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Abstract 

This work studies growth of two major kinds of semi-polar GaN including (11-22) and 

(20-21) GaN on novel designed silicon (Si) substrates and growth of GaN nanowires (NWs) on 

planar Si substrates both by means of metal organic chemical vapour deposition (MOCVD).  

In principle, semi-polar GaN cannot be achieved by MOCVD growth on any planar Si 

substrates. In order to obtain semi-polar GaN on Si, patterned Si substrates are required. Two 

different kinds of simple but cost-effective patterning approaches have been developed to 

fabricate (113) Si substrates with either inverted-pyramid or stripe patterns, where a 

combination of a standard photolithography technique, dry etching and anisotropic wet etching 

has been employed. As a result of these cost-effective approaches, patterned Si substrates with 

both good uniformity and high reproducibility have been achieved. 

By the growth on the (113) Si substrates with inverted-pyramid patterns, semi-polar (11-22) 

GaN with high quality has been achieved. Taking the major advantages of such a specially 

designed patterning, both melt-back etching and surface cracks, which are the two major issues 

for the growth of GaN-on-silicon, have been successfully eliminated. The (11-22) orientated 

GaN has been confirmed and characterised by detailed X-ray diffraction (XRD) measurements, 

and detailed microstructural investigation has been performed by transmission electron 

microscopy (TEM) measurements. The TEM measurements show a significant reduction in 

crystal defects like dislocations and basal plane stacking fault (BSFs). As a result, good optical 

properties have been obtained for the (11-22) GaN, confirmed by photoluminescence (PL) 

measurements.  

Stripe-patterned Si substrates have been fabricated in order to allow to achieve semi-polar 

(20-21) GaN films through the growth on either both sidewalls or single sidewalls of the Si 

stripes. In the case of the growth on the single sidewall of the Si stripes, a single crystal (20-21) 

GaN has been obtained. In the case of the growth on both sidewalls of the Si stripes, the growth 

of (20-21) GaN coalescences and then leads to a surface with an ‘M’ shape. The melt-back 

etching has been resolved by introducing a number of extra gaps to truncate the Si stripe 

patterns, allowing the NH3 as a precursor for group V to cover all the exposed silicon surface so 
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that melt-back etching can be effectively suppressed. The ‘M’ shaped GaN self-forms a good 

cavity which could be further used for the growth of a laser structure, one of the greatest 

challenges for the fabrication of semi-polar III-nitride based laser diodes as a result of extreme 

difficulties in cleaving semi-polar GaN. The microstructural investigation and optical 

properties of the (20-21) GaN have been carried out by detailed XRD, TEM and PL 

measurements. Finally, growth of InGaN multiple quantum well (MQWs) structures has been 

attempted on the (20-21) semi-polar GaN in order to validate the excellent crystal quality of the 

(20-21) semi-polar GaN. Temperature-dependent and excitation-power dependent PL 

measurements on the InGaN MQWs have been performed, demonstrating high internal 

quantum efficiency and effectively suppressed quantum confine stark effect, compared to their 

c-plane counterparts. 

 It is well-known that the MOCVD growth of GaN NWs on planar Si substrates without 

any patterning feature or without any pre-deposited metal catalyst is a great challenge, which is 

completely different from MBE growth, where Ga metal instead of Ga precursor (metal 

organic source) is used and the growth is performed under high vacuum. In order to address this 

challenge, a new approach for the growth of GaN NWs on planar (111) Si substrates has been 

developed, where the key point is to employ Trimethylaluminum (TMA) pre-flowing. It has 

been found that the formation of Al-Si alloyed nanodots by the TMA pre-flowing is critical to 

the initialisation of GaN NW growth. The influence of the growth conditions used on the NW 

morphology has been systematically investigated. By optimizing the growth conditions, 

straight and cylindrical GaN NWs have been obtained. Based on XRD and TEM measurements, 

the NWs demonstrate high crystal quality with a low density of defects, leading to superior 

optical properties confirmed by PL measurements. 
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Chapter 1 
Introduction 

III-nitride semiconductors (AlN, GaN, InN and their alloys) all exhibit direct band 

structures and their bandgaps across their entire alloy composition cover a wide spectral range 

from deep ultraviolet to infrared. III-nitrides also have excellent chemical stability. As a result, 

III-nitride semiconductors nowadays have drawn extensive research interests and have become 

the favourite semiconductors for the optoelectronics industry, especially for the fabrication of 

visible and short wavelength emitters. III-nitride based light-emitting diodes (LEDs) and laser 

diodes (LDs) have been successfully fabricated for display backlighting, traffic lights, 

projectors, general illumination and etc. Compared with incandescent and fluorescent bulbs, 

the III-nitride based solid state slighting exhibits higher efficiency, longer life-time, smaller 

size, improved physical robustness and faster switching. The last two decades have seen 

impressive advancements in optoelectronic devices, leading to the award of the Noble Prize in 

Physics in 2014. However, there are still a number of obstacles to further improve the 

performance of III-nitride based optoelectronics, such as efficiency droop, green and yellow 

gap, crystal quality and high cost due to expensive techniques required.  

1.1 History of III-nitrides Research 

Since the first report of high-brightness blue LED based on III-nitrides demonstrated in 

1993 [1], there have been significant progress on developing III-nitride based LEDs and LDs 

in the visible spectral region, although there still exists a long-term outstanding issue in 

developing longer wavelength such as green and yellow emitters. Today, III-nitride based 

blue LEDs, the key component for the fabrication of solid state lighting sources, have been 

commercialised. They have been generally used in residential and decorative lighting, 

backlighting, etc. However, there still exist a number of challenges, such as low efficiency in 

the green/yellow spectral region which is the so-called ‘green/yellow gap’, efficiency droop, 

high cost compared with incandescent lamps, etc. Therefore, it is necessary to further devote 

major effort to developing new growth approaches in order to address these challenges. 
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The research on III-nitride semiconductors started in 1932 when GaN was first synthesized 

by means of reacting gallium metal with ammonia (NH3) at 900 ~ 1000 °C [2]. By this method, 

only needle shape GaN with a few micrometers thickness was obtained. In 1969 a hydride 

vapour phase epitaxy (HVPE) technology was utilised for the deposition of GaN on sapphire 

substrates [3], where ammonia was used as a precursor for group V and GaCl was used to 

supply a gallium source by flowing HCl over hot liquid gallium metal. Two years later, metal 

organic chemical vapour deposition (MOCVD) was employed for GaN and AlN growth [4]. 

Trimethylgallium (TMG) and trimethylaluminium (TMA) are used as the precursors for group 

III in order to supply gallium and aluminium sources, respectively. Although single crystalline 

and transparent GaN has been achieved on sapphire, both the crystal quality and surface 

morphology were rather poor due to the lack of either native substrates or technology 

breakthroughs for large lattice-mismatched growth. Consequently, the research on GaN did not 

draw much attention at that time.  

Isamu Akasaki, Hiroshi Amano et al. performed a large amount of pioneering work in the 

early 1980’s, and invented a so-called two step growth approach in 1986 [5], one of the most 

important growth breakthroughs in the field of GaN. As a result, optically flat GaN with 

significantly improved crystal quality has been achieved by MOCVD growth, namely, a thin 

low temperature (LT) AlN buffer layer is initially deposited on sapphire before any high 

temperature GaN growth. Later on in 1991, Shuji Nakamuar further employed a thin LT GaN 

buffer instead of the AlN buffer [6], achieving GaN with equally good crystal quality. The great 

invention based on the thin LT GaN or AlN buffer has become a standard method for the 

growth of GaN on sapphire, which has been widely employed by industry. 

Another major obstacle to achieve GaN-based optoelectronic devices was p-type GaN. 

Magnesium (Mg) was used as the p-type dopant [7]. However, any as-grown Mg-doped GaN 

exhibits either highly resistive or n-typed. Until in 1989, the first p-type GaN was realised by 

treating as-grown Mg-doped GaN under a low energy electron beam irradiation [8]. In 1992 

Shuji Nakamura invented another simple method to realize p-type GaN by thermally annealing 

Mg-doped GaN under nitrogen ambient [9]. The mechanisms for the p-type activation process 

is to break the Mg-H complex formed during the MOCVD growth of Mg-doped GaN under H2 

or NH3 ambient and then free holes can be obtained [10, 11]. 
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Based on these achievements, the first high brightness blue InGaN double heterostructure 

(DH) LED was demonstrated in 1993 [1, 12]. In 1995, the first white LED by integrating 

InGaN blue LED with yellow phosphor was reported [13].  

1.2 Current Challenges 

The last two decades have seen tremendous progress in developing III-nitride 

semiconductors and devices, leading to the award of the Noble Prize in Physics in 2014. 

However, it is worth highlighting that the major achievements are still limited to blue emitters, 

in particular blue LEDs on c-plane sapphire grown along the polar direction. There still exist a 

number of challenges in both science and technologies, in particular fabricating longer 

wavelength (green and yellow) emitters.  

Quantum Confined Stark Effect 

For the fabrication of visible or near UV emitters, InGaN/GaN based MQW structures are 

used as an active region, where the MQWs are under biaxial strain as a result of the lattice 

mismatch between InGaN as a quantum well and GaN as a barrier. As a consequence, strong 

piezoelectric polarization induced electrical fields are generated along the c-direction (i.e., the 

growth direction) [14, 15]. Simultaneously, spontaneous polarisation induced electrical fields 

will be also produced along the c-direction [15, 16]. As a result of the built-in electrical fields, 

the wave functions of electrons and holes are spatially separated by the electric fields as shown 

in Figure 1.1, leading to a reduction in the overlap of electron and hole wave-functions and thus 

lowering quantum efficiency. It will also generate a red shift in emission wavelength [17]. This 

phenomenon is so-called quantum confined stark effect (QCSE). 

 

Figure 1.1: Band structure of QW (a) without and (b) with built-in electric fields. 
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Efficiency Droop 

Generally speaking, the internal quantum efficiency (IQE) of III-nitride based LEDs have 

a peak value at low current densities (< 10 A/cm2), namely, the IQE initially increases with 

increasing injection current density to a peak value, and then decreases gradually with further 

increasing injection current density. This phenomenon is called ‘efficiency droop’. This issue 

has commonly been observed in III-nitride based LEDs with a wide spectral region from UV to 

visible as shown in Figure 1.2, indicating that it become more severe with increasing 

wavelength. So far, the fundamental mechanisms for efficiency droop remain under debate. A 

number of models have been proposed, such as electron leakage [19], density-activated defect 

recombination [20], and Auger recombination [21]. The electron leakage means that injected 

electrons overflow across InGaN/GaN MQWs as an active region to p-type GaN without 

producing any radiative recombination. By increasing current injection density, more energetic 

electrons leak from the MQWs, leading to a reduced optical efficiency. The density-activated 

defect recombination is due to the delocalisation of carriers. At low injection current densities, 

the carrier density is low, and thus electrons and holes are confined in a local in-plane potential 

minimum due to the fluctuation of indium composition. The localised carriers are supposed to 

be kept from dislocations as non-recombination centres, leading to high radiative efficiency. 

However, with increasing injection current density, the local in-plane potential minima are 

gradually filled and the carriers start to escape to defect areas which serve as non-radiative 

recombination centres causing non-radiative recombination and thus reduced efficiency. The 

Auger recombination is a kind of non-radiative recombination process, where the energy 

released by an electron-hole recombination is absorbed by another electron in the conduction 

band, rather than emitting a photon. The second electron is excited to a higher energy level, 

then drops back to the conduction band and loses the absorbed energy as thermal energy. As a 

result, Auger recombination consumes the electron-hole pairs without generating any photons 

and thus reduces the efficiency of LEDs.  
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Figure 1.2: Quantum efficiency of UV/blue/green LEDs as a function of injection current [18]. 

 

Green and Yellow Gap 

GaN and its ternary alloys AlGaN/InGaN exhibit direct band structures with wide 

bandgaps, covering a wide spectra region from UV to infrared. As mentioned above, great 

success has been achieved on developing InGaN/GaN based blue LEDs. However, the optical 

efficiency of InGaN/GaN LEDs decreases significantly with increasing emission wavelength, 

while the optical efficiency from other III-V semiconductors such as AlInGaP decreases with 

reducing emission wavelength, as illustrated in Figure 1.3, demonstrating the lowest quantum 

efficiency in the green and yellow spectral region. This has been referred to as the 

‘green/yellow gap’. For III-nitride semiconductors, in order to achieve longer emission 

wavelength (> 500 nm), high In content is required. But high In content can only be achieved at 

the expense of employing low growth temperatures which generally cause a reduction in 

crystal quality. Moreover, high In content generates enhanced strain in InGaN/GaN MQWs, 

leading to even stronger QCSE. As a result, the quantum efficiency of InGaN/GaN based LEDs 

is quite low when the emission wavelength is longer than the blue spectral region. 
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Figure 1.3: External quantum efficiency of LEDs as a function of the emission wavelength in 

recent years [22]. 

 

Epitaxial Substrate 

The growth of bulk GaN crystal from a solution is unrealistic due to its thermodynamic 

instability and low N solubility in liquid Ga [23]. Therefore, chemical reaction deposition 

methods (MOVPE and HVPE) are utilised for GaN growth on foreign substrates. Generally, 

silicon carbide (SiC), sapphire and silicon (Si) are used as substrates for GaN epitaxial growth. 

Compared with sapphire and Si, the lattice mismatch between SiC and GaN is the smallest 

(3.5%) and SiC further exhibits the highest thermal conductively (4.9 W/cmK) [24]. However, 

the high price of SiC substrate makes it less competitive for mass production. Sapphire 

substrates are much cheaper than SiC, and larger size sapphire (>2 inch) is available, making 

sapphire very popular for GaN growth. But the large lattice mismatch (16%) and the very low 

thermal conductivity (0.41 W/cmK) also make a great challenge for GaN growth on sapphire 

[24]. For Si as a substrate, although it has the largest lattice mismatch (17%) and the largest 

thermal expansion coefficient mismatch (115%) [24], due to a low cost and a large substrate 

size available, it has received increasing attention very recently, in particular for growth of 

III-nitride based electronics devices. Due to the extremely mature Si technology, the 
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unification of III-nitrides with Si would be an ideal solution for the integration of 

semiconductor-based electronics and photonics.  

On the other hand, although bulk GaN crystal growth from solution is impossible, 

free-standing GaN substrate is still available. Typically, a very thick GaN layer of more than 

300-µm is first grown on a foreign substrate, typically on sapphire by HVPE, and is 

subsequently removed by a so-called laser-off technique. Therefore, current free-standing GaN 

substrates are very expensive. It is worth highlighting that non-polar or semi-polar free 

standing GaN substrates are even more expensive than their c-plane (i.e., polar GaN) 

counterpart. It is well-known that the crystal quality of either semi-polar GaN or non-polar 

GaN directly grown on sapphire by any current growth techniques is far lower compared with 

their c-plane counterpart. Consequently, free-standing semi-polar GaN or non-polar GaN 

substrates are achieved currently only by growth of a very thick c-plane GaN layer with a 

thickness of around one centimetre and then cleaving along semi-polar/non-polar orientations. 

Therefore, the typical size of either semi-polar or non-polar free-standing GaN substrates is 

limited to 1×1 cm2, and their prices are extremely expensive. These make semi-polar or 

non-polar free-standing GaN substrates less attractive for commercial mass production. Figure 

1.4 shows photos of a typical c-plane GaN wafer with a diameter of 2 inch grown on sapphire 

and a typical free-standing non-polar GaN substrate with a size of 1×1 cm2. Please note that the 

free-standing non-polar GaN substrate is not transparent, thus implying a high density of point 

defects which generate deep levels within the bandgap of GaN.    

 

Figure 1.4: Photos of 2-inch non-polar GaN on sapphire substrate and 1x1 cm2 free-standing 

non-polar GaN. 
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1.3 Motivation and Aim 

Due to a number of great issues discussed in section 1.2, the optical performance of 

III-nitride based optoelectronics, in particular longer wavelength emitters, still remains 

challenging. 

The maturity of Si technology allows us to have more choices to further develop III-nitride 

optoelectronics with better performance, in particular, Si substrates provide a great potential 

for the integration of semiconductor-based electronics and photonics [25, 26].  

On the other hand, in order to improve optoelectronic performance, the QCSE and 

efficiency droop has to be suppressed. One of the most promising ways, which can address the 

great challenges, is to grow InGaN-based emitters along a non/semi-polar orientation, where 

the QCSE can be eliminated or significantly reduced, and as a result the optical efficiency can 

be improved [27, 28]. Comparing with any non-polar GaN or c-plane GaN, semi-polar GaN 

with specific orientations (i.e., semi-polar GaN with a large inclination angle with respect to 

the c-plane) demonstrates a number of other advantages, such as greatly enhanced In 

incorporation in InGaN growth or high indium content InGaN with enhanced indium 

homogeneity, which is good for LDs [29-31].  

Another way is to grow GaN nanowire (NW) structures, where InGaN MQWs can be 

grown on the sidewall of NWs in order to form a core-shell structure, or can be grown on the 

top of NWs to form a disk-in-wire structure. For the former, as the sidewall of GaN NW is 

either non-polar or semipolar orientated, the QCSE is absent or significantly reduced [32]. For 

the latter, the strain in MQW can be fully or partially relaxed, leading to a significant reduction 

in QCSE [33, 34]. Moreover, a very high crystal quality of bottom-up grown GaN NWs can be 

achieved by an elastic strain relaxation [35]. However, both semi-polar GaN and GaN NWs 

grown on Si substrates are currently far from satisfactory. There are still many problems such 

as: crystal quality, surface morphology, uniformity, etc (shown in Chapter 2.3.3). Therefore, 

the aim of the research in this thesis is to grow semi-polar GaN and GaN NWs on Si substrates 

with good crystal quality and uniformity.  
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1.4 Thesis Organization 

The thesis consists of 8 chapters: 

Chapter 1 gives a brief introduction and a history of III-nitride semiconductor 

development. The current challenges of III-nitrides and motivation of this project are also 

discussed. 

Chapter 2 presents a general background of semiconductors, in particular III-nitride 

semiconductors. The epitaxial growth of GaN on Si substrates is introduced in detail. 

