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Abstract

Traditional flow monitoring techniques where the sensors are immersed in the

flow are costly, and often need frequent maintenance. Non-contact measurement

techniques can be used to determine the hydraulic conditions of free surface flows

based on a characterisation of the air-water interface. They are robust, relatively

cheap, and can be safely operated, but their applications in shallow turbulent flows

such as rivers and open channels are limited by the limited understanding of the

free surface roughness behaviour. This research aims at characterising the rough

moving surface of shallow turbulent water flows and its interaction with airborne

acoustic waves. The purpose of this work is to facilitate the development of accu-

rate and reliable non-contact sensors that can measure the mean surface velocity of

shallow turbulent flows from the Doppler spectrum of airborne backscattered ultra-

sonic waves. The dynamics of the free surface were characterised experimentally in

a laboratory flume with a homogeneously rough flat bed, over a range of subcritical

flow conditions. The three-dimensional patterns on the free surface can be repre-

sented by a model of gravity-capillary waves with random phase. These patterns and

their statistics are dominated by the spatial and temporal scales of the stationary

waves generated by the interaction with the rough bed in all conditions where the

mean surface velocity is larger than the minimum phase velocity of gravity-capillary

waves. When the mean surface velocity is smaller than the minimum phase velocity

of gravity-capillary waves, the surface shows patterns that travel at the mean sur-

face velocity and can be generated by the non-resonant interaction with turbulence

inside the flow. In these conditions, the effects of coherent turbulent structures on

the surface dynamics are negligible. A simplified linear model of the free surface dy-

namics was implemented in two different models of acoustic scattering based on the

Kirchhoff approximation. The numerical predictions of the acoustic Doppler spec-

tra in the backscattering and in the forward scattering configuration were compared

with the experimental measurements in the same flow conditions. The comparison

allows the rigorous interpretation of the measured Doppler spectra, and helps to

identify the factors that link them to the behaviour of the free surface. The results

can inform the design of more reliable non-contact measurement sensors with appli-

cations in shallow turbulent flows. There are important implications for modelling

of the interaction between a homogeneously rough bed and the free surface, and for

the study of transport and mixing phenomena near the interface.
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Nomenclature

Script symbols

Symbol Description Units

G The Green’s function.

H(f) The Hilbert transform of the function f .

=(f) The imaginary part of the function f .

M The Morlet mother wavelet.

<(f) The real part of the function f .

U The velocity field in the flow, U = (U ,V ,W). m s−1

Greek Symbols

Symbol Description Units

α The power-function slope coefficient of the

wavenumber power spectrum of the surface eleva-

tion.

αm Calibration coefficient of the U-tube manometer.

βm Calibration coefficient of the U-tube manometer.

χq The cumulant of order q the distribution of the sur-

face elevation.

δ The delta function.

δr The size of the bins used for the calculation of the

space-time correlation function.

m

δsurr. The convergence parameter for the generation of

synthetic constrained surrogate time-series with the

gradual wavelet reconstruction method.
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Nomenclature Nomenclature

εI Uncertainty of the surface elevation measurement

due to the presence of the meniscus.

m

εII Uncertainty of the surface elevation measurement

due to the flow run-up.

m

εIII Uncertainty of the surface elevation measurement

due to the finite distance between the wires.

m

Γ(k, θ) The directional distribution, or factor that describes

the dependence of the wavenumber spectrum of the

surface elevation on the direction of propagation.

Γθ(θ) The factor of the directional distribution which

shows the dependence on the angle of propagation

θ.

Γk(k) The factor of the directional distribution which

shows the dependence on the wavenumber k.

Γr The width of the kernel for the interpolation of the

correlation function.

γw Surface tension coefficient. γw = 72.75× 10−3 N m−1

at the temperature of 20 ◦C.

N m−1

κ The wavenumber of the acoustic waves. rad m−1

λ3 The skewness coefficient.

λ4 The coefficient of kurtosis.

λa The acoustic wavelength. m

λB The wavelength of the Bragg waves. m

µ The index of the discrete time-series, tµ = µ∆t,

µ = 1, 2, ...,M .

µw The dynamic viscosity of water, µw = 1.002 ×
10−3Pa s at the temperature of 20 ◦C.

Pa s

ν The index representing each waveprobe, e.g., ν =

3(y) is the third probe of the first lateral array.

ω̂ The radian frequency normalised by the characteris-

tic frequency of the stationary waves, ω̂ = ω/k0U0.

ω The radian frequency, ω = 2πf . rad s−1

Ω(k, θ) The general form of a dispersion relation. rad s−1
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Nomenclature Nomenclature

ωa The radian frequency of the acoustic waves emitted

by the source.

rad s−1

ΩB The frequency of the Bragg scale waves. rad s−1

ωG The centre-band radian frequency employed for the

analysis of the narrow-band envelope.

rad s−1

ωj The characteristic frequency of the Morlet wavelet. rad s−1

Ωs The dispersion relation of gravity-capillary waves in

still water.

rad s−1

φ̂ The short-time average of the acoustic phase φ̃ in

time.

rad

Φ The phase of the complex envelope of the free sur-

face elevation.

rad

Φ+,Φ−,ΦU Random variables with uniform distribution in the

interval between 0 and 2π.

rad

ΦC A constant phase. rad

ΦW The phase of the wavelet transform of the surface

elevation ζ measured at the probe ν, at the charac-

teristic frequency ωj, ΦW (xν , yν , t, ωj) ≡ ΦW,ν(t, ωj).

rad

φ̃(t) The phase of the signal measured with an ultrasonic

transducer, as found with the Hilbert transform.

rad

Ψ̌ The non-dimensional depth-dependent factor of the

vertical perturbation velocity w.

Ψ The depth-dependent factor of the vertical pertur-

bation velocity w.

m s−1

ψ The angle of incidence of the acoustic waves with

respect to the tangent to the average flat surface.

rad

ψs The angle of inclination of the acoustic transducer

with respect to the tangent to the average flat sur-

face.

rad

ρ The radial polar co-ordinate in the plane x− y. m

ρw Density of water. ρw = 998.2 kg m−3 at the temper-

ature of 20 ◦C.

kg m−3

ρ̃ The co-ordinate along the rough surface Σ. m

Σ The rough surface.
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Nomenclature Nomenclature

σ The spatially averaged standard deviation of the

free surface elevation, measured in time.

m

σν The standard deviation of the free surface elevation,

measured at the probe ν.

m

Σ0 The flat surface represented by z ≡ 0.

σGj The fitted width of the ridge of the normalised

streamwise frequency-wavenumber spectrum.

rad m−1

σW The width of the Morlet mother wavelet.

σω,G The width of the Gaussian filter. rad s−1

τ The time-lag. s

τR The Reynolds stresses. N

θ Angle of propagation of a wave with respect to the

direction of the mean flow.

rad

θm Angle from the main axis of the acoustic receiver. rad

θs Angle from the main axis of the acoustic source. rad

θmin Minimum angle of propagation of a stationary wave

with respect to the direction of the mean flow.

rad

Υ The eigenfunctions of a discrete Fourier transform.

υ The index of the iterations, for the iterative interpo-

lation of the correlation function.

ε̂ The correction of the reconstruction of the correla-

tion function.

ε The residual of the reconstruction of the correlation

function.

εk The root mean squared average distance between

the measured and predicted dispersion relations,

evaluated along the wavenumber axis.

rad m−1

$ An under-relaxation factor.

%w The similarity ratio, which represents the con-

strained portion of the surrogate synthetic data.

ς The angular polar co-ordinate in the plane x− y. rad

ξ+,ξ−,ξU Random variables with normal distribution.
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Nomenclature Nomenclature

ζ̇ The time gradient of the free surface elevation. m s−1

ζ̂ The non-dimensionalised free surface elevation.

ζ The free surface elevation with respect to the mean

surface level, H.

m

ζW,ν(t, ωj) The complex wavelet transform of the surface ele-

vation ζ measured at the probe ν, evaluated at the

characteristic frequency ωj.

m

Roman Symbols

Symbol Description Units

Ǎ The eigenvalue of a discrete Fourier transform. m

a A function of the Reynolds number and of the rela-

tive submergence.

A(k, ω) The amplitude spectrum of the surface fluctuations. m s

AGj The fitted amplitude of the ridge of the normalised

frequency wavenumber spectrum.

bθ The parameter of the directional distribution Γθ.

c The phase speed of gravity-capillary waves. m s−1

C1,C2 Real constants.

ca The speed of sound in air, ca = 343 m s−1 at the

temperature of 20 ◦C.

m s−1

cg The group velocity of gravity-capillary waves. m s−1

CS The ratio of the frequency-wavenumber spectrum

measured along different dispersion relations.

cs The phase speed of gravity-capillary waves in still

water.

m s−1

cmin The minimum phase speed of gravity-capillary

waves in still water, cmin ≈ 0.23 m s−1.

m s−1

Dm The angular acoustic response of the receiver.

Ds The directivity pattern of the acoustic source.

ds The characteristic size of the bed roughness, or the

diameter of the spheres on the flume bed.

m
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Nomenclature Nomenclature

dw The diameter of the conductance wave probe wires. m

F The Froude number based on the mean surface ve-

locity and mean water depth, F = U0

√
gH.

f The friction factor, defined as f = 8(u∗/UH).

fs The sampling frequency. Hz

fv The frequency of vortices shed by a circular cylinder

immersed in a water flow.

Hz

G A type of Green’s function.

g The gravity constant g = 9.81 m s−2. m s−2

h̄ The vector of the multiplicative factor Q(r) of the

linear acoustic Doppler model.

rad m−2

H The flow mean depth. m

H
(1)
0 The Hankel function of the first kind of order 0.

Hj The Hermite polynomial of order j.

i The imaginary unit, i =
√
−1.

In The modified Bessel function of order n.

J1 The Bessel function of the first kind.

ǩ The non-dimensional wavenumber of the gravity-

capillary waves.

k̂ The wavenumber normalised by the wavenumber of

the stationary waves, k̂ = k/k0.

k The wavenumber vector of the free surface patterns,

k = (kx, ky).

rad m−1

K(ω) The inverse of the dispersion relation Ω(k). rad m−1

k0 The wavenumber of the stationary waves (chapter

4), or the characteristic wavenumber of the surface

elevation (chapter 5).

rad m−1

k1 The wavenumber of the smallest waves resolved by

the surface model.

rad m−1

kB The wavenumber of the Bragg waves. rad m−1
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ks The Nyquist wavenumber. rad m−1

kGx,j The fitted streamwise wavenumber of the nor-

malised streamwise frequency-wavenumber spec-

trum.

rad m−1

l0 The characteristic correlation length of the free sur-

face.

m

l1 The wavelength of the smallest waves resolved by

the surface model, l1 = 2π/k1.

m

LD The size of the insonificated area. m

LF The size of the Fresnel zone. m

Lx,Ly The length of the streamwise and of the lateral ar-

rays of probes, respectively.

m

lx,ly The correlation lengths of the surface elevation in

the streamwise and in the lateral direction, respec-

tively.

m

M The co-ordinates of the acoustic receiver, M =

(xm, ym, zm)T .

m

M The number of point of a data time series.

mf,q The statistical moment of order q of the function f ,

averaged across all probes.

m
(ν)
f,q The statistical moment of order q of the function f ,

measured at probe ν.

n The unit vector normal to the surface.

n The exponent of the power-function vertical profile

of the average streamwise velocity in the flow.

Nζ The number of bins used to determine the statisti-

cal distribution of the free surface elevation, pνζ (ζ).

Np The number of wave probes in one array.

Nx,Ny The number of unique non-negative spatial separa-

tions between wave probes of the streamwise and

lateral array, respectively.

P̂ The short-time average of the amplitude of the

Hilbert transform of the acoustic pressure.

Pa
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Nomenclature Nomenclature

P̃ The amplitude of the Hilbert transform of the

acoustic pressure.

Pa

P The acoustic potential, or the normalised acoustic

pressure in chapter 6.

m2 s−1

Pi The acoustic incident field. m2 s−1

pa The acoustic pressure. Pa

pf (f) The probability density function of the variable f

averaged across all probes.

p
(ν)
f (f) The probability density function of the variable f

measured with the probe ν.

p The pressure in water. Pa

pm Pressure difference measured by the U tube

manometer.

Pa

q The linearised vector difference between the scat-

tered and the incident acoustic wavenumber.

rad m−1

q̃ The vector difference between the scattered and the

incident acoustic wavenumber.

rad m−1

q̃⊥ The horizontal component of the vector difference

between the scattered and the incident acoustic

wavenumber.

rad m−1

Q(r) The factor of the linear acoustic Doppler model. rad m−2

QS The acoustic source density. s−1

Qv The volumetric flow discharge, Qv = UmHWf . m3 s−1

q⊥ The horizontal component of the linearised vector

difference between the scattered and the incident

acoustic wavenumber.

rad m−1

qz The vertical component of the vector difference

between the scattered and the incident acoustic

wavenumber.

rad m−1

r̄e The equidistant set of spatial separations. m

r̄n The binned non-equidistant set of spatial separa-

tions.

m

R The co-ordinates of a generic location.
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Nomenclature Nomenclature

r The spatial separation, r = (rx, ry). m

R̃m(ρ) The distance from the point on the rough surface

with co-ordinates (ρx, ρy, ζ) to the receiver.

m

R̃s(ρ) The distance from the source transducer to the

point on the rough surface with co-ordinates

(ρx, ρy, ζ).

m

Rc The radius of curvature of the surface elevation,

with components Rx and Ry.

m

rs The radius of the acoustic source transducer. m

Rm(ρ) The distance from the point on the average flat sur-
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Chapter 1

Introduction

1.1 Background and motivation

The modelling and measurement of the hydraulic flow conditions in rivers and open

channels are of great importance for the forecasting of flood risks, for the study of

sediment transport, and for the conservation and enhancement of riverine habitat

[e.g. Bates et al., 1997]. As population growth and the effects of climate change

become progressively more visible, there is a growing need to better understand

these phenomena, and to increase the quality of measurement sensors in order to

reduce their uncertainty [e.g. Sayers et al., 2015]. Traditional sensors are installed

underwater. This increases the needs and costs of maintenance, limits the flexibility

of the measurement system, and involves higher risks for the operators [Costa et al.,

2006]. Non-contact measurement devices that can estimate the hydraulic conditions

(mainly the flow discharge and/or the flow mean surface velocity) from above the

water surface have become increasingly popular [Marcus and Fonstad, 2010], par-

ticularly with the advancement of unmanned aerial vehicles which can be used for

their deployment. In some cases the physical grounds of this type of measurements

have not been rigorously examined, or the direct link between the measured quanti-

ties and the physical parameters of the flow require a complex calibration [Marcus

and Fonstad, 2008]. As a result, the measurements often rely on empirical laws

obtained in limited ranges of conditions. These considerations apply especially to

those devices that determine the hydraulic conditions based on the shape and the

dynamics of the free surface neglecting the effects of gravity-capillary waves [e.g.

Fujita et al., 2007]. The links between the free surface of open-channel and river

flows and the hydraulic conditions have not been fully clarified yet, and this causes

large uncertainties of the measurements [Welber et al., 2016].
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The characterisation of the water surface of turbulent flows is of interest in

itself, since it is related to important processes such as the transport of scalars

[e.g. Nagaosa and Handler, 2003, 2012] and the mixing of gas [e.g. Lakehal et al.,

2003, Turney and Banerjee, 2013]. Various authors have suggested that turbulent

coherent structures in a turbulent flow are able to generate characteristic patterns on

the free surface [Tsai, 1998, Savelsberg and van de Water, 2009, Fujita et al., 2011,

Horoshenkov et al., 2013, Nichols et al., 2016]. If measured properly, these patterns

would allow the remote characterisation of the large eddies which are fundamental

for the processes of transport and mixing of gas and scalars. Although there is

widespread agreement that these patterns form, there is very little experimental

evidence of a strong interaction between turbulence and the free surface at least in

subcritical flows. In fact, the correlation between the geometry of the free surface

and turbulent quantities was found to be very low in the experiments of Fujita et al.

[2007] and Savelsberg and van de Water [2009].

The lack of correlation is often attributed to the presence of gravity-capillary

waves at the free surface [Savelsberg and van de Water, 2009]. These waves can

propagate a long distance from where they formed, and consequently affect the

correlation with the local properties of the flow. Gravity-capillary waves have been

studied for almost two centuries, in the ocean but also in rivers and open-channels

[e.g. Stokes, 1847, Lamb, 1932]. When the studies of Miles [1957] and Phillips [1958]

emerged, they provided a new rigorous explanation for the generation of ocean waves

by the action of wind. These studies also appeared at a time when radar and sonar

technologies were developing rapidly. This synergy was the impulse that drove the

advancement of the research on ocean waves and on electromagnetic and acoustic

scattering for many years. For reasons that are probably related to economic and

strategic interests as well as to the complexity of the mathematical problem, the use

of remote monitoring techniques has been largely limited to oceanic applications,

somehow neglecting free surface turbulent flows until the last decade [Marcus and

Fonstad, 2010].

The standard theory of gravity-capillary waves is based on strong simplifications

of the flow dynamics, most relevantly for this thesis as it generally neglects tur-

bulence. Nevertheless, some attempts to apply this theory to turbulent flows have

been made. For example, the behaviour of gravity-capillary waves in relation to vor-

tices [Vivanco et al., 1999], turbulent flows [Rashidi et al., 1992, Hodges and Street,

1999], shear flows [Shrira, 1993], and fixed [Kirby, 1986] and mobile rough beds

[Kennedy, 1969] has been characterised in the past. All these phenomena have been

studied independently, and in most cases the presence of gravity-capillary waves was

given as an initial condition. The mechanisms that generate the waves are not yet
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completely understood, hence the shape and dynamics of the free surface patterns

are currently not predictable. On the other hand, experimental techniques to mea-

sure these patterns have greatly evolved. Optical [Cobelli et al., 2009] and acoustic

[Krynkin et al., 2016] methods for example can now have the required spatial and

temporal resolution for these measurements. It is hoped that these technological

advancements will generate renewed interest in these topics in the near future, so

that the remote monitoring of the hydraulic conditions in turbulent flows can have

wider and more reliable application.

This thesis would like to contribute to these developments, by presenting new

experimental data on the dynamic patterns at the free surface of turbulent flows,

and by testing the application of acoustic Doppler techniques for the measurement

of the flow velocity at the surface. The focus is on shallow turbulent flows over

homogeneously rough beds, since these can be obtained in a laboratory flume in

controlled conditions. Every attempt is made to present the results rigorously and

to interpret them based on the existing mathematical and physical theories. In this

way it is hoped to obtain a better and more general insight about the underpinning

processes than was done empirically in the past. The aim is to show that although

patterns of gravity-capillary waves can reduce the correlation between the dynamics

of the free surface and the turbulent processes, they still carry useful information

about the hydraulic conditions in the flow, and that this information can be retrieved

from the measurement of the acoustic field scattered by these waves.

1.2 Research questions

This thesis will address the following research questions:

• Is it possible to interpret the wave patterns at the free surface of a shallow

turbulent flows based on the theory of gravity-capillary waves?

• Is there a relation that links the patterns of surface waves and their statistics

to the hydraulic properties of the flow, namely the mean surface velocity, the

average streamwise velocity profile, and the homogeneous depth?

• Is it possible to relate the characteristics of these patterns with the Doppler

spectra of the scattered acoustic field, in order to improve the accuracy of

remote measurement techniques applied to shallow turbulent flows?
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1.3 Aims and objective

This research aims at improving the understanding of the free surface patterns that

form at the free surface of shallow turbulent flows, and at testing the capabilities of

acoustic Doppler techniques for the remote characterisation of these patterns and

their dynamics. The first objective is to characterise the surface patterns in a range

of shallow turbulent flows experimentally in a laboratory flume, by determining

their statistics in space and in time, and to provide an interpretation of these mea-

surements based on the theory of gravity-capillary waves in a flow where the time

average streamwise velocity varies with the depth. The second objective is to derive

a model that describes the shape of the free surface of a shallow turbulent flow and

its evolution in time based on the measurements and their interpretation. The third

objective is to measure and characterise the Doppler spectra of the acoustic waves

scattered by the free surface of these flows. The fourth objective is to compare these

measurements with the predictions by a numerical model of acoustic scattering, in

order to interpret the experimental results and to validate the model of the free

surface. The last objective is to use this interpretation in order to suggest possible

future improvements to acoustic remote measurement techniques.

1.4 Thesis structure

This thesis is structured as follows: Chapter 2 summarises the principal results of

previous related studies. Section 2.1 discusses the main mechanisms that have been

proposed by different authors in order to explain the generation and the dynamic

behaviour of the free surface in turbulent flows. Section 2.2 reviews the existing

methods to characterise the water surface behaviour, both in the ocean and in shal-

low turbulent flows. Subsection 2.2.4 presents the existing acoustic measurement

techniques for the remote characterisation of the free surface of shallow turbulent

flows. Chapter 3 summarises the main mathematical theory and results that are

available in the literature and that will be useful for the following analysis. Section

3.1 focuses on the theory of gravity-capillary waves in a flow where the vertical varia-

tion of the average streamwise velocity is approximated by a power function. Section

3.2 presents the equations that describe the acoustic field scattered by the rough

dynamic water surface, based on the Kirchhoff approximation. Chapter 4 describes

the experimental apparatus. This was used in order to collect data about the free

surface of shallow turbulent flows over a homogeneously rough bed in a laboratory

flume, and about the acoustic field scattered by the dynamic water surface.
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Chapter 5 and 6 present the results of the experimental and numerical analyses.

Chapter 5 is focused on the experimental characterisation of the free surface patterns

with arrays of conductance wave probes. Section 5.1 presents the data analysis

procedures. Section 5.2 shows the measurements of the statistics of the free surface

measured at a single location. The statistics are analysed both in time and in

space in section 5.3, where the frequency-wavenumber spectra of the patterns at the

free surface are described. Section 5.3 presents the results of a transient analysis

based on the wavelet spectral method, which allows the characterisation of the

dispersion relation of the surface patterns from short time-series of the elevation

recorded at a limited number of locations. Chapter 6 is focused on the measurements

and numerical simulations of the Doppler spectra of the acoustic field scattered by

the free surface. Section 6.1 presents the numerical model. The Doppler spectra

measured in the backscattering configuration are presented and compared with the

predictions by the model in subsection 6.2.1. The results obtained with the forward

scattering configuration are shown in section 6.2.2. Chapter 7 summarises the main

findings of this thesis, and suggests some future developments.
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Chapter 2

Literature review

2.1 Mechanisms for waves formation in turbulent

shallow flows

The free surface of a turbulent flow is influenced by a large variety of phenomena.

A comprehensive representation of these phenomena is given by the review of Broc-

chini and Peregrine [2001]. These authors identify the two factors that govern the

behaviour of the free surface and its interactions with the turbulent flow assumed

at high Reynolds numbers. These factors are represented by a length scale and a

velocity scale, which define four regions where the effects of turbulence, gravity, and

surface tension have a different relative importance. The typical conditions which

are found in turbulent shallow flows vary between weak turbulence and gravity-

dominated turbulence. Here Brocchini and Peregrine [2001] identify three classes of

surface deformations: passive response to turbulent fluctuations, scars, and waves.

The amplitude of these deformations increases with the strength of the turbulence

and it is limited by gravity, so that it is well represented by the Froude number.

The passive response of the free surface to turbulence manifests itself clearly

at relatively large Froude numbers, when coherent motions inside the flow are able

to contrast the effects of gravity. The most common patterns are the so-called

dimples that can be observed above the core of a vertical vortex attached at the free

surface. Scars are generated by the separation of the flow near the free surface, and

appear as sharp indentations often at the margins of a turbulent upwelling or of a

horizontal vortex. Waves represent the typical dynamic response of the free surface

to a disturbance. They are generated by a matching of scales and velocity with

the flow, but can also spread from a localised deformation such as a dimple or a

scar. Waves can propagate and focus a long distance away from their origin, making
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it difficult to identify the cause that generated them. This section reviews the

main studies about the mechanisms that produce and affect the patterns at the free

surface of shallow turbulent flows, based on the classification proposed by Brocchini

and Peregrine [2001]. Larger attention is devoted to the patterns of gravity-capillary

waves, since these have been observed more clearly during the experiments described

in chapter 5.

2.1.1 Boils, vortices, and scars: the effect of turbulence

Vortex dimples and scars are the manifestation of the interaction between a coherent

turbulent structure in the flow and the free surface. Nezu and Nakagawa [1993]

used the definition of boils for these phenomena, and distinguished between boils of

the first, second, and third kind. Boils of the first and second kind are related to

topographic features on the bed, such as dunes, and to secondary currents in the flow,

respectively. The focus of this research is on flows over homogeneous non-moving

beds, therefore, boils of the first-kind are not considered here. Secondary currents are

typical of narrow channels and of flows over movable sediments where the secondary

currents are predominant, but they have also been observed over homogeneously

rough fixed beds [Rodŕıguez and Garćıa, 2008] and in smooth channels with large

aspect ratio [Tamburrino and Gulliver, 2007]. Boils of the second kind are associated

with a distribution of high-speed and low-speed longitudinal streaks near the free-

surface, and they appear as elongated areas of downwelling and upwelling on the

surface [Tamburrino and Gulliver, 2007]. Boils of the third kind are generated by

bursting motions, which are found both in smooth and rough-bed channels [Nezu

and Nakagawa, 1993]. They correspond to the surface manifestation of the so-

called splats and antisplats motions associated with the rising towards the surface

of hairpin vortices [Pan and Banerjee, 1995, Kumar et al., 1998] or cane vortices

[Khakpour et al., 2012], or to the interaction with surface attached vortices [Tsai,

1998].

The interaction of bursts with the interface creates areas of divergence or con-

vergence of the velocity in the flow, and it does not directly associate with large

surface deformations. It is often studied by modelling the free surface as a no-shear

flat surface [Nagaosa, 1999, Nagaosa and Handler, 2012]. Attached vortices gener-

ate so-called dimples [Brocchini and Peregrine, 2001], which are local depressions

above the vortex core. This mechanism of deformation is efficient [Tsai, 1998, Shen

et al., 1999], but dimples are difficult to measure because of their point-like structure

[Brocchini and Peregrine, 2001]. When vorticity is strong and the turbulent eddies

have the scale which is important for surface tension effects, the surface can deform
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significantly [Brocchini and Peregrine, 2001]. The results are scars which can be

observed next to horizontal vortices [Jeong and Moffatt, 1992, Sarpkaya, 1996].

Numerical studies have demonstrated the existence of a local correlation between

the elevation and slope of the surface elevation and the flow vorticity and turbulent

velocity. Tsai [1998] found larger correlation between streamwise vorticity and free

surface elevation, slope, and curvature. This study was based on a Direct Numerical

Simulation, with a free-slip boundary condition at the bottom boundary. The larger

correlation was associated with the effect of upwelling and downwelling in the initial

stages of the interaction between a coherent turbulent structure and the free surface,

before the attachment of the oblique vortices to the surface. The correlation of the

free-surface curvature with the lateral vorticity was large, and it was related to

the generation of turbulence by short waves [Batchelor, 2000, p.365]. Instead, the

correlation with the vertical vorticity was small. Zhang et al. [1999] showed that

vertical vorticity and free surface elevation are not correlated when the vorticity

distribution is not axisymmetric (e.g., for a vortex approaching at an angle). As a

vortex approaches the free surface, the horizontal vorticity changes rapidly in the

surface layer, and the surface curvature produces secondary vorticity. As a result,

the auto-correlation of the horizontal vorticity component drops rapidly below the

free surface, and becomes negative [Shen et al., 1999]. This affects the ability to

establish the link between the vorticity inside the flow and the characteristics at the

surface, especially in the experiments, where the measurement of the flow near the

surface is difficult.

This is confirmed by the experimental studies, which show a small correlation

between turbulence and the free surface elevation. Fujita et al. [2011] performed a set

of experiments in a laboratory flume with a homogeneously rough bed. They found

an absolute correlation smaller than 0.15 between the vertical turbulent velocity in

the flow and the surface elevation. Savelsberg and van de Water [2009] suggested

the use of a modified surface gradient and of the advective term of the Navier-Stokes

equation as correlators, to investigate the effect of attached vortices. The correlation

was good when turbulence was produced by a partially immersed cylinder, but one

order of magnitude smaller in the case of grid turbulence. These observations suggest

that the mechanism of interaction between the free surface and turbulence is not

limited to the generation of patterns above coherent turbulent structures. Waves

can form at the boundaries of an upwelling and then propagate [Longuet-Higgins,

1996], reducing largely the instantaneous and local correlation [Savelsberg and van de

Water, 2009].
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2.1.2 Gravity-capillary waves generated by turbulent pres-

sure fluctuations

Gravity-capillary waves are commonly observed at the surface of the ocean, where

their generation is due to the interaction with the turbulent wind. This interac-

tion occurs according to two mechanisms suggested by Miles [1957] and Phillips

[1957], respectively. Of these, the mechanism proposed by Phillips [1957] involves

the resonance between turbulent pressure fluctuations in the flow and waves at the

surface. Gravity-capillary waves propagate at a characteristic phase velocity which

is a function of their wavelength and of the depth (see section 3.1.2). Their growth

is promoted, according to Phillips [1957], when the spatial scale and velocity of the

pressure fluctuations matches that of the waves on the surface.

Teixeira and Belcher [2006] showed that a similar mechanism can generate gravity-

capillary waves when turbulence is in the water. These authors considered the prop-

agation of waves in a linearly sheared laminar flow, and coupled them to the flow

turbulence velocity through the value of pressure at the surface. Two types of waves

are distinguished. The first type of waves are freely propagating gravity-capillary

waves that resonate with turbulence with the same mechanism described by Phillips

[1957]. When turbulence is in the water and if the turbulent velocity fluctuations are

of order less than 0.1 m s−1, gravity-capillary waves can only be excited resonantly if

the average flow velocity varies with the depth, and if its maximum is at least equal

to the minimum phase velocity for these waves, approximately 0.23 m s−1 (equation

(3.23)). The resonant growth mechanism is limited by the progressing elongation

of the turbulent structures as they interact with the surface, so that the growth is

bounded in time. The second type of waves are decaying waves which Teixeira and

Belcher [2006] postulate being forced by turbulence. In contrast with the freely prop-

agating gravity-capillary waves, forced waves are believed to propagate at the same

velocity of the turbulence pressure disturbance that generated them. The model of

Teixeira and Belcher [2006] has been derived for an infinitely deep turbulent flow,

where the average velocity varies linearly with the depth and where the effect of the

bottom boundary conditions is neglected. Although it does not strictly apply to the

conditions of a turbulent shallow flow, their study appears to be the only attempt

to explain the mechanism of gravity-capillary waves generation from turbulence in

the water.

Because of their characteristic dependence between speed of propagation and

wavelength (the dispersion relation), gravity-capillary waves are easily identified by

measuring the frequency-wavenumber spectrum of the free surface elevation. There

has been a very limited number of numerical [Borue et al., 1995, Guo and Shen,
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2010] and experimental [Savelsberg and van de Water, 2009] studies that tried to

quantify the frequency-wavenumber spectrum of the waves on a turbulent shallow

flow. Borue et al. [1995] modelled the interaction between the surface and the tur-

bulence generated at the bottom of a shallow flow with low Reynolds number. They

argued that the surface patterns are generated by large vertical vortices attached

at the surface and found a characteristic frequency of the surface patterns related

to the amplitude of the vertical flow velocity fluctuations. The results by Borue

et al. [1995] show that long waves are forced at this characteristic frequency, while

shorter gravity-capillary waves propagate freely due to the rapid dissipation of tur-

bulence at the short scales. They also found that both the spatial spectra of the

surface elevation and of the horizontal turbulent velocity followed a power-law of

the wavenumber.

Guo and Shen [2010] developed a Direct Numerical Simulation of the free sur-

face over homogeneous isotropic turbulence that solves the fully nonlinear surface

equations. In their study there was no mean flow and the depth was infinite. The

numerical simulation showed both turbulence related roughness (due to vertical

and horizontal vortices) and patterns of freely propagating gravity-capillary waves.

Forced waves largely dominated the surface roughness and they followed the same

type of dispersion relation defined by Borue et al. (1995). Free waves propagated in

all directions starting from the large scale splats and antisplats that were generated

by the impingement of turbulent coherent structures. The frequency-wavenumber

spectra showed two clear ridges corresponding to forced and free waves respectively.

Forced waves were found over a broad range of scales, while freely propagating waves

were relatively short. Like Borue et al. [1995], Guo and Shen [2010] suggested that

the generation of forced waves is caused by a quasi-resonant interaction with turbu-

lence which is more effective at the lower wavenumbers. The results of Borue et al.

[1995] and Guo and Shen [2010] were found for a flow with low Reynolds number and

for a flow where the average velocity was zero, respectively. In these conditions, the

resonant growth of gravity-capillary waves according to the mechanism proposed by

Teixeira and Belcher [2006] cannot occur, and the generation of freely propagating

waves is due to nonlinear interactions between forced waves.

Flow conditions which are more representative of shallow turbulent flows have

been investigated experimentally by Savelsberg and van de Water [2009]. The

measurements reported in their study are the only known experimental results

that describe the dispersion of the surface patterns on shallow turbulent flows in

three-dimensions. The frequency-wavenumber spectra determined by Savelsberg

and van de Water [2009] showed evidence of both forced and freely propagating

waves, but they were measured in a flow with grid-generated turbulence which is
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not representative of the turbulence in open channel shallow flows. The spectral res-

olution of their spectra was limited. This hindered the observation of the dispersion

relation near the dominant scales and did not allow for definitive conclusions on the

generation mechanism of the observed free surface patterns.

2.1.3 Gravity-capillary waves in sheared flows

The propagation of gravity-capillary waves is often studied under the assumption

that the flow vorticity is everywhere zero [e.g. Lighthill, 2001]. A few authors inves-

tigated the dispersion relation of gravity-capillary waves in a flow where the average

streamwise flow velocity varies with the depth. In these studies the turbulent veloc-

ity fluctuations are neglected, and the flow is modelled as laminar. Biesel [1950] and

Abdullah [1949] found the analytical solution for a flow with the exponential and

the linear vertical variation of the average streamwise velocity, respectively. These

profiles do not approximate well the streamwise velocity profile in a shallow turbu-

lent flow. Shrira [1993] derived a numerical procedure which provides the dispersion

relation for an arbitrary velocity profile, but only in the case where the mean depth

is infinitely large. The solution proposed by Patil and Singh [2008] applies to the

logarithmic profile which is representative of the velocity in shallow turbulent flows,

but it is only valid when the waves are much longer than the depth of the flow.

The vertical velocity profile in a turbulent shallow flow with rough boundary

can be approximated by a power-law of the vertical co-ordinate [Cheng, 2007]. The

dispersion relation in such a flow was first investigated in an appendix by Lighthill

to the work of Burns [1953]. Fenton [1973] expanded the analysis, and suggested a

numerical procedure that allows the calculation of the dispersion relation in a more

general case. Dalrymple [1977] studied the propagation of nonlinear waves in a flow

where the average streamwise velocity varies vertically based on a numerical finite

difference model, and included the power-function profile with the exponent n = 1/7

as a special case. This solution was found as an expansion with respect to the linear

velocity profile. Here the measured dispersion relation of gravity-capillary waves in

a turbulent flow is compared to the solution for a flow where the average streamwise

velocity profile varies like a power-function of the depth, following the procedure

described by Fenton [1973]. This is reported in subsection 3.1.2.

When the average flow velocity varies with the depth, an additional mechanism

to the one described by Teixeira and Belcher [2006] can promote the resonant growth

of waves on the surface. This mechanism is derived assuming the flow to be laminar,

and according to the theory derived by Miles [1957] it is the main phenomenon that

allows the generation of wind waves in the ocean. When the growth of waves is
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caused by the vertical variation of the average streamwise velocity in the flow, the

mechanism is called critical layer or shear instability. It was first studied by Yih

[1972] upon recognition that the surface equations admit solutions where the phase

velocity is complex if the average flow is sheared. This causes the exponential growth

of the waves. The instability occurs when the average velocity at some depth in the

flow (this depth is called the critical layer) coincides with the phase velocity of

gravity-capillary waves [Yih, 1972]. This resonance condition is the same required

by the theory of Teixeira and Belcher [2006], but the process described by the shear

instability does not require the presence of turbulent fluctuations. According to Yih

[1972] the instability also requires the critical layer to be an inflexion point of the

streamwise velocity profile, a result later dismissed by Morland et al. [1991].

The shear instability can promote the growth of waves that propagate against

the mean flow, if the flow mean surface velocity is larger than the minimum phase

velocity of gravity-capillary waves measured in still water [Caponi et al., 1991]. The

resonant waves can be both two-dimensional (i.e., with the wavefront perpendicular

to the direction of the mean flow) and three-dimensional, but two-dimensional waves

are more unstable [Morland et al., 1991]. Although the shear instability has been

suggested until recently [Young and Wolfe, 2014] as a mechanism capable of gener-

ating waves in flows where the average streamwise velocity varies with the depth, so

far there is no evidence of this phenomenon to occur in flows that are not strongly

stratified.

2.1.4 Waves generated by the interaction with a rough bed

It is well known [e.g. Rayleigh, 1883] that the bed topography can also generate pat-

terns of gravity-capillary waves, which can propagate in all directions in space and in

time. The amplitude of the waves generated by the interaction with the rough bed is

proportional to the spatial spectrum of the bed roughness at the same wavenumber

of the wave. Therefore, this pattern has contributions at all the wavenumbers for

which this spectrum is different from zero, although the waves that propagate up-

stream are expected to have larger amplitude [e.g. Harband, 1976]. When the flow

velocity exceeds the minimum phase velocity of gravity-capillary waves, stationary

patterns of waves can develop. These waves are the ones which propagate against

the flow with the phase velocity equal to the mean surface velocity, so that their

resultant frequency is zero.

The generation of waves in a flow with rough boundary has been investigated in

the past, for a variety of shapes of the roughness [e.g. Harband, 1976, Lee et al., 1989,

Trinh and Chapman, 2013a,b]. In all these studies, the bed roughness was confined in
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a small region with respect to the horizontal scales of the flow. The waves generated

in all directions by the bed roughness sum incoherently, producing a complex three-

dimensional pattern in the region near the disturbance. These dynamic patterns

have been studied, but mainly with the aim of investigating nonlinear phenomena,

such as trains of cnoidal waves, or periodic successions of solitons emitted upstream

from a localised disturbance on the boundary [e.g., Lee et al., 1989]. The focus

in most studies of the interaction between surface waves in a flow and the rough

bottom boundary is on the steady state solution of the problem [e.g., Harband,

1976, Lighthill, 2001]. Here the waves are found interacting constructively to form

a pattern similar to the so-called Kelvin wake, which is commonly observed around

a ship that travels in still water [Lighthill, 2001, p.269]. This representation applies

at very large distance from the disturbance, therefore it does not apply to the case

where the bed is uniformly rough. Currently, there are no known models that

are able to predict the evolution of free surface waves in three-dimensions when

the waves propagate over a nonlinearly sheared flow above a uniformly rough bed

[Touboul et al., 2016]. This in spite of the important applications for the dynamics

of sediments in hydrological flows [e.g. Kennedy, 1969, Chanson, 2000, Andreotti

et al., 2012].

2.1.5 Nonlinear waves

All phenomena discussed in the previous subsections can be explained describing the

free surface according to a linear random model. Such a model represents the surface

as a linear superposition of independent sinusoidal waves with the amplitude and

phase that are randomly distributed. This is the model that is used in this thesis,

and it will be discussed with more detail in subsection 3.1.1. Eventual deviations

from this linear theory can have large effects for the acoustic scattering by the free

surface. The best known example of nonlinear waves are waves of finite amplitude,

such as the so-called Stokes waves [Stokes, 1847]. These waves propagate at a

phase velocity that increases with their slope [e.g. Lamb, 1932, p.417]. They are

characterised by the presence of bound harmonics which are forced to travel at the

velocity of the main wave and they are observable from the measurement of the

frequency-wavenumber spectrum of the surface elevation [e.g. Herbert et al., 2010].

Other nonlinearities interest equally waves of infinitesimal amplitude and slope,

and occur because of the resonant or quasi-resonant interactions among different

modes of the surface elevation, leading to a wide range of complex phenomena [Dias

and Kharif, 1999, Osborne, 2010]. The phenomena are most often described through

a model derived by Zakharov [1968], and called Zakharov equation. The resonance
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is satisfied by all those combinations of waves for which the sum or difference of

the frequencies and of the wavenumbers is equal to zero [Phillips, 1960]. Because

of the shape of the dispersion relation, only combinations of at least four waves

can interact in the range of gravity waves, while triad-interactions are possible for

gravity-capillary waves.

The Zakharov equation is of interest here because it predicts and explains the

growth of three-dimensional patterns on the free surface, due to the instability of a

two-dimensional wave to small three-dimensional perturbations. These phenomena

go under the name of three-dimensional (or modulation) instabilities, they were

classified by McLean et al. [1981] and first studied in shallow water by McLean

[1982]. The class I instability is the so-called Benjamin-Feir instability, which is

the dominant class for small amplitude waves. The class II instability involves the

quintet-resonance between three waves and is often associated with the so-called

crescent-shaped, or horseshoe waves [Shrira et al., 1996]. A study performed by

Zakharov and Shrira [1990] showed that triad-interactions between two surface waves

and a critical layer inside the flow when the waves propagate against the flow causes

the broadening of the angular spectrum of the waves, along a resonance curve in

the wavenumber space that roughly corresponds to a circle with constant radius.

The model developed by Zakharov and Shrira [1990] is only valid when the surface

spectrum is narrow and when the flow velocity is much smaller than the phase

velocity of gravity waves, but it is of notice that this circle resembles the structure of

the radial pattern which is observed experimentally in section 5.3.2. Unfortunately,

very few studies investigated the modulation instability of the waves in a sheared

flow, and only in the case where the average streamwise velocity varies linearly with

the depth [e.g. Thomas et al., 2012]. This velocity profile is not representative of

shallow turbulent flows.

2.1.6 Power spectra of the surface elevation

The linear random model of the free surface elevation is based on the definition of

the power spectrum of the surface elevation. This determines the amplitude of each

of the modes of the surface, as a function of both the wavenumber and the frequency.

These two parameters are related by a dispersion relation which is assumed known,

therefore the spectra are often expressed in terms of either the frequency or the

wavenumber alone. A variety of models for the spectrum of the free surface have

been proposed by different authors, mainly for the spectrum of ocean waves. Most

of these models represent the spectrum as a power-function of the wavenumber or
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of the frequency, which is eventually multiplied by a directional spread function in

order to represent the amplitude of the waves in three-dimensions.

For gravity waves generated by wind in infinitely deep water without mean flow,

Phillips [1958] found a dependence of the power spectrum by the power −4 of the

wavenumber, or the power−5 of the frequency, based on a dimensional analysis. The

−4 exponent was linked to the limiting shape of the waves before breaking, therefore

Phillip’s spectrum is often referred to as equilibrium spectrum. Kuznetsov [2004]

suggested the exponent −4 for the frequency spectrum, based on the argument that

breaking is a mainly two-dimensional process. In the limiting case of long waves in

shallow water, Kitaigordskii et al. [1975] suggested the exponent −3. This author

also showed that the relation between the wavenumber and the frequency spectrum

is complicated by the eventual presence of a non-zero mean flow velocity, and by

the inclusion of a parameter which in the limit when the frequency is independent

by the direction of propagation corresponds to the group velocity. The equilibrium

spectrum when expressed in terms of the frequency does not follow a power law in

general. Other semi-empirical modifications of the equilibrium spectra have been

suggested by different authors. For example, Banner [1990] included the effect of

the Doppler shift induced by the longer waves on shorter ripples, and suggested

a correction factor to Phillips’ fourth-power wavenumber spectrum, leading to the

exponent −5 at the high wavenumbers. Belcher and Vassilicos [1997] dismissed this

result and proposed the exponent −4 for both the wavenumber and the frequency

equilibrium spectra.

The frequency spectrum is generally easier to measure experimentally, because

it only requires the measurement of the elevation at one location. Experimental

measurements in the ocean gave support to the power-function behaviour of the

frequency spectrum. For instance, Pierson and Moskowitz [1964] and Hasselmann

et al. [1973] found an agreement with the exponent −5, while Donelan et al. [1985]

based their formula on the exponent −4. These three works together represent some

of the most cited semi-empirical models of the ocean spectrum, namely the Pierson-

Moskowitz model, the JONSWAP model, and the Donelan spectrum. Relatively

more recent formulations [Elfouhaily et al., 1997] still retain the power-function

dependence while attempting a unified description.

The power-function decay of the wavenumber power spectrum was demonstrated

independently in the context of wave turbulence statistics. Wave turbulence studies

the statistics of homogeneous random weakly nonlinear waves as they mutually

interact [Nazarenko and Lukaschuk, 2016] and is based largely on the Zakharov

nonlinear model. In weak wave turbulence, the nonlinearities take the form of a

slowly varying envelope function. Then, mutual interactions among waves lead
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to cascades of energy across a separation of scales, yielding power spectra with a

similar form to the Kolmogorov spectrum in hydrodynamic turbulence. The slope

of wave turbulence spectra depends on the direction of the energy flux and on the

order of the interactions, therefore on the types of waves involved. The theory

of wave turbulence predicts the exponents −5/2 and −4 for the wavenumber and

the frequency spectra, respectively, for gravity waves subject to a direct cascade

[e.g. Nazarenko and Lukaschuk, 2016]. These are modified to −7/3 and −11/3,

respectively, in the case of an inverse cascade of energy. Gravity waves in shallow

water have the exponents of the frequency spectrum equal to −4/3 for a direct

cascade, and −1 for an inverse cascade [Zakharov, 1999]. Capillary waves admit

triad interactions, therefore the exponent for the direct cascade modifies as −19/4

for the wavenumber spectrum and −17/6 for the frequency spectrum [Zakharov and

Filonenko, 1967, Falcon et al., 2007].

Wave turbulence theory is based on a homogenous and isotropic representation

of the free surface, which is not applicable to ocean waves where the direction of the

wind introduces strong anisotropy. This did not prevent the comparison between

the wave turbulence spectra and the equilibrium spectra [Nazarenko and Lukaschuk,

2016]. Similarly, power functions models have been employed as a reference for

the spectra of the surface elevation generated by the interaction with turbulence.

For instance, Borue et al. [1995] showed that the wavenumber power spectrum of

turbulence-generated waves integrated over all directions of propagation decays with

a small slope between −1 and −2. In contrast, Savelsberg and van de Water [2009]

measured a much steeper decay with the exponent of approximately −8 for the

waves generated in a flow with grid-stirred turbulence. Smolentsev and Miraghaie

[2005] did not quantify the slope of the spectra measured in an inclined flume,

but observed its increase with the Froude number at the higher frequencies. The

spectra of the surface elevation determined by Teixeira and Belcher [2006] also show

evidence of a power-function dependence on the wavenumber, which is apparently

related to the spectrum of turbulence used for their analysis. For the waves in a

shallow turbulent flow, where the flow velocity is comparable with the phase velocity

of gravity-capillary waves and the wave field is largely anisotropic, there is no theory

that predicts the shape of the spectra, and the comparison with existing theories

derived in different context is somewhat arbitrary. The power-function spectra have

the advantage of being easily parametrised with a limited number of parameters,

and they allow the calculation of the characteristic slope and curvature analytically

(see subsection 6.1.2). Therefore, they are used in chapter 6 as a simplified model

to represent the interaction of the rough dynamic surface with the acoustic pressure

field. In that chapter, different values of the spectrum slope are used, in order
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to show the dependence of the scattered acoustic field by this parameter. The

direct measurements of the frequency spectra in chapter 5 show that the power

function shape is a reasonable approximation in a limited range of frequencies and

flow conditions.

2.2 Measurement of the free surface dynamics

A variety of techniques to measure the elevation of the free surface in time and/or in

space have been used by different authors in the past. While some of these techniques

apply only to the measurements in controlled laboratory conditions, others have ap-

plications for the measurements in geophysical flows. For the experiments reported

in chapter 5, the surface elevation was characterised both in time and in space using

two-dimensional arrays of conductance wave probes. Similar arrays were used for

example by Donelan et al. [1985] to measure the frequency-wavenumber spectrum

of ocean waves, and by Horoshenkov et al. [2013] to characterise the space-time

correlation function of the surface in shallow turbulent flows over a homogeneously

rough bed. The conductance wave probes are described in section 4.3 with more

detail. The focus in this section is on remote measurements of the surface elevation,

where the sensors are not in direct contact with the free surface (although they can

be both above or below it). The existing techniques fall in three main categories

according to the physics of the phenomenon which is being used: optical (includ-

ing laser) methods, technologies based on radio waves (including microwaves), and

acoustic methods.

There is a set of requirements for the measurement techniques that can be

adopted in a shallow turbulent flow. The full characterisation of the dynamic be-

haviour of the free surface of these flows requires the simultaneous measurement of

the free-surface elevation in time and in space. The patterns on the free surface

are expected to be three-dimensional. The horizontal scales of these patterns vary

from the shortest scales with the order of a few millimetres to the largest scales

of the same order of the depth (see [Horoshenkov et al., 2013], and the results in

section 6.2 for the quantification of the shortest scales). The standard deviation of

the surface elevation is found in the range between 0.05 mm to 2 mm across the flow

conditions investigated here and also by Horoshenkov et al. [2013] and Krynkin et al.

[2014]. Assuming the homogeneous mean depth of the flow of the order of 0.1 m,

and the Froude number near 0.5, the mean surface velocity is expected in the order

of 0.5 m s−1. Based on these estimates, the characteristic frequency expected for

the patterns on the surface is between 5 Hz for the large scales comparable with the

depth and 100 Hz for the shorter scales of a few millimetres. Therefore measurement
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techniques must have a high spatial resolution especially in the vertical direction,

they must be able to record the surface elevation over a relatively large area, and

they must allow measurements at high frequency (or be robust to aliasing).

2.2.1 Optical methods

A few authors have attempted to develop an experimental technique that allows

the simultaneous measurement of the free surface elevation and of the surface flow

velocity field. The technique derived by Law et al. [1999] measures the flow velocity

field on a vertical plane with a standard Digital Particle Image Velocimetry (PIV)

method [Willert and Gharib, 1991]. The measurement plane is defined by a thin

laser sheet generated below the surface. A fluorescent dye is added to the water,

and the surface elevation is measured as a sharp gradient of light intensity at the

intersection between the laser sheet and the free surface. A similar procedure but

without the use of dye was implemented by Fujita et al. [2011] in order to study the

correlation between free surface patterns and the flow turbulent velocity field in a

set of shallow turbulent flows over a homogeneously rough bed. The high horizontal

spatial resolution makes these methods ideal for observing the shorter scales on

the free surface. On the other hand, the spectral resolution with these methods is

generally low because of the limited field of view of the camera, and because of the

generally low frequency of sampling.

The surface gradient detector developed by Zhang and Cox [1994] measures

the slope of the free surface in a two-dimensional region from the refraction or

reflection of collimated light emitted by a coloured screen. The method was applied

successfully in the reflective mode version by Dabiri and Gharib [2001] and Dabiri

[2003] to the study of the free surface of a horizontally sheared flow. The size of the

measurement area in these studies was limited. Dabiri and Gharib [2001] discuss the

uncertainties of the method, which are mainly related to aberrations of light in the

reflective mode. Zappa et al. [2008] developed a technique that reconstructs the free

surface slope based on the polarisation of scattered non-polarised light. The range

of surface slopes that can be measured with reflection-based techniques is generally

limited [Jähne et al., 1992].

