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Thesis Summary

While small bone defects heal spontaneously, critical size defects may exceed the body’s

regenerative capabilities, and require the use of bone substitutes and implants. To

date, in vitro and in vivo testing of implants remains the gold standard for rigorous

mechanical stability and biological safety checks. Current 2D in vitro testing is limited

by a lack of dynamic environment and an inability to investigate mechanical strength

of the attachment between the bone-matrix and implant surface. 3D in vivo tests are

also limited by di�erences in the behaviour and structure of human and animal cells,

high costs and di�culty of replicating human ageing e�ects. The aim of this thesis is

to develop biocompatible and osteoconductive polyurethane-based sca�olds with optimal

mechanical and biological properties that can be used as 3D in vitro bone models for

bone regeneration and implant testing.

17 Plain-PU and PU-HA sca�olds were fabricated from three di�erent medical grade

polyether-urethanes, namely, Z1A1, Z3A1 and Z9A1. The polymer’s ability to dissolve

in graded concentrations of DMF/THF solvents was assessed as part of this study.

Composite sca�olds containing nano or micro HA particles were fabricated in a ratio

of 3 PU: 1 HA by doping PU solutions with HA particles. Electrospinning, freeze drying,

freeze extraction and particulate leaching were the main fabrication techniques explored

for creating sca�olds. Electrospun sca�olds with non-aligned fibres were spun at 300 rpm

whilst those with aligned fibres were spun at 1300 rpm. Particulate leaching using NaCl

particles optimized 3 novel fabrication protocols namely, the layer-by-layer, homogenized

or physical-mixing techniques for creating highly porous PU-based constructs.

Investigation of non-aligned electrospun sca�olds showed that the choice of solvents,

on their own or in combination, strongly influences the final properties of solution,

hence the fibre morphology of sca�olds. Reducing the amount of DMF contained in

the solution, increased fibre diameter, eliminated beads in fibres and led to sca�olds

with a more uniform morphology. Moreover, reducing the DMF solvent content led

to lower tensile properties of electrospun sca�olds, whilst incorporation of nano and

micro HA particles reinforced the mechanical properties of both aligned and non-aligned

electrospun composites. RAMAN and FTIR spectroscopy confirmed the presence of

HA in all composites. Xylenol orange staining showed that composite mHA sca�olds

supported a higher percentage of mineral area coverage compared to plain-PU sca�olds.

ix



x THESIS SUMMARY

SHG imaging identified that collagen deposition appeared to be guided by the alignment

of the sca�old fibres in the matrix deposited near to the fibres, but changed orientation

with an increase in distance from the originally deposited layers.

Layer-by-Layer particulate leached sca�olds made from all the three types of PU had

a highly porous 3D structure. 3:1 PU:nano-HA composites had the highest Young’s

Modulus and yield strength in the Layer-by-Layer group and there was no significant

di�erence between the mechanical properties of 3:1 micro-HA composites and 2:1

micro-HA composites. A novel physical mixing fabrication protocol shortened fabrication

time by about 90% and was used to mass produce particulate leached sca�olds in a shorter

period of time. Physically mixed particulate leached sca�olds had an interesting and

contrasting mechanical profile compared to previously fabricated sca�olds. Physically

mixed PU sca�olds without HA had the highest mechanical properties in this group and

the inclusion of neither nano, micro nor combined micro and nano-HA particles enhanced

their mechanical properties. Similar to the Layer-by-Layer particulate leached sca�olds,

the inclusion of HA particles in physically mixed PU-only sca�olds did not support a

higher cell viability. Osteoid bone formation was present in only nHA composites by

D7 of the in vivo studies, but present in all sca�olds after D45. Collagenous matrix

deposition increased over the 56 day period in all sca�old types, however, this increase

was more pronounced in PU-only sca�olds. Finally, mimicking push-out and pull-out tests

by inserting titanium screws into particulate leached sca�olds, showed that inserting the

screws during cell seeding is a better method than inserting them after a D28 culture

period. PU-based sca�olds that serve as a novel biomimetic in vitro 3D bone model for

testing of small orthopaedic implants have been developed.
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Chapter 1

INTRODUCTION

Musculoskeletal defects a�ect millions of people worldwide, resulting in pain and loss of

personal and economic independence. In 2010, musculoskeletal disorders were reported

by The Health and Safety Executive as the most common type of work related illness

(Health and Safety, 2011) and as the second greatest cause of disability worldwide by a

comprehensive study in 2012 (Vos et al., 2012).

Although bone has an ability to heal with practically no scarring, large bone defects

could disrupt the repair and healing process and lead to delayed union, malunions or

a non-union (Petite et al., 2000). While small bone defects heal spontaneously, critical

size defects resulting from trauma, congenital birth defects, age-related osteopathologies,

sport injuries, cancer and tumour resection may exceed the body’s regenerative

capabilities. Such defects usually require surgical intervention involving the use of

bone-graft substitutes and implants, in isolation or combination to restore or replace

the damaged bone.

Additionally, one of the most common causes of pain and disability in middle-aged and

older people is the degeneration of the articular cartilage. This is often associated with

a clinical syndrome of osteoarthritis and require the use of joint replacement implants.

The strong correlation between increasing age and the prevalence of osteoarthritis, and

recent evidence of important age-related changes in the function of chondrocytes, suggest

that age-related changes in articular cartilage can contribute to the development and
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progression of osteoarthritis (Buckwalter and Mankin, 1997).

Artificial implants and bone-graft substitutes ranging from autografts, allografts,

xenografts and tissue engineered remedies provide an excellent solution to such defects

with a reported 4 million operations involving bone substitutes performed around the

world annually (Brydone et al., 2010). This figure is expected to increase with the ageing

world population and increase in the number of implant surgeries that undergo revision,

as the percentage of persons over the age of 50 years a�ected with bone diseases is reported

to double by 2020 (BJD, 2013).

To date, autografts (tissue grafted from a donor site to host site of the same patient)

is still considered the gold standard for replacing damaged bone as it provides the

three core elements of osteoinduction, osteoconduction and osteogenesis, needed for

bone growth. It is however limited by availability and donor site morbidity associated

with bone harvesting, which could lead to chronic pain, nerve injury, cosmetic defects,

infections and possible fractures. The use of allografts (transplanted tissue from another

human donor/cadaver) and xenografts (tissue transplanted from other species/animals)

addresses issues of availability, but is also challenged with infectious disease transmission,

undesirable immune rejection response and reduced mechanical and osteogenic properties

associated with the sterilization, storage and processing techniques of the donor bone.

From the above mentioned limitations associated with the use of autografts, allografts

and xenografts, there is subsequently a major clinical need for artificial bone substitutes

in the fields of orthopaedic, spinal, dental, cranial, and maxillofacial surgery. This is

associated with a heightened demand for advancement into tissue engineered regenerative

alternatives, bone substitutes, bone implant design as well as improvements in surgical

techniques associated with the treatment of bone pathologies.

1.1 Tissue Engineering

With the loss or failure of an organ or tissue being one of the most frequent, devastating,

and costly problems in human health care, tissue engineering presents a practical solution
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by applying the principles of biology and engineering to the development of functional

substitutes for damaged tissue (Langer and Vacanti, 1993). Additionally, bone tissue

engineering aims at improving musculoskeletal health and augmenting the quality of

human life by providing a living bone graft substitute to fill and aid in the repair of

bone defects. An ideal bone graft substitute should be osteoconductive and preferably

osteoinductive, biocompatible, show minimal fibrotic reaction upon implantation and

support new bone formation.

1.2 Artificial Bone Substitutes

As at 2013, 59 bone graft substitutes marketed by 17 companies were commercially

available for implantation in the United Kingdom (Kurien et al., 2013). Bone substitutes

range from Demineralized Bone Matrix (DBM), Calcium phospates and Hydroxyapatite,

Calcium sulphates, Polymer-based constructs, bioactive glasses and bioactive composites.

Such substitutes can be implanted with or without pre-incorporated growth factors

and/or pre-seeded with osteogenic cells. They are ideally osteoconductive and act as a

temporary or permanent support during bone healing and ingrowth, with demineralized

bone matrices in particular, presenting with some additional osteoinductivity.

DBM, produced through the decalcification of cortical bone is composed of collagen,

non-collagenous proteins and glycoproteins. It has limited porosity and mechanical

strength, and hence used as bone graft packaging in spinal and trauma surgery (Wang

et al., 2007). Additionally, calcium phosphates cements consists of a combination of

tricalcium phosphate, calcium carbonate and monocalcium phosphate. These present

with high compressive strength but low tensile strength and brittle properties, and are

usually degraded by osteoclastic activity within two years. Alternatively, osteoconductive

calcium sulphate substitutes are usually resorbed within two or three months, hence not

suitable for long-term structural support. Moreover, bone substitutes made from sintered

HA resists degradation and can remain in bone for more than ten years (Bohner, 2001).

Futhermore, bioactive glass products composed of silicate, calcium and phosphorus,
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can be both osteoinductive and osteoconductive (Pereira et al., 2005). By varying the

proportions of silicon oxide, silicon dioxide and calcium oxide, di�erent bioactive glass

products, with varying solubility, can be manufactured. Upon implantation, a strong

bond is created between bone and the bioactive glass without an intervening connective

tissue interface, which gives it good apposition to bone. Alone, synthetic ceramics

posse no osteogenic or osteoinductive properties, and demonstrate minimal immediate

structural support. However, when attached to healthy bone, osteoid is produced directly

onto the surfaces of the ceramic (Giannoudis et al., 2005).

Collagen and other polymer-based substitutes serve as an excellent carrier for growth

and bone di�erentiation factors, although they provide minimal structural support as a

bone graft substitute, hence limiting their clinical use. Such substitutes can however,

be combined with other osteoconductive materials, such as hydroxyapatite or tricalcium

phosphate, as well as osteoinductive bone marrow aspirate to create bioactive composites

(Nandi et al., 2010). Composite substitutes range from stable to degradable, and most

of those used in tissue engineering/regenerative medicine are biodegradable polymers

reinforced with ceramic particles.

Bonfield first proposed the concept of polymer–ceramic combination materials in

1988, as an alternative for bone replacement. Mimicking the ductile and brittle properties

of the collagen and mineral components of bone, respectively, it was later commercialised

with the trade name, HAPEX

T M

(Bonfield, 1988a,b). Mechanically, polymers such as

polyurethane (PU) are noted for their extensive deformation and high toughness whilst

ceramics, such as hydroxyapatites (HA), are noted for their high compressive strength

but brittle failure (Tetteh et al., 2014).

Consequently, developing highly porous synthetic PU-HA composite bone-graft

substitutes with biocompatible, osteoconductive, optimal mechanical properties and

beneficial bioactivity, could enhance bone remodelling and growth, and ultimately provide

a better alternative to autografts and allografts, as they could potentially eliminate

donor-site morbidity and reduce immune response.
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1.3 Bone Implants

Although successful advancements have been achieved in the development of bone

substitutes and tissue engineered constructs, the reconstruction of extremely large bony

defects created during trauma or revision surgery cannot be reconstructed using bone

graft substitute alone, without additional structural support and hence, are major concern

for orthopaedic surgeons.

Often whole joints fail due to weak bone (osteoporosis) or damaged cartilage

(osteoarthritis); and as such, artificial joint replacement implants made of di�erent

materials are used in replacing the damaged joint. For example, in the USA alone there

are an estimated, 280,000 hip fractures, 700,000 vertebral, and 250,000 wrist fractures

each year at a cost of $10 billion indicating a strong need for artificial implants (Hollinger

et al., 2000). Moreover, back pain requiring reconstructive surgery, is a crippling condition

for individuals and society alike, and was reported as the second most common cause for

sick leave in 2005–6 by The UK Health and Safety Executive (Health and Safety, 2006).

Additionally, data from 1998 estimated that the direct cost of back pain to the UK is

£1.6 billion with indirect costs at £10 million (Maniadakis and Gray, 2000). Surgical

intervention combining the e�orts of both bone graft substitutes and implants is an

e�ective remedy for disabling back pain due to degenerative disease (Hsu and Wang,

2008).

Several artificial implant materials made from metals, ceramics, polymers and

their composites have been utilised in the restoration of large bone defects. Three

di�erent conceptual generations of orthopaedic biomaterials made from bioinert materials,

bioactive and biodegradable materials and tissue engineered constructs have been

developed over the last 65 years (Navarro et al., 2008). However, bioinert metallic

implants remain a popular biomaterial choice for artificial bone substitution as a result

of the reproducibility, availability and reliability associated with its use.

Compiled statistics from the National Joint Registry (NJR) as shown in Figure 1.1
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reveal that 168,794 hip and knee reconstructive surgeries involving the use of one or more

implant material were performed for 2010. This shows an appreciable increase when

compared to the 125,549 procedures carried out in 2005, with an equivalent increase in

the number of revision surgeries from 9,037 to 14,170 respectively. Additionally, the total

number of UK National Health Service (NHS), funded procedures also increased from

67% to 86% for hip procedures and from 72% to 89% for knee procedures for those years.

Moreover, the year 2012 recorded the highest number of total hip and knee procedures at

184,917, which decreased to 171,499 in 2013 with a corresponding decrease in the number

of revision surgeries from 17,151 to 15,502, respectively (NJR, 2014). Implant loosening,

dislocation, implant failure and implant fracture were listed as some of the reasons for

the 15,226 revision surgeries performed in 2011 as reported by the NJR (NJR, 2012).

Figure 1.1: Total Number of Hip and Knee Procedures performed in the UK from 2005,

2010-2013, compiled from the 2014 National Joint Registry Annual Report

1.4 Implant Limitations

The production of wear debris leading to osteolysis, infection, initial poor bone on-growth

onto the implants and the maintenance of a stable blood supply are major limitations

of using metallic implants which prevents long-term improvements in the quality of life.
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Implant loosening is also a major problem associated with the use of bioinert metallic

implants. This results from the biomechanical mismatch of elastic moduli between the

metallic implant and surrounding bone leading to poor osseointegration and ultimately,

stress shielding. It is therefore predicted that understanding osseointegration between

metallic implants and tissue engineered bone as part of implant testing, could enhance the

development and design of cutting edge orthopaedic and dental implants with improved

performance and survivability, and ultimately eliminate implant loosening.

1.5 Implant Testing

Similar to all other biomaterials, orthopaedic implants go through a series of rigorous

physical, chemical, mechanical and biological testing mechanisms to ensure their quality

and safety for human use. To date, in vitro and in vivo testing of implants remains

the gold standard for rigorous biocompatibility, mechanical stability and biological safety

checks of orthopaedic biomaterials. With a reported $16 billion yearly expenditure on

animal testing in the United States (PETA, 2015) and an equivalent estimate for the

United Kingdom, the exact cost of testing largely depends on factors such as the duration

of the test, and the type and number of animals involved, which in turn depends on the

type and size of the implant being tested. ISO 10993 lists a series of standards used to

biologically evaluate medical devices; with ISO 10993-5 and ISO 10993-6 describing tests

for in vitro cytotoxicity and in vivo implantation studies, respectively (F.D.A., 2013).

Current basic 2-dimensional in vitro testing of implant materials using cell culture is

limited by a lack of dynamic environment and an inability to investigate the mechanical

strength of the attachment between the bone matrix and implant surface. Alternatively,

3-dimensional in vivo tests to examine osseointegration consist of embedding sections of

implant and control samples into holes, cut or drilled in animal’s bone for a period of time.

At the end of the study, the animal is sacrificed and the area of implantation is examined

meticulously for local and systemic adverse e�ects, and possible osseointegration. The

costly nature of these long term tests, the di�erences behaviour and structure in human
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and animal cells as well as the di�culty of replicating the e�ects of human aging are key

setbacks to this model. In addition, current EU legislation 2010/63/EU that took e�ect

on 1st January, 2013, further restricts the use of animals for scientific testing by strictly

enforcing the three R’s of animal testing namely Reduction, Replacement and Refinement

(European-Commission, 2013).

Animals such as rats, mice, rabbits and other rodents are regularly used to test new

orthopaedic implants and also in regulatory and safety experiments used to certify medical

devices. Statistics from the UK Home O�ce reveal that 82% of the total 4.12 million

animals used for scientific procedures in 2013 were rodents, with mice accounting for

3.08 million of the total number. Mice were also utilized in 43,529 out of the 56,349

musculoskeletal procedures performed. Additionally, a further 940 and 470 mice were

used in medical device safety and biocompatibility tests, respectively (Home-O�ce, 2014).

There is clearly a demand to validate new implant designs with in vivo experiments

as current in vitro tests fail to provide a 3-Dimensional dynamic environment. Although

there has been shown to be di�erences in the structure, genetic composition and cell

behaviour between animals and humans, some animal experiments have made significant

contribution to orthopaedic science (Pearce et al., 2007). Large animals such as dogs and

sheep will still be needed to test large and complex implant designs like the total hip

and knee replacement designs. Creating a dynamic tissue engineered in vitro bone model

could be greatly beneficial in addressing the aforementioned limitations, associated with

the current in vitro and in vivo implant testing.

Such a construct could be used for biocompatibility tests of small orthopaedic implant

devices e.g. screws, pins and plates. It could also be used to investigate di�erent

implant surface modifications, experiment physical phenomena such as bioactivity and

corrosion, gain appreciable insight into osseointegration and understand how bone grows

around orthopaedic implants. This would provide in vitro 3D data and eventually reduce

the number of in vivo experiments carried out to investigate scientific hypotheses like

osseointegration, push out and pull out tests amongst others, and in turn contribute to
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reducing the total number of animals used for scientific procedures.

1.6 In vitro Bone Model

Advances in tissue engineering have aided the development of several in vitro models for

skin (Harrison et al., 2006), kidney (Subramanian et al., 2010), lung (Mondrinos et al.,

2007), nerve (Gingras et al., 2003), cartilage (Risbud and Sittinger, 2002; Martin et al.,

2007) and cornea (Suuronen et al., 2004) tissues. Such advances, particularly in skin

regeneration, have improved the wound healing process, provided a deeper understanding

of skin disorders and led to the engineering of skin models such as Epiderm and Episkin.

These animal testing alternative skin models have been instrumental in testing cosmetic

pharmaceutical and chemical compounds in the many thousands of human skin products

(MacNeil, 2007).

Although substantial progress has been made in the development of in vitro bone

tissue engineering constructs for regenerative purposes (Shea et al., 2000; Petite et al.,

2000; Meinel et al., 2004), limited progress has been achieved in developing an ideal 3-D

bone model to understand disease progression associated with bone pathologies such as

osteoporosis, infection control, and osseointegration with extensive understanding of the

bone-implant interface, and finally, as an animal alternative in vitro model for implant

testing.

1.7 Aim and Objectives

The overall aim of the PhD was devised from the aforementioned limitations associated

with the use of artificial bone substitutes, bone implants and challenges associated with

current in vitro and in vivo implant testing. The aim was to develop a highly porous,

mechanically durable and biocompatible tissue engineered bone, that could have clinical

applications and serve as a biomimetic construct for implant testing.

The final hypothesis of this thesis is that tissue engineered bone grown in a 3-D
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composite sca�old can be used as an in vitro test system to examine bone matrix growth

around orthopaedic implant materials.

Short term objectives included:

1. Optimize various sca�old fabrication techniques and develop protocols for

manufacturing PU and PU-HA composite sca�olds

2. Undertake in-depth analysis into the e�ect of micro and nano-sized HA particles

on sca�old fabrication and bone regeneration

3. Optimize cell culture conditions for human mesenchymal progenitor hESMP’s and

matured animal osteoblastic MLO-A5 cells to produce a bone-like matrix

4. Characterize the deposited bone-like matrix

5. Investigate osseointegration between the developed bone-like matrix and small

orthopaedic metallic screws

1.8 Thesis Outline & Chapter Summary

The first chapter of this thesis gives a general overview and background of the project,

whilst the second chapter focusses on a coherent review of current and relevant literature

pertaining to the entire project. A detailed description of the various materials and

methods used in attaining the results presented in the subsequent chapters is in Chapter 3.

Chapter 4 is the first results chapter and focusses on identifying polyurethane solutions

with ideal concentrations and solvent properties that can successfully be electrospun at

room temperature to attain consistent non-aligned/random fibre mats without beads

and irregularities. It was also to examine the e�ect of incorporating HA particles into

these random sca�olds. The hypothesis was that HA would reinforce the mechanical

properties of polymers and improve the bioactive properties compared to polymer-only

sca�olds. The overall aim of Chapter 4 was to create a range of non-aligned sca�olds,

with appropriate tensile mechanical properties that support bone cell and matrix growth.

10
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The primary goal of Chapter 5 was to develop polyurethane-based sca�olds with

aligned fibres that promote osteoid matrix production and guide collagen deposition.

PU solutions that had already been optimized for electrospinning random fibrous mats

were used for this study. The hypothesis was that increasing the speed of the rotating

drum would create sca�olds with aligned fibres that have better mechanical properties

which resemble the tensile properties of the collagenous fibres in bone. The overall aim

of Chapter 5 was to determine whether the fibrous structure would guide MLO-A5 cell

migration and subsequent orientation of deposited matrix. Second Harmonic Generation

Imaging was used to investigate how the orientation and directionality of collagen changed

with increasing depth.

The overall aim of Chapter 6, which is the final results and discussion chapter of this

thesis, was to develop and test a 3D in vitro bone model for implant testing. Firstly, it

was to explore a series of 3D fabrication techniques, and identify the best technique for

creating thick sca�olds with uniform pores and consistent pore interconnectivity. It was

also to fully characterize the fabricated sca�olds in vitro and assess their suitability for

use in developing the in vitro model by undertaking in-depth physical, mechanical and

biological characterisation.

The final chapter of this thesis (Chapter 7), summarises the key findings of this PhD

project, and discusses possible follow up experiments that evolved from this project but

could not be undertaken due to time constraints and circumstances beyond my control.

These experiments can serve as PhD topics as well as final year undergraduate and MSc

student projects.

11
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In my bid to understand how bone grows around biomaterials, a detailed and coherent

review of current and relevant literature pertaining to the entire project, has been

compiled in this chapter. This review encompasses the anatomy and physiology of bone,

generations of bone substitutes and implant materials. Sca�olding materials used in bone

tissue engineering and composite design, tissue culture and mechanical conditioning as

well as quantification methods used to analyse formed bone tissue are also discussed.

Finally, experimental procedures similar to tests carried out for in vitro and in vivo

testing of bone implants are also reviewed in this chapter.

2.2 Overview of Bone

Bone is a composite material made up of cells, mineral, bone matrix, and water (Boskey,

2005). It is a vital, dynamic and hard connective tissue with an ability to repair and

regenerate. Bone functions to provide mechanical integrity for locomotion and serves as

a primary site for haemopoiesis. Additionally, the interconnection of bone to form the

skeleton serves as structural framework for the body and provides protection to vital

organs (Boskey, 2001). Bone also serves as a mineral reservoir and is responsible for

homeostasis of calcium and phosphate in the body (Ralston, 2009).
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2.2. OVERVIEW OF BONE

2.2.1 Anatomy of Bone

The two main structural types of bone found in human skeleton are cortical and trabecular

bone. These are further classified according to shape into long, round, irregular and flat

bones (Moore and Dalley, 1999) and located in either the axial (e.g. Pelvis, Vertebrae,

skull) or appendicular (e.g. Femur, Humerus, Tibia) parts of the skeleton. Both cortical

and trabecular bones are anatomically organized from woven and lamellar bone tissue.

Woven bone is classified as immature bone and mostly found in embryos and certain

metaphyseal regions of the growing skeleton. As compared to lamellar bone, woven

bone has a more cells per unit volume, an uneven orientation of the collagen fibres, and

randomly arranged mineral content and cells. Remodelling of woven bone creates lamellar

bone. This begins at one month after birth, and by the age of four most of the bone in the

body will have become lamellar. The regular arrangement of collagen fibres in lamellar

bone makes it highly organized and anisotropic as compared to the isotropic nature of

woven bone (Feldman et al., 2007).

2.2.1.1 Cortical Bone

Cortical bone also known as compact bone represents about 80% of skeletal bone mass

Ralston (2009). It is mainly found in the shafts of long bones and is formed from haversian

systems, which consist of concentric lamellar of bone tissue, surrounding a central canal

of blood vessels. Cortical bone is dense in structure with an average porosity of about

5-30% and has a low surface area that forms an envelope around the marrow cavity.

With a sti�ness range of about 4-27 GPa, cortical bone is able to withstand higher

stresses (amount of load) compared to trabeculae bone (Carter and Spengler, 1978).

2.2.1.2 Trabecular bone

Trabecular bone also known as spongy or cancellous bone is mostly found in flat bones

and the ends of long bones and vertebrae. Having a higher surface area and an average

porosity of about 30-90% of volume, spongy bone has a lower density than cortical bone.

Trabecular bone is rapidly remodelled and made up of an interconnected meshwork of
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bony trabeculae, separated with bone marrow filled spaces. In addition, trabecular bone

has a sti�ness of about 0.1-3 GPa and is able to withstand higher strain (amount of

deformation) levels as opposed to cortical bone (Ralston, 2009).

2.2.2 Composition of Bone

Both cortical and trabecular bone consist of bone matrix made by bone cells. This matrix

is further classified into two main components, a protein rich organic matrix and mineral

rich inorganic constituent.

2.2.2.1 Organic Matrix

The organic component of bone is noted to be predominantly collagen Type 1, which

has been found to account for about 30% of bone dry weight (Hollinger, 2005). As

shown in Figure 2.1 on page 16, collagen Type 1 is a fibrillar heteropolymer protein

composed of two identical collagen –-1 peptide chain and one distinct –-2 chain, wound

together to form a triple helix structure. It has a primary structure of (Gly-X-Y)

n

,

where X and Y are frequently proline and hydroxyproline, with possible post translation

modification to contain hydroxyproline, hydroxylysine and glycoslyated hydroxylysine

(Burgeson and Nimni, 1992; Ralston, 2009). Individual collagen molecules are linked

together by specialized covalent bonds called pyridinium cross-links to form a self

assembly of staggered configuration of collagen fibrils, known to provide tensile strength

to bone and a framework for mineral deposition (Knott and Bailey, 1998).

Bone matrix also contains varying amounts of other types of collagen such as

Collagen Type III and V, and non-collagenous proteins, namely osteopontin, osteocalcin,

proteoglycans, bone sialoprotein and other phosphoproteins and proteolipids (Bonucci,

2000). Most of these bone matrix proteins contain arginine-glycine-aspartic acid (RGD)

sequences, characteristics of cell binding proteins which are recognized by a group of

cell membrane proteins known as integrins. These function to aid in the attachment

of bone cells to extracellular matrix, calcium and mineral-binding, and the regulation

of cellular activity during bone remodelling. Anchorage of cells to extracellular matrix
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Figure 2.1: Organisation of Collagen Type 1 - Reprinted from (Ralston, 2009) with kind

permission from Elsevier

enables cells to express their phenotype and conduct activities that characterize their

functions (Ruoslahti, 1991).

Growth factors and cytokines such as transforming growth factor beta (TGF-—),

insulin-like growth factor (IGF), osteoprotegerin (OPG), interlukins, tumour necrosis

factors (TNFs) and bone morphogenetic proteins (BMPs 2-10) are also present in

very small quantities in bone matrix. These proteins function in regulating bone

di�erentiation, activation, growth and overall turnover, with a likely function of serving

as a coupling factor for the processes of bone remodelling (Feldman et al., 2007).

2.2.2.2 Bone Mineral

Bone mineralization entails the deposition of bone mineral, mainly in a form of carbonated

hydroxyapatite crystals, [Ca

10

(PO

4

)

6

(OH

2

)] on collagen fibres shown in Figure 2.2 on

page 17, to reinforce bone matrix and provide structural integrity (Bonfield, 1971;

Rehman and Bonfield, 1997). By weight, approximately 70% of bone tissue is mineral,

with an estimated 95% of the mineral phase composed of a crystalline hydroxyapatite

and impurities account for the remaining 5% (Feldman et al., 2007). Bone mineralization

comprises of complex processes involving physiochemical activities, cells, and extracellular

organic matrix. Mineralization complements the tensile strength and elasticity derived

from collagen by conferring mechanical rigidity to bone.
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Figure 2.2: Organisation of Bone - Reprinted from (Chen et al., 2009) with kind

permission from Elsevier

2.2.3 Bone Formation

Intramembraneous ossifications and endochondral ossification are the two main processes

by which bone formation occurs. Depending on the type of bone being formed, one

of these processes occurs, with variations occurring in the di�erentiation stages of

bone for each type of bone (Holtrop, 1967). Bone formation succeeds bone resorption

from childhood; it begins with the attraction of osteoblast precursors to the site

that previously underwent resorption. These osteoblastic precursors derived from

mesenchymal progenitor cells in the bone marrow stroma di�erentiate into mature

osteoblasts which are able to bind to several osteoblast specific proteins such as

osteocalcin, alkaline phosphatase, and collagen type 1. Bone formation is also thought to

be enhanced by the action of bone morphogenic proteins which are known to encourage

the proliferation and di�erentiation of osteoblastic progenitors into mature osteoblasts

(Ralston, 2009).

2.2.3.1 Intramembraneous Ossification

Intramembraneous ossification involves the di�erentiation of primitive mesenchymal

fibroblasts into bone cells, leading to the formation of flat bones such as the mandible

and the maxilla.
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2.2.3.2 Endochondral Ossification

Longer bones of the limbs, ribs and vertebrae are formed by endochondral ossification,

which begins within cartilaginous modelling. This type of bone formation involves the

replacement of cartilage with bone, and results from an invasion of osteoprogenitor cells

contained in vascular tissue.

2.2.4 Bone Remodelling

Bone is metabolically active throughout life. After bone skeletal growth is complete,

remodelling of both cortical and trabecular bone continues throughout one’s life and

requires the co-ordinated actions of osteoclasts and osteoblasts (Compston and of London,

1996). Bone remodelling as shown in Figure 2.3 on page 19, involves the repair and

renewal of complex and dynamic bone tissue. Bone remodelling involves three kinds

of cell behavioural activities. An initial stimulus causes the activation of mesenchymal

cells to begin producing batches of new osteoclasts (from hematopoietic) and osteoblasts

daughter cells. A batch of the osteoclasts resorb the existing bone and disappear

afterwards. New osteoblasts then appear to form new bone, replacing what had been

previously removed. Finally, this new bone remains in situ as "mature" bone for a period

of time depending on the remodelling rate (Frost, 1966). Remodelling is a balanced

response of mineral resorption of osteoclasts and bone deposition by osteoblasts and is

consistent with mechanical and molecular influences governed by metabolic factors (Lee

and Taylor, 1999; Burr and Martin, 2005). Most bone pathologies are said to result

from abnormalities in bone remodelling which compromise the architecture, structure

and mechanical strength of bone. This leads to clinical symptoms such as pain, fracture,

deformity and abnormalities of calcium and phosphate homeostasis. It has been estimated

that approximately 10% of the adult skeleton is being remodelled at any one time

(Ralston, 2009).

It is postulated that bone possesses mechano-sensor cells in the form of osteocytes

which detect changes in mechanical stimulus by comparing current mechanical strain
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to physiologically desirable values, and engaging the action of corrective biological

processes upon variation. Extensive work carried out on simulations of bone adaptation

to mechanical stimulus, assumes that remodelling to remove bone occurs when the

mechanical stimulus is low, whilst bone formation occurs to add bone when the mechanical

stimulus is high (Doll and Koch, 2004; Hollinger, 2005).

Figure 2.3: Bone Remodelling Cycle - Reprinted from (Ralston, 2009) with kind

permission from Elsevier

2.2.5 Mechanical Properties of Bone

As bone functions to provide mechanical integrity for locomotion and structural rigidity

to the body, the mechanical properties of bone is of great importance. Bone is an

elastic, anisotropic, heterogeneous and composite material, hence the determinants of

the mechanical properties of bone largely depend on density, porosity, macroscopic to

sub nanoscopic architecture of bone structure, the orientation of testing, magnitude to

load, the physical shape and state of the sample, amongst others (An and Draughn, 2000;

Rho et al., 1998). The mechanical properties of natural bone change with their biological

location since the crystallinity, porosity and composition of bone adjust to the biological

and biomechanical environment.

The high tensile strength and fracture toughness of bone is attributed to the tough

and flexible collagen fibres reinforced with hydroxyapatite crystals (Rezwan et al., 2006).
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However, the magnitude of strength of cortical bone depends mostly on the type of

mechanical testing and bone density whilst that of trabeculae bone depends greatly on

shape and density in estimating mechanical properties. Table 2.1 outlines some data sets

ranges (Means±SD), all at the tissue level, of various mechanical tests for human and

bovine femur and tibia compiled by An and Draughn (An and Draughn, 2000).

Table 2.1: Mechanical Properties of Cortical Bone - Reprinted from (An and Draughn,

2000) with kind permission from CRC PRESS LLC

Mechanical Test

Compact Bone

Strength (MPa) Sti�ness (GPa)

Compression 133-295 (200±36) 14.7-34.3 (23±4.8)

Tension 66-188 (141±28) 7.1-30.4 (19.6±6.2)

Torsion 53-76 (65±9) 3.1-3.7 (3.3±0.1)

Although some work has been reported in the literature on the mechanical properties

of cancellous bone, very little data is present on the di�erent mechanical testing methods

because of the di�culties associated with cutting samples. However, cancellous bone is

generally known to have strength and sti�ness values of 1.5-38 MPa and 0.1-3 GPa in

compression, respectively. In addition, the work of Kaplan et al. established a relation

that depicts that the strength of trabecular bone in tension is about 60% its strength

in compression (Kaplan et al., 1985). Keaveny et al. also established that the elastic

modulus of cancellous bone in tension is about 70% of its value in compression (Keaveny

et al., 1994).

2.2.6 Pathologies of Bone

Although coupled, the cellular link between bone formation and bone resorption is not

entirely understood, it is known that consequences of accentuating either component of

bone remodelling, leads to bone diseases such as osteoporosis, osteoarthritis (Feldman

et al., 2007) and Paget’s disease. These pathologies and other causes of frequent bone

loss including tumour resection, high energy trauma, infection and congenital defects like

cleft palate, necessitate orthopaedic treatments (Gogolewski, 2001).
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2.2.6.1 Osteoarthritis

Osteoarthritis is a pathology of the joint which leads to degeneration of bone and cartilage

(Gelber et al., 2000). Accounting for about a million yearly hospital visits, osteoarthritis

is considered the most common type of arthritis in the United Kingdom, with joints in the

hip, knee and spine being the most a�ected (NHS, 2012). Key risk factors of osteoarthritis

include obesity, female sex, age, history of joint injury, joint geometry, force distribution

across a joint, exposure to heavy mechanical loads and certain sporting activities (Croft

et al., 1992; Vingård et al., 1993).

Knee and hip anatomical abnormalities including acetabular dysplasia,

femoroacetabular impingement, wide femoral neck, and changes to the global shape of

hip and tibiofemoral joint account for architectural changes predating the radiographic

appearance of osteoarthritis (Arokoski et al., 2002; Bredbenner et al., 2010; Ganz et al.,

2003; Gregory et al., 2007; Harris, 1986). Variation in bone metabolism and distribution

of biomechanical forces that result in changes to bone across a joint are considered the

two main hypotheses of how bony changes may lead to cartilage joint deterioration.

Additionally, pain associated with osteoarthritis is believed to stem from structural

changes in the bony cortex and edema-related bone marrow lesions which are also

highlighted to play a potential etiologic role in the development of knee osteoarthritis.

Increasing evidence linked with radiographical studies, suggest that bone and cartilage

pathology are linked to osteoarthritis (Baker-LePain and Lane, 2012; Radin and Rose,

1986).

2.2.6.2 Osteoporosis

Osteoporosis is an abnormality of bone which arises when the amount of bone resorbed

with age exceeds the quantity of bone formed during skeletal growth and bone

remodelling. This leads to a decrease in total bone density and micro-architectural

deterioration of bone tissue, and results in porous and fragile bones with impaired

skeletal strength and a consequent increased susceptibility to fractures (CDC, 1991).
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Such fractures mostly a�ect the femoral neck, vertebral bodies and wrist and result

in pain, disability, premature death and a huge financial cost to health services. An

annual expenditure of about £742 million was reported by the 1994 Advisory Group on

osteoporosis (Compston and of London, 1996; Barlow, 1994).

The risk of osteoporosis increases with age and has been found to be more common

in women than in men, with variation occurring amongst countries (Kanis et al., 1994).

Those at the greatest risk for osteoporosis are white and Asian women, who are thin or

petite and with a family history of the disease (CDC, 1991). Other risk factors associated

with the pathogenesis of osteoporosis, include lack of su�cient calcium and vitamin D

intake, age, genetic factors, heavy alcohol consumption, smoking and oestrogen deficiency

associated with postmenopausal osteoporosis (Albright F, 1941; Laszlo, 2004).

The work of Kanis et al utilized the World Health Organization (WHO) criteria for

diagnosing osteoporosis. This is based on a bone mineral density value higher than a

2.5 Standard Deviations below a young healthy adult mean value (Kanis et al., 1994).

However, the work of Lewieski suggests a combined use of clinical risk factors for fracture

and bone mineral density testing, as a better diagnostic tool for osteoporosis. Although,

unlikely to fully restore the quality and strength of osteoporotic bone to normal, certain

lifestyle changes involving physical activity and nutrition rich in calcium and Vitamin

D can help. Pharmacological therapy using drugs and hormonal treatment involving

Raloxifene, Biphosphonates and oestrogen can also be used to bind to calcium and

moderate bone resorption (Lewiecki and Silverman, 2006).

2.2.6.3 Paget’s Disease

Paget’s disease is an abnormality of localized bone remodelling, which result in large size

bones with diminished quality that are less compact and more vascular, as well as an

irregular and weakened structure (Pfeifer and Pollahne, 2011). With variation occurring

amongst patients around the world, the highest rate of Paget’s disease is recorded in the

United Kingdom (NHS, 2012). Statistics show that, Paget’s disease is the second most

common bone disease after osteoporosis in the United Kingdom, and is known to a�ect
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8% of men and 5% of women by the age of 80 years (Wilkinson, 2012).

Although the exact cause of the disease is not known, it is often associated with genetic

factors linked to inheritance, environmental factors including viral exposure and lifestyle

factors such as malnutrition. Only a small fraction of patients (about 5%) su�ering from

Paget’s disease show clinical symptoms. These symptoms usually include intense pain,

a variety of neurologic complications, fracture, deformity and weakness in the localized

regions of bones of the spine, skull, pelvis and femur (Scharla, 2011). Diagnosis of Paget’s

disease involves the use of alkaline phosphate activity blood tests, X-Ray examinations

and an isotope bone scan to determine the extent and activity of the disease (Colina et al.,

2008). To date, there is no known cure of the disease, however, treatment options include

the use of bisphophonate and calcitonin drugs to lessen pain and normalise bone turn

over, and surgery to correct deformities resulting from the disease (Seitz et al., 2008).

2.3 Orthopaedic Biomaterials

While small bone defects heal spontaneously, critical size defects resulting from

osteopathologies such as Osteoporosis, Osteoarthritis and Paget’s disease, as well as

from trauma, congenital birth defects and tumour resection may exceed the body’s

regenerative capabilities. Such defects usually require surgical intervention involving

the use of bone-graft substitutes and implants, in isolation or combination to restore or

replace the damaged bone.

Orthopaedic biomaterials are designed to perform certain biological functions

permanently or temporarily, by replacing or substituting diseased bone, cartilage, tendons

and ligament tissues (Navarro et al., 2008). They are used in addressing osseous

defects and bone loss resulting from bone damage. Approximately 2.2 million bone-graft

procedures are performed each year worldwide to repair bone defects in orthopaedics,

oral and maxillofacial surgery, with a yearly estimated costs of $2.5 billion (Kolk et al.,

2012; Van Heest and Swiontkowski, 1999).

Bone repair materials include autografts, allograft, xenografts and a generational
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evolution of synthetic orthopaedic implants. Others include alternative treatment

modalities involving the use of gene therapy, bone marrow aspirates, and growth

factors among others. Each of these grafts present its own merits and demerits. The

ideal bone replacement is expected to be biocompatible, bioresorbable, osteoconductive,

osteoinductive, structurally similar to bone, easy to use, sterilizable and cost-e�ective,

with resorbable polymeric sca�olds considered as promising candidates for cancellous

bone replacements in small non-load bearing defects (Gogolewski, 2001; Gunatillake et al.,

2003).

2.3.1 Autografts

Bone grafting using autologous cancellous or cortical bone with varying amounts of

osteogenic stem cells is a common surgical procedure and considered the gold standard

in repairing bone defects. The procedure involves harvesting bone from one part of

the body usually the iliac crest, for use in healing critical-size segmental long bone and

maxillofacial skeleton defects of the same patient. This procedure raises minimal ethical

and immunological concerns, but is however limited by availability, harvesting time,

trauma associated with bone harvesting. Such turnover results in donor site morbidity,

and could possibly lead to further complications including a tendency towards resorption

and compromise in biomechanical properties of the bone (Banwart et al., 1995; Gorna

and Gogolewski, 2003; Goulet et al., 1997; Hench, 1998). Other contraindications include

elderly or paediatric patients and patients with malignant disease.

2.3.2 Allografts and Xenografts

The use of allografts in treating bone defects involves the transfer of bone tissue from

another human donor mostly from a cadaver into a host patient. Xenotransplantation

entails the use of chemically treated substitutes, xenografts, from non-human species in

treating human bone defects (WHO, 2005). These procedures present a partial solution to

the donor site morbidity limitation faced by the use of autografts and reduce surgical time.

They are however challenged with concerns of disease transfer, immune rejection, yielding
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variable clinical results and ethical and religious concerns amongst others (Bostrom

and Mikos, 1997; Hench, 1998). Additionally, preservation and sterilization techniques

have been shown to compromise the biomechanical and biological properties of these

substitutes, presenting a further limitations to the use of allografts and xenografts for

bone repair (Pelker et al., 1983).

2.3.3 Artificial Bone Substitutes

Over the last 60 years, the field of orthopaedics has observed an evolution of three

di�erent generations of synthetic biomaterials. These conceptual evolutions are clearly

distinguishable by the properties and requirements of each generation; with first

generation implants focussing on bioinert materials, second generation implants highlight

bioactive and biodegradable properties, whilst third generation implants are designed to

stimulate specific cellular responses (Navarro et al., 2008).

2.3.3.1 First Generation Implants

These were among the first set of metallic, ceramic, polymeric and composite implants

to be used for orthopaedic applications. They were mostly based on the industrial

applications of materials used in aerospace, mechanical and chemical industries.

Biocompatible materials with properties such as minimum toxic response, nearly inert

chemical properties, high corrosion resistance and desirable mechanical properties that

attach by morphological fixation were utilised in treating orthopaedic defects. With the

main aim to replace structure and possibly reduce immune response and foreign body

rejection to the barest minimum (Hench, 1980).

Stress shielding, inability to remodel with time, generation of wear particles and the

formation of fibrous capsules around implants are major limitations associated with the

use of first generation implants. With an order of magnitude higher in sti�ness than

that of cortical bone (v20 GPa), correction of orthopaedic defects with e.g. stainless

steel implants, causes load sharing between implant and host bone, with an insignificant

amount of the load borne by the bone. Since bone is a dynamic organ that is constantly
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being remodelled, the reduction in mechanical stimuli presented by stress shielding

induces bone resorption and ultimately leads to implant loosening and failure (Bonfield,

1988b; Huiskes et al., 1992).

Additionally, as no implant is completely inert, tissue response to a biologically

inactive implant is the formation of a non-adherent fibrous capsule. The thickness of

the fibrous layer depends on many factors, such as the conditions of the implant, the

conditions of the host tissue, the conditions of motion and fit at the interface and the

mechanical load applied. Furthermore, first generation implants attach by morphological

fixation, hence their interface is not chemically or biologically bonded, and as such relative

movement called micro-motion can occur. This movement could result in the generation

of wear particles from the implant which could cause osteolysis and aseptic loosening of

the implant, in addition to the progressive development of a non-adherent fibrous capsule

(Cao and Hench, 1996).

2.3.3.1.1 First Generation Metals

Fracture plates, pins, dentures, screws and hip nails made from stainless steel,

cobalt-chrome alloys, titanium metal and shape memory titanium alloys have been used

as metallic implants since the 1940’s. This was largely due to their relatively low cost,

availability and low processing requirements, with the first successful total hip prosthesis

reported by Charnley in the late 1950’s (Charnley, 1960).

2.3.3.1.2 First Generation Ceramics

Other non-metallic first generational implants including Alumina and Zirconia ceramics,

have also been used in varying combinations as femoral heads and acetabular cups, with

the first successful femoral head alumina replacement in 1972 by Boutin (Boutin, 1972).

These ceramics present with advantages of good biocompatibility, desirable mechanical

properties, excellent wear rates and corrosion resistance.

2.3.3.1.3 First Generation Polymers

Examples of first generation polymeric materials include polyurethane, polypropylene,
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polymethylmethacrylate (PMMA) and silicon rubber. PMMA has been utilised as space

fillers and bone cement for centuries in the field of orthopaedics as it provides anchorage

and excellent primary fixation to prosthesis. It also possess high impact strength,

excellent toughness and low friction, ease of fabrication, biocompatibility and biostability

(Navarro et al., 2008).

2.3.3.2 Second Generation Implants

Second generation implant materials came into focus after the concept of bioactive

materials was discovered in 1969 (Hench et al., 1971). Bioactivity, a major characteristic

of second generation implants refers to any interaction or e�ect that materials exert on

cells, with the aim of guiding or activating them to specific responses and behaviours. It

describes an implant’s ability to interact with the biological environment, and to enhance

biological response and tissue bonding with the ability of bioresorbable materials’ to

undergo progressive degradation while new tissue regenerates and heals (Navarro et al.,

2008).

Osteoproductive bioactivity and osteoconductive bioactivity are the two main types

of bioactivities, which result from the di�erent rates and mechanisms of implant-tissue

interactions (Cao and Hench, 1996). Periodontal implants, intervertebral spacers,

artificial vertebrae, iliac spacers and alveolar ridge maintenance implants are some

examples of clinically used second generation implants made from ceramics, metals,

polymers and composites.

2.3.3.2.1 Second Generation Metals

Although second generation metallic implants are not naturally bioactive; surface coatings

and chemical modification of the implant surface are two methods used to attain bioactive

metal products. Plasma spraying is an example of surface coating, although this has

been shown to result in long term weak substrate bonds and reduced interfacial strength

(Herøet al., 1994; Klein et al., 1994). Chemical modification of the implant surface

involves thermochemical treatments that aim at promoting the deposition of a bioactive
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ceramic in vivo or the induction of proteins and cell adhesion and other tissue and material

(Kokubo et al., 1996; Navarro et al., 2008).

2.3.3.2.2 Second Generation Ceramics

As defined by Hench, bioactivity is a time-dependent kinetic surface modification that

occurs upon implantation; it’s the ability of an implant surface to form a biologically

active hydroxy carbonate apatite layer which provides the bonding interface with host

tissues. Bioactive ceramics include bioactive glasses, bioactive glass-ceramics, bioactive

calcium phosphate ceramics and bioactive composites and coatings. These have chemical

and structural similarities with the bone mineral phase and as such bond to living tissues

through bioactive fixation (Hench, 1991). The most common types of second generation

ceramics whose chemical and physical properties are largely dependent on its synthesis

process are particles of Hydroxyapatite (HA-Ca
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(PO
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)
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OH

2

), —-Tricalcium Phosphate

(—–TCP–Ca
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(PO

4

)

2

, their derivatives and combinations (El-Ghannam, 2005).

2.3.3.2.3 Second Generation Polymers

Biodegradable polymers of synthetic and natural origin such as collagen, chitosan,

polyurethane, poly (–-hydroxy acids) such as polylactic acid (PLA), polyglycolic acid

(PGA) and their copolymers; polycaprolactone (PCL), tyrosine-derived polycarbonates

and polyhyrdoxybutarate to list but a few, have been used in bone repair applications for

more than thirty years. They have been shown to be biocompatible and non-toxic whilst

providing an advantage of eliminating the need for revision surgery, as they degrade by

a controlled chemical breakdown with the resorption of polymer chains (Andriano et al.,

1999; Hollinger, 1983; Muggli et al., 1998; Ulery et al., 2011).

These second generation polymeric materials have been used to repair fractures of

the femur and humerus, and as screws, rods, fixation devices, pins and plates bone

substitutes (Ciccone et al., 2001; Mayer and Hollinger, 1995; Rokkanen et al., 2000). They

present with advantages of biocompatibility, ability to tailor mechanical properties and

degradation kinetics to suit the application, reduced stress shielding and need for revision

surgery, ability to be fabricated into various shapes with desirable pore structures as well
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as enhanced radiolucency, since it does not interfere with clinical imaging techniques

like Magnetic Resonance Imaging (MRI) (Gunatillake et al., 2003). They are however

challenged with the di�culty of tailoring degradation profiles to allow gradual load

transfer to healing tissue, possessing adequate mechanical properties, osteolysis and

synovitis (Lokesh and Dhillon, 2006).

2.3.3.3 Third Generation Substitutes

With a survivability half life of 15 years for bioinert materials, regeneration of bone

tissue instead of replacement is considered the best approach in addressing osseous

defects (Hench, 1998). Whereas second-generation biomaterials were designed to be either

resorbable or bioactive, third generation implants combine these two properties, with the

aim of developing materials that posses an ability to stimulate specific cellular responses

at the molecular level, such that once implanted, it will aid the body to heal itself (Hench

and Polak, 2002). Such implants are fabricated from polymers of natural and synthetic

origin, (Armentano et al., 2010) decalcified or demineralised bone matrix, (Russell and

Block, 1999) and polymer-ceramic bioactive composites have been uses successfully in

various orthopaedic and dental clinical trial applications (Navarro et al., 2005; Rezwan

et al., 2006).

2.3.3.4 Commercially Available Bone Substitutes

Some commercially available bone substitutes include hydroxyapatite and carbonated

hydroxyapatite based porous sca�olds, marketed under the trade names ProOsteon and

ProOsteon500R from Interpore. These support bone in-growth and have been used in the

treatment of metaphyseal fractures. In the United Kingdom ReproBone from Ceramisys

comes in the form of blocks, granules, wedges and discs, made from 60% restorable HA

and 40% –-TCP. Osteoglass from US Biomaterials is a bioactive glass substitute that

is claimed to bind to collagen and promote bone formation, it has been used in the

treatment of periodontal and facial bone defects (Gogolewski, 2001).

Other ceramic composites composed of tricalcium phosphate and hydroxyapatite
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which comes in a paste, puty, porous granule formats, that undergo endothermic

hardening are used as bone void fillers. These include Norian’s Skeletal Repair System,

–-BSM from ETEX Corporation, Bi-Ostetic from Berkeley and Collagraft from Zimmer.

These collagen and ceramic bone substitutes are advantageous in enhancing stability of

fixations and facilitating healing whist providing protection against the infiltration of

soft tissues; however, they present with disadvantages of stress concentration and could

impede vascularisation (Gogolewski, 2001).

2.3.4 Implant Testing

Like all other developed products, orthopaedic implant materials are examined with a

series of standardized testing procedures before they are commercialized. Bone functions

as a major load bearing component of the body, hence implant materials and bone

graft substitutes are tested mechanically to access their ability to support the body in

performing everyday activities and also tested biologically to examine their biocompatible

nature.

2.3.4.1 Mechanical Testing

Several di�erent mechanical tests are available for medical implant testing, however,

depending on the final application of the implant, a particular compression, fatigue or

tensile test that conforms to ISO and ASTM standards is used to estimate ultimate

strength, sti�ness, toughness and behaviour at failure. The table 2.2 on Page 30 lists

some of the common ISO and ASTM standards applied to implant testing (DDL, 2013).

Table 2.2: Mechanical Tests applied to Medical Implants

Standard Test

ASTMF1541 Compression Test for External Skeletal Fixation Devices

ASTMF384 Test Methods for Metallic Angled Orthopaedic Fracture Fixation Devices

ASTMF2118 Fatigue Testing of Acrylic Bone Cement Materials

ASTMF382 Fatigue - Four Point Bend Testing - Metallic Bone Plates

ASTMF897 Fretting Fatigue Test of Osteosynthesis Plates and Screws

ISO12189 Fatigue Testing of Spinal Implant Assemblies

ISO14801 Dynamic Fatigue Testing of Dental Implants

ISO14879 Fatigue Testing of Knee-Joint Prostheses
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2.3.4.2 Biological Testing

The cost of biological testing for medical implants ranges from several pounds to hundreds

of thousands of pounds. This largely depends on factors such as the duration of the test,

and the type and number of animals involved. Which also in turn depends on the type

and size of the implant being tested (Leventon, 2008). The duration of testing can vary

from two weeks to several years. ISO 10993 lists a series of standards used to biologically

evaluate medical devices; with ISO 10993-5 and ISO 10993-6 describing tests used for in

vitro cytotoxicity and in vivo implantation studies respectively (F.D.A., 2013).

2.3.4.2.1 In Vitro Testing

Cytotoxicity and pyrogenicity are types of in vitro studies carried out to access an

implant’s biocompatibility status prior to commercialization. For cytocompatibility

studies, osteoblasts or their precursors are seeded onto the surface of an implant and

cultured for a period of time under physiological conditions of temperature, culture

medium and humidity. After an appropraite time point, standardized laboratory assays

such as MTT, total DNA, Alizarin Red and Sirus Red are used to examine cell viability,

proliferation and early expression of bone mineral. This kind of biological testing

is however limited by a lack of dynamic environment and an inability to investigate

mechanical strength of attachment between matrix and implant surface (F.D.A., 2013;

Leventon, 2008).

2.3.4.2.2 In Vivo Testing

Current in vivo testing of implants consists of an initial surgical implantation of a test

sample of the implant into a healthy animal for a period of time. A time point of four

weeks is usually used to investigate early stage reaction, whilst three to six months and

sometimes a year are used for longer term reaction studies. Animals usually used for

such investigations include mice, rats, rabbits, guinea pigs, dogs and sheep depending

on the size and application of the implant (Pearce et al., 2007; Martini et al., 2001). At

the end of the study, the animal is sacrificed and the area of implantation is examined
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meticulously for local e�ects such as cell attachment, tissue formation, and if possible

indications of any adverse systemic e�ects including foreign body response and tissue

necrosis amongst others (Wallin, 1998).

As well as being a costly procedure, this type of biological testing is also limited

by the di�erence in structure and cell behaviour of animal and human bone. Therefore

creating a dynamic tissue engineered in vitro bone model could be greatly beneficial in

addressing the aforementioned limitations, associated with both the current in vitro and

in vivo implant testing.

2.4 Bone Tissue Engineering

Bone tissue engineering is the use of materials to either induce formation of bone from

surrounding tissue or as a carrier/template for implanted bone cells and agents. Bone

regeneration requires four components: a morphogenetic signal, responsive host cells that

respond to the signal, a suitable single carrier to serve as sca�olding for the growth of

responsive host cells and a viable and well vascularised host bed (Burg et al., 2000;

Croteau et al., 1999). Osteoconduction and osteoinduction are also important properties

in bone tissue engineering. Osteoconduction is the ability of a material to support cell

ingrowth to form bone whilst osteoinduction is the ability to cause pluripotent cells from a

nonosseous environment to di�erentiate into osteoblasts leading to bone formation (Urist

et al., 1967).

2.4.1 Sca�olds

The era of third generational orthopaedic implants coincided with the emergence of

sca�olds for tissue engineering; these sca�olds provide biological functions and a three

dimensional porous structure. Sca�olds were initially selected for structural restoration

based on their biomechanical properties, sca�olds were later engineered to be bioactive or

bioresorbable to enhance tissue growth, currently, sca�olds are designed to induce bone

formation (Bose et al., 2012).
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An ideal sca�old should posses a suitable surface chemistry that supports

cell attachment, proliferation, migration and growth as its biological functionality.

Additionally, it should provide structural functions of serving as a biocompatible template

for osteoprogenitor cell ingrowth and aid di�erentiation of mesenchymal stem cells into

osteoblasts, as well as the production, organization and maintenance of extracellular

matrix (Armentano et al., 2010; Gogolewski and Gorna, 2007; Gorna and Gogolewski,

2003).

In addition to being biocompatible, sca�olds are required to be composed of highly

interconnected macro and microporous networks. Furthermore, they should degrade to

non-toxic products in a timely manner as tissue regeneration occurs, and have appropriate

mechanical properties and structural integrity as degradation occurs (Boccaccini et al.,

2008; Hutmacher, 2000). They should also be sterilizable without loss of properties and

possibly be radiolucent to facilitate subsequent radiographic imaging after implantation

(Gogolewski, 2001).

2.4.1.1 Composite Sca�olds

Composite bone substitutes are mostly biodegradable polymers reinforced with ceramic

particles. These substitutes came into focus after Bonfield et al proposed the concept

of polymer-ceramic combination in mimicking the ductile and brittle properties of the

collagen and mineral components of bone, respectively (Bonfield, 1988a,b).