Chapter 3 introduces all equipment used in this study. Firstly, the growth mechanism and 

the main configuration of a MOCVD is introduced. Then a number of characterization 

techniques are described, including Nomarski optical microscope, scanning electron 

microscopy (SEM), transmission electron microscope (TEM), high resolution X-ray 

diffraction (XRD) and photoluminescence (PL) systems.  

Chapter 4 studies two kinds of Si substrate patterning techniques developed, which will be 

used for the growth of semi-polar GaN. The technique details including Si substrate orientation 

selection, photolithography, dry etching and wet etching are presented.  

Chapter 5 studies the semi-polar (11-22) GaN growth on the patterned Si substrates 

obtained in Chapter 4. The mechanism of a defect reduction is investigated by TEM.  

Chapter 6 investigates the semi-polar (20-21) GaN growth on the patterned Si substrates 

obtained in Chapter 4. Two kinds of GaN growth processes have been developed. InGaN 

MQW structures have been grown on the top of the semi-polar (20-21) GaN in order to validate 

the high quality of the achieved (20-21) semi-polar GaN. 

Chapter 7 studies the self-induced growth of GaN NWs on (111) Si substrates. The 

structure and optical characterization of GaN NWs are discussed.  

Chapter 8 provides a summary and outlook. 
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Chapter 2 
Background 

2.1 Semiconductors 

2.1.1 Introduction 

In an isolated atom, electrons occupy a set of discrete energy levels. When atoms form 

solid, these discrete electron energy levels overlap and spread out to form bands. Basically, a 

single crystal consists of a valence band and a conduction band. The valence band is the highest 

electron occupied energy band at absolute zero temperature, while the conduction band is the 

lowest unoccupied energy band [1]. Between them forms a forbidden gap which is the 

so-called ‘bandgap’. The bandgap is defined as an energy split between the maximal potential 

in a valence band and the minimal potential in a conduction band. 

For insulators, the band gap is so large that the thermal energy at room temperature or an 

external electrical field cannot energize and excite electrons from a valence band to a 

conduction band. Thus electrons are tightly bound in the state of a valence band and cannot 

freely move, leading to a negligible electrical conductivity. For conductors, the valence band 

and conduction band overlap, leading a fraction of electrons to freely move. Therefore, 

conductors have a high electrical conductivity. Semiconductors are defined as that their 

electrical conductivity is between conductors and insulators. In other words, the band gap of a 

semiconductor is between insulators and conductors. Consequently, at room temperature, a 

number of electrons can be thermally excited from its valence band to its conduction band, 

leaving the same number of empty states behind in the valence band, which are called holes. 

The holes generated behave like free positive charged carriers. The number of free electrons 

and holes thermally generated depends on the bandgap of the semiconductor, namely, the 

smaller the bandgap, the higher the number. As a result, the free electrons and holes form 

electrical conductivity which is higher than insulators but lower than conductors. Of course, 

doping which will be discussed later can also effectively tune the number of free electrons and 
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holes, thus significantly changing the electrical conductivity of a semiconductor.  

2.1.2 Direct and Indirect Band Gaps 

A semiconductor can be classified as either a direct or an indirect band gap semiconductors 

in terms of its band diagram [1]. As shown in Figure 2.1, for a semiconductor with a direct band 

structure, the conduction band minimum and the valence band maximum have the same 

momentum. In contrast, for an indirect band gap semiconductor, the conduction band minimum 

has a different momentum from the valence band maximum. For a direct band gap 

semiconductor, the electrons in the conduction band as a result of optical or electrical pumping 

return to the valence band and then recombine with the holes, releasing photons. This 

recombination process does not involve any third party, and thus the recombination lifetime is 

generally fast. However, for an indirect band gap semiconductor, the recombination of the 

electron-hole pairs generated due to optical or electrical pumping needs an extra momentum in 

order to conserve momentum, leading to a long recombination lifetime and thus a low optical 

efficiency. Therefore, direct band gap semiconductors are commonly utilised for the 

fabrication of emitters such as LEDs and LDs. 

 

Figure 2.1: Band structures of direct and indirect band gap semiconductors [2]. 

2.1.3 Doping 

In an intrinsic semiconductor, the number of thermally excited free electrons and holes is 

13 

 



limited and the electrical conductivity is thus low, of course depending on its band gap. By 

deliberately introducing a small amount of impurities during semiconductor growth, the 

electric conductivity can be increased remarkably. This kind of semiconductor is referred to a 

doped semiconductor. Two types of dopant elements are used in order to form either n-type or 

p-type semiconductors. A n-type semiconductor is formed by doping foreign atoms that replace 

one of the elements forming the semiconductor, generating additional valence electrons which 

are weakly bound and thus can be thermally excited to the conduction band at room 

temperature. Therefore, an n-type semiconductor is rich with free electrons at room 

temperature. On the other hand, the p-type semiconductor is dominated by free holes. For 

III-nitrides, Si and Mg are the typical dopants for the formation of n-type and p-type III-nitrides, 

respectively.  

2.1.4 Crystal Defects  

III-nitride semiconductors have a periodic crystal structure and the positions of atoms are 

determined by their unit cell lattice parameters. However, when GaN is grown on 

lattice-mismatched substrates such as sapphire and Si, crystal defects are generated, defined as 

the imperfection of a crystalline solid with irregular atomic arrangement in three main 

categories, zero-dimensional defects (point defects), one-dimensional defects (dislocations) 

and two-dimensional defects (stacking faults). 

A point defect happens where an atom is missing or resides on a non-lattice site, or a 

foreign atom substitutes a bulk atom. Depending on whether it is due to an impurity, the point 

defect can be classified as either an intrinsic or an extrinsic point defect, as shown in Figure 2.2. 

A vacancy is an empty lattice site where an atom is missing. A self-interstitial atom is a bulk 

atom crowded into the void of a lattice site. A substitutional foreign atom is an impurity atom 

substituting the bulk atom. Finally, the interstitial foreign atom has the same situation as a 

self-interstitial atom. 
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Figure 2.2: Schematic illustration of four types of point defects [3]. 

A dislocation is a line defect, where a line of atoms is misaligned. Basically, there are two 

main types of dislocations: edge and screw dislocations. However, many dislocations have 

mixed characters of the two types, named as a mixed dislocation. As shown in Figures 2.3 (a) 

and (c), without any crystal defects, rectangles can be drawn along a crystal lattice, which are 

highlighted in green colour. When an edge dislocation is introduced (Figure 2.3(b)), which is 

caused by an extra plane of atoms inserted into the crystal lattice, the rectangular unit cell is 

deformed. This additional vector (red colour) from the rectangular unit cell is described by 

Burgers vector, which is parallel to the rectangle plane. The Burgers vector can be used to 

represent the magnitude and direction of a dislocation. On the other hand, a screw dislocation is 

caused by a slipping between two planes of atoms (Figure 2.3(d)), and the Burgers vector is 

perpendicular to the rectangle plane (highlighted in red colour).  

 
Figure 2.3: Schematic diagram of edge and screw dislocations [4]. 
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A stacking fault (SF) is formed as a result of a mistake of a planar stacking sequence. For 

c-plane GaN growth on sapphire, SFs are limited to be close to the interface between GaN and 

the sapphire substrate along the [0001] direction, which are also described as basal plane 

stacking faults (BSFs). For semi-polar and the non-polar GaN growth on sapphire, as the 

growth direction is not along the [0001] direction, BSFs can extend to a surface and thus 

degrade the optical property of optoelectronic devices. For either semi-polar or non-polar GaN 

grown on sapphire substrates, the density of BSFs is normally ~105cm-1 if there is not any extra 

growth technique used [5]. 

2.2 III-nitride semiconductors 

2.2.1 Material Properties  

Comparing with other III-V semiconductors, the major advantage of III-nitrides used for 

the fabrication of optoelectronics is due to their wide bandgaps in addition to their direct band 

structures. As shown in Figure 2.4, the bandgaps of III-nitrides can cover a wide range of 

spectrum from deep UV, through the whole visible, to infrared. Therefore, III-nitrides are very 

suitable for the fabrication of visible and short wavelength emitters, such as solid state lighting 

for general illumination and UV emitters.  

  
Figure 2.4: Band gap and emission wavelength of semiconductors against their lattice 

constant [6]. 
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The basic electrical and chemical properties of GaN are illustrated in Table 2.1. The 

electron mobility characterises how easily electrons move through a crystal lattice, when an 

electric field is applied. It is limited by electron scattering, which can be caused by impurities, 

crystal defects, phonons and etc. Since GaN epilayers grown by different growth techniques 

have different crystal qualities, the electron mobilities in different GaN epilayers are also 

different. The highest reported room temperature electron mobility of bulk GaN is 1245 

cm2V-1s-1[8], where a free-standing GaN is grown by HVPE. For GaN grown by MOCVD, the 

highest reported room temperature electron mobility is 1005 cm2V-1s-1 [9]. In comparison with 

other III-V semiconductors, GaN shows a larger band gap, a higher breakdown voltage and a 

higher thermal conductivity. Moreover, GaN has excellent thermal and chemical stabilities, in 

particular high inert properties in either an alkaline or an acidic solution. A KOH solution can 

only etch GaN through attacking crystal defects.  

Semiconductor Band gap 

[eV] 

Electron 

mobility 

[cm2/ (V. s)] 

Breakdown 

Field 

[KV/cm] 

Thermal 

conductivity 

[W/(cm∙°C)] 

Melting 

point 

[°C] 

GaN 3.39 1245 ≥5000 1.3 2500 

GaAs 1.42 8500 400 0.46 1238 

InP 1.34 4000 500 0.68 1062 

Table 2.1: Material properties of group III-V semiconductors at room temperature [7-8]. 

2.2.2 Crystal Structure  

III-nitride semiconductors have three different crystal structures, namely, wurtzite, 

zinblende [10] and rocksalt [11]. The wurtzite III-nitride semiconductors are 

thermodynamically stable, and are the most common crystal structure. As shown in Figure 2.5, 

in a wurtzite crystal structure, each nitrogen atom is connected to four group III atoms, forming 

a hexagonal close packed configuration. This hexagonal unit cell is characterized by an 

in-plane lattice parameter labelled as 𝑎𝑎 and an out-of-plane lattice parameter denoted as 𝑐𝑐. 

The lattice parameters of wurtzite GaN, AlN and InN are illustrated in Table 2.2. 
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Figure 2.5: Schematics of an III-nitride wurtzite crystal structure  

III-nitride semiconductors in-plane lattice 

parameter 𝑎𝑎 (Å) 

out-of-plane lattice 

parameter 𝑐𝑐 (Å) 

GaN 3.190 5.189 

AlN 3.110 4.980 

InN 3.540 5.706 

Table 2.2: The lattice parameters of wurtzite GaN, AlN and InN [12]. 

The crystal planes and directions of wurtzite III-nitride semiconductors can be described 

by Bravais miller indices. As shown in Figure 2.6, (a1, a2, a3, c) and [a1, a2, a3, c] are used to 

describe a crystal plane and a crystal direction, respectively. The first three digits are the 

reciprocals of fractional intercepts between the crystal plane and the three in-plane axes, while 

the last digit is the reciprocal of fractional intercept between the crystal plane and out-of-plane 

axis. Since 𝑎𝑎3 = −(𝑎𝑎1 + 𝑎𝑎2), miller indices can also be abbreviated to (a1, a2, c). 

As a wurtzite crystal structure is non-centrosymmetric, namely, lacks inversion symmetry, 

there exist two polar orientations defined as [0001] and [000-1] direction respectively. The 

[0001] direction is denoted as a Ga-face plane, where the surface is terminated with Ga atoms, 

whereas the [000-1] direction crystal plane is terminated with N atoms. Most of the c-plane 

GaN grown on sapphire substrates is Ga-terminated (i.e, Ga-face), since an N-face GaN 

epilayer usually has a rough surface with a large number of hexagonal hillocks. On the other 

hand, due to the lack of inversion symmetry of wurtzite crystal structure, III-nitride materials 

inherently exhibit spontaneous polarization. In addition, when InGaN/GaN MQWs are grown, 

piezoelectric polarization fields are also induced as a result of a biaxial strain, which is caused 

by the lattice mismatch between InGaN and GaN. As a result of the spontaneous and 
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piezoelectric polarizations, build-in electric fields are induced cross the MQW structure, which 

generate the QCSE. 

 

Figure 2.6: Bravais miller indices of wurtzite crystal structure. 

2.2.3 Non-polar and Semi-polar  

Recently, non-polar or semi-polar GaN has attracted much attention since they can 

eliminate or effectively reduce the QCSE, leading to an improved internal quantum efficiency 

(IQE) of InGaN MQWs. Some common growth planes of non-polar and semi-polar GaN are 

listed in Figure 2.7, and their corresponding crystal orientations are illustrated in Table 2.3 [13, 

14]. 

 

Figure 2.7: Some common growth planes of non-polar and semi-polar GaN. 
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GaN plane Inclined angle to c-plane (°) 

(0001) 0 

(10-10) 90 

(11-20) 90 

(20-21) 75.09 

(10-11) 61.96 

(11-22) 58.41 

Table 2.3: List of polar, non-polar, and selected semi-polar planes with inclined angles to the 

c-plane. 

The mechanism of the reduced QCSE as a result of the growth along non/semi-polar 

orientations is due to a reduction in the built-in electrical fields as a result of their inclined 

angle to the c-plane. For an InxGa1-xN layer grown on GaN, the polarization generated across 

an InGaN/GaN quantum well structure as a function of the inclined angle θ to the c-plane is 

presented in Figure 2.8, where the polarizations for an InxGa1-xN/GaN quantum well structure 

with four different In components (𝑥𝑥 = 0.05, 0.1, 0.15 𝑎𝑎𝑎𝑎𝑑𝑑 0.2) have been provided. 

 

Figure 2.8: Total polarization as a function of an inclined angle to the c-plane [13]. 

Comparing with non-polar orientations, semi-polar orientations show some other 

advantages. The semi-polar (10-11) and (11–22) orientations can significantly enhance In 

incorporation into GaN, which enables to achieve longer wavelength (green and yellow) 

emitters [15]. Our group has successfully demonstrated InGaN emitters on (11-22) overgrown 
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GaN on sapphire substrates by a micro-rod overgrowth method [16, 17]. The emission of the 

LEDs cover from the green to amber spectral region, with significantly reduced efficiency 

droop compared to commercial c-plane LEDs. Another popular semi-polar plane is (20-21), 

which has been reported to facilitate the growth of InGaN quantum well structures with an 

improved indium homogeneity. A green LD has been demonstrated on a (20-21) free-standing 

GaN substrate [18]. A reduced efficiency droop has been reported for InGaN based (20-21) 

semi-polar LEDs [19]. 

2.2.4 GaN Nanowires 

Apart from conventional planar GaN films, the growth of GaN NWs has also attracted 

extensive attention, as GaN NWs exhibit a great potential to fabricate novel optoelectronics 

which conventional planar III-nitride devices could not achieve. Firstly, GaN NWs with high 

crystal quality can be grown on lattice mismatched substrates as a result of elastic strain 

relaxation during growth [20]. After the growth of GaN NWs, InGaN MQWs can be grown on 

the sidewall of NWs to form a core-shell structure. As the GaN NWs are grown along the 

c-direction and the sidewalls of the NWs are non-polar orientation, QCSE can be eliminated 

[21]. In addition, the area of the MQWs as an active region is also increased due to the large 

surface to volume ratio. Alternatively, InGaN MQWs can be grown on the top of the GaN NWs, 

forming a disk-in-wire structure. The interface strain can be significantly relaxed laterally, 

effectively suppressing the QCSE [22, 23]. Furthermore, such a nanorod or nanowire structure 

can also be achieved by a post-growth top down fabrication technique. Our group has already 

demonstrated InGaN/GaN nanorod arrayed LEDs by a combination of self-organized nickel 

nano-masks and a subsequent dry etching process. The IQE has been significantly increased as 

a result of the strain relaxation [24-26]. 

2.3 Epitaxial Growth of GaN on Si 

2.3.1 Introduction 

The hexagonal six-fold surface symmetry of GaN does not match the four-fold surface 
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symmetry of (001) Si. Furthermore, the growth of GaN on (001) Si intrinsically forms two 

different in-plane orientations, leading to a rough surface morphology. Therefore, (001) silicon 

is not an ideal substrate for the growth of GaN. Fortunately, (111) Si has a three-fold surface 

symmetry which can match the hexagonal six-fold surface symmetry of GaN, leaving only one 

GaN in-plane orientation, as shown in Figure 2.9. Therefore, most of the GaN growth on Si 

uses (111) Si as substrates. The c-plane GaN grown on the (111) silicon substrate has an 

in-plane orientation of GaN [1-100] ‖ Si [-1-12] and GaN [11-20] ‖ Si [-110]. Under this 

stacking model, GaN sustains a tensile stress due to an approximately -17% lattice mismatch 

between GaN and Si, calculated by 

a𝐺𝐺𝐺𝐺𝐺𝐺−
√2𝑎𝑎𝑆𝑆𝑆𝑆
2

√2𝑎𝑎𝑆𝑆𝑆𝑆
2

= -17%   (2.1) 

Where 𝑎𝑎𝐺𝐺𝐺𝐺𝑁𝑁 = 3.190Å and 𝑎𝑎𝑆𝑆𝑆𝑆 = 5.431Å are the in-plane lattice constant of wurtzite GaN 

and cubic Si, respectively.  

 

Figure 2.9: (a) cubic crystal structure of Si [1]; (b) arrangement of the Si atoms on (111) Si 

plane; (c) wurtzite crystal structure of GaN and (d) arrangement of the gallium atoms on (0001) 

GaN plane. 
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2.3.2 Issues of GaN Growth on Si 

Melt-back Etching 

When GaN is directly grown on Si substrates by MOCVD at a normal growth temperature 

(>1000 °C), Ga reacts with Si, forming a eutectic alloy [27-29]. This reaction causes Si to 

out-diffuse from the substrate into GaN to deteriorate the GaN growth, roughening the surface 

as shown in Figure 2.10. This reaction is called ‘melt-back etching’. In order to avoid 

melt-back etching, an AlN buffer layer needs to be introduced to separate GaN from the Si 

substrate. However, if the AlN is not thick enough or there exist a number of small holes in the 

AlN buffer layer, the melt-back etching can start and finally creates a large number of pits on 

the surface [30]. Another way to avoid melt-back etching is to reduce growth temperature 

down to below 870 °C [31], but this is not good for GaN growth as the typical growth 

temperature is above 1000 °C. 