The refraction of a light source placed below the channel bottom was used for ex-

ample by Jähne et al. [2005]. The free surface synthetic Schlieren method described

by Moisy et al. [2009] is based on the refraction of non-collimated light at the free

surface, and uses a random pattern of dots. Bock and Hara [1995] introduced a

technique that measures the slope of the free surface in two orthogonal directions

from the refraction of a scanning laser beam. A similar technique applied to the
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measurement of the surface slope at one single location was implemented by Hughes

et al. [1977] with the laser source installed below the water surface and by Lange

et al. [1982] with the laser source above the water surface. The technique described

by Bock and Hara [1995] was implemented by Savelsberg and van de Water [2009]

for the study of the patterns at the surface of a turbulent flow with grid-generated

turbulence, in a laboratory flume. Refraction-based methods require either the light

source to be immersed in water, or the flow bottom to be transparent, therefore

they are not practical for the measurements of flows over a rough non-transparent

boundary.

The reconstruction of the free surface elevation based on the reflection of a

random pattern of light recorded with two cameras was described by Tsubaki and

Fujita [2005]. The first measurements of short surface waves in the ocean were

based on stereo photography [e.g. Schumacher, 1950]. The specular reflection of

light from the water surface occurs at a location that depends on the geometry

of the acquisition system. The reconstruction requires either the projection of a

pattern of light and the use of dye [e.g. Tsubaki and Fujita, 2005], or the solution

of a minimisation problem based on physical constraints [e.g. Gallego et al., 2011].

An accurate technique based on the airborne projection of a two-dimensional

fringe pattern on the free surface is the Fourier transform profilometry [Takeda et al.,

1982], which was extended to the measurement of the water free surface by Cobelli

et al. [2009] and Maurel et al. [2009]. The method was applied to the measurement

of the frequency-wavenumber spectrum of gravity-capillary wave turbulence in a

wave tank [i.e., Herbert et al., 2010, Cobelli et al., 2011, Aubourg and Mordant,

2015]. In its implementation, the technique requires adding a white dye to the water

in order to improve its light diffusivity. This requirement makes the profilometry

technique (and the other techniques that require the use of dye) less practical for

the measurement of the free surface of turbulent flows due to the large amount of

water that often needs to be recirculated by the system, and the large test area size.

2.2.2 Scattering of radio waves from the surface of the ocean

The dynamics and topography of the ocean surface have been studied for many years

based on the measurement of radar scattering [e.g. Hauser et al., 2005, chap.5]. The

measurements have been performed with a wide range of frequencies from platforms,

ships, aircrafts, and satellites. The most common configuration is the so-called

backscattering or monostatic configuration, where the scattered waves are recorded

by an antenna at the same location of the emitter. In this case the statistics of

the surface are obtained based on the intensity and on the Doppler spectrum of the
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return signal, or sea echo. The alternative configuration, called forward-scattering

or bistatic configuration, has the receiver antenna on the opposite side of the emitter

with respect to the scattering surface, and it is seldom used for oceanic measurements

with a few exceptions [e.g. Awada et al., 2006].

The scattering of electromagnetic waves by the water surface is a complex prob-

lem, which is usually simplified by means of a set of approximations. The most

common types of approximations are the Kirchhoff approximation and the small

perturbation method (SPM). The Kirchhoff approximation represents the scatter-

ing from any point on the rough surface as if it occurred from a plane tangent to

the surface at the same point [e.g. Bass and Fuks, 1979, p.220]. This is the type of

approximation which is used mainly in this thesis. It is presented with more detail in

section 3.2.1, where the conditions for its validity are discussed. The SPM assumes

that the amplitude of the surface corrugation with respect to a flat plane is small

compared to the projection of the incident electromagnetic waves in the direction

normal to such plane (typically in the vertical direction) [e.g. Bass and Fuks, 1979,

p.72]. In the ocean the typical scales of the waves range from a few metres to some

millimetres, and the shorter waves are typically much smaller in amplitude. Radar

backscattering is mostly influenced by a limited range of scales which depend on

the frequency of the signal and the geometric configuration. This allows treating

the scattering from short waves with the SPM, while including the effects of the

longer waves in terms of the Kirchhoff approximation. This composite approach is

usually referred to as two-scale model, or composite-roughness model [Wright, 1968,

Valenzuela, 1968]. Other approximations based on a higher-order expansion of the

Kirchhoff model consider the scattering from parabolic surfaces instead of planes

[e.g. Ivanova and Broschat, 1993, Guerin et al., 2010].

The radar emitters and antennas used for ocean scattering measurements are

usually characterised by large apertures and consequently narrow directivity. This

allows the measurements to be performed in the so-called Fraunhofer zone, where the

size of the scattering surface is effectively small compared to the distance between

the emitter and the antenna to the surface. If this condition is satisfied, the problem

of scattering can be greatly simplified (see for example the derivation in subsection

3.2.2, where a similar simplification is obtained assuming the correlation length of

the surface to be much smaller than the distance from the acoustic transducer and

receiver).

The majority of the experimental studies of scattering from the ocean are per-

formed in the Fraunhofer zone, where the size of the scattering region is much smaller

than its distance from the source and the receiver of the scattered waves. In this

case the backscattering in a specific direction is governed by the interaction between
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the electromagnetic waves and the surface waves which satisfy a so-called Bragg

resonance condition [Crombie, 1955, Barrick, 1972]. The wavelength of the Bragg

resonant surface waves is equal to half the wavelength of the incident electromag-

netic wave divided by the cosine of the angle of incidence (see equation (3.127)).

The intensity of the backscattered electromagnetic field is related directly to the

amplitude of the Bragg waves on the surface [e.g. Barrick, 1972]. In the ocean, these

waves propagate at a velocity which neglecting nonlinear effects is governed by a

simple dispersion relation. Therefore, the Doppler spectra of the backscattered field

at first order shows two sharp peaks at the frequency of the Bragg waves. This

allows for example the direct measurement of the currents in the ocean from the

shift of the Bragg Doppler peaks [Stewart and Joy, 1974, McGregor et al., 1997].

The nonlinearities of the ocean surface complicate the scattering of electromag-

netic waves. These effects are particularly important for Bragg scattering because of

its high response to specific wavelengths on the surface. The most direct manifesta-

tion of the nonlinear behaviour of the free surface is the modulation of the Doppler

spectrum of the scattered electromagnetic field. This is explained by terms of the

second-order of an SPM expansion, which increase the width of the Doppler peaks

near the Bragg frequencies (see subsection 3.2.2). The amplitude of the second-order

spectrum depends on two coupling coefficients, representing the hydrodynamic and

the scattering (electromagnetic) coupling, respectively. The hydrodynamic coupling

coefficient has been calculated by Weber and Barrick [1977] based on a second-order

small slope expansion of the irrotational free surface equations in an infinitely deep

ocean. It relates to the nonlinear interaction between one freely propagating wave

and a forced (evanescent, [Weber and Barrick, 1977]) wave. The scattering coupling

coefficient relates to the multiple scattering of the acoustic or electromagnetic waves

between the two surface waves [Lipa and Barrick, 1986]. This can have a relatively

large amplitude even when the slope of the free surface is small, if the vector differ-

ence between the wavenumbers of the surface waves statisfies the Bragg resonance

conditions. If the coupling coefficients are known, the measurement of the Doppler

spectra in specific conditions allow the inversion of the spectrum of the free surface,

thus providing more information than what is obtained from the first-order Bragg

peaks [Lipa and Barrick, 1986, Holden and Wyatt, 1992].

Another nonlinear phenomenon that similarly affects the Doppler spectra of the

scattered acoustic waves is the modulation of short waves by longer and larger waves.

When short waves propagate on longer waves, they experience different types of

modulations: (i) the velocity of the short waves is modulated by the perturbation

velocity of the long wave, (ii) the wavenumber is modulated due to straining by the

long wave, (iii) the width and amplitude of the short waves are also modulated,
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(iv) the short waves are tilted as they travel along the sides of the long wave,

and (v) the short waves are displaced vertically by the long wave. Each of these

modulations have been expressed by various authors [e.g. Keller and Wright, 1975,

Hara and Plant, 1994] in terms of transfer functions that multiply the backscattered

spectrum, when scattering occurs in the Fraunhofer zone. Four transfer functions

are commonly defined, one for the generic hydrodynamic modulation [Keller and

Wright, 1975, Hara and Plant, 1994] (including the wavenumber and amplitude

modulations), one for the tilt modulation [Keller and Wright, 1975, Hara and Plant,

1994], one for the vertical displacement [Hara and Plant, 1994] (range modulation),

and one for the velocity modulation [Keller et al., 1994]. These are discussed with

more detail in subsection 3.2.2, where an estimate of these transfer functions is

derived based on a simplified expansion analysis.

The models described above are based on a perturbation with respect to the

linear representation of the free surface, which strongly simplifies the actual surface

dynamics and the physics of scattering. Zakharov’s model is believed to represent

more realistically the nonlinearities of the free surface, but it is of hard and lengthy

implementation [Nouguier et al., 2009]. More accurate studies of backscattering

by ocean waves have been performed numerically with slightly simplified nonlinear

models of the free surface, and were usually based on Monte Carlo simulations [e.g.

Rino et al., 1991, Toporkov and Brown, 2000, Johnson et al., 2001]. These stud-

ies compared the predictions of linear and nonlinear hydrodynamic models applied

to the Doppler spectrum of electromagnetic waves scattered from two-dimensional

ocean wind waves. The calculations were performed with a Kirchhoff model and

with a two-scale model [Johnson et al., 2001], and with an iterative extension of the

Kirchhoff model [Rino et al., 1991, Toporkov and Brown, 2000]. Random realisations

of the free surface were generated based on the Pierson-Moskowitz spectrum [Pier-

son and Moskowitz, 1964], and then evolved in time according to the three models.

The linear model corresponded to the one employed in this thesis and described

in subsection 6.1.1. The three studies implemented a nonlinear model derived by

Creamer et al. [1989], which is accurate to the second-order of the surface slope. The

same model was applied in three-dimensions by Soriano et al. [2006], together with

a boundary elements method for the electromagnetic scattering. Creamer’s model

does not include surface tension effects, therefore it cannot be used for modelling

capillary waves. Its application is also computationally demanding, as it requires

O(N2
ρ ) operations, where Nρ is the number of points on the modelled surface. John-

son et al. [2001] used an additional nonlinear model proposed by West et al. [1987],

which is based on a small slope expansion of the hydraulic velocity potential at the

surface, and it is accurate to any order. This latter model requires the integration in
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time of the differential equations governing the evolution of the physical variables,

and it was found subject to instabilities by Johnson et al. [2001]. Both nonlin-

ear models predict broader Doppler spectra than the linear model (the model by

West et al. [1987] has the broadest spectra), showing the importance of the surface

nonlinearities for the Doppler spectra. These results were confirmed by Nouguier

et al. [2011a,b] based on a set of scattering models including the parabolic Kirchhoff

expansion by Guerin et al. [2010], using both Monte Carlo and statistical simula-

tions with a small-slope Lagrangian weakly nonlinear surface model [Nouguier et al.,

2009]. It should be noted that none of the hydrodynamic models cited here are read-

ily applicable to modelling of the free surface of shallow turbulent flows, for which

the surface dynamics are still largely unknown.

2.2.3 Applications of optical and radio-based techniques for

monitoring of channel and river flows

Some of the measurement techniques reported in the previous subsections have been

proposed for the characterisation of the free surface of turbulent flows and rivers.

These include both optical and radio-based methods. In most cases the aim was to

obtain a measure of the mean surface velocity of the flow. Stereographic methods

have been used for field measurements, also in rivers [e.g. Gallego et al., 2011].

They can record the elevation on large areas, but with limited spatial resolution,

and typically with low frequency. Methods based on the recording of natural or

artificial light reflected by the surface with a camera [Chou et al., 2004] also have

potential applications in the field. The intensity of the reflected light depends on

the slope of the patterns on the surface, and the relationship between the measured

quantities and the physical elevation of the surface is found only empirically [e.g.

Chou et al., 2004]. The accuracy of these methods depends largely on the quality of

the illumination. Alternative techniques such as the Space-Time Image Velocimetry

[Fujita et al., 2007] are intermediate between Large Scale PIV methods that track

the position of single scatterers and the methods based on the reflection of natural

light. The relation between the measurements with these techniques and the shape

of the free surface is not clear.

A range of sensors that estimate the flow velocity in partially filled pipes and

open channel flows based on the measurement of the Doppler spectrum of electro-

magnetic waves are available in the market. LaserFlow by Teledyne ISCO uses the

scattering of an airborne laser beam focused below the free surface, therefore as-

suming the surface to be homogeneously flat. Q-Eye Radar MT by HydroVision,

RG-30 by Sommer, and Flo-Dar by Hach all record the Doppler spectrum of mi-
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crowaves at the frequency of approximately 24 GHz (K-band) backscattered by the

free surface. These systems also implement a pulsed ultrasonic sensor in order to

measure the mean flow depth, without accounting for the surface fluctuations. These

electromagnetic Doppler sensors are characterised by a narrow directivity, and they

estimate the velocity of the free surface based on the Bragg scattering mechanism

assuming that the surface moves at the mean surface velocity, without accounting

for the presence of gravity-capillary waves.

In spite of the relatively large number of applications of Doppler techniques

for the remote monitoring of turbulent flows, the scientific studies on the subject

have been limited. Plant et al. [2005] developed a microwave coherent radar system

to estimate the surface velocity of natural rivers from the Doppler spectrum of

the backscattered waves. They interpreted the Doppler spectra in the same way

as it is traditionally done in the studies of the ocean surface. They detected two

broad Bragg peaks that correspond to advancing and receding waves and defined the

characteristic flow velocity as the average between the two peaks. They were able to

obtain accurate estimations of the velocity from sensors mounted under a bridge, on

a cableway, on the river bank, and even on an airplane and a helicopter. The Bragg

peaks were easily detected in presence of rain, but they were difficult to identify

under clear weather conditions, when only one wide and asymmetric peak in the

spectrum became visible. In this case the velocity estimations became less accurate

and often ambiguous. The unpredictability of the performance of radar Doppler

sensors in rivers was confirmed by Costa et al. [2006], who used both microwave

and UHF radar systems. An apparently better fit with the measured surface and

depth-averaged velocities was reported by other authors [Wang et al., 2007, Shen

and Wen, 2010, Welber et al., 2016]. So far these methods have found only limited

applications. All the above studies are purely experimental and they lack a rigorous

investigation of the dynamics of the free surface and of the scattering process. This

has impeded the correct interpretation of the experimental results.

2.2.4 Applications of acoustic techniques for monitoring of

channel and river flows

ADS limited liability company (LLC.) produces two types of airborne ultrasonic

sensors that measure the free surface of turbulent flows in partially filled pipes and

in manholes. ADS Echo measures the homogeneous mean surface depth in manholes

based on the recording of focused pulses. ADS CS5 measures the mean surface flow

velocity in partially filled pipes based on the Doppler spectrum of the ultrasonic

waves backscattered by the free surface, and the homogeneous mean surface depth
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based on scattering of ultrasonic pulses. The only known scientific study of airborne

acoustic ultrasound Doppler methods applied to turbulent flows was reported by

Fukami et al. [2008]. In this study the analysis procedure was not described, and

examples of the measured Doppler spectra were not provided. The sensitivity of

the system was found varying unpredictably with the flow conditions, suggesting

the need for a more detailed investigation of the underlying phenomena. More re-

cent studies in acoustics have tried to directly measure the surface elevation from

the measurement of the airborne ultrasonic acoustic field scattered by the free sur-

face. These followed two approaches, the stationary phase method and an inversion

method based on the principles of acoustic holography, respectively.

The applications of the stationary phase method to the scattering from a rough

surface have been known for long time [Barrick, 1968]. The method allows the

reconstruction of a rough scattering surface at one single location based on the

measurement of the phase of the scattered acoustic signal. The application of the

stationary phase method to the reconstruction of the surface elevation with airborne

ultrasounds was demonstrated by Wang et al. [1991] for a flat layer of water, and

extended by Nichols et al. [2013] to the measurement of the local elevation of a

rough water surface. These authors implemented the method in a laboratory flume

to measure two-dimensional patterns of forced gravity waves as well as the patterns

on the surface of a set of shallow turbulent flows. The stationary phase method

was also applied successfully by Krynkin et al. [2014] to the measurement of the

standard deviation of the free surface elevation in a range of shallow turbulent flow

conditions in a laboratory flume.

The requirements for the applicability of the stationary phase method were iden-

tified by Nichols et al. [2013], and they pose some limitations to the range of hy-

draulic conditions where the method can be applied accurately. More sophisticated

methods which implement arrays of transducers and/or receivers have been devel-

oped. Ultrasound-based imaging is common in medical science [e.g. Fenster et al.,

2001] and in non-destructive testing [e.g. Zhang et al., 2010]. Here the emitted signal

is generally broadband (a pulse), and the shape of the scatterer is obtained by com-

bining both the spatial and temporal information in the scattered signal. Broadband

signals have applications for the reconstruction of the water free surface elevation as

well, but these are generally limited to underwater acoustics. For example, Walstead

and Deane [2013] reconstructed the shape of nearly-sinusoidal two-dimensional wa-

ter waves from the scattering of broadband ultrasonic signals recorded underwater

by a single receiver. The same technique was applied by Walstead and Deane [2016]

but with arrays of receivers in order to reconstruct the shape of waves in a shallow

sea environment.

26



CHAPTER 2. LITERATURE REVIEW

In air the use of broadband signals is made difficult by the poor coupling with

the material of the transducer [Chimenti, 2014], and the number of receivers that

can be used simultaneously is limited. Accurate measurements of the rough sur-

face are possible, but only with impractical and expensive experimental setups [e.g.

Robertson et al., 2002]. Krynkin et al. [2016] developed an alternative technique

that recovers the shape of the surface from the inversion of the Kirchhoff scattering

integral. In this case the measurements are performed with a number of receivers

smaller than the number of locations where the surface elevation needs to be recon-

structed. As a result, the problem is underdetermined. The inversion is calculated

using techniques which are common in generalised acoustic holography [Maynard

et al., 1985, Veronesi and Maynard, 1989], such as the singular value decomposition

(SVD) with Tikhonov regularisation [Williams, 2001, Leclère, 2009].
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Chapter 3

Theoretical background

This chapter describes the derivation of the mathematical equations and relations

which are used throughout the following chapters. Section 3.1 is focused on the

fluid dynamic equations which describe the evolution of the free surface of a shallow

turbulent flow. Here the free surface is represented as a linear superposition of sinu-

soidal waves. In section 3.1.2 the dispersion relation of gravity-capillary waves, i.e.,

the relation between their wavenumber and frequency, is presented for the waves that

propagate in a flow where the average streamwise velocity varies vertically according

to a power-function of the depth. This relation is compared to the measurements

of the frequency-wavenumber spectra of the surface elevation in chapter 5. The

empirical model of the power-function time averaged streamwise velocity profile is

described in subsection 3.1.4. Models of the statistics of the free surface elevation

based on a linear and weakly nonlinear model are presented in subsection 3.1.6.

These models are also compared with the experimental measurements in chapter 5,

based on the gradual wavelet reconstruction technique reported in subsection 3.1.7.

Alternative models of the surface elevation consider random distribution of wave

packets. The derivation of the equations that describe the evolution of wave pack-

ets, or wave groups, are reported in subsection 3.1.3. The statistics of the amplitude

of these packets, the so-called envelope, are described in subsection 3.1.8 as obtained

for linear and weakly nonlinear waves. The model of wave groups is the basis for

an analysis procedures that allow the characterisation of the spatial and temporal

statistics of the free surface. This procedure is described in subsection 3.1.9, and it

is applied to the experimental measurements in subsections 5.4.2.

Subsection 3.2.1 presents the standard derivation of the integral equations that

describe the acoustic field scattered by a rough smooth surface based on the Kirch-

hoff approximation. Subsection 3.2.2 discusses the scattering by a dynamic surface,

and the resulting Doppler spectrum of the scattered acoustic field. The results in
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these subsections were used for the modelling of the acoustic scattering and for the

measurement of the statistics of the rough surface based on the measured scattered

field in chapter 6.

3.1 Derivation of the free surface model

3.1.1 Linear free surface model with random phase

The dynamic model of the free surface implemented in chapter 6 in order to study

the Doppler spectrum of the scattered acoustic field is based on a linear model of

gravity-capillary waves with random phase and amplitude. The main assumption in

this section is that the free surface elevation is statistically stationary, which means

that its statistics are independent of the spatial location and of time. The surface

elevation function, ζ, is defined as the instantaneous local deviation of the flow depth

from its local average in time, which is called H. The depth is the distance between

the bottom and top boundaries of the flow, evaluated along the direction normal to

the slope of the bottom boundary. The roughness of the bottom boundary is not

considered explicitly in the equations presented here. In the experiments reported

in the thesis, the system of reference has the origin on the undisturbed average flat

surface, with the z-axis normal to the slope of the bottom boundary and pointing

upwards, so that z = −H at the bottom and z = ζ at the free surface. The depth

H is constant and uniform in space and in time. The flume reference system has

the direction x parallel to the mean surface velocity, and the direction y such that

x, y, and z form an orthogonal triad. The surface elevation is a function of the two

spatial dimensions x and y and of the time t, therefore it is written as ζ(x, y, t).

Based on the assumption of stationarity, it is possible to write a realisation of

the free surface elevation in space and in time in the form of a Fourier integral,

ζ(x, y, t) = <
{∫ ∞

0

∫ ∫ ∞
−∞

A(k, ω)ei[k·ρ−ωt+Φ]dkdω

}
, (3.1)

where ρ = (x, y), k = (kx, ky) is the wavenumber vector, ω is the radian frequency,

and Φ is the initial phase which is usually taken as a random variable uniformly

distributed between 0 and 2π. The symbol < indicates that only the real part of

the integral should be considered. This applies to the rest of the discussion in this

section, therefore the symbol will be omitted in the rest of this section. A(k, ω)

is called the amplitude spectrum of the water surface elevation. The frequency-

wavenumber spectrum of the surface elevation is indicated by S(k, ω), and it is
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defined as

S(k, ω) =

∫ ∫ ∫ ∞
−∞

<ζ(x, y, t)ζ(x+ ρxx, y + ρyy, t+ τ)> e−i[k·ρ−ωτ ]dρdτ, (3.2)

where <> denotes the average across x, y, and t, and r = (rx, ry) and τ are the

spatial and temporal separations. The integrals in equations (3.1) and (3.2) are gen-

eralisations of the complex Fourier transform in the limit as the area of integration

tends to infinity, i.e., ∫ ∞
−∞

f(x)dx = lim
x0→∞

1

x0

∫ x0

−x0

f(x)dx, (3.3)

where x ∈ (−x0, x0). The quantity

W (r, τ) =<ζ(x, y, t)ζ(x+ rx, y + ry, t+ τ)> (3.4)

is called the space-time correlation function of the surface elevation. Equation 3.2

can be calculated directly from the measurement of the correlation function in order

to determine the frequency-wavenumber spectrum, which is done in chapter 5. The

amplitude spectrum and the frequency-wavenumber spectrum are related by

|A(k, ω)dkdω|2 = S(k, ω)dkdω. (3.5)

One can represent the wavenumber vector in polar co-ordinates k and θ, where

k = |k| and θ is the angle between k and the direction x. The angular spatial

spectrum is then defined as

S(k) = S(k, θ) =

∫ ∞
0

S(k, θ, ω)dω, (3.6)

while the frequency spectrum is

S(ω) =

∫ 2π

0

∫ ∞
0

S(k, θ, ω)kdkdθ. (3.7)

In section 3.1.2 it is shown that the definition of ζ based on equation (3.1) satisfies

the Navier-Stokes equations and the equation of continuity at the first order of the

wave amplitude and slope, for an incompressible and inviscid fluid where the depth

and the time averaged streamwise flow velocity are uniform in the directions x and y.

The linearisation of these equations is valid under some circumstances which will be

made clear. It allows separating the contribution of each wave with the wavenumber

k and the frequency ω. This procedure enables to determine a relation between the
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frequency and the wavenumber,

ω = Ω(k) = Ω(k, θ), (3.8)

which is called the dispersion relation.

The fact that the waves follow an explicit and deterministic dispersion relation

simplifies the calculation of the spectra, and allows the prediction of the temporal

evolution of the free surface based on the knowledge of the spatial spectrum and of

the initial conditions. In fact, the spatial spectrum can be calculated as

S(k) =

∫ ∞
0

S(k, ω)δ(ω − Ω(k))dω =
1

2
S(k,Ω(k)), (3.9)

where δ is a delta function. Consequently, equation (3.1) is simplified as

ζ(x, y, t) =

∫ ∫ ∞
−∞

A(k,Ω(k))ei[k·ρ−Ω(k)t+Φ]dk. (3.10)

In equation (3.9) the symmetry of the spectrum, i.e.,

S(k,−ω) = S(−k, ω), (3.11)

was used.

Often the frequency spectrum is more easily measured than the spatial spec-

trum. The relation between the two spectra is not straightforward. The frequency

spectrum is written in polar co-ordinates as

S(ω) =

∫ 2π

0

∫ ∞
0

S(k, θ, ω)δ(ω − Ω(k, θ))kdkdθ. (3.12)

If the dispersion relation can be inverted, i.e., if a function K(ω, θ) which satisfies

Ω(K(ω, θ), θ) = ω (3.13)

exists, then equation (3.12) becomes, after a change of variable [e.g., Kitaigordskii

et al., 1975],

S(ω) =

∫ 2π

0

S(K(ω), θ)

|∂Ω/∂k|k=K(Ω,θ)

K(ω, θ)dθ, (3.14)

where

cg = ∂Ω/∂k (3.15)
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is called the group velocity. Equation (3.14) is used in section 5.3 in order to justify

the measured peaks of the frequency spectrum at the frequency where the group

velocity is equal to zero.

3.1.2 Dispersion relations

In this subsection, the dispersion relation of gravity-capillary waves propagating in a

flow with constant uniform depth H and with the average streamwise velocity U(z)

that varies in general with the depth z is considered. Two cases are considered.

In the first case the flow is irrotational, and the flow velocity is constant with the

depth, i.e.,

U(z) ≡ U0. (3.16)

In the second case the vertical velocity profile in a turbulent shallow flow with rough

boundary is approximated by a power-law of the vertical co-ordinate [Cheng, 2007],

such as

U(z) = U0

(
1 +

z

H

)n
. (3.17)

The relation between the exponent n and the Reynolds number and relative sub-

mergence of the flow is discussed in subsection 3.1.4.

The solution when the flow is irrotational is well known. The solution when the

average streamwise velocity profile follows equation (3.17) can be found numerically

based on a procedure suggested by Fenton [1973]. The derivation of both solutions

is given in the Appendix A. The flow is assumed to be inviscid and incompressible,

and the fluid domain extends to infinity along both the x- and the y-direction.

The density of air is neglected, and the boundary equations are linearised assuming

that (i) the wave perturbation velocity is much smaller than the average streamwise

velocity at the surface, (ii) the amplitude of the surface fluctuations is much smaller

than the homogeneous mean depth, and (iii) the spatial gradient of the surface

elevation is very small. The bed roughness is neglected, and the boundary conditions

at the bed and at the free surface are expanded near ζ = −H and ζ = 0, respectively.

The solution considers a single plane sinusoidal wave with the wavenumber vector

k, the frequency ω, and the phase velocity

c =
ω

k
. (3.18)
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In the irrotational case the phase velocity of the gravity-capillary waves is found

as

c(k, θ) = |U0 cos (θ)| ±

√(
g +

γw
ρw
k2

)
tanh (kH) , (3.19)

where g is the gravity constant, and γw and ρw are the surface tension coefficient

and the density of water, respectively. The corresponding dispersion relation is

Ω(k, θ) = |kU0 cos (θ)| ±

√(
g +

γw
ρw
k2

)
k tanh (kH) . (3.20)

The two signs in equations (3.19) and (3.20) represent the waves that propagate

upstream (−) and downstream (+), respectively. Equation (3.20) shows that the

constant flow velocity induces a shift of the frequency proportional to the scalar

product of the wavenumber and the mean velocity vectors. The shift is represented

by the non-dispersive part of the equation, and it corresponds to

Ω(k, θ) = kU0 cos (θ) . (3.21)

Equation (3.20) is used in section 5.3 and compared to the measured dispersion

relation in a shallow turbulent flow.

In still water, where U0 = 0, the phase velocity in still water takes the form

cs =

√(
g +

γw
ρw
k2

)
tanh (kH). (3.22)

This has a minimum in water at ambient temperature,

cmin ≈ 0.23 m s−1. (3.23)

When the average streamwise velocity profile follows equation (3.17), the phase

velocity of gravity-capillary waves is given by [Fenton, 1973]

c2 =

(
g + γw

ρw
k2
)

Ψ̌(0)

(Ǔ − 1)[(Ǔ − 1)− nǓΨ̌(0)]
, (3.24)

where

Ǔ = U0 cos (θ)/c, (3.25)

θ is the angle formed by the wavenumber k with respect to the streamwise direction,

and Ψ̌(0) is found by integrating numerically an initial value problem. Here the

integration was performed with a fourth-order Runge-Kutta method on a grid of
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100 points between ž = −1 and ž = 0, where ž is the non-dimensionalised vertical

co-ordinate. The equation that needs to be integrated is singular when 0 < c < U0,

which occurs for the waves with |cs| < U0 and with cos (θ) < 0. Therefore, a solution

with the power function velocity profile was not attempted for these waves. The

factor Ǔ depends on the phase velocity c, therefore the solution was found with a

least square non-linear fitting procedure based on the trust-region-reflective method

and implemented in the ’lsqnonlin’ standard function in Matlab R2015b [Coleman

and Li, 1996].

The dispersion relation based on the power function velocity profile is given by

Ω(k, θ) = kc, (3.26)

where c is determined from equation (3.24). In section 5.3 it is shown that equations

(3.24) and (3.26) approximate well the measured dispersion relation in a shallow

turbulent flow over a homogeneous rough bed.

3.1.3 Group velocity

The dispersion relations described in the previous section have a nonlinear depen-

dence from the wavenumber k. This has consequences for the dynamics of groups

of waves, which are analysed in subsection 5.3.3. Consider once again the spectral

representation of the free surface based on equation 3.10, and investigate the case

where the spectrum S(k) is narrow, i.e., it decays rapidly from a maximum at the

wavenumber kp. For simplicity only the two dimensional case is considered, i.e.,

A(k) = A(k, θ)δ(θ). (3.27)

The discrete form of the integral of equation 3.10 is written as

ζ(x, t) = <

{
ei[kpx−Ω(kp)t]

∑
l

A(kl)e
i[(kl−kp)x−(Ω(kl)−Ω(kp))t+Φl]∆k

}
, (3.28)

where l = 1, 2, . . . is the wavenumber index, such that kl = l∆k. The argument of

the exponent on the right hand side of equation (3.28) can be expanded in a Taylor

series near kp, i.e.,

kl = kp + ∆k, (3.29a)

Ω(kl) = Ω(kp) +
∂Ω(kp)

∂k
∆k +O(∆k2), (3.29b)

35



CHAPTER 3. THEORETICAL BACKGROUND

from which ζ is expressed as

ζ(x, t) = <
[
Z̃(x, t)ei[kpx−Ω(kp)t]

]
, (3.30)

where Z̃ is the complex envelope of the surface elevation, with amplitude Z and

phase Φ, i.e.,

Z̃(x, t) = Z(x, t)eiΦ(x,t). (3.31)

At the first order of ∆k, Z̃ is defined by

Z̃(x, t) = e
i∆k

[
x− ∂Ω(kp)

∂k
t
] ∑
l, |kl−kp|.∆k

A(kl)e
iΦl . (3.32)

Equation (3.32) shows that the envelope of a narrow-band system of waves moves

with the velocity equal to the group velocity. This observation is used in section

5.3.3 in order to demonstrate that the amplitude of the surface elevation (including

the patterns with the largest amplitude) move in a way that is in agreement with

the theory of gravity-capillary waves.

3.1.4 Power-function streamwise velocity profiles in shallow

turbulent flows

The power-function profile of equation (3.17) can approximate the average stream-

wise velocity profile in a shallow turbulent flow over an hydraulically rough bed

[Cheng, 2007]. The nonlinear terms of the averaged Navier-Stokes equations are

commonly represented in the form of the Reynolds stresses, τR [e.g. Schlichting and

Gersten, 1979, p.562]. The friction velocity at the wall is defined as

u∗ =
√
τR/ρw. (3.33)

The ratio H/ds is called the relative submergence, where ds is the characteristic

size of the bed roughness. The friction velocity is related to the section-averaged

streamwise velocity UH by the relation

f = 8

(
u∗
UH

)2

, (3.34)

where f is called the Darcy Weisbach friction factor [Schlichting and Gersten, 1979,

p.610].

Cheng [2007] proposed an empirical formula for f that interpolates the measure-

ments of the friction factor obtained by Nikuradse [1950] between the smooth bed
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condition and the completely rough bed condition. This formula is written as

f =
(
0.316Re−0.25

H

)a{[
2 log

(
2H

ds

)
+ 1.74

]−2
}1−a

, (3.35)

where a is defined as

a =

[
1 +

(
ReHds
640H

)2
]−1

, (3.36)

and

ReH = 4ρwUHH/µw (3.37)

is the Reynolds number based on the mean depth and on the section-average velocity

UH . µw is the dynamic viscosity of water. Cheng [2007] also observed that empirical

measurements of the ratio
√
f/n suggest this ratio is almost constant and equal to

1.0 ≤
√
f/n ≤ 1.2, (3.38)

with the best fit-curve represented by

1/n = 1.37f−0.43. (3.39)

The exponent n increases when the Reynolds number increases, and when the rel-

ative submergence decreases. Equations (3.35) and (3.39) allow the calculation of

the exponent n based on the Reynolds number and the relative submergence. This

is shown in section 4.2, where the measurements of the exponent of the streamwise

velocity profile in a shallow flow with homogeneously rough bed are compared with

the predictions by these two equations.

3.1.5 Stationary waves

As discussed in subsection 2.1.4, the presence of a rough bed can cause the appear-

ance of three-dimensional and dynamic patterns at the free surface of a shallow flow.

The steady state solution of these patterns [e.g. Harband, 1976] is singular at the

wavenumber k0(θ) that satisfies

Ω(k0(θ), θ) = 0. (3.40)

This means that whenever equation (3.40) has a solution, the waves with the

wavenumber k0 propagating in the direction θ tend to dominate the pattern of

the free surface. These waves are called stationary waves.
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The wavenumber k0 can be found in the irrotational case from the solution of

k0U0 cos θ = −

√(
g +

γw
ρw
k2

0

)
k0 tanh (k0H), (3.41)

based on equation (3.46). These waves are essentially the waves which propagate

upstream (with the minus sign in equation (3.41)) with the phase velocity in still

water (equation (3.22)) equal to the projection of the mean surface velocity along

the wavenumber vector. Introducing the surface tension makes so that the phase

velocity has a minimum (equation (3.23)). As a result, the stationary waves can

only form if

U0 ≥ cmin. (3.42)

There is also a minimum of the angle θ for these waves, which is equal to

θmin = π − cos−1 (cmin/U0) , (3.43)

so that θmin ≤ θ(k0) ≤ 2π − θmin. Within this range of direction, (3.41) has two

solutions, one for the gravity waves with the smaller wavenumber and the other one

for the capillary waves with the larger wavenumber. Of these, the gravity waves tend

to dominate, although capillary waves can become predominant if the spectrum of

the boundary is dominated by short wavelengths.

Lighthill [Burns, 1953] found an analytical expression for the wavenumber of

the stationary waves in a flow where the average streamwise velocity varies like a

power-function of the depth (equation (3.17)). Introducing the effect of the surface

tension, this expression is

k0

I−1/2−n(k0H)

I1/2−n(k0H)
=

g + γw
ρw
k2

0

U2
0 cos2 (π − θ)

, (3.44)

where In is the modified Bessel function of order n. In chapter 5 it is shown that the

prediction of the wavenumber of stationary waves based on equation (3.44) approxi-

mates well the measurement of the stationary patterns in most of the measured flow

conditions.

FIG. 3.1 shows the two components k0,x and k0,y of the wavenumber of the

stationary waves calculated for an irrotational flow, and for a flow with the vertical

profile of the average streamwise velocity described by equation (3.17), with n = 1/3.

Here the mean surface velocity and the mean depth of the flow were U0 = 0.5 m s−1

and H = 0.1 m, respectively. It is seen that the minimum wavenumber modulus

is found in the direction θ = π for the waves that propagate in the negative x-
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Figure 3.1: The components k0,x andk0,y of the wavenumber of the stationary waves
calculated (red) for an irrotational flow (equation (3.41)) and (black) for a flow with
the 1/3 power-function vertical profile of the average streamwise velocity (equation
(3.44)). U0 = 0.5 m s−1, H = 0.1 m. (a) Solution in the gravity-dominated range,
and (b) solution in the capillary-dominated range.

direction with ky = 0. The difference between the two equations (3.41) and (3.44) is

very small in this flow condition, and becomes non-noticeable in the capillary range.

The gravity-waves solution at θ = π in FIG. 3.1a shows that k0 is larger when it is

calculated for the power-function velocity profile.

In the measurements described in chapter 5 only the waves propagating along

the x-direction corresponding to the solution in the gravity-dominated range of

wavenumbers are observed. The stationary pattern appears to be essentially two-

dimensional in these measurements, and there is no clear evidence of the angular

distribution represented in FIG. 3.1. Therefore, in the rest of this thesis k0 always

indicates the gravity-dominated value of k0 which can be determined from equation

(3.44) assuming θ = π.

The experimental results described in chapter 5 also show the existence of an

additional three-dimensional pattern of waves, which includes both propagating and

stationary waves. This pattern corresponds to waves propagating in all directions,

with the wavenumber modulus k equal to k0. The amplitude of these waves varies

with the direction of propagation, and it is maximum for the stationary waves prop-

agating in the direction θ = π. This pattern is not explained by any of the known

theories about the interaction of the free surface with a static bed, although it

appears to be governed by the wavenumber of the stationary waves predicted by

equation (3.44). The dispersion relation of the pattern, as derived for the flow with

the power-function velocity profile, can be found from

Ω(k0, θ) = k0c(k0, θ), (3.45)
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where c(k0, θ) is determined based on equation (3.24) for a power-function stream-

wise velocity profile, and θ varies between 0 and 2π radians.

The same pattern when described by the irrotational theory is represented by

the dispersion relation

Ω(k0, θ) = k0U0 cos (θ)±

√(
g +

γw
ρw
k2

0

)
k0 tanh (k0H). (3.46)

Based on the definitions

kx = k cos (θ), (3.47a)

ky = k sin (θ), (3.47b)

k =
√
k2
x + k2

y, (3.47c)

θ = tan−1 (ky/kx). (3.47d)

equation 3.46 can be written in terms of the streamwise and of the lateral wavenum-

bers

Ω(kx) = U0kx ±

√(
g +

γw
ρw
k2

0

)
k0 tanh (k0H), (3.48a)

Ω(ky) = U0

√
k2

0 − k2
y ±

√(
g +

γw
ρw
k2

0

)
k0 tanh (k0H), (3.48b)

respectively. Equation (3.48a) is a straight line in the plane kx−ω which intercepts

the ω-axis at the characteristic frequency of the stationary waves in still-water,

Ωs(k0) =

√(
g +

γw
ρw
k2

0

)
k0 tanh (k0H), (3.49)

while equation (3.48b) corresponds to an ellipse with semi-axes k0 and Ωs(k0) in the

plane ky − ω. It is shown in chapter 5 that the equations (3.48) approximate well

the measurements of the dispersion relation of the waves in the laboratory flume.

It should be noted that whenever the velocity of the flow is smaller than the

minimum of the phase velocity, cmin, the stationary waves cannot form. When the

flow velocity approaches the value of cmin, the theory predicts the infinite amplitude

of the surface elevation [Dias and Kharif, 1999]. In this case, the steady state

expansion shows that no waves are found in the far field from the disturbance. The

measurements in chapter 5 confirm that the stationary waves cannot form when the

mean surface velocity is smaller than cmin. No measurement was performed close
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enough to the condition U0 = cmin in order to observe the eventual increase of the

wave amplitude in that condition.

3.1.6 Probability distributions of free surface waves

This subsection presents the expected statistics of the surface elevation based on

a linear and a weakly nonlinear model of the surface. These models are compared

to the measurements of the surface elevation in subsection 5.2 in order to evaluate

the eventual importance of nonlinearities in the tested flow conditions. The most

straightforward way to identify the eventual presence of nonlinearities is to inves-

tigate the statistics of the surface elevation measured at a single location in time.

With reference to the spectral representation of the free surface elevation based on

equation (3.10), the following quantities are defined [Longuet-Higgins, 1963],

Υ = ei[k·ρ−Ω(k,θ)t], (3.50a)

Ǎ = ξeiΦ, (3.50b)

where ∫ k+dk/2

k−dk/2
ξdk = A(k)dk. (3.51)

Υ represents a deterministic trigonometric function, i.e., the eigenfunction of a

Fourier series expansion. ξ is the amplitude of the discrete Fourier transform of

the surface elevation ζ with the spectral resolution dk, and it is a Gaussian random

variable with zero average. Φ is the phase of the same transform, and it is uniformly

distributed in the interval between −π and π. Ǎ is the complex eigenvalue obtained

by the transform.

In order to make the relation with a discrete Fourier transform explicit, all terms

of equations (3.50) are associated with an index j, which represents the term of the

transform at the discrete set of wavenumbers kj. Assuming the statistics to be

stationary and homogeneous, Υ is evaluated at ρ = 0 and t = 0 for simplicity, so

that its argument is zero for all indices j. Equations (3.50) become

Υj = 1, (3.52a)

Ǎj = ξje
iΦj , (3.52b)

and equation (3.10) is written as

ζ =
∑
j

ΥjǍj. (3.53)
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All terms of equation (3.53) are assumed to be linearly independent. Therefore,

due to the so-called law of large numbers, the probability density function of ζ is

Gaussian with variance [Longuet-Higgins, 1963]

σ2 =
∑
j

σ2
j , (3.54)

where σ2
j is the variance of the random variable ξj. The pdf is described by

pζ(ζ) =
1

σ
√

2π
e−

ζ2

2σ2 . (3.55)

When the nonlinear terms of the boundary conditions are considered, the surface

equations have a solution of the form (here presented up to the third order of σ which

is assumed small, following Weber and Barrick [1977])

ζ =
∑
j

ΥjǍj +
∑
j,l

Υj,lǍjǍl +
∑
j,l,m

Υj,l,mǍjǍlǍm, (3.56)

where the coefficients Υj,l and Υj,l,m are functions of kj, kl, and km and they are of

order k and k2, respectively. If all waves are linearly independent, then the products

ǍjǍl and ǍjǍlǍm are identically zero, and one obtains the same result of equation

(3.53). The weak nonlinearity of the surface causes small deviations of the Gaussian

statistics which can be quantified.

The statistical moment of order q of the free surface elevation is defined as

mζ,q =<ζq> . (3.57)

Longuet-Higgins [1963] introduce the cumulants of the distribution, which are de-

fined (up to the third order) by

χ1 = mζ,1, (3.58a)

χ2 = mζ,2 −m2
ζ,1, (3.58b)

χ3 = mζ,3 − 3mζ,1mζ,2 + 2m3
ζ,1, (3.58c)

χ4 = mζ,4 − 4mζ,3mζ,1 − 3m2
ζ,2 + 12mζ,2m

2
ζ,1 − 6m4

ζ,1. (3.58d)

The advantage of a formulation based on the cumulants rather than on the moments

of the distribution is that the cumulant of a sum of independent variables is equal

to the sum of the cumulants of each variable. The standard deviation σ and the

coefficients of skewness, λ3, and of kurtosis, λ4, are defined as [Longuet-Higgins,
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1963]

σ = m
1/2
ζ,2 = (χ2 +m2

ζ,1)1/2, (3.59a)

λ3 = mζ,3m
−3/2
ζ,2 = χ3/χ

3/2
2 , (3.59b)

λ4 = mζ,4m
−2
ζ,2 = 3 + χ4/χ

2
2, (3.59c)

respectively. If the coefficients Ǎj are only weakly linearly dependent, the cumulants

of order q higher than 1 are of order σ2(q−1). Hence, it is possible to expand the

probability distribution function in powers of σ, neglecting the higher orders. The

expansion leads to a representation in terms of Hermite polynomials. At the second

order of σ2, this has the form

pζ(ζ) =
1√

2πχ2

e−ζ̄
2/2

[
1 +

1

6
λ3H3 +

1

24
(λ4 − 3)H4 +

1

72
λ2

3H6

]
, (3.60a)

H3 = ζ̄3 − 3ζ̄ , (3.60b)

H4 = ζ̄4 − 6ζ̄2 + 3, (3.60c)

H6 = ζ̄6 − 15ζ̄4 + 45ζ̄2 − 15, (3.60d)

where ζ̄ is the normalised elevation,

ζ̄ = (ζ − χ1)/
√
χ2. (3.61)

Equations (3.55) and (3.60) are compared with the measured pdf of the surface

elevation in subsection 5.2. It is shown that in some flow conditions equation (3.60)

approximates better the measured pdf. The derivation proposed by Longuet-Higgins

[1963] is based on a weakly nonlinear representation of the free surface and it does

not consider the mutual interactions among waves described in subsection 2.1.5,

since these imply the existence of a relation between the phases, and therefore the

invalidation of the random phase Gaussian model. Based on the analysis performed

by Longuet-Higgins [1963] it is expected that the coefficient of kurtosis (the scaled

coefficient λ4 − 3 in the notation used here) would be of the same order of λ2
3.

In all the measured conditions in chapter 5, λ4 − 3 is found much larger than λ2
3.

According to Creamer et al. [1989], large values of the kurtosis compared to λ2
3

suggest the existence of quartet interaction among waves for the deep water case.

The same result was obtained by Janssen [2009] in the shallow water case with an

analysis based on the Zakharov equation.
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3.1.7 Generation of constrained surrogate time series with

the gradual wavelet reconstruction

In chapter 6 the linear spectral model of the surface elevation based on equation

(3.10) is used extensively in order to model the scattering of the acoustic pressure

field by the dynamic surface. As discussed in the previous subsection, this linear

model leads to the Gaussian statistics of the surface elevation and of its slope.

These statistics were measured in a laboratory flume over a wide range of flow

conditions, and the results of the measurements discussed in subsection 5.2.2 show

a small variation from the Gaussian statistics in some flow conditions. It is useful to

quantify the statistical significance of these variations. The purpose is to determine

if the linear model is able to reproduce accurately the behaviour of the free surface.

This corresponds to a statistical null hypothesis that needs to be tested.

A simple way to test this hypothesis is to generate a set of synthetic constrained

surrogate data sets with the same properties of the measured data, such as the

probability density function and the Fourier power spectrum, that satisfy the null

hypothesis. Since there is no limit to the number of surrogates that can be generated,

the variability of the statistical moments can be evaluated directly by a Monte Carlo

simulation. This allows the empirical calculation of the statistical significance of the

experimental observations. The most straightforward way to do so is to measure the

Fourier spectrum of the experimental data, randomise its phase, and generate the

surrogates by the inverse Fourier transform. This approach was followed by Osborne

et al. [1986] and it is directly relevant to the spectral representation given by equation

(3.10). The practical implementation of the method is not straightforward, though,

due to the finite length of the data set [Theiler et al., 1992]. Such an approach also

allows only the eventual rejection of the null hypothesis, but it does not quantify

the degree of nonlinearity required by the surrogates in order to justify the eventual

significant deviations from the linear statistics.

An alternative procedure that overcomes the above limitations is the Gradual

Wavelet Reconstruction (GWR) method proposed by Keylock [2006] and later im-

proved by Keylock [2007] and Keylock [2010]. The procedure is based on the Iter-

ated Amplitude Adjusted Fourier Transform (IAAFT) method developed by Theiler

et al. [1992]. This method introduces an additional rank-order matching step to the

Fourier transform method described by Osborne et al. [1986], which ensures that

the pdf of the surrogate data coincides with that of the original data series. With

respect to the IAAFT method, the GWR method implements the Maximal Overlap

Discrete Wavelet Transform (MODWT) in spite of the Fourier transform. The sur-

rogate data sets generated with the GWR method are characterised by a parameter
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% representing the similarity to the original data. % is calculated as the ratio of the

energy of the original data (the square of the wavelet transform of the surface eleva-

tion) which is not randomised. When % = 0 the surrogates are fully random. As % is

increased, a progressively larger fraction of the original data is left unchanged, while

only the remaining fraction is randomised. When % = 1 the surrogate coincides with

the original data set. Varying the parameter % makes it possible to quantify how

similar the surrogates must be to the original data sets in order to show the same

statistics.

The algorithm of the GWR method is as follows [Keylock, 2010], for a set value

of the parameter 0 ≤ % ≤ 1:

1. calculate the wavelet transform of the original data with the MODWT;

2. order the squared coefficients of the MODWT in descending order and calcu-

late their cumulative sum;

3. identify the smallest set of rank-ordered coefficients for which the cumulative

sum is larger or equal than the total sum multiplied by the parameter %. These

coefficients are called fixed;

4. for each scale:

(a) remove all the non-fixed coefficients, and interpolate through the fixed

ones with a piecewise cubic Hermitian polynomial method [Fritsch and

Carlson, 1980] in time,

(b) randomise the order of the non-fixed coefficients, and then add them to

the interpolated sequence of coefficients at the non-fixed locations,

(c) calculate the amplitude of the Fourier transform of these coefficients in

time,

(d) randomise all coefficients,

(e) calculate the phase of the Fourier transform of the randomised coefficients

calculated at step 4d,

(f) calculate the inverse Fourier transform based on the amplitude of the

coefficients found at step 4c and with the phase of the randomised coef-

ficients found at step 4d,

(g) order all squared coefficients in increasing order, and replace the values

of the coefficients calculated at step 4f with the ones determined at step

4b one by one, from the smallest to the largest,

(h) replace the values of the fixed coefficients in their original location,
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(i) calculate the Fourier power spectrum of the set of coefficients found at

step 4f with the ones at step 4b, and determine the average squared

difference between the two spectra,

(j) repeat steps from 4d to 4i until the average squared difference is smaller

than a chosen threshold,

5. calculate the inverse MODWT of the shuffled and rescaled coefficients calcu-

lated at the end of step 4j;

6. apply the rank-order matching step 4g to the whole data set in order to match

the pdf of the original signal.

The resulting synthetic constrained data set has the same pdf and frequency

power spectrum of the original data. When % = 0, none of the wavelet coefficients

are fixed. In this case, the surrogate data corresponds effectively to a linear super-

position of independent random functions with a uniform random distribution of

the phase. When % is increased, the coefficients with the largest amplitude are fixed

at their original location in time. This constrains both the scale and the location in

time of the largest events, while the less energetic scales and the remaining portion

of the time series are still represented by a linear model. The surrogate data can

have an increasing degree of nonlinearity, as it becomes progressively more similar to

the original data. With the GWR method it is possible to simulate nonlinear data,

and to observe the evolution of the statistics of the surrogates while the nonlinearity

increases progressively.

3.1.8 Statistics of the wave envelope

When the spectrum of the surface elevation is narrow, the surface is represented

by equation (3.30) [Longuet-Higgins, 1984]. Bitner [1980] considered the pdf of the

absolute value of the envelope function,

Z(t) = |Z̃(0, t)|, (3.62)

measured at a single point x = 0. The time-derivative of the complex envelope Z̃(t)

is of order ∆k∂Ω/∂k, which is small if the spectrum is narrow. Neglecting both

time derivatives of the amplitude and phase of the envelope, Ż and Φ̇ (see equation

(3.31)), respectively, Bitner [1980] determined the pdf of the absolute envelope Z(t)

for a weakly nonlinear system of waves following Longuet-Higgins [1963], although

Bitner [1980] did not consider the last term of order λ2
3 for the expansion in equation
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(3.60a). This pdf is given by

pZ(Z) =
Z

2σ2
e−

Z2

2σ2

[
1 +

1

8
(λ40 + λ04 + λ22)− Z2

8σ2
(λ40 + λ04 + λ22)

+
Z4

64σ4
(λ40 + λ04 + λ22)

]
,

(3.63)

where

λ40 =

〈(
ZR− <ZR>

σ

)4
〉
− 3, (3.64a)

λ04 =

〈(
ZI− <ZI>

σ

)4
〉
− 3, (3.64b)

λ22 =

〈(
ZR− <ZR>

σ

)2(
ZI− <ZI>

σ

)2
〉
− 1. (3.64c)

In equation (3.64) ZR and ZI are the real and the imaginary components of the

complex envelope Z̃, respectively, and <> denote ensemble averaging. If ζ and its

time-derivative ζ̇ are Gaussianly distributed (i.e., for linear waves), then

λ40 = λ04 = λ22 = 0, (3.65)

and the pdf of Z is the Rayleigh distribution

pZ(Z) =
Z

2σ2
e−

Z2

2σ2 . (3.66)

Equations (3.63) and (3.66) are used in subsection 5.2.3 in order to determine if the

statistics of the amplitude of the surface fluctuations can be explained by a linear

or weakly nonlinear model of random waves.

