A study of ADPKD pathogenesis and treatment in zebrafish models

By:

Aylin Rebecca Metzner

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

The University of Sheffield
Faculty of Medicine, Dentistry and Health
Department of Infection, Immunity & Cardiovascular Disease

September 2016
Abstract

Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common monogenic diseases with a worldwide incidence of 1/1000. It is caused by mutations in \(PKD1 \) or \(PKD2 \). Around 10% of all end-stage renal disease results from ADPKD, translating into an annual cost of €1.5 billion across Europe. Although tolvaptan has recently been licensed for use in patients with evidence of rapid disease progression, it is only moderately effective and associated with significant side effects, resulting in the urgent need to identify new treatments.

In this project, a \(pkd2 \) zebrafish mutant (\(pkd2^{hu2173} \)) was used for compound library screens with commercial drug libraries. The dorsal tail curvature phenotype, the most penetrant ADPKD-related trait in this mutant, was chosen as the assay read-out. After thorough testing, the most promising compounds were studied in three-dimensional mammalian cyst assays using both canine (MDCK) and human (Ox161c1; \(PKD1^{-/-} \)) cell lines. Experiments in cyst assays largely confirmed the hit compounds as relevant to cyst formation and expansion. Several hits linked to pathways previously implicated in other ADPKD models including androgens, prostaglandins and TGF\(\beta \) but the precise role of others remains to be identified.

Using a novel kidney calcium-reporter zebrafish line \(enpep:Gal4;UAS:GCaMP7a \), \(\textit{in vivo} \) \(Ca^{2+} \) levels were found to be reduced in \(pkd2 \) mutant fish compared to sibling controls. Genetic interactions between \(pkd2 \) and \(elipsa \), a ciliary protein, were observed for tail curvature and glomerular dilatation, providing the first evidence of a non-redundant function for \(pkd2 \) in the zebrafish pronephros.

In conclusion, this study has identified several new compounds and pathways relevant to cystogenesis using a zebrafish \(pkd2 \) model and provided the first evidence of a non-redundant function for \(pkd2 \) in the zebrafish kidney. The zebrafish \(pkd2 \) mutant will continue to be a useful model to study ADPKD pathogenesis and potential treatments.
Acknowledgements

First and foremost, I would like to thank my two supervisors for their continuous support during this project. I am especially grateful to Albert Ong who has given me the opportunity to work with him, one of the leaders in the field of ADPKD, on a project of this scale. He provided the intellectual background and helped steer the project into the right direction. Freek van Eeden, my secondary supervisor, always had an open door for me and tirelessly provided methodological and moral support. Thank you both for helping my project and me in the past three years. Needless to say, without your support I could not have done it.

Eleanor Markham, Freek’s technician who tirelessly maintained my fish lines and helped out whenever asked, deserves a special “thank you”. Without her I would not have managed. Sarah Baxendale helped with setting up the compound screen, Morgane Lannoy imparted her knowledge on the cell culture assays and the aquarium staff did a great job with fish maintenance and providing knowledgeable help. Thank you also to all the others in the van Eeden, Ong, Wilkinson, Bandmann and Chico labs for lending a hand or an ear during different phases in my project.

Special thanks also goes to the Bateson Centre in general, which connects so many people with its interdisciplinary approach and to the TranCYST ITN for providing opportunities to present my work on meetings across Europe and giving feedback from a variety of specialties.

Thank you also to all my friends here in Sheffield, who shared my experience as PhD student. Most of us are far away from home and I am grateful that we have formed our own little family here in the UK.

I would also like to thank our funding bodies, without whom this project would not have been possible: EU-FP7/2007-2013, grant agreement no. 317246 (TranCYST) funded my research as Marie Curie Early Stage Researcher. The small molecule screening was carried out in the Sheffield Zebrafish Screening Unit supported by the MRC Pump Priming grant G0802527 and the lightsheet microscopy for zebrafish imaging was funded by the British Heart Foundation, grant BHF IG 142370.

Last but not least, I would like to direct a few words to my family and friends back home in Germany in our native tongue:

Danke liebe Familie und liebe Freunde für den Rückhalt, den ihr mir während dieses Projekts gegeben habt - ohne euch wäre das hier nicht möglich gewesen. Danke Mama und Papa; ihr habt immer an mich geglaubt und mir gelegentlich auch mal einen Schubs in die richtige Richtung gegeben. Und ein ganz besonderer Dank geht an Chris, meinen Wegbegleiter seit nunmehr 10 Jahren - du bist mein Fels in der Brandung.
Table of Contents

Abstract ... 1
Acknowledgements .. 3
Abbreviations .. 7

Introduction ... 9
1. PKD – polycystic kidney disease ... 9
2. The genetic basis of ADPKD .. 10
3. The polycystin family across various species .. 12
 3.1. Human PKD1 ... 13
 3.2. Pkd1 in model organisms .. 14
 3.3. Human PKD2 ... 15
 3.4. Pkd2 in model organisms .. 16
4. Why do cysts form? ... 20
5. Current treatment targets and clinical trials .. 24
6. Zebrafish as a model organism ... 26
 6.1. Zebrafish development .. 26
 6.2. Zebrafish chemical screens .. 27
7. Mammalian and zebrafish renal development ... 28
8. The ciliary hypothesis of ADPKD ... 30
9. ADPKD models .. 33
 9.1. Rodent models .. 33
 9.2. Zebrafish models of ADPKD: pkd-deficient embryos .. 33
10. Project aims .. 37

Materials and Methods ... 38
1.1. Zebrafish maintenance ... 38
1.2. Morpholino injections ... 38
1.3. Creating transgenic zebrafish lines .. 38
1.4. DNA extraction .. 39
 1.4.1. DNA extraction from multiple embryos .. 39
 1.4.2. DNA extraction from single embryos ... 39
 1.4.3 DNA extraction from fin clips ... 40
1.5. Bacterial cultures, plasmid isolation and restriction digests .. 40
1.6. PCR .. 40
 1.6.1. PCR purification .. 41
1.7. Measurement of glomerular and tubular dilation .. 41
1.8. Antibody staining ... 41
1.9. In situ hybridisation .. 42
1.10. In vivo compound screen on pkd2−/− zebrafish ... 43
 1.10.1. High-throughput compound screen ... 43
 1.10.1. Compound exposure with more than three larvae ... 45
1.11. Cell culture .. 45
Results and Discussion Chapter 1: Characterisation of zebrafish PKD models 49

Introduction ... 49

Results .. 50

11. Characterisation of pkd2 models ... 50

11.1. pkd2

11.2. pkd2 morphant .. 53

11.3. Model disparities – kidney phenotype .. 56

12. Characterisation of elipsa and elipsa/pkd2 double mutants .. 58

12.1. A classical “cystic kidney” zebrafish line, the elipsa mutant .. 59

12.2. elipsa/pkd2 double mutant – enhanced renal and curly up phenotypes 60

Discussion .. 63

1. Disparities between pkd2 zebrafish models ... 63

2. Classic “cystic kidney” mutant and pkd2/elipsa double knockout ... 64

Results and Discussion Chapter 2: Screens for chemical modulators of the pkd2 curly

phenotype in zebrafish and validation in cell culture 3D cyst assays .. 67

Introduction .. 67

Results .. 68

1. Utilising pkd2/- zebrafish as ADPKD-related screening tool ... 68

2. Screen of the Spectrum collection ... 70

2.1. Zebrafish screen of Spectrum compounds ... 70

2.2. Effects of Spectrum library and related compounds in zebrafish 72

2.3. Further testing in pkd2 mutants ... 72

2.4. Spectrum and related compounds in WT, elipsa and pkd2/- ... 81

3. Spectrum compound validation in a 3D cyst culture assay .. 85

3.1. Cystic MDCKII cells: determination of effective dosages ... 86

3.2. Cystic MDCKII cells: Spectrum compound validation .. 87

3.3. Cystic MDCKII cells: Further testing of Spectrum compounds – co-exposures 89

3.4. Spectrum compounds in a cell culture model of ADPKD: Ox161c1 cells 91

3.5. Cystic Ox161c1 PKD-cells: Spectrum compound validation .. 91

3.6. Cystic Ox161c1 PKD-cells: Further testing of Spectrum compounds – co-exposures 93

4. Screen of the PKIS collection (kinase inhibitor library) .. 94

4.1. Zebrafish PKIS screen results .. 94

4.2. Validation of PKIS compounds in cyst culture: MDCKII cells 97

4.3. Validation of PKIS compounds in a cell culture model of ADPKD: Ox161c1 cells 98

4.4. Target of phenotype reduction: Alk5 .. 99

Discussion .. 102

1. Zebrafish pkd2 mutants as ADPKD screening tool .. 102
2. Screen hit compounds in the wider context .. 103
 2.1. Steroids and L-type calcium channel inhibitors ... 103
 2.2. Coumarins ... 106
 2.3. Flavonoids ... 107
 2.4. Xanthoxylin and dihydroxychalcone .. 108
 2.5. Repressors ... 108
 2.6. Compound co-exposures in zebrafish and cell culture ADPKD models 113
3. Summary of library screen findings .. 114

Results and Discussion Chapter 3: in vivo real-time renal tubular calcium signalling116
Introduction ... 116

Results ... 117
1. Generation of renal GCaMP7a lines ... 117
 1.1. The glomerular podocin-driven calcium-reporter line 117
 1.2. A pronephric Ca$^{2+}$ reporter: enpep:Gal4;UAS;GCaMP7a 118
2. Renal calcium at 24 - 34 hpf (pronephros formed, no filtration) 120
 2.1. Calcium oscillations in tubules at 1 dpf ... 121
 2.2. Cellular calcium flashes in the pronephros .. 122
3. Renal calcium at 48 - 58 hpf (actively filtering kidney) – pkd2$^{-/-}$ exhibit lower renal calcium levels .. 126
4. GCaMP levels in cystic mutant elipsa and elipsa/pkd2 double mutants – loss of cilia causes pronephric calcium level decrease ... 127
5. Chemical modulation of kidney calcium levels after exposure to chemical screen hit compounds ... 128
 5.1. Early exposures without distinction of genotypes ... 128
 5.1.1. Genotype-dependent calcium modulation after compound exposure 129
 5.2. Exposures of enpep:Gal4;UAS;GCaMP7a from ca. 28 hpf – characterisation of compounds in pkd2 mutants and siblings ... 130

Discussion ... 136
1. Calcium in the pronephric kidney – pkd2$^{-/-}$ display lowered levels 136
2. Renal calcium in a classical “cystic kidney” and PKD/ciliary mutant zebrafish is diminished in comparison to siblings .. 138
3. Renal calcium response to compound library screen chemicals 138

Synopsis and outlook .. 140

List of Materials .. 147

Table of Figures ... 150

Table of Tables ... 156

References .. 157
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-KT</td>
<td>11-ketotestosterone</td>
</tr>
<tr>
<td>2-APB</td>
<td>2-aminoethoxydiphenyl borate</td>
</tr>
<tr>
<td>aa</td>
<td>amino acids</td>
</tr>
<tr>
<td>AC</td>
<td>adenylate cyclase</td>
</tr>
<tr>
<td>ADPKD</td>
<td>autosomal-dominant polycystic kidney disease</td>
</tr>
<tr>
<td>ALK</td>
<td>activin receptor-like kinase</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>ARPKD</td>
<td>autosomal-recessive polycystic kidney disease</td>
</tr>
<tr>
<td>avpr</td>
<td>Arginine vasopressin receptor</td>
</tr>
<tr>
<td>BFA</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>CaMK-II</td>
<td>Ca²⁺/calmodulin-dependent protein kinase type II</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cmle2</td>
<td>cardiac myosin light chain 2</td>
</tr>
<tr>
<td>col2a1</td>
<td>collagen type II alpha 1</td>
</tr>
<tr>
<td>Cox-II</td>
<td>cyclooxygenase-II</td>
</tr>
<tr>
<td>CRISPR</td>
<td>clustered regularly interspaced short palindromic repeats</td>
</tr>
<tr>
<td>CT</td>
<td>computer tomography</td>
</tr>
<tr>
<td>DAPT</td>
<td>N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester</td>
</tr>
<tr>
<td>DHT</td>
<td>dihydrotestosterone</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>dpf</td>
<td>days post fertilisation</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>ENU</td>
<td>N-ethyl-N-nitrosourea</td>
</tr>
<tr>
<td>ER</td>
<td>endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>extra-cellular-signal-regulated kinase</td>
</tr>
<tr>
<td>ESRD</td>
<td>end-stage renal disease</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FC</td>
<td>flashing cell</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFC</td>
<td>frequently flashing cell</td>
</tr>
<tr>
<td>G3PDH</td>
<td>glycerol-3-phosphatase dehydrogenase</td>
</tr>
<tr>
<td>GABA</td>
<td>gamma-aminobutyric acid</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>hEGF</td>
<td>human epidermal growth factor</td>
</tr>
<tr>
<td>hpf</td>
<td>hours post fertilisation</td>
</tr>
<tr>
<td>IFT</td>
<td>intraflagellar transport</td>
</tr>
<tr>
<td>IP3R</td>
<td>inositol trisphosphate receptor</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus kinase</td>
</tr>
<tr>
<td>KDR</td>
<td>kinase insert domain receptor</td>
</tr>
<tr>
<td>kif3a</td>
<td>Kinesin family member 3A</td>
</tr>
<tr>
<td>KV</td>
<td>Kupffer’s vesicle</td>
</tr>
<tr>
<td>L/R</td>
<td>left/right axis</td>
</tr>
</tbody>
</table>
Introduction

1. PKD – polycystic kidney disease

ADPKD, autosomal-dominant polycystic kidney disease, is one of the most common monogenic diseases worldwide with estimated incidences of 1/400 to 1/1000 (Sutters et al., 2003). Although the prevalence of diagnosed ADPKD cases varies between populations, potentially due to differences in screening policy and health care delivery, autopsy studies suggest that more than 1/500 people could be affected (Chan, 1993; Dalgaard, 1957).

In ADPKD, the diseased kidneys contain numerous fluid-filled epithelial cysts (see Figure 1 A) which may develop from any part of the nephron and cause bilateral renal enlargement. Cysts arise as spherical dilatations or small out-pouchings, enlarge progressively and eventually separate from the rest of the renal tubule. Cyst development is generally accompanied by the destruction of renal parenchyma, interstitial fibrosis, cellular infiltration and loss of functional nephrons (reviewed in (Chang et al., 2008)). However, cysts are not limited to the kidneys and extrarenal manifestations most commonly include cysts in the liver, but also in the spleen, pancreas, arachnoid membrane and seminal vesicles. Other non-cystic vascular manifestations such as intracranial arterial aneurysms, artery dissections and coronary artery aneurysms are present in a minority of patients (reviewed in (Torres & Harris, 2009)).

Typically, ADPKD patients present between 20 - 40 years of age but cases in childhood (under 15 years) and even in utero have been reported. Common symptoms include abdominal pain, polyuria, urinary tract infections, haematuria and hypertension (reviewed in (Loftus et al., 2013) and (Wilson, 2004b)). Abdominal pain is the most reported symptom in adults and can be caused by cyst haemorrhage, infection or renal stones. Around half of all ADPKD patients will have reached end-stage renal disease (ESRD) by the fifth decade of life (Hateboer et al., 1999). Glomerular filtration remains normal in most patients until the fourth to sixth decade of life, despite the constant growth of cysts, due to compensatory hyperfiltration. By the time filtration rates decline, the kidneys are markedly enlarged and distorted.

Diagnosis typically relies on imaging techniques. For cost and safety reasons, renal ultrasound is the most widely used method. However, MRI (magnetic resonance imaging) or CT (computer tomography) provide increased sensitivity to detect smaller cysts. CT or MRI render pictures at much higher resolutions and cysts of 3 mm rather than 10 mm are easily detected (Bae et al., 2010).
ADPKD accounts for ca. 10 % of patients with ESRD which translates into ca. 35,000 patients across Europe – making ADPKD the fourth most common cause of ESRD (Torres et al., 2007). The clinical and economic burden caused by this disease is enormous with an estimated annual cost of € 1.5 billion for ESRD within the 27 EU-member states alone (currently including the UK) (Spithoven et al., 2014). Risk factors for ADPKD include genotype, age, sex, kidney function and total kidney volume (reviewed in (Ong et al., 2015)). Of note, males with ADPKD typically have a faster progression and larger cystic kidneys than female patients (Cornec-Le Gall et al., 2013; Harris et al., 2006).

To date, only one drug has been approved to slow the progression of ADPKD (tolvaptan). However, this treatment is associated with high rates of adverse effects related to increased aquareasis (thirst, polyuria and nocturia, (Torres et al., 2012)) and a low incidence of liver toxicity. A preventative treatment for this devastating disease has not yet been found.

2. The genetic basis of ADPKD

Two genes have been linked to ADPKD: PKD1, which harbours mutations in ca. 85 % of patients, and PKD2, accounting for the remaining 15 %. Mutations in PKD2 are characterised by a later onset and slower rate of progression to ESRD (PKD1 53.0 years and PKD2 69.1, see Figure 1 B, (Hateboer et al., 1999)) but phenotypically, patients with mutations in PKD1 and PKD2 are clinically indistinguishable. The existence of a third gene causing ADPKD, PKD3, was debated in the past but has now largely been excluded (Paul et al., 2014).

Patients with a truncating mutation in PKD1 generally have the worst renal prognosis. Non-truncating mutations of PKD1 result in intermediate progression rates and PKD2 mutations show the best prognosis (reviewed in (Ong et al., 2015)). Slower disease progression with PKD2 mutations has been attributed to the formation of fewer cysts in the early stages of
disease rather than slower cyst growth (Harris et al., 2006). Intriguingly, mutations in the 5’ half of PKD1 also correlate with earlier onset of renal failure and more frequent aneurism ruptures compared to mutations in the 3’ half (Rossetti et al., 2003) – however, this has not been confirmed in later studies (Cornec-Le Gall et al., 2013). No such associations have been reported for PKD2 (Magistroni et al., 2003). Deleterious mutations in either one or both PKD genes have been shown to always result in the clinical ADPKD phenotype (Giamarchi et al., 2010; Newby et al., 2002). Transheterozygous patients (PKD1+/−;PKD2+/−) have also been reported and exhibit a more severe clinical progression than simple heterozygotes (Pei et al., 2001). A strong intrafamilial phenotypic variability, even with identical mutations, suggests additional modifiers, which could be either genetic or environmental (Persu et al., 2004).

The two protein products of PKD1 and PKD2, PC1 (polycystin-1) and PC2 (polycystin-2) respectively, form a heterodimeric complex via their C-terminal tails (see Figure 2 A) which is thought to function as a receptor-ion channel. The PC1/PC2 complex is interacts with a variety of other proteins regulating multiple signalling pathways that maintain tubular structure and function in the kidney (reviewed in (Ong & Harris, 2005b)).

There has been a consensus that the PC1/PC2 complex acts as mechanosensor in primary cilia mediating flow-dependent Ca²⁺ influx which in turn activates Ca²⁺ release from intracellular stores like the ER, e.g. via PC2, see Figure 2 B (Koulen et al., 2002; Nauli et al., 2003) – although this has been recently disputed (Delling et al., 2013). Cystic cells isolated from ADPKD patients lack flow-sensitive calcium signalling, show reduced ER calcium stores and lower intracellular calcium concentrations (Xu et al., 2007). Manipulation of a single primary cilium in cultured canine kidney cells caused an increase in intracellular calcium levels in the stimulated cell as well as the surrounding ones (Praetorius, Frokiaer, et al., 2003; Praetorius et al., 2001; Praetorius & Spring, 2003). Cells treated with antibodies for PKD1 and PKD2 did not show these calcium transients, which are dependent on intracellular and extracellular calcium pools (Koulen et al., 2002; Nauli et al., 2003). This suggests the PC1/PC2 complex initiates flow-induced intracellular calcium signalling. Overexpression, haplinsufficiency or absence of PC2 gradually decreases Ca²⁺ release form intracellular stores (Torres & Harris, 2009).
3. The polycystin family across various species

In the next paragraphs, protein structure, expression, interaction partners and putative functions of PC1 and PC2 will be described in detail with a focus especially on human, rodent and zebrafish data. Zebrafish were the main model organism studied during this project and are therefore focussed on particularly. Similarly, there will be a greater focus on PKD2 and PC2, as a knockout model of this gene was used. A more detailed account of zebrafish and their value as model will be given in the following chapters: “Zebrafish as a model organism” and “Zebrafish models of ADPKD: pkd-deficient embryos”.

Figure 3 depicts the evolutionary relationships of PKD1 and PKD2 (A and B respectively) in humans, mice and zebrafish with orthologue sequence identity given in percent. The zebrafish pkd1b gene is missing in Figure 3 A, as current database annotations suggest it is not a direct orthologue of human PKD1.

To clarify, human polycystin genes are referred to as PKD genes, rodent orthologues are Pkd genes and the zebrafish varieties are denoted as pkd genes. These traditional denominations will be upheld throughout the text and will help identify the referenced species.

Figure 3 Schematic evolutionary trees of (A) PKD1 and (B) PKD2 genes of Homo sapiens, Mus musculus and Danio rerio with sequence identity in percent. Data derived from the Ensembl database (http://www.ensembl.org), August 19th 2016.
3.1. Human **PKD1**

PKD1 was identified in 1995 by the International Polycystic Kidney Disease Consortium (The International Polycystic Kidney Disease Consortium, 1995) and is located on chromosome 16p13.3 and translates into the 460 kDa polycystin-1 protein. It is a 4,302-amino acid type I membrane glycoprotein with a long N-terminal extracellular domain (3,074 amino acids), 11 transmembrane domains (1132 aa) and a short intracellular C-terminus (197 aa) (Hughes et al., 1995). PC1 interacts with PC2 via a coiled-coil domain in the C-terminus to form a heterodimer (Figure 2 A); this interaction has been shown to be critical for functional regulation of both proteins (Newby et al., 2002).

The entire PC1 N-terminus has been proposed to have the biomechanical properties of a mechanosensor (Qian et al., 2005). It might sense laminar flow in the nephric tubules and trigger a PC2-dependent Ca\(^{2+}\) signal, hence acting as a sensor for the glomerular filtration rate (Figure 2 B) (Qian et al., 2005). In addition to its mechanosensory function, the PC1/PC2 complex has been implicated in mediating or regulating cell-cell and cell-matrix adhesion (reviewed in (Wilson, 2011)). Homotypic PC1 interactions via the PKD domains and heterophilic interactions of PC1 with the E-cadherin/catenin complex (and other proteins), as well as increased integrin-mediated adhesiveness to collagen in PKD cyst cells have been described (Huan et al., 1999; Ibraghimov-Beskrovnaya et al., 2000; Roitbak et al., 2004; Streets et al., 2003; Streets et al., 2009; Wilson et al., 1999).

PC1 has been localised to multiple subcellular locations in renal epithelial cells including primary cilia, cytoplasmic apical vesicles, focal adhesions and a variety of lateral membrane junctions (tight junctions, adherens junctions and desmosomes) (Boletta et al., 2001; Griffin et al., 1996; Huan et al., 1999; Kim et al., 2000; Newby et al., 2002; Scheffers et al., 2000; Wilson et al., 1999; Yoder et al., 2002), reviewed in (Ong, 2000)).

In humans, 40 splice variants of **PKD1** and three paralogues have been reported (listed in Table 1) (Martin et al., 2004). To date (accession 18.08.2016), 2323 different **PKD1** mutations have been identified in patients, of which 1895 are definitely pathogenic, most of them unique to a single family (Autosomal Dominant Polycystic Kidney Disease Mutation Database: PKDB, http://pkdb.mayo.edu/).

<table>
<thead>
<tr>
<th>Gene name & Ensembl identifier</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKD1 ENSG00000008710</td>
<td>4302</td>
<td>14138</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>PKD1L1 ENSG000000158683</td>
<td>2849</td>
<td>9092</td>
<td>7</td>
<td>14.74</td>
</tr>
<tr>
<td>PKD1L2 ENSG00000166473</td>
<td>2459</td>
<td>7379</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>PKD1L3 ENSG00000277481</td>
<td>1732</td>
<td>5199</td>
<td>16</td>
<td>16.40</td>
</tr>
</tbody>
</table>

Table 1 The **PKD1** family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.
3.2. *Pkdl1* in model organisms

Pkdl1 was first fully sequenced in mice in 1995 (The International Polycystic Kidney Disease Consortium, 1995) and many knockout and overexpression mouse strains have been created since. Homozygous knockout models are almost all embryonic lethal (Kim *et al.*, 2000; Lantinga-van Leeuwen *et al.*, 2007; Lu *et al.*, 2001). In mice, *Pkdl1* is expressed at high levels in embryos but down-regulated shortly after birth (reviewed in (Ong & Harris, 2005b)). Levels of *Pkdl1* expression have been increased and decreased in mice, both of which resulted in cystic kidney phenotypes - stressing the importance of PC1 dosage for normal tissue architecture (Lantinga-van Leeuwen *et al.*, 2004; Pritchard *et al.*, 2000). Conditional *Pkdl1* knockouts show varying progressions of PKD but the developmental stage at which gene inactivation occurs, determines disease severity (Piontek *et al.*, 2007; Takakura *et al.*, 2009). In one model, inactivation of *Pkdl1* before postnatal day 13 results in severe cystic kidneys within 3 weeks, whereas inactivation at day 14 or later results in cysts only after 5 months (Piontek *et al.*, 2007). Of note, heterozygous *Pkdl1* knockout mice without symptoms also exhibit decreased intracellular Ca²⁺ levels at approximately half of WT concentrations, although these animals did not develop cysts (Ahrabi *et al.*, 2007). Cartilage defects like an undulating spinal chord and jaw phenotypes have been observed in addition to cystic kidneys in *Pkdl1* knockout animals (Boulter *et al.*, 2001; Kolpakova-Hart *et al.*, 2008).

In zebrafish, *pkdl1* is present as two paralogous genes, *pkdl1a* and *pkdl1b*, that are more closely related to human *PKD1* than the *PKD1L* orthologues (Mangos *et al.*, 2010). *pkdl1a* is broadly expressed in chondrogenic tissues and *pkdl1b* is primarily expressed in the nervous system (Mangos *et al.*, 2010). *pkdl1a* knockdown results in hydrocephalus, jaw defects and kidney cysts (but only in 10 - 20 % of morphant embryos) and *pkdl1b* knockdown does not cause a visible phenotype. Disruption of both *pkdl1* paralogues however, results in a multi-organ phenotype similar to *pkdl2* loss-of-function but without L/R asymmetry defects (see below, (Mangos *et al.*, 2010)). This suggests that *pkdl1b* may have overlapping or redundant functions with *pkdl1a*, and its knockout is necessary for a fully penetrant phenotype (Mangos *et al.*, 2010). In *pkdl1* double knockdown zebrafish, renal dilations were observed in ca. 20 % of the embryos.

Tissue expression of murine *Pkdl1* is similar to zebrafish - occurring in the notochord, floor plate as well as other chondrogenic tissues (Boulter *et al.*, 2001), but has also been detected in the perichondrial mesenchyme in the head (Lu *et al.*, 2001). Delayed ossification of the skull and spinal chord in *Pkdl1*-deficient animals are similar in both species (Lu *et al.*, 2001; Mangos *et al.*, 2010). The low penetrance of cyst formation seen in *pkdl1* knockdown zebrafish
experiments mimics that of gene knockout after post-natal day 14 in juvenile mice and may suggest the necessity of additional factors than Pkd1 mutation for cysts formation (Piontek et al., 2007; Takakura et al., 2008). The mouse orthologues of human PKD1 and PKD1L1 genes are listed in Table 2.

<table>
<thead>
<tr>
<th>Ensembl identifier & gene name</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pkd1 ENSMUSG00000032855</td>
<td>4293</td>
<td>14170</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>Pkd1l1 ENSMUSG00000046634</td>
<td>2521</td>
<td>7631</td>
<td>11</td>
<td>15.59</td>
</tr>
<tr>
<td>Pkd1l2 ENSMUSG00000034416</td>
<td>2461</td>
<td>7386</td>
<td>8</td>
<td>17.64</td>
</tr>
<tr>
<td>Pkd1l3 ENSMUSG00000048827</td>
<td>2201</td>
<td>6606</td>
<td>8</td>
<td>14.40</td>
</tr>
</tbody>
</table>

Table 2 The Pkd1 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Zebrafish gene annotations are less sophisticated for the pkd1-family compared to mammals. Furthermore, there are five paralogues, one of which has not yet been annotated. Currently, no pkd1l1 and pkd1l3 genes are annotated, although there were at the beginning of this project, suggesting a recent change in annotations.

<table>
<thead>
<tr>
<th>Ensembl identifier & gene name</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkd1a ENSDARG00000030417</td>
<td>3629</td>
<td>15472</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>pkd1b ENSDARG00000033029</td>
<td>3827</td>
<td>12367</td>
<td>12</td>
<td>25.27</td>
</tr>
<tr>
<td>pkd1l2a ENSDARG00000105344</td>
<td>1124</td>
<td>4430</td>
<td>7</td>
<td>19.75</td>
</tr>
<tr>
<td>pkd1l2b ENSDARG00000101214</td>
<td>1442</td>
<td>6338</td>
<td>7</td>
<td>19.69</td>
</tr>
<tr>
<td>ENSDARG00000099162</td>
<td>2153</td>
<td>6459</td>
<td>24</td>
<td>17.47</td>
</tr>
</tbody>
</table>

Table 3 The pkd1 family in Danio rerio. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

3.3. Human PKD2
PKD2 was identified in 1996 (Mochizuki et al., 1996), is located on chromosome 4p21 and gives rise to the 110 kDa polycystin-2 protein. It is a 968-amino acid type II membrane glycoprotein with six-transmembrane domains and intracellular N- and C-termini. The N-terminus contains a ciliary-targeting RVxP motif (Arginine, Valine, X, Proline) (Geng et al., 2006). PKD2 has significant homology to the transient receptor potential (TRP) family of store-operated calcium channels and is likely to function similarly as a non-selective calcium channel, hence its further denomination as TRPP2 (Giamarchi et al., 2006). It can function both alone or in the presence of PC1 (Gonzalez-Perrett et al., 2001; Hanaoka, Qian, et al., 2000; Qian et al., 1997).
PC2 has been localised to primary cilia, apical monocilia, endoplasmic reticulum (ER)/Golgi membranes, lamellipodia, mitotic spindles and the basolateral cell surface. Unlike PKD1, its expression appears to be maintained at a constant level into adult life (Cai et al., 1999; Foggensteiner et al., 2000; Gallagher et al., 2000; Luo et al., 2003b; Newby et al., 2002; Ong & Harris, 2005b; Rundle et al., 2004). Apical monocilia can function as mechanosensory flow sensors with intracellular calcium release in response to cilia bending and PC2 antibodies have been shown to block this flow-induced calcium release (Nauli et al., 2003; Praetorius et al., 2001).

To date (accession 17.08.2016), 463 different PKD2 mutations have been identified of which 438 are definitely pathogenic, most of them unique to a single family (Autosomal Dominant Polycystic Kidney Disease Mutation Database: PKDB, http://pkdb.mayo.edu/). In humans, seven splice variants and two paralogues have been reported for PKD2, the latter are listed in Table 4.

<table>
<thead>
<tr>
<th>Gene name & Ensembl identifier</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKD2 ENSG00000118762</td>
<td>968</td>
<td>5056</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>PKD2L1 ENSG00000107593</td>
<td>805</td>
<td>3043</td>
<td>10</td>
<td>48.45</td>
</tr>
<tr>
<td>PKD2L2 ENSG00000078795</td>
<td>523</td>
<td>2333</td>
<td>5</td>
<td>46.47</td>
</tr>
</tbody>
</table>

Table 4 The PKD2 family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

3.4. Pkd2 in model organisms

Pkd2 is a Ca\(^{2+}\)-permeable cation channel associated with primary cilia and proposed to be involved in a ciliary mechanosensory complex. In the zebrafish pronephros, pkd2 has been localised to the basolateral membrane as well as luminal cilia, suggesting it may function both as a ciliary mechanosensory channel as well as a Ca\(^{2+}\) release channel in ER membranes (Obara et al., 2006). Mammalian studies have localised PC2 to intracellular ER and Golgi membranes and to apical, non-motile cilia of renal epithelia and mouse node cells (Foggensteiner et al., 2000; Pazour et al., 2002). Pkd2 loss-of-function has been shown to cause L/R patterning defects in mice and in zebrafish (Bisgrove et al., 2005; Pennekamp et al., 2002).

Mouse knockouts of Pkd2 develop embryonic kidney cysts, vascular and heart septal defects and randomized organ laterality (Pennekamp et al., 2002; Wu et al., 2000). In mouse models with targeted disruption of Pkd1 or Pkd2, renal development progresses normally until embryonic day 14.5 when cysts begin to form (Boulter et al., 2001; Kim et al., 2000; Lu et al., 1997; S. Muto et al., 2002; Wu et al., 1998). This suggests that polycystins are not essential for nephron induction but for maturation and maintenance of the tubular architecture (Ong &
Harris, 2005b). Homozygous Pkd2 knockout mice usually die in the embryonic period; in heterozygous animals, a mild renal cyst phenotype can be detected in older mice but is highly variable (Boulter et al., 2001; Lu et al., 1997). Mouse orthologues of PKD2 and PKD2L genes are listed in Table 5.

<table>
<thead>
<tr>
<th>Ensembl identifier & gene name</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pkd2 ENSMUSG00000034462</td>
<td>966</td>
<td>5219</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>Pkd2l1 ENSMUSG00000037578</td>
<td>760</td>
<td>3321</td>
<td>19</td>
<td>49.74</td>
</tr>
<tr>
<td>Pkd2l2 ENSMUSG00000014503</td>
<td>621</td>
<td>2421</td>
<td>18</td>
<td>44.44</td>
</tr>
</tbody>
</table>

Table 5 The Pkd2 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Pkd2, unlike Pkd1, mutations cause asymmetry defects in murine and zebrafish models. PC2 in the monocilia of the mouse embryonic node or the zebrafish equivalent, the Kupffer’s vesicle (Essner et al., 2002), could mediate asymmetric Ca2+ signalling prior to L/R (left/right) establishment (McGrath et al., 2003). Pkd1 has not been linked to this phenotype; however, recent studies have revealed Pkd1l1 to be expressed in the node and mutations in this paralogue lead to L/R asymmetry defects in mice (Field et al., 2011; Kamura et al., 2011). Interestingly, no significant differences have been detected regarding cilia number or length in the zebrafish Kupffer’s vesicle in pkd2 morphants or in the mouse embryonic node of Pkd2 mutants (Bisgrove et al., 2005; McGrath et al., 2003; Obara et al., 2006). This indicates that in Pkd2 mutants, ciliary structure is normal, but signal transduction is disrupted.

In zebrafish, pkd2 is located on chromosome 1, consists of 3336 bp (14 exon mRNA, 904 aa protein) and shares 67 % conservation compared to human PKD2. Zebrafish pkd2 knockdown animals (morphants) exhibit a 51 % rate of reverse heart looping and a similar rate for gut looping (Bisgrove et al., 2005). At 40 hpf, pkd2 morphants have a rather unique phenotype: an upward curled tail, hence the further denomination of the pkd2 mutant - curly up or cup (from when it was isolated in a phenotype-based screen in the mid-1990’s (Brand et al., 1996)). In addition to L/R asymmetry and body axis defects, pkd2 morphants exhibit cystic kidneys, cardiac oedema and hydrocephalus; phenotypes also found in Pkd2 mouse mutants (Wu et al., 1998; Wu et al., 2000). One previous study suggests that the mechanisms leading to the formation of pronephric cysts in pkd2-deficient zebrafish are different from other cystic mutants (Sullivan-Brown et al., 2008). Notably, cyst development seems to be restricted to the glomerulus in pkd2 morphants, contrary to general dilations in other cystic mutants. Obara et al. reported evidence that supports the theory of a partial occlusion of the pronephric tubules, which could lead to a build-up of fluid causing glomerular dilatation (Obara et al., 2006). However, “cystic kidneys” of pkd2 knockdown and ciliary knockout
models as described in the zebrafish literature are rather dilated glomeruli and not truly renal cysts.

In early development, *pkd2* mRNA is widely expressed in the zebrafish embryo; the domains of highest expression later becoming ciliated tissues, including the pronephric duct primordia and the Kupffer’s vesicle (KV). Maternal *pkd2* was not observable by *in situ* hybridisation (Bisgrove *et al.*, 2005) although it has been detected using RT-PCR (Schottenfeld *et al.*, 2007; Sun *et al.*, 2004). Zygotic expression is initiated at the onset of gastrulation in the blastoderm margin. At this point, *pkd2* is found in the hypoblast of the dorsal midline and to the dorsal forerunner cells. In the early somite stages, *pkd2* is ubiquitously expressed but with higher expression in the KV which persists to the 6-somite stage. Subsequently, expression is detected in the pronephric duct primordia and the neural floorplate and at 24 hpf, in the brain. Later, at 3 dpf, *pkd2* expression is reduced to the pharyngeal arches and the pectoral fin buds (Bisgrove *et al.*, 2005).

The expression patterns of *pkd2* and *pkd1a* overlap partially, particularly around the Kupffer’s vesicle at the tailbud stage, the head regions at 24 hpf, the pharyngeal arches and pectoral fins at 72 hpf. There are no discernible regions of co-expression of *pkd2* and *pkd1b*. Table 6 lists the annotated *pkd2* and *pkd2l* genes in zebrafish, however at this stage no *pkd2l2* paralogue has been identified.

<table>
<thead>
<tr>
<th>Ensembl identifier & gene name</th>
<th>Length in aa</th>
<th>Length in bp (cDNA)</th>
<th>Chromosome</th>
<th>ID %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pkd2 ENSDARG00000014098</td>
<td>904</td>
<td>3336</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>pkd2l1 ENSDARG00000022503</td>
<td>790</td>
<td>2718</td>
<td>13</td>
<td>45.19</td>
</tr>
</tbody>
</table>

Table 6 The *pkd2* family in *D. rerio*. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

In zebrafish, both *pkd1* orthologues (a and b) and *pkd2* have been reported to regulate extracellular matrix (ECM) formation and a malfunction of this regulation leads to the development of a dorsal axis curvature (Mangos *et al.*, 2010). Knockdown of *coll2a1* mRNA (*collagen II type alpha 1*) or the use of collagen-crosslinking inhibitors rescued the curly tail phenotype. It has been suggested that PC1 and/or PC2 regulate a negative feedback loop that normally inhibits deposition of multiple collagens (Mangos *et al.*, 2010). An altered ECM status has been associated with the ADPKD phenotype in human and animal tissues as well as cell culture models (Candiano *et al.*, 1992; Igarashi *et al.*, 2002; Malhas *et al.*, 2002; Schafer *et al.*, 1994; Somlo *et al.*, 1993; Subramanian *et al.*, 2012). In mRNA profiling studies on kidneys of a PKD rat model (Han:SPRD), matrix genes are prominently upregulated in cystic tissues (Riera *et al.*, 2006). It appears polycystins are required for the transition from persistently collagen-expressing embryonic cells to a mature differentiated phenotype and a
disruption leads to an overproduction of ECM and a distortion of the embryonic axis (Mangos et al., 2010).

