target policy can be learnt reasonably well. (In a multi-class

classification problem, assuming the examples used are evenly distributed across

106

5.2 Experimentation on multi-decision policies

initialise an array v[10] with all elements set to 0;
forall example x do

forall band j do
if Mj(slx, olx) > 0.05 then

p← j + Mj(x) ∗ 10;
k ← min(⌊p + 0.5⌋, 9);
v[k]← v[k] + 3;
if k > p then

v[k − 1]← v[k − 1] + 2;
v[k + 1]← v[k + 1] + 1;

else
v[k − 1]← v[k − 1] + 1;
v[k + 1]← v[k + 1] + 2;

else if Mj(slx, olx) < −0.05 then
p← j + Mj(x) ∗ 10;
k ← max(⌈p− 0.5⌉, 0);
v[k]← v[k] + 3;
if k < p then

v[k + 1]← v[k + 1] + 2;
v[k − 1]← v[k − 1] + 1;

else
v[k + 1]← v[k + 1] + 1;
v[k − 1]← v[k − 1] + 2;

else
v[j]← v[j] + 3;
v[j + 1]← v[j + 1] + 1;
v[j − 1]← v[j − 1] + 1;

choose v[i] with the maximum value;
output i as the risk band number ;

Algorithm 5.1: A direction and distance based defuzzification.

107

5.2 Experimentation on multi-decision policies

initialise an array v[10] with all elements set to 0;
GaussianConst = {0.382925, 0.241730, 0.0605975};
forall example x do

forall band j do
p← j + Mj(slx, olx) ∗ 10;
k ← ⌊p + 0.5⌋;
v[k]← v[k] + 3;
if 0 ≤ k ≤ 9 then

v[k]← v[k] + GaussianConst[0];

if 0 ≤ k + 1 ≤ 9 then
v[k + 1]← v[k + 1] + GaussianConst[1];

else if 0 ≤ k ≤ 9 then
v[k]← v[k] + GaussianConst[1];

if 0 ≤ k − 1 ≤ 9 then
v[k − 1]← v[k − 1] + GaussianConst[1];

else if 0 ≤ k ≤ 9 then
v[k]← v[k] + GaussianConst[1];

if 0 ≤ k + 2 ≤ 9 then
v[k + 2]← v[k + 2] + GaussianConst[2];

else if 0 ≤ k + 1 ≤ 9 then
v[k + 1]← v[k + 1] + GaussianConst[2];

else if 0 ≤ k ≤ 9 then
v[k]← v[k] + GaussianConst[2];

if 0 ≤ k − 2 ≤ 9 then
v[k − 2]← v[k − 2] + GaussianConst[2];

else if 0 ≤ k − 1 ≤ 9 then
v[k − 1]← v[k − 1] + GaussianConst[2];

else if 0 ≤ k ≤ 9 then
v[k]← v[k] + GaussianConst[2];

choose v[i] with the maximum value;
output i as the risk band number ;

Algorithm 5.2: A direction and distance based defuzzification.

108

5.2 Experimentation on multi-decision policies

initialise an array v[10] with all elements set to 0;
forall example x do

forall band j do
p← j + Mj(slx, olx) ∗ 10;
j ← ⌊p⌋;
k ← ⌈p⌉;
if 0 ≤ j ≤ 9 and 0 ≤ k ≤ 9 then

v[j]← v[j] + k − p;
v[k]← v[k] + p− j;

else if 0 ≤ k ≤ 9 then
v[k]← v[k] + 1;

else if 0 ≤ j ≤ 9 then
v[j]← v[j] + 1;

choose v[i] with the maximum value;
output i as the risk band number ;

Algorithm 5.3: A direction and distance based defuzzification.

all classes, the error rate of a random classifier is n−1
n

, where n is the number of

classes. In this case, n = 10 and therefore the error rate of a random classifier

is 0.9.) Moreover, the medians of the average distances between all the predicted

bands and the target bands encoded in all the examples in these experiments are

kept to be around 0.2 band.

To investigate why the policies inferred using the rule based approach per-

form poorly, we manually investigate the outputs of these policies. We observe

that there are many unusual cases such that some (sl, ol) pairs with (high, low)

values are mapped to band 9. This is found to be caused by the use of “high

watermark” approach in resolving the policy outputs. This pessimistic policy

resolution mechanism degrades the performance significantly.

The experiments using the fuzzy set ensemble based approaches consistently

perform very well in all six settings. The triangular fuzzification algorithm per-

forms slightly better than the Gaussian fuzzification algorithm in all cases. This

could be due to the fact that the defuzzification algorithm makes the assumption

that the distance from the target increases linearly with respect to the mem-

bership value. This is not the case in Gaussian fuzzification algorithm. Possible

further work here would be to design a compatible defuzzification algorithm using

109

5
.2

E
x
p
e
rim

e
n
ta

tio
n

o
n

m
u
lti-d

e
c
isio

n
p
o
lic

ie
s

EA Experiment
Median Error Rate with 95% Median Distance with 95%

Confidence Interval / % Confidence Interval / band
IF-THEN Rules 0.320 (0.310, 0.330) 1.420 (1.350, 1.470)

GP

Regression with mean square error 0.160 (0.150, 0.170) 0.210 (0.199, 0.240)
Triangular fuzzification with defuzzifier 1 0.160 (0.149, 0.160) 0.180 (0.170, 0.190)
Gaussian fuzzification with defuzzifier 1 0.160 (0.160, 0.170) 0.260 (0.249, 0.280)
Triangular fuzzification with defuzzifier 2 0.140 (0.130, 0.150) 0.170 (0.160, 0.180)
Gaussian fuzzification with defuzzifier 2 0.150 (0.140, 0.151) 0.230 (0.210, 0.240)
Triangular fuzzification with defuzzifier 3 0.150 (0.140, 0.160) 0.190 (0.180, 0.190)
Gaussian fuzzification with defuzzifier 3 0.150 (0.139, 0.160) 0.240 (0.230, 0.260)

GE

Random initialisation and one-point crossover 0.440 (0.430, 0.451) 0.850 (0.819, 0.881)
Random initialisation and effective crossover 0.440 (0.430, 0.450) 0.775 (0.740, 0.820)
Sensible initialisation and one-point crossover 0.425 (0.410, 0.440) 0.830 (0.787, 0.860)
Sensible initialisation and effective crossover 0.420 (0.410, 0.440) 0.780 (0.760, 0.800)

Table 5.1: The experimental result summary of the inferred policies using GP and GE.

110

5.3 Example Security Policies Inferred

Approach Example of the optimal policy inferred
GP max(sin(−(max(min(max(−(sl,ol),−(sl,ol)),−(ol,3.397377)),

ol),max(ol,min(×(−(ol,3.397377),ol),ol)))),ceil(−(−(ol,
3.397377),max(min(sl,−2.5250282),−(sl,+(max(−(ol,
3.397377),ceil(−(−(−(ol,3.397377),max(÷(sin(sin(ol)),
−(sl,ol)),−(sl,ol))),max(−5.323125,−(sl,ol))))),
÷(+(min(max(×(−(ol,3.397377),ol),ol),max(sl,
max(−5.323125,×(protectedlog10(floor(7.62898)),ol)))),
max(max(−(ol,3.397377),−(−(−(ol,3.397377),
protectedlog10(ol)),max(÷(×(−(ol,3.397377),ol),−(sl,ol)),
−(sl,ol)))),sin(max(÷(floor(7.62898),−(sl,ol)),
÷(sin(−(sl,ol)),−(sl,ol)))))),ceil(ol))))))))

GE min(pow(3.49,−(ol,−(sl,min(−(÷(−(6.45,ol),2.04)),sl)))),ol)

Table 5.2: Some of the optimal security policies inferred with GP and GE.

both distance and direction for Gaussian fuzzification algorithm.

For GE based experiments, we observe that the use of effective crossover and

sensible initialisation provide very limited performance gain. In comparison to

the results obtained using GP with similar parameter settings, the performance

of GE is much worse. An analysis of the results reveals that the populations in

many runs prematurely converge and get stuck at local optima at a very early

stage. The two common local optima are the function that maps every possible

input pair to ol and a constant function that maps every possible input pair to

band 0.

5.3 Example Security Policies Inferred

The optimal policies evolved with the regression based approach using GP and GE

are shown in Table 5.2. Each of these policies is the one with the best performance

in all the 100 runs of each approach. The policies discovered using the rule based

approach and ensemble approach are too complicated to be analysed manually.

Other optimal policies inferred using either approach have very similar structure

and size.

An immediate observation is that the size of the policies inferred using GE is

much smaller compared to the ones inferred using GP in terms of the number of

111

5.4 Evidence for the thesis and future work

nodes. This can be explained by the fact that the evolution operators randomly

select and change different parts of the individuals and producing individuals

conforming to a grammar defined in GE with these operators is much more dif-

ficult than producing individuals conforming to the type correctness constraint

imposed in GP. Additionally, the policies discovered with GP contain a deal of

self-similarity. This suggests that some of these subcomponents have survived

through multiple generations and crossover among the individuals.

In order to visualise the performance of these policies, we use a three dimen-

sional plot where the x-axis and z-axis correspond to the input values of sl and ol,

and the y-axis corresponds to the output values of the policies, i.e., the risk bands.

Figures 5.5 and 5.6 show the output values of the target policy defined in (5.10)

and these inferred policies respectively. It is interesting to note that the output

values of the inferred policies change in a smoother fashion when the sl and ol

values are high (especially the one inferred with GE). This seems to suggest that

these inferred policies are more capable in assigning the appropriate risk band to

a given access request than the manually designed target policy. This supports

our initial claims that security policy inference from previous decision examples

is in fact possible and these inferred policies can be a potential means to verify (if

not refine) the currently implemented policy.

5.4 Evidence for the thesis and future work

Formulating an optimal security policy is difficult. Current research work at-

tempts to alleviate this issue by looking for ways to analyse and refine security

policies in a top-down manner. We propose an alternative view on this issue:

inferring security policies from decision examples. This idea is entirely novel.

There is no previous work to my knowledge in the application of EAs or machine

learning techniques in inferring security policies.

In this chapter, we present some experiments that have been carried out to

validate this proposal using EAs. Three different ways of representing security

policies and the use of two different EAs are demonstrated. The results show

that the inference process is largely independent of many parameters. We also

show how the fuzzy set ensemble based approaches can be easily integrated into

112

5.4 Evidence for the thesis and future work

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

ol

sl

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Figure 5.5: The output risk bands of the target reference model defined in (5.10).

the policy inference framework to enhance the inference ability, yet it remains an

interesting research topic to search for the optimal ways of defining the underlying

target fuzzy membership functions.

EAs have shown great potential in determining the security policies in the

experiments. In particular, EAs are found to be able to quickly infer security

policies with considerable complexity. The performance of these inferred policies

is comparable to the original reference models that are used to generate the

training sets. These techniques are also able to scale well with the range of

input/output variables and to tolerate “wrong” examples in a training set. An

obvious way forward is to validate this concept with other inference approaches

and make a recommendation on which approach is better for what circumstance.

Being a data driven approach, the representativeness of the training set is

crucial. Indeed, the experiments show that even the inference of the simple MLS

Bell-LaPadula model may fail because of this. Inference summarises rather than

speculates; the techniques do not know how to handle an unseen case.

As in other applications of EAs, the fitness function used is vital in guiding

the search. A poor fitness function may result in policies that are suboptimal.

113

5.4 Evidence for the thesis and future work

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

ol

sl

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(a) GP.

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

ol

sl

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

(b) GE.

Figure 5.6: The output risk bands of the inferred policies shown in Table 5.2.

114

5.5 Conclusions

Interesting future work would be to examine how to design a fitness function in

a principled manner that is suitable for cost sensitive learning, in which different

types of prediction errors are not equally costly. This is likely to be appropriate

for a security policy in which leaking of high sensitivity information is obviously

far more severe than leaking of low sensitivity information.

5.5 Conclusions

This chapter presents some proof-of-concept experiments that have been carried

out to validate our proposal: inferring security policies from decision examples

using EAs. It first presents the experiments on inferring some simple binary

decision policies and continues with the experiments on inferring the Fuzzy MLS

model, which is a more complicated multi-decision policy model. In all cases,

the results show that EAs are able to infer policies that can approximate (if not

refine) the original reference models that are used to generate the training sets.

The technique is also shown to be able to scale with the range of input/output

variables and to tolerate “wrong” examples in the training set.

For a dynamic environment, the ability to infer policy from examples alone is

not sufficient. The inferred and learnt policies will eventually become suboptimal

over time as the operational requirements change. The policy needs to be updated

continually to maintain its optimality. The next chapter demonstrates how multi-

objective evolutionary algorithms (MOEAs) can be used to achieve this goal.

115

Chapter 6

Dynamic Policy Inference

Recent research [8] has suggested that traditional top-down security policy models

are too rigid to cope with the changes that inevitably occur in dynamic opera-

tional environments. There is a need for greater flexibility in security policies to

protect information appropriately and yet still satisfy operational needs. In the

previous chapter, we have shown that security policies can be learnt from exam-

ples using EAs. Given a set of criteria of concern, one can apply these techniques

to learn the policy that best fits the criteria. These criteria can be expressed

in terms of high-level objectives, or characterised by the set of previously seen

decision examples. Nevertheless, this is not sufficient for dynamic operational en-

vironments where the risk factors are constantly changing. The learnt policy will

eventually become suboptimal over time as the operational requirements change.

A new requirement is thus needed: the security policy has to be able to continu-

ally change and adapt to the operational needs to maintain its optimality or else

it will inevitably be circumvented in creative ways.

This chapter details the experiments on dynamic security policy inference.

As there is no dynamic security policy model available and therefore no decision

example available for us to work with, we designed a dynamic security policy

model. This model is used to generate time varying decision examples for training

and evaluation purposes. Then, we present two MOEA based dynamic security

policy learning frameworks. The first one is based on Fan’s intuition [130] and the

other one is Diversity via Opposite Objectives (DOO) that is able to maintain

the diversity in the population during the optimisation process. This protects

116

6.1 Data stream classification

the population from premature convergence and allows the concept drift in the

policy to be continually relearnt. The results show that these frameworks are very

promising. Reasonably good approximators to the model are able to be inferred

from the examples using these frameworks.

The rest of this chapter is organised as follows: Section 6.1 reviews some data

stream classification algorithms that provided the inspiration for the development

of our dynamic policy learning frameworks. Section 6.2 presents a dynamic risk-

budget based policy that is used as the reference model throughout the chapter.

Section 6.3 presents the experiment details and results on inferring the dynamic

policy from decision examples. It also details the analysis of various ways to

select the best solution from a set of candidate solutions. Section 6.4 summarises

the main contributions and gives some possible future work. Finally, Section 6.5

concludes this chapter.

6.1 Data stream classification

We briefly review some data stream classification algorithms that provide the in-

spiration for the development of our dynamic policy learning framework. See [131,

132] for more details on data stream classification.

Data stream classification is the process of constructing classification models

from continuous data records. Data stream classification poses two challenges to

traditional data classification algorithms: continuous data flow and concept drift.

Continuous data flow prohibits a classification algorithm from making multiple

passes on the data set. Over time, the distribution of the data may change.

This change is typically referred to as concept drift. The classification training

algorithms must be able to cope with this.

To train the required classification model, it is often assumed that that some

of the records in the data stream are labelled and therefore can be separated to

form the training stream. Initially, research work has been focussed on revising

the traditional algorithms to include fading effects for the older examples. A

previously learnt classifier is required to undergo revision and to relearn the new

concept constantly. Using the decision tree classifier as an example, the decision

tree/subtree is pruned, regrown or discarded as necessary [133]. The resulting

117

6.1 Data stream classification

algorithms are often complicated. Making matters worse, as these algorithms

typically discard old examples at a fixed rate, the learnt classifier is only supported

by the latest data. This usually results in large prediction variances [130].

The ensemble of classifiers is another approach that has become very popular

in data stream classification. This approach offers several advantages over single

model classifiers. Firstly, it offers an efficient way to improve accuracy. Secondly,

its parallel nature is easy to scale. Data in the stream are divided into chunks; a

classifier ensemble (which itself can also be a set of classifier ensembles) is built

from each data chunk. These classifier ensembles are combined using different

weights to form the ultimate classifier. Some of the criteria used to determine

the weights include the time (sliding window), estimated accuracy using the latest

data chunk and variation in the class distribution.

In [130] Fan presents a simple example to illustrate that old data which are

consistent with the new concept can help learning. Instead of throwing away

all the old data, he proposed a framework that dynamically selects one of the

following four classifiers as the final classifier:

1. The optimal classifier trained so far without using the latest chunk of data.

2. The classifier trained by updating the optimal classifier in 1 with the latest

chunk of data.

3. The classifier trained only with the latest chunk of data.

4. The classifier trained from scratch with the latest chunk of data and some

old data samples that are (assumed to be) consistent with the latest chunk

of data.

The final classifier chosen is the one with the highest accuracy on the latest chunk

of data using cross validation. This classifier is then set to be the optimal classifier

trained so far (classifier in 1) in the next classifier selection process.

Fan’s intuition is that no one knows if the latest data chunk on its own is

sufficient to train a better classifier than the previous one learnt. Instead of

statically defining how much old data is to be used, Fan’s framework lets the

data make the decision dynamically.

118

6.2 A dynamic security policy model

Dynamic security policy learning is very similar to data stream classification.

Each possible decision in the policy can be viewed as a class; the learning objective

is to search for the classifier that best agrees with the examples in the data stream

in a timely manner. In both cases, the amount of data will inevitably increase over

time; the algorithm must be able to learn incrementally and cope with changes.

Yet there is still a small distinction in terms of the learning time requirement. In

dynamic security policy learning, the learning time requirement is much relaxed.

Acceptable time frames range from a few minutes to hours. This frees us from the

one pass data set constraint in data stream mining, i.e., old data can be revisited

if necessary.

The design of our dynamic security policy learning framework begins with this

intuition and shows how MOGP can serve as an elegant framework for dynamic

learning. A novel idea is then proposed to further reduce the error rate and

response time to concept drift.

6.2 A dynamic security policy model

Since there is no known dynamic security policy model, we introduce a new

time-varying, risk-budget based security policy model here. This model is used

for generating the training decision examples and serves as the reference model

against which the security policies learnt are evaluated.