3.1.9 The Wavelet spectral method

The wavelet spectral method [Donelan et al., 1996] allows the direct calculation of

the surface dispersion relation from the measurement of the elevation at a limited

number of locations, and it is applied to the experimental measurements in section

5.4. The main assumptions of the method are the validity of the representation of

equation (3.30), and the slow evolution of the envelope in time relative to the time

scale of the surface fluctuations. This is formally valid when the group of waves has a

narrow spectrum, although the method still applies when the spectrum is relatively

wide because of the filtering by the wavelet transform [Longuet-Higgins, 1963].
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Mollo-Christensen and Ramamonjiarisoa [1978] suggested that the statistics of

the free surface of the oceans could be described by a random combination of wave

groups of finite spatial length, propagating with permanent shape of their envelope.

Although envelopes of permanent shape only exist within a nonlinear framework [e.g.

Hui and Hamilton, 1979], Mollo-Christensen and Ramamonjiarisoa [1978] suggested

a simplified representation with the form

ζ(ρ, t) = −e−( ∂Ω
∂k
T0)
−2

(k·ρ
k
− ∂Ω
∂k
t)

2

sin (k · ρ− Ωt), (3.67)

where T0 defines the width of the group which moves at the group velocity ∂Ω/∂k.

In equation (3.67) ρ represents the radial co-ordinate, i.e., ρ = (x, y). Donelan et al.

[1996] recognised a similarity between the Gaussian shape of the wave envelope in

equation (3.67) and the definition of the Morlet mother wavelet given by

M(t) =
1

σW
√
π
e
it− t2

2σ2
W , (3.68)

where σW is the width of the mother wavelet. The wavelet with scale ωj centred at

time ti is found as

wi,j(t) = ω
−1/2
j M(ωj(t− ti)), (3.69)

and the wavelet transform is defined as

ζW (ti, ωj) =

∫
ζ(t)w∗i,j(t)dt, (3.70)

where ∗ represents the complex conjugate. It is assumed that∣∣∣∣∣ tT0

(
t

T0

− 2r
∂Ω
∂k
T0

)∣∣∣∣∣� 1, (3.71)

where k in polar co-ordinates is represented by the modulus k and by the angle with

respect to the streamwise direction θ according to equations (3.47).Substituting

equation (3.67) into equation (3.70), the phase of the wavelet transform measured

at the location ρl is

ΦW (ti, ωj,ρl) = k(t) · ρl − ωjti + ΦC , (3.72)

where ΦC is a constant.

The measurement of the phase of the wavelet transform at a set of locations ρl

allows the calculation of the wavenumber k(ωj) at each frequency ωj and therefore of

the dispersion relation Ω(k) as the solution of a least square minimisation problem

[p.73 Hauser et al., 2005]. This solution is valid as an approximation even when the
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assumption of equation (3.71) does not hold. With a simpler approach [Donelan

et al., 1996], ΦW (ti, ωj,ρl) can be measured at two pairs of locations a and b with

co-ordinates (ρ1,ρ2) and (ρ3,ρ4), respectively, such that

∆Φa(ti, ωj) = ΦW (ti, ωj,ρ1)− ΦW (ti, ωj,ρ2) = k(ti, ωj) · (ρ1 − ρ2), (3.73a)

∆Φb(ti, ωj) = ΦW (ti, ωj,ρ3)− ΦW (ti, ωj,ρ4) = k(ti, ωj) · (ρ3 − ρ4). (3.73b)

The following geometrical parameters are defined

∆ρa = |ρ1 − ρ2|, (3.74a)

∆ρb = |ρ3 − ρ4|, (3.74b)

∆ςa = tan−1

[
(ρ1 − ρ2) · iy
(ρ1 − ρ2) · ix

]
, (3.74c)

∆ςb = tan−1

[
(ρ3 − ρ4) · iy
(ρ3 − ρ4) · ix

]
, (3.74d)

where ix and iy are the unitary vectors in the directions x and y, respectively. If

ρl, l = 1, 2, ..., 4 are not co-linear, and if

|k(ti, ωj)∆ρa,b| � σW , (3.75)

then [Donelan et al., 1996]

k(ti, ωj) =

[
∆Φa(ti, ωj)

∆ρa
sin (∆ςb)−

∆Φb(ti, ωj)

∆ρb
sin (∆ςa)

]
/

[sin (∆ςb −∆ςa) cos (θ(ti, ωj))] ,

(3.76)

and the angle θ with respect to the streamwise direction is

θ(ti, ωj) = tan−1

[
∆Φa(ti, ωj)∆ρb cos (∆ςb)−∆Φb(ti, ωj)∆ρa cos (∆ςa)

∆Φb(ti, ωj)∆ρa sin (∆ςa)−∆Φa(ti, ωj)∆ρb sin (∆ςb)

]
, (3.77)

In chapter 5 equation (3.76) is used in order to calculate the dispersion relation

from two orthogonal pairs of waveprobes, i.e., with

∆ςa = 0, (3.78a)

∆ςb = π/2. (3.78b)
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In this case the dispersion relation is characterised in the two orthogonal directions

x and y by

kx(ti, ωj) =
∆Φa(ti, ωj)

∆ρa
, (3.79a)

ky(ti, ωj) =
∆Φb(ti, ωj)

∆ρb
. (3.79b)

The application of the wavelet spectral method relies on a set of assumptions

about the behaviour of the envelope, and on a set of conditions about the geometrical

arrangement of the measurements locations. The condition represented by equation

3.75 corresponds to the requirement that the wavelength is small compared to the

width of the wavelet at the frequency ωj. This ensures that the wavelet transforms

at all locations overlap substantially in time, so that the instantaneous calculation

of the wavenumber is meaningful. Similar requirements are that the phase difference

should be measurable without ambivalence, i.e.,

|k(ti, ωj)∆ρa,b| < 2π, (3.80)

and that the distance of each measurement location from the maximum of the en-

velope is small relative to the size of the envelope (equation (3.71)).

From these three conditions it is suggested to choose ∆ρa,b small, which contrasts

with the requirement of minimising the uncertainty since the latter is proportional

to ∆ρ−1
a,b. The condition of equation (3.71) is not satisfied when the wave group is

approaching the measurement area, which means that the method can only work in

a statistical sense. In this case, the condition of equation (3.71) is replaced by

l0/max (∆ρ)� 1, (3.81)

where l0 is the characteristic correlation length, i.e., the distance at which the spatial

correlation vanishes. The wavelet spectral method is also not expected to work if

there are more than one group simultaneously at the same frequency and with similar

amplitude, or if the inversion of the dispersion relation Ω(k) is multi-valued, since

then the phase of the wavelet transform would be equal to

ΦW (ti, ωj,ρl) =
∑
m

km(ti, ωj) · ρl − ωjti + ΦC , (3.82)

where km(ωj) is the wavenumber prescribed by each dispersion relation at the fre-

quency ωj. In both cases the system of equations (3.73) is underdetermined and the
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solution cannot be found. In section 5.4 the probability density functions pk(kx),

pk(ky), and pθ(θ) is calculated from the measurements of the surface elevation in a

shallow turbulent flow. The results show that the method can still be applied if the

spectrum has a dominant peak at each frequency, i.e., if the waves that follow one

single dispersion relation are much larger than any other wave.

3.2 Acoustic model

This section presents the mathematical theory that describes the scattering of an

acoustic pressure field by a rough dynamic surface. The focus is on the Kirchhoff

approximation, which applies to the scattering of ultrasonic waves by the rough

surface of shallow turbulent flows. The Kirchhoff approximation is described in

subsection 3.2.1. This equation is able to explain the measurements of the Doppler

spectra of the scattered field presented in section 6.2, according to a model derived

in subsection 3.2.2. The application of this model requires performing a Monte Carlo

simulation, which is computationally expensive. A simplified linear model is derived

in subsection 3.2.2, and it is also compared to the measurements in section 6.2. The

deviations of the measurements from both models are believed to be caused by weak

nonlinearities of the free surface. The expected effects of such nonlinearities on the

Doppler spectra of the scattered acoustic field are therefore described in subsection

3.2.2, based on the results available in the literature. The equations reported in this

section are used in chapter 6 in order to inform the discussion of the experimental

measurements of the scattered acoustic pressure. These equations are also the basis

of the data analysis procedure described in the same chapter.

3.2.1 Acoustic scattering from a rough surface

The acoustic field can be represented in terms of the velocity potential P [e.g.

Morse and Ingard, 1968, p.248][Bass and Fuks, 1979, p.7]. All acoustic quantities

are multiplied by a factor exp (iωat). When the acoustic field is represented as a

linear composition of waves with frequency ωa, the relation between the acoustic

potential and the acoustic pressure corresponds to a multiplication by a constant.

Therefore in chapter 6 the same symbol P represents the measured acoustic pressure

field, for simplicity of the notation. The scattering of the acoustic potential field

generated by a transducer with vector co-ordinates S = (xs, ys, zs) from a rough

surface Σ represented by the equation z = ζ(ρ), ρ =
√

(x2 + y2), is considered.
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The derivation of the Kirchhoff scattering equations is reported in Appendix B,

following Morse and Ingard [1968] and Bass and Fuks [1979]. It is assumed that the

surface is acoustically rigid, i.e.,

∂P (ρ̃)

∂n
= 0, where ρ̃ ∈ Σ, (3.83)

where ρ̃ = (x, y, ζ(x, y)) and n is the unit vector normal to the surface defined as

n =
iz −∇ζ√
1 + |∇ζ|2

, (3.84)

and iz is the unit vector in the vertical direction z such that the average of ζ over z

is 0.

The Kirchhoff approximation assumes that at all locations on the rough sur-

face the acoustic field is equal to the reflection of the incident field Pi from the

plane tangent to the surface locally [Bass and Fuks, 1979, p.220]. κ is the acoustic

wavenumber. The incident field at the location R due to a source transducer in S

is defined in the far-field κR = κ|R− S| � 1 as

Pi(R, θs) = Ds(θs)
eiκ|R−S|

|R− S|
(3.85)

in the three-dimensional case, and

Pi(R, θs) = Ds(θs)
eiκ|R−S|√
|R− S|

(3.86)

in the two-dimensional case, respectively. The two-dimensional case corresponds to

the scattering from the surface ζ = ζ(x). In equations (3.85) and (3.86) Ds(θs) is

the directivity pattern of the transducer. The transducer is modelled as a circular

piston with radius rs set in a plane rigid baffle of infinite size. θs is the angle with

respect to the axis of the piston. The directivity is found in the far-field from the

piston where
R

rs
� 1, (3.87)

as [Morse and Ingard, 1968, p.381] (see also the derivation in Appendix B)

Ds(θs) = 2
J1(κrs sin θs)

κrs sin θs
, (3.88)

where J1 is the Bessel function of the first kind.
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The local replacement of the rough surface by a flat plane requires that the shape

of the rough surface varies smoothly and slowly in a region with the size much larger

than the acoustic wavelength. This is expressed by the so-called Kirchhoff condition

[Bass and Fuks, 1979, p.222]

κRc sin3 ψ � 1, (3.89)

where ψ is the complementary of the angle between the wavenumber vector of the

incident field and the normal to the surface, called the angle of incidence, and Rc

is the radius of curvature of the surface. Thorsos [1988] showed that the Kirchhoff

approximation still provides a good approximation when the less strict condition

2κRc sin3 ψ > 1, (3.90)

is satisfied. The Kirchhoff approximation neglects the contribution to the field at

one location on the surface coming from the reflections by the rest of the surface.

This corresponds to the zero-th order of the so-called Born approximation [Morse

and Ingard, 1968, p.413]. The field measured at the location M = (xm, ym, zm) can

be seen as the sum of an infinite number of spherical (or cylindrical) waves with

infinitesimal amplitude, each coming from a point on the surface with the vector

co-ordinates ρ̃.

The response of a real receiver to the waves coming from different angles is

represented by a function Dm(θm) analogous to equation (3.88), where θm is the

angle with respect to the axis of the receiver. The vector distances from the source

to the location ρ̃ on the surface, and from ρ̃ to the receiver, are defined as

R̃s = ρ̃− S, (3.91a)

R̃m = M− ρ̃. (3.91b)

The notation is simplified by introducing the quantity

q̃ = −κ∇(R̃m + R̃s), (3.92)

with components

q̃x = −κ
[
x− xs
R̃s

− xm − x
R̃m

]
(3.93a)

q̃y = −κ
[
y − ys
R̃s

− ym − y
R̃m

]
(3.93b)

q̃z = −κ
[
ζ − zs
R̃s

− zm − ζ
R̃m

]
, (3.93c)
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and

q̃⊥ = (q̃x, q̃y). (3.94)

q̃ represents the vector difference between the scattered and the incident acoustic

wavenumbers.

Expanding the spatial gradient of the incident field in the direction n and ne-

glecting the terms of order O[(κR̃s,m)−1], the acoustic potential field at the receiver

M in the three-dimensional case is found as

P (M) = Dm(S)Ds(M)
eiκ|M−S|

|M− S|
+

1

i4π

∫
Σ0

Dm(ρ̃)Ds(ρ̃)
eiκ(R̃s+R̃m)

R̃sR̃m

(q̃z − q̃⊥ · ∇ζ)dρ,

(3.95)

where the integration is carried out with respect to the co-ordinate ρ = (x, y, 0)

defined on the flat surface Σ0 which lies on the plane x-y. The following quantities

are defined, by projecting the surface Σ with equation z = ζ on the flat surface Σ0

with equation z ≡ 0,

Rs = ρ− S, (3.96a)

Rm = M− ρ. (3.96b)

R̃s and R̃m correspond to the vector distances from the source with co-ordinates

S to the point with co-ordinates ρ on the flat surface, and from the point ρ to the

receiver M, respectively. These distances can be expanded with respect to Rm and

Rs, respectively, i.e.,

R̃m,s ≈ Rm,s +
∂R̃m,s

∂z
ζiz +

∂2R̃m,s

∂z2
ζ2iz + ..., (3.97)

which yields

R̃m,s = Rm,s

{
1 +

(ζ − zm,s)
Rm,s

ζ

Rm,s

+

[
1− (ζ − zm,s)2

R2
m,s

]
ζ2

R2
m,s

+O
(

ζ3

R3
m,s

)}
.

(3.98)

If the following inequality is satisfied,

sin2 (ψ)κσ2

Rm,s

� 1, (3.99)

where ψ is the angle of Rm,s measured from the horizontal, and σ is the standard

deviation of the rough surface [Bass and Fuks, 1979, p.227], then the terms of order

O(ζ2/R2
m,s) can be neglected in the exponential term of equation (3.95). It is also
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possible to neglect the small terms of order O(ζ/Rm,s) at the denominator of the

same equation. q̃ is expanded as

q̃ = q +O
(

ζ2

R2
m,s

)
, (3.100)

where

q = −κ∇(Rs +Rm), (3.101)

with components

qx = −κ
[
x− xs
Rs

− xm − x
Rm

]
, (3.102a)

qy = −κ
[
y − ys
Rs

− ym − y
Rm

]
, (3.102b)

qz = κ

[
zs
Rs

+
zm
Rm

]
, (3.102c)

and with

q⊥ = (qx, qy). (3.103)

q⊥ differs from q̃⊥ because it is calculated based on the distances from the source

and from the receiver to the flat surface, Rs and Rm, respectively.

If the source and the receiver have a relatively narrow directivity and do not face

each other directly, it is possible to neglect the direct field by assuming

Dm(S)Ds(M) ≈ 0. (3.104)

Substituting equations (3.101) and (3.103) in equation (3.95), and expanding Dm(ρ̃)

and Ds(ρ̃) at ρ, one finds

P (M) =
1

i4π

∫
Σ0

Dm(ρ)Ds(ρ)
ei[κ(Rs+Rm)−qzζ]

RsRm

(qz − q⊥ · ∇ζ) dρ. (3.105)

By assuming further that q⊥ · ∇ζ � 1, which is valid for relatively large angles of

incidence κ∇ζ cos (ψ)� 1 and when the surface slope is small, one finally obtains

P (M) =
1

i4π

∫
Σ0

Dm(ρ)Ds(ρ)
ei[κ(Rs+Rm)−qzζ]

RsRm

qzdρ. (3.106)
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In the two-dimensional case the scattering from a surface ζ(x) is considered. The

equivalent of equation (3.95) is given by

P (M) = Dm(S)Ds(M)
eiκ|M−S|√
|M− S|

+

− 1

8π
√

2κπ

∫
Σ0

Dm(ρ̃)Ds(ρ̃)
eiκ(R̃s+R̃m)√

R̃sR̃m

(q̃z − q̃xζx)dx.
(3.107)

By expanding Rs, Rm, and q near z = 0, and neglecting the direct field based

on equation (3.104), the two-dimensional version of equation (3.105) is found as

P (M) =
1

8π
√

2κπ

∫
Σ0

Dm(x)Ds(x)
ei[κ(Rs+Rm)−qzζ]
√
RsRm

(qz − q̃xζx) dx. (3.108)

In the case when q · ∇ζ � 1, equation (3.108) is simplified as

P (M) =
1

8π
√

2κπ

∫
Σ0

Dm(x)Ds(x)
ei[κ(Rs+Rm)−qzζ]
√
RsRm

qzdx. (3.109)

Equations (3.105) to (3.109) describe the acoustic field scattered by a rough

surface which is constant in time. In chapter 5 it is shown that the standard deviation

of the time-gradient of the surface elevation in the tested flow conditions was of the

order of 0.01 m s−1, while the phase velocity of the gravity-capillary waves on the

surface was of the order of 1 m s−1. Both quantities are much smaller than the

speed of sound in air, which is equal to 343 m s−1 at the temperature of 20◦. Under

these conditions, the scattered acoustic field P (M, t) at the instant t is represented

by equations (3.105) to (3.109) where ζ is replaced by the instantaneous surface

elevation ζ(x, y, t). These equations were used in chapter 6 in order to calculate

numerically the Doppler spectrum of the scattered acoustic field based on a Monte

Carlo simulation. The scattered acoustic field was computed numerically based on

equations (3.105) and (3.108) for a random realisation of the surface elevation ζ.

This was evolved in time according to the dispersion relation of gravity-capillary

waves. The scattered field P (M, t) was then computed at a set of discrete instants

in time. The resulting time series was analysed in order to determine the acoustic

Doppler spectrum for that surface realisation. Equations (3.106) and (3.109) were

implemented in a linear model of the acoustic Doppler spectrum, which is described

in subsection 3.2.2.
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3.2.2 Doppler spectrum of the scattered acoustic field

In this subsection the dynamics of the surface are introduced explicitly by expressing

the surface elevation ζ as a function of the two spatial co-ordinates x and y and of

the time t. It is assumed like in the previous section that the time-derivative of the

surface elevation is slow compared to the speed of sound. The calculation of the

acoustic field P (M, t) at each instant t, with ζ(x, y, t) that changes with time, allows

determining the power spectrum of the scattered field as the Fourier transform of

the correlation function in time. The Doppler spectrum is defined as the power

spectrum of the scattered field when it is expressed as a function of the shifted

frequency ω−ωa, where ωa is the frequency of the incident acoustic field. Adopting

the same convention of section 3.2.1, where the factor exp (iωat) is omitted in the

definitions, the Doppler power spectrum of the scattered field is defined simply as

SD(M, ω) =
1

2π

∫ ∞
−∞

< P (M, t)P ∗(M, t+ τ) > eiωτdτ, (3.110)

where <> represents ensemble averaging.

Doppler spectrum with small Rayleigh parameter

The interpretation of the Doppler spectra obtained experimentally or with the Monte

Carlo simulation is not straightforward. In some conditions, the equations of acous-

tic scattering can be simplified, in order to show more clearly the relation between

the dynamics and the topology of the surface and the Doppler acoustic spectra. The

result is a linear model of the Doppler spectrum, which is used in section 6.2 in order

to calculate the spectrum of the surface elevation from the measured Doppler spec-

tra. The derivation follows Bass and Fuks [1979] and is based on equation (3.106),

which describes the potential of the acoustic field scattered by a three-dimensional

surface when the gradient of the surface elevation is small. It is reported in Appendix

C.

It is assumed that ζ is Gaussian distributed, and that its spatial correlation

decays rapidly in both directions x and y, so that the size of the area which is

important for the integration of equation (3.106) is represented by the scales lx and

ly in the x- and in the y-direction, respectively. It is further assumed that the

standard deviation of ζ, called σ, is small relative to the vertical component of the

acoustic wavenumber vector, i.e.,

qzσ � 1. (3.111)
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Then lx and ly are the correlation lengths of the surface elevation ζ in the two

directions [Bass and Fuks, 1979, p.376]. If the transducer and the receiver are at

the same height above the surface, and if one considers either the backscattering

configuration (M ≡ S) or the reflection at the specular point (Rs ≡ Rm), then the

condition of equation (3.111) satisfies

[2κ sin (ψs)σ]2 � 1, (3.112)

where ψs is the angle of incidence of the source transducer. The term on the left-

hand side of equation (3.112) is called the Rayleigh parameter. It is then assumed

that the correlation length lx and ly in the x- and y-direction, respectively, is much

smaller than the distance to the transducer and to the receiver from the surface,

i.e.,
lx,y
Rs,m

� 1, (3.113)

and that the horizontal dimension of the scattering surface is large compared to lx,y.

It is also assumed that [Bass and Fuks, 1979, p.322]

κl2x sin2 ψs
Rs,m

� 1, (3.114a)

κl2y
Rs,m

� 1, (3.114b)

which require that the correlation radius is much smaller than the size of the Fresnel

zone, defined as

LF =

√
Rs,m

κ sin2 (ψs)
. (3.115)

Further assumptions require that

lx cos (ψs)

Rs,m

� 1, (3.116a)

l2x sin2 (ψs)

R2
s,m

� 1, (3.116b)

l2y
R2
s,m

� 1, (3.116c)
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and also

κσlx sin (2ψs)

Rs,m

� 1, (3.117a)

κσl2x sin3 (ψs)

R2
s,m

� 1, (3.117b)

κσl2y sin (ψs)

R2
s,m

� 1. (3.117c)

Finally, it is assumed that the directivity of the transducer and of the receiver vary

slowly in space in a region with size lx,y.

The Fourier transform in space and time of the correlation function is called the

frequency-wavenumber spectrum of the surface elevation, S(k, ω), and it is defined

by equation (3.2). This spectrum is assumed to be stationary, i.e., independent of

space and time. If the Rayleigh parameter is small, neglecting terms of order higher

than q2
zσ

2, and assuming that D2
m(ρ)D2

s(ρ) is large only in a finite region of the

surface with size LD, such that

L2
D

R2
s,m

� 1, (3.118)

one obtains (see Appendix C)

SD(M, ω) =

∫ ∞
−∞

Q(ρ(q⊥))
[
1− q2

z(ρ(q⊥))σ2
]
δ(ω)δ(q⊥)dq⊥+

+
∑
j

∫ ∞
−∞

Q(ρ(q⊥))q2
z(ρ(q⊥))σ2S(kj, ωj)δ(ω − ωj)δ(q⊥ − kj)dq⊥,

(3.119)

where

Q(ρ) =
q2
z(ρ)

32π3κ

D2
m(ρ)D2

s(ρ)

Rm(ρ)Rs(ρ)
[Rm(ρ) +Rs(ρ)]−1. (3.120)

The neglected terms of order higher than q2
zσ

2 were considered for example by Lipa

and Barrick [1986]. They correspond to the second-order spectrum, which is related

to the nonlinear interactions among waves (see subsection 2.2.2).

If the surface elevation moves in time according to a dispersion relation

ωj = Ω(kj), (3.121)

which has the inverse K(ω) such that

Ω(K(ωj)) = ωj, (3.122)
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then

SD(M, ω) =

{
Q(ρ0)

[
1− q2

z(ρ0)σ2
]
, ω = 0,

Q(ρ(K(ω)))S(K(ω), ω)q2
z(K(ω))σ2, ω 6= 0,

(3.123)

where

q⊥(ρ0) = 0 (3.124)

defines ρ0 as the location of the specular point. A similar result was reported by

Barrick [1972] based on a small perturbation expansion. It is easy to verify that the

same derivation holds for the two-dimensional case, with the factor Q(ρ) defined by

Q(ρ) =
q2
z(ρ)

256π4κ2

D2
m(ρ)D2

s(ρ)

[Rm(ρ) +Rs(ρ)]
. (3.125)

Equation (3.123) shows that the Doppler spectrum at the frequency ω is propor-

tional to the power spectrum of the surface elevation at the wavenumber K(ω) = q⊥,

which in turn is related to the frequency spectrum of the elevation S(ω) through

equation (3.14). q⊥ is associated with a specific direction of scattering. Considering

the backscattering configuration where M = S, and Rm = Rs, then

q⊥(ρ) =
2κ

Rs

(ρs − ρ), (3.126)

where ρs = (xs, ys). In this case, the acoustic field backscattered in the direction

where the directivity of the source transducer is maximum has

|q⊥| = 2κ cos (ψs) = kB, (3.127)

which is called the wavenumber of the Bragg waves. If the directivity is narrow, the

backscattering is mainly related to the interaction with the waves with wavenumber

kB, and with the frequency Ω(kB). As a result, the Doppler spectrum shows a peak

at the frequency

ΩB = Ω(kB) = 2κc(kB) cos (ψs), (3.128)

where c(kB) is the phase velocity of the Bragg waves.

Doppler modulations by nonlinearities of the surface elevation

The derivation so far assumed that the free surface elevation has a correct repre-

sentation in terms of a linear Fourier series with random amplitude and phase. The

modulation of the Doppler spectrum due to nonlinearities of the free surface was

mentioned in subsection 2.2.2. In chapter 6 it is shown that the measured acoustic
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Doppler spectra show wider peaks than is expected based on a numerical linear

model of the water surface elevation. It is suggested that the widening of the peaks

of the measured spectra is caused by the nonlinear behaviour of the water surface.

This subsection presents a few formulae to estimate the widening of the Bragg peaks

due to the nonlinearity of the water surface. The derivation of the modulations due

to multiple waves interactions requires a nonlinear model of the free surface. Such

a model has not been derived for the free surface of shallow turbulent flows over

a homogeneously rough bed. Therefore, only the modulation of short waves by

longer waves is considered here. The order of magnitude of the widening of the

Bragg peaks due to the short wave-long wave interaction can be found based on a

simplified first-order expansion of equations (3.123), (3.127), and (3.128).

The transfer function for the range modulation was estimated for example by

Hara and Plant [1994] and it was found negligible when zs � σ. Keller and Wright

[1975] and Hara and Plant [1994] calculated the correction due to tilt and straining

to the backscattered power based on a small perturbation theory of backscattering,

in the Fraunhofer zone. The correction due to straining from a long wave with per-

turbation velocity u was found to be proportional (here assuming that the Doppler

spectrum is proportional to the backscattered power, as it is in the Fraunhofer zone)

to

∆SD(M, ω) ≈ SD(M, ω)
k0u

Ω(k0)

1√
S(kB,Ω(kB))

. (3.129)

Equation (3.129) is based on the assumption that k0u/Ω(k0) = u/c(k0) is small,

which is not valid if the long wave is almost stationary.

The correction due to tilting of the short Bragg waves can be calculated simply

for a two-dimensional surface with the wavenumber of the longer wave equal to k0,

assuming the tilt-angle to be of order

∆ψ ≈ tan−1 (k0σ). (3.130)

With a simple first-order expansion of equation (3.127), the Bragg wavenumber

varies by the amount

∆kB ≈ −2κ sin (ψs) tan−1 (k0σ), (3.131)

due to the tilt. With the same approach applied to equation (3.128), one can find

∆ω ≈ d(kBc(kB))

dk
∆kB = cg(kB)∆kB. (3.132)
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According to equation (3.132) the widening of the Doppler spectra due to the tilt

modulation is proportional to the group velocity of the Bragg waves. The varia-

tion of the amplitude of the spectrum can be determined in a similar way from

equation (3.123) in the conditions where this equation holds. The same correction

suggested by Keller and Wright [1975] can be found by expanding equation (3.123)

near k − kB = ∆kB = 0. With a simpler approach, assuming the slow variation of

Q(ρ(K(ω))) and q2
z(K(ω)), and assuming a surface spectrum with the dependence

∝ k−α, one finds

∆SD(M, ω) ≈ αSD(M, ω) tan (ψs) tan−1 (k0σ). (3.133)

The effect of the velocity modulation on the Doppler spectrum width was inves-

tigated for example by Keller et al. [1994]. These authors found that the largest

effect is caused by the modulation of the waves smaller than the Bragg scales by

intermediate scales, which are themselves modulate by the longer waves. Here it

should be sufficient to estimate the variation of the Doppler frequency ∆ω directly

from a characteristic perturbation velocity of the long wave u ≈ k0σc(k0) cosh (k0H),

i.e.,

∆ω ≈ 2κk0σc(k0) coth (k0H) cos (ψs). (3.134)

Equations (3.132) and (3.134) represent the expected increase of the width of the

peaks of the acoustic Doppler spectra due to the modulation of the short Bragg waves

by the longer dominant waves. The dominant waves have been assumed to have the

wavenumber of the stationary waves, k0, in agreement with the experimental results

presented in chapter 5. These equations are used in chapter 6 in order to explain

the wider peaks of the experimentally measured acoustic Doppler spectra relative

to those of the spectra predicted with the numerical model.

3.3 Summary

This chapter presented the derivation of the equations and relations which are used

for the interpretation of the experimental results described in chapter 5, and for

the derivation of the numerical model of the acoustic Doppler spectra described in

chapter 6. The dispersion relation of gravity-capillary waves in a shallow turbulent

flow has been obtained for an irrotational flow (equation (3.20)), and for a flow

where the time averaged streamwise velocity varies as a power-function of the depth

(equations (3.24) and (3.26)). The power-function streamwise velocity profile (equa-

tion (3.17)) is governed by the value of the exponent n. This was estimated based
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on equations (3.35) and (3.39) for the tested flow conditions, as reported in section

4.2. The dispersion relations have been derived for an incompressible and inviscid

flow where the effects of the bed roughness is neglected. In subsection 5.3.2 it is

shown that the dispersion relations derived under these assumptions represent well

the measured dispersion relations in the measured flow conditions. The patterns

on the free surface are found to be dominated by the stationary waves generated

by the interaction with the rough bed in all the tested conditions where the mean

surface velocity was larger than the minimum phase velocity of gravity-capillary

waves (equation (3.23)). The wavenumber of the stationary waves was determined

based on equations (3.41) and (3.44) for the irrotational flow and for the flow with

the power-function velocity profile, respectively. The three dimensional patterns ob-

served experimentally are described by equations (3.48). Patterns of non-dispersive

waves for which the dispersion relation is given by equation (3.21) are also observed

in subsection 5.3.2.

The pdf’s of the surface elevation (equations (3.55) and (3.60)) and of the am-

plitude of the wave envelope (equations (3.63) and (3.66)) described in subsections

3.1.6 and 3.1.8 are compared to the measurements with conductance waveprobes in

subsections 5.2.2 and 5.2.3, respectively. These pdf’s are based on a linear (equa-

tions (3.55) and (3.66)) or weakly nonlinear (equations (3.60) and (3.63)) model of

the water surface. The comparison was aimed at assessing the validity of the linear

model implemented in chapter 6. The statistical significance of the observed nonlin-

earities was evaluated based on the GWR method following the procedure described

in subsection 3.1.7. The group velocity of the patterns on the free surface was de-

termined experimentally in terms of the velocity of the wave envelope, according to

the analysis reported in subsection 3.1.3. The experimental results are presented in

subsection 5.3.3, where the measured velocity is compared with the prediction given

by equation (3.15). The observations in subsection 5.3.3 suggest the possibility to

use the wavelet spectral method described in subsection 3.1.9 in order to characterise

the dispersion relation of the surface patterns from the measurement of the surface

elevation at a few locations. The applicability of the wavelet spectral method is

subject to a set of conditions reported in subsection 3.1.9. The measurement of the

spatial correlation function of the wave envelope described in subsection 5.3.3 was

used in order to identify the set of flow conditions where the method can be applied.

The dispersion relation and the angle of propagation of the waves was calculated

with equations (3.76) and (3.77), respectively. The results are reported in section

5.4.

The measurements of the Doppler spectra of the scattered acoustic field in a

range of subcritical flow conditions are reported in chapter 6. In order to provide a
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rigorous interpretation of the measurements, these were compared with the results

of two numerical models of the acoustic Doppler spectra. Both models were based

on the Kirchhoff approximation, which is defined by equation (3.90). The validity of

this approximation in the range of conditions described in this thesis is discussed in

subsection 6.1.2. The first model calculated the scattered acoustic field in time based

on equations (3.105) and (3.108) for a set of dynamic random realisations of the

scattering water surface. These were generated based on equation (3.10) assuming

the power spectrum of the surface elevation to be described by a power function of

the wavenumber, similarly to the studies reported in subsection 2.1.6. The second

model corresponds to the linear model illustrated in subsection 3.2.2. With this

model the acoustic Doppler spectra were calculated based on equation (3.123) and

with equation (3.120) or (3.125) in three or in two dimensions, respectively. The

model was valid when a set of conditions which have been reported in subsection

3.2.2 were satisfied. The validity of these conditions in the range of tested flow

conditions is discussed in subsection 6.1.4. The same linear model can be used in

order to reconstruct the frequency spectrum of the surface elevation based on the

measurement of the Doppler spectrum of the scattered acoustic field. The procedure

that allows such a reconstruction is described in subsection 6.1.5, and the results

of the reconstruction are presented in subsection 6.2.2. The comparison between

the measured acoustic Doppler spectra and the Doppler spectra predicted by both

numerical models show that the former had broader peaks at the frequency of the

Bragg scale waves. It is suggested that the broader peaks were caused by nonlinear

effects which were not considered in the models. The effects of the modulation of

the short Bragg waves by the longer waves on the free surface have been quantified

with equations (3.132) and (3.134). The predictions obtained with these equations

are compared with the measurements in subsection 6.2.3 as a mean to quantify the

importance of these effects.
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Chapter 4

Experimental apparatus

4.1 Flume setup

All the experiments described in this thesis were performed in a recirculating rectan-

gular laboratory flume. The flume was 12.6 m long, and 0.459 m wide. An adjustable

gate at the downstream end of the flume allowed uniform depth to be maintained

along the channel. The flow discharge and the bed slope could be regulated in order

to obtain the desired flow depth and mean surface velocity. The flume bed was

covered with three layers of hexagonally packed plastic spheres with the diameter

of 25.4 mm and density of 1400 kg m−3. A schematic of the flume is shown in FIG.

4.1. A picture of the rough bed is shown in FIG. 4.2.

The depth of the flow was measured at five streamwise positions between 7.43 m

and 10.1 m from the inlet. At each streamwise position, the depth was measured

at the flume centreline and at two additional locations at half the distance between

the centreline and each side wall. In this way it was demonstrated that the slope

12.6 m
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tank
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0
.4

5
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Figure 4.1: Schematic of the experimental flume. Dimensions are not to scale.
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0 25.4 mm

Figure 4.2: A photograph of the flume bed.

of the free surface coincided with the slope of the bed, with the uncertainty of

±2.3×10−4. At each measurement location, a manual point gauge was progressively

lowered towards the surface from above, until its tip was observed to be submerged

for approximately 50 % of the time. The procedure was repeated three times at each

location, and a mean value was taken. The gate at the flume outlet was adjusted

until the averages of the depth at each location were within ±0.7 mm. The mean

depth, H, was then defined as the average across all measurements at all locations.

Due to the adopted procedure, the uncertainty of the mean depth was ±0.7 mm. The

depth datum was set at the distance ds/4 below the crests of the spheres. This datum

corresponds to the geometric centre of the hemispheric surface with radius ds/2. The

same datum was suggested by Nakagawa et al. [1975], as it provides the appropriate

fitting of the streamwise velocity distribution by Nikuradse logarithmic law. Nezu

and Nakagawa [1993] found that the level where the time-averaged velocity is zero

is between 0.15ds and 0.3ds.

Two different velocities of the flow were measured. (i) The mean surface velocity,

U0, was measured by timing the passage of neutrally buoyant particles across a fixed

streamwise distance of 1.53 m. Plascoat Talisman 30 powder was used as seeding

particles. U0 was the average of 10 measurements in each flow condition. The

standard deviation across these measurements was below 3.5 % of U0. (ii) The cross

section-averaged velocity, UH , was calculated from the volumetric flow discharge,

Qv, and from the flow cross-section calculated from the uniform flow depth and the

channel width. The flow discharge was measured from the pressure drop across a

calibrated orifice plate in the flume inlet pipe, using a U tube manometer. It varied

as a power of the pressure difference measured by the manometer, as [5167-1, 1997]

Qv = UHHWf = αmp
βm
m /ρw, (4.1)
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where pm is the pressure difference measured by the manometer, Wf is the flume

width, ρw is the water density, βm = 0.5 [5167-1, 1997], and αm is a calibration

coefficients which was equal to 11.39 for the setup used here. Equation (4.1) does not

consider the flow within the pores of the layers of spheres, therefore it overestimates

the velocity UH . Nichols [2015] compared the result of equation (4.1) with the depth

integrated velocities obtained via a PIV method in a wide range of subcritical flow

conditions in the same flume and with the same bed roughness. Nichols [2015] found

that when the pressure difference was smaller than 30 mm, the measured discharge

was approximated better by equation (4.1) with αm = 9.56 and βm = 0.658. These

values take into account the real cross-section including the porous layers, and were

used in all conditions where pm < 30 mm. The original correlation was used in the

conditions where pm ≥ 30 mm, where it was found to be more accurate. Assuming

the uncertainty of the measurement of the flume width to be negligible, the relative

uncertainty of UH was estimated as

dUH
UH

= βm
dpm
pm
− dH

H
. (4.2)

The second term of equation (4.2) is of the order of 1 %, assuming dH = 0.7 mm. The

manometer was filled with water, and the pressure difference could be determined

with accuracy dpm = ±2 mmH2O. The first term of equation (4.2) was estimated as

βmdpm/pm = ±66 % (dUH = ±0.11 m s−1) when H = 42.2 mm, UH = 0.17 m s−1,

and βmdpm/pm = ±2 % (dUH = ±0.01 m s−1) when H = 99.0 mm, UH = 0.54 m s−1.

4.2 Estimation of the streamwise velocity profile

The characterisation of the dispersion relation of gravity-capillary waves in a turbu-

lent flow which was described in section 3.1.2 requires the knowledge of the exponent

n which fits the average streamwise velocity profile with the power-function repre-

sented by equation (3.17) with the exponent n. The measurements of the depth-

averaged velocity UH were used in order to determine the value of n in all flow

condition, based on the formulae suggested by Cheng [2007] (equations (3.35) and

(3.39), in sub-section 3.1.4). These formulae show the dependence of n on the sub-

mergence H/ds and on the modified Reynolds number based on the depth-averaged

flow velocity, ReH . The equations were calibrated against the measurements of

the streamwise velocity profile performed by Nichols [2015] in the same flume and

with the same bed roughness with a PIV system. Each of the measurements of

U(z) reported by Nichols [2015] was fitted with a straight line in double logarith-

mic co-ordinates in order to identify the representative values of the exponent n.
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Figure 4.3: The exponent n of the power-function average streamwise velocity profile
in the flume. (squares) best interpolation to the velocity profile data measured by
Nichols [2015], (lines) equations (3.35) and (4.3) for (dashed) ReH = 104, and (solid)
ReH = 5× 105.

The deviations between the measurements of U(z) and the fitted power-function

profiles at each depth were found smaller than 8 % of U(z) at each depth z in the

range 0.2 ≤ z/H ≤ 0.8. Based on the measured modified Reynolds number RH

and submergence H/ds, the values of n which had been identified for each condition

were then compared with the equations (3.35) and (3.39) proposed by Cheng [2007].

These equations provided a good estimate of the measured n when equation (3.39)

was modified in the form

n−1
√
f = 1.0, (4.3)

where the friction factor f was calculated based on equation (3.35).

FIG. 4.3 shows the values of 1/n determined from the measurements of Nichols

[2015] compared with the predictions based on equations (3.35) and (4.3). The

measurements reported by Nichols [2015] had 4.7 × 104 ≤ ReH ≤ 2.9 × 105, and

1.7 ≤ H/ds ≤ 4. The fitted exponent n varied between 1/2.4 and 1/3.3, and had

the minimum n = 1/3.8 at the submergence H/ds = 3.6. Across all the conditions

tested here, ReH varied between 2.8 × 104 and 2.1 × 105, and 1.6 ≤ H/ds ≤ 4.0.

These parameters were used for the estimation of n in all conditions, based on

equations (3.35) and (4.3). These estimates are reported in table 4.2. The estimated

exponent n varied between 1/2.8 and 1/3.5. In the range of flow conditions described

here, the change of the dispersion relation due to the change of n between these

two values is comparable with the resolution of the measurements. The maximum

difference between the dispersion relations (equations (3.26)) when n varies from

1/2.8 to 1/3.5 is 2.3 rad m−1, measured along the wavenumber axis. The change

of n from n = 1/2.4 to n = 1/3.8 produced a change of the dispersion relation

which was estimated as 4.5 rad m−1. In comparison, the maximum resolution of the

measurements was estimated as 4.05 rad m−1. In light of the marginal effect of the

exponent of the streamwise velocity profile across the measured conditions, all the

analysis described in chapter 5 was derived with the representative value n = 1/3.

68



CHAPTER 4. EXPERIMENTAL APPARATUS

4.3 Measurement of the free surface elevation with

arrays of conductance waveprobes

A conductance wave probe measures the surface elevation at a single location in time.

By arranging a set of probes in space, the spatial and temporal characteristics of

the free surface can be measured with a known resolution. Each conductance wave

probe comprises of two thin conductive metal wires that are anchored separately

but close to each other to the flume bed. 0.24 mm thick tinned copper wires were

used for the experiments described in this thesis. The two wires were parallel and

tensioned and they pierced the water surface vertically. The spacing between the

wires was 13 mm for the longitudinal array, and 10 mm for the transverse arrays.

An alternating current was passed through the wires, so that the voltage at their

free ends was a function of the water conductivity and varied linearly with the

instantaneous submergence.

The uncertainty of the surface elevation measurements with wave probes depends

on a set of parameters. Krynkin et al. [2014] identified the three most important

parameters as (i) the meniscus effect induced by surface tension, (ii) the deformation

of the free surface due to the pressure distribution near the wires, and (iii) the finite

separation between the wires. Krynkin et al. [2014] estimated the uncertainty due

to the meniscus, εI , as half the wire diameter, i.e., εI ∼ 0.12 mm. The meniscus

is expected to oscillate vertically together with the surface [Krynkin et al., 2014],

therefore the error associated with it consists in a constant bias of the measurements.

This bias was eliminated by removing the linear trend of the measurements in time

at each probe. As a result, the effect of the meniscus is not believed to affect the

measurements reported here. The pressure distribution in the region close to the

wires deforms the free surface by an extent which Krynkin et al. [2014] estimated

to be comparable to the wire diameter, εII ∼ 0.24 mm. This estimate was based on

the assumption that gravity balances the excess static pressure at the stagnation

point. Assuming instead that the surface tension is the dominant restoring force,

as is expected due to the small diameter of the wires, the magnitude of the surface

deformation is estimated as

εII ∼
ρwU

2
0d

2
w

8π2γw
, (4.4)

where dw is the diameter of the wires, U0 is the mean surface velocity, γw is the

surface tensions coefficient, and ρw is the density of water. In the range of flow

conditions described here, the uncertainty due to the pressure distribution near the

wires was estimated as εII ∼ 10−2 mm.
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Krynkin et al. [2014] also estimated the uncertainty due to the finite separation

between the wires, εIII , as a function of the characteristic wavelength of the surface

deformation and of the correlation function in the direction transverse to that of

the flow. Based on the discussion by Krynkin et al. [2014] for a similar range of

flow conditions as those reported here, εIII is expected to vary between 33 % and

2 % of the characteristic amplitude of fluctuations when the separation is equal

to 13 mm.1 The smaller uncertainty is expected for the deeper and faster flows.

The uncertainty decreases to 22 % and 1 % of the characteristic amplitude of the

fluctuations, respectively, when the separation is decreased to 10 mm (along the

transverse array of probes). In terms of absolute values, the uncertainty varies

between 0.03 mm and 0.11 mm with the separation of 13 mm, and between 0.02 mm

and 0.07 mm with the separation of 10 mm. These uncertainties were calculated

assuming that the surface waves have the wavefront perpendicular to the plane of

the two wires. Instead, the measurement of the waves that propagate parallel to the

mean flow, with the wavefront parallel to the plane of the two wires, is not affected

by this type of uncertainty. Hence, the effect of the finite separation is that of a

low-pass filtering of the transverse component of the surface spatial spectrum, which

limits the horizontal resolution of the measurements without causing aliasing. The

resolution can be approximated by the value of the separation between the wires.

The spectra reported in this thesis are shown up to the wavenumbers of 100 rad m−1

and 150 rad m−1 in the streamwise and in the transverse direction, respectively.

These correspond to the wavelengths of 62.8 mm and 41.9 mm, or 4.83 and 4.19

times the wires separation, respectively. These wavelengths are within the maximum

resolution of each wave probe.

An additional source of error for the measurements of the surface elevation with

conductance wave probes is caused by the vibrations of the wires. These are induced

by vortices that are shed periodically from the immersed portion of the probes, and

can generate a fictitious fluctuation of the signal at the characteristic frequency of the

vortices. Such a frequency can be estimated from the value of the Strouhal number,

determined for a two-dimensional flow over a circular cylinder. The Strouhal number

is defined as

Srw =
fvdw
U0

, (4.5)

where fv is the frequency of the vortices, dw is the diameter of the wires, and U0

is the mean surface velocity. Srw is a function of a Reynolds number based on the

1These values were found assuming that the characteristic spatial period of the free surface is
2π/k0, and the correlation length is π/k0, in accordance with the results presented in chapter 5.
The characteristic amplitude of fluctuations is represented by the standard deviation σ.
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diameter dw,

Rew =
ρwU0dw
µw

, (4.6)

where ρw and µw are the density and the dynamic viscosity of water, respectively. In

the range of flow conditions investigated here Rew varied between 45 and 143. Srv

is estimated to be in the range between 0.12 and 0.18, respectively [Posdziech and

Grundmann, 2007]. As a result, the shedding frequency of the vortices was estimated

to be between 142 Hz and 450 Hz, respectively. The wave probes data series were

filtered with a second order band-pass Butterworth filter with the cutoff frequencies

of 0.1 Hz and 20 Hz. Therefore, the effects of the vibrations of the conductance

wave probes at the frequency of vortex shedding is believed to be negligible for the

analysis presented here.

In summary, the accuracy of the measurements with conductance wave probes

was estimated to be approximately 0.01 mm for the waves propagating in the stream-

wise direction, and between 0.02 mm and 0.07 mm for the waves propagating in the

transverse direction. The horizontal resolution of the measurements was 62.8 mm

and 41.9 mm in the two directions, respectively. The measurements were performed

continuously for an overall duration of 5 minutes at the sampling frequency of 500 Hz,

and analysed in segments of 10 seconds each. Twenty-four conductance wave probes

were distributed in order to form three separate non-equidistant arrays. The arrange-

ment of the three arrays is shown in FIG. 4.4 and 4.5. One streamwise array of 8

probes was aligned along the flume centreline, with the first probe called 1(x) at the

distance of 9 m from the inlet. The length of the streamwise array was 762.5 mm.

The minimum distance between the probes was equal to 12.5 mm (between probes

7(x) and 8(x)), and is associated with the maximum resolution of the streamwise

array. The two remaining arrays were orthogonal to the centreline and comprised of

8 probes each, which were distributed in between the centreline and the flume side

wall on the left hand side (looking towards the outlet). The first transverse array

had the length of 167.2 mm and it was positioned at the same streamwise distance

from the inlet as the probe 1(x). The maximum resolution in the transverse direction

was represented by the The second transverse array had the length of 168.8 mm and

it was positioned at the same streamwise distance from the inlet as the probe 4(x).

Data was acquired simultaneously at the longitudinal array and at one of the trans-

verse arrays, for each measurement. For the purpose of the analysis, the probe 1(x)

was shared by the longitudinal array and by the first transverse array (1(x) ≡ 1(y)),

and the probe 4(x) was shared by the longitudinal array and by the first transverse

array (4(x) ≡ 1(y′)). This increased the effective number of probes in the arrays y

and y′ to 9. The second array y′ was not used for the analysis presented here, but

it is shown for completeness. The co-ordinates of each probe relative to probe 1(x)
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Figure 4.4: Picture of the arrays of conductance wave probes. Flow direction is top
to bottom.

are shown in FIG. 4.5 and reported in Table 4.1. The x-axis runs along the channel

centreline and the origin of the axes is 9 m from the inlet.

The conductance wave probes were connected to a set of Churchill Controls

WM1A wave monitors. The analogue output of the wave monitors was digitised by

two 8 channels National Instrument (NI) data acquisition cards, and recorded with

an NI PXIe-8108 embedded control system with LabView. The synchronisation

between the two acquisition cards was checked in a separate measurement, with the

same sampling period used for the measurements, 1/fs = 0.002 s. The delay was

less than the sampling period, and it could not be quantified. Every probe was

Table 4.1: The spatial distribution of the conductance wave probes

Array Probe locationa (mm)

1 2 3 4 5 6 7 8 9
x (y ≡ 0) 0 26.0 116.5 297.5 541.5 694.5 750.0 762.5
y (x ≡ 0) 0 17.5 35.0 51.5 69.0 95.0 119.0 151.0 167.2

y′ (x ≡ 297.5) 0 18.4 35.5 51.3 69.1 95.7 121.2 150.3 168.8

aThe origin of the x-y co-ordinates is 9 m downstream from the inlet, along the centreline. The
co-ordinates in the table are along the x-axis for the array x, and along the y axis for the arrays
y and y′.
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Figure 4.5: The arrangement of the arrays of conductance wave probes.

calibrated at 6 constant depths from 30 mm to 130 mm in still water and with the

channel slope of s = 0. The mean temperature of the water during the calibration

was 15.6 ◦C. The mean temperature was 24.4 ◦C during the tests with the flow.

The average voltage output was measured at each depth and the line of best fit

was applied to the data to determine the calibration function separately for each

probe. The calibration sensitivity of the probes varied between 0.146 V mm−1 and

0.032 V mm−1, with the average of 0.113 V mm−1. The lower sensitivity was found

for probes 1(y) and 3(y) and was caused by the different length of the cables which

connected the probes to the wave monitor, and consequently the different voltage

offset. The probes along the transverse arrays were connected alternately to the

same wave monitors. In some cases this required reducing the gain of the monitor

to ensure that the measurements were within the dynamic range of the acquisition

system. The data acquisition system had an accuracy of 0.3 mV, that corresponds

to a 0.003 mm average vertical resolution. The wave probes recordings in still water

were characterised by a very slow unsteady drift in time (less than 10−2 mm over ten

seconds). As a result, the root mean square (rms) noise level estimated from a 10 min

measurements was approximately 0.05 mm, which was reduced below 0.01 mm by

filtering with the second order Butterworth filter prior to the analysis.