 

Figure 2.10: Cross sectional SEM images of melt-back etching between GaN and Si with (a) 

low and (b) high magnification [27]. 
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Thermal Expansion Coefficient Mismatch 

 
Figure 2.11: Optical microscopy image of 1.2 μm GaN grown on (111) Si with an AlN buffer. 

Si has a significantly smaller thermal expansion coefficient than GaN, leading to a very 

large thermal expansion coefficient mismatch (115%) between GaN and Si. This large thermal 

mismatch introduces a tensile stress during a cooling process after the GaN growth on silicon at 

a high temperature. The tensile stress is increased with increasing GaN layer thickness. 

Generally, when GaN is thicker than 1 μm, wafer bowing and then surface cracks easily happen 

due to the huge tensile strain, as shown in Figure 2.11. Both the wafer bowing and the surface 

cracks make it difficult to fabricate LEDs [32]. 

Lattice Mismatch 

As shown in equation (2.1), GaN grown on Si has a large lattice mismatch (-17%), which 

causes a high defect density, especially dislocations, in GaN films. The dislocations in 

InGaN/GaN MQW structures, acted as non-radiative recombination centres, reduce the IQE of 

the LEDs grown using such MQWs as an active region [33-35]. 

2.3.3 Development of GaN Growth on Si 

Polar GaN  

A GaN-based LED grown on a Si substrate by MOCVD was first demonstrated in 1999 

[36]. A thin AlN buffer layer was first grown on (111) Si substrates before any further growth 

of GaN structures in order to eliminate the melt-back etching issue. However, both surface 

cracking and GaN crystal quality were worse than that of GaN grown on sapphire substrates. In 

order to eliminate surface cracking, a number of ex-situ or in-situ processes have been 
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performed. For the ex-situ processes, a selective area growth method was applied to the GaN 

growth on Si, where a Si substrate is covered by a patterned mask (usually with SiO2 or SiN) or 

is etched into grooves prior to any MOCVD growth. Subsequently, a non-continuous GaN film 

can be directly grown on these Si substrates, as shown in Figure 2.12 [37-40]. This selective 

growth method can also be achieved by regrowing GaN on a thin GaN film on Si substrate with 

a patterned mask [41]. In this strategy, most stress can be relaxed as a result of the 

non-continuous GaN areas. However, the drawbacks of these ex-situ processes are also 

obvious. The non-continuous surface causes a severe inhomogeneity in GaN thickness, making 

subsequent device fabrication difficult. Moreover, melt-back etching is also a potential risk 

which may occur in the etched area. Therefore, an in-situ process has been introduced. By 

inserting different Al(Ga)N interlayers, a compressive stress is introduced to compensate the 

tensile stress produced during the cooling process to eliminate surface cracking. Generally, an 

AlGaN/AlN intermediate layer [42], AlN/GaN superlattice [43] or LT AlN interlayers [44-46] 

have been utilised. Comparing with the ex-situ mask approach mentioned above, the in-situ 

process does not require any external fabrication steps, providing a cost-effective method to 

eliminate surface cracking. The wafer bow due to tensile stress can also be suppressed.  

 

Figure 2.12: SEM images of GaN grown on masked (left) and etched (right) Si substrates [37, 

40]. 

A number of growth approaches have been proposed and attempted in order to improve 

GaN crystal quality caused due to the large lattice mismatch between silicon and GaN. 

Generally, they can be classified as either ex-situ or in-situ methods. For the ex-situ method, Si 

substrate or GaN on Si is covered by patterned masks [47] or is etched into grooves [48, 49] 

and an epitaxial lateral overgrowth (ELOG) technique is then performed, where dislocations 

can bend laterally and then annihilate each other. For the in-situ method, a thin SiN interlayer is 
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inserted during the growth of GaN films. The SiN interlayer contains many small holes leading 

to the subsequent 3D growth of GaN. Similar to the ELOG, the 3D GaN growth causes 

dislocations to bend laterally [50, 51].  

Non-polar and Semi-polar GaN  

It is extremely difficult to grow non-/semi-polar GaN on any planar Si substrates. Until 

now, there are very few reports demonstrating semi-polar GaN grown on any planar Si 

substrates without any patterned features. In order to grow semi-polar GaN on any planar Si 

substrates, high index (11h) Si substrates have to be used [30, 52]. Semi-polar GaN with a large 

inclination angle to the c-axis can be grown on the Si substrate with a high index only. The 

highest inclination angle to the c-axis obtained for GaN on silicon is ~34°, which is obtained by 

the growth of GaN on a (116) Si substrate. But, for even higher index Si substrates, the grown 

GaN will not be a single crystal any more. The challenges of GaN growth on (11h) Si are due to 

extreme difficulties in achieving both a smooth surface and good crystal quality.  

On the other hand, for the GaN grown on patterned Si substrates, non/semi-polar with 

various orientations can be realised [32, 53-58]. In order to expose {111} Si facets for GaN 

selective growth so that the growth along a vertical crystal orientation can form either 

non-polar or semi-polar GaN, a selective and anisotropic etching technique needs to be 

performed on Si substrates, as illustrated in Figure 2.13. For instance, a selective and 

anisotropic etching process is performed on (113) silicon covered with pre-deposited stripe 

dielectric masks along the Si [-2-11], parallel grooves with (1-11) and (-11-1) sidewalls and 

(011) facets between the grooves can be formed using a KOH solution, where the exposed part 

can be etched away until the {111} facets are formed, as it is extremely difficult to etch the 

{111} facets of silicon. 

Subsequent GaN growth can take place only on the {1-11} facets, eventually forming 

(11-22) GaN. For growths of any other non/semi-polar GaN-on-Si, a SiO2 mask is selectively 

deposited to cover other Si facets, only leaving one {111} Si facet to be exposed. So far, all the 

reports on growth of non/semi-polar GaN-on-Si are based on the utilization of a groove 

patterned Si substrate. However, for the (11-22) and (11-20) GaN-on-Si growth, such groove 

patterned Si substrates have a ‘closed’ configuration, where the Si (-11-1) facet cannot be 

protected from Ga flux, which increases the risk of ‘Ga melting back’. Although the reaction 
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can be controlled under a relatively low temperature of <870 oC [31, 56], it is not suitable for 

GaN growth by MOCVD, which generally requires a growth temperature of above 1000 oC. 

Moreover, the stripe patterning requires a very accurate mask alignment. Any slight 

misalignment leads to rough {111} Si facets and then a rough GaN surface [58]. 

 

Figure 2.13: Schematics of a GaN-on-Si growth process and cross sectional SEM images of (a) 

(1-101) GaN on (100) Si, (b) (11-22) GaN on (113) Si, (c) (11-20) GaN on (110) Si and (d) 

(20-21) GaN on miscut (114) Si [32, 55]. 

Nanowire GaN  

Basically, there are two main kinds of approaches to achieving GaN NWs or nanorods, one 

based on a post-growth top-down fabrication method, and another based on a direct bottom-up 

growth approach. For the former, our group has demonstrated nanorod arrayed LEDs with 

significantly improved performance, as shown in Figure 2.14 [23-25]. Firstly, a standard planar 

c-plane LED structure is grown on a sapphire substrate, and the sample is then dry-etched by 

inductively coupled plasma (ICP) into a nanorod arrayed structure using a self-assembled 

nickel nanomask. The technology can be directly transferred on the Si substrate as well. 

However, the disadvantages of the approach are due to the difficulty in further reducing the 
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diameter of the nanorods down to below 100 nm and the damage induced during the dry 

etching process.  

 

Figure 2.14: SEM images of (a) Ni masks and (b) GaN nanorod arrays [25]. 

For the latter approach, there are generally three methods to grow GaN NWs, namely, 

catalyst VLS (vapor-liquid–solid) growth, selective area growth and self-assembled growth. 

Unlike any planar growth of GaN on Si by MOCVD, it is difficult to grow GaN NWs on Si by 

MOCVD. So far, there are a limited number of reports demonstrating GaN NWs grown on Si 

by MOCVD for which Figure 2.15 provides a few examples [59-62], while a few groups have 

demonstrated some impressive results using molecular beam epitaxy (MBE) to grow NWs by 

means of the self-assembled method (Figure 2.15(e)) [22], although the growth mechanisms 

still need to be further investigated.  

Generally speaking, for the growth of self-organised NWs, the growth rate along a vertical 

direction needs to be enhanced. In this case, compared with any standard planar GaN growth, a 

lower temperature would be favourable for the formation of nanowires, giving a main 

advantage in using MBE to grow GaN NWs. Furthermore, MBE typically uses nitrogen as a 

precursor for group V, where the decomposition efficiency of nitrogen molecular depends on a 

plasma power used instead of a growth temperature, while MOCVD uses NH3 to supply group 

V element and thus a high temperature is used to crack NH3.  

For the VLS growth, a number of different metals have been suggested as a catalyst such 

as gold, nickel, iron, indium and etc. [59]. But these metals can cause contamination, degrading 

the intrinsic electrical and optical properties of GaN NWs. Moreover, GaN NWs with 

inclination angles have been commonly observed. For the selective area growth method, SiO2 

or SiN is used as patterned masks [60], which can achieve straight GaN NWs with good 

uniformity. But this template patterning approach needs an ex-situ fabrication process. 

Moreover, it is difficult to reduce the diameter of the GaN NWs obtained through this method 
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down to below 100 nm. For the self-induced growth method, currently, only two groups 

demonstrate some preliminary results by MOCVD as shown in Figures 2.15 (c)&(d), where 

either an in-situ SiN mask or TMG pre-flowing are used, respectively [61, 62]. For the in-situ 

SiN mask method, a thin layer of SiN is first grown on Si by MOCVD prior to any GaN NW 

growth. As the SiN layer is very thin and thus does not form a continuous film, it acts as an 

in-situ mask for further NW growth. However, the uniformity of the GaN NWs formed is not 

very good and some NWs are inclined. For the TMG pre-flowing method, TMG is firstly 

flowed into a MOCVD reactor to form gallium droplets on which GaN NWs are grown. As 

shown in Figure 2.15(d), the density of GaN NWs is still low and the diameters of NWs are 

very large.  

 

Figure 2.15: SEM images of MOCVD GaN NWs grown on Si substrates using (a) catalyst VLS 

growth [59], (b) patterned mask selective growth [60], (c) in-situ SiN masks [61], (d) TMG 

pre-flowing method [62]; and (e) SEM image of self-assembled GaN NW growth on Si by MBE 

[23].   
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Chapter 3 
Equipment 

3.1 Metal-Organic Chemical Vapour Deposition 

A MOCVD system or named as a Metalorganic Vapour Phase Epitaxy (MOVPE) system 

has been widely used in growth of semiconductor epiwafers. MOCVD utilises a number of 

chemical reaction processes to deposit a high purity and quality epitaxial layer. The basic 

principle of MOCVD growth is: gaseous reagents, which consist of group V precursors and 

group III precursors, are fed into a reactor chamber and chemically react with each other on a 

substrate whose temperature can be accurately controlled. By controlling reagent types and 

flow rates, substrate temperatures and reactor chamber pressure, both the composition and 

thickness of epitaxial layers can be controlled very accurately. For III-nitride MOCVD growth, 

six reagents are typically used. NH3 is used as a precursor for group V, while Trimethylgallium 

(TMG), Trimethylaluminium (TMA), Trimethylindium (TMI) are employed as the precursors 

of group III. Disilene (Si2H6) and Bis(cyclopentadienyl)magnesium (CP2Mg) are used for a 

n-type dopant and a p-type dopant, respectively. In addition, there are two types of carrier gas: 

H2 and N2. Since H2 is the smallest molecule, it can be purified very well and is generally used 

as a carrier gas for MOCVD growth. N2 is typically used as a carrier gas for InGaN/GaN 

growth, as the rate of indium incorporating into GaN is very low under H2 ambient. The 

chemical reaction for GaN epitaxial vapour phase growth is illustrated below [1]: 

𝐺𝐺𝐺𝐺(𝐶𝐶𝐶𝐶3)3 (𝑉𝑉)  +  𝐻𝐻𝐻𝐻3 (𝑉𝑉)  → 𝐺𝐺𝐺𝐺𝐺𝐺 (𝑆𝑆)  +  3𝐶𝐶𝐶𝐶4 (𝑉𝑉) (3.1) 

where (V) denotes a vapour state and (S) signifies a solid state.  

3.1.1 Main Configuration 

There are two main types of MOCVD reactor configurations, a horizontal reactor and a 

vertical reactor. Except a difference in reactor structure, both the control units and the pipe 

configurations of the two kinds of MOCVD are very similar. Our MOCVD has a vertical 

34 

 



reactor. Figure 3.1 shows the main body of our MOCVD. It contains the gas delivery cabinet, 

reactor cabinet, load lock, in-situ monitoring system and a control panel. Apart from the main 

body, there are carrier gas purifiers, an ammonia scrubber and an exhaust pump. According to 

different functions, the MOCVD system can be divided into five parts: gas purifiers, MO 

source bubblers, gas delivery systems, reactor systems and exhaust systems. 

 

Figure 3.1: The main body of our MOCVD. 

3.1.2 Gas Purifiers 

For III-nitride MOCVD growth, both H2 and N2 need to be purified before flowing into the 

MOCVD gas delivery system. 

H2 purifier: A palladium diffusion cell is used for H2 purification. By heating up a 

palladium membrane to ~300 oC, only H2 which has the smallest diameter can pass though the 

palladium crystal lattice, leaving any impurities to go through a bleed gas line, as shown in 

Figure 3.2.  
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Figure 3.2: Schematic drawing of H2 purifier. 

N2 purifier: A nanochem purification cell is used for N2 purification. This Nanochem cell 

can generally remove H2O, O2 and CO2 [2]. Comparing with any standard H2 purifier which 

can only allow H2 to pass though, a N2 purifier is still less efficient. Therefore, H2 is used as a 

carrier gas for MOCVD growth.   

NH3: The NH3 used by our group is white NH3 [3]. It has a very high purity grade 

(99.99999%). Therefore, the NH3 can be directly used without any further purifying. 

3.1.3 MO Source Bubbler 

Each MO source is contained in a stainless steel bubbler in a liquid state except TMI and 

Cp2Mg which are in a solid state. Each bubbler is stored in a water bath whose temperature can 

be accurately controlled. The pressure inside each bubbler is also controlled by a pressure 

controller. Each MO source is extracted from its bubbler by using a carrier gas, either H2 or N2. 

The basic configuration of a bubbler is shown in Figure 3.3. MFS stands for a mass flow 

controller, which controls a gas flow rate. PC represents a pressure controller which controls 

the pressure of the bubbler. A carrier input is located near the bottom of a bubbler, and a carrier 

output is located near the top of the bubbler. When a MO source is required for epitaxial growth, 

a carrier gas is flowed into the bubbler through the input pipe to push the MO source (i.e., 

precursor) out of the bubbler. A thermal tape is wound around the output line to warm up the 

output, eliminating condensation. For a solid-state source such as TMI, the input and out lines 

are connected with the bubbler in a reversed direction [4]. 
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Figure 3.3: Schematic diagram of a MOCVD bubbler. 

The vapour partial pressure of a MO source is determined by the temperature of the MO 

source temperature, which is controlled by the bubbler water bath. The relationship between 

the MO source vapour partial pressure and the MO temperature can be expressed: 

𝐿𝐿𝐿𝐿𝐿𝐿�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝐵𝐵 − 𝐴𝐴
𝑇𝑇
  (3.2) 

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the vapour partial pressure of a MO source in torr, A and B are constants [5-7] 

and T is the temperature in Kelvin. For a Cp2Mg source, the vapour partial pressure is slightly 

different as below [8]: 

𝐿𝐿𝐿𝐿𝐿𝐿�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� = 𝐵𝐵 − 𝐴𝐴
𝑇𝑇
− 2.18𝑙𝑙𝑙𝑙𝑙𝑙  (3.3) 

The vapour partial pressures for our MOCVD sources have been given in Table 3.1  

 

Bubbler 

source 

Bubbler temperature 
(K) 

𝐴𝐴 𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (torr) 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 (torr) 

TMG1,2 273 1703 8.07 67.91 1300 

TMA1 291 2134 8.22 7.70 1500 

TMA2 294 2134 8.22 9.15 1500 

TMIn1,2 303 3204 11.00 2.67 1000 

Cp2Mg 303 4198 25.14 0.07 900 

Table 3.1 Vapour partial pressure of our MOCVD sources [5-8]. 

Based on an idea gas law, the mole flow rate of a MO source can be calculated below: 

𝑓𝑓𝑀𝑀𝑀𝑀(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚)  = 𝑓𝑓carrier gas (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
22400(𝑠𝑠𝑠𝑠𝑠𝑠/𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

∙ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  (𝑇𝑇)
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑇𝑇)

  (3.4) 
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where 𝑓𝑓𝑀𝑀𝑀𝑀is the mole flow rate of the MO source used, 𝑓𝑓carrier gas  is the flow rate of the 

carrier gas used, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the vapour partial pressure of the MO source used and 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is 

the bubbler pressure.  

3.1.4 Gas Delivery System 

A basic gas delivery system is schematically illustrated in Figure 3.4. In order to prevent a 

pre-reaction, ammonia and MO sources are supplied to a reactor chamber through two separate 

pipes, and then mix just above a susceptor on a heater. The manifold is used to switch MO 

sources between a vent line and a reactor line.  

 

Figure 3.4: Schematic diagram of a MOCVD gas delivery system. 

3.1.5 Reactor System 

A Thomas Swan 3×2” vertical reactor system with a close-coupled showerhead is used for 

the project. The basic configuration of our reactor is schematically illustrated in Figure 3.5. The 

reactor is made of stainless steel, providing a completely sealed chamber where pressure, 

temperature and gas input/output can be controlled accurately. The stainless steel chamber 

closure is at the base with a sealing flange. The sealing flange has double ‘O’ rings. When the 
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chamber is closed, the volume between the two ‘O’ rings is evacuated and the pressure is 

checked by a pressure sensor. The ammonia and MO sources are introduced into the 

showerhead in the chamber through separate pipe lines (which are called injectors) in order to 

suppress pre-reaction issues. Both the showerhead and the stainless steel chamber are water 

cooled. The injectors on the showerhead are positioned less than 2cm above a heated susceptor, 

which gives a good convection and laminar flow with minimal turbulence. On the showerhead, 

there are four optical access ports to allow us to install in-situ monitoring systems. During the 

growth, an in-situ laser can pass though the ports to monitor the whole growth process. In 

addition, these optical ports are also used for the temperature calibration by inserting optical 

probes to measure the surface temperature of wafers. 