Mechanically, polymers such as polyurethane and polycaprolactone are noted for

their extensive deformation and high toughness whilst ceramics are noted for their high

compressive strength but brittle nature. Hydroxyapatite (HA) has been extensively

investigated due to its excellent bioactivity, osteoconductivity and its similarity to the

main mineral component of bone. However, its poor tensile strength and fatigue failure

limits its applicability to low or non-load-bearing sites (Li et al., 2005). Polyurethane

(PU) presents with desirable properties of greater elasticity, viscoelastic behaviour and

higher mechanical strength associated with its versatile chemistry (Boissard et al., 2009).

Although PU is a promising material for sca�old fabrication, the lack of bone-bonding
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bioactivity limits its use in bone.

Combining polymer with hydroxyapatite has been shown by many researchers to

improve the mechanical properties of the resulting composite as long as a strong interfacial

bond strength is established between the ceramic phase and the polymer matrix (Attawia

et al., 1995; Boccaccini and Maquet, 2003; Bonzani et al., 2007). Yoshii et al developed

a polyurethane-calcium phosphate composite containing 70 and 79% of both HA and

TCP sca�olds. They reported compressive modulus and strength values ranging from

2.5-3.6 GPa and 59.6-87.0 MPa, respectively for all sca�olds, although composites with

HA recorded higher compressive modulus and strength (Yoshii et al., 2012).

Biologically, the bioactive and osteoconductive nature of HA makes their use in

composite sca�olds for bone tissue engineering an ideal biocompatible choice. This is

largely due to HA possessing a calcium/phosphate ratio of 1.50 -1.67 which is within the

range known to promote bone regeneration in several clinical applications (Armentano

et al., 2010). The degree of bioactivity is however dependent on the volume fraction,

size, shape, surface functionality and arrangement of inclusions of the calcium phosphate

granules (Maquet et al., 2004).

Inclusion of calcium phosphate in polymeric sca�old fabrication has also been shown to

modify surface and bulk properties of resulting composites by increasing the hydrophobic

polymer matrix and thus altering the degradation kinetics of the sca�old. Additionally,

composites have been shown to present with an advantage of reducing undesirable acidic

degradation e�ects, associated with the use of plain polymeric materials (Boccaccini and

Maquet, 2003; Rezwan et al., 2006).

2.4.1.2 Nano-Composite Sca�olds

Nanotechnology enables the development of new systems that mimic the complex and

hierarchical structure of native tissue, hence it is believed that a combination of biology

and nanotechnology can revolutionize tissue engineering and medicine (Gleiter, 2000).

Polymer nanocomposites are the result of combining polymers and inorganic/organic
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fillers at the nanometer scale (Gorrasi et al., 2008). Interaction at this level is

considered to possess advantageous mechanical and functional properties as opposed

to those of microcomposites. Upon overcoming processing and dispersion challenges,

nanocomposites often show an excellent balance between strength and toughness as well

as improved characteristics compared to their individual components (Imam Khasim

et al., 2010; Tjong, 2006).

2.5 Polyurethanes

Several polymers of both natural and synthetic origin can be used for bone tissue

engineering; however polyurethanes are of particular interest due to the flexibility

associated with their versatile chemistry (Guelcher, 2008). This makes it possible

to customise sca�olds in order to attain desirable chemical, physical and mechanical

properties such as durability, elasticity and fatigue resistance by altering the choice and

quantity of starting materials (Zdrahala and Zdrahala, 1999). Thus, polyurethanes can

be synthesised as rigid or elastomeric, hydrophobic, hydrophilic or amphiphilic depending

on the type of hard and soft segment used, with an added functionality of incorporating

biologically active moieties into the backbone chain or as side pending chains to enhance

polymer-cell interaction, growth and proliferation (Gogolewski and Gorna, 2007; Gorna

and Gogolewski, 2003; Gorna K., 2006).

2.5.0.3 Polyurethane Sca�olds

Biocompatible and biodegradable polyurethanes have been investigated as sca�olds for

tissue engineering applications for almost thirty years (Guelcher et al., 2004), and

also as heart valves, stents, intra-aortic balloons, pacemaker lead insulators amongst

others (Grad et al., 2003). Microphase separation between the hard and soft segment

enables polyurethane sca�olds to excellently handle physical stresses and possess desirable

mechanical properties, useful for bone tissue engineering (Wen et al., 1997). The use

of elastomeric sca�olds as alternatives to bone grafts prevents the generation of shear
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forces at the interface between native bone and the bone substitute. Thus enabling

intimate contact with bone and enhancing the proliferation of osteogenic cells and bone

regeneration (Gorna and Gogolewski, 2003).

2.5.1 Synthesis Materials

Thermoplastic polyurethane elastomers are a class of linear segmented copolymers

characterized by the presence of the urethane functional group. They are prepared

from three components, namely a diisocyanate, a macrodiol (or polyol) and a chain

extender (Wirpsza, 1993). The diisocyanates and chain extender are normally referred to

as the hard segment which imparts cohesive strength and sti�ness whilst macrodiols which

could be polyether, polyester, polycarobonate, polydimethylsiloxane or polybutadiene

based, are referred to as the soft segment which imparts softness and extensibility

(Zdrahala and Zdrahala, 1999).

2.5.1.1 Toxicity of Hard segments

Although a vast number of combinations of diisocyanates, macrodiols and chain

extenders are available, only a few are utilised for biomedical applications due to the

cytotoxic nature of some combinations (Gunatillake et al., 2003). To avoid using

toxic diamine decomposition products from aromatic diisocyanates, (Szycher, 1988)

aliphatic diisocyanates such as methyl 2, 6-diisocyanatohexanoate (lysine methyl ester

diisocyanates, LDI) and dicycohexylmethane diisocyanate (H

12

MDI) have been used to

synthesis biodegradable polyurethanes (Ciardelli et al., 2006; Guelcher et al., 2004).

In addition, 1, 4-diisocyantabutane (BDI) has also been suggested to be used in place

of methlylene disdiphenylisocyanate (MDI), which has been suggested to degrade into

carcinogenic and mutagenic compounds (Spaans et al., 1998; Szycher, 1988). However,

it is worthy to note that, aromatic diisocyanates such as MDI and TDI are known to

exhibit microphase separated morphologies, ordered high structural domains and useful

mechanical properties (Kavlock et al., 2007).
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2.5.1.2 Synthesis Methods

Polyurethanes are usually synthesised by one or two-step batch procedures or by

semi-continuous processes such as reactive extrusion (Wirpsza, 1993). The one-step

synthesis method consist of a reaction of the hard and soft segments usually in the

presence of a catalyst and sometimes water. Water reacts with the diisocyanate

to form carbon dioxide, a biocompatible foaming agent, useful in creating porous

structures (Guelcher et al., 2004).

On the other hand, the two-step synthesis method (Figure 2.4 on page 37)) involves

end-capping the macrodiol with diisocyanate and subsequently chain extending the

resulting polymer with a low molecular weight diol or diamine (for polyurethane-urea).

This has been shown to o�er good control of polymer architecture as compared to

the one-step synthesis method (Lyman, 1960). A summary of the synthesis route of

polyurethane and polyurethane-urea is shown in the figure 2.4 below (Gunatillake et al.,

2003).

Figure 2.4: Synthesis of Polyurethane and Polyurethane-Urea- Reproduced

from (Gunatillake et al., 2003), with kind permission from CSIRO Publishing

2.5.1.3 Synthesis Modifications

Kavlock et al synthesized segmented polyesterurethane urea elastomers using 1,

4-diisocyan-tabutane (BDI), poly (Á-caprolactone) (PCL) macrodiol as soft segment
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and tyramine-1, 4-diisocyan-atobutane-tyramine as chain extender. They reported that

increasing PCL macrodiol molecular weight at 37

¶
C increased melting temperature and

storage modulus from 21 to 61

¶
C and 52 to 278 MPa, respectively. Their study indicated

that the crystallinity of PCL macrodiol and soft segments, contributes significantly to the

mechanical properties of polyurethanes (Kavlock et al., 2007). It has also been reported

that, thermal and mechanical properties of polyurethanes are strongly dependent on the

polyol chain length and the hard-segment content. Although the use of di�erent chain

extenders does not have a measureable e�ect on the mechanical and thermal properties

of polyurethanes, for polyurethanes with the same hard–segment content, it has been

shown that there is no e�ect of the material molecular weight on thermal properties

(Gorna et al., 2002).

2.5.1.4 Catalysts

Catalysts are used in accelerating the rate of reactions. Several catalysts have been

utilised in di�erent polyurethane synthesises routes. Gorna et al, studied the e�ect of six

di�erent catalysts on the molecular characteristics, thermal and mechanical properties

of polyurethane. The biocompatible catalysts used were zinc octoate (Zn), ferric acetyl

acetoanate (Fe), manganese 2-ethyl hexamanoate (Mn), stannous octoate (Sn), dibutyltin

dilaurate (DBDL) and magnesium methoxide (Mg). They reported their findings based

on the significant e�ect of a catalyst on the rate of polymerization, Fe was the most

e�ective catalyst although it was di�cult to control reaction temperature when used,

whilst Mg was the least e�ective. In addition, Sn and Mn were less e�ective than DBDL

and Zn with respect to the thermal and mechanical properties attained (Gorna et al.,

2002).

2.5.1.5 Synthesis of Biodegradable Polyurethanes Foams

Gorna and Gogolewski synthesized biodegradable polyurethane foams with varying

hydrophobic and hydrophilic components, using hexamethylene diisocyanates, poly

(ethylene oxide) diol, polycaprolactone diol, amine-based and sucrose based polyol. They
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used water as a change extender and forming agent, citric acid as a calcium complexing

agent, lecithin and solutions of vitamin D

3

as surfactants and inorganic fillers such

as hydroxyapatite, glycerol phosphate calcium salt and calcium carbonate (Gorna and

Gogolewski, 2003).

It is worthy to note that the use of lecithin as a surfactant enhanced the miscibility

of reactants with water. This consequently led to foams with finer and more regular pore

structure. The incorporation of lecithin, citric acid and vitamin D

3

however, reduced the

mechanical properties whilst the presence of inorganic fillers increased the compressive

strength and modulus. In addition, the hydrophilicity of foams decreased with the

presence and amount of inorganic fillers and subsequently the rate of degradation whilst

the inclusion of citric acid accelerated degradation (Gorna and Gogolewski, 2003).

Furthermore, ascorbic acid (AA) has been shown to be necessary for the production

of collagen matrix and expression of osteoblast markers such as ALP and osteocalcin.

Zhang et al synthesized a novel biodegradable polyurethane-ascorbic acid sca�old by

copolymerizing ascorbic acid with glycerol and lysine diisocyanate, LDI. They reported

that polyurethane sca�olds containing AA stimulated bone cell proliferation, type I

collagen and ALP synthesis. The sca�olds degraded by hydrolysis into biocompatible

substances at 37

¶
C, with no change of the pH of the degradation solution (Zhang et al.,

2000, 2003). A summary of di�erent synthesis routes used in producing biodegradable

polyurethanes has been compiled from literature and tabulated in the appendix of this

thesis.

2.5.1.6 Synthesis of Biodegradable Injectable Polyurethanes

Minimally invasive polyurethane-based injectables which polymerise in-situ at biological

temperatures, have attracted attention since Bonzani et al developed a novel material

by reacting two pentaerythritol-based prepolymers. They characterized the materials

mechanical and surface properties, and undertook cytocompatibility studies using

primary osteoblasts. They reported of findings which indicated potential use of such

injectables for a range of orthopaedic applications (Bonzani et al., 2007).

39



2.5. POLYURETHANES

In a similar manner, Adhikari et al developed a series of cross linked injectable

polyurethanes using a two part pre-polymer system. They combined lactic acid and

glycolic acid based polyester star polyols, pentaerythritol and ethyl lysine diisocyante

(ELDI). They reported of high compressive strength (100-190 MPa) and modulus (1.6-2.3

GPa) which were higher than that of cancellous bone, and significantly stronger than most

acrylic bone cements (Adhikari et al., 2008).

2.5.2 Degradation of Sca�olds

The degradation of a sca�old relates to a loss in material mass and or functionality

of the sca�old over a period of time, either in vitro or in vivo. The gold standard

of biodegradable polymer sca�olds is the ability to match the rate of degradation to

the rate of regeneration of new tissue. Since bone is able to remodel in vivo under

physiological loading (Hillsley and Frangos, 1994) it is a requirement that the degradation

and resorption kinetics be controlled e�ectively. This allows the bioresorbable sca�old

to retain its physical properties for at least 6 months (4 months for cell culture and

2 months in situ) with complete metabolization from the body occurring after 12-18

months (Hutmacher, 2000). However, previous work by Hill et al reported of more than

50% polyurethane sca�old resorption after 5 weeks of in vivo studies with male mice (Hill

et al., 2007).

2.5.2.1 Types of Polyurethane Degradation

Polyurethane sca�olds made from aromatic diisocyanates with polyether soft segments

undergo oxidative degradation. Those synthesized from aliphatic diisocyanates with

polyester soft segments undergo hydrolytic degradation, however, both types of sca�olds

are known to be susceptible to enzymatic degradation (Griesser, 1991). Several

researchers have also reported that polyurethanes based on aromatic diisocyanates are

more biostable than their aliphatic counterparts. This has been attributed predominately

to their ability to form hard segment crystalline orders resulting from molecular symmetry

and strong intermolecular fi-electron interactions (Gunatillake et al., 2003).
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2.5.2.1.1 Hydrolytic and Oxidative Degradation

Hydrolytic degradation of polyesterurethanes occurs in aqueous media and mainly

proceeds with the scission of carboxylic ester, urethane or urea linkages in the

main chain into shorter hydroxyl and carboxyl chains (Guelcher, 2008). Generally,

polyetherurethanes degrade under oxidative conditions, for example in hydrogen peroxide

or from a build-up of peroxides excreted from macrophages in a biological environment

(Ratner et al., 1988). These types of polyetherurethanes are resistant to hydrolytic

degradation conditions since the polyether segment is thought to be the structural element

that is most susceptible to oxidative degradation and highly resistant to hydrolysis

(Marchant et al., 1987).

Previous studies have shown that under increased temperatures, acidic or alkaline

environments, polyether based polyurethanes are also susceptible to hydrolytic

degradation. One of these studies carried out over a six month period showed that,

at an increased temperature of 100

¶
C polyetherurethanes were susceptible to hydrolytic

degradation whereas no evidence of degradation was found when samples were aged at

37

¶
C (Coury et al., 1988).

2.5.2.1.2 Enzymatic Degradation

Hydrolytic and oxidative enzymes such as papain, urease, leucine amino-peptidase,

esterase, trypsin and trypsin derivatives have been shown to cause enzymatic degradation

on both polyether and polyester based polyurethanes. It has been proposed that di�erent

papain enzymes hydrolyses urethane and urea linkages whilst urease enzymes attack only

urea linkages. There is also evidence from literature supporting the hypothesis that,

enzymatic attack by living cells plays an important role in the in vivo degradation of

polyurethanes (Griesser, 1991; Marchant et al., 1984).

2.5.2.2 Factors that a�ect Polyurethane Degradation

The degradation rate of polyurethanes depends on the chemical composition and

structure, crystallinity, molecular weight, presence of additives, sca�old size and geometry
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and porosity. It also depends on processing history, applied stresses and the level of

hydrophilicity and hydrophobicity of the starting material (Gorna and Gogolewski, 2003;

Heidemann et al., 2001). Additionally, it has also been reported in the literature that,

the incorporation of inorganic fillers and high levels of the hydrophobic content in the

synthesis of polyurethane sca�olds extends the degradation time of such sca�olds, whilst

the incorporation of additives such as citric acid accelerates the rate of degradation (Dunn

et al., 2001; Gorna and Gogolewski, 2003).

The rate of degradation is further auto-catalysed by the acidic nature of the

carboxyl group, which accelerates additional hydrolysis (Schollen.Cs and Stewart, 1973).

Degrading at a rate of 8.3◊10

-9

s

-1

(Chapman, 1989), the degradation of polyurethane

sca�olds was initiated by an increase in irregularities in the sca�old wall, formation of

cracks in the walls separating the pores, and the fragmentation of the material coupled

with a complete loss of shape in the final stage of degradation (Gorna and Gogolewski,

2003).

2.5.2.3 Experimental Degradation Studies

Wet and dry degradation studies can be used to access the degradation rate of a polymer

and composite in vitro (Marra et al., 1999). An extensive wet degradation study involves

testing cylindrical plugs of polyurethane sca�olds in glass ampoules filled with phosphate

bu�ered solution at a pH of 7.4±0.2 and at a temperature of 37±0.1

¶
C, at an eight

week time point over a one year period. The amount of water absorbed, the mass of

water trapped within the pores of the polymer, loss of polymer mass, and solution pH

were investigated as part of this study (Adhikari et al., 2008). Also at each time point,

polymers were removed from the bu�ered solution after wet degradation tests, rinsed

three times with distilled water and dried to constant weight in vaccum of about 3◊10

s

-1

at 60

¶
C for dry degradation studies (Gorna and Gogolewski, 2003).

Determining amine concentration with the Ninhydrin assay as part of wet degradation

studies is a useful technique for examining the degradation of urethane and urea linkages

under test conditions for polyurethane sca�olds. Data from this assay has been shown
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by Adhikari et al to correlate with mass loss (Adhikari et al., 2008).

In vivo and in vitro studies carried out on the degradation of polyurethane from

literature reports satisfactory results on the biocompatibility of degradable polyurethanes,

although the e�ect of degradation products and how they are removed from the body is

still not properly understood (Gunatillake et al., 2003). Gunatillake et al. (2003) used

Attenuated Total Reflectance–Fourier Transform Infrared Spectroscopy (ATR-FTIR) to

quantify biodegradation of polyurethanes and scanning electron microscopy (SEM) to

qualitatively describe cellular response and biodegradation.

2.6 Calcium Phosphates

Calcium phosphates are noted for their excellent biocompatibility due to the close

resemblance they have with the chemical and crystal structure of bone (Jarcho et al.,

1977). Although HA possesses very good bioactive properties, TCP’s advantageous ability

to be completely resolved after implantation as opposed to crystalline HA, stems from

the chemical stability of HA which reduces its solubility rate (Takahashi et al., 2005).

The degradation rate of calcium phosphates is highly dependent on crystallinity and the

order of degradation. This has been established as amorphous HA > – -TCP > —-TCP

> crystalline HA, with crystalline HA exhibiting the slowest degradation and amorphous

HA possessing the highest degradation potential (Oonishi et al., 1995).

2.6.1 Choice of Calcium Phosphate: Hydroxyapatite

Hydroxyapatite crystals are the main component of bone mineral (Clarke et al., 2008).

By weight, approximately 70% of bone tissue is mineral, with an estimated 95% of

the mineral phase composed of a specific carbonated crystalline hydroxyapatite and

impurities account for the remaining 5% (Feldman et al., 2007). Like other calcium

phosphates, HA presents with other desirable properties such as osteoconductivity and

bioactivity, making their use advantageous in eliminating implant loosening, although

they are noted for being brittle and di�cult to process into complex shapes (Hollinger
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et al., 1996). Additionally, HA’s injectability and low setting temperature also make it an

ideal carrier of growth factors, facilitating delivery to bone tissue engineering (Ginebra

et al., 2006). Silicon has been found to play a key role in bone mineralization and

remodelling, skeletal development and gene activation, and as such replacing the calcium

content of HA with silicon has been shown to remarkably enhance bone growth in vivo

(Rezwan et al., 2006; Porter et al., 2004; Thian et al., 2006). Histomorphometry results

of a comparative study on the in vivo behaviour of HA and silicon substituted HA

granules (SiHA) by Patel et al revealed a (37.5%±5.9) bone ingrowth for SiHA which

was significantly greater than that of the pure phase calcium based HA at (22.0%±7.3)

(Patel et al., 2002).

2.6.1.1 Hydroxyapatite Synthesis

Hydroxyapatite synthesis usually consists of mixing stoichiometric quantities

(Ca/P=1.67) of calcium nitrate tetrahydrate [Ca(NO

3

)

2

.4H

2

0] and diammonium

hydrogen phosphate [(NH

4

2HPO

4

] precursor solutions. Prior to mixing, and depending

on the synthesis method used, the pH values of the precursor solutions are usually

adjusted between 8.5 to values above 10 using ammonium hydroxyl solution (NH

4

OH)

(Martinez-Valencia et al., 2011).

In recent times, several synthesis processes have been developed to produce nano-sized

HA powder. Sol-gel syntheses (Anee et al., 2003; Khan et al., 2008), wet precipitation

method (Sarig and Kahana, 2002), hydrothermal synthesis and ultrasound precipitation

(Martinez-Valencia et al., 2011; Chaudhry et al., 2006), microwave synthesis (Kalita and

Verma, 2010), solid state reactions (Rao et al., 1997), and micro emulsion technique (Lim

et al., 1997) are some of the methods that have been used to synthesize hydroxyapatite

(Kalita and Verma, 2010). In synthesizing HA, some researchers have capitalized on

the advantages of additives such as zinc, silicon, citric and fluoride to syntheses HA

composites, with these additives to preferentially suit dental and orthopaedic applications

(Asefnejad et al., 2011; Patel et al., 2002).

Martinez-Valencia et al synthesized HA by hydrothermal and ultrasound precipitation
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methods and compared the time of synthesis, particle size and surface area of the resulting

nano-HA structures. From their results, nano-HA synthesised by the shorter ultrasound

assisted co-precipitation method proved to have smaller particle size of about 20-40 nm

and a high surface area value of about 97.9 m

2

g

-1

. This implies a better interface that may

promote better interaction between the HA-polymer matrix (Martinez-Valencia et al.,

2011).

On the other hand, microwave synthesis of hydroxyapatite o�ers several advantages

including rapid heating, easy reproducibility, shorter synthesis time, narrow particle range

distribution, high yield and purity and e�cient energy transformation. This can possibly

be attributed to the fact that microwave heating is di�erent from conventional heating,

in that, heat is generated internally within the material instead of originating from an

external heating source and subsequent radiative transfer (Kalita and Verma, 2010).

2.6.2 Polyurethane-Nano Hydroxyapatite Composites

When incorporating nano-HA granules into polyurethane composites, the interface

adhesion between the resulting polymer matrix and nanoparticles is of great importance

to the mechanical properties of the composites. The mechanical properties of such

composites are in turn controlled by several microstructural parameters including

synthesis and processing methods, properties of the matrix, properties and distribution

of the fillers as well as the nature of interfacial bonding (Armentano et al., 2010).

Some researchers have investigated the incorporation of nHA and other nanoparticles

in polyurethane composites for bone tissue engineering applications using ultrasound

cavitations (Mahfuz et al., 2004; Schreader et al., 2013), hot isostatic pressing (Zhao et al.,

2006), in-situ polymerization, electrospraying (Khan et al., 2008) and one step solution

poly-condensation (Boissard et al., 2009). Additionally, initial calcium absorption to

nanoceramic surfaces has also been shown to be enhanced by the binding of vitronectin

that subsequently promotes osteoblast adhesion (Webster et al., 2001).
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2.7 Chemical Characterization

Small angle X-ray scattering (SAXS), wide angle X-ray di�raction (WAXD), di�erential

scanning calorimertry (DSC), dynamic mechanical thermal analysis and various forms

of microscopy, are techniques used in probing the morphology, composition, thermal and

mechanical properties of polyurethane, hydroxyapatite and their composites (Gunatillake

et al., 2003; Hing et al., 1999). With the chemical structure of polyurethanes usually

characterized with nuclear magnetic resonance (NMR) and Infrared (IR) spectroscopy

(Kavlock et al., 2007; Zhang et al., 2003).

2.7.1 Fourier Transform Infra-red Spectroscopy (FTIR)

Fourier transform infra-red spectroscopy (FTIR) is a widely used analytical technique

that is routinely applied to the characterization of biomaterials. An infra-red spectrum

represents the chemical finger print of a sample, with absorption peaks which correspond

to the frequencies of vibrations of the bonds between the atoms that make up the material

(TNC, 2001). Di�use reflectance (DRIFT), attenuated total reflectance (ATR) and photo

acoustic sampling (PAS) are various sampling techniques used in FTIR spectroscopy.

PAS is however considered the best technique for imaging biomaterials as it addresses

limitations of surface requirements and optical density associated with the use of DRIFT

and ATR (Rehman and Bonfield, 1997). As shown in table 2.3 on Page 47, Khan et al.

(2008) compiled a collection of bands assigned to polyurethanes using FTIR spectroscopy

in their design of a novel bioactive polyurethane-hydroxyapatite composite for dental

restoration applications.

2.8 Sca�old Fabrication

Electrospinning, thermally induced phase separation, solvent casting and particulate

leaching, gas forming, solid free-form fabrication, microsphere sintering and freeze drying

are various methods of used in sca�old fabrication (Armentano et al., 2010; Hutmacher,
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Table 2.3: Bands assigned to FTIR spectroscopy of PU - Reprinted from (Khan et al.,

2008) with kind permission from Elsevier

Wavenumber

(cm

-1

)

Assigned

3310 Strong vs. (N H) bonded N H
2930 Strong vs. (CH

2

)

2860 Strong vs. (CH
2

)

1730 Very strong free (C O)

1702 Very strong bonded (C O)

1600 Strong vs. (C C)

1530 Very strong ” (N H) + v (C N)

1410 Strong vs. (C–C) in benzene ring

1310 Strong ” (N H) + v(C N) —(C H)

1230 Strong ” (N H) + v(C N)

1110 Very strong vs. (CH
2

–O–CH
2

) of aliphatic ether

1020 Weak — (C H) in benzene ring

818 Weak “ (C H) in benzene ring

2000). As shown in table 2.4 on Page 48, each of these methods presents with its own

advantages and disadvantages (Rezwan et al., 2006).

2.8.1 Electrospinning

Electrospinning is an e�cient, simple and relatively easy polymer fabrication technique.

It produces nano and micro polymer fibres, with the advantage of being performed

from polymers in solution or melt states. Such thin fibres provide unexpectedly high

surface area to volume ratios, high porosity, flexibility in surface functionalities, superior

mechanical performance and membrane technology (Demir et al., 2002).

In the field of biomaterials and tissue engineering, electrospinning has been utilised

in producing ideal sca�olds that mimic the morphological characteristics and biological

function of the natural extracellular matrix. Electrospun sca�olds provide an optimal

template for cell attachment, proliferation and growth (Carlberg et al., 2009; Huang

et al., 2003). Several di�erent polymers such as polyurethanes, poly(Á-caprolactone),

poly(lactic acid), poly (glycolic acid) and their co-polymers have been successfully span

for musculoskeletal, nerve, skin, vascular and drug delivery applications (Bashur et al.,

2009; Clarke et al., 2008; Nirmala et al., 2011).
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Table 2.4: Advantages and Disadvantages of Fabrication routes for 3D composite sca�olds

- Reprinted from (Rezwan et al., 2006) with kind permission from Elsevier

Fabrication Method Advantages Disadvantages
Electrospinning Relatively easy technique Longer processing time

High surface area to volume ratio Low sca�old thickness
High porosity ( 80%) Use of organic solvents
Nanometre fibre diameter resembles the body’s
natural extracellular matrix

Thermally Induced Phase Separation (TIPS) High volume of interconnected pore structures Shrinkage issues
High porosity ( 95%) Use of organic solvents
Anisotropic and tubular pores possible Small scale production
Control of structure and pore size by varying
preparation conditions
Ability to produce thick constructs

Solvent Casting / Particle Leaching Controlled porosity (20-50%) Structures generally isotropic
Controlled interconnectivity (if particles are sintered) Use of organic solvents
Control of structure and pore size by varying
preparation conditions Residual particles in polymer matrix

Ability to produce thick constructs Limitation to thin constructs
Solvent evaporation could prolong the process

Solid free-form Porous structure can be tailored to host tissue Resolution needs to be improved to the micro-scale
Protein and cell encapsulation possible Some methods use organic solvents
Good interface with medical imaging

Microsphere sintering Graded porous structures possible Limited pore interconnectivity
Controlled pore size Use of organic solvents
Can be fabricated into complex shapes

2.8.1.1 The Experimental Set-Up

The electrospinning process combines a high voltage supplier, a set of capillary tubes

with small needles, and a grounded metallic collecting plate covered with foil, as shown

in Figure 2.5 on page 49. Electrically charged polymer jets emitted from capillary tubes

are deposited on the rotating metallic collector during the electrospinning process. The

foil containing deposited jets is removed from the collector and dried at about 60

¶
C

under vacuum to remove all remaining solvent (Khil et al., 2003).

2.8.1.2 Factors that a�ect the properties of electrospun fibres

Variables that influence the nature and geometry of fibres produced by electrospinning

include solution properties such as viscosity, elasticity, conductivity and surface tension.

Additionally, ambient parameters such as solution temperature, humidity, and air velocity

in the electrospinning chamber and governing variables such as hydrostatic pressure in

the capillary tube, electric potential at the capillary tip, and the distance between the tip

and the collecting screen are also said to influence fibre morphology (Doshi and Reneker,
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Figure 2.5: The Electrospinning Set-Up in our Lab (used in this thesis)

1995; Raghavan et al., 2012). A change in the diameter observed between the ejected

and deposited polymer jets, is said to be caused by continuous stretching and solvent

evaporation as the jets travel from the tube onto the collector (Deitzel et al., 2001).

The work of Demir et al reported that, the morphology of polyurethane electrospun

fibres is strongly correlated with viscosity, concentration and temperature. As

concentration, or equivalently, the viscosity increases, higher electrical forces are required

to overcome both the surface tension and viscoelastic forces responsible for stretching the

fibre (Demir et al., 2002; Reneker and Chun, 1996). Demir et al went further to report

of a mathematical relationship between flow rate, voltage, average fibre diameter (AFD)

and concentration as

Flow rate v (Voltage)

3

AFDv (Concentration)

3

In their study, the morphology of polyurethane fibres varied between curly, wavy,

and straight structures, with defective bead formation being present in thinner fibres

fabricated from solutions with lower viscosities and higher surface tensions. The

occurrence of bead formation stems mainly from the high electrical field applied to the

system at a fixed power source and collector distance. With decreasing concentration

and viscosity leading to a significant decrease in the fibre surface area to volume ratio.

Temperature of the polymer solution has also been stated as a key parameter that a�ects

fiber morphology and spinnability. Thus it is possible to improve fiber morphology and
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attain more uniform fibres by increasing the solution temperature (Demir et al., 2002).

2.8.1.3 Characterization of Electrospun Fibres

Di�erent characterization techniques have been used to examine electrospun fibres. Such

fibres fabricated from both plain polyurethanes and composites which are reinforced

with nanohydroxyapatite, calcium chloride, copper, and other materials. Such sca�olds

have been used in orthopaedic applications, restorative dentistry, wound healing, anterior

cruciate ligament tissue replacements, anti-microbial studies, amongst others (Bashur

et al., 2009; Khan et al., 2008; Khil et al., 2003; Nirmala et al., 2011; Sheikh et al., 2011).

2.8.1.3.1 Physical & Chemical Characterization

Characterization of electrospun fibres to investigate geometric properties such as fibre

diameter, orientation and morphology can be carried out with the Atomic Force

Microscope, Scanning Electron Microscope, Transmission Electron Microscope, Energy

Dispersive X-ray Spectroscopy and the Field Emission Scanning Microscope (Nirmala

et al., 2011). These types of equipment have been used in combination with image

processing software like ImageJ from the NIH, to characterize fibre diameters ranging

from a few nanometres to several microns (Reneker and Chun, 1996). Chemical

characterization using Fourier Transform Infra-Red (FTIR) and Nuclear Magnetic

Resonance (NMR) also facilitates the analysis of molecular structure of electrospun fibres.

2.8.1.3.2 Mechanical Characterisation

The work of Pedicini and Farris, characterised the mechanical structure of an electrospun

fibres as well as its bulk material polyurethane using uniaxial tensile tests. They reported

characteristic di�erences in the stress-strain responses of the materials and attributed this

to fibre orientation and strain-induced orientation of the fibres (Pedicini and Farris, 2003).

Furthermore, the work of Yaganegi et al, also showed that aligned sca�olds presented with

tensile strength and modulus of 14±1 MPa and 46±3 MPa, respectively. These were much

higher than that of random fibre sca�olds at 1.9±0.4 MPa and 2.1±.2 MPa, respectively

(Yeganegi et al., 2010).

50



Chapter 2. LITERATURE REVIEW

2.8.2 Phase Separation

Phase separation or inversion is a process of transforming a polymer in a controlled

manner, from a liquid state to a solid state. Phase inversion can be initiated by solvent

evaporation as in the case of solvent casting, thermal precipitation or precipitation with

a non-solvent (Tsui and Gogolewski, 2009). Freeze drying, freeze gelation and freeze

extraction are variations of thermal precipitation. Polymer solutions are initially frozen

at very low temperature of about -20

¶
C to -210

¶
C and the solvent is sublimed in the

case of freeze drying, or a gelation media is added to aid in gelling the polymer in the

case of freeze gelation. For freeze gelated sca�olds a non-solvent is used to precipitate

the polymer, removing the solvent and creating pore structures with a porosity of about

95% (De Mulder et al., 2013).

A comparative study carried out by Tsui and Gogolewski compared pore sizes of

polyurethane membranes fabricated with di�erent solvents using the phase inversion

technique at 23

¶
C. They compared dimethylformamide (DMF), dimethylacetamide

(DMAC) and dimethylsulfoxide (DMSO) as solvents, and deionised water and distilled

water as non-solvents. They further investigated the e�ect of sedimentation time, polymer

concentration, and thickness of cast samples on pore size and distribution. From their

study, they reported that polymer solutions made from DMF with 5wt% polymer, with

sedimentation time of 24-72 hours and a thickness of 1 mm had well defined pore

structures and pore interconnectivity (Tsui and Gogolewski, 2009).

The work of Gorna and Gogolewski that also compared sca�old fabrication using

DMF, DMSO, methyl-2-pyrrolidone (NMP), acetone (A), ethanol (EtOH), isopropanol (I)

and tetrahydrofuran (THF). They reported that DMF is the best solvent for polyurethane

sca�old preparation, as it produced sca�olds with open interconnected pores and higher

water permeability (Gorna K., 2006).
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2.8.3 Sca�old Porosity

Pore size and morphology, quantity and pore interconnectivity are of great importance

to sca�olds fabricated with phase separation techniques. Such characteristics facilitate

e�cient cell seeding, growth and transfer of vital cell nutrients and metabolic waste.

Good pore interconnectivity facilitates di�usion and promotes cells buried deep inside

the sca�old to survive, although high sca�old porosity has also been reported to be

detrimental to desirable mechanical properties (Bose et al., 2012; Heijkants et al., 2006).

An optimum pore size between 100 and 350 µm has been reported to be ideal for

bone tissue engineering applications (Klawitter and Hulbert, 1971). This enables proper

bone ingrowth, vascularisation and nutrient delivery as the average human osteon size is

reported to be approximately 223 µm (Holmes, 1979). In addition, multi-scale porous

sca�olds that combine micro and macro porosities are said to perform better than only

macro porous sca�olds (Woodard et al., 2007).

2.8.3.1 Estimation of pore size and water uptake ability

The porosity of a sca�old can be determined with Equation 2.1 by measuring the

dimensions and mass of the sca�old and using simple techniques of bulk density and

upthrust to calculate porosity. Similarly, x-ray microtomography coupled with image

analysis, impedance spectroscopy, micro-CT and mercury porosimetry are other reliable

tools used in quantifying 3D pore structures, and characterizing pore interconnectivities

of porous sca�olds (Rezwan et al., 2006). Heijkants et al calculated the porosity of a

polyurethane sca�olds fabricated with the TIPS technique (Heijkants et al., 2006)

P (%) =
I

1 ≠ m

flPolymer ◊ v

J

◊ 100% (2.1)

Where

P is the porosity,

m is the mass of the sca�old,

flPolymer is density of the polymer,
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and V is the volume of the sca�old.

Similarly, the water absorption ability of functionalized polyurethane sca�olds (Cao

et al., 2010) can also be calculated with Equation 2.2 as

P (%) =
I

W i ≠ Wo
Wo

J

◊ 100% (2.2)

Where

Wo is the weight of sca�old after vacuum drying

Wi is the weight of the sca�old at a particular time point after being placed in

distilled water.

2.8.4 Sca�old Modifications

The e�ect of chemical modifications to sca�olds such as hydrophilicity, crystallinity and

surface charge to sca�olds, have been shown to a�ect cellular spreading and cause changes

to phenotypic expression (Hollinger and Schmitz, 1997; Holy et al., 1999).

In addition, physical alterations arising from changes in pore shape, size and number,

coupled with surface roughness have also been reported to have a great e�ect. Such

e�ects a�ect cell attachment, proliferation and long-term survival of cells on sca�olds,

as osteoblastic proliferation is said to be sensitive to surface topography (Burg et al.,

2000; Kieswetter et al., 1996). Furthermore, high interatomic and intermolecular bonding

has also been reported to be necessary in achieving significantly high sca�old strength

(Hutmacher, 2000).

2.8.5 Incorporating Biomolecules

Sca�olds can also be used to deliver biomolecules that facilitate bone tissue engineering.

Transforming growth factor-Beta (TGF-—) and bone morphogenetic proteins (BMP) have

been shown to be integral in the regulation of bone formation and post-traumatic bone

healing (Cao and Chen, 2005; Mauney et al., 2005).
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The work of Wozney et al, demonstrated new bone formation with the addition

of BMP in su�cient quantities (Wozney et al., 1990). Hence the inclusion of such

biomolecules and many others growth factors such as fibroblast growth factor (FGF),

vascular endothelial growth factor (VEGF) and insulin-like growth factors (IGF) in

sca�old development have also been shown in vivo to enhance osteogenesis, bone

tissue regeneration and extracellular matrix formation, by recruiting and di�erentiating

osteoprogenitor cells into osteoblasts (Bose et al., 2012; Jansen et al., 2005; Linkhart

et al., 1996).

However, the sensitivity of these biomolecules to high temperature ranges and

aggressive chemical conditions makes their incorporation into sca�old fabrication

is a skilful process. Surface functionalization has therefore been suggested as a

possible mechanism of immobilizing proteins and growth factors on to sca�olds in the

post-processing stage (Babensee et al., 2000; Rezwan et al., 2006).

2.9 In vitro Studies: Cell Types and Assays

Prior to in vivo testing of biomaterials and cell constructs, in vitro studies utilising cells

of either human or animal origin are seeded onto sca�olds and cultured for a period of

time under physiological conditions. Such cells could be of a primary source such as bone

marrow stromal cells or of an established cell line extracted for experimental purposes.

As part of in vitro testing, standardized cell assays such as MTT and Alamar blue cell

viability assays, and immunochemistry studies are performed to investigate the material’s

biocompatibility status, thus predict its ability to perform as expected when implanted

in vivo.

2.9.1 Bone Marrow Stromal Cells (BMSCS)

Bone marrow stromal cells (BMSCs) represent a particularly attractive osteogenic

cell source. They have been reported to contain a phenotypically and functionally

heterogeneous population of mesenchymal progenitors which contribute to the
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physiological regeneration of bone, cartilage, muscle and other connective tissue (Mauney

et al., 2005; Zanetta et al., 2009).

Kavlock et al cultured bone marrow stromal cells on rigid fibronectin coated

polyurethane films under osteogenic conditions for up to 21 days and used cell density,

alkaline phosphatase activity, osteopontin and osteocalcin expressions with western

blot analysis to confirm that polyesterurethane urea sca�olds support osteoblastic

di�erentiation to the same extent as PLGA sca�olds (Kavlock et al., 2007). Chorionic

mesenchymal cells isolated from human term placenta which presents with advantages

of availability, minimum invasive extraction procedures and low ethical concerns have

also been shown to di�erentiate towards an osteoblastic phenotype when cultured on

polyurethane formed sca�olds (Bertoldi et al., 2010).

2.9.2 Mesenchymal Progenitor Cells - hES-MP

Mesenchymal progenitor cells such as the human embryonic stem cell-derived

mesenchymal progenitor cell line (hES-MP) have been shown to play a key role in

bone regenerative medicine. As compared to BMSC’s, the reduced risk of donor site

morbidity and good availability for in vitro culture makes the use of these progenitor

cells advantageous to bone tissue engineering. In the presence of osteogenic supplements,

these hES-MP cells have been shown to di�erentiate towards osteogenic lineages in vitro

(Delaine-Smith et al., 2012).

2.9.3 Human Osteoblast-like Cells

Primary human osteoblast-like cells have been used in bone tissue engineering since the

early 1940’s when the isolation, culture and characterisation of such cells on a large scale

were established by Graham Russell’s laboratory at the University of She�eld (Helfrich

and Ralston, 2003). Primary human osteoblasts isolated from trabecular bone at passage

2 have successfully been cultured on polyurethane sca�olds, with live and dead assay

used to qualitatively access cell viability over a 7 day period and an MTS assay used to
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metabolically quantify cellular activity (Bonzani et al., 2007)). Nirmala et al capitalized

on calcium’s ability to improve cell attachment and tissue morphology, and electrospun

calcium chloride infused polyurethane fibres. They used a commercially available human

osteoblast cell line CRL-11372 in conjunction with MTT assay and lactate dehydrogenase

(LDH) activity to examine cytotoxicty in their electrospun sca�olds (Nirmala et al., 2011).

2.9.4 Cell Lines

Choosing between primary cells or cell lines is important for in vitro cell culture. As

opposed to freshly isolated cells, cell lines present advantages of immediate availability of

large number of cells, homogeneity of cell cultures and expected stability of the phenotype

(Bakker and Klein-Nulend, 2012).

2.9.4.1 Osteosarcoma Cell Line – MG 63

Osteosarcoma cell lines have been widely used as an experimental model of osteoblasts

in bone tissue engineering. They proliferate more rapidly than primary cells and are

immortal, making them easy to work with. The MG-63 cell line is said to be the least

di�erentiated when compared to other experimental model cell lines like SaOS-2 and TE85

(Dillon et al., 2012; Helfrich and Ralston, 2003). MG-63 human osteosarcoma cells have

been used in combination with the live and dead assay to access the biocompatibility

of polyurethane sca�olds in vitro (Guelcher et al., 2004). Gogolewski et al utilised

human lung adenocarcinoma cell line A549, mouse fibroblast-like cell line L929 and

human leukocytes, together with an MTT cytotoxicity assay and an in vitro evaluation

of proinflammatory cytokines Interleukin-6 and Interleukin -8 to show that, isosorbide

based polyurethane sca�olds are non-toxic (Gogolewski and Gorna, 2007).

2.9.4.2 Mouse Osteoblast-like Cells – MLOA-5

MLOA-5 cell line derived from transgenic mouse has characteristics of a post-osteoblast

and pre-osteocyte cell. These include an ability to express high alkaline phosphatase, bone

sialoprotein and osteocalcin, and rapid mineralization in sheets rather than in nodules.
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Another key characteristic used to monitor the stability of cell phenotype in MLOA-5

cells, is its ability to form a honey-comb like mineralized matrix after 7-9 days in culture.

These cells have been used to study the osteoblast to osteocyte di�erentiation, bone

mineralization and the e�ects of mechanical loading on biomineralization (Rosser and

Bonewald, 2012).

2.9.5 Bioreactors

Bioreactors are defined as devices in which biological and or biochemical processes develop

under closely monitored and tightly controlled environmental and operating conditions

of temperature, pH, pressure, nutrient supply, waste removal and mechanical stimulation

(Martin et al., 2004).

Bioreactors have been used in recent times to successfully seed and culture cells on

3-D tissue engineered sca�olds in vitro by facilitating e�cient mass transfer within the

sca�old. A major advantage associated with the use of bioreactors as opposed to static

culture is the possibility of using biomechanical cues to stimulate cell di�erentiation

towards a particular phenotype (Sittichokechaiwut et al., 2010), and the opportunity of

seeding cells at a higher density, uniformly and e�ciently throughout large polyurethane

sca�olds (Woüniak et al., 2010).

The spinner flask model (Vunjak-Novakovic et al., 1996), rotating wall vessels

(Unsworth and Lelkes, 1998), flat membrane and hollow fiber models (Jasmund and

Bader, 2002), and the flow perfusion model (Bancroft et al., 2003; Schliephake et al.,

2009) are some examples of bioreactors. These models were developed to apply

dynamic compression, continuous and oscillatory fluid stresses to physiologically load

and mechanically condition cells on sca�olds.

2.9.6 Mechanical Conditioning

Increasing evidence suggests that mechanical forces, which are known to be important

modulators of cell physiology, could possibly improve or accelerate the rate of bone tissue
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formation in vitro (Altman et al., 2002). Although various studies have demonstrated

the validity of this principle, little is known about the specific details of the mechanical

forces that should be applied to a particular tissue (Martin et al., 2004).

Sittichockechaiwut et al demonstrated that short periods of mechanical loading

can accelerate matrix maturation in 3D sca�olds using rapidly mineralising MLOA-5

osteoblasts (Sittichockechaiwut et al., 2009). Additionally, Powell et al utilised

mechanical conditioning to cause di�erentiation in human bioartificial muscles (HBAM),

they reported that mechanical stimulation caused morphological changes in the HBAM

which were representative of skeletal muscles (Powell et al., 2002). Delaine-Smith et

al also applied fluid shear stimulus to human embryonic stem cell-derived mesenchymal

progenitor cell line (hES-MP) and human dermofibroblasts and reported of enhanced

osteogenic di�erentiation and matrix production (Delaine-Smith et al., 2012).

Liu et al studyed the influence of perfusion and compression on the proliferation and

di�erentiation of human bone marrow stromal cells seeded on polyurethane sca�olds.

They reported that a perfusion rate of 10 ml/min and a mechanical stimulus of 10%

cyclic compression at 0.5 Hz, carried out 4 times/day for 2 hours/time with a 4 hour

rest period maintained viability, and promoted proliferation and di�erentiation towards

a musculoskeletal lineage. They also reported of elevated tensile and equilibrium modulus

after a two week culture period (Liu et al., 2012).

2.9.7 In vivo Studies

Several in vivo studies using plain polyurethane and polyurethane-hydroxyapatite

composite sca�olds have confirmed bone formation and material resorption in di�erent

animal models. Hill et al reported of higher woven bone formation in PU-HA sca�olds

as compared to plain PU sca�olds, in a study that seeded bovine osteoblasts at a

concentration of 5x10

6

cells, per 10x2.5 mm sca�old with an average porosity of 90%.

These sca�olds were implanted into 4-6 weeks old athymic mice for a 5 week period, after

which the animals were sacrificed and extracted implants analysed for bone formation
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with histology using Hematoxylin and Eosin staining (Hill et al., 2007).

Gorna and Gogolewski reported new cancellous bone formation in three dimensional

porous polyurethane sca�olds implanted into the monocortical defects of the ilium of

healthy sheep. In their study, cylindrical 6.5x30 mm

2

defects made in swiss mountain

sheep were implanted with polyurethane plugs for a six month period after which

the animals were euthanized. Giemsa and eosin staining with histology, and contact

radiographic images confirmed regeneration of cancellous bone, which was argued to be

denser than the structure of native bone (Gogolewski and Gorna, 2007).

Additionally, a study by de Mulder et al, utilised isotropic and anisotropic

polyurethane sca�olds made with di�erent fabrication techniques to investigate the e�ect

of sca�old architecture on bone ingrowth speed and collagen orientation. They used

subcutaneous rat pocket models over a 24 week period and reported full tissue ingrowth

after 8 and 24 weeks for the isotropic and anisotropic sca�olds, respectively (De Mulder

et al., 2013).

2.10 Estimation of Bone Matrix Deposition

Bone formation and mineral deposition in tissue engineered constructs are usually

examined with histology, histomorphometry, micro-CT and also collagen and calcium

deposition staining assays such as Sirus Red, Xylenol orange, Alizarin red amongst others.

2.10.1 Histology

Histology is the microscopic examination of biological cells and tissues that have

been carefully prepared using a series of histological processes of fixation, processing,

embedding, sectioning and staining. Di�erent staining media are used to stain for

di�erent structures, with literature search revealing some common types of stains used

for polyurethane based tissue engineered constructs during histology.

Haematoxylin and Eosin (H & E) stains have been utilised by several researchers to
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examine bone formation, collagen orientation, cell di�erentiation and morphology, but

mostly to investigate cell distribution and extracellular matrix formation with tissues

and sca�olds. Hill et al used Haematoxylin and Eosin to stain 5 µm sections of plain

polyurethane and polyurethane-hydroxyapatite sca�olds after a 5 week implantation

period in athymic mice to study the extent of bone formation, (Hill et al., 2007)

whilst de Mulder et al, used H & E stain after embedding polyurethane sca�olds in

Polymethylmethacrylate (PMMA) constructs (De Mulder et al., 2013).

Gogolewski and Gorna however argue that, the use of a the LR White

R• as an

embedding medium does not react with polyurethanes, or cause them to swell and

consequently does not also modify the interface between bone and implant. They utilised

Geimsa and eosin staining in evaluating bone formation in sca�olds that were previously

implanted into the iliac crest of sheep (Gogolewski and Gorna, 2007), whilst Liu et al

utilised Masson Goldner stains on 20 µm sectioned polyurethane sca�olds embedded in

OCT compound media prior to cryo-sectioning (Liu et al., 2012).

2.10.2 Histomorphometry

Histomorphometry is a quantitative analysis of histological images. Petal et al used this

technique to analyse a set of histological images stuck together to form a collage, in their

work with HA granules that was implanted into the femoral condyle of female rabibits

(Patel et al., 2002).

A 42 point Weibel grid in conjunction with a histological collage can be used to

calculate the percentage of bone ingrowth per grid, AG

BI

and an absolute percentage

of bone ingrowth for the whole section, AS

BI

using Equation 2.3 and 2.4 respectively

(Weibel and Elias, 1967). In a similar manner, Merz grids (Figure 2.6 on Page 62) that

have been previously used in a quantitative histological study of cancellous bone formation

in cancellous bone by Merz and Schenk can also be used to calculate the percentage of

bone coverage. Equations 2.5 and 2.6 represent percentage of bone coverage per grid,

G

BC

and the absolute percentage of bone coverage per section, S

BC

, respectively when
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using Merz grids (Merz and Schenk, 1970).
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Where

AG

BI

represents the percentage of bone ingrowth per Weibel grid

H

BI

represents the a hit for bone ingrowth when a point fell over an area of bone

N

w

represents the mean number of Weibel grids

AS

BI

represents the absolute percentage of bone ingrowth for the whole section

H

BC

represents a hit for bone coverage when a line intercepted a bone/implant

interface

H

IS

represents a hit for implant/trabecullar space when a line intercepted an

implant/trabecular space interface

N

M

represents the mean number of Merz grids

G

BC

represents the percentage of bone coverage per grid

S

BC

represents the absolute percentage of bone coverage per section

2.10.3 Mechanical Testing of the Bone-Implant Interface

Implant push out and pull out tests are two established assessment tools used in

investigating the strength of a bone-implant interface. The final section of this report

examines some of the factors that a�ect the strength of a bone-implant interface.
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Figure 2.6: Histomorphometry Measurement of bone ingrowth with a Merz grid -

Reprinted from (Merz and Schenk, 1970) with kind permission from Karger Publishers

2.10.3.1 Implant Pullout and Pushout Test

The shear strength of bone–implant interface of explanted in vivo samples are usually

evaluated using pullout and pushout tests. This provides an opportunity to analyze the

mechanical competence of a biological fixation for orthopaedic and dental implants. Such

tests are commonly applied in testing the e�ect of implant materials, surface texture,

porosity, cross-sectional geometry and surface composition resulting from bone ingrowth

or bone apposition to the implant surface. In addition, these tests are usually used on

cylindrical implants that have previously been implanted in vivo for a period of time (An

and Draughn, 2000).

In a typical test, a load is applied to the implant via a device connected to the

crosshead of the materials testing machine and a force-displacement curve is recorded until

the test is terminated with failure of the bone-implant interface (Berzins and Summer,

2000). The ultimate shear strength of the interface is then calculated as:

‡ =
I

Fmax
fi ◊ DL

J

(2.7)

Where

‡ is the ultimate shear strength at the interface
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D is the outer diameter of the cylindrical implant

L is the length of the cylindrical implant in contact with bone

2.10.3.2 Factors that a�ect the Strength of Bone-Implant Interface

Several factors a�ect the strength of an in vivo bone-implant interface. These include

patient and medication factors, implant factors, local and in vitro factors, as well

as surgical and hospital factors (An and Draughn, 2000). Patient factors such as

age, lifestyle, inflammation and history of bone disease, medicational and local e�ect

of systemic hormones and growth factors, non-steroidal anti-inflammatory drugs, and

electromagnetic or electrical stimulations are said to also a�ect the strength of the

bone-implant interface (McKoy et al., 2000).

Additionally, other implant factors including implant geometry, surface coatings and

configurations, material properties of the implant, implant design and stress shielding,

is also reported to influence the strength of the interface. Specimen preparation prior

to surgery, surgical skills of surgeons and the nature of post-operative care given to

patients after implant surgery are also reported to have an e�ect on the strength of the

bone-implant interface (Brunski, 1992; McKoy et al., 2000).

2.11 Chapter Summary

Although various polymeric materials are available and have been investigated for tissue

engineering, no single biodegradable polymer or composite has yet been able to meet all

requirements for bioengineered sca�olds. Moreover, the challenge of seeding relatively

thick sca�olds with cells and maintaining cell viability for prolonged periods also remains

(Marra et al., 1999). Nanocomposites infused with HA particles and biodegradable

polyurethane have attracted attention for their good osteoconductivity, osteoinductivity,

biodegradability and mechanical strength (Armentano et al., 2010).

It is therefore believed that such composites could be used to circumvent the above
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mentioned limitations and act as ideal sca�old for bone tissue engineering. The sca�old

developed as part of this project, was seeded with osteoblasts and mesenchymal progenitor

cells, and used as an in vitro biomimetic model of bone. It was further used to examine

bone growth, with an optimistic long-term goal of serving as a testing kit for orthopaedic

implants and also as a bone-graft substitutes.
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MATERIALS AND METHODS

3.1 Introduction

This chapter outlines materials and methods used in attaining the results presented in the

subsequent chapters of this thesis. Unless otherwise stated, all experimental procedures

were carried out with facilities available in the S20 Biomaterials and Tissue Engineering

Laboratory of the Kroto Research Institute, University of She�eld, UK.

3.2 Polyurethane

Most common polymers such as polystyrene and polyethylene have fairly simple chemical

structures as they are synthesized from one or two monomers. Polyurethanes on the other

hand, have more complex chemical structures with a higher degree of freedom. This

results from the fact that polyurethanes are synthesized from three starting monomers,

namely a diisocyanate and a chain extender which forms the hard segment, and a

macroglycol or polyol which forms the soft segment. Such features make it possible

to synthesize a wide variety of polyurethane materials with unique compositions, and

di�erent physiochemical and mechanical properties.

Since its first synthesis by Otto Bayer and co-workers in 1937 (Ulrich, 1983),

polyurethanes have been used extensively to develop a variety of products, such as
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foams, paints, adhesives, protective casing, home furnishing etc. They have also

been used in developing implantable medical devices and biomaterials for biomedical

applications since 1958 (Pangman et al., 1958; Pangman, 1968). This is because of their

desirable biocompatibility, excellent mechanical properties and long lasting durability.

By capitalizing on PU’s alternating chains of hard and soft segments with urethane links,

one can select the right type and quantity of intermediates to develop polyurethanes with

either rigid, flexible or thermoplastic elastomer structures.

3.2.1 Polyurethane (PU) Solutions

In creating any polymer solution, the interaction between polymer segments and

solvent molecules is very important for successful dissolution, as the extension of high

polymer molecules in solution is markedly influenced by the existence of this interaction

(Kuwahara, 1963). It was therefore important to dissolve polyurethane pellets in an

appropriate solvent, in order to attain a consistent and uniform solution.

After obtaining medical grade polyurethane pellets from Biomer Technology, UK,

the ability of the pellets to dissolve completely in di�erent solvents was examined.

The solvents Dimethylformamide, Tetrahydrofuran, Dichloromethane, Xylene, Dioxane

and Ethanol were tested in isolation and in combination at di�erent concentrations to

dissolve PU pellets. Simultaneously, various PU solute concentrations were also explored

to identify the best solute-solvent combination for a timely, e�ective and consistent

dissolution.

These solvents di�er in chemical composition, polarity, viscosity, boiling point,

solubility, evaporation rate, density and electrical conductivities, amongst others. Such

key parameters a�ect polymer solubility, and the overall viscosity and surface tension of

the final solution, which could in turn a�ect sca�old fabrication parameters, hence it is

important to identify the best solvent combination.
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3.2.2 PU and PU-HA Sca�old Materials

All the sca�olds fabricated as part of this study were polyurethane based. Three di�erent

aromatic medical grade polyether-urethanes obtained from Biomer Technology, UK, were

used. The polymers, listed below, were composed of 4,4’-diphenylmethane diisocyanate,

polyether diol, and 1,4 butane diol, and had di�erent molecular weights. Mn and Mw are

measured in g/mol.