4.4 Acoustic measurements

4.4.1 Acoustic apparatus

The acoustic apparatus was used in order to measure the Doppler spectrum of the

scattered airborne acoustic waves. The analysis procedure and results of these mea-

surements are reported in section 5.1. The setup comprised of a 70 mm directional

ultrasonic transducer (Pro-Wave ceramic type 043SR750) and two 1/4” B&K 4939-
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A-011 microphones with Type 2670 pre-amplifiers. The ultrasonic transducer was

connected directly to a Tektronix AFG 3022C function generator which emitted a

43 kHz sinusoid with peak-to-peak amplitude of 10 V. The two microphones had the

sensitivity of 4.043 mV Pa−1 and 3.955 mV Pa−1, respectively. The signal recorded

by the microphones was amplified by a B&K NEXUS Conditioning Amplifier Type

2692-A, with the gain set to 1 V Pa−1. The charge amplifier had an embedded band-

pass filter with pass band between 20 Hz and 100 kHz. The output of the power

module was digitised and recorded by the same NI PXIe-8108 embedded control

system which was used with the conductance wave probes. The direct output from

the function generator was also digitised and recorded on a separate channel. The

acquisition was performed at the sampling frequency of 500 kHz, for short intervals

of 1 s duration.

The Doppler spectrum was defined as the frequency power spectrum of the scat-

tered acoustic pressure signal determined with the standard discrete Fourier trans-

form in time. Prior to the calculation of the spectrum, the signal was filtered with a

second-order band-pass Butterworth filter between the frequencies 0.9ωa and 1.1ωa,

where ωa was the frequency of the output of the source transducer. The recorded

signal was then detrended, and multiplied by a Hanning window function of the

same duration. The spectrum was the average of 50 independent measurements,

each with the length of one second.

4.4.2 Characterisation of the acoustic response and direc-

tivity of the Doppler setup

In order to model the acoustic scattering by the water surface, it was necessary

to characterise the acoustic response of the receivers in space and the directivity

pattern of the acoustic source, namely Dm and Ds, respectively.

Based on factory specifications, the free-field response of the B&K microphones

at normal incidence is flat within ±1 dB between 2 Hz and 100 kHz when the pro-

tection grid has been removed. The directivity pattern of the B&K 4939-A-011

microphones was obtained from the official documentation [BK]. It is shown in FIG.

4.6, where the directivity was normalised by the maximum amplitude at 0◦.

The directivity pattern of the 70 mm ultrasonic transducer was measured in an

anechoic chamber, at the same frequency at which the transducer was driven in the

flume. In the anechoic chamber, the transducer was mounted on a frame installed

right above the centre of a 60 mm high automatic rotating table, at the distance of

645 mm from the ground and with the axis perpendicular to the axis of revolution.
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Figure 4.6: The normalised directivity pattern of the B&K 4939-A-011 microphones.
Data from accompanying documentation [BK].

The table completed one full revolution in approximately 1 min. The transducer

was driven with a sinusoidal signal with the frequency of 43 kHz and amplitude of

10 V peak-to-peak. For the characterisation of the directivity of the 70 mm direc-

tional ultrasonic transducer, a setup with a different type of microphones was used.

This setup consisted of two 1/4” G.R.A.S. 46BF microphone sets, connected to two

G.R.A.S. power modules Type 12AK with neutral (”Lin”) filter setting and 40 dB

gain. One of the microphones was installed on the same rotating frame as the trans-

ducer, and it provided the reference output which enables to correct for the eventual

drift of the ultrasonic source. The second microphone was installed on a fixed frame,

at the same height of the source, so that the rotation of the transducer allowed the

full characterisation of the directivity in one single measurement. The measurement

set up is shown in FIG. 4.7.

The directivity was measured at 4 distances from the centre of the source,

200 mm, 400 mm, 500 mm, and 1000 mm. The signal was recorded in very short

intervals of 1 ms, at the frequency of 1 MHz. A separate acquisition was triggered

every 0.01 s. Each segment of the measured signal, P , was filtered with a band-pass

second-order Butterworth filter between the frequencies of 30 kHz and 50 kHz. The

initial and final tails of the segment were removed, and the signal was Hilbert trans-

formed in order to obtain its analytic form. The amplitude, P̃ , was then averaged

across the single segment in order to obtain the short-time average of the acoustic

pressure, P̂ (θs), where θs is the angle of orientation of the source axis with respect

to the measurement microphone. For the adopted rotation speed, θs was approxi-

mately constant during 1 ms, and it varied by approximately 10−3 rad during 0.01 s.

The recording lasted for 5 revolutions of the rotating table, and the final directivity

Ds(θs) was the average at each θs across all revolutions.

The directivity pattern of a baffled round transducer in the far-field can be

approximated by the acoustic pressure produced by an oscillating piston with rigid
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Figure 4.7: A photograph of the set up to measure the ultrasonic source directivity
pattern. The distance from the ultrasonic transducer to the measurement micro-
phone is 400 mm.

baffle [Morse and Ingard, 1968, p. 381], as reported in section 3.2.1. The measured

directivity pattern is shown in FIG. 4.8. The best fit with equation (3.88) is found

with rs = 20 mm, which shows that the effective diameter of the transducer was

equal to 40 mm. The directivity pattern in FIG. 4.8 has a narrow main lobe with

the width of approximately 30◦. The side lobes predicted by equation (3.88) are

absent at the smaller distance of 200 mm from the source, and are smaller than the

theoretical prediction at the larger distance.

The acoustic setup was installed in the experimental flume at the distance of 8 m

from the inlet. FIG. 4.9 shows a picture of the directional transducer and of the

first microphone, in the actual installation condition. The transducer was attached

to a fixed frame from above, with the centre of the active surface suspended at

the height of 200 mm from the mean water surface level. The latter was defined

as the time-averaged position of the free surface, right below the transducer. The

position of the transducer was equidistant from both side walls of the flume. The

transducer axis was inclined downwards at ψs = 30◦ with respect to a plane parallel

to the mean water surface level, facing towards the inlet. As a result, the projection

of the main directivity lobe was at the distance of 7.65 m from the inlet. This was

within the region of uniform depth, as verified by the measurements with the manual
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Figure 4.8: Normalised measured directivity pattern of the directional ultrasonic
transducer (Pro-Wave ceramic type 043SR750) at the frequency of 24 kHz. (red)
Directivity of the oscillating piston with rigid baffle, equation (3.88), with rs =
20 mm. The inset shows the directivity outside of the main lobe.

depth gauges. The effective insonificated area can be defined as the region where

Ds(θs) ≥ 0.5. The size of this area was LD = 239 mm along the x-direction, and

LD = 56 mm along the y-direction.

The first of the two B&K microphones was installed at the distance of 59.5 mm

from the centre of the transducer. The axis of the microphone was parallel to that of

the transducer, also facing towards the inlet. The second microphone was installed

closer to the flume inlet, at the same height from the mean water surface level

as the ultrasonic transducer. This microphone was inclined by the same angle ψs

with respect to the mean water surface plane, but facing towards the outlet (and

towards the transducer). The position of the microphones and of the transducer were

vertically adjusted before each measurement in order to maintain the same distance

from the water surface. The vector co-ordinates of the transducer, S = (xs, ys, zs)
T ,

and of the two microphones, M1 = (xm,1, ym,1, zm,1)T and M2 = (xm,2, ym,2, zm,2)T ,

respectively, were

S =

cotψs

0

1

200 mm, (4.7a)

M1 =

cotψs + 0.2975 sinψs + 0.01 cosψs

0

1− 0.2975 cosψs + 0.01 sinψs

200 mm, (4.7b)

M2 =

− cotψs

0

1

200 mm. (4.7c)
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Figure 4.9: The arrangements for the 70 mm directional ultrasonic transducer (Pro-
Wave ceramic type 043SR750) and the first 1/4” B&K 4939-A-011 microphone, in
the actual installation. Dimensions are not to scale.

Here the origin of the system of reference is located on the plane of the mean

surface, at the point of intersection with the direction of maximum directivity of the

transducer. The z-axis is oriented outwards from the water flow, and the x− axis is

oriented along the centreline towards the flume outlet. It is noted that the second

microphone was positioned along the line of specular reflection of the main directivity

lobe of the transducer. The first microphone was close to the transducer, therefore it

recorded the signal backscattered from the free surface. Both microphones lie outside

of the main directivity lobe which is shown in FIG. 4.8, so that the direct acoustic

field was negligible. It was noted during the measurements that the reflection of

sound from the second microphone affected the signal recorded by the microphone

number one. Therefore the second microphone was removed from the flume during

the measurements with microphone one.

4.5 Experimental conditions

Thirteen different flow conditions were studied. Each flow condition was unique in

terms of the uniform flow mean depth, H, and the slope, s, of the flume. These

parameters are reported in Table 4.2 together with the measured mean surface

velocity U0, and the characteristic Froude and Reynolds numbers based on U0 and

H,

F = U0/
√
gH, (4.8)
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and

Re = ρwU0H/µw, (4.9)

respectively. Here g is the gravity constant.Table 4.2 also reports the measured stan-

dard deviation of the free surface fluctuations, σ. σ was determined as the average

standard deviation across all the probes of the streamwise array, in accordance with

the procedure described in section 5.1.1.

The wavenumber of the stationary waves, k0, estimated from equation (3.44)

for each flow condition is also given in Table 4.2. The non-dimensional parame-

ter k0H/π corresponds to twice the ratio between the depth and the wavelength

of the stationary waves. In a deep irrotational flow, k0H = 1/F 2. When k0 is

determined for the 1/3 power function profile which approximates the streamwise

average velocity profile of a shallow turbulent flow (equation (3.17)), the parame-

ter k0H has the same meaning of a squared Froude number [Burns, 1953]. In an

attempt to investigate the behaviour of the free surface when the Froude number

changes, the different flow conditions reported in Table 4.2 were grouped based on

the value of k0H/π. Each flow condition is designated by a number between 1 and

13, in descending order of k0H/π. The flow conditions 2 to 5 have k0H/π > 1.4 and

F < 0.5, therefore they are representative of relatively deep flows with a low Froude

number. The flow conditions 10 to 13 have k0H/π < 1 (the stationary waves are

longer than 2H) and 0.61 ≤ F ≤ 1, and they represent the largest Froude number

flows across all measurements. The conditions 6 to 9 have 1 ≤ k0H/π ≤ 1.36 and

they constitute the intermediate range of Froude number across all measurements

(0.52 ≤ F ≤ 0.61). The threshold values of 1 and 1.4 have been chosen arbitrarily in

order to give the same number of flow conditions in each group. Condition 1 has the

mean surface velocity lower than the minimum phase velocity of gravity capillary

waves, therefore the stationary waves cannot exist under this flow condition and it

is impossible to define k0 based on equation (3.44).
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4.6 Summary

This chapter has described the experimental setup used for all the measurements

reported in this thesis. The characteristics of each tested flow condition have been

reported in section 4.5. The arrays of wave probes described in section 4.3 were

used for the characterisation of the dynamic behaviour of the free surface in these

conditions. The results of this analysis are reported in chapter 5. The acoustic setup

described in section 4.4 was used in order to measure the Doppler spectrum of the

acoustic pressure field scattered by the dynamic rough surface. These measurements

are described in chapter 6.
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Chapter 5

Wave probes analysis of the free

surface

The purpose of the experimental analysis described in this chapter was to identify

a suitable model that could describe the dynamic behaviour of the free surface of

shallow turbulent flows over a rough boundary, in a variety of flow conditions. The

first objective was to investigate the mechanisms which produce the patterns on the

free surface of shallow turbulent flows. A number of different phenomena which can

cause the deformation of the free surface have been discussed in section 2.1. These

can be summarised in three main categories: the interaction with turbulence in the

flow, the interaction with the rough static boundary, and the shear instabilities due

to the vertical variation of the average streamwise velocity. Additional instabilities

and mutual interactions among waves can promote the growth of waves and modify

the spectrum of the free surface, but they are not considered here as a generation

mechanism. The interaction with turbulence can manifest itself in terms of the lo-

calised deformation generated by coherent turbulent structures, or of the resonant

and non-resonant interaction with the turbulent pressure fluctuations. The interac-

tions with the rough boundaries and the shear instabilities can cause the growth of

patterns of gravity-capillary waves. In this chapter the results of experiments in a

laboratory flume with rough boundary are used to discuss how relevant is each of

these mechanisms for the free surface dynamics in shallow turbulent flows.

The second objective of this chapter was to test the hypothesis that the dynamics

of the free surface of shallow turbulent flows can be described with a linear model

of gravity-capillary waves. The model was introduced in subsection 3.1.1, it is

used for the acoustic analysis in chapter 6, and it is described with more detail

in subsection 6.1.1. It represents the free surface elevation in terms of a Fourier

series in time and in space, where each Fourier coefficient is characterised by an
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amplitude, a phase velocity, and a phase. The phase of the Fourier coefficients is

a random variable with uniform distribution. The amplitude is derived from the

spectrum of the surface elevation. The phase velocity is determined based on a

dispersion relationship. The latter two quantities are characterised empirically in

this chapter, from the measurements of the frequency-wavenumber spectra of the

surface elevation. An objective of this chapter was to demonstrate that such a model

of the surface elevation is able to represent the measured statistics of the free surface

correctly. This is done in section 5.2, based on the comparison with the linear and

weakly nonlinear models presented in subsections 3.1.6 and 3.1.8.

The third objective of this chapter was to identify the characteristic spatial and

temporal scales of the patterns on the free surface, and to establish a relationship

between them and the main hydraulic quantities. These relationships would allow

the characterisation of the hydraulic quantities remotely, based on the measurement

of the free surface. The analysis and the data presented in this chapter have a

progressively increasing degree of complexity, beginning with the characterisation of

the statistics of the free surface at one location and ending with the non-stationary

analysis based on the wavelet spectral method. This incremental approach provides a

set of tools that would allow the remote characterisation of the flow parameters with

(acoustic) instrumentations of increasing complexity. The experimental apparatus

that provided the raw data for the analysis has been described in Chapter 4. The

fundamentals of the analysis techniques have been described in Chapter 3 together

with their relationship with the theory of gravity-capillary waves.

This chapter is organised as follows: Section 5.1 reports the definitions of the

mathematical operators and descriptors which have been used in order to charac-

terise the statistical behaviour of the free surface, as well as the details of the data

analysis procedure. Section 5.2 investigates the statistics of the free surface elevation

and of its envelope measured at one single location in space. Section 5.3 extends

the analysis to one additional spatial dimension, and presents the spatial correla-

tion functions and the one dimensional frequency-wavenumber spectra of both the

surface elevation and of its envelope. The assumption in these first sections (to an

extent motivated by the results of section 5.2) is that of the statistical stationarity

of the free surface. Section 5.4 describes the results of the wavelet spectral method

applied to the measurements of the free surface elevation. This method does not re-

quire the stationarity of the statistics, therefore the results in that section are more

general. Section 5.5 summarises the main results of this chapter, and describes the

final conclusions.
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5.1 Data analysis and procedures

5.1.1 Definitions

This section reports a list of the definitions of all functions and parameters which

are used in the rest of this chapter. The free surface elevation measured at probe ν

and at time µ is defined as

ζν,µ = ζ(xν , yν , tµ), (5.1)

where tµ = µ∆t, µ = 0, 1, ...,M − 1 is the sampled time vector and xν and yν

are the co-ordinates of the wave probe with index ν reported in Table 4.1. ν =

1(x), 2(x), ..., 8(x) for the streamwise array, and ν = 1(y), 2(y), ..., 8(y) for the lateral

array, respectively. ∆t = 1/fs is the sampling period, and each measurement has

the duration T = (M − 1)∆t in time.

The statistical moment of order q of the free surface elevation ζ measured at

probe ν is defined according to equation (3.57) as

m
(ν)
ζ,q =

1

M

M−1∑
µ=0

(ζν,µ− <ζν,µ>µ)q , (5.2)

where <ζν,µ>µ is the time-average of ζν,µ, which equals 0 by definition. The spatially

averaged moment is defined as

mζ,q =
1

Np

Np∑
ν=1

m
(ν)
ζ , (5.3)

where Np is the number of probes along the array. The standard deviation of the

surface elevation corresponds to the square root of the second moment,

σν =

√
m

(ν)
ζ,2, (5.4)

and the spatially averaged standard deviation is defined as

σ =
√
mζ,2. (5.5)

Unless otherwise stated, σ always corresponds to the values calculated from the

measurements with the streamwise array, with Np = 8. These values are reported

in Table 4.2 for each flow condition. The quantities

λ3 = mζ,3/m
3/2
ζ,2 , (5.6)
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and

λ4 = mζ,4/m
2
ζ,2, (5.7)

are the skewness and the kurtosis of ζ, respectively.

The time-gradient of ζ, ζ̇ν,µ, was determined as

ζ̇ν,µ =
ζν,µ+1 − ζν,µ

∆t
. (5.8)

The envelope of the free surface elevation, Zν,µ, was determined from the Hilbert

transform of the surface elevation ζν,µ. The definition of the Hilbert transform is

H (ζν,µ) =
1

π

∫ ∞
−∞

ζ(xν , yν , t
′
µ)

t− t′
dt′. (5.9)

The envelope is defined as

Zν,µ = |ζν,µ + iH (ζν,µ) |, (5.10)

while the phase of the signal is

Φν,µ = ={log [ζν,µ + iH (ζν,µ)]} = tan

[
H (ζν,µ)

ζν,µ

]
, (5.11)

where ={x} represents the imaginary part of the generic variable x. In practice,

H (ζν,µ) was computed with the ’hilbert’ function available in Matlab R2015b. This

function calculates the Discrete Fourier Transform (DFT) of ζν,µ and produces the

imaginary part in the reciprocal domain as a replica of the original signal with a

lag-quadrature shift, then it sums ζν,µ and the imaginary shifted replica to generate

the analytic signal. The procedure is the same as described for example by Longuet-

Higgins [1984], but with the opposite sign of the imaginary part (i.e., with a lead-

quadrature shift). It was then necessary to modify the sign of H (ζν,µ) in order

to obtain a consistent representation. The moments of the gradient ζ̇ν,µ and of

the envelope Zν,µ, m
(ν)

ζ̇,q
and m

(ν)
Z,q, respectively, follow from equation (5.2) with the

obvious substitution of ζ by the relevant quantity. The standard deviation and the

coefficients of skewness and kurtosis of ζ̇ν,µ and of Zν,µ are defined as σζ̇ , λζ̇,3, λζ̇,4,

and σZ , λZ,3, λZ,4, respectively.

The discrete statistical distribution of the free surface elevation measured by

the probe ν, p
(ν)
ζ (ζ), was determined by binning the measured values of ζ into

Nζ = 63 equidistant bins between −3σν and 3σν . The statistical distribution of ζ̇

was determined in the same way as p
(ν)

ζ̇
(ζ̇), with Nζ̇ = 63 equidistant bins between

−3σζ̇ and 3σζ̇ . The number of bins was chosen empirically in order to ensure the
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convergence of the measured distribution. The pdf of the envelope Zν,µ, indicated

by p
(ν)
Z (Z), was determined in the same way as p

(ν)
ζ (ζ), with only the positive Nζ/2

bins.

The normalised frequency power spectrum of the free surface elevation measured

by the probe ν at the frequency ω, Sν(ω), was determined as

Sν(ω) =
1

2∆ω

∣∣∣∣∣ 1

σνM

M−1∑
µ=0

ζν,µe
−iωtµ

∣∣∣∣∣
2

, (5.12)

where ∆ω = 2πfs/M . Sν(ω) was calculated with the ’fft’ function in Matlab R2015b

at the discrete frequencies ωj = j2πfs/M , j = 0, 1, ...,M/2−1, and later normalised

such that
M/2−1∑
j=0

Sν(ωj)∆ω = 1. (5.13)

The average frequency spectrum S(ω) was defined as the average of Sν(ω) across all

probes. The q-th spectral moment was defined as

s(ν)
q =

M/2−1∑
j=0

ωqjSν(ωj)∆ω. (5.14)

The standard definition of the normalised space-time correlation function is

W (rx,n, ry,n, τm) =

Np∑
η=1

Np∑
ν=1

M−1∑
µ=0

ζ(xν , yν , tµ)ζ(xη, yη, tµ − τm)

σνση
, (5.15)

where rx,n = xν−xη and ry,n = yν−yη. The wave probes were distributed along the

non-equidistant arrays reported in table 4.1. Therefore the above definition would

lead to large gaps of the correlation function in the two spatial dimensions. The

alternative definition of the correlation function which was adopted here was based

on one single array of probes in one direction only, i.e.,

Wx(rx,n, τm) = W (rx,n, 0, τm), (5.16a)

Wy(ry,n, τm) = W (0, ry,n, τm), (5.16b)

were considered instead of the full correlation function W in the two spatial dimen-

sions. From now on the analysis procedure and definitions are presented for the

measurements with the streamwise array only. Therefore only the correlation in the

x direction is considered, and rx,n is represented as rn to simplify the notation. The

extension of all definitions to the measurements with the lateral array is straight-
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forward. Each combination of two probes (ν, η) of the same array was used in order

to determine the temporal correlation function W
(n)
t (τm) at the spatial separation

rn = xν − xη,

W
(n)
t (τm) =

M−1∑
µ=0

ζ(xν , tµ)ζ(xη, tµ − τm)

σνση
. (5.17)

All combinations of two probes (ν, η) which spatial separation rn was similar within

a distance ±δr were identified. For these combinations, the average separation r̄n

was determined, so that Nr̄n was the number of pairs with r̄n−δr ≤ xν−xη ≤ r̄n+δr,

and the number of unique separations r̄n was 2Nx − 1. Nx was the number of non-

negative separations. The space-time correlation function was then estimated by

binning the temporal correlation functions W
(n)
t (τm) and calculating the average

inside each bin, i.e.,

Wx(r̄n, τm) =
1

Nr̄

∑
n,rn≈r̄n

W
(n)
t (τm). (5.18)

The binning of the correlation function was performed in order to improve the

convergence of the interpolation algorithm described in sub-section 5.1.3 in light

of the uncertainty of the location of the probes. δr was set to 5 mm. This value

appeared to give a stable average of the measured correlation function. The zero

time-lag correlation function was defined as

Wx(r̄n, 0). (5.19)

The two-dimensional space-time correlation function calculated with equation

(5.18) was still defined on a non-equidistant set of spatial separations r̄n, in gen-

eral. The frequency-wavenumber spectra determined from the DFT of such a func-

tion would be affected by strong leakage. An iterative algorithm combined with a

sinc function reconstruction procedure was applied to the measured correlations in

order to obtain the accurate interpolation of the correlation function onto a new

equidistant set of separations. The technique is explained with more detail in sub-

section 5.1.3. The result of the interpolation was the regularised correlation function

Ŵx(r̄e, τm), which was defined at the equidistant separations r̄e.

The frequency-wavenumber spectrum was calculated with the two-dimensional

DFT of Ŵx(r̄e, τm) at the discrete frequencies ωj and wavenumbers kx,l = l2π/(2Nx−
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1)∆r̄e, l = −Nx + 1,−Nx + 2, ..., Nx − 1,

Sx(kx,l, ωj) =
2M−1∑
m=0

Nx−1∑
e=−Nx+1

wH(r̄e, τm)Ŵx(r̄e, τm) exp [i (kx,lr̄e − ωjτm)]∆r̄e∆τ,

(5.20)

where ∆r̄e = 2Lx/2(Nx − 1), ∆τ = 2T/2(M − 1), Lx was the spatial length of the

array of probes, and wH(r̄e, τm) was a two-dimensional window function. A standard

two-dimensional Hanning window,

wH(r̄e, τm) = 0.25

[
1− cos

(
π (r̄e + Lx)

Lx

)][
1− cos

(
π (τm + T )

T

)]
, (5.21)

was used for the analysis. The frequency wavenumber spectrum Sx(kx,l, ωj) was

normalised such that

M/2∑
j=1

Nx−1∑
l=−Nx+1

Sx(kx,l, ωj)∆kx∆ω = 1, . (5.22)

It is shown in sub-section 5.3.2 that the amplitude of the frequency-wavenumber

spectra of the free surface elevation decays rapidly with the frequency. In order to

improve the visualisation of such spectra, a wavenumber-wise normalisation of the

spectrum,

S̄x(kx, ω) = Sx(kx, ω)/[Sx(ω)/ks,x], (5.23)

was introduced, where ks,x was the Nyquist wavenumber calculated for the stream-

wise array. Sx(ωj) was the equivalent of a spatially averaged frequency spectrum,

obtained by integrating equation (5.20) over the wavenumber axis only, i.e.,

Sx(ωj) =
Nx−1∑

l=−Nx+1

Sx(kx,l, ωj)∆kx. (5.24)

In practice, the frequency spectra S(ω), the correlation functions Wx(r̄n, τm) and

Ŵx(r̄e, τm), and the frequency-wavenumber spectra Sx(kx, ω) were all calculated

from a set of independent measurements of ζ, each being 10 seconds long. All

the quantities reported in the rest of this chapter were the average across all such

10 seconds long segments, which were assumed to represent a set of independent

realisations. These averaged quantities are indicated by the same symbols as the

one defined here for a single realisation, in order to simplify the notation.

89



CHAPTER 5. WAVE PROBES ANALYSIS OF THE FREE SURFACE

5.1.2 Generation of constrained surrogate time series with

the gradual wavelet reconstruction

The basic principle of the method of generating constrained surrogate synthetic

time series with the gradual wavelet reconstruction [Keylock, 2006, 2007, 2010] was

outlined in sub-section 3.1.7, as well as the fundamental algorithm. Here the im-

plementation of the version of the algorithm described by Keylock [2010] to the

measured wave probes data is briefly presented. The surrogates were generated

based on a single reference signal for each condition. This was the calibrated signal

ζν,µ recorded at one single probe ν, and it was priorly detrended in time and band-

pass filtered with the cut-off frequencies of 0.1 Hz and 20 Hz. The signal was not

downsampled in order to improve the convergence of the statistical distributions,

especially of the gradient ζ̇ν,µ. 218 samples of the signal ζν,µ were used for the anal-

ysis, which corresponded to 524.288 s with the sampling frequency of 500 Hz. The

analysis followed the algorithm [Keylock, 2010] described in sub-section 3.1.7. Sim-

ilarly to Keylock [2010], a Daubechies least-asymmetric wavelet with 16 vanishing

moments was employed. The wavelet transforms were computed with the ’wmtsa’

[WMTSA, 2006] package developed for Matlab by Charlie Cornish based on the

book by Percival and Walden [2000]. The convergence was tested in terms of the

squared difference between the average power spectra of the original signal and of

the surrogates. The spectra were calculated separately at each scale after splitting

the signal into segments of the length of 212 samples, corresponding to 8.192 s. Both

signals were pre-multiplied by a standard Hanning window of the same length prior

to the calculation of the spectra. This prevented issues of convergence due to the

boundary discontinuities. The convergence parameter was defined as

δsurr. =

√∑218

j=1 [S(ωj)− Ssurr.(ωj)]2∑218

j=1 S(ωj)
, (5.25)

where S(ωj) was the power spectrum of the measured elevation at the frequency ωj,

and Ssurr.(ωj) was the power spectrum of the surrogate. The iterations were halted

when δsurr. was smaller than 10−3, or when it changed by less than 10−6 between

two consecutive iterations, which occurred before 100 iterations.

90



CHAPTER 5. WAVE PROBES ANALYSIS OF THE FREE SURFACE

5.1.3 Reconstruction of the space-time correlation function

from measurements with non-equidistant arrays of probes

The interpolation of the correlation function Wx(r̄n, τm) on an equidistant set of

spatial separations r̄e was performed with an iterative algorithm combined with a

sinc function reconstruction procedure, where the sinc function was defined as

sinc(r) =
sin (πr)

πr
. (5.26)

Alternative kernels have been considered in the literature, such as the Gaussian,

Laplacian, and rectangular kernels [Babu and Stoica, 2010]. The sinc kernel was

chosen because it is directly related to the Sampling Theorem [Shannon, 1949].

This kernel gives more accurate results than the Lomb-Scargle periodogram for

non-uniformly sampled signals with harmonic components [Rehfeld et al., 2011] and

it defines a valid estimator of the correlation function [Stoica and Sandgren, 2006].

Compared to other kernels, it ensures the positive semidefiniteness of the interpo-

lated correlation function [Babu and Stoica, 2010]. An iterative algorithm intro-

duced by Gröchenig [1993] was added to the sinc interpolation method described

by Stoica and Sandgren [2006] and Maymon and Oppenheim [2011] to further min-

imise the leakage due to non-orthonormality of the sinc coefficients when they are

projected on the non-equidistant set of sampling locations.

The equidistant set of separations, r̄e, was defined as r̄e = e∆r̄e, where ∆r̄e =

Lx/(Nx − 1), in accordance with Rehfeld et al. [2011]. At the first iteration, the

interpolation Ŵx(r̄e, τm)(1) of Wx(r̄n, τm) was calculated as

Ŵx(r̄e, τm)(1) =
Nx−1∑

n=−Nx+1

Wx(r̄n, τm) sinc

[
2 (r̄e − r̄n)

Γr∆r̄e

]
. (5.27)

Γr was an arbitrary numeric coefficient that defined the width of the reconstruction

kernel. The Fourier spatial transform of Ŵx(r̄e, τm)(1) is equal to the convolution of

the spectrum of Wx(r̄n, τm) with the spectrum of the kernel function. As noted by

Rehfeld et al. [2011], the sinc kernel interpolation corresponds to applying a low-pass

filter to the original correlation function, where the cut-off wavenumber decreases

when Γr increases. On the other hand, the iterative procedure becomes unstable

if the kernel width Γr∆r̄e is much smaller than the maximum gap in the non-

equidistant set r̄n. With the relatively sparse arrays of probes that were described

in chapter 4, the best compromise between the conservation of the spatial spectrum

and the stability of the reconstruction was found when Γr = 2. The same value was

used in the benchmark test described by Rehfeld et al. [2011].
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Figure 5.1: An example of the correlation functions at 0 time lag, for condition 11:
(squares) estimated directly, Wx(r̄n, 0), (circles) reconstructed through the proposed
iterative procedure at the 183-th iteration, Ŵx(r̄e, 0)(183).

Equation (5.27) corresponds to the discrete sinc transform of Wx(r̄n, τm) per-

formed at each time separation τm from the set of separations r̄n to the set r̄e. It

is easy to find that the coefficients of this transform are not linearly independent

if r̄n are non-equidistant. This produced spurious contributions to the regularized

correlation Ŵx(r̄e, τm)(1). In order to improve the quality of the interpolation, the

following procedures suggested by Gröchenig [1993] were applied: (i) The discrete

sinc transform was applied to the original irregularly sampled correlation in space,

Wx(r̄n, τm), at each time separation τm. (ii) The inverse sinc transform was ap-

plied to the initial guess of the reconstructed correlation, Ŵx(r̄e, τm)(1). The result

was Wx(r̄n, τm)(1), which was defined on the original set of samples, r̄n. If the re-

constructed signal is bandlimited to π/∆r̄e the inverse transform does not produce

additional errors, because it is applied to the regularly spaced set r̄e, where the coef-

ficients are linearly independent [Maymon and Oppenheim, 2011]. (iii) The residual

at the first iteration, ε(r̄n, τm)(1) was found from the difference between Wx(r̄n, τm)(1)

and Wx(r̄n, τm). (iv) The residual was then transformed to the regular set r̄e, to pro-

duce ε̂(r̄e, τm)(1). (v) This was subtracted from the initial guess of Ŵx(r̄e, τm)(1) in

order to reduce the effect of nonlinearities. The result was the improved estimate

Ŵx(r̄e, τm)(2). The steps (ii) to (v) were repeated until the residual became smaller

than a chosen threshold. Here the threshold was defined as 1 % of the maximum of

the correlation function, which corresponds to Wx(0, 0) ≡ 1. The convergence was

reached usually within the first 200 iterations.
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The inverse transform (step (ii)) of Ŵx(r̄e, τm)(υ) at the υ-th iteration was written

as

Wx(r̄n, τm)(υ) =
Nx−1∑

e=−Nx+1

Ŵx(r̄e, τm)(υ) sinc

[
2(r̄n − r̄e)

Γr∆r̄e

]
. (5.28)

The residual ε(r̄n, τm)(υ) (step (iii)) was given by

ε(r̄n, τm)(υ) = Wx(r̄n, τm)(υ) −Wx(r̄n, τm). (5.29)

The discrete transform applied to ε(r̄n, τm)(υ) (step (iv)) produced the correction at

the υ-th iteration,

ε̂(r̄e, τm)(υ) =
Nx−1∑

n=−Nx+1

ε(r̄n, τm)(υ) sinc

[
2(r̄e − r̄n)

Γr∆r̄e

]
. (5.30)

The improved estimate at the iteration υ + 1 (step (v)) was

Ŵx(r̄e, τm)(υ+1) = Ŵx(r̄e, τm)(υ) −$ε̂(r̄e, τm)(υ). (5.31)

where $ is an under-relaxation factor that controls the convergence, which was set

to $ = 0.1. ε̂(r̄e, τm)(υ) was used as the convergence parameter. FIG. 5.1 shows an

example of the measured correlation function at 0 time-lag, Wx(r̄n, 0), and of the

corresponding interpolation, Ŵx(r̄e, 0), both found for a single realisation in flow

condition 11.

5.1.4 Gaussian fitting of the wavenumber-frequency spectra

In order to quantify the difference between the proposed dispersion relations and the

measured spectra, the same strategy described by Herbert et al. [2010] was applied

here. FIG. 5.2a shows an example of the average streamwise frequency-wavenumber

spectrum measured in condition 13. The spectrum has two large peaks with the

frequency ω = 0. At the higher frequency, the energy of the spectrum is mainly

concentrated along two lines, where the spectrum forms two characteristic ridges.

The ridges of the streamwise spectra Sx(kx, ω) have been identified by fitting the

spatial spectrum at each frequency ωj, Sx(kx, ωj), with the function

S(kx, ωj) = AGj exp

−(kx − kGx,j√
2σGj

)2
. (5.32)

A least square non-linear fitting procedure based on the trust-region-reflective method

and implemented in the ’lsqnonlin’ standard function in Matlab r2015b [Coleman
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Figure 5.2: (a) An example of the streamwise frequency-wavenumber spectrum
Sx(kx, ω), measured in condition 13. (b) The Gaussian fitting of one ridge of the
normalised streamwise spectrum, S̄x(k̂x, ω̂), for condition 13. (dashed, magenta)
Irrotational dispersion relation, equation (3.20). (solid, magenta) Dispersion rela-
tion with the 1/3 velocity profile, θ = 0, equation (3.26). (dotted, magenta) Non-
dispersive relation, equation (3.21). (dashed-dotted, magenta) Dispersion relation
with the 1/3 velocity profile, with constant k = k0, equation (3.45). (solid, black,
thick line) Centres of the spectrum at each frequency, kGx,j (equation (5.32)). (solid,
black, thin lines) kGx,j ± σGj .

and Li, 1996] was used in order to find the parameters AGj , kGx,j, and σGj , which

provide the best fit with the measurements Sx(kx, ω) at each frequency ωj. The

maximum fit indicated the centres of the measured ridges, kGx,j, as well as their width

along the wavenumber axis, σGj . An example of the fitted frequency-wavenumber

spectrum is shown in FIG. 5.2 for condition 13. The finite width σGj of the spectral

ridges was close to the spectral resolution and it was caused by the numerical anal-

ysis procedure. In fact, the application of the same analysis to synthetic data series

obtained with the linear surface model described in chapter 6 and with a prescribed

dispersion relation yielded similar values of σGj across the whole spectrum.

The accuracy of the theoretical dispersion relations reported in subsection 3.1.2

was quantified as follows. Each of the dispersion relations Ω(kx) represented by

equations 3.20, 3.26, and 3.21, were inverted (analytically or numerically) in order to

determine the relation Kx(ωj) that satisfies Ω(Kx(ωj)) = ωj. The distance between

kGx,j and Kx(ωj) provided a measure of the uncertainty of the proposed model at

such frequency. This corresponds to the distance between the thick black line and

the magenta coloured lines in FIG. 5.2, measured horizontally. The global fitting of

the different models was then quantified in terms of the root mean square average
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of this distance across the whole frequency range where each model applied,

εk =

√〈(
Kx(ωj)− kGx,j

)2
〉
ωj∈Ω(Kx)

. (5.33)

5.1.5 Wave groups analysis

In subsection 3.1.3 it was shown that the envelope of groups of waves with a narrow-

banded spectrum moves with the so-called group velocity, which is different in gen-

eral from the mean surface velocity. The envelope of the free surface elevation, Zν,µ

was determined based on equation (5.10) from the measurements at all probes, and

in all flow conditions. This was then subject to the same analysis procedure applied

to the surface elevation in order to determine the zero time-lag correlation function

and the frequency-wavenumber spectra of Zν,µ. In order to represent correctly the

dynamics of the wave groups in terms of their amplitude, the surface elevation had to

be filtered so that the narrow-band representation carried a physical interpretation.

This was done as suggested by Longuet-Higgins [1984] by convolving the frequency

spectrum with a square function centred about the characteristic frequency of the

group, and then inverting the Fourier transform in order to obtain the filtered time-

series. Dankert et al. [2003] used a 3D-Gabor filter in order to obtain the same

result from a two dimensional frequency-wavenumber spectrum. The filters were

applied in both cases in the reciprocal domain (in the case of Dankert et al. [2003]

represented by the three-dimensional frequency-wavenumber space). The approach

followed by Dankert et al. [2003] could not be applied here, because the frequency-

wavenumber spectra were obtained from an estimate of the space-time correlation

function, which is a real function. Therefore the phase information of the original

signal was not available.

A combination of both methods was therefore applied here. The signal at each

probe was filtered in the one-dimensional frequency domain following Longuet-

Higgins [1984], but with a Gaussian filter (which corresponds to the one-dimensional

version of the 3D-Gabor filter employed by Dankert et al. [2003]) with the centre fre-

quency ωG and the characteristic width σω,G. The filtered spectrum was computed

by multiplying the Fourier spectrum of the original time-series ζν,µ by the function

exp [−(ω − ωG)2/2σ2
ω,G] at each frequency ω. Only the real part of the frequency

spectrum was convoluted with the filter, while the complex conjugate was turned

to zero. The inverse Fourier transform of the convoluted spectrum then yielded a

complex signal, for which the absolute value corresponded to the envelope of the

group with centre frequency ωG, evaluated locally at the single wave probe. There-
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fore, this process allowed the direct calculation of the envelope without requiring

the application of the Hilbert transform.

5.1.6 Application of the wavelet spectral method

The wavelet spectral method presented by Donelan et al. [1996] and described in

subsection 3.1.9 was implemented here in a simplified version which only employs

three probes aligned in pairs along orthogonal directions. Based on the discussion

in subsection 3.1.9, the distance between the probes must be small compared to the

characteristic scales of the free surface, but not to small in order not to affect the

uncertainty of the measurements. Probes 1(x) ≡ 1(y), 2(x), and 3(y) were employed

here, since they allowed the measurement in two directions with the maximum

separation between probes of 26 mm. The co-ordinates of these probes have been

reported in Table 4.1. The algorithm to compute the wavelet transforms was kindly

provided by Dr. Héctor Garćıa Nava (Autonomous University of Baja California).

This was based on a Morlet wavelet defined by equation (3.68). This has the Fourier

spectrum

wω(ωj, ω) = exp

[
− 1√

2

(
ω − ωj

0.220636ωj

)2
]
, (5.34)

where ωj = 2π/λj is the characteristic frequency based on the wavelet scale λj.

The Morlet wavelet was chosen in accordance with the study by Donelan et al.

[1996]. These authors compared the results of the wavelet spectral method obtained

with the Morlet and Meyer wavelets, and argued that the Meyer wavelets have

poorer frequency resolution. The Morlet wavelets represent a non-orthonormal set,

but their spectrum decays rapidly away from the centre frequency. Therefore the

typical spectral resolution can be improved by introducing intermediary scales which

are quasi-independent of the standard set of logarithmically scaled scales [Donelan

et al., 1996]. The Morlet wavelet is also more representative of the physics of the

free surface waves, since the Gaussian envelope prescribed by these wavelets can be

seen as an approximation of the sech2 envelope [Hui and Hamilton, 1979] typical

of soliton-like wave groups of permanent form. An example of the Morlet wavelet

w(ωj, t) (equation (3.69)) with the characteristic frequency ωj = 1 is shown in FIG.

5.3. The scale of the Morlet wavelets has a direct correspondence with the frequency

of a sinusoidal wave. Therefore in the rest of this chapter the characteristic frequency

of the Morlet wavelet is indicated simply as ω, in order to simplify the notation.

The wavelet transform was performed in the reciprocal frequency domain, and

it was applied to the measurement of the surface elevation recorded individually by

each probe. The signal was detrended, filtered, and downsampled prior to the trans-
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Figure 5.3: An example of the Morlet wavelet with ωj = 1.

form. The result of the wavelet transform applied to each probe was the complex

quantity

ζW,ν(t, ω) = ZW (xν , yν , t, ω)eiΦW (xν ,yν ,t,ω) = ZW,ν(t, ω)eiΦW,ν(t,ω). (5.35)

The two phase differences,

∆Φx(t, ω) ==

{
log

[
ζW,2(x)

(t, ω)

ζW,1(x)
(t, ω)

]}
, (5.36a)

∆Φy(t, ω) ==

{
log

[
ζW,3(y)

(t, ω)

ζW,1(y)
(t, ω)

]}
, (5.36b)

were computed from each pair of probes. The wavenumbers in the streamwise and

transverse direction were calculated as

kx(t, ω) =∆Φx(t, ω)/
[
x2(x)

− x1(x)

]
, (5.37a)

ky(t, ω) =∆Φy(t, ω)/
[
y3(y)
− y1(y)

]
. (5.37b)

The wavelet spectral method is expected to provide an accurate measurement of

the wavenumbers only if all probes are instantaneously being crossed by the same

wave group. It will be shown that the angle of propagation of the waves calculated

with the wavelet spectral method is subject to rapid changes when the amplitude

of the wavelet transform is minimum. This indicates the boundary between two

separate wave groups. When such a boundary is located between the probes, the

phases measured by each probe are not related, and the calculation of the wavenum-

ber based on equations (5.37a) and (5.37b) is incorrect. The measurements of the

wavenumber based on the wavelet spectral method are analysed here in terms of
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the pdf’s of kx and ky at each frequency. In order to improve the quality of the

results, the distributions of kx and ky were weighted by the geometric average of the

instantaneous amplitude of the wavelet transform at all probes, i.e., the pdf’s were

computed based on the following definition,

pk(kx, ω) =Pr

kx(t, ω)

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)∑

µ

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)

 , (5.38a)

pk(ky, ω) =Pr

ky(t, ω)

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)∑

µ

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)

 . (5.38b)

The angle of propagation was calculated as

θ(t, ω) = tan−1 [ky(t, ω)/kx(t, ω)]. (5.39)

The pdf of the angle θ, pθ(θ, ω) was defined similarly to equations (5.38).

The analysis was performed at 32 logarithmically spaced frequencies ω between

0.785 rad s−1 and 169.1 rad s−1, which yield a number of four scales per octave. The

typical set of wavelet scales has one scale per octave. If the set is orthogonal, as is the

case of the Meyer wavelets, this ensures that the coefficients of the wavelet transform

are linearly independent. This is never the case for the Morlet wavelets. The set

of frequencies (scales) adopted here was chosen because it allowed the resolution

required by the analysis.

5.2 Single-point statistics

The aim of this section was to characterise the statistics of the surface elevation

ζ, of its time gradient ζ̇, and of the envelope Z at one location fixed in space.

These quantities were defined in section 5.1. The first objective was to verify if

these statistics are in agreement with a linear model of the surface elevation, such

that ζ could be expanded in a trigonometric series where all coefficients of the

series are mutually independent and the phase of each trigonometric function is a

homogeneously distributed random variable. This model is used in chapter 6 in

order to predict and analyse the statistics of the acoustic pressure field scattered

by the dynamic rough surface. In this section the measurements of the pdf of

the surface elevation and of its envelope are compared with the linear and weakly

nonlinear models described by equations (3.55) and (3.66), and by equations (3.60)

and (3.63), respectively. The significance of the eventual deviations from the linear
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statistics are quantified based on the comparison with synthetic surrogate data,

generated with the gradual wavelet reconstruction method following the procedure

described in subsection 5.1.2. The surrogate data generated in this way has the

same statistics of the surface elevation. Therefore, the statistics of the time gradient

of the elevation are used as a reference and need to be introduced.

The second objective of the analysis presented in this section was to identify the

eventual link between the statistics of the free surface and the hydraulic quantities of

the flow. The results of the measurements of the frequency spectra in all conditions

are presented at the beginning of this section. The relation between the parameters

of the spectra (namely, the first two spectral moments, defined by equation (5.14))

and the hydraulic quantities is investigated. This link would allow the indirect

measurement of such quantities based on the characterisation of the free surface

behaviour at one single location. The measurements of the frequency spectra also

inform the development of the free surface dynamic model used in chapter 6.

The results in this section have further implications regarding the identification

of the mechanisms that generate the patterns on the free surface. The hypothesis

which is being tested in this case is whether the statistics of the envelope of the

elevation (which is representative of the amplitude of the surface fluctuations) are

in agreement with a linear or weakly nonlinear model. This model suggests that

the variations of the amplitude in time can be explained by the contribution from

a large number of infinitesimal waves distributed randomly. This seems to be in

contrast with the theories which predict that localised deformations of the surface

can relate to isolated coherent turbulent structures in the flow [Tsai, 1998, Savelsberg

and van de Water, 2009, Fujita et al., 2011, Nichols et al., 2016]. Therefore, the

measurement of the statistics of the envelope described in subsection 5.2.3 may

help clarifying the mechanisms that are of more importance for the generation of

the waves. The consequences for the characterisation of the interaction between

turbulence and the free surface is discussed with more detail in section 5.5.

5.2.1 Frequency spectra of the free surface elevation

An example of the free surface elevation measured with two wave probes on the

x-axis (probes 1(x) and 2(x)) is shown in FIG. 5.4. The average of the frequency

power spectra Sν(ω) across separate realisations was calculated directly from the

surface elevation measured at each probe, based on equation (5.12). The signal

at each probe was previously split into 59 segments, each with the length of 10 s.

The average frequency power spectra were determined as the average across all the

segments, which were assumed to represent a set of independent realisations. Due to
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Figure 5.4: An example of the time series of the free surface elevation for condition
13, before filtering and downsampling. (solid) Probe 1(x). (dashed) Probe 2(x). The
mean surface velocity was U0 = 0.58 m/s, and the distance between the probes
26 mm.

the normalisation represented by equation (5.13), σ2Sν(ω) corresponds to the power

spectral density of the elevation, which has the dimensions of m2 s rad−1.

FIG. 5.5 shows the power spectral density for conditions 1, 4, 7, and 10, mea-

sured from all probes of the streamwise array (1(x), ..., 8(x)). These conditions are

representative of the range of the typical spatial and temporal scales across all flow

conditions. All spectra here and in the following sections are plotted up to the cut-

off frequency of the Butterworth filter, which was equal to 20 Hz, or 126 rad s−1. The

high frequency portion of the spectra can still be influenced by the numerical filter.

In most conditions (see FIG. 5.5a, c, and d) the spectra are relatively insensitive of

the location of the probe. This demonstrated that the properties of the free surface

were homogeneous across the test section. In conditions 2, 3, 8, and 12, the spectra

showed the same trend observed in FIG. 5.5, but the variation of the amplitude in

the intermediate range of frequencies (between 10 rad s−1 and 80 rad s−1) among the

different probes was larger. The measurements with manual gauges did not evidence

a stronger inhomogeneity of the mean depth in these conditions. In all conditions,

the power spectral densities decrease towards the higher frequency, and have the

largest amplitude at the frequency ω = 0. The amplitude of the spectra is two

orders of magnitude larger in conditions 4, 7, and 10, than in condition 1.

FIG. 5.6a shows the first moment of the frequency power spectra, s
(ν)
1 (equation

(5.14), with q = 1) for all the measured conditions, plotted against k0U0. k0U0

is the frequency of the gravity waves with wavenumber k0 (equation (3.44)), when

they propagate in still water. s
(ν)
1 grows almost proportionally to k0U0. This can be

expected, since the frequency is proportional to U0 at the first approximation, based
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Figure 5.5: The power spectral density σ2Sν(ω) measured with probes 1(x) to 8(x).
(a) Condition 1. (b) Condition 4. (c) Condition 7. (d) Condition 10. The high-
frequency part of the spectra is influenced by the numerical filter applied to the
data.

on the dispersion relation represented by equation (3.20). A linear fit through the

average values of s
(ν)
1 across probes 1(x) to 8(x) provided the empirical relation

s1 = 0.501 k0U0. (5.40)

When the spectrum decays smoothly from the frequency ω = 0 like the ones in

FIG. 5.5, s1 is a measure of the width of such spectrum. The variance of the free

surface elevation, σ2, is a measure of the squared amplitude of the patterns on the

free surface, and it represents the area under the power spectral densities, σ2Sν(ω).

Therefore, σ2 can be related to the spectrum width s1. FIG. 5.6b shows the variation

of 2 log (σ) as a function of the logarithm of k0U0. This is approximated well by the

empirical relation

σ2 = e(6.66) (k0U0)−6.50 (m2), (5.41)
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Figure 5.6: (a) The first spectral moment s
(ν)
1 (equation (5.14)). (solid line) Fitted

linear relation, equation (5.40). (b) The variance of the free surface elevation, σ2.
(dashed line) Fitted relation, equation (5.41). The circles are the average across all
probes of the streamwise array, 1(x) to 8(x). The bars represent the maxima and
minima measured across all probes of the same array.

which was obtained by a linear fit of the average values represented in FIG. 5.6b

expressed in logarithmic co-ordinates. Equation (3.41) can be approximated by

k0 ≈ g/U2
0 when k0H/π ≥ 1 and k0 �

√
ρwg/γw. Although dimensionally non

consistent, equation 5.41 shows that σ grows approximately with U3.25
0 in these

conditions.

The apparent linear relationship between the first spectral moment and the fre-

quency k0U0 suggests k0U0 as a candidate non-dimensionalising parameter. FIG.

5.7 shows the non-dimensionalised averaged power spectra S(ω̂) measured in all

flow conditions, where the non-dimensional frequency was defined as

ω̂ =
ω

k0U0

. (5.42)

S(ω̂) was the average across all probes of the streamwise and of the lateral array

of Sν(ω̂), and Sν(ω̂) was the average across all 10 seconds long data time-series

recorded at the probe ν. In condition 1 k0 cannot be determined, therefore the

spectrum in FIG. 5.7a is plotted against the non-dimensional frequency ωU0/g. The

different flow conditions have been grouped according to the parameter k0H0 in

order to evidence the eventual dependence on the Froude number, as explained in

section 4.5. The frequency spectra show the similar behaviour when plotted against

the non-dimensional frequency ω̂, for each range of k0H0. The spectrum of the flow

condition 1 in FIG. 5.7a has a peak at the frequency ωU0/g = 0.3. The other spectra

in FIG. 5.7b-d decay smoothly from a maximum that tends asymptotically to ω̂ = 0.

The rate of decay of the frequency spectra increases towards the higher frequencies.

The increase occurs near the frequency ω̂ = 2 in FIG. 5.7b-d, and near the frequency
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Figure 5.7: The normalised averaged frequency power spectra of the free surface
elevation, S(ω̂), plotted against the non-dimensional frequency ω̂. (dashed, red)
Power law decay ∝ ω̂−5, shown for reference. The high-frequency part of the spectra
is influenced by the numerical filter applied to the data. Note the different scaling
in (a).