Apart from PC1, PC2 has been reported to interact with a number of key proteins including fibrocystin, inositol trisphosphate receptor (IP3R), ryanodine receptor (RYR) and several other TRP channels (reviewed in Mangolini et al., 2016). The association of PC2 with a variety of other calcium channels especially in the ER (IP3R, RYR, (Anyatonwu et al., 2007; Li et al., 2005)) and in primary cilia (TRPV4, (Kottgen et al., 2008)) suggest a pleiotropic role of PC2 in cellular calcium signalling – some of these interaction partners are depicted in Figure 4 and will be elaborated upon in greater detail in the next two chapters. Protein phosphorylation can regulate PC2 trafficking and localisation: retrograde trafficking between the ER, Golgi and plasma membrane is dependent on Ser812 (Kottgen et al., 2005) and the N-terminal Ser76 is critical for localization to the lateral plasma membrane but not to primary cilia (Streets et al., 2006).

Figure 4 PC1 and PC2 in various cellular compartments and their putative interaction partners. ER: endoplasmic reticulum, IP3R: inositol triphosphate receptor, RYR: ryanodine receptor, STIM: stromal interaction molecule, PI3K: phosphoinositide 3-kinase.
4. Why do cysts form?

Two main hypotheses have been proposed as to why and how renal cysts form in ADPKD: a two-hit model and a threshold model. Both hypotheses have merits in their own rights, but neither fully explains the situation and it is possible that a combination of the two represents the truth. Additionally, a third hypothesis has been proposed recently, the “third-hit” hypothesis, which might involve stress factors such as renal injury (Weimbs, 2011).

To explain the focal nature of the cysts, since only ~1% of nephrons develop cysts in ADPKD, a two-hit mechanism with loss-of-heterozygosity has been proposed (Germino, 1997; Grantham et al., 1987; Pei et al., 1999; Qian et al., 1996; Wu et al., 1998). In this model, a germline mutation in one allele and a somatic mutation/reduced expression of a second allele of either PKD gene is required for cystogenesis (Pei et al., 1999; Watnick et al., 1998; Wu et al., 2002).

The second theory on how cysts form is called haploinsufficiency, or threshold model. Here, the loss of one allele leads to a 50% reduction in gene dosage and despite the presence of a normal allele, a phenotype arises due to stochastic changes in protein concentration (Lantinga-van Leeuwen et al., 2004). This hypothesis is supported by the observation that hypomorphic alleles can cause cyst formation (Hopp et al., 2012; Jiang et al., 2006; Pei et al., 2012) and the severity of cyst formation has been linked to quantitative changes in gene dosage of Pkd1 in mouse models: ~40% PC1 cause a slowly progressive form and ~20% PC1 a rapidly progressing form of ADPKD (Hopp et al., 2012). The precise thresholds could vary between animals, developmental stages, tissues, cell types and nephron segments (Fedeles et al., 2011; Piontek et al., 2007; Raphael et al., 2009). Interestingly, in all ADPKD model organisms, even in hypomorphs, cyst development is focal (Hopp et al., 2012).

To this date it remains unclear how the loss of polycystin-function leads to the clinical phenotype, but five key cellular abnormalities associated with cyst formation have been identified: Increased cell proliferation and apoptosis, enhanced fluid secretion, abnormal cell-matrix interactions, alterations in cell polarity and abnormal cilary structure or function (reviewed in (Chang et al., 2008) and (Wilson, 2011)). How these are linked to mutations in PKD1 or PKD2 remains largely unclear. Two of the most consistent signalling abnormalities reported in ADPKD models are changes in intracellular calcium and cAMP concentrations, the former is reduced and the latter elevated in patient tissues and models (reviewed in (Mangolini et al., 2016; Torres et al., 2006)). Most of the key abnormalities mentioned above could be directly or indirectly linked to this deregulation of Ca\(^{2+}\) and cAMP and will be elaborated upon in the next paragraphs (illustration of interactions in Figure 5).
Upon activation, the PC1/PC2 complex is thought to initiate extracellular Ca\(^{2+}\) entry, which in turn triggers Ca\(^{2+}\) release from internal stores. High intracellular Ca\(^{2+}\) levels inhibit the production of cAMP by inhibiting Ca\(^{2+}\)-sensitive cAMP-synthesising adenylate cyclases (AC5 and AC6) or stimulating Ca\(^{2+}\)-sensitive phosphodiesterases (PDE1) which hydrolyse cAMP (Choi et al., 2011; Sussman et al., 2014; Torres et al., 2014; Ye et al., 2016). In ADPKD however, Ca\(^{2+}\) levels are decreased and consequently cAMP concentrations increase (Yamaguchi et al., 2006). The exact causes of this decrease in intracellular Ca\(^{2+}\) remain debated but it has been hypothesised that loss of the polycystin genes in the cilia results in loss of ciliary Ca\(^{2+}\) signal transduction. Alternatively, loss of PC2 could lead to impairments of ER calcium release; PC2 itself is proposed to be an ER Ca\(^{2+}\) release channel (Giamarchi et al., 2010; Koulen et al., 2002; Mekahli et al., 2012) and its loss might impair Ca\(^{2+}\) fluxes. Additionally, PC2 has many interaction partners in the ER, most of which are other Ca\(^{2+}\) channels, i.e. RyR and IP3R (Anyatonwu et al., 2007; Li et al., 2005), and the absence of this interaction might inhibit ER Ca\(^{2+}\) release.

Increased cell proliferation and apoptosis have been consistently associated with ADPKD in several models and an increase of tubular proliferative activity (e.g. transgenic expression of oncogenes or growth factors) leads to cyst formation (Calvet, 1998). Of note, lowering intracellular Ca\(^{2+}\) levels in WT cells can result in increased proliferation and Ca\(^{2+}\) channel activators reportedly rescue the proliferative response in cyst-derived cells (Yamaguchi et al., 2006). Elevated cAMP concentrations caused by decreased intracellular Ca\(^{2+}\) concentrations could lead to cyst formation via two pathways: enhancing fluid secretion via the activation of apically located Cl\(^{-}\) channels (Wallace, 2011) and by stimulating cell proliferation via several mechanisms including the B-Raf/MEK/ERK pathway (MEK: mitogen-activated protein kinase kinase, ERK: extra-cellular-signal-regulated kinase, reviewed in (Mangolini et al., 2016)). In cell culture models of ADPKD, forskolin, an activator of adenylate cyclase stimulates cyst formation by increasing cAMP synthesis (Hanaoka & Guggino, 2000; Yamaguchi et al., 1995). Similarly, renal deletion of a Ca\(^{2+}\)-inhibitable adenylate cyclase (AC6, adenylate cyclase 6) in Pkd1\(^{-/-}\) mice improved renal outcomes (Rees et al., 2014). A reduction of intracellular Ca\(^{2+}\) inhibits a negative regulator of B-Raf but normal growth can be restored in cystic cells by restoring Ca\(^{2+}\) levels, inhibiting the cAMP-dependent B-Raf activation (Yamaguchi et al., 2006). The activation of the B-Raf/MEK/ERK pathway in ADPKD also causes an increase in mTOR (mammalian target of rapamycin) signalling and therefore protein synthesis by inhibiting the negative regulator of mTOR, the TSC1/TSC2 (tuberous sclerosis) complex (Aguiari et al., 2003; Mekahli et al., 2013).
Other pathways linking defects of the polycystin complex to cell cycle regulation include the JAK/STAT pathway and the transcriptional regulator ID2 (reviewed in (Ong & Harris, 2005a)). PC1 and PC2 affect JAK2/STAT3 (Janus kinase/Signal Transducer and Activator of Transcription), which, in turn, appear to regulate the transcription of the cyclin-dependent kinase inhibitor p21; therefore increasing proliferation even in non-cystic tubules (Bhunia et al., 2002; Chang et al., 2006). PC2 also has been implicated in retaining p21 in the cytoplasm by binding to the ID2 protein (Li et al., 2005). Generally, regulation of proliferation underlies complex signalling cascades (well beyond the ones mentioned here), all of which may be deregulated in ADPKD.

Enhanced fluid secretion is essential for cyst formation and it appears that tubular epithelia may switch from an absorptive to a predominantly secretory phenotype in ADPKD. Fluid secretion appears to be mainly driven by Cl− efflux causing passive movement of Na+ and water (Grantham et al., 1995). A study proposed that loss of functional PC1 in ADPKD results in the upregulation of store-operated Ca2+ entry after a Ca2+-release stimulus and that the subsequent activation of transepithelial Cl− secretion plays an important role in cyst development and expansion (Wildman et al., 2003).

The constant destruction of healthy parenchyma due to cyst expansion could also enhance the formation of abnormal cell-matrix interactions. In ADPKD patients, cyst epithelia sit on an expanded basement membrane of altered composition and a defect in laminin alpha 5 has been shown to cause PKD in mice (Goldberg et al., 2010). Furthermore, PC1 has directly been implicated in cell-cell adhesion in renal epithelial cells, a disruption of which could be an early initiating event for ADPKD cyst formation (Streets et al., 2003), as well as cell-matrix adhesion (Wilson, 2004a).

Several papers have reported abnormalities in cell polarity in cystic tissues, however these finding have not always been consistent in all models (reviewed in (Chang et al., 2008; Wilson, 2004a)). Altered basolateral trafficking, abnormalities in planar cell polarity or oriented cell division could all play a role in ADPKD pathogenesis.

Genes that lead to structural abnormalities of primary cilia have been commonly associated with a cystic phenotype and many cystoproteins, including PC1 and PC2, have been immunolocalised to primary cilia or centrosomes. In PKD1-null cells, flow-induced ciliary Ca2+ signals are severely impaired (Nauli et al., 2003; Nauli et al., 2006; Xu et al., 2007) and implicate a ciliary connection. However, zebrafish and mouse models do not exhibit deformed cilia or reduced cilia numbers (McGrath et al., 2003; Obara et al., 2006).
Nevertheless, cilia could be implicated in ADPKD, if not due to structural cilia defects then via impaired signal transduction.

Figure 5 Diagram of deregulated pathways in ADPKD with focus on two main components, calcium and cAMP as well as their putative effects. Proteins or pathways upregulated in ADPKD are indicated with red and downregulation in blue letters. AC: adenylate cyclase, cAMP: cyclic adenosine monophosphate, ER: Endoplasmic reticulum, ERK: extra-cellular-signal-regulated kinase, IP3R: inositol triphosphate receptor, JAK2: Janus kinase 2, MEK: mitogen-activated protein kinase kinase, mTOR: mammalian target of rapamycin, PC1: polycystin-1, PC2: polycystin-2, PDE1A: phosphodiesterase 1 A, PI3K: phosphoinositide 3-kinase, RYR: ryanodine receptor, STAT3: Signal Transducer and Activator of Transcription 3, TSC: tuberous sclerosis, VP2R: vasopressin 2 receptor. Information mainly based on the reviews of (Mangolini et al., 2016; Torres et al., 2006).

In summary, polycystins are essential for the maintenance of a differentiated tubular epithelium phenotype, see Figure 6. Reduction in one of these proteins below a critical threshold results in a phenotypic switch characterised by inability to maintain planar polarity, increased rates of proliferation and apoptosis, expression of a secretory phenotype and remodelling of extracellular matrix. The molecular mechanisms responsible for these phenotypic switches are unknown but given the proposed participation of the polycystins in numerous signalling pathways at multiple subcellular locations, they are likely to be complex (reviewed in (Torres & Harris, 2009)).
5. Current treatment targets and clinical trials

Presently, only one drug has been approved for treatment of ADPKD, tolvaptan (marketed by Otsuka as JINARC in the UK). Current therapies mostly target the symptoms of the disease but tolvaptan delays the onset of ESRD by about 6.5 years (Erickson et al., 2013). There is no preventative treatment for ADPKD at the moment. The most important therapeutic measure is blood pressure control as heart disease is the main factor concerning morbidity and mortality; infection and neurological events (like aneurysm rupture) are the next common causes (Fick et al., 1995; Perrone et al., 2001). Interestingly, L-type calcium channel inhibitors like nifedipine, often used to treat hypertension, have been reported to have adverse effects on renal outcomes and it has been proposed that other drugs might be more beneficial for ADPKD patients (Astor et al., 2008; Saruta et al., 2009).

Until recently, GFR (glomerular filtration rate) was the main indicator for clinical trial success but since it only starts declining in the later stages of the disease, it may not be a good predictor for treatment outcome in the early stages. Renal growth occurs early in disease, has been shown to be exponential in patients and is likely to be a good early surrogate marker for disease progression (Grantham et al., 2008).

Three main strategies have emerged from recent findings in an attempt to delay the onset of ESRD: Reducing cell proliferation, lowering cAMP levels and inhibiting fluid secretion. A number of preclinical and clinical trials are currently underway or have been completed and some promising compounds are in the development pipeline. Primarily, the aberrant signalling pathways Ca\(^{2+}\), cAMP and mammalian target of rapamycin (mTOR) (Leuenroth et al., 2007; Tao et al., 2005; Torres et al., 2009), have been implicated in ADPKD and clinical trials targeting these pathways have been conducted. Other treatment options such as
somatostatin analogues, HDAC inhibitors and curcumin, mostly aiming to modulate the same three signalling cascades - Ca\(^{2+}\), cAMP and mTOR - are also currently being explored but will not be elaborated upon here.

As described previously, low intracellular Ca\(^{2+}\) levels in ADPKD allow an increase of cAMP concentration, which enhances fluid secretion and proliferation. mTOR is a kinase which regulates cell proliferation and cell size. In patients with ADPKD, the mTOR pathway has been shown to be upregulated in cystic kidney tissue. mTOR can be inhibited by tuberin (TSC2 protein) and it has been suggested that loss of the tuberin-binding site in PC1 could enhance ADPKD phenotypes (Wildman et al., 2003). Rodent preclinical trials with the mTOR inhibitor rapamycin were very promising (Serra et al., 2010), however, initial clinical trials with rapamycin and sirolimus have been disappointing (Grantham et al., 2011; Levey et al., 2011; Tao et al., 2005). A recent clinical trial suggested that a low-dose treatment with an mTOR inhibitor improves renal function (Braun et al., 2014) and the natural compound resveratrol, which has been linked to mTOR inhibition, represses renal growth in a PKD rat model (Han:SPRD, (Wu et al., 2016)).

Vasopressin V2 receptor antagonists and somatostatin have shown positive effects in inhibiting disease development and progression in rodent models and in clinical trials (Gattone et al., 2003; Higashihara et al., 2011; Torres et al., 2012; Torres et al., 2007; Torres et al., 2004). These drugs inhibit fluid secretion and cell proliferation via a decrease of cAMP levels through the inhibition of adenylate cyclases (reviewed in (Torres & Harris, 2009)).

Triptolide, an active diterpene of the Chinese medicine Lei Gong Teng, is currently undergoing phase III clinical trials. It successfully reduced renal expansion in murine models and in a small, uncontrolled clinical trial (Chen et al., 2014; Leuenroth et al., 2010; Leuenroth et al., 2008; Leuenroth et al., 2007). Although the proposed mechanism of action for triptolide is to activate PC2 channel, other modes of action are also possible.

Once disease progression has reached ESRD, the only remaining treatment options besides symptom reduction are dialysis or kidney transplantation. Transplantation, being the treatment of choice, has no greater risk of complications in ADPKD patients compared to the general population. In cases where a nephrectomy is indicated, hand-assisted laparoscopic nephrectomy is favourable to open nephrectomy regarding blood loss, postoperative pain and recovery time (Desai et al., 2008; Kramer et al., 2009).
6. **Zebrafish as a model organism**

The zebrafish, *Danio rerio*, has become a very popular model organism during the past decades. Owing to the relatively low cost, short generation time (2-3 months) and easy access, it provides a comparatively inexpensive alternative *in vivo* model to mammalian systems. A single female can lay up to 200 eggs per week, which develop rapidly into transparent embryos. Most major structures and organs are formed by 48 hpf when the larvae hatch and begin swimming freely. The embryo’s transparency allows for *in vivo* imaging of internal organs by using fluorescent markers. Zinc-finger nucleases and TALEN methodologies have in the past provided tools for targeted gene editing whereas the recently developed CRISPR/Cas9 system has advanced gene manipulation to a more efficient level. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system was discovered as part of the immune system in bacteria and archaea (Horvath *et al.*, 2010). Recent studies, however, have utilized it to create target-specific mutagenesis in a variety of models, zebrafish being amongst them (Chang *et al.*, 2013; Hwang *et al.*, 2013).

6.1. **Zebrafish development**

The development of zebrafish is very rapid and some of the stages and their timing after fertilisation depicted in Figure 7. By 24 hpf anlagen of all organs and other vital structures, such as the blood vessels and spinal column have formed and subsequently mature to full function (stages of development extensively described in (Kimmel *et al.*, 1995)). Kidney formation, for instance, is completed by 48 hpf and glomerular filtration matures until about 4 dpf. Classically, this rapid development in a transparent embryo have made zebrafish a useful tool for geneticists and developmental studies. Their small size, easy handling and rapidly growing bioinformatics databases also make them an interesting model to address a variety of basic research questions.
6.2. Zebrafish chemical screens

High-throughput chemical screens are typically conducted in cell culture models, however zebrafish have emerged in recent years as an *in vivo* alternative. Three zebrafish embryos in 250 µl medium containing drugs of interest can comfortably develop in a single well of a 96-well plate for 2-3 days. In the past 15 years, a multitude of small molecule screens have been performed on zebrafish. There are different approaches to finding active compounds in small molecule screens (Peterson *et al.*, 2011; Rennekamp *et al.*, 2015) and during this project a phenotype-driven approach was taken – an ADPKD-related phenotype was chosen as readout in the absence of a validated target. Screens can use a validated target as readout i.e. modulation of a particular gene or pathway related to the desired outcome, but since no such target has been described for ADPKD zebrafish models, a phenotypic screen was conducted. Some examples of previous screens aiming to discover novel drug candidates for specific disease phenotypes include: an aortic coarctation phenotype (Hong *et al.*, 2006), protection from aminoglycoside-induced utricular hair cell loss (Owens *et al.*, 2008) and long QT syndrome (Peal *et al.*, 2011). HDAC inhibition, identified as a potential APDKD-modifier during a small-scale compound screen on zebrafish *pkd2* mutants, has subsequently proven effective in rodent models, underlining the general validity of this approach (Fan *et al.*, 2012; Xia *et al.*, 2010).
7. Mammalian and zebrafish renal development

The main functions of the kidneys in any species are removal of nitrogenous waste and homeostasis of ion, metabolite and fluid concentrations (osmolality), as well as pH levels within vital levels. Basically, blood is first filtered by the glomeruli and ions or small molecules are recovered from or excreted into the filtrate by active epithelial transport (Jacobson, 1981). The functional units of the kidney are called nephrons and each nephron has three major sub-units: glomerulus, tubule and collecting duct. The glomerulus acts as a blood filter with specialised basket-like cells, the podocytes. Small molecules, ions and blood fluid pass through the podocytes’ slit-diaphragm, a sort of “mesh”, into the urinary space. This glomerular filtrate is then drained into tubules where salt and water are reabsorbed and the remaining waste is transported via the collecting duct to the excretion site.

Three distinct kidney types with increasing complexity arose during vertebrate evolution: pronephros, mesonephros and metanephros. In the course of embryonic development, the pronephros is the first to form and in teleost fish and amphibians, this is the functional kidney of early larval life (Vize et al., 1997). In juvenile stages during fish and frog development, a mesonephros forms around and along the pronephros by adding more nephrons from surrounding tissues and this mesonephros then functions as the final adult kidney. The most complex kidney form, the metanephros is found exclusively in amniotes (mammals, birds and reptiles) and is especially adapted to produce concentrated urine by water retention. In mammals, the pronephros is only a vestigial organ and the mesonephros is the functional kidney during foetal life. Both structures are transient and will degenerate (see Figure 8) or in case of males, become part of the reproductive system (Dressler, 2006).

![Figure 8](https://commons.wikimedia.org/w/index.php?curid=7047612)
During the embryonic and early larval stages, the zebrafish kidney consists of a pronephros; two glomeruli which are fused at the midline, just ventral to the dorsal aorta, and two laterally extending tubules connecting into ducts (Drummond, 2000). The development of the zebrafish kidney is depicted in Figure 9 and basically completed by 2 dpf; maturation of filtration commences from thereon. In zebrafish, cells destined to form the pronephros arise from the ventral mesoderm. There, a particular band of tissue, the intermediate mesoderm, gives rise to kidney and blood cells (Kimmel et al., 1990). Tubule formation takes place by mesenchyme to epithelial transition, which is completed with polarisation of the epithelia at 24 hpf (Drummond et al., 1998). Vascularisation of the glomerulus does not take place until 36-40 hpf (tubule development has long been completed) when the glomerular primordia come in contact with the overlying dorsal aorta. Subsequently, by 40-48 hpf, endothelial cells invade the glomerular epithelium (via vegf - vascular endothelial growth factor signalling, (Majumdar et al., 1999) and become surrounded by podocytes. Filtration commences after shear stress-induced capillary formation and is leaky at 48 hpf but matures to size-selectivity by 4 dpf (Kramer-Zucker, Wiessner, et al., 2005). Later in larval life, the mesonephros develops by the addition of nephrons from the surrounding mesenchyme - this will remain the functional kidney throughout adult life.

The zebrafish pronephric kidney is composed of the same cell types as all vertebrate kidneys and the transcription factors regulating organogenesis have highly conserved functions in mammalian and teleost kidney developments (Drummond et al., 2010). Tubule segmentation, responsible for the highly specialised secretion and absorption functions of individual segments, is controlled by conserved genes. Furthermore, seven of the ten metanephric
mammalian segments have been found in zebrafish and the absence of the remaining segments can be attributed to the lack of need of a freshwater species to conserve water as rigorously as terrestrial species (Wingert et al., 2011; Wingert et al., 2007). Defects in genes associated with human polycystic kidney disease also cause pronephric “cyst” formation in zebrafish, underlining the relevance of fish to study this type of disorder (Hostetter et al., 2003; Liu et al., 2002; Low et al., 2006; Otto et al., 2003; Sun et al., 2004; Sun et al., 2001).

There are, however, also notable differences comparing the zebrafish pronephros to the mammalian metanephros. As described before, the absence of the thin limb segment (the loop of Henle) can likely be attributed to the low requirement of freshwater teleosts for water retention and urine concentration. The complex collecting duct system in mammals with its thousands of nephrons is not required in a two-nephron pronephros and hence only a single short segment connects to the cloaca for drainage. Most intriguing is the entirely unique cell type present in a particular segment of the teleost pronephros: cell clusters that are known as the Corpuscles of Stannius and responsible for calcium and phosphate homeostasis (Kaneko et al., 1992).

8. The ciliary hypothesis of ADPKD

Cilia are hair-like organelles that protrude apically from non-dividing polarized cells in almost every cell or tissue in the body. There are two classes of cilia: motile and non-motile (or primary) cilia. The structural components between those ciliary types are the same but ultrastructurally, motile cilia have a “9+2” and primary cilia a “9+0” design; the motile “+2” refers to the presence of a central pair of microtubules (Figure 10 A). The assembly of cilia is facilitated by a specialised process, microtubule-dependent intraflagellar transport (IFT), which is highly conserved throughout evolution – see Figure 10 B (Pazour, 2004).

ADPKD is generally considered a ciliopathy, although no structural or motility defects in renal cilia have been described in murine and zebrafish pkd1 or pkd2 knockout models (Obara et al., 2006; Sullivan-Brown et al., 2008). Cystic kidneys are often associated with defects in ciliary function and it could be hypothesised that loss of Pkd2 results in loss of ciliary signalling (Kramer-Zucker et al., 2005; Pazour, 2004). Interestingly, no significant differences have been detected regarding cilia number or length in the zebrafish Kupffer’s vesicle in pkd2 morphants or in the mouse embryonic node of Pkd2 mutants (Bisgrove et al., 2005; McGrath et al., 2003; Obara et al., 2006). This indicates that in Pkd2 mutants, ciliary structure is normal, but signal transduction is disrupted.

One of the main differences comparing the fish pronephros and the mammalian metanephros are the different types of cilia found in these tissues. Mammalian metanephric
cells have mainly primary cilia (non-motile) with occasional motile cilia in humans (Kramer-Zucker et al., 2005; Ong & Wagner, 2005) whereas the zebrafish pronephros is completely lined with motile cilia, which contribute to fluid movement (Kramer-Zucker et al., 2005). A loss of motility in motile cilia, also called ciliary dyskinesia (or Kartagener syndrome) leads to poor mucociliary clearance in the respiratory tract, loss of fertility and situs inversus in humans. In zebrafish it causes a classical ciliary mutant phenotype, including renal dilations in zebrafish (van Rooijen et al., 2008). Renal cysts are not a symptom in the human syndrome, possibly owing to the fact that the zebrafish pronephros is lined with motile cilia whereas the mammalian kidney exhibits non-motile cilia. These ciliary differences therefore raise an important limitation of zebrafish embryos as models for ADPKD.

Renal epithelial cells are sensitive to flow (Praetorius et al., 2001) and both zebrafish pronephric motile cilia and mammalian metanephric non-motile cilia are PC2-positive. It has been shown that non-motile cilia can function as mechanosensors for flow (Nauli et al., 2003; Praetorius et al., 2001) and even motile cilia, previously thought to be non-sensory, have been shown to possess sensory functions (Bloodgood, 2010). PC2 has been localised to motile cilia in other tissues such as the female reproductive tract and the mouse embryonic node; they may relay mechanosensory information via beat frequency or changes in membrane potential (Andrade et al., 2005; McGrath et al., 2003; Stommel et al., 1980; Woolf et al., 2004).

However, there are obvious differences when comparing zebrafish classical ciliary mutants (some of which are listed in Table 7), where e.g. the intraflagellar transport is disrupted and functional cilia are lacking, with pkd mutants. First, the axis curvature phenotype is opposite i.e. ventral in cilia mutants and dorsal in pkd2 mutants. Furthermore, in another zebrafish model of ADPKD (polaris mutant) restoration of ciliary length rescued the L/R axis defects but cyst development was not prevented (Brown et al., 2003). These studies suggest that pkd2 loss-of-function may not be a classical ciliopathy. Although no structural or motility cilia defects were observed in PKD knockout models, a recent zebrafish study suggests that ciliary stability is influenced by pkd2 and CaMK-II (Ca2+/calmodulin-dependent protein kinase type II) as embryos deficient in these genes (morphants) fail to form pronephric ducts properly. Additionally, these embryos exhibited anterior renal cysts and destabilised cloacal cilia with ciliary disassembly starting at 48 hpf and no motile cilia remaining by 72 hpf (Rothschild et al., 2011). Constitutively active CaMK-II was able to restore duct formation in pkd2 morphants suggesting pkd2-mediated Ca2+ signalling plays a role in cilia stability.
Table 7 List of some classical ciliary mutants described in recent publications. This list is by no means complete and merely serves to illustrate common phenotypes. References: 1 (van Rooijen et al., 2008), 2 (Omori et al., 2008), 3 (Malicki et al., 1996), 4 (Brand et al., 1996), 5 (Sullivan-Brown et al., 2008), 6 (Zhao et al., 2011), 7 (Zhao et al., 2007), 8 (Chen et al., 1997), 9 (Sun et al., 2004).

However, the fact that *pkd2* morphants display *situs inversus* (Bisgrove et al., 2005), which is classically linked to defects in motile cilia left/right patterning, suggests ADPKD is a ciliopathy. In the mouse node as well as the zebrafish Kupffer’s vesicle, beating cilia create a unidirectional flow, which is necessary for asymmetric left-right patterning and correct axis formation (Kramer-Zucker et al., 2005; Nonaka et al., 1998). If this flow is disrupted either by defects in ciliary structure or function, L/R patterning becomes randomised. Interestingly, nodal cilia are structurally primary cilia (9+0) but are motile. As *pkd2* mutants develop cilia normally and *pkd1* mutants to this date have not been described to exhibit L/R defects (but *PKD1*-deficient cells are unable to respond to fluid flow with a Ca$^{2+}$ influx (Nauli et al., 2003)), it may be surmised that *PKD1* and *PKD2* have additional functions than mere mechanosensing in the cilium and that the modes for cyst formation may not be the same as in “classical” ciliopathies.

Interestingly, *Pkd1* is not expressed in the mouse node and it used to be unclear how *Pkd2* could act as mechanosensory channel without its presumed sensor *Pkd1*. However, recent studies have revealed that *Pkd1l1* is expressed in the node and mutations in *Pkd1l1* lead to L/R patterning defects (Field et al., 2011; Kamura et al., 2011). Calcium transients in the cytoplasm are abolished by loss of PC1 or PC2 function (Nauli et al., 2003), but in cilia, PKD1L1 and PKD2L1 are responsible for calcium entry (DeCaen et al., 2013; Delling et al., 2013). Interaction of PC2 with TRPV4 or TRPC1 in the cilium may also be responsible for flow detection (Bai et al., 2008; Kottgen et al., 2008). However, neither *PKD1L1*, *TRPC1* or *TRPV4* mutations have been linked to cystogenesis (reviewed in Mangolini et al., 2016). It is therefore difficult to attribute the phenotypes solely to either loss of cilia structure, motility and flow or to loss of mechanosensors and/or signal transduction.

<table>
<thead>
<tr>
<th>name</th>
<th>phenotype</th>
<th>gene affected</th>
<th>publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>lrc50m123M</td>
<td>Curly down tail, renal dilations, ciliary dyskinesia</td>
<td>dnaaf1 (formerly lrc50)</td>
<td>originally described in 1</td>
</tr>
<tr>
<td>clipsa94M</td>
<td>Curly down tail, renal dilations, loss of cilia</td>
<td>tralip3</td>
<td>2, 3, originally described in 4</td>
</tr>
<tr>
<td>locke</td>
<td>Curly down tail, renal dilations, shortened cilia</td>
<td>cede40</td>
<td>5, 6, 7, originally described in 8</td>
</tr>
<tr>
<td>swt (switch hitterm375)</td>
<td>Curly down tail, renal dilations</td>
<td>dnaaf1 (formerly lrc50)</td>
<td>5, originally described in 4</td>
</tr>
<tr>
<td>curly</td>
<td>Curly down tail, renal dilations</td>
<td>c10h21orf59</td>
<td>5, originally described in 4</td>
</tr>
<tr>
<td>ifi mutants</td>
<td>Curly down tail, renal dilations</td>
<td>ifi genes (currently 23 genes described in zebrafish)</td>
<td>many described from the screens 4 and 9</td>
</tr>
</tbody>
</table>
9. ADPKD models

9.1. Rodent models

There are many different rodent models mimicking the effects of ADPKD, which are reviewed in detail in (Happe et al., 2014; Nagao et al., 2012) and will be summarised here briefly.

Many murine models with mutations in Pkd1 and/or Pkd2 have been generated some of which are tissue-specific, hypomorphic, conditional or tissue-specific and conditional. Most of the knockouts and inducible knockouts show a very rapid progression. Interestingly, the time point of inactivation seems to play crucial role in severity. Hypomorphic alleles typically display a slower progression rate. Of note, murine overexpression models with human proteins also recapitulate the development of cystic kidney, indicating that gene dosage is important.

Furthermore, there are some non-Pkd1/Pkd2 rodent models that also develop polycystic kidneys. Some of these comprise models that mimic ARPKD (autosomal-recessive PKD) more closely, such as the Pck rat or the Pkhd1 mouse, and others nephronophthisis, like Jck mice and Cy rats.

9.2. Zebrafish models of ADPKD: pkd-deficient embryos

The pkd2bu2173/bu2173 mutant used during this project was identified from a library of mutagenized fish in the early 2000s during an ENU-mutagenesis screen. The pkd2bu2173 mutant allele carries a point mutation in exon 5 leading to a truncated protein (Freek van Eeden, unpublished). In this mutant, a guanine base is replaced with an adenine resulting in a stop codon in amino acid 302 of 904. Reduced to one-third of its original length, the
resulting protein is presumed to have lost its function, creating a null mutation in homozygous animals. The typical axis deformation with its upward curled tail as described from morpholino injections (Bisgrove et al., 2005) has been observed and can be seen in Figure 11. Table 8 summarises all \textit{pkd2} mutant alleles described to date (accession 02.09.2016) with their associated phenotypes and publications. Additionally to \textit{pkd2} mutant alleles, a number of \textit{pkd2} knockdown strategies with different morpholinos have also been published. A summary of the morpholinos and the respective phenotypes can be found in Table 9.

![Figure 11 Zebrafish \textit{pkd2}^{hu2173/hu2173-/-} mutant with dorsal axis curvature at 2 dpf and age-matched WT sibling.](image)

<table>
<thead>
<tr>
<th>\textit{pkd2} zebrafish allele</th>
<th>phenotype</th>
<th>additional information</th>
<th>publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>hu2173</td>
<td>curly up tail, L/R patterning defect, cardiac, ocular and trunk oedema</td>
<td>used during this project, point mutation</td>
<td>1</td>
</tr>
<tr>
<td>hi4166</td>
<td>curly up tail, L/R patterning defects</td>
<td>used in compound screen in 16, transgenic insertion</td>
<td>2, 3, 4, 5, 6, 16</td>
</tr>
<tr>
<td>sa18074</td>
<td>not described</td>
<td>point mutation</td>
<td>1</td>
</tr>
<tr>
<td>sa18283</td>
<td>not described</td>
<td>point mutation</td>
<td>1</td>
</tr>
<tr>
<td>tc321</td>
<td>curly up tail, L/R patterning defect</td>
<td>unknown</td>
<td>7, 8, 9, 10, 11, 12, 13, 14</td>
</tr>
<tr>
<td>tg226d</td>
<td>curly up tail, L/R patterning defect</td>
<td>unknown</td>
<td>8, 13</td>
</tr>
<tr>
<td>tp85a</td>
<td>curly up tail, L/R patterning defect</td>
<td>unknown</td>
<td>8, 11, 13</td>
</tr>
<tr>
<td>ty30</td>
<td>curly up tail, L/R patterning defect</td>
<td>unknown</td>
<td>8, 10, 11, 13</td>
</tr>
</tbody>
</table>

Table 8 List of \textit{pkd2} mutant alleles described to date (accession 02.09.2016). Based on information from zfin.org. References: 1 (Busch-Nentwich, 2013), 2 (Sun et al., 2004), 3 (Mangos et al., 2010), 4 (Paavola et al., 2013), 5 (Amsterdam et al., 2004), 6 (Yuan et al., 2015), 7 (Bisgrove et al., 2005), 8 (Brand et al., 1996), 9 (Le Corre et al., 2014), 10 (Schottenfeld et al., 2007), 11 (Chen et al., 1997), 12 (Goetz et al., 2014), 13 (Haffter et al., 1996), 14 (Heckel et al., 2015), 15 (Roxo-Rosa et al., 2015), 16 (Cao et al., 2009).
Table 9: *pkd2* morpholinos and respective morphant animals described to date (accession 02.09.2016) according to zfin.org. References: 1 (Sun et al., 2004), 2 (Cao et al., 2009), 3 (Fogelgren et al., 2011), 4 (Giamarchi et al., 2010), 5 (Paavola et al., 2013), 6 (Schottenfeld et al., 2007), 7 (Sullivan-Brown et al., 2008), 8 (Francescatto et al., 2010), 9 (Sussman et al., 2014), 10 (Zhao et al., 2011), 11 (Pavel et al., 2016), 12 (Bisgrove et al., 2005), 13 (Obara et al., 2006), 14 (Coxam et al., 2014), 15 (Goetz et al., 2014), 16 (Mangos et al., 2010), 17 (Fu et al., 2008), 18 (Gao et al., 2010), 19 (Kottgen et al., 2008), 20 (Le Corre et al., 2014), 21 (Vasilyev et al., 2009), 22 (Roxo-Rosa et al., 2015).

Renal cyst formation has so far only been observed in *pkd2* morphants but not in mutants, see Table 8 and Table 9 (also described by (Cao et al., 2009; Schottenfeld et al., 2007; Sun et al., 2004)). Generally, *pkd2* morphants have been shown to develop cystic kidneys, left-right asymmetry defects and dorsal-axis curvature - except for renal cysts, these phenotypes have been confirmed in mutants. Even though a variety of mutants with renal dilations have been associated with body axis curvatures, almost all descriptions encompass ventrally curved body axes (Drummond et al., 1998). This makes the *curly up* or *cup* phenotype unique. An altered ECM has long been associated with ADPKD in human and animal tissues, as well as cell culture models and mRNA expression in these tissues shows an upregulation in matrix genes (Candiano et al., 1992; Riera et al., 2006; Schafer et al., 1994; Somlo et al., 1993). In chemical *pkd2* knockdown with a morpholino, it has been shown that the curvature phenotype is linked to alterations in ECM secretion or assembly (Mangos et al., 2010). An analysis of somite and actin fibre morphology revealed no significant difference (Freek van Eeden, unpublished), supporting the theory of ECM overproduction as the primary cause for dorsal axis curvature rather than other structural defects (Mangos et al., 2010).

A number of pathways that seem to influence the curly tail phenotype have been proposed and are summarised in Table 10. Published work suggests that increased collagen production (Mangos et al., 2010) and/or deposition (Le Corre et al., 2014) play major roles in causing the
curly tail phenotype. Generally, pkd knockdown or knockout is characterised by an upregulation of collagen-synthesising enzymes (confirmed by in situ hybridisation) and knockdown of one of these enzymes, col2a1 (collagen type II alpha 1), reduced the dorsal axis curvature (Mangos et al., 2010). Furthermore, knockdown of sec10, an exocyst protein linked to ciliogenesis, as well as sec24d knockdown, involved in Golgi to ER transport, caused a decrease in curvature severity (Fogelgren et al., 2011; Le Corre et al., 2014). Interestingly, chemical knockdown of Golgi/ER transport with Brefeldin A (BFA) also reduced the cup phenotype. In combination, these experiments suggest that ECM overproduction and/or overdeposition cause the curly tail in pkd-deficient animals. HDAC inhibition also seems to decrease curvature severity in pkd2 mutants via an unknown mechanism (Cao et al., 2009). cAMP has been implicated in the curvature phenotype with the observation that knockdown of pde1a (phosphodiesterase a 1), a calcium-inducible cAMP-degrading enzyme, aggravates the pkd2 curly tail (Sussman et al., 2009). Of note, cell culture experiments have revealed a complicated relationship of cAMP levels and collagen expression via TGFβ (Perez-Aso et al., 2014). Moderate stimulation with cAMP (~150% control concentration) stimulated collagen 1 and 3 syntheses whereas maximal increases of cAMP (~16,000% of control) inhibited collagen 1 but increased collagen 3 production via the TGFβ pathway (Perez-Aso et al., 2014).