1. Z1A1 (Mn-148,654 Mw-286,902, PD-1.93)

2. Z3A1 (Mn-143,566 Mw-272,857, PD-1.90)

3. Z9A1 (Mn-100,428 Mw-197,459, PD-1.97)

For sca�old fabrication, all concentrations of polyurethane pellets were dissolved in

Dimethylformamide (DMF) and Tetrahydrofuran (THF) solvents, obtained from Sigma

Aldrich, UK and Fisher Scientific, UK, respectively. Additionally, all fabricated composite

sca�olds were prepared from PU solutions doped with either sintered micro HA (<5 µm)

from Captal

r
S, Plasma Biotal, UK or nano-sized HA particles (<200 nm) from Sigma

Aldrich, UK.

3.2.2.1 Optimizing Solution Concentration

Highly polar and organic solvents DMF and THF are popularly used in dissolving and

synthesising polyurethane (Khil et al., 2003; Gorna K., 2006; Tsui and Gogolewski, 2009).

They were also found to be the best amongst all the solvents tested for dissolving the

PU pellets used in this study, and were therefore used in making all sca�old fabricating

solutions.

For Z9A1, PU solutions with concentrations of 12-32 wt% in 100% DMF,

70/30 DMF/THF and 50/50 DMF/THF solvents were prepared, whilst solutions of

13-18 wt% in similar solvent combinations were made for Z3A1. For Z1A1, 10-20 wt% in

100% DMF, 70/30 DMF/THF, 50/50 DMF/THF and 100% THF solvents were prepared
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whilst 12-20 wt% of Tecoflex solutions in 100% DMF and 80/20 DMF/THF solvent

combinations were also made.

These solutions are summarized in table 3.1 on page 68. In all preparations, solutions

were stirred with magnetic beads on the UC151 ceramic plate stirrer for a period of

24 hours and a rotation speed of 500-600 rpm. However, extremely viscous solutions

were stirred for 48-72 hours.

Table 3.1: Optimization of Solution Concentration

Type of PU wt% Conc. Solvent Combinations(v/v)

Z1A1 10-20 100% DMF, 70/30 DMF/THF, 50/50 DMF/THF & 100% THF

Z3A1 13-20 100% DMF, 70/30 DMF/THF & 50/50 DMF/THF

Z9A1 12-32 100% DMF, 70/30 DMF/THF & 50/50 DMF/THF

Tecoflex 12-20 100% DMF & 80/20 DMF/THF

3.2.2.2 Optimum Solution Concentration

With identical chemical composition but varying molecular weights, it was established

as part of this study that each of the PU pellets from the ZnA1 series (n=1/3/9), had

ideal solute concentrations that produced a consistent and uniform dissolution in an

appropriate solvent after 24 hours of mixing.

Z1A1 pellets dissolved best at a maximum concentration of 10 wt%, whilst Z3A1 was

best at 15 wt%. Additionally, Z9A1 pellets dissolved best at a maximum concentration

of 25 wt% for electrospinning and 20 wt% for particulate leaching and other fabrication

techniques. The dissolution process is summarized in Figure 3.1 on page 69. It was

also observed that, solutions made from solvents containing a higher amount of DMF,

were more viscous than solutions made with a higher THF content at the same solute

concentration. Thus, 15 wt% Z3A1 in 100% DMF, was more viscous than 15 wt% Z3A1

in 50/50 DMF/THF.
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(a) (b) (c)

(d) (e)

Figure 3.1: Dissolution of ZnA1 PU pellets (a) ZnA1 PU pellets being measured on a

balance (b) Measured ZnA1 PU pellets in glass beakers (c) DMF and THF solvents (d)

ZnA1 PU solution being stirred on a mixer (e) ZnA1 PU Solution

3.2.3 PU-HA Composite Solutions

For composite solutions, 15 wt% Z3A1 in 70/30 DMF/THF PU solutions were doped with

either sintered micro HA (<5 µm, Captal

r
S, Plasma Biotal, UK) or nano-sized HA (<200

nm, Sigma Aldrich, UK) particles in a ratio of 3:1, PU: HA for most solutions. However,

some composite solutions containing were made with combined nano and micro-HA

particles in a ratio of 3:0.5:0.5, PU: mHA: nHA, were also prepared and simply denoted

as PU:cHA.

For Z9A1 composites, 25 wt% Z9A1 in 70/30 DMF/THF was doped with either nano

and micro-HA particles in a ratio of 5:1 PU: HA. Note that, the 25 wt% concentration of

Z9A1 used for composite solutions is lower than the initial 27 wt% used in non-composite

formulations. This is because the 27 wt% PU solutions were too viscous to enable

adequate distribution of HA particles. In all preparations, doping with HA particles

was performed by physical mixing on the UC151 ceramic plate stirrer, using magnetic

beads at a rotation speed of 500 rpm for 24 hours at room temperature.
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3.3 Sca�old Fabrication

A sca�old is a well-designed three-dimensional template used to guide tissue formation

in vitro and/or in vivo. Sca�olds enhance cell attachment and distribution, promote cell

ingrowth, support the synthesis and organization of extracellular matrix, transportation

of other biological molecules, and ultimately, facilitate the replacement of damaged

functional tissue and organs.

Ideally, a sca�old should posses a high surface area, inter-connected porosity and

have an optimum pore size. Additionally, it should present with desirable mechanical

properties and maintain structural tissue integrity during development and function. It

should also be biocompatible and facilitate cell adhesion, migration and growth, and also

promote di�erentiation.

Electrospinning, freeze drying, particulate leaching and freeze extraction were the

main fabrication methods investigated as part of this project. PU-only and PU-HA

composites solutions were used to engineer sca�olds aimed at enhancing bone regeneration

and also for developing an in vitro bone model for implant testing.

3.3.1 Electrospinning Fabrication Technique

Electrospinning is a sca�old fabrication technique widely used for creating fibres with

diameters in the nanoscale or microscale range. It is an advantageous fabrication method

as it produces sca�olds with fibres that mimic the extracellular matrix structure. The

extracellular matrix in the body is a complex three-dimensional network for cell growth,

proliferation and di�erentiation, and consists of a cellular matrix of nanofibres with

nanopores that create various local micro-environments (Zhang et al., 2005).

The electrospinning set-up comprises of a syringe pump (one or more), a high voltage

source and either a static or rotating collector drum, as shown in Figure 3.2 on page 71.

During operation, a high voltage (usually above 12 kV) is applied to the capillary tube

filled with polymer solution and held at the tip of the capillary via surface tension.
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Figure 3.2: The Electrospinning Set-Up

This is followed by a mutual charge repulsion caused by the application of an induced

electrical field within the polymer solution, which directly opposes the surface tension of

the polymer solution. As the intensity of the electrical field increases, the charge repulsion

overcomes the surface tension to form a polymer jet. Finally, the ejected polymer jets

repel each other as the solvent evaporates to form fibres, whilst travelling to the grounded

collector (Lu et al., 2013).

3.3.1.1 Optimization of Electrospinning Parameters

Electrospun sca�olds with di�erent fibre morphology and thickness can be produced by

alternating intrinsic solution properties, e.g. viscosity, conductivity and surface tension.

Additionally, operational conditions such as humidity, temperature, the hydrostatic

pressure in the capillary tube, strength of the electrical field applied, and distance

between the tip and collector can also a�ect the structure of fibres. These properties

were investigated as part of this study to find the appropriate set of conditions needed

to spin PU-only and PU-HA composite sca�olds.

The optimization process was carried out with either a single or combined set of

syringes containing a PU-only solution. A high voltage of +15-21 kV was connected to

the tip of 20 gauge luer stub adapter(s) to charge the polymer solution and cause jet

formation at a flow rate of 3-5 ml/hr and a tip to collector distance of 15-25 cm. A mat

of random polymeric jets was collected on an aluminium foil wrapped around a grounded
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mandrel, rotating at the rate of 145-300 rpm. At the end of each process, the aluminium

foil was removed and dried in a vacuum oven at a negative pressure of 1020 mBar for 12

hours to evaporate any remaining solvent.

3.3.1.2 Non-Aligned and Aligned Electrospinning Parameters

After optimizing parameters of solution concentration, tip to collector distance, high

voltage, flow rate, number of needles, and speed of the rotating drum, a protocol was

developed for creating electrospun PU-only and PU-HA composite sca�olds.

To create random electrospun sca�olds, either PU-only or PU-HA composite solutions

were placed into four 5 ml syringes with 20 gauge luer stub adapters and spun at a voltage

of + 16.5 kV, a flow rate of 3 ml/hr and a tip to collector distance of 20 cm, at room

temperature. A mat of randomly orientated polymeric fibres was collected on a sheet of

aluminium foil wrapped around a grounded metallic mandrel, rotating at 150 rpm for

all non-aligned sca�olds with the exception of R_Z3-PU, R_Z3-mHA and R_Z3-nHA

from the Z3A1 composite sca�old group, which were electrospun at a rotation speed of

300 rpm. After each electrospinning process, the aluminium foil was removed and the

fibre mat was dried in a vacuum oven at a negative pressure of 1020 mBar for 12 hours

to evaporate any remaining solvent.

To create aligned Z3A1 electrospun sca�olds, the above procedure was repeated with

a modified speed of the rotating drum. Thus, for experiments in which aligned and

non aligned Z3 sca�olds were directly compared, the speed was 300 rpm for non-aligned

and 1300 for aligned fibre sca�olds. Solvent and electrospinning conditions used in

creating sca�olds for biological characterization are discussed in Section 3.7.3.2 on

page 94 of this chapter and summarized in table 3.2 on page 73.

3.3.2 Particulate Leaching Fabrication Technique

Particulate leaching is a relatively simple and common technique used to fabricate

sca�olds for various tissue engineering applications. It consists of combining either salt

or sugar particles of a particular size (as porogens) with polymer solution in a predefined
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Table 3.2: Parameters used in preparing electrospun sca�olds for biological characterization

Name PU wt% HA wt% Vol. ratio of DMF (%) Vol. ratio of THF (%) Spin Speed (rpm)

Z9-100 27 0 100 0 150

Z9-70 27 0 70 30 150

Z9-50 27 0 50 50 150

Z3-100 15 0 100 0 150

Z3-70 15 0 70 30 150

Z3-50 15 0 50 50 150

Z9-PU 25 0 70 30 150

Z9-mHA 25 5 70 30 150

Z9-nHA 25 5 70 30 150

R_Z3-PU 15 0 70 30 300

R_Z3-mHA 15 5 70 30 300

R_Z3-nHA 15 5 70 30 300

A_Z3-PU 15 0 70 30 1300

A_Z3-mHA 15 5 70 30 1300

A_Z3-nHA 15 5 70 30 1300

mold for a period of time to allow the solvent to evaporate. After the solvent has

evaporated, the sugar or salt particles, which dissolve in water are leached away to obtain

a porous three dimensional sca�old.

Particulate leaching is advantageous for creating thicker 3D sca�olds with particular

pore sizes and improved pore interconnectivity, as the pore size can be controlled by the

size of the porogen crystals and its porosity by altering the salt/polymer ratio.

3.3.2.1 Particulate Leaching with Sugar Particles

In making initial porous sca�olds by particulate leaching, samples were prepared using

1.4 g of granulated sugar particles with an estimated size of 200 µm as a porogen. The

sugar particles were added to 15 wt% or 25 wt% Z9A1 solutions made from 100% DMF

solvent, and stirred. The solutions were then poured into glass disks and the solvent was

evaporated under vacuum for 24 hours. Enough distilled water was poured into the glass

disk to cover the entire surface of the sca�old and for the sugar particles to leach out over
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4 day period. The water was changed every 24 hours.

3.3.2.2 Particulate Leaching with Salt Particles

Due to the di�culty experienced with leaching sugar particles from sca�olds

manufactured with the PL technique, two novel particulate leaching casting techniques

were developed using salt particles with an estimated size of about 250 µm as a porogen.

These included a layer-by-layer casting technique and a physical mixing technique.

3.3.2.2.1 Layer-by-Layer Particulate Leaching (LbL-PL)

The layer-by-layer casting technique as its name suggests, consisted of adding alternating

layers of polymer and salt in a glass disk. In a fume cupboard, a 100 mm glass disk

was first filled with 17.5 g of salt, before 12 ml of polymer or composite solution was

evenly distributed onto the salt platform. Three more layers of 17.5 g of salt and 12 ml

of solution were added in an alternating pattern before finally adding 10 g of salt onto

the surface of the cast to prevent a thick non-porous polymer surface. This process is

illustrated in Figure 3.3 on page 74.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Layer-by-Layer Particulate Leaching Protocol (a) Empty Glass Disk (b) 1st

Salt Layer (c) 1st Solution Layer (d) 2nd Salt Layer (e) 2nd Solution Layer (f) 3rd Salt

Layer (g) 3rd Solution Layer (h) Final Salt Layer
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The cast was then allowed to solidify for 4 days through solvent evaporation, before

leaching the salt particles with 2000 ml of deionised water on a rotating spinner at a rate

of 600 rpm for 4 days. The water was changed every 24 hours. Once all the salt had

been removed, the porous construct was dried at room temperature in a fume cupboard

for 2 days. The leaching out and drying process is shown in Figure 3.4 on page 75.

(a) (b)

Figure 3.4: Leaching and drying stages of the PL technique (a) Leaching salt particles

from solidified cast (b) Drying porous PL sca�olds in a fume cupboard

In developing a protocol for the layer-by-layer casting technique, all the three types

of polyurethanes in the ZnA1 series were examined. The technique was used for creating

PU-only sca�olds from 10 wt% Z1A1 solution, 15 wt% Z3A1 solutions and 20 wt% Z9A1

solutions made with 100% DMF solvent. However, to allow for consistency and

uniformity in sca�old fabrication, PU-only particulate leached sca�olds used for biological

characterization were made from Z3A1 solutions prepared with 70/30 DMF/THF solvent.

To create composite sca�olds, Z3A1 PU solutions were doped with either micro, nano

or combined micro and nano-sized HA particles in the ratio of 3:1, PU:HA. Additionally,

micro HA composites with higher amounts of HA in the ratio 2:1, PU:HA, were also

created to access the e�ect of incorporating high HA quantities on sca�old fabrication.

Homogenized PL Sca�olds (H-PL)

Homogenization is the process of further reducing the size of a substance to extremely

small particles and uniformly distributing it throughout a fluid. In order to produce

composite sca�olds with improved mechanical properties, a homogenizer was used to

carefully mix HA particles with the PU solution.

Combining polyurethane with hydroxyapatite has been reported in literature to
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improve the mechanical properties of the resulting composite, as long as a strong

interfacial bond strength is established between the ceramic phase and the polymer matrix

(Attawia et al., 1995; Boccaccini and Maquet, 2003; Martinez-Valencia et al., 2011). It

was therefore hypothesised that, mixing HA particles using a homogenizer could greatly

improve the interfacial bond between the PU solution and the particles, as compared

to, incorporating particles by just physical mixing with magnetic beads on ceramic plate

stirrer.

The homogenizer was used to create composite PU-HA solutions with nano, micro

and combined HA particles in a ratio of 3:1 for PU:mHA and PU:nHA composites,

and 3:0.5:0.5 for PU:mHA:nHA (or simply as PU:cHA) for combined HA composites.

Prior to sca�old fabrication,previously synthesized 15 wt% Z3A1 in 70/30 DMF/THF

PU solutions were homogenized with the HA particles at 5000 rpm for 20 mins. H-PL

composite sca�olds were then fabricated by the layer-by-layer method described in Section

3.3.2.2.1 on page 74.

3.3.2.2.2 Physical Mixing Particulate Leaching Technique(PM-PL)

The LbL-PL technique took an average of 50 mins to cast sca�old on a glass disk.

Although this is an e�ective fabrication method for making thicker and highly porous

3D sca�olds, the length of time it took to reproduce a large number of glass disks

was significantly long. Therefore, a more e�cient mass production method for creating

reproducible PL sca�olds in a shorter period of time was needed. A novel physical

mixing particulate leaching protocol was therefore developed to address this limitation.

The modified technique required as little as 5 mins to e�ciently create a PM-PL sca�old,

which was a tenth of the time needed to create a LbL-PL sca�old.

The process as shown in Figure 3.5 on page 77, consisted of adding 90 g of salt porogen

into a 120 mm glass disk. 48 ml of polymer or composite solution was then added to

the salt in the disk and rigorously stirred with a metallic spatula for 5 mins or until a

homogeneous dispersion was attained. A further 12 ml of polymer or composite solution

was then added to the dispersion and it was rigorously stirred again. Finally, the 10 g of
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salt was used to cover the surface of the cast to prevent a non-porous surface. A total of

100 g of salt was mixed with 60 ml of solution in a 120 mm glass disk whilst 80 g was

used with 48 ml of solution in a 100 ml glass disk. Solutions used for fabricating PM-PL

sca�olds had the same composition to those used in making homogenized sca�olds.

(a) (b)

(c) (d)

Figure 3.5: PM-PL technique (a) Salt porogen in glass disk (b) Adding

polymer/composite solution (c) Physical stirring with spatula (d) Finished cast topped

with salt

3.3.3 Freeze Drying Fabrication Technique

Freeze drying is a low-pressure, low-temperature, condensation process widely used for

manufacturing pharmaceuticals, biotech products and emergency food supplies. The

technique is also gradually becoming a popular fabricating method for creating porous

sca�olds (Haugh et al., 2009; Lv and Feng, 2006), due to its versatile and simple approach

to controlling pore structures. The ultimate goal of freeze drying is to create a stable

material by removing solvent from solutions in a manner such that, the sensitive molecular

structure of the active substances are least disturbed (Ganguly et al., 2012).

This is done by a three-stage process, which consists of unidirectional freezing of

slurries, followed by the sublimation of crystals and subsequent sintering. This creates
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a porous body with unidirectionally aligned channels, where pores are a replica of the

solvent crystals. In e�ect, pore structures in freeze drying can be easily controlled with

the amount of solid contents in slurry, freezing conditions and sintering temperatures

(Jeon et al., 2015).

As part of this project, 8 solutions of either 15 wt% or 20 wt% of Z9A1 or Z3A1

PU solutions, made with either 70/30 DMF/THF or 50/50 DMF/THF, solvents were

prepared as described in Section 3.2.2.2 on page 68. The solutions were poured into

glass disks and lyophilized with a freeze dryer at She�eld Hallam University.

For the freeze drying process, samples were initially frozen at a temperature of -99

o

C

and a pressure of 15 mBar for an hour, after which the pressure was reduced from 15 mBar

to 10 mBar for 5 hours, and then for minute intervals at 6, 4, 5, 3 and 2 mbar to allow

the solvent to sublimate. The pressure was further reduced to 1 mBar for an hour and

then to 0 mBar for almost 21 hours by which time complete sublimation had occurred.

Finally, the pressure was gradually increased from 0 to 10 mBar in the last 10 minutes

to create rigid porous PU sca�olds. The entire process lasted about 28 hours.

3.3.4 Freeze Extraction Fabrication Technique

Phase separation is the process of transforming a polymer in a controlled manner, from

a liquid state to a solid state. It can be initiated by solvent evaporation as in the case

of solvent casting, thermal precipitation or by precipitation with a non-solvent (Tsui

and Gogolewski, 2009). Similar to freeze drying, freeze extraction is a form of phase

separation.

It involves a homogeneous multicomponent system which becomes thermodynamically

unstable under certain conditions, and hence separates into more than one phase in order

to lower the system’s free energy. A polymer solution undergoing freeze extraction would

separate into two phases, a polymer-rich phase and a polymer-lean phase. Upon removal

of the solvent, the polymer-rich phase subsequently solidifies. Freeze extraction, which is

a solid-liquid type of phase separation, can be achieved by lowering the temperature in a

polymer solution to induce solvent crystallization. Upon removal of the solvent crystals
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through solvent exchange and solid precipitation, the space originally taken by the solvent

crystals becomes pores, creating a porous sca�old for tissue engineering (Ma, 2004).

The freeze extraction method was used in fabricating thicker sca�olds as part of this

project. 20 wt% Z9A1, 15 wt% Z3A1 and 10 wt% Z1A1 solutions in 100% DMF solvent

were prepared as described in Section 3.2.2.2 on page 68. The solutions were poured

into individual glass disks and frozen at di�erent temperatures of -196

o

C, -80

o

C, -20

o

C

and also at +20

o

C (solvent casting) for 8 hours, to investigate the best temperature

for creating highly interconnected porous PU sca�olds with uniform pore sizes. After 8

hours, 20 ml of distilled water was poured unto each polymer cast to cover the entire

surface and precipitate the PU sca�olds at room temperature for 4 hours. The sca�olds

were then removed from the glass molds and allowed to dry at room temperature for

24 hours.

3.4 Physical Characterization

This section of the chapter outlines various physical characterization techniques

performed on fabricated sca�olds to examine detailed morphological features. It consists

of scanning electron microscopy and micro-computed tomography investigations into

surface features, internal structures, fibre diameter and orientation, pore size and pore

interconnectivity, and overall porosity of fabrication sca�olds. The section also includes

various physical processing techniques carried out as part of sample preparation prior to

biological characterization.

3.4.1 Scanning Electron Microscopy (SEM)

The Philips XL-20 scanning electron microscope at the Department of Biomedical Science

of the University of She�eld was used to examine morphological and topographical

details of fabricated sca�olds. Prior to imaging, cut and dried samples of sca�olds were

mounted unto SEM studs and sputter-coated with gold powder. Coated sca�olds were

imaged at an accelerating voltage of 20 kV. For electrospun mats, fibre diameter and
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orientation, inter-particle distance and bead formation were investigated with SEM whilst

pore diameter, surface roughness and porosity were investigated for sca�olds fabricated

using the particulate leaching, freeze drying and freeze extraction techniques.

3.4.1.1 SEM of Electrospun Sca�olds

SEM was used to examine morphological and topographical details of the top and bottom

surfaces of electrospun sca�olds. Prior to imaging, samples were mounted onto 12.5 mm

aluminium stubs using double-sided carbon adhesive tabs (12 mm) or sticky tabs (Agar

Scientific, UK), and sputter-coated with gold powder once. Coated sca�olds were imaged

at a spot size of 3.0 and a magnification of 1250x.

Average fibre diameter and orientation, inter-particle distance and the size of formed

beads were analyzed using ImageJ software version 1.48 and the results exported as

Microsoft Excel files. The Excel results were then binned with MATLAB R2014b software

to attain an average distribution of fibre diameters. The bulk porosity of electrospun fibres

was also calculated as shown in Equation 3.1 below.

Bulk Porosity =
I

Density of Electrospun Scaffold

Density of P lain Polyurethane

J

◊ 100% (3.1)

3.4.1.2 SEM of Particulate Leached, Freeze Dried & Extracted Sca�olds

SEM was used to examine pore diameter and shape, surface roughness, porosity, presence

of HA and other impurities on the top of particulate leached, freeze dried and freeze

extracted sca�olds. It was also used to image along the sca�old’s cross-section to explore

pore interconnectivity and potential non-porous regions.

Before imaging, samples were sectioned and mounted onto 25 mm aluminium stubs

using Leit adhesive carbon tabs (25 mm) or silver paste (Agar Scientific, UK) to improve

electrical conductivity and facilitate detailed imaging. Once securely mounted, the

samples were sputter-coated with gold powder three times to create an ample conductive

layer of metal on the sample. This suppressed surface charging, reduced thermal damage

and improved the emission of secondary electron signal, allowing the sca�old to conduct
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evenly and posses a homogeneous surface needed for topographical analysis and imaging

(Leslie and Mitchell, 2007).

The surface of coated sca�olds were imaged at a spot size of 3.0 and at field of views

with scale bars of 20 µm, 50 µm, 100 µm, 200 µm, 500 µm and 1 mm. The cross-section

of coated samples was imaged at a scale bar of 2 mm.

3.4.1.3 SEM of Nano-HA, Micro-HA & Salt Particles

Sintered micro-HA from Captal

r
S Plasma Biotal, UK, nano-sized HA particles from

Sigma Aldrich, UK, cooking salt and everyday value table salt from TESCO, UK used

for particulate leaching, were also imaged with SEM to examine their respective particle

sizes, surface area and the shape of the particles.

A spatula was used to scoop a miniature portion of each particle-type, which were

placed onto a clean hard surface. 12.5 mm aluminium stubs covered with double-sided

carbon adhesive tabs (12 mm) (Agar Scientific, UK), were dipped into the particles and

gently tapped to ensure a uniform distribution. The particles were then sputter-coated

with gold powder once and imaged at an accelerating voltage of 20 kV, a spot size of

3.0, and at field of views with scale bars of 2 µm, 5 µm, 10 µm, and 20 µm for nano-HA

particles; 5 µm, 10 µm, and 20 µm for micro-HA particles and 200 µm, 500 µm, 1 mm,

and 2 mm for the salt particles.

3.4.2 Micro-Computed Tomography Porosity Estimation

Micro-CT is a high resolution three dimensional imaging technique that utilizes x-rays to

scan cross-sections of a physical object. After imaging, the scanned images can be used to

recreate a virtual 3D model of the sample without destroying the original object. Its an

advantageous imaging tool as it requires minimum sample preparation, is non-destructive

and allows for detailed high resolution 3D imaging in a short period.

To determine pore interconnectivity and overall porosity of particulate leached

sca�olds, the Skyscan 1172 micro-CT scanner in the Bone Analysis Laboratory, Mellanby

Centre for Bone Research at the University of She�eld Medical School was used to scan
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fabricated sca�olds. Acquisition conditions of 44 kV, 226 uA, no filter, with an image

pixel size of 9.08 µm, a rotation step of 0.7

o

, and an exposure time of 295 ms were used

to scan the dried PL sca�olds after fabrication.

The NRecon

R•
software version: 1.6.9.4 from Skyscan, Belgium, and a

GPUReconServer engine version: 1.6.9, were used to reconstruct the acquired image

slices. Approximately, 537 slices of images were generated for each sample. Reconstructed

images were processed with CTAn software version: 1.13.11.0+ from SkyScan, Belgium.

Selected regions of interest (ROIs) were saved and loaded as new data sets. An

appropriate threshold (PU:148-high & ≥40-low, mHA and nHA: 255-high & ≥148-low)

was then applied to the ROI’s for porosity estimation and standard 3D analysis, and a 3D

model was also generated for each ROI. The standard 3D analysis included calculations

of the volume of open pores, volume of closed pores, total percentage porosity and

connectivity.

3.4.3 Laser Cutting of Sca�olds

The Epilog Mini 40 W laser cutter from Epiloglaser, USA in the Wolfson Biomaterials

Laboratory (J9, Sir Robert Hadfield Building) of the Department of Materials Science was

used to cut sca�olds into appropriate sizes prior to SEM and in vitro cell culture, in vivo

experiments, and other physical, chemical and mechanical characterization studies. Prior

to cell culture, electrospun sca�olds were cut with vector settings at a speed of 80% and

a laser power of 6% into circular disks with a diameter of 1.6 cm.

Particulate leached sca�olds required repeated cutting due to their relatively high

thickness of 5-10 mm. It was therefore necessary to reduce the speed and power settings

when cutting PL sca�olds to prevent burning, especially along the edges.

PL sca�olds with and without HA particles were therefore cut with vector settings at

a speed of 20% and a laser power of 4% into cylindrical tubes with an internal diameter

of 0.5 cm and an external diameter of 1.5 cm. PU-only sca�olds were cut repeatedly for 8

times, whilst PU-mHA and PU-nHA sca�olds were cut for 10 times to ensure a complete

top to bottom precision cut.
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3.4.4 Cutting of Titanium Implants

Investigating bone matrix deposition onto commercially available small orthopaedic

biomaterials was the final objective of this project. Two types of titanium orthopaedic

screws from Smith and Nephew, UK were used for this study. Cortex and Osteopenia

titanium alloy (Ti-6Al-4V) screws were cut into smaller 10 mm length dimensions prior

to cell culture.

Marked samples were securely clamped and cut with the manual AbrasiMet 250

Chop-Cutter from Buehler, Germany, located in the micro-preparation laboratory on

the I-Floor of the Sir Robert Hadfield Building. As shown in Figure 3.6 on page 83, the

AbrasiMet 250 was equipped with a 254x1.5x32 mm 102507 P premium cut-o� wheel

blade used for cutting ductile materials such as Ti & Ti-alloys and Zi & Zr-alloys.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Cutting Titanium Screws (a) AbrasiMet 250 chop-cutter (b) Interior view

of AbrasiMet 250 chop-cutter (c) 102507 P premium cut-o� wheel (d) Cortex and

Osteopenia screws prior to cutting (e) Cortex screws after cutting (f) Osteopenia screw

after cutting
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3.5 Chemical Characterization

Chemical-structural characterization of fabricated composites was carried out using

Fourier Transform Infra-red spectroscopy (FTIR) and Raman spectroscopy in the Wolfson

Biomaterials Laboratory and the S21 laboratory of the Kroto Research Institute, both

at the University of She�eld.

Spectroscopy is an analysis technique used to study the interaction of electromagnetic

radiation with atoms and molecules. It operates on the principle of light scattering or

absorption, which creates component energies upon interaction with matter.

All matter is made up of atoms and molecules in a stable or minimum energy state, E

0

,

which could be an electronic, vibrational or rotational state. With spectroscopy, a change

in energy state occurs when electromagnetic radiation interacts with matter. This changes

the stable state of the particles to an excited state, E

ú
, creating an energy di�erence, as

shown in Equation 3.2 below. Spectroscopy is therefore an advantageous technique for

analysing the chemical composition and molecular interaction of unknown materials and

also useful for exploring the physical and chemical properties of materials (ur Rehman

et al., 2012).

Energy Di�erence = Eú ≠ E
0

(3.2)

3.5.1 FTIR Spectroscopy

Fourier transform infra-red spectroscopy (FTIR) is a widely used analytical technique

routinely applied to the characterization of biomaterials due to its ability to provide

detailed information on the chemical composition of molecules.

An infrared spectrum generated with FTIR spectroscopy represents the chemical

fingerprint of a sample, hence is useful for qualitative and quantitative analysis. It

operates on the principle that chemical bonds or groups of bonds vibrate at characteristic

frequencies, and that, molecules have specific vibrational modes that can be activated

when hit by photons of a specific energy level (Dimitrova et al., 2009).
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The Nicolet 8700 Fourier transform infra-red spectrometer (FTIR) from Thermo

Fisher Scientific Inc., USA, equipped with either an Attenuated Total Reflectance (ATR)

or a Photo-Acoustic (PAS) sampling cell, was used in this study. ATR sampling was used

for initial characterization of random Z9A1 electrospun sca�olds whereas PAS sampling,

which allows the analysis of samples without the need of sample preparation, was used

for both random and aligned Z3A1 electrospun sca�olds and Z3A1 particulate leached

samples.

For ATR sampling, a circular sample with a diameter of about 1 cm was placed in the

sample chamber and the spectra measured at a resolution of 4 cm

≠1

, accumulating over

a total of 230 scans. With PAS sampling, the PAS cell was purged with helium gas. All

PAS spectra were recorded at 4 cm

≠1

resolution, accumulating over a total of 256 scans.

Both ATR and PAS spectral data were acquired and processed using the OMNIC 7.4

TM

software.

3.5.2 Raman Spectroscopy

Raman Spectroscopy is a vibrational spectroscopy technique used for analysing the

chemical composition, molecular structure, and molecular interactions of non-biological

samples, as well as cells and tissues. It is based on the scattering of monochromatic light

or laser in the visible, near infra-red and near-ultraviolet region of the electromagnetic

spectrum.

The Thermo-Electron Nicolet Raman spectrometer was used to analyse the chemical

composition of fabricated electrospun and particulate leached sca�olds. It was also used

to confirm the presence of hydroxyapatite in PL sca�olds before and after autoclaving.

All spectra were collected with the bench set-up described as follows. A 532 nm

green laser with a power of 10 mW, a pinhole aperture of 50 µm, resolution of 6 cm

≠1

,

an objective of 10x and a spot size of 2.1 µm was used to capture all data with a 10 s

exposure over 3 sample accumulations. All spectral data were acquired and processed

using the OMNIC 7.4

TM

software.
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3.6 Mechanical Characterization

Bone is a load bearing tissue that functions to provide structure and support to the body.

Hence its mechanical features are of great importance to its ability to function e�ectively.

Although the mechanical properties of bone have been shown to vary at di�erent

structural levels, it is unclear whether this discrepancy is due to how bone is tested or

the influence of its microstructure (Rho et al., 1998). For example, the Young’s modulus

of large cortical wet specimens has been shown to be tested in tension in the 14–20 GPa

range (Reilly et al., 1974), whilst that of micro-machined cortical wet specimens tested

in bending was 5.4 GPa (Choi et al., 1990).

As part of this study, the mechanical properties of fabricated sca�olds were analysed

with the ElectroForce 3200 materials testing machine from Bose, USA. Fabricated

sca�olds were cut with the Epilog laser as described in Section 3.4.3 on page 82 and

measured with vernier callipers before mounting. Mounting was performed either between

two tensile grips or compression plates to give a desired gauge length.

Deformation was measured by the movement of the cross-head, and load measured

using a 22 N load cell for tensile tests and 450 N load cell for compression tests.

The resulting load/deformation curves generated by the Wintest software

R•
were easily

converted to a stress-strain curves by dividing by the sample bulk cross-sectional area,

as described in Section 3.6.1 and 3.6.2, using measured parameters of thickness, width

and gauge distance. Young’s modulus was calculated as shown in Figure 3.7 on page 87,

as a change in stress divided by change in strain in the linear portion of the curve, whilst

yield was defined as the point at which the load deformation curve deviated from the

straight line and yield strength as the stress at yield.

3.6.1 Tensile Mechanical Testing

Rectangular shaped electrospun sca�olds with average dimensions of about 5 mm x

20 mm were tested at a strain rate of 1 hz over a displacement of 6 mm for 100% strain

deformation using the 22 N. Freeze dried sca�olds with similar dimensions was also tested
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Figure 3.7: Typical stress-strain curve of a polymer

in tension using the 450 N load cell. Stress and strain in tension were calculated as shown

in Equation 3.3 and 3.4 on page 87.

Stress in Tension =
I

Force

Thickness of scaffold ú Width of scaffold

J

(3.3)

Strain in Tension =
I

Deformation

Gauge Length (6 mm)

J

(3.4)

3.6.2 Compression Mechanical Testing

Cylindrical particulate leached foams with an average diameter of about 10 mm were

tested in compression at a frequency of 1 hz for 50% strain deformation using the 450 N

load cell. Prior to testing, the sample was placed on the lower compression plate and

raised until it came into contact with the upper compression plate and the load gauge

recorded a negative force reading of about -0.05 N. The plate was then clamped at that
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point and auto-tared before commencing with testing. The distance between both plates,

which was equivalent to the height of the sample was about 5 mm on average. Stress and

strain in compression was calculated as shown in Equation 3.5 and 3.6 on page 88.

Stress in Compression =
I

Force

pi ú (radius of scaffold)2

J

(3.5)

Strain in Compression =
I

Deformation

Height of scaffold

J

(3.6)

3.7 Biological Characterization

In order to evaluate the suitability of fabricated sca�olds as useful constructs for bone

tissue engineering and optimise regeneration conditions for the development of an in vitro

model, biological characterization was carried out on both electrospun and particulate

leached sca�olds. Characterization was performed using osteoblasts and progenitor cells

from human or animal established cell lines. It involved seeding and culturing cells on

sca�olds under physiological conditions for a period of time, for in vitro analysis and

implanting sca�olds into animal models for in vivo studies.

This section of the chapter, examines various cells and cell culture mechanisms

used as part of this study. It also details various cell viability and matrix production

staining protocols, in vitro and in vivo histological analysis, immunohistochemistry,

second harmonic generation analysis of deposited collagen matrix, micro-ct quantification

of mineralized matrix, as well as scanning electron microscopy.

3.7.1 Cultured Cells

As part of biological characterization, the MLO-A5 osteoblast-like cell line kindly donated

by Professor Lynda Bonewald and Human Embryonic Stem Cell Mesenchymal Progenitor

cells (hES-MPs) from Cellartis, Sweden were cultured in both 2-D and 3-D environments.

In 2-D, cells were cultured in well plates and T75 flasks to study cell morphology and
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viability, and also to proliferate su�cient cell quantities for other experiments. In 3-D,

cells were seeded on fabricated sca�olds to investigate cell attachment and migration,

proliferation, viability and di�erentiation, matrix production and mineralization, and also

to characterize the nature of bone matrix produced. Earlier on in the project, preliminary

cell culture experiments also utilised MG-63 osteosarcoma cells to practice cell culturing

techniques and develop standardization curves.

3.7.1.1 MLO-A5 Murine Cells

MLO-A5 cells derived from a transgenic mouse was developed as a model for studying

osteoblast to osetocyte di�erentiation due to the di�culty associated with the isolation

and culture of primary osteocytes (Kato et al., 2001). These osteoblastic cells have

characteristics of postosteoblast/preosteocytes and are very large in size (≥100 µm). They

express late osteoblast markers such as bone sialoprotein, high levels of alkaline phosphate

and osteoclacin (Rosser and Bonewald, 2012). In culture, these cells rapidly mineralize in

sheets rather than in nodules within three days of culture, and hence ideal for studying

bone mineralization (Kato et al., 2001). The MLO-A5 cells are also extremely sensitive

to fluid flow shear stress (Bonewald and Johnson, 2008) as compared to other osteoblast

and fibroblast cell lines, and have been used in studying the e�ect of mechanical loading

on biomineralization (Sittichockechaiwut et al., 2009) and the osteoblast to osteocyte

di�erentiation process (Dallas et al., 2009).

3.7.1.2 Human Embryonic Stem Cells

Human mesenchymal stem cells (hMSCs) aspirated from bone marrow and other adult

tissues are a suitable cell choice for bone regeneration, they posses the ability to

di�erentiate toward the osteogenic lineage (Pittenger et al., 1999). However, despite

their promise, hMSCs present with several limitations for tissue engineering which may

interfere with an optimal clinical outcome. This includes the possibility of using cells

with a high degree of heterogeneity resulting from ine�cient aspiration and isolation

methods (Ho et al., 2008). Also, limited proliferation potential (Bonab et al., 2006),
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progressive loss of functionality upon protracted in vitro expansion (Baxter et al., 2004),

and age-associated decline in cellular fitness restrict the use of hMSCs for large-scale bone

regeneration (Stolzing et al., 2008).

On the other hand, human embryonic stem cell mesenchymal progenitor

cells (hES-MPs) derived from human embryonic stem cells present a suitable stem cell line

alternative to hMSC’s (de Peppo et al., 2010). As hES-MPs display significantly higher

proliferation ability and faster mineralization capacity in vitro, in addition to displaying

lower amounts of HLA class II proteins compared to hMSCs. This suggests that hES-MPs

may be well qualified for the successful treatment of musculoskeletal conditions. De Peppo

et al, compared the dynamic culture of hMSC’s and hESMPs on porous 3D coral sca�olds

and reported findings that indicate that, hES-MPs is a suitable alternative cell source

to hMSCs, and hold great potential for bone tissue engineering applications (de Peppo

et al., 2012).

3.7.1.3 MG-63 Human Osteosarcoma Cells

Finally, MG-63 cells, another popular human osteoblastic cell source used in bone

tissue engineering were utilised in this study. Similar to other osteosarcoma-derived

cell lines such as Saos-2 and U-2 OS, they proliferate more rapidly than non-cancerous

osteoblast-like cells and attach firmly to culture surfaces (Clover and Gowen, 1994).

However, compared to osteoblasts derived from normal human bone, these cancerous cells

are derived from malignant bone tumours (osteosarcomas) and exhibit heterogeneous but

characteristic labelling profiles. Hence they produce extracellular matrix with di�erent

compositions. They also di�er significantly from normal osteoblasts in terms of collagen

types III and IV production, proliferation kinetics and osteoid formation (Pautke et al.,

2004).

3.7.2 2-Dimensional Cell Culture

For all biological experiments, MLO-A5 cells were used at passage 29-35, whilst hES-MPs

and MG-63 cells were kept at passage 2-8 and passage 68-75, respectively. For all 2D

90



Chapter 3. MATERIALS AND METHODS

experiments, cells were proliferated in T75 flasks and cultured in well plates for a period

of time, at 37

o

C in a humidified incubator supplied with 5% CO

2

. All reagents were

obtained from Sigma-Aldrich, UK unless otherwise stated.

Working culture media for MLO-A5 and MG-63 cells was made of Dulbeccos

Modified Eagles Medium (DMEM) from Biosera, UK, supplemented with 10% fetal

calf serum (FCS), 1% L-glutamine (L-G), 1% penicillin and streptomycin (P/S), and

0.25% Fungizone (F), all at volume by volume concentrations. Additionally, working

culture media for hES-MP cells was Alpha Modified Eagles Medium (–-MEM) from

Lonza, UK, supplemented with 10% fetal calf serum, 1% L-glutamine, 1% penicillin

and streptomycin, all at volume by volume concentrations and 4 nM fibroblast growth

factor-basic recombinant human (—-FGF). All T75 flasks used in culturing hES-MP cells

were coated with 0.1% gelatin to enhance cell adhesion.

To facilitate osteogenesis, aid phosphate deposition and collagen hydroxylation, and

also enhance cell and mineral growth, all working media was supplemented with 50 µg/ml

AA

2

P and 5 mM —GP. As both agents are essential for bone cell matrix maturation and

mineralization (Beresford et al., 1993). Additionally, hES-MP working media was further

supplemented with 100 nM of Dexamethasone (Dex) to stimulate the di�erentiation of

progenitor cells towards an osteogenic lineage once —-FGF was removed.

3.7.2.1 Thawing and freezing down of cells

In order to have an adequate number of each cell type at identical passage numbers,

thawing, expansion and freezing of cells was frequently carried out as part of this project.

This was to enhance reproducibility of experiments and prevent the cells from loosing

their distinct morphological and biological characteristics.

3.7.2.1.1 Thawing Cells

To resurrect or thaw cells that had previously been frozen in the liquid nitrogen, 20 ml

of working media in a universal tube was warmed in a water bath at 37

o

C for 10 mins.

One cell vial containing approximately 1 ml of cell suspension was then removed from the

liquid nitrogen and thawed in the water bath for about 4 mins or until there was only a
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small ball of ice in the vial. Both the vial and universal tube containing media were then

transferred to the tissue culture cabinet and mixed to attain 21 ml in the universal tube.

The universal tube was then centrifuged at 1000 rpm for 5 mins after which the

supernatant was disposed o�. The remaining cell pellet was then re-suspended in 1 ml

of working media and split into 1:20 for MLO-A5 cells, and 1:10 for hES-MPs and

MG-63 cells, before being transferred into a T75 flask containing about 14 ml of working

media. The flasks were gently rocked and then placed in an incubator and media was

changed every 2-3 days. All cells were monitored for proliferation and morphological

changes and passaged into new T75 flasks at about 70-80% confluency for cell expansion,

using trypsin-EDTA.

3.7.2.1.2 Freezing Cells

Alternatively, to freeze down cells at a particular passage number after culture, old media

was removed from each T75 flask, before the flask was washed with Phosphate-Bu�er

Saline (PBS) twice to remove traces of remaining media. 3 ml of trypsin-EDTA was

added to each flask and incubated to aid in detaching cells from the bottom of the flask.

After 5 mins, the flask was removed and checked under the microscope to confirm that

all cells had completely detached.

12 ml of fresh media was then added to the flask to stop the action of the trypsin-EDTA

and attain a total of 15 ml which was placed in a universal tube and centrifuged at

1000 rpm for 5 mins. The supernatant was disposed and the pellet re-suspended in media.

15 µl of cell suspension was placed in the heamocytometer and the cells countered under

a light microscope. The total number of suspended cells in media was estimated from

the average number of counted cells. The appropriate volume of cell suspension needed

to attain the nearest million cells was calculated, aspirated and re-centrifuged.

Freezing media containing 90% FCS and 10% DMSO was added to the cell pellet

and re-suspended. The cell suspension was finally aliquoted into cyrovials and frozen

in an isopropanol container, at 1 million cells/ml for 24 hours at -80

o

C, before being

transferred to the liquid nitrogen for long-term storage.
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3.7.2.2 2D Experiments

For each 2D experiment, the required number of cells was calculated and added to the

required volume of media in a well plate and gently rocked to ensure an even distribution.

Media was changed every two days and the cells were examined for di�erences in cell

morphology and proliferation density using light microscopy.

Standard calibration curves were created in a similar culturing protocol. In brief, cells

were seeded at di�erent densities in polystyrene tissue culture well plates and allowed to

attach for about 4 hours. Standard cell viability assays such as MTT or alamar blue were

then performed on the seeded cells and the results used to create calibration curves.

3.7.3 3-Dimensional Cell Culture

Since the mid 1950’s, the culture of cells on 2-dimensional polystyrene or glass surfaces

has become a fairly routine procedure in the biological sciences. Although several key

advances has been made to date, it is argued that the presentation of eukaryotic cells on

a 2D surface is not an accurate representation of the extracellular matrix found in native

tissue (Freshney, 2005; Tibbitt and Anseth, 2009).

Consequently, many complex biological responses such as cellular migration, apoptosis

and transcriptional expression, are known to di�er quite significantly when cultured in a

monolayer versus a 3D environment. The argument goes further to suggest that culturing

cells in a 2D monolayer is far too simple and overlooks many important parameters such

as mechanical cues and communication between the cell and its matrix, which is known

to enhance accurate reproduction of cell and tissue physiology (Haycock, 2011).

Additionally, a likely important criteria for tissue engineering is to be able to create a

growth environment that mimics the native tissue as closely as possible, by culturing cells

on a porous biocompatible sca�old. Although not all three-dimensional culture models

require a sca�old, the use of sca�olds for 3D models has certainly become extremely

popular. It is also known that depending on the fabrication process used, sca�olds with

di�erent architectures can be produced.
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3-Dimensional cell culture as part of this study utilised MLO-A5 cells and hES-MP

cells on selected electrospun and particulate leached sca�olds. This was to identify the

best fabrication process, sca�old material composition and cell culture conditions that

enhanced bone matrix production and facilitated long-term static culture.

3.7.3.1 Sca�old Preparation & Sterilization

Prior to cell culture on electrospun sca�olds, both random and aligned sca�old mats were

placed in large petri dishes and covered with PBS for 3 days to leach out any possible

remaining solvent. The sca�olds were then cut to a diameter of 1.6 cm using the Epilog

laser as described in Section 3.4.3 on page 82, and sterilised with 0.1% paracetic acid for

3 hours at room temperature. After sterilization, the sca�olds were washed three times

with PBS each sitting for 5 minutes to remove all traces of the peracetic acid.

Particulate leached sca�olds were cut in a similar manner, with an internal diameter

of 0.5 cm and an external diameter of 1.5 cm. These sca�olds were sterilized with the S20

laboratory autoclave and not 0.1% paracetic acid. Prior to sterilization, cut sca�olds were

placed in an autoclavable glass bottle containing 0.1% gelatin to promote cell attachment

onto the entire sca�old.

Once sterilized, all sca�olds were securely sealed and kept in the refrigerator for 2

months and only opened under sterile conditions in a tissue culture cabinet.

3.7.3.2 Cell Culture on Electrospun Sca�olds

3D cell culture on random and aligned electrospun sca�olds utilized PU and composite

sca�olds made from either Z3A1 or Z9A1 pellets. Preliminary experiments to identify

the best solvent combination and solute concentration used random sca�olds denoted as

Z9-100, Z9-70, Z9-50 and Z3-100, Z3-70 and Z3-50, as shown in Table 3.3 on page 95.

Additionally, composite sca�olds with random fibres were made with either

25 %wt Z9A1 or 15 %wt Z3A1 in 70/30 DMF/THF solvents. These PU solutions

were doped with either micro or nano-sized HA particles in a ratio of 5:1 PU: HA

for Z9A1 and 3:1 for Z3A1, respectively. These were subsequently denoted as Z9-PU,
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Z9-mHA and Z9-nHA and Z3-PU, Z3-mHA and Z3-nHA, as shown in table 3.3. Note

that this concentration of PU in the Z9A1 composite group is lower than that used in

the non-composite formulations (solvent group) described above, this is because the 27

wt% PU solutions were too viscous to enable adequate distribution of HA particles.

Also, all aligned sca�olds, denoted as A_Z3-PU, A_Z3-mHA and A_Z3-nHA were

fabricated in a similar manner using only 15 %wt Z3A1 in 70/30 DMF/THF solutions,

with a 3:1 doping ratio for composite sca�olds. All solvent and fabricating conditions used

in making electrospun sca�olds for biological characterization is summarized in table 3.2

on page 73, and also listed in the nomenclature section of this thesis.

Table 3.3: Electrospun sca�olds used for biological characterization

Electrospun Group Sca�olds
Z9 & Z3 Random Solvent Group Z9-100, Z9-70, Z9-50, Z3-100, Z3-70 & Z3-50

Z9 & Z3 Random Composite Group Z9-PU, Z9-mHA, Z9-nHA, Z3-PU, Z3-mHA & Z3-nHA

Z3 Aligned Composite Group A_Z3-PU, A_Z3-mHA & A_Z3-nHA

Initial experiments with electrospun sca�olds in the Z9 composite group, thus Z9-PU,

Z9-mHA & Z9-nHA, were seeded with MLO-A5 cells at 1.5 x 10

5

cells per sca�old. This

cell volume was reduced to 1.0 x 10

5

cells per sca�old for all other electrospun sca�olds

as the cells become over-confluent after Day 14 and started to peel from the sca�old.

Hence, cell seeding for 28 day experiments on all other fabricated electrospun sca�olds

(except the Z9 composite group) was performed using stainless steel rings with either

MLO-A5 at passage 33-36 or hES-MP cells at passage 3-6, at a concentration of 1.0 x 10

5

cells per sca�old in a 12 well plate with 1 ml of working media. All well plates with

seeded sca�olds were incubated at 37

¶
C in a humidified environment with 5% CO

2

after

seeding. The stainless steel rings were removed after 24 hours and an additional 1 ml of

working media was added to each sca�olds, media was changed every two days during

the culture period.
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3.7.3.3 Particulate Leached (PL) Sca�olds used for Cell Culture

To allow for easy comparison and reduce variability in cell culture conditions only

particulate leached sca�olds made with Z3A1 PU were used for 3D PL cell culture. As

shown in table 3.4, layer-by-layer, homogenized and physically mixed PU-PL sca�olds

were made from 15 %wt Z3A1 in 70/30 DMF/THF. Additionally, composite sca�olds

doped with either micro HA or nano-sized HA particles, in a ratio of either 3:1, 2:1 or

3:0.5:0.5 PU:HA were also used for 3D biological PL analysis.

Table 3.4: PL sca�olds used for biological characterization

PL Group Sca�olds
Layer-by-Layer LbL-PU-only, LbL-PU+mHA(3:1), LbL-PU+mHA(2:1) & LbL-PU+nHA(3:1)

Homogenized H-PU+mHA(3:1), H-PU+nHA(3:1) & H-PU+cHA(3:0.5:0.5)

Physically Mixed PM-only, PM-PU+mHA(3:1), PM-PU+nHA(3:1) & PM-PU+cHA(3:0.5:0.5)

3.7.3.3.1 Optimisation of Cell Seeding Density on PL Sca�olds

As this was the first time any cell type was being cultured on the fabricated PL sca�olds,

optimisation of cell seeding density was carried out prior to experimental cell culture.

This was to identify the best cell quantity to sca�old volume ratio that promotes good

cell attachment and su�cient coverage.

In brief, already cut and sterilized layer-by-layer PL sca�olds were placed in a 12 well

plate after almost all of the gelatin solution contained in the sca�olds had been removed.

2.5 ml of DMEM working media was added to each well and incubated for 2 hours to

allow the sca�old to absorb as much media as possible. The soaked sca�olds were then

transferred into new well plates to avert excess or unabsorbed media. Using only MLO-A5

cells at passage 34, cells were seeded in a clockwise pattern at either 2.5 x 10

5

, 5.0 x 10

5

or 7.5 x 10

5

cells per sca�old.

The sca�olds were then incubated for 6 hours to allow cell attachment, after which

MTT cell viability assay was used to identify the best seeding density for PL sca�olds.
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3.7.3.3.2 Cell Culture on PL Sca�olds

Similar to the procedure described for optimising cell seeding density on PL sca�olds,

all layer-by-layer, homogenized and physically mixed PL sca�olds used for biological

characterization (listed in table 3.4 on page 96 and the nomenclature section of this

thesis) were seeded at 5 x 10

5

cells per sca�old with either MLOA-5 cells at passage 33-36

or hES-MP cells at passage 3-6. The sca�olds were incubated at 37

¶
C in a humidified

environment supplied 5% CO

2

for 24 hours to allow cells to attach firmly.

After 24 hours, cell seeded sca�olds were transferred into new well plates, and

osteogenic media containing 50 µg/ml Ascorbic acid-2-phosphate and 5mM —GP was

added and 2.5 ml changed every two days. hES-MP osteogenic media further contained

100 nM Dexamethasone (Dex).

3.7.3.4 Cell Culture with Titanium Implants in PL Sca�olds

2 mm cortex and 3 mm osteopenia titanium alloy (Ti-6Al-4V) screws from Smith and

Nephew, UK were used to investigate bone matrix deposition as part of this study. The

screws were cut into smaller 10 mm length dimensions prior to cell culture as discussed

in Section 3.4.4 on page 83. After cutting, the cut-ends of all screws were filed with a

sand paper to attain a smooth finish, before being washed with warm water and mild

soap to remove metal chippings and leftover powder. The screws were then sonicated in

an ultrasound bath for 180 seconds before being sterilized in an autoclavable glass bottle

containing 0.1% gelatin solution.

For biological analysis, cortex or osteopenia sterilized screws were inserted into the

inner 5 mm diameter portion of PU-only and PU+mHA 3.1 layer-by-layer or physically

mixed PL sca�olds, as shown in Figure 3.8 on page 98. As well as comparing two di�erent

titanium screws, two di�erent PL fabrication methods, and PU-only vs composite

sca�olds, two culture conditions using passage 34 MLO-A5 cells at 5 x 10

5

cells per

sca�old were also explored with the titanium-PL experiments.

One culture condition involved inserting each screw type into either a LbL or PM PL

sca�old before seeding with cells. Whilst the second culture condition involved inserting
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screws the into sca�olds, after the sca�olds had been seeded and cultured cells for 28 days.

The aim of comparing the two culture conditions was to investigate the best time point for

inserting screws that enhanced maximum matrix deposition onto the screws(Figure 3.8).

(a)

(b)

Figure 3.8: Cortex and osteopenia titanium screws in PL sca�olds

3.7.4 Cell Viability

Several cell viability assays including Alamar Blue and MTT that analyse whole

populations were run as part of this study. This was to establish the number of healthy

cells in a sca�old over a period of time in culture. Generally, cell viability assays operate

based on membrane integrity, metabolic activity, proliferation rate or total protein content

of the cell population (Gloeckner et al., 2001). Such whole populations assays are more
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rapid as compared to those that analyse individual cells, but are however known to give

less detailed results. Although several cell viability assays exist in literature, the choice

of an optimal assay depends on the cell type, culture conditions applied, and the specific

questions being asked (Stoddart, 2011).

One of the earliest and most common method for assessing cell viability is the trypan

blue exclusion assay (Black and Berenbaum, 1964). This assay was used in this study

to count viable cells in a heamocytometer ahead of experiments to estimate the number

of viable cells ahead of cell culture. It operates on the principle that viable cells possess

intact cell membranes that prevent the penetration of certain dyes, such as trypan blue,

Eosin or propidium, whereas dead cells do not. Hence, dead cells can take up trypan

blue, and appear blue as a consequence, as their membranes are no longer able to control

the passage of macromolecules (Strober, 2001).

Furthermore, live/dead staining is a one-step staining procedure that is simple

and fast, and can be directly used in cell culture media. It describes a number of

potential dyes that specifically stains live cells (usually with green fluorescence) while

the other dye stains dead cells (usually with red fluorescence) and is more sensitive

than Trypan blue. An example is calcein AM with ethidium homodimer-1, which is

membrane permeable, and cleaved by esterases in live cells to yield cytoplasmic green

fluorescence. The membrane-impermeable ethidium homodimer-1 labels nucleic acids of

membrane-compromised cells (i.e. dead) with red fluorescence. The ratio of live to dead

cells can therefore be easily determined by simple counting (Stoddart, 2011).

Beyond trypan blue and live/dead staining, dyes which rely on the metabolic activity

of cells, such as, XTT, MTT and MTS, as well as Resazurin-based methods such as

Alamar Blue are also commonly used for viability analysis. Although it was not explored

as part of this study, XTT and MTS have been reported to be less cytotoxic, have

increased sensitivities and require fewer experimental steps as they are used in the

presence of phenazine methosulphate (Scudiero et al., 1988; Cory et al., 1991).
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3.7.4.1 MTT Cell Viability

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a type of

tetrazolium salt used as colorimetric reduction assay to determine the level of metabolic

activity in eukaryotic cells. It was used as part of this study to investigate cell viability

and proliferation after seeding MLO-A5 and hES-MPs on electrospun and PL sca�olds.

It is a versatile and popular viability assay useful for estimating cell numbers and

proliferation. It is also useful for measuring cell growth in response to mitogens, antigenic

stimuli, growth factors and other growth promoting reagents, for conducting cytotoxicity

studies, easy identification of cell attachment on sca�olds and for deriving growth curves.