ωU0/g = 1 in the condition 1. The power function law S(ω̂) ∝ ω̂−5 is shown in FIG.

5.7 for reference. The comparison with the measurements in FIG. 5.7b-d shows that

the decay of the frequency spectra in the region ω̂ > 2 is slower for the higher Froude

number conditions (FIG. 5.7d) than for the lower and intermediate Froude number

conditions (FIG. 5.7b, c).

5.2.2 Probability distribution of the free surface elevation

This subsection shows the measurements of the statistics of the surface elevation

ζ and of the time-gradient ζ̇ in the flow conditions reported in Table 4.2. The

statistics of the surface elevation are compared with the predictions by a linear and

a weakly nonlinear model of the surface elevation. The statistics of the time-gradient

103



CHAPTER 5. WAVE PROBES ANALYSIS OF THE FREE SURFACE

-0.1

0

0.1

0.2

λ
(ν
)

3

k0σ

0
.0

1
4

0
.0

3

0
.0

3
8

0
.0

4
6

0
.0

6
4

0
.0

8
1

3

3.2

3.4

3.6

3.8

λ
(ν
)

4
k0σ

0
.0

1
4

0
.0

3

0
.0

3
8

0
.0

4
6

0
.0

6
4

0
.0

8
1

-0.15

-0.1

-0.05

0

0.05

λ
(ν
)

ζ̇
,3

k0σ

0
.0

1
4

0
.0

3

0
.0

3
8

0
.0

4
6

0
.0

6
4

0
.0

8
1

3

3.5

4

λ
(ν
)

ζ̇
,4

k0σ

0
.0

1
4

0
.0

3

0
.0

3
8

0
.0

4
6

0
.0

6
4

0
.0

8
1

(a) (b)

(c) (d)

Figure 5.8: (a) Third moment (skewness) of ζ. (b) Fourth moment (kurtosis) of
ζ. (c) Third moment (skewness) of ζ̇. (d) Fourth moment (kurtosis) of ζ̇. The
circles with central dot are the median of the normalised moments measured at all
15 probes ν. The lower and upper edges of each box represent the first and third
quartile, respectively. The bars show the maxima and minima across all probes, or
the distance equal to 1.5 times the interquartile range from the first and the third
quartile, whichever was smaller. The points which distance from the median was
larger than 1.5 times the interquartile range were treated as outliers and plotted
individually as empty circles. The dashed lines show the theoretical values for the
Gaussian distribution. The dotted lines show the theoretical values ± twice the
standard error (95% confidence).

104



CHAPTER 5. WAVE PROBES ANALYSIS OF THE FREE SURFACE

were calculated in order to allow the comparison with the synthetic surrogate time

series constructed with the gradual wavelet reconstruction method. This comparison

provides a quantitative test of the hypothesis that the surface statistics can be

described by a linear model. This hypothesis is at the basis of the numerical model

of acoustic scattering by the dynamic rough surface developed in chapter 6.

The statistical moments of the surface elevation ζ and of the time-gradient ζ̇

were calculated up to the third order (equations (5.2)-(5.3)) at each probe. FIG.

5.8 shows the normalised third and fourth moments (the skewness and the kurto-

sis, respectively) of both quantities. Table 5.1 summarises the results for all flow

conditions, and includes the first moment (the average) of the time-gradient ζ̇.

The values reported in table 5.1 are the average across the probes 1(x) to 8(x) for

the parameters s1 and σ, and the median across all probes for the standard deviation

of the gradient ζ̇ and for the skewness and kurtosis of ζ and of ζ̇. The statistical

moments were analysed in relation with the characteristic slope of the free surface

elevation, k0σ, and with the normalised standard deviation, σ/H. Both quantities

must be small in order to be able to apply the linearised theory reported in section

3.1. FIG. 5.8 and table 5.1 show that the third and fourth moments of ζ are close

to the values expected for a Gaussian random variable. The standard error for the

skewness, calculated for a sample size of 218, is equal to 0.005, while that for the

kurtosis is equal to 0.010 [Wright and Herrington, 2011]. Although λ3 and λ4−3 are

small in all flow conditions, their deviation from zero is larger than the standard error

in most conditions, suggesting a small but significant deviation of the distribution

from normality. Both moments increase when the characteristic slope k0σ is larger

than approximately 0.035 and σ/H > 0.01. The third moment of ζ̇ is very close to

0 in all conditions. This shows that the slope of the waves was nearly symmetrically

distributed, in contrast with observations in the ocean [Longuet-Higgins, 1963]. In

contrast, the fourth moment deviates substantially from the one expected from a

Gaussian distributed variable. The standard deviation of ζ̇, σζ̇ , grows proportionally

with σ (see table 5.1).
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FIG. 5.9 shows the pdf of the surface elevation measured at all probes, pζ(ζ),

for the conditions 1 and 10. These were the conditions where the pdf of ζ̇ had

the smallest and largest skewness, respectively. The skewness of ζ̇ is used here in

order to quantify the significance of the deviation of the statistics from the linear

Fourier model. Therefore, these two conditions represented the smallest and the

largest nonlinearity, respectively. By demonstrating that the weakly nonlinear model

applies to these conditions, the applicability to all the intermediate conditions is also

demonstrated. In FIG. 5.9, the measured pdf’s were compared with the Gaussian

distribution which is representative of a linear model of the free surface (equation

(3.55)), and with the third-order correction proposed by Longuet-Higgins [1963]

(equation (3.60)). The latter was calculated based on the cumulants determined

by equations (3.58) from the measured statistical moments mζ,q, and not based on

the wavenumber spectra of the surface elevation as suggested by Longuet-Higgins

[1963] since these could not be measured. The pdf proposed by Longuet-Higgins

[1963] approximates the measurements in both conditions very well. The correction

is negligible for condition 1 (FIG. 5.9a, c), which probability is essentially Gaussian.

The distribution for condition 10 (FIG. 5.9b, d) shows a slight positive skewness of

the distribution, with larger tails in the positive range of elevations. These are seen

more clearly in FIG. 5.9d, in logarithmic co-ordinates.

A Kolmogorov-Smirnov test was performed on the measured pdf of ζ and of ζ̇

in order to test the null hypothesis that the distributions of the surface elevation

and of its slope are represented by the Gaussian pdf (equation (3.55)) or by the

weakly nonlinear pdf proposed by Longuet-Higgins [1963] (equation (3.60)). The

p-values calculated in both cases are reported in table 5.1, as determined for the

wave probe with the median skewness of ζ̇. The p-value is omitted when smaller

than 0.01. The null hypothesis of a Gaussian pdf of ζ is rejected at 1% confidence

level in all conditions. The hypothesis of a Gaussian pdf of ζ̇ cannot be rejected

in conditions 2 and 4. In contrast, the null hypothesis represented by the weakly

nonlinear distribution of equation (3.60) cannot be rejected in most flow conditions,

although the confidence level is smaller than 5% in all conditions but 3, 4, 5, and

12 for pζ , and in conditions 5, 10, 11, and 12 for pζ̇ . This suggests that the weakly

nonlinear pdf approximates better the statistical distribution of the surface elevation

in the tested range of flow conditions.

It should be noted that equation (3.60) was determined by Longuet-Higgins

[1963] based on an expansion over the cumulants of the distribution. This expan-

sion assumes that the higher statistical moments are of higher order with respect

to the characteristic wave amplitude σ. According to Longuet-Higgins [1963], if

the weak nonlinearity that produces the slight deviation from the Gaussian pdf in
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Figure 5.9: The pdf of ζ, pζ(ζ), measured at all probes for (a, c) condition 1 and
(b, d) condition 10. (black line) Gaussian distribution, equation (3.55), (red line)
third-order correction proposed by Longuet-Higgins [1963], equation (3.60).

FIG. 5.9b, d, is not due to resonant interactions among waves, then the corrected

coefficient of skewness λ4 − 3 should be of order λ2
3. Table 5.1 shows that λ4 − 3

is at least of the same order of λ3 in all conditions. This shows that the theory of

Longuet-Higgins [1963] does not apply to the measured conditions, although equa-

tion (3.60) approximates very well the data. The larger value of the kurtosis can

suggest the existence of interaction among the waves, according to Creamer et al.

[1989], Janssen [2003, 2009]. Alternative explanations may relate to patterns on the

surface generated by the interaction with turbulence. The skewness and the kurtosis

of the elevation appear to be both very small in all conditions, and the statistics

can be considered quasi-Gaussian in general.

The statistical significance of these observation was tested by comparing with

the statistics of constrained surrogate time-series data, generated with the gradual

wavelet reconstruction method suggested by Keylock [2006] and later improved by
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Figure 5.10: The pdf of ζ̇, pζ̇(ζ̇), measured at all probes for (a, c) condition 1 and (b,

d) condition 10. (black line) Gaussian distribution, equation (3.55), with ζ̇ in place
of ζ, (red line) third-order correction proposed by Longuet-Higgins [1963], equation
(3.60).

Keylock [2007] and Keylock [2010]. The algorithm of the procedure was summarised

in sub-section 3.1.7. The Gradual wavelet reconstruction method conserves the pdf

of the surface elevation, therefore the comparison with the measured statistics cannot

be performed in terms of the statistics of ζ. Following Keylock [2010], the statistics

of the time-gradient of the elevation, ζ̇, were analysed instead. The probability

density functions of ζ̇, pζ̇(ζ̇), are shown in FIG. 5.10 for the same flow conditions.

The measured distributions were compared with the Gaussian distribution which

was obtained from equation (3.55) by substituting ζ with ζ̇. pζ̇(ζ̇) is approximately

Gaussian in condition 1, while in condition 10 both the central peak and the tails

are larger than predicted by equation (3.55). This is the same behaviour which had

been observed from the pdf of ζ, which demonstrates that the statistics of ζ̇ are a
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valid metric of the non-linearity. The average of the gradient ζ̇ was negligible in all

conditions, and the largest absolute value of the skewness of ζ̇ was 0.052.

A set of 19 surrogates per each flow condition were generated, using the signal

recorded by the probe which recorded the median skewness of ζ̇ as the reference

time-series. FIG. 5.11 shows the skewness and the kurtosis of ζ̇ calculated from

all realisations of the surrogates for conditions 1 and 10, represented against the

similarity ratio, %. This represents the constrained portion of the surrogate synthetic

data. The statistics of the surrogates are compared in the same figure with the

measurements across all wave probes in the same two conditions. As % increased,

the signal was more similar to the original data, and the moments converged to the

measured value. The difference between the statistics of the surrogates and those of

the wave probes data was considered to be significant when the measured moments

deviated from the value of the first or third quartile by an amount larger than 1.5

times the inter-quartile range (corresponding to a 99.3 % confidence threshold for a

Gaussian distribution).

Based on the results shown in FIG. 5.11a, c, the deviation of the third and

fourth moment of ζ̇ with respect to the values expected from a Gaussian distributed

random variable is not significant in condition 1 when % = 0. This proves that

the nonlinearities were negligible in condition 1. In condition 10 at least 60 % of

the energy of the signal had to be constrained in order for the surrogates to show

similar statistics, which signifies that the original time-series was less linear. Such

a relatively large value of % does not mean that the statistics of the surface were

largely nonlinear in condition 10, but rather it suggests that the nonlinearity of the

surface gradient was related to scales which are not the dominant ones. In fact,

the statistical distributions in condition 10 were approximated well by the weakly

nonlinear models derived by Longuet-Higgins [1963] and by Bitner [1980] for the

statistics of ζ and of Z, respectively. The statistics of the surface elevation were

weakly nonlinear in condition 10.

The same analysis applied to all flow conditions showed that in all conditions

except condition 10, the value of the skewness of ζ̇ was not significantly different

from that expected for a linear process with Gaussian distribution. This confirms

that the deviation from the linear model was larger in condition 10 than in the

remaining conditions. Across all flow conditions, condition 3, 6, 8, and 12 showed a

statistically significant deviation in terms of the kurtosis of ζ̇ (the deviation became

not significant in conditions 3, 6, and 12 when % = 0.2, in conditions 8 when % = 0.4)

but not of its skewness. No significant deviation in terms of either the skewness of

the kurtosis of ζ̇ was observed in the remaining conditions 1, 2, 4, 5, 7, 9, 11, and
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Figure 5.11: The (a, b) skewness and (c, d) kurtosis of the surface gradient ζ̇,
calculated for the 19 surrogates of the measurements for condition 1 (a, c), and
condition 10 (b, d), plotted against the parameter %. The separate plot on the
left shows the same quantities calculated with all the wave probes. (dashed) The
skewness and kurtosis of ζ̇ measured with probe 5. (dotted) The skewness and
kurtosis ± twice the respective standard error. Probe 5 had the median value of
the skewness of ζ̇ across all probes, and the measurement with this probe was the
reference for all surrogates in both conditions.
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13. In these conditions, the linear model of the surface elevation is expected to be

more representative.

5.2.3 Envelope statistics

Previous studies of the interaction between turbulence and the free surface [Tsai,

1998, Dabiri and Gharib, 2001, Dabiri, 2003, Savelsberg and van de Water, 2009]

attempted to find a direct correlation between the turbulence quantities (most often

the vorticity, or a function of it) and the shape of the free surface. These attempts

were based on the assumption that the largest deformation of the free surface occurs

above a coherent turbulent structure, which represents a local forcing. Savelsberg

and van de Water [2009] suggested that freely propagating gravity-capillary waves

can reduce the local correlation by travelling a long distance away from the region

where they have been generated. These authors still postulate that the maxima of

the amplitude of the surface fluctuations are localised above the turbulent structure

that generated them, while gravity-capillary waves radiate away from it. In this

subsection, the statistics of the amplitude of the surface fluctuations (the envelope)

are investigated.

Figure 5.12 shows example of the envelope Zν,µ computed for conditions 1, 4,

7, and 10, with equation (5.10) applied to the measurements with probe 1(x). The

surface elevation ζ is also shown for reference. The behaviour of the envelope is

highly irregular, and shows peaks with the amplitude larger than four times the

surface standard deviation (see FIG. 5.12c, at tk0U0/2π ≈ 10 s). The envelope had

a high-frequency modulation which made it less smooth in conditions 7, and 10

(FIG. 5.12c, d), and a low-frequency large modulation which sometimes reduced its

amplitude almost to 0 apparently without a clear periodicity. Both these effects are

due to the broadness of the frequency spectrum [Longuet-Higgins, 1984].

FIG. 5.13 shows the pdf of the envelope Zµ and of the phase Φµ calculated for

all wave probes for conditions 1 and 10 from equations (5.10) and (5.11). These

conditions had the smallest and the largest nonlinearity, as discussed in the previ-

ous subsection. The pdf of Zµ, pZ(Z) were compared with the Rayleigh statistical

distribution which is expected for a Gaussian linear process [Longuet-Higgins, 1957]

(equation (3.66)), and with the weakly nonlinear distribution obtained by Bitner

[1980] (equation (3.63)). The pdf of Zµ follows very closely equation (3.66) in

condition 1. In condition 10, pZ(Z) shows a slight deviation from the Rayleigh

distribution, whereas it is represented well by the weakly nonlinear distribution

(equation(3.63)). The good fit with the linear and weakly nonlinear models sug-

gests that the amplitude of the surface fluctuations is represented well by a linear
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superposition of random waves, and that coherent patterns are negligible. The dis-

tributions of the phase, pΦ(Φ) are essentially uniform in both conditions, although a

slight deviation can be observed in FIG. 5.13d for condition 10 where the probability

of Φ = π/2 is slightly larger than that of Φ = 0.
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Figure 5.12: Examples of the wave envelope Zν,µ calculated with equation (5.10)

from the measurements with wave probe ν = 1(x) for (a) condition 1, (b) condition

4, (c) condition 7, and (d) condition 10. (black) The original signal, ζ1(x),µ, (red)

Z1(x),µ. Both Z1(x),µ and −Z1(x),µ are shown.
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Figure 5.13: The pdf’s (a, b) pZ(Z) and (c, d) pΦ(Φ) of the surface envelope and

phase, respectively, measured across all wave probes. (a, c) Condition 1, and (c, d)

condition 10. (black line) Rayleigh distribution [Longuet-Higgins, 1957], equation

(3.66). (red line) The weakly nonlinear distribution suggested by Bitner [1980],

equation (3.63).

5.2.4 Discussion

The results in this section have shown the frequency spectra and the pdf’s of the

surface elevation ζ, of its time-gradient ζ̇, and of the envelope and phase, Z and

Φ, respectively. The average frequency spectra S(ω) presented in FIG. 5.7 scaled

consistently with the parameter k0U0, which represents the characteristic frequency

of the stationary waves with the wavenumber k0 when they propagate in still water.

This scaling was confirmed by the empirical relation between the spectral moment

s1 and the parameter k0U0, equation 5.40. The variance of the free surface elevation

(which corresponds to the zero-th order moment s0 of the power spectral density

σ2S(ω)) was also found scaling with k0U0. The frequency spectra decayed less
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rapidly at the larger frequencies when k0H/π < 1 and the Froude number was

larger. This indicated that more energy was found in the relatively shorter and faster

waves when the Froude number increased, in agreement with the progressive shift

of the spatial correlation function. Smolentsev and Miraghaie [2005] also observed

the increase of the frequency spectrum at the higher frequencies when the Froude

number was increased, and related this effect to the interaction with turbulence. The

decrease of the slope of the spectrum means the increase of the first and second order

spatial gradients of the free surface elevation, hence it is associated with a rougher

surface. This shows that the increase of the Froude number causes the surface to be

more rough. These results suggest the existence of a direct link between the statistics

of the free surface measured at one location, and the hydraulic quantities of the flow

(namely the mean surface velocity U0 and the wavenumber of the stationary waves

k0, which is controlled by the mean depth H, the mean surface velocity, and the

exponent of the velocity profile n, according to equation (3.44)). This was one of

the objectives of the discussion in this section.

The results of the statistical analysis which were summarised in Table 5.1 have

shown that a linear model with the random distribution of the phase would be rep-

resentative of the statistics of the free surface in most of the flow conditions which

have been investigated here. The significance of the deviations from the statistical

distributions which would be expected based on such model has been quantified

based on the analysis of a set of constrained surrogates, obtained with the gradual

wavelet reconstruction method [Keylock, 2006, 2007, 2010]. The unconstrained sur-

rogates obtained with % = 0 in condition 1 (FIG. 5.11a, c) and in conditions 2, 4, 5,

7, 9, 11, and 13 have similar statistics to the original data, so that a random phase

linear model of the free surface elevation is expected to represent well the statistics

of the real surface. In all conditions, the average of ζ̇ was found very small, and the

deviation of the skewness of ζ̇ was not significant (see Table 5.1).

Other flow conditions, e.g., condition 10, showed a significant degree of nonlin-

earity of the free surface statistics. The degree of nonlinearity apparently related

to the parameters k0σ and σ/H, as shown in FIG. 5.8 and in Table 5.1. This is

predicted by the derivation of the linearised surface equations reported in subsection

3.1.2. The statistical distribution of ζ in condition 10 (FIG. 5.9b, d) was slightly

positively skewed, and had larger tails towards the positive elevation. This suggests

the presence of sharper crests and more shallow troughs. It was noted that al-

though the weakly nonlinear pdf proposed by Longuet-Higgins [1963] approximates

the measurement very well, the fact that the kurtosis of the surface elevation was of

the same order of magnitude of the skewness is in contrast with the model proposed

by this author. This could be explained by the existence of some interaction among
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waves at the third order [Creamer et al., 1989, Janssen, 2003, 2009]. Both moments

of ζ̇ in FIG. 5.11b, d, have suggested a statistically significant (although weak) non-

linearity of the free surface in condition 10 and less strongly in conditions 3, 6, 8,

10, and 12. These weak nonlinearities may have visible effects on the statistics of

the scattered acoustic field, as it is shown in chapter 6.

Some additional conclusion can be drawn from the presented results, about the

dynamics of the free surface in shallow flows, and their generation mechanism. The

results presented here have shown that the statistics of the free surface are essentially

those typical of a composite process, where the fluctuations are generated by a large

number of independent events. The large localised peaks of the wave amplitude

which could be observed in some of the measurements (for example in FIG. 5.12c for

condition 7, near tk0U0/2π = 10, where Zµ > 4σ) can be explained by an essentially

linear combination of independent random processes. This was demonstrated by

the good fit between the measured statistics of the envelope and the two linear and

weakly nonlinear models. These observations suggest that the forcing mechanism

which produces the free surface fluctuations is predominantly random, and that

coherent events such as turbulent bursts are likely to play a relatively marginal role.

As a result, the local correlation between the surface elevation and the turbulent

coherent structures is expected to be small, which is confirmed by the numerical and

experimental studies by other authors [Tsai, 1998, Savelsberg and van de Water,

2009, Fujita et al., 2011]. The validity of these observations may be limited to

shallow flows, where the small depth and the short time-scales of the flow limit the

growth of coherent structures of sufficient energy to deform the free surface. It is

suggested that the interaction with these structures may become stronger in deeper

and/or slower flows.

5.3 Space-time statistics

The results described so far show the complexity of the temporal evolution of the

free surface when measured at a single point. Because gravity waves are disper-

sive, it is impossible to determine the corresponding spatial statistics of the free

surface of a turbulent flow from the analysis of time-series data alone [Savelsberg

and van de Water, 2009]. The aim of this section was to investigate the spatial

characteristics of the free-surface. This was done in terms of the spatial correlation

function and the frequency-wavenumber spectra of the surface elevation ζ in two

orthogonal spatial dimensions. The same type of analysis was also applied to the

envelope Z of the band-passed free surface elevation, and the results are reported

in sub-section 5.3.3. The first objective was to verify the presence of dispersive and
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non-dispersive waves on the free surface, and to compare their dispersion relation

with the relations proposed in section 3.1.2. These two types of waves have been

related to different processes which are able to generate the free surface fluctuations,

namely the interaction with turbulence and the interaction with the rough static bed

or with the sheared flow based on an inviscid model. The second objective was to

identify the characteristic spatial as well as temporal scales of the free surface, and

possibly to establish a direct link between these and the hydraulic quantities of the

flow. These two objectives would improve the understanding of the processes which

are responsible for the generation of waves on the free surface of shallow turbulent

flow. A third objective was to observe the change of the dispersion relation due to

the streamwise velocity profile according to the analysis in subsection 3.1.2, which

would allow the characterisation of such profile remotely from the measurement of

the dynamic surface. The results in this subsection will inform the application of

the wavelet spectral method, which results are shown in the next section 5.4. The

analysis also provides additional insight into the morphology of the free surface in

the two spatial dimensions and in time.

5.3.1 Spatial correlation function

Firstly, the spatial characterisation of the free surface was obtained in terms of the

space-time correlation function of the free surface elevation, and specifically in terms

of the spatial correlations at zero time-lag, Wx(rn,x, 0) and Wy(rn,x, 0). These func-

tions represent the instantaneous correlation measured along the streamwise and

the transverse direction, respectively. The average across all realisations of the cor-

relation at zero time-lag are shown in FIG. 5.14 for each flow condition. The spatial

separations rn,x and rn,y were the non-equidistant, non-binned separations between

the probes along the streamwise array and the first transverse array, respectively.

In conditions 2 to 13, the spatial separations were non-dimensionalised based on the

quantity 2π/k0, which corresponds to the wavelength of the stationary waves based

on equation (3.44). In condition 1 equation (3.44) has no solutions, therefore the

separations were non-dimensionalised based on 2πU2
0/g, which is the wavelength of

the stationary waves determined for an infinitely deep flow if the surface tension

is negligibly small. The various flow conditions have been grouped based on the

parameter k0H/π. FIG. 5.14a shows the results for condition 1, FIG. 5.14b shows

the results for the conditions with the smaller Froude number (conditions 2 to 5),

FIG. 5.14c for the conditions with the intermediate Froude number (conditions 6 to

9), and FIG. 5.14d for the conditions with the larger Froude number (conditions 10

to 13).
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Figure 5.14: The normalised spatial correlation at zero time lag, with normalised
spatial separation, rk0/2π. The negative x-axis shows the lateral correlation,
Wy(rn,y, 0), while the positive x-axis shows the streamwise correlation, Wx(rn,x, 0).
(a) Condition 1, (b) conditions 2 to 5 (F < 0.5), (c) conditions 6 to 9 (0.52 ≤ F ≤
0.61), (d) conditions 10 to 13 (0.61 ≤ F ≤ 0.68). Note the different scaling in (a),
where k0 cannot be defined.

The correlation function for the condition 1 in FIG. 5.14a decays monotonously

and symmetrically from rn = 0 in both directions. Wx(rn,x, 0) and Wy(rn,x, 0) decays

rapidly below 0.15 at rng/(2πU
2
0 ) = 1.5, which corresponds to rn = 35 mm. This

shows that the patterns on the free surface were isotropic and had the horizontal

scales comparable with the depth of the flow, H = 42.2 mm. The correlation function

remains approximately equal to 0.1 between rng/(2πU
2
0 ) = 2 and rng/(2πU

2
0 ) = 10

(rn = 231 mm, only observable in the streamwise direction), then it decays rapidly

to zero.

The remaining flow conditions shown in FIG. 5.14b, c, d display the fluctua-

tion of Wx(rn,x, 0) and Wy(rn,y, 0) with a minimum between rn/(2π/k0) = 0.5 and

rn/(2π/k0) = 0.8 and a relative maximum between rn/(2π/k0) = 1 and rn/(2π/k0) =

1.6. The smaller values are found for the higher Froude number conditions of FIG.

5.14d, and the larger for the lower Froude number conditions of FIG. 5.14b. The

fluctuations are not observed for the streamwise correlation Wx(rn,x, 0) in the con-
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dition 4 (FIG. 5.14b), and the minimum of the transverse correlation Wn,y(ry, 0)

is positive in the conditions 3 (FIG. 5.14b), 9 (FIG. 5.14c) and 12 (FIG. 5.14d).

The spatial correlations are slightly asymmetric, and the larger negative minimum

is found for the streamwise correlation Wx(rn,x, 0). The decay rate of the correla-

tion in the region rn/(2π/k0) ≤ 0.5 is similar in both directions, and more rapid at

the higher Froude numbers. In the lower and intermediate Froude number condi-

tions where k0H/π > 1 (FIG. 5.14b, c) the correlation function is equal to 0.5 at

rn/(2π/k0) ≈ 0.2. In the higher Froude number conditions where k0H/π < 1 (FIG.

5.14d) the value of 0.5 is attained at rn/(2π/k0) ≈ 0.15.

5.3.2 Frequency-wavenumber spectra

FIG. 5.15a-b show the contours for the logarithm of the dimensional frequency-

wavenumber spectra log10 σ
2Sx(kx, ω) and log10 σ

2Sy(ky, ω) measured along the x-

and y-directions, respectively, for the flow condition 13. Four contours are plotted

in 5.15a-b for each order of magnitude. In order to improve the visualization at

the higher frequencies, FIG. 5.15c-d also show the colormaps for the correspond-

ing normalized frequency-wavenumber spectra S̄x(k̂x, ω̂) and S̄y(k̂y, ω̂), found from

equation (5.23). The colours in FIG. 5.15c-d are a linear scale. The wavenumber

and frequency axes in FIG. 5.15c-d have been non-dimensionalised based on the

quantities k0 and k0U0, respectively, where ω̂ = ω/k0U0 and k̂ = k/k0. The negative

k̂x represents the solution where c < 0, i.e., the waves that travel upstream in the

laboratory frame of reference. The dimensional spectra show some clear ridges the

width of which is constant and comparable to the spectral resolution ∆kx and ∆ky

in FIG. 5.15a and 5.15b, respectively. Away from the ridges the spectra show a noise

floor which is almost constant at the same frequency, and it was a consequence of

measuring with a non-equidistant array of sensors. The amplitude of the ridges is

between 2 and 7 times the noise amplitude at each frequency. After normalisation,

the noise floor appears constant across the whole spectrum, with the level ≈ 1 in

FIG. 5.15c-d. The maximum of the dimensional frequency-wavenumber spectra in

FIG. 5.15a is found near ω = 0 and kx = ±40 rad m−1, which compares well with

the wavenumber of the stationary waves, k0 = 34.8 rad m−1.

In the region where ω̂ ≥ 2, the streamwise spectrum Sx(k̂x, ω̂) in FIG. 5.15c

shows a ridge which extends from k̂x ≈ 1 to k̂x ≈ 3. This ridge is approximated well

by the two dispersion relations of equation 3.26 and equation (3.20), assuming θ = 0

and therefore ky = 0. Where ω̂ ≥ 2, the transverse spectrum Sy(k̂y, ω̂) in FIG. 5.15d

has a ridge with k̂y ≈ 0. Both relations indicate the presence of gravity-capillary

waves which propagated in the positive x-direction, but only parallel to the flow
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Figure 5.15: (a) Contour plot of the dimensional frequency-wavenumber spectrum
for condition 13, log10 (σ2Sx(kx, ω)), (b) Transverse spectrum log10 (σ2Sy(ky, ω)). (c)

The normalised frequency-wavenumber spectrum, S̄x(k̂x, ω̂), (d) normalised trans-
verse frequency wavenumber-spectrum S̄y(k̂y, ω̂). (dashed) Irrotational dispersion
relation, equation (3.20). (solid) Dispersion relation with the 1/3 velocity profile,
θ = 0, equation (3.26). (dotted) Non-dispersive relation, equation (3.21). (dashed-
dotted) Dispersion relation with the 1/3 velocity profile, with constant k = k0,
equation (3.45).

velocity (i.e., θ = 0 and k = |kx|). The maxima along the ridge in FIG. 5.15c were

identified with the Gaussian fitting procedure described in sub-section 5.1.4 [Herbert

et al., 2010]. The results of the fitting procedure for condition 13 are shown in FIG.

5.2b, compared to the dispersion relations of equations (3.20) and (3.26). The root

mean squared average difference between the maxima and the proposed relations is

εk = 2.8 rad/m based on the irrotational relation (equation (3.20)), and εk = 3.7

rad/m based on the 1/3 velocity profile (equation (3.26)).

The region of the spectrum in FIG. 5.15c for which −1 < k̂x < 1 is characterized

by a ridge that closely follows a straight line connecting the point k̂x = −1, ω̂ = 0

with the point k̂x = 1, ω̂ = 2, and crossing the ordinate axis at ω̂ = 1. This

ridge is approximated well by equation (3.45), which represents a radial pattern

of waves with the constant modulus of the wavenumber, |k| = k0, where k0 was
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found from equation (3.44). The intersection of the spectral ridge with the axis

ω̂ = 0 in FIG. 5.15c occurs at kx ≈ −40 rad m−1 (k̂x ≈ −1.15), which is close to

k0 = 34.8 rad m−1. The root mean squared average difference between the spectral

ridge in FIG. 5.15c and equation (3.45) is εk = 5.7 rad m−1 in the frequency interval

0 ≤ ω̂ ≤ 2. Equation (3.45) corresponds approximately to an ellipse in FIG. 5.15d.

This approximates well the curved ridges of the transverse spectrum Sy(k̂y, ω̂) in the

region −1 ≤ k̂x ≤ 1 and 0 ≤ ω̂ ≤ 2 in this figure.

The proposed dispersion relations slightly underestimate the frequency of the

measured spectrum in the region −1 < k̂x < 1 of FIG. 5.15c, and overestimate it in

the region k̂x > 2. These shifts are comparable to the resolution of the spectrum,

and they were caused by the uncertainty of the velocity measurements. εk changes

from εk = 5.7 rad m−1 to εk = 4.5 rad m−1 where ω̂ < 2 and from εk = 3.7 rad m−1 to

εk = 3.2 rad m−1 where ω̂ > 2, respectively, if the mean surface velocity is reduced

from 0.58 m s−1 to 0.56 m s−1, which was within the measurement uncertainty. The

estimated spectral resolution was 4.05 rad m−1.

The part of the frequency-wavenumber spectrum in FIG. 5.15c for which k̂x > 1

shows an additional ridge at the frequencies ω̂ < 2. This ridge extends from k̂x ≈ 1

and ω̂ = 0 to k̂x ≈ 2.5, where ω̂ ≈ 1. The first point corresponds to the condition of

stationary waves. The ridge represents the irrotational relation of equation (3.20),

this time assuming that the waves propagate in the direction opposite to that of the

flow, i.e., θ = π. This relation overestimates slightly the frequencies of the ridge,

which is expected since the streamwise velocity profile is not taken into account

in equation (3.20). The slow waves in the region k̂x ≥ 1 and 0 ≤ ω̂ ≤ 1 of FIG.

5.15c were gravity-capillary waves which propagated against the flow with the phase

velocity in still water (equation 3.22) slower than U0, so that they were advected

downstream with 0 < c < U0. In this way they differed from the radial waves

described earlier which phase velocity could be negative, even though both types

of waves occupied the same range of frequencies. In FIG. 5.15d, only one type of

waves (with the two curved ridges that follow the dashed-dotted lines) is clearly

recognisable in the same frequency range. From the observation of the two separate

spectra Sx(k̂x, ω̂) and Sy(k̂y, ω̂) in FIG. 5.15c, and d, it was not possible to say

whether or not these ridges should also be attributed to the waves with 0 < c < U0.

The slowly propagating two-dimensional waves have been observed in flow condition

3 and in the higher Froude number conditions 10 to 13, but they were not clearly

recognisable in the remaining intermediate conditions. It is likely that this was

caused by the limited spatial resolution of the adopted array of wave probes. Because

of these limitations, and because the dispersion relation with the 1/3 velocity profile
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Figure 5.16: (a) Contour plot of the dimensional frequency-wavenumber spectrum
for condition 7, log10 (σ2Sx(kx, ω)), (b) Transverse spectrum log10 (σ2Sy(ky, ω)). (c)

The normalised frequency-wavenumber spectrum, S̄x(k̂x, ω̂), (d) normalised trans-
verse frequency wavenumber-spectrum S̄y(k̂y, ω̂). (dashed) Irrotational dispersion
relation, equation (3.20). (solid) Dispersion relation with the 1/3 velocity profile,
θ = 0, equation (3.26). (dotted) Non-dispersive relation, equation (3.21). (dashed-
dotted) Dispersion relation with the 1/3 velocity profile, with constant k = k0,
equation (3.45).

was not determined for these waves, the Gaussian fitting was not applied in this

region of the spectrum.

The data for the intermediate Froude number flow conditions show a similar

behaviour to the case which was described in the previous paragraphs. FIG. 5.16a-b

show the dimensional frequency wavenumber spectra for the flow condition 7. FIG.

5.16c-d show the corresponding normalised spectra. The spectra in FIG. 5.16 show

the same ridges as in FIG. 5.15. The slow upstream waves advected downstream

with the positive wavenumber and low frequency are less clear from the streamwise

spectrum in FIG. 5.16c than those visible in FIG. 5.15c, which was attributed to the

limited spatial resolution of the measurements. The maximum of the spectrum of

FIG. 5.16a is at the frequency ω ≈ 0 and the wavenumber kx = ±60 rad m−1, which

compares well with the wavenumber of the stationary waves, k0 = 52.4 rad m−1. The
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Figure 5.17: (a) Contour plot of the dimensional frequency-wavenumber spectrum
for condition 4, log10 (σ2Sx(kx, ω)), (b) Transverse spectrum log10 (σ2Sy(ky, ω)). (c)

The normalised frequency-wavenumber spectrum, S̄x(k̂x, ω̂), (d) normalised trans-
verse frequency wavenumber-spectrum S̄y(k̂y, ω̂). (dashed) Irrotational dispersion
relation, equation (3.20). (solid) Dispersion relation with the 1/3 velocity profile,
θ = 0, equation (3.26). (dotted) Non-dispersive relation, equation (3.21). (dashed-
dotted) Dispersion relation with the 1/3 velocity profile, with constant k = k0,
equation (3.45).

agreement with the dispersion relation of the radial pattern in the frequency range

0 ≤ ω̂ ≤ 2 in FIG. 5.16c-d is better than in FIG. 5.15c-d, with εk = 2.1 rad m−1 in

the region ω̂ < 2 and εk = 2.7 rad m−1 in the region ω̂ > 2.

The pattern of the measured frequency-wavenumber spectra repeats very consis-

tently for all the tested flow conditions, with the exception of conditions 1 and 4. The

former requires a separate discussion because the mean surface velocity U0 < cmin

did not allow the formation of stationary waves. The frequency-wavenumber spectra

for flow condition 4 are shown in FIG. 5.17. In this condition the dispersion rela-

tion with the 1/3 velocity profile predicts the wavelength of the stationary waves

equal to 2π/k0 = 47.8 mm, which is comparable to the shortest waves that could

be accurately measured by the streamwise array, where k0∆re/(2π) = 0.55. The

streamwise frequency-wavenumber spectrum in FIG. 5.17c shows a cloud of points
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enclosed within the region of k̂x ≈ −0.8 and 0 ≤ ω̂ ≤ 0.5. This was caused by the

limited spatial resolution of the array. There is a ridge that corresponds to the grav-

ity waves propagating downstream (equation (3.26)), which extends from k̂x ≈ 0.4

to k̂x = 0.9 and from ω̂ ≈ 1 to ω̂ ≈ 1.8, hence with kx < k0. There is a second

ridge that goes from k̂x ≈ −0.2 to k̂x ≈ 0.3 and from ω̂ ≈ 0.5 to ω̂ ≈ 1.2, but this

is strongly curved and it does not follow the prediction based on the radial pattern

with the constant modulus of the wavenumber k = k0 (equation (3.45)). The root

mean squared difference from this prediction calculated with equation (5.33) is equal

to εk = 34.1 rad m−1, estimated between ω̂ = 0 and ω̂ = 2. The transverse spectrum

shown in FIG. 5.17d has the similar behavior to that of the flow conditions discussed

so far, but the region where k̂y 6= 0 is within 0.2 ≤ ω̂ ≤ 1.3, and the maximum trans-

verse wavenumber is k̂y ≈ 0.6. These observations suggest that the radial pattern

of waves had the modulus of the wavenumber smaller than k0 in condition 4. The

curved ridge in FIG. 5.17a also suggests that the pattern was not axially symmetric,

i.e., that the waves propagating parallel to the current had the larger wavenumber

(were shorter) than those propagating perpendicularly to it. The reasons for the

different behaviour in condition 4 are not clear, and warrant further investigation.

The condition 1 had the mean surface velocity U0 which was smaller than the

minimum of the phase velocity in still water, cmin ≈ 0.23 m s−1. Therefore the

stationary waves could not form on this flow. In FIG. 5.18c-d the normalised

frequency-wavenumber spectra for the condition 1 are shown as the function of

the non-dimensional wavenumber kU2
0/g and the non-dimensional frequency ωU0/g.

The streamwise frequency-wavenumber spectrum is shown in FIG. 5.18a, c. This

spectrum shows a ridge that follows closely the dispersion relation of equation (3.26)

with θ = 0. The root mean squared difference from this relation is εk = 2.5 rad m−1.

The behaviour is similar to what was observed in the other flow conditions, but the

ridge in the spectrum for condition 1 extends to the lower frequency ωU0/g = 0, and

the maximum of the spectra is near kxU
2
0/g = 0. On the other hand, the ridge which

had been attributed to the waves with the constant wavenumber k = k0 propagating

radially is absent in the spectrum obtained for condition 1, which confirms that the

observed radial pattern was related to the stationary condition. There is a new ridge

which was not noticed in the spectra for the other conditions, and which follows ap-

proximately the non-dispersive linear relation of equation (3.21). In FIG. 5.18c this

ridge extends from the origin of the spectrum to the point with kxU
2
0/g = 0.3 and

ωU0/g = 0.3, after which it becomes less clear because of the limited resolution of

the measurements. The transverse spectrum in FIG. 5.18d shows a clear ridge with

kyU
2
0/g = 0 where 0 ≤ ωU0/g ≤ 0.2, but it also becomes less clear at the higher

frequency. The non-dispersive ridge in FIG. 5.18a has the amplitude 2 to 3 times
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Figure 5.18: (a) Contour plot of the dimensional frequency-wavenumber spectrum
for condition 1, log10 (σ2Sx(kx, ω)), (b) Transverse spectrum log10 (σ2Sy(ky, ω)).
(c) The normalised frequency-wavenumber spectrum, S̄x(kxU

2
0/g, ωU0/g), (d) nor-

malised transverse frequency wavenumber-spectrum S̄y(kxU
2
0/g, ωU0/g). (dashed)

Irrotational dispersion relation, equation (3.20). (solid) Dispersion relation with
the 1/3 velocity profile, θ = 0, equation (3.26). (dotted) Non-dispersive relation,
equation (3.21).

larger than the dispersive ridge at each value of the wavenumber. The root mean

squared difference from the relation ωU0/g = kxU
2
0/g is εk = 5.4 rad m−1, evaluated

in the range 0 < ωU0/g < 0.3. The frequency spectra of the flow condition 1 which

were shown in FIG. 5.7 had a peak at the frequency ωU0/g ≈ 0.3 (ω ≈ 15 rad s−1).

At the same frequency the streamwise spectrum of FIG. 5.18a shows a horizontal

ridge spanning the whole wavenumber range, while the transverse spectrum of FIG.

5.18b has a peak at ky ≈ 0.

5.3.3 Evidence of wave group dynamics

The results of the previous subsection have shown the presence of radial patterns

of waves in all conditions with the mean surface velocity larger than the minimum

phase velocity of gravity-capillary waves. These patterns bear a direct resemblance
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Figure 5.19: Root mean square averaged difference, εk, between the ridges of the
measured streamwise spectra, Sx(kx, ω), and the proposed dispersion relations, eval-
uated along the kx axis in the interval (a) ω̂ < 2, (b) ω̂ > 2. (squares) Dispersion
relation with the 1/3 velocity profile, equations (3.26) and (3.45). (circles) Irrota-
tional dispersion relations, equations (3.20) and (3.48). The numbers indicate the
flow conditions. The spectral resolution was ∆kx = 4.05 rad m−1.

with the model of gravity waves shed radially from a localised vortex dimple, as

suggested by Savelsberg and van de Water [2009]. It will be shown in subsection

5.3.4 that the Fourier representation of the radial patterns measured in subsection

5.3.2 generates structures which are also similar to the oscillons suggested by Nichols

et al. [2016]. These structure advect as groups with the velocity equal to the mean

surface velocity, and without change of form except for a vertical oscillation. This

is in apparent contrast with the theory of gravity-capillary waves, which states that

wave groups travel with their characteristic group velocity. The first objective of

this subsection was to measure the group velocity of the radial patterns of waves and

to compare it with the group velocity of gravity-capillary waves. This will further

inform the discussion in subsection 5.3.4. The second objective of this subsection

was to characterise the spatial correlation of the envelope of the surface elevation at

different frequencies and in the different spatial dimensions. This characterisation

is important for the application of the wavelet spectral method, which is discussed

in section 5.4.

The dynamics of wave groups were investigated in terms of the envelope Z of the

band-pass filtered surface elevation, following the procedure described in subsection

5.1.5. Two characteristic frequencies were investigated here, in order to show the

behaviour of the different types of waves observed in subsection 5.3.2. The high-

frequency dispersive waves propagating downstream with the wavenumber kx > k0

were investigated by setting the parameters of the Gaussian filter to ωG = 2.5k0U0

and σω,G = k0U0/2. The lower frequency radial waves were investigated by setting

ωG = k0U0, and σω,G = k0U0/2. In condition 1, the alternative settings ωG =
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0.8g/U0, σω,G = k0U0/5 and ωG = 0.3g/U0, σω,G = k0U0/10, were used for the high

and for the low frequency, respectively. The frequency-wavenumber spectra and

the space-time correlation functions of the envelope were indicated by the symbols

Sx,Z(k̂x, ω̂), Sy,Z(k̂y, ω̂), and Wx,Z(rx, τ), Wy,Z(ry, τ).

It should be noted that because the filtering was not applied in the wavenumber

domain, eventual multiple branches of the frequency-wavenumber spectrum could

not be isolated with the analysis described here. This means that the interpretation

of the results may be difficult in the lower range of frequencies, especially in con-

ditions 1 and 13. In fact, in the first condition both dispersive and non-dispersive

waves were observed in FIG. 5.18c at low frequency ωU0/g ≤ 0.2. In condition 13

both radial waves and waves propagating slowly upstream were observed in FIG.

5.15c at the frequency ω̂ ≤ 1.

FIG. 5.20b, d, shows the streamwise frequency-wavenumber spectra of the enve-

lope Sx,Z(kxU
2
0/g, ωU0/g) at the frequencies 0.8g/U0 and 0.3g/U0, respectively, for

the condition 1. The corresponding lateral spectra Sy,Z(kyU
2
0/g, ωU0/g) are shown in

FIG. 5.21b, d. Both spectra are compared with the frequency-wavenumber spectra of

the band-pass filtered surface elevation, Sx(kxU
2
0/g, ωU0/g), and Sy(kyU

2
0/g, ωU0/g),

which are shown in FIG. 5.20a, c, and FIG. 5.21a, c. The white dashed lines in

FIG. 5.20 represent the group velocity of the waves with the frequency ωG, which

was determined from equations (3.15) based on the irrotational dispersion rela-

tion of equation (3.20). The frequency-wavenumber spectrum of the envelope of

the high-frequency waves in FIG. 5.20b follows the group velocity in the region

0 ≤ kxU
2
0/g ≤ 0.1 and 0 ≤ ωU0/g ≤ 0.4. This demonstrates that the wave groups

with the frequency 0.8g/U0 propagated downstream at the velocity equal to the

group velocity of gravity-capillary waves, and faster than the mean surface veloc-

ity. In FIG. 5.20c the frequency wavenumber spectrum of the filtered elevation

Sx(kxU
2
0/g, ωU0/g) at low frequency has a wide horizontal ridge at the frequency

of approximately ωU0/g = 0.3, with slightly larger amplitude at the wavenumbers

kxU
2
0/g = 0.3 and kxU

2
0/g = −0.3. The point with kxU

2
0/g = −0.3 and ωU0/g = 0.3

corresponds to the waves that propagated upstream with the group velocity equal to

zero. The frequency-wavenumber spectrum of the envelope with the lower frequency

0.3g/U0 (FIG. 5.20d) shows a horizontal ridge near the frequency ωU0/g = 0, and

with larger amplitude near the wavenumbers kxU
2
0/g = −0.3, kxU

2
0/g = 0, and

kxU
2
0/g = 0.3. The horizontal ridge of FIG. 5.20d at ωU0/g = 0 represents a group

of waves with the group velocity equal to zero, and with a broad spatial spectrum.

The transverse frequency-wavenumber spectra of the envelope of condition 1 in FIG.

5.21b, d, show that the envelope had a relatively broader transverse spatial spec-
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Figure 5.20: (a) The contour plot of the streamwise frequency-wavenumber spec-
trum of the filtered elevation for condition 1, Sx(kxU

2
0/g, ωU0/g), at the frequency

ωG = 0.8g/U0, (b) The streamwise frequency-wavenumber spectrum of the enve-
lope, Sx,Z(k̂x, ω̂), for the same frequency. (c) Sx(kxU

2
0/g, ωU0/g), at the frequency

ωG = 0.3g/U0, (b) Sx,Z(k̂x, ω̂), for the same frequency. (magenta dashed) Irrota-
tional dispersion relation, equation (3.20). (magenta solid) Dispersion relation with
the 1/3 velocity profile, θ = 0, equation (3.26). (magenta dotted) Non-dispersive
relation, equation (3.21). (white dashed) Group velocity of the waves with frequency
ωG.

trum than the elevation ζ, and that it travelled principally along the direction x

with ky ≈ 0.

The similar frequency-wavenumber spectra for condition 7 are shown in FIG.

5.22 and 5.23. The behaviour in this condition was representative of the one ob-

served in all remaining conditions, except condition 1. In condition 7 the streamwise

frequency-wavenumber spectrum of ζ did not show multiple branches of the disper-

sion relation, therefore the interpretation of the results was more straightforward.

The lower frequency k0U0 corresponds to the waves which travelled perpendicularly

to the direction of the flow based on the model of radial waves with the wavenumber

modulus k0. The additional dashed white lines in FIG. 5.23c, d, show the expected

group velocity of these waves along the y-direction, i.e., neglecting the advection by
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Figure 5.21: (a) The contour plot of the transverse frequency-wavenumber spec-
trum of the filtered elevation for condition 1, Sy(kyU

2
0/g, ωU0/g), at the frequency

ωG = 0.8g/U0, (b) The transverse frequency-wavenumber spectrum of the enve-
lope, Sy,Z(k̂y, ω̂), for the same frequency. (c) Sy(kyU

2
0/g, ωU0/g), at the frequency

ωG = 0.3g/U0, (b) Sy,Z(k̂y, ω̂), for the same frequency.

the mean surface velocity. The advection was considered instead in the streamwise

spectra of FIG. 5.23c, d and 5.23a, b.

At the higher frequency of 2.5k0U0, the streamwise frequency-wavenumber spec-

trum of the envelope Sx,Z(k̂x, ω̂) (shown in FIG. 5.22b) follows the group velocity of

the gravity-capillary waves propagating downstream according to equations (3.15)

and (3.20). This is larger than the mean surface velocity U0. The transverse spec-

trum Sy,Z(k̂y, ω̂) in FIG. 5.23b shows that the wave group had a broad transverse

spatial spectrum with the width comparable to k0, and that it moved mainly along

the x-direction.

The streamwise spectrum at the lower frequency k0U0, Sx,Z(k̂x, ω̂), is shown in

FIG. 5.22d. This spectrum shows that the envelope Z (the wave group) travelled in

the x-direction at the velocity equal to the mean surface velocity U0. The transverse

spectrum Sy,Z(k̂y, ω̂) in FIG. 5.23d shows that the velocity of the envelope did not

have components along the y-direction. This is in contrast with the theory of gravity-
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Figure 5.22: (a) The contour plot of the streamwise frequency-wavenumber spectrum
of the filtered elevation for condition 7, Sx(k̂x, ω̂), at the frequency ωG = 2.5k0U0,
(b) The streamwise frequency-wavenumber spectrum of the envelope, Sx,Z(k̂x, ω̂),

for the same frequency. (c) Sx(k̂x, ω̂), at the frequency ωG = k0U0, (b) Sx,Z(k̂x, ω̂),
for the same frequency. (magenta dashed) Irrotational dispersion relation, equation
(3.20). (magenta solid) Dispersion relation with the 1/3 velocity profile, θ = 0,
equation (3.26). (magenta dotted) Non-dispersive relation, equation (3.21). (ma-
genta dashed-dotted) Dispersion relation with the 1/3 velocity profile, with constant
k = k0, equation (3.45). (white dashed) Group velocity of the waves with frequency
ωG.

capillary waves, which predicts that the group velocity is perpendicular to the wave

crests, therefore parallel to the y-direction for these waves. FIG. 5.23d also shows

that the transverse spatial spectrum of the envelope is relatively narrow, and has

three distinct peaks. Sy,Z(k̂y, ω̂) has a narrow peak with k̂y = 0 and two smaller

peaks with the wavenumbers k̂y ≈ ±2.