<table>
<thead>
<tr>
<th>cAMP-contributing pathways</th>
<th>supporting evidence</th>
<th>publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased collagen production</td>
<td>Knockdown of col2a1 or chemical inhibition of collagen cross-linking reduced cAMP phenotype</td>
<td>1</td>
</tr>
<tr>
<td>Increased collagen deposition or secretion</td>
<td>Golgi/ER transport (sec10 and sec24d) knockdown and chemical inhibition with Brefeldin A reduced cAMP phenotype</td>
<td>2, 3</td>
</tr>
<tr>
<td>Unknown</td>
<td>HDAC inhibition reduced cAMP phenotype</td>
<td>4</td>
</tr>
<tr>
<td>cAMP</td>
<td>Chemical inhibition of PKA and bPDE1A RNA reduced and knockdown of pde1a aggravated cAMP phenotype</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 10 List of pathways influencing zebrafish the pkd2 curvature phenotype. References: 1 (Mangos et al., 2010), 2 (Fogelgren et al., 2011), 3 (Le Corre et al., 2014), 4 (Cao et al., 2009), 5 (Sussman et al., 2014).

No significant differences were observed at early developmental stages when blood velocity, heart rate and cardiac output in pkd2 mutant with WT animals were compared (Freek van Eeden, unpublished). However, a recent study reported lower heart rates and increased arrhythmia in pkd2 mutants (Paavola et al., 2013). As systole and peak velocities were similar in WT and pkd2 mutants a diastolic dysfunction has been suggested. Using isolated hearts in pacing chambers revealed impaired intracellular calcium cycling with the lack of a plateau phase (Paavola et al., 2013). Additionally, heart looping is randomised in pkd2 knockdown and knockout animals (Sun et al., 2004).
10. Project aims

This project has three main aims: the phenotypic study of zebrafish ADPKD models, utilisation of one of these models in a large-scale compound screen and evaluation of renal calcium levels in vivo in wild-type animals and ADPKD zebrafish models.

During the characterisation of ADPKD zebrafish models, pkd2 morphants, the \textit{pkd2}hu2173/hu2173 mutant and a cystic disease zebrafish model, the ciliary \textit{elpsa} mutant, were phenotypically examined. Based on a study in mouse models (Ma \textit{et al.}, 2013), complex interactions of cilia and \textit{pkd2} were hypothesised which were re-evaluated in zebrafish. To this purpose, a cilia/\textit{pkd2} double knockout line were be created in this project to compare zebrafish phenotypes to findings in murine studies.

Subsequent to the initial characterisation, an \textit{in vivo} compound screen was be conducted on one of the models with an ADPKD-related phenotype as readout. Cao \textit{et al.} have shown that the curvature phenotype is a suitable read-out in a small-scale chemical screen (Cao \textit{et al.}, 2009). In this project a large-scale compound screen with two chemical libraries, spanning ~2400 small molecules, was conducted and findings were validated in two independent three-dimensional cyst culture models. The cell lines used for this purpose comprise canine MDCKII cells, a well-established renal cyst model, and human \textit{PKD1}-/ Ox161c1 cells.

Lastly, a zebrafish renal calcium-reporter line was be established to study pronephric calcium levels in vivo. This was be the first description of pronephric calcium in zebrafish and the first in an intact organism (murine studies depend on the exteriorisation of the organ due to their opaque skin (Burford \textit{et al.}, 2014; Szebenyi \textit{et al.}, 2015)). Cell culture experiments suggest lower intracellular calcium in PKD-deficient cells, therefore lower pronephric calcium levels were be expected in \textit{pkd2}-/ zebrafish embryos. After the initial characterisation of renal calcium in wild-type animals and ADPKD models, the compounds identified during the chemical screens were tested on their ability to modify pronephric calcium.

In conclusion, novel insights into the interplay between ADPKD and its modifying factors were be gained during this project and, hopefully, new avenues for potential therapeutic targets of this devastating disease were be presented.
Materials and Methods

1.1. Zebrafish maintenance

Zebrafish were kept under standard conditions (14 h light/10 dark cycle, temperature 26 – 28 °C (Brand et al., 2002)). Rearing occurred in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM MgSO₄, 0.33 mM CaCl₂ and methylene blue) and staging according to (Kimmel et al., 1995). To prevent pigmentation, larvae were treated with PTU (phenylthiourea) beginning 24 hpf (28 °C) when necessary (Karlsson et al., 2001). Zebrafish lines in this project included, amongst others, LDWT (London wild type), AB, wt1b::GFP, UAS:GCaMP7a and pkd2Δ2173. The wt1b::GFP line was originally generated by (Perner et al., 2007) and exhibits GFP fluorescence from 17 hpf in all parts of the developing pronephros. GFP expression in this line has also been described in the exocrine pancreas, gut, heart sac, eyes and gill arches. The elipsaΔ494 mutant strain, is a ciliary mutant (point mutation, leading to a truncation of the protein) with loss of cilia from 30 hpf and was kindly provided by Jarema Malikii (Omori et al., 2008). GCaMP7a allows real-time visualisation of intracellular calcium concentrations as it is a modified GFP that increases fluorescence in Ca²⁺ presence (Muto et al., 2013). Animals were sacrificed using an overdose of Tricaine and fixed in 4 % PFA/PBS (paraformaldehyde/phosphate buffered saline). All procedures adhered to Home Office legislation.

1.2. Morpholino injections

Morpholinos are nucleic acid analogues complementary to an RNA target region and capable of knocking down the expression of a specified gene. In this project a previously published pkd2 morpholino (Sun et al., 2004) complementary to the ATG region of the zebrafish pkd2 gene (5'-AGGACGAACGCGACTGGAGCTCATC-3') and a p53 morpholino (5'-GCGCCATTGCTTTGCAAGAATTG-3') were injected into the 1- or 2-cell stage of zebrafish embryos. The morpholinos were synthesised by Gene Tools, LLC/USA. The final amounts injected of the pkd2 morpholino were 2 ng/embryo and 1 pmol/embryo for the p53 MO in a volume of 1 nl.

1.3. Creating transgenic zebrafish lines

Plasmids were created using the MultiSite Gateway Three-Fragment Vector Construction Kit (Invitrogen/USA) according to manufacturer’s instructions. The fluorescent marker cmlc2:eGFP was used to visualise the transgenes (cmlc2, cardiac myosin light chain 2, drives expression in the heart, (Huang et al., 2003)). Transgenic lines created during this project comprise of enpep:Gal4 and podocin:Gal4. The podocin promoter (He et al., 2011) was derived from a plasmid kindly provided by Lwaki Ebarasi from the Karolinska Institute,
Stockholm/Sweden, the *enpep* promoter was cloned by Eleni Leventa and cloned into a middle entry vector during this project (promoter described in [Seiler et al., 2011](#)) and the *Gal4* plasmid was obtained from Nikolay Ogryzko. Final constructs contained a *cmh2:GFP* marker and Tol2 sites and were coinjected at 25 ng/nl with 25 ng/nl Tol2 mRNA (transcribed with mMessage mMachine kit (Life Technologies/USA) according to manufacturer’s instructions) into one-cell stage embryos. Subsequently founders were identified by screening the offspring for GFP fluorescence and stable transgenic lines established.

1.4. DNA extraction

1.4.1. DNA extraction from multiple embryos

Up to 20 embryos were placed in 310 µl extraction buffer (10 mM Tris HCl pH 8, 10 mM EDTA, 100 mM NaCl), 2% SDS (sodium dodecyl sulphate) and 4 µl 25 mg/ml proteinase K and incubated 75 minutes at 42 °C. After the tissue was dissolved, the solution was centrifuged for 5 min at 13000 rpm and the supernatant transferred into a sterile Eppendorf tube. 225 µl 4 M NaCl were added, the solution was mixed and centrifuged for 5 min at 13000 rpm. The supernatant was transferred into a sterile Eppendorf tube and 420 µl isopropanol were added. The components were mixed and centrifuged for 5 min at 13000 rpm. The supernatant was discarded and the DNA pellet washed with 250 µl 70 % EtOH, centrifuged briefly and the supernatant was discarded. This last wash step was repeated a second time. The pellet was then air-dried after which the DNA was diluted in 50 µl TE buffer (10 mM Tris pH 8 and 1 mM EDTA).

1.4.2. DNA extraction from single embryos

DNA extraction from single embryos was necessary for various applications, such as sequencing fish imaged on the lightsheet.

Single embryos were dechorionated, placed individually in sterile tubes and 50 µl of embryo digestion buffer (10 mM Tris HCl pH 8, 1 mM EDTA, 0.3 % Tween20 and 0.3 % NP40) were added. The embryos were subsequently heated for 10 min to 98 °C after which 2 µl proteinase K stock solution (25 mg/ml stock) were added. The embryos were then kept at 55 °C for 3 h, which was followed by an inactivation step for 10 min at 98 °C. 2 µl supernatant was subsequently used for PCR reactions.
1.4.3 DNA extraction from fin clips

DNA extraction from fin clipped tissue is typically used to identify carriers of recessive phenotypes such as \textit{pkd2} or \textit{elipsa}.

Fin clips were conducted according to Home Office recommendations and clipped materials were transferred directly into 50 µl fresh base solution (1.25 M KOH and 10 mM EDTA in MilliQ H\textsubscript{2}O) in a 96-well plate. The removed tissue was then incubated for 30 minutes at 95°C and the plate vortexed for 5 seconds. Subsequently 50 µl neutralisation buffer (2 M TrisHCl in MilliQ H\textsubscript{2}O) were added to each sample and the plate vortexed again for 10 seconds. Lastly, the extract was centrifuged for 2 min at maximum speed and 1.5 µl supernatant used per PCR reaction.

1.5. Bacterial cultures, plasmid isolation and restriction digests

Plasmid or circular DNA can easily be propagated and multiplied in bacteria such as New England Biolabs’ 10-beta \textit{E. coli} strain. The transformation of plasmids into 10-beta cells occurred according to manufacturer’s specifications. Bacterial colonies were selected with 50 µg/ml kanamycin, 100 µg/ml carbenicillin or 12.5 µg/ml chloramphenicol depending on plasmidic antibiotic-resistance genes. Glycerol stocks were prepared with a 1:1 ratio of culture and 80 % filter sterilized glycerol and stored at – 80°C. For most subsequent applications the plasmid DNA was re-extracted from the bacteria. For small bacterial cultures (up to 10 ml) this was done using the QIAprep Spin Miniprep Kit (Qiagen/the Netherlands) according to the manufacturer’s manual. For larger cultures up to 100 ml the NucleoBond Xtra Midi Kit (Macherey-Nagel/Germany) was employed according to manufacturer’s instruction for high-copy plasmid purification protocol.

Restriction enzymes digests, e.g. to test whether a plasmid contains expected sequences, were performed with New England BioLabs (USA) enzymes according to manufacturer’s instructions.

1.6. PCR

PCRs were conducted according to manufacturer’s specifications with 2x ReddyMix by Thermo Scientific/USA, 5x Firepol Master Mix by SolisBioDyne/Estonia or Phusion High-Fidelity DNA Polymerase by New England BioLabs/USA. High-fidelity polymerases are less likely to produce mistakes while amplifying and were used in sensitive applications such as cloning. The subsequent table lists (Table 11) the oligonucleotides (designed with Primer3) used in various PCR applications. Generally, an annealing temperature of 50 °C was used.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aa changes 1_for</td>
<td>CGCATTTTTCGCATTAAGACAGA</td>
</tr>
<tr>
<td>Aa changes 1_rev</td>
<td>TCTCCAGTATCTCTTCCAC</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Aa changes 2_for</td>
<td>AGCAGATGGACAGGTTGTT</td>
</tr>
<tr>
<td>Aa changes 2_rev</td>
<td>GTTGAATTGTGCAAGCTGTG T</td>
</tr>
<tr>
<td>attB1R-podocin</td>
<td>GGGGACTGCTTTTTGTACAAACTTGGCCTAGATCGAGATCTGTGTT</td>
</tr>
<tr>
<td>attB4F-podocin</td>
<td>GGGGACAAACTTTGTATAAGAAAAGTTGTCTTGAAGACAAATCGCGGGTTA</td>
</tr>
<tr>
<td>clipsa for new</td>
<td>TGTCGTTTTTCCAGGAGAGG</td>
</tr>
<tr>
<td>clipsa ID for</td>
<td>TGTCGTTTTTCCAGGAGAGGA</td>
</tr>
<tr>
<td>clipsa ID rev</td>
<td>CTTCCTCCGTTCCGCTCTT</td>
</tr>
<tr>
<td>clipsa rev new</td>
<td>TCTCTTTCGGCGCTTTGTC</td>
</tr>
<tr>
<td>Gal4 probe For primer</td>
<td>TCAATCGAACAAAGCAGACG</td>
</tr>
<tr>
<td>Gal4 probe Rev primer</td>
<td>TACATCGACACTCATATAG</td>
</tr>
<tr>
<td>pkd2 seq for</td>
<td>TTTGTGTGCTGGCTCGGAATG</td>
</tr>
<tr>
<td>pkd2 seq for new</td>
<td>ATGAGGATCTGCGAGACGAG</td>
</tr>
<tr>
<td>pkd2 seq new rev</td>
<td>CAATGAGGACAAGGCACCAT</td>
</tr>
<tr>
<td>pkd2 seq rev</td>
<td>CTGGGATCGACAAGACAGA</td>
</tr>
<tr>
<td>pkd2 seq rev new</td>
<td>GAAGTCCAAGAACACGCTC</td>
</tr>
<tr>
<td>Seq enep clones For</td>
<td>GCACTGCGCTTTGACTATAC</td>
</tr>
<tr>
<td>Seq enep clones Rev</td>
<td>CGACGGCCAGTGAAATTATA</td>
</tr>
<tr>
<td>Seq podocin clones For</td>
<td>GCACTGCGCTTCTGATATAC</td>
</tr>
<tr>
<td>Seq podocin clones Rev</td>
<td>CGACGGCCAGTGAAATTATA</td>
</tr>
</tbody>
</table>

Table 11 List of oligonucleotides ordered from IDT (Integrated DNA Technologies, USA) used in various PCR applications.

1.6.1. PCR purification

PCR products have to be purified and cleaned of salts and residual nucleotides for certain applications such as DNA sequencing. This was done for cloning purposes by either using the MinElute PCR Purification Kit (Qiagen/the Netherlands) or, if unspecific amplification had occurred, the MinElute Gel Extraction Kit (Qiagen/the Netherlands) according to the manufacturer’s manuals. For sequencing, if no unspecific amplification occurred, PCR product was purified by adding 5 µl product to 3.95 µl MilliQ H₂O, 0.05 µl Exonuclease I and 1 µl SAP (shrimp alkaline phosphatase) before incubation for 45 min at 37 °C and inactivation for 15 min at 80 °C.

1.7. Measurement of glomerular and tubular dilation

To measure the pronephros *pkd2*/*2173/*2173; *wt1b:GFP* embryos and *wt1b:GFP*-positive siblings were anaesthetised and immobilised in methylcellulose. Imaging occurred dorsally and glomerular area or tubular diameter was measured using ImageJ. Statistical analysis was conducted with GraphPad Prism.

1.8. Antibody staining

To assess cellular proliferation in the pronephric kidney a phosho-Histone H3 (pH3) antibody was chosen to stain cells in M-phase.

Embryos were fixed overnight in 4 % PFA and transferred into methanol (MeOH) via a series of increasing concentration. Embryos were stored at – 20 °C in 100 % MeOH. Staining commenced by rehydrating the embryos with a series of increasing concentrations of PBTw
(PBS with 0.1 % Tween-20) in MeOH followed by 4 washes of 5 min in PBTw. To improve permeabilisation embryos were incubated for 1 h in 10 µg/ml proteinase K, refixed in 4 % PFA for 20 min, washed 5 times for 5 min in PBTw and subsequently incubated in acetone form 7 min at – 20 °C. This was followed by 5 washes of 5 min in PBTw and a 2 h incubation step at room temperature in blocking solution (2 % blocking reagent, 0.1 % v/v Triton X-100, 1 % DMSO). The primary antibody then was applied at a concentration of 1:200 (ab5176) in blocking solution overnight at 4 °C. The following day the solution was removed, followed by five 20-minute washes in PBTw, a second 2 h block in blocking solution and incubation with the secondary antibody at a concentration of 1:1000 (Alexa Fluor 488). This was followed by five 20-minute washes, refixation in 4 % PFA for 30 min and transfer to 80 % glycerol via a series of increasing glycerol concentration. Stained embryos were stored at – 20 °C until imaging.

1.9. *In situ* hybridisation

To image gene-expression patterns *in situ* hybridisation was performed which allows visualisation of mRNA expression.

In situ probe synthesis was achieved by mixing the following reagents at room temperature (in order) before incubation for 2 h at 37 °C 1 µg linearised template DNA, MilliQ H₂O (to 13 µl total), 2 µl 10x DIG-UTP NTP labelling mix, 4 µl 5x transcription buffer, 0.5 µl RNAse inhibitor and 1 µl T7 RNA polymerase. Afterwards 1 µl of RNAse-free DNAseI was added before continuing incubation at 37 °C for another 20 min and stopping the reaction by adding 1 µl 0.5 M EDTA. Removal of DNA was checked on an agarose gel before continuing as follows: add 80 µl MilliQ H₂O and vortex, precipitate RNA with 33 µl 10 M NH₄Ac and 350 µl ice cold EtOH by incubating at -20 °C for 2 h, spin at 13,300 rpm and 4 °C for 30 min and wash pellet with 0.5ml 70% ETOH before a final spin at 13,300 rpm at 4 °C for 10 minutes. The supernatant was then removed, the pellet air-dried for ca. 5 min, resuspended in 100 µl MilliQ H₂O and stored at -80 °C. Typically 1 µl probe was used for 200 µl hybridisation mix.

Embryos were fixed overnight in 4 % PFA and transferred via a series of increasing concentration into methanol. Embryos were stored at – 20 °C in 100 % MeOH at least over night. Staining commenced by rehydrating the embryos with a series of increasing concentrations of PBTw in MeOH followed by 4 washes of 5 min in PBTw. To improve permeabilisation embryos were incubated for 30 min in 10 µg/ml proteinase K (in 48 hpf embryos, 24 hpf embryos require no proteinase K treatment), refixed in 4 % PFA for 20 min and washed 3 times for 5 min in PBTw. Embryos where then incubated in pre-hybridisation
mix (50 % formamide, 5x SSC (saline-sodium citrate buffer), 0.1 % Tween20, 9.2 mM citric acid, 50 mg/ml heparin, 500 µg/ml tRNA – all diluted in MilliQ H$_2$O) for 1 h at 70 °C. The hybridisation mix was subsequently replaced with pre-hybridisation mix containing 500 ng probe and incubated overnight at 70 °C. Next day the following washes occurred at 70 °C: 100% hybridisation buffer (50 % formamide, 5x SSC, 0.1 % Tween20, 9.2 mM citric acid – all diluted in MilliQ H$_2$O) for 5 min, 75% hybridisation buffer/25 % 2x SSC for 15 min, 50% hybridisation buffer/50 % 2x SSC for 15 min, 25% hybridisation buffer/75 % 2x SSC for 15 min and 2x SSC for 15 min. Subsequently the following washes occurred at room temperature: 75% 0.2 x SSC/25 % PBTw for 10 min, 50% 0.2 x SSC/50 % PBTw for 10 min, 25% 0.2 x SSC/75 % PBTw for 10 min and PBTw for 10 min. The samples were then incubated in blocking buffer (2 % blocking reagent in PBTw) at room temperature for several hours before a 1:5000 solution of anti-DIG antibody in blocking reagent was applied and samples transferred onto a shaker at 4 °C in the dark. On the third day of staining all steps were conducted at room temperature in the dark: First, a quick rinse with PBTw and four half-hour washes with PBTw were done, followed by applying an alkaline phosphate (AP) buffer (100 mM Tris pH 9.5, 100 mM NaCl, 0.1% Tween20 in MilliQ H$_2$O) for 15 min which was subsequently exchanged for AP buffer with 50 mM MgCl$_2$ (remainder as before) in two washes of 10 min. For the final staining 3.4 µl NBT and 3.5 µl BCIP were added per ml of AP buffer and the staining developed in the dark and checked regularly. Once the staining had reach sufficient colouring, the reaction was stopped by washing embryos three times for 5 min at 4 °C in the dark.

1.10. *In vivo* compound screen on *pkd2*–/– zebrafish

1.10.1. High-throughput compound screen

To conduct a high-throughput chemical screen exposing *pkd2*–/– zebrafish to two chemical libraries, Microsource Discovery’s Spectrum library and the Published Kinase Inhibitor Set (PKIS, formerly GlaxoSmithKline and subsequently transferred to the University of North Carolina), zebrafish embryos were exposed in the following manner:

At ca. 24 hpf chorions were removed with pronase (2 mg/ml for 13 minutes), embryos were washed briefly and transferred back to 28 °C. As the curly tail phenotype does not appear at the same stage in all embryos (onset approx. 27 – 30 hpf), *pkd2* mutants were sorted into a separate dish containing screening medium (E3 medium, 0.75 x PTU and 1 % DMSO) as the curvature became apparent. Three embryos were subsequently transferred in 150 µl screening medium to each well of a 96-well plate and 100 µl prepared compound solution (compound diluted in screening medium, prepared the day prior and kept at – 20 °C) were
added to a final compound concentration of 10 µM. Exposed plates were incubated at 28 °C for 24 hpf before imaging each well with the Ash Phenosight system (automated 96-well plate microscope taking a single brightfield and GFP fluorescent image of each well allowing image acquisition of one plate in 10 minutes). Curvature analysis commenced using ImageJ software with the method described in (Mangos et al., 2010). DMSO exposed controls were eventually combined as no significant differences between experimental days were observed and a large control group was established.

Initial hits were chosen via a student’s t-test and re-tested in a second round. Additionally, all compounds were re-tested where more than one embryo had died in the previous exposure round. Compounds were either re-tested at 10 µM (if it was apparent that one decaying embryo had deprived the others of oxygen needed for development) or 0.3 µM if the compound was toxic, after careful assessment of the images. Final hit compounds were determined using one-way anova analysis combining all data collected.

Subsequently hit compounds were re-ordered and re-testing commenced using the same conditions as before, also testing a variety of concentrations, or by starting exposures at late epiboly stages, in the latter embryos were not dechorionated. Imaging always commenced between 49-52 hpf (curvature is fully developed by 48 hpf and remains stable). Hit compound sources are listed below in Table 12 and further compounds of interest, which were ordered for mechanistic studies, are catalogued in Table 13.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Supplier</th>
<th>Cat no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5-di-tert-butyl-4-hydroxyanisole</td>
<td>Sigma-Aldrich</td>
<td>447323</td>
</tr>
<tr>
<td>diclofenac</td>
<td>Sigma-Aldrich</td>
<td>93484</td>
</tr>
<tr>
<td>zinc pyrithione</td>
<td>Sigma-Aldrich</td>
<td>H6377</td>
</tr>
<tr>
<td>5alpha-androstan-3,17-dione</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00107108</td>
</tr>
<tr>
<td>5,7,4’-trimethoxyflavone</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300384</td>
</tr>
<tr>
<td>hexamethoxyquercetagenin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>01505383</td>
</tr>
<tr>
<td>prenyletin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00100101</td>
</tr>
<tr>
<td>pimpinellin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300013</td>
</tr>
<tr>
<td>sphondin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300005</td>
</tr>
</tbody>
</table>

Table 12 Hit compounds re-ordered due to screen.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Supplier</th>
<th>Cat no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>flutamide</td>
<td>Sigma-Aldrich</td>
<td>F9397</td>
</tr>
<tr>
<td>naringenin</td>
<td>Sigma-Aldrich</td>
<td>W530098</td>
</tr>
<tr>
<td>nifedipine</td>
<td>Sigma-Aldrich</td>
<td>N7634</td>
</tr>
<tr>
<td>sodium pyrithione</td>
<td>Sigma-Aldrich</td>
<td>H3261</td>
</tr>
<tr>
<td>testosterone</td>
<td>Sigma-Aldrich</td>
<td>R1881</td>
</tr>
<tr>
<td>11-ketotestosterone</td>
<td>Sigma-Aldrich</td>
<td>K8250</td>
</tr>
<tr>
<td>Bay K8644</td>
<td>Sigma-Aldrich</td>
<td>B112</td>
</tr>
<tr>
<td>Tolvaptan</td>
<td>Sigma-Aldrich</td>
<td>T7455</td>
</tr>
<tr>
<td>Zinc chloride</td>
<td>BDH</td>
<td>103794P</td>
</tr>
</tbody>
</table>

Table 13 Further compounds to study mechanistic functions.
All chemical structures shown in this thesis were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and can still be accessed there.

1.10.1. Compound exposure with more than three larvae

After initial screening was completed and exposure of more than three embryos per treatment group became desirable, in particular for exposure of renal GCaMP7a embryos, exposures were conducted with up to 20 embryos per well in 6-well plates with 3 ml medium while keeping all other conditions the same unless otherwise stated. For earlier exposures, for example from epiboly, dechorionating was not an option as the embryos are too fragile at these states and exposures were conducted without removing the chorion. Thapsigargin treatments occurred by exposing the fish to 5 µM thapsigargin for 25 min and 2-APB (2-aminoethoxydiphenyl borate) was exposed for 2 h.

1.11. Cell culture

Cells were thawed after removal from the liquid nitrogen tank by heating them gently until semi-liquid, adding medium and transferring them to a prepared T75 flask with medium. To freeze cells confluent flasks were trypsinized, cells centrifuged for 5 min at 1000 rpm and resuspended in 90 % growth medium/10 % DMSO before rapidly transferring them to -80 °C in an appropriate box.

Cell lines were maintained in T75 flasks with the appropriate medium at the appropriate temperature. Canine MDCKII cells (first described in (Barker et al., 1981)) were grown at 37 °C in Gibco DMEM/F-12 medium with 10 % FBS, 1 % Penicillin/Streptomycin and 1% L-glutamine. Immortalised, patient-derived Ox161c1 cells (first described in (Parker et al., 2007)) were grown at 33 °C in Gibco DMEM/F-12 medium with 5 % Nu-Serum, 1 % Penicillin/Streptomycin and 1% L-glutamine.

1.12. Three-dimensional cyst culture

Three-dimensional cyst assays have been a long-standing method of studying cyst formation processes (McAteer et al., 1986; Yamaguchi et al., 1995). In 3D assays, cells are seeded into a matrix (i.e. collagen or matrigel) where they grow into spherical cysts over time (ca. 20 days) and are supplied with nutrients and/or drugs from the medium above (see Figure 12). After the growth/exposure period, the cysts are imaged and cyst size can be analysed as a marker for expansion or reduction processes. Two cell lines, which have been used during this project, will be described in more detail in the next two paragraphs.
1.12.1. MDCKII cells

MDCKII cells were isolated in 1958 from normal renal epithelial cells of a female Cocker Spaniel (Barker et al., 1981). This cell line is able to form cysts in a collagen matrix and has been shown to exhibit a well-established cell polarity with distinct basolateral and apical polarization (McAteer et al., 1986; O'Brien et al., 2002). Forskolin, an activator of adenylate cyclase, has been shown to have very strong cystogenic effects (Yamaguchi et al., 2000), (Hanaoka & Guggino, 2000; Yamaguchi et al., 1995). Although MDCKII cells have not been derived from an ADPKD model, the common underlying processes of cystogenesis have been studied in depth using this line. Figure 13 depicts an example of typical DMSO and forskolin treated MDCKII cyst cells after 19 days of exposure.

Figure 12 Schematic depiction of a three-dimensional cyst assay.

Cells were grown to confluence, washed in PBS, trypsinized before centrifuging for 5 min at 1000 rpm and resuspended in small amount of medium (ca. 400 µl). 70 % rat tail collagen, 20 % 11.76 mg/ml NaHCO₃ and 10 % 10 x MEM (minimum essential medium) were mixed gently on ice and 20,000 cells/ml matrix were added. 70 µl of collagen/cell mix was subsequently added to each well in a 96-well plate which polymerised in the incubator for ca. 10 min. Afterwards medium was added (Gibco DMEM/F-12 medium with 10 % FBS, 1 % Penicillin/Streptomycin and 1 % L-glutamine) containing DMSO as control or the compounds of interest. 5 µM forskolin served as positive control. The medium (with compound) was prepared at the day of seeding the cells in a quantity sufficing the entirety of

Figure 13 Example images at the endpoint of 3D cyst culture with MDCKII cells. (Left) DMSO control at day 19. (Right) 5 µM forskolin positive control at 19 days of exposure.
the assay. Medium on the cells was exchanged every 2-3 days for 19 days. Cysts were imaged on days 10, 14 and 19 and analysed with ImageJ.

The rat tail collagen (enriched with collagen-I) had been extracted previously by one of my colleagues using the following protocol: Rat tail tendons were removed with forceps and kept in PBS on ice before discarding the PBS and adding 100 ml of 0.1 % acetic acid per rat tail. This mixture was stirred at 4 °C for a minimum of 72 h before centrifugation at 27,000 g for 20 min at 4 °C. The supernatant was used in subsequent experiments and stored at 4 °C.

1.12.2. Ox161c1 cells

Ox161c1 cells were derived from cystic renal tubules of a female ADPKD patient with a PKD1 null-mutation in the N-terminal extracellular domain. The cells were subsequently immortalized and found to form cysts when grown in a matrigel matrix (Parker et al., 2007). The Ox161c1 cell line was obtained by transducing a primary culture with a replication-defective retroviral vector (containing the temperature-sensitive LT antigen and the catalytic subunit of human telomerase). The LT antigen destabilizes at higher temperatures whereas a shift to 33 °C allows normal proliferative growth (Streets et al., 2003). The PKD1 mutation in this cell line is predicted to cause a truncating mutation and the cells can therefore be described as PKD1+/−. Human Ox161c1 cells form markedly smaller cysts and forskolin has a less pronounced effect in comparison to canine MDCKII cells. Although this cell line is less robust, it carries a PKD1 mutation and thus can more closely the disease state. Figure 14 displays Ox161c1 cells exposed to DMSO or forskolin for 20 days.

![Figure 14 Example images at the endpoint of 3D cyst culture with Ox161c1 cells.](image)

Cells were grown to confluence, washed in PBS, trypsinized before centrifuging for 5 min at 1000 rpm and resuspended in small amount of medium (ca. 400 µl). Matrigel and 20,000 cells/ml matrix were mixed gently on ice. 100 µl of matrix/cell mix was subsequently added to each well in a 96-well plate which polymerised in the incubator for ca. 10 min. Afterwards supplement medium was added (Gibco DMEM/F-12 medium with 10 % FBS, 1 % Penicillin/Streptomycin, 1% L-glutamine, 10 ng/ml hEGF, 5 µg/ml Hydrocortisone and 1x...
ITS) containing DMSO as control or the compounds of interest. 5 µM forskolin served as positive control. The supplement medium (with compound) was prepared at the day of seeding the cells in a quantity sufficing the entirety of the assay. Medium on the cells was exchanged every 2-3 days for 20 days. Cysts were imaged on days 10, 14 and 20 and subsequently analysed with ImageJ.

1.13. Lightsheet microscopy
Alternatively to confocal microscopy, which illuminates the entire sample at once, usually with a high laser power, lightsheet microscopy has been established in recent years and commercial microscopes have become available such as the Zeiss Lightsheet Z.1 system. In lightsheet microscopy, only a very thin plane of the embryo is illuminated at a very low light intensity, causing less damage to the animals and a lower amount of GFP-bleaching.

For lightsheet microscopy, anaesthetised embryos were immobilised using 0.8 – 1 % low-melt agarose, which was drawn up with the embryo into a thin glass capillary where it polymerised. During the imaging process, the embryos were suspended from the capillary in an agarose cylinder into the imaging chamber containing embryo medium with tricaine. Images were processed with the ZEN black software from Zeiss.

1.14. Statistical analysis
All statistical analyses were performed using the GraphPad Prism software. The relevant analyses, as required for the individual datasets, were conducted and detailed information about the tests used is stated in the legend of each figure where appropriate. Data that did not reach statistical significance but exhibited a recognisable behaviour, judged by eye, are referred to throughout this thesis as “trends”. No particular threshold of p-values was applied for such a statement.
Results and Discussion Chapter 1: Characterisation of zebrafish PKD models

Introduction

Zebrafish pkdl2 mutants and morphants share some phenotypes, like L/R patterning defects and a curly up tail, other traits, however, such as renal dilations, have been described exclusively in knockdown animals (see Introduction Chapter 9.2.). In order to select a trait for chemical library screens, the main aim of this project, a detailed characterisation of the pkdl2\(^{au2173}\) allele animals and pkdl2 morphants was carried out.

Furthermore, ADPKD is described to be a ciliopathy although a variety of arguments can be made against such a classification (see Introduction Chapter 8.). However, as PC2 and the PC-complex are localised to a large extent in primary cilia, the effect of cilia-abolition is of interest in pkdl2\(^{-}\). Particularly so, as a previous publication in a mouse model described that loss of cilia in Pkd mutants improved the renal cystic phenotype (Ma et al., 2013). This publication reports that crossing Pkd mutant lines, which develops very large renal cysts, to a ciliary mutant line (Kif3a), which develops small kidney cysts, led to a less severe cystic phenotype in the double mutant animals compared to the Pkd single mutants (but cysts were still more severe than in the Kif3a mutant line). This research suggests that loss of malfunctioning ciliary polycystins is beneficial in an ADPKD model.

The elipsa\(^{49}\); referred to as elipsa, mutant strain was first described in (Drummond et al., 1998) and further characterised in (Omori et al., 2008) as a ciliary mutant. It probably has early ciliogenesis (since there are no observed L/R polarity defects, see Figure 27 A), but lacks cilia from at least 30 hpf (personal communication Niedharsan Pooranachandran). elipsa (or traf3ip1) encodes a ciliary trafficking protein that mediates interactions between ift20 and rab8 and this complex in turn facilitates IFT (intraflagellar transport) particle movement along the ciliary axoneme. Loss of elipsa therefore leads to loss of ciliogenesis. The elipsa transcript was reported as enriched in ciliated tissues such as the olfactory pits, lateral line organs and pronephric ducts (Omori et al., 2008). elipsa mutants developed dilated pronephric glomeruli and tubules as well as a ventral axis curvature, which is characteristic for many ciliary mutants ((Kramer-Zucker et al., 2005; Sullivan-Brown et al., 2008), example in Figure 24 B). A curly down tail is not always accompanied by pronephric dilations (Brand et al., 1996; Sullivan-Brown et al., 2008) but it is commonly associated with disruptions of the intraflagellar transport, like in elipsa mutants.
In the following chapter *pkd2* mutants, *pkd2* morphants and the ciliary *elipsa* mutant, as well as a cross of the two mutant lines, will be described in detail.

Results

11. Characterisation of *pkd2* models

11.1. *pkd2*hu2173 mutation

The *pkd2*hu2173/hu2173−/− zebrafish mutant, henceforth referred to as *pkd2*−/−, was created during an ENU-mutagenesis screen and carries a point mutation in exon 5, leading to a truncated protein (Freek van Eeden, unpublished). In this mutant allele a guanine base is replaced with an adenine base in position 1327 of the mRNA (see Figure 15 A), resulting in a stop codon at amino acid 302 of 904. The truncation occurs in the first extracellular loop (Figure 15 B). The channel pore of the PC2 protein is formed by the two transmembrane domains closest to the C-terminus (Pavel et al., 2016) and as the *pkd2*hu2173 allele is predicted to result in a truncation in the first extracellular loop, well before the channel pore, presumably causing a null mutation. Phenotypically, the *pkd2*−/− zebrafish mutant shows the typical body axis deformation with its upward curled tail described for *pkd2* morpholino-injected embryos (chemical gene knockdown, originally described in (Sun et al., 2004)), see Figure 17.

![Figure 15](image_url)

Figure 15 (A) Aligned DNA sequences of WT, *pkd2*+/− and *pkd2*−/−; mutation of *pkd2*hu2173 framed by orange box. (B) Schematic depiction of polycystin 2 with the approximate site of truncation in *pkd2*hu2173 marked with red arrow. (C) PC2 amino acid alignments for zebrafish WT and *pkd2*hu2173, human and mouse.
11.1.1. Mutant development

pkd2/*pkd2* zebrafish embryos develop the characteristic dorsal axis tail curvature previously described in *pkd2* morphants (Cao *et al.*, 2009; Schottenfeld *et al.*, 2007; Sun *et al.*, 2004) which has been attributed to excessive extracellular matrix deposition (Mangos *et al.*, 2010) or production (Le Corre *et al.*, 2014). This unique tail phenotype led to the original dubbing of the mutant strain as “curly up”, or “cup” (Brand *et al.*, 1996). The first indications of the tail curvature can be observed by 24 - 25 hpf in some embryos (Figure 17 A), although the phenotype does not appear simultaneously in all individuals and onset can be delayed until about 29 hpf. Following initial onset, the curly tail becomes increasingly pronounced; by 48 hpf (Figure 17 C) the curvature has fully matured. There is some level of correlation between a delayed curvature onset and a less pronounced curvature phenotype, but this was not significant (Figure 16 A).

![Figure 16](image)

Figure 16 (A) Correlation of *pkd2*/*pkd2* curvature onset and severity. 180° - straight tail, 0° - tail crosses body axis; example images of curvature next to y-axis. No significances via one-way anova with Tukey’s multiple comparison test. Error bars indicate SD. (B) Heart looping ratios in WT, *pkd2*/*pkd2* and *pkd2* siblings. n = 100 for each group.

Left/right polarity randomisation, another phenotype previously described in morphants, was confirmed for *pkd2*/*pkd2* with a rate of 49.3 % heart looping reversal (Figure 16 B). This indicates a full gene knockout, or null mutant, as there was complete randomisation.

Cardiac, trunk and head oedema became apparent at 4 dpf (Figure 17 F and I) and continued to develop during the next 24 h. By 5 dpf (Figure 17 G and K) oedema severity increased to the point where cardiac function was strongly impaired upon which the embryos were sacrificed.
Figure 17 Morphology of pkd2−/− and WT embryos during development (A) 24 hpf, (B) 32 hpf, (C) 48 hpf, (D) 53 hpf, (E) 3 dpf, (F) 4 dpf, (G) 4.5 dpf, (H) 5 dpf. (I, J, K) Dorsal view of head region at 4, 4.5 and 5 dpf respectively. Arrowheads indicate oedema.

As cystic expansions in the kidneys were not initially observed in pkd2−/− mutants, although it had been described in morphants (Cao *et al.*, 2009; Schottenfeld *et al.*, 2007; Sun *et al.*, 2004), a more detailed analysis was performed. Glomerular sizes were measured in pkd2−/− and siblings utilizing the renal GFP expression of the wt1b:GFP line for imaging. The results are depicted in Figure 18. At 2 dpf, just after renal filtration onset, and 3 dpf glomerular size was similar between pkd2−/− and siblings. At 4 dpf and 5 dpf pkd2−/− glomeruli were significantly smaller compared to their siblings'3. Interestingly, the mean kidney size still increases in pkd2−/− over time, but not at the rate of sibling controls.