In a system using a risk-budget based security policy, each user is given a

number of risk tokens that represents how much risk the system is willing to take

with that user. To access a piece of information, a user offers the number of risk

tokens he is willing to spend from his budget to pay for the access. The system

evaluates the risk incurred in granting the access and allows it only if the user’s

offer is greater than or equal to the risk. Unlike the models introduced previously,

the risk evaluation of an access in this new dynamic model may vary with time,

hence the name of the policy.

In order to evaluate risk for an access, the definition of risk in the Fuzzy MLS

model in (3.1) is reused here and is restated as follows for ease of reference:

risk = (value of damage, V)× (probability of incurring the damage, P)

119

6.2 A dynamic security policy model

The probability of incurring any damage, P , is the union of the following four

independent probabilities:

1. PCH : The probability that the communication channel between the user

and the system is compromised.

2. PIS: The probability that the information system is compromised.

3. PHU : The probability that the human user is compromised for whatever

reasons, e.g., being tempted, malicious, careless, etc.

4. PPH: The probability that the physical security of the user or the system

is compromised.

It should be noted that PCH , PIS and PHU exclude the probability of physical

compromises that are covered by PPH . The independence assumption among

these probabilities may not hold and result in P being over-estimated. This is fine

from the security perspective, especially given the fact that all these probabilities

are only estimates to begin with.

To estimate PCH , we consider the security levels of communication chan-

nel, SCH , may be either secure (SCH = 1) or not (SCH = 0). PCH = 0 only

if SCH = 1 and PCH = 1 otherwise.

To estimate PIS, we use the five information system security rating levels, SIS,

as outlined in Trusted Computer System Evaluation Criteria (TCSEC) [22]. We

assume that SIS is an integer in the range [0, 4]; the higher SIS, the more secure

the system is. SIS is mapped to PIS using an inverse exponential function such

that PIS = 1/ exp(SIS).

To estimate PHU , we consider the sensitivity levels of the subject (user), sl,

and the object (information), ol. The sensitivity level of a subject represents the

level of trustworthiness of the subject whereas the sensitivity level of an object

indicates the level of damage incurred if the object is lost or misused. To map

these sensitivity levels to PHU , the sigmoid function in (3.5) is reused and restated

here as follows:

PHU =
1

1 + exp((−k)× (TI(sl, ol)− n))

120

6.2 A dynamic security policy model

where TI(sl, ol) is the temptation index that indicates how much the subject

with sensitivity level sl is tempted to leak information with sensitivity level ol. TI

in (3.4) is reused and restated here as follows:

TI(sl, ol) =
a−(sl−ol)

m− ol

The intuition for PHU and TI can be found in Section 3.4.1. In our experi-

ments, the same settings in the experiments presented in the previous chapter

are reused: sl and ol are integers in [0, 9], a = 10, k = 3, n = 4 and m = 11.

To estimate PPH , we assume there are 10 physical security rating levels, SPH ,

which of each is represented by an integer in [0, 9]. Higher rating level indicates

that better physical security protection mechanisms are in place. The mapping

function from SPH to PPH is PPH = (9− SPH)/9.

To estimate V , an exponential function such that V = aol used in the experi-

ments presented in the previous chapter is reused here.

To introduce dynamic changes to the security policy, the risk calculated is

multiplied by a safety margin factor, α, which has a value that varies over time

in accordance with the changing environment. The evaluated risk for an access

to a piece of information therefore becomes α × P × V . The value of α is set to

be a real value in the range [1, 3). This setting allows the risk value to vary in

a reasonably large range, so that the evaluation on the frameworks used may be

done in a more rigorous manner. In practice, the changes in the policy are likely

to happen in a much smaller and smoother fashion.

To generate a reasonable set of decision examples, we make the assumption

that a user is rational in making each access request to information in the following

ways. Firstly, a user is able to estimate the risk associated with the access to a

certain degree of accuracy. Secondly, the user always attempts to minimise the

number of risk tokens spent on the access without generating too many responses

that result in a denial of access.

To model this, we assume each user always makes an offer of (βmin+γ)×P×V ,

where γ is a random variable with a beta distribution, B, which has a mean

value of 0.5 and a variance value of 0.05, i.e., corresponding to B(2, 2). A beta

distribution is used here because it has a finite range between 0 and 1 and the

121

6.3 Experimentation

parameters are chosen so that the distribution is symmetric. The user adjusts

its βmin over time based on the allow/deny responses he receives by using a

counter. The counter is incremented if an access request is granted or decremented

otherwise. After every 5 decisions, the user increases βmin by 0.1 if the counter

value is negative or decreases βmin by 0.1 otherwise. The counter is then reset to

zero. The value of βmin is initialised to be 0.5 less than the initial value of α.

Using the settings described above, the security policy is defined as:

A real-valued function SP(riskFactor) where riskFactor is a tuple

of 〈SCH , SIS, sl, ol, SPH〉 with the interpretation that an information

access request x is granted to a user y if and only if the offer of the

user made for this access, offery ≥ SP(riskFactorx ,y).

Examples of access control decisions are generated using this policy. Each

example is a tuple of SCH , SIS, sl, ol, SPH, offer and decision. A set of 10000

examples is generated, the value of α is changed randomly within its range after

every 1000 examples. GP/MOGP is used to learn the underlying security policy

model from these examples.

6.3 Experimentation

We observe that the specification of the reference security policy model presented

in Section 6.2 is actually quite involved. Here we seek largely to approximate the

model with GP/MOGP.

To do this, we view the security policy model as a function that maps six

decision-making factors, SCH , SIS, sl, ol, SPH and offer to a binary decision.

Each individual tree in the population is used to represent a candidate function

(policy). The terminal (leaf) nodes can be one of the decision-making factors or an

ERC, which takes a real value in [−10, 10]. The non-terminal (non-leaf) nodes are

mathematical functions. The functions chosen are +, −, ×, ÷, protectedln(x)1,

1protectedln(x) =

{

ln(|x|) if x 6= 0

0 otherwise

122

6.3 Experimentation

exp(x), pow(x, y), protectedlogx(y)1, max(x, y), min(x, y), sin(x) and cos(x).

In each experiment, a security policy is learnt and refined continually using

a set of decision examples. Ideally, the learnt policy should generate the same

decisions prescribed by all the training examples. In practice, the objective is to

minimise the percentage of output decisions that are different from the ones gen-

erated by the true model. This percentage is the error rate of the learnt security

policy. Here this error rate is estimated using the 1000 examples generated from

the same model.

All the experiments described in this chapter are carried out using ECJ 18 [126]

with the SPEA2 module obtained from ECJ 192. The default parameter files in

ECJ are used, i.e., koza.params for GP based experiments and spea2.params

for MOGP based experiments, unless otherwise specified.

GP (and EAs in general) is stochastic in nature; the evolution process in

each run may vary depending on the random seed used. To evaluate the perfor-

mance, each experiment is repeated 100 times with a different random seed. The

performance is evaluated by two criteria:

1. The median error rate of the best individuals in the 100 runs. This mea-

surement indicates the quality of the security policy that can be learnt.

2. The number of the best individuals with error rates ≤ 0.25. This measure-

ment indicates the likelihood of the learning in resulting a reasonably good

security policy.

6.3.1 Static policy learning

To prepare for the experiments on dynamic policy learning, we started with three

experiments to learn a static policy from decision examples (in a similar fashion

to the experiments presented in the previous chapter). The target policy is, in a

sense, static because all the training examples are generated from the reference

policy model as presented in Section 6.2 with the same value of α.

1protectedlog
x
(y) =

{

log(|x|)(|y|) if (x 6= 0 or 1) or (y 6= 0 or 1)

0 otherwise
2The reason of using ECJ 19 is that the SPEA2 module in this release has been revised

heavily to remove some bugs and to be fully compliant with Zitzler’s specification [93].

123

6.3 Experimentation

Each experiment runs for 200 generations and the training set consists of 1000

of such decision examples. Experiment 6.1 uses GP with the default genetic

operators and parameters specified in ECJ. Experiments 6.2 and 6.3 use MOGP

to address the problems encountered in Experiment 6.1.

Experiment 6.1: Single objective GP

This experiment uses GP with the default genetic operators and parameters spec-

ified in ECJ. The binary tournament selection scheme [81] is used to select the

individuals from the current population to breed the next generation of individ-

uals. This scheme holds several tournaments, with each tournament randomly

choosing two individuals from the current population and then selecting the fitter

one of the two. Each selected individual (policy) has a probability of 0.9 of being

subjected to a crossover operation and a probability of 0.1 of being reproduced.

The individual fitness is its error rate. Let ri be the six decision-making fac-

tors, decisioni be the decision encoded in example i and SP(ri) be the decision

of an evaluated policy SP on ri. Then, the fitness function of SP is:

fall(SP) =
1

n

n
∑

i=1

(SP(ri) 6= decisioni) (6.1)

In this case, n = 1000 and the values 1 and 0 are used to represent True and False

respectively. Therefore, this fitness function is essentially the fraction of decisions

that the evaluated policy gets wrong.

The median error rate of the 100 best individuals is 0.3555 with a 95% con-

fidence interval of [0.3487, 0.3640]. The best of the 100 best individuals has an

error rate = 0.107. However, only 12 out of the 100 best individuals have error

rates ≤ 0.25 and more than half of them have error rates > 0.35. This suggests

that many runs get stuck at local optima.

Analysis of the structures of the individuals in the population reveals some

common problems in GP. The average individual size (number of nodes) in the

population grows quickly and becomes very large. This can be a phenomenon

of bloat (uncontrolled growth of the average size of the individuals), overfitting

problems or both. No attempt is made to distinguish them here as both make

124

6.3 Experimentation

the learning process more difficult, use more memory and require more evaluation

time.

Experiment 6.2: Bloat control with SPEA2

In this experiment, the SPEA2 bloat control method [134] is used to alleviate

these problems. This method introduces a new objective: minimising the indi-

vidual size (the number of nodes in the individual tree). Let size(SP) be the size

of an individual SP . Then, the fitness function for this new objective is:

fsize(SP) =



















size(SP)/512 if 32 ≤ size(SP) ≤ 512

32/512 if size(SP) < 32

1 otherwise

(6.2)

In other words, individuals with less than 32 nodes have the same fsize value as

an individual with 32 nodes and individuals with more than 512 nodes have the

same value as an individual with 512 nodes. This is to avoid both over-simplified

and over-complicated solutions.

SPEA2 is an elitist approach. An archive is maintained so that the non-

dominated individuals of a generation can be preserved in the archive and passed

on to the following generation. The reproduction operator is removed, i.e., the

crossover operator is applied with probability of 1.

The experiment is carried out with only these changes. The results show

that the bloat control method is effective. The average individual size, mem-

ory required and evaluation time taken are reduced significantly. However, the

performance improvement in terms of error rate is marginal. The median er-

ror rate of the 100 best individuals is 0.3545 with its 95% confidence interval

of [0.3419, 0.3591]. The best of the 100 best individuals has an error rate = 0.126

and there are 22 best individuals that have error rates ≤ 0.25.

Result analysis also reveals that the diversity among constants appearing in

the individuals decreases with each new generation. This is expected as some form

of convergence is necessary if a population is to produce a solution for the problem

in question. It is often that the desired constants will not appear in the initial

population that are randomly generated; but the evolutionary process is expected

125

6.3 Experimentation

to synthesise the required constants by joining the existing ones through the

operators. If the constants converge prematurely before finding the appropriate

ones, the evolutionary process may get stuck at a local optima.

This lack of diversity among constants is the key to our problem. This is

revealed by an analysis of the reference policy model presented in Section 6.2.

This model grants an information access request if and only if:

offer ≥ SP(riskFactor)

= offer ≥ α× P × V

= offer ≥ α× P × aol (6.3)

As P is in [0, 1] and α is in [0, 3) and offer is programmed to track SP(riskFactor),

the value of constant a which is raised exponentially dominates (6.3). The error

rate of an individual will remain high even if it implements the same inequality

except with a different value of a. As the diversity of the constants decreases over

generations, the chance of finding the correct value of a becomes even smaller. To

conclude, this reference policy model although appears to be simple, it is actually

not that easy for GP to find it.

Moreover, the rate of convergence among constants in our experiments is

further accelerated by the following factors:

• Small chance of using a constant as a leaf node — In ECJ [126], each

ERC (constant) of a range is implemented as a terminal class and each

variable is implemented as a terminal class. Each terminal class has an equal

probability of being selected to be a leaf node. As our experiments involve

six variable terminal classes and 1 ERC terminal class, the probability of

an ERC being chosen as a leaf node is only 1/7. Moreover, the relatively

large ERC range also exacerbated the problem in finding an appropriate

constant.

• No mutation operator — The default configuration does not use mutation.

Without mutation, there is no new constant introduced to the population.

The diversity among constants in the population decreases with each new

generation.

126

6.3 Experimentation

• The use of an archive in SPEA2 — SPEA2 restricts the binary tournament

selection to the individuals in the archive and therefore only the constants

that appear in these individuals have the opportunity to be passed on to

the next generation.

Further analysis also reveals that a substantial portion of the individuals in the

archive share the same or similar higher level structures of their trees (assuming

the root of the tree is the highest node). The diversity among the individuals is

lost. We think the primary cause of this problem is again the absence of mutation

and the use of an archive in SPEA2.

Experiment 6.3: Enhanced constant evolution

To overcome these problems, this experiment is setup with the following changes.

Firstly, six identical ERC classes are used to make the probabilities of choosing a

variable and a constant equal. Secondly, a mutation-only setting is used instead

of the typical high crossover and low mutation setting. There are four reasons to

do so. Firstly, mutation introduces new genes and therefore diversifies the popu-

lation. Secondly, much empirical evidence shows crossover provides no advantage

over mutation in GP. Thirdly, this setting frees us from tuning the probability

parameters of applying crossover and mutation. Finally, mutation provides a

means to introduce new individuals by simply allowing mutation to happen at

the root node of an individual. The probabilities of applying mutation at the root

node, at a terminal node and at a non-terminal nodes are changed from 0, 0.1

and 0.9 (default) to 0.125, 0.125 and 0.75 respectively. This new setting has an

effect in increasing the diversity in the population as well as focussing more on

the search for the right constants.

The results improve significantly. The median error rate of the 100 best

individuals is reduced to 0.2225 with a 95% confidence interval of [0.1595, 0.2789].

The best of the 100 best individuals has an error rate = 0.099 and the number of

best individuals with error rate ≤ 0.25 is 54.

Figure 6.1 shows the distributions of the best individuals in all three experi-

ments at different error rate intervals. The distribution of the best individuals in

127

6.3 Experimentation

this experiment has shifted significantly to the left, i.e., situated at lower error

rate intervals, in comparison to the ones in Experiments 6.1 and 6.2.

 0

 10

 20

 30

 40

 50

 60

[0.00,0.05]

(0.05,0.10]

(0.10,0.15]

(0.15,0.20]

(0.20,0.25]

(0.25,0.30]

(0.30,0.35]

(0.35,0.40]

(0.40,0.45]

(0.45,0.50]

N
um

be
r

of
 r

un
s

Error rate intervals

Experiment 6.1
Experiment 6.2
Experiment 6.3

Figure 6.1: The distributions of the best individuals in all three experiments at
different error rate intervals.

Example security policies inferred

Some optimal policies inferred in Experiments 6.1, 6.2 and 6.3 are shown in

Figures 6.2a, 6.2b and 6.2c respectively. Due to the space constraint, type is used

to represent the factor Stype, ln(x) and logx(y) operators are used to represent

protectedln(x) and protectedlogx(y) operators, and all the constants are rounded

to two decimal places. Other optimal policies inferred in these experiments also

have very similar structure and size.

An immediate observation is that there is a huge reduction in the size and

number of duplicate subcomponents in the policies inferred in Experiments 6.2

128

6
.3

E
x
p
e
rim

e
n
ta

tio
n

�

�

�

�
−3.59

�

�

�

�
CH

�

�

�

�
−3.59

�

�

�

�
ln

�

�

�

�
max

�

�

�

�
min

�

�

�

�
sin

�

�

�

�
−3.59

�

�

�

�
ln

�

�

�

�
sin

�

�

�

�
−3.59

�

�

�

�
CH

�

�

�

�
IS

�

�

�

�
max

�

�

�

�
sin

�

�

�

�
−3.74

�

�

�

�
3.43

�

�

�

�
ln

�

�

�

�
logx

�

�

�

�
max

�

�

�

�
ln

�

�

�

�
PH

�

�

�

�
+

�

�

�

�
PH

�

�

�

�
sin

�

�

�

�
logx

�

�

�

�
max

�

�

�

�
max

�

�

�

�
sin

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
sin

�

�

�

�
−3.59

�

�

�

�
ln

�

�

�

�
offer

�

�

�

�
logx

�

�

�

�
cos

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
ol

�

�

�

�
−3.74

�

�

�

�
min

�

�

�

�
offer

�

�

�

�
max

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
−3.74

�

�

�

�
min

�

�

�

�
min

�

�

�

�
cos

�

�

�

�
ol

�

�

�

�
cos

�

�

�

�
ol

�

�

�

�
cos

�

�

�

�
ol

�

�

�

�
cos

�

�

�

�
3.43

�

�

�

�
ln

�

�

�

�
min

�

�

�

�
cos

�

�

�

�
ln

�

�

�

�
ln

�

�

�

�
min

�

�

�

�
logx

�

�

�

�
cos

�

�

�

�
ln

�

�

�

�
min

�

�

�

�
ol

�

�

�

�
cos

�

�

�

�
logx

�

�

�

�
−

�

�

�

�
−3.59

�

�

�

�
ol

�

�

�

�
cos

�

�

�

�
min

�

�

�

�
sin

�

�

�

�
−3.59

�

�

�

�
ln

�

�

�

�
IS

�

�

�

�
sin

�

�

�

�
cos

�

�

�

�
offer

�

�

�

�
logx

�

�

�

�
max

�

�

�

�
sin

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
sin

�

�

�

�
sin

�

�

�

�
offer

�

�

�

�
3.43

�

�

�

�
offer

�

�

�

�
+

�

�

�

�
logx

�

�

�

�
max

�

�

�

�
sin

�

�

�

�
min

�

�

�

�
min

(a) Experiment 6.1.

Figure 6.2: Some examples of the security policies learnt.