Three wafers each with a diameter of two inches are placed in three-recessed pockets on 

the susceptor. The susceptor is made of graphite coated with SiC. The graphite susceptor has a 

good thermal conductivity and the SiC coat can prevent a reaction between ammonia and 

graphite at high temperature. The susceptor stands on a quartz-made glass wall and is rotated at 

100rpm by a rotator to achieve good uniformity of a wafer during growth. The susceptor is 

heated by a heater coil with three radial zones. By adjusting the electrical power in each zone, 

high temperature uniformity can be achieved. At the centre of the heater, a thermocouple is 

mounted below the susceptor to monitor growth temperatures. With a computer 

proportional–integral–derivative feedback system, the growth temperature given by 

thermocouple is stably controlled. Between the susceptor and the stainless steel chamber wall, 

a second glass wall is placed to avoid any deposition on the chamber wall.  
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Figure 3.5: MOCVD reactor configuration [9]. 

In order to eliminate any dead volumes in the chamber, several purge lines are connected to 

the optical ports and the space between the second glass wall and the steel chamber in order to 

supply either H2 or N2, depending on growth conditions. In order to keep the heater clean and 

protect it at high temperatures, H2 is used to purge the heater through a purge line during 

growth. 

3.1.6 Exhaust System 

A reactor exhaust system is firstly connected to a pre-filter which contains 10mm diameter 

steel balls for trapping large particles. Then, it passes through a pyrolysis furnace to crack the 

residual MO-sources. The pyrolysis furnace works at a temperature of 350 °C. Next, a pall 

filter is used to trap small particles. The pall filter has a pore size on a µm scale. Subsequently, 

an Ebara dry vacuum pump is connected to draw all gases though a gas delivery system, which 

are through a stainless steel pipe to connect a NH3 scrubber. Since NH3 is toxic and harmful to 

the environment, NH3 is decomposed into H2 and N2 in the scrubber by a heated catalyst and 

finally released to air.  

3.2 Nomarski Optical Microscope 

Unlike standard optical microscope, a Nomarski optical microscope utilises the principle 
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of optical interferometry, which can produce a magnified three-dimensional image of a sample 

surface. The basic structure of a Nomarski optical microscope is shown in Figure 3.6.  

 

Figure 3.6 Schematic diagram of a Nomarski Optical microscope [10]. 

The light from an incandescent source is firstly polarized by a polarizer, and is then split 

into two orthogonally polarized beams by a Wollaston Prism. Next, the two beams are focused 

by an objective lens and are incident on any two adjacent points of a sample surface. Due to the 

variation in either the refractive indices or the thickness of the two adjacent points of the 

sample surface, the two reflected beams have different optical path lengths. Subsequently, the 

two beams are focused by an objective lens and then mix on the Wollaston Prism. Finally, the 

mixed beams pass through an analyser and then produce an optical interference on an eyepiece 

plane. Since the optical interference is sensitive to the optical path difference, any variation in 

the refractive index or the thickness of the sample surface can be converted into a brightness 

variation, providing a three-dimensional appearance of the sample surface. Therefore, 

compared with the conventional optical microscope, the Nomarski optical microscope can 

observe sample surface with a better resolution and emphasised lines and edges on the sample 

surface. Moreover, on my experiment samples, there are many materials are transparent for 

visible light such as AlN, GaN, SiO2 and some surface contaminations. The Nomarski optical 
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microscope can observe them much clearly than the conventional optical microscopy. 

3.3 Scanning Electron Microscope 

The scanning electron microscope (SEM) is a powerful tool to characterise a 

semiconductor surface with a high magnification. Figure 3.7 (b) shows a schematic 

configuration of the SEM. An electron beam is generated from a field emission gun with a high 

voltage of 1-30 kV. The electron beam is collimated and focused by magnetic lenses. An 

objective aperture can also be installed to narrow the electron beam. The well-focused electron 

beam is incident on a sample surface, producing secondary electrons. These secondary 

electrons are collected and detected by a detector which can convert them into electrical signals. 

By sweeping the focused electron beam on a sample surface one point at a time in a rectangular 

scanning area, an image of sample surface is generated by processing all the electrical signals 

from the detector.  

 

Figure 3.7: Schematic diagrams of (a) TEM and (b) SEM [11]. 

Comparing with any standard optical microscope, an SEM has a much higher resolution 

and can create top-down, angular and cross-sectional images by tilting a motorised sample 

stage. However, there are some drawbacks for SEM measurements. SEM measurements have 
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to be performed under a high vacuum in order to minimize electron scattering, typically 5×10-5 

mBar. The sample measured should be conductive, otherwise the electrons will be easily 

charged on the sample surface, leading to severe degradation in the quality of images. In this 

study, a Philips FEGSEM XL30 SEM system is used, which can be operated at accelerating 

voltage from 0.2 to 30 kV and has a resolution down to 2 nm.  

Apart from the secondary electrons, back scattered electrons and X-rays can be used to 

perform energy dispersive X-ray measurements which can investigate the chemical 

composition of a sample.  

3.4 Transmission Electron Microscope 

Similar to the SEM, the transmission electron microscope (TEM) is a microscopy 

technique which also utilizes an energetic electron beam to characterize the microstructure of 

sample. As shown in Figure 3.7 (a), in the TEM system, an electron beam generated from 

electron gun is focused by magnetic lenses and is then transmitted through an ultra-thin sample. 

The electron beam interacts with sample to generate an image. Finally, the formed image is 

focused and magnified on a fluorescent screen or a charge-coupled device (CCD) camera. With 

the benefit of the short wavelength of electrons, a TEM has an extremely high resolution. In 

this study, a Philips EM 430 TEM system is used, which operates from 50 to 300 kV. It can 

magnify sample up to 750,000 times and has a point resolution down to 0.23 nm. Consequently, 

TEM allows us to investigate the microstructure of a sample, such as crystal orientations, 

crystal defects, etc. In order to prepare an ultra-thin sample suitable for TEM measurements, a 

standard procedure is to use combined mechanical lapping and then an ion milling process, 

which can reduce the thickness of a sample down to 100 nm.  

3.5 High Resolution X-ray Diffraction 

A high resolution X-ray diffraction (HR-XRD) system is a powerful system to 

non-destructively investigate the crystal structure, the crystal quality and the chemical 

composition of a sample. The basic principle of XRD measurements is due to Bragg’s law [12]: 

2 ∙ 𝑑𝑑 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑛𝑛 ∙ 𝜆𝜆   (4.1) 
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where 𝑑𝑑 is the inter-planar atom distance, 𝜃𝜃 is the incident angle, 𝜆𝜆 is the X-ray wavelength 

and 𝑛𝑛 is an integer. As a result of the periodic structure of a crystal which looks like a grating, 

X-ray beams are incident on the surface of the crystal and are then scattered by the crystal as 

schematically illustrated in Figure 3.8, generating a constructive interference at a number of 

certain incident angles which need to meet Bragg’s law.  

 

 

Figure 3.8: Schematics of X-ray diffraction. 

In this study, a BRUKER D8 DISCOVER HR-XRD system is used, which consists of a 

X-ray tube, an incident X-ray optics unit, a sample stage, a secondary optics unit and a X-ray 

diffraction detector. X-ray beams are generated by the X-ray tube, where a focused electron 

beam is accelerated by applying a high voltage field to bombard a target material. The target 

material used in our HR-XRD is Cu and the corresponding X-ray wavelength is 1.5418 Å. 

Before the x-ray beam is incident on a sample, the X-ray beam passes through the X-ray 

optics unit consisting of a Göbel mirror, a monochromator and a divergence slit. The Göbel 

mirror is used to collimate the X-ray beam; and the monochromator is made of a channel-cut 

Ge crystal to enhance the spectral resolution; and the divergence slit is used to limit the 

divergence of the X-ray beams. The diffracted X-ray beam passes though the secondary optics 

unit and is detected by the detector. The secondary optics unit contains similar components to 

the incident X-ray optics unit. Depending on the resolution required, the secondary optics unit 

with different components can be chosen, which gives an angular resolution down to 0.01°. As 

shown in Figure 3.9, an incident angle is denoted by 𝜔𝜔 and a diffraction angle is labelled as 

2𝜃𝜃 . The motorized sample stage also can be rotated and tilted as angle 𝑝𝑝ℎ𝑖𝑖  and 𝑐𝑐ℎ𝑖𝑖 

respectively.  
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Figure 3.9: XRD basic configuration and sample stage movement. 

For XRD measurements on III-nitride semiconductors, the Bragg angles of III-nitrides can 

be easily calculated based on Bragg’s law. The measurements of XRD rocking curves are 

generally used to evaluate the crystal quality of a semiconductor [12]. By moving both the 

sample stage and the detector simultaneously, the incident and diffraction angles of a 

semiconductor are set to its corresponding Bragg angles. XRD rocking curve measurements 

can be performed by measuring the diffraction intensity as a function of 𝜔𝜔 angle. A narrow 

full width hall maximum (FWHM) of a rocking curve means a high crystal quality. The XRD 

measurements performed in a 𝜔𝜔 − 2𝜃𝜃 mode is used to provide the information about the 

chemical composition and the crystal orientation of a crystal.  

3.6 Photoluminescence 

Photoluminescence (PL) spectroscopy has been widely used to investigate optical 

properties of semiconductors. When a laser as an excitation source is incident on a 

semiconductor sample, the laser is absorbed by the semiconductor assuming that the photon 

energy of the laser is higher than that of the bandgap of the semiconductor. The electrons in the 

valence band are then excited to the conduction band, leaving the holes in the valence band. 

These excited electrons in the conduction band, which are unstable, will fall back to the valence 

band and then recombine with the holes, releasing photons. If a semiconductor contains a 

number of defects such as dislocations which may serve as non-radiative recombination 

centers, these defects significantly affect the optical properties of the semiconductors, which 

can be investigated by PL. By measuring the PL spectrum of a sample, the band gap, the alloy 
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composition, the crystal defects, the QCSE and the strain of the sample can be investigated.  

 

Figure 3.10: Schematic diagram of a PL system. 

Figure 3.10 shows schematics of a PL system. In the system which the project uses, either 

a 405nm continuous wave (CW) diode laser is used as an excitation source for InGaN samples 

or a 325 nm He-Cd laser as an excitation source for measuring GaN. The laser beam is reflected 

by an Aluminium mirror with >99% reflectivity and then focused using a lens on a sample. The 

laser beam can go down to approximate 200 μm diameter. The luminescence from the sample 

is collected and collimated by a pair of 2 inch lenses, and is then introduced to an entrance slit 

of a 0.75 m Jobin Yvon SPEX monochromator. The luminescence is then dispersed by the 

monochromator and detected by a thermoelectrically cooled CCD detector. For low 

temperature or temperature dependent PL measurements, samples are held in a helium 

closed-cycle cryostat, where the temperature of the samples can be controlled from 10 to 300 K. 

For excitation power dependent PL measurements, the laser power can be continuously tuned 

through a variable attenuator located in front of the laser. 
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Chapter 4 
Fabrication of Patterned Si Substrates  

4.1 Introduction 

This chapter introduces two kinds of patterned Si substrate fabrication technologies for 

subsequent semi-polar (11-22) and (20-21) GaN growths. Firstly, Si substrates with different 

orientations are analysed in order to select suitable Si substrates for the pattern fabrication. 

Next, the two Si substrate patterning processes are described in Chapter 4.3 and Chapter 4.4, 

separately.  

 The first approach to patterned Si fabrication is to create inverted-pyramid patterns for 

semi-polar (11-22) GaN growth. Comparing with the stripe patterns used by other groups 

(introduced in Chapter 2.3.3), this method can address one of the most challenging issues for 

the growth of semi-polar GaN on silicon substrates, namely melt-back etching [1-4]. Moreover, 

as the selective growth area is small and non-continuous, the thermal stress between GaN and 

Si is reduced [5], leading to an almost crack-free surface of a GaN layer with a thickness of ~ 3 

μm. Furthermore, the lateral growth along the 〈1-100〉 direction also results in a further 

reduction in dislocation density. All of these advantages are discussed in detail in Chapter 5. 

The second approach to patterned Si fabrication is to produce stripe patterns for the 

semi-polar (20-21) GaN growth. Comparing with any other stripe patterning approaches 

(introduced in Chapter 2.3.3), our novel approach with an extra feature gives (20-21) GaN with 

much better crystal quality, especially a great reduction in BSF density. In addition, the 

resultant GaN stripe structure using our approach exhibits a semi-polar (10-11) top surface and 

excellent parallel sidewalls which could be used as an optical cavity. This would be 

advantageous for LD device realization. In order to eliminate the melt-back etching issue, our 

stripe patterns have been further optimised by introducing a number of extra gaps to truncate 

the stripe patterns, which allow NH3 to fully cover all exposed Silicon areas in order to 

effectively prevent the melt-back etching. The GaN growth on such stripe patterned Si 

substrates is discussed in Chapter 6. 
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4.2 Selection of Si Substrate Orientation  

Since it is extremely difficult to directly grow semi-polar (11-22) or (20-21) GaN on any 

planar Si substrate, GaN has to be grown on an inclined Si facet, leading to a semi-polar 

orientation along the vertical direction. As discussed in Chapter 2.3.1, the (111) Si plane 

matches the hexagonal six-fold symmetry of GaN, facilitating growth of a GaN film with a 

single orientation. As a result, in order to achieve semi-polar GaN with either (11-22) or (20-21) 

orientation upward, GaN has to be grown on an inclined {111} Si facet along the c-direction. 

However, the inclination angle between any of the {111} Si facets and the Si substrate surface 

should be equal to the inclination angle between the semi-polar plane and the c-plane of GaN 

(shown in Table 2.3). The angles between different silicon {111} planes and the surface of 

differently orientated silicon substrates for common Si substrates are provided in Table 4.1. It 

has been found that the (113) Si substrate is suitable for semi-polar (11-22) and (20-21) GaN 

growth, as the angles between some {111} Si planes and the (113) silicon substrate surface are 

close to the proper inclination angles for the growth of semi-polar (11-22) GaN and (20-21) 

GaN (highlighted in red colour in Table 4.1). In order to achieve semi-polar (11-22) GaN, GaN 

needs to be grown on either the (-111) or the (1-11) Si facet of a (113) Si substrate, and the 

resultant GaN with a vertical direction which is 58.52° inclined to c-direction. Compared with 

Table 4.1, an offset angle is negligibly small: 

 58.52° − 58.41° = 0.11° 

However, for semi-polar (20-21) GaN, GaN is grown on (-1-11) Si facet of a (113) Si 

substrate along the c direction. The inclination angle of the resultant semi-polar (20-21) GaN 

grown on this facet is 79.98°. Based on Table 4.1, an offset angle is: 

79.98° − 75.09° = 4.89° 

In order to achieve true semi-polar (20-21) GaN, a (113) Si substrate with a small miscut 

angle needs to be used to compensate this offset angle.  
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{111} Si planes Angles between Si {111} planes and Si 

substrate surface with different orientation 

h k l (100) (110) (112) (113) 

1 1 1 54.74° 35.26° 19.47° 29.50° 

-1 1 1 125.26° 90.00° 61.87° 58.52° 

1 -1 1 54.74° 90.00° 61.87° 58.52° 

1 1 -1 54.74° 35.26° 90.00° 100.02° 

-1 -1 1 125.26° 144.74° 90.00° 79.98° 

1 -1 -1 54.74° 90.00° 118.13° 121.48° 

-1 1 -1 125.26° 90.00° 118.13° 121.48° 

-1 -1 -1 125.26° 144.74° 160.53° 150.50° 

Table 4.1: Angles between {111} Si planes and Si substrate surface. 

4.3 (113) Si Substrates with Inverted-pyramid patterns 

4.3.1 Methodology 

Our whole patterning process is schematically illustrated in Figure 4.1. A SiO2 layer is 

initially deposited on a (113) Si substrate by using a standard plasma enhanced chemical 

vapour deposition (PECVD) technique and is then etched into periodic holes by combining a 

standard photolithography and a reactive-ion etching (RIE) technique. Subsequently, the (113) 

Si substrate undergoes an anisotropic and selective wet etching process using a KOH solution, 

where the areas without any SiO2 masks are etched away. The wet etching will automatically 

stop once {111} facets are formed, as it is intrinsically difficult to etch (111) silicon by a KOH 

solution. Finally, all the residual SiO2 masks are removed by a buffered HF solution. Figure 

4.1(e) presents a top-view SEM image of the patterned (113) Si substrate, where a number of 

regularly arrayed holes with an inverted-pyramid shape can be clearly observed. The facets in 

each inverted-pyramid pattern are planes of (111), (1-11), (-1-11) and (-111), labelled as A, B, 

C and D in Figure 4.1(e), respectively. The angles of facets A, B, C and D with respect to the 
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(113) surface are 29.50°, 58.52°, 79.98° and 58.52°, among which B and D facets are close to 

the angle (58.41°) which we require in order to grow (11-22) semi-polar GaN based on Table 

4.1. It is therefore conceivable that semi-polar (11-22) GaN would be obtained, if growth 

initiates from facet B or D.  

 

Figure 4.1: (a)-(d) Schematics of the fabrication procedure of patterned (113) Si, (e) top view 

SEM image of the patterned (113) Si. 

4.3.2 Formation of Inverted-pyramid Patterns  

This section introduces the details of our Si substrate fabrication procedure to create 

inverted-pyramid patterns. Initially, a 2-inch (113) Si substrate is cleaned by n-butyl acetate, 

acetone and IPA consecutively in an ultrasonic bath for 3 min. A 70 nm-thick SiO2 layer is then 

deposited by PECVD, followed by a standard photolithography process using a mask 

consisting of a number of regularly arrayed squares with a size of 2 μm and a gap of 1 μm 

between squares as shown in Figure 4.2 (a). Figure 4.2 (b) shows the surface of the (113) Si 
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substrate after the standard photolithography process, where the square array patterns have 

been transferred onto photoresist spin-coated on the SiO2 layer on the Si substrate. 