Figure 18 Glomerular sizes in 2 to 5 dpf pkd2−/− and siblings. Mean glomerular areas with SEM: 2 dpf, 2856 ± 436 pkd2−/− and 2847 ± 404 sibs; 3 dpf, 3396 ± 678 pkd2−/− and 3447 ± 856 sibs; 4 dpf, 3647 ± 504 pkd2−/− and 4035 ± 1040 sibs; 5 dpf, 4341 ± 1380 pkd2−/− and 5026 ± 1128 sibs. Significances via unpaired t-test; *: p ≤ 0.05 n = 20 for each group and day with both glomeruli measured, i.e. 40 measurements per time and genotype.
11.2. *pkd2* morphant

Morpholino (MO) knock-down experiments were performed using a previously published morpholino sequence (first description in (Sun *et al.*, 2004)). Several publications since reported a dorsal axis curvature, L/R polarity defects and cystic kidneys in morphant animals (Francescatto *et al.*, 2010; Schottenfeld *et al.*, 2007). Injections with an initial morpholino batch ordered from GeneTools, LCC, USA resulted in none of the above described phenotypes and high rates mortality. Correspondence with the manufacturer revealed improper synthesis and a second batch was obtained. Subsequent injections at 2 ng *pkd2* MO per embryo (as in (Cao *et al.*, 2009)) produced the described phenotypes at high penetrance, with the exception of renal cysts. Cystic kidneys, or rather dilated glomeruli, were observed infrequently, at approximately 10 - 20% of injected embryos (example, see Figure 19 A). Concentrations lower than 2 ng caused great phenotype variability (Figure 19 B) and injections with 4 ng morpholino per embryo as previously reported in (Schottenfeld *et al.*, 2007; Sun *et al.*, 2004) resulted in high lethality and severe off-target effects (not shown).
Body axis curvature, hydrocephalus and L/R randomisation were faithfully recapitulated in pkd2 MO as previously described (Francescatto et al., 2010; Schottenfeld et al., 2007). The high prevalence of cystic kidneys in previous publications, however, was not observed. Most publications have reported between 60 % and 90 % glomerular dilations in pkd2 morphant embryos, but only 10 – 20 % of embryos were observed with the phenotype during this project. As hydrocephalus and cystic kidneys were not present in pkd2 mutants (also noted by (Cao et al., 2009)) this might indicate they were the result of off-target morpholino effects. Both features have been observed as off-target effects in a variety of other morpholinos (Freek van Eeden oral communication).

Cardiac, trunk and ocular oedema were less pronounced in morphants compared to mutants, especially with regard to ocular oedema, a phenotype which was completely lacking in the morphants. Known off-target effects such as smaller eyes and necrosis in the brain were observed in MO-injected embryos (Figure 19 F) and subsequently the pkd2 morpholino was
co-injected with a \(p53 \) MO to negate this (Robu et al., 2007). Co-injections with the \(p53 \) morpholino are commonly done to minimize off-target effects. In this case, however, it did not result in visible improvements (Figure 20). This indicated the off-target effects observed in \(pkd2 \) morphants were not mediated via \(p53 \)-induced apoptosis.

Interestingly, phenotypes also varied between injections into two different wild-type strains LDWT and AB (see Figure 20 A and B). AB fish exhibited a more pronounced curvature and fewer deaths as well as reduced off-target effects (small eyes and necrosis in the brain). Subsequent sequencing of the morpholino target region revealed a single base mutation in LDWT (see Figure 20 C). The less severe \(cup \) induction in LDWT could be the result of this mismatch between morpholino and DNA sequence. Further experiments were hence conducted utilising the AB wildtype strain for \(pkd2 \) MO injections.

![Figure 20 Phenotype analysis in \(pkd2 \) morphants (2 ng per embryo) at 4 dpf in LDWT and AB background with and without coinjection of \(p53 \) MO (1 pmol/embryo) to negate off-target effects.](image)

Quantification of the cystic kidney phenotype in \(pkd2 \) morphants revealed an early expansion at 2 dpf and 3 dpf, which then plateaued while the sibling glomeruli caught up in size by 4 and 5 dpf (Figure 21).
Figure 21 Glomerular sizes in 2 to 5 dpf *pkd2* morphants and siblings injected with 2 ng/embryo. Mean glomerular areas with SEM: 2 dpf, 2801 ± 217 *pkd2*/- MO and 1618 ± 50 sibs; 3 dpf, 3665 ± 343 *pkd2*/- MO and 2474 ± 55 sibs; 4 dpf, 3155 ± 119 *pkd2*/- MO and 2992 ± 93 sibs; 5 dpf, 3515 ± 296 *pkd2*/- MO and 3136 ± 119 sibs. Significances via unpaired t-test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01. n = 20 for each group and day with both glomeruli measured, i.e. 40 measurements per time and genotype.

11.3. Model disparities – kidney phenotype

As described above, zebrafish *pkd2* mutants and morphants exhibited several differences, particularly with regard to the cystic kidney and oedema phenotypes – with mutants never developing the former but more severe oedema (oedema depicted at 5 dpf in Figure 22 A). To evaluate whether the renal mutant phenotype could be rescued through the presence of maternal mRNA deposited in the egg, injections with a sub-phenotypic dosage of *pkd2* morpholino into the mutant embryos were performed. A sub-phenotypic dose was chosen to distinguish maternal effects from potential off-target MO effects. This low dose should be sufficient to reduce maternal *pkd2* RNA levels, which has previously been described as non-detectable via in situ hybridisation (Bisgrove et al., 2005). The *pkd2* morpholino used during this project was an ATG MO and targeting the transcription start site of a protein ensures knockdown of both embryonic and maternal RNA message. The sub-phenotypic working dose of 0.05 ng/embryo was established by injecting a range of concentrations into WT embryos, assessing for lack of curvature and heart looping defects. 0.05 ng/embryo was the highest concentration not showing above phenotypes and injections into a *pkd2*/+/- in-cross commenced. These sub-phenotypic injections significantly enhanced the curvature phenotype in MO injected mutants but had no effect on glomerular size (Figure 20). These results demonstrate likely effects of maternal *pkd2* mRNA on the tail curvature but not on glomerular dilatation. Generally, this indicated the possibility that the *pkd2* morpholino caused off-target effects in the glomerulus.
In the absence of observable pronephric dilations in the *pkd2* mutants, the possibility of an earlier cellular phenotype was considered i.e. upregulated proliferation. In murine models of cystic renal disease, an early increase in proliferation is often seen before the onset of cyst formation (Bello-Reuss, 2007; Ramasubbu *et al.*, 1998; Saadi-Kheddouci *et al.*, 2001). To assess whether increased cell proliferation was present in zebrafish models, a phosphohistoneH3 (pH3; M-phase marker) antibody staining was conducted on *pkd2* mutant and morphant embryos and respective controls. Figure 23 shows an increase in proliferation in the glomeruli at 2 dpf (not significant) and 3 dpf (significant) in the morphant embryos compared to their siblings. Renal filtration only commences at around 40 - 48 hpf and glomerular dilation occurs afterwards in morphant glomeruli, hence earlier time points were not evaluated. The renal tubules were not dilated in *pkd2* morphants (similar to reports in (Sullivan-Brown *et al.*, 2008)) and showed no change in proliferation rates. *pkd2* mutants showed no significant difference in proliferation anywhere along the pronephros compared to the controls at 2 dpf and 3 dpf, suggesting there is no *pkd2* regulation of proliferation in the pronephros at these stages.
As the main aim of this project was to conduct a compound screen on an ADPKD-related phenotype in zebrafish, \textit{pkd2} mutants and morphants were exposed to 10 different chemicals at different concentrations. Further to the differences in glomerular dilation and proliferation in mutant and morphant embryos, an initial compound test found that the morphants collectively fared worse during drug exposures. Specifically, exposed morphants exhibited higher rates of necrosis, in particular in the brain, and a generally delayed development compared to unexposed controls (data not shown).

Due to these marked differences between \textit{pkd2} mutant and morphant phenotypes, it was decided to abandon the original plan of conducting a large-scale compound screen on the cystic kidney phenotype of morphants in favour of using the dorsal axis curvature in mutants as a readout. This \textit{curly up} phenotype is unique and all knockout or knockdown models described so far in the literature causing the \textit{cup} phenotype in zebrafish are \textit{pkd1}- or \textit{pkd2}-related (Bisgrove \textit{et al.}, 2005; Mangos \textit{et al.}, 2010; Sun \textit{et al.}, 2004).

12. Characterisation of \textit{elipsa} and \textit{elipsa/pkd2} double mutants

The lack of a cystic phenotype in \textit{pkd2} mutants contrasts with that reported for other ciliary mutants in zebrafish where pronephric cysts are a constant feature (Kramer-Zucker, Olale, \textit{et al.}, 2005; Sullivan-Brown \textit{et al.}, 2008). Since \textit{pkd2} and the PC complex are localised to primary cilia (although not exclusively), the lack of a cystic phenotype was surprising.

To test the hypothesis that \textit{pkd2} could modify the phenotype of a cystic zebrafish mutant, \textit{elipsa} mutants, which develop a cystic phenotype, were crossed with the \textit{pkd2} mutant line to obtain double mutants.
12.1. A classical “cystic kidney” zebrafish line, the *elipsa* mutant

The curvature in *elipsa* mutants phenotype first became apparent at 26 - 28 hpf (Figure 24 A), when interestingly, it looked like the emerging *pkd2* *curly up* phenotype. Until about 32 hpf the curvature continued to curl upwards, but by 48 hpf, the phenotype had transformed to a downward curl. The exact timing of this transition was not observed. The tail curvature subsequently matured until ca. 72 hpf.

![Figure 24 Morphology of *elipsa/elipsa*. (A) Curvature onset at 26 hpf compared to sibling. (B) Matured curvature at 5 dpf in contrast to sibling.](image)

Most ciliary mutants reported in the literature exhibit dilated glomeruli and tubules (Kramer-Zucker, Olale, *et al.*, 2005; Sullivan-Brown *et al.*, 2008); in comparison, *pkd2* morphants have dilated glomeruli but normal tubules. The arrowheads in Figure 25 A depict dilated *elipsa* glomeruli at 52 hpf, not long after the onset of renal filtration, and Figure 25 C indicates a dilated pronephric tubule – quantifications of these phenotypes will be provided in the next chapter.

![Figure 25 Detailed pronephric images at 52 hpf of (A) dilated glomeruli (indicated with white arrowheads) in *elipsa* mutant, (B) and (C) renal tubules in sibling and *elipsa* mutant, respectively. White bars in (B and C) indicate the width of dilated renal tubules.](image)
12.2. *elipsa/pkd2* double mutant – enhanced renal and curly up phenotypes

pkd2 mutants, as described above, exhibited a pronounced *curly up* phenotype, whereas the ciliary *elipsa* mutants were characterized by a *curly down* phenotype, which has been observed in various ciliary trafficking mutants with similar severities (Kramer-Zucker *et al.*, 2005; Sullivan-Brown *et al.*, 2008). Interestingly, *pkd2/elipsa* double mutants displayed an enhanced dorsal axis curvature compared to *pkd2* siblings from as early as 32 hpf (Figure 26 A, quantified in Figure 27 C). This phenotype continued to become more pronounced until 50 hpf (Figure 26 B, quantified in Figure 27 F) at which point the *pkd2* curvature was fully developed. In the double mutants, however, the tail curvature continued to develop until about 72 hpf (Figure 26 C) which is similar in duration to the *elipsa* curvature maturation. Since analysis of *elipsa* and *pkd2* mutants necessitated a distinction of *curly up* from *curly down*, a straight tail was defined with a 0° angle and dorsal curvatures resulted in positive angles and ventral curvatures showed negative values (more details in Figure 27 B).

![Figure 26](image)

Figure 26 elipsa, pkd2 and double mutants with siblings at 32 hpf (A) and 50 hpf (B). (C) Severe dorsal axis curvature in 3 dpf double mutants.

The renal dilation phenotype in *pkd2/elipsa* mutants was enhanced beyond that of *elipsa* levels (significant at 2 and 3 dpf (Figure 27 C and D)), indicating that loss of *pkd2* in the *elipsa* mutants enhanced the cystic kidney phenotype. There also was a larger spread of glomerular size in the double mutants compared to *elipsa* single mutants and average cystic size was significantly enhanced.

elipsa mutants have been confirmed to lack cilia from the age of 30 hpf (Niedharsan Pooranachandran, personal communication) but the fact that heart looping was not randomized (Figure 27 A), suggests early stage cilia were present as they are required in the Kupffer’s vesicle to control body axis formation (Kramer-Zucker *et al.*, 2005). *pkd2* mutants, on the other hand, lack the left-determining signal during early body axis formation in the Kupffer’s vesicle and PC2 in its role as a calcium channel is crucial for further signalling cascades during this developmental process (Bisgrove *et al.*, 2005; Schottenfeld *et al.*, 2007). Considering the functions of *elipsa* and *pkd2*, it was not surprising that double mutants exhibited body axis randomization as determined by heart looping randomisation (Figure 27 A).
Since the glomerular dilation phenotype in pkd2 morphants was accompanied by an increase in proliferation, proliferation rates were subsequently quantified in elipsa single mutants and elipsa/pkd2 double mutants at 2 dpf. Interestingly, both showed an increase in proliferation in the glomeruli (Figure 28 A) with the double mutants having a slightly lower proliferation rate compared to the elipsa single mutants (not significant). This diverged from the level of glomerular expansion, where double mutants surpass the elipsa dilation phenotype. Tubular proliferation levels showed the same trend (not significant, Figure 28 B). Overall proliferation in the pronephros (as identifiable via the wt1b:GFP transgene) was only significantly increased in elipsa mutants; the double mutants showed a trend towards an
increase in proliferation. This suggests the increase in dilation was not solely driven by proliferation.

Figure 28 Average proliferation levels assessed via pH3 antibody staining in elipsa/elipsa, pld2/elipsa and siblings at 2 dpf. (A) Average proliferation in the glomeruli, (B) in the pronephric tubules and (C) in the entire pronephros as determined by wT1bGFP expression. Siblings: n = 7, pld2/elipsa: n = 14, elipsa/elipsa: n = 7. Significances with one-way anova with Tukey’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. An example of a successful pH3 antibody stain can be seen in Figure 39.

Interestingly, pronephric tubular dilation was also more severe in elipsa mutants compared to the double mutants at 5 dpf (not significant, Figure 29). Glomerular area beyond day 4 could unfortunately not be measured, as the distorted tissues above the kidney made it impossible to get clear images of the GFP expression below. It was difficult at these stages to capture measurable images in pld2 embryos as the curly up phenotype refracted the light, but became completely unfeasible in the double mutants due to the severe tail curvature. It is therefore possible that double mutants showed an aggravated early phenotype which was subsequently surpassed by the ciliary mutant.

Figure 29 Renal tubular dilation at 5 dpf in pld2-/-, elipsa/elipsa, pld2/elipsa and siblings. Significances via one-way anova with Tukey’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001 and non-significant (ns): p > 0.05. Error bars indicate SEM.
Discussion

1. Disparities between pkd2 zebrafish models

pkd2−/− zebrafish embryos have been used to study pkd2 function by several groups although they have consistently been reported not to develop pronephric cysts. Describing cystic kidneys in the zebrafish embryo pronephros is generally burdened with inaccuracy. What has been described in the literature as “cystic kidneys” in zebrafish embryos, in particular with regard to pkd2 morpholino knockdown, is not, in truth, a cystic kidney. In general, cysts are defined as fluid-filled sacs surrounded by a membrane. Zebrafish “cystic kidneys”, however, are merely dilated glomeruli, which remain part of the embryonic pronephros. Dilated glomeruli could be caused by a variety of factors, such as an increase in proliferation, an occlusion of renal tubules as suggested by (Obara et al., 2006) in pkd2 morphants, or the lack of cilia (abolishing filtrate movement). The latter two could both cause a build-up of fluid into the glomeruli, potentially inflating these structures due to hydrostatic pressure. With respect to zebrafish pkd2 models, this raises the possibility of maternal mRNA contribution in mutants or off-target effects in morphants.

There are several possibilities why pkd2 mutants and morphants differ with regard to their phenotype. All publications to date, described glomerular dilations in pkd2 morphants to varying degrees of penetrance (Cao et al., 2009; Francescatto et al., 2010; Obara et al., 2006; Sun et al., 2004) whereas pkd2 mutant alleles did not exhibit this trait (Cao et al., 2009; Schottenfeld et al., 2007; Sun et al., 2004). In recent years, zebrafish morphant data has come under scrutiny for failing to adequately predict mutant phenotypes. More precisely, many morphants exhibited novel traits which were not recapitulated in respective mutant strains (reviewed in (Schulte-Merker et al., 2014)). This could be due to the fact that chemical knockdowns can cause unpredictable off-target effects other than the classical necrosis in the brain and eye, both of which are widely observed (Robu et al., 2007). Furthermore, morpholinos targeting the translation start site of a protein also remove maternal mRNA contributions deposited in the eggs upon laying. Blocking the maternal contribution in the case of pkd2 caused an enhancement of the curvature phenotype but did not induce glomerular dilations – ruling out the effect of maternal effects on the latter.

A recent study by (Rossi et al., 2015) proposed a different explanation for mutant/morphant disparities: Genetic knockout of a gene could lead to compensatory changes in other members of the same protein family therefore alleviating knockout phenotypes. They supported their hypothesis by injecting morpholinos into respective mutant strains and
showing that the homozygous mutants had a higher resistance towards the knockdown by exhibiting milder phenotypes than their heterozygous or WT siblings. This suggests other genes were compensating for gene loss to some degree. Experiments carried out in this project only targeted maternal mRNA contributions and no inference to compensatory effects in pkd2 mutants can be made. Therefore, injections of the pkd2 morpholino (2 ng/embryo rather than a sub-phenotypic dose) into the pkd2 mutant strain would need to be carried out to shed light on whether there are genetic, compensatory effects preventing glomerular dilation.

Interestingly, pkd2 mutants not only had no dilated renal phenotype but their glomeruli actually decreased in size compared to siblings from day 4. This development of smaller glomerular size in pkd2 mutants could potentially be explained by the onset of oedema, which corresponds in timing (see above). Trunk oedema especially could increase hydrostatic pressures compressing the nearby kidney and prevent proper inflation of the glomeruli. Another explanation could be reduced blood pressure: Blood flow might be restricted in the tail area due to the curvature and severe cardiac oedema could prevent normal cardiac output. Both of these factors combined would result in decreased renal blood flow, hindering normal inflation of the glomeruli.

Of note, the pronephric phenotype in pkd2 morphants did not show a persistent increase in glomerular size over all time points measured. Quantification of the cystic kidney phenotype in pkd2 morphants revealed an early expansion at 2 dpf and 3 dpf, which then plateaued while sibling glomeruli caught up in size by 4 and 5 dpf. Morpholino effects, both targeted and off-target, wear off over time (the capacity for binding new RNA transcripts diminishes) and morphant phenotypes are therefore often transient. In this case, the glomerular data also suggests that no tubular occlusion occurred, contrary to previously published data (Obara et al., 2006), since the same individuals were imaged over the entire course of the experiment. If the tubules were obstructed, glomerular dilation should continue to persist and increase in severity beyond 3 dpf, which was not the case.

2. Classic “cystic kidney” mutant and pkd2/elipsa double knockout

As pkd2 mutants did not exhibit an obvious renal phenotype, a classical zebrafish “cystic kidney” mutant, the ciliary elipsa mutant, was also evaluated. elipsa (traf3ip1) mutations cause abolition of renal cilia from 30 hpf by disrupting IFT from this time point (in earlier development cilia are unaffected but fail to be maintained from 30 hpf (Omori et al., 2008)). Like all other IFT mutants, this line exhibited a downward curly tail and renal dilations. Pronephric glomeruli and renal tubules along the entire length of the embryo were dilated.
Since *elipsa* mutants did not have laterality defects, it can be assumed that cilia form at early stages of development and become abolished subsequently. Interestingly, the axis curvature in its early stages looked exactly like the dorsal curly tail of *pkd2* mutants. How this then transformed into a down curl was not evaluated.

A genetic study in mice (Ma *et al.*, 2013) suggested that abolition of cilia in PKD mutants improved renal outcomes, indicating that improper polycystin function in the cilia contributes to cyst severity. In that study several *Pkd* mutant lines were crossed to a *Kif3a* knockout line (IFT disrupted) – both mouse strains form renal cysts but loss of *Pkd1* or *Pkd2* causes the more severe phenotype. In double knockout mice, however, renal outcomes were alleviated compared to *Pkd*+/− (but enhanced compared to *Kif3a*−/−). Of note, kidney-specific *Pkd1* knockout mice (Shibazaki *et al.*, 2008) exhibited a more severe and earlier phenotype than the kidney-specific *Kif3a* ciliogenesis knockout (Lin *et al.*, 2003). The zebrafish *pkd2/elipsa* double mutants exhibited an aggravated curly up phenotype compared to *pkd2*−/− and an increase in glomerular dilation compared to *elipsa/elipsa*. This suggested a likely genetic interaction between these two proteins, which will be discussed below.

A graphic scheme of the interactions described in the two paragraphs above, is depicted in Figure 30. In order to explain the phenotypes, it might be useful to think of the various players in basic genetic functions: Wild-type *pkd2* generally serves to counteract the *cup* phenotype and its loss results in an upward curl, it therefore can be described as having a down-curling function. It could be speculated that the downward curl in the cilia-less *elipsa* mutants is driven by a loss of inhibition of *pkd2* function and the over-activated *pkd2* causes as the curly down phenotype. This would suggest there is an inhibitory factor of *pkd2* located in the cilia. If this, however, were the only factor influencing tail curvature, double mutants should exhibit the same severity as *pkd2* mutants in this trait. The fact that the double mutant phenotype is aggravated is somewhat difficult to explain and it would need to invoke a second partially redundant signal specifically from the cilia or a non-ciliary function of *pkd2* after ciliary abolition. This ciliary factor also promotes downward curling but to a lesser extent than *pkd2* itself. Thus in a double mutant, the *pkd2* and the ciliary function, both originally promoting a downward curl, are lost and the dorsal curvature phenotype becomes aggravated.

With regard to the renal dilation phenotypes, loss of cilia causes an expansion of glomerular area; hence some sort of ciliary signal inhibits “cystic kidneys”. In *pkd2/elipsa* double mutants this phenotype became exaggerated and it could be hypothesised that *pkd2* itself also has a weak cyst-suppressing function, which is not strong enough to drive renal dilation on its own if lost, but can enhance an already cystic phenotype.
To comply with the rule of maximum parsimony, implying the solution with the fewest factors required is the most likely, the ciliary signal inhibiting renal dilations and repressing the *curly up* phenotype have been summarised as “cilia” in Figure 30, although that function could stem from one or more multiple proteins in the cilia. It could be speculated at this protein with a paralogous function to *pkd2* be a *pkd2l* (*pkd2 like*) protein, i.e. *pkd2l1a* (*pkd2 like 1 a*) or *pkd2l1b* (*pkd2 like 1 b*) or another calcium channel, although we have no proof of either.

![Schematic network of pkd2 and cilia](image)

Figure 30 Schematic network of *pkd2* and cilia, depicting the complex interactions used to explain *pkd2*, *elipsa* and *pkd2/elipsa* mutant phenotypes.

Additionally to this complex network, there seem to be tissue-specific differences regarding the levels of *pkd2* and *elipsa* gene interaction. The exaggerated renal dilation phenotype in the zebrafish double mutants suggests that *pkd2* and *elipsa* converge on the same pathway and therefore enhance each other. Considering the slightly different premise of the experiments, this also does not entirely contradict the mouse publication (Ma *et al.*, 2013) as the *Pkd1/Kif3a* double mutant mice were also reported to exhibit a more severe phenotype than the ciliary mutation on its own. The increase in severity of the *curly up* phenotype in the double mutants suggests *pkd2* to be downstream of the ciliary pathway, as *pkd2* produces the dominant trait. Conversely, the duration of curvature formation in the double mutants correlates with that of *elipsa* single mutants (lasting until 3 dpf), rather than *pkd2*-deficient animals.

It is possible that depending on the tissue and/or phenotype *elipsa* and *pkd2* act in different manners. The curvature phenotype suggests *pkd2* to be downstream of a ciliary signal, whereas the cystic phenotype indicates *pkd2* and cilia act in parallel the same pathway with the loss of both enhancing a cystic phenotype. These differences strongly suggest a context-specific function.
Introduction

The main aim of this project was to find novel therapeutic targets for treatment ADPKD by conducting high-throughput chemical library screens on an ADPKD-related phenotype in a zebrafish model. It was shown that the cystic kidney phenotype of pkd2 morphants was not recapitulated in pkd2 mutants in addition to a range of other discrepancies (see Results and Discussion Chapter 1). As a consequence, and in order to avoid potential morpholino-artefacts, the curly tail phenotype of pkd2 mutants was chosen as ADPKD-related readout in subsequent chemical screens. Unfortunately, this trait shows high phenotypic variability (Figure 32 C). In addition, the curvature phenotype did not appear in all embryos at the same time but its onset was spread across ca. 4 hours (25 – 29 hpf). Also, the later the onset, the less pronounced the curvature (Results and Discussion Chapter 1). Therefore, rigorous re-testing was necessary to reduce the risk of obtaining false positive hits. Two small-molecule libraries were screened for their effects on the curly tail phenotype, the Spectrum collection and the PKIS (Published Kinase Inhibitor Set) set.

The Spectrum compound collection provided by Microsource Discovery Systems, Inc. contains 2000 compounds – 50 % of which are clinical trial-stage drugs, 12 % are internationally marketed chemicals and the remaining 38 % are natural products (Rennekamp et al., 2015). In recent years this set of chemicals has been used in multiple zebrafish screens with a variety of phenotypic readouts (Baxendale et al., 2012; Kitambi et al., 2012; Ridges et al., 2012; Saydmohammed et al., 2011).

The PKIS library was utilised in a second screen on the pkd2 curvature during this project. This compound collection was originally developed by GlaxoSmithKline (GSK) and subsequently transferred to the University of North Carolina (UNC) within the timeframe of the project. The particular version of the PKIS collection used here was PKIS 1, consisting of 367 kinase-inhibiting compounds, covering a wide range of the 518 known kinases (Manning et al., 2002).

Since only small amounts of compound were available from the drug libraries, testing commenced at a fixed concentration of 10 µM. Screening at 10 µM ensured a validation run could be performed where necessary. Screening the effects of compounds on pkd2 mutants...
commenced in 96-well plates, with three embryos per compound, exposed to 10 µM concentrations for 24 h (more detailed information is given in the Materials and Methods section). A schematic depiction of the screen workflow can be found in Figure 31.

![Workflow of compound screen on pkd2 tail curvature phenotype.](image)

Results

1. **Utilising pkd2/- zebrafish as ADPKD-related screening tool**

TSA (trichostatin A) had been described previously as repressor of the curvature phenotype in a small-scale compound screen on pkd2 mutants and served as positive control (Cao et al., 2009). The analysis method of curvature severity was also derived from this publication and will be described in detail below. TSA, a HDAC inhibitor, proved to have a very narrow therapeutic index with a rapid onset of toxicity (400 nM - retardation of growth) and loss of curvature-repressing properties at slightly lower dosages (100 nM). Additionally, TSA caused an accumulation of blood in the area of the duct of Cuvier (Figure 32 B). Nevertheless, it was possible to utilise TSA as positive control, but the narrow therapeutic range and severe adverse effects discounted it as a promising candidate for further study. A quantification of TSA’s effect on the tail curvature is depicted in Figure 32 D.
The analysis of *pkd2* tail curliness commenced by drawing a line from the lens in the eye to the end of the yolk extension and a second line from the yolk extension to the tip of the tail – the angle between those two lines served a measure of severity (example, see Figure 32 A). WT embryos therefore have an angle of 170 – 180 degrees, and in *pkd2* larvae, the smaller the angle, the more severe the *cup* phenotype. Negative values indicate the tail had crossed the body axis.

Figure 32 (A) *pkd2*–/– embryo at 3 dpf with schematic indication of curvature measurement. (B) Accumulation of blood in 2 dpf embryo exposed to 200 nM TSA from 27 hpf. Arrowhead indicates pooled blood in the duct of Cuvier. (C) Curvature analysis at 2 dpf in *pkd2* mutants, morphants and siblings. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001 and non-significant (ns): p > 0.05. (D) Analysis of curvature of *pkd2* mutants exposed from 27 hpf to DMSO or 200 nM TSA. Significance via Mann-Whitney test; **** p ≤ 0.0001. (C) and (D) 180° - straight tail, 0° - tail crosses body axis; example images of curvature next to y-axis. Error bars indicate SEM.
2. Screen of the Spectrum collection

2.1. Zebrafish screen of Spectrum compounds

After the initial testing round was concluded, 200 compounds of interest were identified via t-test (see Materials and Methods) and re-testing commenced. The second test round and more rigorous statistical analysis (see Materials and Methods) reduced that number to 20 drugs and further testing with a cherry-picked batch of additional compound material (provided with the screening plates) eliminated another 7 chemicals. In the end, 13 compounds were identified to significantly and reproducibly alter the curvature phenotype (Figure 33). Of these 13 chemicals, 10 aggravated the curvature and three repressed the phenotype. Interestingly, most of the enhancing compounds clustered into three distinct chemical classes: three compounds were steroids, another three chemicals were coumarins and two compounds were flavonoids. Another flavonoid, naringenin, was subsequently included in further studies as it had been previously observed to induce dorsal curvature (Robert Wilkinson, personal communication).

![Figure 33 Combined data on hit compounds of the Spectrum library after initial compound screen, validation and cherry-picked compound exposures. Enhancers of pkd2 curvature in red, repressors in green. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn's multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.](image)

Hit compounds and more detailed descriptions, including relevant literature, can be found in Table 14.
<table>
<thead>
<tr>
<th>Effect on pkd2^-/-</th>
<th>Chemical class</th>
<th>Compound name</th>
<th>Additional information</th>
<th>CAS number</th>
</tr>
</thead>
<tbody>
<tr>
<td>enhancer</td>
<td>steroid</td>
<td>norethynodrel</td>
<td>progestins, formerly used as component in oral contraception1</td>
<td>68-23-5</td>
</tr>
<tr>
<td>enhancer</td>
<td>coumarin</td>
<td>prenylating</td>
<td>isolated from Pterocynon obtusum, antifungal4</td>
<td>15870-91-4</td>
</tr>
<tr>
<td>enhancer</td>
<td>flavonoid</td>
<td>sphenidin</td>
<td>isolated from Heracleum maximum root (mp 191-192 °C), COX2 expression inhibition and PGF2 release inhibitor5, antiamyobacteri6</td>
<td>483-66-9</td>
</tr>
<tr>
<td>enhancer</td>
<td>flavonoid</td>
<td>pimpinellin</td>
<td>isolated from Heracleum maximum root (mp 118-119 °C), GABA_A modulator7, antiamyobacteri6</td>
<td>131-12-4</td>
</tr>
<tr>
<td>enhancer</td>
<td>flavonoid</td>
<td>5,7,4'-trimethoxyflavone</td>
<td>isolated from Cassia siamica and Citrus reticulata, antioxidan8, antihyperglycemic9, adipocyte hypertrophy suppression10</td>
<td>5631-70-9</td>
</tr>
<tr>
<td>enhancer</td>
<td>flavonoid</td>
<td>hexamethyleuceacetatin</td>
<td>isolated from Citrus spp, antifungal, quercetin (very similar) inhibits EGFR pathway and prevents prostate cancer progression11</td>
<td>1251-84-9</td>
</tr>
<tr>
<td>enhancer</td>
<td>flavonoid</td>
<td>resveratrol</td>
<td>highly prevalent in grapefruit11, cardioprotective effects in cardiovascular syndrome12, suppression of cytokine 3 expression13, downregulation of AKT pathway14, antihypertensive15, interaction with PC2 in Dictyostelium and MDCK cells16</td>
<td>67604-48-2</td>
</tr>
<tr>
<td>enhancer</td>
<td>carboxylic ester</td>
<td>xanthoxylin</td>
<td>antifungal18</td>
<td>90-24-4</td>
</tr>
<tr>
<td>enhancer</td>
<td>chalcone</td>
<td>2',4'-dihydroxylchalcone</td>
<td>isolated from Flemingia champas, Centoria retusa, Acanthus suavis and Ficus retusa spp, COX2 inhibition19, cell division inhibitor20, induction of apoptosis21, antiasthmatic21</td>
<td>1776-30-3</td>
</tr>
<tr>
<td>repressor</td>
<td>phenylacetate</td>
<td>diclofenac sodium</td>
<td>NSAID, preferential COX2/PGEP2 inhibitor, L-type calcium channel inhibitor22</td>
<td>15307-79-6</td>
</tr>
<tr>
<td>repressor</td>
<td>pyridine</td>
<td>pyridine zinc</td>
<td>antifungal, antibacterial, active ingredient in anti-dandruff shampoo, treatment for hirsutism suppurativa23 and seborrhoeic dermatitis24</td>
<td>13463-41-7</td>
</tr>
<tr>
<td>repressor</td>
<td>anisole</td>
<td>2,5-di-t-butyl-4-hydroxyanisole</td>
<td>3,5-di-t-butyl-4-hydroxyanisole (very similar) described to have Calcium antagonistic properties24</td>
<td>1991-52-2</td>
</tr>
</tbody>
</table>

Table 14 List of Spectrum library hit compounds, their effect on pkd2^-/- curvature phenotype, the chemical class, CAS number and further information. 1 https://pubchem.ncbi.nlm.nih.gov/compound/norethynodrel, 2 (Chang et al., 2011; Li et al., 2015; Sharifi, 2012), 3 (Imamura et al., 1998; Maninger et al., 2009), 4 (Stein et al., 2006), 5 (Yang et al., 2002), 6 (O’Neill et al., 2013), 7 (Singh et al., 2011), 8 (Bala et al., 2014), 9 (Takahashi et al., 2006), 10 (Okabe et al., 2014), 11 (Erhund et al., 2001), 12 (Liu et al., 2016), 13 (Wu et al., 2016), 14 (Bao et al., 2016), 15 (Alam et al., 2013; Ikemura et al., 2012), 16 (Nalgi et al., 1996), 17 (Salas Del Olmo et al., 2016), 18 (Xie et al., 2014), 19 (Sheng et al., 2015), 20 (Passalacqua et al., 2015), 21 (Yarishkin et al., 2009), 22 (Danesi et al., 2015), 23 (Nalgi et al., 2015), 24 (Fusi et al., 2001; Fusi, et al., 2001; Sgaragli et al., 1993), 25 (Firdous et al., 2014), 26 (Waheed et al., 2014).
2.2. Effects of Spectrum library and related compounds in zebrafish

2.3. Further testing in *pkd2* mutants

Following the initial screen, chemicals were re-ordered from different suppliers where possible (to eliminate the possibility that curvature-modulating effects were due to batch impurities). Manufacturers of new batches can be found in the Materials and Methods section and in the Materials List. Furthermore, new compound material was obtained to ensure that the effects observed were not due to breakdown products.

To conduct functionality studies, some chemical classes were augmented with additional compounds. In the steroid class, apart from androstandione, the most potent human androgen, DHT (dihydrotestosterone, (Vollmer, 1963)), and the most potent fish androgen, 11-KT (11-ketotestosterone, (Hossain *et al*., 2008)), were tested. Additionally, flutamide, an anti-androgen, which was described previously to counter androgen-effects in zebrafish (Schiller *et al*., 2013; Schiller *et al*., 2014), was obtained.

2.3.1.1. Curvature enhancers

In the steroid class, see Figure 34 A, androstandione proved to be more potent than any of the other steroids, enhancing the dorsal curvature from 2 µM (lowest concentration tested) whereas DHT and 11-KT only significantly altered the curvature at 50 µM and 30 µM respectively. Of note, androstandione was even more potent than observed initially at 10 µM screening concentration - the effect plateaued at 30 µM when all embryos exhibited tails that curled well beyond the body axis.

11-KT has been described as more potent in zebrafish than DHT (Hossain *et al*., 2008), which was confirmed in this assay. As androstandione was even more potent than 11-KT, this suggested the possibility that this compound could be acting not only via the classical androgen receptor (AR) pathway but also by an additional unknown mechanism. Flutamide had no effects on the curly phenotype, indicating that intrinsic androgen levels play no role in body axis curvature.

All three coumarins (Figure 34 B) reproducibly enhanced the curvature as seen in the screen. Pimpinellin continued to be the strongest enhancer in this group but did not show any dose-response effects at the concentrations tested and neither did sphondin, the weakest coumarin enhancer. The effects of prenylentin reached a maximum at 50 µM.

Amongst the flavonoids (Figure 34 C), trimethoxyflavone remained the most potent curvature modulator but showed no dose-response curve at the concentrations tested. Naringenin caused an enhanced curvature at 55 µM but was difficult to dissolve at higher
concentrations; the compound precipitated from 70 µM. Furthermore, hexamethylquercetagetin proved very toxic at originally screened concentrations and was unable to recapitulate curvature-enhancing effects at non-toxic levels.

Figure 34 Results of tests with Spectrum library curvature-enhancing compounds. Box in top left corner: Examples of curvature severity with corresponding scale in degrees. (A) Androgens and flutamide (anti-androgen). (B) Coumarins. (C) Flavonoids. In most compounds more concentrations were tested but proved toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups in graph) or one-way anova with Dunnett’s multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.
2.3.1.2. Curvature repressors

Within the repressor group (Figure 35), one compound was a composite of two chemicals: zinc pyrithione contains both zinc and pyrithione ions. Subsequently sodium pyrithione and zinc chloride were obtained to determine which part of the compound was actively modulating the curvature phenotype (Figure 35 A). Zinc pyrithione was more toxic in re-tests than in the original compound batch and showed efficacy from as little as 0.25 µM and toxicity above 0.75 µM. Sodium pyrithione was also a potent repressor at 0.75 µM, in a similar manner to zinc pyrithione, indicating that the pyrithione ion was the active ingredient, especially as zinc chloride had no effect on the curly tail.

Diclofenac, the only repressor identified in the Spectrum screen with a well-known mechanism of action, also proved to be more toxic freshly obtained and had a narrow therapeutic range, repressing the curvature only at 0.3 and 0.4 µM and losing potency at lower concentrations (Figure 35 B). The effects of dihydroxyanisole were not reproducible with the re-ordered compound (Figure 35 B), suggesting that perhaps it had degraded in the library aliquot and a product of this process reduced the curvature. Alternatively, there is the possibility of impurities or cross-contamination being the cause of the original effect.

Brefeldin A (BFA), another described curvature repressor (Le Corre et al., 2014) and ER to Golgi transport inhibitor (Donaldson et al., 1992; Klausner et al., 1992), was also tested to serve as secondary control. Although BFA was mildly toxic at the previously described concentrations of 1.5 to 2 µg/ml (Le Corre et al., 2014), there were no adverse effects at 1 µg/ml and the curvature reducing effect was replicated (Figure 35 B).
Figure 35 Further tests of Spectrum library with curvature-repressing compounds. Box at top: Examples of curvature severity with corresponding scale in degrees. In most compounds more concentrations were tested but proved toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups in graph) or one-way anova with Dunnett's multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM.