Also, MTT is a very robust dye and can be metabolised by most cell types, whereas some

of the newer alternatives such as MTS and XTT are not suitable for all cells (Stoddart,

2011).

MTT functions by reducing or converting water soluble yellow MTT dye to a purple

formazan stain by the mitochondrial reductase enzyme in living cells. The process

primarily takes place in the cytoplasm, and to a lesser extent in the mitochondria and

cell membrane (Berridge and Tan, 1993; Bernas and Dobrucki, 2002). The needle-like

formazan crystals produced as a result can be solubilized by mixing thoroughly in di�erent

organic solvents, mainly alcohols such as Ethanol and Isopropanol.

Using ethanol to destain has been reported to cause precipitation of proteins in the

culture medium, hence, Isopropanol, an equally good solvent which lacks the adverse

e�ects of ethanol can be used as a suitable alternative (Mosmann, 1983). Other detergents

such as 10% sodium-dodecyl-sulfate, Triton X-100 and Nonidet P-40 have also been tested

and used when isopropanol is incompatible (Tada et al., 1986). Although these detergents

work without thorough mixing with the medium, they require overnight incubation as

opposed to using alcohols which only require a few hours. Dimethyl sulfoxide has also

been reported to dissolve formazan e�ectively (Jabbar et al., 1989).

The toxic nature of MTT however makes it only to be used once on cultured cells,

hence all subsequent MTT analysis on future samples has to be done at the same

conditions in order to allow for e�ective comparison. Additionally, organic solvents used
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to destain purple formazan could cause precipitation of serum proteins, which could

interfere with the absorbance reading. It is also possible for the formazan crystals to not

be completely dissolved after destaining and this could lower the sensitivity of the assay

(Kupcsik, 2011).

As part of this study, MTT stock solution at 12 mM (at 0.5 mg/ml) concentration

was prepared by dissolving MTT powder in PBS. The solution was wrapped with foil to

protect from light, and was vortexed and filtered to remove particulate materials. For

each assay, sca�olds were rinsed with PBS after media had been removed from the wells.

An appropriate amount of MTT stock solution was then added to each well to cover the

entire sca�old before incubating at 37

¶
C for a period of time. The yellow MTT dye

was reduced to purple formazan after the incubation period and destained with 0.125%

acidified isopropanol, and its absorbance read with the spectrophotometer at 563 nm

reference 630 nm.

3.7.4.1.1 MTT Cell Viability on Electrospun Sca�olds

MTT assay was carried on both aligned and random thin electrospun sca�olds on days

1, 4, 7, 14, 21 and 28 after seeding. As described above, culture media was removed from

the sca�olds before being washed with 2 ml of PBS thrice, with a 5 mins waiting time

between washes. 1 ml of MTT stock solution was added to each well and incubated for

40 mins in foil wrap. After incubation, the excess MTT solution was removed and the

purple stain was destained with 1 ml of 0.125% acidified isopropanol before reading its

absorbance with the plate reader.

3.7.4.1.2 MTT Cell Viability on PL Sca�olds

MTT assay was carried on Layer-by-Layer PL sca�olds to optimize the number of cells

required for experimental cell seeding. Similar to the description of MTT on electrospun

sca�olds, culture media was removed from the PL sca�olds after 6 hours of incubation

and cell seeding, before being washed with 3 ml of PBS, thrice, with a 5 mins waiting time

between washes. 2.5 ml of MTT stock solution was added to each well and incubated for

1 hour in foil wrap. After incubation, the MTT solution was removed and the purple stain
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was destained with 2 ml of 0.125% acidified isopropanol before reading its absorbance

with the plate reader.

3.7.4.2 Alamar Blue Cell Viability

Resazurin-based alamar blue assay is another popular and versatile way of measuring cell

proliferation and cytotoxicity. It was routinely undertaken as part of this study to create

preliminary calibration curves and also monitor continuous cell viability of PL sca�olds

seeded with either MLO-A5 or hES-MP cells over a 56-day culture period.

The alamar blue assay functions by reducing resazurin, an oxidized blue and

non-fluorescent dye to resorufin, a pink and highly fluorescent stain by cell activity, which

can be further reduced to hydroresorufin, an uncoloured and non-fluorescent stain. The

reduction process of alamar blue cell viability is likely to be by oxygen consumption

through metabolism (Fields and Lancaster, 1993). Although it has been arbitrarily

postulated as being reduced by mitochondrial enzymes, it is not known whether this

occurs intracellularly, at the plasma membrane surface or just in the medium as a chemical

reaction (De Fries and Mitsuhashi, 1995).

Compared to MTT, water soluble alamar blue is non-toxic to cells and does not need

to kill the cells to obtain measurements. This allows precious cells, especially primary

tissue cultures, to be re-used for further investigations, saving time and money (Ahmed

et al., 1994). It is also a rapid and simple tool as it does not require the destaining

step of MTT assays. Furthermore, it provides an advantage of being measured by either

colourimetry or fluorimetry, although greater sensitivity has been reported when using

the fluorescent property to give a reproducible and sensitive signal (O’Brien et al., 2000a).

It is however important to be careful when measuring fluorescence at higher cell

densities to avoid over-reduction of alamar blue into the colourless and non-fluorescent

hydroresorufin. Additionally, it is also necessary to test all assays based on reduction

without any cells in the medium to determine any cross reactivity with the compound

being tested (Stoddart, 2011).

During the 56-day cell culture period of PL sca�olds as part of this study, the alamar
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blue assay was carried out on days 1, 4, 7, 14, 21, 28, 35, 42, 49 & 56. On each of these

days, old culture media was removed from the sca�olds and washed with PBS twice, with

a 5 mins wait time per wash. 2 ml of alamar blue solution at 10 µg/ml (in PBS) was

added to each sca�old under light sensitive conditions and incubated for 2 hours at 37

¶
C.

After incubation, two 200 µl aliquot of reduced alamar blue solution were collected

from each cell seeded sca�old as well as the blank sca�old into a labelled 96 well plate.

The well plate was then read at 540 nm in a fluorescent plate reader. Excess alamar blue

solution was then removed from the sca�olds before being washed with PBS thrice to

remove remaining traces of alamar blue. Fresh osteogenic working media was then added

to each sca�old and incubated, with media being changed every two days.

3.7.5 Sirius Red Collagen Staining

Sirius Red staining is a rapid, specific, sensitive and highly reproducible method for

determining collagen (Junqueira et al., 1979), as it has an ability to qualitatively and

quantitatively precipitate collagen in picric and acetic acid solutions (Marotta and

Martino, 1985). It also enables quantitative morphometric measurements to be performed

on histologically defined tissue areas and also on stained in vitro constructs (Malkusch

et al., 1995).

Sirius Red staining was used as part of this study to stain and quantify the total

collagen content synthesized by MLO-A5 and hES-MP cells under 2D and 3D culture

conditions and also examine extracellular matrix production. Since its introduction as

a histological technique in 1964 (Sweat et al., 1964), it has become a routine protocol

for estimating total collagen content due to the fact that it stains collagen vigorously

and permanently. It has also been widely accepted as a better alternative to determining

collagen from its hydroxyproline content and a substitute for fuchsin in Van Gieson’s

method, as its simple, less time consuming and very sensitive (Junqueira et al., 1979).

It’s function is based on the binding of the dye Sirius Supra red F3BA to collagen,

followed by an elution process, and finally an estimation of the bound dye with a
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spectrophotometer. The elongated Sirius Red molecule binds to all triple helical collagen

molecules including types I, III and IV in a parallel fashion, but would not bind to

denatured or degraded collagen or to other proteins which do not possess the typical

collagenous triple helical structure (Lee et al., 1998).

As part of this study, Sirius Red staining was carried out on cultures terminated at

weekly time-points, on both MLO-A5 and hES-MP cells seeded either in 2D or 3D, from

D7 or D14 until the end of the experiment. The Sirius Red solution was prepared by

dissolving Direct red dye from Sigma-Aldrich, UK at 1 mg/ml in saturated picric acid.

Cells or cell-seeded sca�olds were washed trice with PBS with a 5 minutes waiting time

per wash. The cells were then fixed with 3.7% formaldehyde for 15-20 minutes and again

washed trice with PBS and then trice with distilled water with a longer waiting time of

10 minutes per wash.

For all 3D sca�olds, 3-6 ml Sirius Red solution (depending on the size of the sca�olds)

was added to each well and left on the rocker for 18 hours, whilst 2D analysis used 2 ml

of the solution for 3 hours. After staining, excess Sirius Red solution was removed under

running tap water until the solution turned clear. Samples were allowed to air dry for

4 hours and photographic images were taken for qualitative analysis. For quantitative

analysis, 2-4 ml (depending on the size of the sca�olds) of 0.2 M of NaOH and methanol

at 1:1, was used to destain Sirius red on a platform rocker at 30 rpm for 24 hours. The

absorbance of the eluate was read with a spectrophotometer at 490 nm.

3.7.6 Alizarin Red Calcium Staining

Pure synthetic alizarin, in the form of its soluble salt sodium alizarin monosulphonate,

has been largely used in staining preserved skeleton specimens since 1900’s (Lundvall,

1905). To date, several di�erent types of the alizarin dye, each with varying advantages

and disadvantages have been used. These include acid alizarin black R, alizarin-black

SR, alizarin-blue Br3G, alizarin-black-Bayer NR, alizarin brown R B, alizarin red S and

many others (Batson, 1921).
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However, alizarin red S which reacts with calcium cations to form a chelate, has

been used successfully for decades as a vital staining agent for developed bone (Puchtler

et al., 1969), for di�erentiating cartilage and bone (Wassersug, 1976; McLeod, 1980),

for detecting of calcium in synovial fluid (Paul et al., 1983), and also for evaluating the

morphological integrity of corneal endothelium (Taylor and Hunt, 1981). Alizarin red

(AR) is also very useful for staining extracellular calcified matrix deposition in tissue

engineered bone and evaluating calcium-rich deposits by cells in culture. Additionally,

it is particularly versatile in evaluating mineral distribution and also for inspecting fine

structures by phase contrast microscopy. It can also be extracted from stained monolayer

and assayed to attain quantified data (Gregory et al., 2004).

Although other staining assays such as fluorescent calcein binding (Hale et al., 2000),

Von Kossa staining (Anselme et al., 2002) and xylenol orange staining (Rahn and Perren,

1971) can be used to access bone mineralization in tissue engineered constructs, only

alizarin red and xylenol orange staining were used for calcium analysis as part of this

study due to their simplicity and e�ciency.

1% w/v of alizarin Red S powder from Sigma-Aldrich, UK was dissolved in distilled

water to create an AR solution with an initial pH of 3. The pH of the solution was

adjusted with drops of NaOH to 4.1 to enhance staining. Prior to 3D staining, all

sca�olds were washed and fixed with 3.7% formaldehyde in a similar manner as done

for collagen staining. The sca�olds were then washed trice with distilled water with a

waiting time of about 5-10 minutes per wash.

Enough AR solution was then added to cover each sample for two hours under dynamic

rocking. After which excess AR solution was removed and the samples washed with

distilled water until the excess water became clear. The samples were then dried at

room temperature for 4 hours . Photographic images of blank and cell seeded sca�olds

were taken for quantitative analysis. For quantitative analysis, 5% v/v perchloric acid in

distilled water was used to destain AR on a platform rocker at 30 rpm for 24 hours. The

absorbance of the eluate was read with the spectrophotometer at 405 nm.
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3.7.6.0.1 For Electrospun Sca�olds

AR staining was done on days 14, 21 and 28 of culture to stain for calcium on MLO-A5

or hES-MPs seeded sca�olds for two hours under dynamic rocking at 30 rpm. Prior to

staining, sca�olds were washed and fixed with 2 ml of 3.7% formaldehyde as per the

procedure described for collagen staining. Excess AR solution was removed after staining

and samples washed 3 times with 2 ml of distilled water.

3.7.6.0.2 For PL Sca�olds

AR staining was carried out on days 14, 28, 42 and 56 of culture to stain for calcium

on MLO-A5 seeded sca�olds for two hours under dynamic rocking at 30 rpm. Prior to

staining, sca�olds were washed and fixed with 4 ml of 3.7% formaldehyde as per the

procedure described for collagen staining. Excess AR solution was removed after staining

and the samples washed 5 times with 5 ml of distilled water, each sitting for 5 minutes.

3.7.7 Xylenol Orange

As part of this study, xylenol orange staining presented an alternative approach for

estimating newly developed mineralized nodules in fabricated PU-HA composite sca�olds,

which contained varying amounts of calcium phosphate even in blank sca�olds without

cells. This was particularly helpful since xylenol orange only binds to newly formed

calcified tissue as compared to alizarin red staining, which stained both the calcium

contained in blank sca�olds and the calcium secreted by the cells in culture.

Xylenol orange tetrasodium salt from Sigma-Aldrich, UK was prepared at 20 mM

stock solution with distilled water and stored in the fridge at 4

¶
C. Prior to staining,

the XO stock solution was diluted in culture medium at 1:1000 dilution, to attain a final

concentration of 20 µM. 2 ml of the final concentration was added to each electrospun

sca�old for a minimum incubation time of 12 hours. The XO solution was removed after

incubation and the sca�olds washed with PBS twice with a 3 mins waiting time between

washes.

Fresh medium without —-GP was added to the sca�olds prior to imaging to reduce
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the fluorescent background from unbound XO. Imaging was carried out with the confocal

microscope at an excitation wavelength of 543 nm. To examine the e�ect of XO staining

on HA composite sca�olds, blank control sca�olds without cells were also stained to assess

the e�ect of HA on XO staining.

3.7.8 Micro-CT on Cell Seeded Sca�olds

Following on from using Micro-Computed Tomography to investigate pore

interconnectivity and porosity in Section 3.4.2 on page 81, micro-ct was also used

to detect and analyse extracellular calcified regions in PL sca�olds, cultured in vitro

with MLO-A5 cells.

In addition to minimum sample preparation, non-invasive and non-destructive high

resolution imaging, using micro-ct for such in vitro analysis was particularly beneficial for

examining deposited calcified matrix in PU-HA composites. This served as a challenge

when alizarin red calcium staining was used to detect bone mineralization in engineered

in vitro constructs.

The Skyscan 1172 micro-CT scanner in the Bone Analysis Laboratory was used to

scan both blank and cell seeded PM-PL sca�olds. PM-PU and PM-PU+mHA sca�olds

seeded with MLO-A5 cells at 5 x 10

5

cells per sca�old, were scanned after 14, 28, 42 and

56 days in culture. Prior to scanning, media was removed from the sca�olds and washed

twice with PBS. 3.7% formaldehyde was then used to fix the cells for 15-20 minutes before

being washed trice with PBS. The sca�olds were then kept in the last PBS wash in the

fridge until imaging.

Similar to the settings used for the porosity analysis, acquisition conditions of 44 kV,

226 uA, no filter, with an image pixel size of 9.08 µm, a rotation step of 0.7

o

and an

exposure time of 295 ms was used to scan sca�olds after all the PBS had been removed

with tissue paper. Reconstruction of the acquired image slices was also done with

the NRecon

R•
software version: 1.6.9.4 from Skyscan, Belgium, and a GPUReconServer

engine version: 1.6.9.

Reconstructed images were processed with CTAn software version: 1.13.11.0+ from
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SkyScan, Belgium. Selected regions of interest (ROIs) were saved and loaded as new data

sets. An appropriate threshold of (PU:148-high & ≥40-low) was applied to the ROI’s for

PU-regions whereas a threshold of (mHA and nHA: 255-high & ≥148-low) was applied

HA regions. Standard 3D analysis and 3D models were also generated for each ROI.

3.7.9 DAPI and Phalloidin Staining

As most cellular components appear transparent under the microscope, cell staining using

one or more dyes enhances visualisation of cell parts. The use of such dyes also highlights

metabolic processes and structures, and facilitates enumeration. As part of this study,

cells were stained with DAPI and Phalloidin-FITC or Phalloidin-TRITC fluorescent

dyes to enhance the visualization of cell attachment, proliferation, cell morphology and

extracellular matrix production.

DAPI (4’, 6-diamidino-2-phenylindole dihydrochloride), is a fluorescent nuclear stain

that binds to DNA (at Adenine-Thymine repeats of the DNA double helix) and shows

as blue fluorescence upon excitation with ultraviolet light. Similar to Toluylene red,

Hoechst 33342 and Nile blue, DAPI allows for easy imaging of live cell nuclei, although

Hoechst 33342 and DAPI can also be used on fixed cells.

Phalloidin-FITC (Fluorescein Isothiocyanate) or Phalloidin-TRITC (Tetramethyl

Rhodamine Isothiocyanate) were also used to counter stain DAPI and enhance

visualization of the cytoskeleton by binding to the actin filaments in the cells. Although

both Phalloidin-FITC or Phalloidin-TRITC have very similar operating mechanisms, the

TRITC conjugate produces an orange-red colour and is considered less susceptible to

photobleaching than the FITC conjugate (Faulstich et al., 1983) which produces a green

colour.

As part of this study, both electrospun and particulate leached sca�olds were washed

and fixed in a similar manner as for calcium and collagen staining with 3.7% formaldehyde

for 20 minutes. Fixation allowed the morphology of the cells to be preserved and for it

to be able to withstand harsh preparations conditions prior to imaging. After fixation,

sca�olds were washed three times with PBS with a 5 minute waiting time per wash, and
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later permeablized with 1% Triton X-100 in PBS for 5 minutes. Permeabilization using

such a mild surfactant facilitated the dye molecules to penetrate the cell membrane. The

sca�olds were then washed with PBS three times with a 5 minute waiting time per wash.

1% Bovine Serum Albumen (BSA) was added as a block non-specific binding agent

for 30 minutes before either 1% Phalloidin-TRITC or Phalloidin-FITC was used to stain

the cytoskeleton for 30 minutes. The sca�olds were then washed twice with PBS and

stained with 0.1 µg/ml DAPI solution for a further 10 minutes. The sca�olds were finally

washed with PBS and visualized with either the AXON Instruments ImageXpress 5000A,

USA or the Confocal Microscope.

3.7.9.1 Electrospun Sca�olds

Z3-70 and Z9-70 electrospun sca�olds from the solvent group seeded with MLO-A5 cells

at 1 x 10

5

cells per sca�old, were stained with DAPI and phalloidin-TRITC on days 1, 4

and 7 after seeding to enhance visualisation of cell attachment and cell morphology.

MLO-A5 cells on these sca�olds were fixed and prepared with 2 ml of each regent per

sca�old using the protocol described in Section 3.7.9. Stained sca�olds were subsequently

imaged with the AXON Instruments ImageXpress 5000A, USA.

3.7.9.2 For Particulate Leached Sca�olds

For particulate leached sca�olds, only layer-by-layer and physically mixed sca�olds

were stained and imaged. In brief, Plain PU, PU+mHA(2:1), PU+mHA(3:1) and

PU+nHA(3:1) layer-by-layer sca�olds seeded with either hES-MPs or MLO-A5 cells

at 5 x 10

5

cells per sca�old were stained with DAPI and phalloidin-FITC on day 4.

However, Plain PU, PU+mHA(3:1), PU+nHA(3:1) and PU+cHA(3:0.5:0.5) physically

mixed sca�olds were only seeded with MLO-A5 cells at 5 x 10

5

cells per sca�old and

stained with DAPI and phalloidin-TRITC on days 1, 4, 7 and 14.

Each PL sca�old was fixed and prepared with 3 ml of regent per sca�old using the

protocol described in Section 3.7.9 on page 108. Stained sca�olds were subsequently

imaged at 512x512 pixels with the upright microscope confocal microscope (Axioskop 2
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FS MOT Microscope, Carl Zeiss Ltd, UK) equipped with the 10x objective. DAPI was

detected at excitation/emission wavelength of 800/461 nm whilst Phalloidin-FITC was

detected at 495/517 nm and Phalloidin-TRITC at 550/573 nm.

3.7.10 Second Harmonic Generation Imaging

SHGI is a dynamic high resolution optical microscopy technique used in visualising the

structure and function of cells and tissues. It is based on the non-linear optical process of

second harmonic generation, in which high energy photons of the same frequency interacts

with a non-linear material to generate new photons with twice the energy and frequency,

and half the wavelength of the initial photons.

As part of this study, SHG was used to visualize collagen deposition and organisation

on Z3 aligned electrospun sca�olds on days 14, 21 and 28 after seeding with MLO-A5

cells at 1 x 10

5

cells per sca�old. In brief, sca�olds were removed from culture media

and washed once with PBS. They were then placed in a petri dish without fixation and

covered with a cover slip prior to imaging.

Imaging was performed using the Zeiss LSM 510 Meta upright laser scanning

microscope in conjunction with the two-photon Ti-Sapphire multiphoton laser. The laser

was equipped with a 40x 1.3 NA oil immersion objective and operated at an excitation

power of 20 mW. Cell-deposited collagen was illuminated at 950 nm and SHG emissions

collected in a 10 nm bandpass filter centred around 475 nm. Additionally, cell-free PU

and PU-HA fibrous sca�olds were also illuminated at 840 nm and collected in a 10 nm

bandpass filter centred around 421 nm.

3.7.11 In vivo studies

In vivo studies consisting of subcutaneous and cortical defect implantations were carried

out by Dr. Maksym Pogorielov’s laboratory in Sumy State University, Ukraine. All

experiments and animal housing conditions were in accordance with the European

Convention for the protection of vertebrate animals used for experimental and other

scientific purposes (de l’Europe, 1986), Directive 2010/63/EU of the European Parliament
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(Parliament and Union, 2010) and the general ethical principles for experiments on

animals, which was accepted at the First Bioethics National Congress (Kordyum, 2001).

All the experiments were also approved by the Commission on Biomedical Ethics of Sumy

State University on 15/12/2014.

3.7.11.1 Subcutaneous Implantation

36 laboratory rats aged between 4–5 months with body weights of 180–195 g

were subcutaneously implanted with layer-by-layer PL sca�olds to further assess

biocompatibility, and investigate inflammatory response and vascularization. The rats

were housed at a temperature of 22±2

o

C with a 12 hour light/dark cycle and

received food and water ad libitum. They were further divided into three groups,

with 12 rats in each group and labelled as Group 1 for LbL-Plain PU sca�olds,

Group 2 for LbL-PU+mHA(3:1) sca�olds and finally Group 3 for LbL-PU+nHA(3:1)

sca�olds, with n=6 for each time point and group.

The procedure of implantation included a 10 mg/kg of animal weight ketamine

injection as general anaesthesia and peripheral vein catheterization. Prior to

implantation, the intrascapular region in the back of the animals was shaved and treated

with C-4 solution. A longitudinal incision was then made at the implantation site before

separating the subcutaneous tissues from the skin above the left scapula. One of the

fabricated sca�olds (graft) which had already been sterilized in 96% ethanol for 30 mins

was then placed under the skin at about 1.5 cm from the incision. The wound was then

closed with simple interrupted sutures and an aseptic dressing was applied.

The animals were later sacrificed on day 7 and 45 post-implantation as first and

second time points respectively with an overdose of narcosis using ketamine at 70 mg/kg

of animal weight.

3.7.11.2 Cortical Defect Implantation

Cortical defect implantation was also carried out as part of this study to further access

the suitability of the fabricated sca�olds in restoring damaged bone. In brief, 36 rabbits
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of the chinchillas breed, aged between 6–7 months with body weights of 2.5–3.0 kg were

implanted with layer-by-layer PL sca�olds. All rabbits were housed at a temperature of

22±2

o

C with a 12 hour light/dark cycle and received food and water ad libitum. Similar

to the subcutaneous experiments, the rabbits were divided into three groups according

to the type of sca�olds ahead of implantation.

For the implantation process, a combined dose of 7 mg/kg Ketamine and 10 mg/kg

thiopental injection was used as general anaesthesia. A peripheral vein was catheterized

and the left thigh was shaved to prepare the site. The surgical site was then treated

with C-4 solution before a longitudinal incision on the lateral surface of the thigh was

made. The muscles were then separated in order to provide access to the bone. Using a

10 mm diameter drill, a round defect was made into the bone until the bone marrow. The

defect was then filled with one already sterilized 10 mm graft. The wound was sutured

after implantation, and antibiotics was administered for a week as prophylaxis to prevent

postoperative bacterial complications.

As with the subcutaneous implantation, the animals were later sacrificed on day 7

and 45 post-implantation with an overdose of narcosis using ketamine at 70 mg/kg of

animal weight.

3.7.12 Histology

Histology entails the preparation and examination of thin slices of biological samples to

attain detailed information about structural composition, pathology and the interactions

within its structures.

As part of this study, cell-seeded sca�olds were histologically analysed in vitro to

investigate cell attachment, depth penetration and possible tissue formation. Histology

of sca�olds that had previously been implanted in vivo was also carried out to examine

cell migration and tissue ingrowth, inflammatory response and vascularization, fibrous

and osteiod tissue formation, and possible bone remodelling.
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3.7.12.1 Histology of Samples Tested In vitro

Histology was conducted on in vitro samples of non-aligned and aligned electrospun

sca�olds as well as particulate leached sca�olds in the homogenized and physically mixed

groups. Non-aligned electrospun sca�olds seeded with either MLO-A5 or hES-MP cells at

1 x 10

5

cells per sca�old were analysed on days 14, 21 and 28 after seeding. In addition,

aligned sca�olds seeded with only hES-MP cells at the same concentration were also

analysed in vitro. Furthermore, all sca�olds in the homogenized and physically mixed PL

groups which had previously been seeded with MLO-A5 cells at 5 x 10

5

cells per sca�old

were also analysed on days 14, 28, 42 and 56 of culture.

For each histological process, media was removed and the samples washed with PBS

twice. The samples were then fixed with 3.7% formaldehyde for 20 minutes and then

washed twice with PBS. The samples were later soaked in 1% sucrose solution for an

hour before being embedded in OCT

TM
compound media, and then frozen with liquid

nitrogen prior to sectioning. However, particulate leached samples were placed in well

plates and put in a vacuum chamber, for 3 alternating cycles of vacuum and aeration

of 3 minutes each, before quenching in liquid nitrogen to make the thick PL sca�olds

aspirate the OCT media and prevent fragmentation.

All samples were cryo-sectioned at 15 µm as complete transverse-sections across the

centre of all sca�olds and stained with Haematoxylin and Eosin. Stained sections were

imaged with a light microscope with x20 objective.

3.7.12.2 Histology of Samples Tested In vivo

Following implantation of layer-by-layer PL sca�olds in rats and rabbits for subcutaneous

and cortical defect analysis, in vivo histology of the implanted sca�olds was also carried

out by Dr. Pogorielov’s laboratory in Ukraine.

At each post-implantation time point, thus Day 7 for the first and Day 45 for the

second, the animals were sacrificed and the grafts removed with surrounding bone or

tissue to prevent graft damage. All samples were fixed in 10% formaldehyde for 24 hours

and decalcificated in 4.5% acetic acid for 48 hours. The samples were then dried in
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varying concentrations of alcohols and set with para�n wax. 12-15 µm thick sections

were prepared and stained with Haematoxylin and Eosin. Stained sections were imaged

using a light microscope at a magnification of 360x.

3.7.13 Statistical Analysis

All experiments were performed a minimum of two times with triplicate samples for

each condition where possible. All data are reported as mean ± standard deviation.

Comparison of sample means of fibre diameter and mechanical analysis was performed

by one-way analysis of variance using GraphPad Prism 6 software, whilst alamar blue

and MTT cell viability, calcium and collagen absorbance data were analysed by two-way

repeated measures analysis of variance. Di�erences between two groups were defined as

statistically significant if p Æ 0.05 as determined by the Tukey’s multiple comparisons

post-hoc test. For imaging of samples, some experiments were limited to one sample per

condition per experimental run due to time constraints. Single images are always chosen

to be representative of the experimental outcome.
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4 | Results and Discussion Section

One

Fabricating Non-aligned Polyurethane &
Polyurethane Hydroxyapatite Fibrous Mats for Bone
Regeneration

Part of this chapter was published in the Journal of the Mechanical Behaviour

of Biomedical Materials as: G.Tetteh, A.S.Khan, R.M.Delaine-Smith, G.C.Reilly &

I.U.Rehman,“Electrospun polyurethane / hydroxyapatite bioactive sca�olds for bone tissue

engineering: The role of solvent and hydroxyapatite particles”. Journal of the Mechanical

Behavior of Biomedical Materials. (2014) Vol. 39, pp. 95–110.

– Tetteh et al., (2014)

4.1 Introduction

Bone tissue engineering involves the use of materials to either induce formation of bone

from the surrounding tissue or to act as a carrier or template for implanted bone cells.

It requires four key components which include a morphogenetic signal, responsive host

cells, a suitable carrier to serve as sca�olding for the growth of host cells, and a viable

and well vascularised host bed (Croteau et al., 1999; Burg et al., 2000). Sca�olds used for

this purpose provide a three dimensional porous structure that facilitate cell attachment,

growth and matrix deposition.
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An ideal sca�old should possess a suitable surface chemistry that supports cell

attachment, proliferation, migration and growth. Additionally, it should serve as a

biocompatible template for osteoprogenitor cell growth and aid in the di�erentiation

of mesenchymal stem cells into osteoblasts, as well as supporting the production,

organization and maintenance of an extracellular matrix (Gogolewski, 2007; Gorna and

Gogolewski, 2003). In addition to being biocompatible, sca�olds are required to be

composed of highly interconnected macro and micro-porous networks to facilitate cell

migration and nutrient distribution.

Several polymers of both natural and synthetic origin can be used to create sca�olds

for bone tissue engineering; however polyurethanes are of particular interest due to

the flexibility associated with their versatile chemistry (Guelcher, 2008). This makes

it possible to customise polyurethane sca�olds in order to attain desirable physical,

chemical and mechanical properties such as durability, elasticity and fatigue resistance, by

altering the choice and quantity of the starting materials (Zdrahala and Zdrahala, 1999).

Biocompatible and biodegradable polyurethanes have been investigated as sca�olds for

tissue engineering applications for almost thirty years (Guelcher et al., 2004), and also

as heart valves, stents, intra-aortic balloons and pacing lead insulators, amongst others

(Grad et al., 2003).

Mechanically, polymers are noted for their extensive deformation and high toughness

whilst ceramics, such as hydroxyapatites (HA), are noted for their high compressive

strength but brittle failure. Combining polyurethane with hydroxyapatite has been

shown by a number of researchers to improve the mechanical properties of the resulting

composite, as long as a strong interfacial bond strength is established between the ceramic

phase and the polymer matrix (Attawia et al., 1995; Boccaccini and Maquet, 2003;

Bonzani et al., 2007; Martinez-Valencia et al., 2011).

Electrospinning is an e�cient, simple and relatively easy polymer fabrication

technique that produces sca�olds with nano and micro polymer fibres that have

non-aligned or aligned orientations, and the advantage that it can be performed

with di�erent polymers in both solution and melt states. Such thin fibres provide
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high surface area to volume ratios, high porosity, flexibility in surface functionalities,

superior mechanical performance and membrane technology (Demir et al., 2002). In

the field of biomaterials and tissue engineering, electrospinning has been utilised

for producing sca�olds that mimic the morphological characteristics and biological

function of the natural extracellular matrix, by providing an optimal template for

cell attachment, proliferation and growth (Carlberg et al., 2009; Huang et al., 2003).

Several di�erent polymers such as polyurethanes, poly(lactic acid), poly(glycolic

acid) poly(Á-caprolactone), and their co-polymers have been successfully spun for

musculoskeletal, nerve, skin, vascular and drug delivery applications (Bashur et al., 2009;

Clarke et al., 2008; Nirmala et al., 2011). Electrospinning may be an ideal technique

for bone tissue engineering where repair of a thin defect is required, for example a cleft

palate repair (Bye et al., 2013), or electrospun sheets may be layered or rolled for larger

defects (McMahon et al., 2011).

Demir et al. (2002) studied the e�ect of electrical field, temperature and conductivity

on electrospun polyurethane-urea fibres and reported that the morphology of electrospun

fibres is strongly correlated with viscosity, equivalent concentration and temperature.

In their study, they reported that solution temperature, a key parameter that a�ects

fibre morphology and spinning ability was essential to spin polymer concentrations

beyond 12.8wt%. Khan et al. (2008) and Mi et al. (2014) electrospun polyurethane

composites with micro and nano sized hydroxyapatite for dental and bone tissue

engineering applications, respectively. In their studies, Khan and co-workers developed

a novel non-aligned composite material by chemically binding HA particles to the

diisocyanate component of the polyurethane backbone through solvent polymerisation,

whilst Mi and co-workers studied the e�ect of polymer properties and particle size on

electrospun PU-HA sca�olds. They reported reduced tensile properties with the inclusion

of micro HA (mHA) and nano HA (nHA) particles, although the reduction was more

significant with the inclusion of mHA.
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4.2 Aim

The aim of this study was to identify polyurethane solutions with appropriate

concentrations and solvent properties that can successfully be electrospun at room

temperature to attain consistent non-aligned fibre mats without beads and irregularities.

It was also to examine the e�ect of incorporating HA particles into these non-aligned

sca�olds. The hypothesis was that HA would reinforce the mechanical properties of

polymers and improve the bioactive properties compared to polymer-only sca�olds.

The overall aim is to create a range of sca�olds, with appropriate tensile mechanical

properties that support bone cell and matrix growth. In this study, the e�ect of

dimethylformamide (DMF) and tetrahydrofuran (THF) solvent combinations on the

fibre morphology and mechanical properties of electrospun thermoplastic polyurethane

polymers were investigated. Additionally, the e�ect of including nano and micro size HA

particles on fibre morphology, mechanical properties, biocompatibility, extracellular and

calcified matrix production, and histology were also investigated.

4.3 Results and Discussion One

Bone, the major load bearing tissue of the human body is subjected to varying degrees

of loading and unloading on a daily basis. Hence, designing a sca�old for bone tissue

engineering requires a material that is mechanically compatible, in order for it to be able

to undergo varying degrees of deformation without rupturing. Polyurethane remains

a popular choice amongst polymers for its advantageous properties of biocompatibility,

biodegradability, mechanical flexibility and versatile chemistry. Such properties allow

PU to be tailor-made for several applications including biomaterial design. As part of

this study, it was necessary to optimise electrospinning conditions for creating PU based

sca�olds for bone regeneration.

Sca�olds discussed in this chapter were fabricated as outlined in Section 3.3.1 on

page 70 using PU and PU-HA solutions described in Sections 3.2.2.2 and 3.2.3, on
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page 68 and 69 respectively. Cell culture and other biological characterization analysis

on the selected sca�olds were done as described in Section 3.7.3.2 on page 94 and

Sections 3.7.4 - 3.7.12 on page 98 and 112, respectively.

In brief, Z3A1 and Z9A1 PU pellets were dissolved in graded concentrations of

DMF/THF solvents to attain uniform PU solutions with ideal concentrations of 28 wt%

and 15 wt% for Z9A1 and Z3A1, respectively. These solutions were then electrospun

to attain non-aligned fibrous sca�olds in the Z9A1 and Z3A1 solvent sca�old group.

Composite sca�olds containing HA particles were also fabricated as part of this study,

using 25 wt% Z9A1 and 15 wt% Z3A1 PU solutions doped with micro or nano-HA

particles. All fabricated sca�olds were later characterized chemically and mechanically,

using state of the art equipment and biologically using MLO-A5 and hES-MP cells.

4.3.1 PU Solutions

Medical grade thermoplastic polyurethane Z9A1 and Z3A1 were dissolved in graded

concentrations of solvents to study the e�ect of solvent combinations on polyurethane

dissolution, electrospun fibre morphology and mechanical properties. The PU polymers,

with di�erent molecular weights thus Z9A1 (Mn-100,428 & Mw-197,459 g/mol, PD-1.97)

and Z3A1 (Mn-143,566 & Mw-272,857 g/mol, PD-1.90), but identical chemical

structures and composition of 4,4’-diphenylmethane diisocyanate, polyether diol, and

1,4 butane diol, were dissolved in solvents of Dimethylformamide, Tetrahydrofuran,

Dichloromethane, Xylene, Dioxane and Ethanol.

Polymer dissolution plays a key role in sca�old fabrication, as the nature of the

dissolution process a�ects optimization and processing conditions, which is also in turn

largely dependent on the choice of solvent. It was therefore important to optimise

the dissolution process in order to attain consistent and uniform solutions prior to

electrospinning. As with all high molecular weight polymers, these PU pellets were made

up of long chains of tightly folded coils which are entangled together by strong intra and

intermolecular dipole-dipole and hydrogen bonding forces. The strong nature of such

interactions coupled with the coiled nature of the chain segments and high molecular
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weight resulted in a slow dissolution process. On average the dissolution of both types of

PU in an appropriate solvent required 24-48 hours for complete dissolution to occur.

DMF and THF, are popular organic solvents used in dissolving and synthesising

polyurethane (Khil et al., 2003; Tsui and Gogolewski, 2009). In addition to DMF and

THF, other solvents including Dichloromethane, Xylene, Dioxane and Ethanol were also

assessed at di�erent concentrations to identify the best solvent for dissolving the PU

pellets. These earlier experiments showed that the PU pellets dissolved completely in

100% DMF solvent as well as solvent combinations of DMF and THF, but not 100% THF

solvent. The pellets also did not dissolve in Dichloromethane, Dioxane and Ethanol, but

greatly swelled in size when they came into contact with Dichloromethane.

The solubility of PU in a solvent is largely dependent on polarity, solvent compatibility

and the nature of chemical bonds present in the backbone chain. Solvents with similar

dispersion forces, intermolecular and hydrogen bonding forces to PU such as DMF and

THF, dissolve faster and relatively more easily than solvents with dissimilar properties.

The solvents used in this study di�ered in chemical composition, polarity, viscosity,

evaporation rate and electrical conductivities, all of which are key to dissolution.

Such key parameters a�ect the swelling ability of the pellets which takes place prior to

dissolution, as well as the overall solution viscosity, by increasing intermolecular friction

and surface tension of the final solution. They also a�ect polymer solubility by influencing

the degree of disentanglement of the polymer chains, the dispersion forces between

the segments and the di�usion of the chains through the polymer-solvent interaction

(Grassino, 2000). These features in turn a�ect electrospinning, since the creation of

polymer fibres is largely dependent on surface tension, solution viscosity and electrical

conductivity.

For successful dissolution to occur, polymer-solvent interactions should exceed

polymer-polymer attraction forces. This happens in order for the the chain segments

to absorb solvent molecules and increase in volume by swelling in size (Miller-Chou and

Koenig, 2003). Such strong polymer-solvent interactions between the PU pellets and

DMF caused the chain entanglements to loosen and the pellets to initially swell in a
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gel-like manner. This created an opportunity for the magnetic bead stirrers to disperse

the gel in solution and further increase the polymer-solvent surface contacts until all the

pellets disintegrated to form a consistent and uniform solution.

On the contrary, polymer-polymer interactions exceeded polymer-solvent interactions

when the PU pellets came into contact with DCM, Dioxane and Ethanol, hence

dissolution was not achieved even after several weeks. However, in the case of DCM,

the interaction was able to cause an initial swelling of the pellets, but not strong enough

to cause disintegration and loosening of the coiled chains. Hence, only PU solutions made

with 100% DMF, 70/30 DMF and 50/50 DMF/THF were used to electrospin sca�olds

for this work.

4.3.2 PU Sca�olds

Polymer solutions can be electrospun to produce sca�olds with submicron to nanoscale

fibers, as long as a proper solvent and polymer concentration is used to control the

intrinsic conductivity, viscosity and surface tension of the solution.

For this study, PU-only sca�olds electrospun from solutions containing 100% DMF

had more nano-diameter fibres and beads than other solvent combinations of DMF and

THF for both types of PU as shown in Figures 4.1 and 4.2 (in greater detail with

fibre diameter histogram distributions) on page 122 and 124, respectively. Reducing the

amount of DMF, by replacing with THF eliminated the presence of beads and resulted

in fibres with a more uniform morphology for Z9A1 sca�olds, and a combination of nano

and micro fibres for Z3A1 sca�olds.

For both types of PU, sca�olds made from solutions containing 50% THF solvent had

fibres with significantly larger diameters to those fabricated from 100% DMF and 70/30

DMF/THF combinations. It has been reported that the formation of beads and beaded

fibres is driven by the surface tension and surface tension coe�cient of the polymer and

solvent (Doshi and Reneker, 1995).

Although both DMF and THF are organic solvents with similar densities, they

have di�erent evaporation rates, electrical conductivity, dielectric constant and dipole
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Figure 4.1: Combined SEM images of Plain Z9 and Z3 PU Electrospun Sca�olds at

di�erent wieght and solvent concentrations.

Scale Bar of SEM images=20 µm

moments, all of which a�ect fibre formation during electrospinning (Garg and Bowlin,

2011). DMF is more polar than THF, and has a higher dielectric constant, boiling point

and dipole moment as compared to THF. It however has a lower evaporation rate than

THF. This caused PU solutions containing only DMF to be more viscous than those

with both DMF/THF. The high viscosity and low evaporation rate caused the thin fibres

to land on the grounded collector wet and flatten on impact. This is because, highly

viscous solutions are likely to overcome surface tension and transform solution droplets

into polymer jets along with the voltage.

Shawon and Sung (2004) studied the e�ect of THF/DMF on electrospun

polycarbonate nanofibres and reported a significant role of varying solvent combinations

on fibre morphology. From their study, fibre diameter decreased due to the evaporation of
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Table 4.1: Parameters used in preparing non-aligned electrospun sca�olds

Z9 & Z3

PU

wt%

micro/nano

HA wt%

Vol. ratio

of DMF (%)

Vol. ratio

of THF (%)

Spin Speed

(rpm)

Diameter of

the Rotating

Drum (cm)

Solvent Group

Z9-100 27 0 100 0 150 6

Z9-70 27 0 70 30 150 6

Z9-50 27 0 50 50 150 6

Z3-100 15 0 100 0 150 6

Z3-70 15 0 70 30 150 6

Z3-50 15 0 50 50 150 6

non-aligned Composites

Z9-PU 25 0 70 30 150 6

Z9-mHA 25 5 70 30 150 6

Z9-nHA 25 5 70 30 150 6

Z3-PU 15 0 70 30 300 8

Z3-mHA 15 5 70 30 300 8

Z3-nHA 15 5 70 30 300 8

the solvent that led to an increase in the forces from the surface charge density. They also

reported that increasing THF to DMF ratios, increased the presence of bead formation

and bead density. This is in contrast to what was observed in this study, and could have

resulted from the di�erent polymer-solvent interaction of the thermoplastic polyurethane

as compared to polycarbonate, since the PU has a more flexible chemical composition

and an ultra-high molecular weight.

As discussed in Section 3.2.2.2 on page 68, each of the PU pellets from the ZnA1 series

(n=1/3/9), underwent the most consistent and uniform dissolution in 70/30 DMF/THF

solvent after 24 hours of mixing compared to the other solvents studied. Z3A1 was best

at 15 %wt whilst the Z9A1 pellets dissolved best at a maximum concentration of 25 %wt

for electrospinning with composite particles and a maximum concentration of 28 %wt for

electrospinning without HA particles. The e�ects of molecular weights of Z3A1 versus

Z9A1 could not be directly compared in this study as spinning parameters were slightly

di�erent between these two sets of sca�olds. However in general, Z3A1 dissolved faster

and more uniformly than Z9A1 prior to electrospinning, and presented with a more
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Z9-100 Z9-70 Z9-50

Z3-100 Z3-70 Z3-50

Figure 4.2: SEM images of Electrospun sca�olds synthesised with di�erent combinations

of DMF & THF.

(Scale Bar of SEM images=20 µm), with binned histogram distributions of the fibre
diameters below (n=40).

uniform viscosity and was easier to fabricate.

Armentano et al. (2010) reported that the solvent choice used in fabricating polymer

films influences several sca�old properties, including the heterogeneity of the surface
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structure, reorientation or mobility of the surface crystal segment, as well as swelling and

deformation. In this study, di�erences in electrospun morphology which resulted from

changing the amount of DMF contained in solution are supported by the work of Oprea

(2005) who studied the e�ect of N-methyl-2-pyrrolidone (NMP), DMF, toluene and ethyl

acetate on the properties of polymer films. They reported di�erences in morphology

and mechanical properties of films fabricated from solutions containing NMP and DMF

solvents. They suggested that NMP was a better solvent than DMF for developing

polyurethane films.

Wannatong et al. (2004) also studied the e�ect of five di�erent solvents on electrospun

polystyrene (PS) and reported that DMF was the best solvent for preparing beadless PS

sca�olds. This is in contrast to what was observed in our study, but these di�erent results

could be due to di�erences in concentration of solutions, molecular weights and polymer

choice, as PU and PS have di�erent chemical and physical properties.

4.3.3 PU-HA Composites

Mimicking the ductile properties of collagen and the strength of the mineralised phase

of bone with PU and HA particles combined in micro or nano composites has been

proposed for bone substitute materials for a number of reasons. The elastomeric nature

of PU serves as a matrix, reinforced by the HA particles. Nano HA and micro HA di�er

in several ways including surface area and the degree of crystallinity which both a�ect

overall sample constitution.

By including both particle types in separate solutions, it was possible to assess the

e�ect of particle size on fibre morphology and mechanical properties. Note that all

solutions, including the PU sca�olds without HA for this set of experiments were spun

from a 70/30 solution of DMF/THF because this enabled the best fibre morphology

(without beads), however the processing conditions for Z9-PU and Z3-PU are slightly

di�erent from those used in the Z9-70 and Z3-70 groups (detailed in table 4.1) so these

are not expected to have identical morphological and mechanical properties.

Electrospun 25wt% Z9A1 and 15wt% Z3A1 dissolved in 70/30 DMF/THF solvents
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Z9-PU Z9-mHA Z9-nHA

Z3-PU Z3-mHA Z3-nHA

Figure 4.3: SEM images of Electrospun Composite Sca�olds; PU (left column), mHA

(middle column) and nHA (right column) composite sca�olds.

(Scale Bar of SEM images=20 µm), with histogram distributions of the fibre diameters
below (n=40). Note that the axes for each histogram are to di�erent scales reflecting
the variability in fibre size between sca�old compositions and the histogram for Z9-mHA
excludes a single 35 µm fibre which is included in the mean values presented in table 4.3
on page 135.
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showed relatively uniform fibre diameter distributions. However, the inclusion of mHA

and nHA particles resulted in changes to fibre morphology. For both types of PU,

nHA particles with a higher surface area and smaller particle size, blended well with

PU and resulted in more uniform fibres compared to composite sca�olds containing

mHA particles, which presented with a beaded morphology and generally reduced fibre

diameters but with some particularly large fibres (Figure 4.3 on page 126).

It is likely that the particularly large fibres contain large chunks of mHA leading to

a bimodal distribution of fibre size and large standard deviation (detailed in Table 4.3

on page 135). There was a single extremely large fibre of 35 µm in the field of view

examined which was not included in the frequency plot (Figure 4.3) as it would have

made it di�cult to visualise the rest of the data, but this is included in the fibre average

diameter data shown in Table 4.3 on page 135.

Reduction in fibre diameter with the inclusion of mHA particles to create composites

was also observed by Nirmala et al. (2011) who electrospun nanofibrous polyurethane

with micro Calcium Chloride particles and by Mi et al. (2014) who suggested that that

mHA particles may have stretched the polymer jets while the fibres were being deposited.

The e�ect of more fibres at a lower diameter and a few fibres at a much larger diameter

caused by the inclusion of mHA is much less marked when the Z3A1 polymer is used.

This may be explained by the smaller molecular weight and polymer chain length of Z3A1

compared to Z9A1 and its lower viscosity.

It has been reported that the higher surface area of nHA compared to mHA

enables better bonding between the nano-sized HA particles and PU enabling greater

reinforcement of the polymer matrix and ultimately, enhancing mechanical and functional

properties of nanocomposites compared to conventional microcomposites (Armentano

et al., 2010). This probably explains why the nHA fibres are much more consistent in

their size and morphology as the particles would be better distributed within, and bound

to their polymer matrix.
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4.3.4 FTIR Spectroscopy

The polar nature of PU and HA makes FTIR characterisation, which elicits di�erences

in dipole moments, an ideal characterisation technique for analysing the chemical

composition of composite sca�olds. An infrared spectrum generated with FTIR

spectroscopy represents the chemical fingerprint of a sample and hence useful for

qualitative and quantitative analysis. It operates on the principle that chemical bonds

or groups of bonds vibrate at characteristic frequencies, and that, molecules have specific

vibrational modes that can be activated when hit by photons of a specific energy level

(Dimitrova et al., 2009).

The FTIR spectrum of both Z9A1 and Z3A1 non-aligned electrospun sca�olds

were generated with the Nicolet 8700 FTIR spectrometer but with di�erent sampling

accessories. Z3A1 sca�olds were characterized with the PAS sampling accessory whilst

those of Z9A1 were done with ATR sampling. This allowed an investigation into the

best FTIR sampling tool for characterizing PU-HA constructs. The FTIR spectra for

Z3A1 sca�olds are presented in Figure 4.4 on page 129, and those of Z9A1 composites

are presented in Figure 4.5 on page 131.

For Z3-PU as shown in Figure 4.4a, the peak at 3325 cm

≠1

is attributed to the

stretching ‹(N—H). The peak at 3121 cm

≠1

was the overtone of 1533 cm

≠1

and 3039 cm

≠1

attributed to the ‹(C—H) in benzene ring. The peaks at 2940, 2857 and 2795 cm

≠1

were

CH

2

peaks of the polyether. The peak at 2940 cm

≠1

was the asymmetric stretching peak

of CH

2

and the peak at 2857 cm

≠1

was the symmetric stretching of CH

2

. The carbonyl

absorption region was observed in between 1730 to 1700 cm

≠1

, the carbonyl absorption

band classified into two peaks.

The peak due to bonded C==O stretching was at 1701 cm

≠1

and the free C==O

stretching appeared at 1730 cm

≠1

. The peak at 1597 cm

≠1

was assigned to ‹(C=C) in

the benzene ring and 1533 cm

≠1

was the amide II ”(N-H) + ‹(C==N). 1478 cm

≠1

was

the weak CH

2

peak and the 1413 cm

≠1

attributed to the strong ‹(C-C) in benzene ring.

The peak at 1310 cm

≠1

was assigned to amide III ”(N-H) + ‹(C==N), —(C-H) peak and

128



Chapter 4. Results and Discussion Section One

(a)

(b)

(c)

Figure 4.4: FTIR Spectra of non-aligned Z3A1 Composites (a): Stacked FTIR spectra

of Electrospun Z3-PU, Z3-mHA and Z3-nHA. (b) Combined FTIR spectra of Z3-PU,

Z3-mHA and Z3-nHA at Common Scale with Hydroxyl, Carbonyl, Phosphate and

bending Phosphate groups highlighted as ú, —, fi and �, respectively. (c) A combined

spectra of Z3-PU, Z3-mHA and Z3-nHA at common scale for a wavenumber region of

1800 - 450 cm

≠1

.

”(N-H) + ‹(C==N) appeared at 1225 cm

≠1

. The region between 1103-916 cm

≠1

was the

‹(CH

2

—O—CH

2

) of ether peak and 1018 cm

≠1

was the weak —(C—H) in benzene ring.

The peak at 817 cm

≠1

was the “(C-H) from butane diol. These observations were similar

to those reported by (Khan et al., 2008) in their study of polyurethane composites for

dental restoration applications.

Figure 4.4b shows the combined spectra of Z3-PU, Z3-mHA and Z3-nHA at common

scale, with emphasis on the hydroxyl, carbonyl, phosphate and bending phosphate groups

whilst Figure 4.4c shows the combined spectra in greater detail for a wave number region
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of 1800 - 450 cm

≠1

. The characteristic peak of stretching O—H was observed at 3570 cm

≠1

(Rehman and Bonfield, 1997). The bands at 1060, 961, 603 and 571 cm

≠1

were assigned to

vibration of the phosphate group, PO

4

. The peak at 1078 cm

≠1

was the triply degenerated

vibration ‹3, and 961 cm

≠1

was the non-degenerated symmetric stretching mode ‹1 of the

P—O bond of the phosphate group which apparently are active in the infra-red because

the lower symmetry in the lattice sites introduces distortion (Fowler et al., 1966). The

peak at 603 and 571 cm

≠1

were assigned to a triple degenerated bending mode ‹4, of the

O-P-O bond. The peak at 633 cm

≠1

was due to the phosphate ‹4 bending.

The stretching O—H and P—O (stretching and bending) peaks were not present in

the Z3-PU (polyurethane-only) spectrum. However, after mixing the micro and nano

hydroxyapatite in polyurethane, the appearance of characteristic peaks of HA were

observed and it was noted from the shifting and appearance of new peaks in the region of

1100-916 cm

≠1

that nano-HA with a higher surface area and more crystalline structure

was mixed better than micro-HA and a�ected the shifting of peaks ‹3 P—O from

1078 cm

≠1

for Z3-mHA to 1060 cm

≠1

for Z3-nHA. It has been mentioned in the literature

that the width and intensity of peaks in FTIR spectrum have explicit dependence on the

particle size.

As particle size increases, the width of the peak decreases and intensity increases.

The restoring force of nano particles created by surface polarisation charge is responsible

for the frequency di�erence. The di�erence in the frequency of vibrational modes is

attributed to dipolar interactions, interfacial e�ects, surface amorphousness, surface free

energy etc (Mo et al., 1993; Martin, 1996; Bobovich, 1988).

As with the Z3 sca�olds, a similar FTIR characterization pattern was also observed

with the Z9 sca�olds as shown in Figures 4.5a and 4.5b. However, the characteristic peak

of stretching and liberation modes of O—H usually seen at 3570 cm

≠1

and 630 cm

≠1

were

not present in the Z9-mHA and Z9-nHA composites.

For the Z9-PU spectra, typical bands present at (800–1050) cm

≠1

were assigned

to weak — and “(C-H) bonds in the benzene ring; (1010–1250) cm

≠1

was assigned to

(CH

2

-O-CH

2

) bonds, and (1180–1230) cm

≠1

was allotted to the strong ”(N-H) + ‹(C-N).
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(a)

(b)

(c)

Figure 4.5: FTIR Spectra of non-aligned Z9A1 Composites (a): Stacked FTIR spectra

of Electrospun Z9-PU, Z9-mHA and Z9-nHA. (b): Combined FTIR spectra of Z9-PU,

Z9-mHA and Z9-nHA at Common Scale (c): A combined spectra of Pure mHA powder

and Pure nHA powder at common scale. All spectra shows a wavenumber region of 4000

- 450 cm

≠1

.
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1283 cm

≠1

and (1375–1630) cm

≠1

were ascribed to strong C=C bonds whilst

(1750–1780) cm

≠1

was assigned to free and bonded C=O. In addition, peaks present

at (2800–2950) cm

≠1

were attributed to strong vs (CH

2

) bonding whilst those found at

(3300–3400) cm

≠1

were ascribed to hydrogen non-bonded and bonded N-H stretching

vibration.

Although the stretching and liberation modes of OH- groups usually observed at 3570

and 630 cm

≠1

were also not present in the HA spectra of pure Nano-HA powder and Pure

Micro-HA powder without PU (Figure 4.5c), the phosphate and CO

3

group stretching at

(960 – 1080) cm

≠1

and (1410–1475) cm

≠1

respectively indicates that both samples were

indeed hydroxyapatite. This anomaly could be due to the fact that Attenuated Total

Reflectance (ATR) sampling accessory was used to image the thicker Z9 sca�olds and the

pure micro and nano-HA powders, instead of the Photo-acoustic sampling (PAS), which

has been reported as a better technique for imaging biomaterials (Rehman and Bonfield,

1997).

Although ATR sampling requires less sample preparation or does not need to be

purged with helium gas as compared to PAS sampling, not all samples are ATR

compatible. ATR sampling requires an Schwarzchild IR objective which contains a ZnSe,

Ge or diamond crystal that needs to be in contact with the material being tested. This

allows the ATR crystal to absorb leaked out light that is normally reflected inside the

crystal. This loss in reflection is then used to create a spectrum of the sample after it

has been corrected for penetration depth as a function of wavelength (Miller, 2002).

Samples must therefore be thin and firm, or mounted onto sti� surfaces in order to

establish good contact interaction between the crystal and the sample to allow an accurate

spectral representation of the sample to be generated. Since Z9 sca�olds were thicker than

the Z3 sca�olds, and both types of pure HA (micro and nano) were in a powdered state,

this could have accounted for the absence of characteristic peaks of O—H in the spectra

of both HA powders, as well as the Z9-mHA and Z9-nHA composites, shown in Figure 4.5

on page 131.
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4.3.5 Mechanical Analysis of PU sca�olds

Microphase segregation, a key characteristic of thermoplastic polyurethane elastomers

occurs as a result of the thermodynamic incompatibility of the hard and soft segments of

PU and is known to play a key role in the mechanical properties of PU. Factors known

to a�ect the degree of separation include segment polarity, hydrogen bonding responsible

for hard/soft segment interaction, molecular weight and overall sample composition.