 

Figure 4.2: Optical microscopy images of (a) the photolithography mask used and (b) 

photoresist patterns on the SiO2 on a Si substrate. 

The SiO2 layer is subsequently etched by RIE with a RF power of 90 W and a CHF3 flow 

rate of 35 sccm. Finally, the patterned SiO2 layer on Si substrate has been obtained as shown in 

Figure 4.3. 

 

Figure 4.3: Top view SEM image of SiO2 patterns on a Si substrate. 
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Figure 4.4: Top view SEM images of the substrate after a KOH etching process for (a) 8 min (b) 

12 min, (c) 15 min, and (d) 18 min. 

The patterned Si substrate further undergoes another wet etching process using a KOH 

solution (25wt%) at 30oC, following a chemical reaction between Si and KOH as shown below 

[6]. 

Si + 2𝑂𝑂𝑂𝑂− + 2𝐻𝐻2𝑂𝑂 → 𝑆𝑆𝑆𝑆(𝑂𝑂𝑂𝑂)2𝑂𝑂22− + 2𝐻𝐻2   (5.1) 

Si etching in a KOH solution shows anisotropic features, as the bonding energy of Si atoms 

are different, depending on crystal planes. As {111} Si planes are inert to KOH, the wet etching 

process in a KOH solution will automatically stop once touching the {111} Si planes, thus 

forming inverted-pyramid holes each with four {111} Si facets as shown in Figure 4.4. After 18 

min KOH etching (our optimised conditions), the regularly arrayed holes each with a perfect 

inverted-pyramid shape are formed. 

After the KOH etching process, the patterned Si substrate is immersed in 10% buffered HF 

for 10min to remove all the residual SiO2 masks. As shown in Figure 4.5(a), all the sidewalls of 

the Si inverted-pyramid patterns are very smooth. Figure 4.5 (b) shows that the formed (1-11) 

Si facet is 17° offset with respect to the primary flat of the Si substrate (used as our reference 

line). The wafer primary flat of a (113) Si wafer is typically perpendicular to Si [1-10]. 
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Figure 4.5: Top view SEM images of the patterned Si substrate after HF. 

4.3.3 Selective Deposition of SiO2 Mask 

In order to grow GaN only on the (1-11) Si facet on Si substrate, other Si facets of the 

inverted pyramids and other area of the Si substrate have to be covered by SiO2. Therefore, a 20 

nm SiO2 layer is selectively deposited on facets A, C, D, leaving only the B facet ((1-11) Si 

facet) exposed, as shown in Figure 4.1 (e). This can be achieved by simply tilting the patterned 

Si substrate with a certain angle by using an electron-beam evaporation technique as 

schematically illustrated in Figure 4.6. The SiO2 source is loaded in the crucible and 

bombarded by a focused electron beam.  
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Figure 4.6: Schematic of SiO2 masks selectively deposited in an electron-beam deposition 

chamber. 

By carefully tuning the oblique angle for the electron-beam deposition, a uniform selective 

SiO2 mask is achieved shown in Figure 4.7. The optimised oblique angle is 60°. Only the (1-11) 

Si facet of the patterned Si substrate is exposed while the other Si facets and the other Si 

substrate surface areas are covered by SiO2. Figure 4.8 shows SEM images of the finally 

patterned silicon substrate across the 2-inch wafer, demonstrating a good uniformity cross the 

whole wafer in terms of size and shape.  

 

Figure 4.7: Top view SEM images of SiO2 masks selectively deposited on the patterned Si 

substrate by (a) 75°, (b)70°, (c) 65°and (d)60° oblique angles. 
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Figure 4.8: Top view SEM images of the patterned Si substrates across a two inch wafer. 

 4.4 (113) Si Substrates with Stripe Patterns 

4.4.1 Methodology  

In order to grow semi-polar (20-21) GaN on Si, (-1-11) Si plane in a (113) Si substrate has 

to be used for the GaN growth. Consequently, we have developed a different patterning process 

in order to obtain stripe patterns with (-1-11) Si facets.  

Figure 4.9 describes the patterning procedure. First, a SiO2 layer is deposited on a (113) Si 

substrate by PECVD. Second, a standard photolithography process is performed to form 

photoresist stripes on SiO2. Next, a Ni layer is deposited using a thermal evaporator. After a 

lift-off process, Ni stripes are formed, and then the Si substrate is etched into stripes by RIE and 

inductive coupled plasma (ICP) using the Ni stripes as etching masks. Finally, the Ni is 

removed and the Si substrate is anisotropically etched in a KOH solution, creating the Si facets 

for subsequent GaN growth. Figure 4.9(g) shows the cross sectional SEM image of the final 

(113) Si substrate with stripe patterns, where the facets in the Si stripe are Si (-1-11), (11-1) and 

(111) planes, labelled as A, B and C, respectively. The angles of facets A, B and C with respect 

to the surface are 79.98°, 100.02° and 29.50°, respectively. Therefore, semi-polar (20-21) GaN 

with a 4.89° offset angle can be obtained when subsequent GaN growth takes place on facet A. 
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Figure 4.9: (a)-(f) Schematics of the fabrication procedure of the stripe patterned (113) Si, (g) 

cross sectional SEM image of the stripe-patterned (113) Si. 

4.4.2 Formation of Stripe Patterns  

After an initial cleaning process as detailed in section 4.3.2, a 120 nm thick SiO2 layer is 

deposited on a (113) Si substrate by PECVD. Next, a standard photolithography process is 

performed. A photolithography mask with stripe patterns is shown in Figure 4.10 (a), where a 4 

μm stripe with a 4 μm gap between stripes is used. Figure 4.10 (b) shows the surface of the (113) 

Si substrate after the photolithography process, where the stripe patterns have been transferred 

to the photoresist deposited on the SiO2 layer.  
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Figure 4.10: Optical microscopy images of the photolithography mask used (a); Optical 

images of the (113) Si substrate (b) after the photolithography process, (c) after the Ni lift-off 

process, (d) after the RIE etching process and (e) after the ICP etching process. 

Since the photoresist stripes as masks cannot stand for long time during a subsequent Si 

dry etching process, a metal mask on the top of SiO2 is further needed, which can be achieved 

by a standard photolithography technique. Figure 4.10 (c) shows that the Ni stripes are on the 

SiO2. Subsequently, using the Ni stripes as masks, the SiO2 layer is etched by RIE with the 

condition of a RF power of 90 W and a CHF3 flow rate of 35 sccm, as shown in Figure 4.10(d). 

Further using an ICP dry-etching technique, the Si stripes have been formed (Figure 4.10(e)). 

For the ICP etching, 40 sccm SF6, 2sccm Ar2 and 10sccm O2 are used with an ICP power of 750 

W. The Ni is finally removed by nitric acid. Figure 4.10 (e) shows the stripe patterns finally 

fabricated, demonstrating a good shape and uniformity.  
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Figure 4.11: (a) Top view and (b) cross-sectional SEM images of the patterned Si substrate 

after removing Ni mask. 

Figures 4.11 (a) and (b) show the plan-view and cross-sectional SEM images of the final 

silicon stripes, respectively.  

Similarly, the (113) Si substrate undergoes an anisotropic etching process by a KOH 

solution as detailed in section 4.3.2. Figure 4.12 show the SEM images of the patterned silicon 

as a function of KOH etching time of up to 20 mins, demonstrating the Si stripes with three 

smooth Si facets formed, namely (-1-11), (11-1) and (111) Si planes.  

 

Figure 4.12: Cross sectional SEM images of a Si substrate after a KOH etching process for (a) 

8 min (b) 12 min, (c) 16 min, and (d) 20 min. 
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4.5 Summary 

In summary, two kinds of patterned Si substrates have been successfully fabricated based 

on a combination of a UV photolithography technique, dry etching processes, an anisotropic 

wet etching and a selective SiO2 deposition process. After optimisation of the fabrication 

procedure, (113) Si substrates with good uniformity of invented-pyramid patterns and stripe 

patterns have been achieved, which have been confirmed by detailed SEM measurements, 

respectively.  
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Chapter 5 
Semi-polar (11-22) GaN Grown on 
Inverted-pyramid Patterned (113) Si 

5.1 Growth of GaN on Inverted-pyramid Patterned Si 

Semi-polar (11-22) GaN growth was carried out by MOCVD on the (113) Si substrates 

with inverted-pyramid patterns obtained in Chapter 4. Figure 5.1 (a) shows the cross sectional 

SEM image of the GaN grown on patterned Si, cleaved along the (10-10) plane. The GaN 

growth starts on the (1-11) Si facet (i.e., B facet as shown in Figure 5.1(b)) which has a 58.5° 

tilt with respect to the vertical direction. As shown in Figure 5.1 (a), the interface between the 

GaN film and the (1-11) Si facet is free of voids. Instead, voids are observed above the 

patterned Si surface. It implies that the growth nucleates on the (1-11) Si facet and advances 

along the c-axis [1]. When GaN growth is above the surface of the patterned Si, the growth 

extends laterally until the film coalesces. The whole GaN growth process is schematically 

shown in Figure 5.1 (c). 
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Figure 5.1: (a) Cross sectional SEM image of the GaN on the patterned Si; schematics of (b) 

(113) patterned, (c) semi-polar GaN growth process on the patterned Si. 

The influence of GaN growth conditions on the GaN surface morphology has been studied. 

A standard MOVPE growth recipe of GaN on silicon is used. Firstly, the patterned (113) Si 

substrate is thermally annealed at 1110 oC in H2 ambient for 5 min to remove any natural oxides 

of the silicon substrate [2]. Subsequently, a 100 nm AlN buffer layer is grown at 1180 oC with a 

NH3 flow rate of 90 sccm and a flow rate of TMA of 120 sccm TMA under 65 torr, our 

optimized conditions for the GaN growth on planar (111) Si. The AlN layer also separates any 

subsequently grown GaN from the Si substrate in order to avoid any melt-back etching issue 

[3]. Table 5.1 provides a number of growth parameters for the GaN growth used for 

optimisation. The GaN growth time for all the samples is fixed to be 5000 sec, and the GaN 

layer thickness is around 3 μm. 
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Condition P (Torr) T (oC) NH3/TMG (sccm) V/III ratio 

I 225 1125 5840/65 1720 

II 300 1125 5840/65 1720 

III 300 1125 2920/65 860 

IV 300 1125 2400/65 707 

V 300 1125 1900/65 560 

VI 300 1125 1600/65 471 

VII 300 1110 2400/65 707 

Table 5.1: Growth conditions of semi-polar (11-22) GaN. 

 

Figure 5.2: Top view SEM images of the (11-22) GaN film grown under growth condition (a) I 

and (b) II. 

 The influence of growth pressure on surface morphology has been investigated by detailed 

SEM measurements, as shown in Figure 5.2. Clearly, a better coalescence can be observed at a 

relatively higher pressure (300 Torr vs. 225 Torr) in spite of the ‘V’-shape gaps formed due to a 

limited lateral growth rate particularly along [10-10] direction [4].  
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Figure 5.3: Top view SEM images of the (11-22) GaN grown under growth condition (a) II, (b) 

III, (c) IV, (d) V, and (e) VI. 

In order to enhance the lateral growth rate to achieve a full coalescence, the influence of 

V/III ratio on surface morphology has also been investigated. Figure 5.3 exhibits the sample 

surface grown under different V/III ratios ranging from 1730 down to 470 (conditions II-VI in 

Table 5.1). It is found that the ‘V’-shape gaps disappear with a reduced V/III ratio of 707, but 

reproduces if it is too low, which is likely to introduce a strong anisotropic Ga adatoms 

diffusion length [5-7]. The best GaN surface has been obtained under the growth condition IV 
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described in Table 5.1, where the optimised V/III ratio is 707. Furthermore, the influence of 

growth temperature on the surface morphology has also been investigated, confirmed by the 

SEM images as shown in Figure 5.4. The optimised growth temperature is between 1125 °C 

and 1110 °C. 

 

Figure 5.4: Top view SEM images of the (11-22) GaN film grown under growth condition (a) IV 

and (b) VII. 

Compared with semi-polar GaN on a stripe patterned Si substrate reported by other groups 

[8], our sample is almost crack-free across a 2-inch GaN wafer even though the GaN thickness 

is ~3 μm. With the inverted-pyramid patterns on the Si substrate, the thermal stress between 

GaN and Si can be effectively relaxed as a result of the small and non-continuous GaN 

selective growth area and the formation of voids during the GaN [9].  

5.2 Structural and Optical Characterizations 

In order to confirm the (112-2) crystal orientation of our semi-polar GaN grown on the 

special patterned substrates, HD-XRD measurements have been carried out. Figure 5.5 shows 

XRD data obtained in a 2θ-ω scan mode. Only sharp diffraction peaks from the (11-22) GaN 

and (113) Si can be observed, indicating that a single phase semi-polar (11-22) GaN has been 

obtained. 
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Figure 5.5: XRD 2θ -ω scan profile of the symmetric (11-22) GaN plane on our pattered Si. 
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Figure 5.6: XRD phi-scan profiles of the asymmetric (0002) GaN plane and the (1-11)/(-111) Si 

planes. 
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Figure 5.7: XRD chi-scan profiles of the asymmetric (0002) GaN plane and the (1-11) Si plane. 

Further investigation of the GaN in-plane crystal orientation has been performed by a 

phi-scan measurement and a chi-scan measurement of an asymmetric GaN (0002) plane on our 

semi-polar (11-22) GaN. As shown in Figure 5.6, only a single (0002) GaN peak is observed at 

a phi angle of -163° agreeing with the phi position of (1-11) Si. It means that the GaN growth 

along an inclined c-direction with respect to the substrate starts only on the (1-11) Si facet. At 
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the phi angle of -163°, a chi-scan measurement shown in Figure 5.7 indicates that the (0002) 

GaN plane is inclined by 58° to the sample surface, which is the same angle as the inclination 

angle of the (1-11) Si facet with respect to the surface. This further confirms that the GaN 

growth starts only on the (1-11) Si facets as expected.  
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Figure 5.8: XRD ω-rocking curve of the (11-22) GaN. 

The crystal quality of the (11-22) GaN has been investigated by XRD rocking curve 

measurements. Figure 5.8 shows the XRD rocking curves measured along the on-axis (11-22), 

showing a FWHM of 0.2708o, where the incident X-ray beam is parallel to GaN [10-10]. 

Figure 5.9 shows the FWHMs of the XRD rocking curves as a function of an azimuth angle 

(i.e., phi angle). At the 17 o azimuth angle, the incident x-ray is along GaN [10-10], while the 

x-ray is along GaN [11-23] at the 107o azimuth angle. For comparison, Figure 5.9 shows the 

FWHM of the XRD rocking curves of a typical (11-22) GaN directly grown on m-plane 

sapphire [10-12]. The FWHMs of the XRD rocking curves of the (11-22) GaN grown on 

m-plane sapphire are generally larger than those of the (11-22) GaN grown on our special 

patterned Si, indicating that the GaN on our patterned Si has a better crystal quality.  
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Figure 5.9: FWHMs of the on-axis XRD rocking curve of (11-22) GaN as a function of an 

azimuth angle. 
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Figure 5.10: FWHMs of the off-axis XRD rocking curves of (000n) and (n0-n0) planes. 

XRD rocking curve measurements performed along (000n) and (n0-n0) off-axis have also 

been carried out to further prove the good crystal quality of the GaN on our patterned Si, as 

shown in Figure 5.10. Generally speaking, the broadening of a XRD rocking curve measured 

along an off-axis (000n) plane is mainly due to dislocations with a Burgers vector which has a 

c-axis component, while a XRD rocking curve measured along an off-axis (n0-n0) plane is 

broadened due to BSFs [7, 13]. Figure 5.10 shows that the FWHM of the XRD rocking curve 

measured from both the off-axis (000n) and (n0-n0) planes are narrower for the GaN grown on 

our patterned Si that those for a standard GaN layer directly grown on m-plane sapphire, 

further conforming the better crystal quality of the (11-22) GaN grown on our patterned Si. 

The optical properties of the GaN have been characterized by PL measurements using a 

325 nm He-Cd laser as an exciation source. Figure 5.11 shows its PL spectrum measured at 

10K. For comparison, Figure 5.11 also shows the spectra of a standard (11-22) GaN layer 

directly grown on m-plane sapphire and a standard GaN layer on (0001) sapphire, which were 

grown under normal conditions with a GaN thickness of 1.4 and 1.1 μm, respectively. The 

(11-22) GaN on our patterned Si shows very strong band-edge emission at 357nm. A very weak 

emission peak at 365nm is ascribed to the luminescence of excitons bound to BSFs [14, 15]. 

For the standard (11-22) GaN grown on sapphire, the spectrum is dominated by BSF-related 

emission at 363 nm, and another one around 376 nm which arises from prismatic SFs (PSF) 

and partial dislocations [14-18]. The BSF density can be roughly assessed from PL spectra by 

evaluating the intensity ratio between the band edge and BSF emission. The intensity ratio is 20 
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for the semi-polar GaN on patterned Si substrates, confirming that the BSF density has been 

significantly reduced [16-18]. It is worth noting that the intensity of the band-edge emission in 

semi-polar GaN on Si is comparable to that of c-plane GaN on sapphire. The red shift in the 

band edge emission for (11-22) GaN on Si compared to GaN on sapphire may be ascribed to 

the tensile strain induced by the large differences of lattice constant and thermal expansion 

coefficient between GaN and Si [19].  
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Figure 5.11: PL spectra of the (11-22) semi-polar GaN grown on our patterned (113) Si, a 

standard (11-22) semi-polar GaN on m-plane sapphire and a standards GaN on c-plane 

sapphire, all measured at 10 K. 

Figure 5.12 shows the PL spectra measured at room temperature (300K). The (11-22) GaN 

on our patterned Si shows a very strong band-edge emission; whereas the band-edge emission 

from the standard (11-22) GaN on m-plane sapphire nearly disappears. For the PL spectra of 

the (11-22) GaN on pattered Si, a fitting using multiple Lorentzian curves was performed. The 

intensity ratio between the band-edge and BSF-related emissions is around 5.This further 

proves the much better crystal quality of the (11-22) GaN grown on our patterned Si. 
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Figure 5.12: PL spectra of the (11-22) semi-polar GaN grown on our patterned (113) Si, a 

standard (11-22) semi-polar GaN on m-plane sapphire and a standards GaN on c-plane 

sapphire, all measured at room temperature. 