As the curvature phenotype had already begun to develop at the time point of the original compound screen (pkd2-/- could only be distinguished from siblings using the curvature phenotype for sorting), it could be argued that the developmental programme of the curly tail was already established, explaining why the repressors were unable to completely abolish the phenotype. To test this theory, embryos were exposed to the repressors from earlier time points, such as late epiboly and 24 hpf (before curvature onset) up to 2 or 3 dpf. There were, however, no marked effects on the curvature phenotype at any of the time points tested (Figure 36), suggesting that the curvature-reducing compounds have no effect on the actual developmental programme but rather inhibit the phenotype once it arises.
2.3.1.3. Compound co-exposures

Further experiments to study individual compound classes’ mechanisms of action commenced by studying combination co-exposures (Figure 37). Here, the most potent representatives of the chemical classes were chosen: Pimpinellin for the coumarins, trimethoxyflavone amongst the flavonoids and androstandione as an androgen.

First, the enhancing chemicals were tested in co-exposures and the results are depicted in Figure 37 A. Combination of either flavonoid or coumarin with the steroid produced additive effects with regard to the curvature, although only the flavonoid/androgen exposure was significantly different. The coumarin and flavonoid co-exposure had no additive effects. This might indicate that coumarins and flavonoids share the mechanism of action whereas the steroids are enhancing the curvature via a different pathway.

Figure 37 B illustrates that flutamide, an anti-androgen, had no effect on the curvature individually and was also unable to overcome the effects of androstandione at any of the
concentrations tested. Higher amounts of flutamide in combination with the steroid proved toxic.

Unlike flutamide, diclofenac was able to reduce the effects of androstandione significantly, as well as the effects of pimpinellin (Figure 37 C). There was no observable influence of diclofenac on the potency of the flavonoid. This shows that diclofenac was able to reduce the effect of even the most potent enhancer; however, it was not able to negate it.

Figure 37 Co-exposures of various Spectrum compounds. Box in top left corner: Examples of curvature severity with corresponding scale in degrees. (A) Steroid, coumarin and flavonoid combinations. (B) Anti-androgen and androgen combinations. (C) Enhancer and diclofenac co-exposures. All significances via t-tests; *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM.
2.3.1.4. Androstandione and the connection to L-type calcium channel inhibition

As the AR (androgen receptor) is not markedly expressed in zebrafish embryonic tissues at the stages when the screen was conducted (Bertrand et al., 2007), and androstandione was more potent than 11-KT, supposedly the most powerful fish androgen (Hossain et al., 2008), other mechanisms of action for this steroid were considered. Interestingly, several L-type calcium channel inhibitors such as nifedipine also enhanced the curvature in the screen, but were initially rejected as a result of stringent cut-offs. Furthermore, there is evidence that DHT is a potent L-type calcium channel inhibitor (Scragg et al., 2004). This, combined with the consideration that pkd2 is a calcium channel and its knockout causes the curly tail phenotype, led to a re-evaluation of the L-type calcium channel inhibitors and subsequently nifedipine and BayK8644 (L-type channel activator) were ordered. Nifedipine, as in the initial screen results, was a weak curvature enhancer, whereas BayK8644 had no effect on the curly tail (Figure 38 A). Interestingly, although BayK8644 individually did not affect the curvature, it was able to abolish the enhancing effects of nifedipine, even exhibiting a trend towards repressing curliness, in co-exposures (not significant).

Surprisingly, co-exposure of nifedipine and androstandione resulted in a reduced efficacy compared to androstandione and there was a greater variability in phenotype severity (Figure 38 B). This could suggest that androstandione is the more potent L-type inhibitor of the two and co-exposure led to competitive inhibition, therefore causing a wider spread. BayK8644 was able to reduce androstandione’s effects in co-exposures, but this was not significant.

Figure 38 Effects of L-type calcium channel modulators on: (A) pkd2 curvature and (B) steroid-induced enhancement of pkd2 curvature in co-exposure with androstandione. Box on left: Examples of curvature severity with corresponding scale in degrees. All significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.
Some evidence in human studies suggest that receiving L-type calcium channel inhibitors worsens renal outcomes of ADPKD patients (Abe et al., 1983; Astor et al., 2008; Fujiwara et al., 1998; Homma et al., 2013; Saruta et al., 2009). To test the effects of nifedipine on glomerular expansion in zebrafish, pkd2 mutants and siblings were exposed to nifedipine or DMSO. Figure 39 A demonstrates that nifedipine slightly reduced glomerular size in siblings compared to DMSO controls but more importantly - there was a significant difference in glomerular area between siblings and pkd2 mutants in the nifedipine-exposed group, showing that nifedipine enlarged renal size in pkd knock-out fish. This seems to confirm PKD knockout-specific effects of L-type calcium channel inhibitors.

Androstandione has been linked in a few recent publications to increases in proliferation, especially with regard to prostate cancer patients receiving anti-testosterone treatments (Chang et al., 2011; Li et al., 2015; Sharifi, 2012). Mechanistically it has been proposed that cancers convert androstandione to DHT thereby undermining therapy. As pkd2 mutants have a slightly higher proliferation in the ventral parts of the body axis, which might affect the tail curliness (see DMSO controls in Figure 39 B), the effect of androstandione on proliferation levels were analysed. Contrary to expectations, androstandione downregulated proliferation significantly in pkd2 mutants and proliferation in siblings also showed a downward trend (Figure 39 B).
2.3.1.5. Known ADPKD modulators tolvaptan and triptolide

Lastly, the effects of known PKD modulators tolvaptan and triptolide on the tail curvature were tested. Tolvaptan is currently the only drug approved for slowing the progression of ADPKD and triptolide is currently in a phase III clinical trial (https://clinicaltrials.gov/ct2/show/NCT02115659). Tolvaptan is a vasopressin 2 receptor antagonist and lowers cAMP levels in patients but may cause severe adverse effects, leading to high dropout rates in clinical trials (Torres et al., 2012). Although zebrafish have several vasopressin type 2 receptors (avpr2a, avpr2b and avpr2l - arginine vasopressin receptor), which are expressed at these developmental stages (at least in the central nervous system (Iwasaki et al., 2013), no other data was published at the time this thesis was written), tolvaptan did not affect the curly tail (Figure 40 A). This could be explained due to tolvaptan not binding to the zebrafish receptor.
variety, or it binding only to one of the paralogues, which might be insufficient to reduce the phenotype. Alternatively, the zebrafish ADPKD-related phenotype of a curly tail might not be regulated via the vasopressin/cAMP pathway.

The latter theory is furthered by the observation that exposures with other known ADPKD modulators, such as 8-bromo-cAMP, PGE2 and forskolin, did not affect the pkd2 curvature at any of the concentrations tested (8-bromo-cAMP: 10 µM to 1 mM, forskolin: 0.1 to 0.5 µM – overall very toxic, PGE2: 0.05 µM to 5 µM – toxic at higher concentrations, data not shown). Forskolin and 8-bromo-cAMP have both been used previously in zebrafish (10 µM forskolin and 1 µM 8-bromo-cAMP; in 4 dpf larvae (Kumai et al., 2014)), but they had no effect on the curvature phenotype.

Triptolide is a traditional Chinese medicine derived from the Thunder God Vine, Tripterygium wilfordii and reportedly represses ADPKD by activating PC2 (Leuenroth et al., 2008), although other mechanisms are also discussed. Since zebrafish pkd2 mutants have no functional PC2 but triptolide was still able to reduce the curvature phenotype, this suggests that it is not acting via PC2 in zebrafish (Figure 40 B). It was however, also very toxic to embryos and only the lowest concentration tested (0.5 µM) did not result in noticeable toxicity.

2.4. Spectrum and related compounds in WT, elipsa and pkd2−/−

pkd2 mutant zebrafish did not exhibit a discernible renal phenotype but ciliary mutants, such as elipsa, characteristically have glomerular dilations (see Results Chapter 1). These renal dilations in zebrafish are commonly referred to as “cystic kidneys” in the literature, although expanded glomeruli are very different compared to cysts (fluid-filled capsules distinct from the surrounding tissues via a membrane) in an organ. The phenotype most closely resembling renal cysts in zebrafish embryos described to date are dilated glomeruli. WT controls, elipsa
mutants and \textit{pkd2} mutants were exposed to chemicals of interest and glomerular size evaluated.

Figure 41 shows the results of these compound exposures with regard to the glomerular area of WT, \textit{pkd2} and \textit{elipsa} embryos. In WT embryos (Figure 41 A) 11-KT, flutamide and nifedipine decreased glomerular area significantly, whereas spondin and trimethoxyflavone increased it. Interestingly, androstandione did not significantly affect the glomeruli, but co-exposure with nifedipine caused an additive effect beyond the potency of nifedipine alone. This decrease of glomerular size in the co-exposure could be attributed to the arising cardiac oedema phenotype - decreasing cardiac output and subsequently hindering glomerular inflation.

In compound-exposed \textit{pkd2} mutants, (Figure 41 B) flutamide caused smaller glomeruli, as it did in WT embryos, suggesting that, although it had no effect on the curvature phenotype, there is some effect on glomerular morphology. Nifedipine and androstandione co-exposure in \textit{pkd2}-/- did not cause any oedema but also reduced glomerular area, indicating that perhaps oedema were not the driving force behind the shrinkage observed in WT embryos. None of the tested compounds exhibited the ability to increase glomerular size in \textit{pkd2} mutants.

In \textit{elipsa} mutants (Figure 41 C), which have a glomerular dilation phenotype, none of the compounds reduced glomerular area significantly. Interestingly, four compounds aggravated the already dilated renal phenotype: all of the coumarins (prenyletin, pimpinellin and spondin) and triptolide, with the latter being unexpected. Triptolide decreases \textit{pkd2} curvature (see above) but in this cystic kidney model it exacerbated the phenotype.
Figure 41 Glomerular area of WT (A), pkd2 (B) and elipsa (C) after exposure to various compounds. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

In addition to renal size, the effects of compounds on the body axis were also quantified in WT and elipsa mutants (Figure 42 A and B respectively). For WT embryos tail curvature measurements were conducted as previously described, meaning a straight tail corresponded to 170-180°. As some of the exposed elipsa embryos switched from a ventral curvature to a
curly up phenotype, distinction between positive and negative angles became necessary and a straight tail was defined as 0° (analysis more thoroughly explained in Results Chapter 1).

WT embryos were largely unaffected by most of the compounds with the exception of androstandione, which caused a significant dorsal axis bend. The phenotype did not so much resemble a pkd2 curly tail but rather the dorsal axis bending of gamma-secretase inhibitors such as DAPT (Arslanova et al., 2010). Interestingly, similar to the results in glomerular area, androstandione/nifedipine co-exposure seemed to exaggerate this effect, although nifedipine itself did not affect the curvature on its own.

In elipsa mutants, androstandione and androstandione/nifedipine co-exposure both caused the curvature phenotype to switch from ventral to dorsal, indicating a very potent curly up effect of androstandione. Pimpinellin, sphondin and trimethoxyflavone reduced the ventral curl of elipsa significantly, suggesting they have a dorsal curling effect on body axis mutants (elipsa and pkd2) but not on WT embryos. Of note, triptolide alleviated both elipsa and pkd2 curvatures, suggesting it might activate a pathway enabling embryos to develop a straight body axis.
Figure 42 Curvature of WT (A) and elipsa (B) after exposure to various compounds. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via one-wayanova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

3. Spectrum compound validation in a 3D-cyst culture assay

In order to extend the findings of the zebrafish compound screen to a mammalian system, two cell lines were exposed to the Spectrum compounds in three-dimensional cyst assays. In these assays, cells are seeded into a matrix and form cysts over the time course of the experiment, which can subsequently be analysed by measuring cyst area. The lines used during this project comprised canine, renal MDCKII cells and ADPKD-patient-derived Ox161c1 cells with a Pkd1-null mutation.
3.1. Cystic MDCKII cells: determination of effective dosages

As there was no literature on any of the Spectrum compounds regarding performance in cyst assays at the time of the experiments, a dose-range experiment with single replicates was conducted to test the chemicals with regards to cell toxicity and ability to affect cyst size. The results are shown in Figure 43. All of the compounds showed the behaviour predicted from zebrafish data and the most efficient concentrations were subsequently chosen for two triplicate exposure experiments. The optimal concentrations were determined as follows: 0.01 µM for zinc pyrithione and 0.1 µM for hexamethylquercetagetin (both, as in zebrafish, were rather toxic); 1 µM for androstandione, prenyletin, sphondin and trimethoxyflavone; 10 µM for pimpinellin, naringenin, diclofenac and dihydroxyanisole.

![Figure 43](image.png)

Figure 43 MDCKII dose-range assay on day 10 of exposure (A) and day 19 of exposure (B). Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.
3.2. Cystic MDCKII cells: Spectrum compound validation

Figure 44 depicts the combined results of two experiments with biological triplicates of MDCKII cells exposed to the Spectrum hit compounds after 10, 14 and 17 days of exposure. At day 10 of the experiment, naringenin remained at control levels whereas zinc pyrithione, previously a repressor, exhibited aggravated cyst growth. The latter remained true until day 14 but by day 17, the endpoint of the assay, the expanding phenotype was reverted to cyst repression. Sphondin did not have an effect in one of the two experiments and subsequently the combined data suggested it did not cause a cyst expansion in MDCKII cells. Of note, sphondin was also the weakest of the coumarins in the zebrafish screen.

Generally, all of the compounds with the exception of sphondin behaved as expected at the endpoint of the MDCKII cyst assay. None of the enhancers reached the potency of the positive control (forskolin) in terms of cyst-expanding capabilities. Forskolin expanded cysts to about 2.5-times the area in comparison to the strongest compounds of the Spectrum library. Nevertheless, the expansion compared to the DMSO control was highly significant in most cases (sphondin and androstandione treated MDCKII cells showed highly significant expansion at days 10 and 14 which were lost by day 17, perhaps suggesting earlier mechanisms).

Amongst the repressors, diclofenac exhibited a second interesting ability besides cyst size reduction: It caused a shift in the ratio of cystic to tubular structures in the MDCKII cells (Figure 45).
Figure 44 Cyst area of MDCKII cells after compound exposures of 10, 14 and 17 days. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn's multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001. Error bars indicate SEM.
3.3. Cystic MDCKII cells: Further testing of Spectrum compounds – co-exposures

Further to individual treatments, co-exposures of various compounds were conducted in MDCKII cyst assays (Figure 46, Figure 47 and Figure 48).

Figure 46 depicts the effects of enhancer combinations on MDCKII 3D cultures, where the strongest enhancing compounds from the steroid, coumarin and flavonoid class were tested in co-exposures. Overall, there was a high variability in cyst size over the time course of the experiments (co-exposures were analysed in comparison to the more potent single compound). Conversely, at day 10, pimpinellin/androstandione exposure led to an additive effect whereas trimethoxyflavone/androstandione caused a decreased cyst size in comparison to respective controls. At day 14, MDCKII cysts were generally smaller in all of the tested combinations than in individual chemical treatments, which did not change on day 17. No clear additive effects in terms of cyst expansion were observed.
Further exposures with the steroid pathway modulators (Figure 47) flutamide and DHT revealed that flutamide, which had no effect on *pkd2* zebrafish curvature but caused a decreased renal size, caused a large increase in cyst size in MDCKII assays. This was unexpected as steroids, such as androstandione and DHT increased cyst area; therefore, the assumption was made that the steroid antagonist flutamide should decrease cyst size. Flutamide was included to block the influence of DHT but proved a more potent enhancer on its own. Co-exposures of DHT and flutamide led to expansions similar to those observed in flutamide treatments; no additive or negating effects were observed.

Finally, the cyst-repressing compounds were tested in co-exposures with low levels of forskolin to test their potency in overcoming cystogenesis (Figure 48). All repressors were able to reduce the expansion process significantly, but only diclofenac was potent enough to overcome the effects of forskolin completely and reduce cyst size to below DMSO control levels.
3.4. Spectrum compounds in a cell culture model of ADPKD: Ox161c1 cells
To test all compounds and compound combinations in a secondary model, ADPKD-patient-derived Ox161c1 cells, which carry a PKD1 mutation predicted to cause a protein truncation, were also exposed to the various drugs (more detailed information on Ox161c1 cells can be found in the Materials and Methods section 1.12.2.). This cell line served as second validation of the Spectrum compounds in a human cell culture model of ADPKD.

Previous experiments in our laboratory had shown that Ox161c1 cells tolerated similar compound concentrations as MDCKII cells (Morgane Lannoy, personal communication); hence the assays were conducted as described above in two experiments with biological triplicates each.

3.5. Cystic Ox161c1 PKD-cells: Spectrum compound validation
Similar to MDCKII assays, Ox161c1 3D cell culture experiments largely validated the zebrafish screen results (Figure 49). Differences in cyst area were, however, less pronounced and statistically significant results were more difficult to confirm in Ox161c1 cells. Although there were trends for the repressors to decrease cyst size, these findings were not significant and, on the same note, all enhancers exhibited trends towards expanding processes but not all reached significance thresholds. All compounds, without exception, behaved as predicted at all time points measured, including sphondin and zinc pyrithione. Of note, although significant expansions were less frequent than in the MDCKII cells, the most potent expanding compounds performed at the same level or above that of the positive control in Ox161c1 cells - suggesting that forskolin was less effective in its cyst-inducing potency in this cell line (similar observations communicated by a colleague; Morgane Lannoy).
Figure 49 Cyst area of Ox161c1 cells after compound exposures of 10, 14 and 20 days exposure in (A), (B) and (C) respectively. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn's multiple comparison test; ****: $p \leq 0.0001$, ***: $p \leq 0.001$, **: $p \leq 0.01$, *: $p \leq 0.05$. Error bars indicate SEM.
3.6. Cystic Ox161c1 PKD-cells: Further testing of Spectrum compounds – co-exposures

Co-exposures of the most potent enhancers from each compound class showed no additive effects in Ox161c1 cells, quite the contrary: All compound combinations bar androstandione/trimethoxyflavone at day 20 caused a decrease in cyst size in comparison to individual compounds (Figure 50).

Flutamide exposure of Ox161c1 cells did not result in a decrease of cyst size, as expected of a steroid antagonist, but rather increased cyst area (Figure 51). DHT performed as expected but co-exposures of DHT and flutamide did not show an additive effect.

Co-exposures of the repressors with forskolin in Ox161c1 cells revealed the same pattern as in MDCKII experiments. Diclofenac was strong enough in its inhibition properties to not only overcome forskolin stimulation, but was able to repress cyst size to below base levels whereas zinc pyrithione and dihydroxyanisole merely reduced cyst area (Figure 52). Further to combination exposures with forskolin, Ox161c1 cells were also co-exposed to the strongest enhancer (androstandione) and the most potent repressor (diclofenac). Here,
diclofenac was again able to overcome cystogenic effects and cyst size remained below control levels at all times (significant at days 10 and 14).

Figure 52 Otx161c1 repressor and forskolin co-exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunnett's multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

4. Screen of the PKIS collection (kinase inhibitor library)

4.1. Zebrafish PKIS screen results

As there were very limited amounts of compound provided with the PKIS collection, only the first screen round and one validation set could be conducted initially. After the first exposure round, 123 compounds of interest were determined and after a secondary validation step 18 compounds of interest remained (Figure 53). Similar to the Spectrum collection, the majority of these hit compounds were enhancers, with only a rough quarter being repressors. As the Spectrum library had already yielded an interesting set of enhancers - and suppressors are of greater interest with regard to their potential therapeutic values - only the four repressing compounds were pursued from this set. The four repressors of interest were GW785804X, GW780159X, SB-698596-AC and GW682841X.
Figure 53 Hit compounds of PKIS library after initial compound screen with validation round. Enhancers of pkd2 curvature in red, repressors in green. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunn's multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Table 15 contains information regarding the PKIS repressor compounds, including the name they will be referred to from here on. Interestingly, PKIS_04 and PKIS_59 were very similar in chemical structure (Figure 54).

<table>
<thead>
<tr>
<th>Name</th>
<th>Referred to as</th>
<th>Chemical name</th>
<th>Most inhibited target known</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW785804X</td>
<td>PKIS_04</td>
<td>4-(4-fluorophenyl)-5-(1,5-naphthyridin-2-yl)-1,3-thiazol-2-amine</td>
<td>KDR</td>
<td>originally designed against ALK5 TGFβ Cellular Assay – 0.032 μM</td>
</tr>
<tr>
<td>GW780159X</td>
<td>PKIS_59</td>
<td>4-(3-chlorophenyl)-5-(1,5-naphthyridin-2-yl)-1,3-thiazol-2-amine</td>
<td>KDR</td>
<td>originally designed against ALK5 TGFβ Cellular Assay – 0.016 μM</td>
</tr>
<tr>
<td>SB-698596-AC</td>
<td>PKIS_96</td>
<td>N-3-[2,3-difluorophenyl]-1H-pyrazolo[4,5-e]pyridazin-3-yl]-2-(1-ethyl)piperidin-4-yl acetamide 2,3-dihydroxybutanedioic acid</td>
<td>GSK3B</td>
<td>originally designed against GSK3A GSK3 inhibitor⁴</td>
</tr>
<tr>
<td>GW682841X</td>
<td>PKIS_41</td>
<td>2-(4-propan-2-y1phenyl)-4-(5-pyrindin-2-yl-1H-pyrrol-4-yl) pyridine</td>
<td>MAPK4</td>
<td>originally designed against ALK5 ALK5 Binding – 0.032 μM</td>
</tr>
</tbody>
</table>

Table 15 List of PKIS repressor compounds with significant effect on pkd2 curvature including name, referred name, kinase the compound was designed against, most potent known target and further information. ¹ (Elkins et al., 2016), ² (Singh et al., 2003), ³ (Gellibert et al., 2004), ⁴ (Witherington et al., 2003), ⁵ (Gellibert et al., 2006).

Figure 54 Chemical structure of PKIS hits in relation to ALK5 inhibition potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).
After a new batch of the chemicals was obtained following the materials transfer from GSK to UNC, testing continued. Exposures revealed that PKIS_96 did not replicate previous results with regard to the pkd2 mutant curvature, whereas the three remaining compounds did (Figure 55 A). Interestingly, in all compounds there also was a trend towards slightly enlarged glomeruli, which was, however, not significant (Figure 55 B). Although PKIS_96 was unable to reproducibly repress the curvature, time constraints at the end of the project made it necessary to conduct experiments in parallel; hence this compound was taken through all assays and is depicted in the results below.

![Figure 55 Effect of re-ordered PKIS repressor compounds on pkd2 curvature (A) and glomerular area (B). Significances via one-way anova with Dunnett's multiple comparison test; ****: p ≤ 0.0001. Error bars indicate SEM.](image)

As with the Spectrum compounds, PKIS repressors were also tested on WT and elipsa evaluating their effects on glomerular size and tail curvature (Figure 56). None of the compounds had any significant effects on either WT feature. Similarly, glomerular size in elipsa/elipsa was unaffected, although there were trends towards enlargement in PKIS_04 and PKIS_96. One compound, PKIS_41 significantly reduced the elipsa down curl phenotype and PKIS_04 exhibited a similar tendency.
Subsequent to initial characterisation of the PKIS repressors in zebrafish, cell culture assays with MDCKII and Ox161c1 cells were carried out for validation purposes. The results of these three-dimensional cyst assays are described in the following two paragraphs.

4.2. Validation of PKIS compounds in cyst culture: MDCKII cells

MDCKII assays with PKIS repressor compounds were carried out in the same manner as tests with the Spectrum compounds (biological triplicates in two independent experiments each). Exposures to different concentrations of the PKIS repressors in MCKII 3D cyst assays revealed the following (Figure 57): PKIS_04 and PKIS_59 exhibited dose-dependent capabilities to decrease cyst size at all time points measured. PKIS_41 conversely caused an expansion of cyst area at 0.1 µM, no effect in comparison to base line levels at 1 µM and a reduced cyst size at 10 µM at all time points. PKIS_96 was toxic at concentrations at 1 and 10 µM whereas 0.1 µM did not have a significant effect on MDCKII cystogenesis.
4.3. Validation of PKIS compounds in a cell culture model of ADPKD: Ox161c1 cells

The exposure results of \textit{PKD1}^{-/-} Ox161c1 cells to PKIS were less conclusive than the MDCKII experiments in the sense that none of the PKIS compounds exhibited dose-dependent effects (Figure 58). 0.1 \(\mu \text{M} \) PKIS\textunderscore 04 and 1 \(\mu \text{M} \) PKIS\textunderscore 59 showed an insignificant increase in cyst sizes at days 10 and 14 respectively. The remainder of the compounds behaved according to expectations. 10 \(\mu \text{M} \) of PKIS\textunderscore 04, PKIS\textunderscore 59 and PKIS\textunderscore 41 showed a significant decrease in cyst area at day 20 and lower concentrations showed similar trends. PKIS\textunderscore 96 exposures resulted in less cytotoxicity than in MDCKII cells but at 10 \(\mu \text{M} \) cells showed signs of stress.
99

Figure 58 Cyst area of Ox161c1 cells after PKIS compound exposures of 10, 14 and 20 days exposure. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

4.4. Target of phenotype reduction: Alk5

Since PKIS_96 had failed to repress the curvature reproducibly in zebrafish and proved rather toxic in cell culture, this compound was excluded during target analysis. Similarly, PKIS_41 exhibited an inconsistent behaviour in MDCKII cells, although it did not in the Ox161c1 line. Two heat maps of potential targets were therefore generated one including and one excluding PKIS_41 (Figure 59 B and A respectively). PKIS_04 and PKIS_59 were structurally highly related and alongside with PKIS_41 designed to inhibit ALK5 (also known...
as TGFBR1 - transforming growth factor, beta receptor I). Interestingly, ALK5 was not amongst the kinases tested in the first characterisation of the PKIS compound collection used for heat map generation (Elkins et al., 2016). However, ALK5 inhibiting properties of these compounds have been described in independent papers (Gellibert et al., 2006; Gellibert et al., 2004). Amongst the kinases tested and available for heat map generation KDR was the most relevant target for PKIS_04 and _59 and MAP4K4 was most prominent candidate when combining all three repressors.

Interestingly, although KDR and MAP4K4 were the most likely targets based on the information contained in the heat maps, there were more potent inhibitors of both kinases in the original library. These more specific inhibitors, however, had no effect on the curly tail phenotype (Figure 60, KDR and MAP4K4 in A and B respectively). This suggested neither KDR nor MAP4K4 were the targets driving the curvature reduction.
Since neither of the most promising, known targets seemed to cause the phenotype reduction and the chemicals had a tendency to inhibit a plethora of kinases, two, structurally-unrelated, ALK5 inhibitors with higher specificity were obtained: SD208 ([Uhl et al., 2004]; IC₅₀: 49 nM, according to UCN) and SB431542 ([Inman et al., 2002]; IC₅₀: 94 nM, according to UCN), structures in Figure 62. Both chemicals have been described previously in biological systems as Alk5 inhibitors: SD208 had anti-cancer properties in malignant glioma in mice via TGFβ inhibition ([Uhl et al., 2004]) and SB431542 suppressed TGF-beta-induced proliferation in human osteosarcoma cells ([Laping et al., 2002]).

In exposures of pkd2 mutant zebrafish both compounds, SD208 and SB431542, were able to repress the curvature according to expectations. SD208 potently alleviated the phenotype at 10 µM whereas much higher concentrations were necessary for SB431542, where only 100 µM caused a significant change (100 µM SB431542 had been described as TGFβ inhibitor at these developmental stages in zebrafish by [Park et al., 2008]). TGFβ inhibition therefore is the likely effector in reducing the curly tail phenotype in pkd2-null zebrafish embryos.
Figure 61 Effects of various concentrations of known Alk5 inhibitors on pkd2\/- curvature. Box on left: Examples of curvature severity with corresponding scale in degrees. (A) SD208. (B) SB431542. Significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 62 Structure of alternative Alk5 inhibitors tested during this project. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

Discussion

1. **Zebrafish pkd2 mutants as ADPKD screening tool**

 Overall, the results of two drug library screens with the zebrafish pkd2\/- curly tail as ADPKD-related readout and subsequent validation of compound efficacy in 3D cyst assays with two different cell lines, demonstrates that the tail curvature phenotype in pkd2-deficient fish is a valid predictor for cystic behaviour. How the mechanism of generating this curly tail, possibly caused by overproduction or deposition of ECM, relates to the mechanism underlying cystogenesis remains unclear. Nevertheless, pkd2 mutant fish embryos proved to be a robust and valid model for screening potential ADPKD-candidate drugs. Interestingly, compound exposure of the elipsa mutant “cystic kidney” phenotype did not consistently lead to predicted outcomes. As this phenotype in ciliary mutants is very severe, it may have been
irreversibly altered by the time of exposure or involve a different mechanism. Furthermore, a dilated glomeruli phenotype in zebrafish, typically declared a “cystic kidney” in the literature, has very little in common with actual cystic behaviour. It should be noted that cilia in the zebrafish pronephros are motile and their beating motion thought to contribute to fluid movement along the tubule (Kramer-Zucker et al., 2005). Loss of cilia therefore might lead to an inability to expel filtrate at normal rates, creating a backlog of fluid into the glomeruli, hence causing dilation. Thus, the underlying mechanism for cystic dilatation may be very different from that in mammalian kidney cyst formation. These differences are potential disadvantages in using zebrafish embryos as a model to study ADPKD – cilia are motile rather than non-motile in the kidney and the pronephros consists of just two nephrons compared to up to two million nephrons in a human adult (Bertram et al., 2011). \(pkd2 \)-deficient zebrafish are not viable past 5 dpf and to date, no adult models of ADPKD exist in zebrafish.

Neither cAMP nor forskolin had an effect on the \(pkd2 \) curly tail, although they are well-established controls in three-dimensional cyst assays (Hanaoka & Guggino, 2000; Yamaguchi et al., 1995; Yamaguchi et al., 2000). This suggested that the \textit{cup} phenotype is independent of the classical forskolin, cAMP, Ca\(^{2+} \) axis and, in that regard, \(pkd2 \) mutants are perhaps not an ideal ADPKD model.

An important point to consider when screening drugs on a freshwater species is that zebrafish need highly sophisticated excretion mechanisms to maintain homeostasis. To counter osmotic pressures, water molecules need to be constantly expelled while other chemicals are retained inside the body. Freshwater species therefore have a very effective transport machinery and compounds might become expelled much more efficiently than in mammals, resulting in reduced drug efficacy.

2. Screen hit compounds in the wider context

The Spectrum and PKIS screens yielded a number of positive hits, which were validated in both cyst assay cell lines. Amongst the compounds identified were previously reported chemicals affecting ADPKD prognosis, such as androgens (Gabow, 1990; Gabow et al., 1992; Grantham, 1997; Stewart, 1994; Torres et al., 1996) and PGE2 modulators (Y. Liu et al., 2012b; Nasrallah et al., 2014) but also a range of new molecules.

2.1. Steroids and L-type calcium channel inhibitors

Men suffering from ADPKD tend to have a worse prognosis than females with a faster progression towards renal failure and earlier mortality (Gabow et al., 1992; Stewart, 1994). This sex dimorphism is also recapitulated in many renal disease rodent models (Aziz et al.,
2001; Cowley et al., 1997; Fry et al., 1985; Katsuyama et al., 2000; Lager et al., 2001; Nagao et al., 2005; Nagao et al., 2003; Ogborn et al., 1987; Smith et al., 2006), but is not well described in ADPKD model strains. Publications of various rodent models also showed that oestrogen exhibits reno-protective abilities and castration of males improved disease endpoints, suggesting that testosterone is renotrophic (Cowley et al., 1997; Nagao et al., 2005; Smith et al., 2006). Interestingly, a study of sex hormones in MDCKII cells revealed that testosterone increased fluid and solute transport as well as cAMP levels by activating adenylate cyclase, whereas no effects on ATPase activity, cell proliferation or cellular protein content were found (oestrogens had no effect, (Sandhu et al., 1997)).

The steroids identified as hit compounds from the Spectrum library were mostly androgens, although a progestogen, norethynodrel was also identified. After evaluating the chemical structures of the steroids tested during the project, a pattern emerged (depicted in Figure 63): The more complex the side-groups at C3 and C17, the less potent the effect on the curvature phenotype. Androstandione with its two keto-groups in these places showed the highest potency and even adding a hydrogen to these particular side-chains reduced potency (see DHT or epiandrosterone). Interestingly, epiandrosterone, another steroid hit compound, as well as DHT can be converted into androstandione (Ferraldeschi et al., 2015; Sharifi, 2012).

Androstandione proved to be more effective in zebrafish assays and tested cell lines than the most potent human androgen, DHT (Vollmer, 1963), and the most potent zebrafish androgen 11-KT (Hossain et al., 2008). The added potency of this compound led to the speculation that androstandione might not act solely via the androgen receptor (AR), which is expressed at very low levels at these stages (Gorelick et al., 2008), but might also influence a secondary signalling pathway. Current experiments in the lab aim to generate a zebrafish \(ar/\text{pkd2} \) knockout line to test this hypothesis. If \(ar/\text{pkd2} \) double knockouts prove resistant to curvature-enhancing effects of androstandione exposure, then signal transduction occurs solely via the AR. However, should androstandione affect the curly tail in \(ar^{+}/\text{pkd2}^{+} \) fish,
then a second pathway would be involved. Once the appropriate zebrafish mutant line has been established, these experiments will be carried out.

Potential candidates for this hypothesised secondary androstandione pathway are L-type calcium channels (LCCs). Testosterone has been described as potent LCC inhibitor (Scragg et al., 2004) and nifedipine, a specific inhibitor of L-type channels, showed intermediate curvature-enhancing properties upon closer evaluation of the Spectrum screen data (it was originally dismissed due to stringent scoring criteria).

There is some evidence that LCC inhibitors like nifedipine worsen ADPKD in patients (Astor et al., 2008; Saruta et al., 2009) and several publications have linked treatment with L-type channel blockers in rats and dogs to higher glomerular filtration rates, therefore increasing filtration fractions and renal blood pressures (the filtration fraction is the fraction of fluid reaching the kidney passing through renal tubules) (Abe et al., 1983; Dietz et al., 1983; Heller et al., 1990; Roy et al., 1983). Increased blood pressure in the kidney (renal hypertension) has been associated with faster renal disease progression in various canine and rat models (Bidani et al., 1987; S. A. Brown et al., 1993; Griffin et al., 1999).

L-type calcium channels are the predominant voltage-gated channels expressed in the kidney (Hayashi et al., 2007; Homma et al., 2013) and the most abundant renal L-type channel, Ca.1.2, is localised predominantly to afferent renal arterioles (Hayashi et al., 2007). LCC inhibitors have been shown to cause afferent arteriolar dilation while the efferent vasculature remained unaffected (Hayashi et al., 2007; Homma et al., 2013). Consequently, drugs of this type increase blood inflow into renal glomeruli while the outflow remains the same - raising renal blood pressure (for schematic depiction see Figure 64). Treatments with LCC activators, such as BayK8644, result in preferential afferent arteriolar constriction (Steinhausen et al., 1989), underlining the validity of above findings. Interestingly, Ca.1.2 expression is increased 2-fold in Pkd1+/- and Pkd2+/- murine renal epithelial cells and the protein seems to be randomly distributed in Pkd-knockout lines while it is localised predominantly in cilia in healthy tissues (Jin et al., 2014). Ca.1.2 knockdown also caused shortened cilia in PC-null cells whereas WT cilia were unaffected (X. Jin et al., 2014). Furthermore, zebrafish ca.1.2 morphants exhibit “cystic kidneys” and Ca.1.2 knockdown in Pkd1+/+ (lentiviral with Ca.1.2 shRNA) mice resulted in severe renal cysts while kidneys in WT animals were unaltered (Jin et al., 2014).

Nifedipine also enhanced the curvature and enlarged renal size in pkd2 mutant zebrafish, further supporting the notion that L-type calcium channel inhibition could have adverse effects in ADPKD models. In addition, data from a PKD rat model (Han:SPRD) further emphasises the deleterious effects of L-type channel blockers on renal outcomes (Nagao et
Interestingly, LCC inhibitor treatments in WT rats seemed to protect against renal injury (Harris et al., 1987; Yoshioka et al., 1988), suggesting the drugs might have differential effects in healthy and renal disease systems. Lastly, several publications suggest treating hypertension in patients with T- or N-type calcium channel blockers might be more beneficial for renal disease outcomes (Abe et al., 2013; Fujita et al., 2007; Fujiwara et al., 1998; Homma et al., 2013; Omae et al., 2009).

In summary, there is a plethora of publications suggesting L-type calcium channel inhibition in PKD models and ADPKD patients may have adverse effects, specifically in PKD systems. Furthermore, there is some evidence suggesting androstandione, the most potent enhancer identified in this project, might act not only via the AR pathway but could also inhibit L-type calcium channels.

2.2. Coumarins

A second class of compounds enhancing the cnp phenotype identified in the Spectrum library screen were coumarins. Coumarins are natural compounds found in various plants as secondary plant metabolites. Unfortunately, coumarins have not been well-characterised in the literature to date: All three coumarin hits in this project have been described to have antifungal or antimycobacterial properties (O’Neill et al., 2013; Stein et al., 2006) and (oxy-)prenylated coumarin derivatives, such as pimpinellin, may modulate GABA\textsubscript{A} receptors (Singhuber et al., 2011). Of note, sphondin was reported to attenuate COX-2 protein expression and PGE2 release in A549 cells (human pulmonary epithelial cells). More precisely, sphondin did not alter COX-2 enzyme activity but rather suppressed expression of the gene (Yang et al., 2002). COX enzymes and PGE2 release have previously been linked to ADPKD, as alluded to below in the discussion. Structurally, within the coumarin class,
the three-ring structure with more hydroxyl groups seems more potent, although no clear picture emerged (Figure 65).

![Diagram of chemicals](image)

Figure 65 Coumarin hits with structure and relative potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

2.3. Flavonoids

The third class of enhancers identified during the Spectrum library screen comprised flavonoids. Hexamethylquercetagetin and trimethoxyflavone were detected during the screening process whereas naringenin had been observed to induce dorsal curvature in WT embryos (Robert Wilkinson, unpublished). Hexamethylquercetagetin has, to date, not been described in the literature. However, a very similar compound, quercetin, has been linked to prevention of prostate cancer by inhibiting the EGFR pathway in a male rat model (Firdous et al., 2014). Additionally, quercetin has been implicated in the regulation of Ca\(^{2+}\) levels in rat musculature (Sgaragli et al., 1993). Trimethoxyflavone is deemed to have antioxidative properties (Bala et al., 2014) and enhanced lipolysis in mature adipocytes, improving insulin resistance in cell culture (Okabe et al., 2014).

The third flavonoid, naringenin, is mainly found in citrus fruit, especially in grapefruit. It has been associated with benefits in various diseases such as obesity, diabetes, hypertension, metabolic syndrome (reviewed in (Alam et al., 2014)) and deemed cardioprotective in the cardiorenal syndrome (Y. Liu et al., 2016). Interestingly, naringenin has been directly linked to *pkd2* in a *Dictyostelium discoideum* screen. Naringenin slows *Dictyostelium* growth by inhibiting proliferation (Russ et al., 2006) and in a gene knockout screen, a *pkd2* mutant proved to be resistant to these effects (Waheed et al., 2014). Additionally, cyst growth in 3D-culture MDCKII experiments was described as inhibited and TRPP2 knockdown in MDCKII cells alleviated those effects, suggesting naringenin acts in a *pkd2*-dependent manner (Waheed et al., 2014). This stands in stark contrast to my findings: Not only were *pkd2*\(^{-/-}\) fish affected by naringenin, suggesting the compounds acts not via PC2 but via an alternative pathway but
naringenin in MDCKII assays increased cyst size. Considering that three very similar flavonoids showed potent ADPKD-enhancing effects in all three models tested, this project provides powerful evidence that naringenin indeed worsens ADPKD model readouts.