129

6
.3

E
x
p
e
rim

e
n
ta

tio
n

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
ln

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
+

�

�

�

�
ol

�

�

�

�
CH

�

�

�

�
cos

�

�

�

�
+

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
cos

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
offer

�

�

�

�
offer

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
−8.32

�

�

�

�
×

�

�

�

�
+

�

�

�

�
cos

�

�

�

�
ol

�

�

�

�
min

�

�

�

�
ol

�

�

�

�
ol

�

�

�

�
CH

�

�

�

�
cos

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
ol

�

�

�

�
offer

�

�

�

�
+

�

�

�

�
ln

�

�

�

�
−8.32

�

�

�

�
×

�

�

�

�
+

�

�

�

�
cos

�

�

�

�
min

(b) Experiment 6.2.

�

�

�

�
−6.84

�

�

�

�
exp

�

�

�

�
offer

�

�

�

�
÷

�

�

�

�
ln

�

�

�

�
5.46

�

�

�

�
×

�

�

�

�
sin

�

�

�

�
sin

�

�

�

�
sl

�

�

�

�
−8.06

�

�

�

�
+

�

�

�

�
offer

�

�

�

�
sl

�

�

�

�
−

�

�

�

�
sin

�

�

�

�
offer

�

�

�

�
CH

�

�

�

�
8.85

�

�

�

�
sl

�

�

�

�
pow

�

�

�

�
÷

�

�

�

�
−8.82

�

�

�

�
ol

�

�

�

�
IS

�

�

�

�
5.44

�

�

�

�
−

�

�

�

�
sin

�

�

�

�
pow

�

�

�

�
+

�

�

�

�
sin

�

�

�

�
max

�

�

�

�
logx

�

�

�

�
max

�

�

�

�
IS

�

�

�

�
PH

�

�

�

�
×

�

�

�

�
CH

�

�

�

�
×

�

�

�

�
logx

�

�

�

�
offer

�

�

�

�
logx

�

�

�

�
logx

�

�

�

�
min

(c) Experiment 6.3.

Figure 6.2: Some examples of the security policies learnt.

130

6.3 Experimentation

and 6.3. This serves as strong evidence that the use of SPEA2 to battle against

bloat is effective.

Unlike the experiments presented in Chapter 5, it is impossible to show the

mapping in these policies using a simple three dimensional plot as there are more

than two risk factors. To answer the question if the target policy has been learnt

in these experiments, the structure of the inferred policies is compared manu-

ally against the structure of the target policy. It is easy to observe that they

are in fact not the same because some input factors are missing in the inferred

policies. For example, sl is not found in the optimal policy inferred in Experi-

ment 6.1, and sl, SIS and SPH are not found in the optimal policy inferred in

Experiment 6.2. Nevertheless, with an error rate in the range [0.099, 0.126], these

inferred policies are likely to serve as good approximators of the target policy.

This can be useful under certain operational environments such as MANETs, in

which the evaluation of a complicated policy can be very expensive for a node.

6.3.2 Dynamic policy learning

So far, it is assumed that all the decision examples are available prior to the start

of the learning process. This section investigates how to learn security policies

dynamically when new decision examples become available gradually during the

course of learning, some of which can be inconsistent with the ones that are

previously seen. The learnt model is continuously refined, or even redefined if

necessary, by these new examples.

Unlike before, these decision examples are organised into a sequence of data

chunks. Each chunk consists of 200 examples to ensure that it has sufficiently

good coverage and representation of the underlying policy. The policy changes

every 5 chunks (1000 examples) by changing its value of α. In each experiment,

the sequence is fed into the learning framework one chunk at a time. The first

policy is learnt using the first chunk after 100 generations of evolution. Then, each

subsequent chunk is used to refine the policy learnt from the previous chunks.

Each refinement starts with the population of the last generation learnt from the

previous chunks, and uses the examples in the latest chunk to learn a refined

policy for a further 100 generations of evolution.

131

6.3 Experimentation

We first focus only on how to infer the optimal policy model from decision ex-

amples. At any time, the output model (from the learning algorithm used) is the

individual (policy) with the lowest error rate on the latest chunk of examples in

the evolving population. Three experiments are presented: Experiment 6.4 shows

how dynamic learning can be performed by extending the current framework using

Fan’s intuition and Experiments 6.5 and 6.6 use Diversity via Opposite Objec-

tive (DOO) framework. We then show how ensemble approaches can be used to

improve the optimal model selection problem at the end of this section.

Experiment 6.4: Fan’s Intuition

In this experiment, the policy inference framework built in Experiment 6.3 is

extended in two ways. Firstly, the number of examples, n, in the fitness func-

tion fall is no longer fixed at 1000 but set to be the total number of examples

received and therefore increases as more chunks are received. Secondly, a new

fitness function is introduced to measure the error rate of a policy with respect

to the latest chunk of data. Let ri be the six decision-making factors, decisioni

be the decision in example i, s be the size of a data chunk and SP(ri) be the

decision made by policy SP on ri. Then, this new fitness function is:

flast(SP) =
1

s

n
∑

i=n−s+1

(SP(ri) 6= decisioni) (6.4)

Along with this new fitness function, this experiment has three fitness functions

in total, namely fall, flast and fsize.

The intuition employed here is similar to Fan’s one (refer to Section 6.1).

Each chunk of examples is used to refine the policy learnt from the previous

chunks. The refinement process happens through 100 generations of evolution.

In each generation, the policies with the lowest fall or flast values in the previ-

ous generation are preserved in the SPEA2 archive. These policies correspond

to Fan’s classifier 1. These policies are then refined with examples in the latest

chunk through the evolutionary process. These refined policies correspond to

Fan’s classifier 2. New policies are generated (using mutation). Some may have

the lowest flast values within the population and correspond to Fan’s classifier 3.

132

6.3 Experimentation

Others may have the lowest fall values and correspond to Fan’s classifier 4. Af-

ter 100 generations, the policy with the lowest flast value is chosen to be the new

learnt policy.

The results are shown in two resolution levels. Figure 6.3a shows the median

error rate of the best policies learnt after every 100 generations of training time.

With the exception of the initial 500 generations, the median error rate is kept

to be ≤ 0.220 at all times. For more details of the learning process, Figure 6.3b

shows the median error rate of the best policies learnt in each generation.

When a policy change happens every 5 chunks, i.e., 5×100 = 500 generations,

the median error rate spikes up sharply. After the spike, the error rate decreases

faster than in the initial 500 generations. This is a direct effect of using the

two fitness functions: fall and flast together. This setting protects the optimal

individuals with respect to the old policy from being eliminated too quickly and

therefore allows these individuals to have chances to pass on the knowledge they

have learnt to the new individuals. Consider the population in the generation

prior to the change, the individuals that have low flast values are also likely to

have low fall values. After the change, their flast will become worse (higher), but

their fall values would only be affected slightly. Thus, these individuals will still

have good chances of being kept in the archive and brought forward to the next

generation.

We also observe that there is a strong correlation between the height of the

spikes that happen every 500 generations and the change in value of α that is

used to simulate policy change. The height of a spike is higher when the change

in α is larger and vice versa. To see this, the values of α used to generate

training examples and its changes, δα, at every 500 generations are detailed in

Table 6.1. An immediate observation is that the heights of the spikes produced

at generation 3500 (δα = −1.6670) and 4000 (δα = 1.6050) are much higher

compared to the spikes produced at generation 4500 (δα = −0.0587). In practice,

this may not be a major issue as the changes in security policy are often small

and smooth.

Additionally, it is found that individuals in the archive converge and become

more alike to one another over generations. However, this is not a problematic

issue if the “structure” of the policy is learnt before the diversity is lost. The

133

6.3 Experimentation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) after every 100 generations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) after each generation.

Figure 6.3: The median error rate of the best policies learnt in Experiment 6.4.

134

6.3 Experimentation

Generation α δα
0 1.8648 1.8648

500 2.3314 0.4666
1000 1.4015 −0.9299
1500 2.2303 0.8288
2000 1.4048 −0.8255
2500 2.2718 0.8670
3000 2.8138 0.5420
3500 1.1468 −1.6670
4000 2.7518 1.6050
4500 2.6931 −0.0587

Table 6.1: The values of α and its changes, δα, at every 500 generations.

subsequent changes require only changes in the value of α, which mutation can

easily provide. Again, the loss of diversity also explains the very sharp upward

spikes in the error rate during policy change as shown in Figure 6.3b. As the

individuals are all alike, none of them matches the new policy well and thus the

error rate increases sharply. However, the new policy is relatively easy to learn

and thus the quick decrease in the error rate.

In summary, this approach can perform well under the assumption that the

policy changes are relatively small and the knowledge learnt previously aids the

learning process of the new policy. The use of two fitness functions: fall and flast

allows the knowledge learnt to be passed on from generation to generation. How-

ever, this approach still suffers from the loss of diversity among the individuals in

the population. This puts the general applicability of this approach in question.

Diversity via Opposite Objectives (DOO)

The loss of diversity problem is not uncommon in EAs. The “survival of the

fittest” principle in EAs provides the fitter individuals with higher chances to

survive and to pass on their genes on to the individuals in the next generations.

Consequently, the individuals in the population will inevitably become more alike

over generations. If significant diversity is lost prior to the optimal individual

being found, the population is said to have converged prematurely to a local

optimum. To prevent this, EAs use mutation operators to introduce new random

135

6.3 Experimentation

genes and individuals. However, the chances that these new random genes and

individuals can provide improvement over the current individuals are very small.

Therefore, they are highly unlikely to be preserved. In other words, diversity is

generated and then lost from one generation to the next.

To overcome this problem, several dynamic learning algorithms based on EAs

have been proposed in the literature. Most, if not all of them first attempt to

produce individuals that are optimised for the problem-related objectives and

then attempt to maintain the diversity among individuals in the population as

much as possible [135]. Their settings are often ad-hoc and the algorithms are

often complicated. A new dynamic learning framework — Diversity via Opposite

Objectives (DOO) — is proposed here. DOO takes the opposing perspective;

it first attempts to maximise the diversity among individuals in the population

through generations and then uses the ever increasing diversity to help in finding

the optimised individuals.

In EAs, performing evolutionary operations on a single individual can be

viewed as searching for more optimised individuals from the position of the indi-

vidual in the solution space. Similarly, performing evolutionary operations on a

diverse population of individuals can be viewed as a parallel search in many dif-

ferent parts of the solution space. This parallel search has a much better chance

of finding more optimised individuals than a search starting from just one indi-

vidual. The ever increasing diversity in DOO results in a domino effect such that

not only is the search done in parallel, but the search space coverage increases

as the diversity increases. Consequently, the chances of finding a more optimal

individual become higher and higher as the evolution proceeds. This same effect

cannot be achieved by conducting many parallel single-objective EA runs because

each run is likely to be trapped in a local optima.

In DOO, each and every objective is changed into a pair of opposing ob-

jectives. For example, the objective of minimising error rate in our problem is

changed to minimising error rate and minimising accuracy (1− error rate). DOO

then optimises all objectives using MOEAs. The opposing objectives in DOO

ensure that an individual who is weaker for one objective is fitter for the opposite

objective. Therefore, no individual is dominated by others, i.e., all individuals

are at the Pareto front. Each and every individual has a fair chance of passing

136

6.3 Experimentation

on its genes to the next generation. This prevents the population from conver-

gence, i.e., diversity is at least maintained. Since the true Pareto front is already

found at the start of the evolution process, the only job left for MOEAs is to

improve the spread of solutions on the Pareto front. As a result, the population

of a generation will have a wider coverage of the solution space than the previous

generations, i.e., diversity increases as MOEAs drive the evolution process.

To understand how DOO works via MOEAs, the concepts of the solution

space, S and objective space, O introduced in Section 4.4 are used. Referring to

Figure 4.3, diversity among individuals in a population is essentially a measure of

how uniformly solution points are distributed in S. Whilst f does not maintain

the distribution of solution points, it is often true in many problems that f is

a continuous function between these two topological spaces, i.e., a set of points

near a point s′ ∈ S is mapped to a set of points near the point f(s′) ∈ O.

As f is not injective, the inverse is not necessarily true, e.g., two solutions

can be very different yet both can solve the same problem equally well. However,

following the continuity assumption on f , it is reasonable to assume that a set of

points in O that is far apart corresponds to a set of points that is far apart in S.

DOO makes use of this assumption and attempts to maximise the diversity of

solution points in S via maximising the diversity of points in O using MOEAs.

In the SPEA2 implementation of MOEAs, if the number of non-dominated

points exceeds the archive size, the point that has the shortest Euclidean distance

to another individual in the objective space is dropped. If two solutions have the

same distance to their nearest neighbours, the tie is broken by comparing their

distances to their second nearest neighbours and so forth. This process is iterated

until the non-dominated solutions can fit into the archive. Essentially, the goal is

to fill the archive with non-dominated points as uniformly and widely distributed

over O as possible. Let error rate and accuracy be the pair of objectives, a

possible Pareto front and points that are to be kept in the archive are depicted in

Figure 6.4. As the optimal point with respect to each objective is located at the

corner of the Pareto front, i.e., they are furthest apart from other points, they

are guaranteed to be preserved in each generation until a better one is found. At

the same time, there is a higher likelihood for a better point to be found as the

diversity increases.

137

6.3 Experimentation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

E
rr

or
 r

at
e

of
 th

e
in

di
vi

du
al

Accuracy rate of the individual

Figure 6.4: In the DOO setting, all individuals are at the Pareto front. SPEA2
removes individuals that are closest to others iteratively until they can fit into
the archive. The individual at each corner is guaranteed to be in the archive.

Furthermore, all binary decision policies (all binary classifiers in general) can

be inverted to their complements by a simple negation on their output decisions.

Therefore, high error rate policies are just as good as those with a low error rate.

To gain benefit from this, DOO selects the policy with the highest absolute value

of bias which is defined as 0.5 − error rate. A negative bias value implies that

the policy is optimised on the opposite objective and thus all its output decisions

need to be negated if it is selected for use.

Experiment 6.5: Two pairs of opposing objectives

This experiment uses two pairs of opposing objectives: the first pair is fall and

1 − fall, and the other pair is flast and 1 − flast. We exclude fsize here as it

is not a problem-related objective. All other settings remain the same as in

Experiment 6.4.

Figure 6.5a shows the median error rate of the best policies learnt after ev-

ery 100 generations of training time. Figure 6.5b shows the median error rate of

the best policies learnt in each generation. The results of Experiment 6.4 that

uses three objectives are also included in pink for comparison purposes.

138

6.3 Experimentation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) after every 100 generations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) after each generation.

Figure 6.5: The median error rates of the best policies learnt in Experiment 6.4
(light pink) and Experiment 6.5 (dark blue).

139

6.3 Experimentation

In the initial 500 generations, the learning rate using DOO is significantly

faster. The median error rate of the best policies is reduced to 0.250 in 200

generations. This result is comparable to the best static policy learning approach

presented in Section 6.3.1, despite that the number of training examples used here

being significantly less (400 vs. 1000) and these examples are being presented to

the learning algorithm in sequential chunks.

Furthermore, the median error rate of the best policies learnt in each gener-

ation is lower than the one in Experiment 6.4. However, the error rates of the

best policies may rise suddenly even in the absence of a policy change. Analysis

of the results reveals that this is due to the way that the output policy is selected

in each generation. Currently, the output policy in each generation is the one

with lowest error rate/bias estimated using the latest 200 examples. As these 200

examples are generated randomly, they may not be sufficient to form a good rep-

resentation of the target policy. Moreover, policy changes sometimes may simply

mean revisiting a past policy. Therefore, the optimal policy in respect to the

latest chunk may not be the true optimal policy. This effect is not obvious in

Experiment 6.4 as all the policy candidates (individuals) in the population are

very similar. In Section 6.3.2, we will show how ensemble approaches can be used

to alleviate this problem. From the other perspective, this effect is a positive sign

of diversity maintenance.

Lastly, the heights of the spikes in the error rate due to policy changes are

much lower in DOO. Indeed, when a previously learnt policy is revisited, the

error rate does not spike up at all. For example, the error rate does not spike

up at all in generation 2000 as the target policy which has α = 1.4048 is very

similar to the target policy which has α = 1.4015 learnt between generation 1000

and generation 1500. This is further evidence of diversity maintenance. A policy

change can be viewed as a change in the fitness function, f . With a diverse set

of policies maintained in the population, it is likely that one of them will be near

the new target policy after the change.

140

6.3 Experimentation

Experiment 6.6: One pair of opposite objectives

An obvious weakness in the setups in Experiments 6.4 and 6.5 is that they are not

very scalable. The evaluation of fall involves scanning through all the decision

examples seen. As the number of examples increases over time, the fitness eval-

uation time required for each individual increases. A possible way to overcome

this is to only use a subset of decision examples, randomly sampled from all the

decision examples seen. The likelihood of an example being sampled may also

be set to decay over time, i.e., the older an example is, the less likely it is to be

sampled.

Prior to the search for a suitable sampling technique, it is always a good idea

to check if the old examples are of any use. In this experiment, we drop the

first pair of objectives from Experiment 6.5 to see the effect of not evaluating

fitness against old decision examples. This experiment is carried out with only

this change.

Figure 6.6a shows the median error rate of the best policies learnt after ev-

ery 100 generations of training time and Figure 6.6b shows the median error rate

of the best policies in each generation. The results of Experiment 6.5 are also

included in pink for comparison purposes.

The results show that the performance of the best policies obtained in this

experiment lie somewhere between those obtained in Experiment 6.4 and those

obtained in Experiment 6.5. This suggests that the the old data (measured by

the pair of objectives dropped) is indeed useful in maintaining a more diverse set

of individuals in the evolving population.

Experiment 6.7: Selection of inferred policy models

This section examines various ensemble approaches to construct the ultimate

model by combining multiple models to achieve better performance. We use

a simple voting mechanism such that the output of the ultimate model is the

majority output of all the models. This ensemble construction comes at virtually

no cost in EAs; achieved simply by selecting the best n individuals from the final

population.

141

6.3 Experimentation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(a) after every 100 generations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 b
es

t p
ol

ic
ie

s

(b) after each generation.

Figure 6.6: The median error rates of the best policies learnt in Experiment 6.5
(light pink) and Experiment 6.6 (dark blue).

142

6.3 Experimentation

However, the theoretical study of ensemble approaches has revealed two key

factors that determine the performance of an ensemble: the performance of indi-

vidual models and the diversity among all models in the ensemble [136]. As the

population of an EA run with non-DOO setting converges and loses the diversity

among individuals, the performance gain of using an ensemble is limited to the

first factor. However, this is not a problem with DOO. Yet, we still have two

questions to answer:

1. How many models should be used to construct the ensemble? Whilst the

negative bias models are as useful as the positive bias models, the models

with near zero bias are virtually useless. Should these models be included?