Moreover, the temperature-dependent PL measurements have been performed as shown in 

Figure 5.13. The peak energies as a function of temperature are plotted in Figure 5.14. When 

temperature increases, the band-edge emission red-shifts due to temperature induced band-gap 

shrinkage [20]. In contrast, BSF-related emission exhibits a non-monotonic dependence on 

temperature, with a red-shift first, then a blue-shift, and a final red-shift above 100K. Such an 

S-shape behaviour is typical for the emission arising from localized carriers. As the BSF in 

GaN is a very thin zinc-blende (ZB) layer embedded in the wurtzite (W) matrix, the large 

conduction band offset at ZB/W interfaces implies that BSFs can be regarded as 

quantum-well-like regions [21]. Therefore, the S-shape behaviour of BSF-related emission is 

ascribed to the exciton deeply localized in this region. It is found that the PL spectrum for 

(11-22) GaN on Si is dominated by the band-edge emission across the temperature range. 
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Figure 5.13: PL spectra of the (11-22) GaN grown on our patterned (113) Si, measured at a 

temperature ranging from 10 to 300K. 
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Figure 5.14: Emission peak energies as a function of temperature. 

5.3 Mechanism of Defect Reduction in GaN 

Detailed TEM measurements have been performed to study the microstructure of the 

(11-22) GaN grown on our patterned silicon, in particular, the mechanism of defect reduction. 

Figure 5.15 shows a cross-sectional TEM image of the semi-polar GaN with g=11-22, where 

nearly all the dislocations in GaN can be observed [22]. Four consecutive cross sections of Si 

inverted-pyramid patterns can be seen clearly but with different profiles, which has been 

visualized by schematics in Figure 5.1. For the Si inverted-pyramid patterns 1 and 4 in Figure 
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5.15, the intersection positions between the cleavage face and Si patterns are further from the 

pattern centres than those for patterns 2 and 3. One set of (1-11) Si facets with an inclined angle 

of 58° can be seen on the left side of each pattern (labelled ‘B’). The defects in the lower GaN 

layer mainly aggregate close to the Si facet ‘B’, where GaN starts to grow. 

 

Figure 5.15: Cross sectional TEM image of the semi-polar GaN on our patterned Si taken 

around [1-100] zone-axis with g=11-22. 

 

Figure 5.16: Cross sectional TEM images of the semi-polar GaN on our patterned Si, taken 

around [1-100] zone-axis with (a) g=0002 and (b) g=11-20. 

Figure 5.16 shows the cross-sectional TEM images with g=0002 and g=11-20 at a higher 

magnification to investigate the defect structure in the Si pattern in detail. Near the interface 

within the distance h<100 nm along GaN c-direction, a high disorder of defects nucleated from 

the interface due to the large lattice mismatch between AlN and Si, mostly composed of 

dislocations and stacking faults. For a middle range from the interface (100nm<h<0.5 μm), 

there is a strong interaction between the defects in this region, leading to a significantly reduced 

defect density. With increasing film thickness, the dislocations further decrease most likely due 
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to cross slip. As a result, few dislocations are observed within the region above 0.5 μm from the 

interface in the windows. 

As one main defect formed in semi-polar GaN films, BSFs normally have a very high 

density of 105 cm−2 [11]. In order to investigate BSFs in (11-22) GaN on patterned Si by TEM, 

the specimen is taken around [1-210] zone-axis with g=10-10, as shown in Figure 5.17. As can 

be seen, the BSFs initiate at the interface between GaN and (1-11) Si facet, lying on the 

c-planes. It is known that the BSFs are confined in c-planes and can be impeded through the +c 

direction growth. That is why the BSFs of c-plane GaN on sapphire only exist at the 

film/substrate interface [23]. In this case, as the GaN growth in Si patterns initiates along the +c 

direction, BSFs are effectively impeded during the growth in the patterns. And the region far 

from the interface is almost free of BSFs. However, some extra BSFs are observed within the 

+c wing near the opposite side in the Si pattern. This may be ascribed to the +c wings of GaN 

growth beginning to contact with the SiO2 layer on the bottom of Si patterns, leading to the 

concentration of strain near the contact region and/or out diffusion and surface migration of the 

oxygen and/or silicon from SiO2 [24]. After the +c direction growth in Si patterns, the GaN 

layer starts to extend upwards and laterally along different directions. As a result, the existing 

BSFs in Si patterns propagate to the film surface without being blocked. This indicates that the 

Si (111) facet with the same tilting angle as the GaN c-plane and the resulting priority +c 

direction growth at first stage plays a key role in significant reduction of stacking faults. 

 

Figure 5.17: Cross sectional TEM image of the semi-polar GaN on our patterned Si, taken 

close to [1-210] zone-axis with g=10-10. 

However, not all the existing dislocations in the holes extend to the film surface as BSFs 

did. As shown in the cross-sectional TEM image viewed along the [1-100] direction of Figure 
74 

 



5.18 (a), the dislocations in the upper GaN are mostly lying on c-planes, and many disappear 

halfway during propagating, very likely due to line bending within c-planes. Based on our 

group’s previous studies on non-polar GaN, the dislocation bending is observed only in the 

[0001]-axis cross sectional view but never in the [1-100]-axis cross-sectional view [11]. It has 

also been reported [25] that the GaN overgrown from 〈0001〉-oriented stripes has a lower 

dislocation density compared to those on other direction-oriented stripes. This implies that the 

dislocations change their line direction easily within basal planes. Similarly in this case, the 

dislocation bending has been observed only within c-planes in Figure 5.18 (b), viewed 

perpendicular to the [1-100] direction. Many dislocations redirect from the original growth 

direction to propagate towards the void. This can be ascribed to that, when the isolated GaN 

islands above the windows started to extend laterally and coalescence with each other, the 

interaction between the dislocations and the GaN facets causes the dislocations to bend. As a 

result, the dislocation density is further reduced during GaN islands extending along the 

〈1-100〉 direction. 

 

Figure 5.18: Cross sectional TEM images of the semi-polar GaN on our patterned Si: (a) taken 

along [1-100] zone-axis; (b) taken perpendicular to [1-100] zone-axis. 

To clearly display the distribution of SFs and dislocations in the semi-polar GaN surface, 

plan-view TEM measurements were performed, shown in Figure 5.19. Within an area of 

3.5×4.5 μm2, BSFs exist in the form of two bunches with a density of 1×104 cm−1. The two 

bunches of BSFs are spaced with a mask period of ∼3 μm, which are generated from the 

interface in one side of each Si pattern and are impeded by the +c direction growth at the early 

stage. On the other hand, the dislocations mainly aggregate in a region around one side of BSFs, 
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corresponding to the region with ‘T’ in Figure 5.15. In Figure 5.19, few dislocations are 

observed far from the dislocation-rich region. It agrees with the demonstration in Figure 5.15 

that dislocations in the upper layer above patterns 1 and 4 are indeed fewer than those above 

patterns 2 and 3. The intersection positions between the TEM specimen cleavage and patterns 

for patterns 1 and 4 are further from the pattern centres compared with patterns 2 and 3. This 

has been ascribed to the dislocation bending and annihilation along both the [0001] and 〈1-100〉 

directions. It is worth mentioning that the {1-100} facets of GaN islands causing the 

dislocation bending at the later stage are not available in the case of growth on the 

<1-100>-oriented striped substrates.   

 

Figure 5.19: Plan view TEM image of the semi-polar GaN on our patterned Si. ‘SF’ and ‘D’ 

represent stacking fault s and dislocations, respectively. 

5.4 Conclusion 

In summary, semi-polar (11-22) GaN films have been successfully grown on specially 

designed (113) Si substrates featured with inverted-pyramid patterns. Unlike any other (113) Si 

mask patterning approaches which lead to grooves with undercut geometry, this specially 

designed patterning approach produces patterned Si substrates with an ‘open’ configuration, 

which enables a selective deposition of SiO2 prior to GaN growth. Therefore, the ‘Ga-melting 

back’ issue has been suppressed. A smooth GaN surface has been obtained after investigating 

the influence of GaN growth conditions. With the inverted-pyramid patterns on the Si substrate, 

the thermal stress between GaN and Si has been effectively relaxed as a result of the small and 

non-continuous GaN selective growth area and the formation of voids during the GaN growth. 
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Compared with semi-polar GaN on a stripe patterned Si substrate, our sample is almost 

crack-free across a 2-inch GaN wafer even though the layer is as thick as 3 μm. The GaN film 

demonstrates a high quality single crystal with a low density of dislocations and a low density 

of BSFs confirmed by XRD and PL characterisations. The FWHMs of the XRD rocking curves 

measured along the on-axis (11-22) GaN are between 0.284° and 0.198°, and the FWHMs of 

the XRD rocking curves measured along the off-axis (000n) and (n0-n0) plane are all below 

0.31°. These FWHMs of the XRD rocking curves are much smaller than those of the (11-22) 

GaN grown on m-plane sapphire, indicating that the GaN on our patterned Si has a good crystal 

quality. The low temperature PL spectrum show that the intensity ratio of the band edge 

emission to and the BSF related emission is as high as 20, indicating a significantly reduced 

BSF density. The mechanisms of both BSF and dislocation reduction have been discussed 

based on TEM measurements.   
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Chapter 6 
Semi-polar (20-21) GaN Grown on 
Stripe Patterned (113) Si 

6.1 Growth of GaN on Stripe Patterned Si 

As discussed in Chapter 4, semi-polar (20-21) GaN can be obtained by means of growth on 

our specially designed (113) Si substrate featured with stripe patterns. Figure 4.9(g) in Chapter 

4 shows that there are three facets, namely (-1-11), (11-1) and (111) plane, on which GaN can 

be grown. The inclination angles of the (-1-11), (11-1) and (111) facets with respect to the Si 

(113) surface plane are 79.98°, 100.02° and 29.50°, respectively, where the inclination angle of 

79.98° between the (-1-11) facet and the surface is closest to the requirements for obtaining 

(20-21) semi-polar GaN. Figure 6.1 presents a schematic illustration of two kinds of growth 

modes in order to achieve (20-21) semi-polar GaN grown on the (-1-11) Si facets of the Si 

stripes, where the semi-polar (20-21) GaN with an offset angle of 4.89° to the horizontal plane 

can be obtained. If a (113) Si substrate with a 4.89° miscut angle is adopted for growth to 

compensate the offset angle, a precise semi-polar (20-21) GaN layer can be achieved. 

Figure 6.1 shows that GaN may be grown on both sidewalls of (-1-11) and (11-1) Si facets 

and also the bottom (111) facet. Since the (11-1) and (-1-11) Si facets are parallel to each other, 

the GaN grown on (11-1) Si facets has the same crystal orientation as the GaN grown on (-1-11) 

Si facets, i.e., one growth front is along the c-direction, while another one is along the minus 

c-direction. This growth process is sketched in Figure 6.1(b). After the GaN arms grown from 

the two opposite sidewalls coalesce and continue to grow above the Si surface, GaN stripes 

with an ‘M’ shaped surface with smooth and parallel sidewalls are then formed. It is worth 

mentioning that below each M-shape GaN stripe is an air-channel formed as a result of the 

coalescence process. Such a channel plays an important role in producing a melt-back etching 

issue, which will be discussed later. The self-formed sidewalls can be used as a good cavity for 

a LD structure. This is very important for the fabrication of a semi-polar GaN based LD, as it is 

a great challenge to cleave semi-polar GaN [1].  
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Figure 6.1: Schematics of our semi-polar (20-21) GaN growth process on the stripe patterned 

(113) Si with (a) one sidewall growth or (b) two sidewalls growth. 

GaN could also be grown on the (111) Si facets on the bottom of the trenches, which is 

eventually stopped once the coalescence of the GaN growth from the two sidewalls occurs. 

Such growth can be neglected. Finally, (20-21) semi-polar GaN is grown on the 

stripe-patterned (113) Si substrate. After a standard H2 annealing process, an AlN buffer layer 

is grown under the same condition as discussed in Chapter 5.1. The growth conditions are 

listed in Table 6.1 in order to investigate the influence of growth conditions on crystal quality.  

Condition AlN thickness 

(nm) 

T (oC) Pressure 

(Torr) 

TMG 

(sccm) 

GaN Growth 

time (sec) 

I 100 1125 300 65 4000 

II 100 1075 300 65 4000 

III 100 1025 300 65 4000 

IV 400 1125 300 65 4000 

V 100 1125 600 45 6000 

Table 6.1: Growth conditions of GaN on stripe patterned (113) Si. 

Figure 6.2 show the top-view SEM images of all the samples grown using the conditions 

listed in Table 6.1. The growth condition labelled I in the above Table is the same as the 

optimised condition for the (11-22) GaN growth as discussed in Chapter 5.1. However, strong 

Ga melt-back etching occurs as shown in Figure 6.2(a). This is attributed to the undercut 
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configuration of such a Si stripe pattern, since AlN cannot be deposited on the (11-1) Si facet 

very well as a result of shadow effects. When the growth temperature is reduced down to 1025 
oC, the melt-back etching issue can be prevented [2] but GaN starts to be deposited on the SiO2 

layer masks (Figure 6.2 (c)), where a kind of amorphous or poly-crystal GaN is formed. This 

phenomenon has also been observed when the growth temperature is 1075 oC (Figure 6.2 (b)). 

These can be understood as: a relatively low growth temperature leads to parasitic growth of 

GaN on SiO2 [3]. An increase in growth temperature facilitates Ga atomic diffusion, thus 

preventing GaN growth on SiO2. However, it also facilitates GaN decomposition [4], leading to 

the melt-back etching issue. Therefore, a high temperature (>1075 o) is required in order to 

avoid the GaN parasitic growth on SiO2, while the Ga melt-back etching issue needs to be 

resolved simultaneously.  

 

Figure 6.2: (a)-(e) Top view SEM images of GaN grown on the stripe patterned (113) Si 

substrate under the growth conditions described in Table 6.1 

In order to avoid the melt-back etching during GaN growth, the thickness of AlN is 

increased from 100 to 400 nm in order to minimise the shadow effect. As shown in figure 6.2 

(d), the melt-backing etching issue weakens but still occurs. Simultaneously, the parasitic 

growth of GaN on SiO2 can also be observed. This can be understood as: AlN can be also 

deposited on SiO2 due to the high sticking coefficient of Al [5], which serves as a nucleation 

layer for further GaN growth on top. A thicker AlN layer on SiO2 enhances the probability for 

GaN to nucleate on AlN/SiO2 layers and thus the parasitic growth of GaN on SiO2. The 

influences of growth pressure and TMG flow rate on the surface morphology of the resultant 
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GaN have also been studied. As shown in Figure 6.2 (e), an improved surface morphology has 

been achieved grown under growth condition V in Table 6.1. The melt-backing etching issue 

weakens but still occurs. 

In principle, GaN which exhibits excellent chemical stability cannot react with silicon. 

However, if there exist some GaN decomposition at a high temperature, the Ga metal as a result 

of the GaN decomposition will react with silicon at high temperatures [6, 7]. Therefore, if we 

can manage to suppress GaN decomposition, in principle we will be able to eliminate the Ga 

melting back etching issue. GaN decomposition can easily take place at high temperatures if it 

is not exposed to NH3 [8]. For example, the well-formed M shape GaN stripes (i.e., generally 

after the coalescence) stop NH3 flowing through the channels formed underneath as a result of 

the coalescence process, where the GaN decomposition can happen. 

 

Figure 6.3: (a) Top view and (b) cross-sectional SEM images of the 10 μm trench introduced on 

original patterned Si substrate. 

In order to address this issue, we design a new mask, where a number of extra wide 

trenches along a direction which is perpendicular to the stripe orientation are introduced, as 

shown in Figure 6.3. These wide trenches are used as tunnels to allow NH3 to flow through the 

above mentioned channels. In our design, a number of 10 μm trenches with an interval of 5 mm 

across a whole wafer are introduced.  
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Figure 6.4: (a) Cross sectional SEM image, (b) and (c) top view SEM images, (d) SEM images 

taken with a 45° tilted angle of the GaN grown on the stripe patterned (113) Si without any 

miscut angle; (e) Cross sectional and (f) top view SEM images of the GaN grown on the stripe 

patterned (113) Si with a 4.89° miscut angle. 

Based on the modified stripe patterned (113) Si substrate, GaN growth is carried out under 

the best growth condition achieved so far (i.e., 1125 oC, 600 torr and 45 sccm TMG). As shown 

in Figures 6.4 (a) & (b), the melt-back etching has been successfully prevented. Although GaN 

can be grown in the trenches (a kind of poly-crystals with random orientations, and can be 

easily removed by a chemical solution) as shown in Figures 6.4 (c)-(d), the channels under the 

M-shape GaN stripes are not blocked so that NH3 can flow through them. Therefore, the GaN 

decomposition can be effectively suppressed, preventing the melt-back etching issue.  

In order to achieve precise semi-polar (20-21) GaN and also avoid the formation of the 

M-shape GaN for different application purposes, a (113) Si substrate with a 4.89° miscut angle 

is adopted. An identical patterning process is used. The best growth conditions are used (i.e., 
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1125 oC, 600 torr and 45 sccm TMG) for GaN growth. Figures 6.4 (e) & (f) show the 

cross-sectional and plane-view SEM images of the sample, demonstrating that the M-shape 

surface has disappeared as a result of the growth occurring only on (-1-11) due to the increased 

inclination angle of the (11-1) facet, where the GaN growth on the (11-1) facet becomes 

difficult. In the meantime, the melt-backing etching issue has also been eliminated.  

6.2 Structural and Optical Characterization 

The crystal orientation of GaN grown on the stripe patterned (113) Si without and with any 

miscut angle obtained in section 6.1 have been characterized by HD-XRD measurements. 

Figure 6.5 shows the on-axis XRD measurements performed in a 2θ-ω symmetric mode. For 

the GaN grown on our patterned (113) Si without any miscut angle, namely, the sample with an 

offset angle of 4.89°, only a sharp diffraction peak of (113) Si is observed. In contrast, for the 

GaN grown on our patterned (113) Si with a miscut angle of 4.89°, only a sharp diffraction 

peak of GaN (20-21) is observed (Figure 6.5 (b)), indicating true (20-21) GaN has been 

obtained by growth on our patterned (113) Si with the miscut angle.  
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Figure 6.5: XRD 2θ -ω scan profile of the symmetric (20-21) GaN plane of the GaN grown on 

our stripe patterned (113) Si substrate (a) without and (b) with a 4.89° miscut angle.  