Regarding the chemical structures of the flavonoids identified as hits during this project, unbound electrons in the middle ring and fewer side chains seemed to correlate with potency (Figure 66).

Figure 66 Flavonoid hits with structure and relative potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/).

2.4. Xanthoxylin and dihydroxychalcone

Two further, structurally independent enhancers significantly altered the cup phenotype in the Spectrum screen: xanthoxylin and dihydroxychalcone. Xanthoxylin has been portrayed to possess antifungal/fungiostatic properties (Ceclin Filho et al., 1996) and dihydroxychalcone seems to affect various pathways. It has been described to inhibit cell division in cell culture experiments (Xie et al., 2014), induced apoptosis in human prostate cancer cells (Sheng et al., 2015), functioned as an antileishmanial drug by inhibiting the enzyme glycerol-3-phosphatase dehydrogenase (G3PDH) (Passalacqua et al., 2015) and, as component of propolis-extract derived from Argentinian honeybees (Apis mellifera), dihydroxychalcone reduced COX-2 activity (Salas et al., 2016).

2.5. Repressors

Three compounds from the Spectrum collection and another three drugs from the PKIS library were identified to reduce APDKD-related readouts during this project. With the exception of two PKIS compounds, the repressors were structurally unrelated, so no inference to the active structure of the molecules could be made (Figure 67).
2.5.1. TSA, BFA, triptolide and tolvaptan – known ADPKD model modulators

Three independent positive controls for curly up reduction were utilised during this project: TSA, BFA and triptolide (Figure 67). TSA was first identified in a small scale compound screen on pkd2^{−/−} zebrafish (Cao et al., 2009), BFA reduced pkd2 curvature (Le Corre et al., 2014) and triptolide had not previously been tested in zebrafish. In this project, all three compounds reduced the cup phenotype of pkd2 mutants in narrow therapeutic windows.

Interestingly, tolvaptan, the only currently approved drug for slowing the progression of ADPKD, did not affect the pkd2^{−/−} curvature and is presumed to have no effect on MDCKII
cyst size, as this cell line lacks VP2R (vasopressin 2 receptor, personal communication Albert Ong). In patients, tolvaptan treatment becomes ineffective in late disease stages (Hattanda et al., 2016), presumably because renal tissues at these stages lose VP2R expression.

2.5.2. The Spectrum repressor compounds zinc pyrithione, dihydroxyanisole and diclofenac

Of the newly identified ADPKD modulators zinc pyrithione, an active ingredient in antidandruff shampoo, has clinical implications in the treatments of the skin conditions hidradenitis suppurativa and seborrhoeic dermatitis (Danesh et al., 2015; Naldi et al., 2015). To date (August 2016) there are no publications regarding the biological function of the dihydroxyanisole identified during this project (2,5-di-t-butyl-4-hydroxyanisole). A slightly different chemical, 3,5-di-t-butyl-4-hydroxyanisole, however, has been linked in a variety of papers to calcium regulation in rat musculature via activation of the sarcoplasmic reticulum Ca2+-ATPase and guinea-pig gastric smooth muscle cells (Fusi et al., 2001).

The only repressor of the Spectrum collection with a known mechanism implicated in ADPKD pathogenesis was diclofenac. Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) inhibiting cyclooxygenase enzymes 1 and 2 (COX-1 and COX-2) with a higher affinity for COX-2. COX enzymes metabolise arachidonic acid to PGH2, a precursor of PGE2. Inhibition of COX therefore leads to a decrease in PGE2 synthesis and lower PGE2 levels have been linked to improvements in ADPKD (Elberg et al., 2007; Liu et al., 2012a). Figure 68 contains a more in-depth explanation of the relationships of PGE2 and ADPKD. Prostaglandin E2 seems to play direct and indirect roles in a variety of pathways associated with renal diseases (reviewed in (Nasrallah et al., 2014)) and in a murine ADPKD model (renal epithelial Pkd1−/− cells) elevated PGE2 levels were directly correlated to increases in proliferation and chloride secretion (Liu et al., 2012a). Interestingly, there is also evidence that PGE2 is required for ciliogenesis in zebrafish by promoting intraflagellar transport (Jin et al., 2014).

Apart from reducing cyst size, MDCKII cell morphology was also affected by diclofenac treatment, resulting in a shift from cystic cells to tubular structures. Healthy renal cells in culture often form structures reminiscent of renal tubules (Mao et al., 2011; Zeng et al., 2007) rather than cysts. MDCKII cells still have the ability to form tubules but will predominantly form cysts in a collagen matrix. Diclofenac altered this phenotype significantly and it could be debated that this shift corresponds to a “healthier” cell status. Similar observations with regard to cell structure were made by a colleague in MDCKII 3D culture exposure to PGE2 antagonists (Morgane Lannoy, personal communication).
The reported reduction of COX-2 function by sphondin and dihydroxychalcone described above (both compounds enhanced the curly up phenotype), stand in contrast to current hypotheses. Furthermore, diclofenac has also been described to inhibit L-type calcium channels in rat cardiomyocytes (Yarishkin et al., 2009), however, a more specific L-type calcium channel inhibitor (nifedipine) exaggerated PKD phenotypes in this project.

![Figure 68 Schematic depiction of the prostaglandin pathway and its association with chronic renal diseases derived from information in current literature (reviewed in (Nasrallah et al., 2014)).](image)

2.5.3. PKIS repressor compounds affect the TGFβ pathway

The PKIS repressors identified during this project were, according to GSK, originally designed for ALK5 (activin receptor like kinase 5) inhibition. ALK5 is also referred to as TGFβ receptor 1 and is one of many proteins associated with the TGFβ superfamily. ALK5 was not represented in the kinase inhibition tests used for heat map generation but the two best target candidates suggested by those heat maps were quickly excluded to be the cause of the phenotype reduction. As separate publications suggested the PKIS hits were indeed ALK5 inhibitors (Gellibert et al., 2006; Gellibert et al., 2004; Singh et al., 2003), structurally unrelated, known ALK5 inhibitors were obtained for further studies. Exposure experiment with SD208, a compound with high specificity for ALK5 and very low affinity for any other TGFβ components, recapitulated the pkd2 zebrafish curvature reduction observed in the
PKIS compounds. SB431542, which blocks not only ALK5 but also ALK4 and ALK7 function (Inman et al., 2002), was also able to repress the curly tail.

The main effectors of the TGFβ pathway, SMAD2 and 3, are upregulated in a variety of mouse models and in human tissues even at early ADPKD disease stages (Hassane et al., 2010). A recent study in a Pkd1^{-/-}/Alk5^{-/-} double knockout mouse model, however, did not show any alterations in downstream target expression (SMAD2/3) or progression of PKD compared to Pkd1^{-/-} animals (Leonhard et al., 2016). That study further suggested Alk5 is not the TGFβ component affecting SMAD2/3 expression but rather identified activins (alternative TGFβ superfamily ligands) and the activin receptor II b/Alk4 complex as driver of the phenotype. Figure 69 depicts both branches of the TGFβ family: On the right the Alk5 (TGFβR1)/TGFβR2 receptor complex and on the left the Alk4/activin receptor II b complex - both of which ultimately lead to SMAD2/3 activation. SMAD2 and 3 are transcription factors which translocate to the nucleus upon phosphorylation via the receptor complexes and regulate a plethora of downstream effects such as cell proliferation, differentiation, apoptosis and survival (reviewed in (Villapol et al., 2013)). Since SD208 is described as a potent Alk5 inhibitor but has not been described to inhibit other members of the TGFβ-receptor family, it seems likely that Alk5 rather than Alk4 is the driver behind the reduced ADPKD-related zebrafish phenotype. There are plans to test a third ALK5 inhibitor with regard to the curly tail phenotype, but the supplier is currently unable to deliver.

To elucidate whether one or both of the two <i>alk5</i> copies in zebrafish, <i>tgfb1a</i> and <i>tgfb1b</i>, are truly responsible for the <i>pkd2</i> curvature reduction, knockdown experiments with morpholinos, or preferably, with the newly developed CRISPRi technology (a colleague, Aaron Savage, is currently gathering data for a methodology paper) could be performed in <i>pkd2</i> mutant animals. Of note, interesting cross-links between PGE2 and the TGFβ pathway have been described (Haidar et al., 2015; Kumai et al., 2014; Ramirez-Yanez et al., 2006; Tian et al., 2010) and TGFβ has been shown to regulate calcium homeostasis in the hearts of mice (Hsu et al., 2015). Conversely, naringenin and triptolide have been linked to a suppression of SMAD3 and SMAD2/3 phosphorylation (activation) respectively (Chen et al., 2014; Liu et al., 2006), although they enhanced zebrafish and cell culture phenotypes.
2.6. Compound co-exposures in zebrafish and cell culture ADPKD models

Originally, zebrafish data suggested that co-exposures of coumarins or flavonoids in combination with steroids caused an additive effect - increasing pkd2 mutant tail curvature in comparison to individual compounds. In cell culture, however, this was not recapitulated. Overall, co-exposures decreased cyst size rather than increasing it (in comparison to the more potent single compound). No clear explanation can be given for this discrepancy between models at this point.

Flutamide, an anti-androgen intended to negate steroid effects, did not behave as expected in any of the models tested. It had no effect on the curly tail phenotype in zebrafish, although previous publications had shown that flutamide causes biological alterations in exposure experiments (Schiller et al., 2013; Schiller et al., 2014), and in 3D cyst assays flutamide increased cyst size rather than decreasing it. The latter effect was more pronounced in MDCKII cells, where flutamide exceeded DHT expansion potency. In Ox161c1 assays, DHT was the stronger enhancer, but flutamide still caused an increase in cyst area above baseline levels. Perhaps neither of these models were particularly suited to test androgen effects: Zebrafish have very low levels of androgen receptor expression at the evaluated stages (Gorelick et al., 2008; Thisse et al., 2008) and there is some evidence to suggest that, in particular androstandione, acts via alternative pathways (details above) – this hypothesis will be tested in the near future. Both cell lines utilised during this project were derived from females of their respective species and there is the distinct possibility that this causes flutamide to act contrary to expectations. Furthermore, immortalised cell lines often lose certain proteins and become unsuitable for testing certain hypotheses (e.g. MDCKII cells lost VP2R and tolvaptan is thought to have no effect).
Interestingly, the repressor compounds in the Spectrum library (diclofenac, zinc pyrithione and dihydroxyanisole) were all able to counter low levels of forskolin stimulation in cyst assays. Zinc pyrithione and dihydroxyanisole reduced expanding processes in comparison to the stimulant and diclofenac was able to completely overcome it, presumably by antagonising the effects of forskolin on cAMP.

3. Summary of library screen findings

Overall, the \textit{pkd2} mutant curly tail phenotype has proven to be a robust read-out for screening compounds that are active in mammalian cyst assays. Compounds that enhanced the \textit{cup} phenotype also increased cyst size in cell culture and chemicals repressing the ADPKD-related readout in zebrafish decreased cyst size. Since cell culture experiments can take up to 20 days whereas the zebrafish exposures last only 3 days, zebrafish offer a rapid method for screening chemical libraries using an \textit{in vivo} model.

A summary of screen hit compounds with described mechanisms of action can be found in Figure 70. The two most promising new avenues of therapy for ADPKD emerging from this project are diclofenac and the PKIS repressors, inhibiting COX and TGF\(\beta\) pathways respectively. Both of these pathways have been linked to repression of ADPKD severity (Leonhard \textit{et al.}, 2016; Seamon \textit{et al.}, 1981).

Interestingly, the majority of compounds identified in this study worsened ADPKD-related outcomes. Future work will address potential mechanisms by which these may alter the cystic phenotype.
Figure 70 Compounds with proposed/speculative mechanisms of action utilised in this project. Questionmarks suggest interactions were previously described but new evidence suggests they are inaccurate. ALK5: activin A type II-like kinase 5, BFA: brefeldin A, cAMP: cyclic adenosine monophosphate, COX: cyclooxygenase, ECM: extracellular matrix, HDAC: histone deacetylases, PGE2: prostaglandin E2, TRPV4: Transient Receptor Potential Cation Channel Subfamily V Member 4, TSA: trichostatin A.
Results and Discussion Chapter 3: *in vivo* real-time renal tubular calcium signalling

Introduction

PC2 is a member of the transient receptor potential (TRP) superfamily and thought to function as a non-selective Ca$^{2+}$ channel (also known as TRPP2) (Gonzalez-Perrett *et al.*, 2001; Hanaoka *et al.*, 2000; Luo *et al.*, 2003a). Several studies have shown a decrease in intracellular Ca$^{2+}$ levels in PKD-deficient cells (Ahrabi *et al.*, 2007; Nauli *et al.*, 2003; Q. Qian *et al.*, 2003) but changes in intracellular Ca$^{2+}$ concentrations *in vivo*, in particular in the kidney, had not been previously reported. Zebrafish with their rapid development, easy genetic manipulation and translucent bodies provided an ideal tool for this purpose. Although *pkd2* mutant zebrafish did not exhibit an obvious renal phenotype in terms of glomerular dilation or proliferation (see Results and Discussion Chapter 1, chapters 1.1. and 1.3. respectively), I hypothesised that there might be a detectable change in intracellular Ca$^{2+}$ in the developing kidney. To study this, a new renal calcium-reporter line was created.

Several zebrafish calcium-reporter lines have been developed in recent years, allowing real-time Ca$^{2+}$ visualisation by utilising a fluorescent marker as readout, GCaMP7a (Kyung *et al.*, 2015; Muto & Kawakami, 2013; Muto *et al.*, 2013; Yokota *et al.*, 2015). A GCaMP protein is basically a modified GFP (green fluorescent protein) with an attached calmodulin unit and its use in zebrafish was originally described by (Muto *et al.*, 2013). The calmodulin unit of the GCaMP fusion protein has a high affinity for Ca$^{2+}$ (Akerboom *et al.*, 2012) and the binding of Ca$^{2+}$ causes a conformational change (closing the beta-barrel structure of the fluorophore), allowing for excitation with appropriate wavelengths (Figure 71). In short, in the presence of Ca$^{2+}$, the GCaMP protein is able to fluoresce and the more calcium, the brighter the fluorescence.

![Figure 71 Schematic depiction of GCaMP function.](image)

Several different GCaMP versions exist and the GCaMP7a utilised in study is slightly modified and more sensitive than the original GCaMP protein described in cell culture experiments (Nakai *et al.*, 2001). A colleague had previously generated a UAS:GCaMP7a line.
(Robert Wilkinson - an initial attempt to create an endothelial:GCaMP7a line failed as fluorescence levels were undetectable). The cloning of direct promoter:GCaMP7a constructs during this project was unsuccessful and since amplification through the UAS/Gal4 system was deemed beneficial, the strategy of generating renal Gal4 lines, which would then be crossed to the UAS:GCaMP7a line, was pursued.

Once a renal GCaMP7a zebrafish line was established, fluorescence levels were monitored to quantify renal Ca$^{2+}$ levels in wild-type animals and ADPKD models at different developmental stages.

Results

1. Generation of renal GCaMP7a lines

Two different renal promoters were utilised initially: enpep, which has been described as driving exclusively renal tubular expression (Seiler et al., 2011) and podocin, described to drive expression in the glomerular podocytes (He et al., 2011). After successful cloning of the final constructs (with a cmcl2 marker, see Materials and Methods for more details), microinjections into an incross of pkd2 carriers commenced and the marker-positive animals were raised. Subsequently two founders were identified for each construct and their offspring was evaluated. The lines established during the project comprised podocin:Gal4lo490, podocin:Gal4lo491 and enpep:Gal4lo489. As the podocin lines did not differ, work was only continued on podocin:Gal4lo490 (henceforth referred to as podocin:Gal4) and enpep:Gal4lo489 (referred to as enpep:Gal4).

1.1. The glomerular podocin-driven calcium-reporter line

Fluorescence of podocin:Gal4; UAS:GCaMP7a fish was not discernible via conventional fluorescent microscopy at any time point during development, suggesting that Ca$^{2+}$ levels in the podocytes or expression of podocin:Gal4 were low. In order to visualise the expression pattern podocin:Gal4 animals were crossed to a UAS:kaede line (kaede is a photoconvertible fluorescent protein). This revealed the same expression pattern described in the original publication (He et al., 2011) with restriction of expression exclusively to renal glomeruli (Figure 72). podocin drives expression from 48 hpf to at least 5 dpf in the pronephric glomeruli. Later expression patterns were not monitored. However, as pkd2 mutant embryos did not display a glomerular phenotype and podocin promotes expression only in the glomeruli
(which were also covered by the \textit{enpep} promoter, see below), this construct was not pursued any further.

![Expression pattern](image)

Figure 72 Expression pattern as driven by the \textit{podocin} promoter in a \textit{podocin:Gal4;UAS:kaede} cross. (A and A') at 2 dpf. (B and B') at 5 dpf. (A and B) Lateral view of whole animal. (A' and B') Dorsal view of head and trunk. Fluorescence in the heart due to \textit{cmlc2:EGFP} transgenesis marker indicating transmission of \textit{podocin:Gal4}.

1.2. A pronephric Ca$^{2+}$ reporter: \textit{enpep:Gal4;UAS:GCaMP7a}

Similar to the \textit{podocin} driver line, expression patterns in \textit{enpep:Gal4;UAS:GCaMP7a} were too faint to observe by conventional fluorescence microscopy. Renal tubular expression could be seen faintly at 1 dpf, but to get a more detailed picture \textit{enpep:Gal4} fish were crossed to \textit{UAS:kaede} as with the \textit{podocin} line and the following expression patterns were observed (Figure 73): Similar to what was originally reported (Seiler et al., 2011), expression was observed in the pronephric tubules from 24 hpf to 5 dpf (earlier and later expression was not monitored). It was, however, not as restricted exclusively to the tubules, but was also observed in the glomeruli at all time points monitored (Figure 73 A', B' and C'). Additionally, a rather strong expression was present in the hindbrain and spinal cord, looking distinctively like neurons (Figure 73 A, B and C). Further fluorescence was seen in the ocular region and the pectoral fins from 48 hpf (Figure 73 B, B', C and C').

The two original founders were evaluated and both showed the same expression in other tissues, suggesting the location of transgene insertion was not responsible for ectopic expression. Since expression in offspring of two founders was identical, only one line was established permanently: \textit{enpep:Gal4}sh489. Closer examination of the original paper revealed that pronephric restriction only occurred with a 2.3 kb promoter fragment. Shorter fragments produced extra-renal expression as described above. The promoter given to us, however, was only 2 kb long, suggesting the missing 300 bp probably contains a sequence restricting expression to the tubules.
Although there was some expression in tissues other than the kidney, this did not influence renal calcium analysis and subsequent experiments were conducted on enpep:Gal4;UAS:GCaMP7a. enpep:Gal4;UAS:GCaMP7a fish exhibited a faint renal tubular fluorescence observable under a powerful fluorescence microscope at 1 dpf, which grew too faint for conventional microscopes from 48 hpf. Sorting for renal GCaMP7a expression hence always occurred between 24 – 32 hpf.

Figure 73 Expression pattern as driven by the enpep promoter in a enpep:Gal4;UAS:kaede cross. (A and A’) at 1 dpf. (B and B’) at 2 dpf. (C and C’) at 3 dpf. (A,B and C) Lateral view of whole animal. (A’, B’ and C’) Dorsal view of head and trunk. Fluorescence in the heart due to cmlc2:eGFP transgenesis marker indicating transmission of podocin:Gal4.

1.2.1. Proof-of-principle: Chemical alteration of calcium with known modulators

To test whether GCaMP7a fluorescence levels could be modulated in the enpep:Gal4;UAS:GCaMP7a line using Ca\(^{2+}\) modifying drugs, fish were exposed to thapsigargin (5 µM, 25 min) or 2-APB (2-aminoethoxydiphenyl borate - 50 µM, 2-3 h). Thapsigargin inhibits reuptake of cytoplasmic Ca\(^{2+}\) into the ER (via non-competitive inhibition of SERCA) and simultaneously causes Ca\(^{2+}\) release from the ER via ER stress pathways (Foufelle et al., 2016; Rogers et al., 1995) – hence, increasing cytoplasmic Ca\(^{2+}\) levels and, in theory, GCaMP7a fluorescence. 2-APB, in contrast, blocks release of Ca\(^{2+}\) ions from the ER via IP3R (Missiaen et al., 2001) and lowers intracellular Ca\(^{2+}\) levels - it should therefore decrease fluorescence. A schematic depiction of the effects of thapsigargin and 2-APB can be found in Figure 74 B.

Treatments with thapsigargin or 2-APB yielded the expected results respectively (Figure 74 A) and treated fish were imaged for 30 min to observe whether fluorescence levels changed
after drug withdrawal (not the case, data not shown). Generally, these experiments confirmed that \(\text{GCaMP7a} \) fluorescence levels respond to changes in \(\text{Ca}^{2+} \) concentrations.

To my knowledge, this is the first description of renal real-time \(\text{in vivo} \) calcium imaging in an intact organism described in the literature to date.

Figure 74 (A) Calcium levels in \textit{enpep:Ga4}\textit{UAS:GCaMP7a} after exposure of calcium modulators thapsigargin (25 min) and 2-APB (2 - 3 h) imaged for 30 min at 20 sec intervals, means with SEM depicted. Significances via one-way anova with Dunnet's multiple comparison test; ****: \(p \leq 0.0001 \). (B) Schematic depiction of calcium modulator function in a cell. ER: endoplasmic reticulum, IP3R: inositol triphosphate receptor, SERCA: sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase.

2. Renal calcium at 24 - 34 hpf (pronephros formed, no filtration)

After proof-of-principle experiments confirmed \(\text{GCaMP7a} \) responsiveness to calcium fluctuations (described above), further experiments on the \textit{enpep:Gal4}\textit{UAS:GCaMP7a} line were conducted during day one of embryonic development, when pronephric kidney formation is completed (maturation possibly ongoing) but filtration has yet commenced. This ensured \(\text{Ca}^{2+} \) baseline level observations were conducted in the absence of potential disruption by filtration or cilia-generated tubular flow in the pronephros. Imaging commenced on the lightsheet microscope in an area from the cloaca to the beginning of the yolk extension, covering the majority of the pronephros and providing an easily identifiable area for measurement (Figure 75).

Figure 75 Reference frame (blue) for imaging calcium levels during 1 dpf. Kidney schematically indicated in red.
2.1. Calcium oscillations in tubules at 1 dpf

Tubular Ca\(^{2+}\) was observed on the lightsheet microscope in 2 h-long time lapses, imaging at 15 - 20 sec intervals. Oscillations of entire tubules were measured (Figure 76 A) and some individuals, although not all, showed a slight decrease of fluorescence over time (example in Figure 76 B). This could be attributed to bleaching or a slow decrease of GCaMP expression or calcium over time. Bleaching describes a process in which prolonged excitation of fluorescent molecules results in denaturation and depletion over time. Cells are constantly replacing proteins but if destructive processes outweigh fluorescent protein synthesis, bleaching becomes apparent and fluorescence levels reduce. Bleaching was deemed to be the most likely cause for decreases in fluorescence in this case.

![Figure 76](image)

Figure 76 enpep:Gal4;UAS:GCaMP7a tubular oscillations at 1 dpf. (A) Illustration of measurement technique. Shape of the pronephric tubule was traced with a tool in the Zen software (example in red) and average fluorescence of the entire tubule was measured over time. (B) Example of tubular intensity over 2 h.

No differences were observed with regard to mean tubular intensity, frequency of oscillations, or peaks of less than 20 seconds between siblings and pkd2 mutants (Figure 77 A, B and C respectively). The oscillations of entire tubules were measured and include individual flashing cells, which were characterised separately (see below).

The only significant change observed by monitoring overall tubular fluorescence was the distribution of oscillation durations. pkd2 mutants exhibited a lower percentage of shorter durations (less than 60 seconds, Figure 77 D and more detailed in Figure 77 E) than siblings. Of note, the average oscillation duration was not significantly different between genotypes and the significance with regard to the distribution of durations was low. Although embryos from different parents were imaged at different dates, this could be an artefact of multiple testing.
Tubular calcium oscillations in *enpep:Gal4;UAS:GCaMP7a*. Siblings: n = 14, *pkd2*⁻/⁻: n = 7. Error bars indicate SEM. (A) Mean tubular intensity, (B) frequency of oscillations, (C) peaks longer than 20 seconds, (D) oscillation distribution and (E) oscillation distribution normalised over time in 7 *pkd2* mutants and 14 siblings. Significances in (A, B and C) via unpaired t-test, in (D) via paired t-test; *: p ≤ 0.05 and non-significant (ns): p > 0.05.

2.2. Cellular calcium flashes in the pronephros

2.2.1. Populations of flashing cells in *enpep:Gal4;UAS:GCaMP7a* show *pkd2*-dependent decrease in flash frequency

While analysing the fluctuations in tubular Ca²⁺ it became apparent that individual cells within the pronephros exhibited distinctive behaviours in the time lapses: They showed rapid increases and decreases in fluorescence intensity. These cellular flashes contributed to the tubular oscillations described above, but were probably not their singular driver. The flashes were subsequently analysed by localising flashing cells within the imaged reference frame from the cloaca to the beginning of the yolk extension, fitting a circle around the location and deriving the intensity changes of as many cells per fish as possible (example in Figure 78 A). For each cell, many of which showed multiple flashes in the time course of 2 h, intensity changes (peak height) and duration of the event (peak duration) were derived for each flash. Examples are illustrated in Figure 78 B.
Cellular flashing events exhibited no disparities between genotypes in peak duration or height (Figure 79 A and B respectively). Similar to tubular oscillations however, there was a significant shift in the distribution of peak durations; this time with \textit{pkd2} showing an increase of shorter flashes (up to 70 sec) compared to siblings (Figure 79 D). This was not accompanied by a shift of average peak duration.

Interestingly, the number of flashes over time was reduced significantly in a \textit{pkd2} dose-dependent manner with WT having the highest amount of flashes during the time course of the experiment, followed by \textit{pkd2} heterozygous animals and \textit{pkd2} mutants, which exhibited the lowest number (Figure 79 C).

Figure 78 \textit{enpep:Gal4; UAS:GCaMP7a} cellular flashes at 1 dpf. (A) Illustration of measurement technique. Individual flashing cells were identified through frame-by-frame analysis and a measurement area established (example in red). (B) Example of cellular intensity over 2 h.

Figure 79 Cellular calcium flashes in \textit{enpep:Gal4; UAS:GCaMP7a}. Siblings: n = 14, \textit{pkd2}/-: n = 7. Error bars indicate SEM. (A) Cellular flash duration, (B) cellular flash intensity, (C) cellular flashes over time and (D) duration distribution in 7 \textit{pkd2} mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (n.s.): p > 0.05.
2.2.2. Different cell populations in the embryonic zebrafish kidney

Upon closer observation of the flashing cells, different populations could be discerned. The flashing cell type present in all fish regardless of genotype (3 or fewer flashes in the 2 hours monitored) was dubbed “low-frequency flashing cells” (LFFCs). Cells flashing 4-12 times in the 2 h time lapses were named RCFs (recurrently flashing cells) and cells blinking more often FFCs (frequently flashing cells; >12 times in 2h). FFCs were not analysed in detail, as it was often difficult to determine baseline fluorescence levels (see Figure 80 A), they were, however, included in the count of flashing cells over time (Figure 82 C). Notably RCFs and FFCs did not occur in all animals. In the following subchapters, LFFCs and flashing cells (FCs) were analysed separately for further characterisation. Interestingly, *pkd2* mutants exhibited a larger percentage of LFFCs and numbers decreased in a *pkd2* dose-dependent manner towards WT (not significant). RFC numbers remained constant across all genotypes whereas FFC percentages declined from WT to *pkd2*+/-.

Of note, FFCs were tightly clustered and restricted to a narrow region close to the cloaca (Figure 80 C). A literature search revealed the Corpuscles of Stannius, Ca^{2+} homeostasis organs exclusive to teleosts, reside in the same area (Cheng *et al.*, 2015). The Corpuscles of Stannius are spherical in shape and embedded in renal tissue. Although renal filtration has not begun at this stage, the close proximity of flashing cells to these structures suggests they are active, perhaps undergoing developmental processes.

![Figure 80](image-url) Different populations of cellular flashes: LFFC (1-3 flashes in 2 h), RFC (recurrently flashing cell – 4-12 flashes in 2 h) and FFC (frequently flashing cell - >12 flashes in 2 h). (A) Examples of each cell category depicting calcium levels over time. (B) Distribution of flashing cell populations per genotype. Not significant via paired t-test (p > 0.05). WT: n = 7, *pkd2*+/- n = 7, *pkd2*−/− n = 7. (C) Schematic depiction of FFC location.
2.2.2.1. LFFCs (low-frequency flashing cells - 3 or fewer flashes in 2 h)

The LFFC population was by far the largest across all genotypes (more than 50% of all flashing cells), therefore unsurprisingly the patterns observed in this category were similar to the overall population analysis: Flash duration and intensity were not significantly different between genotypes, but the duration distribution was shifted slightly, with more of short flashes (up to 70 seconds) in \(pkd2 \) mutants (Figure 81 A, B and D respectively). As before, average flash duration was not affected. Furthermore, the number of flashes per time was reduced in a \(pkd2 \) dose-dependent manner as seen in the overall population which was, however, not significant here (Figure 81 C).

![Figure 81 LFFC cellular flashes in \textit{enpep:Gal4;UAS:GCaMP7a}. WT: \(n = 7 \), \(pkd2^{+/+} \): \(n = 7 \), \(pkd2^{-/-} \): \(n = 7 \). Error bars indicate SEM. (A) LFFC flash duration, (B) LFFC flash intensity, (C) LFFC flashes over time and (D) LFFC flash duration distribution in 7 \(pkd2 \) mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet's multiple comparison test and in (D) via paired t-test; \(*: p \leq 0.05 \) and non-significant (n.s.): \(p > 0.05 \).](image)

2.2.2.2. RFCs (recurrently flashing cells - 3 to 12 flashes in 2 h) and FFCs (frequently flashing cells - more than 12 flashes per 2 h)

As seen in the overall population and the LFFC subpopulation, flash duration or intensity of RFCs was not altered between genotypes (Figure 82 A and B respectively). Although there was no change in average peak duration, there was again a shift in the distribution of those durations. Peaks of less than 70 seconds were more prevalent in \(pkd2 \) mutants than in siblings (Figure 82 D). As stated above, FFCs were not analysed in this manner as establishing a baseline was difficult.

The number of flashes over time (including FFCs) was reduced in a \(pkd2 \) dose-dependent manner with WT being having the highest amount of flashes and \(pkd2 \) mutants the lowest
(Figure 82 C) although this did not reach statistical significance. Of note, the percentage of FFC’s decreased in a \(pkd2 \) dose-dependent manner from WT to homozygous animals, corresponding with the reduced number of flashes over time in \(pkd2^-/^- \).

![Figure 82](image)

Figure 82 RFC cellular flashes in \(enpep:Gal4;UAS:GCaMP7a \). WT: \(n = 7 \), \(pkd2^+/+ \): \(n = 7 \), \(pkd2^-/^- \): \(n = 7 \). Error bars indicate SEM. (A) RFC flash duration, (B) RFC flash intensity, (C) FC flashes over time – including FFCs and (D) RFC duration distribution in 7 \(pkd2^-/^- \) mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; ***: \(p \leq 0.001 \) and non-significant (ns): \(p > 0.05 \).

In summary, at day 1 of development two elements in renal \(Ca^{2+} \) signalling differed between \(pkd2 \) mutants and their siblings: There was a slight shift in the distribution of both overall tubular \(Ca^{2+} \) and in the flashing cells - \(pkd2^-/^- \) show less short-term (< 1 min) fluctuations along the tubule but more short cellular flashes (< 70 sec). Additionally, cells in \(pkd2 \) mutants flash less across all cell populations decreasing in a dose-dependent manner from WT.

3. Renal calcium at 48 - 58 hpf (actively filtering kidney) – \(pkd2^-/^- \) exhibit lower renal calcium levels

After failing to observe an overall change of renal \(Ca^{2+} \) levels on day 1 of zebrafish development between \(pkd2 \) mutants and siblings, which would have been expected based on descriptions of cell culture models (more details see Introduction of Chapter 2.), embryos on the second day of development were studied next. At this stage, renal filtration has started and the kidney is functioning while filtration-specificity matures until 4 dpf.

Fluorescence levels in the previously imaged reference frame, from the cloaca to the beginning of the yolk extension, were markedly reduced in 2 dpf embryos. In particular, the area around the cloaca was devoid of detectable GCaMP7a fluorescence (explained in 5.2).
Subsequently the observation area was shifted more anteriorly and imaging now commenced in an anterior section of the tubules from just behind the glomeruli (new imaging area, see Figure 83).

Figure 83 Reference frame (blue) for imaging calcium levels during 2 dpf. Kindey schematically indicated in red.

Time lapse experiments over 6 h at 2 dpf revealed that there was much less activity at this stage of development compared to day 1 – more precisely: no cellular flashes were observed for long periods of time (up to 5 h), followed by a brief burst of flashes, which was again trailed by inactivity. Cellular flashes were therefore not analysed at 2 days of age. Furthermore, tubular oscillations did not show a marked difference at day 1 and did not seem to be altered at this stage either, although this was not measured. For time purposes, experiments at 2 dpf were restricted to imaging seven time points in 2 min and subsequently mean tubular fluorescence intensity was analysed (examples in Figure 84 A and B).

Remarkably, there was a significant difference in Ca^{2+} levels at 2 dpf with lower concentrations in pkd2 mutants compared to siblings. Of note, this decrease did not seem to occur in a pkd2 dose-dependent manner as WT and heterozygous animals were no different.

Figure 84 enpep:Gal4;UAS:GCaMP7a tubular fluorescence at 2 dpf. (A) Typical example of enpep:Gal4;UAS:GCaMP7a. (B) Representative example of pkd2^-/-;enpep:Gal4;UAS:GCaMP7a. (C) Tubular fluorescence in WT, pkd2^-/- and pkd2^-/- at 2 dpf. Significances via one-way anova with Dunnet’s multiple comparison test; *: p ≤ 0.05. Error bars indicate SEM.

4. GCaMP levels in cystic mutant elipsa and elipsa/pkd2 double mutants – loss of cilia causes pronephric calcium level decrease

Since pkd2 knockout did not cause a renal dilation phenotype, observing Ca^{2+} levels in an actual “cystic kidney” mutant was of interest. As before, elipsa mutants were employed for this purpose (for more details see Introduction and Results and Discussion Chapter 1).
Analysis of tubular fluorescence at 1 dpf revealed that siblings did not differ in anterior and posterior tubular fluorescence; similarly, \textit{pkd2} mutants were not different from siblings. \textit{elipsa} mutants, however, showed significantly weaker renal GCaMP7a fluorescence at around the time when cilia abolition is confirmed, suggesting much lower intracellular Ca2+ levels (Figure 85 A). Figure 85 B shows that this trend in \textit{elipsa} mutants persisted on day 2 of embryonic development and \textit{pkd2/elipsa} double mutants did not differ in comparison to the \textit{elipsa} single mutant. \textit{pkd2}, \textit{elipsa} and \textit{elipsa/pkd2} double mutants exhibited similar fluorescence levels at this stage. Obtaining double mutants carrying all relevant transgenes and mutations was very difficult, hence the number of observed animals was low - but no marked change was seen.

Figure 85 \textit{enpep:Gal4;UAS:GCaMP7a} tubular intensity. Error bars indicate SEM. (A) In siblings, anterior and posterior tubule sections, \textit{pkd2} mutants and \textit{elipsa} mutants at 1 dpf. (B) In siblings, \textit{elipsa} mutants and \textit{pkd2/elipsa} double mutants at 2 dpf. Significances via one-way anova with Dunnet's multiple comparison test; **: p ≤ 0.01.

5. Chemical modulation of kidney calcium levels after exposure to chemical screen hit compounds

In Results and Discussion Chapter 2, chapters 2.1. and 4.1. several classes of compounds were identified that altered \textit{pkd2} curvature. Since \textit{pkd2} is thought to function as a Ca2+ channel, the effect of these drugs on renal Ca2+ levels were tested by exposing \textit{enpep:Gal4;UAS:GCaMP7a} fish. Compounds modulating intracellular Ca2+ levels would be of particular therapeutic interest since Ca2+ deregulation is one of the hallmarks of ADPKD.

5.1. Early exposures without distinction of genotypes

First, 24 h exposures were conducted from late epiboly stages to about 30 hpf by treating unsorted embryos overnight in 6-well plates. Sorting at these stages was impossible as the \textit{enpep:Gal4;UAS:GCaMP7a} transgenes were not active yet and the \textit{pkd2} genotype only arises from ca. 28 hpf. Embryos were not separated into \textit{pkd2} genotypes in the analysis - it was deemed unnecessary since tubular fluorescence levels were indistinguishable at 1 dpf.
between alleles. Genotyping was initially conducted to monitor variability but no large differences were found. Only thapsigargin and androstandione treatments had a significant effect on renal Ca\(^{2+}\) levels in these experiments with both compounds increasing Ca\(^{2+}\) concentrations. Interestingly, androstandione seemed just as potent in increasing GCaMP7a fluorescence as thapsigargin (Figure 86 A). Although not significant, flutamide, nifedipine, tolvaptan and dihydroxyanisole showed a trend towards decreasing tubular Ca\(^{2+}\) at this stage.

5.1.1. Genotype-dependent calcium modulation after compound exposure

In a separate experiment embryos were treated with a TRPV4 antagonist, GSK205. TRPV4 is proposed to form a putative channel complex with PC2 distinct from a PC1/PC2 complex in primary cilia (Kottgen et al., 2008). TRPV4 expression has been described in the notochord, brain, endocardium, lateral line organs and, from 32 – 48 hpf, in the pronephros (Mangos et al., 2007). Treatments from 28 hpf with 1 µM GSK205 significantly increased the \(pkd2\) curvature phenotype (Figure 86 B). Of note, treating embryos from 24 hpf for 4 h resulted in a difference in renal Ca\(^{2+}\) levels between alleles, although this was not significant – perhaps due to low numbers. GSK205 showed a trend towards increasing Ca\(^{2+}\) levels in siblings and decreasing GCaMP7a fluorescence in \(pkd2\) mutants after treatments from 24 hpf (Figure 86 B). The same compound exposed from late epiboly (Figure 86 A) did not show a trend, possibly because the genotypes were not separated.
Figure 86 (A) *enpep:Gal4;UAS:GCaMP7a* tubular intensity after compound exposure. Exposures from late epiboly for 24 h, imaged at ca. 36 hpf. B) Curvature enhancing effects of GSK205 on *pkd2* curvature phenotype. (C) *enpep:Gal4;UAS:GCaMP7a* tubular intensity after compound exposure. Exposures of DMSO and GSK205 from 24 hpf for 4 h. Significances in (A and C) via one-way anova with Dunnet’s multiple comparison test and in (B) via unpaired t-test; ***: p ≤ 0.001, **: p ≤ 0.01. Error bars indicate SEM.