In general, Z9A1 sca�olds were stronger than Z3A1 sca�olds and presented with

higher mechanical properties for all combinations of DMF and THF solvents. With

identical chemical structures, di�erences in the mechanical properties of Z9A1 and Z3A1

probably resulted from the di�erences in molecular weights, which would have a�ected

the interaction between the hard and soft segments, causing di�erences in the microphase

segregation.

Table 4.2: Morphological and mechanical properties of Z9A1 and Z3A1 sca�olds with

di�erent solvent combinations.

Electrospun

Sca�olds

Fibre Diameter

(µm)

Thickness

(mm)

Young’s Modulus

(MPa)

Yield Strength

(MPa)

Z9-100 2.06 ± 3.09

c

0.27 ± 0.02 60.09 ± 10.1

bc

2.13 ± 0.55c

Z9-70 1.54 ± 0.96

c

0.29 ± 0.06 25.89 ± 4.54

a

1.73 ± 0.79

Z9-50 3.47 ± 0.89

ab

0.36 ± 0.04 30.11 ± 0.78

a

1.27 ± 0.29

a

Z3-100 1.25 ± 1.56

bc

0.06 ± 0.01 18.54 ± 2.31

bc

1.56 ± 0.34

bc

Z3-70 1.93 ± 0.85

ac

0.18 ± 0.03 7.61 ± 0.76

ac

0.71 ± 0.03

a

Z3-50 2.82 ± 1.29

ab

0.10 ± 0.01 3.38 ± 1.25

ab

0.50 ± 0.04

a

(mean ± S.D., n= 40 for fibre measurements and 6 for all other measurements)

a=significantly di�erent from sca�olds made from 100% DMF, at p Æ 0.05
b=significantly di�erent from sca�olds made from 70/30 DMF/THF, at p Æ 0.05
c=significantly di�erent from sca�olds made from 50/50 DMF/THF, at p Æ 0.05

Decreasing the proportion of DMF in the solvent reduced the Young’s Modulus and

strength of Z9A1 and Z3A1 sca�olds. Z9-100 (100% DMF) showed a brittle stress-strain

profile with plastic deformation occurring at 30% strain as shown in Figure 4.6a. Z9-100

also had the highest Young’s Modulus and yield strength, significantly higher than those

of Z9-50 for both properties, however, only Young’s Modulus was significantly higher

than that of Z9-70 sca�olds (Table 4.3 on page 135).
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(a) (b)

Figure 4.6: Example stress/strain curves of fabricated sca�olds, (a) E�ect of solvent

combination on Z9A1 sca�olds (b) E�ect of solvent combination on Z3A1 sca�olds.

A similar pattern was observed with the Z3 groups as shown in Figure 4.6b. Values of

Young’s Modulus for Z3-100, Z3-70 and Z3-50 were significantly lower with less DMF in

the electrospinning solvent (Table 4.2 on page 133). For both polymers, these di�erences

in mechanical properties are likely to be the result of di�erences in fibre morphology

(Figure 4.2 on page 124) which in turn may have resulted from di�erences in the

solvent properties of DMF and THF. Beads present in sca�olds fabricated with 100%

DMF solvent (Figure 4.2 on page 124) probably created short regions of large fibre

cross-sectional area, which would have caused there to be a greater amount of material

relative to void space within the sample, which would in turn create an overall stronger

sca�old but with a reduced ability to undergo strain.

4.3.6 Mechanical Analysis of PU-HA Composites

Mechanical properties of composites are controlled by several micro-structural factors

such as the properties of the matrix, interfacial bonding strength, processing methods

and the properties and distribution of fillers. The interface strength between PU and

HA particles greatly a�ects the e�ectiveness of load transfer from the polymer matrix to

micro and nanocomposites. For composite sca�olds, inclusion of HA particles improved

the tensile properties of both Z9A1 and Z3A1 sca�olds, Young’s Modulus and yield
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strength of composite sca�olds were significantly higher than those of plain PU sca�olds,

for both Z9A1 and Z3A1.

Table 4.3: Morphological and mechanical properties of Z9A1 and Z3A1 sca�olds with

di�erent types of HA.

Electrospun

Sca�olds

Fibre Diameter

(µm)

Thickness

(mm)

Young’s Modulus

(MPa)

Yield Strength

(MPa)

Z9-PU 2.01 ± 0.80 0.36 ± 0.01 9.56 ± 3.03

d

0.61 ± 0.18

d

Z9-mHA 2.86 ± 6.01 0.30 ± 0.01 88.69 ± 20.20

ce

3.02 ± 0.80

ce

Z9-nHA 2.95 ± 1.60 0.42 ± 0.02 10.21 ± 2.99

d

0.79 ± 0.16

d

Z3-PU 2.18 ± 0.51

e

0.43 ± 0.09 2.42 ± 0.21

de

0.29 ± 0.04

de

Z3-mHA 2.61 ± 1.45

e

0.31 ± 0.01 4.77 ± 0.29

ce

0.46 ± 0.03

c

Z3-nHA 1.56 ± 0.63

cd

0.09 ± 0.01 3.09 ± 0.30

cd

0.52 ± 0.09

c

(mean ± S.D., n= 40 for fibre measurements and 6 for all other measurements)

c=significantly di�erent from PU sca�olds, at p Æ 0.05
d=significantly di�erent from sca�olds made with mHA, at p Æ 0.05
e=significantly di�erent from sca�olds made with nHA, at p Æ 0.05

(a) (b)

Figure 4.7: Example stress/strain curves of fabricated sca�olds, (a) E�ect of HA particles

on Z9A1 sca�olds, (b) E�ect of HA particles on Z3A1 sca�olds.

SEM images of electrospun composites (Figure 4.3 on page 126) show that nHA, with

its smaller size and higher surface area, properly integrated with the PU fibres compared

to mHA which can be seen sticking out of the fibres and creating lumps and beads. Better

mixing of nHA particles with PU as compared to mHA particles was also confirmed with

FTIR for the Z3 composites. It was therefore expected that the nano-composites would
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be sti�er and stronger than the micro-composites However, for Z9A1, both yield strength

and Young’s Modulus of mHA sca�olds were significantly higher than those of Z9-nHA

sca�olds. Interestingly, the yield strength of Z3-nHA sca�olds was higher than that of

Z3-mHA, although not statistically significant. These di�erences in behaviour between

Z9A1 and Z3A1 composites sca�olds could have resulted from the di�erence in the PU:HA

ratio between Z9A1 (5:1) and Z3A1 (3:1) and the molecular weight of the polymers. Z9A1

has a higher molecular weight and produces sca�olds that are high in Young’s modulus

and strength but more brittle, hence the addition of HA further increases the brittleness

of the electrospun sca�old.

In contrast, Z3A1 has a lower molecular weight and is more flexible and the addition

of HA, albeit at a higher concentration than that for Z9, has a smaller e�ect on the

properties of the electrospun sca�old. Molecular weight, concentration and size of HA

would all have resulted in di�erences in interactions between solvents, macromolecular

chains of the polymer and the HA particles. These di�erence in interactions have been

reported to a�ect microphase separation between the hard and soft segment of PU, hence

ultimately a�ecting its mechanical properties (Oprea, 2005).

4.3.7 Cell Viability on PU Sca�olds

Electrospun polyurethane sca�olds have been used for several tissue engineering

applications for more than 10 years (Khil et al., 2003; Clarke et al., 2008; Carlberg et al.,

2009) as almost all of human tissue is deposited on nanofibrous structures. It is therefore

ideal to mimic some of the structure and biological function of the natural extracellular

matrix (ECM) with cells grown on electrospun sca�olds.

MLO-A5 cells were seeded on Z9A1 and Z3A1 PU sca�olds fabricated from solutions

containing varying combinations of DMF/THF solvents, to assess the e�ect of varying

fibre morphology resulting from solvent combination on cell viability. MLO-A5 cells have

characteristics of a post-osteoblast and pre-osteocyte cell type, and rapidly mineralize

in sheets rather than nodules. These cells have been used to extensively study the

osteoblast to osteocyte di�erentiation process, bone mineralization and the e�ects of
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mechanical loading on biomineralization (Sittichockechaiwut et al., 2009; Rosser and

Bonewald, 2012).

Figure 4.8: pH readings of Deionised Water Treatment on 28wt% Z9-PU Sca�olds, Z9-100

made from 100% DMF and Z9-70 made from 70/30 DMF/THF.

Prior to cell culture, the electrospun sca�olds were placed in PBS for a two week period

to investigate the possibility of any remaining solvent leaching from the sca�olds. As

shown in Figure 4.8 on page 137, Z9-PU sca�olds manufactured from solutions containing

70/30 DMF/THF content had a fairly stable pH reading over the period where as sca�olds

made from 100% DMF solvent showed an increasing pH over the period. This indicated

that although all sca�olds were placed in a vacuum chamber in an attempt to remove

all traces of remaining solvent, some DMF solvent was still present in the 100% DMF

sca�olds probably due to the low vapour pressure and slow evaporation rate of DMF as

compared to THF.

This slow evaporation of DMF was also reported by Shawon and Sung (2004) in their

study of polycarbonate nanofibres. They reported that polycarbonate solutions with

higher ratios of THF to DMF solvent mixtures had more solvent evaporation occurring

due to the higher vapour pressure of THF. On the other hand, since DMF has lower

vapour pressure, it evaporates slowly, leaving solvent traces in the sca�old even after
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electrospinning. Therefore at higher THF to DMF ratios, the rate of solvent evaporation

from the fibre surface increased. This was likely due to large volume of THF in the

polymer solution which caused the fibres to carry more charges per unit mass.

As a result of this observation, sca�olds were always placed in PBS solutions prior

to cell culture to remove potential remaining solvent, as this could be toxic to the cells.

PBS solutions were changed every 24 hours over a 3 day period.

(a) (b)

Figure 4.9: MTT absorbance for MLO-A5 cells seeded on (a) Z9A1 PU sca�olds (b) Z3A1

PU Sca�olds.

(mean ± S.D. n=6) For statistical analysis see text.

For biological characterisation, cells were viable on all sca�olds during the 14 day

culture period. Cells had similar viability on all Z9A1 on day 1, indicating that, there

were no di�erences in the cell’s ability to attach to sca�olds. Viability increased steadily

from day 1 to day 4 with similar values on Z9-100 and Z9-70 sca�olds between day 4 and

day 7. On day 14 of culture, there was no significant di�erence between MTT absorbance

on Z9-70 and Z9-100, however, cell viability on Z9-50 sca�olds was significantly lower than

that on Z9-100 and Z9-70 (pÆ0.05) (as showed in Figure 4.9a). This could have been

the result of morphological di�erences in fibre diameter, as Z9-50 fibre diameters were

significantly larger than Z9-70 and Z9-100 fibres.

For Z3A1 sca�olds, there was a steady increase in cell viability on all Z3-100, Z3-70

and Z3-50 sca�olds during the culture period (in Figure 4.9b). There was however, no

significant di�erence between all groups of sca�olds, except that Z3-50 did not support
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as high a cell viability on day 4 (pÆ0.05). The ability of electrospun sca�olds to mimic

the natural three-dimensional environment of the in vivo extracellular matrix whilst

providing structural support with a high surface area to volume ratio, makes them

excellent structures for tissue engineering applications.

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Fluorescent micrographs of DAPI (blue=nucleus) and Phalloidin (red=actin)

staining of MLO-A5 Cells on Z3-70 sca�olds on (a) Day 1 (b) Day 4 and (c) Day 7 & for

Z9-70 sca�olds on (d) Day 1 (e) Day 4 & (f) Day 7.

Scale Bar at 100 µm.

It has been reported that cells assume a more spindle-shaped morphology with

increasing fibre diameters and rather orient parallel to fibres with aligned meshes

(Bashur et al., 2009; Delaine-Smith et al., 2014). DAPI (nucleus) and Phalloidin (actin

cytoskeleton) staining over a seven day period confirmed the MTT data indicating

increasing numbers of cells attached to the sca�olds over time. Figure 4.10 shows

representative micrographs of cell attachment over the period indicating that cells were

well spread on the sca�olds with an elongated morphology for Z3-70 (Figure 4.10a - 4.10c)

and Z9-70 (Figure 4.10d - 4.10f) sca�olds. The cells however appeared to be very confluent

and less spread out by day 7, especially on the Z9-70 (Figure 4.10f) sca�olds. This

observation was further reinforced with histological analysis of the sca�old’s cross-section

as discussed in Section 4.3.10. This confirmed that both MLO-A5 and hES-MP cells did
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not only reside on the surface of the electrospun mats but penetrated the porous regions

to occupy the entire sca�old.

4.3.8 Cell Viability on Composite Sca�olds

Hydroxyapatite (Ca

10

(PO

4

)

6

(OH)

2

), HA has been widely used as a biocompatible

material in many areas of medicine. HA is well established as a synthetic material for

bone replacement due to its chemical resemblance to the inorganic component of bone

and tooth. Additionally, HA is known to promote faster bone regeneration and direct

bonding to regenerated bone without intermediate connective tissue (Patel et al., 2002).

Z9-PU, Z9 bioactive sca�olds (Z9-mHA & Z9-nHA) fabricated with 25wt% PU +

5wt% HA were seeded with MLOA-5 cells at a concentration of 1.5 x 10

5

cells per sca�old

for an initial 14-day experiment. This concentration was later reduced to 1.0 x 10

5

cells

per sca�old, for longer 28 day experiments as the sca�olds quickly become over confluent

with some of the cells starting to peel of after day 14.

(a) (b)

Figure 4.11: MTT of MLO-A5 cells on Z9A1 composite sca�olds, (a) Before

Destaining (b) Quantitative absorbance after destaining with acidified Isopropanol - TCP

control (black).(Mean ± S.D. n=6), For statistical analysis see text.

As shown in Figure 4.11b, Z9A1 non-aligned sca�olds fabricated with 5wt% nano-HA

particles showed a higher cell viability across all time points (including day 1) as compared

to Z9-PU, Z9-mHA and the Tissue Culture Plastic (TCP) control. Cells grown on TCP
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had the second highest viability, whilst Z9-PU showed the lowest viability amongst the

group after day 1. It was interesting to observe that Z9-mHA sca�olds with micro-HA

particles had viabilities similar to those of Z9-PU polyurethane-only sca�olds. Although

viabilities varied amongst the various materials during the 14-day culture period, there

was no significant di�erence between their ability to support cells on days 1, 7 and 14.

The only significant di�erence in the Z9-composite group was observed on Day 4, where

the MTT absorbance of cells cultured on Z9-nHA sca�olds were significantly higher than

those cultured on Z9-PU and Z9-mHA sca�olds.

nHA particles have been reported to favour interface adhesion between the

nanoparticles and the polymer matrix ensuring an even and balanced blend in the

nanocomposite as compared to the microcompostite (Rezwan et al., 2006). However,

although a higher viability was observed for Z9-nHA sca�olds, further experiments

were undertaken with a longer 28 day culture period, and another cell type or

PU-nHA composite such as Z3-nHA. This was necessary to corroborate that the higher

viability observed, resulted from the bioactive ability of nano-HA particles and not the

biocompatible features of the Z9 polyurethane.

Z3A1 composite sca�olds which were easier to fabricate, consistently presented with a

more uniform combination of nano and micro fibre diameters, were also less brittle than

their Z9A1 counterparts. They were therefore used to examine the growth of hES-MP

cells as well as MLO-A5 on composite sca�olds over a 28 day period. As human cells

have been reported to attach and organize well around fibres with diameters smaller than

those of cells, a combination of micro and nanoscale fibrous sca�olds have been said to

provide an optimal template for cells to attach, migrate and grow (Huang et al., 2003;

Laurencin et al., 1999).

Similar to Z9-nHA sca�olds, MLO-A5 cells seeded on Z3-nHA sca�olds had the highest

cell viability at all-time points after day 1, being 22% higher by day 28 (Figure 4.12a),

this implies that cell proliferation rate was higher on these sca�olds as MTT absorbance

at day 1 was the same for all groups. This is similar to the e�ects of nHA observed with

the Z9 composite group and in previous studies (Bianco et al., 2009; Mi et al., 2014).
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This probably resulted from the bioactive nature of HA coupled with the higher surface

area and crystallinity of nHA particles.

(a) (b)

Figure 4.12: MTT absorbance on Z3A1 composite sca�olds. (a) MLO-A5 cells on Z3

PU, Z3-mHA and Z3-nHA sca�olds (b) hES-MP cells on Z3 PU, Z3-mHA and Z3-nHA

sca�olds.

(Mean ± S.D. n=6), For statistical analysis see text.

A high HA surface area facilitates a strong interaction between the polymer and

ceramic phase, and allows protein attachment. For example, it has been reported that

initial calcium absorption to nanoceramic surfaces enhanced binding of vitronectin, that

subsequently promoted osteoblastic adhesion and proliferation (Webster et al., 2001). It

might be expected that mHA would also elicit cell viabilities as high as those attained

by the nano-composites but that was not observed for MLO-A5 in this study. This may

have been due to the lower sca�old porosity that was observed with the inclusion of mHA

particles, which could have hindered cell proliferation, migration, and nutrient transfer.

To investigate the ability of these composites to support progenitor cells, hES-MPs,

embryonic derived mesenchymal progenitor cells were also seeded on Z3A1 electrospun

sca�olds and cultured in only osteogenic media (Figure 4.12b). hES-MPs have been used

in several studies as a model cell for bone tissue engineering (Karlsson et al., 2009). In

the presence of osteogenic supplements, hES-MP cells have been shown to di�erentiate

towards the osteogenic lineage in vitro (Delaine-Smith et al., 2012).

As shown in Figure 4.12b, there was an increase in hES-MP cell viability over all
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time-points on Z3A1 sca�olds however, in contrast to MLO-A5 cells, there was no

significant di�erence between Z3-nHA, Z3-mHA and Z3-PU sca�olds in their ability to

support cell proliferation. There is no obvious reason for this di�erent e�ect of nHA on cell

proliferation of the two types but it may be related to cell size and their di�erent stages

in the osteogenic di�erentiation pathways. It will therefore be interesting to investigate

the osteoinductive ability of both micro and nano-HA composites, by culturing hES-MP

cells in non-osteogenic media.

4.3.9 Collagen and Calcium Staining

The ultimate test of a sca�olds ability to support bone tissue engineering is its ability to

support bone-like extracellular matrix deposition. Collagen and calcified matrix staining

using Sirius red and alizarin red, respectively, were used to study matrix production on

sca�olds in the Z3A1 composite group on days 14, 21 and 28 of culture.

Figure 4.13: Day 14 Sirius Red Collagen Stain and Alizarin Red Calcium Stain on

non-aligned Electrospun Sca�olds seeded with MLO-A5 cells.

Staining and destaining was done as described in Sections 3.7.5 and 3.7.6 on page 103

and 104, respectively. Photographic images of the samples as shown in Figure 4.13,

taken after staining showed a good deposition of both mineralisation and collagenous

extracelluar matrix on the sca�olds. Appropriate destaining solutions were then added

to the samples to elucidate the deposits and allow for quantitative analysis.

Collagen production by MLO-A5 cells on Z3 sca�olds was highest for Z3-nHA sca�olds

at all-time points (Figure 4.14a) with the highest deposition measured on day 28,

143



4.3. RESULTS AND DISCUSSION ONE

significantly higher than that produced on Z3-mHA and Z3-PU sca�olds. This is the

same sca�old that supported the highest number of viable MLO-A5 cells. A similar

pattern was observed with hES-MP cells (Figure 4.14b). It will therefore be interesting

to establish if this occurred due to proliferating cell numbers by normalizing the Sirius

red data with MTT or Pico-green DNA data. This would confirm if more cells resulted

in more collagen, or that a fewer number of cells secreted a high amount of collagen.

(a) (b)

(c) (d)

Figure 4.14: Collagen and calcium Staining on Z3-PU, Z3-mHA and Z3-nHA sca�olds

on D14, D21 and D28. (a) Sirius Red absorbance of MLO-A5 cells, (b) Sirius Red

absorbance of hES-MP cells, (c) Alizarin Red absorbance of MLO-A5 cells (d) Alizarin

Red absorbance of hES-MP cells.

(Mean ± S.D. n=6) ú p Æ0.05, úú Æ0.01, ú ú úú Æ0.0001.

Interestingly, calcium production appeared to elicit results opposite to those attained

for collagen production. Alizarin red absorbance on cell-seeded Z3–PU sca�olds was
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higher for both MLO-A5 (Figure 4.14c) and hES-MP cells (Figure 4.14d) than for

HA composite sca�olds (after subtraction of the background absorbance). However,

unsurprisingly, alizarin red strongly stained the blank (no cells) control sca�olds that

contained HA (Figure 4.13 on page 143). As this is a single blank and not the same sample

on which cells are seeded, any variability in HA content between sca�old samples would

have made it more di�cult to distinguish between the sca�old HA and cell-deposited

HA. It would be interesting to image mineralisation in the same sca�old over time using

techniques such as µCT scanning or Xylenol orange as used in subsequent chapters to

determine if there was truly less cell deposited calcium in the composite sca�olds.

4.3.10 Histology

Histological sections were used to examine how far cells seeded on the sca�old surface

penetrated into the sca�olds in the Z3 composite group. Hematoxylin and eosin staining,

a popular biological characterization technique that stains nucleus purple and cytoplasm

pink, was used to assess how deep MLO-A5 cells and hES-MP inflitrated the sca�olds on

day 14, 21 & 28 of culture.

As shown in Figure 4.15, MLO-A5 cells were generally densely distributed on the

surface of all sca�olds on day 14 as compared to hES-MP cells which exhibited thinner

coverage in Z3-PU and Z3-mHA sca�olds and were more loosely dispersed throughout

the sca�old interior.

hES-MPs cells cultured on Z3-nHA sca�olds appeared to penetrate to the greatest

depth and were found in more locations compared to all other groups, although no cells

were seen at the bottom of the sca�old at the day 14 time-point. Although infiltration

of hES-MP cells into the sca�olds was greater on day 21 as compared to day 14, the cells

did not reach the bottom of sca�olds. However, as shown in Figure 4.16, hES-MP cells

on days 28 of culture penetrated the entire depth of the sca�olds, although the highly

dense distribution of the cells were still present on the surface.

This penetration along the depth of the sca�old was greatest in the Z3-nHA sca�old

on day 28, as it had a much smaller thickness as compared to the Z3-mHA and Z3-PU
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Figure 4.15: H & E staining on Z3-PU, Z3-mHA and Z3-nHA sca�olds on Day 14 of

culture for MLO-A5 and hES-MP cells.

Scale Bar at 100 µm

sca�olds. It is also interesting that hES-MPs appear to penetrate deeper than MLO-A5

which may be related cell size or di�erences in attachment and migration cell surface

molecules. The lack of adequate cell penetration into these sca�olds may have resulted

from the low porosity, pore size and interconnectivity of sca�olds associated with the

closely packed arrangement of the fibres.

This observation of low cell and matrix penetration has also been reported extensively

in the literature as a major limitation of traditional electrospun sheets (Bergmeister et al.,

2013; Leong et al., 2010). It would therefore be advantageous to increase the porosity

of thicker electrospun sca�olds by opening up spaces between the fibres. Electrospinning

with a cryogenic mandrel, controlling fibre deposition with air-flow impedance and

electrospinning with porogens amongst others have reported to enhance sca�old porosity
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Figure 4.16: H & E staining on Z3-PU, Z3-mHA and Z3-nHA sca�olds on Days 21 & 28

of culture for hES-MP cells.

Scale Bar at 100 µm

and cell penetration (McClure et al., 2012).

It is also possible to increase porosity by co-spinning polymer solutions with a very

fast degrading or water-soluble polymer (Milleret et al., 2011), and using mechanical

techniques such as ultrasonication (Lee et al., 2011) and static stretch to force fibres

apart and thus facilitate greater cell penetration, nutrient di�usion and transportation of

metabolic products.

4.4 Chapter Summary and Key Points

• Both Z9A1 and Z3A1 PU pellets dissolved in 100% DMF, 70/30 DMF/THF and

50/50 DMF/THF solvents. Varying the amount of DMF and THF in solution

a�ected solution and electrospinning properties, fibre morphology and mechanical
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properties

• Increasing the amount of THF in solution eliminated the presence of beads seen

in sca�olds fabricated from solutions containing only DMF. However, increasing

the amount of DMF in solution increased Young’s Modolus and yield strength of

sca�olds in the solvent group.

• PU-only and PU-nHA sca�olds in the non-aligned composite group had more

uniform fibre diameter than their PU-mHA counterparts.

• PAS-FTIR and ATR-FTIR confirmed the presence of HA in all composite sca�olds.

• Z9A1 sca�olds were generally stronger than Z3A1 sca�olds and presented with

higher mechanical properties. Inclusion of HA particles reinforced the mechanical

properties of both Z9A1 and Z3A2 composites.

• mHA composites had the highest Young’s Modulus but nHA composites had

the highest yield strength, whilst Z9-PU and Z3-PU had the lowest mechanical

properties amongst the composite groups.

• nHA composites had the highest cell viability across all time-points for both

MLO-A5 and hES-MP cells.

• H & E histology showed in-depth cell penetration throughout the entire sca�old,

although hES-MP cells penetrated much further than MLO-A5 cells.

148



5 | Results and Discussion Section

Two

Developing Aligned Polyurethane-Hydroxyapatite
Reinforced Electrospun Composites: Analysing the
Orientation and Directionality of Deposited Collagen
using Second Harmonic Generation Imaging

5.1 Introduction

With the emergence of tissue engineering and regenerative medicine, there is enormous

potential to employ treatment strategies that involve the use of biosynthetic constructs

to overcome muscoluskeletal defects. Such defects can be caused by congenital

malformation, infection, tumour resection, trauma and age-related pathologies. Human

bone functions to provide mechanical integrity for locomotion and structural rigidity

to the body. Hence the mechanical properties of bone is of great importance. Its

high tensile strength and fracture toughness stems from the tough and flexible collagen

fibres reinforced with hydroxyapatite crystals (Rezwan et al., 2006). Electrospun

polymer-ceramic composites with ultra-fine continuous fibres and versatile mechanical

properties are therefore a suitable template for engineering damaged bone tissue.

The inorganic phase of bone mostly referred to as hydroxyapatite, is an impure form

of the naturally occurring calcium phosphate. However, the hydroxyapatite of bone
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is not 100% pure hydroxyapatite. It contains impurities such as potassium, magnesium,

strontium and sodium (in place of the calcium ions), carbonate (in place of the phosphate

ions), and chloride or fluoride (in place of the hydroxyl ions)(Keaveny et al., 2001). This

is due to its tiny apatite crystals with average dimensions of 2-5 nm thickness, 15 nm

width and 20-50 nm in length.

Electrospinning is a simple technique for fabricating sca�olds with surface

modification flexibility and large surface area to volume ratios. Such advantages make

electrospun constructs ideal for a wide range of potential applications including textiles,

electrical, optical and biomedical applications, amongst others (Huang et al., 2003).

Additionally, the possibility of large scale production combined with the simplicity of

the process makes this technique very attractive for many biomedical applications, such

as tissue engineering, tailored drug release and delivery, wound dressing and enzyme

immobilization (Agarwal et al., 2008). This is because electrospinning can be used to

fabricate aligned and random fibres with diameters in the nano to micrometre scale

ranges, which mimic the length scales of native cellular environments and enhance matrix

deposition.

The previous chapter focussed on improving the mechanical properties of electrospun

PU sca�olds by incorporating HA particles to create micro and nano-composites. It also

explored dissolution mechanisms of polyurethane in graded solvent combinations of DMF

and THF. This made it possible to attain consistent, homogeneous and spinnable PU-only

and PU-HA solutions, and also examine ideal conditions for electrospinning sca�olds.

Optimising these conditions led to the development of a range of electrospun mats with

random fibres that can be used for various bone tissue engineering applications. It was

also demonstrated that, random PU-HA sca�olds with micro-HA particles had almost

twice the yield strength and Young’s Modulus of PU-only sca�olds.

These PU-mHA sca�olds which had the highest Young’s Modulus and yield strength

of 4.77 MPa and 0.46 MPa, respectively within the Z3 random composite group, are still

relatively weaker than developing bone. It has however been reported in the literature

that fabricating sca�olds with aligned fibre orientation can greatly increase the strength
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and sti�ness of sca�olds. These can be up to 9 times higher than those of random sca�olds

made from the same polymer (Greiner and Wendor�, 2007). Although the previous study

provided in-depth understanding, analysis and practical knowledge of creating electrospun

composites with random fibres, I hypothesised that creating aligned electrospun sca�olds

could provide better tensile mechanical properties that mimic the protein phase of bone

and allow cells to deposit bone mineral. This would be suitable for applications where

thin sheets of bone are needed with good resistance to tension and shear such as cleft

palate repair.

Electrospun sca�olds with aligned fibres have been focus of many regenerative research

groups for several years. Such sca�olds have been fabricated from polymers including

cellulose, polystyrene, polylactic acid, polyurethane, poly Á-caprolactone and collagen.

These have been used for replacing impaired tendon (Yin et al., 2010), skeletal muscle

(Riboldi et al., 2008), anterior cruciate ligament (Lee et al., 2005), blood vessels (Xu

et al., 2004), skin tissue (Zhong et al., 2006), as nerve guidance conduits (Huang et al.,

2015), and also for wound management applications (Xie et al., 2010).

Using sca�olds with aligned fibres rather than non-aligned fibres have been reported

to promote cell attachment (Xu et al., 2004), guide cells in a preferred growth direction

(Greiner and Wendor�, 2007) through contact guidance with the fibres, regulate

preferential di�erentiation (Lim et al., 2010), facilitate matrix production and guide

matrix deposition (Baker et al., 2008) especially when periodical mechanical deformation

is applied (Lee et al., 2005). While aligned sca�olds show promise for fiber-reinforced

tissues, cell infiltration into these dense structures is slow. This is because aligned

sca�olds have increased fibre packing density and reduced pore size, thereby limiting

cellular ingress (Baker et al., 2008).

Although there has been extensive research on using non-aligned electrospun

polyurethane composites for tissue engineering, only a few have focussed on bone

applications. Such non-aligned PU composites have been fabricated with cellulose

acetate (Tang et al., 2008), hydroxyapatite (Khan et al., 2008), silica (Koh et al., 2013),

proteins (Jia et al., 2013), carbon nanotubes (Sirivisoot and Harrison, 2011) and calcium
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chloride (Nirmala et al., 2011) particles.

Moreover, there are even fewer open publications on aligned polymer composites in

general, and very limited publications on aligned polyurethane composites to be specific.

This is due to the di�culty experienced with creating uniaxial aligned fibres and the

added complexity of including reinforcement particles. Such di�culty occurs because, the

polymer jet trajectory during electrospinning is in a very complicated three-dimensional

“whipping” way, rather than in a straight line (Huang et al., 2003).

The very few publications on aligned PU composites utilised cadmium selenide

particles for electromagnetic applications (Demir et al., 2009), silica particles for nerve

guide conduits and vascular regeneration (Huang et al., 2014), and carbon nanotubes

for vascular and wound repair (Han et al., 2009; Meng et al., 2010; Mi et al., 2015).

However, to the best of the author’s knowledge, there isn’t any published work on aligned

polyurethane-hydroxyapatite reinforced fibres for tissue engineering applications to date,

for both nano-sized and micro-sized HA particles. It would therefore be interesting to

create aligned PU-HA composites with better mechanical properties and optimal cell

penetration, that can influence matrix synthesis and guide collagen deposition.

5.2 Aim

The primary goal of this study was to develop polyurethane-based sca�olds with aligned

fibres that promote osteoid matrix production and guide collagen deposition. PU

solutions that had already been optimized for electrospinning non-aligned fibrous mats

were used for this study. The hypothesis was that increasing the speed of the rotating

drum would create sca�olds with aligned fibres that have better mechanical properties

which resemble the tensile properties of the collagenous fibres in bone.

The overall aim of the study was to determine whether the fibrous structure would

guide MLO-A5 cell migration and subsequent orientation of deposited matrix. Second

Harmonic Generation Imaging and FIJI image analysis were used to investigate how the

orientation and directionality of collagen changed with increasing depth. It was also used
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to compare variation in collagen deposition amongst composite and plain polyurethane

sca�olds.

A secondary goal was to assess the extent to which hES-MPs cells infiltrated and

penetrated the entire depth of the aligned sca�olds, since they are noted for their

reduced pore size and increased fibre packing density. An analysis of mineral deposition

using Xylenol Orange staining and Scanning Electron Microscopy was also undertaken.

RAMAN and FITR spectroscopy were also used to chemically characterize fabricated

sca�olds and compare the spectra of non-aligned and aligned sca�olds.

5.3 Results and Discussion Two

Polyurethane remains a popular choice of polymer for creating regenerative bone

templates due to its advantageous mechanical properties. Such properties stem from

its versatile chemistry and microphase segregation. This microphase separation between

the hard and soft segments enables polyurethane to withstand physical stresses and posses

desirable mechanical properties useful for dynamic bone tissue engineering (Wen et al.,

1997). Therefore combining polyurethane with hydroxyapatite, the main component of

bone mineral, creates suitable composites with beneficial osteoconductive and bioactive

properties, which are essential for bone regeneration.

Sca�olds discussed in this chapter were fabricated as outlined in Section 3.3.1 on

page 70 using PU and PU-HA solutions described in Sections 3.2.2.2 and 3.2.3, on

page 68 and 69, respectively. Cell culture and other biological characterization analysis

on the selected sca�olds were done as described in Section 3.7.3.2 on page 94 and

Sections 3.7.4 - 3.7.12 on page 98 and 112, respectively.

Table 5.1: Parameters used in preparing aligned electrospun sca�olds

Z3A1

PU

wt%

micro/nano

HA wt%

Vol. ratio

of DMF (%)

Vol. ratio

of THF (%)

Spin Speed

(rpm)

Diameter of

the Rotating

Drum (cm)

Z3-PU 15 0 70 30 1300 6

Z3-mHA 15 5 70 30 1300 6

Z3-nHA 15 5 70 30 1300 6
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In brief, 15 wt% Z3A1 PU solutions made with 70/30 DMF/THF solvent were

electrospun using parameters outlined in Table 5.1 on page 153 to attain semi-aligned

fibrous sca�olds. The sca�olds were spun at room temperature at a voltage of + 16.5 kV,

a flow rate of 3 ml/hr, a tip to collector distance of 20 cm, and a rotating drum speed

of 1300 rpm. Composite sca�olds containing HA particles were also fabricated as part

of this study, using 15 wt% Z3A1 PU solutions doped with micro or nano-HA particles

in a ratio of 3:1, PU:HA. All fabricated sca�olds were later characterized chemically and

mechanically using state of the art equipment. They were also characterized biologically

using MLO-A5 and hES-MP cells. In addition, Second Harmonic Generation Imaging as

described in Section 3.7.10 on page 110 was also used to investigate how the alignment

of sca�old fibres influenced the orientation and directionality of deposited collagen.

5.3.1 Electrospun Sca�olds

PU-only and PU-HA electrospun sca�olds with semi-aligned fibre orientations

were created by rapidly rotating the cylindrical collector of the electrospinning

set-up (Figure 3.2 on page 71) at 1300 rpm. This rotational speed was a 1000 rpm

faster than the 300 rpm speed used for creating non-aligned sca�olds in the previous

chapter. Increasing the speed of the rotating drum, whilst maintaining the composition

of the solutions, the tip to collector distance, the size of drum, the pumping rate and high

electrical voltage led to the creation of sca�olds with an interesting fibre morphology and

semi-aligned orientation.

Sca�olds made from polyurethane-only solutions had the most interesting fibre

morphology (Figure 5.1). Its fibres self-assembled very closely together to form thick

aligned bundles, which were large enough to be seen with the naked eye. A closer

inspection of the aligned Z3-PU sca�olds using the scanning electron microscope, revealed

a pattern of large fibril bundles interspersed with grooved portions of individual fibres.

These large and highly aligned fibre bundles which were about 20 µm in diameter,

were observed to consist of a collection of very thin PU fibres, each with a diameter

of ≥1.2 µm (Figure 5.2).
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Figure 5.1: SEM images of Sca�olds in the Aligned Electrospun Composite Group.

Scale Bar of SEM images=10 µm, Histogram distributions of fibre diameters (n=50).

The large nature of these fibre bundles caused Z3-PU to be the thickest sca�old

amongst the aligned Z3 group. Its thickness of 0.59 mm was approximately twice the

thickness of Z3-mHA and Z3-nHA composites, which had thickness’s of 0.30 mm and

0.23 mm, respectively (Table 5.4 on page 168). This was because, the bundling behaviour

of the fibres observed in PU-only sca�olds, was not observed in both aligned micro and

nano-composites, although they both contained 75% of PU and only 25% of HA.

(a) At 20 µm (b) At 1 mm

Figure 5.2: SEM images of Z3-PU sca�olds at Di�erent Magnifications.
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It is possible that this occurred as a result of the high rotational speed of the collector,

which caused more fibres to be deposited on the collector in a short period. This could

have caused a higher amount of solvent to be retained in the fibres, as the fibres had

shorter time to be exposed before the next set of fibres landed on the collector. Such wet

fibres have a high a�nity of sticking together in the direction of the electric field (Doshi

and Reneker, 1995), as the fibres are no longer strained by the electric field when they

reach the collection drum (Zong et al., 2002). This could have also caused portions of

the fibres to melt and bond together once they are in contact.

This also decreases the local resistance and enhances the electrical charge transfer

between the deposited fibres and the collector through the fibrous network. This charge

transfer grounds the fibres and makes them the preferential sites for the deposition of

subsequent fibres. Driven by a set of electrostatic forces, the electrospun fibres were

deposited in a self-aligned, consistent fibre-by-fibre manner to form an arbitrarily shaped

3D structure (Luo et al., 2015). Moreover, DMF and THF solvent properties such as large

surface tension, slow evaporation rate and strong intermolecular interactions also played

a role in accounting for this bundle fibre phenomenon. The influence of the solvents was

however amplified by the 1300 rpm high rotational speed, as this interesting morphology

was observed in only aligned Z3-PU but not in non-aligned Z3-PU sca�olds.

As shown in Figure 5.1, Z3-mHA composites had the largest fibre diameters and

showed the least fibre alignment. With particle sizes ranging from 2-12 µm, the large

nature of micro-HA particles coupled with the high spin speed greatly distorted the

aligned orientation of the Z3-mHA fibres. These sca�olds had a combination of very

thin fibres suspected to be composed of only PU and large chunky fibres embedded with

micro-HA particles. This resulted in a bimodal distribution of the fibre diameter with a

large standard deviation of 1.55 µm for an average fibre diameter of 1.99 µm. Another

possible explanation for this is that the conductivity of the Z3-mHA solutions increased

with the addition of micro-HA particles to the PU solution (Zhang et al., 2010).

It may be possible to attain more consistent Z3-mHA solutions by using an ultrasound

sonicator or a homogenizer to further distribute the mHA particles in solution and
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Figure 5.3: SEM images of Z3-mHA Sca�olds at 5 µm.

properly integrate the particles after the initial physical mixing using the magnetic

beads. It would also be interesting to experiment other techniques that can be used to

create aligned sca�olds which may cause the mHA particles to create less distortion and

better alignment in morphology. Such techniques include using an auxiliary electrode

or electrical field to circumferentially orient deposited fibres or by simply placing a

rectangular frame structure under the spinning jet. Reducing the distance between

electrodes to a few centimetres or millimetres is also another technique that can be used

circumvent the di�culties experienced with creating aligned Z3-mHA sca�olds (Huang

et al., 2003; Greiner and Wendor�, 2007).

On the other hand, Z3-nHA sca�olds had the most uniform fibre morphology.

These composites had very even fibre diameters and showed su�cient porosity with

interconnected pores. They also had a much better fibre alignment and a less beaded

morphology compared to its mHA counterparts. As showed in Figure 5.4 on page 158,

nHA particles in these sca�olds were well integrated in the fibres and aligned in a uniaxial

manner.

With more than 50% of its fibres having diameters less than 1.5 µm, these sca�olds

had a good representation of nanofibres that mimic the nanoscale dimensions of native
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Figure 5.4: SEM images of Z3-nHA Sca�olds at 5 µm.

extracellular matrix. Moreover, the smaller nature of the nHA particles (<200 nm) and

its corresponding higher surface area (>9.4 m

2

/g) facilitated the distribution of nHA

particles in the PU solution. This led to a more homogenous and spinnable solution

compared to Z3-mHA solutions which were observed to settle quickly in the syringes

during spinning.

Following on from the uniform nanofibrous structure and good fibre alignment

exhibited by Z3-nHA composites, it would be interesting to create other aligned Z3

composites with carbon nanotubes. Using carbon nanotubes to fortify fibres has attracted

considerable attention (Han et al., 2009; Meng et al., 2010; Mi et al., 2015) due to their

fibre-like structure and exceptional electrical, thermal and mechanical properties. This

makes them particularly attractive to be used as reinforcements for electrospinning both

non-aligned and aligned fibres, as long as uniform dispersion of nanotubes within the

polymer matrix is achieved, as it tends to easily agglomerate in polymer solutions.

5.3.2 RAMAN & FTIR Characterization

Raman and FITR are two complimentary spectroscopy techniques that provide detailed

information about materials by detecting the vibrational levels of molecules and ions.
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Raman spectroscopy was used to characterize fabricated sca�olds and confirm the

presence of HA in composites. FITR spectroscopy which was used to in previous chapter

to characterize non-aligned sca�olds was also used in this chapter to identify di�erences

in the spectra of aligned and non-aligned Z3 sca�olds.

Both techniques require minimum sample preparation, are non-invasive and useful for

identifying most calcium phosphate phases. Carbonate, phosphate, water and hydroxide

ions are the main species that can be identified by FTIR and Raman spectroscopy,

although apatites are also known to contain a variety of other ions. The e�ect of such

ions have been compiled by Curzon and Cutress (1983).

Both spectroscopy techniques are especially useful for easily distinguishing apatite

phases that cannot be identified by X-Ray Di�raction (XRD). This gives them a principal

advantage over XRD, as they can be used for identifying fine structural details in apatite

nanocrystals and poorly crystalline apatites with great accuracy (Ducheyne et al., 2011).

Additionally, they can be used for phase quantification using standard mixtures and

standardization curves.

Although they have many similarities, they however di�er in instrumentation and

how photon energy is transferred to molecules upon collision with light (Lin-Vien et al.,

1991). Compared to Raman spectroscopy, which examines scattering and changes in

the polarisability of chemical compounds, FTIR spectroscopy focusses on absorption

and changes in the dipole moment of covalent compounds (Mahadevan-Jansen and

Richards-Kortum, 1996). Additionally, FTIR can only be applied to non-aqueous samples

whilst Raman spectroscopy can be applied to both aqueous and non-aqueous samples.

5.3.2.1 RAMAN Spectroscopy

Hydroxyapatite is an intense Raman scatterer which is indicated by the exceptional signal

to noise ratio. As a consequence, the direct determination of Ca/P ratio of a calcium

phosphate mixture is not possible with Raman spectrometry. However, the sensitivity

of this method allows the detection and accurate identification of compounds that are

considered as impurities.

159



5.3. RESULTS AND DISCUSSION TWO

(a)

(b)

Figure 5.5: Raman Spectra of aligned Z3A1 Sca�olds(a): Combined spectra of Z3-PU,

Z3-mHA and Z3-nHA sca�olds at 3400-200 cm

≠1

. (b): Zoomed Spectra higlighting the

presense of HA in the composite Z3-mHA and Z3-nHA sca�olds at 1200-860 cm

≠1

.

Figure 5.5a shows the Raman spectra of the di�erent regions of interest for all aligned

sca�olds. Its corresponding peaks are also tabulated in Table 5.2. For Z3-PU, the sharp

peaks at 2922 cm

≠1

and 2869 cm

≠1

can be assigned to (CH

2

) antisymmetric stretching

and (CH

3

) symmetric stretching vibrations, respectively. The broad Raman shift at

1704 cm

≠1

was assigned to stretching urethane mode of (C

≠≠O), whilst the very strong

shift at 1615 cm

≠1

was attributed to the (C

≠≠C) aromatic ring mode of the Z3A1 ether

group. There was also a bending NH and stretching CN mode at 1536 cm

≠1

and ”(CH

2

)

at 1484, 1452 and 1436 cm

≠1

.

Additionally, ‹(C≠N) and ‹(C≠O) were observed at 1313 cm

≠1

. The twist ”(CH

2

)

was at 1277 cm

≠1

, whilst the stretching C≠N in the aromatic ring was at 1253 cm

≠1

.

A sharp shift corresponding to the symmetrical urethane ‹(C≠O≠C) and ”(CH) aromatic
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ring was noted at 1184 cm

≠1

. 973 cm

≠1

was assigned to stretching CH and stretching

CN aromatic ring, whilst 865 cm

≠1

was attributed to ”(C≠O≠C) and ”(C≠C≠C). These

Raman shifts are similar to those observed by Janik et al. (2003) and Gupta et al. (2013).

Table 5.2: Peak Assignment of Raman Shifts for Z3-PU, Z3-mHA and Z3-nHA

Raman Shift (cm

≠1

) Peak Assignment

PU
2922 as. ‹(CH

2

)

2869 s. ‹(CH

3

)

1704 urethane ‹(C

≠≠O)

1615 (C

≠≠C) aromatic ring

1536 ”(NH) and ‹(CN)

1484, 1452 and 1436 ”(CH

2

)

1313 ‹(C≠N) and ‹(C≠O)

1277 t. ”(CH

2

)

1253 ‹C≠N in the aromatic ring

1184 s. urethane ‹(C≠O≠C) and ”(CH) aromatic ring

973 ‹(CH) and ‹(CN) aromatic ring

865 ”(C≠O≠C) and ”(C≠C≠C)

Phosphate & Carbonate Shifts
964 s. ‹

1

(PO

3≠
4

)

432 ‹
2

(PO

3≠
4

)

1029 and 1048 ‹
3

(PO 3≠
4

)

1076 ‹
3

(PO 3≠
4

) and ‹
1

(CO 2≠
3

)

581, 591 and 607 ‹
4

(PO 3≠
4

)

(Key: as=Asymmetric, s=Symmetric, t=Twist)

In addition to these peaks, composite sca�olds containing HA particles showed

phosphate and carbonate Raman shifts. There were four vibrational modes present for

phosphate (PO

3≠
4

) ions. These are ‹
1

, ‹
2

, ‹
3

and ‹
4

, all of which are Raman and infrared

active. As shown in Figure 5.5a, there was a very strong ‹
1

(symmetric stretch) phosphate

mode observed at 964 cm

≠1

. The ‹
2

phosphate bending mode observed at 432 cm

≠1

was similar to that in dentine and bone samples (Penel et al., 1998). ‹
3

PO 3≠
4

was at

1048 cm

≠1

with a weaker shift at 1076 cm

≠1

, however, the 1076 cm

≠1

shift cannot be

assigned to only phosphate ions as it also corresponds to the ‹
1

mode of carbonate ions.

The three main ‹
4

PO 3≠
4

(bending mode) were noted at 581 and 591 cm

≠1

with a weaker

shoulder shift at 607 cm

≠1

. As both types of HA particles were synthetics, the band at
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591 cm

≠1

exhibited the strongest intensity amongst the ‹
4

PO 3≠
4

shifts.

Although carbonate ions have four vibrational modes in theory, only two of these (‹
1

and ‹
4

) are usually observed in the Raman spectrum, where as FTIR spectrum boosts of

three, mainly ‹
1

, ‹
2

and ‹
3

(Rehman et al., 1995). However, the ‹
4

carbonate bands have

seldom been observed in carbonate apatites. These bands are very weak and can only

be detected in samples with an average-to-high carbonate content. These are usually

observed at about 757, 740, 718, 692 and 670 cm

≠1

(Fowler et al., 1966). As mentioned

earlier, the stretching mode of ‹
1

CO 2≠
3

which was observed at 1076 cm

≠1

was totally

obscured by the ‹
3

PO 3≠
4

Raman shift. The bending mode of CO 2≠
3

which is usually

seen at 1036 cm

≠1

was observed at 1029 cm

≠1

and was also obscured by the ‹
3

PO 3≠
4

Raman shift.

(a) Z3-mHA (b) Z3-nHA

Figure 5.6: Images of Composite Sca�olds from the DXR Raman Microscope.

The strong ‹
1

phosphate moiety peak is further highlighted in Figure 5.5b to

emphasize the main spectral di�erence between PU-only and PU-HA composites. There

was a major shift in this peak for both Z3-mHA and Z3-nHA sca�olds when compared

to Z3-PU, although it was more pronounced in mHA composites. The ‹
1

PO 3≠
4

peak

of Z3-nHA was broader than that of Z3-mHA which had a sharp and narrow band.

This could have been due to the large size of the mHA particles, which caused the

particles not to properly integrate with the PU fibres (as shown in the SEM images in
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Figure 5.1 on page 155). This could have caused the mHA particles to have greater

exposure than the nHA particles, and made them more susceptible to the vibrations.

Moreover, the DXR microscope attached to the RAMAN spectrometer that was used

to visualise HA distribution in PU composites, also showed more HA particles (black

dots) in mHA composites (Figure 5.6a) than in nHA composites (Figure 5.6b) due to the

spatio-resolution restrictions of the microscope.

5.3.2.2 FTIR Spectroscopy

In addition to Raman imaging, FTIR spectroscopy was also used to characterize the

aligned sca�olds. Infrared (IR) spectroscopy which uses radiation in the mid-IR region

and a changes in dipole moment of the molecules provided a good opportunity for

analysing ions and molecular species that were inactive in Raman e.g. ‹
3

CO 2≠
3

. This also

made it possible to compare the spectra of aligned Z3 sca�olds with those of non-aligned

Z3 sca�olds reported in the previous chapter.

As shown in Figure 5.7, the FTIR spectra of aligned and non-aligned Z3 sca�olds

were very similar. With the exception of vibrations in the ‹3 phosphate peak highlighted

in Figure 5.7c, there was no major di�erence in the spectra of composite non-aligned and

aligned sca�olds. The spectra of plain polyurethane sca�olds had the same spectra for

both non-aligned and aligned Z3-PU (Figure 5.7a). Both sca�olds exhibited the same

PU peaks discussed in Section 4.3.4 on page 128. These peaks together with the peaks

of the composite sca�olds are also tabulated in Table 5.3.

Since the Z3-PU sca�olds did not contain any hydroxyapatite particles, there were no

stretching and bending O—H and P—O peaks in Figure 5.7a. However, upon inclusion

of micro and nano HA particles in Z3-nHA and Z3-mHA, characteristic HA peaks were

observed (Figures 5.7b and 5.7c). Comparing the spectra of non-aligned and aligned

composite sca�olds reinforced the explanation for the shifting and appearance of new

peaks in the region of 1100-916 cm

≠1

as discussed in Section 4.3.4 on page 128.

This relates to the fact that nano-HA with a higher surface area and more crystalline

structure mixed better with the PU solution than micro-HA particles. This a�ected the
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(a)

(b)

(c)

Figure 5.7: FTIR Spectra comparing non-aligned and aligned Z3A1 Sca�olds at common

scale (a): FTIR spectra of Z3A1 PU-only Sca�olds. (b): Combined FTIR spectra of

Z3-mHA and Z3-nHA Composites for a wavenumber region of 4000-2000 cm

≠1

.

(c): Combined FTIR spectra of Z3-composites for a wavenumber region of 2000-401 cm

≠1

,

highlighting main spectral di�erence between aligned and non-aligned composites.
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Table 5.3: Peak Assignment of FTIR Spectra of Z3-PU, Z3-mHA and Z3-nHA

Wavenumbers (cm

≠1

) Peak Assignment

PU
3325 ‹ (N—H)

3121 overtone of 1533 cm

≠1

3039 ‹ (C—H) in benzene ring

2940, 2857 and 2795 CH

2

peaks of the polyether

2940 as. ‹ CH

2

2857 s. ‹ CH

2

1597 ‹ (C

≠≠C) in the benzene ring

1533 amide II ” (N-H) ‹ (C

≠≠N)

1478 weak CH

2

1413 strong ‹ (C—C) in benzene ring

1310 amide III ” (N—H) + ‹ (C

≠≠N)

1225 — (C—H) peak and ” (N—H) + ‹ (C

≠≠N)

1103-916 v(CH

2

—O—CH

2

) of ether peak

1018 weak — (C—H) in benzene ring

817 “ (C—H) from butane diol

Hydroxyl
3570 O—H stretching

633 OH librational band

Carbonate
1730 to 1700 carbonyl absorption region

1701 bonded (C

≠≠O) stretching

1730 free (C

≠≠O) stretching

Phosphate
1060, 961, 603 and 571 vibrations of the phosphate group

1078 triply degenerated vibration ‹ 3

961 non-degenerated symmetric stretching mode ‹ 1

633 ‹ 4 bending

603 and 571 triple degenerated bending mode ‹ 4

(Key: as=Asymmetric, s=Symmetric)

shifting of the ‹3 P—O peak from 1078 cm

≠1

for Z3-mHA to 1060 cm

≠1

for Z3-nHA.

Moreover, the shoulder P—O peak at 1010 cm

≠1

which was observed in both non-aligned

and aligned Z3-mHA sca�olds was not present in both nHA composites. This is because

this particular peak is usually seen in poorly crystalline apatites at 1010 cm

≠1

but at

1030 cm

≠1

for highly crystalline apatite (Alvarez-Lloret et al., 2006). These peaks are

important because the calculation of the 1030/1020 cm

≠1

intensity ratio is an index of
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crystal size/perfection, and this increases as bone matures (Paschalis et al., 1996).

5.3.3 Mechanical Properties

In creating electrospun sca�olds for musculoskeletal regeneration, high mechanical

strength and toughness are extremely important as even partial failure will significantly

reduce the e�ciency of the fibres within the mat and have strong e�ects on the overall

stability of the structure (Blond et al., 2008). It is conceivable that incorporating robust

ceramic particles into polymer solutions and aiming to attain a high degree of fibre

orientation along a preferential or elongated direction (referred to as parallel orientation

in this chapter) could greatly improve the strength and sti�ness of electrospun sca�olds.

Combining these two methods can create electrospun sca�olds with excellent mechanical

properties that can be useful for musculoskeletal applications including bone and cartilage

reconstruction.

Figure 5.8: Orientations used to mechanically test aligned fibers in tension.

Compared to non-aligned sca�olds, aligned sca�olds were tested in tension in both

transverse and parallel orientations as shown in Figure 5.8. Parallel orientation testing

was done in the predominate direction of fibre alignment where as transverse orientation

testing was done in a perpendicular alignment to the fibres. It was important to assess the

tensile properties of the sca�olds as this can a�ect the sca�old’s ability to mechanically
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stimulate cells by stretching in vitro prior to implantation. This could also a�ect surgical

handle-ability and regeneration of thin bone regions where bone might be in tension e.g.

cleft palate and cranofacial applications.

(a) Transverse Orientation (b) Transverse Orientation

(c) Parallel Orientation

Figure 5.9: Example stress/strain curves of 15 wt% Z3A1 fabricated sca�olds (a):

Aligned Sca�olds tested in Transverse Orientation (b): Comparing non-aligned and

Aligned Sca�olds tested in Transverse Orientation (c): Aligned Sca�olds tested in Parallel

Orientation.

As shown in Figure 5.9, stress-strain curves showed that the inclusion of both types

of HA particles reinforced the mechanical properties of Z3-PU, when tested in both

transverse and parallel orientations. When tested in the transverse orientation, Z3-mHA

sca�olds had the highest Young’s Modulus and yield strength. Its Young’s Modulus

of 6.41 ± 0.85 MPa, was about 80% higher than those of Z3-PU and 60% higher their

Z3-nHA counterparts, whilst its yield strength of 0.37 ± 0.06 MPa, was about 50% higher

than those of Z3-PU and Z3-nHA.

Comparing the mechanical properties of non-aligned and aligned sca�olds tested along

167



5.3. RESULTS AND DISCUSSION TWO

Table 5.4: Average Morphological and Mechanical properties of Aligned Z3A1 sca�olds

(above=transverse test results, below=parallel test results)
Aligned

Sca�olds

Fibre Diameter

(µm)

Thickness

(mm)

Young’s Modulus

(MPa)

Yield Strength

(MPa)

Transverse
Z3-PU 1.13 ± 0.34

b

0.59 ± 0.03 1.22 ± 0.17

bc

0.19 ± 0.03

b

Z3-mHA 1.95 ± 1.55

ac

0.30 ± 0.03 6.41 ± 0.85

ac

0.37 ± 0.06

ac

Z3-nHA 1.23 ± 0.43

a

0.23 ± 0.01 2.36 ± 0.37

ab

0.21 ± 0.03

b

Parallel
Z3-PU 7.15 ± 0.93

bc

0.77 ± 0.33

bc

Z3-mHA 12.61 ± 2.65

a

1.40 ± 0.29

a

Z3-nHA 14.23 ± 1.87

a

1.31 ± 0.16

a

(mean ± S.D., n=50 for fibre measurements, n=6 for all other measurements)

a=significantly di�erent from PU sca�olds, at p Æ 0.05
b=significantly di�erent from sca�olds made with mHA, at p Æ 0.05
c=significantly di�erent from sca�olds made with nHA, at p Æ 0.05

the transverse orientation showed that Z3 sca�olds with aligned fibres were generally

weaker than those attained for Z3 non-aligned sca�olds (Tetteh et al., 2014). As shown

in Figure 5.9b, this was observed in both Z3-PU and Z3-HA sca�olds. There was a

50% reduction in Young’s Modulus in Z3-PU whilst Z3-nHA showed a 30% reduction,

respectively. These lower tensile mechanical properties for electrospun PU sca�olds

tested in the transverse orientation is similar to those observed with PCL electrospun

sca�olds (Delaine-Smith, 2013).