The GaN in-plane crystal orientation has also been investigated by performing XRD 

measurements on the asymmetric GaN (0002) plane and the Si (-1-11) plane as a function of 

phi- and chi- angles, respectively, which are shown in Figures 6.6 and 7.7. For both samples, a 

single (0002) GaN peak is found at the same phi and chi positions of (-1-11) Si plane, meaning 
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that the [0001] direction for GaN is parallel to the [1-11] direction of the Si substrate. It is worth 

mentioning that for patterned (113) Si without any miscut angle GaN can be grown on both the 

sidewalls of the Si stripes, i.e., GaN can be grown on both the (-1-11) and the (11-1) Si facets. 

However, as (-1-11) and (11-1) Si facets are parallel to each other. Therefore, only a single GaN 

(0002) plane peak is observed. In addition, as shown in Figures 6.7(a) & (b), the chi positions 

of the GaN (0002) peak for the two samples are slightly different, which is due to the miscut 

angle of the Si substrate (one with a 4.89 miscut angle, and another one without it). The chi 

position shift is around 5°, which matches the miscut angle of 4.89° very well. 
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Figure 6.6: Phi dependent XRD spectra on the asymmetric (0002) GaN plane and the (1-11) Si 

plane of the GaN grown on our stripe patterned (113) Si substrates (a) without and (b) with a 

4.89° miscut angle. 
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Figure 6.7: Chi dependent XRD spectra on the asymmetric (0002) GaN plane and the (1-11) Si 

plane of the GaN grown on our stripe patterned (113) Si substrates (a) without and (b) with a 

4.89° miscut angle. 
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The top surface of the ‘M’ shape GaN stripe has also been investigated by both HD-XRD 

and SEM measurements. Figure 6.8 (a) shows that the angle between the top surface of the ‘M’ 

shape GaN stripes and the surface plane of Si (113) substrate is 18° (left red peak) and 38° 

(yellow peak), respectively, matching the angle measured through the chi dependent XRD 

measurement on asymmetric {10-11} GaN planes as shown Figure 6.8(b). This indicates that 

two top surface planes of the GaN ‘M’ shape stripes are {10-11} GaN planes, which are also the 

most stable plane due to its high thermal stability [9-13]. In addition, the right red peak at 

chi=32.5° in Figure 6.8(b) is also considered to arise from the {10-11} GaN plane, 

corresponding to the GaN grown at the bottom plane of the trench.  
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(a)                                (b) 

Figure 6.8: (a) Cross sectional SEM of the GaN grown on our stripe patterned (113) Si without 

any miscut angle, (b) XRD chi-scan profile of the asymmetric (10-11) GaN planes. 
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Figure 6.9: (a) Cross-sectional SEM of GaN grown on the stripe patterned (113) Si with a 

miscut angle of 4.89° (b) Chi dependent XRD spectra on the asymmetric (10-11) GaN planes. 
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For the GaN grown on our patterned (113) Si with a 4.89° miscut angle, the angle between 

the GaN top surface plane and the horizontal plane is 13.1° (Figure 6.9(a)), which is equal to 

the chi position of {10-11} plane of GaN, as revealed by the chi-dependent XRD 

measurements of the asymmetric (10-11) GaN planes (Figure 6.9(b)). This indicates the 

surface plane of the GaN grown on the patterned (113) Si with a 4.89° miscut angle is the 

{10-11} plane.  

In a short summary, for the GaN grown on the patterned (113) Si without any miscut angle 

(Figure 6.8), the angle between the GaN top surface plane and the horizontal plane is 18° as 

shown in Figure 6.8(a), while it drops to 13° for the GaN grown on the pattered (113) Si with 

the miscut angle as shown in Figure 6.9(a). This difference of ~5 degree matches the miscut 

angle (4.89°) very well.  

The crystal quality has been investigated by HD-XRD rocking curve measurements. 

Figure 6.10 shows XRD rocking curves of the (20-21) GaN on the patterned (113) Si substrate 

without any miscut angle, demonstrating FWHMs of 0.1422° and 0.1432°measured along GaN 

[0001] and GaN [10-10], respectively.  

39.6 39.8 40.0 40.2 40.4 40.6
 ω (degree)

 

 

In
te

ns
ity

 (a
.u

.)

(a)

34.8 35.0 35.2 35.4 35.6
 ω (degree)

 

 

In
te

ns
ity

 (a
.u

.)

(b)

 

Figure 6.10: XRD rocking curves of the (20-21) GaN grown on the patterned (113) Si without 

any miscut angle, measured (a) along GaN [0001] and (b) along GaN [10-10]. 

Similarly, for the (20-21) GaN grown on the patterned (113) Si substrate with a miscut 

angle of 4.89°, Figure 6.11 shows on-axis XRD rocking curves of the (20-21) GaN, indicating 

FWHMs of 0.1486° and 0.1400°, measured along GaN [0001] and along GaN [10-10], 

respectively. Detailed azimuth angle dependent XRD rocking curve measurements have been 

carried out, and are shown in Figure 6.12. The FWHMs are between 0.1576° and 0.1400°, 

which are much narrower than any other reports on (20-21) GaN with a similar thickness 
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grown on either patterned Si (0.169° - 0.414°) or patterned sapphire (0.188° - 0.408°) [12, 13]. 

Off-axis XRD rocking curves measurements along (000n) and (n0-n0) directions have also 

been carried out. The FWHMs of the off-axis XRD rocking curves for (0002), (0004) and 

(0006) GaN plane along are 0.2534°, 0.2463° and 0.2666°, respectively. The FWHM of the 

off-axis XRD rocking curves for (10-10), (20-20) and (30-30) GaN plane are 0.1479°, 0.1548° 

and 0.1593°, respectively.  
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Figure 6.11: XRD rocking curve of the (20-21) GaN grown on the patterned (113) Si with a 

miscut angle of 4.890, measured (a) along GaN [0001] or (b) along GaN [10-10]. 
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Figure 6.12: FWHM of XRD rocking curves as a function of an azimuth angle. 

The microstructure has been further investigated by TEM measurements on the (20-21) 

GaN grown on the patterned Si without any miscut angle. Figures 6.13 (a) and (b) show the 

cross sectional TEM images taken with g=0002 and g=11-20, respectively. As can be seen, 

most dislocations could only be observed at the interface between GaN and the Si facet. With 

the GaN growth proceeding along the +c direction, the dislocation density decreases 

dramatically due to the defect interaction and the dislocation bending, leading very few 
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dislocations to penetrate to the surface of the GaN stripes.  

 

Figure 6.13: Cross sectional TEM images of the (20-21) semi-polar GaN grown on the 

patterned Si without any miscut angle, taken around [1-100] zone-axis with (a) g=0002 and (b) 

g=11-20. 

The reduction in BSFs has been studied by TEM measurements measured with g=10-10 as 

shown in Figure 6.14. The BSFs initiate at the GaN/Si interface, lying on the c-planes. As the 

GaN growth along the +c direction, it is clearly observed that all BSFs are confined at the 

GaN/Si interface, which is the same as discussed in section 5.3. Apart from the interface area, 

there are very few BSFs generated during the GaN growth along +c-direction. The mechanism 

accounting for the BSF reduction is considered to be the same as that discussed in Chapter 5.3, 

namely, the BSF density of the GaN growth along the c-direction is inherently low. Moreover, 

most of the existing BSFs at the interface are blocked by the overhanging SiO2 layer, which 

could prevent BSFs from propagating to the Si surface, leading to a further reduction in BSF 

density. For the (20-21) GaN grown on either patterned Si or sapphire by other groups [10,11], 

the BSFs are also impeded as a result of enhanced GaN growth along the [0001] direction, but 

the existing BSFs at the interface between GaN and silicon would extend to the surface without 

being blocked. This comparison demonstrates the major advantages of our approach in terms 

of reducing BSFs.   
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Figure 6.14: Cross sectional TEM image of the (20-21) semi-polar GaN grown on the 

patterned Si without any miscut angle, taken with a near [1-210] zone-axis with g=10-10. 
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Figure 6.15: PL spectrum of the (20-21) GaN grown on the patterned (113) Si without any 

miscut angle, measured at 10 K  

Further evidence of the significantly reduced BSF density of the (20-21) GaN include PL 

measurements performed at 10K. Figure 6.15 shows the PL spectrum of the (20-21) GaN on 

the stripe patterned (113) Si without any miscut angle, demonstrating that the PL is dominated 

by a very strong band-edge emission accompanied with very weak BSF and PSF related 

emissions located on the lower energy side. The PL intensity of the band-edge emission is more 

than one order magnitude higher than that of the BSF or PSF related emission. 
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6.3 InGaN MQWs grown on (20-21) GaN 

InGaN MQW structures have been attempted to be grown on the top of the (20-21) GaN 

stripes with an M-shape in order to validate the crystal quality of our (20-21) GaN. As 

illustrated in Figure 6.16, sample A contains 5 pairs of InGaN/GaN MQWs with a well 

thickness of 2 nm and a barrier thickness of 12 nm, respectively, where the emission 

wavelength is at 460 nm. Sample B contains the same MQW structure but only with 3 pairs of 

InGaN/GaN MQWs, and the indium content in InGaN well is higher than that in sample A, 

leading to an emission wavelength at 490 nm.  

 

Figure 6.16: Schematic of the InGaN/GaN MQW structure of sample A  
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Figure 6.17: Excitation power dependent PL spectra of InGaN QWs grown on (a) & (b) ‘M’ 

shape GaN stripes and (c) c-plane GaN. 
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Excitation power dependent PL measurements have been measured on both samples in 

order to study any change in QCSE as shown Figure 6.17, demonstrating that there is no 

obvious blue shift for both samples when the excitation power increases from 80 to 11937 

mW/cm2. For comparison, standard InGaN/GaN MQWs with a similar emission wavelength 

grown on c-plane GaN has been measured, and the excitation power dependent PL spectra have 

been provided in Figure 6.17, showing a blue shift of 8.5 nm (or 50 meV) in emission 

wavelength as expected, measured under identical conditions. This is due to the screening 

effect of the QCSE as a result of optically generated electrons [14, 15]. This comparison has 

clearly confirmed that the QCSE has been significantly suppressed in the InGaN/GaN MQWs 

grown on the (20-21) GaN.  
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Figure 6.18: Temperature dependent PL spectra of sample A. 
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Figure 6.19: Temperature dependent PL spectra of sample B 
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The IQE of an InGaN/GaN MQW structure can be roughly estimated by performing 

temperature dependent PL measurements, as it can be simply assumed that non-radiative 

recombination centres are frozen at a low temperature, such as 10K. Based on this assumption, 

it has been generally accepted that electron-hole recombination at a low temperature is 

dominated by a radiative recombination process and the IQE at the low temperature can be 

assumed to be 100 %. The IQE at room temperature (300K) can be estimated by calculating the 

ratio of the integrated PL intensity at 300K to that at 10K [15, 16]. Of course, this method is not 

accurate, as it is affected by a number of other factors, such as excitation power, etc. Therefore, 

temperature dependent PL measurements will not allow us to obtain accurate IQE. However, it 

is useful to make a comparison of the IQE of different samples if the measurement conditions 

are identical. The temperature dependent PL measurements have been taken on both samples A 

and B, as shown in Figures 6.18 and 6.19, respectively. Figure 6.20 shows the integrated PL 

intensity as a function of temperature for sample A and B in term of an Arrhenius plot, which is 

obtained by plotting the inversion temperature versus the logarithm of normalized integrated 

PL intensity. The Arrhenius plot is generally used to study the effect of temperature on 

chemical reactions. For semiconductor PL characterisations, it can be used to extract 

information relating to the thermal activation energy and the localization depth. As shown in 

Figure 6.20, the ratio of the integrated PL intensity for sample A is 20.0%, which is slightly 

higher than that for sample B. Although the emission wavelength of sample B is more than 30 

nm longer than that for sample A, the IQE does not drop so much, which is very different from 

their counterparts grown on c-plane GaN whose IQE normally significantly decreases with 

increasing emission wavelength, in particular when the wavelength approaches the green 

spectral region. This clearly demonstrates the major advantages of semi-polar GaN for the 

growth of longer wavelength emitters.       
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Figure 6.20: Normalized PL integrated intensity as a function of temperature in an Arrhenius 

plot. 

Furthermore, high spatial-resolution confocal PL measurements have been performed on 

sample A and sample B. The typical spatial resolution is 160 nm. The confocal PL mapping 

measurements have been carried out at room temperature. The corresponding confocal PL 

integrated intensity mapping and the PL spectrum measured on the InGaN/GaN MQWs on the 

(20-21) GaN stripe have been provided in Figures 6.21 and 7.22 for samples A and B, 

respectively.   

 

Figure 6.21: (a) Top view SEM of sample A; (b) confocal PL intensity mapping and (c) PL 

spectrum measured at one random point specified in Figure b. 
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Figure 6.22: (a) Top view SEM of sample B; (b) confocal PL intensity mapping and (c) PL 

spectrum measured at one random point specified in Figure b. 

As shown in both Figures 6.21(c) and 7.22(c), the spectrum in each case shows multiple 

peaks, which could be ascribed to the optical interference from the parallel sidewalls of the ‘M’ 

shape GaN stripes. The confocal system has a high spatial resolution and the sidewalls of GaN 

stripe are smooth, forming Fabry-Perot modes [17]. For the Fabry-Perot mode, the following 

equation has to be satisfied: 

𝓂𝓂𝜆𝜆 = 2𝑛𝑛𝑛𝑛   (7.1) 

where 𝓂𝓂 is an integer, 𝜆𝜆 is the wavelength, 𝑛𝑛 is the medium refractive index of cavity 

( nGaN ≈ 2.48 or 2.45 at wavelength of 460 and 490nm, respecively ) [18], and 𝐿𝐿  is the 

cavity length. The relationship between mode separation (∆𝜆𝜆) and cavity length is described 

by: 

∆𝜆𝜆 = 𝜆𝜆2

2𝑛𝑛𝑛𝑛
    (7.2) 

Figures 6.21(c) and 7.22(c) show the spectral separation between multiple peaks is around 

7.0 nm and 6.8 nm for sample A and B, respectively. Based on question 7.2, the cavity lengths 

for the sample A and B are around 6-7 μm, respectively. This matches the GaN stripe width for 

these two samples as shown in their cross-sectional SEM images.  

Cathodoluminescence (CL) measurements have also been performed on sample A at room 

temperature. In comparison with PL, CL is also designed to analyse the luminescence emitted 

from a sample. But instead of laser, CL uses an electron beam as excitation power, which can 

be focused into a nanoscale probe and gives a spatial resolution down to 20 nm. As shown in 

Figure 6.23, the results obtained are similar to those measured by our confocal measurements, 
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namely, clear optical modes have been observed.  

 

Figure 6.23: (a) Top view SEM image of sample A; (b) CL intensity mapping and (c) CL 

spectrum measured on the MQWs in the centre position of the (20-21) GaN stripe. 

6.4 Conclusion 

Semi-polar (20-21) GaN has been successfully achieved by means of growth on our 

specially designed patterned (113) Si substrates. The influence of both GaN growth conditions 

and the Si substrate miscut angle has been investigated. When (113) Si substrates without any 

miscut angle are adopted, semi-polar (20-21) GaN with a 4.89° offset angle can be obtained, 

forming ‘M’ shape GaN stripes. When (113) Si substrates with a 4.89°miscut angle are adopted 

for growth, an almost coalesced film of semi-polar (20-21) GaN with a 0° offset angle has been 

obtained. Like all other reported GaN growth on patterned Si substrates with undercut 

geometry grooves, the risk of melt-back etching issue is always high due to a large number of 

unavoidable residual voids during GaN growth, leaving the grown GaN to have the high 

possibility of contacting unprotected undercut Si facets. In this study, by introducing 10 μm 
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gaps on the Si stripe patterns, the melt-back etching issue has been successfully prevented. The 

obtained semi-polar (20-21) GaN demonstrates excellent crystal and optical qualities, 

confirmed by HD-XRD, PL and TEM measurements. The FWHMs of the XRD on-axis 

rocking curves of our (20-21) GaN  are between 0.158° and 0.140°, which is the best result so 

far. For another two reported approaches of (20-21) GaN growth, which utilise patterned Si 

substrates or patterned sapphire substrates [12, 13], the FWHMs of the XRD on-axis rocking 

curves are 0.169° - 0.414° or 0.188° - 0.408°, respectively. Low temperature PL measurements 

show a high ratio of the near band edge emission intensity to the BSF related emission intensity, 

indicating a quite low BSF density. Based on TEM measurements, the mechanism of the defect 

reduction has been investigated. Furthermore, InGaN MQWs have been attempted to be grown 

on the (20-21) GaN, and detailed optical measurements have been carried out. These have 

validated the excellent quality of the (20-21) GaN.  
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Chapter 7 
Self-induced GaN Nanowires Grown on 
(111) Si Substrates 

7.1 Nanowire Growth with TMA Pre-flowing  

The growth of GaN NW was performed by MOCVD on 2-inch planar (111) Si substrates. 

First, the Si substrate is subject to a thermal annealing process in a H2 ambient as usual. TMA 

pre-flowing is then performed by depositing a small amount of TMA on the Si substrate at a 

high temperature. Following that, the GaN NW growth is carried out. The TMA pre-flowing 

and GaN growth are carried out under various conditions, as illustrated in Tables 7.1 & 7.2. The 

pressure used during the TMAl pre-flowing and the GaN NW growth period is 65 and 300 Torr, 

respectively. 

TMA pre-flowing condition T (oC) Flow rate (sccm) Time (sec) 

TMA pre-flowing I 1145 120 6 

TMA pre-flowing II 1145 120 10 

TMA pre-flowing III 866 120 6 

TMA pre-flowing IV 1145 30 24 

TMA pre-flowing V 1145 10 72 

TMA pre-flowing VI 1145 6 120 

Table 7.1: Different growth conditions of TMA pre-flowing. 