5.2. Exposures of *enpep:Gal4;UAS:GCaMP7a* from ca. 28 hpf – characterisation of compounds in *pkd2* mutants and siblings

Early exposure experiments had revealed that compounds might have genotype-specific effects on Ca$^{2+}$ levels, hence subsequent exposures were carried out at stages when genotypes could be distinguished. Embryos were sorted for GCaMP7a fluorescence at 24 hpf and exposed after *pkd2* curvature onset, ensuring sufficient numbers of both siblings and *pkd2* mutants were treated. In the absence of a noticeable disparity between heterozygous and WT animals, siblings were not classified into individual genotypes.

As there was a detectable difference in *pkd2* mutants and sibling GCaMP7a intensities at 2 dpf (described above), treatments with thapsigargin were conducted initially to establish the overall Ca$^{2+}$ content in the kidney. These experiments served to show that *pkd2* mutant Ca$^{2+}$
concentrations could be increased to sibling levels by Ca\(^{2+}\) release from the ER and that calcium was not simply depleted from the system in general. Figure 87 suggests Ca\(^{2+}\) total deposits are indeed similar in the different alleles and Ca\(^{2+}\) can be increased to similar concentrations in \(pkd2\) mutant fish compared to siblings. Interestingly, the anterior and posterior halves of the imaged area responded differently to thapsigargin treatments, although this was not statistically significant.

![Thapsigargin treatment (5 µM for 25 min) of \(enpep:Gal4;UAS:GCaMP7a\) siblings and \(pkd2\) mutants.](image)

Figure 87 (A) Thapsigargin treatment (5 µM for 25 min) of \(enpep:Gal4;UAS:GCaMP7a\) siblings and \(pkd2\) mutants. (B) Graph with renal fluorescence intensities in untreated controls and thapsigargin-exposed embryos. Not significant via one-way anova with Tukey’s multiple comparison test; p > 0.05. Error bars indicate SEM.

Visually, there was a disparity in thapsigargin treated animals with siblings appearing to show an increase of fluorescence along the majority of the length of the pronephric tubule, whereas \(pkd2\) mutants only seemed to display an increase in the anterior part (roughly to the beginning of the yolk extension, Figure 87 A). This was also reflected in the measurements of intensity, although it did not reach significance (Figure 87 B). Subsequently, \textit{in situ} hybridisations were carried out with a \(GCaMP7a\) probe to determine expression along the tubule. There was no discernible change in \(GCaMP7a\) expression patterns between \(pkd2\) mutants and siblings at the time points observed (Figure 88), suggesting that \(pkd2\) mutant animals did not respond differently to thapsigargin treatments due to altered gene expression. A marked difference became apparent in expression patterns comparing developmental day 1, when expression was strong along the entire tubule to the cloaca (Figure 88 A and A’), and day 2, when posterior expression was not perceivable (Figure 88 B and B’). This suggests the inability to detect posterior \(GCaMP7a\) fluorescence at 2 dpf was due to the reduction of expression in this region (contrarily to what was observed during the initial characterisation of the \(enpep:Gal4\) line, see above).
Figure 88 In situ hybridisation with GCaMP7a probe of enpep:Gal4;UAS:GCaMP7a. (A and A‘) 1 dpf sibling and pkd2 mutant respectively. (B and B‘) 2 dpf sibling and pkd2 mutant respectively. Renal tubules indicated with white arrowheads.

The results of enpep:Gal4;UAS:GCaMP7a treatments with Spectrum hit compounds and associated drugs from 28 hpf to ca. 52 hpf are depicted in Figure 90. Establishing a baseline fluorescence was difficult, possibly owing to the fact that Ca\(^{2+}\) is such a ubiquitous second messenger. The preparation of embryos for analysis on a lightsheet microscope involves many steps and temperature, oxygen levels, forces exerted on the embryos while loading them into imaging capillaries and exposure to anaesthetic are all liable to stress zebrafish embryos. Experiments were conducted with the utmost care to keep conditions as stable as possible but in spite of these efforts, a high variability in Ca\(^{2+}\) levels was observed. The controls had a variation of up to ±100 % compared to the mean over all experiments (see Figure 89). It was therefore difficult to obtain statistically significant results. In particular, the set of experiments including diclofenac treatment (experiment 1) resulted in much lower control fluorescence levels than previously observed and was therefore analysed separately (Figure 90 B and D).

\[\text{Interexperimental variation of enpep:Gal4;UAS:GCaMP7a}\]

![Interexperimental variation in fluorescence intensity with enpep:Gal4;UAS:GCaMP7a. Error bars indicate SEM.](image)

132
Amongst compound-exposed siblings, only zinc pyrithione had a significant effect and decreased intracellular Ca2+ levels, although dihydroxyanisole, flutamide, forskolin and diclofenac showed similar trends (Figure 90 A and B). None of the compounds showed a strong calcium-increasing effect.

\textit{pkd2}^{-/-} embryos exposed to various compounds did not show GCaMP7a fluorescence alterations (Figure 90 C and D). Nifedipine, pimpinellin, GSK205 and diclofenac showed tendencies towards increasing Ca2+ levels whereas dihydroxyanisole, zinc pyrithione and forskolin exhibited Ca2+-decreasing trends. Of note, dihydroxyanisole, zinc pyrithione and forskolin display similar inclinations in both genotypes while triptolide (weakly) and diclofenac behaved the opposite in \textit{pkd2}^{-/-} and siblings. Interestingly, dihydroxyanisole, zinc pyrithione and diclofenac all repressed the curvature phenotype of \textit{pkd2} mutants but showed no consistent pattern in their effects on calcium.

Due to the aforementioned baseline variability and low statistical significance (although clear differences were observable by eye), a second analysis method was employed. Intensities
measured within one experiment were divided by the mean of respective DMSO controls to adjust for interexperimental baseline variability: values greater than 1 suggest an increase of tubular fluorescence whereas values lower than 1 indicate a decrease. The results with corrected for baseline values are depicted in Figure 91. Thapsigargin measurements were included in these analyses to serve as a positive control of the new analysis method.

Thapsigargin significantly increased Ca\(^{2+}\) levels in both siblings and \(pkd2\) mutants as expected. In the sibling population, only one other compound altered GCaMP7a fluorescence levels significantly: flutamide, which increased Ca\(^{2+}\) concentrations (Figure 91 A).

In treated \(pkd2^{-/-}\) animals, four compounds other than thapsigargin also increased renal Ca\(^{2+}\) levels contrary to expectations: nifedipine, pimpinellin, trimethoxyflavone and GSK205. Nifedipine, an L-type calcium channel inhibitor, and GSK205, a TRPV4 channel antagonist, were predicted to decrease \(pkd2\) Ca\(^{2+}\) levels even further in \(pkd2^{-/-}\) by blocking other Ca\(^{2+}\) channels. Pimpinellin and trimethoxyflavone on the other hand, enhanced the curvature phenotype of \(pkd2\) mutants but increased the renal Ca\(^{2+}\) phenotype. Androstandione, which increased Ca\(^{2+}\) levels in exposures from epiboly, failed to do so in treatments from curvature onset.
Figure 91 *enpep:Gal4;UAS:GCaMP7a* treated with various compounds from 28 hpf to ca. 52 hpf after adjustment for baseline variability. (A) *pkd2* siblings and (B) *pkd2* mutants. Black lines mark means of DMSO controls. Significances via Kruskal-Wallis test with Dunn's multiple comparison test; **: *p* ≤ 0.01, *: *p* ≤ 0.05. Error bars indicate SEM.

In addition to the Spectrum compounds and chemicals added to study functionalities, *enpep:Gal4;UAS:GCaMP7a* were also exposed to PKIS repressor hits. As all PKIS compounds were measured in one session, no adjustment for variation of baseline was necessary.

None of the treated sibling groups showed a significant difference with regard to tubular fluorescence. There was however a significant difference amongst the *pkd2* mutants, with PKIS_59 decreasing tubular Ca^{2+} levels just significantly (PKIS_59 was one of the two structurally similar compounds). Although these compounds repress the *pkd2* curly tail, there was no consistent effect on renal calcium.
The exposure of enpep:Gal4;UAS:GCaMP7a to a variety of different compounds revealed, that some chemicals exhibited genotype-specific behaviour with regards to Ca\(^{2+}\) signalling. How these modulations fit in with current knowledge will be discussed below. The interexperimental variability in control Ca\(^{2+}\) levels required data transformation to control for this. Nevertheless, pkd2 mutant pronephric Ca\(^{2+}\) always remained below sibling Ca\(^{2+}\) levels in controls although similar amounts of Ca\(^{2+}\) were present in the system.

Discussion

In order to determine the potential effects of pkd2 loss on *in vivo* renal Ca\(^{2+}\), a new zebrafish reporter line, enpep:Gal4;UAS:GCaMP7a, was established. Initial chemical modulations with drugs described to alter global calcium were successful and proved the functionality of this line. Although renal Ca\(^{2+}\) had previously been measured *in vivo* in a mouse GCaMP line, the opacity of mammalian skin necessitated anaesthesia of the animal and surgical removal of the kidney from the body cavity for imaging purposes (Burford *et al.*, 2014; Szebenyi *et al.*, 2015). The large variation of pronephric Ca\(^{2+}\) baseline levels that I observed in an intact organism underlines the sensitivity of calcium to any disruptions and inferring natural Ca\(^{2+}\) behaviour from measurements in an organ outside the body, might prove problematic. This is the first *in vivo* renal calcium reporter line in an intact organism described to date.

1. **Calcium in the pronephric kidney – pkd2\(^{-/-}\) display lowered levels**

During day 1 of embryonic zebrafish development, the pronephros has already formed but is not yet filtering blood, as angiogenesis in the glomeruli is only completed at 40 – 48 hpf (Drummond *et al.*, 2010). Renal Ca\(^{2+}\) changes were observed along the entire length of the pronephros and, as well as general Ca\(^{2+}\) fluctuations in the tubules, individual renal cells also
exhibited interesting behaviours. Oscillations over the entire tubule and flashes of individual cells did not differ in average duration or intensity at 1 dpf. There was however, a shift to longer tubular flashes (> 60 sec) and shorter cellular flashes (< 70 sec) in pkd2 mutant animals compared to sibling controls. Interestingly, neither of these shifts affected average respective durations and their physiological significance remains unclear. Previously published observations in a renal GCaMP mouse model describing regular oscillatory patterns lasting about 60 seconds in proximal tubules of adult animals (Szebenyi et al., 2015), were not observed in the zebrafish line. The most interesting phenotypic disparity in 1 dpf zebrafish was a pkd2-dose-dependent decrease of cellular flash frequency from WT to homozygous animals, which persisted across the analysed cell types. An additional finding was that the most active cell population, the FFCs, seemed to correspond in location to the Corpuscles of Stannius. These spherical organs embedded in renal tissues regulate Ca$^{2+}$ homeostasis in teleost fish and although the kidney is not actively filtering at this stage, the quantity of cellular flashes in the area suggests activity.

After renal filtration had commenced at 2 dpf, pkd2 mutants exhibited significantly lower renal Ca$^{2+}$ levels than their sibling controls. This confirmed previous in vitro observations that Pkd1-null cells displayed lowered intracellular Ca$^{2+}$ levels and a lack of responsiveness to external flow (Nauli et al., 2003). This is the first report of in vivo evidence showing that pkd2 alters renal Ca$^{2+}$ levels in an ADPKD model.

To find out whether Ca$^{2+}$ release was lower in pkd2$^{-/-}$ or there were reduced total renal Ca$^{2+}$ stores, exposures to thapsigargin were conducted since this leads to a rapid efflux of Ca$^{2+}$ from ER stores. These experiments confirmed that Ca$^{2+}$ stores in the tubules were similar between pkd2 homozygous animals and siblings in the anterior tubule section. Whether pkd2 mutants exhibit a decrease of intracellular Ca$^{2+}$ in the posterior region because of impeded ER store release remains to be determined. At 2 dpf, filtrate is moving through the renal tubules aided by motile cilia. It is possible that pkd2$^{-/-}$ animals lack the ability to sense fluid flow and thus display lower pronephric Ca$^{2+}$ levels.
2. Renal calcium in a classical “cystic kidney” and PKD/ciliary mutant zebrafish is diminished in comparison to siblings

elipsa mutants also displayed lower intracellular Ca\(^{2+}\) levels in the pronephric tubules at 2 dpf, similar to pkd2 mutants. Unlike pkd2 mutants, this decrease was already present at 1 dpf. Loss of cilia therefore caused an earlier effect on Ca\(^{2+}\). Since pkd2 and elipsa single mutants had comparably low pronephric GCaMP7a fluorescence levels at day 2, this could indicate that renal epithelial cells in both lines are unable to respond to pronephric filtrate flow stimuli. This might be the reason why combined knockout in the double mutants did not differ significantly from single knockouts. If this were the case, ciliary pkd2 might function as a responding factor to fluid flow or other ciliary signals, as previously proposed (Nauli et al., 2003). Alternatively, PC2 could act independently from PC1 as Ca\(^{2+}\) release channel in the ER (Giamarchi et al., 2010; Koulen et al., 2002; Mekahli et al., 2012) by receiving a ciliary signal.

![Diagram](image.png)

Figure 93 Relationship of cilia, pkd2 and renal calcium based on observations in pkd2, elipsa and double mutants in the renal calcium reporter line enpep:Gal4;UAS:GCaMP7a.

3. Renal calcium response to compound library screen chemicals

Exposures of enpep:Gal4;UAS:GCaMP7a to a number of hit compounds from the chemical library screens did not yield a consistent picture and comparisons were complicated by interexperimental variation.

First and foremost, known Ca\(^{2+}\) modulators such as the L-type calcium channel inhibitor nifedipine and the TRPV4 antagonist GSK205 (TRPV4 is another TRP Ca\(^{2+}\) channel like pkd2) did not show expected reductions of pronephric Ca\(^{2+}\) but rather increased Ca\(^{2+}\) levels in the pkd2 mutants. This increase was, however, not observed in exposed siblings and it is possible that the loss of pkd2 in the mutants and additional chemical inhibition of a second channel led to compensatory changes in other calcium channels.

Interestingly, flutamide, which did not affect pkd2 mutant curvature, also caused an increase in renal Ca\(^{2+}\) but only in the siblings. This might suggest that pkd2-loss made zebrafish embryos insensitive to flutamide, although this is merely speculation. The coumarin pimpinellin and the flavonoid trimethoxyflavone triggered increases in GCaMP fluorescence exclusively in pkd2 mutants. These compounds had previously enhanced the curvature phenotype but now surprisingly alleviated the renal Ca\(^{2+}\) phenotype. PKIS_59, on the other hand, repressed the cup phenotype but lowered pkd2 Ca\(^{2+}\) levels even further.
In summary, none of the compounds, enhancers or repressors, acted in an expected fashion. The compounds had behaved as expected in mammalian cyst culture models and it was hypothesized that at least some compounds would show calcium-altering behaviour accordingly. Some of the chemicals exhibited calcium-altering properties but there was no clear correlation with regard to enhancers or repressors of Ca\(^{2+}\) and the *curly up* phenotype. Overall, these results suggest that the compounds identified during the compound screens did not alter the tail curvature in a way that allows for predictions of their calcium-modifying properties.
Synopsis and outlook

During this project, several zebrafish models of ADPKD were characterised, a compound screen on \(pkd2^{+/−} \) fish identified new modulators of the disease and, after the creation of an \textit{in vivo} renal calcium reporter line, lower intracellular calcium levels were detected in \(pkd2 \) mutant animals.

The initial characterisation of \textit{Danio rerio} ADPKD models served two purposes: reassessing findings in the literature with particular regard to differences between models and identifying the ideal model/trait to conduct a chemical library screen. \(pkd2 \) mutants and morphants (animals with chemical knockdown) displayed the same set of traits initially described (Sun \textit{et al.}, 2004). Mutants and morphants exhibited a curly tail up and left/right polarity defects (assessed by heart looping) but only morphants developed “cystic kidneys”. “Cystic kidneys”, in the context of zebrafish embryos, describe dilated glomeruli rather than actual renal cysts but this is the closest model of mammalian cysts available in the zebrafish pronephros. Besides the renal disparities, morphants also exhibited some knockdown off-target effects (hydrocephalus and necrosis in brain and eye areas) and did not develop oedema at the same rate as \(pkd2 \) mutants. Of note, previous studies had shown only partial rescue of the \(pkd2 \) morphant phenotypes in co-injections with zebrafish \(pkd2 \) or human \(PKD2 \) RNA (Bisgrove \textit{et al.}, 2005; Obara \textit{et al.}, 2006), further implying off-target effects of the morpholino. These findings suggested that the renal readout of \(pkd2 \) morphant animals was not ideal for a screen by lacking robustness and reliability. Therefore, the compound screen was conducted on the curly tail phenotype of \(pkd2 \) mutants.

Due to the lack of a pronephric phenotype in \(pkd2 \) mutants, a more distant model of mammalian renal cysts was analysed, the ciliary mutant \textit{elipsa} (Omori \textit{et al.}, 2008). Ciliary mutants in zebrafish are typically characterised by dilated glomeruli and renal tubules, as well as a downward tail curvature (Kramer-Zucker \textit{et al.}, 2005; Sullivan-Brown \textit{et al.}, 2008). Although the renal “cysts” in ciliary mutants might develop due to different causes, it was hypothesised that the processes underlying cyst expansion were similar in all models. Reports of a murine experiment suggested that the renal phenotype in \(Pkd \)-null mice could be reduced by genetically abolishing cilia, and a similar cross of mutant stains was performed in zebrafish to evaluate the double mutants (Ma \textit{et al.}, 2013). Ciliary mutants have an opposite curl in their tail relative to \(pkd2 \) mutants (Kramer-Zucker \textit{et al.}, 2005; Sullivan-Brown \textit{et al.}, 2008; Sun \textit{et al.}, 2004), suggesting \(pkd2 \) plays a downstream role in this phenotype. Furthermore, the \(pkd2 \) tail phenotype appeared to be epistatic and cilia contributed an additional function, similar in effect to \(pkd2 \) itself (the \textit{curly up} tail in the double mutants was aggravated compared to
pkd2 mutants). The “cystic kidney” phenotype, on the other hand, was more severe in the double knockout animals than in the ciliary mutant. This latter trait suggested that pkd2 and cilia act in parallel and there may be tissue-specific interactions. As pkd2 mutants in zebrafish do not exhibit renal dilations, the fish and mouse experiments cannot be directly compared, but the murine study also found an increase in cystic behaviour compared to the ciliary single mutants (Ma et al., 2013), as was described here in the zebrafish cross. Overall, a complex network of interactions between cilia or ciliary signals and pkd2 emerged, suggesting partial redundancy of certain functions. Unexpectedly, the current model suggests a repressive signal of cilia on PC2 function. Of note, the mechanisms leading to curly up and curly down tail curvatures remain unclear; here, similar pathways were assumed between both phenotypes, however, this might not prove correct upon closer study. To tease apart the exact contributions of each gene would be complex and should probably involve knocking out genes that are most likely candidates in providing the function of factor X (similar in effect to pkd2) in the cilia – interesting candidates might be the pkd2-like genes or other ciliary calcium channels. In addition, tissue-specific knockdown of cilia or pkd2 with the novel CRISPRi technology would allow a closer examination of interactions in individual tissues. The tissue-specificity of knockdowns via CRISPRi is merely restricted to the promoters used, therefore knockdown in all ciliated cells, irrespective of tissues (e.g. with the ciliary cdc114 promoter (Choksi et al., 2014)) would allow a very detailed study of genetic interactions.

A second aim of this project was to conduct zebrafish high-throughput compound screens on an ADPKD-related phenotype. For this purpose, the 2000 compound-strong Spectrum library with a mix of FDA-approved and natural chemicals, as well as the PKIS set, a kinase inhibitor library with 367 molecules, were tested. Screening the chemicals for their ability to modify the pkd2 mutant curvature revealed a total of 22 compounds that aggravated the phenotype and 7 chemicals alleviating it. The compounds carried forward into two cell lines in three-dimensional cyst assays confirmed the fish data, suggesting that the curly tail readout is a reliable predictor for the cystic phenotype. The most promising potential therapeutic targets identified during the compound screens were the COX inhibitor diclofenac and inhibitors of the TGFβ pathway, especially ALK5 blockers. Prostaglandins and the TGFβ signalling cascade have been previously linked to ADPKD (Hassane et al., 2010; Liu et al., 2012a). Diclofenac, as an already FDA-approved drug, which is sold without prescription in most countries, would be a very interesting and inexpensive therapeutic approach. The curly up phenotype in pkd2-deficient zebrafish has been linked to increased collagen production (Mangos et al., 2010) and/or deposition (Le Corre et al., 2014) and interestingly, one study
suggested an intricate crosslink between cAMP and collagen expression which is regulated via the TGFβ pathway (Perez-Aso et al., 2014): low levels of cAMP stimulation increased collagen 1 and 3 synthesis whereas high concentrations of cAMP inhibited collagen 1 but increased collagen 3 production. Prostaglandin receptors, in particular EP4, have also been shown to inhibit TGFβ signalling, further suggesting that TGFβ might be one of the main contributors to the cup phenotype (reviewed in (Nasrallah et al., 2014)). To further understand the role of TGFβ and prostaglandins, downstream targets of these pathways (e.g. SMAD2 or SMAD3 and prostaglandin receptors respectively) could be knocked down in pkd-deficient models (zebrafish or cell culture).

The variety of natural compounds, namely coumarins and flavonoids, found to aggravate model outcomes, could potentially explain some of the large intrafamilial variability within ADPKD progression (Milutinovic et al., 1992). Even within individual families carrying the same mutation, there is a large disparity in the onset of renal failure. Some of this variability might be due to epigenetics (Li, 2011; Woo et al., 2015) but dietary factors could also play a role, especially since flavonoids and coumarins occur at different concentrations in various plants; naringenin, for example, is very prevalent in citrus fruit (Alam et al., 2014). Further research, perhaps with different dosage levels in rodent models, would be necessary to determine whether there is truly is a dietary effect.

Androgens, in particular testosterone, have been described in a number of studies on rodents and patients to be a risk factor for ADPKD disease progression (Aziz et al., 2001; Cowley et al., 1997; Fry et al., 1985; Gabow et al., 1992; Katsuyama et al., 2000; Lager et al., 2001; Nagao et al., 2005; Nagao et al., 2003; Ogborn et al., 1987; Smith et al., 2006; Stewart, 1994). This project identified several androgens (testosterone, 11-ketotestosterone, androstandione and epiandrosterone) as enhancers of zebrafish and/or cyst culture outcomes. Surprisingly, the strongest enhancer of the tail curvature phenotype, androstandione, was more potent than classical male hormones in respective species’ models (testosterone in mammalian models and 11-KT in zebrafish, (Hossain et al., 2008; Vollmer, 1963)). In zebrafish, this could have been attributed to differing abilities of the steroids to diffuse into the embryos, but cell culture experiments confirmed this trend. This led to the hypothesis that a non-canonical signalling route might be involved in producing the aggravated effects. To test this hypothesis, a zebrafish androgen receptor knockout line is currently being established to clarify whether androstandione acts solely via the androgen receptor or whether a secondary pathway is involved. A potential mechanism of action for this non-canonical pathway has also been identified – L-type calcium channels. These proteins have been linked to worse renal outcomes in a number of studies on both animal models and human patients (Abe et
al., 1983; Astor et al., 2008; Dietz et al., 1983; Heller et al., 1990; Roy et al., 1983; Saruta et al., 2009). Early exposures (late epiboly to 24 hpf) with androstandione in enpep:Gal4;UAS:GCaMP7a fish showed an increase in renal calcium, supporting this hypothesis. Later exposures (27 hpf – 2 dpf), however did not cause a significant change. Should experiments confirm the activation of an alternative signalling pathway by androstandione, knockdown experiments of L-type calcium channels via morpholinos or, preferably via CRISPRi, could determine whether the contributing factors are indeed L-type calcium channels.

Current studies are trying to elucidate the exact mechanisms of action for some of the hit compounds. Tests are being carried out to evaluate the effects on proliferation- and apoptosis-rates in 3D cyst assays to determine whether cyst growth or shrinkage is linked to increased or decreased cell numbers.

In order to test the validity of the identified chemical targets for therapeutic purposes, more in-depth studies into the mechanisms of action are necessary and ultimately experiments on rodent models of ADPKD should be carried out.

Finally, calcium deregulation, one of the main hallmarks of ADPKD in a variety of models (reviewed in (Mangolini et al., 2016)), was studied in zebrafish pkd2 mutants by utilising a new transgenic reporter line (enpep:Gal4;UAS:GCaMP7a) to measure renal Ca$^{2+}$ levels via a fluorescent readout. Before the onset of renal filtration, overall Ca$^{2+}$ levels were indistinguishable between siblings and pkd2$^{-/-}$ animals although there was a pkd2-dose dependent reduction in cellular flashes. After the onset of filtration at 2 dpf, pkd2-null zebrafish embryos showed a significant decrease of renal Ca$^{2+}$ which cannot be explained by diminished calcium stores. At 2 dpf, the tubules in pkd2 mutants had similar ER calcium store release abilities as their siblings. These descriptions are the first, to date, of an in vivo calcium reporter in an ADPKD model.

Conversely, none of the chemicals identified during the compound screens seemed to have a predictable effect on renal calcium levels, but it is possible that the curvature readout used during the screen is not particularly sensitive to Ca$^{2+}$ modulation. However, during this project only whole-tubular and whole-cellular calcium were measured. The differentiated (but not significant) response to thapsigargin treatment in the anterior and posterior tubular sections in pkd2 mutants suggests that renal tubular segments may respond differently to chemicals, and should perhaps be analysed separately. Furthermore, Ca$^{2+}$ is a widespread second messenger and subcellular compartmentalisation of calcium signalling is likely to play a more important role in the generation of a phenotype. Detailed insights into subcellular
Ca\(^{2+}\) could be gained by creating GCaMP lines with ciliary or endoplasmic reticulum targeted reporters (the two main compartments PC2 is localised to). The experimental procedures could also be improved to reduce inter-assay variation.

A summary of the most important phenotypes described above in the various zebrafish ADPKD models employed during this project, *elipsa*, *pkd2* and *elipsa/pkd2* mutants, with their respective onset can be found in Figure 94.

Figure 94 Overview of the most important developmental steps in zebrafish development with their respective timings post fertilisation. General developmental steps are depicted in black, *elipsa*, *pkd2* and *pkd2/elipsa* mutant characteristics are shown in blue, green and violet respectively.

Table 16 provides a summary of the compounds identified as modulators of the *pkd2* curvature phenotype during library screens and their respective effects on all the ADPKD models they were subsequently tested on.
Table 16: Summary of compounds tested in this project and their effects on various phenotypes. Upward arrow: aggravation of phenotype, downward arrow: alleviation of phenotype, sideways arrows: no change, asterisk: not significant but clear trend, n.a. (not available): compound not tested in this model.

<table>
<thead>
<tr>
<th>Compound</th>
<th>pkd2−/− curvature</th>
<th>pkd2−/− glomerular size</th>
<th>elipsa curvature</th>
<th>elipsa glomerular size</th>
<th>WT curvature</th>
<th>WT glomerular size</th>
<th>Renal calcium siblings</th>
<th>Renal calcium pkd2−/−</th>
<th>MDCKII cyst size (assay endpoint)</th>
<th>Ox161c1 cyst size (assay endpoint)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androstadiene</td>
<td>↑</td>
<td>↑</td>
<td>Dorsal curl</td>
<td>↑</td>
<td>Dorsal curl</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>decreased</td>
<td>decreased*</td>
</tr>
<tr>
<td>Dihydroxyanisole</td>
<td>↓</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>decreased</td>
<td>decreased*</td>
</tr>
<tr>
<td>Flumidine</td>
<td>↑</td>
<td>decreased</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Forskolin</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>increased*</td>
</tr>
<tr>
<td>GSK205</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Naringenin</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>n.a.</td>
<td>increased</td>
<td>n.a.</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>↓</td>
<td>n.a.</td>
<td>increased</td>
<td>n.a.</td>
</tr>
<tr>
<td>Pimipelin</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>increased</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>increased</td>
<td>increased</td>
<td>increased*</td>
</tr>
<tr>
<td>PKIS_04</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>decreased</td>
<td>decreased</td>
</tr>
<tr>
<td>PKIS_59</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>decreased</td>
<td>decreased*</td>
</tr>
<tr>
<td>PKIS_41</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>decreased</td>
<td>decreased</td>
</tr>
<tr>
<td>Prenyletin</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>↑</td>
<td>↑</td>
<td>n.a.</td>
<td>n.a.</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Pyrithione zinc</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>decreased</td>
<td>decreased*</td>
</tr>
<tr>
<td>Spindolin</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>increased</td>
<td>↑</td>
<td>↑</td>
<td>n.a.</td>
<td>n.a.</td>
<td>↑</td>
<td>increased</td>
</tr>
<tr>
<td>Tolvaptan</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>n.a.</td>
<td>n.a.</td>
<td>↑</td>
<td>n.a.</td>
</tr>
<tr>
<td>Trimethoxylavone</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>n.a.</td>
<td>increased</td>
<td>increased</td>
</tr>
<tr>
<td>Triptolide</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>increased</td>
<td>↑</td>
<td>↑</td>
<td>n.a.</td>
<td>n.a.</td>
<td>↑</td>
<td>n.a.</td>
</tr>
</tbody>
</table>
This project has provided the first evidence of *pkd2* affecting *in vivo* renal Ca\(^{2+}\) levels in an ADPKD model and the first indications that *pkd2* indeed has a non-redundant function in the zebrafish pronephros. Morpholino data had suggested a function of *pkd2* in the pronephros (Sun *et al.*, 2004), but until now, no genetic evidence had been reported. Here, interaction of *pkd2* and cilia (enhanced dilation phenotype in the double knockout animals) and lower Ca\(^{2+}\) levels in *pkd2* mutants suggest that there is a renal function for *pkd2* in zebrafish. Unfortunately, *pkd2* mutant animals are not viable past 5 dpf at which point the kidney still consists of the 2-nephron pronephros; therefore true renal cysts could not be observed in this model. Whether the teleost mesonephros could actually develop renal cysts in response to *pkd2* loss-of-function has so far remained undetermined. An improvement of zebrafish models, such as the creation of an inducible renal *pkd2* knockout line (attempted during this project but the *lox* construct failed to rescue *pkd2*\(^{-/-}\) phenotypes) or the creation of mosaic *pkd2*\(^{-/-}\) animals via CRISPR knockout (animals were created but could not be analysed due to time constraints) might be able to elucidate whether zebrafish could develop renal cysts and serve as more accurate ADPKD models. The mosaic loss of *pkd2* would mimic the presumed loss-of-heterozygosity in patients more closely than a pan-renal *pkd2* knockout.

In conclusion, new insights into the interplay between ADPKD and its modifying factors were gained during this project and a number of potential new therapeutic compounds for this devastating disease have been identified.
List of Materials