If not, what should be the minimum threshold on the value of bias one

model must have in order for it to be included?

2. Should the votes of all models have an equal weight? We choose to examine

here if weighting the vote of each model with its bias using the latest chunk

would provide better performance than a simple uniform weighted vote

approach. If so, how much is the performance improvement?

We attempt to answer these questions by comparing the performance of en-

sembles built with the following combinations of models:

• Using the single highest bias model in the archive.

• Using the 8 highest bias models in the archive.

• Using the 16 highest bias models in the archive.

• Using the 32 highest bias models in the archive.

• Using the 64 highest bias models in the archive.

• Using all the models (128 models) in the archive.

The bias of each model is estimated using the latest chunk of decision examples.

The models in each of these ensembles are combined with two different voting

mechanisms: uniform weighted (unweighted) and bias weighted. In the bias

weighted voting mechanism, the vote of each model is weighted with the absolute

143

6.4 Evidence for the thesis and future work

value of its bias on the latest data chunk. If the bias is negative, its vote goes to

the complement decision class.

When the ensemble models are constructed from the models in Experiment 6.4,

the error rates of the ensemble models do not decrease but increase with the num-

ber of models used as shown in Figure 6.7. This is because not all the models

used for ensemble construction are optimised with respect to the error rate, some

models in the archive are optimised with respect to other objectives, e.g., the

model size. When the number of models used is small (8 or 16 models), it is very

likely that the selected models are those optimised with respect to the error rate.

However, as these models have converged to become very similar to one another,

the formed ensembles do not result in any performance gain nor loss. As the

number of models used increases, the ensembles begin to include those models

that are not optimised with respect to the error rate. This causes the performance

of the ensembles to become worse. The deterioration in performances is worse in

the unweighted voting mechanism.

The performance of the ensembles formed using the models learnt in Exper-

iments 6.5 and 6.6 are shown in Figures 6.8 and 6.9 respectively. When the

number of models used is small (8 or 16 models), there is no significant change

in performance. However, the changes in error rate become smaller; the sudden

rises which tend to happen in the absence of policy changes seemingly disappear.

This smoothing effect is especially clear between generations 2500 to 3000 and

also between generations 3500 to 3700. As the number of models used increases,

the performance becomes only slightly worse. This suggests that the diversity

maintained in DOO provides a performance gain to counter the performance loss

due to the use of lower bias models in an ensemble.

6.4 Evidence for the thesis and future work

This chapter details experiments that show how GP/MOGP can be used to learn

as well as adapt security policy with changes. As there is no dynamic security

policy model available to work with, a dynamic security policy model that varies

over time is introduced here. This model is used to generate time varying decision

examples for training and evaluation purposes.

144

6.4 Evidence for the thesis and future work

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(a) Unweighted voting mechanism.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(b) Weighted voting mechanism.

0.20.40.6

 1 Model 8 Models 16 Models 32 Models 64 Models 128 Models

Figure 6.7: The median error rates of the ultimate ensemble models constructed
from the models learnt in Experiment 6.4.

145

6.4 Evidence for the thesis and future work

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(a) Unweighted voting mechanism.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(b) Weighted voting mechanism.

0.20.40.6

 1 Model 8 Models 16 Models 32 Models 64 Models 128 Models

Figure 6.8: The median error rates of the ultimate ensemble models constructed
from the models learnt in Experiment 6.5.

146

6.4 Evidence for the thesis and future work

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(a) Unweighted voting mechanism.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Number of generations

M
ed

ia
n

er
ro

r
ra

te
 o

f t
he

 u
lti

m
at

e
en

se
m

bl
e

m
od

el
s

(b) Weighted voting mechanism.

0.20.40.6

 1 Model 8 Models 16 Models 32 Models 64 Models 128 Models

Figure 6.9: The median error rates of the ultimate ensemble models constructed
from the models learnt in Experiment 6.6.

147

6.4 Evidence for the thesis and future work

We first begin with three experiments on learning the designed security policy

model statically as in the previous chapter. The results show some of the limi-

tations with GP, in which the exact target policy can only be approximated at

the best. This has a subtle implication on the applicability of our approaches.

In practice, the security policies are likely to be much more complicated. It is

unrealistic to expect the whole policy may be inferred from the decision examples

using our approaches. A more realistic goal is to use our approaches in conjunc-

tion with the traditional top-down policy development approach. The high-level

policies may first be refined into several subpolicies and these subpolicies are

then used as the inference targets. Our inference approach can also be used as a

security policy verification tool for the manually designed policies.

We also have found and proposed solutions to some common problems encoun-

tered when using GP, e.g., constant degeneration over the evolution process. As

these are not the focus of this thesis, the solutions proposed here may be rather

ad-hoc and specific to this problem. An obvious way forward is to examine these

problems in detail and propose more rigorous solutions to them.

In the dynamic policy learning experiments, we proposed two novel dynamic

learning frameworks based upon MOEA: one based on Fan’s intuition [130] and

DOO. In DOO, an n-objective optimisation problem is treated as a 2n-objective

optimisation problem, by adding an opposing objective to each of the original

objectives. This allows the diversity in the population to be maintained whilst

optimising the intended objectives. This diversity can aid in preventing the pop-

ulation from premature convergence and allows the concept drift in the policy to

be continually relearnt. The results show that both frameworks are able to infer

reasonably good approximators to the reference model from decision examples in

an incremental manner. These frameworks also have better learning rate in com-

parison to the ones used for static learning. However, work remains to be done to

make these frameworks more extensible. For example, searching for appropriate

techniques to sample old decision examples.

Lastly, we also show how to build an ensemble policy model from multiple

models in a single run to achieve better performance. In the DOO setting, this

has the effect of reducing and smoothing the error rate of the inferred policies

during concept drift.

148

6.5 Conclusions

6.5 Conclusions

We have argued earlier that some degree of adaptivity in policy is essential when

the risk landscape is constantly changing. In some respects this applies to almost

any system. However, the speed of evolution may vary very considerably. In

the challenging dynamic environments referred to in the thesis hypothesis one

might expect change to occur at a much faster pace than in fixed infrastructural

networks. In this chapter we have investigated automated techniques for con-

tinually learning (and relearning) security policies from decision examples. Two

dynamic security policy learning frameworks are proposed: one based on Fan’s

intuition and DOO. The results show that both frameworks are able to infer rea-

sonably good approximators to the reference model from the decision examples

in an incremental manner. Various ways of constructing ensemble policy model

to achieve better performance are also examined. These approaches are found

to be able to effectively reduce and smooth the error rate of the inferred policies

during concept drift in the DOO setting.

149

Chapter 7

Mission-specific Policy Discovery

Recent research [8] has detailed why precanned one-size-fits-all security policies

and mechanisms are too rigid for modern systems. In this chapter, we shift

the emphasis away from specifying and refining a one-size-fits-all policy towards

searching for a policy, from a family of policies, that has beneficial and acceptable

outcomes. We believe this is entirely novel.

Here we will investigate if models of operational benefit and risk can be used

to learn the optimal, or at least excellent, policies for specific scenarios. We use a

risk-budget based policy family as an example only; it is a means to an end and

stands as a proxy for any policy family from which we seek an instance best suited

to the needs of a specific mission (or a specific family of missions). We employ

the same techniques, namely GP/MOGP and DOO, to search over the space

of policies, get feedback on the consequences of a particular policy, and home

in on the optimal policies. These techniques have been shown to be effective

in searching for optimal policies using decision examples in previous chapters.

Other constraint solving or heuristic guided search approaches are potentially

applicable.

The crux of the overall approach is that we need some notion of feedback

to indicate how well a particular policy instance performs. Feedback can be

obtained by labelled decision examples (used as training set in a similar way to the

experiments in previous chapters), by static analysis, by numerical analysis (e.g.,

if we were to couch aspects of system behaviour as properties of Markov state

transition graphs), or else by simulation. We choose to use simulation in this

150

7.1 Scenario: travelling across a battlefield

chapter to demonstrate the feasibility of our idea. Simulation is a highly flexible

way to obtain feedback. It is of a particular use when the complexity of the

system under examination prevents mathematical analysis.

The rest of the chapter is organised as follows: Section 7.1 introduces an op-

erational scenario with a clear benefit and risk tradeoff in accessing information.

Section 7.2 presents various proof-of-concept experiments to support our claims.

Section 7.3 discusses the experimental results and Section 7.4 shows some in-

teresting policies inferred in the experiments. Section 7.5 summarises the main

contributions and points out some potential avenues for future research. Finally,

Section 7.6 concludes this chapter.

7.1 Scenario: travelling across a battlefield

We present a highly simplified operational scenario where there is clear benefit

from obtaining information and clear nasty consequences from allowing too much

free access to it. The scenario is a battlefield with two teams of agents, blue and

red. The battlefield is a 100×100 two dimensional grid. Blue agents aim to travel

from an initial location, Linit, to a destination location, Ldes, seeking to restrict

casualties but also aiming for a quick traversal. Certain elements of the grid are

in the hands of red forces and straying alone into an occupied grid position will

lead to the liquidation of the agent and the compromise of all information it has

had access to. At each time step, a blue agent can request further information

about its vicinity, e.g., the location of other agents. It is assumed here that the

amount of risk budget required for accessing the same piece of information under

the same circumstance by a blue agent is the same. In other words, all blue agents

are assumed to have the same levels of trustworthiness. Red agents attempt to

prevent blue agents from achieving their objective by chasing and destroying any

blue agent they see.

It is decidedly not the purpose of this task to determine how agents can

best use the information they obtain. Rather, we assume there is some chosen

mechanism for using it, and the goal is to find the policy that then provides the

best result. It is possible that many of the same techniques we propose here could,

mutatis mutandis, be used to search for an information use strategy, but we do

151

7.1 Scenario: travelling across a battlefield

not intend to address that issue here. We shall concentrate solely on the security

policy instance discovery.

7.1.1 Movement strategy

At each time step, an agent can choose to move in any of the eight different

directions to a neighbouring square: North (N), East (E), West (W), South (S),

North East (NE), North West (NW), South East (SE) and South West (SW), or

else remain at its current square (C). The decision-making process and movement

of all agents are synchronous. At each time step, each agent decides where to move

next based upon what he can perceive about the environment without knowing

what decisions others make. Then, all agents move simultaneously based upon

the decisions they have made. Two or more agents may end up occupying the

same grid position.

What an agent can perceive is defined in terms of its sight distance, i.e., the

distance an agent can see from its position. The notion of distance between two

points is defined as the least number of steps an agent needs to move between

the points. Initially, the sight distance is set to be one square for blue agents

and two squares for red agents respectively. Blue agents may increase their sight

distances to two squares by spending their risk budgets. Additionally, the grid

map does not wrap around at its edges and thus the number of movement choices

is more restrictive when an agent is at the edge of the map.

Local information of agents

Each agent is associated with several matrices in order to formally define its move-

ment strategy. These matrices are the gradient distance matrix, the knowledge

matrix and one or more direction selection matrices.

The gradient distance matrix, G, has the same size as the map, i.e., 100×100

two dimensional grid. It stores the distances of all squares in the map from the

destination square. Each element gx,y in G represents the distance of the square

with coordinate (x, y) from Ldes on the grid map. This matrix is commonly shared

by all agents.

152

7.1 Scenario: travelling across a battlefield

The knowledge matrix, K, stores the knowledge a blue agent has acquired

about the map so far. Each element kx,y in K represents the perceived risk

associated with the square with the coordinate (x, y). At each time step t, a blue

agent p updates its knowledge matrix, Kp,t to account for the risk arising due to

any red agent q that it can see from its current position. Formally, the update

of Kp,t can be written as:

Kp,t = αKp,t−1 + (1− α)Up,t (7.1)

where α is the relative weight of the previous knowledge acquired and U is the

update matrix. In this scenario, α is set to 0 for simplicity, i.e., blue agents have

no memory about their past. Thus, (7.1) is simplified to Kp,t = Up,t.

We have chosen a simple Up,t here such that each element ux,y in Up,t is as

follows:

ux,y =

#q
∑

i=1

max(sightRange(i)− distance(x, y, xi, yi) + 1, 0) (7.2)

where q is each red agent in the sight of the blue agent p and (xi, yi) is the location

of the i-th red agent. In other words, a blue agent only considers the risk posed

by all the red agents within its sight range. Each of these red agents poses a risk

to any square within its sight range. The amount of risk posed to a square by a

red agent depends on the distance between them. The further a square is from

the red agent, the less risk is posed to that square. No risk is posed to any square

outside its sight range. Figure 7.1 shows the risk posed by a red agent located

at the centre of a 5× 5 grid. As the sight range of a red agent in this scenario is

fixed at 2, therefore the risk posed to the square where the red agent resides is 3,

the immediate abutting squares (forming an annulus of squares) have risk that is

equal to 2 and the next annulus of squares have risk that is equal to 1.

The direction selection matrices, DSM , is a 3 × 3 matrix. Each element

in DSM represents the likelihood of a movement direction an agent chooses at

each time step. For example, the central element, d0,0 represents the likelihood

of an agent choosing to remain at its current position whereas d1,0 represents

the likelihood of an agent choosing to move to the east. Figure 7.2 shows the

153

7.1 Scenario: travelling across a battlefield

1 1 1 1 1
1 2 2 2 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

Figure 7.1: The risk posed to each square by a red agent located at the centre.

mapping between all the possible indices of DSM and the movement directions

they represent. Additionally, the elements corresponding to movement directions

that lead to invalid locations, i.e., locations that are not on the map, are always

set to 0.

−1, 1 0, 1 1, 1 NW N NE
−1, 0 0, 0 1, 0 W C E
−1,−1 0,−1 1,−1 SW S SE

Figure 7.2: The mapping between the indices of a DSM and the movement
directions they represent.

Movement strategy of red agents

As shown in Figure 7.3, the initial locations of all red agents are randomly dis-

tributed within a square-doughnut shaped patrol region defined in terms of three

parameters: the centre, c, the inner radius rin and the outer radius rout. In this

scenario, c = Ldes, rin = 10 and rout = 20 are used.

Initially, each red agent randomly moves within the patrol region. When a

red agent sees a blue agent, it begins to chase the blue agent. This pursuit ends

after a finite number of time steps or as soon as the blue agent is killed. The red

agent then returns again to the patrol region using the shortest possible path and

starts randomly moving within the region as before.

More formally, a red agent can be in one of the following three states: Pa-

trol (initial state), Chase or Return. The transition between states takes no time.

In the Patrol state, if a red agent does not see any blue agent, each element ed

in its DSM is set to 1/N , in which d is a movement direction that will result in it

remaining in the patrol region, and N is the total number of such directions. All

154

7.1 Scenario: travelling across a battlefield

Figure 7.3: The simulated battlefield grid map.

other elements are set to 0. Otherwise, the red agent randomly sets its chasing

target to one of the blue agents it sees, sets its chasing step to 10 and transits to

the Chase state.

In the Chase state, a red agent has each element ed in its DSM set to 1, d

being the direction of the target blue agent. All other elements in its DSM are

set to zero. Its chasing step is then decremented. It transits to the Return state

if its chasing step runs out or its chasing target is killed or has escaped.

In the Return state, a red agent has each element ed in its DSM set to 1, d

being the direction of the centre of the patrol region as seen from its current

location. All other elements are set to 0. In other words, an agent in this state

will return to the patrol region using the shortest path and ignore any blue agent

it sees on its way. Once a red agent arrives in the patrol region, it transits to the

Patrol state.

Movement strategy of blue agents

The initial locations of all blue agents are randomly distributed within a distance

between 0 and dstart from Linit. In this scenario, dstart is set to 7. At each

time step, every blue agent attempts to move towards its destination gradually

155

7.1 Scenario: travelling across a battlefield

while seeking to avoid being killed by the red agents on the way. Once a blue

agent arrives at the destination, the agent is considered to have achieved its goal

and “disappears” from the map.

Formally, a blue agent can be in one of the following two states: Progress (ini-

tial state) and Arrive.

In the Progress state, a blue agent makes its decision as to where to move

based upon the following factors:

1. The destination location, Ldes — it should move towards its destination

over time to accomplish its objective.

2. The location of red agents — it should try to move away from red agents

to reduce the risk of being killed.

These factors are independently calculated using two DSM s, namely DSM des

and DSM risk, and then aggregated using:

DSM final = βDSM des + (1− β)DSM risk (7.3)

where β is the relative weight of each DSM . In our scenario, both DSM s have

equal weight, i.e., β = 0.5. The direction that a blue agent will choose to move

is the one with the highest element value in DSM final. If there is more than one

direction which has this value, a random choice is made among them.

To build DSM des, we extract a 3 × 3 submatrix, Gsub from the gradient

distance matrix, G. The submatrix to be extracted by an agent j is formed by

the elements corresponding to the current square where j resides and its eight

neighbouring squares. If any of these squares are off the map (i.e., the agent is

at an edge of the map), the element is set to 0 and marked as invalid. For each

of the valid elements, x, the following operations are performed:

1. calculateRelativeDifference(x) — set x to be the absolute difference of its

current value from the largest value in Gsub. The closer a square is to Ldes,

the larger this value will be. The reachable squares furthest from Ldes now

have values of 0.

2. plusOne(x) — add 1 to x. This ensures that the values of all reachable

squares are positive.

156

7.1 Scenario: travelling across a battlefield

3. power(x, n) — raise x to the power of n. Larger values of n amplify the

difference and thus increase the selection bias toward element x with higher

value. Here, n = 1 is used, i.e., x is unchanged.

4. normalise(x) — x is normalised by dividing it by the sum of all the valid

elements. The net effect of the above is to produce a probability distribution

of moves to the valid squares; the closer square is to Ldes, the greater the

probability it is chosen.

DSM risk is built in a similar way to DSM des except that it uses knowledge

matrix, K, as its source matrix (the matrix it extracts the element values from)

and the parameter n in power(x, n) operation is set to 2.

An example of this scenario is depicted in Figure 7.3. The red agents randomly

move in the patrol region (the white square-doughnut shaped region) with the

destination (the red square in the middle of the region) as its centre. The blue

agents are moving from their initial positions (region around the small white

square at the left) to the destination. The intensity of the red background colour

corresponds to the value in the gradient distance matrix.