(a) (b)

Figure 5.10: Mechanical Properties of 15 wt% Z3A1 aligned sca�olds tested in Parallel

Orientation (a): Young’s Modulus (b): Yield Strength

As shown in Figures 5.9c and 5.10, Z3-PU again had the weakest mechanical behaviour
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within the parallel orientation group. However, it’s Young’s Modulus of 7.15 ± 0.93 MPa

was about 7 times that of its transverse testing results. As tabulated in table 5.4, Z3-nHA

and Z3-mHA sca�olds also showed a very similar stress-stain pattern.

When tested in the parallel orientation direction, aligned sca�olds displayed very

high mechanical properties. Z3-nHA sca�olds the highest Young’s Modulus of

14.23 ± 1.87 MPa and a yield strength of 1.31 ± 0.16 MPa. This was about 7 times

greater than its stress value in the transverse orientation. Z3-mHA and Z3-PU also

showed significant improvement in their mechanical properties when tested in the aligned

direction.

Compared to non-aligned sca�olds, the yield strength and Young’s Modulus of aligned

sca�olds were four fold higher. It has been reported that compared to randomly oriented

fibres, aligned fibres exhibit significantly improved resistance to tensile stress when tested

parallel in the direction of fibre alignment (Subramanian et al., 2011). This is because

non-aligned electrospun non-woven fibres usually exhibit poor mechanical performance

due to the low degree of orientation and chain extension of the polymer chains along the

fibre axis. Thus compared to corresponding textile fibres made from the same polymers,

the mechanical properties of non-aligned electrospun nanofibers are often found to be

poorer than their aligned counterparts (Yao et al., 2014).

5.3.4 MTT Cell Viability

Similar to Section 4.3.8 on page 140, Z3 sca�olds with aligned fibres were also seeded

with MLO-A5 and hES-MP cells at a seeding density of 1.0 x 10

5

cells per sca�old. As

shown in Figure 5.11, both cell types were viable on all sca�olds, with viability increasing

from D1 to D28. Cell viability of both MLO-A5 and hES-MPs were generally higher on

aligned sca�olds compared to the cell viabilities of sca�olds in the non-aligned group.

This is contrary to what is usually observed with aligned sca�olds, as their reduced pore

size and increased fibre packing density are known to inhibit cellular infiltration and cell

proliferation (Bashur et al., 2009). Moreover, PU-only supported the highest viability

across all time points for both MLO-A5 and hES-MP cells. This is opposite to what
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was observed with non-aligned fibre sca�olds where Z3-nHA composites supported the

highest viability across all time points.

(a) (b)

Figure 5.11: MTT absorbance of cells seeded on Z3A1 Aligned Sca�olds (a): MLO-A5

Cells (b): hES-MP Cells

Within the aligned fibre group, MLO-A5 cells had higher viabilities across all time

points compared to hES-MPs. MLO-A5 cell viability increased sharply from D1 to D14

on all sca�old types. Although cells on Z3-PU and Z3-nHA supported the highest and

lowest viability, respectively across these time points, the only significant di�erence in

their viabilities was seen on D7. However, cell viabilities for both Z3-PU and Z3-mHA

were significantly higher than that of Z3-nHA on D21. Furthermore, the highest MTT

absorbance for sca�olds with aligned fibres on D28, which was by MLO-A5 cells on Z3-PU

sca�olds was also significantly higher than that on Z3-nHA sca�olds.

A similar pattern was observed with hES-MP cells on aligned Z3 sca�olds. There

was a gradual increase in cell viabilities from D1 to D7 for all sca�old types. Beyond

D7, there was a sharp increase in the cell viabilities of all Z3 sca�olds, with a steep

increase occurring between D21 and D28. The only significant di�erence within the

hES-MP group was observed between Z3-PU and Z3-nHA on D14, all other di�erences

in viabilities amongst the sca�olds were not significant.

It is well known that the alignment of fibres in electrospun sca�olds influences cell

behaviour through initial cell spreading and elongation (Shin et al., 2012). Hence it is

possible that, the bundling e�ect of the PU fibres discussed in Section 5.3.1 on page 154
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caused the variations in cell viabilities. This bundling e�ect led to the creation of thicker

PU sca�olds with larger fibres and greater porosity, promoting cell attachment and

proliferation. This could account for the overall higher cell viabilities on Z3-PU for

both MLO-A5 and hES-MP cells, compared to the other aligned Z3-composites, as cells

seeded on PU sca�olds had more room for proliferation and migration, nutrient transfer

and gaseous exchange.

It was very interesting to observe a contrasting cell viability behaviour between

non-aligned and aligned Z3 sca�olds fabricated with exactly the same composition. It was

expected that composite sca�olds which had the highest viability within the non-aligned

sca�old group would also have a similar e�ect wtih the aligned sca�olds but this was

not observed. Composite sca�olds made with bioactive HA particles supported lower

cell viabilities than the PU-only sca�olds. This showed that it was possible to improve

cell viability using only physical modifications to sca�old topography. The ability to

control cell growth by topography may provide a more cost e�ective mechanism to

encourage tissue growth on a sca�old compared to expensive biochemicals. It would

still be interesting to repeat this experiment using a higher concentration of HA particles

in the aligned composites and the same bundling Z3-PU sca�olds. This can ascertain if a

higher amount of HA in composite sca�olds is needed to attain the same viability levels

as that of aligned PU-only sca�olds.

5.3.5 Histology

Sca�olds seeded with hES-MP cells were also prepared for histology. This was to access

the extent to which cells were able to penetrate the entire length of the fabricated sca�olds.

The small size of hES-MP cells facilitated cellular penetration within the entire sca�old.

On D14, cells on Z3-PU showed about 50% penetration along the depth of sca�old.

This was less than the almost 90% depth penetration seen in Z3-mHA but more than

that of the Z3-nHA. Although cellular penetration in nHA composites improved by D21,

such that there were even a few cells at the bottom of the sca�old, there were still a lot

of cells on the surface of the sca�old. This is similar to what was observed in Z3-mHA
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Figure 5.12: H & E staining on Z3-PU, Z3-mHA and Z3-nHA aligned sca�olds on Days

14, 21 & 28 of culture for hES-MP cells.

Scale Bar at 100 µm

composites.

Although the increased fibre packing density of aligned sca�olds is known to inhibit

cellular infiltration, very good cell penetration and matrix deposition was observed on all

sca�olds. The highest level of cellular penetration and extracellular matrix production

was seen in PU-only sca�olds on D28. These Z3-PU sca�olds showed good cellular

infiltration and matrix deposition throughout their entire depth. This was followed by

mHA composites and finally Z3-nHA, showing a trend similar to that of the cell viability

MTT absorbance. Although only aligned sca�olds seeded with hES-MPs cells were

analysed histologically, its will be interesting to explore whether the histology of MLO-A5

cells on these sca�olds would also have a comparable cell growth and penetration.
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5.3.6 XO Imaging

Xylenol orange, ( C

31

H

28

N

2

O

13

SNa

4

), a fluorescent compound that chelates to calcium

and stains mineral red was also used used to label mineralized nodules in vitro. Once used,

xylenol orange (XO), becomes fixed to newly formed calcified tissues where it remains

until removal of the bone mineral, and produces clearly outlined fluorescence in regions

which were calcified at the time of administration of the dye (Rahn and Perren, 1971).

As a fluorochrome, it has its own specific excitation and emission wavelengths of

440/570 nm and 610 nm, respectively and expresses a red color under the fluorescent

microscope using a TRITC red filter (Pautke et al., 2005). Compared to other

calcification assays such as Von Kossa and alizarin red S, which require fixation and

culture termination ahead of staining, XO staining does not require fixation and thus

enhances experimental e�ciency. This makes XO imaging particularly useful in bone

tissue engineering, where the onset time and location of osteogenesis are fundamental

parameters for the characterization of directed bone formation and for determining

osteoinductive and osteoconductive properties of sca�olds (van Gaalen et al., 2010).

As xylenol orange is not harmful to cells (Wang et al., 2006), it was used to stain

osteoid mineral of live MLO-A5 cells seeded on aligned sca�olds. This provided an

opportunity to monitor and observe dynamic changes during the formation of mineralized

nodules in living MLO-A5 cultures. It also aided in creating a timed sequence overview

of the in vitro osteoid deposition.

As shown in Figure 5.13, mineralized nodules emitted red fluorescence when stained

with xylenol orange. D14 Z3-nHA sca�olds showed large chunky regions of deposited

mineral indicating agglomeration, whereas Z3-mHA and Z3-PU sca�olds showed a good

distribution of the mineralized nodules. Although XO images of Z3-PU (Figure 5.13b)

and Z3-mHA (Figure 5.13c) sca�olds showed an even distribution of mineral nodules,

Z3-mHA had a higher percentage of mineral area coverage compared to Z3-PU. This

percentage of mineral area coverage was estimated as MineralArea/TotalArea, where

MineralArea is the area of mineralization (red fluorescence), and TotalArea is the total
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(a) Blank Z3-PU (b) Z3-PU

(c) Z3-mHA (d) Z3-nHA

Figure 5.13: Xylenol Orange Staining on Z3A1 aligned sca�olds. A:Blank, B-D: Seeded

with MLO-A5 cells Scale Bar at 50 µm

area of the field of view of the image (Zhao et al., 2010).

Furthermore, as shown in the standard deviation and maximum intensity images

in Figure 5.14, the nodules in Z3-mHA were also more defined and mature, and appeared

as distinct red spots which were easy to focus. On the contrary, Z3-PU sca�olds presented

with several scattered speckles which caused its image to appear hazy with many softened

and unfocussed regions. It is possible that this occurred due to the poorly crystalline and

immature nature of the osteoid in PU-only sca�olds compared to those in the nano and

micro-HA composites (Zhao et al., 2010). Mineralization however increased with time in

all sca�olds.

A closer look at the cross-section along the maximum intensity images (Figure 5.14c),

confirmed that the mineralized nodules in Z3-mHA penetrated almost the entire length of

the sca�old compared to Z3-PU, which had only partial deposition with about 50% depth

converge. It would be interesting to compare these findings with the SEM data of cells
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Figure 5.14: Comparing Xylenol Orange Staining on 15 wt% Z3-PU and Z3-mHA aligned

sca�olds. (a): Standard Deviation Images of Deposited Calcium (b): Maximum Intensity

Images of Deposited Calcium (c): Cross-Section along the Maximum Intensity Images.

Scale Bar at 50 µm

on aligned sca�olds. Moreover, it would be interesting to establish if this phenomenon

will be present in other cell types and also explore earlier time points such as D4 & D7,

to attain a better overview of when mineralization starts.

5.3.7 SEM on Cells on Sca�olds

Following on from XO imaging, MLO-A5 cells seeded on fabricated sca�olds were analysed

with Scanning Electron Mircroscopy. This provided an opportunity to explore cell

attachment, extracellular matrix development and calcified mineral production.

MLOA-5 cells post-osteoblast and pre-osteocyte cell characteristics, rapidly mineralize

in culture. They were therefore an ideal cell-type for examining how mineralization
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Figure 5.15: Combined SEM Images of MLO-A5 Cells on aligned Z3-PU, Z3-mHA &

Z3-nHA sca�olds on Days 1, 4, 7 & 14. Scale Bar at 20 µm

occurred in vitro, due to their ability to form a honey-comb like mineralized matrix after

only 7-9 days in culture (Rosser and Bonewald, 2012).

Figure 5.15 shows an SEM of how cells attached onto the various sca�olds. There

was good cell attachment on all sca�olds on Day 1. The cells were well spread out on the

sca�olds and anchored to the fibres of PU-only and composite sca�olds. By the day 4,

cells had clustered on the surface of most parts of the sca�olds indicating cell proliferation

which reinforces the MTT data.

Images from day 7 showed the cells were overly confluent and had completely covered

the sca�olds, whilst secreting copious amounts of extracellular matrix. Several groups

of mineralized nodules which appeared as bright regions at low magnification were also

seen on both Z3-mHA and Z3-nHA sca�olds. Z3-PU however had very few mineralised
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(a) Seen on Z3-mHA by D7

(b) Seen on Z3-PU by D14

Figure 5.16: Higher Magnification SEM Images of MLO-A5 Cells on aligned Z3-PU

& Z3-mHA sca�olds highlighting bight granules assumed to be mineralised nodules

regions but many threadlike cell extensions on day 7.

Figure 5.17: Combined D14 SEM Images of MLO-A5 Cells on aligned Z3-PU, Z3-mHA

& Z3-nHA sca�olds highlighting bight regions assumed to be mineralised nodules at

di�erent magnifications.
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The number of mineralized nodules on both HA composites and the PU-only sca�old

greatly increased by day 14, indicating that all sca�olds supported MLO-A5 cells by

providing a suitable growth environment that facilitates extracellular matrix deposition.

As shown in Figure 5.16, the amount of mineralized nodules seen on day 14 Z3-PU sca�old

is similar to that of day 7 Z3-mHA sca�olds.

This is similar to what was observed on the day 14 xylenol orange images, where

there was a higher amount of calcified matrix production in Z3-mHA than in Z3-PU.

Additionally, the bundling topography of the PU-only fibres which formed grooves and

ridges were also covered with extracellular matrix and mineralization by day 14. As

shown in Figure 5.17, mineralization on Z3-nHA and Z3-mHA were very similar.

It would be interesting to accurately confirm that the bright regions which look very

similar to SEM of NaCl particles are indeed mineral deposits. This can be achieved by

using TEM analysis to rule out apoptosis. It would also be interesting to explore whether

this extent of early mineral deposition can also be achieved by mesenchymal cells such

as hES-MPs. This would help to further compare the rate of mineralization of the two

cell types.

5.3.8 Second Harmonic Generation Imaging

Second harmonic generation imaging (SHGI) was used to investigate the e�ect of fibre

alignment on collagenous matrix production. Fibre alignment is known to influence cell

behaviour starting from the initial cell spreading and elongation. This can in turn impact

on matrix synthesis, and possibly on di�erentiation of bone cells and the calcification

into bone tissues (Shin et al., 2012; He et al., 2014). On days 14, 21 and 28 of culture,

sca�olds seeded with MLO-A5 cells were imaged with the Zeiss LSM 510 Meta upright

laser scanning microscope equipped with the two-photon Ti-Sapphire multiphoton laser.

2 µm thick SHG image slices were analysed individually and also in small groups of 12 µm

thickness’s.

Compared to optical microscopy, SHGI attains contrast from a materials internal

organizational structure rather than by variations in optical density and refractive
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index. A highly polarizable or non-linear material, with non-centrosymmetric structures

is therefore required to generate SHG signals due to the non-zero second harmonic

co-e�cient. This makes SHG an ideal imaging modality for biological components rich

in highly ordered structural proteins such as collagen, muscle myosin and microtubles.

Moreover, its high sensitivity for imaging and quantitatively analysing collagen fibril/fiber

structure is said to be useful in detecting changes that occur in diseases such as cancer,

fibrosis and connective tissue disorders (Chen et al., 2012; Han et al., 2005).

Similar to Two-Photon Excited Fluorescence TPEF, SHGI o�ers advantages of

imaging deeper into thick 3D tissues by using near infrared wavelengths as opposed

to confocal imaging (Campagnola et al., 2001). However, in contrast to TPEF, SHGI is

energy conserving, since there is no loss in energy resulting from the relaxation of excited

energy. It is therefore in principle not susceptible to phototoxicity and photobleaching

compared to fluorescence microscopy (Campagnola and Loew, 2003). Furthermore, it

provides very high axial and lateral resolution, and is also non-destructive, as it can be

used on live cells without additional labelling.

5.3.8.1 Grouped Analysis

Prior to analysing the grouped SHG data, the entire collagen thickness for each sca�old

type at each time point was subdivided into smaller 12 µm thickness’s to allow for easy

comparison i.e. 22-32 µm, 34-44 µm etc. Each 12 µm grouped image was compiled from

six individual 2 µm slices. The directionality plug-in of the FIJI software was then used to

calculate the average orientation of the collagen fibres in each 12 µm slice. All angles were

measured between 0-180

¶
in an anti-clockwise direction from the horizontal. Image slices

are labelled alphabetically upwards, for example for D14 Z3-PU, a=first slice (portion

closest to the sca�old) and d=last slice (furthest from the sca�old).

The amount of collagen produced by MLO-A5 cells which corresponds to the number

of 12 µm slices varied across the various sca�olds and time points. Collagen deposition

which appeared to be originally guided by the alignment of the sca�old fibres was

observed to change orientation with change in depth. Moreover, the intensity/brightness
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Table 5.5: Representative grouped SHG Images of MLO-A5 Cells on Z3-PU, Z3-mHA

and Z3-nHA sca�olds on Days 14, 21 & 28. Each grouped image represents a merge of 6

individual (2 µm) slices with a total depth/thickness of 12 µm. Scale Bar at 50 µm

D14 D21 D28
Z3-PU Z3-mHA Z3-nHA Z3-PU Z3-mHA Z3-nHA Z3-PU Z3-mHA Z3-nHA
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of deposited collagen also varied across materials. In general, there were higher amounts

of collagen on the Z3-PU only sca�olds than on the composite sca�olds for all time points.

Composite sca�olds however showed visibly brighter collagen intensities on D21 and D28

time-points compared to PU-only sca�olds.

For hard tissues such as bone, the alignment of collagenous fibres is of special

importance. This is because calcified bone tissue exhibits di�erent mechanical properties

depending on the collagen alignment in the native structure (Sell et al., 2010; Shin

et al., 2012). In addition, mature bone has a highly organised lamella microstructure.

Its mineralised collagen fibrils are aligned mostly parallel within a single lamellae, but

adjacent lamella have orientations at varying degrees from each other. For some osteons,

this has been described as a ‘twisted plywood’ structure in which each lamellar has a

small di�erence in the angle of orientation from the previous, such that the preferred

orientation rotates through the layers (Giraud-Guille, 1988).

When bone cells are grown in vitro on planar substrates there is very little physical

guidance of bone structure. This usually results in disorganised matrix and probably

more representative of fast-growing immature woven bone. The exact mechanisms for

collagen fibre alignment is still unclear but some intriguing information comes from tendon

research in which the cell’s primary cilia are aligned along the collagen fibrils of the

tendon. Bashur et al. (2009) reported that bone marrow stromal cells assumed a more

spindle-shaped morphology with increasing fibre diameter and degree of fibre alignment,

and oriented parallel to fibres on aligned polyurethane meshes. Aligned electrospun

sca�olds are therefore a promising tool for engineering fibrous musculoskeletal tissues as

they reproduce the mechanical anisotropy of such tissues and can direct ordered neo-tissue

formation (Baker et al., 2008).

Sca�olds with fewer slices had a thinner deposition of collagen. As tabulated in

Table 5.5 on page 180, Z3-PU had four collagen slices on D14 compared to Z3-mHA and

Z3-nHA sca�olds which had only three slices. However, compared to Z3-PU, changes in

the average direction and orientation of collagen on the composite sca�olds was sharper

than that of the Z3-PU. Figure 5.18 shows that collagen on Z3-PU which started at
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Figure 5.18: Directionality Analysis of Collagen Fibres in grouped (12 µm thickness)

SHG Images of MLO-A5 Cells on aligned Z3-PU, Z3-mHA & Z3-nHA sca�olds on Days

14, 21 & 28.

158

¶
had only a 3

¶
change in directionality between slice a and b. Compared to the 19

¶

di�erence for Z3-mHA which started at 91

¶
, and the 24

¶
di�erence for Z3-nHA which

started at 19

¶
. Slice a of Z3-nHA also contained several bright spot nodules believed to

be nano-HA deposits.

The amount of collagen deposited on the Z3-PU sca�old on D21 was the highest

observed during the 28 day period. Similar to that of D14, there were subtle changes

in the directionality of the collagen on Z3-PU. With an initial average directionality

of 18

¶
for slice a, the directionality of deposited collagen which was initially guided

by the fibre alignment, changed orientation in an anti-clockwise manner as it moved

away from the fibres and ended with average directionality of 118

¶
for slice g. Collagen

on Z3-mHA quickly lost the guidance of the sca�old fibres after slice b, moving from

an average directionality of 151

¶
to 5

¶
. On the other hand, collagen deposition on

D21 for Z3-nHA was the brightest and most intense across the entire period. Its
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Figure 5.19: Grouped SHG D21-Z3-nHA slices c(third-red) & d(fourth-black) had very

high collagen intensities/brightness. Hence each 12 µm image was further spilt into two

6 µm images. Thus image c (red) was split into two, c1 & c2 and image d (black) was

split into d1 & d2.

third slice c (highlighted with a red border) and fourth slice d (highlighted with a black

border) were overly bright. Each of these had to be split further into two smaller slices of

6 µm thickness (Figure 5.19) to highlight the changes in their directionality. There was a

4

¶
di�erence in the directionality of slices c1 & c2, and a 24

¶
di�erence in slices d1 & d2.

The change in collagen orientation between the slices was small in some cases e.g.slices

A-C of D28 Z3-nHA and in others large di�erences were observed between one depth and

the next e.g. slices B & C of D28 Z3-mHA. The directionality of deposited collagen

on D28 Z3-PU which appeared to be almost horizontally aligned for slices a-c, quickly

changed its alignment in slice d, and assumed an almost vertical orientation in slice e,

before finally losing alignment in slice f. Z3-mHA, which had a much higher intensity of

collagen however started o� with an almost vertical alignment of 98

¶
in slice a, changing
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Figure 5.20: 3D histograms highlighting changes in directionality of collagen fibres in

relation to depth for grouped (12 µm thickness) SHG slices. NB: Slide c & d Z3-nHA on

D21 have not been split in this figure. Amount on the y-axis, refers to the ratio of fibers

in each analysed image at a particular angle, thus on a scale of 0-1, how many fibers are

at 0, 6, 12,18 ...180.

orientation in increments of approximately 30

¶
per slice in slices b & c, before finally

losing alignment in slice d. Furthermore, Z3-nHA which started of with a slightly lower

amount of collagen than Z3-mHA, had a similar pattern of collagen deposition. With an

initial alignment of 61

¶
in slice a, it gently increased to 78

¶
in slice b and 95

¶
in slice c,

before finally losing alignment in slice d. A 3D histogram summarizing the changes in

the directionality of collagen deposition for the grouped slices is shown in Figure 5.20.

5.3.8.2 Individual Analysis

As shown in Table 5.5 on page 180, although collagen deposition on PU-only sca�olds

were thicker than those of Z3-HA composites, its brightness and intensities were not as

high as those of the composites. It was therefore very di�cult to accurately compare

collagen deposition on PU-only sca�olds to those of PU-HA sca�olds. The directionality

of collagen fibres in individual 2 µm SHG slices, were analysed using the FIJI software.

This made it possible to normalize the depth of collagen deposited on the sca�olds in a
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Figure 5.21: 3D histograms showing how the directionality of fibres changed in relation to depth in

individual (2 µm thickness) SHG images .

scale of 0.0-1.0. There was however no specific trend amongst the materials and within the

time points even after normalizing the collagen depth. 3D histograms of the individual

SHG slices for all materials at the various time points is compiled in Figure 5.21.

Figure 5.22b highlights the individual 3D histogram of Z3-nHA on D21. This shows

how the orientation of collagen fibres in the individual SHG slices changed along the

68 µm depth. Collagen deposition on these sca�olds, which were originally guided by the

Z3-nHA fibres for the first 12 µm depth, gradually changed from a horizontal orientation

through a 90

¶
vertical orientation before losing alignment in the final 14 µm depth.

Bone has a twisted plywood structure which, to my knowledge has never been seen

in culture to date. However, preliminary evidence from this study highlights changes to

the directionality of collagen deposition that was originally guided by the orientation of

sca�old fibres, suggests that it may be possible to recreate the twisted plywood structure

in vitro. Although cell alignment in the same samples were not analyzed, evidence in

the literature suggesting that it is likely that cells aligned along the fibres hence further

investigation into cell alignment would be useful future work.
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(a) D21 Z3-PU sca�old

(b) D21 Z3-nHA sca�old

Figure 5.22: 3D histogram showing how the directionality of Collagen fibres changed in

relation to depth for individual (2 µm thickness) SHG images.
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5.4 Chapter Summary & Key Points

• Sca�olds made from polyurethane-only solutions had a distinct and interesting fibre

morphology. Fibres of Z3-PU self-assembled very closely together to form thick

aligned bundles, which were large enough to be seen with the naked eye

• Z3-nHA sca�olds had the most uniform fibre morphology. These nHA composites

had very even fibre diameters and showed good porosity with interconnected pores.

They also had a uniaxial fibre alignment and a less beaded morphology compared

to its mHA counterparts

• Raman spectroscopy was used to characterize ‹(C

≠≠O) urethane and (C

≠≠C)

aromatic ring in PU, as well as ‹
1

, ‹
2

, ‹
3

and ‹
4

phosphate (PO

3≠
4

) ions and the ‹
1

and ‹
4

carbonate CO 2≠
3

bands and confirm the presence of HA in both micro and

nano-composites

• The main distinction between the FTIR specrta of aligned and non-aligned sca�olds

was observed at vibrations in the ‹3 phosphate peak

• The inclusion of both types of HA particles reinforced the mechanical properties of

Z3-PU, when tested in both transverse and parallel orientations. Z3-mHA sca�olds

had the highest Young’s Modulus and yield strength when tested in the transverse

orientation

• Z3-PU which had the weakest mechanical behaviour within the parallel orientation

group, had a Young’s Modulus of 7.2 MPa, which was about 7 times that of its

transverse testing results

• When tested along the long axis of the fibres i.e. the parallel orientation direction,

aligned sca�olds displayed very high mechanical properties. Z3-nHA sca�olds the

highest Young’s Modulus of 14.5 MPa and a yield strength of 1.5 MPa.

• MLO-A5 and hES-MP cells were viable on all aligned sca�olds, with viability
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increasing from D1 to D28. Cell viability of both cell types were generally higher

on aligned sca�olds than on sca�olds in the non-aligned group

• PU supported the highest level of cellular penetration and viability across all

time points for both MLO-A5 and hES-MP cells. Although the increased fibre

packing density of aligned sca�olds is known to inhibit cellular infiltration, very

good cell penetration and matrix deposition was observed along the entire depth of

all sca�olds

• XO images of Z3-PU and Z3-mHA sca�olds showed an even distribution of mineral

nodules. Z3-mHA had a higher percentage of mineral area coverage compared to

Z3-PU

• Mineralized nodules in Z3-mHA penetrated almost the entire length of the sca�old

compared to Z3-PU, which had only partial deposition with about 50% depth

converge whilst Z3-nHA sca�olds showed large chunky regions of deposited mineral

• SEM images showed that there was good cell attachment on all sca�olds on D1 and

images from D7 showed the cells were overly confluent and had completely covered

the sca�olds, whilst secreting copious amounts of extracellular matrix

• There was a higher amount of calcified matrix production in Z3-mHA than in Z3-PU

• The amount of collagen produced by MLO-A5 cells varied across the various

sca�olds and time points

• SHG imaging showed that collagen deposition which was originally guided by the

alignment of the sca�old fibres was observed to change orientation with changes in

depth

• The intensity/brightness of deposited collagen also varied across materials. There

was thicker collagen deposition on the Z3-PU only sca�olds than on the composite

sca�olds for all time points
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• Composite sca�olds however showed visibly brighter collagen intensities on D21 and

D28 time points compared to PU-only sca�olds

• The amount of collagen deposited on the Z3-PU sca�old on D21 was the highest

observed during the 28 day period whilst Z3-nHA was showed the visibly brightest

and most intense collagen deposition across the entire period
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6 | Results and Discussion Section

Three

Engineering a 3-dimensional biomimetic in vitro

bone model for testing small orthopaedic implants

6.1 Introduction

Three-dimensional (3D) cell culture systems have gained increasing interest in tissue

engineering due to their evident advantages in providing more physiologically relevant

information and predictive data (Edmondson et al., 2014). Such advances in tissue

engineering have aided the development of several in vitro models for tissues such as

skin (Harrison et al., 2006), kidney (Subramanian et al., 2010), lung (Mondrinos et al.,

2007), nerve (Gingras et al., 2003), cartilage (Risbud and Sittinger, 2002; Martin et al.,

2007) and cornea (Suuronen et al., 2004).

While substantial progress has been achieved in the development of in vitro bone tissue

engineering constructs for regenerative purposes (Shea et al., 2000; Petite et al., 2000;

Meinel et al., 2004), limited progress has been attained in developing an ideal 3-D bone

model (Tortelli and Cancedda, 2009; Papadimitropoulos et al., 2011). Such 3D models

could be used to understand disease progression associated with bone pathologies such as

osteoporosis, infection control, and osseointegration. Moreover, such models could also

provide extensive understanding of the bone-implant interface, and can also be used as

alternative to animal models for implant testing.
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Although traditional 2D cultures are still useful for investigating the molecular

mechanisms regulating cell di�erentiation, it is evident that they cannot be used to

faithfully mimic bone and cartilage (Tortelli and Cancedda, 2009). Current 2-dimensional

in vitro testing of implant materials using cell culture is limited by a lack of dynamic

environment and an inability to investigate the mechanical strength of the attachment

between the bone matrix and implant surface.

Such conventional 2D cell cultures are not capable of mimicking the complexity and

heterogeneity of bone turnover as they lack the specific organization and architecture

observed in 3D conformations. Moreover, numerous signals that govern di�erent cellular

processes are lost when cells are grown on 2D plastic substrates (Zanoni et al., 2016).

Current 3-dimensional tests to examine osseointegration are carried out in animals. These

tests consist of embedding sections of implant and control samples into holes, cut or drilled

in an animal’s bone for a period of time. At the end of the study, the animal is sacrificed

and the area of implantation is examined meticulously for local and systemic adverse

e�ects, and possible osseointegration.

The costly nature of these long term in vivo tests, the di�erences in behaviour and

structure in human and animal cells as well as the di�culty of replicating the e�ects of

human aging are key setbacks to using an in vivo model. Moreover, there are many pieces

of legislation that restrict the use of animals for scientific testing (European-Commission,

2013). There is therefore a clear demand to develop a novel 3D models that can be used

to validate new implant designs since current in vitro tests fail to provide a 3-Dimensional

dynamic environment.

In attempt to develop a 3D in vitro bone model, Tortelli and Cancedda (2009) seeded

murine primary osteoblasts and osteoclast precursors on a resorbable 3D ceramic sca�olds

and investigated bone cell interactions. They observed an enhancement in osteoblastic

di�erentiation that promoted osteoclast di�erentiation and enhanced extracellular matrix

deposition. Papadimitropoulos et al. (2011) also developed a 3D osteoblastic-osteoclastic

endothelial cell co-culture system. Their aim was to create an in vitro model that mimics

the process of bone turnover. They co-cultured osteoprogenitor and endothelial lineage
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cells in 3D porous ceramic sca�olds using a perfusion-based bioreactor device. They

intend to use their co-culture system to capture aspects of the functional coupling of

bone-like matrix deposition and resorption.

With several scientific groups now focusing on cancer research, recent developments

of in vitro bone models have also focussed on cancer since bone is one of the most

common metastatic sites of breast cancer (Chen et al., 2010). Zhu et al. (2016) utilised 3D

printed hydroxyapatite nanocomposites to create a biomimetic bone-specific environment

for evaluating breast cancer invasion into the bone. Holen et al. (2015) also used a novel

3D model to investigate tumour cell-bone cell interactions and study breast cancer bone

metastasis, in vitro and in vivo.

However, to the best of our knowledge an in vitro 3D bone model for implant testing

has not yet been developed. Creating this three-dimensional organotypic model may

reduce the use of complex and costly animal models, while gaining clinical relevance.

Developing this advanced biomimetic model requires a sca�old that resembles trabeculae

bone structure as close as possible. This sca�old should have the right chemical

composition, desirable physical properties with characteristic pore sizes and porosity,

ideal mechanical properties and support excellent biological response. Moreover, the

sca�old should be easy to manufacture in bulk, imaged by µ-ct and support osteoblastic

and progenitor cells to make bone structure.

The random and aligned electrospun sca�old discussed in the previous chapters had

good bone tissue engineering properties and it is possible to roll them into a 3D cylindrical

shape. Such a cylinder could be used as in vitro constructs for implant testing. This

however would present with challenges including how to hold the rolled sheet in place,

preventing necrosis in the rolled up portions, and ensuring an adequate nutrient and

waste transfer amongst the cells. The thin structure of elesctrospun sca�olds limits it

use as an in vitro bone model suitable for implant testing. There was therefore a need to

create thicker sca�olds with properties using other sca�old fabrication techniques.

As already mentioned in the previous chapters, polyurethanes are attractive

candidates for sca�old fabrication due to their mechanical flexibility and biocompatibility.

193



6.2. AIM

This mechanical flexibility arises from the thermodynamic incompatibility between its

hard and soft segments, providing its unique segmented structure. Moreover, its versatile

chemical composition allows PU to range from thermoplastic to thermosetting, from

stable to degradable materials, and from hydrophobic to hydrophilic depending on the

composition and synthesis procedure applied (Kucinska-Lipka et al., 2013). PU can

therefore be applied to various methods of porous sca�old fabrication, among which are

solvent casting/particulate leaching, thermally induced phase separation and emulsion

freeze-drying. The properties of the sca�old created with these techniques depend on

the thermal processing parameters, porogen agent and solvents used (Janik and Marzec,

2015).

Similarly, particulate leaching combined with solvent casting is a relatively simple

and common technique that combines either salt or sugar particles (as porogens) with

polymer or composite solution. Together with phase separation, these techniques were

explored for creating highly porous 3D structures as part of this study. This created an

opportunity to produce thicker constructs with controlled pore sizes and enhanced pore

interconnectivity that were essential for developing a 3D model.

6.2 Aim

The overall aim of this chapter was to develop and test a 3D in vitro bone model for

implant testing. Firstly, it was to explore a series of 3D fabrication techniques, and

identify the best technique for creating thick sca�olds with uniform pores and consistent

pore interconnectivity.

The secondary aim was to fully characterize the fabricated sca�olds in vitro and

assess their suitability for use in developing the in vitro model by undertaking in-depth

physical, mechanical and biological characterisation. The suitability of these sca�olds to

be sterilised by autoclaving was also explored as part of this study.

Moreover, cell culture protocols were developed for seeding and proliferating hES-MP

and MLO-A5 cells on these foam sca�olds. Additionally, the sca�old’s ability to support
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calcified matrix production was assessed using µ-CT imaging. Besides using the fabricated

sca�olds to create an in vitro 3D model, their potential to serve as a bone graft substitute

was also examined by conducting cortical defect and subcutaneous studies.

6.3 Results and Discussion Three

The particulate leached, freeze dried and freeze extracted sca�olds discussed in this

chapter were fabricated as outlined in Section 3.3.2.2, 3.3.3 and 3.3.4, respectively. These

were fabricated using PU and PU-HA solutions described in Sections 3.2.2.2 and 3.2.3,

on page 68 and 69, respectively.

Freeze drying was the first fabrication technique to be explored for this project,

this was done prior to electrospinning. In brief, PU-only solutions made from 15 wt%

or 20 wt% Z9A1 or Z3A1 PU solutions, made with either 70/30 DMF/THF or

50/50 DMF/THF solvents. The solutions were poured into glass disks and lyophilized

with a freeze dryer at She�eld Hallam University. However, freeze extracted sca�olds

were fabricated with 20 wt% Z9A1, 15 wt% Z3A1 and 10 wt% Z1A1 solutions in

100% DMF solvent.

Although, some particulate leached sca�olds were made using sugar particles, only

PL sca�olds made with salt particles were characterized biologically. These included

layer-by-layer, homogenized and physically mixed sca�olds. Cell culture and other

biological characterization analysis undertaken on these PL sca�olds are described in

Section 3.7.3.3 on page 96 and Sections 3.7.4 - 3.7.12 on pages 98 and 112, respectively.

In developing a protocol for the particulate leached technique, all the three types of

PU in the ZnA1 series were examined. Initial attempts at creating foam PL sca�olds used

sugar particles. It was however di�cult to leach the sugar particles from the solidified

PU matrix, resulting in a non-porous constructs. The layer-by-layer (LbL) technique was

therefore developed by alternating salt and polymer based solutions in a layer pattern

to create porous PU and PU-HA-based composites. All fabricated sca�olds were later

characterized physically and mechanically. They were also characterized biologically using
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MLO-A5 and hES-MP cells.

Although, the salt based LbL-technique addressed the earlier porosity challenges

encountered with the sugar particles, its mechanical properties were found to be much

lower than that of human bone. An attempt to rectify this aimed at developing

homogenized PL composites from PU-HA solutions that were mixed at super-high speeds

with a homogenizer. This was done to improve the interfacial bond strength between

the HA particles and the PU matrix. Additionally, the time consuming nature of the

LbL-technique was also addressed by developing the physically mixed (PM) technique.

This is a relatively easier and faster approach for creating highly porous PL foams.

The ability of these sca�olds to support cell attachment and proliferation was

examined using DAPI and Phalloidin staining, and alamar blue cell viability as

described in Section 3.7.9.2 on page 109. Furthermore, Micro-CT analysis described

in Section 3.7.8 on page 107 was also used to investigate how MLO-A5 cells deposited

calcified extracellular matrix on these fabricated PM sca�olds. Finally, the ability of

engineered PU and PU+mHA models to support cortex and osteopenia titanium screws

were also investigated as part of this study.

6.3.1 Alternate Foam Fabrication Techniques

Phase separation or inversion is a process of transforming a polymer in a controlled space,

from a liquid state to a solid state. It can be initiated by solvent evaporation (as in the

case of solvent casting), by thermal precipitation or by precipitation with a non-solvent

(Tsui and Gogolewski, 2009). Freeze drying, freeze gelation and freeze extraction are

variations of thermal precipitation.

Thermally-induced phase separation is a temperature sensitive technique based on

a polymer solution’s ability to induce a liquid–liquid separation and quench below the

solvent’s freezing point. This creates in a polymer-rich and poor phase, which solidifies

and crystallises, respectively. A highly porous structure can therefore be created once

the formed crystals are removed. The concentration and composition of the solution,

quenching temperature, and the rate of quenching are factors that a�ect the structure of
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sca�olds developed with this technique (Janik and Marzec, 2015).

6.3.1.1 Freeze Dried Sca�olds

Freeze drying is a user and material sensitive technique of fabricating sca�olds. It is also

extensively used as a preservation method in the pharmaceutical and food industry, to

improve the storage and shelf-life of products.

Figure 6.1: SEM images of Freeze Dried Polyurethane Sca�olds.

Scale Bar of SEM images=1 mm

As shown in Figure 6.1, sca�olds fabricated using this technique had very large and

irregularly shaped pore structures. For all solvent combinations and concentrations, Z9A1

sca�olds had more bubbled and large pore sizes compared to Z3A1 sca�olds, which had

relatively smaller and more uniform pore structures.

With some pore sizes greater than 1 mm, these transparent sca�olds were also

exceptionally hard to handle and could not be used for biological characterization.

Heijkants et al. (2006) used freeze drying in fabricating polyurethane sca�olds and

reported of a high degree of interconnected macro and micro pore structures which

enhanced cell attachment and proliferation. However, the freeze dried PU sca�olds

fabricated as part of this study could not be used for cell work as the pore structures lacked

interconnection and were far larger than the 200-300 µm pore size ideal for nutrients and

cellular waste transfer in bone cell culture (Burg et al., 2000).

These di�erences in the behaviour of freeze dried polyurethane sca�olds could have

been due to that fact that Heijkants et al. (2006) combined freeze drying with particulate

leaching. They also utilized 1,4-dioxane solvent compared to the DMF/THF combinations

used in this study. 1,4-dioxane is a popular solvent for freeze drying due to its ideal
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Table 6.1: Mechanical Properties of Freeze Dried Sca�olds (n=6)

Freeze Dried Sca�olds Thickness (mm) Young’s Modulus (MPa) Yield Strength (MPa)

70/30 DMF/THF
15wt % Z3A1 1.96 ± 0.27 5.02 ± 2.58 0.62 ± 0.14

20wt % Z3A1 4.05 ± 0.43 7.21 ± 2.35 0.99 ± 0.01

15wt % Z9A1 1.71 ± 0.04 35.47 ± 1.32 3.34 ± 0.80

20wt % Z9A1 1.47 ± 0.23 47.89 ± 7.81 4.49 ± 1.67

50/50 DMF/THF
15wt % Z3A1 2.90 ± 0.71 1.68 ± 0.83 1.28 ± 0.64

20wt % Z3A1 5.41 ± 1.38 2.79 ± 1.59 0.60 ± 0.23

15wt % Z9A1 1.96 ± 0.22 28.03 ± 0.92 3.03 ± 0.70

20wt % Z9A1 1.67 ± 0.16 37.08 ± 7.19 2.92 ± 1.73

freezing properties, it however could not completely dissolve the PU pellets in the ZnA1

series. Moreover, the di�erences in PU behaviour could have also been due to variations

in the chemical composition of polyurethane used. The chain extender used in the PU of

Heijkants et al. (2006) is poly(tetramethylene adipate) based Estane whilst that of the

ZnA1 series is 1,4 butane diol.

6.3.1.1.1 Mechanical Properties of Freeze Dried Sca�olds

Although these freeze dried sca�olds could not be used for biological characterization,

they provided valuable insight into the mechanical properties of the polyurethane in the

ZnA1 series. Since freeze drying was the first fabrication technique to be explored for

this project prior to electrospinning. The tensile stress-strain curves of these sca�olds

in Figure 6.2a & 6.2b, showed a clear distinction between the mechanical properties of

Z9A1 and Z3A1 sca�olds. Made from the same 70/30 DMF/THF solvent combination,

the sti�ness values of Z9A1 sca�olds were almost 10-fold’s higher than those of Z3A1.

As tabulated in Table 6.1, a similar observation was seen with the 50/50 DMF/THF

solvent combination. For both Z3A1 and Z9A1 sca�olds, 20 wt% sca�olds containing a

higher polymer to solvent ratio were sti�er than their 15wt% counterparts. Similar to

random electrospun sca�olds, freeze dried sca�olds made from 70/30 DMF/THF solvent

at the same solute concentration, had higher yield strength and Young’s Modulus than

their 50/50 DMF/THF counterparts.
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(a) 70/30 DMF/THF (b) 50/50 DMF/THF

(c) All Z3A1 Sca�olds (d) All Z9A1 Sca�olds

Figure 6.2: Example stress/strain curves of Freeze Dried Sca�olds.

6.3.1.2 Solvent Casting & Freeze Extracted Sca�olds

Solvent casting was used to create PU-only sca�olds at +20

o

C. These sca�olds dried

into irregular shapes and felt very sti� to handle. They also appeared to be non-porous,

although SEM images in Figure 6.3 showed a few pores in the sca�olds. Z1A1 sca�olds

had the least pores, and showed a honey-comb porous surface in the 1 mm scale bar SEM

image. Z9A1 had more pore structures compared to Z3A1. However, pore structures in

both Z3A1 and Z9A1 appeared very shallow and were not interconnected.

Freeze extraction which combines thermal precipitation and precipitation with

a non-solvent was also used to create a range of sca�olds at temperatures of
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Figure 6.3: SEM images of +20

¶
C Solvent Cast Polyurethane Sca�olds.

Scale Bar of SEM images=200 µm, 500 µm & 1 mm

-196

o

C (Figure 6.4), -80

o

C (Figure 6.5), -20

o

C (Figure 6.6). Z1A1 freeze extracted

-20

o

C sca�olds had almost no pore structures, whereas Z3A1 and Z9A1 sca�olds

contained large and irregular pores that appeared to have deep tunnels. These pores

were however not connected. Similar morphologies were observed in sca�olds extracted

in the -80

o

C freezer. Sca�olds extracted at -196

o

C had a very uneven morphology

due to the fast quenching e�ect of the liquid nitrogen. They showed a small number of

shallow pores under SEM for Z1A1 sca�olds but almost no pores in the Z3A1 sca�olds.

Similar to freeze dried sca�olds, the sca�olds fabricated by solvent casting and freeze

extraction were not used for biological characterization. Their uneven and unrepeatable

structures even made it impossible to attain any meaningful mechanical characterization

data from them. Due to the challenges encountered with electrospinning and phase

inversion fabrication techniques. Particulate leached foams were therefore considered as

a suitable alternative for creating in vitro bone models.

200



Chapter 6. Results and Discussion Section Three

Figure 6.4: SEM images of -20

¶
C Freeze Extracted Polyurethane Sca�olds.

Scale Bar of SEM images : Z9A1=500 µm, Z3A1 & Z1A1=200 µm

6.3.2 Particulate Leaching (PL) Sca�olds

Particulate leaching is a relatively simple technique used to fabricate sca�olds for various

tissue engineering applications. It consists of combining either salt or sugar particles

(as porogens) with a polymer or composite solution. These combined solutions are then

contained in a predefined mold for a period of time to allow the solvent to evaporate.

After the solvent has evaporated, the sugar or salt particles, which dissolve in water are

leached away to obtain a porous three dimensional sca�old. This technique provides

flexibility in controlling sca�old pore size by modifying the size of the porogen crystals,

and ultimately its porosity by altering the salt/polymer ratio.
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Figure 6.5: SEM images of -80

¶
C Freeze Extracted Polyurethane Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & 1 mm

6.3.2.1 Using Industrial PU Foam

Prior to fabricating PL sca�olds as part of this study, our group utilised an industrial PU

foam kindly donated by Prof. Anthony Ryan as the main PU sca�old for in vitro analysis.

As shown in Figure 6.7, these PU-only sca�olds had very large and interconnected pore

structures. Most of these pores however appeared to be covered with a thin layer of

PU coating across the edges or over the entire length of pore. Preliminary cell culture

experiments, exposed the sca�olds to have pores that were too large for cell attachment.

With an average pore size of almost 400 µm, hES-MP cells seeded on these

non-bioactive sca�olds fell straight through and did not attach well to the sca�olds.

Subsequent MTT experiments showed that adjusting the cell seeding density, media and

protocol could improve cell attachment in these sca�olds. A previous researcher in our

lab was also able to optimise cell seeding well enough to use these foams as a model

system for mechanical loading experiments (Sittichockechaiwut et al., 2009). However,

fabricating our own foam sca�olds using particulate leaching could provide greater control
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Figure 6.6: SEM images of -196

¶
C Freeze Extracted Polyurethane Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & 1 mm

of our sca�olds. These sca�olds could be customised to have an ideal pore size and

interconnectivity, as well as be incorporated with nanocomposites and biomolecules to

improve the mechanical and bioactive properties of the sca�old.

Figure 6.7: SEM image of Previously used Industrial PU Foam

Scale Bar of SEM images=200 µm, 500 µm & 2 mm

6.3.2.2 Using Sugar Particles

Initial attempts to fabricate foam PU sca�olds combined sugar particles with 15 wt%

and 20 wt% Z9A1 solutions made from 100% DMF solution. The integration of a solid

porogen within a 3D polymer matrix facilitates the creation of an inter-connected pore

network with well-defined pore sizes and shapes (Guarino and Ambrosio, 2008).
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Figure 6.8: SEM images of 20 wt% of Z9A1 PL Sca�olds made with Sugar Particles

Scale Bar of SEM images=200 µm, 1 mm & 500 µm

For both 15 wt% and 20 wt% Z9A1 sca�olds fabricated with the particulate leaching

method, it was di�cult to leach out the sugar particles used. About 50% of porogens

remained entrapped in the fabricated sca�old after more than a month of leaching under

static conditions. As shown in Figure 6.8, the sca�old had trapped sugar particles and

non-uniform morphology. This observation is typical of thick sugar-based particulate

leached sca�olds and as such others have recommended fabricating thinner sca�olds

by layering sca�olds with chloroform (Sachlos and Czernuszka, 2003). Although this

layering technique is advantageous for removing porogens, the toxic nature of chloroform

undermines its use for cell culture.

6.3.3 Layer-by-Layer PL Sca�olds

The layer-by-layer technique was developed to address the limitations encountered with

fabricating PL foams with sugar. Following on from discussions with Dr.Frederik

Claeyssens regarding creating sugar-based PL sca�olds, it became evident that the

challenges occurred from the manner in which the particles were introduced. This trapped

the particles in solution and prevented them from being accessible to water molecules.

This was because the large sugar particles were introduced into the high molecular

weight Z9A1 PU solution after casting. Evaporation of the 100% DMF solvent had

already commenced and started to create a sealed non-porous regions at the edges of the

sca�olds. This caused the sugar particles to became trapped in the PU solution and be

inaccessible to leaching, and hence inhibited the dissolution process. The layer-by-layer

204



Chapter 6. Results and Discussion Section Three

technique was therefore created to fabricate highly porous PL sca�olds by alternating

salt particles (Figure 6.9) and polymer solution in layered pattern.

Figure 6.9: SEM of nHA, mHA and NaCl particles used in fabricating PL sca�olds

Scale Bar of SEM images=10 µm, 10 µm & 1 mm

6.3.3.1 SEM of LbL-PL Sca�olds

The LbL-PL technique described in detail in Section 3.3.2.2.1 on page 74 was first used

for creating PU-only sca�olds from 10 wt% Z1A1 solution, 15 wt% Z3A1 solutions and

20 wt% Z9A1 solutions made with 100% DMF solvent. SEM of these sca�olds shown

in Figure 6.10, showed an impressive improvement over the sugar-based PL sca�olds in

Figure 6.8.

These sca�olds showed an even porous structure and a combination of interconnected

macro and micro pores which have been reported to facilitate cell culture and nutrient

transport (Heijkants et al., 2006). Sca�olds made from all three types of PU in the ZnA1

series had a highly porous 3D structure and were significantly thicker than electrospun

sca�olds. They were therefore seen as excellent templates for creating the in vitro 3D

model.

However, to allow for consistency and uniformity in sca�old fabrication, only PL

sca�olds made from Z3A1 and 70/30 DMF/THF solvent were used for biological

characterization. Composite sca�olds were made by doping the Z3A1-70/30 solutions

with either micro or nano-sized HA particles (Figure 6.9) in the ratio of 3:1, PU:HA.

As shown in Figure 6.11, PU-only Z3A1 sca�olds had the highest average pore size of

235 µm. Including both types of HA particles to create composites reduced this average

pore size to 187 µm for mHA composites and 190 µm for nHA composites. SEM images
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Figure 6.10: SEM of PL Z9A1, Z3A1 & Z1A1 PU Sca�olds made with NaCl Particles

Scale Bar of SEM images=200 µm, 500 µm & 1 mm

of the cross-sections also revealed a highly interconnected porous structure across the

entire length of the sca�olds which comprised of a range of pore sizes. The larger pores

may serve as channels to perfuse culture media or augment di�usion of nutrients to cells

seeded within central pores. In turn, the smaller pores provide a potential space for

tissue ingrowth. Taboas et al. (2003) also fabricated PLA/HA sca�olds with similar pore

structures to mimic trabecular bone.

6.3.3.1.1 Optimisation of HA content

By weight, approximately 70% of bone tissue is mineral, with an estimated 95% of the

mineral phase composed of a crystalline hydroxyapatite and the remaining 5% being

impurities (Feldman et al., 2007). The remaining 30% of bone dry weight is the organic

component of bone which is noted to be predominantly collagen Type 1 (Hollinger, 2005).

In an attempt to mimic the higher mineral content of bone, composite sca�olds

containing micro-sized HA particles in the ratio 2:1, PU:HA, were also created to assess
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Figure 6.11: SEM images of 15 wt% Z3A1 Layer-by-Layer PL Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & Cross-section=2 mm
Histogram distributions of pore sizes (n=40)

the e�ect of incorporating higher HA quantities in fabricated sca�olds. As shown in

Figure 6.12, 2:1 PU+mHA sca�olds had an average pore size of 148 µm with some closed

up pores. This was lower than the 187 µm attained with 3:1 mHA composites. It is

possible that increasing the quantity of mHA powder in solution caused the reduction in

quantity and size of the pores.

6.3.3.1.2 SEM and PAS-FTIR of Autoclaved Sca�olds

Sterilization of fabricated sca�olds prior to cell culture is an essential step that cannot be

ignored as it avoids the introduction of micro-organisms to the cell culture and prevent

infection. Ethylene oxide treatment, gamma irradiation, antibiotic treatment and liquid

sterilisation such as ethanol and paracetic acid are possible sterilisation methods that

have been used on sca�olds. Each of these however present with their own advantages

and disadvantages. Some of these techniques have been shown to be unsuitable for

polymer sca�olds because of deformation from lengthy degassing, chemical toxicity and

deterioration due to decreased molecular weights (Athanasiou et al., 1996).

Electrospun sca�olds used in this study were sterilized with paracetic acid for 3 hours
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Figure 6.12: SEM images of 3:1 vs 2:1, 15 wt% Z3A1 PU+mHA LbL-PL Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & Cross-section=2 mm
Histogram distributions of pore sizes (n=40)

prior to cell culture. However due to the large size of the PL sca�olds, an alternative

method of sterilisation was required as sterilisation with paracetic acid did not su�ce.

Autoclaving, a typical medical sterilization method has been reported in the literature to

be unsuitable for polymer sca�olds (Shearer et al., 2006). However using this method to

sterilise the fabricated PL sca�olds proved e�ective and showed minor visible di�erences

between the SEM images of before and after autoclaving sca�olds (Figure 6.13).

6.3.3.2 Micro-CT: Pore Interconnectivity and Porosity

Micro-computed tomography (µ-CT) combined with 3D image rendering provides an

opportunity to access systematic variation in sca�old architecture (Jones et al., 2007).

µ-CT made it possible to evaluate sca�old porosity, surface area per unit volume and the

degree of interconnectivity by combining µ-CT imaging and computer aided manipulation

of the scanned data. This provided an accurate quantification of the 3D structure and

an ability to visualize the sca�olds internal conformations.

It was also used during the final stages of the project to access bone mineralization

in cell-seeded sca�olds. As shown in Table 6.2, µ-CT imaging of plain polyurethane

sca�olds showed a more porous morphology compared to composite sca�olds containing

micro and nano-sized HA particles. This was further highlighted with an analysis of the

sca�old’s entire porosity. As shown in Figure 6.14, PU-only and PU+nHA sca�olds were
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Figure 6.13: Before and After Autoclaving SEM images of LbL PU Sca�olds

Scale Bar of SEM images=200 µm & 1 mm

more porous than mHA based sca�olds.

With a porosity of 89.4%, PU sca�olds were about 6% more porous than both 3:1 and

2:1 PU+mHA sca�olds, but only 3% more porous than 3:1 PU+nHA. This trend is similar

to the average pore size analysis of the SEM sca�olds. µ-CT showed a good distribution

of HA particles throughout the entire volume of composite sca�olds. A comparison of 3:1

and 2:1 PU+mHA µ-CT images in Table 6.3, confirmed that composite sca�olds with

2:1 PU:mHA, had more HA particles than their 3:1 counterparts. However, compared

to the 38.78 µm (20.71%) di�erence between the SEM average pore size of 3:1 and 2:1

PU+mHA sca�olds, there was only a 0.2% di�erence in their average porosities. This

could have been due to the changes in the field of view of SEM images.

The three-dimensional structure and architecture of sca�olds play a critical role

in bone formation and could influence the functionality of the engineered bone

constructs (Ho and Hutmacher, 2006). Hence such quantitative analysis of the

structure-function relationships is therefore important for optimizing the mechanical and

biological performance of these sca�olds.
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Table 6.2: Micro-CT Imaging of Blank LbL-PL Sca�olds to Examine Sca�old Porosity

Top View Cross-section Truncated HA

PU

PU+mHA

PU+nHA

Table 6.3: Micro-CT Image Comparison of 3:1 vs 2:1 PU+mHA Sca�olds

Top View Cross-section Truncated HA

PU+mHA 3:1

PU+mHA 2:1
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Figure 6.14: Micro CT Estimation of the Porosity of 15 wt% Z3A1 PU-LbL PL Sca�olds

6.3.3.3 Mechanical Properties

The mechanical properties of particulate leached sca�olds were assessed using

compression plate accessories and the Bose 3200. Example stress/strain curves in

Figure 6.15a showed that including HA particles reinforced the mechanical properties

of composites compared to PU-only sca�olds.

Although 3:1 nHA composites had the highest Young’s Modulus and yield strength

in the LbL-PL group, its mechanical properties were not significantly di�erent from 3:1

mHA composites. PU-only sca�olds had the lowest Young’s Modulus (Figure 6.15b) in

the group. It’s Young’s Modulus value of 0.32 MPa was significantly lower than the 0.63

and 0.67 MPa of 3:1 PU+mHA and 3:1 PU+nHA composites, respectively. Similarly,

its yield strength value of 0.015 MPa (Figure 6.15c) was half that of 3:1 PU+mHA, and

significantly lower than those of 3:1 PU+nHA composites.