The initial stage of the growth is a key step, which determines the formation of NWs. First 

of all, the effect of the TMA pre-flowing on initialization of the NW growth has been 

investigated. Two samples are grown under identical GaN growth conditions (i.e., condition I 

listed in Table 7.2), but one is grown with TMA pre-flowing (pre-flowing I in Table 7.1) and 

another without. The surface morphologies of two samples are investigated by SEM 

measurements as shown in Figures 7.1 (a) & (d). It has been found that the TMA pre-flowing is 
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crucial to the initialisation of NWs. For the sample without TMA pre-flowing, only GaN 

clusters with both random orientations and diameters are observed. In contrast, GaN NWs with 

regular orientations has been obtained for the sample with TMA pre-flowing. The key role of 

the pre-flowing TMA on the Si substrate is that it would generate Al-Si alloyed nanodots 

serving as nucleation sites for NW growth. This is completely different from catalyst VLS 

growth of GaN NWs, where metal nano-droplets are utilized to activate the NW growth [1-4]. 

To verify this, only the TMA pre-flowing process has been performed on a (111) Si substrate 

without any GaN growth, where there are many nanodots observed as shown in Figure 7.1(b). 

In order to confirm whether these dot are Al dots or not, the sample is immersed in nitric acid 

(69% w/w) for 20 minutes treatment. However, the morphology remains unchanged as shown 

in Figure 7.1(c), indicating that the nanodots are composed of acid-resistant Al-Si alloys 

instead of Al. The morphology also remains unchanged after a phosphoric or hydrochloric acid 

treatment.  

Next, the influence of TMA pre-flowing on the GaN NW growth morphology is studied 

through modifying growth temperature and the flow rate of TMAl. Figures 7.1(d)-(i) show the 

bird’s-eye view SEM images of six samples grown using the conditions listed in Table 7.1, 

whereas the subsequent GaN growth conditions for these samples are kept the same. It has been 

found that the GaN NWs are typically grown on the top such Al-Si alloys as aforementioned. 

The morphology displayed in Figures 7.1(d)-(i) suggests that the TMA pre-flowing 

significantly affects the subsequent GaN NW growth. With a large amount of TMA precursor, 

only GaN islands instead of NWs are obtained, and their diameters are up to micrometres, as 

illustrated in Figure 7.1(e). This is attributed to the dense Al-Si nanodots, which form large 

flakes serving as the nucleation area for the subsequent GaN growth. On the other hand, a high 

growth temperature of 1145oC is also found to play a critical role in the formation of Al-Si 

alloys. In the case of the TMA pre-flowing performed at a much lower temperature at 866 oC, 

Figure 7.1(f) shows that only micrometer-sized GaN islands can be observed due to the lack of 

Al-Si alloy which is generally formed at a high temperature above 11000C.  

Furthermore, the influence of the TMA flow rate has been systematically studied. The flow 

rate is varied from 120 to 6 sccm, while the total amount of the TMA precursor is fixed by 

increasing the pre-flowing time (I, IV-VI in Table 7.1). Figures 7.1(d), (g) and (h) indicate that 
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the NW density increases when the flow rate is reduced to 10 sccm. Further decreasing the flow 

rate to 6 sccm, the morphology turns back to micrometer-sized islands again, shown in Figure 

7.1(i). This is ascribed to the difficulty in formation of Al-Si alloys at a very low flow-rate, due 

to the dominance of desorption of Al atoms. 

 

Figure 7.1: (a) Cross sectional SEM image of GaN directly grown on Si without the TMA 

pre-flowing; (b)&(c) top view SEM images of Si surface with the TMA pre-flowing before and 

after acid treatment; (d)-(i) bird’s-eye view SEM images of GaN NWs grown under TMA 

pre-flowing conditions of ‘I-VI’ listed in Table 7.1, respectively. 

7.2 Effects of GaN Growth Condition 

In addition to the TMA pre-flowing conditions, the GaN NW growth also needs to be 

optimised by varying the growth conditions (Table 7.2). For all the samples, the TMA 

pre-flowing is kept the same (TMA pre-flowing V in Table 7.1), and the GaN growth time is 

varied when the flow rate of TMG is changed, in order to keep total deposited material (Ga 

source) the same. Firstly, at the same growth temperature (800 oC), the flow rates of NH3 and 

TMG are changed (GaN condition I-IV in Table 7.2). As shown in Figures 7.2 (a) and (c), by 
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reducing a NH3 flow rate, more GaN NWs are grown with a smaller size. The morphology 

analysis of GaN NWs is illustrated in Figure 7.3, where the minimum NW diameter is around 

50 nm. Comparing with Figures 7.3 (a) and (c), a low NH3 flow rate facilitates the formation of 

NWs with a small diameter and a long height, indicating that a high NH3 flow rate suppresses 

the nucleation of GaN NW growth [5]. Then, with a NH3 flow rate of 450 sccm, the flow rate of 

TMG is modified from 2 to 5 sccm. The SEM images and the NW morphology analyses of the 

samples are shown in Figures 7.2 (b), (c), (d) and Figures 7.3 (b), (c), (d). By increasing TMG 

flow rate from 2 to 2.5 sccm, more GaN NWs appear, especially for the small NWs. But with 

further increasing the TMG flow rate from 2.5 to 5sccm, GaN NWs start to coalesce to form 

large NWs, leading to more large NWs and a reduction in NW density. The optimised flow 

rates of NH3 and TMG are 450 sccm and 2.5 sccm (GaN condition III), respectively.  

GaN Growth Condition T (oC) NH3 (sccm) TMG (sccm) Growth time (sec) 

GaN condition I 800 1100 2.5 3840 

GaN condition II 800 450 2 4800 

GaN condition III 800 450 2.5 3840 

GaN condition IV 800 450 5 1920 

GaN condition V 866 450 2.5 3840 

GaN condition VI 820 450 2.5 3840 

GaN condition VII 775 450 2.5 3840 

Table 7.2: Different growth conditions of GaN NW growth. 
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Figure 7.2: Bird’s-eye view SEM of GaN NW growth with GaN condition I to IV. 

 

Figure 7.3: Diameter distribution, density and height of GaN NWs grown with GaN condition I 

to IV. 

The influence of GaN growth temperature has been investigated, shown in Figures 7.4 and 
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7.5. The flow rate of NH3 and TMG are kept as 450 and 2.5 sccm, respectively. It is found that 

the growth at a high temperature leads to long NWs with a low density. In comparison, the 

NWs grown at low temperatures tend to coalesce, eventually resulting in NWs with a large 

diameter. This phenomenon can be explained by the enhanced diffusion length of Ga adatoms 

at a high temperature, suppressing the nucleation of GaN in the region between the NWs [5-7]. 

The influence of GaN growth condition is summarized in Table 7.3. With different growth 

conditions, straight GaN NWs can be grown with density up to 3×108 cm-2, height up to 1 μm 

and diameter down to 50 nm. As discussed in Chapter 2.3.3, for the self-induced GaN NW 

growth on Si by MOCVD, currently, only two groups demonstrate some results as shown in 

Figures 2.15 (c)&(d), where either an in-situ SiN mask or VLS growth with TMG pre-flowing 

are used, respectively. For the in-situ SiN mask method, the uniformity of the GaN NWs 

formed is not good and many NWs are inclined. The density of NW is only around 2×102 mm-2 

and the diameters of NWs are all larger than 1μm. For the TMG pre-flowing method, the 

density of GaN NW is 2.44×106 cm-2 and the minimum diameter of NWs is about 350 nm. 

 

Figure 7.4: Bird’s-eye view SEM images of GaN NW growth with GaN condition III and V to 

VII. 
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Figure 7.5: Diameter distribution, density and height of GaN NWs grown with GaN condition 

III and V to VII. 

GaN growth 
condition 

GaN NWs 

With increasing 

NH3 flow rate 

With increasing 

TMG flow rate 

With increasing 

Temperature 

Diameter ↑ ↓, then↑ ↓ 

Density ↓ ↑, then↓ ↓ 

Height ↓ ↓ ↑ 

Table 7.3: A summary of the influences of GaN growth condition on GaN NW morphology. ‘↑’ 

means an increase, and ‘↓’ means a decrease. 

7.3 Structural and Optical Characterization 

To determine the crystal orientations of GaN NWs, HR-XRD measurements have been 

performed. Figure 7.6 demonstrates XRD measurement in a 2θ-ω mode. Only sharp diffraction 

peaks of (0002) GaN and (111) Si can be observed, indicating single crystal GaN has been 

obtained.  
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Figure 7.6: XRD 2θ -ω scan profile of the symmetric plane of the GaN NWs grown on (111) Si 

substrate. 

Moreover, the GaN NW in-plane crystal orientation is also investigated by performing 

XRD measurements in a phi-scan mode on asymmetric GaN (10-12) plane, shown in Figure 

7.7. For comparison, the GaN NWs grown by MBE shown in Figure 2.15(e) is also measured. 

For the GaN NWs grown by MOCVD, six peaks with a 60 degree spacing are clearly seen, 

which is attributed to the GaN hexagonal symmetric structure [8]. But for the GaN NWs grown 

by MBE, there is no clear peak, indicating that the in-plane crystal orientations of different 

GaN NWs are fairly random. This means that there is not any epitaxial crystal relationship 

between GaN NWs and the (111) Si substrate used. Based on these two XRD data, it can be 

concluded that all the GaN NWs of our sample align along the c-direction and have the same 

in-plane crystal orientation. 
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Figure 7.7: XRD phi-scan spectra on the asymmetric (10-12) GaN plane of the GaN NWs 

grown by MOCVD and MBE, respectively. 
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The GaN NW crystal quality is investigated by XRD rocking curve scan of (0002) GaN 

plane, as shown in Figure 7.8. Comparing with GaN NWs grown by MBE, the FWHM of the 

XRD rocking curve of the NWs grown by MOCVD is much smaller, indicating a good crystal 

quality. This is also much better than that of the GaN NWs grown on Si by means of in-situ SiN 

masks, where the FWHM of the XRD rocking curve is 1.37° [9]. 
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Figure 7.8: XRD ω-rocking curves of GaN (0002) plane of GaN NWs grown by MOCVD and 

MBE. 

Optical properties have been investigated with PL measurements at both room temperature 

and low temperature (10 K) using a 325 nm He-Cd laser. For a reference, the spectrum of a 

standard planar 1.2 μm thick c-plane GaN-on-Si by MOCVD is also presented. As shown in 

Figure 7.9, room temperature PL intensity of NWs is 44 times higher than that of the reference 

sample, possibly due to a low density of defects. In the spectra at low temperature as shown in 

Figure 7.10, a blue shift in emission wavelength has been observed compared with that of the 

planar GaN on Si, suggesting a strain relaxation in the NWs [10]. 
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Figure 7.9: PL spectra of the GaN NWs and the planar GaN on (111) Si grown by MOCVD, 

measured at room temperature. 
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Figure 7.10: PL spectra of the GaN NWs and the planar GaN on (111) Si grown by MOCVD, 

measured at 10 K. 

TEM measurements have been carried out to study the NW crystal structure. Figures 

7.11(a) and (b) exhibit typical cross-sectional TEM images of the GaN NWs, taken around 

[1-100] zone-axis with diffraction vectors of g=0002 and g=11-20, respectively. The gaps 

between NWs are filled with SiO2 for sample preparation; while the shadows in some NWs are 

caused by strain contrast. No dislocations are observed in the upper part of our NWs due to an 

elastic strain relaxation during growth [11]. This good crystal quality is a good base for future 

growth of quantum wells/quantum dots. Figure 7.11(c) is a cross sectional TEM image taken 

with g=1-100 used for the observation of any possible BSFs. No BSFs are observed in the 

upper part of NWs, agreeing well with the low temperature PL results. 
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Figure 7.11: Cross sectional TEM images of GaN NWs taken around [1-100] zone-axis with (a) 

g = 0002 and (b) g = 11-20, and (c) taken close to [1-210] zone-axis with g = 10-10. 

7.4 Conclusion 

In summary, self-induced GaN NW growth on (111) silicon has been successfully realized 

by a two-step approach: TMA pre-flowing and then NW growth. It has been revealed that the 

Al-Si alloys formed by the TMA pre-flowing step is crucial and act as the nucleation sites for 

the subsequent GaN NW growth. The conditions for the TMA pre-flowing and the GaN NW 

growth have been optimized by systematically adjusting the temperature and the precursor 

flow rate, which has been found to have strong influence on the morphology of NWs. Straight 

NWs grown along the c-direction have been obtained with a density of 1~3×108 cm-2. The 

diameters of NWs are down to 50 nm and the heights of NWs are up to 1.2 μm. In comparison 

with other reported self-induced GaN NWs on Si by MOCVD, our growth results exhibit 

straight NWs with a much higher density and smaller diameter. Based on the HD-XRD and 

TEM characterisations, GaN NWs demonstrate a high crystal quality with a low density of 

defects. The FWHM of the XRD rocking curve of the NWs are 0.654°, which is much smaller 

than that of GaN NWs grown by means of in-situ SiN masks (1.37°). The PL spectrum 
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measured at both a low temperature and room temperature demonstrate excellent optical 

properties with only a strong band edge emission, further confirming the crystal quality.  
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Chapter 8 
Summary and Future Work 

8.1 Summary 

The research objectives in this thesis are to grow high quality semi-polar GaN and GaN 

NWs on Si substrates.  

In order to realise semi-polar GaN growth on Si, two simple but cost-effective approaches 

have been developed for Si substrate patterning. By employing standard photolithography, dry 

etching, anisotropic wet etching and selective deposition, 2-inch patterned Si substrates with 

either inverted-pyramids or stripes have been achieved. Both patterned Si substrates 

demonstrate good uniformity and high reproducibility. 

Semi-polar (11-22) GaN growth has been performed on the patterned Si substrates with 

inverted-pyramids. By optimising growth conditions, semi-polar (11-22) GaN film (with 3 μm 

thickness) with a smooth surface has been achieved. The melt-back etching, one of the great 

issues for GaN grown on Si, has been successfully prevented by a selective deposition of SiO2 

before growth. Moreover, surface cracking, another great challenge for GaN growth on silicon, 

has also been resolved. The obtained (11-22) GaN shows excellent crystal quality with a single 

crystal orientation, as revealed from HD-XRD and TEM measurements. Based on TEM results, 

a clear reduction in both dislocation density and BSF density has been observed and the 

corresponding mechanisms have been studied. In addition, good optical properties have also 

been demonstrated by PL measurements. Low temperature PL measurement show a significant 

high ratio of the intensity of the near band emission to the BSF related emission, which further 

confirms a significantly reduced BSF density. 

Based on the patterned Si substrates with stripes, semi-polar (20-21) GaN growth has been 

realised. By varying growth conditions and patterned Si substrate parameters, GaN has been 

grown on either single or both sidewalls of Si stripe, leading to almost coalesced film or ‘M’ 

shape GaN stripes, respectively. The melt-back etching issue has been resolved by introducing 

a big gap truncating Si stripes. The GaN obtained on both patterned Si substrates show good 
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crystal quality, as demonstrated by HD-XRD scans and further confirmed by PL measurement. 

The FWHM of the XRD on-axis rocking curve of the GaN (20-21) obtained is down to 0.14°, 

which is much better than any other reports with a similar growth thickness. Low temperature 

PL measurement show a significant high ratio of the intensity of the near band emission to the 

BSF related emission, indicating a quite low BSF density. The crystal defect reductions have 

been observed and studied by TEM measurements. Moreover, InGaN QWs have been grown 

on the top of the (20-21) GaN stripes. Comparing with the MQWs grown on c-plane GaN, a 

significant reduction in QCSE has been achieved, as revealed by power dependent PL 

measurements.  

 Finally, GaN NWs have been successfully achieved on Si without any alien metal catalyst 

or patterned mask, by employing the TMA pre-flowing. The influences of TMA pre-flowing 

and GaN growth conditions have been systematically investigated, resulting in GaN NWs with 

a density of 1~3×108 cm-2, a 50~1000 nm diameter and a height of up to 1 μm. Neither 

dislocations or BSFs have been observed on the top of NWs in TEM measurements. Based on 

XRD and PL, it has been demonstrated that the GaN NWs exhibit a single crystal orientation 

and high crystal quality.  

8.2 Future Work 

Based on the semi-polar (11-22) GaN film on patterned Si, LED structures, especially with 

green and yellow emission, may be grown, taking advantages of semi-polar orientations.  

The stripe patterned Si substrate may be optimized for the growth of fully coalesced 

semi-polar (20-21) GaN, which is advantageous for homogeneous InGaN MQWs with high In 

incorporation. A green or yellow LD structure on the top of semi-polar (20-21) GaN is also 

planned. For the ‘M’ shape GaN stripes, by employing very smooth sidewalls as the good 

cavities, LD structures are also planned. The LD fabrication will benefit from the easy cleavage 

of Si substrates.  

For the GaN NW growth on Si, due to low density crystal defects and relaxed strain for the 

top of NWs, MQWs or quantum dots can be further grown on the top of GaN NWs, aiming to 

achieve nano-devices with excellent optical properties and significantly reduced QCSE.    
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Abbreviations  

AFM atomic force microscope 

AlN  aluminium nitride 

BSF basal plane stacking fault 

CP2Mg bis(cyclopentadienyl)magnesium 

ELOG epitaxial lateral overgrowth 

EQE external quantum efficiency 

FWHM full width hall maximum 

GaN gallium nitride 

H2  hydrogen 

HD-XRD high resolution X-ray   

   diffraction 

HVPE hydride vapour phase epitaxy 

ICP  inductively coupled plasma 

InN  indium nitride 

IPA  isopropyl alcohol 

IQE internal quantum efficiency 

LD  laser diode 

LED light-emitting diode 

LT  low temperature 

MBE molecular beam epitaxy 

Mg  Magnesium 

MOCVD metal organic chemical vapour 

 deposition 

NH3 ammonia 

NW  nanowire 

PECVD plasma enhanced chemical vapour 

deposition 

PL  photoluminescence 

PSF prismatic stacking fault 

QCSE quantum confine stark effect 

MQW multiple quantum well 

RIE reactive-ion etching 

Sccm standard cubic millimetres per 

minute 

SEM scanning electron microscopy 

SF  stacking fault 

Si  silicon 

Si2H6 disilene 

SiC  silicon carbide 

TEM transmission electron microscope 

TMA trimethylaluminium 

TMG trimethylgallium 

TMI trimethylindium 

UV  ultra-violet 

VLS vapor-liquid–solid
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