7.1.2 Risk-budget based security policy

To integrate the risk-budget based policy into the scenario, a fixed amount of risk

budget is assigned to each blue agent at the start. At any time step, a blue agent

can opt to purchase extra information about its vicinity in the hope of reducing

the risk of being killed. This leads to two questions: Firstly, what information is

available for a blue agent to request? Secondly, when can a blue agent raise an

information access request?

In the real world, information would be available at different levels of gran-

ularity. Higher granularity information costs more. Here the simulation is kept

simple. Only one type of information is available to request: the locations of all

agents at the distance of 2 squares from the current location of the agent. It

follows that the cost of the information is not a matter anymore and therefore is

simply set to 1 unit.

There is no straightforward answer to the second question. Instead of defining

a fixed strategy regarding when blue agents can raise the information access

157

7.1 Scenario: travelling across a battlefield

requests, we decide to let each of them raise a request at every time step and it is

the job of the policy to decide whether to grant or deny the request based upon

the status of the agent. If the policy grants a request of an agent, the cost of the

accessed information is charged against the budget of the agent, the information

is annotated onto the knowledge matrix of the agent, and then the DSM s of the

agent are recalculated. Otherwise, nothing happens.

To make an informed decision whether an information access request should

be granted or not, the security policy needs to take into account the following

risk factors:

1. The elapsed operation time, currentTime.

2. The price and granularity of the information requested. In this scenario,

as there is only one type of information and therefore this factor can be

omitted safely without loss of generality.

3. The remaining risk budget of the agent who raises the request, budgetLeft .

4. The current risk of the agent who raises the request, currentRisk . In this

scenario, this factor depends solely on the number of enemy agents in its

vicinity.

5. The estimated future risk of the agent who raises the request, futureRisk .

In this scenario, this factor is estimated using the distance from its current

location to the destination.

The security policy is thus defined here as:

a real-valued function SP(riskFactor) where riskFactor is a tuple of

〈currentTime, budgetLeft , currentRisk , futureRisk〉 with the interpre-

tation that an information access request is granted to an agent x if

and only if SP(riskFactorx) ≥ 0 and budgetLeftx ≥ 0.

With the security policy integrated, the complete movement strategy of a blue

agent in the Progress state is summarised in Algorithm 7.1.

158

7.2 Experimentation

foreach agent in BLUE team do
calculate DSM des using gradient distance matrix
calculate DSM risk using knowledge matrix
calculate DSM final with (7.3)
requestInformation(agent, policy)
if request is granted then

update K with new information
recalculate DSM risk using updated knowledge matrix
recalculate DSM final with (7.3)

move to the direction with the highest value element in DSM final

Algorithm 7.1: The movement strategy of blue agents.

7.2 Experimentation

Given the scenario described above, we would like to search for an optimal in-

stance in the policy space parametrised by these factors for blue agents. Op-

timality can have different meanings. In this context, an optimal policy is one

that minimises the number of blue agent casualties as well and/or minimises the

operation completion time (the time that the last agent is killed or arrives at the

destination) given a fixed amount of risk budget. These two objectives can be

in conflict with one another, e.g., minimising the operation time can be achieved

by denying all information requests from the blue agents so as to increase their

chance of being killed. GP/MOGP and DOO are used to search for the optimal

policies here.

To search for the optimal policies using these approaches, each individual in

the evolving population encodes a policy candidate. The terminal set, T con-

sists of all the risk factors and a set of ERCs with values in the range [−1,−1).

The function set, F comprises +, −, ×, ÷, protectedln(x), pow(x, y), exp(x),

max(x, y), min(x, y), sin(x) and cos(x). To measure the fitness of a policy, the

policy is executed by all blue agents in 10 scenarios described in Section 7.1. Each

scenario is initialised with a different random seed and consists of 50 blue agents

and 150 red agents. The mean of the policy performance in all the scenarios is

used as the fitness value. The same set of scenarios is used repeatedly throughout

the evolution process.

All the experiments described in this chapter are carried out using ECJ 18 [126]

159

7.2 Experimentation

with the SPEA2 module obtained from the ECJ 19. The default parameters de-

fined in koza.params and spea2.params that comes with ECJ are used, except

for the following:

1. Number of generations: 100.

2. Population size: 256.

3. SPEA2 archive size (if applicable): 32.

4. Evolutionary operators (probability): crossover (0.9) and mutation (0.1).

5. Selection: binary tournament selection.

7.2.1 Experiment 7.1: Minimising casualty toll with fdead

The objective of this experiment is to search for the optimal policy that minimises

the casualty toll of the blue agents. The fitness function can be formed in a pretty

straightforward way by setting it to be the normalised mean of the fraction of blue

agents killed in a scenario. Formally, let N be the number of scenarios used, M

be the initial number of blue agents in a scenario and ci be the casualty toll of

blue agent in scenario i. Then, the fitness of a policy, fdead, is defined as:

fdead =
1

NM

N
∑

i=1

ci (7.4)

7.2.2 Experiment 7.2: Minimising casualty toll with fmsd

Sometimes, the fitness function might not be so easily formed, perhaps because of

cost or other difficulties in measuring it. In such cases, an indirect measurement

can be used instead. In this experiment, an alternative fitness function, fmsd,

which minimises the mean square distance between the final location of each

agent and the destination, is used to achieve the same objective. Let N be the

number of scenarios used, M be the initial number of blue agents and fi,j be the

final location of blue agent j in scenario i (the location of a killed blue agent is

160

7.2 Experimentation

the square where it was killed). Then, the fitness of a policy, fmsd, is defined as:

fmsd =
1

NM

N
∑

i=1

M
∑

j=1

(

distance(fi,j, Ldes)

max(gridWidth, gridHeight)

)2

(7.5)

where the term “max(gridWidth, gridHeight)” represents the greatest possible

distance of any square from any possible Ldes. Together with the term “ 1
NM

”, it

ensures that the value of fmsd is between 0 and 1. For most choices of Ldes (as

long as Ldes is not at the edge of the map), the achievable value of fmsd is strictly

less than 1.

7.2.3 Experiment 7.3: Minimising casualty toll with DOO

To further investigate the applicability and generality of the DOO framework

introduced in Section 6.3.2, we reuse it here to search for the optimal policy that

minimises the casualty toll of the blue agents. To search with DOO, we need

to add an opposing objective to each of the original objectives. We reuse fdead

defined in Experiment 7.1 here and define its “opposite” fitness function to be

the normalised mean of the fraction of blue agents who remain alive in a scenario.

Formally, let N be the number of scenarios used, M be the initial number of blue

agents in a scenario and ai be the blue agent that remains alive in the scenario i.

Then, this “opposite” fitness function, falive, is defined as:

falive =
1

NM

N
∑

i=1

ai

= 1− fdead (7.6)

7.2.4 Experiment 7.4: Multi-objective optimisation

In this experiment, the objective is to search for the set of policies that is optimal

in two criteria: minimal casualty toll of blue agents and minimal mission comple-

tion time. The search is carried out using MOGP with SPEA2 implementation.

To use MOGP, the fitness function of each objective must be defined. To

measure casualty toll, fdead defined previously is used. To measure the mission

161

7.3 Experimental results and evaluation

completion time, ftime is defined as the normalised mean of completion time of

a run. Formally, let N be the number of scenario used, T be the maximum

completion time of a run and ti be the completion time of scenario i. Then, the

fitness of a policy, ftime, is defined as follows:

ftime =
1

NT

N
∑

i=1

ti (7.7)

Here T is set to be 100.

7.3 Experimental results and evaluation

To evaluate the performance of the optimised policies found, three baseline pol-

icy models, NoAccess , FullAccess and RandomAccess are created. NoAccess and

FullAccess models are simple: they deny and grant, respectively, all access re-

quests. Assuming that having more information will always help an agent in

making a better informed decision in choosing the movement direction, these

models essentially define the lower and upper bounds of the achievable perfor-

mance. However, as will be shown later, the experimental results suggest that

this assumption is not true; agents can use the new information in a way that

can lead to a deterioration in their performance. In RandomAccess model, the

decision to grant an access request depends on the availability of the current

remaining budget held by the agent who raises the request. If the agent has suf-

ficient budget to pay for the access, the access request is granted or denied with

equal probability. Otherwise, the access request is simply denied. This model

serves as the baseline model for a given initial budget of each agent.

In each experiment, four different initial risk budget allocation settings are

attempted. 10, 20, 40 and ∞ units of risk are allocated to each blue agent for

each mission. Each setting is repeated 10 times using a different random seed

and the performance of each optimised policy is summarised in Table 7.1. In

the MOGP experiment, the results shown are the performances of the optimal

policies with minimal casualty toll of blue agents without taking into account

the mission completion time. The median is used here instead of the mean as

162

7.3 Experimental results and evaluation

the distribution of the performance metric used in each experiment is unknown.

In all cases, the results suggest that a policy can be optimised considerably for

the 10 specified missions.

The performance of the optimal policies found in Experiments 7.1 (using fdead),

7.3 (using DOO) and 7.4 (using MOGP) are significantly better than the unopti-

mised RandomAccess policies. This result serves as a strong evidence to support

the idea of searching for the optimal policies for a set of missions using EAs. Ad-

ditionally, the performance difference among these optimal policies is very small

such that it is statistically insignificant. In other words, the policies optimised

with DOO are as good as the ones optimised with the traditional GP/MOGP.

Optimisation in Experiment 7.2 (using fmsd) has a relatively small improve-

ment when the risk budgets available are limited. Further investigation reveals

that this is due to the bias in the fitness function used. The search using fmsd

gives preference to a policy that leads each agent to be as close as possible to the

destination without considering if the agent ever reaches its destination. This bias

effect is more obvious when the initial risk budget is low and insufficient. As the

initial budget increases, the performance difference between the policies learnt in

this experiment and those learnt in other experiments becomes less. Indeed, in

the case we set the initial budget to be ∞, the difference is very small and is

statistically insignificant.

The results also contradict our initial intuitive assumption that using extra

information is always beneficial. For example, the RandomAccess policy performs

worse than the NoAccess policy when the initial budget of each blue agent is set

to 10 or 20. Moreover, the optimised policies in all the experiments outperform

the FullAccess policy when the initial budgets allocated to each blue agent is set

to 40. In other words, the agent has to use the information at the right time to

gain benefit from it. This reinforces our claims that specifying policy is a very

difficult and counterintuitive task, and obvious solutions might be far from being

optimal.

In the multi-objective optimisation experiment (Experiment 7.4), the output

of each run is a set of non-dominated policies that attempt to approximate the

real Pareto optimal set of policies. The result from one experimental run of each

initial budget setting is shown in Figure 7.4. In each graph, the leftmost point

163

7
.3

E
x
p
e
rim

e
n
ta

l
re

su
lts

a
n
d

e
v
a
lu

a
tio

n

Budget
Median blue agent casualty tolls with 95% confidence intervals / %

Random fdead fmsd DOO MOGP
NoAccess 55.6(55.6, 55.6) - - - -

10 59.7(58.0, 60.6) 42.0(41.0, 43.4) 47.5(44.0, 48.6) 42.5(41.0, 43.8) 42.5(41.6, 44.2)
20 57.7(56.6, 58.6) 33.5(31.0, 35.2) 40.0(38.2, 42.8) 35.0(34.2, 36.2) 35.9(34.0, 37.2)
40 50.7(49.8, 53.6) 23.3(21.8, 26.0) 27.3(26.0, 28.6) 25.2(23.6, 26.0) 25.0(24.0, 25.8)
∞ 51.4(50.2, 52.4) 23.7(22.8, 24.8) 24.1(22.0, 28.2) 22.9(22.0, 23.4) 23.6(23.0, 23.8)

FullAccess 31.6(31.6, 31.6) - - - -

Table 7.1: The experimental result summary on the performances of the optimal policies with respect to the casualty
toll of blue agents found using GP/MOGP and DOO.

164

7.3 Experimental results and evaluation

corresponds to the policy instance that results in the lowest blue agent casualties

while the lowest point corresponds to the policy instance that results in the

minimal mission completion time. The points in between represent all other non-

dominated policy instances. All other experimental runs produce similar results.

 55

 60

 65

 70

 75

 80

 85

 90

 20 25 30 35 40 45 50 55 60 65

M
ea

n
m

is
si

on
 c

om
pl

et
io

n
tim

e
/ s

te
p

initial risk budget=10

 55

 60

 65

 70

 75

 80

 85

 90

 20 25 30 35 40 45 50 55 60 65

initial risk budget=20

 55

 60

 65

 70

 75

 80

 85

 90

 20 25 30 35 40 45 50 55 60 65M
ea

n
m

is
si

on
 c

om
pl

et
io

n
tim

e
/ s

te
p

Mean casualty of blue agent / %

initial risk budget=40

 55

 60

 65

 70

 75

 80

 85

 90

 20 25 30 35 40 45 50 55 60 65

Mean casualty of blue agent / %

initial risk budget= ∞

Figure 7.4: The non-dominated solutions in one run using different initial budgets.

The results of 10 runs for all initial budget settings are shown in Figure 7.5.

The non-dominated policies found in one run can be dominated by the non-

dominated policies found in other runs as EAs are stochastic in nature. the

resulting policies depend on the random seeds used. However, policies found in

all runs are not very far away from the Pareto front approximation formed by

the non-dominated policies of all runs. This suggests that this approximation is

very likely to be the real achievable Pareto front.

By observing the Pareto fronts of the solutions formed, one can immediately

see that the increase in the amount of initial budget may be able to reduce the

blue agent casualties but not the mission completion time. This information can

165

7.3 Experimental results and evaluation

 55

 60

 65

 70

 75

 80

 85

 90

 20 25 30 35 40 45 50 55 60 65

M
ea

n
m

is
si

on
 c

om
pl

et
io

n
tim

e
/ s

te
p

Mean casualty of blue agent / %

initial risk budget= ∞
initial risk budget=40
initial risk budget=20
initial risk budget=10

Figure 7.5: The Pareto optimal solution set.

be very useful in practice. For example, one might wish to have a policy that

can complete the mission within 50 time steps. Based on the results, this is

unachievable no matter what initial budget is given. On the other hand, given a

fixed initial budget and an acceptable mission completion time, one could select

the optimal policy from the front that results in the minimal casualty toll of the

blue agents.

Additionally, the results suggest that the setting of 40 units of risk per blue

agent for each mission is sufficient to accomplish 10 missions optimally with re-

spect to the casualty toll of blue agents; extra budget does not help. This provides

a way to estimate the optimal initial risk budget allocation. Alternatively, one

can search for the minimal risk budget required to achieve the same optimal

performance by simply setting this as an additional objective.

The results in the multi-objective optimisation experiment are also compared

to those obtained in single objective experiments. This is done by comparing

the median performances of the optimal policies with respect to the casualty toll

of blue agents in all initial budget settings. The results show that the optimal

166

7.4 Example security policies inferred

policies found in both approaches have similar performance.

7.4 Example security policies inferred

Some examples of the Pareto optimal policies inferred in the multi-objective op-

timisation experiment with 40 units of risk budget per agent are shown in Fig-

ures 7.6, 7.7 and 7.8. Because of space constraint, the individuals are shown such

that B, F , R, T and ln(x) operator are used to denote budgetLeft , futureRisk ,

currentRisk , currentTime and protectedln(x) operator, and all the ERCs are

rounded to two decimal places. The policy shown in Figure 7.6 is one of the op-

timal policy with respect to the casualty toll of blue agents (one of the leftmost

green crosses at the Pareto front in Figure 7.5), the policy shown in Figure 7.7 is

the optimal policy with respect to the mission completion time (the lowest green

cross at the Pareto front in Figure 7.5) and the policy shown in Figure 7.8 is the

optimal policy with respect to the casualty toll of blue agents given the constraint

that the mean of mission completion time has to be within 70 time steps.

These Pareto optimal policies discovered appear to be large and compli-

cated. (The policies shown here are relatively simple in comparison to the others

which are not shown.) It is also interesting to note the extensive use of min,

max, sin and cos operators, which do not commonly appear in human designed

functions. These findings concur with our intuition that the policy that is best

suited an operational environment can be complicated and the task of manually

specifying such a policy can be very difficult.

7.5 Evidence for the thesis and future work

This chapter introduces the idea of moving away from specifying and refining

a one-size-fits-all policy towards searching for a policy that has beneficial and

acceptable outcomes from a family of policies. It presents a simple scenario, in

which evolutionary algorithms are used to discover the (near) optimal policies

that fit the scenario. Here, GP/MOGP and DOO are used as optimisation tools

to synthesise the optimal policies, in terms of achieving the mission as well as

security objectives without violating some predefined constraints.

167

7
.5

E
v
id

e
n
c
e

fo
r

th
e

th
e
sis

a
n
d

fu
tu

re
w

o
rk

�

�

�

�
F

�

�

�

�
F

�

�

�

�
0.61

�

�

�

�
F

�

�

�

�
−

�

�

�

�
cos

�

�

�

�
R

�

�

�

�
F

�

�

�

�
T

�

�

�

�
−

�

�

�

�
F

�

�

�

�
×

�

�

�

�
+

�

�

�

�
F

�

�

�

�
−

�

�

�

�
max

�

�

�

�
−0.22

�

�

�

�
F

�

�

�

�
T

�

�

�

�
×

�

�

�

�
sin

�

�

�

�
min

�

�

�

�
exp

�

�

�

�
R

�

�

�

�
×

�

�

�

�
+

�

�

�

�
÷

�

�

�

�
−

�

�

�

�
T

�

�

�

�
F

�

�

�

�
cos

�

�

�

�
0.40

�

�

�

�
sin

�

�

�

�
B

�

�

�

�
0.61

�

�

�

�
×

�

�

�

�
+

�

�

�

�
T

�

�

�

�
ln

�

�

�

�
−0.54

�

�

�

�
B

�

�

�

�
÷

�

�

�

�
min

�

�

�

�
÷

�

�

�

�
÷

�

�

�

�
F

�

�

�

�
−0.82

�

�

�

�
exp

�

�

�

�
max

�

�

�

�
−0.98

�

�

�

�
F

�

�

�

�
+

�

�

�

�
T

�

�

�

�
min

�

�

�

�
+

�

�

�

�
sin

�

�

�

�
÷

�

�

�

�
max

�

�

�

�
F

�

�

�

�
B

�

�

�

�
+

�

�

�

�
−0.63

�

�

�

�
exp

�

�

�

�
cos

�

�

�

�
exp

�

�

�

�
−0.04

�

�

�

�
cos

�

�

�

�
R

�

�

�

�
min

�

�

�

�
R

�

�

�

�
sin

�

�

�

�
÷

�

�

�

�
×

�

�

�

�
R

�

�

�

�
F

�

�

�

�
T

�

�

�

�
−

�

�

�

�
F

�

�

�

�
×

�

�

�

�
min

�

�

�

�
−

�

�

�

�
−

�

�

�

�
min

�

�

�

�
min

�

�

�

�
B

�

�

�

�
ln

�

�

�

�
T

�

�

�

�
T

�

�

�

�
B

�

�

�

�
F

�

�

�

�
0.10

�

�

�

�
T

�

�

�

�
−

�

�

�

�
+

�

�

�

�
×

�

�

�

�
÷

�

�

�

�
F

�

�

�

�
−

�

�

�

�
min

�

�

�

�
+

�

�

�

�
÷

Figure 7.6: The optimal policy with respect to the casualty toll of blue agents.