The correlation functions relative to the higher frequency 2.5k0U0 are shown in

FIG. 5.24. Unlike in FIG. 5.14 where the correlation functions of the surface eleva-

tion ζ were grouped based on the parameter k0H, the different conditions represented

in FIG. 5.24 were grouped based on the mean flow depth H, since this seemed to be a

more relevant parameter for the behaviour of the envelope. The first difference with

respect to FIG. 5.14 is the asymmetry of the correlation along the two directions
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Figure 5.23: (a) The contour plot of the transverse frequency-wavenumber spectrum
of the filtered elevation for condition 7, Sy(k̂y, ω̂), at the frequency ωG = 2.5k0U0, (b)

The transverse frequency-wavenumber spectrum of the envelope, Sy,Z(k̂y, ω̂), for the

same frequency. (c) Sy(k̂y, ω̂), at the frequency ωG = k0U0, (b) Sy,Z(k̂y, ω̂), for the
same frequency. (magenta dashed-dotted) Dispersion relation with the 1/3 velocity
profile, with constant k = k0, equation (3.45). (white dashed) Group velocity of the
waves with frequency ωG.

x and y. The correlation Wx,Z(rx, τ) in FIG. 5.24b, c, d, becomes approximately

zero at rx/(2π/k0) = 0.5, which corresponds to half the wavelength of the stationary

waves. In contrast, the transverse correlation decays more rapidly and is approxi-

mately zero already near ry/(2π/k0) = 0.25. Among each group of flow conditions,

the rate of decay of the correlation with respect to 2π/k0 is faster when k0H/π is

smaller, more clearly so for the conditions with the depth 40.5 mm ≤ H ≤ 43.4 mm

in FIG. 5.24b. k0H/π decreased with the increase of the condition number, i.e., it

was largest in condition 13 and smallest in condition 2. The functions Wx,Z(rx, τ)

and Wy,Z(ry, τ) decay smoothly without fluctuations, which indicates that the en-

velopes of the wave groups had no periodicity in space. The correlation functions

in condition 1 (shown in FIG. 5.24a) behaves similarly to those of the other flow

conditions, but with different non-dimensionalised spatial scales.
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Figure 5.24: The normalised spatial correlation of the envelope Z at zero time lag,
with normalised spatial separation, rk0/2π, at the higher frequency 2.5k0U0. The
negative x-axis shows the lateral correlation, Wy,Z(rn,y, 0), while the positive x-axis
shows the streamwise correlation, Wx,Z(rn,x, 0). (a) Condition 1, (b) conditions
4, 6, 8, 9, and 12 (40.5 mm ≤ H ≤ 43.4 mm), (c) conditions 2, 7, 11, and 13
(72.4 mm ≤ H ≤ 73.2 mm), (d) conditions 3, 5, and 10 (99.0 mm ≤ H ≤ 101.3 mm).
Note the different scaling in (a), where the frequency was 0.8g/U0.

The behaviour of the correlation functions Wx,Z(rx, τ) and Wy,Z(ry, τ) at the

lower frequency k0U0 was different, as it can be seen in FIG. 5.25. The asymmetry

of the correlation in the x and y directions is still observed at the lower frequency

and for all conditions, although in FIG. 5.25b, c, d, the streamwise correlation de-

cays more slowly at the larger depth 99.0 mm ≤ H ≤ 101.3 mm (5.25d) than at

the depth 40.5 mm ≤ H ≤ 43.4 mm (5.25b). In the former case the correlation is

approximately zero at the larger relative separation rx/(2π/k0) = 1. The correlation

function along the transverse direction y at the lower frequency k0U0 behaves sim-

ilarly to that at higher frequency in the conditions with 40.5 mm ≤ H ≤ 43.4 mm

(FIG. 5.25a, b). In the conditions with larger depths (FIG. 5.25c, d), Wy,Z(ry, τ)

decays rapidly to zero at ry/(2π/k0) = 0.25, then it has a peak with the amplitude

as large as 0.3 at ry/(2π/k0) = 0.5.
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Figure 5.25: The normalised spatial correlation of the envelope Z at zero time
lag, with normalised spatial separation, rk0/2π, at the lower frequency k0U0. The
negative x-axis shows the lateral correlation, Wy,Z(rn,y, 0), while the positive x-axis
shows the streamwise correlation, Wx,Z(rn,x, 0). (a) Condition 1, (b) conditions
4, 6, 8, 9, and 12 (40.5 mm ≤ H ≤ 43.4 mm), (c) conditions 2, 7, 11, and 13
(72.4 mm ≤ H ≤ 73.2 mm), (d) conditions 3, 5, and 10 (99.0 mm ≤ H ≤ 101.3 mm).
Note the different scaling in (a), where the frequency was 0.3g/U0.

5.3.4 Discussion

The results in this section have shown the spatial correlation function and the dis-

persion relation of the free surface patterns in turbulent shallow flows with a rough

bottom boundary. It is believed that these functions were never measured before

experimentally in a flow where the surface patterns occur naturally. The measure-

ments of the zero-lag correlation function of the free surface elevation (FIG. 5.14)

have shown a fluctuation with the period of approximately 2π/k0, which is the typi-

cal scale of the stationary waves. In the flow condition 1 the stationary waves could

not form, and the correlation function did not fluctuate. Savelsberg and van de

Water [2009] and Horoshenkov et al. [2013] associated the decay rate and the period

of the correlation function of the free surface elevation with the characteristic scales

of turbulence, although Horoshenkov et al. [2013] looked at the maxima in the time

correlation function at each spatial separation, rather than at the zero-lag correla-
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tion at τ = 0. Savelsberg and van de Water [2009] and Horoshenkov et al. [2013]

found a correspondence between the scales of the correlation and the characteristic

integral scales of turbulence. Savelsberg and van de Water [2009] also observed that

the correlation function becomes anisotropic when the turbulence in the flow is also

anisotropic. The measurements presented here have shown that when the mean

surface velocity was larger than the minimum phase velocity of gravity-capillary

waves, the stationary waves rather than the turbulent scales determined the domi-

nant scales of the free surface. The Froude number also seemed to affect the spatial

characteristics of the free surface. In fact, both the period of the correlation function

relative to 2π/k0 and the spatial rate of decay tended to decrease when k0H/π also

decreased. These observations demonstrate the link between the dynamics of the

free surface and the hydraulic conditions, mainly through the parameters k0, H, and

U0. This was one of the objectives of the analysis presented in this section.

The measurements of the frequency wavenumber spectra of the surface elevation

were compared with the dispersion relations presented in section 3.1.2, which corre-

spond to a model of gravity-capillary waves propagating in a flow with a 1/3 power

function velocity profile (equations (3.26) and (3.45)), and in an irrotational flow

(equations (3.20) and (3.48)), respectively. The difference between the two disper-

sion relations and the measured spectra was quantified by the Gaussian fitting of

the ridges of the streamwise spectra, Sx(kx, ω). The root mean squared wavenumber

difference, εk, was shown in FIG. 5.19 for all conditions except condition 1. In most

flow conditions the two theories gave very similar results, close to the resolution of

the spectra. In the conditions with larger Froude number, the relation based on

the 1/3 velocity profile was more accurate in the region ω̂ < 2, where most of the

amplitude of the spectrum was concentrated.

FIG. 5.19 shows that the model was less accurate in the conditions 2, 4, 6, and 8.

Of these, conditions 4, 6 and 8 had the lower mean depth of approximately 40 mm,

and the smaller Froude number F < 0.6. Condition 4 showed a very different pattern

from all other conditions, which is not fully understood. The theory of Cheng [2007]

does not predict an observable change of the velocity profile in the condition 4, 6,

and 8, but the data reported by Nichols [2015] did not include any condition with

similar depth and with F < 0.6, so that a direct check was not possible. It is

expected that when the submergence H/d becomes very small, the free surface may

follow the shape of the boundary and the linearised equations would not be valid.

The statistical analysis in section 5.2 showed that the surface in the conditions 2 and

4 was essentially linear, while significant non-linearities were observed in conditions

6 and 8. It is suggested that the proposed relations become less accurate when the

flow is more shallow and the Froude number is relatively low, as a consequence of
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the change of the velocity profile and of the reduced validity of the linearisation of

the surface equations. The results showed that the velocity profile influences the

dispersion relation as expected, although the variation of the shape of the velocity

profile was too small to be detected in most of the conditions described here. The

resolution of the measurements would need to be increased if one aims to determine

the shape of the velocity profile from the measurement of the free surface dynamics.

In all conditions with U0 > cmin (see FIG. 5.15, FIG. 5.16, and FIG. 5.17)

the maxima of the frequency-wavenumber spectra was found near kx = ±k0, which

showed that the stationary waves represent the dominant pattern on the free surface.

The observed patterns of waves which propagate radially in all directions resemble

the model of concentric gravity waves being shed by vertical vortices suggested by

Savelsberg and van de Water [2009], although in the measurements presented here

the scale of the pattern was governed by the wavelength of the stationary waves

rather than by the scale of the attached vortices. An exception was represented by

condition 4, where the radial waves were shorter than the stationary waves, and

the pattern was non-isotropic. Further investigations would be needed in order to

clarify the reasons for this different behaviour.

Condition 1 showed a markedly different behaviour with respect to all the other

conditions with U0 > cmin, as it was evident from the frequency-wavenumber spectra

shown in FIG. 5.18. These spectra still showed a ridge that represents gravity

waves propagating downstream, but the ridge extended to very low frequencies.

This is of notice, since it signifies the existence of long waves with the wavelength

comparable to the length of the array of probes, whereas in the other conditions

the longest waves had the wavelength of 2π/k0. The spectra shown in FIG. 5.18a,

c, revealed one additional set of waves which followed the non-dispersive relation

of equation (3.21). This non-dispersive ridge can represent random patterns on

the surface with a broad spatial spectrum, which are advected by the flow at the

constant velocity U0. These patterns were dominating over the dispersive freely

propagating gravity waves at each value of the wavenumber in condition 1. Teixeira

and Belcher [2006] postulated that the direct interaction with turbulence is able

to produce patterns of forced waves on the free surface, even when the conditions

for the resonant interaction are not met. These waves are expected to follow the

dispersion relation of the turbulence inside the flow, which, as a first approximation,

corresponds to the equation (3.21) which can be observed in FIG. 5.18a, c.

In terms of the frequency-wavenumber spectrum of the low-frequency envelope in

condition 1 (FIG. 5.20d), one would expect the non-dispersive waves that correspond

to the peak at kxU
2
0/g = 0.3 and ωU0/g = 0.3 of FIG. 5.20c to have the envelope

spectrum that closely follows the same non-dispersive relation ω = kxU0. This
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expected behaviour is not confirmed by the spectrum of FIG. 5.20d, which may be

due to the fact that multiple branches of the frequency-wavenumber spectrum cannot

be isolated without applying a spatial-temporal filter. The frequency spectrum of

condition 1 in FIG. 5.7a showed a peak at the frequency ωU0/g, which corresponds

to the dimensional frequency of 2.5 Hz. This is also approximately the solution of

∂ω/∂k = 0 based on the equations (3.15) and (3.20), where θ = π. Kitaigordskii

et al. [1975] showed that the frequency spectrum S(ω) and the wavenumber angular

spectrum S(k, θ) are related by equation (3.14). The integral of equation (3.14)

can become very large if the group velocity is small, which is possible for waves

propagating against the flow. The peak of the frequency spectrum in FIG. 5.7a

near the frequency where ∂ω/∂k = 0 can be justified by the existence of waves

propagating upstream in the flow condition 1. These waves could also cause the

broad ridge of FIG. 5.20d near the frequency ω = 0, which impeded the observation

of the group velocity of the non-dispersive waves in the same figure.

The presence of the dispersive ridge in the spectrum of FIG. 5.18a, c showed that

the gravity waves propagating downstream (those which in the other flow conditions

were identified by kx > k0) were not related to the stationary waves, which could

not form in condition 1. These waves could be transient waves generated by the

interaction with the fixed rough boundary, or freely propagating gravity-capillary

waves that originated from the turbulence forced waves after the forcing had ended.

This may happen because of the loss of coherence of the turbulent structures as

they interact with the sheared flow near the surface [Teixeira and Belcher, 2006], or

because the spatial scale of these shorter waves was within the dissipative range of

turbulence [Borue et al., 1995].

In the conditions where U0 was larger than cmin, the measurements showed that

the interaction with the rough bed was the dominant mechanism that produced

the fluctuations of the free surface. Non-linear phenomena such as multiple-waves

interactions, or instabilities related to the critical layer, were not observed in the

range of scales which have been investigated, although they may manifest more

clearly at the smaller wavelengths. Bound waves would have been identified from

the frequency-wavenumber spectra [e.g. Herbert et al., 2010], therefore they are

excluded. The predominance of critical-layer instabilities might have caused the

growth of the waves propagating upstream. These waves have been observed, but

they did not appear to dominate the patterns on the free surface. The large value

of the kurtosis coefficient relative to the skewness observed in section 5.2 suggests

the existence of interactions among waves, according to Janssen [2009]. These types

of interactions may be responsible for the radial pattern of waves with the constant

modulus of the wavenumber equal to k0, in accordance with the model of Shrira
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[1993]. This model cannot be applied formally to shallow turbulent flows, and

it is only valid in the limit of a narrow angular spectrum of the waves. Further

investigations are required in order to establish the mechanism that can produce

such a pattern.

The observed radial pattern of waves with the wavenumber k0 relates directly to

the model of oscillons suggested by Nichols et al. [2016]. This model predicts patterns

that fluctuate at a frequency which is governed by the standard deviation of the

surface elevation, as they advect at the mean surface velocity. The measurement of

the frequency-wavenumber spectrum of the envelope at the lower frequency in FIG.

5.22 suggests that groups of waves propagate at the velocity close to the mean surface

velocity. This is in apparent contrast with a model of gravity-capillary waves, where

the group velocity differs from the mean surface velocity, while it provides limited

evidence in support of the model suggested by Nichols et al. [2016]. It is possible to

represent the radial pattern measured in subsection 5.3.2 with equation (3.10), based

on the linear model with random phase. The wavenumber co-ordinates are expressed

in polar form k and θ, and the dispersion relation ω = Ω(k, θ) is introduced. The

wavenumber modulus is equal to k0 for all waves which contribute to the radial

pattern, which yields

ζ(x, y, t) =

∫ π

−π
A(k0, θ,Ω(k0, θ))e

i[k0x cos θ+k0y sin θ−Ω(k0,θ)t+φ]k0dθ. (5.43)

The dispersion relation of the radial pattern is approximated by

Ω(k0, θ) = k0U0(1 + cos θ), (5.44)

which corresponds to equation (3.46), and the spectrum is represented as S(k0, θ)

for simplicity. Substituting equation (5.44) in equation (5.43), one obtains

ζ(x, y, t) = k0e
−ik0U0t

∫ π

−π
A(k0, θ)e

ik0[cos θ(x−U0t)+y sin θ]eiφdθ. (5.45)

The integral of equation (5.45) represents a set of waves propagating in all directions,

and can be very complicated in general. It is interesting to look at the solution in

the vicinity of a point with the co-ordinates x = x0 + U0t and y = y0, which travels

along the x-direction with the mean surface velocity. It is easy to see that such a

solution corresponds to a pattern that fluctuates vertically with the frequency k0U0,

while the shape of its envelope remains unchanged.

The representation given by equation (5.45) is very similar to that of the oscillons

proposed by Nichols et al. [2016], although its interpretation can be quite different.
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Figure 5.26: (black circles) The oscillon frequency measured by Nichols et al. [2016]
compared with the characteristic frequency of the stationary waves calculated with
equation (3.44) with (squares) n = 1/2 and (triangles) n = 1/3.

Nichols et al. [2016] suggested that the oscillons are the localised dynamic response

to an initial disturbance of the surface, such as the impact of a turbulent structure.

The form of the frequency of oscillation in equation (5.45) suggests that the patterns

observed here relate to the stationary waves. During the period of one oscillation,

the point with the initial streamwise location x0 moves downstream by the distance

of 2π/k0, which is the wavelength of the stationary waves. The pattern can be

seen as a modulation of the stationary waves by an envelope that travels at the

mean surface velocity, or equivalently as a group of stationary waves which group

velocity is equal to the mean surface velocity and directed downstream. As a proof

of the relevance of this interpretation for the model of oscillons, FIG. 5.26 shows the

frequencies of the oscillations k0U0/2π calculated for the flow conditions reported

by Nichols et al. [2016] based on equation (3.44). These are compared with the

mesurements of the frequencies of the oscillons, as measured by Nichols et al. [2016].

The calculation with equation (3.44) was performed both with n = 1/3 and with

n = 1/2. The values of the frequency predicted by equation (3.44) are very close to

the results reported by Nichols et al. [2016]. A better fit is found with the results for

n = 1/2. This could be an effect of the different streamwise velocity profile, since

the measurements were performed with a different bottom roughness. There is a

deviation from the measured frequency in the conditions with the smaller amplitude

of the surface fluctuations. This could also be caused by the different velocity profile.

These results demonstrate that the dynamics of the dominant patterns on the

free surface of a shallow turbulent flow can be explained by a linear model of gravity-

capillary waves with random phase. In the measured conditions, no strong evidence

of waves generated by the interactions with turbulent coherent structures was ob-

served. This is in agreement with the results of the previous section. The waves
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follow a deterministic dispersion relation, and their scales are governed by the inter-

action with the rough boundary. The random superposition of the waves produces

patterns which appear to travel downstream at the mean surface velocity, and which

can be interpreted as a generalisation of wave group.

The shape of the groups was investigated in terms of the zero time-lag correlation

functions of the envelope, Wx,Z(rx, τ) and Wx,Z(rx, τ). This is of interest mainly for

the application of the wavelet spectral method described in the next section, since

this method requires the measurements to be performed within an area smaller than

the size of the wave group. The two smaller peaks with k̂y ≈ ±2 of the transverse

spectrum Sy,Z(ky, ω) at the frequency k0U0 for condition 7 (FIG. 5.22d) suggest

the periodicity of the envelope, with the period equal to approximately half the

wavelength of the stationary waves (which is also assumed to correspond to the

wavelength of the carrier wave at the frequency k0U0). This is confirmed by the

measurements of the correlation function of the envelope, shown in FIG. 5.25. The

peak of the correlation function corresponds to the half characteristic wavelength

2π/k0, hence to a phase difference of π. The location ry/(2π/k0) = 0.25 corresponds

to the phase difference π/2. FIG. 5.23c showed that the surface elevation ζ at

the frequency k0U0 presents two waves with the wavelength 2π/k0 propagating in

opposite directions along y. The results show that these two waves combine together

to form a standing wave with the same wavelength. These standing waves determine

the shape of the group along the transverse direction. In fact, the correlation is larger

at the distance π/k0, therefore between the crest and the trough of the standing

waves, and it is zero at the distance π/2k0, which corresponds to the nodal point of

the system of standing waves.

The existence of transverse standing waves in channels of limited width is well

known [e.g., Lamb, 1932, p.284], but these have the wavenumber which is an integer

multiple of 2π/Wf , where Wf is the channel width. In the measurements reported

here the wavenumber of the standing waves scaled consistently with k0, and it was

generally much larger than 2π/Wf (k0Wf varies between 14.4 in condition 10 and

60.4 in condition 4), so that the transverse waves would represent a relatively higher-

order mode which is unlikely to dominate in a turbulent flow. FIG. 5.25c, d, show

that the correlation of the transverse standing waves decays rapidly within a distance

comparable with their wavelength. These results suggest that the observed standing-

waves envelope is not related to the finite width of the channel.
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5.4 Transient analysis

5.4.1 Introduction

The discussion so far was based on the assumption that the statistics of the free

surface are stationary both in time and in space. The single-point statistics in

section 5.2 have shown a weak nonlinearity of the free surface elevation in some

flow conditions. These nonlinearities can manifest as deviations from the assumed

stationarity of the free surface behaviour. The method of determining the frequency-

wavenumber spectra from two orthogonal arrays of wave probes did not allow the

direct observation of the three-dimensional spatial distribution of the waves, which

instead had to be inferred based on the comparison with a hypothetical dispersion

relation. In contrast, the analysis of the data based on the wavelet spectral method

[Donelan et al., 1996] allows the relaxation of the assumption of stationarity at

least in the time domain, and it allows the direct calculation of the direction of

propagation of the waves in two dimensions, although it is subject to a set of strong

limitations which have been discussed in section 3.1.9. The method also carries

a direct relationship with the definition of wave groups, which formed the basis

of the analysis described in sub-sections 5.2.3 and 5.3.3, and it allows the direct

calculation of the fully three-dimensional spatial spectrum, at least in principle. The

model which forms the basis of the method is that of a random combination of wave

groups, each of them coherent and representable at least in a first approximation as a

linear combination of two-dimensional gravity-capillary waves. The model therefore

is suited for the study of the radial patterns of waves observed in the previous section.

One more advantage of the wavelet spectral method compared to the measurement

of the frequency-wavenumber spectra is that it only requires the measurement of

the surface elevation at a limited number of locations. This makes it an attractive

technique for the remote characterisation of the free surface dynamics.

The first aim of the analysis described in this section was to demonstrate that

the dispersion relations which have been measured with long arrays of wave probes

and based on the average frequency-wavenumber spectra still apply locally in time

and in space, at least in the average sense, i.e., that the statistics of the free surface

are effectively stationary. The second aim was to confirm the three-dimensional

distribution of waves (the radial pattern) which had been inferred based on the

frequency wavenumber spectra along the two orthogonal directions, in subsection

5.3.2. The third aim was to demonstrate that the dynamic behaviour of the free

surface can be characterised based on the measurement of the free surface elevation

at a limited number of points, and over a measurement area with limited size.
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5.4.2 The wavelet spectral method applied to wave probes

data

In the previous section the dimensions of the generalised wave groups were measured

by the zero time-lag correlation of the envelope of the elevation. The knowledge of

this dimension is fundamental for the correct application of the wavelet spectral

method. In fact, in order for the wavelet spectral method to work effectively, each

pair of probes had to be within the same wave group. Here the analysis with the

wavelet spectral method was based on the measurements of the wavelet transform

at probes 1(x) ≡ 1(y), 2(x), and 3(y). This set of probes was chosen as the best

compromise between the resolution of the measurements and the requirement of

both probes to be within the characteristic length of the wave groups. The distances

between each pair of probes along the x- and y-directions were rx = 26.0 mm and

ry = 35.0 mm, respectively. Practically, it was required that the spatial correlation

of the envelope be larger than zero at the distances rx and ry. Based on FIG. 5.24

and 5.25, the threshold on rx was rx < 0.5 × 2π/k0 at the higher frequency, and

rx < 2π/k0 at the lower frequency. The constrain was stronger in the transverse

direction, where ry had to satisfy ry < 0.25 × 2π/k0 both at the higher and at the

lower frequency. At the lower frequency and with the depth H ≥ 70 mm, the second

peak of the correlation Wy,Z(ry, 0) at ry ≈ 0.5× 2π/k0 allows the application of the

method at the larger separations. The need for the correlation to be sufficiently large

would suggest the reduction of the spacing between the probes. This in turn would

increase the uncertainty of the analysis, since the wavenumber was calculated as

the ratio between the phase difference and the separation. It is interesting to note

that the shape of the envelope in the transverse direction at the frequency k0U0

made so that the method works best in this frequency range when the separation

is close to half of the wavelength of the standing waves, whereas it would not work

at all if the separation equals a quarter of a wavelength. For the measurements

presented here, the quarter wavelength varied between 11.9 mm in condition 4 to

50.1 mm in condition 10, and it was 0.25 × 2π/k0 = 17.5 mm in condition 2 and

0.25× 2π/k0 = 34.8 mm in condition 5.

In order to illustrate the effect on the analysis of the separation between the

probes relative to the characteristic dimensions of the groups, a different set of flow

conditions were investigated here than in the previous sections. In condition 1 there

were no secondary peaks of the correlation of the envelope, and the correlation

decayed more slowly with respect to ryg/(2πU
2
0 ) than in the other conditions (see

FIG. 5.24a, 5.25a). Both probes 1(y) and 3(y) were therefore expected to be within the

same wave group in condition 1, which makes the wavelet spectral method applicable
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in this condition. The separation between probes 1(y) and 3(y) was within the main

lobe of the correlation in condition 10, it was near half the wavelength 2π/k0 in

condition 2, and it was near the quarter of the wavelength 2π/k0 in condition 5.

Then, it is expected that the method would not work in condition 5, while it would

work in conditions 10 and 2. The short relative distance between the probes in

condition 10 is expected to reduce the resolution of the method in this condition.

Therefore conditions 1, 2, 5, and 10 are representative of typical ratios between the

transverse probes separation and the characteristic scales of the generalised wave

group, and they represent different conditions for the validity of the method. These

four conditions are analysed in this section.

Some examples of the absolute value of the wavelet transform computed from

the measurement at probe 1(x) in conditions 1, 2, 5, and 10, are shown in FIG. 5.27.

In FIG. 5.27 the non-dimensional frequency scale was defined as ω̂ = ω/k0U0 for

conditions 2, 5, and 10, and as ωU0/g in condition 1. The three examples of FIG.

5.27 show that the amplitude of the wavelet transform was not constant in time

at each scale, but showed a number of events with larger amplitude as well as less

energetic intervals. This is consistent with the representation of the envelope of the

surface elevation in FIG. 5.12. Most of the energy of the transform was near the

non-dimensional frequency ωU0/g = 0.5 in condition 1 (FIG. 5.27a), and near the

non-dimensional frequency ω̂ = 1 in all the remaining conditions (see for example

conditions 2, 7, and 13 in FIG. 5.27b, c, d). The behaviour at each scale appears to

be independent from the other scales, which confirms the validity of a linear model

of the surface elevation.

FIG. 5.28c, d shows the pdf of the wavenumbers pk(kx, ω) and pk(ky, ω) deter-

mined by the wavelet spectral method in condition 1, compared with the frequency-

wavenumber spectra Sx(kx, ω) and Sy(ky, ω) (FIG. 5.28a, b). The resolution of the

pdf pk(kx, ω) and pk(ky, ω) was clearly lower than that of the frequency-wavenumber

spectra, but the ridges that represent both the non-dispersive waves and the gravity-

capillary waves propagating downstream are clearly visible in FIG. 5.28c. The rela-

tionship between the scales of the wavelet and the frequency appears to be correct,

since both dispersion relations approximate well the results.

The same pdf’s pk(kx, ω) and pk(ky, ω) for condition 2 and for condition 5 are

shown in FIG. 5.29 and 5.30, respectively. Like in the case for condition 1, the

pdf of the streamwise wavenumber pk(kx, ω) (FIG. 5.29c and 5.30c) shows the same

behaviour of the frequency-wavenumber spectrum Sx(k̂x, ω̂) (FIG. 5.29a and 5.30a),

although its resolution is smaller. The patterns of radial waves which correspond to

the ridge between k̂x = −1, ω̂ = 0, and k̂x = 1, ω̂ = 2 have been captured well by the

wavelet spectrum, and the transition to the dispersive waves propagating upstream
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Figure 5.27: Contours of the amplitude of the wavelet transform ZW (t, ω̂) of ζ
measured at probe 1(x). (a) Condition 1, (b) condition 2, (c) condition 5, and (d)
condition 10.
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Figure 5.28: (a) The contour plot of the normalised frequency-wavenumber spec-
trum, S̄x(kxU

2
0/g, ωU0/g), for condition 1. (b) Normalised transverse frequency

wavenumber-spectrum S̄y(kxU
2
0/g, ωU0/g). (c) The contour plot of the pdf of the

streamwise wavenumber kx, pk(kxU
2
0/g, ωU0/g) determined by the wavelet spectral

method. (d) The histograms of the tranverse wavenumber ky, pk(kyU
2
0/g, ωU0/g).

(dashed) Irrotational dispersion relation, equation (3.20). (solid) Dispersion rela-
tion with the 1/3 velocity profile, θ = 0, equation (3.26). (dotted) Non-dispersive
relation, equation (3.21).

is also clearly recognisable at k̂x = 1 and ω̂ = 2 in terms of the change of slope of the

dispersion relation. The pdf of the transverse wavenumber pk(ky, ω) for condition 2

(FIG. 5.29d) shows the two symmetrical ridges which had been associated with the

pattern of radial waves with the wavenumber modulus k0. The same pattern cannot

be distinguished from FIG. 5.30d for condition 5. In this condition the probes 1(y)

and 2(y) were separated by a distance equal to half the wavelength of the standing

waves, therefore their measurements had a little correlation. This demonstrates the

importance of the choice of the probes separation for the accuracy of the wavelet

spectral method.

The measurements of the two orthogonal wavenumbers, kx(t, ω) and ky(t, ω),

were also used in order to estimate the direction of propagation of the waves based

on the procedure described in sub-section 5.1.6. FIG. 5.31a shows an example of
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Figure 5.29: (a) The contour plot of the normalised frequency-wavenumber spec-
trum, S̄x(k̂x, ω̂), for condition 2. (b) Normalised transverse frequency wavenumber-
spectrum S̄y(k̂y, ω̂). (c) The contour plot of the pdf of the streamwise wavenumber

kx, pk(k̂x, ω̂) determined by the wavelet spectral method. (d) The histograms of
the tranverse wavenumber ky, pk(k̂x, ω̂). (dashed) Irrotational dispersion relation,
equation (3.20). (solid) Dispersion relation with the 1/3 velocity profile, θ = 0,
equation (3.26). (dotted) Non-dispersive relation, equation (3.21). (dashed-dotted)
Dispersion relation with the 1/3 velocity profile, with constant k = k0, equation
(3.45).

the evolution in time of the angle θ(t, ω) and of the weighted amplitude Z̄W (t, ω)

measured in condition 2. The weighted amplitude Z̄W (t, ω) corresponds to the factor

on the right hand side of equation (5.38), i.e.,

Z̄W (t, ω) =

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)∑

µ

√
ZW,2(x)

(t, ω)Z2
W,1(x)

(t, ω)ZW,3(y)
(t, ω)

. (5.46)

The angle θ(t, ω) in FIG. 5.31a varies smoothly in time until t = 5.4 s, then it

changes rapidly. At the same instant t = 5.4 s the normalised amplitude of the

wavelet transform has a minimum. The change of both the phase and the ampli-

tude is associated with the passage of two distinct groups of waves. It shows that
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Figure 5.30: (a) The contour plot of the normalised frequency-wavenumber spec-
trum, S̄x(k̂x, ω̂), for condition 5. (b) Normalised transverse frequency wavenumber-
spectrum S̄y(k̂y, ω̂). (c) The contour plot of the pdf of the streamwise wavenumber

kx, pk(k̂x, ω̂) determined by the wavelet spectral method. (d) The histograms of
the tranverse wavenumber ky, pk(k̂x, ω̂). (dashed) Irrotational dispersion relation,
equation (3.20). (solid) Dispersion relation with the 1/3 velocity profile, θ = 0,
equation (3.26). (dotted) Non-dispersive relation, equation (3.21). (dashed-dotted)
Dispersion relation with the 1/3 velocity profile, with constant k = k0, equation
(3.45).

each group can have a different direction of propagation of the waves that compose

it. The behaviour shown in FIG. 5.31a is representative of the behaviour at all fre-

quencies. This is demonstrated in FIG. 5.31b, which shows the average normalised

correlation in time of the detrended weighted amplitude Z̄W (t, ω) with the absolute

time-gradient of the angle θ(t, ω), calculated at each frequency in condition 2. The

correlation has a negative peak at τ = 0, which shows that the minima of the am-

plitude correlate instantaneously with the gradient of θ(t, ω), i.e., that the largest

changes of the angle occur at the minima of the amplitude.

The pdf of the angle of propagation θ is shown in FIG. 5.32 for the conditions

1, 2, 5, and 10. These are compared with the relation Ω(k0, θ) obtained from equa-

tion (3.45). This relation represents the expected angular distribution of the radial
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Figure 5.31: (a) An example of the evolution in time of (red) the angle θ(t, ω)
and of (black dashed) the normalised wavelet amplitude Z̄W (t, ω) at the frequency
ω = k0U0 measured in condition 2. (b) Average time-correlation of the normalised
wavelet amplitude Z̄W (t, ω) with the absolute gradient of the angle θ(t, ω) measured
in the same condition.

Figure 5.32: The pdf of the angle of propagation θ, pθ(θ, ω) for (a) condition 1,
(b) condition 2, (c) condition 5, and (d) condition 10. (dashed-dotted) Angular
distribution of the radial pattern, ω(k0, θ), according to equation (3.45).
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Figure 5.33: The pdf of the angle of propagation θ, pθ(θ, ω) for condition 4. (dashed-
dotted) Angular distribution of the radial pattern, ω(k0, θ), according to equation
(3.45).

pattern of waves with the modulus of the wavenumber equal to k0. FIG. 5.32 shows

that the equation (3.45) represents well the measured histograms of the angle of

propagation in conditions 2, 5, and 10. The best resolution is found in condition 2

(FIG. 5.32b), where the separation between the two probes 1(y) and 3(y) was close

to half the wavelength 2π/k0, therefore to the distance between the two peaks of

the standing waves envelope. FIG. 5.32d has a very low resolution especially at the

lower frequency. The pdf for condition 5 shown in FIG. 5.32c shows the expected

behaviour of pθ(θ, ω), but this is much less clear than FIG. 5.32b. These observa-

tions can be explained based on the position of the wave probes relative to the nodes

of the transverse standing wave.

The pdf pθ(θ, ω) in condition 1 (see FIG. 5.32a) shows a complex pattern of waves,

which are apparently three-dimensional. The waves with the frequency ω̂ < 0.5

were believed to represent mainly non-dispersive waves propagating downstream

and parallel to the mean surface velocity. The waves with the frequency ω̂ > 0.5

were believed to represent dispersive waves propagating downstream, still parallel

to the mean surface velocity. FIG. 5.32a suggests that both types of waves have

a transverse component. The waves with the frequency ω̂ ≈ 0.3 appear to travel

against the flow with the angle θ = π, in accordance with the observations in the

previous sections.

As a final result, FIG. 5.33 shows the pdf of the angle θ for condition 4. This

condition is shown here because it was observed from the frequency-wavenumber

spectra of FIG. 5.17 that the dispersion relation based on the radial pattern with

the wavenumber modulus k0 did not represent well the measured data. FIG. 5.33

confirms this observation. More specifically, it shows that the measured pattern
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has the larger frequency than predicted by equation equation (3.45) at the angle

θ ≈ ±π, and the lower frequency at the angles |θ| ≤ 2. In terms of the wavelength

of the radial pattern, this appears to be approximately 0.7 × 2π/k0, hence smaller

than the expected wavelength 2π/k0.

5.4.3 Discussion

The main result of the analysis presented in this section has been to demonstrate that

the dispersion relation of the waves on the free surface of a shallow turbulent flow can

be determined from the measurement of the free surface elevation at three locations,

based on the wavelet spectral method [Donelan et al., 1996]. The pdf obtained with

the wavelet transform have less resolution than the frequency-wavenumber spectra

determined from the arrays of wave probes. The resolution of the pdf of the angle

of propagation depends greatly on the distance between the two probes along y

relative to the dimension of the standing waves. The relative lack of clarity of FIG.

5.32c for condition 5 compared to FIG. 5.32b for condition 2 can be explained by

noticing that the distance between the probes 1(y) and 3(y) for condition 5 was close

to 0.25×2π/k0, which corresponds to the node of the standing-wave envelope based

on the discussion in sub-section 5.3.3. The absence of the pattern of radial waves in

the histograms of the transverse spectrum for condition 5 (FIG. 5.30d) can also be

explained by the same phenomenon.

In all the conditions represented in FIG. 5.32 the measured pdf show that the

angle θ does not approach zero when the frequency increases above ω̂ = 2. This

is in contrast with the statements in section 5.3, where it was inferred from the

frequency wavenumber spectra in the two orthogonal directions that the waves at

the higher frequency were two-dimensional and propagated parallel to the mean

surface velocity. This apparent contradiction can be resolved once it is noticed

that the wavelet spectral method works under the assumption that all probes are

within the same group, or envelope, at each wavelet scale. The apparent three-

dimensionality of the shorter waves can be explained if it is assumed that the short

waves that propagate downstream are also relatively short in the direction parallel

to the wave crests. The consequence of this assumption would be that the groups

are only detected correctly by the pair of probes 1(y) and 3(y) when they travel at

an angle with respect to the x-direction, which explains the bias in favour of the

angles θ 6= 0. In condition 2, for example, the transverse correlation function of

the envelope at the frequency 2.5k0U0, Wy,Z(ry, 0), decays to zero at the separation

ry ≈ 0.3× 2π/k0. In this condition and at this frequency the pair of probes 1(y) and

3(y) is not adequate for the application of the wavelet spectral method.
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In spite of the limitations of the analysis technique, the wavelet spectral method

has confirmed the validity of the model of the radial pattern of waves which had been

inferred in the previous section from the measurements in two orthogonal directions.

The applicability of the method depends greatly on the design of the experimental

apparatus. Nonetheless, the technique has large potential for application since it

removes the requirement to instrument a large measurement area, which may be

impractical in some situations. It also opens the possibility for the investigation of

the dynamics of the free surface locally, which in turn may be helpful for the local

characterisation of the flow conditions. In fact, the method allows the instantaneous

calculation of the wavenumber, and of the angle of propagation. FIG. 5.31 shows

that these quantities are not constant at each frequency, and that their variation

occurs more rapidly near the minima of the wavelet amplitude. This suggests that

the waves are coherent within one group, but independent among different groups,

which is in agreement with a model of wave groups [Donelan et al., 1996]. As

anticipated in the introduction to this section, this fact may be of large importance

for the localisation of the phenomena that generate the free surface fluctuations.

5.5 Summary

This chapter has shown the results of an experimental investigation of the dynamic

properties of the free surface elevation of a shallow turbulent flow in a flume with

a homogeneously rough bed. The measurements have been analysed with a variety

of techniques of increasing complexity, in order to identify the different aspects

of the free surface which would allow the remote characterisation of the hydraulic

properties of the flow. At all stages it was possible to identify a direct link between

the statistical, spatial, and temporal characteristics of the free surface and a small set

of hydraulic parameters, mainly the mean surface velocity U0 and the characteristic

wavenumber of the stationary waves, k0. The latter can be determined from the

values of U0 and H, and from the knowledge of the streamwise average velocity

profile within the flow, although the change in the streamwise velocity profile was

small within the range of flow conditions studied here. The observed links apply to

most of the tested conditions, and apparently relate to the fact that the interaction

with the rough bed was the dominant phenomenon that caused the generation of

the free surface fluctuations in these conditions.

The first section of this chapter has shown that the statistics of the free surface

measured at one single point in space are generally in good agreement with a linear

model based on the trigonometric expansion of the surface elevation, where all co-

efficients of the expansion are mutually independent and the phase of each term is
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uniformly distributed. Some relatively small deviations from this model have been

observed, and these were represented well by a higher-order weakly nonlinear model.

These small deviations can have a significant effect on the scattered acoustic field.

Currently there are no simple nonlinear surface models that apply to shallow tur-

bulent flows over a homogeneously rough bed. A linear model is used in the next

chapter in order to study the scattering of the acoustic pressure field by the dynamic

surface. The effect of nonlinearities will be inferred based on the deviation between

the measurements and this linear model. The results of the statistical analysis also

suggested that the dynamics of the free surface are the result of a combination of

many independent processes, randomly distributed in time and/or in space. This

suggests the marginal role of isolated coherent events such as the interaction with

coherent turbulent structures in the flow, as these would have resulted in a stronger

deviation from the Gaussian statistics and a larger coherence of the surface elevation

itself.

The measurements with linear arrays of wave probes along two orthogonal di-

rections allowed the estimation of the frequency-wavenumber spectra, and of the

spatial correlation functions. These measurements evidenced clearly the existence

of gravity-capillary waves and of non-dispersive waves with a preferred spatial direc-

tionality. The dominant role of the interaction with the rough bed was also revealed,

as it caused the generation of the dominant patterns of stationary waves. Additional

patterns on the free surface which could be explained by the interaction with tur-

bulence were also observed, although the results could not be conclusive due to the

lack of information regarding the dynamics of turbulence within the flow. It should

be noted here that the fundamental mechanism proposed by Teixeira and Belcher

[2006] does not prescribe the interaction of the free surface with individual coherent

structures, but rather the resonant matching of the surface waves with turbulence

with the same spectrum, similarly to Miles [1957]. In fact, the model of Teixeira and

Belcher [2006] was essentially linear, and also the non-resonant forcing observed by

these authors was determined from the same linear approach. These mechanisms are

not in contrast with the quasi-Gaussian statistics of the surface elevation observed

in this chapter.

The models of the dispersion relation presented in section 3.1 approximated well

the measured frequency-wavenumber spectra in most of the tested flow conditions.

Still, their interpretation is not obvious. The details of the mechanism that produced

the patterns of radial waves with the wavenumber k0 is not explained, neither is

the apparent directionality of the shorter waves that propagate downstream. The

waves generated by the interaction with a single disturbance on the bed have been

discussed theoretically in section 3.1.5. The resulting patterns on the free surface are
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three dimensional and dynamic [Harband, 1976], and coherent at least away from

the disturbance. When the disturbance is distributed uniformly, there are no known

analytical solutions which can justify the measurements described in this chapter.

It is postulated that the observed patterns may be generated by the interaction

among waves propagating at different angles, as demonstrated by Shrira [1993] in

conditions that do not strictly apply to the measurements reported here. Further

investigations are needed in order to demonstrate the existence of these interactions.

In summary, the scenario that emerges from the experimental results described

in this chapter is as follows. The main mechanism which produces the patterns on

the free surface of a shallow turbulent flow with rough boundary is the interaction

with the boundary. This mechanism generates gravity-capillary waves with a de-

terministic dispersion relation and three dimensional distribution, but which can be

described approximately by the linear superposition of infinitesimal sinusoidal waves

with random phase. When the mean surface velocity is larger than the minimum

phase velocity of gravity capillary waves, the largest waves are stationary. The three

dimensional pattern consists of waves with the wavenumber of the stationary waves

which propagate in all directions. Shorter waves propagate parallel to the direction

of the flow, in both directions. When the mean surface velocity is smaller than the

minimum phase velocity of gravity capillary waves, there are no stationary waves

and all waves are two-dimensional. There are also non-dispersive waves that prop-

agate at the mean surface velocity. The variations of the amplitude of the surface

fluctuations is explained by the random linear interaction of all types of waves. The

waves that form the radial pattern originate groups that apparently fluctuate ver-

tically as they are advected at the mean surface velocity. The waves in each group

are coherent, while separate groups appear to be mutually incoherent. Their shape

in the transverse direction is dominated by pairs of standing waves.
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Chapter 6

Analysis of the Doppler spectra of

the acoustic field scattered by the

free surface

The purpose of this chapter was to investigate the relation between the hydraulic

conditions and the Doppler spectrum of the acoustic field scattered by the free

surface of shallow turbulent flows. In section 3.2 it was shown that the relation

between the statistics of the free surface and the properties of the scattered acoustic

pressure field are not trivial. The measurements described in chapter 5 identified

a set of parameters and relations which characterise the topology and dynamics of

the free surface in the set of conditions listed in Table 4.2. These parameters are

sufficient to inform a simplified linear model of the free surface. This model is used

in order to interpret the measurements of the acoustic Doppler spectra.

The methodology followed in this chapter was as follows. The Doppler spectrum

of the scattered acoustic pressure field was measured in the experimental flume de-

scribed in section 4.1 with the acoustic setups described in section 4.4. The tests

were performed in all the experimental conditions reported in Table 4.2. The param-

eters of the free surface measured in chapter 5 were implemented in a linear surface

model in order to generate random realisations of the dynamic roughness. For each

of these realisations, the corresponding scattered acoustic field was simulated numer-

ically with two models based on the Kirchhoff approximation. The Doppler spectra

of the simulated scattered acoustic pressure field were finally compared with the

experimental measurements. The comparison had two objectives. The first objec-

tive was the validation of the simplified model of the surface dynamics. The second

objective was the illustration of the effects of the surface parameters on the acoustic

Doppler spectra. The Doppler spectra were measured both in the backscattering
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(monostatic) configuration and in the forward scattering (bistatic) configuration.

The first configuration corresponds to the measurement with microphone 1, while

the second configuration corresponds to the measurement with microphone 2 de-

scribed in subsection 4.4.2. The results are reported in subsections 6.2.1 and 6.2.2,

respectively.

The experimental results in section 5.2.2 have shown that the statistics of the

free surface elevation were quasi-Gaussian in all the tested flow conditions reported

in Table 4.2. This justified in principle the representation of the surface in terms

of a linear model with randomly distributed phase in those conditions where the

observed nonlinearity was statistically not significant (conditions 1, 2, 4, 5, 7, 9,

11, and 13). In the remaining conditions, a weak but statistically significant non-

linearity of the statistics of the free surface was observed. It was suggested that

these weak nonlinearity may have been caused by weak interactions among waves

[Creamer et al., 1989, Janssen, 2003, 2009], as described in subsection 3.1.6. These

interactions, however weak, can cause large variations of the Doppler spectrum of

the scattered acoustic field (see subsection 3.2.2). Thus, a nonlinear model of the

free surface dynamics would represent the scattering by the surface more accurately.

None of the existing nonlinear models seem to apply to the free surface of shal-

low turbulent flows over a homogeneous rough bed (see the discussion in subsection

2.1.5). Therefore, a linear model was used instead. Eventual deviations between the

predictions based on this model and the measurement are discussed, with reference

to the analysis presented in subsection 3.2.2.

This chapter is organised as follows: Section 6.1 introduces the numerical models

of the dynamic free surface and of the acoustic Doppler spectrum. Subsection 6.2.1

shows the analysis of the Doppler spectra measured in the backscattering configu-

ration, and their comparison with the predictions by two numerical models of the

same spectra. Subsection 6.2.2 presents the same type of analysis applied to the

spectra measured in the forward scattering configuration. Section 6.3 summarises

the main results of the chapter, and presents the final conclusions.

6.1 Numerical models of the acoustic scattering

6.1.1 Surface model

The linear model of the free surface adopted here represents a random realisation

of the surface elevation ζ in terms of a double Fourier series, where the phase Φl,m

of each term of the series is a random variable with uniform distribution. This type
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of model was introduced in subsection 3.1.1. The coefficients of the Fourier series

that constitutes the linear model are proportional to amplitude spectrum at the

wavenumber kl and frequency ωm, A(k, ω), multiplied by a random variable ξl,m.

The series representation is

ζ(x, y, t) =
∑
l

∑
m

ξl,mA (kl, ωm)<
{
ei[kl·ρ−ωmt+Φl,m]

}
, (6.1)

where ρ =
√
x2 + y2. Equation (6.1) is the discrete version of equation (3.1),

introduced in Chapter 3. In order to obtain a relevant representation of the free

surface, the measured frequency-wavenumber spectra could be introduced directly

into the formulation of equation (6.1), based on equation (3.5). In practice, only the

spectra in two orthogonal directions, S(k, ω, 0) and S(k, ω, π/2), could be measured

as reported in subsection 5.3.2. The short waves with the wavelength smaller than

10 mm which will be shown to have the largest impact on the acoustic scattering

could not be characterised due to the geometry of the wave probes (subsection

4.3). The noise introduced by the measurement with non-equidistant arrays of

wave probes in section 5.3.2 impeded the accurate calculation of the spatial spectra

S(k, θ) even in the two directions x and y. Therefore, it was decided to represent

the frequency-wavenumber spectrum in terms of a simplified model of the spatial

spectrum S(k, θ), which is related to the frequency-wavenumber spectrum by (see

equation (3.9))

S(k, ω) = S(k)δ (ω − Ω(k)) = S(k, θ)δ (ω − Ω(k, θ)) . (6.2)

The amplitude of the spectrum was modelled assuming a power-function dependence

on the wavenumber k. This shape of the spectrum is widely used in a variety of ap-

plications, as discussed in subsection 2.1.6. It allows the simple computation of the

average spatial statistics of the rough surface, which are used in order to predict the

range of validity of the acoustic model in section 6.1.2. It can also be easily extrapo-

lated to the shorter scales which could not be resolved by the measurements. Due to

the simplified shape of the spectrum, some discrepancies between the measurements

of the scattered acoustic field and the numerical models are expected. On the other

hand, the adoption of a spectrum with a simple mathematical representation has

the advantage of making the results presented here of more general validity.

The model of the dispersion relation Ω(k) in equation (6.2) was based on the mea-

surements of the frequency wavenumber spectra of the surface elevation discussed

in section 5.3.2. It represented all three types of waves that had been identified

from the frequency wavenumber spectra: gravity-capillary waves propagating up-

stream, gravity-capillary waves propagating downstream, and non-dispersive waves
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moving at the velocity close to the mean surface velocity. The latter were only

observed in condition 1 where the mean surface velocity was smaller than the mini-

mum phase velocity of gravity-capillary waves, but it was suggested that they may

still be present in the remaining flow conditions. Therefore they have been modelled

in all flow conditions. A radial pattern of waves with the constant modulus of the

wavenumber equal to k0 was also observed in all conditions except condition 1 in

section 5.3.2. In the model, the variation of the power spectrum with the angle of

orientation θ was represented by a directional distribution Γ(k, θ), i.e.,

S(k, θ) = S(k)Γ(k, θ), (6.3)

S(k)dk = |A(k)dk|2 . (6.4)

Based on equation (6.1), and with the dispersion relations measured in section 5.3,

a single realisation of the surface elevation ζ was computed as

ζ(x, y, t) =
∑
n

∑
l

A(kl)
√

Γ(kl, θn)

<{ξ+
l,ne

i[kl cos (θn)x+kl sin (θn)y−Ω+(kl,θn)t+Φ+
l,n]

+ξ−l,ne
i[kl cos (θn)x+kl sin (θn)y−Ω−(kl,θn)t+Φ−l,n]

+ ξUl,ne
i[kl cos (θn)x+kl sin (θn)y−ΩU (kl,θn)t+ΦUl,n]

}
,

(6.5)

where ξ+, ξ−, and ξU are random variables with normal distribution and mean zero,

and Φ+, Φ−, and ΦU are random variables with uniform distribution in the interval

between 0 and 2π. Equation (6.5) is a generalisation of equation (3.53), therefore

ζ(x, y, t) is a random variable with Gaussian distribution. The superscripts +, −,

and U represent the contributions from the dispersive downstream waves, from the

dispersive upstream waves, and from the non-dispersive waves, respectively.

In chapter 5 it was shown that the dispersion relation of the free surface was

represented well in the measured range of flow conditions by a model where the

time averaged streamwise velocity profile follows a power-law of the depth with the

exponent 1/3. This dispersion relation must be found numerically with an iterative

procedure. In the same chapter it was shown that the simpler irrotational model also

provides a relatively good representation of the dynamics of the free surface. The

difference between the dispersion relations predicted by these two models was found

to be very small, especially for the shorter Bragg waves which are more important

for the backscattered acoustic field. Therefore, the three dispersion relationships

in equation (6.5) were defined based on the irrotational linearised surface equations

described in subsection 3.1.2. Ω+(k, θ) and Ω−(k, θ) represented the dispersive waves

propagating downstream and upstream, respectively, and were defined by equation
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(3.20) with the plus and minus sign, respectively. ΩU(k, θ) represented the non-

dispersive waves that propagate with the flow mean surface velocity, and were defined

by equation (3.21). Each of these three dispersion relations corresponds to one of

the patterns observed in subsection 5.3.2.

The wavenumber spectrum had the simplified form

S(k) =

S0

(
k

k0

)−α
, if k0 ≤ k ≤ k1

0, otherwise

, (6.6)

where the value of the normalisation factor S0 was such that

1

2π

∫ π/2

−π/2

∫ ∞
0

Γ(k, θ)S(k)kdkdθ = σ2. (6.7)

In the flow condition 1 where k0 could not be defined based on equation (3.41), the

characteristic wavenumber

k0 =
U2

0

2g
(6.8)

was used instead, and the spectrum had the alternative form

S(k) =


S0, if k < k0

S0

(
k

k0

)−α
, if k0 ≤ k ≤ k1

0, if k ≥ k1

. (6.9)

This allowed taking into account the presence of very long waves in condition 1

and ensured that the knee of the frequency spectrum occurred at the frequency

ω = U0/g in accordance with the measurements in FIG. 5.7a, as it will be shown.

The wavenumber k1 = 2π/l1 represented the smallest scales which were resolved by

the model, in all conditions.