As shown in Figure 6.16a, the mechanical properties of 2:1 and 3:1 PU+mHA

composites were very similar. Although 2:1 PU+mHA sca�olds contained a higher v33%

HA content, (8% more HA than its 3:1 counterparts), there was only a 0.05 and 0.004 MPa

di�erence between its Young’s Modulus and yield strength values of 3:1 and 2:1 mHA

composites. With a yield strength of 0.035 MPa, 2:1 PU+mHA was 12.9% higher than
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(a) Example stress/strain curves

(b) Youngs’s Modulus (c) Yield Strength

Figure 6.15: Mechanical Properties of 15 wt% Z3A1 LbL-PL Sca�olds.

that of 3:1 PU+mHA. Interestingly, its 0.58 MPa Young’s Modulus was 7.94% lower than

that of the 3:1 composites.

6.3.3.4 Alamar Blue Cell Viability

Alamar blue cell viability assay was carried on LbL-PL sca�olds seeded with either

MLO-A5 or hES-MP cells for 21 days. Compared to MTT, water soluble resazurin salt

is non-toxic to cells and hence does not kill the cells to obtain viability measurements.

This allows precious primary cells to be re-used for further investigations, saving time

and money (Ahmed et al., 1994).
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(a) Example stress/strain curves

(b) (c)

Figure 6.16: Mechanical Properties of 3:1 vs 2:1 15 wt% PU+mHA LbL-PL Sca�olds

6.3.3.4.1 MLO-A5 cells

As shown in Figure 6.17a, all sca�olds showed an increase in cell viabilities between D1

and D6 during the 21 day culture period. MLO-A5 cells cultured on PU sca�olds had the

highest viability on D1 and D4. This was significantly higher than the viabilities of both

PU+mHA and PU+nHA sca�olds on D1, but only significantly higher than PU+nHA

on D4. There was no significance di�erence between cell viability on PU+mHA and

PU+nHA on both D1 and D4.

MLO-A5 cell viability on PU+mHA was the highest amongst the groups between D6

and D21. This was followed by PU+nHA sca�olds, as cell viabilities on PU-only sca�olds
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were observed to decrease between D6 and D14 before increasing from D14 to D21. It

may be possible that multiple destaining washes carried out after an alamar blue assay

may have washed some cells from the PU-only sca�olds and caused this decrease.

(a) (b)

Figure 6.17: Alamar Blue Cell Viability of MLO-A5 cells on LbL-PL Sca�olds A:PU,

PU+mHA 3:1 & PU+nHA 3:1 Sca�olds, B:Comparison of 3:1 vs 2:1 PU+mHA Sca�olds

Kindly refer to text in Section 6.3.3.4.1 on page 213 for statistical analysis

Although there was no significance di�erence between PU and PU+mHA sca�olds on

D6, cell viability on PU+nHA sca�olds was significantly lower than on PU sca�olds and

PU+mHA. The decrease in cell viability on PU sca�olds on D14 was significantly lower

than on PU+mHA, but there was no significant di�erence between cells on PU+nHA

and PU+mHA sca�olds. With cell viabilities increasing on all sca�olds between D14 and

D21, PU+mHA supported a significantly higher cell viability than that of PU+nHA and

PU-only sca�olds.

Similar to the work of Popescu et al. (2013), LbL-PL nHA composites did not support

improved cell viability over PU-only sca�olds. This behaviour of PU+nHA sca�olds was

in contrast to what was seen with random electrospun sca�olds but similar to aligned

sca�olds. It may be possible that the cells preferred having more room for proliferation

as opposed to the bioactive properties of nano-sized HA particles. It may also have been

due to the fact that, the nano-sized HA particles were encapsulated in the PU matrix

and were not exposed enough to allow the cells to interact with the HA particles.
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MLO-A5 cells were seeded on 2:1 PU+mHA composites to examine whether a higher

HA content could enhance cell proliferation and increase cell viability. As shown in

Figure 6.17b, cell viability on 2:1 PU+mHA increased steadily from D1 to D21. With

similar cell viability on D1, MLO-A5 cell viability on 3:1 PU+mHA was significantly

higher than that 2:1 PU+mHA on D4 and D6.

Beyond day 6, cell viability increased on 2:1 PU+mHA, but was maintained on the

3:1 sca�olds until D14. Viability however increased on both sca�old types beyond D14,

however, there were no significant di�erences between MLO-A5 cell viability on 3:1 and

2:1 PU+mHA sca�olds on D14 and D21. It may still be possible to improve the bioactive

e�ect of PL sca�olds with a higher concentration (< 40%) of HA particles in composites.

This has have been shown by Kavlock et al. (2007); Du et al. (2014); Yang et al. (2015)

who developed sca�olds with >40 wt% HA content . However, 2:1 PU+mHA did not

show any superior biological properties when compared with 3:1 PU+mHA.

6.3.3.4.2 hES-MP cells

Figure 6.18: Alamar Blue Cell Viability of hES-MP cells on PU LbL-PL Sca�olds

Kindly refer to text in Section 6.3.3.4.2 on page 215 for statistical analysis

Based on the results of various characterization techniques undertaken on the

fabricated LbL-PL sca�olds so far, it may be possible to use the sca�olds to not only

develop an in vitro 3D model but also as a bone substitute. While MLO-A5 cells confirmed
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that all sca�olds in LbL-PL group were biocompatible, hES-MP cells were also seeded

onto PU sca�olds to assess the suitability of the sca�olds to support human progenitor

cells. As shown in Figure 6.18, cell viability increased sharply between D1 and D6, and

then gradually from D6 to D21.

6.3.3.5 Sirius Red Staining

LbL-PL sca�olds were stained with Sirius Red dye to examine the sca�old’s ability to

support extracellular matrix deposition. At the end of both MLO-A5 and hES-MPs

alamar blue cell viability study, sca�olds were prepared for sirius red staining as described

in Section 3.7.5 on page 103.

Figure 6.19: Quantitative Analysis of D21 Sirius Red Staining of MLO-A5 & hES-MP

cells seeded on LbL-PL Sca�olds

As shown in Figure 6.19, PU+mHA sca�olds supported the most collagen deposition

within the LbL-PL group. This was significantly higher than that of PU only sca�olds

and PU+nHA sca�olds. It may be possible that the PU+mHA sca�olds had a higher

amount of cells on the sca�olds and hence produced a higher amount of collagen, as these

sca�olds also recorded the highest alamar blue cell viability on D21. It may be worth

normalizing the alamar blue data with the Sirius red data to determine if more matrix

was made per cell on a particular material.

Collagen production by MLO-A5 cells was also significantly higher than that of

hES-MP cells. However, these cells have several di�erences between them which could

have influenced this result. As shown in Figure 6.20, qualitative Sirius red images of these
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(a) hES-MP cells (b) MLO-A5 cells

Figure 6.20: D21 Sirius Red Staining of MLO-A5 & hES-MP cells on PU LbL-PL Sca�olds

cell-seeded sca�olds highlights a thicker extracellular matrix deposition on PU sca�olds

seeded with MLO-A5 (Figure 6.20b) cells compared to that of hES-MPs (Figure 6.20a).

It is likely that this is predominately due to the late osteoblastic stage of MLO-A5 cells

compared to the progenitor status of the hES-MPs.

6.3.3.6 In vivo Studies

Whilst the sca�old was primarily designed to be used as an in vitro 3D model, it may

be possible to use it also as a bone substitute. in vivo studies were carried out as part

of this study to access the suitability of the fabricated sca�olds as a bone substitute.

Although in vitro analysis was successful at answering many biological questions, there

was still the need to understand whether the sca�old could support vascularization and

also attain an overall biological evaluation of the sca�olds under physiological conditions

in a living organism. in vivo studies consisting of subcutaneous and cortical defect

implantations were carried out as described in Section 3.7.11 on page 110, by Dr. Maksym

Pogorielov’s laboratory in Sumy State University, Ukraine. All explanted in vivo samples

were analysed histologically and imaged in Ukraine.

6.3.3.6.1 Subcutaneous Implantation

After 7 days of implantation, all extracted sca�olds were still white in colour and
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contained a dark-coloured substance within the pores (Figure 6.21). 5 out of the 6

implanted PU-only sca�olds appeared white in colour but were filled with a dark-color

substance and covered with a thin connective layer. The tissue around the 5 sca�olds

had a regular structure and no inflammation. However, the remaining PU sca�old was

completely inflamed and filled with inflammatory exudate. This could have been caused

by a wound infection during the postoperative period. This sample was subsequently

excluded from the experiment and all data analysis.

(a) PU (b) PU+mHA (c) PU+nHA

Figure 6.21: Pictures of Extracted LbL-PL sca�olds after 45 days of implantation

All the 6 retrieved PU+mHA sca�olds were covered with a thin connective tissue

capsule. There were no undesirable inflammatory response in this group. However, one

animal death was recorded on D3 within the PU+nHA group. Although an autopsy

did not show any inflammation or other specific changes around the composite sca�old.

Moreover, a detailed inspection of the main organs including the heart, brain, liver,

kidney, lungs showed normal macroscopic structures. The group in Ukraine were unable

to determine the cause of death and excluded this sample from all experimental analysis.

The remaining 5 PU+nHA sca�olds included in the experimental analysis were also

covered with a thin connective layer. Tissues around these sca�olds had a regular

structure and showed no signs of an inflammation.

All animals scarified on D45 for the second time point were healthy and no death was

recorded during the implantation period. All PU+mHA and PU+nHA sca�olds, as well

as 4 PU sca�olds were located just underneath the skin, covered with a connective capsule

and filled with the dark coloured tissue. The remaining (2) PU sca�olds which were white
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in colour, were not covered with a connective capsule. A histological examination of these

two sca�olds showed no tissue ingrowth.

Histology

12 µm thick sections of explanted samples were prepared and stained with hematoxylin

and eosin, and analysed using light microscopy. The outer surface of all the sca�olds

were covered with a thin connective tissue capsule by D7. As tabulated in Table 6.4, the

thickness of this capsule ranged from 31.9±0.41 mcm(500 mcm=253.4mm

2

) for PU+nHA

sca�olds to 34.3±0.37 for PU-only sca�olds. There were no significant di�erences between

these experimental groups.

Table 6.4: The Thickness (mcm) of the Capsule around LbL-PL Sca�olds

Time-point PU PU+mHA PU+nHA

D7 34.3±0.37 32.6±0.16 31.9±0.41

D45 47.2±0.32 36.2±0.35 33.5±0.27

Empty Pores-(% from slide surface), Blood Vessels and Osteoblasts–(number per 1 mm2)
a – Significantly di�erent from plane PU

b - Significant di�erence between PU+mHA

This encapsulation could have resulted from a general inflammatory reaction

to the presence of the foreign sca�olds. The capsules were composed of

collagen fibres, fibroblast-like cells and inflammatory cells such as lymphocytes and

neutrophils (Figure 6.22). The presence of such capsules inhibits further inflammatory

and foreign body reactions and prevents additional tissue damage (Yaltirik et al., 2004).

A closer inspection of the superficial regions (outermost part of the sca�old) showed an

ingrowth of small blood vessels, filled with erythrocytes.

The superficial zone, located directly underneath the connective tissue capsule had a

depth of ≥1 mm. As tabulated in Table 6.5, PU sca�olds in this zone were filled with

inflammatory cells including lymphocytes and neutrophils which may have migrated from

damaged vessels and subcutaneous tissues. In addition to these cells, erythrocytes and

fibroblastic cells which formed a thin network of collagen fibres and granulation tissue,

were also observed in the macro-pores of the sca�olds. The number of fibroblasts found

219



6.3. RESULTS AND DISCUSSION THREE

(a) PU (b) PU+mHA (c) PU+nHA

Figure 6.22: Histological Images of the Capsule that Covered the Sca�olds on D7

Magnification at 360x
Keys: 1–Sca�old, 2–Erythrocytes, 3–Lymphocytes, 4–Fibroblasts, 5–Blood Vessel

in composites were twice the amount in PU sca�olds. Although there were no major

observational di�erences between micro and nano HA composites at D7, it is possible

that the inclusion of these HA particles had a specific e�ect on the fibroblasts. As the

PU sca�olds did not have any granulation tissue in their pores at D7.

It been reported in the literature that hydroxyapatite, especially nano-sized HA can

stimulate fibroblast migration and adhesion during subcutaneous implantation (Kasaj

et al., 2008; Pendegrass et al., 2012). A few blood vessels with varying diameters were

observed in the PU sca�olds. They were however significantly lower than the amount

seen in the HA composites. This supported the work of Tommila et al. (2009), who

hypothesized that, macrophages recognize HA as foreign material, and hence phagocyte

or hydrolyse it to release calcium ions. This is recognized by the calcium-sensing receptors

expressed in many cells including hematopoietic progenitors, leading to endothelial cell

migration and vessel growth.

The intermediate zone of the sca�olds were filled with neutrophils, lymphocytes and

erythrocytes. As tabulated in Table 6.6, erythrocytes were the main cells present in this

zone. For PU sca�olds, there was about 70% more erythrocytes in the intermediate zone

than in the superficial zone. There were also traces of fibroblasts, which were believed

to have migrated from the surrounding tissue. The amount of fibroblasts in HA sca�olds

was significantly higher than that of PU sca�olds. However, there were less lymphocytes

and neutrophils in the HA composites in this zone than the superficial zone.
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Table 6.5: Histological Images of LBL-PL Sca�olds: D7 Subcutaneous Implantation

PU PU+mHA PU+nHA

Superficial Zone

Intermediate Zone

Deep Zone
Magnification at 360x

Keys: 1–Sca�old, 2–Lymphocyte, 3–Neutrophil, 4–Fibroblast, 5–Erythrocyte,
Granulation Tissue, 7–Blood Vessel

A closer inspection of the deep zone (the innermost part of the sca�old) showed

significant di�erences between PU and PU:HA sca�olds, however, there were no visible

di�erences between PU+nHA and PU+mHA sca�olds. The main cells present in PU-only

sca�olds were erythrocytes, which are believed to have migrated from the damaged

subcutaneous vessels. There were also a few lymphocytes and neutrophils present. The

pores of PU-HA sca�olds had a significantly lower quantity of erythrocytes, but there

were no significant di�erences in the amount of inflammatory cells between these HA

composites.

As shown in Figure 6.23, all the sca�olds extracted on D45 were covered with a

thicker capsule compared to D7. PU sca�olds had a capsule thickness of 47.2±0.32 mcm.

This was significantly thicker than that of PU+nHA and PU+mHA, at 33.5±0.27 mcm

and 36.2±0.35 mcm, respectively. Compared to the previous time point, these capsules

contained a lot of blood vessels, especially around the HA based sca�olds. This led

to better vascularisation of the capsule around the composites, leading to better oxygen
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Table 6.6: D7 Morphometric Parameters of Subcutaneous Implantation

LbL-PL Sca�old Cells/Vessel

Zone

Superficial Intermediate Deep

PU

Lymphocytes 16.55±1.4 12.52±0.6 4.23±0.6

Neutrophils 37.18±2.3 28.74±1.9 8.83±0.7

Fibroblasts 17.54±2.9 9.87±1.1 0

Erythrocytes 28.92±3.5 49.19±3.6 87.69±5.2

Granulation Tissue 0 0

Blood Vessel 3.65±0.5 0 0

PU+mHA

Lymphocytes 28.1±3.1

a

16.27±0.9 9.25±1.7

a

Neutrophils 15.4±0.9

a

23.04±1.1

a

19.59±2.4

a

Fibroblasts 35.3±2.7

a

32.92±3.5

a

7.82±0.8

Erythrocytes 21.3±1.4 28.11±1.8

a

64.91±3.4

a

Granulation Tissue 12.6±1.5 0 0

Blood Vessel 8.3±0.6

a

5.4±0.3 0

PU+nHA

Lymphocytes 27.4±1.8

a

15.52±1.3

a

11.36±0.8

a

Neutrophils 12.4±1.6

a

21.48±2.8

a

22.50±1.6

a

Fibroblasts 37.9±3.6

a

33.17±2.6

a

7.29±0.4

Erythrocytes 22.5±1.3 29.95±1.1

a

58.49±5.3

a

Granulation Tissue 11.8±0.6 0 0

Blood Vessel 11.2±1.2

a,b

7.8±0.6

a

0

a – Significantly di�erent from PU-only
b - Significant di�erence between PU+mHA
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perfusion and a reduced capsule thickness. As a deficit in oxygen supply has been reported

to lead to an overproduction of connective tissue (Parirokh et al., 2011).

(a) PU (b) PU+mHA (c) PU+nHA

Figure 6.23: Histological Images of the Capsule that Covered Sca�olds on D45

Magnification at 360x
Keys: 1–Sca�old, 2–Lymphocytes, 3–Fibroblasts, 3–Blood Vessel

Similar to D7, histological analysis of the graft showed visible di�erences between PU

and PU-HA sca�olds. At a lower magnification of 120x (Table 6.7), all the pores in the

PU-HA sca�olds appeared to be filled with fibrous connective tissue compared to PU-only

sca�olds, which were only partially filled. Fibroblast adhesion and proliferation observed

in the D7 explanted samples led to a satisfactory development of fibrous connective tissue

inside the sca�olds by D45. There were more PU+nHA pores filled with this connective

tissue as compared to PU+mHA. This caused the percentage of empty pores in PU+nHA

to be significant lower than its PU+mHA counterparts, indicating that nano-sized HA

particles stimulated more fibroblastic activity and tissue ingrowth than mHA particles.

The level of vascularization in new fibrous tissue was also better in PU-HA composites

than PU sca�olds. This could have been due to the earlier vessel ingrowth at the D7

time point. At a higher magnification of 360x, the fibrous connective tissue inside the PU

pores was composed of chaotically arranged collagen fibres. However, the collagen fibres

around the circumference of PU-HA pores were tightly packed but chaotically arranged

in central zones of the pores.

6.3.3.6.2 Cortical Defect

Similar to the subcutaneous implantation studies, animals were sacrificed on D7 for the

first time point. All sca�olds were still inside the bone defect but dark in colour. There
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Table 6.7: Histological Images of LBL-PL Sca�olds: D45 Subcutaneous Implantation

PU PU+mHA PU+nHA

x120

x360
Keys:1–Sca�old, 2–Empty Pore, 3–Blood Vessel, 4–Connective Tissue

Table 6.8: D45 Morphometric Parameters of Subcutaneous Implantation

PU PU+mHA PU+nHA

% of Empty Pores per Slide 15.9±0.4 5.3±0.7

a

2.5±0.2

a,b

% of Fibrous Connective Tissue per Sample 32.2±1.4 44.8±2.1

a

52.4±1.2

a,b

Number of Blood Vessels per 1 mm

2

7.6±0.3 12.4±0.6

a

17.3±0.5

a,b

a – Significantly di�erent from plane PU
b - Significant di�erence between PU+mHA

was no periosteal reaction between the surrounding bone and the sca�olds, however,

a minor elevation was observed at the edge of the defect. In addition, there were no

macroscopic di�erences between PU, PU+mHA and PU+nHA sca�olds. A bone-like

tissue formation was however observed on the surface of extracted sca�olds at the second

time-point, which was 45 days after implantation. Again, there were no macroscopic

di�erences between the sca�olds and no fibrous capsule around the sca�olds.

Histology

12-15 µm thick sections of the extracted sca�olds were prepared for histology using H & E

staining. All the sca�olds were filled with cells and fibrous tissue (Figure 6.24) after a

7 day implantation period. PU-nHA sca�olds had the highest percentage of pores filled

with new fibrous tissue. As shown in Table 6.9, their percentage of empty pores was
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significantly lower than that of PU+mHA sca�olds, and PU-only sca�olds which showed

some empty pores. These empty PU regions were mostly located in the deeper regions

of the sca�old that had minimum or no contact with blood vessels and bone marrow.

Table 6.9: D7 Morphometric Parameters of Cortical Defect

PU PU+mHA PU+nHA

Empty Pores 17.2±1.1 8.6±0.5

a

4.1±0.7

a,b

Blood Vessel 5.6±0.6 6.3±1.2 6.1±0.5

Osteoblast Density 8.4±0.8 15.3±0.5

a

21.7±0.7

a,b

Empty Pores-(% from slide surface), Blood Vessels and Osteoblasts–(number per 1 mm2)
a – Significantly di�erent from plane PU

b - Significant di�erence between PU+mHA

A number of blood vessels, ranging from 5.6±0.4 to 6.3±1.0 per 1 mm

2

were also

observed in all sca�olds on D7. Fibroblasts and osteoblasts which are believed to have

migrated from the cambial layer of the periosteum and bone marrow were also seen. The

amount of osteoblasts varied amongst the sca�olds. PU sca�olds had the lowest density of

osteoblasts in the group, however, PU-nHA has more osteoblast per 1 mm

2

compared to

PU-mHA composites. A few leukocytes and bone marrow cells were also observed in the

pores. Interestingly, bone tissue ingrowth in PU+mHA sca�olds was observed as early as

D7. This was observed in the pores near the hosting bone as shown in Figure 6.24. The

new bone tissue had less cells compared to the fibrous tissue, and di�erential staining

confirmed it as an early stage mineralisation similar to an osteoid. It may be possible

that the a good blood supply around the nano-HA particles stimulated more osteoblastic

activity and accelerated early bone formation in the nHA composites.

However, by the second time point, all the pores in both PU+mHA and PU+nHA

sca�olds had become filled with bone tissue, rich in osteoblasts. The orientation of

collagen fibres in this tissue was quite irregular, a typical observation in immature bone.

It is expected that subsequent bone remodelling from mechanical loading could alter

this irregularity. Although more porous regions in the PU sca�olds were filled with

fibrous tissue by D45, its percentage of empty pores was significantly higher than the HA

composites.
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(a) PU (b) PU+mHA (c) PU+nHA

Figure 6.24: Histological Images of LBL-PL Sca�olds: D7 Cortical Defect
Magnification at 360x, Keys: 1-Sca�old, 2-Empty pore, 3-Fibrous tissue,4-Osteoblast,

5-Fibroblast, 6-Bone marrow Cells, 7-Osteoid

(a) PU (b) PU+mHA (c) PU+nHA

Figure 6.25: Histological Images of LBL-PL Sca�olds: D45 Cortical Defect
Magnification at 360x, Keys: 1-Sca�old, 2-Bone tissue, 3-Osteoblast, 4-Osteocyte,

5-Bone marrow, 6-Osteoid, 7-Fibrous tissue

The outer surface of the new bone trabeculae was observed to be lined with osteoblasts,

while osteocytes were contained in the central portions around the bone tissue. As shown

in Figure 6.25, the structure of new bone in both PU+mHA and PU+nHA sca�olds were

very similar. Although bone formation started as early as D7 in PU+nHA, there were

no major di�erences in the quality of new bone formed in both sca�olds by D45. It may

be possible that bone formation in PU+nHA sca�olds finished earlier than PU+mHA,

but it was not possible to confirm it as this time-point.

Most peripheral regions of the PU sca�olds were also filled with new bone tissue.

This new tissue was similar in structure to those found in the HA composites. However,

the central zones of some of the PU pores were not completely filled with bone tissue.

These pores contained a combination of fibrous and bone tissue, and some showed a thin

mineralization zone between the fibrous tissue and the osteoid.
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The cortical defect in vivo study concluded that, both PU and PU-HA sca�olds have

osteoconductive properties and fill with connective tissue and osteoblast-like cells after

D7. However, compared to the PU-only and PU-mHA grafts, only PU+nHA sca�olds

were able to stimulate bone ingrowth by D7 . Nonetheless, new bone tissue was seen in all

the pores of PU+mHA and PU+nHA by D45, although PU sca�olds still had remnants

of fibrous tissue.

Table 6.10: D45 Morphometric Parameters of Cortical Defect

PU PU+mHA PU+nHA

Empty Pores 12.4±0.8 5.9±0.4

a

4.4±0.6

a

Pores with fibrous tissue 10.6±1.3 - -

Empty Pores-(% from slide surface)
a – Significantly di�erent from plane PU

6.3.4 Homogenized Sca�olds

While LbL-PL sca�olds especially PU+nHA composites demonstrated an excellent bone

formation capability in vivo, their mechanical properties of after fabrication were lower

than the mechanical properties of bone (discussed in Section 2.2.5 on page 19). Although

an incorporation of both micro and nano-sized HA particles reinforced the mechanical

properties of the composites as opposed to PU-only sca�olds. The Young’s Modulus and

yield strength of 0.65 and 0.35 MPa were tens/hundreds in magnitude lower than that of

cancellous/cortical bone tissue in humans (An and Draughn, 2000) .

The mechanical properties of PU-HA composites is however known to be dependent

on the sca�olds ability to from a strong interfacial bond strength between the ceramic HA

phase and the polymeric PU matrix (Attawia et al., 1995; Boccaccini and Maquet, 2003;

Bonzani et al., 2007). It was therefore hypothesized that introducing HA particles into

PU solutions at very high speeds with a homogenizer could create composite solutions

with a stronger PU-HA physical bond and better mechanical properties. The aim was

to identify the sca�old with the best mechanical properties to that of human bone, and

optimise its properties in line with the overall aim of developing an in vitro 3D bone
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model for implant testing.

In addition to the two main composite sca�old groups that were created with the

LbL-PL sca�olds, namely 3:1 PU+mHA and 3:1 PU+nHA sca�olds, a third composite

group that combines both micro and nano-HA particles was also created with these

homogenized solutions. These combined mHA-nHA composites denoted PU+cHA, were

created in a ratio of 3:0.5:0.5 PU:mHA:nHA to investigate whether combining di�erent

sizes of HA particles presented with any special features. All homogenized sca�olds were

later fabricated into PL sca�olds using the LbL technique.

6.3.4.1 SEM of Homogenized Sca�olds

As shown in Figure 6.26, PU+mHA sca�olds fabricated from homogenized solutions had

the largest pore sizes in the group. With an average pore size of 200 µm, its pores were

generally larger than those of PU+nHA sca�olds at 138 µm and PU+cHA at 141 µm. A

closer inspection of the surface SEM of PU+nHA and PU+cHA sca�olds showed larger

pores to contain several smaller pores. This was not observed in PU+mHA sca�olds and

could have occurred from an interactions between the nHA and NaCL particles.

6.3.4.2 Mechanical Properties

Similar to mechanical properties of the non-homogenized LbL composites, H-PU+nHA,

had the highest mechanical properties within the homogenized sca�old group. However,

its Young’s Modulus and yield strength was not significantly di�erent that of H-PU+nHA.

It was expected that combining nano and micro HA particles would improve the

mechanical properties of the H-PU+cHA sca�olds by capitalizing on the particles close

packed structures. However, as shown in Figures 6.27a & 6.27b, the mechanical properties

of these H-PU+cHA sca�olds were significantly lower than those of H-PU+mHA and

H-PU+nHA. It may be possible that this was caused by a mechanical mismatch between

the mineral/polymer phase of the sca�old.

The mechanical properties of the sca�olds in the homogenized group

were very similar to those in the traditional non-homogenized LbL-PL
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Figure 6.26: SEM images of 15 wt% Z3A1 Homogenized PL Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & Cross-section=2 mm
Histogram distributions of pore sizes (n=40)

group (Figures 6.28a & 6.28b). Interestingly, the Young’s Modulus and yield

strength of both H-PU+mHA (0.50 & 0.017 MPa) and H-PU+nHA (0.62 & 0.023 MPa)

were lower than their non-homogenized LbL-PU+mHA (0.63 & 0.031 MPa) and

LbL-PU+nHA (0.67 & 0.040 MPa) counterparts. The hypothesis of improving the

mechanical properties of LbL-PL sca�olds by introducing HA particles at very high

speeds with a homogenizer was therefore rejected. Although these sca�olds were seeded

with cells for biological characterization (data shown with PM-PL alamar blue studies),

they were no longer pursued in the quest to develop an in vitro 3D bone model.

6.3.5 Physically Mixed Sca�olds

The LbL-PL technique required an average of 50 mins to cast one glass disk of sca�old.

Although this is an e�ective fabrication method for making thicker and highly porous 3D

sca�olds, the length of time it took to reproduce a large number of glass disks was too

long for high throughput manufacturing.

A more e�cient mass production method for creating reproducible PL sca�olds in a
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(a) (b)

Figure 6.27: Mechanical Properties of Homogenized PL Sca�olds A: Young’s Modulus of

Homogenized Sca�olds B: Yield Strength of Homogenized Sca�olds

shorter period of time was therefore needed. A novel physical mixing (PM-PL) protocol

was therefore developed to address this limitation. The modified technique required as

little as 5 mins to e�ciently create a PM-PL sca�old, which was a tenth of the time it

took to create a LbL-PL sca�old.

The aim of developing these sca�olds was to decrease the fabrication time and

maintain or improve the physical, mechanical and biological properties of the LbL-PL

sca�olds.

6.3.5.1 SEM of PM-PL Sca�olds

As shown in Figure 6.29a, physically mixed PU sca�olds had the largest pore sizes within

the PM-PL group, similar to that observed in the LbL-PL group. With an average pore

size of 212 µm, these sca�olds showed a good pore interconnection within the entire

sca�old and along the sca�olds cross-section.

PM-PU+mHA sca�olds followed with an average pore size of 171 µm. This was

slightly lower than the average pore size of 187 µm for LbL-PU+mHA and the 200 µm

of H-PU+mHA sca�olds. A physical examination of these sca�olds prior to SEM also

revealed a thick non-porous section at the top of the mould (that is the bottom of the

sca�olds). It may be possible that this was caused by insu�cient NaCl particles, or that
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(a) (b)

Figure 6.28: Mechanical Properties of Homogenized PL Sca�olds A: Example

stress/strain curves of Homogenized PL Sca�olds, B: Comparing Example Stress/Strain

Curves of Homogenized and Non-Homogenized LbL-PL Sca�olds

the NaCl particles sank to the bottom of the glass mould, leaving the top of the mould

non-porous. These non-porous regions were cut from the sca�olds before mechanical

characterization to allow a suitable comparison with the other PL composites.

PM-PU+nHA sca�olds contained the fewest pores and the smallest pore sizes. With

an average pore size of 98 µm, PM-PU+nHA had the lowest average pore size within the

entire foam sca�old group. However, combined HA composites containing both micro

and nano-HA particles had an average pore size of 197 µm. This was interestingly larger

than the average pore size of both PM-PU+mHA and PM-PU+nHA composites. It was

also larger than the 141 µm average pore size of H-PU+cHA sca�olds.

6.3.5.2 Mechanical Properties

The mechanical properties of fabricated PM-PL sca�olds were assessed using the same

compression testing parameters used for LbL-PL and H-PL sca�olds. As shown in

Figure 6.30a, the PM-PL sca�olds had a very interesting mechanical profile that

contrasted with previous fabricated sca�olds. PM-PU had the highest mechanical

properties in the PM group. Moreover, the inclusion of neither nano, micro nor combined

micro and nano-HA particles improved the mechanical properties of the PM-PU sca�olds.
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(a) PM-PU Sca�olds

(b) PM-Composite Sca�olds

Figure 6.29: SEM images of 15 wt% Z3A1 Physically Mixed Sca�olds

Scale Bar of SEM images=200 µm, 500 µm & Cross-section=2 mm
Histogram distributions of pore sizes (n=40)

It was the first and only fabrication technique to display this contrasting pattern.

As shown in Figure 6.30b, the mechanical properties of these PM-PL sca�olds were

compared to those in the LbL-PL group discussed in Section 6.3.3.3 on page 211. The

Young’s modulus and yield strength of PM-PU which were 0.54 & 0.041 MPa, respectively,

was surprisingly similar to those of LbL-PU+nHA sca�olds at 0.67 & 0.040 MPa. They

were however, much stronger than their LbL-PU counterparts which recorded only

0.32 & 0.015 MPa, for Young’s modulus and yield strength, respectively.

PM-PU+nHA sca�olds had the highest Young’s Modulus within the composite group,
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(a) (b)

Figure 6.30: Mechanical Properties of Physically Mixed Sca�olds, A: Example

stress/strain curves of PM-PL Sca�olds, B: Example stress/strain curves comparing PM

and LbL-PL Sca�olds

but their yield strength was the same as that of the PU+cHA. Although no significant

di�erences were recorded amongst the yield strength of PM-PL sca�olds, only physically

mixed PU+mHA and PU+cHA had no significant di�erence in their Young’s modulus,

as shown in Figure 6.31a, the Young’s modulus of all other PM-PL sca�olds showed

significant di�erences.

While using the physically mixed technique to create PL sca�olds shortened

fabrication time by about 90%, the mechanical properties of its PU sca�olds did not

improve after reinforcement with HA particles. It is possible that this resulted from the

fast rates at which NaCl particles were combined with the composite solutions. This

probably made it easier for the HA particles to leach out from the sca�olds during the

salt leaching process.

As shown in Figure 6.32a, SEM images of PM-PU+mHA and PM-PU+nHA prior

to autoclaving showed several unbounded HA particles that easily cleaved o� from the

sca�olds when agitated. Once autoclaved, these sca�olds had less visible HA particles on

the sca�old and left a cloudy gelatin solution shown in Figure 6.32c. It is possible that the

originally transparent and clear gelatin solution became cloudy during the autoclaving

process, due to the agitation of liquid particles at the elevated temperature. This could
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(a) (b)

Figure 6.31: Mechanical Properties of Physically Mixed Sca�olds, A: Young’s Modulus

of PM-PL Sca�olds, B: Yield Strength of PM-PL Sca�olds

(a) PM-PU+mHA at 20 µm (b) PM-PU+mHA at 100 µm (c)

Figure 6.32: Unbounded HA particles easily cleaves from Composite Sca�olds A & B:SEM

Images of PM Sca�olds Before Autoclaving, C:Autoclaved Gelatin Solution contaminated

with HA particles

have caused the unbounded HA particles to cleave from the sca�old and remain in the

gelatin solution, leading to the reduced mechanical properties of the composites.

Based on the fact that PM-PU sca�olds were from the same PU solution used in

fabricating LbL-PU sca�olds, but had impressively higher mechanical properties than

the LbL-PU sca�olds (Figure 6.33), its may be possible to further optimise the PM-PL

technique to improve the mechanical properties of PM-composites, as long as the HA

particles can be trapped in the polymeric matrix.
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Figure 6.33: Example stress/strain curves of all PL Sca�olds Fabricated in this Project

6.3.5.3 Alamar Blue Cell Viability

As part of attempts to develop an in vitro 3D bone model for implant testing, alamar blue

cell viability was carried out for a 56 day period to access the models ability to withstand

long term cell-culture under static conditions. As shown in Figure 6.34a, MLO-A5 cells

on all sca�olds grew rapidly from D1 to D7, with D7 recording the highest cell viability

throughout the entire 56-day period.

Similar to the mechanical analysis of PM-PL sca�olds, PU-only sca�olds had the

highest cell viability for all time-points. This was significantly higher than the viability of

composite sca�olds with micro, nano and combined HA particles. Among the composite

sca�olds, PU-mHA sca�olds had the highest viability for all time points. Cell viability on

these sca�olds decreased dramatically between D7 and D14, recording its lowest reading

on D14. This reduction in alamar blue was also observed on the other sca�olds, although

the e�ect was more pronounced in composite sca�olds. It may be possible that this was

caused from an extensive reduction of alamar blue by metabolically active cells leading to

a final non-fluorescent product, and hence an underestimation of cellular activity (O’Brien

et al., 2000b).

Resasurin fluoresence however increased gradually after D14 in all sca�olds until D28.

Once again, the viability of cells after D28 reduced slightly in plain PU sca�olds but
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(a) All PM-PL Sca�olds (b) PM-PL and H-PL PU Sca�olds

Figure 6.34: Alamar Blue Cell Viability of MLO-A5 Cells on PL Sca�olds

sharply in mHA and cHA composites. Viability however increased gradually after D42

until the end of the study. Plain PU sca�olds had the highest cell viability on D56. This

was followed by PU+mHA, PU+cHA and PU+nHA. It may be possible to attribute

this interesting variation in cell viability observed in physically mixed sca�olds to the

di�erences in pore sizes observed in the sca�olds via SEM. As plain PU had the largest

average pore size of 212 µm. This was followed by PU+mHA and PU+nHA at 171 and

98 µm, respectively.

Although homogenized sca�olds were not intended to be used for biological

characterisation, a comparison of the alamar blue cell viability assay of MLO-A5 cells

on H-PU+cHA and PM-PU+cHA sca�olds showed a similar pattern. As shown in

Figure 6.34b, the viability of MLO-A5 cells on both sca�olds increased between D1 and

D7 before reducing on D14. Although both sca�olds were made from solutions with

the same composition, homogenized sca�olds showed very little variation the viability of

MLO-A5 cells compared to their physically mixed counterparts. This could have been

due to an alteration in the amount of HA particles that remained in the sca�olds after

autoclaving, as PM-PL sca�olds seemed to have cleaved o� easily after autoclaving.
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6.3.5.4 DAPI & Phalloidin Staining

In addition to alamar blue cell viability data, DAPI (nucleus) and Phalloidin (actin

cytoskeleton) staining over a 14 day period was also used to compare the cellular

behaviour of MLO-A5 cells, including cell orientation, proliferation, and extracellular

matrix (ECM) production on the fabricated PM sca�olds. Cell behaviour has been

reported to be directly influenced by sca�old architecture since ECM production

provide cues that influence specific integrin–ligand interactions between cells and the

surrounding (Murphy et al., 2010).

Table 6.11 on page 247 shows a compilation of representative micrographs of nuclei

and cytoskeleton visualisations over the 14 day period. These representative images were

generated by merging images from the DAPI(blue) and Phalloidin-TRITC(red) channels.

Images taken on D1 showed a few cells on plain PU and composite sca�olds as well as

an auto-fluorescence HA background in the PU+cHA sca�old. Images from D4 staining,

was similar to D1, an enhanced spindle-shaped morphology of the attached cells.

There was however a remarkable di�erence in cell proliferation between the images

taken on D4 and D7. MLO-A5 cells were well spread and interconnected around the

macro and micro-pores of plain-PU sca�olds. PU+mHA sca�olds showed the highest

confluency of cells within the PM-PL group on D7, whilst PU+cHA sca�olds showed the

least cells for the fields of view imaged. Cells on PU+nHA sca�olds had an elongated

morphology, and their nuclei also appeared to be stretched.

By D14, the cells on all sca�olds appeared to be overly confluent and less spread

out especially on the PU+mHA sca�old, and interestingly on the PU+cHA sca�old.

PU and PU+nHA sca�olds also had improved cell and ECM coverage, and showed the

location and position of MLO-A5 cells around the large pores. These highly porous

and interconnected sca�olds facilitated cell migration within their porous structure and

enabled cell growth whilst minimizing overcrowding. This observation of MLO-A5 cells

on PU-only and PU-HA composite PL sca�olds is in line with published studies of PL

PU-only (Loh and Choong, 2013; Rottmar et al., 2016) and electrospun PU-HA (Tetteh

et al., 2014) sca�olds showing good cyto-compatibility.
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6.3.5.5 Sirius Red & Alizarin Red

Figure 6.35: D14 Images of Sirius Red and Alizarin Red staining of MLO-A5 Cells on

PM-PL Sca�olds

Sirius red and Alizarin red staining discussed extensively in the previous chapters

were also used on PM-PL foams to examine their ability to support extracellular matrix

production and calcified matrix deposition. PU and PU+mHA sca�olds seeded with

MLO-A5 cells were stained on D14, 28, 42 and 56.

As shown in the qualitative images in Figures 6.35-6.38, collagenous matrix deposition

increased over the 56 day period in both sca�old types, however, this increasing e�ect

was more pronounce in PU-only sca�olds as compared to their PU+mHA counterparts.

A similar pattern was also observed with Alizarin red staining although the e�ect of the

HA in the blank sca�olds was rather pronounced. Figure 6.39 on page 241, highlights the

e�ect of HA contained in blank negative control samples on the total amount of mineral

expressed by the cells on the seeded sca�olds.
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Figure 6.36: D28 Images of Sirius Red and Alizarin Red staining of MLO-A5 Cells on

PM-PL Sca�olds

6.3.5.6 MTT of Titanium Implants in Cultured Sca�olds

In order to assess the suitability of developed constructs to act as an in vitro bone model

for small orthopaedic implants, 2 types of small titanium screws were investigated. These

osteopenia and cortex titanium screws were cut and prepared for cell culture as described

in Sections 3.4.4 & 3.7.3.4 on page 83 & 97, respectively.

The screws were inserted into the inner cylindrical rings of PU-only and PU+mHA

sca�olds. These sca�olds were selected based on their alamar blue cell viability data.

Layer-by-layer and physically mixed PU-only and PU+mHA sca�olds were also compared

as part of this study. Furthermore, two main approaches were explored for press-fitting

the titanium screws into the sca�olds. One approach inserted the screws into sca�olds

that had already been in culture with MLO-A5 cells for 28 days, this was referred to as

group 1. The other approach inserted the screws during cell seeding, and was referred to

as group 2. The implanted constructs were subsequently cultured under static conditions

for 28 days. After the 28 day culture period, the sca�olds were examined with MTT
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Figure 6.37: D42 Images of Sirius Red and Alizarin Red staining of MLO-A5 Cells on

PM-PL Sca�olds

Figure 6.38: D56 Images of Sirius Red and Alizarin Red staining of MLO-A5 Cells on

PM-PL Sca�olds
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(a) with negative control (b) without negative control

Figure 6.39: Quantitative Analysis of Alizarin Red Destaining of MLO-A5 Cells on

PM-PL Sca�olds

assay before the titanium screws were explanted.

MTT made it possible to visualise and locate cells in the sca�olds and also on the

implants. This created an opportunity to identify the best seeding approach for the

in vitro 3D model. As shown in Figure 6.40, LbL and PM-PU sca�olds in group 1, had

a denser MTT shade than those in group 2. This can be attributed to the fact that the

sca�olds in group 1 were e�ectively cultured for 28 days longer than those in group 2.

However, there were no other visible di�erences between the LbL and PM-PL sca�olds

of group 1 and 2. One of the future work tasks, which is quite challenging, is to identify

the best way to monitor cell growth in the constructs over time.

After 28 days of culture, its was expected that the cells would have migrated onto the

implants and secreted enough matrix to attach the screws to the sca�olds but this was not

observed. A closer inspection of the extracted titanium screws as shown in Figure 6.41a

showed only a small MTT stain on one of the screws. This screw (Figure 6.41b) was

extracted from a PM-PL PU sca�old in group 2. Although this requires further testing,

it appears inserting the screws during cell seeding (group 2) is a better than inserting

them after D28 (group 1).

As part of this study, implants grown for 28 days in the PL constructs remained

sterile. Moreover, viable and live cells could be detected in these constructs however
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Figure 6.40: MTT of Group 1 & 2 LbL & PM-PL sca�olds implanted with Cortex and

Osteopenia titanium Screws

(a)

(b) Cortex and Osteopenia Screws in use

Figure 6.41: Titanium Implants Extracted from the in vitro Model A: All Extracted

Cortex Screws, C: An Extracted Cortex Screw showing MTT stain
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more work needs to be undertaken to be able to optimise the model. It may also be

possible to achieve a higher level of integration between the sca�old and the implant

with a longer culturing period. Such long-term experiments could combine dynamic

cell seeding and continuous monitoring of the cell seeded sca�olds and implants in a

perfusion bioreactor. This can facilitate e�cient mass transfer between the sca�olds

and the implants, and provide an opportunity to use biomechanical stimulations to

stimulate extracellular matrix production, and seed cells at a higher density, uniformly

and e�ciently throughout the large PU sca�old (Hofmann et al., 2007; Vetsch et al.,

2015).

Attaining a higher level of integration could provide an opportunity to investigate the

engineered bone-implant interface and further enhance the usefulness of the model. This

would allow the model to be used for push out and pull out tests akin to those carried

out on explanted in vivo samples as described by An and Draughn (2000).

6.4 Chapter Summary & Key Points

6.4.1 Freeze Dried Sca�olds

• Sca�olds fabricated using the freeze dried technique had very large and irregularly

shaped pore structures which lacked interconnection. These sca�olds could not be

used for cell culture.

• Mechanical analysis of the freeze dried sca�olds showed a clear distinction between

the mechanical properties of Z9A1 and Z3A1 polymers.

6.4.2 Solvent Casting & Freeze Extracted Sca�olds

• Solvent casting PU sca�olds created at +20

o

C dried into irregular shapes, appeared

non-porous and felt very sti� to handle.
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• Z1A1 sca�olds extracted at -20

o

C and -80

o

C had almost no pore structures, whilst

Z3A1 and Z9A1 sca�olds contained large and irregular pores and had deep tunnels.

• Sca�olds extracted at -196

o

C had a very uneven morphology due to the fast

quenching e�ect of the liquid nitrogen.

6.4.3 Layer-by-Layer PL Sca�olds

• The layer-by-layer technique was developed to address the limitations encountered

with fabricating PL foams with sugar.

• The LbL-PL technique was first used in creating PU-only sca�olds from

10 wt% Z1A1 solution, 15 wt% Z3A1 solutions and 20 wt% Z9A1 solutions made

with 100% DMF solvent. Sca�olds made from all three types of PU in the

ZnA1 series had a highly porous 3D structure and were significantly thicker than

electrospun sca�olds.

• Only PL sca�olds made from Z3A1 and 70/30 DMF/THF solvent were used for

biological characterization. 2:1, PU:HA sca�olds were also created to access the

e�ect of incorporating higher HA quantities in fabricated sca�olds

• µ-CT imaging of plain polyurethane sca�olds showed a more porous morphology

compared to composite sca�olds containing micro and nano-sized HA particles.

With a porosity of 89.4%, PU sca�olds were about 6% more porous than both 3:1

and 2:1 PU+mHA sca�olds, but only 3% more porous than 3:1 PU+nHA.

• 3:1 nHA composites had the highest Young’s Modulus and yield strength in the

LbL-PL group. The Young’s Modulus of plain-PU sca�olds was significantly lower

than that of 3:1 PU+mHA and 3:1 PU+nHA composites.

• Although 2:1 PU+mHA sca�olds contained a higher HA content, there was only a

small di�erence between the Young’s Modulus and yield strength values of 3:1 and

2:1 mHA composites.
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• An inspection of the superficial regions of explanted subcutaneous sca�olds showed

an ingrowth of small blood vessels, filled with erythrocytes. The number of

fibroblasts found in composites were twice the amount in PU sca�olds.

• The intermediate zone of explanted subcutaneous sca�olds were filled with

neutrophils, lymphocytes and erythrocytes. All the pores in the PU-HA sca�olds

appeared to be filled with fibrous connective tissue compared to PU-only sca�olds,

which were only partially filled.

• For subcutaneous implantation, nano-sized HA particles stimulates more

fibroblastic activity and tissue ingrowth than mHA particles.

• For cortical defect studies, nano-HA particles stimulated more osteoblastic activity

and accelerated early bone formation in the nHA composites by D7, however new

bone tissue was seen in all the pores of PU+mHA and PU+nHA by D45, although

PU sca�olds stilled had remnants of fibrous tissue.

6.4.4 Homogenized PL Sca�olds

• With an average pore size of 200 µm, H-PU+mHA had the largest average pore size

in the H-PL group, compared to H-PU+nHA sca�olds at 138 µm and H-PU+cHA

at 141 µm.

• H-PU+nHA, had the highest mechanical properties within the homogenized

sca�old group. The Young’s Modulus and yield strength of both

H-PU+mHA (0.50 & 0.017 MPa) and H-PU+nHA (0.62 & 0.023 MPa) were

lower than their non-homogenized LbL-PU+mHA (0.63 & 0.031 MPa) and

LbL-PU+nHA (0.67 & 0.040 MPa) counterparts.
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6.4.5 Physical Mixed PL Sca�olds

• A novel physical mixing (PM-PL) protocol was used to mass produce reproducible

PL sca�olds in a shorter period of time, as the PM-PL technique shortened

fabrication time by about 90%. PM-PU sca�olds had the largest pore sizes within

the group, whilst PU+nHA sca�olds the fewest pores and the smallest pore sizes.

• PM-PL sca�olds had a very contrasting mechanical profile to previous fabricated

sca�olds. PM-PU had the highest mechanical properties in the PM group and

the inclusion of neither nano, micro nor combined micro and nano-HA particles

enhanced the mechanical properties of the PM-PU sca�olds.

• Young’s modulus and yield strength of PM-PU was surprisingly similar to those of

LbL-PU+nHA sca�olds.

• PM-PU-only sca�olds had the highest cell viability for all time-points. This was

significantly higher than the viability of composite sca�olds with micro, nano and

combined HA particles.

• Collagenous matrix deposition increased over the 56 day period in both sca�old

types, however, it was more pronounce in PU-only sca�olds as compared to their

PU+mHA counterparts.

• Inserting the titanium screws during cell seeding is a better method to inserting

them after a D28 culture period.
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Table 6.11: Dapi and Philloidin Staining of the Nucleus and Cytoskeleton of MLO-A5

Cells on PM-PL Sca�olds

PU PU-mHA PU+nHA PU+cHA

D1

D4

D7

D14
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7 | CONCLUSIONS & FUTURE

WORK

This final chapter of the thesis summarises the key findings of this project, and discusses

possible follow up experiments that evolved from this project but could not be undertaken

due to time constraints and circumstances beyond our control. These experiments can

serve as PhD topics and final year undergraduate and MSc student projects.

7.1 Non-Aligned Fibrous Sca�olds

The results from electrospun non-aligned PU-only sca�olds showed that the choice of

solvents, on their own or in combination, strongly influences the final properties of

solution, hence fibre morphology during the electrospinning process. Two types of

thermoplastic polyurethane Z9A1 and Z3A1 were electrospun from solutions made with

varying combinations of DMF and THF solvents. For both types of PU reducing the

amount of DMF contained in the solution, increased fibre diameter, resulting in fibres

with a more uniform morphology, and also eliminated beads which were found in the

sca�olds fabricated from 100% DMF solvent.

In addition, reducing the DMF solvent content led to lower tensile properties of

electrospun sca�olds, whilst incorporation of nano and micro HA particles in both Z9-PU

and Z3-PU solutions reinforced the mechanical properties of electrospun composites.

Young’s Modulus and yield strength values of composites were higher than that of PU

sca�olds; these di�erences were significantly higher with mHA composites compared to

nHA composites. nHA composites however exhibited smoother fibres, less variability in
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fibre size and better dispersion of the HA. Furthermore, FTIR spectral data confirmed

the presence of HA particulates in fabricated composites.

Finally, MLO-A5 cell viability was highest for sca�olds fabricated with 70/30

DMF/THF solvent across most time points for both types of PU, whilst cell viabilities for

MLO-A5 cells, were highest on both Z9-nHA and Z3-nHA sca�olds. Z3-nHA sca�olds

also had the highest viability with hES-MP cells and produced the highest deposition

of collagen across all time points. Calcium deposition was supported in all sca�olds.

Therefore, a range of sca�olds which have the potential to support bone matrix formation

for bone tissue engineering have been developed. These sca�olds provide a variety of

material properties which can be tailored depending on the stage of cell di�erentiation

and final application.

7.1.1 Future Work on the Non-Aligned Sca�olds

Although this electrospinning protocol has been optimised for fabricating non-aligned PU

sca�olds for bone tissue engineering applications, it has subsequently been adopted by

another biomaterial research group for the development of pelvic floor constructs (Hillary

et al., 2015, 2016; Roman et al., 2016). The excellent tunable mechanical and

biological properties of polyurethane, make it an ideal sca�old choice for numerous tissue

engineering applications. It may therefore be possible to examine if other cell types

can be cultured on these PU sca�olds. Although only bone cells were explored in this

study, it may be interesting to investigate how these sca�olds could support stem cells

to di�erentiate into other pathways. This could allow the sca�olds to be used in creating

tissue engineered constructs for skin, muscle, cartilage and nerve reconstructions.

It may also be possible to improve cellular penetration by creating sca�olds with

an increased porosity, more uniform fibre diameters and an even fibre morphology.

Hexamethyldisilazane (HMDS) is a popular solvent for electrospinning due to its high

electrical conductivity. Using HMDS to dissolve PU could be explored for creating

such sca�olds. HMDS has been used extensively in the literature for creating uniform

electrospun sca�olds from polymers such as PCL, Gelatin, PLGA, cellulose, chitosan,
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amongst others, and could uncover interesting sca�old features for polyurethane (Jia

et al., 2013; Adam et al., 2014). A project to explore the ability of using HMDS and PU

from the ZnA1 series, could also investigate whether modifying electrospinning conditions

such as the tip to collector distance, flow rate, speed of rotating drum and polymer

concentration could create sca�olds with exceptional physical and biological properties.

Aside from attempts to increase the amount of HA in composite PU-HA sca�olds, it

may also be beneficial to explore the e�ect of using substituted HA in these sca�olds.

Although the HA used in this study had a similar crystallographic structure to bone, it

lacks the various cationic and anionic substitutions found in human bone. It will therefore

be interesting to investigate the ability of various substituted HA particles in fabricated

sca�olds to support a higher deposition of calcified matrix. Substituting ions such as

potassium, sodium, strontium, magnesium, zinc, fluorine, chlorine or silicon into the

HA lattice has been reported to promote cell proliferation, improve bioactivity and bone

function, stimulate bone cell activity and collagen synthesis, and also enhance osteoblastic

di�erentiation (Hing et al., 2006; Best et al., 2008).

7.2 Aligned Fibre Sca�olds

The aligned electrospun sca�olds created as part of this project had an interesting fibre

morphology. Fibres of Z3-PU assembled very closely together to form thick aligned

bundles, which were large enough to be seen with the naked eye. Including HA particles

in PU solutions had an e�ect on electrospun fibre morphology. Although mHA particles

distorted fibre alignment and increased fibre diameters, nHA composites had a more

uniform fibre morphology, and showed good porosity and an interconnected porous

network.

Raman spectroscopy confirmed the presence of HA in both micro and

nano-composites, whilst FTIR spectroscopy compared aligned and non-aligned

electrospun sca�olds, and identified vibrations in the ‹3 phosphate peak as the main

distinction between these sca�olds.
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Similar to non-aligned sca�olds, the inclusion of both types of HA particles reinforced

the mechanical properties of Z3-PU, when tested in both transverse and parallel

orientations. Z3-mHA sca�olds had the highest mechanical properties in the transverse

orientation, whilst Z3-nHA had the highest mechanical properties in the parallel

orientation. Although the Young’s Modulus of Z3-PU in the parallel orientation was

about 7 times that of its transverse testing result, it had the weakest mechanical

behaviour.

Cell viability of both MLO-A5 and hES-MP cells were generally higher on aligned

sca�olds than on sca�olds in the non-aligned group. However, compared to non-aligned

fibre Z3-nHA, Z3-PU had the highest viability across all time points within the aligned

group for both MLO-A5 and hES-MP cells. Histological images of the sca�olds also

highlighted an increased cellular penetration and extracellular matrix production on

PU-only sca�olds with aligned fibres.

Xylenol orange staining showed that Z3-mHA sca�olds supported a higher percentage

of mineral area coverage compared to Z3-PU, as mineralized nodules in Z3-mHA

penetrated almost the entire length of the sca�old compared to Z3-PU, which only had a

partial deposition and about 50% depth converge. Moreover, SEM images of cells on the

sca�olds also showed a higher amount of calcified matrix production on Z3-mHA than

on Z3-PU.

Finally, SHG imaging identified that collagen deposition was originally guided by the

alignment of the sca�old fibres but changed orientation with an increase in the depth

of extracellular matrix deposition. There were higher amounts of collagen deposition

on the Z3-PU sca�olds, however, composite sca�olds showed higher collagen intensities

compared to PU-only sca�olds, with D21 collagen deposition on Z3-nHA sca�olds being

the brightest and most intense across the entire period.

7.2.1 Future Work on the Aligned Sca�olds

These aligned sca�olds were created by increasing the rotational speed of the cylindrical

drum. However, other methods that combine using an auxiliary electrode and an electrical
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field (Bornat, 1987), using a thin wheel with sharp edge (Theron et al., 2001), placing

a rectangular frame structure under the spinning jet (Huang et al., 2003), have also

been used to create aligned fibres. It may therefore be good to consider creating aligned

PU-based sca�olds with some of these methods and compare the physical and mechanical

properties of such sca�olds with those created as part of this project. Also, the fibre-like

structure of carbon nanotubes make them particularly attractive for use as reinforcement

in aligned electrospun composites (Han et al., 2009; Meng et al., 2010; Sirivisoot and

Harrison, 2011; Mi et al., 2015). The nanosized nature of these particles allow their

composite sca�olds to posses exceptional mechanical properties. It would therefore be

interesting to explore if replacing HA with carbon nanotubes would lead to sca�olds with

a more aligned fibre morphology and improved mechanical properties. However, it may

still be interesting to increase the amount of HA in composite sca�olds or attempt to

introduce the bundling e�ect seen in PU-only sca�olds into the HA composites. This

would allow an opportunity to explore if a higher amount of HA could compete with the

bundling e�ect of the PU sca�olds in cell viability data, and also identify which of the

two is a better method for increasing cell viability, bundling e�ect or HA particles.