168

7
.5

E
v
id

e
n
c
e

fo
r

th
e

th
e
sis

a
n
d

fu
tu

re
w

o
rk

�

�

�

�
R

�

�

�

�
T

�

�

�

�
−0.22

�

�

�

�
cos

�

�

�

�
−0.50

�

�

�

�
×

�

�

�

�
÷

�

�

�

�
B

�

�

�

�
F

�

�

�

�
T

�

�

�

�
+

�

�

�

�
×

�

�

�

�
T

�

�

�

�
T

�

�

�

�
max

�

�

�

�
B

�

�

�

�
÷

�

�

�

�
min

�

�

�

�
min

�

�

�

�
B

�

�

�

�
−

�

�

�

�
F

�

�

�

�
F

�

�

�

�
+

�

�

�

�
0.41

�

�

�

�
F

�

�

�

�
F

�

�

�

�
−

�

�

�

�
F

�

�

�

�
B

�

�

�

�
B

�

�

�

�
−

�

�

�

�
F

�

�

�

�
B

�

�

�

�
min

�

�

�

�
max

�

�

�

�
max

�

�

�

�
cos

�

�

�

�
F

�

�

�

�
B

�

�

�

�
T

�

�

�

�
−

�

�

�

�
+

�

�

�

�
+

�

�

�

�
cos

�

�

�

�
+

�

�

�

�
F

�

�

�

�
sin

�

�

�

�
F

�

�

�

�
cos

�

�

�

�
F

�

�

�

�
T

�

�

�

�
−

�

�

�

�
×

�

�

�

�
−

�

�

�

�
R

�

�

�

�
exp

�

�

�

�
cos

�

�

�

�
T

�

�

�

�
max

�

�

�

�
F

�

�

�

�
cos

�

�

�

�
cos

�

�

�

�
0.18

�

�

�

�
R

�

�

�

�
min

�

�

�

�
cos

�

�

�

�
×

�

�

�

�
max

�

�

�

�
−

�

�

�

�
R

�

�

�

�
sin

�

�

�

�
×

�

�

�

�
B

�

�

�

�
cos

�

�

�

�
B

�

�

�

�
ln

�

�

�

�
min

�

�

�

�
ln

�

�

�

�
ln

�

�

�

�
R

�

�

�

�
min

�

�

�

�
cos

�

�

�

�
−0.09

�

�

�

�
÷

�

�

�

�
min

�

�

�

�
÷

�

�

�

�
÷

�

�

�

�
−

�

�

�

�
−

�

�

�

�
+

Figure 7.7: The optimal policy with respect to the mission completion time.

169

7
.5

E
v
id

e
n
c
e

fo
r

th
e

th
e
sis

a
n
d

fu
tu

re
w

o
rk

�

�

�

�
R

�

�

�

�
F

�

�

�

�
T

�

�

�

�
÷

�

�

�

�
0.35

�

�

�

�
B

�

�

�

�
÷

�

�

�

�
−

�

�

�

�
+

�

�

�

�
T

�

�

�

�
T

�

�

�

�
F

�

�

�

�
×

�

�

�

�
B

�

�

�

�
ln

�

�

�

�
sin

�

�

�

�
B

�

�

�

�
min

�

�

�

�
F

�

�

�

�
−

�

�

�

�
cos

�

�

�

�
−0.36

�

�

�

�
min

�

�

�

�
F

�

�

�

�
−

�

�

�

�
÷

�

�

�

�
sin

�

�

�

�
exp

�

�

�

�
F

�

�

�

�
+

�

�

�

�
−

�

�

�

�
F

�

�

�

�
B

�

�

�

�
sin

�

�

�

�
÷

�

�

�

�
max

�

�

�

�
÷

�

�

�

�
B

�

�

�

�
exp

�

�

�

�
R

�

�

�

�
exp

�

�

�

�
R

�

�

�

�
−

�

�

�

�
T

�

�

�

�
B

�

�

�

�
ln

�

�

�

�
F

�

�

�

�
sin

�

�

�

�
−

�

�

�

�
−

�

�

�

�
B

�

�

�

�
÷

�

�

�

�
max

�

�

�

�
sin

�

�

�

�
B

�

�

�

�
ln

�

�

�

�
+

�

�

�

�
T

�

�

�

�
F

�

�

�

�
R

�

�

�

�
max

�

�

�

�
T

�

�

�

�
F

�

�

�

�
min

�

�

�

�
+

�

�

�

�
R

�

�

�

�
F

�

�

�

�
0.19

�

�

�

�
−

�

�

�

�
+

�

�

�

�
cos

�

�

�

�
F

�

�

�

�
−

�

�

�

�
F

�

�

�

�
min

�

�

�

�
exp

�

�

�

�
×

�

�

�

�
max

�

�

�

�
T

�

�

�

�
B

�

�

�

�
−

�

�

�

�
ln

�

�

�

�
÷

�

�

�

�
F

�

�

�

�
F

�

�

�

�
sin

�

�

�

�
cos

�

�

�

�
+

�

�

�

�
min

�

�

�

�
exp

�

�

�

�
×

�

�

�

�
−

�

�

�

�
×

Figure 7.8: The optimal policy with respect to the casualty toll of blue agents given the constraint that the mean of
mission completion time has to be within 70 time steps.

170

7.5 Evidence for the thesis and future work

Unlike experiments in previous chapters, we demonstrate how simulation can

be used to obtain the fitnesses of the policy candidates (feedback on how well

they perform), which are then used in turn to steer the search direction. Each

policy candidate is plugged into a set of simulated missions. The missions are

executed and the outcomes of these missions are measured and used as the fitness

of the policy.

The work is a significant deviation from the practice of fitting a policy a priori

without the details of the specific mission being taken into account. The concept

of “mission-specific policy” seems novel. Of course, our approach assumes that

some element of feedback/fitness can be determined via modelling or simulation.

This limits the applicability of the technique. However, simulation is used for a

great many things in military contexts, e.g., war-gaming. If simulation is good

enough for war-gaming strategies, why not for security policies?

By using MOGP (and MOEAs in general), our approach is very flexible,

allowing tradeoffs between a variety of criteria to be explored. The criteria chosen

are exemplary only; one could imagine tradeoffs being explored between a list

of relevant measurements of interest. The Pareto front discovered can reveal

useful information about the relationship among different objectives, which may

be difficult to obtain otherwise. Such information provides useful insight for

policy makers to select and apply the optimal policy that fits the needs of current

operational environment on a case-by-case basis. Additionally, it has the merit

of deferring the weight assignment that defines the relative importance of each

objective after the set of Pareto optimal solutions are discovered. This often

makes the weight assignment task easier as the set of Pareto optimal solutions can

unfold the relationship between the objectives. One possible avenue of research

is to investigate the possibility to extend the heuristic search concept to other

parameters used in the simulation. This includes the movement strategy, number

of agents, risk budget allocation, etc.

Having said that, the use of Pareto dominance relationship in the fitness

evaluation essentially places a practical constraint on the number of objectives

that they can cope with. Imagine that there are ten objectives required for

optimisation. It is likely that many individuals in the evolving population are non-

dominant to one another. The search therefore becomes more or less a random

171

7.6 Conclusions

search. This is currently an active research topic in the evolutionary computation

community. Indeed, solving an optimisation problem with a large number of

objectives is an acknowledged problem generally.

7.6 Conclusions

This chapter first argues that traditional ways of developing security policies are

difficult and often inadequate in creating a policy that is optimal in terms of some

given objectives. It then attempts to shift the emphasis away from specifying and

refining a policy towards searching for a policy that has beneficial and acceptable

outcomes from a family of policies. This idea is entirely novel.

We have used a risk-budget based policy family as an example here; it is a

means to an end and stands as a proxy for any policy family from which we

seek an instance that is best suited to the need of a specific mission. We have

demonstrated how GP/MOGP and DOO can be used to search for the Pareto

optimal policies. The results show the approaches are very promising.

172

Chapter 8

Evaluation and conclusions

The work reported in previous chapters provides evidence to support the thesis

hypothesis stated in Section 1.3, namely:

Evolutionary algorithms (EAs) have the potential to be an effective

means of determining the security policies that suit dynamic challeng-

ing environments.

This chapter reviews the work that has been done, evaluates the extent to which

they justify the thesis hypothesis and concludes the thesis by addressing the

directions for future work.

8.1 Evaluation

In the previous three chapters, we have detailed several experimentations that

serve to support the thesis hypothesis from three different strands of research.

We explored the potential of EAs in inferring optimal security policies, dynam-

ically updating security policies with new decision examples and searching for

policies with optimal tradeoffs between objectives using simulation runs. This

section summarises the work completed in each strand of research and outlines

the contributions and novelty of the work presented in this thesis.

173

8.1 Evaluation

8.1.1 Static policy inference

Current security policy is often developed in a top-down approach. High-level

security goals are first determined, after which they undergo a series of refinement

processes to obtain the low-level executable rules. Although some work has been

done in applying machine learning techniques to aid the policy refinement process,

there is no previous work to my knowledge in the application of EAs or machine

learning techniques in inferring security policies.

Chapter 5 details the experiments in using EAs to infer security policies from

decision examples. Here EAs are used as a tool to generalise from a set of low-

level examples to a set of high-level rules. Various simple security policies have

been attempted and inferred successfully. These include the traditional MLS Bell-

LaPadula policy model, the budgetised MLS policy model and the Fuzzy MLS

policy model. Two different EAs, namely GP and GE are used. In all cases, the

results show that a minimal amount of design effort and domain knowledge are

required to infer the reference policy or a close approximation of it. The only

requirements are to have a good fitness function and training examples that form

a good representation of the target policy.

The last part of the chapter presents how other machine techniques can be

incorporated into the policy inference framework created. The fuzzy set concept

is used as an example here. Multiple policies are learnt independently. Each

focusses on inferring a fuzzy rule for a particular class of decisions (fuzzification).

The ultimate output policy, which is an ensemble of all these policies, is formed

using a weighted voting mechanism (defuzzification). Various experiments have

been carried out to examine different fuzzification and defuzzification techniques.

The results show that these approaches can consistently infer policies that closely

match with the original reference models used.

An important feature of the approaches investigated is that they can readily

handle “noise”, i.e., they can easily accommodate seemingly inconsistent decision

making in the training examples. This property would be essential if the technique

is to be applied in “dynamic challenging environments” referred to in the thesis

hypothesis.

174

8.1 Evaluation

8.1.2 Dynamic policy inference

There will inevitably be times when unseen circumstances demand a decision

during operation. In some cases the default automated response may be imper-

ative; in other cases this may be ill-advised. Manual decisions made to override

the default one essentially define a new policy. Furthermore, even if the optimal

security policy can be developed or inferred automatically, it would eventually

become suboptimal due to the changes in either the operational environment or

security requirements, or both. Therefore, a security policy has to be able to

continually change and be updated to suit the operational needs to maintain its

optimality.

Chapter 6 details the experiments on dynamic security policy inference. As

there is no dynamic security policy model available and therefore no decision

example is available for us to work with, we designed a dynamic security policy

model. This model is used to generate time varying decision examples for training

and evaluation purposes.

To infer this dynamic security policy model, two novel dynamic learning

frameworks based upon MOEAs are designed: one based on Fan’s intuition [130]

and DOO. In DOO, an n-objective optimisation problem is treated as a 2n-

objective optimisation problem by adding an opposing objective for each of the

original objectives. With such a setting, DOO is able to maintain the diversity

among the individuals in the population whilst optimising the intended objectives.

This diversity can aid in preventing the population from premature convergence

and allows the concept drift in the policy to be continually relearnt. The results

show that these frameworks are very promising. Reasonably good approximators

to the model can be inferred from the examples using these frameworks.

Addressing the need for run-time adaptivity is, we believe, entirely novel.

Some degree of adaptability will likely be essential for the dynamic challenging

environment referred to in the thesis hypothesis. Our experiments are simple and

serve as proof of concept. We are aware that adaptive policies (and automated

adaptation in particular) will likely prove to be a controversial area in years to

come.

175

8.1 Evaluation

8.1.3 Mission-specific policy discovery

Chapter 7 introduces the notion of mission-specific policy discovery. EAs are used

to search for the security policies that can provide the optimal, or at least excel-

lent, tradeoffs among security objectives for a specific mission. Here, EAs serve

as an optimisation tool to synthesise the optimal policies, in terms of achieving

the mission as well as security objectives without violating the constraints given.

We demonstrate here how simulation can be used to obtain the fitnesses of

the policy candidates that are used to guide the policy search. To evaluate the

fitness of an individual (policy) for a mission, the policy is first plugged into a

simulated mission, then the simulated mission is executed and the outcome of it

is measured. This is very different from the practice of fitting a policy a priori

without the details of the specific mission being taken into account. This concept

of “mission-specific policy” is entirely novel.

Various EA based techniques are used here to discover the optimal policies.

These include GP/MOGP and DOO. In all cases, the results show that these

techniques are able to discover the set of policies that are optimal for the mission

of concern. By using MOGP (and MOEAs in general), tradeoffs between a variety

of criteria can be explored. Such information can be valuable to policy makers to

select and apply the optimal policy that best fits the current operation. We are

unaware of any other work of this nature.

8.1.4 Thesis contributions

In summary, we demonstrate how:

• EAs can be used to infer static security policies from a set of decision

examples. Three different ways of representing security policies and two

different EAs are investigated. The results show that this idea is feasible.

• the fuzzy set concept can be integrated into the policy inference framework

to improve the policy inference performance. The idea is sufficiently generic

to be applied to other classification problems, provided that there is a partial

ordering among the classes.

176

8.2 Envisaged future work

• multi-objective evolutionary algorithms (MOEAs) can be used to infer dy-

namic security policies from a set of decision examples. Two novel dynamic

learning frameworks based upon MOEAs are developed: one that is based

on Fan’s intuition and DOO. Both of them can be used as general dynamic

classification algorithms.

• an ensemble policy model can be constructed from multiple models in a

single EA run to achieve better performance. The improvement is especially

significant in the DOO setting.

• MOEAs can be used to infer a set of Pareto optimal policies that fit a

specific mission (or at least a specific family of missions).

• simulation runs can be used in place of a set of decision examples to provide

feedback in evaluating the fitness of a policy with respect to the specified

high-level objectives.

• MOEAs can be used as a decision making tool where tradeoffs between

objectives exist. The Pareto front of the security policies discovered us-

ing MOEAs can reveal useful information about the relationship among

different objectives, which may be difficult to obtain otherwise. Such in-

formation provides useful insight for policy makers to select and apply the

optimal policy that fits the needs of current operational environment on a

case-by-case basis.

8.2 Envisaged future work

Having discussed the contributions of the thesis, we now outline numerous possi-

ble directions for future work that have been identified during the course of this

research.

8.2.1 Policy fusion

In dynamic coalitions, parties with different policies can come together to collab-

orate. Prior to the formation of dynamic coalitions, each party may have its own

177

8.2 Envisaged future work

security policy. An interesting step forward would be to investigate how well EAs

could be used to combine these security policies together. One possible way is to

generate decision examples from both existing policies and use these examples as

the training input for the policy inference framework. MOEAs can also be used

to discover the Pareto optimal set of policy candidates, which are then chosen de-

pending on the security requirements. However there are still issues that require

further investigation. These include:

• Understanding how to deal with policies that consist of different sets of

decision-making factors, which may be measured using different scales.

• Understanding what the implicit priorities that EAs have assigned to the

conflicting rules are, what the factors that influence the priorities are and

how to control these priorities, etc.

8.2.2 The robustness of a security policy

The framework proposed in this thesis has been shown to be effective in dynam-

ically inferring the optimal policy. However, the optimality of a policy is not

always the only factor of concern; the robustness in performance of a security

policy in different environments may be equally important. This is especially so

in a pervasive operating environment where the deployment of a new policy can

be a difficult or expensive process. To incorporate this factor into the proposed

framework, a way to quantify the robustness in performance of a security policy

is required.

This measure also provides a way to determine the invariant part of the opti-

mal policies for different operational environments of concern. The determination

of this invariant part is doubly useful: firstly, it can serve as a template or testing

target in the policy development process; secondly, it can help to protect the

security policy inference framework from a poisoning attack, which attempts to

mislead the inference process in the favour of the attacker by the injection of spe-

cially crafted decision examples. (In general, we have assumed that the decision

examples used in training have authenticity and the provision of these examples

can be accomplished and is outside the scope of this thesis.)

178

8.2 Envisaged future work

8.2.3 Scalability with the training set size

Scalability is a subtle issue. We have addressed some aspects of this issue. For

example, we have shown the method scales well with the size of the training set. In

the experiments presented in Chapter 5, we have increased the size of the training

set from 100 examples to 1000 examples and the results still remain consistent.

Obviously, the fitness evaluation time would increase; 1000 examples take ten

times longer than 100 examples to evaluate. This is unlikely to be an issue in

practice as the fitness evaluation of each individual can be executed in parallel if

necessary. In Chapter 6, we have shown that DOO is able to evolve and update

policies with decision examples in an incremental manner. However, there are still

some issues remaining with these frameworks that need to be investigated. This

includes searching for appropriate techniques to sample old decision examples

and examining the generality of the DOO framework.

8.2.4 More complex security policies

The security policies used in this thesis are rather simple. However, note that

these policies are either real-world policies or proposals from major research in-

stitutes for real world use. They are simple, but by no means “toy” policies.