<table>
<thead>
<tr>
<th>Chemical/equipment</th>
<th>Supplier/company</th>
<th>Cat no/name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 ml Eppendorf tubes</td>
<td>Starlab</td>
<td>S1615-5500</td>
</tr>
<tr>
<td>10-beta cells</td>
<td>New England Biolabs</td>
<td>C3019H</td>
</tr>
<tr>
<td>10x MEM</td>
<td>Thermofisher scientific</td>
<td>11430030</td>
</tr>
<tr>
<td>11-ketotestosterone</td>
<td>Sigma-Aldrich</td>
<td>K8250</td>
</tr>
<tr>
<td>15 ml falcon tubes</td>
<td>Sarstedt</td>
<td>62.553.542</td>
</tr>
<tr>
<td>2,5-Di-tert-butyl-4-hydroxyanisole</td>
<td>Sigma-Aldrich</td>
<td>447323</td>
</tr>
<tr>
<td>2-APB</td>
<td>Kindly provided by Deepa Bliss</td>
<td></td>
</tr>
<tr>
<td>5,7,4'-trimethoxyflavone</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300384</td>
</tr>
<tr>
<td>50 ml falcon tubes</td>
<td>SLS</td>
<td>352070</td>
</tr>
<tr>
<td>5alpha-androstan-3,17-dione</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00107108</td>
</tr>
<tr>
<td>Acetone</td>
<td>Sigma-Aldrich</td>
<td>179124</td>
</tr>
<tr>
<td>Agarose</td>
<td>Biotine</td>
<td>BIO-41025</td>
</tr>
<tr>
<td>Antibodies</td>
<td>pH3</td>
<td>ab5176</td>
</tr>
<tr>
<td></td>
<td>Alexa Fluor 488</td>
<td>Z25302</td>
</tr>
<tr>
<td>Arabinose</td>
<td>Sigma-Aldrich</td>
<td>A3256</td>
</tr>
<tr>
<td>Bay K8644</td>
<td>Sigma-Aldrich</td>
<td>B112</td>
</tr>
<tr>
<td>BCIP</td>
<td>Roche</td>
<td>10760994001</td>
</tr>
<tr>
<td>Blocking reagent</td>
<td>Roche</td>
<td>11096176001</td>
</tr>
<tr>
<td>BrdU</td>
<td>Sigma-Aldrich</td>
<td>N5002</td>
</tr>
<tr>
<td>cAMP</td>
<td>Toceis</td>
<td>1140</td>
</tr>
<tr>
<td>Carbenicillin</td>
<td>Sigma-Aldrich</td>
<td>C1389</td>
</tr>
<tr>
<td>Centrifuges</td>
<td>Progen</td>
<td>GenFuge 24D</td>
</tr>
<tr>
<td></td>
<td>Thermo</td>
<td>Heraeus Fresco17</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Merck</td>
<td>1.02366.0050</td>
</tr>
<tr>
<td>Chloroform</td>
<td>VWR International</td>
<td>22711.260</td>
</tr>
<tr>
<td>Citric acid</td>
<td>VWR International</td>
<td>100813M</td>
</tr>
<tr>
<td>Confocal microscope</td>
<td>Olympus</td>
<td>IX81</td>
</tr>
<tr>
<td></td>
<td>Perkin Elmer</td>
<td>Ultraview Vox</td>
</tr>
<tr>
<td>dicylofenac</td>
<td>Sigma-Aldrich</td>
<td>93484</td>
</tr>
<tr>
<td>DIG RNA labelling mix</td>
<td>Roche</td>
<td>11277073910</td>
</tr>
<tr>
<td>Disposable serological pipettes</td>
<td>Corning Incorporated</td>
<td>Costar, various sizes</td>
</tr>
<tr>
<td>DMSO</td>
<td>AppliChem</td>
<td>A3006</td>
</tr>
<tr>
<td>DNA ladder</td>
<td>New England Biolabs (100 bp)</td>
<td>N3231S</td>
</tr>
<tr>
<td></td>
<td>Thermofischer scientific (1 kb)</td>
<td>SM0311</td>
</tr>
<tr>
<td>DNaseI</td>
<td>Roche</td>
<td>04716728001</td>
</tr>
<tr>
<td>dNTPs</td>
<td>Roche</td>
<td>11969064001</td>
</tr>
<tr>
<td>EDTA</td>
<td>Sigma-Aldrich</td>
<td>E5134</td>
</tr>
<tr>
<td>EDTA-Trypsin</td>
<td>Gibco</td>
<td>11590626</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Fisher scientific</td>
<td>E/0650/17</td>
</tr>
<tr>
<td>Ethidium bromide</td>
<td>Sigma-Aldrich</td>
<td>E7637</td>
</tr>
<tr>
<td>Exonuclease I</td>
<td>New England Biolabs</td>
<td>M0293L</td>
</tr>
<tr>
<td>FBS</td>
<td>Labtech International</td>
<td>s1810-500</td>
</tr>
<tr>
<td>Firepol</td>
<td>Solis Biodyne</td>
<td>04-12-00115</td>
</tr>
<tr>
<td>Flutamide</td>
<td>Sigma-Aldrich</td>
<td>F9397</td>
</tr>
<tr>
<td>Formamide</td>
<td>Sigma-Aldrich</td>
<td>P9037</td>
</tr>
<tr>
<td>Formamide</td>
<td>Sigma-Aldrich</td>
<td>F9037</td>
</tr>
<tr>
<td>Forskolin</td>
<td>Tocris</td>
<td>1099</td>
</tr>
<tr>
<td>Gel extraction kit</td>
<td>QiAgen</td>
<td>28706</td>
</tr>
<tr>
<td>Gel tanks</td>
<td>BioRad</td>
<td>PowerPack 300</td>
</tr>
<tr>
<td>Item</td>
<td>Supplier</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Gibco DMEM/F-12 medium</td>
<td>Thermofisher scientific</td>
<td>21221-046</td>
</tr>
<tr>
<td>Glycerol</td>
<td>VWR International</td>
<td>24388.295</td>
</tr>
<tr>
<td>Heatblock</td>
<td>Techne</td>
<td>DriBlock DB-2A</td>
</tr>
<tr>
<td>hEGF</td>
<td>Sigma-Aldrich</td>
<td>E9644</td>
</tr>
<tr>
<td>Heparin</td>
<td>Sigma-Aldrich</td>
<td>H3393</td>
</tr>
<tr>
<td>hexamethoxyquercetagen</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>01505383</td>
</tr>
<tr>
<td>hydrocortisone</td>
<td>Sigma-Aldrich</td>
<td>H0135</td>
</tr>
<tr>
<td>Injection needles</td>
<td>World precision instruments</td>
<td>TW120-4</td>
</tr>
<tr>
<td>Isopropanol</td>
<td>Fisher scientific</td>
<td>BP2618-500</td>
</tr>
<tr>
<td>TTS liquid media supplement</td>
<td>Sigma-Aldrich</td>
<td>13146</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>Sigma-Aldrich</td>
<td>B5264</td>
</tr>
<tr>
<td>KCl</td>
<td>Sigma-Aldrich</td>
<td>P4504</td>
</tr>
<tr>
<td>LB</td>
<td>MP Biochemicals</td>
<td>3001-031</td>
</tr>
<tr>
<td>LBA</td>
<td>MP Biochemicals</td>
<td>3001-231</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>Lonza</td>
<td>17-605C</td>
</tr>
<tr>
<td>Lightsheet microscope</td>
<td>New England Biolabs</td>
<td>B7021S or B7025S</td>
</tr>
<tr>
<td>Low-melt agarose</td>
<td>Fisher scientific</td>
<td>BP165-25</td>
</tr>
<tr>
<td>Low-melt agarose</td>
<td>Fisher Scientific</td>
<td>BP165-25</td>
</tr>
<tr>
<td>Maleic acid</td>
<td>Sigma-Aldrich</td>
<td>M0375</td>
</tr>
<tr>
<td>Matrigel matrix</td>
<td>Corning B.V.</td>
<td>354230</td>
</tr>
<tr>
<td>Mega ShortScript T7 kit</td>
<td>Ambion</td>
<td>AM1354</td>
</tr>
<tr>
<td>Metaphor agarose</td>
<td>Lonza</td>
<td>50180</td>
</tr>
<tr>
<td>Methanol</td>
<td>Fisher scientific</td>
<td>M/4000/17</td>
</tr>
<tr>
<td>Methyl cellulose</td>
<td>Sigma-Aldrich</td>
<td>M0387</td>
</tr>
<tr>
<td>MgCl2</td>
<td>VWR International</td>
<td>25108.260</td>
</tr>
<tr>
<td>microscopes</td>
<td>Leica</td>
<td>MZ16</td>
</tr>
<tr>
<td></td>
<td>Leica</td>
<td>M165FC</td>
</tr>
<tr>
<td></td>
<td>Zeiss</td>
<td>Axio Zoom.V16</td>
</tr>
<tr>
<td></td>
<td>Olympus</td>
<td>IX71</td>
</tr>
<tr>
<td>Midi prep kit</td>
<td>Macherey-Nagel</td>
<td>740410.100</td>
</tr>
<tr>
<td>Mini prep kit</td>
<td>Qiagen</td>
<td>27106</td>
</tr>
<tr>
<td>mMessage mMachine SP6 kit</td>
<td>Ambion</td>
<td>AM1340</td>
</tr>
<tr>
<td>Morpholino</td>
<td>Gene Tools, LLC</td>
<td></td>
</tr>
<tr>
<td>Multi-well plates</td>
<td>Corning Incorporated</td>
<td>Costar, various sizes</td>
</tr>
<tr>
<td>NaCl</td>
<td>VWR International</td>
<td>10241AP</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma-Aldrich</td>
<td>S7653</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>Sigma-Aldrich</td>
<td>S5761</td>
</tr>
<tr>
<td>NaOH</td>
<td>VWR International</td>
<td>28244.262</td>
</tr>
<tr>
<td>Naringenin</td>
<td>Sigma-Aldrich</td>
<td>W530098</td>
</tr>
<tr>
<td>NBT</td>
<td>Roche</td>
<td>11383213001</td>
</tr>
<tr>
<td>NH4Ac</td>
<td>Sigma-Aldrich</td>
<td>A1542</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Sigma-Aldrich</td>
<td>N7634</td>
</tr>
<tr>
<td>NP40</td>
<td>BDH Laboratory Suppliers</td>
<td>56009</td>
</tr>
<tr>
<td>NU serum</td>
<td>Becton Dickinson</td>
<td>734-1318</td>
</tr>
<tr>
<td>Pasteur pipettes</td>
<td>SLS</td>
<td>PIP4206</td>
</tr>
<tr>
<td>PBS</td>
<td>Sigma-Aldrich</td>
<td>P4417</td>
</tr>
<tr>
<td>PCR plate lids</td>
<td>Starlab</td>
<td>E2796-0793</td>
</tr>
<tr>
<td>PCR plates</td>
<td>Starlab</td>
<td>I1402-9700</td>
</tr>
<tr>
<td>PCR purification kit</td>
<td>Qiagen</td>
<td>28106</td>
</tr>
<tr>
<td>PCR tubes</td>
<td>Starlab</td>
<td>I1402-8100</td>
</tr>
<tr>
<td>Penicillin/Streptomycin</td>
<td>Lonza</td>
<td>LZDE17-603E</td>
</tr>
<tr>
<td>Petri dishes</td>
<td>Thermofisher scientific</td>
<td>100315</td>
</tr>
<tr>
<td>Product</td>
<td>Supplier</td>
<td>Catalog Number</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>PFA</td>
<td>VWR International</td>
<td>28794.295</td>
</tr>
<tr>
<td>PGE2</td>
<td>Tocris</td>
<td>2296</td>
</tr>
<tr>
<td>Phenol:Chloroform:Isoamyl Alcohol 25:24:1</td>
<td>Sigma-Aldrich</td>
<td>P2069</td>
</tr>
<tr>
<td>Phenosight system</td>
<td>Ash Biotech</td>
<td>Custom-made</td>
</tr>
<tr>
<td>Phusion polymerase</td>
<td>New England Biolabs</td>
<td>M0530S</td>
</tr>
<tr>
<td>pimpinellin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300013</td>
</tr>
<tr>
<td>prenyletin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00100101</td>
</tr>
<tr>
<td>Primers</td>
<td>IDT</td>
<td></td>
</tr>
<tr>
<td>pronase</td>
<td>Fluka</td>
<td>81748</td>
</tr>
<tr>
<td>proteinaseK</td>
<td>Sigma-Aldrich</td>
<td>P6556</td>
</tr>
<tr>
<td>PTU</td>
<td>Sigma-Aldrich</td>
<td>CDS004712</td>
</tr>
<tr>
<td>PTU (phenolthiourea)</td>
<td>Sigma-Aldrich</td>
<td>P7629</td>
</tr>
<tr>
<td>QuickLigase</td>
<td>New England Biolabs</td>
<td>M2200</td>
</tr>
<tr>
<td>Reddymix</td>
<td>Thermofisher scientific</td>
<td>AB0575DCLDA</td>
</tr>
<tr>
<td>Restriction enzymes</td>
<td>New England Biolabs</td>
<td>various</td>
</tr>
<tr>
<td>RNase inhibitor</td>
<td>Promega</td>
<td>N251B</td>
</tr>
<tr>
<td>SAP (shrimp alkaline phosphatase)</td>
<td>Affimmetrix</td>
<td>78390</td>
</tr>
<tr>
<td>SDS</td>
<td>BioRad</td>
<td>161-0416</td>
</tr>
<tr>
<td>Shaking rotators</td>
<td>Janke&Kunkel</td>
<td>VX1</td>
</tr>
<tr>
<td>Sodium citrate</td>
<td>VWR International</td>
<td>H3261</td>
</tr>
<tr>
<td>Sodium pyrithione</td>
<td>Sigma-Aldrich</td>
<td>H3261</td>
</tr>
<tr>
<td>Spectrum library</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>27833.260</td>
</tr>
<tr>
<td>sphondin</td>
<td>Microsource Discovery Systems, Inc.</td>
<td>00300005</td>
</tr>
<tr>
<td>Sucrose</td>
<td>VWR International</td>
<td>102744B</td>
</tr>
<tr>
<td>SYBR Safe</td>
<td>Invitrogen</td>
<td>S33102</td>
</tr>
<tr>
<td>T7 RNA polymerase</td>
<td>Promega</td>
<td>P2078</td>
</tr>
<tr>
<td>T75 flasks</td>
<td>Greiner</td>
<td>658175</td>
</tr>
<tr>
<td>TTEI</td>
<td>New England Biolabs</td>
<td>M0302S</td>
</tr>
<tr>
<td>Testosterone</td>
<td>Sigma-Aldrich</td>
<td>R1881</td>
</tr>
<tr>
<td>Thapsigargin</td>
<td>Sigma-Aldrich</td>
<td>T9033</td>
</tr>
<tr>
<td>Thermocycler</td>
<td>BioRad</td>
<td>T100 thermocycler</td>
</tr>
<tr>
<td>Tolvaptan</td>
<td>Sigma-Aldrich</td>
<td>T7455</td>
</tr>
<tr>
<td>Tricaine</td>
<td>Sigma-Aldrich</td>
<td>E10521</td>
</tr>
<tr>
<td>TRIreagent</td>
<td>Ambion</td>
<td>AM9738</td>
</tr>
<tr>
<td>Tris</td>
<td>VWR International</td>
<td>0497</td>
</tr>
<tr>
<td>TritonX</td>
<td>Sigma-Aldrich</td>
<td>T8787</td>
</tr>
<tr>
<td>Tween20</td>
<td>Sigma-Aldrich</td>
<td>P7949</td>
</tr>
<tr>
<td>Vortex</td>
<td>Hook & Tucker</td>
<td>HATI Rotamixer</td>
</tr>
<tr>
<td>Zinc chloride</td>
<td>BDH</td>
<td>103794P</td>
</tr>
<tr>
<td>Zinc pyrithione</td>
<td>Sigma-Aldrich</td>
<td>H6377</td>
</tr>
</tbody>
</table>
Table of Figures

Figure 1 (A) Image of a polycystic kidney with a plethora of cysts by Ed Uthman from Houston, TX, USA - Adult Polycystic Kidney, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=3062826. (B) Survival rates of healthy controls (green), patients with a PKD2 mutation (red) and patients with a PKD1 mutation (blue) by age based on data in (Hateboer et al., 1999). ... 10

Figure 2 (A) Diagram of the PC1 (left) and the PC2 (right) and their interaction through coiled-coil domains in the C-termini. Homology domains are shown in the key. (B) Polycystin complex as mechanosensory calcium channel in primary cilia without and with flow (left and right respectively). .. 12

Figure 3 Schematic evolutionary trees of (A) PKD1 and (B) PKD2 genes of Homo sapiens, Mus musculus and Danio rerio with sequence identity in percent. Data derived from the Ensembl database (http://www.ensembl.org), August 19th 2016. ... 12

Figure 4 PC1 and PC2 in various cellular compartments and their putative interaction partners. ER: endoplasmic reticulum, IP3R: inositol triphosphate receptor, RYR: ryanodine receptor, STIM: stromal interaction molecule, PI3K: phosphoinositide 3-kinase. ... 19

Figure 5 Diagram of deregulated pathways in ADPKD with focus on two main components, calcium and cAMP as well as their putative effects. Proteins or pathways upregulated in ADPKD are indicated with red and downregulation in blue letters. AC: adenylyl cyclase, CAMP: cyclic adenosine monophosphate, ER: Endoplasmic reticulum, ERK: extracellular-signal-regulated kinase, IP3R: inositol triphosphate receptor, JAK2: Janus kinase 2, MEK: mitogen-activated protein kinase kinase, mTOR: mammalian target of rapamycin, PC1: polycystin-1, PC2: polycystin-2, PDE1A: phosphodiesterase 1 A, PI3K: phosphoinositide 3-kinase, RYR: ryanodine receptor, STAT3: Signal Transducer and Activator of Transcription 3, TSC: tuberous sclerosis, VPS29: vacuolar protein sorting 29. Information mainly based on the reviews of (Mangolli et al., 2016; Torres et al., 2006). ... 23

Figure 6 Progression from classical tubular renal structures with subsequent PKD gene loss (green cells) to cystic epithelia. .. 24

Figure 7 Examples of zebrafish stages of development with respective times post fertilisation. 0 h: fertilisation and one-cell stage; 0.75 h: 2-cell stage; 2 h: 64-cell stage; 3.25 h: high stage; 8 h: 75 % epiboly; 16 h: 14-somite stage; 24 h: Prim-5 stage; 72 h: protruding mouth stage. By Ed Hendel - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37054608. ... 27

Figure 8 Schematic depiction of the sequential development and degeneration of the pronephros and mesonephros, as well as the induction of the urctic bud and metanephric mesenchyme during kidney development in mammals. By Ashley Sawle - CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7047612. ... 28

Figure 9 Stages of early zebrafish renal development with timescale as well as dorsal and lateral views of the developing organ. Based on descriptions in (Drummond et al., 2010). gl: glomerulus; pt: pronephric tubule; ch: cloaca. .. 29

Figure 10 Schematic depictions of cilary structure. (A) Motile 9+2 and primary cilia 9+0 microtubular structures inside the cilium. (B) Graph of intraflagellar transport (IFT) along the cilary microtubules with IFT particles (purple) and PKD1 and PKD2 protein products with various interaction partners attributed to cilium and ciliary functions. .. 33

Figure 11 Zebrafish pkd2hu2173/hu2173.+/mutant with dorsal axis curvature at 2 dpf and age-matched WT sibling. .. 34

Figure 12 Schematic depiction of a three-dimensional cyst assay. .. 46

Figure 13 Example images at the endpoint of 3D cyst culture with MDCKII cells. (Left) DMSO control at day 19. (Right) 5 µM forskolin positive control at 19 days of exposure. .. 46

Figure 14 Example images at the endpoint of 3D cyst culture with Otx161c1 cells. (Left) DMSO control at day 20. (Right) 5 µM forskolin positive control at 20 days of exposure. .. 47

Figure 15 (A) Aligned DNA sequences of WT, pkd2hu2173 and pkd2hu2173; mutation of pkd2hu2173 framed by orange box. (B) Schematic depiction of polycystin 2 with the approximate site of truncation in pkd2hu2173 marked with red arrow. (C) PC2 amino acid alignments for zebrafish WT and pkd2hu2173, human and mouse. .. 50

Figure 16 (A) Correlation of pkd2/- curvature onset and severity. 180° - straight tail, 0° - tail crosses body axis; example images of curvature next to y-axis. No significances via one-way anova with Tukey's multiple comparison test. Error bars indicate SD. (B) Heart looping ratios in WT, pkd2/- and pkd2 siblings. n = 100 for each group. .. 51

Figure 17 Morphology of pkd2/- and WT embryos during development (A) 24 hpf, (B) 32 hpf, (C) 48 hpf, (D) 53 hpf, (E) 3 dpf, (F) 4 dpf, (G) 4.5 dpf, (H) 5 dpf. (I, J, K) Dorsal view of head region at 4, 4.5 and 5 dpf respectively. Arrowheads indicate oedema. .. 52

Figure 18 Glomerular sizes in 2 to 5 dpf pkd2/- and siblings. Mean glomerular areas with SEM: 2 dpf, 2856 ± 436 pkd2/- and 2847 ± 404 sibs; 3 dpf, 3396 ± 678 pkd2/- and 3447 ± 856 sibs; 4 dpf, 3647 ± 504 pkd2/- and 4035 ± 1040 sibs; 5 dpf, 4341 ± 1380 pkd2/- and 5026 ± 1128 sibs. Significances via unpaired t-test; *: p ≤ 0.05. n = 20 for each group and day with both glomeruli measured, i.e. 40 measurements per time and genotype. .. 52
Figure 19 pkd2 MO injections into WT strains compared to pkd2+/-. (A) Cystic kidney (white arrowhead) at 2 dpf in pkd2 MO. (B) Phenotype variability of 0.25 ng MO injected LDWT fish. Variability in pkd2+/-(C, E) and 2 ng pkd2 MO injected AB fish (D, F) at 53 hpf and 5 dpf, respectively. ...54

Figure 20 Phenotype analysis in pkd2 morphants (2 ng per embryo) at 4 dpf in LDWT and AB background with and without coinjection of p53 MO (1 pmol/embryo) to negate off-target effects. (A) Curvature in representative embryos classified according to severity in degrees with 0° being WT. N ≥ 44 embryos per group (44-71 embryos). (B) Eye phenotypes in representative embryos. (A) and (B) No significant differences via two-way anova with Tukey’s multiple comparison test. N ≥ 36 embryos per group (36-71 embryos). (C) Sequences of the morpholino and LDWT and AB target sequences with the mutation in LDWT in red. ..55

Figure 21 Glomerular sizes in 2 to 5 dpf pkd2 morphants and siblings injected with 2 ng/embryo. Mean glomerular areas with SEM: 2 dpf, 2801 ± 217 pkd2-/- MO and 1618 ± 50 sibs; 3 dpf, 3665 ± 343 pkd2-/- MO and 2474 ± 55 sibs; 4 dpf, 3155 ± 119 pkd2-/- MO and 2992 ± 93 sibs; 5 dpf, 3515 ± 296 pkd2-/- MO and 3136 ± 119 sibs. Significances via unpaired t-test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SD. An example of a successful pH3 antibody stain can be seen in Figure 39. ..57

Figure 23 Proliferative cells in pkd2 mutant and morphants with respective controls at 2 and 3 dpf in the glomeruli (A), the tubes (as far as wt1b:GFP is expressed) (B) or the entire proximal pronephros (C) identified by pH3 antibody staining, n = 13 per group. Significances via unpaired t-test; ****: p ≤ 0.001, **: p ≤ 0.05. Error bars indicate SD. An example of a successful pH3 antibody stain can be seen in Figure 39. ..58

Figure 25 Detailed pronephric images at 52 hpf of (A) dilated glomeruli (indicated with white arrowheads) in elipsa mutant, (B) and (C) renal tubules in sibling and elipsa mutant, respectively. White bars in (B and C) indicate the width of dilated renal tubules. ..59

Figure 26 elipsa, pkd2 and double mutants with siblings at 32 hpf (A) and 50 hpf (B). (C) Severe dorsal axis curvature at 3 dpf double mutants. ..60

Figure 27 Various comparisons of siblings, pkd2-/-, elipsa/elipsa and elipsa/pkd2. (A) Heart looping ratios. n ≥ 13 for each group. (B) Schematic indication of tail curvature measurements. (C) and (D) Glomerular size at 2 and 3 dpf respectively. Significances with one-way anova with Tukey’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. (E) and (F) Severity of tail curvature at 32 hpf and 50 hpf respectively. Box on left: Examples of curvature severity with corresponding scale in degrees. Significances with Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01. Error bars indicate SD. ..61

Figure 28 Average proliferation levels assessed via pH3 antibody staining in elipsa/elipsa, pkd2/elipsa and siblings at 2 dpf. (A) Average proliferation in the glomeruli, (B) in the pronephric tubes and (C) in the entire pronephros as determined by wt1b:GFP expression. Siblings: n = 7, pkd2/elipsa: n = 14, elipsa/elipsa: n = 7. Significances with one-way anova with Tukey’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SD. An example of a successful pH3 antibody stain can be seen in Figure 39. ..62

Figure 29 Renal tubular dilation at 5 dpf in pkd2-/-, elipsa/elipsa, pkd2/elipsa and siblings. Significances via one-way anova with Tukey’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01 and non-significant (ns): p > 0.05. Error bars indicate SD. ..63

Figure 31 Workflow of compound screen on pkd2 tail curvature phenotype. ..68

Figure 32 (A) pkd2-/- embryo at 3 dpf with schematic indication of curvature measurement. (B) Accumulation of blood in 2 dpf embryo exposed to 200 nM TSA from 27 hpf. Arrowhead indicates pooled blood in the duct of Cuvier (C) Curvature analysis at 2 dpf in pkd2 mutants, morphants and siblings. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001 and non-significant (ns): p > 0.05. (D) Analysis of curvature of pkd2 mutants exposed from 27 hpf to DMSO or 200 nM TSA. Significances via Mann-Whitney test; ****: p ≤ 0.0001, (C) and (D) 180° - straight tail, 0° - tail crosses body axis; example images of curvature next to y-axis. Error bars indicate SEM. ..69

Figure 33 Combined data on hit compounds of the Spectrum library after initial compound screen, validation and cherry-picked compound exposures. Enhancers of pkd2 curvature in red, repressors in green. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. ..70
toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups in graph) or one-way anova with Dunnett’s multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 35 Further tests of Spectrum library with curvature-repressing compounds. Box at top: Examples of curvature severity with corresponding scale in degrees. In most compounds more concentrations were tested but proved toxic; depicted are only concentrations causing no adverse effects. Significances via t-test (if two groups in graph) or one-way anova with Dunnett’s multiple comparison test (if more than 2 groups); ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM.

Figure 36 Repressor compound exposures from late epiboly or 24 hpf with comparison to the original screen setup (exposure from 27 hpf). Box on left: Examples of curvature severity with corresponding scale in degrees. (A) Diclofenac, (B) pyrithione, (C) dihydroxyanisole and (D) BFA. Significances via one-way anova with Dunnett’s multiple comparison test; ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 37 Co-exposures of various Spectrum compounds. Box in top left corner: Examples of curvature severity with corresponding scale in degrees. (A) Steroid, coumarin and flavonoid combinations. (B) Anti-androgen and androgen combinations. (C) Enhancer and dielofenc co-exposures. All significances via t-tests; *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM.

Figure 38 Effects of L-type calcium channel modulators on: (A) pkd2 curvature and (B) steroid-induced enhancement of pkd2 curvature in co-exposure with androstandione. Box on left: Examples of curvature severity with corresponding scale in degrees. All significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 39 Effects of nifedipine and androstandione on glomerular expansion and overall proliferation respectively. (A) Glomerular area at 2 dpf in pkd2 mutants and siblings exposed to DMSO or 10 µM nifedipine. Significances via one-way anova with Tukey’s multiple comparison test; ***: p ≤ 0.001, *: p ≤ 0.05. Error bars indicate SEM. (B) Example image of pH3 stain used for quantification with wt1b:GFP transgene to localise the cells to renal epithelia. (C) Effects on proliferation on pkd2 mutants and siblings of androstandione and DMSO controls. Significances via Chi-squared tests; *: p ≤ 0.05. DMSO treated siblings: n = 25, DMSO treated pkd2 mutants: n = 19, androstandione treated siblings: n = 30, androstandione treated pkd2 mutants: n = 15.

Figure 40 Effects of ADPKD drugs on pkd2 curvature. Box on left: Examples of curvature severity with corresponding scale in degrees. (A) Tolvaptan, a vasopressin 2 receptor antagonist. Higher concentrations were tested, but resulted in precipitation. (B) Triptolide, currently in clinical trials. Significances via one-way anova with Dunnett’s multiple comparison test (A) and unpaired t-test (B); ****: p ≤ 0.0001. Error bars indicate SEM.

Figure 41 Glomerular area of WT (A), pkd2 (B) and elipsa (C) after exposure to various compounds. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 42 Curvature of WT (A) and elipsa (B) after exposure to various compounds. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunnett’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 43 MDCKII dose-range assay on day 10 of exposure (A) and day 19 of exposure (B). Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 44 Cyst area of MDCKII cells after compound exposures of 10, 14 and 17 days. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 45 (A) Ratio of tubular structures over total number of structures in MDCKII 3D cyst assays in DMSO control and diclofenac exposures of 17 days. Significances via t-test; ****: p ≤ 0.0001. Error bars indicate SD. (B) Example images of tubular structures after 10 day of diclofenac exposure in MDCKII cells.

Figure 46 MDCKII enhancing co-exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM.

Figure 47 MDCKII steroid modulator exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01. Error bars indicate SEM.

Figure 48 MDCKII repressor and forskolin co-exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01. Error bars indicate SEM.
Figure 49 Cyst area of Ox161c1 cells after compound exposures of 10, 14 and 20 days exposure in (A), (B) and (C) respectively. Chemical classes as indicated. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. .. 95

Figure 50 Ox161c1 enhancer co-exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05 and non-significant (ns): p > 0.05. Error bars indicate SEM. ... 96

Figure 51 Ox161c1 steroid modulator exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. ... 97

Figure 52 Ox161c1 repressor and forskolin co-exposures. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. .. 98

Figure 53 Hit compounds of PKIS library after initial compound screen with validation round. Enhancers of pdk2 curvature in red, repressors in green. Mean of DMSO baseline indicated with black line. Significances via one-way anova with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. .. 99

Figure 54 Chemical structure of PKIS hits in relation to ALK5 inhibition potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 100

Figure 55 Effect of re-ordered PKIS repressor compounds on pdk2 curvature (A) and glomerular area (B). Significances via one-way anova with Dunnnett’s multiple comparison test; ***: p ≤ 0.0001. Error bars indicate SEM. ... 101

Figure 56 Curvature of WT (A) and ellipsa (C) as well as glomerular area in WT (B) and ellipsa (D) after exposure to various compounds. Significances via one-way anova with Dunnnett’s multiple comparison test; *: p ≤ 0.05. Error bars indicate SEM. ... 102

Figure 57 Cyst area of MDCKII cells after PKIS compound exposures of 10, 14 and 17 days exposure. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, *: p ≤ 0.05. Error bars indicate SEM. ... 103

Figure 58 Cyst area of Ox161c1 cells after PKIS compound exposures of 10, 14 and 20 days exposure. Mean of DMSO baseline indicated with black line. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. ... 104

Figure 59 Heat maps of known kinases inhibited by PKIS repressor compounds with the top 25 inhibited kinase targets in decreasing order. Numbers represent percentage of inhibition; dark yellow 65 % and above, yellow 40 % and above, light grey 35-40 %, dark grey 30-35 %, grey/blue 20-30 %, light blue 15-20 % and dark blue > 15 %. (A) Structurally similar compounds PKIS_04 and PKIS_59. (B) Combined data of all three curvature repressors. ... 105

Figure 60 Potent KDR (A) and MAP4K4 (B) inhibitors in PKIS1 compound collection. Data from original compound screen on pdk2 curly tails. Box on left: Examples of curvature severity with corresponding scale in degrees. No significances via one-way anova with Dunnnett’s multiple comparison test; p > 0.05. Error bars indicate SEM. ... 106

Figure 61 Effects of various concentrations of known Alk5 inhibitors on pdk2 -/ curvature. Box on left: Examples of curvature severity with corresponding scale in degrees. (A) SD208, (B) SB431542. Significances via one-way anova with Dunnnett’s multiple comparison test; ****: p ≤ 0.0001, ***: p ≤ 0.001, **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM. ... 107

Figure 62 Structure of alternative Alk5 inhibitors tested during this project. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 108

Figure 63 Steroids tested on pdk2 -/ zebrafish in this project with structure and potency correlation. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 109

Figure 64 Schematic depiction of L-type calcium channel (LCC) function in a single nephron (nephron in blue, vasculature in red). (A) In normal conditions and (B) with LCC inhibition treatment for hypertension or in the presence of androgens. ... 110

Figure 65 Coumarin hits with structure and relative potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 111

Figure 66 Flavonoid hits with structure and relative potency. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 112

Figure 67 Chemical structures of all pdk2 mutant curvature repressors used during this project. Chemical structures obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/). ... 113

Figure 68 Schematic depiction of the prostaglandin pathway and its association with chronic renal diseases derived from information in current literature (reviewed in (Nasrallah et al., 2014)). ... 114

Figure 69 TGFβ superfamily ligands and receptors affecting SMAD2/3 activity with modulators of this system identified during this project. Questionmarks suggest interactions were previously described but new evidence suggests they are inaccurate. ALK5: activin A type II-like kinase 5, BFA: brefeldin A, cAMP: cyclic adenosine monophosphate, COX:
Figure 71 Schematic depiction of GCaMP function.

Figure 72 Expression pattern as driven by the podocin promoter in a podocin:Gal4;UAS:kaede cross. (A and A’) at 2 dpf. (B and B’) at 3 dpf. (A and B) Lateral view of whole animal. (A’, B’ and C’) Dorsal view of head and trunk. Fluorescence in the heart due to cmlc2:EGFP transgenesis marker indicating transmission of podocin:Gal4.

Figure 73 Expression pattern as driven by the enpep promoter in an enpep:Gal4;UAS:GCaMP7a tubular intensity after compound exposure. Exposures of DMSO at 1 dpf. (A and A’) at 1 dpf. (B and B’) at 2 dpf. (C and C’) at 3 dpf. (A, B and C) Lateral view of whole animal. (A’, B’ and C’) Dorsal view of head and trunk. Fluorescence in the heart due to cmlc2:EGFP transgenesis marker indicating transmission of podocin:Gal4.

Figure 74 (A) Calcium levels in enpep:Gal4;UAS:GCaMP7a after exposure of calcium modulators (example in red). (B) Schematic depiction of calcium modulator function in a cell. EC: endoplasmic reticulum, IP3R: inositol triphosphate receptor, SERCA: sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase.

Figure 75 Reference frame (blue) for imaging calcium levels during 1 dpf. Kindney schematically indicated in red.

Figure 76 enpep:Gal4;UAS:GCaMP7a tubular oscillations at 1 dpf. (A) Illustration of measurement technique. Shape of the pronephric tubule was traced with a tool in the Zen software (example in red) and average fluorescence of the entire tubule was measured over time. (B) Example of tubular intensity over 2 h.

Figure 77 Tubular calcium oscillations in enpep:Gal4;UAS:GCaMP7a. (A) Mean tubular intensity, (B) frequency of oscillations, (C) peaks longer than 20 seconds, (D) oscillation distribution and (E) oscillation distribution normalised over time in 7 pkd2 mutants and 14 siblings. Significances in (A, B and C) via unpaired t-test, in (D) via paired t-test; *: p ≤ 0.05 and non-significant (ns): p > 0.05.

Figure 78 enpep:Gal4;UAS:GCaMP7a cellular flashes at 1 dpf. (A) Illustration of measurement technique. Individual flashing cells were identified through frame-by-frame analysis and a measurement area established (example in red). (B) Example of cellular intensity over 2 h.

Figure 79 Cellular calcium flashes in enpep:Gal4;UAS:GCaMP7a. Siblings: n = 14, pkd2\(^{-/-}\): n = 7. Error bars indicate SEM. (A) Cellular flash duration, (B) cellular flash intensity, (C) cellular flashes over time and (D) duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test, ***: p ≤ 0.001, **: p ≤ 0.005, *: p ≤ 0.05 and non-significant (n.s.): p > 0.05.

Figure 80 Different populations of cellular flashes: LFFC (1-3 flashes in 2 h), RFC (recurrently flashing cell – 4-12 flashes in 2 h) and FFC (frequently flashing cell - >12 flashes in 2 h). (A) Examples of each cell category depicting calcium levels over time. (B) Distribution of flashing cell populations per genotype. Not significant via paired t-test (p > 0.05). WT: n = 7, pkd2\(^{-/-}\): n = 7, pkd2\(^{-/+}\): n = 7. (C) Schematic depiction of FFC location.

Figure 81 LFFC cellular flashes in enpep:Gal4;UAS:GCaMP7a. WT: n = 7, pkd2\(^{-/-}\): n = 7, pkd2\(^{-/+}\): n = 7. Error bars indicate SEM. (A) LFFC flash duration, (B) LFFC flash intensity, (C) LFFC flashes over time and (D) LFFC flash duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; *: p ≤ 0.05 and non-significant (n.s.): p > 0.05.

Figure 82 RFC cellular flashes in enpep:Gal4;UAS:GCaMP7a. WT: n = 7, pkd2\(^{-/-}\): n = 7, pkd2\(^{-/+}\): n = 7. Error bars indicate SEM. (A) RFC flash duration, (B) RFC flash intensity, (C) RFC flashes over time – including FFCs and (D) RFC duration distribution in 7 pkd2 mutants and 14 siblings. Significances in (A and B) via unpaired t-test, in (C) via one-way anova with Dunnet’s multiple comparison test and in (D) via paired t-test; **: p ≤ 0.01, ***: p ≤ 0.001 and non-significant (n.s.): p > 0.05.

Figure 83 Reference frame (blue) for imaging calcium levels during 2 dpf. Kindney schematically indicated in red.

Figure 84 enpep:Gal4;UAS:GCaMP7a tubular fluorescence at 2 dpf. (A) Typical example of enpep:Gal4;UAS:GCaMP7a. (B) Representative example of pkd2\(^{-/-}\)/enpep:Gal4;UAS:GCaMP7a. (C) Tubular florescence in WT, pkd2\(^{-/-}\)/ and pkd2\(^{-/+}\)/ at 2 dpf. Significances via one-way anova with Dunnet’s multiple comparison test; *: p ≤ 0.05. Error bars indicate SEM.

Figure 85 enpep:Gal4;UAS:GCaMP7a tubular intensity. Error bars indicate SEM. (A) In siblings, anterior and posterior tubule sections, pkd2 mutants and elipsa mutants at 1 dpf. (B) In siblings, elipsa mutants and pkd2/elipsa double mutants at 2 dpf. Significances via one-way anova with Dunnet’s multiple comparison test; **: p ≤ 0.01.

Figure 86 (A) enpep:Gal4;UAS:GCaMP7a tubular intensity after compound exposure. Exposures from late epiboly for 24 h, imaged at ca. 36 hpf. B) Curvature enhancing effects of GSK205 on pkd2 curvature phenotype. (C) enpep:Gal4;UAS:GCaMP7a tubular intensity after compound exposure. Exposures of DMSO...
Figure 87 (A) Thapsigargin treatment (5 µM for 25 min) of enpep:Gal4;UAS:GCaMP7a siblings and pkd2 mutants. (B) Graph with renal fluorescence intensities in untreated controls and thapsigargin-exposed embryos. Not significant via one-way anova with Tukey’s multiple comparison test; p > 0.05. Error bars indicate SEM.

Figure 88 In situ hybridisation with GCaMP7a probe of enpep:Gal4;UAS:GCaMP7a. (A and A') 1 dpf sibling and pkd2 mutant respectively. (B and B') 2 dpf sibling and pkd2 mutant respectively. Renal tubules indicated with white arrowheads.

Figure 89 Interexperimental variation in fluorescence intensity with enpep:Gal4;UAS:GCaMP7a. Error bars indicate SEM.

Figure 90 enpep:Gal4;UAS:GCaMP7a treated with various compounds from 28 hpf to ca. 52 hpf. (A and B) pkd2 siblings and (C and D) pkd2 mutants. Black lines mark means of DMSO controls. Significances in (A and C) via one-way anova with Dunnet’s multiple comparison test and in (B and D) via unpaired t-test; *: p ≤ 0.05. Error bars indicate SEM.

Figure 91 enpep:Gal4;UAS:GCaMP7a treated with various compounds from 28 hpf to ca. 52 hpf after adjustment for baseline variability. (A) pkd2 siblings and (B) pkd2 mutants. Black lines mark means of DMSO controls. Significances via Kruskal-Wallis test with Dunn’s multiple comparison test; **: p ≤ 0.01, *: p ≤ 0.05. Error bars indicate SEM.

Figure 92 enpep:Gal4;UAS:GCaMP7a treated with PKIS compounds from 28 hpf to ca. 52 hpf. (A) pkd2 siblings and (B) pkd2 mutants. Black lines mark means of DMSO controls. Significances via one-way anova with Dunnet’s multiple comparison test; *: p ≤ 0.05. Error bars indicate SEM.

Figure 93 Relationship of cilia, pkd2 and renal calcium based on observations in pkd2, elipsa and double mutants in the renal calcium reporter line enpep:Gal4;UAS:GCaMP7a.

Figure 94 Overview of the most important developmental steps in zebrafish development with their respective timings post fertilisation. General developmental steps are depicted in black, elipsa, pkd2 and pkd2/elipsa mutant characteristics are shown in blue, green and violet respectively.
Table of Tables

Table 1 The PKD1 family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 2 The Pkd1 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 3 The pkd1 family in Danio rerio. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 4 The PKD2 family in Homo sapiens. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 5 The Pkd2 family in Mus musculus. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 6 The pkd2 family in D. rerio. Data derived from the Ensembl database (http://www.ensembl.org), August 18th 2016.

Table 7 List of some classical ciliary mutants described in recent publications. This list is by no means complete and merely serves to illustrate common phenotypes. References: 1 (van Rooijen et al., 2008), 2 (Omori et al., 2008), 3 (Malicki et al., 1996), 4 (Brand et al., 1996), 5 (Sullivan-Brown et al., 2008), 6 (Zhao et al., 2011), 7 (Zhao et al., 2007), 8 (Chen et al., 1997), 9 (Sun et al., 2004).

Table 8 List of pkd2 mutant alleles described to date (accession 02.09.2016). Based on information from zfin.org. References: 1 (Busch-Nentwich, 2013), 2 (Sun et al., 2004), 3 (Mangos et al., 2010), 4 (Paavola et al., 2013), 5 (Amsterdam et al., 2004), 6 (Yuan et al., 2015), 7 (Bisgrove et al., 2005), 8 (Brand et al., 1996), 9 (Le Corre et al., 2014), 10 (Schottenfeld et al., 2007), 11 (Chen et al., 1997), 12 (Goetz et al., 2014), 13 (Haffter et al., 1996), 14 (Heckel et al., 2015), 15 (Roxo-Rosa et al., 2015), 16 (Cao et al., 2009).

Table 9 pkd2 morpholinos and respective morphant animals described to date (accession 02.09.2016). According to zfin.org. References: 1 (Sun et al., 2004), 2 (Cao et al., 2009), 3 (Fogelgren et al., 2011), 4 (Giamarelli et al., 2010), 5 (Paavola et al., 2013), 6 (Schottenfeld et al., 2007), 7 (Sullivan-Brown et al., 2008), 8 (Francescatto et al., 2010), 9 (Sussman et al., 2014), 10 (Zhao et al., 2011), 11 (Pavel et al., 2016), 12 (Bisgrove et al., 2005), 13 (Obara et al., 2006), 14 (Coxam et al., 2014), 15 (Goetz et al., 2014), 16 (Mangos et al., 2010), 17 (Fu et al., 2008), 18 (Gao et al., 2010), 19 (Kottgen et al., 2008), 20 (Le Corre et al., 2014), 21 (Vasilyev et al., 2009), 22 (Roxo-Rosa et al., 2015).

Table 10 List of pathways influencing zebrafish the pkd2 curvature phenotype. References: 1 (Mangos et al., 2010), 2 (Fogelgren et al., 2011), 3 (Le Corre et al., 2014), 4 (Cao et al., 2009), 5 (Sussman et al., 2014).

Table 11 List of oligonucleotides ordered from IDT (Integrated DNA Technologies, USA) used in various PCR applications.

Table 12 Hit compounds re-ordered due to screen.

Table 13 Further compounds to study mechanistic functions.

Table 14 List of Spectrum library hit compounds, their effect on pkd2−/− curvature phenotype, the chemical class, CAS number and further information. 1 https://pubchem.ncbi.nlm.nih.gov/compound/norethynodrel, 2 (Chang et al., 2011; Li et al., 2015; Sharifi, 2012), 3 (Imamura et al., 1998; Maninger et al., 2009), 4 (Stein et al., 2006), 5 (Yang et al., 2002), 6 (O’Neill et al., 2013), 7 (Singhuber et al., 2011), 8 (Bala et al., 2014), 9 (Takahashi et al., 2006), 10 (Okabe et al., 2014), 11 (Erlund et al., 2001), 12 (Liu et al., 2016), 13 (Wu et al., 2016), 14 (Bao et al., 2016), 15 (Alam et al., 2013; Ikmura et al., 2012), 16 (Vaz et al., 1996), 17 (Salas et al., 2016), 18 (Xie et al., 2014), 19 (Sheng et al., 2015), 20 (Passalaqua et al., 2015), 21 (Yarishkin et al., 2009), 22 (Daneshe et al., 2015), 23 (Naldi et al., 2015), 24 (Fusi et al., 2001; Fusi, et al., 2001; Sgaragli et al., 1993), 25 (Firdous et al., 2014), 26 (Waheed et al., 2014).

Table 15 List of PKIS repressor compounds with significant effect on pkd2 curvature including name, referred name, kinase the compound was designed against, most potent known target and further information. 1 (Elkins et al., 2016), 2 (Singh et al., 2003), 3 (Gellibert et al., 2004), 4 (Witherington et al., 2003), 5 (Gellibert et al., 2006).

Table 16 Summary of compounds tested in this project and their effects on various phenotypes. Upward arrow: aggravation of phenotype, downward arrow: alleviation of phenotype, sideways arrows: no change, asterisk: not significant but clear trend, n.a. (not available): compound not tested in this model.
References

kidneys and a slow onset of disease in adult mice. [Research Support, Non-U.S. Gov't]. *Hum Mol Genet*, 16(24), 3188-3196. doi: 10.1093/hmg/ddm299

Sharifi, N. (2012). The 5alpha
Sgaragli, G. P., Valoti, M., Gor

ASN.2007101139 [pii]

172