Moreover, SEM images of MLO-A5 cells on the aligned sca�olds showed that the cells

were overly confluent and had secreted copious amounts of extracellular matrix. However,

since hES-MPs as well as non-aligned sca�olds were not also analysed in this way, it would

be interesting to know if these cells/sca�olds would show a similar pattern. This would

also serve as an opportunity to further compare the two cell types/sca�olds. Also, since

SEM images of MLO-A5 cells showed a higher amount of calcified matrix production in

Z3-mHA than on Z3-PU, it would be good to further undertake TEM analysis of these

cells on the sca�olds to investigate the nature of the mineral deposits. This would present

an opportunity to attain a better understanding of the mechanisms of cell attachment

and the influence of fibre morphology in guiding matrix deposition. It could also be used

to investigate and understand how errors in collagen deposition could lead to diseases

such as osteogenesis imperfecta.

Similarly, its would be good to also use hES-MPs and non-aligned sca�olds for SHG
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experiments similar to those undertaken as part of this project. This would strengthen

the conclusions of the experiments, and a�ord an opportunity to further confirm if the

interesting changes in orientation observed were influenced by cell type or resulted from

specific sca�old morphology. Furthermore, its would be better to counter stain the

SHG sca�olds with DAPI to identify where the cells are located. This would allow

an opportunity to also investigate if the change in collagen alignment was caused by

more cells proliferating at the top of the sca�old. This may have caused the changes in

direction as new matrix deposited and aligned itself in respect to the preceding matrix.

Moreover, it would also be interesting to explore how these experiments could be used to

test the drivers of collagen orientation such as disrupting actin, blocking collagen from

cross-linking amongst others (Gerecht et al., 2007; Murshid et al., 2007; Clarke, 2008).

7.3 Foam Sca�olds

Although freeze drying was the initial fabrication technique to be explored for this project,

the very large and irregularly shaped nature of its pore structures made it impossible for

these sca�olds to be biologically characterized. However, mechanical analysis of these

sca�olds showed a clear distinction between the mechanical properties of Z9A1 and Z3A1

polymers.

The layer-by-layer technique developed as part of this study addressed initial

challenges encountered with fabricating PU foams with sugar particles. LbL-PL sca�olds

made from all three types of PU in the ZnA1 series had a highly porous 3D structure and

were significantly thicker than the electrospun sca�olds. As observed with non-aligned

and aligned electrospun sca�olds, including HA particles in composite sca�olds reinforced

the mechanical properties of LbL-PL sca�olds. 3:1 nHA composites had the highest

Young’s Modulus and yield strength in this group. Young’s Modulus of LbL-PU at

0.32 MPa was significantly lower than the 0.63 and 0.67 MPa of 3:1 PU+mHA and 3:1

PU+nHA composites, respectively. However, there was no significant di�erence between

the mechanical properties of 3:1 mHA composites and 2:1 mHA composites that had a
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higher amount of mHA particles.

µ-CT imaging of these LbL-PL sca�olds also confirmed that with a porosity of

89.4%, plain-PU sca�olds were about 6% more porous than both 3:1 and 2:1 PU+mHA

sca�olds, but only 3% more porous than 3:1 PU+nHA sca�olds. This high porosity in

plain-PU sca�olds enhanced in vitro cell viability, as LbL-PL nHA composites did not

show an improved alamar blue cell viability over their PU-only counterparts. However, a

subcutaneous in vivo implantation showed that nano-sized HA particles stimulated more

fibroblastic activity and tissue ingrowth than mHA particles, whilst a cortical defect

in vivo characterization confirmed that nano-HA particles stimulated more osteoblastic

activity and accelerated early bone formation in nHA composites by D7.

Compared to the LbL-PL technique, a novel physical mixing fabrication protocol

created as part of this project shortened fabrication time by about 90% and was used to

mass produce reproducible PL sca�olds in a shorter period of time. PM-PU sca�olds had

the largest pore sizes within the group, whilst PU+nHA sca�olds the fewest pores and the

smallest pore sizes. Interestingly, these PM-PL sca�olds had a contrasting mechanical

profile to previous fabricated sca�olds. PM-PU had the highest mechanical properties

in this group and the inclusion of neither nano, micro nor combined micro and nano-HA

particles enhanced their mechanical properties. The Young’s modulus and yield strength

of PM-PU around 0.55 & 0.041 MPa, respectively, was surprisingly similar to that of

LbL-PU+nHA sca�olds at 0.68 & 0.040 MPa.

Similar to LbL-PL sca�olds, PM-PU-only sca�olds had the highest cell viability for all

time-points. This was significantly higher than the viability of composite sca�olds with

micro, nano and combined HA particles. Collagenous matrix deposition increased over

the 56 day period in all sca�old types, however, this increase was more pronounced in

PU-only sca�olds compared to their PU+mHA counterparts. Finally, mimicking push-out

and pull-out tests by inserting test titanium screws into the cylindrical centres of LbL-PL

and PM-PL sca�olds, showed that inserting the screws during cell seeding is a better

method than inserting them after a D28 culture period.

PU-based sca�olds that serve as a novel biomimetic in vitro 3D bone model for
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testing of small orthopaedic implants have been developed. In addition to providing

an alternative approach to the use of animals for scientific experiments, the developed

model could a�ord orthopaedic and dental implant manufacturers an opportunity to test

their conceptual designs at a reduced cost and provide data that can only be currently

obtained from expensive in vivo experiments. Furthermore, data from such bone-like

matrix experiments can also be used to validate other bone forming tissue engineered

products. The developed construct could provide academic research laboratories and

industrial bioengineering firms a cost e�ective approach for testing new designs and

translational products. This would go a long way to developing cheaper and faster

regenerative solutions that address current clinical and healthcare challenges, and

ultimately contribute to delivering a better quality of life to su�ering patients.

7.3.1 Future Work on the Foam Sca�olds

Unfortunately, the bioactivity of all fabricated sca�olds was not analyzed in vitro. The

ability of biomaterials to develop an HA surface in Stimulated Body Fluid (SBF) is an

indicative of its chemical reactivity. This also correlates with the materials ability to bond

to bone in vitro. Although such bonding was observed in the in vivo studies carried out

as part of this project, it would be instructive to undertake in vitro bioactivity studies

to further characterize the sca�olds. This can be done by immersing the material in

the physiologically similar solution (SBF) and analysing the material surface and the

composition of the surrounding solution, for a precipitation of amorphous Ca/Ph ions or

an increase in the deposition of Ca/Ph ions in solution.

Incorporating biomolecules in the foam sca�olds may improve the biological

performance of these sca�olds, and enhance the deposition of a higher amount of calcified

matrix. This could improve the current tissue engineered construct and further promote

its use as a 3D alternative for in vitro testing of small orthopaedic implants. Exploring

ways to incorporate and deliver biomolecules such as Transforming growth factor-Beta,

bone morphogenetic proteins, fibroblast growth factor,vascular endothelial growth factor

and insulin-like growth factors have been reported to be integral to in the regulation
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of new bone formation, bone tissue regeneration and extracellular matrix formation, by

recruiting and di�erentiating osteoprogenitor cells into osteoblasts.

Also, bone is a dynamic tissue and hence constantly remodelling with the combined

action of bone forming osteoblasts and bone resorbing osteoclasts. Although osteoblasts

produce disorganized or woven bone matrix composed predominately of type-1 collagen

which mineralises with HA crystals to form bone, it is the action of the osteoclasts that

resorb woven bone during bone remodelling, and ine�ciencies in the process could lead

to irregular bone formation. Therefore an important and challenging step will be to

incorporate osteoclasts into the tissue engineered bone. It would also be interesting to

explore how the current model could be optimized for studying bone pathologies and

testing new drug therapies, as well as exploring its use as a model for understanding

infection and exploring antibacterial surfaces.

Moreover, the current design could benefit from a much longer period of culture

in a controlled bioreactor environment. This would prevent necrosis and ensure all

the cells receive an adequate supply of nutrients as well as the removal of debris. It

may also provide a dynamic environment that can be used to explore the influence of

mechanical conditioning on the engineered construct (Vetsch et al., 2015). Increasing

evidence suggests that mechanical forces, which are known to be important modulators

of cell physiology, could possibly improve or accelerate the rate of bone tissue formation in

vitro. Exploring mechanical conditioning e�ects in these sca�olds may therefore advance

the current design.

Finally, in order to test the full scale potential of the engineered constructs to act as

a medium for testing small implants, an extensive study to investigate several di�erent

types of implants, di�erent culture periods, di�erent experimental set-ups need to be

undertaken. Such studies could make use of actual push out and pull out tests similar

to those experienced by explanted in vivo samples. These implant push out and pull

out tests are established assessment tools used in investigating the shear strength of a

bone-implant interface. Such tests are commonly applied in testing the e�ect of implant

materials, surface texture, porosity, cross-sectional geometry and surface composition
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resulting from bone ingrowth or bone apposition to the implant surface (An and Draughn,

2000). In a typical test, a load is applied to the implant via a device connected to the

crosshead of the materials testing machine and a force-displacement curve is recorded until

the test is terminated with failure of the bone-implant interface (Berzins and Summer,

2000).
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a b s t r a c t

Polyurethane (PU) is a promising polymer to support bone–matrix producing cells due to its
durability and mechanical resistance. In this study two types of medical grade poly-ether
urethanes Z3A1 and Z9A1 and PU-Hydroxyapatite (PU–HA) composites were investigated
for their ability to act as a scaffold for tissue engineered bone. PU dissolved in varying
concentrations of dimethylformamide (DMF) and tetrahydrofuran (THF) solvents were
electrospun to attain scaffolds with randomly orientated non-woven fibres.

Bioactive polymeric composite scaffolds were created using 15 wt% Z3A1 in a 70/30
DMF/THF PU solution and incorporating micro- or nano-sized HA particles in a ratio of 3:1
respectively, whilst a 25 wt% Z9A1 PU solution was doped in ratio of 5:1. Chemical
properties of the resulting composites were evaluated by FTIR and physical properties by
SEM. Tensile mechanical testing was carried out on all electrospun scaffolds. MLO-A5
osteoblastic mouse cells and human embryonic mesenchymal progenitor cells, hES-MPs
were seeded on the scaffolds to test their biocompatibility and ability to support
mineralised matrix production over a 28 day culture period. Cell viability was assayed by
MTT and calcium and collagen deposition by Sirius red and alizarin red respectively.

SEM images of both electrospun PU scaffolds and PU–HA composite scaffolds showed
differences in fibre morphology with changes in solvent combinations and size of HA particles.
Inclusion of THF eliminated the presence of beads in fibres that were present in scaffolds
fabricated with 100% DMF solvent, and resulted in fibres with a more uniform morphology and
thicker diameters. Mechanical testing demonstrated that the Young's Modulus and yield
strength was lower at higher THF concentrations. Inclusion of both sizes of HA particles in
PU–HA solutions reinforced the scaffolds leading to higher mechanical properties, whilst FTIR
characterisation confirmed the presence of HA in all composite scaffolds.
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Although all scaffolds supported proliferation of both cell types and deposition of calcified
matrix, PU–HA composite fibres containing nano-HA enabled the highest cell viability and
collagen deposition. These scaffolds have the potential to support bone matrix formation for
bone tissue engineering.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Bone tissue engineering aims at improving musculoskeletal
health by providing a living bone graft substitute to fill and
aid in the repair of bone defects caused by trauma, disease, or
congenital malformations or to augment bone stock around
an implant site. While small bone defects heal sponta-
neously, critical size defects do not heal during a lifetime
(Gogolewski and Gorna, 2007). Bone tissue engineering
involves the use of materials to either induce formation of
bone from the surrounding tissue or to act as a carrier or
template for implanted bone cells. Bone regeneration
requires four components: a morphogenetic signal, respon-
sive host cells, a suitable carrier to serve as scaffolding for the
growth of host cells and a viable and well vascularised host
bed (Croteau et al., 1999; Burg et al., 2000). The scaffold
provides a three dimensional porous structure that facilitates
cell attachment, growth and matrix deposition.

Orthopaedic implant materials were initially selected for
structural restoration based on their biomechanical proper-
ties (termed ‘first generation implants’). Later bone implant
materials were engineered to be bioactive or bioresorbable to
enhance tissue growth (‘second generation’), a development
which coincided with the development of tissue engineering
scaffolds as cell supports for multiple tissue types. Currently,
bone implant materials are designed to induce bone forma-
tion (Bose et al., 2012) and many bone graft substitute
materials are also used as experimental scaffolds to support
cells for bone tissue engineering.

An ideal scaffold should possess a suitable surface chem-
istry that supports cell attachment, proliferation, migration
and growth. Additionally, it should serve as a biocompatible
template for osteoprogenitor cell growth and aid in the
differentiation of mesenchymal stem cells into osteoblasts,
as well as supporting the production, organisation and
maintenance of an extracellular matrix (Gogolewski, 2007;
Gorna and Gogolewski, 2003). In addition to being biocompa-
tible, scaffolds are required to be composed of highly inter-
connected macro and micro-porous networks to facilitate cell
migration and nutrient distribution.

Several polymers of both natural and synthetic origin can
be used for bone tissue engineering; however polyurethanes
are of particular interest due to the flexibility associated with
their versatile chemistry (Guelcher, 2008). This makes it
possible to customise scaffolds in order to attain desirable
chemical, physical and mechanical properties such as
durability, elasticity and fatigue resistance, by altering the
choice and quantity of the starting materials (Zdrahala and
Zdrahala, 1999). Biocompatible and biodegradable polyur-
ethanes have been investigated as scaffolds for tissue

engineering applications for almost thirty years (Guelcher
et al., 2004), and also as heart valves, stents, intra-aortic
balloons and pacing lead insulators, amongst others (Grad
et al., 2003).

The microphase separation between the hard and soft
segments enables polyurethane to withstand physical stres-
ses and therefore it possesses desirable mechanical proper-
ties useful for dynamic bone tissue engineering (Wen
et al., 1997). For example, we have demonstrated that cyclic
mechanical conditioning of osteoprogenitor cells in a PU
scaffold upregulates bone formation (Sittichockechaiwut
et al., 2009; Sittichockechaiwut et al., 2010; Delaine-Smith
and Reilly, 2011). PU has several advantages as a scaffold for
cells that will be subjected to mechanical conditioning, as its
high yield strain and fatigue life enable it to undergo repeated
cycles of mechanical strain, without changing its mechanical
properties. Additionally, the use of elastomeric scaffolds as
alternatives to bone grafts, prevents generation of shear
forces at the interface between native bone and the substi-
tute; thus enhancing intimate contact with bone and
enabling the proliferation of osteogenic cells and bone regen-
eration (Gorna and Gogolewski, 2003).

Composite scaffolds range from stable to degradable, and
most of those used in tissue engineering/regenerative med-
icine are biodegradable polymers reinforced with ceramic
particles. Bonfield first proposed the concept of polymer–
ceramic combination materials, mimicking the ductile and
brittle properties of the collagen and mineral components of
bone respectively, in 1988, which was later commercialised
with the trade name, HAPEX™ (Bonfield, 1988a, 1988b).
Mechanically, polymers are noted for their extensive defor-
mation and high toughness whilst ceramics, such as hydro-
xyapatites (HA), are noted for their high compressive strength
but brittle failure. Combining polyurethane with hydroxya-
patite has been shown by a number of researchers to improve
the mechanical properties of the resulting composite, as long
as a strong interfacial bond strength is established between
the ceramic phase and the polymer matrix (Attawia et al.,
1995; Boccaccini and Maquet, 2003; Bonzani et al., 2007;
Martinez-Valencia et al., 2011).

Previous research has been undertaken on the synthesis of
PU with varying additives such as ascorbic acid (Zhang et al.,
2003) HA (Gorna and Gogolewski, 2003), and β-tri-calcium
phosphate (Adhikari et al., 2008; Yoshii et al., 2012). Others
have investigated fabrication techniques for PU scaffolds
including Thermally Induced Phase Separation (TIPS) (Tsui
and Gogolewski, 2009) and Solvent Casting/Particulate Leach-
ing (Gorna and Gogolewski, 2006; Heijkants et al., 2006;
Kucinska-Lipka et al., 2013; Boissard et al., 2009). However,
to date little work has been undertaken on electrospinning of
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polyurethane composites for bone tissue engineering
applications.

Electrospinning is an efficient, simple and relatively easy
polymer fabrication technique that produces nano and micro
diameter polymer fibres, with the advantage that it can be
performed with different polymers in both solution and melt
states. Such thin fibres provide high surface area to volume
ratios, high porosity, flexibility in surface functionalities,
superior mechanical performance and membrane technology
(Demir et al., 2002). In the field of biomaterials and tissue
engineering, electrospinning has been utilised for producing
scaffolds that mimic the morphological characteristics and
biological function of the natural extracellular matrix, by
providing
an optimal template for cell attachment, proliferation and
growth (Carlberg et al., 2009; Huang et al., 2003). Several
different polymers such as polyurethanes, poly(ε -caprolac-
tone), poly(lactic acid), poly(glycolic acid) and their co-
polymers have been successfully spun for musculoskeletal,
nerve, skin, vascular and drug delivery applications (Bashur
et al., 2009; Clarke et al., 2008; Nirmala et al., 2011). Electro-
spinning may be an ideal technique for bone tissue
engineering where repair of a thin defect is required, for
example a cleft palate repair (Bye et al., 2013), or electrospun
sheets may be layered or rolled for larger defects (McMahon
et al., 2011).

Demir et al. (2002) studied the effect of electrical field,
temperature and conductivity on electrospun polyurethane–
urea fibres and reported that the morphology of electrospun
fibres is strongly correlated with viscosity, equivalent con-
centration and temperature. In their study, they reported that
solution temperature, a key parameter that affects fibre
morphology and spinning ability was essential to spin poly-
mer concentrations beyond 12.8 wt%. Khan et al. (2008) and
Mi et al. (2014) electrospun polyurethane composites with
micro and nano sized hydroxyapatite for dental and bone
tissue engineering applications, respectively. In their studies,
Khan et al. developed a novel composite material by chemi-
cally binding the HA particles to the diisocyanate component
of the polyurethane backbone through solvent polymerisa-
tion, whilst Mi et al. studied the effect of polymer properties
and particle size on electrospun PU–HA scaffold and reported
reduced tensile properties with the inclusion of micro HA

(mHA) and nano HA (nHA) particles, although the reduction
was more significant with the inclusion of mHA.

The aim of this study was to identify polyurethane solutions
that would create consistent microfibrous mats without beads
and irregularities at room temperature and to examine the effect
of incorporating HA particles into these scaffolds. Our hypothesis
was that HA would reinforce the mechanical properties of
polymers and improve the bioactive properties compared to
polymer-only scaffolds. Our long-term aim is to create a range of
scaffolds supportive of bone cell and matrix growth that can
withstand mechanical conditioning in vitro and mechanical
loading in vivo. In this study, we investigated the effect of
dimethylformamide (DMF) and tetrahydrofuran (THF) solvent
combinations on the fibre morphology and mechanical proper-
ties of electrospun thermoplastic polyether-urethane polymers
Z3A1 and Z9A1. We also investigated the effect of including nano
and micro size HA particles on fibre morphology, mechanical
properties, biocompatibility, extracellular and calcified matrix
production over a 28 day period using MLO-A5 osteoblastic
mouse cells and human embryonic mesenchymal progenitor
cells (hES-MPs).

2. Materials and methods

2.1. Polyurethane (PU) solutions

Two aromatic medical grade polyether–urethanes Z3A1 (Mn—
143,566 Mw—272,857) and Z9A1 (Mn—100KD Mw—197KD),
composed of 4,40-diphenylmethane diisocyanate, polyether
diol, and 1,4 Butane diol were obtained from Biomer Technol-
ogy, UK and dissolved in dimethylformamide (DMF) and
Tetrahydrofuran (THF) solvents (Sigma Aldrich, UK). 15 wt%
Z3A1 pellets or 27% Z9A1 pellets were dissolved in 100% DMF,
70/30 DMF/THF (v/v) or 50/50 (v/v) DMF/THF. These solutions
will be denoted as Z3-100, Z3-70, Z3-50, Z9-100, Z9-70, and
Z9-50 respectively (Table 1).

2.2. PU–HA composite solutions

For composite scaffolds, 15 wt% Z3A1 in 70/30 DMF/THF
(Z3-PU) PU solutions were doped with either sintered micro
HA (o5 mm, Captals S, Plasma Biotal, UK) or nano-sized HA

Table 1 – Parameters used in preparing electrospun scaffolds.

Name PU
(wt%)

HA
(wt%)

Volumetric
ratio of DMF (%)

Volumetric
ratio of THF (%)

Spin speed (rpm) Diameter of
rotating drum (cm)

Z9-100 27 0 100 0 150 6
Z9-70 27 0 70 30 150 6
Z9-50 27 0 50 50 150 6
Z3-100 15 0 100 0 150 6
Z3-70 15 0 70 30 150 6
Z3-50 15 0 50 50 150 6
Z9-PU 25 0 70 30 150 6
Z9-mHA 25 5 70 30 150 6
Z9-nHA 25 5 70 30 150 6
Z3-PU 15 0 70 30 300 8
Z3-mHA 15 5 70 30 300 8
Z3-nHA 15 5 70 30 300 8
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(o200 nm, Sigma Aldrich, UK) particles in a ratio of 3:1, PU:
HA and will be denoted Z3-mHA or Z3-nHA, respectively
(Table 1). For Z9A1 composites, 25 wt% Z9A1 in 70/30 DMF/
THF (Z9-PU) was doped with HA particles in a ratio of 5:1 PU:
HA and denoted as Z9-mHA and Z9-nHA. Note that this
concentration of PU in the Z9A1 (no HA) group is lower than
that used in the non-composite formulations described
above, This is because the 27 wt% PU solutions were too
viscous to enable adequate distribution of HA particles. In all
preparations, solutions were stirred with magnetic beads on
the UC151 ceramic plate stirrer at rotation speed of 500 rpm
for 24 h at room temperature.

2.3. Electrospinning

Solutions were placed into four 5 ml syringes with 20 gauge luer
stub adaptors and electrospun at a voltage of þ16.5 kV, a flow
rate of 3 ml/h and a tip to collector distance of 20 cm, at room
temperature. A mat of randomly orientated polymeric fibres
was collected on a sheet of aluminium foil wrapped around a
grounded metallic mandrel, rotating at rate of 150 rpm for all
scaffolds with the exception of Z3-PU, Z3-mHA and Z3-nHA
which were electrospun at a rotation speed of 300 rpm. After
electrospinning, the aluminium foil was removed and dried in a
vacuum oven at a negative pressure of 1020mbar for 12 h to
evaporate any remaining solvent.

2.4. Scanning electron microscopy (SEM)

SEM was used to examine morphological and topographical
details of electrospun scaffolds. Prior to imaging, samples
were mounted onto aluminium stubs using double-sided
carbon adhesive tabs (12 mm) (Agar Scientific, UK) and
sputter-coated with gold powder. Coated scaffolds were
imaged with secondary electrons at an accelerating voltage
of 20 kV, a spot size of 3.0 and a magnification of 1250" .

2.5. Mechanical testing

The mechanical properties of fabricated scaffolds were ana-
lysed in tension on a materials testing machine (ElectroForce
3200, Bose, USA). Rectangular samples with average dimen-
sions of 5 mm"20 mm were measured with vernier callipers,
mounted between two grips to give a guage length of 6 mm
and subjected to tensile strain at a rate of 1 Hz up to 100%
strain. Deformation was measured by the movement of the
cross-head and load measured using a 22 N load cell, the
resulting load/deformation curves were converted into stress/
strain curves by dividing by the sample bulk cross-sectional
area. Young's modulus was calculated as change in stress
divided by change in strain in the linear portion of the curve,
yield was defined as the point at which the load deformation
curve deviated from the straight line and yield strength was
defined as the stress at yield.

2.6. Fourier transform infrared spectroscopy (FTIR)

Chemical structural characterisation of the composites was
carried out using a Fourier Transform Infrared spectrometer
(FTIR) (Thermo Fisher Scientific Inc., USA) equipped with a

Photo-Acoustic (PAS) sampling cell, which allows analysis of
neat samples without the need for sample preparation. The
PAS cell was purged with helium gas. All spectra were recorded
at 4 cm#1 resolution, accumulating over a total of 256 scans.
The spectral data was acquired and processed using the
OMNIC7.4™ software.

2.7. Cell culture

All reagents were obtained from Sigma-Aldrich (UK) unless
otherwise stated. Prior to cell culture, electrospun scaffolds
were cut with the Epilog Mini 40 W Laser cutter (Epiloglaser,
USA) with vector settings at a speed of 80% and a laser power
of 6% into disks with a diameter of 1.6 cm and sterilised with
0.1% peracetic acid for 3 h at room temperature. The scaffolds
were washed with PBS. Using stainless steel rings, MLO-A5 at
passage 33 and hES-MP cells at passage 3 were seeded at
1.0"105 cells per scaffold and incubated at 37 1C in a humi-
dified environment with 5% CO2. The rings were removed
after 24 h and Dulbeccos Modified Eagles Medium (DMEM)
(Biosera, UK), supplemented with 10% foetal calf serum (FCS),
1% L-glutamine (L-G), 1% penicillin and streptomycin (P/S),
0.25% fungizone (F), 50 μg/ml ascorbic acid-2-phosphate and
5 mM βGP added to the scaffolds; media was changed every 2
days during the 28-day culture period. Media used for hES-MP
cells was also supplemented with 100 nM of dexamethosone
to stimulate osteoblastic differentiation.

2.8. MTT cell viability

MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide) colorimetric assay was used to investigate cell
viability 1, 4, 7, 14, 21 and 28 days after seeding. For each
assay, cell-seeded scaffolds were rinsed with PBS and MTT
solution at 0.5 mg/ml was added to each well and incubated
for a period of 40 min. The yellow MTT dye was reduced by
the mitochondrial reductase enzyme in living cells to purple
formazan after the incubation period; the formazan was
destained with 2 ml of 0.125% acidified isopropanol and
its absorbance read with the spectrophotometer at 562 nm
reference 630 nm.

2.9. DAPI and phalloidin staining

Four days after cell seeding, Z3-70 and Z9-70 scaffolds seeded
with MLO- A5 cells were stained with DAPI (40, 6-diamidino-2-
phenylindole dihydrochloride) nuclear stain and phalloidin
fluorescent conjugate cytoskeleton stains to visualise cell
attachment and cell morphology. The cells on the scaffolds
were fixed with 3.7% formaldehyde for 20min, washed with
PBS and permeablized with 1% Triton X-100 in PBS. The
scaffolds were then washed with PBS, 1% Bovine Serum
Albumin (BSA) was added as a blocking agent and then 1%
Phallodin was added. Scaffolds were then washed with PBS
and stained with 0.1 μg/ml of DAPI. Finally, scaffolds were
washed with PBS and visualised with a fluorescent image
analyser (AXON Instruments ImageXpress 5000A, USA).
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2.10. Collagen staining

Sirius red which binds to collagen was used to detect collagen
at days 14, 21 and 28. The Sirius red (Direct red dye from
Sigma-Aldrich, UK) solution was prepared by dissolving 1mg/ml
in saturated picric acid. Cell-seeded scaffolds were washed with
PBS and fixed with 3.7% formaldehyde for 20min, then washed
with distilled water. 1mg/ml Sirius red solution was added
to each well and samples were agitated on a platform rocker
at 30 rpm. After 18 h excess Sirius red solution was removed
and the scaffolds washed with distilled water. Samples were
allowed to air dry for 30min and photographic images taken for
qualitative analysis. For quantitative analysis, 0.2 M of NaOH and
methanol at 1:1 was used to destain Sirius red on a platform
rocker at 30 rpm for 24 h; the absorbance of the eluate was read
with the spectrophotometer at 490 nm.

2.11. Calcium staining

Alizarin red (AR) staining was used to detect extracellular
calcium deposition on days 14, 21 and 28 of culture. 1% w/v of
alizarin Red S (Sigma-Aldrich, UK) powder in distilled water
was used to stain MLO-A5 and hES-MPs seeded scaffolds for
two hours under dynamic rocking at 30 rpm. Prior to staining,
scaffolds were washed and fixed with 3.7% formaldehyde as
per the procedure described for collagen staining. Excess AR
solution was removed after staining and samples washed 3
times with distilled water. For quantitative analysis, 5% v/v
perchloric acid in distilled water was used to destain AR on a
platform rocker at 30 rpm for 24 h. The absorbance of the
eluate was read with the spectrophotometer at 405 nm.

2.12. Histology

Histological samples were taken as complete transverse-
sections across the centre of electrospun scaffolds. Samples
were fixed with 3.7% formaldehyde, soaked in 1% sucrose
solution and embedded in OCTTM compound media prior
to sectioning. Samples were cryo-sectioned at 15 μm and
stained with Haematoxylin and Eosin. Stained sections were
imaged with a light microscope with 20" objective.

2.13. Statistical analysis

All data are reported as mean7standard deviation. Comparison
of sample means of fibre diameter and mechanical analysis was
performed by one-way analysis of variance using GraphPad
Prism 6 software, whilst MTT cell viability, calcium and collagen
absorbance data were analysed by two-ways repeated measures
analysis of variance. Differences between two groups were
defined as statistically significant if pr0.05 as determined by
the Tukey's multiple comparisons post hoc test.

3. Results and discussion

Bone, the major load bearing tissue of the human body is
subjected to varying degrees of loading and unloading on
a daily basis. Hence, designing a scaffold for bone tissue
engineering requires a material that is mechanically

compatible, that should be able to undergo varying degrees
of deformation without rupturing. Polyurethane remains a
popular choice amongst polymers for its advantageous prop-
erties of biocompatibility, biodegradability, mechanical flex-
ibility and versatile chemistry allowing it to be tailor-made
for specific applications.

3.1. PU scaffolds

Microphase segregation, a key characteristic of thermoplastic
polyurethane elastomers occurs as a result of the thermody-
namic incompatibility of the hard and soft segments of PU and
is known to play a key role in the mechanical properties of PU.
Factors known to affect the degree of separation include
segment polarity, hydrogen bonding responsible for hard/soft
segment interaction, overall sample constitution and molecular
weight. Thermoplastic elastomers with different molecular
weights Z9A1 and Z3A1 but identical chemical structures and
composed of 4,40-diphenylmethane diisocyanate, polyether
diol, and 1,4 butane diol were dissolved in graded concentra-
tions of DMF and THF to study the effect of solvent combination
on electrospun fibre morphology and mechanical properties.
DMF and THF are popular solvents used in dissolving and
synthesising polyurethane (Khil et al., 2003; Tsui and
Gogolewski, 2009). These solvents differ in polarity, evaporation
rate, and conductivities, which are key parameters that affect
electrospinning and microphase segregation.

Scaffolds fabricated from solution containing 100% DMF had
more nano-diameter fibres and beads than other solvent
combinations of DMF and THF for both types of PU (Fig. 1).
Reducing the amount of DMF, by replacing with THF eliminated
the presence of beads and resulted in fibres with a more
uniform morphology for Z9A1 scaffolds, and a combination of
nano and micro fibres for Z3A1 scaffolds. For both types of PU,
scaffolds made from solutions containing 50% THF solvent had
fibres with significantly larger diameters to those fabricated
from 100% DMF and 70/30 DMF/THF combinations. We cannot
directly compare the effects of molecular weight (Z3A1 versus
Z9A1) in this study as spinning parameters were also slightly
different between these two sets of scaffolds. However in
general, Z3A1 dissolved faster and more uniformly than Z9A1
prior to electrospinning, presented with a more uniform visc-
osity and was easier to fabricate. Armentano et al. (2010)
reported that the solvent choice used in fabricating polymer
films influences several scaffold properties, including the het-
erogeneity of the surface structure, reorientation or mobility of
the surface crystal segment, as well as swelling and deforma-
tion. In our study, differences in electrospun morphology which
resulted from changing the amount of DMF contained in
solution is supported by the work of Oprea, (2005) who studied
the effect of N-methyl-2-pyrrolidone (NMP), DMF, toluene and
ethyl acetate on the properties of polymer films, and reported
differences in morphology and mechanical properties of films
fabricated from solutions containing NMP and DMF solvents.
They suggested that NMP was a better solvent than DMF for
developing polyurethane films. Wannatong et al., (2004) also
studied the effect of five different solvents on electrsospun
polystyrene (PS) and reported that DMF was the best solvent for
preparing beadless PS scaffolds. This is in contrast to what was
observed in our study, but these different results could be due
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to differences in concentration of solutions, molecular weights
and polymer choice, as PU and PS have different chemical and
physical properties.

3.2. PU–HA composites

Mimicking the ductile properties of collagen and the
strength of the mineralised phase of bone with PU

and HA particles combined in micro or nano composites
has been proposed for bone substitute materials for a
number of reasons. The elastomeric nature of PU serves
as a matrix, reinforced by the HA particles. Nano HA
and micro HA differ in several ways including surface area
and the degree of crystallinity which both affect overall
sample constitution. By including both particle types
in separate solutions, we were able to assess the effect

Fig. 1 – SEM images of electrospun (A) Z9A1 and (B) Z3A1 scaffolds synthesised with different combinations of DMF & THF
(scale bar¼20 μm), and (below) a histogram of the fibre diamter (n¼40).
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of particle size on fibre morphology and mechanical
properties.

Note that the PU scaffolds without HA for this set of
experiments were spun from a 70/30 solution of DMF/THF
because this enabled the best fibre morphology (without
beads), however the processing conditions for Z9-PU and
Z3-PU are slightly different from those used in the Z9-70
and Z3-70 groups (Table 1) so these are not expected to have
identical morphological and mechanical properties.

Electrospun 25 wt% Z9A1 and 15 wt% Z3A1 dissolved in 70/30
DMF/THF solvents showed relatively uniform fibre diameter
distributions. However, the inclusion of mHA and nHA particles
resulted in changes to fibre morphology. For both types of PU,
nHA particles with a higher surface area and smaller particle
size, blended well with PU and resulted in more uniform fibres
compared to composite scaffolds containing mHA particles,
which presented with a beaded morphology and generally
reduced fibre diameters (Fig. 2) but with some particularly large

Fig. 2 – SEM images of electrospun (A) Z9A1 and (B) Z3A1 PU (left column), mHA (middle column) and nHA (right column)
composite scaffolds (scale bar¼20 μm), and (below) a histogram of the fibre diamter (n¼40). Note that the axes for each
histogram are to different scales reflecting the varibility in fibre size between scaffold compositions and the histogram for
Z9-mHA excludes a single 35 μm fibre which is included in the mean values presented in Table 3.
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fibres. It is likely that the particularly large fibres contain large
chunks of mHA leading to a bimodal distribution of fibre size and
large standard deviation (Table 2). There was a single extremely
large fibre of 35 mm in the field of view examined which was not
included in the frequency plot (Fig. 2A) as it would have made it
difficult to visualise the rest of the data but this is included in the
fibre average diameter data (Table 2).

Reduction in fibre diameter with the inclusion of mHA
particles to create composites was also observed by Nirmala
et al. (2011) who electrospun nanofibrous polyurethane with
micro Calcium Chloride particles and by Mi et al. (2014) who
suggested that that mHA particles may have stretched the
polymer jets while the fibres were being deposited. The effect
of more fibres at a lower diameter and a few fibres at a much
larger diameter caused by the inclusion of mHA is much
less marked when the Z3A1 polymer is used, this may be
explained by smaller molecular weight and polymer chain
length of Z3A1 compared to Z9A1 and lower viscosity.

It has been reported that the higher surface area of nHA
compared to mHA enables better bonding between the nano-
sized HA particles and PU enabling greater reinforcement of
the polymer matrix and ultimately, enhancing mechanical
and functional properties of nanocomposites compared to
conventional microcomposites (Armentano et al., 2010). This
probably explains why the nHA fibres are much more con-
sistent in their size and morphology as the particles would be
better distributed within, and bound to, their polymer matrix.

3.3. FTIR characterisation

The polar nature of PU and HA makes FTIR characterisation,
which elicits differences in dipole moments, an ideal char-
acterisation technique for analysing the chemical composition
of composite scaffolds. The FTIR spectrum of polyurethane
is presented in Fig. 3A, and the combined spectra of PU–HA
composites are presented in Fig. 3B and C

For PU, the peak at 3325 cm#1 is attributed to the stretch-
ing v(N–H). The peak at 3121 cm#1 was the overtone of
1533 cm#1 and 3039 cm#1 attributed to the v(C–H) in benzene
ring. The peaks at 2940, 2857 and 2795 cm#1 were CH2 peaks
of the polyether. The peak at 2940 cm#1 was the asymmetric
stretching peak of CH2 and the peak at 2857 cm#1 was the
symmetric stretching of CH2. The carbonyl absorption region
was observed in between 1730 and 1700 cm#1, the carbonyl

absorption band classified into two peaks. The peak due to
bonded C¼O stretching was at 1701 cm#1 and the free C¼O
stretching appeared at 1730 cm#1. The peak at 1597 cm#1 was
assigned to v(C¼C) in the benzene ring and 1533 cm#1 was
the amide II δ (N–H)þv(C¼N). 1478 cm#1 was the weak CH2

peak and the 1413 cm#1 attributed to the strong v(C–C) in
benzene ring. The peak at 1310 cm#1 was assigned to amide
III δ(N–H)þv(C¼N), β(C–H) peak and δ(N–H)þv(C¼N) appeared
at 1225 cm#1. The region between 1103 and 916 cm#1 was
the v(CH2–O–CH2) of ether peak and 1018 cm#1 was the weak
β(C–H) in benzene ring. The peak at 817 cm#1 was the γ(C–H)
from butane diol. These observations were similar to those
reported by Khan et al. (2008) in their study of polyurethane
composites for dental restoration applications.

Fig. 3B shows the combined spectra of Z3-PU, Z3-mHA and
Z3-nHA at common scale, with emphasis on the hydroxyl,
carbonyl, phosphate and bending phosphate groups whilst
Fig. 3C shows the combined spectra in greater detail for a
wave number region of 1800#450 cm#1. The characteristic
peak of stretching O–H was observed at 3570 cm#1 (Rehman
and Bonfield, 1997). The bands at 1060, 961, 603 and 571 cm#1

were assigned to vibration of the phosphate group, PO4. The
peak at 1078 cm#1 was the triply degenerated vibration v3,
and 961 cm#1 was the non-degenerated symmetric stretching
mode v1, of the P–O bond of the phosphate group. The peaks
at 603 and 571 cm#1 were assigned to a triple degenerated
bending mode v4, of the O–P–O bond. The peak at 633 cm#1

was due to the phosphate v4 bending. The stretching O–H and
P–O (stretching and bending) peaks were not present in the
polyurethane spectrum. After mixing the micro and nano
hydroxyapatite in polyurethane, the appearance of charac-
teristic peaks of HA were observed and it was noted from the
shifting and appearance of new peaks in the region of 1100–
916 cm#1 that nano-HA with a higher surface area and more
crystalline structure was mixed better than micro-HA and
affected the shifting of peaks v3 P–O from 1078 cm#1 for
Z3-mHA to 1060 cm#1 for Z3-nHA. It has been mentioned in
the literature that the width and intensity of peaks in FTIR
spectrum have explicit dependence on the particle size.
As particle size increases, the width of the peak decreases
and intensity increases. The restoring force of nano particles
created by surface polarisation charge is responsible for the
frequency difference. The difference in the frequency of
vibrational modes is attributed to dipolar interactions,

Table 2 – Morphological and mechanical properties of Z9A1 and Z3A1 scaffolds with different solvent combinations
(mean7S.D., n¼40 for fibre measurements and 6 for all other measurements).

Electrospun Scaffolds Fibre diameter (μm) Thickness (mm) Young's modulus (MPa) Yield strength (MPa)

Z9-100 2.0673.09c 0.2770.02 60.09710.1b,c 2.1370.55c

Z9-70 1.5470.96c 0.2970.06 25.8974.54a 1.7370.79
Z9-50 3.4770.89a,b 0.3670.04 30.1170.78a 1.2770.29a

Z3-100 1.2571.56b,c 0.0670.01 18.5472.31b,c 1.5670.34b,c

Z3-70 1.9370.85a,c 0.1870.03 7.6170.76ac 0.7170.03a

Z3-50 2.8271.29a,b 0.1070.01 3.3871.25a,b 0.5070.04a

a Significantly different from scaffolds made from 100% DMF, at pr0.05.
b Significantly different from scaffolds made from 70/30 DMF/THF, at pr0.05.
c Significantly different from scaffolds made from 50/50 DMF/THF, at pr0.05.
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Table 3 – Morphological and mechanical properties of Z9A1 and Z3A1 scaffolds with different types of HA, (mean7S.D.,
n¼40 for fibre measurements and 6 for all other measurements).

Electrospun Scaffolds Fibre diameter (μm) Thickness (mm) Young's modulus (MPa) Yield strength (MPa)

Z9-PU 2.0170.80 0.3670.01 9.567 3.03b 0.6170.18b

Z9-mHA 2.8676.01 0.3070.01 88.69720.20a,c 3.0270.80a,c

Z9-nHA 2.9571.60 0.4270.02 10.2172.99b 0.7970.16b

Z3-PU 2.1870.51c 0.4370.09 2.4270.21b,c 0.2970.04b,c

Z3-mHA 2.6171.45c 0.3170.01 4.7770.29a,c 0.4670.03a

Z3-nHA 1.5670.63a,b 0.0970.01 3.0970.30a,b 0.5270.09c

a Significantly different from PU scaffolds, at pr0.05.
b Significantly different from scaffolds made with mHA, at pr0.05.
c Significantly different from scaffolds made with nHA, at pr0.05.

Fig. 3 – FTIR spectra of Z3A1 composites (A) stacked FTIR spectra of Electrospun Z3-PU, Z3-mHA and Z3-nHA. (B) Combined
FTIR spectra of Z3-PU, Z3-mHA and Z3-nHA at Common Scale with Hydroxyl, Carbonyl, Phosphate and bending Phosphate
groups highlighted as n, β, π and Φ, respectively. (C) Combined spectra of Z3-PU, Z3-mHA and Z3-nHA at common scale for a
wavenumber region of 1800#450 cm#1.
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interfacial effects, surface amorphousness, surface free
energy etc. (Mo et al., 1993; Martin, 1996; Bobovich, 1988).

3.4. Mechanical analysis of PU scaffolds

In general, Z9A1 scaffolds were stronger than Z3A1 scaffolds
and presented with higher mechanical properties for all
combinations of DMF and THF solvents. With identical
chemical structures, differences in the mechanical properties
of Z9A1 and Z3A1 probably resulted from the differences in
molecular weights, which would have affected the interac-
tion between the hard and soft segments, causing differences
in the microphase segregation.

Decreasing the proportion of DMF in the solvent reduced
Young's Modulus and strength of Z9A1 and Z3A1 scaffolds.
Z9-100 (100% DMF) showed a brittle stress-strain profile with
plastic deformation occurring at 30% strain (Fig. 4A). Z9-100
also had the highest Young's Modulus and yield strength,
significantly higher than those of Z9-50 for both properties,
however, only Young's Modulus was significantly higher than
that of Z9-70 scaffolds (Table 2).

A similar pattern was observed with the Z3 groups
(Fig. 4B). Values of Young's Modulus for Z3-100, Z3-70 and
Z3-50 were significantly reduced with less DMF in the elec-
trospinning solvent (Table 1). For both polymers these differ-
ences in mechanical properties are likely to be the result of
differences in fibre morphology (Fig. 1) which in turn may
have resulted from differences in the solvent properties of
DMF and THF. Beads present in scaffolds fabricated with
100% DMF solvent (Fig. 1) probably created short regions of

large fibre cross-sectional area, which would have caused
there to be a greater amount of material relative to void space
within the sample, which would in turn create an overall
stronger scaffold but with a reduced ability to undergo strain.

3.5. Mechanical analysis of PU–HA composites

Mechanical properties of composites are controlled by several
micro-structural factors such as the properties of the matrix,
the properties and distribution of fillers, interfacial bonding
strength, and processing methods. The interface strength
between PU and HA particles greatly affects the effectiveness
of load transfer from the polymer matrix to micro and
nanocomposites. For composite scaffolds, inclusion of HA
particles improved the tensile properties of both Z9A1 and
Z3A1 scaffolds, Young's Modulus and yield strength of com-
posite scaffolds were significantly higher than those of plain
PU scaffolds, for both Z9A1 and Z3A1. SEM images of electro-
spun composites (Fig. 2) show that nHA, with its smaller size
and higher surface area, properly integrated with the PU
fibres compared to mHA which can be seen sticking out of
the fibres and creating lumps and beads. Better mixing of
nHA particles with PU as compared to mHA particles was
also confirmed with FTIR for Z3-composites. We therefore
expected that the nano-composites would be stiffer and
stronger than the micro-composites However, for Z9A1,
both yield strength and Young's Modulus of mHA scaffolds
were significantly higher than those of Z9-nHA scaffolds.
Interestingly, the yield strength of Z3-nHA scaffolds was
higher than that of Z3-mHA, although not statistically

Fig. 4 – Example stress/strain curves of fabricated scaffolds, (A) effect of solvent combination on Z9A1 scaffolds, (B) effect of
solvent combination on Z3A1 scaffolds, (C) effect of HA particles on Z9A1 scaffolds, (D) effect of HA particles on Z3A1 scaffolds.
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significant. These differences in behaviour between Z9A1 and
Z3A1 composite scaffolds could have resulted from the
difference in the PU:HA ratio between Z9A1 (5:1) and Z3A1
(3:1) and the molecular weight of the polymers. Z9A1 is of
higher molecular weight and produces scaffolds that are high
in Young's modulus and strength but more brittle, the
addition of HA further increases the brittleness of the
electrospun scaffold. In contrast, Z3 is of lower molecular
weight and more flexible and the addition of HA, albeit at a
higher concentration that for Z9, has a smaller effect
on the properties of the electrospun scaffold. Molecular
weight and concentration and size of HA would all have
resulted in differences in interactions between solvents,
macromolecular chains of the polymer and the HA particles.
These difference in interactions have been reported to affect
microphase separation between the hard and soft segment
of PU, hence ultimately affecting its mechanical properties
(Oprea, 2005).

3.6. Cell viability on PU Scaffolds

The MLO-A5 mouse cell line has characteristics of a post-
osteoblast and pre-osteocyte cell type, and rapidly mineralises
in sheets rather than nodules. These cells have been used to
extensively study the osteoblast to osteocyte differentiation
process, bone mineralisation and the effects of mechanical
loading on biomineralization (Sittichockechaiwut et al., 2009,

Rosser and Bonewald, 2012). MLO-A5 cells were seeded on Z9A1
and Z3A1 PU scaffolds fabricated from solutions containing
varying combinations of DMF/THF solvents.

In general, cells were viable on all scaffolds during the 14
day culture period. Cells had similar viability on all Z9A1 on
day 1, indicating that, there were no differences in the cell's
ability to attach to scaffolds. Viability increased steadily from
day 1 to day 4 with similar values on Z9-100 and Z9-70
scaffolds between day 4 and day 7. On day 14 of culture, there
was no significant difference between MTT absorbance on
Z9-70 and Z9-100, however, cell viability on Z9-50 scaffolds
was significantly lower than that of Z9-100 and Z9-70
(pr0.05) (Fig. 5A). This could have been the result of mor-
phological differences in fibre diameter, as Z9-50 fibre diameters
were significantly larger than Z9-70 and Z9-100 scaffolds.

For Z3A1 scaffolds, there was a steady increase in cell
viability on all Z3-100, Z3-70 and Z3-50 scaffolds during the
culture period (Fig. 5B). There was however, no significant
difference between all groups of scaffolds, except that Z3-50
supported lower cell viability on day 4 (pr0.05). The ability of
electrospun scaffolds to mimic the natural three-dimensional
environment of the in vivo extracellular matrix whilst provid-
ing structural support with high surface to volume ratio makes
excellent structures for tissue engineering applications. It has
been reported that cells assume a more spindle-shaped
morphology with increasing fibre diameters and rather orient
parallel to fibres with aligned meshes (Bashur et al., 2009,

Fig. 5 – MTT absorbance for MLO-A5 cells seeded on (A) Z9A1 PU scaffolds, (B) Z3A1 PU scaffolds (mean7S.D. n¼6) for
statistical analysis see text. (C) and (D) Fluorescent micrographs of DAPI (blue¼nucleus) and phalloidin (red¼actin) staining of
MLO-A5 Cells on Z9-70 (C) and Z3-70 (D) scaffolds on day 4, scale bar at 100 μm. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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Delaine-Smith et al., 2014). DAPI (nucleus) and Phalloidin
(actin cytoskeleton) staining over a seven day period con-
firmed the MTT data indicating increasing numbers of cells
attached to the scaffolds over time (data not shown). Fig. 5
shows representative micrographs of cell attachment on day 4
indicating that cells are well spread across the scaffolds with
an elongated morphology for Z9-70 (Fig. 5C) and Z3-70 (Fig. 5D)
scaffolds.

3.7. Cell viability on composite scaffolds

Hydroxyapatite (Ca10(PO4)6(OH)2), HA is well established as a
synthetic material for bone replacement due to its chemical
resemblance to the inorganic component of bone and tooth,
and has been widely used a biocompatible material in many
areas of medicine. HA is known to promote faster bone
regeneration and direct bonding to regenerated bone without
intermediate connective tissue (Patel et al., 2002).

For composite scaffolds, Z3A1 scaffolds consistently pre-
sented with a more uniform combination of nano and micro
fibre diameters and were less brittle than Z9A1 composites,
therefore Z3A1 was used to examine the effect on cell behaviour
of including HA in the scaffold. MLO-A5 cells seeded on Z3-nHA
scaffolds had the highest cell viability at all-time points after
day 1, being 22% higher by day 28 (Fig. 6A), this implies that cell
proliferation rate was higher on these scaffolds as MTT absor-
bance at day 1 was the same for all groups. This is similar to the
effects of nHA observed in previous studies (Rezwan et al., 2006;
Bianco et al., 2009; Mi et al., 2014) and probably resulted from the
bioactive nature of HA coupled with the higher surface area and
crystallinity of nHA particles. A high HA surface area facilitates
a strong interaction between the polymer and ceramic phase,
and allows protein attachment. For example, it has been
reported that initial calcium absorption to nanoceramic surfaces
enhanced binding of vitronectin, that subsequently promoted
osteoblastic adhesion and proliferation (Webster et al., 2001). It
might be expected that mHA would also elicit cell viabilities as
high as those attained by the nano-composites but that was not
observed for MLO-A5 in this study. This may have been due to
the lower porosity that was observed with the inclusion of mHA
particles, which could have hindered cell proliferation, migration,
and nutrient transfer.

To investigate the ability of these composites to support
progenitor cells, hES-MPs, embryonic derived mesenchymal
progenitor cells were also seeded on Z3A1 electrospun scaf-
folds in osteogenic media (Fig. 6B). hES-MPs have been used
in several studies as a model cell for bone tissue engineering
(Karlsson et al., 2009). In the presence of osteogenic supple-
ments, hES-MP cells have been shown to differentiate
towards the osteogenic lineage in vitro (Delaine-Smith et al.,
2012). Such mesenchymal progenitor cells also may have
advantages over autologous bone marrow derived mesench-
ymal stem cells for clinical tissue engineering as they are
readily available in large numbers and would avoid the
extraction and expansion steps needed to tissue engineer
bone from a patient's own cells.

As shown in Fig. 6B, there was an increase in hES-MP cell
viability over all time-points on Z3A1 scaffolds however, in
contrast to MLO-A5 cells; there was no significant difference
between Z3-nHA, Z3-mHA and Z3-PU scaffolds in their ability
to support cell proliferation. There is no obvious reason for
this different effect of nHA on cell proliferation of the two
types it but may be related to their different stages in the
osteogenic differentiation pathways.

3.8. Collagen and calcium staining and histology

The ultimate test of a scaffold's ability to support bone tissue
engineering is its ability to support bone-like extracellular
matrix deposition. Collagen and calcified matrix staining
using Sirius red and alizarin red, respectively were used to
study extracellular matrix production and mineralisation on
days 14, 21 and 28 of culture. Collagen production by MLO-A5
cells on Z3 scaffolds was highest for Z3-nHA scaffolds at all-
time points (Fig. 7A) with the highest deposition measured on
day 28, significantly higher than that produced on Z3-mHA
and Z3-PU scaffolds. This is the same scaffold that supported
the highest number of viable MLO-A5 cells. A similar pattern
was observed with hES-MP cells (Fig. 7B).

Interestingly, calcium production elicited results opposite to
those attained for collagen production. Alizarin red absorbance
on of cell-seeded Z3–PU scaffolds was higher for both MLO-A5
(Fig. 7C) and hES-MP cells (Fig. 7d) than for HA composite
scaffolds (after substraction of the background absorbance).
However, unsurprisingly, alizarin red strongly stained the blank

Fig. 6 – MTT absorbance on Z3A1 composite scaffolds (mean7S.D. n¼6). (A) MLO-A5 cells on Z3 PU, Z3-mHA and Z3-nHA
scaffolds, (B) hES-MP cells on Z3 PU, Z3-mHA and Z3-nHA scaffolds. For statistical analysis see text.
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(no cells) control scaffolds that contained HA. As this is a single
blank and not the same sample on which cells are seeded, any
variability in HA content between scaffold samples would have
made it more difficult to distinguish between the scaffold HA
and cell-deposited HA. It would be interesting to image miner-
alisation in the same scaffold over time using a technique such
as mCT scanning or Xylenol orange to determine if there was
truly less cell deposited calcium in composite scaffolds.

Histological sections were taken to examine how far MLO-A5
and hES-MP cells penetrated into the Z3 PU and composite
scaffolds by day 14 of culture, having been seeded at the surface
(Fig. 8). In general, MLO-A5 cells were densely distributed on the
surface of all scaffolds as compared to hES-MP cells which
exhibited thinner coverage in Z3-PU and Z3-mHA scaffolds and
were more loosely dispersed throughout the scaffold interior.
hES-MPs cells cultured on Z3-nHA scaffolds appeared to pene-
trate to the greatest depth and were found in more locations
compared to all other groups, although no cells were seen at the
bottom of the scaffold at this time-point. The lack of cell
penetration into the scaffold may have resulted from the low
porosity, pore size and interconnectivity of scaffolds associated
with the closely packed arrangement of the fibres. It is interest-
ing that hES-MPs appear to penetrate deeper than MLO-A5s,
which may be related cell size or differences in attachment and
migration cell surface molecules. This observation has also been
reported extensively in the literature as a major limitation of

traditional electrospun sheets (Bergmeister et al., 2013; Leong
et al., 2010). It would therefore be advantageous to increase the
porosity of electrospun scaffolds by opening up spaces between
the fibres. Electrospinning with a cryogenic mandrel, controlling
fibre deposition with air-flow impedance and electrospinning
with porogens, amongst others, have reported to enhance
scaffold porosity and cell penetration (McClure et al., 2012). It is
also possible to increase porosity by co-spinning polymer solu-
tions with a very fast degrading or water-soluble polymer
(Milleret et al., 2011), and using mechanical techniques such as
ultrasonication (Lee et al., 2011) and static stretch to force fibres
apart and thus facilitate greater cell penetration, nutrient diffu-
sion and transport of metabolic products.

4. Conclusions

Choice of solvents, on their own or in combination, strongly
influences the final properties of solution, hence fibre mor-
phology during the electrospinning process. Two types of
thermoplastic polyurethane Z9A1 and Z3A1 were electrospun
from solutions made with varying combinations of DMF and
THF solvents. For both types of PU reducing the amount of
DMF contained in the solution, increased fibre diameter,
resulting in fibres with a more uniform morphology, and also
eliminating the beads which were found in the scaffolds
fabricated from 100% DMF solvent.

Fig. 7 – Collagen and calcium Staining on Z3-PU, Z3-mHA and Z3-nHA scaffolds on D14, D21 and D28 (mean7S.D. n¼6).
(A) sirius red absorbance of MLO-A5 cells, (B) sirius red absorbance of hES-MP cells, (C) alizarin red absorbance of MLO-A5 cells
(D) alizarin red absorbance of hES-MP cells. npr0.05, nnr0.01, nnnnr0.0001. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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In addition, reducing the DMF solvent content led to lower
tensile properties of electrospun scaffolds, whilst incorporation
of nano and micro HA particles in both Z9-PU and Z3-PU
solutions reinforced the mechanical properties of electrospun
composites. Young's Modulus and yield strength values of
composites were higher than that of PU scaffolds; these differ-
ences were significantly higher with mHA composites compared
to nHA composites but nHA composites exhibited smoother
fibres, less variability in fibre size and better dispersion of the HA.
Furthermore, FTIR spectral data confirmed the presence of HA
particulates in fabricated composites.

Finally, MLO-A5 cell viability was highest for scaffolds
fabricated with 70/30 DMF/THF solvent across most time
points for both types of PU, whilst cell viabilities for both
MLO-A5 and hES-MP cells, were highest with Z3-nHA scaf-
folds which also produced the highest deposition of collagen
across all time points. Calcium deposition was supported
in all scaffolds. Therefore, we have developed a range of
scaffolds which have the potential to support bone matrix
formation for bone tissue engineering, providing varying
material properties which can be tailored depending on the
stage of cell differentiation and final application.
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