Ultimately, we should strive for simple policies wherever is possible, but at the

same time, we should also need to acknowledge that MANET policies may need

legitimately to be much more complicated. To cope with complexity, instead of

attempting to extract and discover the policies as a whole, we could simply tar-

get the areas that need help. Humans produce security policies sequentially too,

i.e., they consider in turn authentication policy, file access control, audit policy,

etc. In practice, it is also often the case that there are some rules of thumb and

constraints that are dictated from on high. We do not need to extract these bits

of a policy. Yet, there is still much to answer here, for example:

• Can EAs be used to evolve more complex policies or policies of other types,

e.g., obligation policies? If not, how can we divide the security policies into

smaller addressable components in a systematic manner?

179

8.3 Closing remarks

• How to incorporate the constraints imposed from on high into the policy

inference framework to form a continuous learning loop in an efficient man-

ner? Should we take such constraints into consideration in the evolution

process? If so, how?

8.2.5 More complex scenarios

The scenario used in Chapter 7 is relatively simple. It has only one type of agent

in each team and one type of information. A real test of this approach would be

to embed it within a more realistic simulated scenario, with more sophisticated

information types, and realistic consequence models. Note that the simulated

scenario may be much more complex but we are really interested in some of the

measurable properties, which may only be few. For example, how many properties

would an operational commander be interested in trading off? The techniques

proposed here should be able to scale well with it.

8.2.6 Other deployment domains

Our focus has been on the development of policies for challenging dynamic envi-

ronments such as military MANETs. However, it may well be that other domains

prove also to be suitable deployment domains. For examples, can social network

policies be amenable to the techniques described in this thesis?

8.3 Closing remarks

The work reported in this thesis demonstrates a considerable degree of originality

supported by extensive experimentation. The case studies are necessarily lim-

ited. (MANETs of the sorts we envisage do not really exist right now.) However,

the results (published at both optimisation and security venues) demonstrate that

inference based approaches using evolutionary algorithms have very considerable

promise. Everyone accepts that policy specification is currently difficult, and

things are set to worsen as systems are deployed in ever more complex environ-

ments with increasing sophistication and subtlety of decision-making process. We

recommend these approaches to the research community for further investigation.

180

References

[1] Common Criteria Project Sponsoring Organisations. Common Criteria for

Information Technology Security Evaluation - Part 1 Introduction and Gen-

eral Model, August 2005. Version 2.3, adopted by ISO/IEC as ISO/IEC

International Standard (IS) 15408 1-3. viii, 16, 19, 20

[2] Pau-Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger,

Grant M. Wagner, and Angela Schuett Reninger. Fuzzy Multi-Level Se-

curity: An Experiment on Quantified Risk-Adaptive Access Control. Tech-

nical report, IBM Research Report RC24190, 2007. viii, 3, 17, 34, 35, 36,

38, 40, 54, 94, 96

[3] Kirk Schloegel, Tom Markham, Walt Heimerdinger, Alberto Schaeffer-

Filho, Morris Sloman, Emil Lupu Seraphin B. Calo, and Jorge Lobo. Secu-

rity Policy Automation — from Specification to Device Configuration. In

Proceedings of the of 26th Army Science Conference (ASC), 2008. viii, 50,

51

[4] The MathWorks, Inc., Natick, MA. Fuzzy Logic Toolbox User’s Guide 2,

version 2.2.9 (release 2009a) edition, March 2009. viii, 79, 81

[5] David E. Bell and Leonard J. LaPadula. Secure Computer Systems: Mathe-

matical Foundations. Technical Report ESD-TR-73-278, The MITRE Cor-

poration, Bedford, MA., November 1973. 1, 13, 27

[6] Jonathan D. Moffett and Morris Sloman. The representation of policies as

system objects. In COOCS, pages 171–184. ACM, 1991. 2, 49, 50

181

REFERENCES

[7] J D Moffett and M S Sloman. User and mechanism views of distributed sys-

tems management. Distributed Systems Engineering, 1(1):37–47, September

1993. 2, 49, 50

[8] Horizontal Integration: Broader Access Models for Realizing Information

Dominance. Technical Report JSR-04-132, The MITRE Corporation JA-

SON Program Office, McLean, Virginia, Dec 2004. 3, 4, 34, 40, 41, 42, 47,

48, 54, 82, 94, 116, 150

[9] Joseph Bonneau, Jonathan Anderson, and Luke Church. Privacy Suites:

Shared Privacy for Social Networks. In SOUPS ’09: Proceedings of the

5th Symposium on Usable Privacy and Security, pages 1–1, New York, NY,

USA, 2009. ACM. 5

[10] Annual humie Awards for Human-competitive Results produced by Genetic

and Evolutionary Computation. Websites, December 2010. 6, 7

[11] A. Secker, A Freitas, and J. Timmis. AISEC: An artificial immune system

for E-mail classification. In R. Sarker, R. Reynolds, H. Abbass, T. Kay-

Chen, R. McKay, D Essam, and T. Gedeon, editors, Proceedings of the

Congress on Evolutionary Computation, pages 131–139, Canberra. Aus-

tralia, December 2003. IEEE. 6

[12] Charles P. Pfleeger and Shari Lawrence Pfleeger. Security in Computing.

Prentice Hall Professional Technical Reference, 2002. 11

[13] Rick Lehtinen, Deborah Russell, and G. T. Gangemi. Computer Security

Basics. O’Reilly Media, Inc., 2006. 11, 12, 16

[14] Donn B. Parker. Fighting Computer Crime: A New Framework for Pro-

tecting Information. John Wiley & Sons, Inc., New York, NY, USA, 1998.

12

[15] D. Gollmann. Computer Security. John Wiley & Sons Ltd, 2005. 12, 13,

15, 16, 17, 18

[16] Ross J. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. John Wiley & Sons, Inc., New York, NY, USA, 2001.

182

REFERENCES

[17] M. Bishop. Computer Security: Art and Science. Addison Wesley, New

York, 2002. 12, 14

[18] Andreas Pfitzmann and Marit Köhntopp. Anonymity, Unobservability, and

Pseudonymity — A Proposal for Terminology. In International Workshop

on Designing Privacy Enhancing Technologies, pages 1–9, New York, NY,

USA, 2001. Springer-Verlag New York, Inc. 12

[19] Catherine Soanes and Angus Stevenson, editors. The Oxford Dictionary of

English. Oxford University Press, second edition, 2005. 13, 20

[20] K. J. Biba. Integrity Considerations for Secure Computer Systems. Techni-

cal Report TR-3153, The MITRE Corporation, Bedford, MA., April 1977.

13, 29

[21] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military

Computer Security Policies. In Proceedings of the 1987 IEEE Symposium

on Security and Privacy (SSP ’87), pages 184–195, Los Angeles, Ca., USA,

April 1990. IEEE Computer Society Press. 13, 26, 31

[22] U.S. Department of Defense. Trusted Computer Systems Evaluation Cri-

teria. (Orange Book) 5200.28-STD, National Computer Security Center,

Fort Meade, MD, December 1985. 13, 27, 120

[23] Richard E. Barlow and Frank Proschan. Statistical Theory of Reliabil-

ity and Life Testing (Probability Models). International Series in Decision

Processes, and Series in Quantitative Methods for Decision Making. Holt,

Rinehart and Winston, Inc., 1975. 13

[24] Alan Burns and Andrew J. Wellings. Real-Time Systems and Programming

Languages: ADA 95, Real-Time Java, and Real-Time POSIX. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001. 13

[25] Aleksandar Kuzmanovic and Edward W. Knightly. Low-rate TCP-targeted

Denial of Service Attacks: The Shrew vs. The Mice and Elephants. In Pro-

ceedings of the 2003 Conference on Applications, tTchnologies, Architec-

183

REFERENCES

tures, and Protocols for Computer Communications, SIGCOMM ’03, pages

75–86, New York, NY, USA, 2003. ACM. 14

[26] Howard Roberts Chivers. Security Design Analysis. PhD thesis, University

of York, January 2006. 16, 18

[27] Richard Bejtlich. TaoSecurity — Security is Not Refrigeration. Blog, Oc-

tober 2006. 17

[28] Campbell R. Harvey. Campbell R. Harvey’s Hypertextual Finance Glossary.

Website, November 2006. 17

[29] Pau Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger, Grant M.

Wagner, and Angela Schuett Reninger. Fuzzy Multi-Level Security: An Ex-

periment on Quantified Risk-Adaptive Access Control. In Proceedings of the

IEEE Symposium on Security and Privacy, pages 222–230, Los Alamitos,

CA, USA, 2007. IEEE Computer Society. 17, 34, 38, 54

[30] C & A Security Risk Analysis Group. Introduction to Security Risk Anal-

ysis. Website, 2005. 17, 18

[31] Red Hat Linux 9: Red Hat Linux Security Guide, 2002. 18

[32] Bruce Schneier. Secrets & Lies — Digital Security in a Networked World.

John Wiley and Sons, 2000. 19

[33] H. Khurana, V. Gligor, and J. Linn. Reasoning About Joint Administration

of Access Policies for Coalition Resources, 2002. 20

[34] Jr. Charles E. Phillips, T.C. Ting, and Steven A. Demurjian. Information

Sharing and Security in Dynamic Coalitions. In SACMAT ’02: Proceedings

of the seventh ACM Symposium on Access Control Models and Technolo-

gies, pages 87–96, New York, NY, USA, 2002. ACM Press. 20

[35] S.C. Spring, Dennis M. Gormley, K. Scott McMahon, Kenneth Smith, and

Daniel Hobbes. Information Sharing for Dynamic Coalitions. Technical

Report 2836, Virginia Pacific-Sierra Research, December 2000. 21

184

REFERENCES

[36] E. Royer and C. Toh. A Review of Current Routing Protocols for Ad-Hoc

Mobile Wireless Networks, 1999. 22

[37] Imrich Chlamtac, Marco Conti, and Jennifer J.-N. Liu. Mobile Ad Hoc

Networking: Imperatives and Challenges. Ad Hoc Networks, 1(1):13–64,

2003. 22, 23

[38] John Jubin and Janet D. Tornow. The DARPA Packet Radio Network

Protocol. 75(1):21–32, January 1987. 22

[39] D.A. Beyer. Accomplishments of the DARPA SURAN Program. In Mil-

itary Communications Conference (MILCOM), volume 2, pages 855–862,

Monterey, CA, USA, September 1990. IEEE. 22

[40] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless

sensor networks: a survey. Computer Networks, 38(4):393–422, 2002. 23

[41] S. Corson and J. Macker. Mobile Ad Hoc Networking (MANET): Routing

Protocol Performance Issues and Evaluation Considerations. Internet Re-

quest for Comment RFC 2501, Internet Engineering Task Force, January

1999. 23

[42] R. Ramanathan and J Redi. A Brief Overview of Ad Hoc Networks: Chal-

lenges and Directions. Communications Magazine, IEEE, 40:20–22, May

2002. 23

[43] R. Shirey. Internet Security Glossary, Version 2. Technical Report 2828,

Internet Engineering Task Force, August 2007. 26

[44] Pierangela Samarati and Sabrina De Capitani di Vimercati. Access Control:

Policies, Models, and Mechanisms. In Riccardo Focardi and Roberto Gor-

rieri, editors, Foundations of Security Analysis and Design, volume 2171 of

Lecture Notes in Computer Science, pages 137–196. Springer, 2001. 26

[45] John McLean. A comment on the ”basic security theorem” of Bell and

LaPadula. Information Processing Letters, 20(2):67–70, February 1985. 28

185

REFERENCES

[46] John McLean. The Specification and Modeling of Computer Security. Com-

puter, 23(1):9–16, January 1990. 28

[47] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In

Proceedings of the 1989 IEEE Computer Society Symposium on Security

and Privacy (SSP ’89), pages 206–214, Washington - Brussels - Tokyo,

May 1989. IEEE. 29

[48] Butler W. Lampson. Protection. In Proceedings of the 5th Annual Princeton

Conference on Information Sciences and Systems, pages 437–443, Princeton

University, 1971. 31

[49] David F. Ferraiolo and D. Richard Kuhn. Role-based access control. In In

15th NIST-NCSC National Computer Security Conference, pages 554–563,

1992. 32, 34

[50] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for

role-based access control: Towards a unified standard. In Proceedings of

the 5th ACM Workshop on Role-Based Access Control (RBAC-00), pages

47–64, N.Y., July 26–27 2000. ACM Press. 33, 34

[51] American National Standards Institute, Inc., 25 West 43rd Street, New

York, NY 10036, USA. American National Standard for Information Tech-

nology - Role Based Access Control, February 2004. ANSI/INCITS 359-

2004. 33

[52] Jonathan D. Moffett. Control principles and role hierarchies. In RBAC ’98:

Proceedings of the third ACM workshop on Role-based access control, pages

63–69, New York, NY, USA, 1998. ACM. 33

[53] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.

Youman. Role-based access control models. Computer, 29(2):38–47, 1996.

33

[54] D. Jonscher and K. R. Dittrich. Argos - a configurable access control system

for interoperable environments. In Proceedings of the ninth annual IFIP

186

REFERENCES

TC11 WG11.3 working conference on Database security IX : status and

prospects, pages 43–60, London, UK, UK, 1996. Chapman & Hall, Ltd. 33

[55] M. Nyanchama and S. Osborn. Role-based security: Pros, cons & some

research directions. ACM SIGSAC Review, 2(2):11–17, June 1993. 34

[56] Roshan Thomas. Team-based access control (TMAC). In Proceedings of

the 2nd ACM Workshop on Role-Based Access Control (RBAC-97), pages

13–22, New York, November 6–7 1997. ACM Press. 34

[57] Eve Cohen, Roshan Thomas, William Winsborough, and Deborah Shands.

Models for coalition-based access control (CBAC). In Proceedings of

the Seventh ACM Symposium on Access Control Models and Technologies

(SACMAT-02), pages 97–106, New York, June 3–4 2002. ACM Press. 34

[58] Elisa Bertino, Piero A. Bonatti, and Eiena Ferrari. TRBAC: A temporal

role-based access control model. In Proceedings of the 5th ACM Workshop

on Role-Based Access Control (RBAC-00), pages 21–30, N.Y., July 26–27

2000. ACM Press. 34

[59] A. Tversky and D. Kahneman. Judgment under uncertainty: Heuristics

and biases. Science, 185:1124–1131, 1974. 47

[60] A. Tversky and D. Kahneman. The framing of decisions and the psychology

of choice. Science, 211(4481):453–458, 1981. 47

[61] Daniel Kahneman, Paul Slovic, and Amos Tversky, editors. Judgment un-

der Uncertainty: Heuristics and Biases. Cambridge University Press, Cam-

bridge, 1982. 47

[62] T. Y. C. Woo and S. S. Lam. Authorization in distributed systems: A formal

approach. In Proceedings of the 1992 IEEE Computer Society Symposium

on Security and Privacy (SSP ’92), pages 33–51, Washington - Brussels -

Tokyo, May 1992. IEEE. 48

[63] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Sub-

rahmanian. Flexible support for multiple access control policies. ACM

Transactions on Database Systems, 26(2):214–260, June 2001. 49

187

REFERENCES

[64] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for ex-

pressing authorizations. In Proceedings of the 1997 IEEE Computer Society

Symposium on Security and Privacy (SSP ’97), pages 31–43, Los Alamitos,

May 4–7 1997. IEEE Press. 49, 53

[65] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Eliza

Bertino. A unified framework for enforcing multiple access control poli-

cies. SIGMOD Record (ACM Special Interest Group on Management of

Data), 26(2):474–485, June 1997. 49

[66] Carlos N. Ribeiro, André Zúquete, Paulo Ferreira, and Paulo Guedes. SPL:

An access control language for security policies and complex constraints. In

Proceedings of the Symposium on Network and Distributed Systems Secu-

rity (NDSS 2001), pages 89–107, San Diego, CA, February 2001. Internet

Society. 49

[67] Simon Godik and Tim Moses, editors. eXtensible Access Control Markup

Language (XACML) Version 1.0. February 2003. 49

[68] Morris Sloman and Emil Lupu. Security and management policy specifica-

tion. IEEE Network, 16(2):10–19, March 2002. 49

[69] Morris Sloman. Policy Driven Management For Distributed Systems. Jour-

nal of Network and Systems Management, 2(4):333–360, December 1994.

49, 52

[70] Jonathan D. Moffett and Morris S. Sloman. Policy hierarchies for dis-

tributed systems management. IEEE Journal on Selected Areas in Com-

munications, 11:1404–1414, 1993. 49, 52

[71] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde.

GRAIL/KAOS: An environment for goal-driven requirements engineering.

In Proceedings of the 1997 International Conference on Software Engineer-

ing, pages 612–613. ACM Press, 1997. 50

188

REFERENCES

[72] Emil Lupu and Morris Sloman. Conflicts in policy-based distributed sys-

tems management. IEEE Trans. Software Eng, 25(6):852–869, 1999. 52,

53

[73] Allan Heydon, Mark W. Maimone, J. D. Tygar, Jeannette M. Wing, and

Amy Moormann Zaremski. Miró: Visual specification of security. IEEE

Transactions on Software Engineering, 16(10):1185–1197, October 1990.

53

[74] John R. Koza. Hierarchical Genetic Algorithms Operating on Populations

of Computer Programs. In International Joint Conferences on Artificial

Intelligence (IJCAI), pages 768–774, 1989. 56

[75] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical Evolution:

Evolving Programs for an Arbitrary Language. In Wolfgang Banzhaf, Ric-

cardo Poli, Marc Schoenauer, and Terence C. Fogarty, editors, Proceedings

of the First European Workshop on Genetic Programming, volume 1391 of

LNCS, pages 83–95, Paris, April 1998. Springer-Verlag. 56, 63

[76] Charles Darwin. On the Origin of the Species by Means of Natural Selection.

Murray, London, UK, 1859. 56

[77] Herbert Spencer. Principles of Biology, volume 1. Willian and Norgate,

London and Edinburgh, 1864. 57

[78] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Pro-

gramming — An Introduction: On the Automatic Evolution of Computer

Programs and its Applications. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1998. 57, 63

[79] John H. Holland. Adpatation in Natural and Artificial Systems. University

of Michigan Press, Ann Arbor, MI, 1975. 58

[80] James E. Baker. Adaptive Selection Methods for Genetic Algorithms. In

John J. Grefenstette, editor, Proceedings of the 1st International Conference

on Genetic Algorithms and their Applications, pages 101–111, Pittsburgh,

PA, July 1985. Lawrence Erlbaum Associates. 58

189

REFERENCES

[81] A. Brindle. Genetic Algorithms for Function Optimization. PhD thesis,

University of Alberta, Edmonton, Alberta, Canada, January 1981. Com-

puter Science Department, Technical Report TR81-2. 58, 124

[82] Dirk Thierens and David E. Goldberg. Elitist Recombination: An Inte-

grated Selection Recombination GA. In International Conference on Evo-

lutionary Computation, pages 508–512, 1994. 58

[83] Dirk Thierens. Selection Schemes, Elitist Recombination, and Selection

Intensity. In Thomas Bäck, editor, Proceedings of the Seventh International

Conference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997.