In order to further simplify the dependence of the spectrum on the direction of

propagation, the function Γ(k, θ) was factorised as

Γ(k, θ) = Γθ(θ)Γk(k). (6.10)

It was decided to employ two types of standard angular distributions which are

commonly applied to the study of oceanic waves [Hauser et al., 2005, p. 45], the

so-called Poisson distribution

Γθ(θ) =
1

2π

1− b2
θ

1− 2bθ cos (θ) + b2
θ

, 0 < bθ < 1, (6.11)
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and the sech2 distribution

Γθ(θ) =
1

tanh (bθπ)

bθ

2 cosh2 (bθθ)
, bθ > 0. (6.12)

bθ is a constant in both equations (6.11) and (6.12). The Poisson distribution is

often used because of its simple Fourier representation, which makes it easy to

characterise it from a limited number of measurements. The sech2 distribution was

applied by Donelan et al. [1985] because of its link to the shape of the solitary wave

solution with envelope sech2, and therefore to a model based on wave packets (see

subsection 3.1.9). The geometry of the wave probes could make the sensitivity of

the measurements dependent on the orientation of the waves, which made the direct

measurements of the angular spectrum Γθ(θ) of limited reliability. The sensitivity is

expected to be the same for the waves that propagated parallel to the mean flow but

in the two opposite directions, i.e., for the downstream waves with θ = 0 and for the

upstream waves with θ = π. Therefore the amplitude of the frequency-wavenumber

spectra for the two-dimensional waves propagating in these two directions were used

in order to define the parameter bθ in both equations (6.11) and (6.12), so that they

fitted the experimental observations. From the frequency-wavenumber spectra for

condition 1 in FIG. 5.18a one can see that the non-dispersive two-dimensional waves

were approximately 2 to 3 times larger than the dispersive waves that propagated

downstream in this condition. The same spectra for conditions 7 and 13 show that

the spectrum of the waves with θ = π, kx = −k0, and ω = 0 was approximately one

order of magnitude (10 times) larger than the spectrum of the waves with θ = 0,

kx = k0, and ω = 2k0U0. Therefore the parameter bθ for both the Poisson and the

sech2 distributions was selected in such a way that

Γθ(π) = 10Γθ(0), (6.13)

i.e., bθ = 0.5195 for the Poisson distribution and bθ = 0.5788 for the sech2 distribu-

tion. The distributions were further normalised such that

Γθ(π/2) = 1. (6.14)

As a result, Γθ(θ) was represented by the equations

Γθ(θ) =
1 + b2

θ

1− 2bθ cos θ + b2
θ

, (6.15a)

Γθ(θ) =
cosh2 (bθπ/2)

cosh2 (bθθ)
, (6.15b)

for the Poisson and for the sech2 distribution, respectively.
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In all conditions except condition 1, the wavenumber-dependent factor of the

distribution, Γk(k) was defined as

Γk(k) =


0, if k < k0

1, if k = k0

δ(θ − θ0), if k > k0,

(6.16)

where θ0 = 0 for the downstream waves and θ0 = π for the upstream waves. This

produced a radial pattern of waves with the wavenumber modulus k0 and the am-

plitude governed by Γθ(θ), and an additional pattern of waves with wavenumber

modulus larger than k0 propagating only along the x-direction, in accordance with

the measurements in subsection 5.3.2. In condition 1 the radial pattern of waves

was not observed in the measurements, therefore it was assumed that

Γk(k) = δ(θ − θ0), (6.17)

for both types of waves.

It was always assumed that the non-dispersive waves with the frequency ωU(k, θ)

propagate only parallel to the mean flow direction, in accordance with the measure-

ments in subsection 5.3.2. For these waves the angular distribution was

Γ(k, θ) = Γθ(π/2)δ(θ), (6.18)

where the factor Γθ(π/2) only ensured that the amplitude of these waves was inter-

mediate between the upstream and the downstream propagating dispersive waves,

as observed experimentally.

One additional test was performed with the distribution

Γ(k, θ) = Γθ(θ), (6.19)

which was independent of the wavenumber. This produced a pattern of waves of all

wavenumbers propagating in all directions.

FIG. 6.1a shows the separate contributions to the spectrum S(k)Γ(k, θ) as cal-

culated from equations (6.15a) and (6.16) for the three types of waves, as a function

of the wavenumber in the streamwise direction, kx. FIG. 6.1b shows the average

across 50 realisations of the time-averaged spatial spectrum of the modelled dynamic

surface, obtained for condition 7 with α = 7, k1 = 2π/0.003 rad m−1, and with Γθ(θ)

given by the Poisson distribution. The spatial spectrum in FIG. 6.1b contains the

contribution from the three types of waves, which combine to produce an almost
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Figure 6.1: (a) The modelled spectrum S(kx)Γ(kx) for (dashed-dotted) upstream
dispersive waves, (solid) non-dispersive waves, and (dashed) downstream dispersive
waves, as a function of the streamwise wavenumber kx, for all conditions except
condition 1. (b) (red) The average of the time-averaged modelled spatial spectrum
computed from 50 independent realisations of the dynamic free surface in condition
7, with α = 7, k1 = 2π/0.003 rad m−1, and with Γθ(θ) given by the Poisson dis-
tribution, (dashed black) equation (6.20). (c-d) (red) The average of the modelled
space-averaged frequency spectra computed from 50 independent realisations of the
free surface in conditions (c) 1 and (d) 7, with k1 = 2π/0.003 rad m−1, with the
Poisson distribution, and with (solid) α = 5, (dashed) α = 7, and (dashed-dotted)
α = 9. (black) The average frequency spectra measured with wave probes, in the
same conditions.
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constant plateaux at the wavenumber kx < k0. This form of the spatial spectrum

at the lower wavenumber suggests an approximate definition of the two-dimensional

spatial spectrum as

S(kx) =


S0, if kx < k0

S0

(
kx
k0

)−α
, if k0 ≤ kx ≤ k1

0, if kx > k1

. (6.20)

This is also shown in FIG. 6.1b. The corresponding static two-dimensional surface

had the expansion

ζ(x) = <

{∑
l

ξlA(kx,l)e
i[kx,lx+Φl]

}
. (6.21)

FIG. 6.1c and d show the average across 50 realisations of the space-averaged

frequency spectra of the modelled surface, for condition 1 and 7, respectively, again

with the Poisson distribution and with k1 = 2π/0.003 rad m−1. Here α was varied

between 5 and 7. The spectra are compared with the measured frequency spectra, in

the same conditions. In spite of the simplifications of the model, the frequency spec-

trum of the modelled surface retains some of the fundamental characteristics of the

measured spectra. The spectra decay slowly at the frequency below ωU0/g and 2ω̂

in condition 1 and 7, respectively. The rate of decay in this frequency range is gov-

erned by the angular distribution in the model, and it is close to the measurements.

At the higher frequency the decay rate depends on the choice of the parameter α,

and the model represents well the measurements when α = 5. The model shows the

same peak of the frequency spectrum for condition 1 at the frequency ωU0/g ≈ 0.3,

which was related to the zero of the group velocity of the waves which propagate

upstream, although the peak predicted by the model is largely overestimated. This

overestimation has relatively small effect on the computation of the acoustic Doppler

spectra, as it is shown in section 6.2.

6.1.2 Estimation of the Kirchhoff parameter for a surface

with a power-function spectrum

All the numerical acoustic models and the reconstruction techniques described in

this chapter rely on the validity of the Kirchhoff approximation. Here a simple

method to estimate the conditions where the Kirchhoff approximation applies for a

random linear surface with the power spectrum that follows a power-function of the

wavenumber is derived. The representation of the free surface as a trigonometric
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series with the power-function shape of the spectrum allows the direct estimation of

the Kirchhoff parameter κRc sin3 ψ from the parameters of the spectrum. Only the

two-dimensional case is considered here, with ζ = ζ(x). Based on the spectrum of

equation (6.20) and the condition of equation (6.7) one can find

S0 =
2π(α− 1)σ2

k0

[
α−

(
k1

k0

)1−α
] . (6.22)

The average curvature radius for the corresponding two-dimensional surface ζ(x)

can be defined as [e.g. Thorsos, 1988]

Rc =

[
1 +

〈(
dζ

dx

)2
〉]3/2〈(

d2ζ

dx2

)2
〉−1/2

. (6.23)

Based on the trigonometric series of equation (6.21), the surface gradient and cur-

vature are defined as

dζ

dx
= <

{
i
∑
l

ξlkx,lA(kx,l)e
i[kx,lx+Φl]

}
(6.24)

and
d2ζ

dx2
= −<

{∑
l

ξlk
2
x,lA(kx,l)e

i[kx,lx+Φl]

}
, (6.25)

respectively. This allows the definition of their squared averages as〈(
dζ

dx

)2
〉

=
1

2π

∫ k0

0

S0k
2
xdk +

1

2π

∫ k1

k0

S0k
α
0 k

2−α
x dk, (6.26a)〈(

d2ζ

dx2

)2
〉

=
1

2π

∫ k0

0

S0k
4
xdk +

1

2π

∫ k1

k0

S0k
α
0 k

4−α
x dk, (6.26b)

where the first terms on the right hand side of equations (6.26a) and (6.26b) are

called the second and fourth moments of the wavenumber spectrum, in analogy with

the definition of spectral moments in equation (5.14).

Equation (6.26a) yields〈(
dζ

dx

)2
〉

=
S0k

3
0

6π(α− 3)

[
α− 3

(
k1

k0

)3−α
]
, (6.27)
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when α > 3. Equation (6.26b) has the solution

〈(
dζ

dx

)2
〉

=


S0k

5
0

10π

[
1 + 5 ln

(
k1

k0

)]
, if α = 5

S0k
5
0

10π(α− 5)

[
α− 5

(
k1

k0

)5−α
]
, if α > 5

. (6.28)

When α > 5 the curvature radius converges to a finite value when k1/k0 →∞,

lim
k1
k0
→∞

k0Rc =

√
5

27

[
3(α− 3)

σ2k2
0(α− 1)

+ 1

]3/2
(α− 1)(α− 5)1/2

(α− 3)3/2
σ2k2

0. (6.29)

Conversely, if α ≤ 5 the curvature radius tends to 0 when k1/k0 →∞. This makes

the Kirchhoff condition less likely to be satisfied due to the impact of the shorter

waves.

This large impact of the very short (and small) waves on the validity of the

acoustic model suggests limiting the spectrum slope to the value α > 5, or limit-

ing the value of the ratio k1/k0. In the simulations reported here, three values of

the slope α were investigated, namely α = 5, α = 7, and α = 9. While in the

former two cases the values of σ and k0 were such that the Kirchhoff condition

was satisfied for infinitely large values of k1/k0, in the simulations with α = 5 it

was necessary to assume that the spectrum was band-limited with the wavenumber

k1 ≤ 2π/0.003 rad m−1. This value was larger than the wavenumber of the first

order Bragg scales, but small enough to ensure that the Kirchhoff condition was

satisfied based on equation (6.23) and (6.28). In practice, it will be shown that the

Doppler spectra of the acoustic field converged rapidly with all values of α when k1

was increased above 2π/0.005 rad m−1 in the tests considered here. Therefore, the

spectrum was limited to k1 = 2π/0.003 rad m−1 even when α > 5. As a consequence,

k1/k0 was between 14 and 67.

FIG. 6.2a shows the predictions of the characteristic curvature radius Rc based

on equations (6.23), (6.27), (6.28), and (6.29), in the range of the parameter k2
0σ

2

which was relevant for the simulations reported here, and for 5 ≤ α ≤ 9. This is

compared with the direct estimations of Rc from the various dynamic simulations,

where the mean squared average slope and curvature were computed directly from

the free surface realisations based on the model of equation (6.5). In all cases the

measurements fit the predictions well. FIG. 6.2b shows the values of the parameter

2κRc sin3 ψs which has been computed directly for each simulation, with ψs = π/6.

In all conditions the Kirchhoff parameter was larger than 10, which justified the
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Figure 6.2: (a) The characteristic curvature radius calculated from (dashed-dotted)
equation (6.29) with α = 9, (solid) equation (6.29) with α = 7, and (dashed) equa-
tions (6.23), (6.27), (6.28), and (6.29) with α = 5 and k1/k0 = 100. (symbols)
Direct calculations based on equation (6.23) from the random realisations of equa-
tions (6.5) and (6.6) with (squares) α = 9, (triangles) α = 7, and (circles) α = 5.
(b) The Kirchhoff parameter calculated from the realisations of the acoustic model.

use of the Kirchhoff approximation. The minimum of the Kirchhoff parameter was

equal to 21.6 and it was found in condition 5 when α = 5.

6.1.3 Details of the Doppler model

The parameters of the acoustic models were chosen in order to simulate the same

experimental conditions described in section 4.4. The locations of the source and

receivers, and their directivity patterns, were the measured ones described in sub-

sections 4.4.2. The random realisations of the rough surface were generated with the

model described by equation (6.5). The surface parameters σ and k0 were the ones

that had been measured with the arrays of conductance wave probes, and estimated

from equation (3.44), respectively. All the simulations were performed with the time

step ∆t = 1 ms, for the duration of one second. The spatial grid had the size of

1 m in the streamwise direction and 0.5 m in the transverse direction, and it was

centred about the projection of the main directivity lobe of the modelled acoustic

source. The grid separation, ∆x, was the smallest between λa/10 and l1/10, where

λa was the acoustic wavelength and l1 = 2π/k1 was the minimum resolved scale of

the surface. FIG. 6.3 shows the convergence of the simulated acoustic potential in

the forward scattering configuration, as a function of the ratio λa/∆x for one single

surface realisation based on the parameters of condition 7. Reducing the size of the

spatial grid from λa/10 to λa/50 causes a relative variation of the absolute value of
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Figure 6.3: Convergence of the numerical model. (solid) absolute potential, (dashed)
real part of the potential, (dashed-dotted) imaginary part of the potential calculated
for the forward scattering setup based on a single realisation for flow condition 7.
P50 is the potential when λa/∆x = 50.

the potential smaller than 10−5, which is considered negligible. The equidistant set

of wavenumbers kl corresponded to the standard set of eigenvalues which are used

for the discrete Fourier transform, i.e., kl = l∆k, with ∆k = 2π/Lx, l = 1, 2, ..., Nk

and Lx was the size of the spatial grid in the streamwise direction. In the two-

dimensional realisations of the model θ was modelled implicitly, i.e., it was imposed

k =

{
kl, when kl ≥ k0

k0, when kl < k0

, (6.30)

θ =


0, when kl ≥ k0

cos−1

(
kl
k0

)
, when kl < k0

. (6.31)

In the three-dimensional realisations, the wave orientation θ was varied between

−π/2 and π/2 for the downstream propagating waves, and between π/2 and 3π/2

for the upstream waves, with a step of π/6.

In the three-dimensional simulations the scattered acoustic field was computed

by solving the integral of equation (3.105) numerically. In the two-dimensional

simulations, the realisations of the free surface were computed by fixing y = 0

in equation (6.5), and the acoustic field was computed based on equation (3.108).

The integrals of equations (3.105) and (3.108) were computed with the trapezoidal

method at each time-step. These equations provide the complex modulation of

the acoustic field, i.e., its value divided by the factor exp (iωat). 50 independent

realisations of the acoustic field were computed.
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The Doppler spectrum was determined for each realisation with the discrete

Fourier transform of the complex modulation, applied with the function fft in Matlab

2016b. The mean Doppler spectrum was the average across all realisations. The

real part of the Fourier transform at the frequency ω < 2πfs/2 corresponds to the

spectrum of the real measured acoustic pressure field at the frequency ωa +ω, while

the real part of the Fourier transform at the frequency ω > 2πfs corresponds to the

real measured spectrum at the frequency ωa− 2πfs +ω. The modelled spectra were

shifted and mirrored in order to compare directly with the measured spectra both

above and below the frequency ωa.

6.1.4 Validity of the linear Doppler model

The derivation of the Doppler spectrum of the scattered acoustic pressure field

in the particular case of the small Rayleigh parameter and when the correlation

radius is small compared to the size of the Fresnel zone allows the derivation of an

approximate linear model of the Doppler spectrum. Unlike the direct computation of

the Kirchhoff integral, which requires a set of random realisations of the free surface,

this model only requires the knowledge of the frequency-wavenumber spectrum of

the free surface. It also allows the estimation of the frequency-wavenumber spectrum

based on the measurement of the acoustic Doppler spectrum. Subsection 3.2.2

showed the derivation of this linear model of the scattered Doppler spectrum, and

discussed the conditions under which the model applies. These are given by a set of

small non-dimensional parameters which depend on the characteristics of the free

surface and on the location of the source and of the receiver. The values of each

of these parameters are reported in Table 6.1, as they have been calculated for

each of the flow conditions based on the geometry of the acoustic setup reported in

subsection 4.4.2. Here it was assumed that the characteristic scale of the correlation

function is represented by the value 2π/k0 in all conditions except condition 1. In this

latter condition, the parameter 4πU2
0/g was used instead, since this corresponded

to the knee of the frequency spectrum in FIG. 5.5a.
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The size of the insonificated area was estimated in subsection 4.4.2 as LD =

239 mm along the x-direction, and LD = 56 mm along the y-direction. These were

smaller than the distance R = 400 mm. All the parameters reported in Table 6.1

need to be smaller than one for the method to be asymptotically valid. There are

two parameters which were close to one or even bigger than one in some of the

measured conditions. These are the ratio between the correlation radius and the

size of the Fresnel zone expressed by equation (3.115),

κ sin2 (ψs)

k2
0R

, (6.32)

and the Rayleigh parameter,

[2κ sin (ψs)σ]2 . (6.33)

The first was smaller than 0.51 in all conditions, and was maximum in condition 10.

The Rayleigh parameter was larger than one in conditions 5 and 10, where the linear

Doppler model should not be applied. The model is expected to have limited validity

in conditions 7, 11, and 13, where the Rayleigh parameter was larger than 0.75 but

smaller than one. In all remaining flow conditions, the conditions for the application

of the model were met, although the accuracy of the results were expected to vary

based on the effective size of each parameter. In subsection 6.2.2, the results of the

linear model are presented for all flow conditions, including those where the model

did not strictly apply. It is shown that the linear model was able to predict the

behaviour of the measured Doppler spectra in all these conditions.

6.1.5 Application of the linear model of the Doppler spec-

trum

The numerical solution of the linear model of the Doppler spectrum was computed

as follows. A two-dimensional spatial grid was defined in the directions x and y

between the values −Lx/2 and Lx/2, and −Ly/2 and Ly/2, respectively. At each

location (x, y) the multiplicative factor Q(ρ) (equation (3.120)) and the vector q⊥(ρ)

(equation (3.103)) were computed based on the position of the source and of the

receiver, where ρ =
√
x2 + y2. Two equidistant sets of wavenumbers and angles of

orientation of the surface waves were defined, with the wavenumber varying between

0 and k1 and with the angle θ varying between 0 and π. For each combination of

the wavenumber and angle, the corresponding frequency of the waves ω(k, θ) was

computed based on each of the three dispersion relations Ω+, Ω−, and ΩU . The

wavenumber spectrum S(k) was defined by equations (6.3) and (6.6), or by (6.9) in

condition 1. Each value of k and θ lead to the projections kx and ky according to
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equations (3.47a) and (3.47b). The value of ρ that corresponded to the minimum

of the squared distance

[qx(ρ)− kx(k, θ)]2 + [qy(ρ)− ky(k, θ)]2 (6.34)

was identified. This led to a unique value of Q(ρ(k, θ)) for each combination of k

and θ. In this way the scattering from a region of the surface represented by the

co-ordinates ρ was directly associated with the interaction with the waves that have

the wavenumber k and direction θ. The Doppler spectrum at the frequency ω − ωa
was found as the sum of all contributions

S(K(ω − ωa))Q(ρ), |ω − ωa − Ω(k)| ≤ ∆ω, (6.35)

where K(ω) is the inverse of the dispersion relation, i.e.,

K(ω) = Ω−1(ω) (6.36)

if

Ω(K(ω)) = ω, (6.37)

and ∆ω was equal to 1 Hz. The results of this analysis are described in section 6.2.

The main advantage of the linear model compared to the Monte Carlo simulations

is the possibility to calculate the frequency-wavenumber spectrum of the free surface

directly from the measured Doppler spectrum of the scattered acoustic field. This

was noted by Barrick [1972], who suggested that this could be done by changing the

frequency of the incident signal. When the measurements are performed outside of

the Fraunhofer zone, the inversion of the frequency-wavenumber spectrum can be

done at first order using a single frequency. If the frequency-wavenumber spectrum is

known at each wavenumber k and frequency ω, the equation (3.123) can be rewritten

in the form

S̄D(Nω×1) = ¯̄S(Nω×Nk)h̄(Nk×1), (6.38)

where S̄D is the Doppler spectrum measured at Nω frequencies, and ¯̄S and h̄ are

defined as

¯̄S =


S(k1, ω1) S(k2, ω1) . . . S(kNk , ω1)

S(k1, ω2) S(k2, ω2) . . . S(kNk , ω2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S(k1, ωNω) S(k2, ωNω) . . . S(kNk , ωNω)

 , (6.39)
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and

h̄ =


Q(ρ(k1))

Q(ρ(k2))

. . .

Q(ρ(kNk))

 . (6.40)

In most applications the frequency-wavenumber spectrum is unknown, and one

needs to find ¯̄S , which is difficult in general. Assuming a set of dispersion relations

Ω(j)(k), most of the values of ¯̄S could be reduced to zero by assuming that

S(k, ω) =
∑
j

S(k, ω)δ(k−K(j)(ω)), (6.41)

where K(j)(ω) represents the inversion of each of the dispersion relations. In the

case when there is only one dispersion relation which is univariate at each frequency,

the inversion follows directly from equation (3.123), i.e.,

S(K(ω − ωa), ω − ωa) =
SD(ω − ωa)

σ2q2
zρ(K(ω − ωa))Q(ρ)

, (6.42)

where ρ(K(ω)) can be found with the procedure described above.

The experimental results in chapter 5 showed the contemporary presence of more

than one (up to three) dispersion relations. These can be represented as Ω(j)(k), or

alternatively as K(j)(ω), where j = 1, 2, 3. In this case, a solution can be found inde-

pendently at each frequency if one assumes a given ratio of the frequency wavenum-

ber spectra, e.g.,
S(K(j)(ω), ω)

S(K(j+1)(ω), ω)
= CS(ω). (6.43)

Without the knowledge of the full three dimensional frequency-wavenumber spec-

trum the definition of this ratio is arbitrary. Here it was assumed simply that

CS = 1. (6.44)

This corresponds to the assumption that the amplitude of the waves is governed by

the frequency, i.e., that all three types of waves have the same amplitude at each

frequency ω.
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6.2 Doppler spectra of the scattered acoustic pres-

sure field

This section reports the measurements of the Doppler spectrum of the acoustic

pressure field scattered by the dynamic free surface, and its interpretation according

to two models based on the Kirchhoff approximation. The Doppler spectrum is

usually employed in order to measure the velocity of the patterns on the free surface.

This can be easily done in some specific conditions, when the source and the receiver

are both in the Fraunhofer zone, and when the source has a very narrow directivity

pattern. These conditions are difficult to satisfy when the acoustic field is generated

by a real source which directivity pattern is not narrow.

In the next subsections it is shown that the Doppler spectrum measured in these

non ideal conditions still provides important information about the dynamic be-

haviour of the free surface. In fact, although the measurements are performed at

one single location in space, the scattering occurs on a relatively large area of the

rough surface. When the measurements are performed outside of the Fraunhofer

zone it is possible to obtain information about the spatial as well as the temporal

behaviour of the surface. The assumption which underlies the methods described

here is that the statistics of the free surface are stationary. The linear model de-

scribed in sections 3.2.2 and 6.1.5 further assumes that the statistics are Gaussian.

This is not required by the Monte Carlo simulation which details have been reported

in subsection 6.1.3, although this model relies on the surface realisations generated

by the linear surface model described in subsection 6.1.1.

The results in this section have a direct relation with the measurements of the fre-

quency spectra and frequency-wavenumber spectra of gravity-capillary waves which

have been reported in subsections 5.2.1 and 5.3.2, respectively. This relation is made

explicit by the linear Doppler model. In practice it was impossible to characterise

the fully three dimensional frequency-wavenumber spectra, therefore the validation

of the models was in terms of the measured frequency spectra reported in subsection

5.2.1 only.

6.2.1 Results in backscattering (mono-static configuration)

The average Doppler spectra of the backscattered acoustic field measured by the

first microphone with the setup described in sub-section 4.4.2 are shown in FIG.

6.4 for all flow conditions. All spectra show some common features. There is a

peak in the Doppler spectra which is centred at the frequency ωa and has the width
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Figure 6.4: The average measured Doppler spectra of the backscattered acoustic
field. The dots show the Bragg frequency of (green) non-dispersive waves, ΩU

B, (red)
upstream capillary waves, Ω−B and (blue) downstream capillary waves, Ω+

B.
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between 1 and 2 times κU0 cosψ. The width of the peak is larger in the conditions

with the larger Froude number (FIG. 6.4c). The spectra are asymmetrical, and

show one to three additional broad peaks at the positive frequency between ωa and

ωa + 4κU0 cosψ. The behaviour in FIG. 6.4c is reminiscent of the measurements

of microwave Doppler spectra obtained in rivers by Plant et al. [2005], where a

low-frequency peak largely dominated a smaller peak at higher frequency.

It was shown in section 3.2.2 that the peaks of the acoustic Doppler spectrum are

associated with the Bragg resonance mechanism. The backscattering setup described

in sub-section 4.4.2 had the peak of the directivity pattern at the characteristic angle

of incidence ψs = π/6. The frequency of the acoustic signal emitted by the source

was fa = 43 kHz. Based on these values, the waves which are expected to give the

largest contribution to Bragg scattering had the wavelength (equation (3.127))

kB = 2κ cosψs = 1364 rad m−1, (6.45)

and the wavelength

λB = 4.6 mm. (6.46)

These short waves are capillary waves which dynamics are dominated by surface

tension effects. These waves could not be measured with the array of wave probes

due to the limited spatial resolution.

It is possible to estimate the phase velocity of the Bragg waves, assuming that

they follow the same three types of dispersion relations observed at the lower

wavenumber, and previously indicated by Ω+, Ω−, and ΩU . According to this as-

sumption, the peaks of the Doppler spectrum are expected at the frequencies

ω =


ωa + Ω+(kB, 0), downstream capillary waves,

ωa + Ω−(kB, π), upstream capillary waves,

ωa + ΩU(kB, 0), non-dispersive capillary waves,

(6.47)

These frequencies are shown for all flow conditions in FIG. 6.4, and they match the

frequency of the peaks of the measured Doppler spectra. The spectra at the lower

Froude number (FIG. 6.4a) show only one Bragg peak at the frequency ΩU(kB, 0),

which corresponds to non-dispersive waves travelling at the mean surface velocity.

The spectra at the intermediate Froude number (FIG. 6.4b) still show the non-

dispersive peak, although there is an increasingly larger contribution from the two

types of dispersive capillary waves which propagate upstream and downstream, re-

spectively. At the larger Froude numbers (FIG. 6.4c) these contributions have grown

to the extent that the intermediate peak cannot be seen any more. The peak that
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corresponds to the upstream propagating waves at the frequency Ω−(kB, 0) is always

larger than the one that represents the downstream propagating waves at the higher

frequency Ω+(kB, 0). The dependence of the Doppler spectra on the Froude number

was observed consistently in all conditions except condition 5, which behaved like

the larger Froude number conditions.

In order to investigate the relationship between the measured Doppler spectra

and the characteristics of the free surface in the different flow conditions, two dif-

ferent numerical models were implemented. The first model was a Monte Carlo

simulation based on the numerical solution of the Kirchhoff integral from random

realisations of the dynamic free surface elevation ζ in space and in time. The sur-

face realisations were computed from equation (6.5), based on the power-function

spatial spectrum described in section 6.1.1. This model provided a set of numerical

realisations of the complex modulation of the scattered acoustic field, from which

the Doppler spectrum was calculated with the procedure described in sub-section

6.1.3. The second model was the linear Doppler model based on the expansion of the

same Kirchhoff integral with the small Rayleigh parameter, and it allowed the di-

rect calculation of the average Doppler spectrum from the angular spatial spectrum

S(k)Γ(k, θ) of the free surface elevation (equation (6.6) and (6.9), and equations

(6.16), (6.17), (6.18), and (6.19)). The details of this second model were described

in subsection 6.1.5.

The linear model is a simplification of the model used for the Monte Carlo

simulation, which was valid only in a limited range of conditions. Therefore the

results of the Monte Carlo simulation will be discussed first. In the previous chapter

it was shown that the choice of the smallest surface scale which is resolved by the

model of the free surface impacts the validity of the Kirchhoff condition, especially

when the spectrum slope α is smaller or equal than 5. A set of simulations were

performed based on the surface parameters of condition 7 (σ = 1.21 mm, k0 =

52.4 rad m−1) with α = 7 and with the maximum resolved wavenumber k1 varying

between 2π/0.003 rad m−1 and 2π/0.05 rad m−1. In this way the convergence of

the simulated Doppler spectra based on k1 was checked. In these simulations the

scattered acoustic field was computed with the two-dimensional equation (3.108).

The results are shown in FIG. 6.5a. The amplitude of the modelled spectra depends

on a multiplicative constant which represents the amplitude of the incident acoustic

potential field, and is affected by the resolution of the spatial grid and by the time

step of the simulation. Here and in the following, the modelled spectra were shifted

vertically by an arbitrary quantity in order to provide a better visual fitting with the

measurements. It is seen in FIG. 6.5 that the peak of the spectrum at the frequency

ω = ωa was independent on the length of the smallest surface waves. Conversely, the

174



CHAPTER 6. ANALYSIS OF THE DOPPLER SPECTRA OF THE
ACOUSTIC FIELD SCATTERED BY THE FREE SURFACE

0 1 2

(ω − ωa)/2κU0 cosψs

10-7

10-5

10-3

10-1
S
D
(ω

−
ω
a
)
(P

a2
s
ra
d
−
1
) measured

k1 = 2π/0.05 rad/m

k1 = 2π/0.006 rad/m

k1 = 2π/0.005 rad/m

k1 = 2π/0.004 rad/m

k1 = 2π/0.003 rad/m

0 1 2

(ω − ωa)/2κU0 cosψs

10-7

10-5

10-3

10-1

S
D
(ω

−
ω
a
)
(P

a2
s
ra
d
−
1
) measured

2D, Poisson

2D, sech
2

3D, k = k
0

3D, omnidirectional

(a) (b)

Figure 6.5: The Doppler spectrum estimated with the Monte Carlo simulation with
σ = 1.21 mm, k0 = 52.4 rad m−1, and α = 7, compared with (dashed) the mea-
sured Doppler spectrum for condition 7. (a) The effect of the maximum resolved
wavenumber, k1, evaluated with the two-dimensional model. (b) The effect of the
three-dimensional surface patterns and angular distribution of the waves.

peaks at the higher frequency only began to appear when the maximum wavenumber

was larger than 2π/0.006 rad m−1. The Doppler spectrum did not change when k1

was increased from 2π/0.004 rad m−1 to 2π/0.003 rad m−1. This confirms that the

peaks were caused by the scattering from the Bragg waves with the wavelength of

4.6 mm. Because of this, all the subsequent simulations were carried out with the

maximum wavenumber k1 = 2π/0.003 rad m−1.

FIG. 6.5b shows the effect of the three dimensional patterns of the free surface on

the Doppler spectrum, based on the Monte Carlo simulation. The results of two two-

dimensional simulations and two three-dimensional simulations have been compared

in FIG. 6.5b. The two-dimensional simulations differed in terms of their angular

distribution, which was computed either from the Poisson distribution (equation

(6.15a)) or from the sech2 distribution (equation (6.15b)). The three-dimensional

simulations were both based on the Poisson formula. In the simulation denoted

with k = k0, only the waves with the wavenumber k0 were propagating in directions

different from the streamwise one, and the directional spectrum was calculated with

equations (6.16) and (6.18). In the simulation denoted with omnidirectional, also

the shorter waves with k > k0 had the same directional distribution, which was

described by equation (6.19). FIG. 6.5b shows that all these choices had little

effect on the modelling of the Doppler spectrum. The only noticeable difference

was the slight overestimation of the amplitude of the Bragg peaks by the two-

dimensional models, compared to the three-dimensional ones. The computational

cost of the three-dimensional simulations was considerably larger than that of the
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Figure 6.6: The measured Doppler spectra compared with the results of the two-
dimensional Monte Carlo simulation for (a) condition 1, (b) condition 4, (c) condi-
tion 7, and (d) condition 13. (black) Measured, (red) modelled with α = 5, (blue)
modelled with α = 7, and (green) modelled with α = 9.

two-dimensional ones. Therefore, it was decided to use the two-dimensional model

for the analysis described from here on. The Poisson distribution was preferred to

the sech2 because it decays less rapidly near θ = 0, which seemed to represent better

the behaviour of the measured frequency spectra (see FIG. 6.1).

FIG. 6.6 shows the results of the two-dimensional Monte Carlo simulation in

terms of the Doppler spectra for the flow conditions 1, 4, 7, and 13, compared to the

respective measurements. The measurements with wave probes did not allow the

direct estimation of the spatial spectrum of the surface elevation, from which α can

be determined. Different simulations with α = 5, α = 7, and α = 9 were therefore

carried out, in order to observe the effect of the spectrum slope on the Doppler

spectra. The minimum value of α was limited to 5 in the simulations in order to
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ensure the validity of the Kirchhoff approximation. The minimum of the Kirchhoff

parameter among the four conditions represented in FIG. 6.6 was calculated to

be 26.6 in condition 7, based on equation (6.23) and (6.28) with α = 5. In all

cases, the model represented accurately the peak of the Doppler spectrum at the

frequency near ω−ωa = 0. The width of this peak depends mainly on the frequency

spectrum of the free surface at least when the Rayleigh parameter is small, as it was

shown in sub-section 3.2.2. At the frequency below 2k0U0 the frequency spectrum

depends on the angular distribution Γθ(θ) only, therefore it is independent of α.

There is a small peak of the Doppler spectrum of condition 1 in FIG. 6.6a, at the

frequency of approximately 0.3(2κU0 cosψs). This peak corresponds to the peak of

the surface frequency spectrum at the frequency ωU0/g = 0.3 in the same condition.

It was correctly represented by the model. At the larger frequency, the Doppler

spectra predicted with the different choices of α separate from each other. The

best fit for condition 1 was with the model with α = 5. The best fit was with

α = 7 in condition 4, then α appears to decrease with the increase of the Froude

number. Looking at the negative-frequency tail of the Doppler spectra, the slope

was approximately 5 in condition 7, and possibly smaller than 5 in condition 13.

The model predicts the occurrence of the three Bragg peaks in all conditions, in

contrast with the experimental measurements in conditions 1 and 4 where only the

non-dispersive peak with the frequency ΩU(kB, 0) is observed. The Bragg peaks are

also considerably wider in the measured spectra than in the simulations. This could

be explained by nonlinear interactions between the surface waves or between both

the surface waves and the acoustic waves, as discussed in subsection 3.2.2. These

observations are discussed with more detail in subsection 6.2.3.

FIG. 6.7 shows the measured Doppler spectra in the same flow conditions, com-

pared with the predictions by the linear Doppler model based on the small Rayleigh

parameter. The results by this model are similar to the ones provided by the Monte

Carlo model. The behaviour of the Doppler spectra at low frequency was represented

well. In comparison with the Monte Carlo simulation, the Doppler spectra predicted

by the linear model decay more rapidly with the frequency, and underestimate the

amplitude of the Bragg peaks. The best fit with the measurements was found with

α ≈ 7 in conditions 1 and 4, while both in conditions 7 and 13 α had to be smaller

than 5. The same considerations about the presence of the three Bragg peaks and

their smaller width compared to the measurements still apply to the results shown

in FIG. 6.9. The validity of the simplified model was limited, especially in conditions

7 and 13 where the Rayleigh parameter was equal to 0.93 and 0.76, respectively. In

spite of these limitations, the model provided a correct qualitative representation of

the behaviour of the Doppler spectra, with a much simpler and fast computation.
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Figure 6.7: The measured Doppler spectra compared with the prediction by the
linear model based on the expansion of the Kirchhoff integral for (a) condition 1,
(b) condition 4, (c) condition 7, and (d) condition 13. (black) Measured, (red)
modelled with α = 5, (blue) modelled with α = 7, and (green) modelled with α = 9.

6.2.2 Results in forward scattering (bi-static configuration)

It is common to consider the Doppler spectra of the scattered signal in the backscat-

tering (bi-static) configuration only. This approach ensures that the spectral reso-

lution is maximum, and that the Bragg peaks are clearly distinguishable when the

directivity pattern is narrow and the source and receiver are in the Fraunhofer zone.

In the case which was studied here, the directivity pattern was relatively broad, and

the source and receiver were outside of the Fraunhofer zone. A considerable portion

of the emitted acoustic pressure field was reflected right below the source and the

receiver. This caused the large peak of the measured Doppler spectra near the fre-

quency ωa in FIG. 6.4. Due to the choice of the acoustic frequency and of the angle
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of incidence ψs, the Bragg scales correspond to short capillary waves which spectrum

could not be measured with the arrays of wave probes. The small distance between

the source and the microphone in the backscattering configuration made so that the

Fresnel zone was small and localised right below the source, near the direction of

specular reflection. This hindered the validity of the linear Doppler model at the

low Doppler frequency.

When the source and/or the receiver are outside of the Fraunhofer zone and

the directivity pattern is not infinitely narrow, also the forward scattered signal

experiences a Doppler shift. If the main directivity lobe of the source is directed

towards the direction of specular reflection, the Bragg peak relates to the infinitely

long waves with the wavenumber qx = 0, and consequently with the frequency

ω − ωa = 0. This allows focusing the attention on the larger scales of the free

surface, which behaviour is more easily characterised experimentally. The size of

the Fresnel zone scales with 1/
√

sin (ψ) (equation (3.115)), therefore it is larger

away from the source. This makes the approximations of the linear model more

accurate, hence it provides a faster method to predict the Doppler spectrum and

potentially to invert it in order to determine the spectrum of the rough surface.

The measurements of the Doppler spectrum of the scattered acoustic signal

recorded by the second microphone, which position was reported in equation (4.7c),

are shown in FIG. 6.8 for all the tested flow conditions. These spectra have one sin-

gle peak at the frequency ωa. The spectra are asymmetric, with longer tails towards

the positive frequency. This corresponds to the positive value of qx, therefore to the

scattering from the region behind the point of specular reflection, nearer to the mi-

crophone. The length of the tail increases when the Froude number increases from

FIG. 6.8a to FIG. 6.8d, which suggests the decrease of the slope of the spectrum.

Condition 1 again exhibits a sharper knee of the Doppler spectrum at the frequency

0.3(2κU0 cosψs), which relates to the peak of the frequency spectrum of the free sur-

face elevation at the frequency ωU0/g = 0.3. The behaviour of the Doppler spectra

is similar in each range of Froude numbers. The spectra in each of FIG. 6.8b, c, and

d, decay with the same slope, again with the exception of condition 5 which behaves

like the conditions with the larger Froude numbers.

The measured Doppler spectra have been simulated with the same two numerical

models described in the previous section. The results of the two-dimensional Monte

Carlo simulation are shown in FIG. 6.9 for the conditions 1, 4, 7, and 13. With

respect to the measurements in backscattering, the spectra are less dependent on

the shorter waves. As a result, the predictions by the model represent well the

measured spectra over a wider range of frequencies. In conditions 1 and 4, the tails

of the Doppler spectra follow the behaviour expected with α = 7. In conditions
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Figure 6.8: The average Doppler spectra of the forward scattered acoustic field.

7 and 13, the measured spectra depart from the modelled ones at the relatively

low frequency of 0.3(2κU0 cosψs) and 0.1(2κU0 cosψs), respectively. At the higher

frequency the decay is slower than the one predicted by the model with α = 5, which

suggests that short waves have a larger amplitude than predicted by the power-law

spectrum. The departure is more evident in the condition 13 with the larger Froude

number, where the gradient of the Doppler spectrum decreases sharply relative to

the modelled power-law near the frequency 0.3(2κU0 cosψs), before it increases again

at the frequency 0.6(2κU0 cosψs). This confirms that the model based on the power-

function decay of the surface spectrum with the constant slope α had limited validity

at the shorter scales, especially in condition 13.
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Figure 6.9: The measured Doppler spectra of the forward scattered signal compared
with the results of the two-dimensional Monte Carlo simulation for (a) condition
1, (b) condition 4, (c) condition 7, and (d) condition 13. (black) Measured, (red)
modelled with α = 5, (blue) modelled with α = 7, and (green) modelled with α = 9.

FIG. 6.10 shows the analogous results for the linear model based on the expansion

of the Kirchhoff integral. For the reasons explained above, this model was expected

to give more reliable results in forward scattering than in backscattering. This is

confirmed by the results of FIG. 6.10. The results of the linear model confirm the

apparent decrease of the slope of the spectrum from α = 9 to α < 5 when the

Froude number increases across the four conditions represented in FIG. 6.10. The

linear model approximates the measurements apparently better than the Monte

Carlo simulation. This is only apparent, since the linear model is an approximation

of the more general Kirchhoff approach which was implemented in the Monte Carlo

model. Especially in condition 13, where the Rayleigh parameter was equal to 0.76,

the Doppler spectrum predicted by the linear Doppler model had limited validity.
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Figure 6.10: The measured Doppler spectra of the forward scattered acoustic signal
compared with the prediction by the linear Doppler model for (a) condition 1, (b)
condition 4, (c) condition 7, and (d) condition 13. (black) Measured, (red) modelled
with α = 5, (blue) modelled with α = 7, and (green) modelled with α = 9.

In light of the good performance of the forward scattering model applied to the

Doppler spectra of the forward scattered field, it was decided to attempt the direct

inversion of the surface spectrum based on the method derived in sub-section 3.2.2.

For the inversion, only the half of the measured Doppler spectra with the positive

frequency was used. For simplicity, it was assumed that the spectra of each of the

three types of waves at each frequency was the same, i.e., that the ratio of their

amplitudes was

CS ≡ 1. (6.48)

The three dimensionality of the surface patterns were also neglected by imposing

Γ(k, θ) = δ(θ), (6.49)
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Figure 6.11: The frequency spectra of the free surface elevation (red) calculated
from the Doppler spectrum of the forward scattered signal, and (black) measured
with the wave probes, for (a) condition 1, (b) condition 4, (c) condition 7, and (d)
condition 13.

and the inversion was based on the two-dimensional version of the Kirchhoff integral

equation, i.e., on equation (3.125).

The results of the inversion applied to the forward scattered Doppler spectra are

shown in FIG. 6.11 for conditions 1, 4, 7, and 13, in terms of the reconstructed fre-

quency spectra of the surface elevation. These are compared with the same spectra

measured by the wave probes. The reconstructed spectra follow the same behaviour

of the measured frequency spectra. The increase of the slope of the spectra at the

frequency larger than ω̂ = 1 is captured well across the various conditions, although

this increase is predicted at a slightly larger frequency than measured in condition

1. In condition 13 the reconstructed spectrum is largely underestimated in the fre-

quency range from ω̂ = 0.5 to ω̂ = 4. The Rayleigh parameter was relatively large

in this condition, therefore the inversion had limited validity.

The possibility of measuring the spectrum of the free surface remotely from the

Doppler spectrum of the scattered acoustic field is of interest, because the first spec-
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Figure 6.12: (a) The variance of the free surface elevation, s0,inv, and (b) the first
spectral moment, s1,inv, calculated from the frequency spectrum reconstructed from
the measured Doppler spectra of the forward scattered acoustic pressure field. The
dashed lines represent the same quantity calculated from the measurements with
wave probes.

tral moments had been related to the hydraulic quantities of the flow in section

5.2.1. Although the validity of the method was formally restricted to a narrow

range of flow conditions, the inversion was applied to all the measurements of the

forward scattered acoustic field. From each reconstruction, the first and second

spectral moments (the standard deviation of the free surface elevation, and its aver-

age frequency) were computed. The results are shown in FIG. 6.12, compared with

the same moments which had been estimated from the wave probes measurements.

The calculated variance of the free surface elevation which is shown in FIG. 6.12a

followed the same pattern of the measurements with the wave probes, in most flow

conditions. The value of the first spectral moment was overestimated by a factor of

approximately 3 in all conditions, which was due to the different spectral resolution

of the measurements with wave probes compared with the acoustic reconstruction,

and to the peak of the frequency spectra at the frequency near zero. In spite of

this shift, the pattern of the first spectral moment was also represented well by the

inversion.

6.2.3 Discussion

The results in this section have shown the information that can be extracted from

the measurement of the Doppler spectrum of the scattered acoustic pressure field.

These spectra can be used in order to determine the velocity of the patterns on

the free surface. The Doppler spectra measured in the backscattering configuration

showed the presence of Bragg peaks, which frequency is related directly to the phase
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velocity of the Bragg waves. The prediction of these frequencies based on a model

of the dispersion relations of three characteristic types of waves (upstream capillary-

gravity waves, downstream capillary-gravity waves, and non-dispersive waves) fitted

the measured Doppler spectra well. This would allow the remote characterisation of

the mean surface velocity, if the other variables which control the dispersion relation

(the mean depth, and the vertical variation of the streamwise average flow velocity)

are known.

In practice, only the non-dispersive peak with the frequency 2κU0 cosψs was

visible in the measured spectra for the conditions 1 and 4 in FIG. 6.6a, and b,

respectively. In contrast, the numerical models predicted the occurrence of three

peaks of the Doppler spectrum in all conditions. This suggests that the two types of

dispersive waves with the Bragg wavenumber kB were not physically present in these

conditions, in contrast with the proposed model. The relative amplitude of each of

the three separate Bragg peaks in conditions 7 and 13 (FIG. 6.6c, d) differed between

the model and the measurements, especially in condition 7. Here the dispersive

waves with the Bragg wavenumber kB propagating upstream (the peak with the

lower frequency) were considerably larger than the other two types of waves with

the same wavenumber. In the model it was assumed that at each wavenumber all

three types of waves co-existed, and that their amplitude ratios were independent

of the wavenumber and equal to Γθ(π)/Γθ(π/2) between the upstream and the non-

dispersive waves, and Γθ(π/2)/Γθ(0) between the non-dispersive and the downstream

waves, respectively. The results in FIG. 6.6 suggest that this assumption does not

apply in general to the small Bragg scales, where the dispersive waves only appeared

when the Froude number was larger than 0.5, and the upstream waves had a larger

amplitude than it was predicted by the model. A more accurate representation of

the free surface spectrum requires the measurement of the angular spatial spectrum

at the wavenumber comparable with kB, which was impossible with the available

instrumentation.

The Bragg peaks were found considerably wider in the measured spectra than

in the simulations. The results in FIG. 6.5b showed that the broadening of the

Bragg peaks was not due to the three-dimensionality of the free surface patterns.

The broadening of the Bragg peaks can be explained by the multiple scattering of

the acoustic signal, or by the modulation of the short waves by the longer waves

[e.g. Keller and Wright, 1975, Hara and Plant, 1994], as reported in sub-section

2.1.5. In the case of scattering in the Fraunhofer zone, these effects are modelled

with a set of corrective factors to the spectrum of the free surface. In the case

reported here this approach was not viable. In subsection 3.2.2 rough estimates

of the widening of the Bragg peaks due to the tilt modulation and to the velocity
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modulation induced by longer waves on the short Bragg waves have been derived.

These are represented by equations (3.132) and (3.134). The frequency broadening

due to the tilt modulation is calculated based on equation (3.132) to be between

7.3 rad s−1 in condition 1 and 61.7 rad s−1 in condition 5. These correspond to a

relative variation between 2.8 % of the frequency 2κU0 cosψs in condition 1 and

9.1 % of the same frequency in condition 5. The velocity modulation calculated

from equation (3.134) (assuming c(k0) = U0) varies between 3.6 rad s−1 in condition

1 and 54.3 rad s−1 in condition 5, corresponding to the relative variations between

1.4 % and 8.1 %, respectively. It is noted that the width of the measured spectra was

comparable with the frequency shift 2κU0 cosψs. The tilt and velocity modulations

estimated with equations (3.132) and (3.134) do not seem to be large enough to

justify the observed widening of the Doppler spectra near the Bragg peaks, but they

are significant even if the characteristic surface slope k0σ was small. This is caused

by the high frequency of the acoustic signal, and by the large phase velocity and

group velocity of the waves associated with Bragg scattering. Additional broadening

of the spectra near the Bragg peaks may have derived from nonlinear interactions

among the waves on the surface, and among the surface waves and the multiply

scattered acoustic signal. These phenomena are represented by the hydodynamic

and electromagnetic (acoustic) modulation transfer functions derived for example by

Keller and Wright [1975] and Hara and Plant [1994]. These derivations do not apply

strictly to the case considered here, therefore they have not been implemented.

The second-order spectrum [e.g. Lipa and Barrick, 1986] has been also associated

with the broadening of the Doppler Bragg peaks and the increase of the amplitude

of the spectrum of short waves [Janssen, 2009]. Even though the Monte Carlo model

did not require the expansion of the spectrum of the free surface, the calculations

were based on a linear surface model that does not allow interactions among surface

waves. The existence of weak nonlinear interactions among waves on the surface was

suggested by the measurement of the statistics of the surface elevation in section

5.2. Those measurements showed only evidence of weak nonlinearities in a limited

range of flow conditions, but the measurements were limited to waves much longer

than the capillary waves that are most important for Bragg scattering. It is possible

that stronger nonlinearities were interesting the shorter capillary waves in all con-

ditions. In order to investigate these phenomena, more complex models of the free

surface behaviour and of the acoustic scattering would be required, such as the ones

implemented by Johnson et al. [2001]. Unfortunately, there is currently no known

model that is able to describe the nonlinear dynamics of the free surface in a shallow

turbulent flow adequately.
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In light of these limitations which are not related to the acoustic model, the sim-

plified linear Doppler model presented in subsection 3.2.2 was able to capture the be-

haviour of the backscattered Doppler spectra well. The computations based on this

type of model were much faster, and the model allows theoretically the calculation

of the fully three-dimensional frequency-wavenumber spectrum. Unfortunately, the

linear model had only limited validity in the cases investigated here, and the direct

inversion of the frequency-wavenumber spectrum required a fully three-dimensional

reliable model of the surface spectrum in shallow flows, which still has not been

derived. For these reasons, the direct estimation of the mean surface velocity from

the Doppler spectra measured in backscattering was not attempted here.

In general, the comparison between the measurements and the two Doppler mod-

els has shown that the representation of the free surface by a spatial spectrum with

the constant power-function decay represents well the behaviour of the longer grav-

ity waves, but had limited validity at the shorter scales. The slope of the spectrum

appeared to increase towards the higher wavenumber, especially when the Froude

number increases. The increase of the slope of the frequency spectra was already

observed in section 5.2.1, and it has been confirmed here by the measurements of

the scattered acoustic field. This phenomenon cannot be explained with the actual

knowledge of the free surface behaviour in shallow turbulent flows. The sudden

appearance of the dispersive Bragg waves when the Froude number approached 0.5

cannot be explained either, especially because the measured frequency-wavenumber

spectra showed patterns of longer dispersive waves in all conditions even when the

Froude number was smaller than 0.5, while the non-dispersive waves which appear

consistently in all Doppler spectra were only observed in condition 1.

There are few phenomena that can cause the increase of the amplitude of the

spectrum of short waves, and specifically of the dispersive waves propagating against

the flow, when the Froude number increases. These phenomena are the resonant

interaction with turbulence at the critical layer [Teixeira and Belcher, 2006], the

shear instability discussed in subsection 2.1.3, and the resonant interaction between

multiple waves (including the three dimensional instabilities) discussed in subsection

2.1.5. The short upstream waves possess a critical layer, therefore they can grow

due to the first two mechanisms. Assuming the validity of the 1/3 velocity profile,

the distance of the critical layer of the Bragg waves from the bed datum relative to

the diameter of the spheres was

zc
dS

=
H

dS

[
1− Ω−(kB, π)

kBU0

]3

, (6.50)
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which varied between 0.02 in condition 4 and 1.0 in condition 10. The critical layer

was above the crests of the spheres bed only in conditions 5, 10, 11, and 13, whereas

the upstream Bragg scales were also observed in conditions 7 and 12. This ruled out

the resonant interaction with turbulence and the shear instabilities as the mecha-

nisms which caused the growth of short waves. In contrast, the interaction between

resonant combinations of waves cannot be excluded, as well as more complex mech-

anisms such as the energy cascades typical of wave turbulence. These mechanisms

are still not fully understood, especially in the case of gravity and capillary waves

propagating in a turbulent flow with a rough boundary.