Morgan Kaufmann. 58

[84] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

Springer, 2003. 59

[85] Wolfgang Banzhaf. Genotype-Phenotype-Mapping and Neutral Variation

— A Case Study in Genetic Programming. In Yuval Davidor, Hans-Paul

Schwefel, and Reinhard Männer, editors, Parallel Problem Solving from

Nature — PPSN III, pages 322–332, Berlin, 1994. Springer. Lecture Notes

in Computer Science 866. 59

[86] Julian F. Miller and Peter Thomson. Cartesian Genetic Programming. In

Proceedings of the European Conference on Genetic Programming, pages

121–132, London, UK, 2000. Springer-Verlag. 60, 61

[87] David J. Montana. Strongly Typed Genetic Programming. Evolutionary

Computation, 3(2):199–230, 1995. 61

[88] John R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

61, 66, 86

[89] Markus Brameier and Wolfgang Banzhaf. A Comparison of Linear Ge-

netic Programming and Neural Networks in Medical Data Mining. IEEE

Transactions on Evolutionary Computation, 5(1):17–26, February 2001. 63

190

REFERENCES

[90] Lee Spector and Alan Robinson. Genetic Programming and Autoconstruc-

tive Evolution with the Push Programming Language. Genetic Program-

ming and Evolvable Machines, 3(1):7–40, March 2002. 63

[91] Michael O’Neill and Anthony Brabazon. Grammatical Swarm. In Kalyan-

moy Deb, Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Edmund

Burke, Paul Darwen, Dipankar Dasgupta, Dario Floreano, James Foster,

Mark Harman, Owen Holland, Pier Luca Lanzi, Lee Spector, Andrea Tet-

tamanzi, Dirk Thierens, and Andy Tyrrell, editors, Genetic and Evolution-

ary Computation — GECCO-2004, Part I, volume 3102 of Lecture Notes

in Computer Science, pages 163–174, Seattle, WA, USA, June 26–30 2004.

Springer-Verlag. 66

[92] Conor Ryan and R. Muhammad Atif Azad. Sensible Initialisation in Cho-

rus. In Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang,

Riccardo Poli, and Ernesto Costa, editors, Proceedings of the Sixth Eu-

ropean Conference on Genetic Programming (EuroGP-2003), volume 2610

of LNCS, pages 394–403, Essex, UK, 2003. Springer Verlag. 66, 102

[93] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving

the Strength Pareto Evolutionary Algorithm. Technical Report 103, Com-

puter Engineering and Networks Laboratory (TIK), Swiss Federal Institute

of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzer-

land, May 2001. 71, 123

[94] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A

Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective

Optimization: NSGA-II. In Marc Schoenauer, Kalyanmoy Deb, Günter

Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo, and Hans-Paul

Schwefel, editors, Parallel Problem Solving from Nature — PPSN VI, pages

849–858, Berlin, 2000. Springer. 71

[95] Eckart Zitzler and Lothar Thiele. An Evolutionary Algorithm for Multiob-

jective Optimization: The Strength Pareto Approach. Technical Report 43,

Computer Engineering and Communication Networks Lab (TIK), Swiss

Federal Institute of Technology (ETH), Zurich, Switzerland, May 1998. 71

191

REFERENCES

[96] N. Srinivas and Kalyanmoy Deb. Multiobjective Optimization Using Non-

dominated Sorting in Genetic Algorithms. Evolutionary Computation,

2(3):221–248, Fall 1994. 72

[97] Man Leung Wong and Kwong Sak Leung. Data Mining Using Grammar

Based Genetic Programming and Applications, volume 3 of Genetic Pro-

gramming. Kluwer Academic Publishers, January 2000. 74

[98] Roberto R. F. Mendes, Fabricio de B. Voznika, Julio C. Nievola, and Alex A.

Freitas. Discovering fuzzy classification rules with Genetic Programming

and Co-Evolution. In Lee Spector, Erik D. Goodman, Annie Wu, W. B.

Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo,

Shahram Pezeshk, Max H. Garzon, and Edmund Burke, editors, Proceed-

ings of the Genetic and Evolutionary Computation Conference (GECCO-

2001), page 183, San Francisco, California, USA, 7-11 July 2001. Morgan

Kaufmann. 74

[99] Gisele L. Pappa and Alex A. Freitas. Towards a Genetic Programming Algo-

rithm for Automatically Evolving Rule Induction Algorithms. In Johannes

Furnkranz, editor, ECML/PKDD 2004 Proceedings of the Workshop W8

on Advances in Inductive Learning, pages 93–108, Pisa, Italy, September

20–24 2004. 74

[100] Tony Brabazon, M. O’Neill, C. Ryan, and J. J. Collins. Uncovering technical

trading rules using evolutionary automatic programming. In Proceedings of

2001 AAANZ Conference (Accounting Association of Australia and NZ),

Auckland, New Zealand, 1-3 July 2001. 74

[101] Michael O’Neill, Anthony Brabazon, Conor Ryan, and J. J. Collins. Evolv-

ing market index trading rules using grammatical evolution. In Egbert

J. W. Boers, Stefano Cagnoni, Jens Gottlieb, Emma Hart, Pier Luca

Lanzi, Günther Raidl, Robert E. Smith, and Harald Tijink, editors,

Applications of Evolutionary Computing. EvoWorkshops2001: EvoCOP,

EvoFlight, EvoIASP, EvoLearn, and EvoSTIM. Proceedings, volume 2037

of LNCS, pages 343–352, Como, Italy, April 18–19 2001. Springer-Verlag.

192

REFERENCES

[102] I. Dempsey, M. O’Neill, and A. Brabazon. Adaptive trading with gram-

matical evolution. In Gary G. Yen, Simon M. Lucas, Gary Fogel, Graham

Kendall, Ralf Salomon, Byoung-Tak Zhang, Carlos A. Coello Coello, and

Thomas Philip Runarsson, editors, Proceedings of the 2006 IEEE Congress

on Evolutionary Computation, pages 2587–2592, Vancouver, BC, Canada,

16-21 July 2006. IEEE Press. 74

[103] Tony Brabazon and Michael O’Neill. Trading foreign exchange markets

using evolutionary automatic programming. In Alwyn M. Barry, editor,

GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic

and Evolutionary Computation Conference, pages 133–136, New York, 8

July 2002. AAAI. 74

[104] Anthony Brabazon and Michael O’Neill. Evolving technical trading rules

for spot foreign-exchange markets using grammatical evolution. 2004. 74

[105] Ajith Abraham and Crina Grosan. Evolving Intrusion Detection Systems.

In Nadia Nedjah, Ajith Abraham, and Luiza de Macedo Mourelle, edi-

tors, Genetic Systems Programming: Theory and Experiences, volume 13

of Studies in Computational Intelligence, pages 57–80. Springer, Germany,

2006. Forthcoming. 75

[106] Mark Crosbie and Eugene H. Spafford. Applying Genetic Programming

to Intrusion Detection. In E. V. Siegel and J. R. Koza, editors, Working

Notes for the AAAI Symposium on Genetic Programming, pages 1–8, MIT,

Cambridge, MA, USA, 10–12 November 1995. AAAI. 75

[107] Dominic Wilson and Devindar Kaur. Using Grammatical Evolution for

Evolving Intrusion Detection Rules. In ISP’06: Proceedings of the 5th

WSEAS International Conference on Information Security and Privacy,

pages 183–188, Stevens Point, Wisconsin, USA, 2006. World Scientific and

Engineering Academy and Society (WSEAS). 75

[108] Thomas Weise and Kurt Geihs. DGPF — An Adaptable Framework for

Distributed Multi-Objective Search Algorithms applied to the Genetic Pro-

gramming of Sensor Networks. In Bogdan Filipič and Jurij Šilc, editors, Pro-

193

REFERENCES

ceedings of the Second International Conference on Bioinspired Optimiza-

tion Methods and their Application, BIOMA 2006, pages 157–166, Jožef

Stefan International Postgraduate School, Ljubljana, Slovenia, 9-10 Octo-

ber 2006. Jožef Stefan Institute. 75

[109] Sevil Şen and John A. Clark. Evolving Intrusion Detection Rules on Mobile

Ad Hoc Networks. In Tu Bao Ho and Zhi-Hua Zhou, editors, PRICAI 2008:

Trends in Artificial Intelligence, 10th Pacific Rim International Conference

on Artificial Intelligence, volume 5351 of Lecture Notes in Computer Sci-

ence, pages 1053–1058. Springer, 2008. 75

[110] John A. Clark and Jeremy L. Jacob. Searching for a Solution: Engineer-

ing Tradeoffs and the Evolution of Provably Secure Protocols. In SP ’00:

Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages

82–95, Washington, DC, USA, 2000. IEEE Computer Society. 75

[111] Hao Chen, John Clark, and Jeremy Jacob. Automated Design of Security

Protocols. In Proceedings of the 2003 Congress on Evolutionary Computa-

tion, pages 2181–2188. IEEE Press, 2003. 75

[112] Hao Chen, John Clark, and Jeremy Jacob. Synthesising Efficient and Effec-

tive Security Protocols. In ARSPA ’04: Proceedings of the 1st Automated

Reasoning for Security Protocol Analysis Workshop, pages 25–40, 2004. 75

[113] Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, Arturo Ribagorda-

Garnacho, and Benjamin Ramos-Alvarez. Wheedham: An Automatically

Designed Block Cipher by means of Genetic Programming. In Gary G. Yen,

Lipo Wang, Piero Bonissone, and Simon M. Lucas, editors, Proceedings

of the 2006 IEEE Congress on Evolutionary Computation, pages 499–506,

Vancouver, 6-21 July 2006. IEEE Press. 76

[114] Javier Polimón, Julio C. Hernández-Castro, Juan M. Estévez-Tapiador, and

Arturo Ribagorda. Automated Design of a Lightweight Block Cipher with

Genetic Programming. Int. J. Know.-Based Intell. Eng. Syst., 12(1):3–14,

2008. 76

194

REFERENCES

[115] David J. Wheeler and Roger M. Needham. TEA, a Tiny Encryption Algo-

rithm. In Bart Preneel, editor, Fast Software Encryption: Second Interna-

tional Workshop, volume 1008 of Lecture Notes in Computer Science, pages

363–366, Leuven, Belgium, 14–16 December 1994. Springer-Verlag. 76

[116] Mark Read. Explicable Boolean Functions. Meng final year project, De-

partment of Computer Science, The University of York, UK, May 2007.

76

[117] Paul Massey, John A. Clark, and Susan Stepney. Human-Competitive Evo-

lution of Quantum Computing Artefacts by Genetic Programming. Evo-

lutionary Computation, 14(1):21–40, Spring 2006. Best of GECCO 2004

special issue. 76

[118] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms

and Factoring. In Shafi Goldwasser, editor, Proceedings of the 35th An-

nual Symposium on Foundations of Computer Science, pages 124–134, Los

Alamitos, CA, USA, November 1994. IEEE Computer Society Press. 76

[119] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. SIAM Journal on Comput-

ing, 26(5):1484–1509, October 1997. 76

[120] Lotfi A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338–353, June

1965. 76, 77

[121] Mark Kantrowitz, Erik Horstkotte, and Cliff Joslyn. Answers to Frequently

Asked Questions about Fuzzy Logic and Fuzzy Expert Systems, April 1993.

77, 79

[122] David I. Brubaker. Fuzzy Operators. EDN, November 1995. 77, 78

[123] R. R. Yager. On the General Class of Fuzzy Connectives. Fuzzy Sets and

Systems, 4(3):235–242, 1980. 78

[124] D. Dubois and H. Prade. A Review of Fuzzy Set Aggregation Connectives.

Information Sciences, 36:85–121, 1985. 78

195

REFERENCES

[125] Hans-Jürgen Zimmermann. Fuzzy Set Theory and its Applications.

Springer, 4th edition, October 2001. 78

[126] Sean Luke. ECJ A Java-based Evolutionary Computation Research System,

1997. 86, 123, 126, 159

[127] Miguel Nicolau. libge’s homepage, 2006. 87

[128] Matthew Wall. GAlib: A C++ library of genetic algorithm components.

Mechanical Engineering Department, Massachusetts Institute of Technol-

ogy, 1996. 87

[129] Myles Hollander and Douglas A. Wolfe. Nonparametric statistical inference.

John Wiley & Sons, New York, 1973. 98

[130] Wei Fan. Systematic data selection to mine concept-drifting data streams.

In KDD ’04: Proceedings of the tenth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 128–137, New York,

NY, USA, 2004. ACM. 116, 118, 148, 175

[131] Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy.

Mining data streams: a review. SIGMOD Rec., 34(2):18–26, 2005. 117

[132] Charu C. Aggarwal. Data Streams: Models and Algorithms (Advances in

Database Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA,

2006. 117

[133] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In

KDD ’00: Proceedings of the sixth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 71–80, New York, NY,

USA, 2000. ACM. 117

[134] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Multiob-

jective Genetic Programming: Reducing Bloat using SPEA2. In Proceedings

of the 2001 Congress on Evolutionary Computation CEC2001, pages 536–

543, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul,

Korea, May 27–30 2001. IEEE Press. 125

196

REFERENCES

[135] Jurgen Branke. Evolutionary Optimization in Dynamic Environments.

Kluwer Academic Publishers, Norwell, MA, USA, 2001. 136

[136] Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross vali-

dation, and active learning. In Advances in Neural Information Processing

Systems, pages 231–238. MIT Press, 1995. 143

197

	1 Introduction
	1.1 Motivation
	1.1.1 Many risk factors to be considered
	1.1.2 Operational needs change
	1.1.3 Deriving effective security policies is hard
	1.1.4 One size (policy) does not fit all

	1.2 Technical approach
	1.3 Thesis hypothesis
	1.4 Thesis organisation

	2 Computer Security
	2.1 Computer security objectives
	2.1.1 Confidentiality
	2.1.2 Integrity
	2.1.3 Availability
	2.1.4 Authenticity
	2.1.5 Accountability and non-repudiation
	2.1.6 Summary

	2.2 Security risk analysis
	2.2.1 Assets, vulnerabilities and threats identification
	2.2.2 Risk assessment
	2.2.3 Selection of controls
	2.2.4 Re-evaluation
	2.2.5 Summary

	2.3 Dynamic coalitions and MANETs
	2.3.1 MANETs
	2.3.2 Security challenges of MANETs

	2.4 Conclusions

	3 Security Policy Models
	3.1 Mandatory access control policy models
	3.1.1 Bell-LaPadula model
	3.1.2 Biba model
	3.1.3 Chinese wall model
	3.1.4 Clark-Wilson model

	3.2 Discretionary access control policy models
	3.3 Role based access control policy models
	3.4 Flexible access control policy models
	3.4.1 Fuzzy MLS model
	3.4.2 Economics based models
	3.4.3 Top-down hierarchical models

	3.5 Summary
	3.6 Conclusions

	4 Learning Techniques
	4.1 Evolutionary algorithms (EAs)
	4.1.1 Evaluation
	4.1.2 Selection
	4.1.3 Reproduction
	4.1.4 Implementations of EAs

	4.2 Genetic Programming (GP)
	4.2.1 Extensions on GP

	4.3 Grammatical Evolution (GE)
	4.3.1 Genotype-phenotype mapping
	4.3.2 Extensions on GE

	4.4 Multi-objective evolutionary algorithms (MOEAs)
	4.4.1 Weighted sum of fitness functions
	4.4.2 Pareto front based approaches
	4.4.3 Advantages of Pareto front based approaches
	4.4.4 Implementations of Pareto front based approaches

	4.5 Relevant applications of GP and GE
	4.5.1 Rule inference system
	4.5.2 Intrusion and anomaly detection systems
	4.5.3 Security protocols
	4.5.4 Cryptography

	4.6 Fuzzy expert systems
	4.6.1 Fuzzy set theory
	4.6.2 Inference process

	4.7 Conclusions

	5 Static Policy Inference
	5.1 Experimentation on binary decision policies
	5.1.1 Experiment 5.1: Partial MLS Bell-LaPadula policy
	5.1.2 Experiment 5.2: Full MLS Bell-LaPadula policy
	5.1.3 Experiment 5.3: Budgetised MLS policy

	5.2 Experimentation on multi-decision policies
	5.2.1 Experiment 5.4: Rule based approach
	5.2.2 Experiment 5.5: Regression based approach
	5.2.3 Experiment 5.6: Grammatical evolution
	5.2.4 Experiment 5.7: Fuzzy set ensemble
	5.2.5 Experimental results and evaluation

	5.3 Example Security Policies Inferred
	5.4 Evidence for the thesis and future work
	5.5 Conclusions

	6 Dynamic Policy Inference
	6.1 Data stream classification
	6.2 A dynamic security policy model
	6.3 Experimentation
	6.3.1 Static policy learning
	6.3.2 Dynamic policy learning

	6.4 Evidence for the thesis and future work
	6.5 Conclusions

	7 Mission-specific Policy Discovery
	7.1 Scenario: travelling across a battlefield
	7.1.1 Movement strategy
	7.1.2 Risk-budget based security policy

	7.2 Experimentation
	7.2.1 Experiment 7.1: Minimising casualty toll
	7.2.2 Experiment 7.2: Minimising casualty toll
	7.2.3 Experiment 7.3: Minimising casualty toll with DOO
	7.2.4 Experiment 7.4: Multi-objective optimisation

	7.3 Experimental results and evaluation
	7.4 Example security policies inferred
	7.5 Evidence for the thesis and future work
	7.6 Conclusions

	8 Evaluation and conclusions
	8.1 Evaluation
	8.1.1 Static policy inference
	8.1.2 Dynamic policy inference
	8.1.3 Mission-specific policy discovery
	8.1.4 Thesis contributions

	8.2 Envisaged future work
	8.2.1 Policy fusion
	8.2.2 The robustness of a security policy
	8.2.3 Scalability with the training set size
	8.2.4 More complex security policies
	8.2.5 More complex scenarios
	8.2.6 Other deployment domains

	8.3 Closing remarks

	References