In the subsection 6.2.2 it was shown that the Doppler spectra can be measured

also in the forward scattering configuration. In this configuration the spectra are less

dependent on the lesser known capillary waves, and can be modelled more accurately.

The conditions for the validity of the linear model are more likely to be met, which

justified the inversion of the frequency spectra based on this model. Future studies

may identify a way to invert the whole frequency-wavenumber spectrum directly,

possibly by introducing contemporary measurements at different frequencies, or with

different angles of incidence. This would allow the complete characterisation of the

free surface spatial and temporal behaviour remotely. Here the inversion was based

on the assumption that the amplitude of the different types of waves is governed

only by the frequency of these waves and not by their wavenumber. Although this

assumption was simplistic, the inversion of the surface frequency spectra compared

well with the direct measurements with the conductance wave probes. The patterns

of the first and second spectral moment was also determined correctly. This may

allow the estimation of the hydraulic quantities of the flow, since it was found in

section 5.2 that the spectral moments scaled consistently with the parameter k0U0.

6.3 Summary

The aim of this chapter was to demonstrate the possibility to measure the spatial

and temporal statistics of the free surface of turbulent shallow flows remotely, from

the measurement of the scattered acoustic pressure field. A simplified model of the

free surface behaviour was suggested, and implemented numerically. The model

represents the surface elevation as a linear superposition of independent trigono-

metric functions with a random distribution of the phase, and with the amplitude

governed by a spatial spectrum following the power-function law S(k) ∝ k−α. The

dynamics of the surface were governed by the dispersion relations observed exper-

imentally based on the measurements with wave probes. The angular distribution

of the waves was modelled according to two simple angular distributions. The slope
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of the spectrum α could not be measured directly with the arrays of wave probes,

therefore various tests with different values of α were performed.

The first objective of the analysis was the validation of the surface model. This

was achieved mainly by comparing the measurements of the Doppler spectra of the

scattered acoustic field with the predictions by two numerical models, both based on

the Kirchhoff approximation. It was shown that the angular distribution of the waves

and the consequent three-dimensionality of the surface patterns affect the Doppler

spectra only marginally. The comparison with the Monte Carlo simulation, which is

believed to be more accurate due to the characteristics of the measurements setup,

showed that the surface model predicts well the behaviour of the Doppler spectra

at the frequency nearer to the frequency of the source transducer. Based on the

results of the numerical model, this range of frequencies corresponds to the longer

waves which dominate the spectrum of the free surface. The comparison between

the measurements and the numerical simulations suggests that the amplitude of the

shorter waves was larger than predicted by the model with the power-function decay.

The measured Bragg peaks were also wider than predicted by the numerical models.

It was suggested that interactions among waves may have caused the change of

the slope of the spatial spectrum as well as the broadening of the Doppler spectra.

The short waves could not be measured directly with the arrays of wave probes,

and there are no known simple nonlinear model that can describe the interaction

between gravity and gravity-capillary waves in a shallow turbulent flow, therefore

further studies are required in order to confirm this hypothesis.

The second objective was to illustrate the effects of the single parameters of

the surface on the acoustic Doppler spectra. The relation between the frequency-

wavenumber spectra of the surface elevation and the Doppler spectra of the scattered

signal were investigated in section 6.2. This relation was made explicit by the linear

Doppler model presented in subsection 3.2.2, where it was shown that the same

mechanism which enhances the acoustic scattering from Bragg scale waves also cre-

ates a direct link between the Doppler spectra and the frequency spectra of the

surface. This link was used in subsection 6.2.2 in order to reconstruct the frequency

spectra based on the measurements of the Doppler spectra. The relative width of

the Doppler spectra at low frequency was found increasing with the increase of the

Froude number. This was associated with the decrease of the slope of the spectrum

of the surface, which had already been suggested in chapter 5 based on the measure-

ments of the frequency spectra of the elevation. This suggestion was confirmed here

independently based on an alternative remote measurement technique. It was also

observed that the relative amplitude of the short upstream waves increased appar-

ently with the increase of the Froude number. This observation cannot be explained
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with the actual knowledge of the physics of the free surface of shallow turbulent

flows.

The measurement of the Doppler spectra of the scattered acoustic field with

the backscattering configuration has been proposed as a way to estimate the mean

surface velocity of the flow [e.g. Plant et al., 2005, Costa et al., 2006, Fukami et al.,

2008]. This can be found from the peak of the Doppler spectra at the frequency

ωa + 2κU0 cosψs if the Bragg scale waves are not dispersive and propagate at the

mean surface velocity. When the Froude number increases additional peaks related

to the Bragg scale waves propagating upstream and downstream appear. These

peaks grow progressively in amplitude with the increase of the Froude number, until

they ultimately shade the first peak. When this happens the mean surface velocity

can still be inferred based on the known dispersion relation of the Bragg scale waves.

The method allows the measurement of the mean surface velocity remotely, but its

accurate application requires a better understanding of the mechanism which causes

the growth of the dispersive short Bragg scale waves.

In chapter 5 it was shown that the frequency spectrum of the surface elevation

scales directly with the product k0U0 in the flow conditions with the mean surface

velocity larger than the minimum of the phase velocity of gravity-capillary waves.

This spectrum can be estimated from the measurement of the Doppler spectrum of

the scattered acoustic pressure field. The estimation is more accurate when obtained

with a forward scattering configuration, because of the smaller impact of the lesser

known capillary waves. The link between the two spectra is not straightforward

if the measurements are not performed in the Fraunhofer zone. In order to be

able to estimate the frequency spectrum, one should perform a large number of

simulations that cover a wide range of the fundamental free surface parameters. In

some conditions when the Rayleigh parameter is small and the horizontal scales on

the surface are also small, the spectrum can be calculated directly based on a linear

model. The method relies on a model of the surface spectrum shape and of the

dispersion relation. In the experiments reported here the frequency spectrum was

successfully reconstructed, but not with the level of accuracy required for the direct

estimation of the product k0U0.
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Chapter 7

Thesis conclusions

7.1 Main results

The aim of this thesis was to provide an answer to three research questions. These

are reported here, together with a summary of the related results presented in the

chapters 5 and 6.

• Is it possible to interpret the patterns at the free surface of a shallow turbulent

flows based on the theory of gravity-capillary waves?

The measurements of the free surface elevation in a range of shallow turbulent

flows over a homogeneously rough bed were obtained with arrays of conductance

wave probes, and are described in chapter 5. In subsections 5.2.2 and 5.2.3 it was

shown that the statistics of the water surface fluctuations and of their amplitude

measured at a single location are compatible with a linear or weakly nonlinear model

of gravity-capillary waves with random phase. The measurements of the frequency-

wavenumber spectra of the water surface elevation in subsection 5.3.2 have shown

that the patterns on the free surface followed the dispersion relation of gravity-

capillary waves propagating in a flow where the average streamwise velocity profile is

described by a power-law of the depth. The analysis of the dynamics of wave groups

in subsection 5.3.3 has shown that radial patterns of random gravity-capillary waves

can combine and form structures that apparently move at the velocity equal to the

mean surface velocity while oscillating vertically at a characteristic frequency. These

structures had previously been observed and associated with the manifestation of

turbulent coherent structures that rise towards the surface [Nichols et al., 2016]. The

shape of these structures was characterised in subsection 5.3.3 and confirmed by the

wavelet spectral method in section 5.4. In the transverse direction it is represented

by pairs of standing gravity-capillary waves. The dimensions of these structures are
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governed by the wavelength of the stationary waves produced by the interaction with

the rough bed. These results confirm that the patterns at the free surface of shallow

sub-critical turbulent flows can be described based on the theory of gravity-capillary

waves, which answers the first question.

Alternative patterns that could correspond to scars or dimples originated by the

interaction with coherent turbulent structures were not identified in most conditions,

and their importance was suggested to be marginal in the range of conditions which

have been investigated. The only exception was represented by condition 1, where

the mean surface velocity was smaller than the minimum phase velocity of gravity-

capillary waves. In this condition the stationary waves could not form, and the

surface was dominated by non-dispersive patterns propagating at the mean surface

velocity. Although the results presented here cannot be conclusive, it was postulated

that the non-dispersive patterns were waves which were forced by the non-resonant

interaction with turbulence, according to the mechanism proposed by Teixeira and

Belcher [2006]. This mechanism is explained by a spectral model and does not

require the turbulent structures to be coherent across different scales.

• Is there a relation that links the patterns of gravity-capillary waves and their

statistics to the hydraulic properties of the flow, namely the mean surface

velocity, the average streamwise velocity profile, and the homogeneous depth?

The dispersion relation of the patterns on the surface were approximated well by a

model where the depth-wise variation of the time averaged streamwise flow velocity

follows a power-function of the depth. This has been demonstrated in subsection

5.3.2. In all conditions where the mean surface velocity was larger than the mini-

mum phase velocity of gravity-capillary waves, the patterns were dominated by the

stationary waves with the wavenumber vector parallel to the direction of the flow.

The wavenumber of these waves can be predicted based on the values of the mean

surface velocity, of the uniform time averaged flow depth, and of the exponent of the

average streamwise velocity profile. The radial patterns of waves which were also

observed in the same flow conditions in subsection 5.3.2 had the same wavenumber

of the stationary waves, with the exception of condition 4. The different behaviour

in this condition requires further investigation.

The characteristic wavenumber and frequency of the stationary waves represent

the characteristic spatial and temporal scales of the free surface, and have been found

affecting directly all its statistics . The frequency spectra of the elevation (subsection

5.2.1) scale with the frequency of the stationary waves. Empirical relations were

suggested that relate this frequency with both the first spectral moment and the
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standard deviation of the elevation. The correlation function of the elevation at zero

time-lag scales with the wavenumber of the stationary waves. The Froude number

of the flow also seems to affect the patterns on the free surface. The increase of

the Froude number caused the decrease of the slope of the frequency spectra of

the elevation, and the relatively more rapid decay of the zero time-lag correlation.

This was in agreement with the observations of Smolentsev and Miraghaie [2005],

and shows that the water surface becomes more rough when the Froude number

increases.

• Is it possible to relate the characteristics of these patterns with the Doppler

spectra of the scattered acoustic field, in order to improve the accuracy of

remote measurement techniques applied to shallow turbulent flows?

The measurements of the acoustic Doppler spectra in the backscattering configura-

tion (subsection 6.2.1) have shown three sets of peaks of these spectra, which have

been associated with scattering from Bragg resonant waves. The frequency of two

of these peaks was close to the prediction by the dispersion relation of capillary

waves propagating upstream and downstream. A third peak has been observed,

which corresponds to waves propagating at the mean surface velocity of the flow.

This third peaks was measured in all conditions, while the two peaks of dispersive

capillary waves only appeared when the Froude number was larger than 0.5. The

Bragg peaks were broader than what is predicted by a linear model of the free sur-

face, which suggests the existence of interactions among waves and modulations of

the short Bragg waves by longer gravity waves. Currently, the sensors that measure

the flow velocity based on the Doppler spectra of the backscattered electromagnetic

or acoustic waves are believed to neglect the effects of gravity-capillary waves. The

results in this thesis have shown that this approach is only valid in a limited range

of flow conditions, when the Froude number is small. In other conditions, the Bragg

peaks due to dispersive gravity-capillary waves can become dominant, and affect the

estimation of the mean surface velocity. The frequency of these peaks could be used

in order to estimate the mean surface velocity and the mean flow depth. In order

to be reliable, this estimation requires the knowledge of the phenomena that cause

the growth of the dispersive waves and the broadening of the Bragg peaks. These

phenomena are not understood yet.

An alternative approach consists in measuring the Doppler spectra of the scat-

tered signal in the forward scattering configuration. These spectra have a direct

relationship with the frequency-wavenumber spectra of the surface elevation, which

becomes explicit under a set of conditions (subsection 6.1.4). The Doppler spectra

of the forward scattered signal are governed by the behaviour of the longer waves on
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the free surface, which has been characterised in chapter 5. The results in subsec-

tion 6.2.2 have shown that the frequency of these spectra scales well with the mean

surface velocity. The comparison with the two numerical models have confirmed the

decrease of the slope of the wavenumber spectrum with the increase of the Froude

number, although the simplified power-function model of the surface spectrum was

found having limited validity at the higher wavenumbers. The inversion of the

Doppler spectra according to a simplified model of the frequency-wavenumber spec-

trum of the free surface has been able to confirm the change of slope of the frequency

spectra at the characteristic frequency of the stationary waves. These observations

could provide a more reliable characterisation of the hydraulic quantities, although

a more refined model of the surface dynamics and of the acoustic scattering would

be needed in order to ensure the required accuracy.

7.2 Future work and challenges

The results presented in this thesis are believed to be representative of shallow

turbulent flows over homogeneously rough bed, where the mean flow depth is of

the same order of magnitude of the wavelength of the dominant waves, and where

the Froude number is smaller than one. It is postulated that shallower flows may

exhibit a stronger nonlinearity of the free surface, flows with a higher Froude number

may show a stronger effect of turbulence relative to that of the rough bed, and

much slower and deeper flows may exhibit a larger importance of coherent turbulent

structures, with the consequent generation of scars and dimples on the surface. A

smooth flat bed is still expected to promote the generation of stationary waves,

although these may be smaller in amplitude. These different conditions require

further investigations in order to evaluate the behaviour of the free surface and

therefore the applicability of remote monitoring techniques in a wider range of flow

conditions. In chapter 5 it was shown that in the condition where the mean surface

velocity was smaller than the minimum phase velocity of gravity-capillary waves, the

surface is dominated by non-dispersive waves. The statistics of the turbulent flow

were not measured in this condition. These measurements would be useful in order to

verify the hypothesis that the non-dispersive waves are generated by the interaction

with turbulence. It was also observed that the standard theory of the interaction

between the waves on the surface and the static rough bed predicts the increase of

the amplitude of the stationary waves when the mean surface velocity is close to the

minimum phase velocity of gravity-capillary waves. Additional measurements at or

near this condition would help clarifying the generation of stationary waves. The

characterisation of the free surface patterns in chapter 5 has also shown a different
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behaviour in condition 4 than in all other conditions. This behaviour has not been

explained, and it should be investigated further.

The accuracy of the numerical models of the acoustic Doppler spectra has been

affected by the lack of knowledge about the behaviour of the shorter waves on the

free surface. Short waves could not be measured with the arrays of conductance

wave probes due to their limited resolution. Alternative methods based on optics

(Fourier transform profilometry [Cobelli et al., 2009, Maurel et al., 2009]) or on

the scattering of acoustic waves (stationary phase method [Nichols et al., 2013], or

acoustic holography [Krynkin et al., 2016]) could provide a better spatial resolu-

tion, and allow the fully three-dimensional spatial and temporal characterisation of

the free surface. These methods provide a direct measure of the surface elevation.

Therefore, they could also be used in order to estimate the hydraulic conditions of

the flow based on the statistics of the free surface measured at one single location

following the analysis described in section 5.2. This latter approach would provide a

very efficient alternative way of monitoring the flow conditions remotely, which has

never been considered in the application.

The statistical analysis in subsection 5.2 has shown that the increase of the sur-

face slope and of the amplitude of the surface fluctuations relative to the mean flow

depth is associated with a larger deviation from the linear Gaussian statistics. It

was suggested that this deviation could be caused by nonlinear interactions among

waves. Nonlinear interactions may also explain the generation of the radial patterns

of waves with the wavenumber modulus of the stationary waves observed in subsec-

tion 5.3.2. Currently there is no known simple model that is able to describe the

nonlinear dynamics of the free surface of shallow turbulent flows over homogeneously

rough beds. Such a model would be of large importance for the development of ac-

curate remote monitoring techniques that apply to these flows. It could explain the

growth of the capillary Bragg scale waves when the Froude number is larger than

0.5, as well as the modulation of these waves by the longer gravity waves. Both

phenomena have large impact on the measurement of the acoustic Doppler spectra,

as it was shown in chapter 6.

The wavelet spectral analysis in section 5.4 has shown that the dynamics of the

free surface can be modelled in terms of a linear composition of mutually indepen-

dent wave groups. These observations may help clarifying the mechanisms that

govern the generation and the evolution of the patterns on the free surface of shal-

low turbulent flows over a homogeneously rough bed. The wavelet spectral method

allows the characterisation of the dispersion relation of the free surface from the mea-

surement at a limited number of locations. The dispersion relation provides useful

information about the hydraulic quantities of the flow, such as the mean surface
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velocity, the mean flow depth, and the average streamwise velocity profile. Ideally,

this information could be extracted by inverting the measured dispersion relation.

In general the dependence between these quantities is not linear and the inversion

of the hydraulic parameters could present some numerical challenges, which need

to be addressed. The application of the wavelet spectral method combined with

non-contact measurement techniques that allow the reconstruction of the surface

elevation in an area of limited size (e.g., the Fourier transform profilometry, the sta-

tionary phase method, or the acoustic holographic method) can provide an optimal

approach to monitoring of the flow conditions remotely. This would overcome the

current limitations of the techniques based on Doppler scattering, which were found

being due to the still partial knowledge of the free surface behaviour in shallow

turbulent flows.
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J. F. Rodŕıguez and M. H. Garćıa. Laboratory measurements of 3-D flow patterns

and turbulence in straight open channel with rough bed. Journal of Hydraulic

Research, 46(4):454–465, 2008.

T. Sarpkaya. Vorticity, free surface, and surfactants. Annual Review of Fluid Me-

chanics, 28(1):83–128, 1996.

R. Savelsberg and W. van de Water. Experiments on free-surface turbulence. J.

Fluid Mech., 619:95, 2009.

P. Sayers, E. Penning-Rowsell, M. Horritt, and A. McKenzie. Climate change risk

assessment 2017: Projections of future flood risk in the uk, 2015. URL https:

//doi.org/10.13140/RG.2.1.1176.8563.

H. Schlichting and K. Gersten. Boundary-layer theory, McGraw-Hill series in me-

chanical engineering, vol. xxii, 7th ed. McGraw-Hill, New York, 1979.

207

https://doi.org/10.13140/RG.2.1.1176.8563
https://doi.org/10.13140/RG.2.1.1176.8563


BIBLIOGRAPHY

A. Schumacher. Stereophotogrammetrische wellenaufnahmen mit schneller bildfolge.

Deutsche Hydrografische Zeitschrift, 3(1-2):78–82, 1950.

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE,

37(1):10–21, 1949.

L. Shen, X. Zhang, D. K. P. Yue, and G. S. Triantafyllou. The surface layer for

free-surface turbulent flows. Journal of Fluid Mechanics, 386:167–212, 1999.

W. Shen and B. Wen. Experimental research of UHF radio backscattered from fresh

and seawater surface. Progress In Electromagnetics Research M, 11:99–109, 2010.

V. I. Shrira. Surface waves on shear currents: solution of the boundary-value prob-

lem. Journal of Fluid Mechanics, 252:565–584, 1993.

V. I. Shrira, S. I. Badulin, and C. Kharif. A model of water wave horse-shoepatterns.

Journal of Fluid Mechanics, 318:375–405, 1996.

S. Smolentsev and R. Miraghaie. Study of a free surface in open-channel water flows

in the regime from weak to strong turbulence. International Journal of Multiphase

Flow, 31(8):921, 2005.

G. Soriano, M. Joelson, and M. Saillard. Doppler spectra from a two-dimensional

ocean surface at L-band. IEEE Transactions on Geoscience and Remote Sensing,

44(9):2430–2437, 2006.

R. H. Stewart and J. W. Joy. HF radio measurements of surface currents. In Deep

Sea Research and Oceanographic Abstracts, volume 21, pages 1039–1049. Elsevier,

1974.

P. Stoica and N. Sandgren. Spectral analysis of irregularly-sampled data: Paralleling

the regularly-sampled data approaches. Digital Signal Processing, 16(6):712–734,

2006.

G. G. Stokes. On the theory of oscillatory waves. Transactions of the Cambridge

Philosophical Society, 8:441–473, 1847.

M. Takeda, H. Ina, and S. Kobayashi. Fourier-transform method of fringe-pattern

analysis for computer-based topography and interferometry. Journal of the Optical

Society of America, 72(1):156, 1982.

A. Tamburrino and J. S. Gulliver. Free-surface visualization of streamwise vortices

in a channel flow. Water Resources Research, 43(11), 2007.

208



BIBLIOGRAPHY

M. A. C. Teixeira and S. E. Belcher. On the initiation of surface waves by turbulent

shear flow. Dynamics of Atmospheres and Oceans, 41(1):1, 2006.

J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for

nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear

Phenomena, 58(1-4):77–94, 1992.

R. Thomas, C. Kharif, and M. Manna. A nonlinear Schrödinger equation for water

waves on finite depth with constant vorticity. Physics of Fluids (1994-present),

24(12):127102, 2012.

E. I. Thorsos. The validity of the Kirchhoff approximation for rough surface scatter-

ing using a Gaussian roughness spectrum. The Journal of the Acoustical Society

of America, 83(1):78–92, 1988.

J. V. Toporkov and G. S. Brown. Numerical simulations of scattering from time-

varying, randomly rough surfaces. IEEE Transactions on Geoscience and Remote

Sensing, 38(4):1616–1625, 2000.

J. Touboul, J. Charland, V. Rey, and K. Belibassakis. Extended mild-slope equation

for surface waves interacting with a vertically sheared current. Coastal Engineer-

ing, 116:77–88, 2016.

P. H. Trinh and S. J. Chapman. New gravity-capillary waves at low speeds. part 1:

Linear geometries. Journal of Fluid Mechanics, 724:367–391, 2013a.

P. H. Trinh and S. J. Chapman. New gravity–capillary waves at low speeds. part 2:

Nonlinear geometries. Journal of Fluid Mechanics, 724:392–424, 2013b.

W.-T. Tsai. A numerical study of the evolution and structure of a turbulent shear

layer under a free surface. Journal of Fluid Mechanics, 354:239, 1998.

R. Tsubaki and I. Fujita. Stereoscopic measurement of a fluctuating free surface

with discontinuities. Measurement Science and Technology, 16(10):1894, 2005.

D. E. Turney and S. Banerjee. Air-water gas transfer and near-surface motions.

Journal of Fluid Mechanics, 733:588, 2013.

G. R. Valenzuela. Scattering of electromagnetic waves from a tilted slightly rough

surface. Radio Science, 3(11):1057–1066, 1968.

W. A. Veronesi and J. D. Maynard. Digital holographic reconstruction of sources

with arbitrarily shaped surfaces. The Journal of the Acoustical Society of America,

85(2):588–598, 1989.

209



BIBLIOGRAPHY

F. Vivanco, F. Melo, C. Coste, and F. Lund. Surface wave scattering by a vertical

vortex and the symmetry of the Aharonov-Bohm wave function. Physical Review

Letters, 83(10):1966, 1999.

S. P. Walstead and G. B. Deane. Reconstructing surface wave profiles from reflected

acoustic pulses. The Journal of the Acoustical Society of America, 133(5):2597–

2611, 2013.

S. P. Walstead and G. B. Deane. Determination of ocean surface wave shape from

forward scattered sound. The Journal of the Acoustical Society of America, 140

(2):787–797, 2016.

C. J. Wang, B. Y. Wen, Z. G. Ma, W. D. Yan, and X. J. Huang. Measurement of river

surface currents with UHF FMCW radar systems. Journal of Electromagnetic

Waves and Applications, 21(3):375–386, 2007.

Y. Wang, C. Mingotaud, and L. K. Patterson. Noncontact monitoring of liquid

surface levels with a precision of 10 micrometers: A simple ultrasound device.

Review of Scientific Instruments, 62(6):1640–1641, 1991.

B. L. Weber and D. E. Barrick. On the nonlinear theory for gravity waves on the

ocean’s surface. Part I: Derivations. Journal of Physical Oceanography, 7(1):3–10,

1977.

M. Welber, J. Le Coz, J. B. Laronne, G. Zolezzi, D. Zamler, G. Dramais, A. Hauet,

and M. Salvaro. Field assessment of noncontact stream gauging using portable

surface velocity radars (SVR). Water Resources Research, 2016.

B. J. West, K. A. Brueckner, R. S. Janda, D. M. Milder, and R. L. Milton. A new

numerical method for surface hydrodynamics. Journal of Geophysical Research,

92(11):803–11, 1987.

C. E. Willert and M. Gharib. Digital particle image velocimetry. Experiments in

Fluids, 10(4):181–193, 1991.

E. G. Williams. Regularization methods for near-field acoustical holography. The

Journal of the Acoustical Society of America, 110(4):1976–1988, 2001.

WMTSA. Wavelet methods for time series analysis. 2006. http://www.atmos.

washington.edu/~wmtsa/.

D. B. Wright and J. A. Herrington. Problematic standard errors and confidence

intervals for skewness and kurtosis. Behavior research methods, 43(1):8–17, 2011.

210

http://www.atmos.washington.edu/~wmtsa/
http://www.atmos.washington.edu/~wmtsa/


BIBLIOGRAPHY

J. W. Wright. A new model for sea clutter. IEEE Transactions on Antennas and

Propagation, 16(2):217–223, 1968.

C.-S. Yih. Surface waves in flowing water. Journal of Fluid Mechanics, 51(02):

209–220, 1972.

W. R. Young and C. L. Wolfe. Generation of surface waves by shear-flow instability.

Journal of Fluid Mechanics, 739:276–307, 2014.

V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of

a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194,

1968.

V. E. Zakharov. Statistical theory of gravity and capillary waves on the surface of a

finite-depth fluid. European Journal of Mechanics-B/Fluids, 18(3):327–344, 1999.

V. E. Zakharov and N. N. Filonenko. Weak turbulence of capillary waves. Journal

of Applied Mechanics and Technical Physics, 8(5):37–40, 1967.

V. E. Zakharov and V. I. Shrira. Formation of the angular spectrum of wind waves.

Soviet physics, JETP, 71(6):1091–1100, 1990.

C. J. Zappa, M. L. Banner, H. Schultz, A. Corrada-Emmanuel, L. B. Wolff, and

J. Yalcin. Retrieval of short ocean wave slope using polarimetric imaging. Mea-

surement Science and Technology, 19(5):055503, 2008.

C. Zhang, L. Shen, and D. K. P. Yue. The mechanism of vortex connection at a free

surface. Journal of Fluid Mechanics, 384:207–241, 1999.

J. Zhang, B. W. Drinkwater, P. D. Wilcox, and A. J. Hunter. Defect detection

using ultrasonic arrays: The multi-mode total focusing method. NDT & E Inter-

national, 43(2):123–133, 2010.

X. Zhang and C. S. Cox. Measuring the two-dimensional structure of a wavy water

surface optically: A surface gradient detector. Experiments in Fluids, 17(4):225,

1994.

211



BIBLIOGRAPHY

212



Appendix A

Derivation of the dispersion

relations of gravity-capillary waves

The fluid is assumed to be inviscid and incompressible. The lateral boundaries

are neglected, i.e., the fluid domain is assumed to extend to infinity along the x-

and the y-direction. The flow velocity field U(x, y, z, t) is decomposed in the three

components

U(x, y, z, t) =U(z) + u(x, y, z, t), (A.1a)

V(x, y, z, t) =v(x, y, z, t), (A.1b)

W(x, y, z, t) =w(x, y, z, t), (A.1c)

where u = (u, v, w) is the small perturbation velocity field with the zero-average of

each component. The pressure field is p, and the water density is ρw. The density of

air is neglected. The Navier-Stokes equations under these assumptions are written

as

ut + (U + u)ux + v(U + u)y + w(U + u)z =− px
ρw
, (A.2a)

vt + (U + u)vx + vvy + wvz =− py
ρw
, (A.2b)

wt + (U + u)wx + vwy + wwz =− pz
ρw
, (A.2c)

where the subscripts indicate the partial derivative. The continuity equation is

ux + vy + wz = 0. (A.3)
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The boundary condition at the bottom boundary is

w = 0 where z = −H. (A.4)

At the free surface the kinematic boundary conditions is

ζt + (U + u)ζx + vζy = w, where z = ζ. (A.5)

The pressure p at the surface is

p = ρwgζ − γw
(

1

Rx

+
1

Ry

)
, where z = ζ, (A.6)

where Rx and Ry are the principal radii of curvature of ζ, γw is the surface tension

coefficient, and g is the gravity constant.

The boundary conditions and the Navier-Stokes equations are linearised by as-

suming

|u|
U0

� 1, (A.7a)

|ζ|
H
� 1, (A.7b)

|∇ζ| � 1, (A.7c)

where U0 is the value of the average streamwise velocity at z = 0. Equations (A.4)

and (A.6) are expanded near z = 0. The resulting set of equations is

ut + Uux + wUz = − px
ρw
, (A.8a)

vt + Uvx = − py
ρw
, (A.8b)

wt + Uwx = − pz
ρw
, (A.8c)

ux + vy + wz = 0, (A.8d)

w = 0, where z = −H, (A.8e)

ζt + Uζx = w, where z = ζ, (A.8f)

p = ρwgζ − γw∇2ζ, where z = ζ. (A.8g)

These are now linear in ζ. Considering the expansion in a Fourier integral given by

equation (3.10), it is possible to solve a similar set of equations for each wave with

the wavenumber k. Then the velocity perturbation u assumes the meaning of the

perturbation velocity field induced by a single wave.

214
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It is convenient to reformulate the problem in the system of reference (x′, y′, z′)

with x′ parallel to k and z′ ≡ z. Here the following apply,

U′ = (U ′, V ′, 0), (A.9a)

u′ = (u′, 0, w′), (A.9b)

ζy′ = 0. (A.9c)

The equations (A.8) become

u′t + U ′u′x′ + V ′u′y′ + w′U ′z = −px
′

ρw
, (A.10a)

w′V ′z = −py
′

ρw
, (A.10b)

w′t + U ′w′x′ + V ′w′y′ = − pz
ρw
, (A.10c)

u′x′ + w′z = 0, (A.10d)

w′ = 0, where z = −H, (A.10e)

ζt + U ′ζx′ = w′, where z = 0, (A.10f)

p = ρwgζ − γwζx′x′ , where z = 0. (A.10g)

Taking twice the curl of equations (A.10a) to (A.10c) one can find an equation in

the only variable w′,

(∇2w′)t + U ′(∇2w′)x′ + V ′(∇2w′)y′ − w′x′U ′zz − w′y′V ′zz = 0. (A.11)

The solution is sought for in the form

w′(x′, z) = Ψ(z)ei[kx
′−ωt]. (A.12)

Substituting this in equation (A.11) yields

Ψzz −
[
k2 +

U ′zz
U ′ − c

]
Ψ = 0 (A.13)

where c is the phase velocity. The surface elevation due to one single wave with the

wavenumber k is

ζ(x′, t) = A(k, ω)ei[kx
′−ωt]. (A.14)

Substituting in equation (A.10g) and evaluating equation (A.10a) at z = 0 with

equation (A.10d) leads to

Ψz(U
′ − c)−ΨU ′z = ik2

(
g +

γw
ρw
k2

)
A(k, ω). (A.15)
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Combining with equation (A.10f) the boundary conditions are written as

Ψ = 0, where z = −H, (A.16a)

(U ′ − c)2Ψz −
[
U ′z(U

′ − c) +

(
g +

γw
ρw
k2

)]
Ψ = 0, where z = 0. (A.16b)

The solution for an irrotational flow where the average streamwise velocity is

constant throughout the depth is found by substituting

U ′z = 0, (A.17a)

U ′ ≡ U0 cos (θ), (A.17b)

in equations (A.13) and (A.16), where θ is the angle between the streamwise velocity

of the flow and the wavenumber of the wave. The result is

Ψzz − k2Ψ = 0, (A.18)

which is satisfied by an equation of the form

Ψ = C1e
−kz + C2e

kz. (A.19)

Based on the boundary conditions of equations (A.16), the phase velocity of the

gravity-capillary waves in an irrotational flow is found as

c(k, θ) = U0 cos (θ)±

√(
g +

γw
ρw
k2

)
tanh (kH). (A.20)

This corresponds to equation (3.19).

The dispersion relation with the average streamwise velocity profile represented

by equation (3.17) can be calculated numerically following the procedure described

by Fenton [1973]. The average streamwise velocity is represented by equation (3.17)

The non-dimensional variables

ž = z/H, (A.21a)

Ψ̌(ž) = Ψ/[HΨz], (A.21b)

ǩ2(ž) = k2H2 +H2U ′zz/(U
′ − c). (A.21c)

are substituted into equations (A.13) and (A.16). Assuming that the flow velocity

is approximated by equation (3.17), the solution for Ψ̌(ž) is found by integrating
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the Riccati equation

dΨ̌(ž)

dž
= 1− ǩ2(ž)Ψ̌2(ž), (A.22a)

Ψ̌(ž) = 0, when ž = −1, (A.22b)

from ž = −1 to ž = 0. ǩ2 is found from equation (3.17) as

ǩ2 = k2H2 +
Ǔn(n− 1)

(1 + ž)2[Ǔ − (1 + ž)−n]
. (A.23)

Introducing

Ǔ = U0 cos (θ)/c, (A.24)

the result is the phase velocity of gravity-capillary waves propagating in a flow with

the power-function vertical profile of the streamwise velocity,

c2 =

(
g + γw

ρw
k2
)

Ψ̌(0)

(Ǔ − 1)[(Ǔ − 1)− nǓΨ̌(0)]
. (A.25)

This is the same as equation (3.24). The singularity of the integration appears from

equation (A.23).
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Appendix B

Derivation of the Kirchhoff

approximation

The acoustic velocity potential P is defined by [e.g. Morse and Ingard, 1968, p.248][Bass

and Fuks, 1979, p.7]

pa = ρa
∂P

∂t
, (B.1a)

ua = −∇P, (B.1b)

where pa is the acoustic pressure, ρa is the density of air which is assumed homo-

geneous, and ua is the velocity of the acoustic field in air otherwise at rest. All

quantities are understood to be multiplied by a factor exp (iωat). The Helmholtz

equation is written as (
∇2 + κ2

)
P = −4πQS(R), (B.2)

where κ is the acoustic wavenumber, and QS(R) is the source density at the location

R. Equation (B.2) can be written in integral form using Green’s formula, as in

P (R) =

∫
V
QS(R′)G(R,R′)dR′ +

1

4π

∫
Σ

[
G(R, ρ̃)

∂P (ρ̃)

∂n
− P (ρ̃)

∂G(R, ρ̃)

∂n

]
dρ̃,

(B.3)

where V is the volume that contains the sound sources, Σ is a closed surface that

encloses the whole acoustic field, n is the unit vector normal to the surface and

directed outside, and G is a Green’s function. R′ is the vector co-ordinate within

the volume V , and ρ̃ is the co-ordinate parallel to the surface Σ.

The first term on the right hand side of equation (B.3) can be calculated for a

point source with density

QS(R′) = δ(R′ − S), (B.4)
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where S is the vector location of the source, assumed in free field. From this equation,

Pi(R) =

∫
V
QS(R′)G(R,R′)dR′ = G(R,S), (B.5)

which is called the incident field.

The Green function G(R,R′) must satisfy equation (B.2) with the right hand

side replaced by −δ(R − R′). A solution can be expressed as [Morse and Ingard,

1968, p.319]

G(R,R′) = G(R,R′) + G̃(R) =
eiκ|R−R

′|

4π|R−R′|
+ G̃(R), (B.6)

where G̃(R) is a general solution of the homogeneous Helmholtz equation, including

the trivial solution G̃ = 0. The two-dimensional case is represented in the co-

ordinates x and z. Here V represents a surface, while Σ is a line. In the two-

dimensional case a possible shape for the Green function is given by [Morse and

Ingard, 1968, p.366]

G(R,R′) =
i

4
H

(1)
0 (κ|R−R′|), (B.7)

where H
(1)
0 is the Hankel function of the first kind of order 0. In the far field from

R′ defined as the region where

κ|R−R′| → ∞, (B.8)

equation (B.7) is approximated by

G(R,R′) ≈ i

4

√
2

πκ

eiκ|R−R
′|−iπ

4√
|R−R′|

. (B.9)

Let consider the case of a point source at the location S = (xs, ys, zs), emitting

acoustic waves which are reflected by a rigid flat plane represented by z = 0. The

boundary condition at the plane is

∂P

∂z
= 0, when z = 0. (B.10)

A solution of equation (B.3) with condition (B.10) is found with the Green function

[Morse and Ingard, 1968, p.368]

G(R,S) = G(R,S) +G(R,S−), (B.11)
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where S− = (xs, ys,−zs). This function also satisfies the condition

∂G
∂z

= 0, where z = 0, (B.12)

so that all terms of the integral of equation (B.3) are equal to zero, and

P (R) = G(R,S) +G(R,S−). (B.13)

Therefore the potential on the flat surface is

P (ρ) = 2G(ρ,S), (B.14)

where ρ is the polar co-ordinate on the flat surface, ρ2 = x2 + y2.

Consider a circular piston with radius rs with the centre of its surface at the

origin and with the axis parallel to the z-axis. The piston is set in a plane rigid

baffle of infinite size. The boundary conditions are

∂P

∂z
= 0, where ρ > rs, (B.15a)

∂P

∂z
= u0e

−iωt, where ρ ≤ rs. (B.15b)

The same Green function of equation (B.11) is used here, which ensures that

∂G/∂z = 0 at the boundary. The potential can be calculated from

P (R, θs, ςR) =
1

4π

∫ 2π

0

∫ rs

0

u0e
−iωtG(R, θs, ςR, ρ, ς)ρdρdς, (B.16)

where ς is the angular polar co-ordinate in the plane x−y which has the value ςR at

the location R, and θs is the angle with respect to the axis of the piston. Expressing

G like in equation (B.6) with G̃ = 0, and assuming in the far field from the piston

R

ρ
� 1, (B.17)

then (B.16) becomes

P (R, θs, ςR) ≈ u0

8π2

eiκR

R

∫ 2π

0

∫ rs

0

e−iκρ sin (θs) cos (ςR−ς)ρdρdς, (B.18)

which has the solution [Morse and Ingard, 1968, p.381]

P (R, θs) =
u0r

2
s

4π

eiκR

R

J1(κrs sin θs)

κrs sin θs
= u0r

2
sG(0,R)

J1(κrs sin θs)

κrs sin θs
, (B.19)
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where J1 is the Bessel function of the first kind. From equations (B.19) and (B.5)

one can write

Pi(R, θs) = PsDs(θs)G(R,S), (B.20)

where

Ds(θs) = 2
J1(κrs sin θs)

κrs sin θs
, (B.21)

and Ps is an effective amplitude of the source. From now on the analysis is based

on the non-dimensional normalised potential, so that the incident field is defined as

Pi(R, θs) = Ds(θs)
eiκ|R−S|

|R− S|
(B.22)

in the three-dimensional case, and

Pi(R, θs) = Ds(θs)
eiκ|R−S|√
|R− S|

(B.23)

in the two-dimensional case, respectively. Equations (B.21), (B.22), and (B.22) are

the same as equations (3.88), (3.85), and (3.85), respectively.

The integral equation (B.3) must be solved numerically in general, since the po-

tential appears both inside and outside of the integral. The Kirchhoff approximation

allows the simplification of this equation, assuming that at all locations on a rough

surface Σ the acoustic field can be represented by the reflection of the incident field

Pi from the plane tangent to the surface locally [Bass and Fuks, 1979, p.220]. This

is expressed by equation (B.14), which is modified in order to take into account the

general shape of the reflecting surface, as

P (ρ̃) = 2G(ρ̃,S), where ρ̃ ∈ Σ. (B.24)

From the same representation, it follows that

∂P (ρ̃)

∂n
= 0, where ρ̃ ∈ Σ. (B.25)

In practice, one needs to take into account the directivity of the source based on

equations (B.22) and (B.23). This can be done by defining

P (ρ̃) = 2Pi(ρ̃), (B.26)

where Pi is given by equations (B.22) and (B.23). In this case the boundary condition

is satisfied only approximately and only if the directivity pattern varies slowly in
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the direction n normal to the surface, i.e., if

∂Ds

∂n
= ∇Ds · n� 1, (B.27)

Eqzuation (B.3) with G = G and with the directivity pattern of the receiver

gives the potential at the point M as

P (M) = Dm(S)Pi(M)− 1

4π

∫
Σ+Σ′+ΣR

Dm(ρ̃)

[
G(M, ρ̃)

∂P (ρ̃)

∂n
− P (ρ̃)

∂G(M, ρ̃)

∂n

]
dρ̃,

(B.28)

In equation (B.28) the boundary surface is decomposed into three parts. Σ represents

the rough surface with finite extension in the directions x and y, which has the

average corresponding to z = 0. ΣR is a hemisphere with the radius much larger

than the size of Σ. Σ′ is a flat surface with z = 0 that connects Σ with ΣR.

The change of sign of the integral with respect to equation (B.3) derives from the

orientation of n inside the volume. If all sources are within Σ + Σ′ + ΣR, then [i.e.

Bass and Fuks, 1979, p.225]

1

4π

∫
Σ+Σ′+ΣR

Dm(ρ̃)

[
G(M, ρ̃)

∂Pi(ρ̃)

∂n
− Pi(ρ̃)

∂G(M, ρ̃)

∂n

]
dρ̃ = 0. (B.29)

On the surface ΣR, the radiation condition requires that no waves are generated at

infinity, so that

P (ρ̃) ≈ Pi(ρ̃)→ 0, when ρ̃→∞. (B.30)

The Kirchhoff approximation imposes

P (ρ̃) = Pi(ρ̃), when ρ̃ ∈ Σ′ (B.31)

on the surface Σ′, and (B.26) on the surface Σ.

Thus, summing equation (B.29) and equation (B.28), considering equations

(B.25), (B.26), (B.30), and (B.31), yields

P (M) = Dm(S)Pi(M)− 1

4π

∫
Σ

Dm(ρ̃)

[
G(M, ρ̃)

∂Pi(ρ̃)

∂n
+ Pi(ρ̃)

∂G(M, ρ̃)

∂n

]
dρ̃.

(B.32)

Substituting equation (B.20) for Pi yields

P (M) = 4πDm(S)Ds(M)G(M,S)−
∫

Σ

Dm(ρ̃)Ds(ρ̃)
∂

∂n
[G(M, ρ̃)G(ρ̃,S)] dρ̃,

(B.33)
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where ρ̃ is now defined on the surface Σ only, i.e.,

ρ̃ = (x, y, ζ(x, y)). (B.34)

and the function z = ζ(x, y) corresponds to the equation of the rough surface Σ.

The unit vector normal to the surface is

n =
iz −∇ζ√
1 + |∇ζ|2

, (B.35)

where iz is the unit vector in the vertical direction z such that the average of ζ over

z is 0.

The integration is carried out with respect to the co-ordinate ρ = (x, y) defined

on the flat surface Σ0 that corresponds to the plane x − y, i.e., with a change of

variable

dρ̃ = dρ/nz = dρ
√

1 + |∇ζ|2. (B.36)

nz in equation (B.36) is the projection of the normal to the surface n in the z-

direction. Equation (B.33) is written as

P (M) = 4πDm(S)Ds(M)G(M,S)

+

∫
Σ0

Dm(ρ̃)Ds(ρ̃)
∂

∂n
[G(M, ρ̃)G(ρ̃,S)]

√
1 + |∇ζ|2dρ.

(B.37)

Scattering from a three-dimensional surface

Considering the Green function given by equation (B.6) with G̃ = 0, one finds

G(M, ρ̃)G(ρ̃,S) =
1

16π2

eiκ(R̃s+R̃m)

R̃sR̃m

, (B.38)

where

R̃s = ρ̃− S, (B.39a)

R̃m = M− ρ̃, (B.39b)

The derivative with respect to n of equation (B.38) is equal to

∂

∂n

{
eiκ(R̃s+R̃m)

R̃sR̃m

}
=
iκeiκ(R̃s+R̃m)

R̃sR̃m

{[
1− 1

iκR̃s

]
∇R̃s +

[
1− 1

iκR̃m

]
∇R̃m

}
· n,

(B.40)
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which is approximated by

∂

∂n

{
eiκ(R̃s+R̃m)

R̃sR̃m

}
≈ iκeiκ(R̃s+R̃m)

R̃sR̃m

∇
(
R̃s + R̃m

)
· n, (B.41)

when κR̃s,m � 1. With the definitions of equations (3.92), (3.93), and (3.94),

substituting equations (B.6) and (B.41) into equation (B.37) yields

P (M) = Dm(S)Ds(M)
eiκ|M−S|

|M− S|
+

1

i4π

∫
Σ0

Dm(ρ̃)Ds(ρ̃)
eiκ(R̃s+R̃m)

R̃sR̃m

(q̃z − q̃⊥ · ∇ζ)dρ,

(B.42)

which corresponds to equation (3.95).

Scattering from a two-dimensional surface

In the two-dimensional case the Green function is represented by equation (B.9),

with the assumption κRs,m � 1 In this case

G(M, ρ̃)G(ρ̃,S) =
i

8πκ

eiκ(R̃s+R̃m)√
R̃sR̃m

, (B.43)

and

∂

∂n
[G(M, ρ̃)G(ρ̃,S)] = − eiκ(R̃s+R̃m)

8π
√
R̃sR̃m

{[
1 +

i

2κR̃s

]
∇R̃s +

[
1 +

i

2κR̃m

]
∇R̃m

}
· n,

(B.44)

which is approximated by

∂

∂n
[G(M, ρ̃)G(ρ̃,S)] ≈ eiκ(R̃s+R̃m)

8πκ
√
R̃sR̃m

q̃ · n, (B.45)

when κR̃s,m � 1. Substituting in equation (B.37) and normalising yields equation

(3.107),

P (M) = Dm(S)Ds(M)
eiκ|M−S|√
|M− S|

+

− 1

8π
√

2κπ

∫
Σ0

Dm(ρ̃)Ds(ρ̃)
eiκ(R̃s+R̃m)√

R̃sR̃m

(q̃z − q̃xζx)dx.
(B.46)
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Appendix C

Linearisation of the Kirchhoff

equation with small Rayleigh

parameter

The potential of the acoustic field scattered by a three-dimensional surface is given

by equation (3.106) for the case where the gradient of the surface elevation is small.

Substituting into equation (3.110) yields

SD(M, ω) =− 1

32π3

∫ ∞
−∞

∫ ∫
Σ

Dm(ρ)Ds(ρ)

Rm(ρ)Rs(ρ)

Dm(ρ + ρ′)Ds(ρ + ρ′)

Rm(ρ + ρ′)Rs(ρ + ρ′)
qz(ρ)qz(ρ + ρ′)

eiκ[Rs(ρ)+Rm(ρ)−Rs(ρ+ρ′)−Rm(ρ+ρ′)] < e−iqz [ζ(ρ,t)−ζ(ρ+ρ′,t+τ)] > eiωτdρdρ′dτ.

(C.1)

The ensemble average in equation (C.1) is called the two-dimensional characteristic

function and, if ζ is Gaussian distributed, it is equal to [Bass and Fuks, 1979, p.361]

< e−iqz [ζ(ρ,t)−ζ(ρ+ρ′,t+τ)] >= e−q
2
zσ

2[1−W (ρ′,τ)], (C.2)

where W (ρ′, τ) is the space-time correlation of the surface elevation. It is assumed

that the correlation decays rapidly in space, so that the size of the area which

is important for the integration is represented by the scales lx and ly in the x-

and in the y-direction, respectively. The scale of roughness is represented by the

standard deviation of the surface elevation function, σ. The transducer and the

receiver are assumed to be at the same height above the surface, and aligned along

the streamwise direction. If conditions (3.112) and (3.113) are satisfied, and if the

horizontal dimension of the scattering surface is large compared to lx,y, then the

spatial integrals in equation (C.1) can be extended to the interval from −∞ to ∞.
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With the above assumptions, Rs, Rm, and q can be expanded in a Taylor series

near ρ, with the result

Rs(ρ + ρ′) =

[
1 +

ρ

Rs(ρ)

ρ′

Rs(ρ)
+O

(
ρ′2

R2
s(ρ)

)]
Rs(ρ), (C.3a)

Rm(ρ + ρ′) =

[
1− |M− S− ρ|

Rm(ρ)

ρ′

Rm(ρ)
+O

(
ρ′2

R2
m(ρ)

)]
Rm(ρ). (C.3b)

Assuming the validity of equations (3.114), it follows

κ [Rs(ρ) +Rm(ρ)−Rs(ρ + ρ′)−Rm(ρ + ρ′)] ≈ −q⊥(ρ) · ρ′, (C.4)

where q⊥ = (qx, qy). If equations (3.116) and (3.117) are also satisfied, then also

the terms of order ρ′/Rs,m can be neglected in the pre-exponential term of equation

(C.1). Also, qz(ρ + ρ′) is approximated by

qz(ρ + ρ′) ≈ qz(ρ) (C.5)

in the argument of equation (C.2). It is assumed finally that the directivity of the

transducer and of the receiver vary slowly in space in a region with size lx,y.

With the above approximations and definitions, equation (C.1) is written as

SD(M, ω) =

− 1

32π3

∫ ∞
−∞

D2
m(ρ)D2

s(ρ)

R2
m(ρ)R2

s(ρ)
q2
z(ρ)

{∫ ∫ ∞
−∞

e−q
2
z(ρ)σ2[1−W (ρ′,τ)]ei[ωτ−q⊥(ρ)·ρ′]dρ′dτ

}
dρ.

(C.6)

Inverting the Fourier transform of equation (3.2), one obtains

W (ρ′, τ) =
∑
j

S(kj, ωj)e
i[kj ·ρ′−ωjτ ], (C.7)

where S(kj, ωj) is the frequency-wavenumber spectrum of the surface elevation.

Assuming the smallness of the Rayleigh parameter, equation (3.112), and expanding

the first exponential of equation (C.6) to first order of q2
zσ

2, it is found

SD(M, ω) =

− 1

32π3

∫ ∞
−∞

D2
m(ρ)D2

s(ρ)

R2
m(ρ)R2

s(ρ)
q2
z(ρ)

[
1− q2

z(ρ)σ2
]{∫ ∫ ∞

−∞
ei[ωτ−q⊥(ρ)·ρ′]dρ′dτ

}
dρ+

− σ2

32π3

∫ ∞
−∞

D2
m(ρ)D2

s(ρ)

R2
m(ρ)R2

s(ρ)
q4
z(ρ)

{∫ ∫ ∞
−∞

∑
j

S(kj, ωj)e
i[kj ·ρ′−ωjτ ]ei[ωτ−q⊥(ρ)·ρ′]dρ′dτ

}
dρ.

(C.8)
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Assuming the stationarity of the spectrum, the sum in the second term on the right

hand side of equation (C.8) can be taken outside of the integrals. The integrals

within the curly brackets represent delta functions, as

SD(M, ω) =

− 1

32π3

∫ ∞
−∞

D2
m(ρ)D2

s(ρ)

R2
m(ρ)R2

s(ρ)
q2
z(ρ)

[
1− q2

z(ρ)σ2
]
δ(ω)δ(q⊥(ρ))dρ+

−
∑
j

σ2

32π3

∫ ∞
−∞

D2
m(ρ)D2

s(ρ)

R2
m(ρ)R2

s(ρ)
q4
z(ρ)S(kj, ωj)δ(ω − ωj)δ(q⊥(ρ)− kj)dρ.

(C.9)

If equation (3.118) is valid, then

dq⊥ = −κ
[
Rs +Rm

RsRm

− 1

Rs,m

O
(

ρ2

R2
s,m

)]
dρ ≈ −κRs +Rm

RsRm

dρ. (C.10)

Changing the variable of integration in equation (C.9) to q⊥(ρ) results in equations

(3.119) and (3.120).
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