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Abstract v

Abstract

In this thesis we study several algebras which are related to the bubble algebra,
including the bubble algebra itself. We introduce a new class of multi-parameter
algebras, called the multi-colour partition algebra Pmm(év), which is a generalization
of both the partition algebra and the bubble algebra. We also define the bubble alge-

bra and the multi-colour symmetric groupoid algebra as sub-algebras of the algebra

Prm (0).

We investigate the representation theory of the multi-colour symmetric groupoid
algebra FG,, ,,,. We show that FG,,,, is a cellular algebra and it is isomorphic to
the generalized symmetric group algebra FZ,, ! G,, when m is invertible and F is an
algebraically closed field. We then prove that the algebra ]P’nm(g) is also a cellular
algebra and define its cell modules. We are therefore able to classify all the irreducible
modules of the algebra an(g) We also study the semi-simplicity of the algebra

P,,.m(0) and the restriction rules of the cell modules to lower rank n over the complex
field.

The main objective of this thesis is to solve some open problems in the repre-

sentation theory of the bubble algebra T, (0). The algebra T,,,.(8) is known to be
cellular. We use many results on the representation theory of the Temperley-Lieb

algebra to compute bases of the radicals of cell modules of the algebra Tnm(g) over

an arbitrary field. We then restrict our attention to study representations of T, ,,,(0)

over the complex field, and we determine the entire Loewy structure of cell modules

of the algebra T, ,,,(9). In particular, the main theorem is Theorem 5.41.
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Introduction

In 2003, Grimm and Martin [23] introduced a new algebra, called the bubble al-
gebra Ty, (0o, - - ., 0m—1), this algebra defined entirely diagrammatically. They found
the generic representations of the bubble algebra and proved that it is semi-simple
when none of parameters ¢; is a root of unity. Later, Jegan [28] showed that the bub-
ble algebra is a cellular algebra over any field, and it is a tower of recollement when all
of the d; are non-zero. Also Jegan [28] showed how certain idempotent sub-algebras
of the bubble algebra correspond to tensor products of Temperley-Lieb algebras and
investigated the homomorphisms between the cell modules of the algebra T, ,,,. The
problem of computing the Cartan matrix of the algebra is still open when some of
the parameters are roots of unity. This has been the starting point of the work we

present here.

In this thesis we deal with many algebras, all of them contained in the multi-
colour partition algebra, which is defined in Chapter 2. Although this algebra is
much bigger than the partition algebra, many techniques that are used to study the
partition algebra still work on the multi-colour partition algebra P, ,,,(dg, - . ., dpm1)-
The partition algebra was defined by Martin [37, 38, 39] and independently by Jones
[29], and its representation theory has been investigated by many people, for example
Doran and Wales [14], Halverson [24], Halverson and Ram [25], Martin [39, 40],
Martin and Saleur [42], Martin and Woodcock [44] and Xi [55].

A key technique used in this thesis consists of reducing problems in the bubble
algebra to problems in the Temperley-Lieb algebra. The Temperley-Lieb algebra
was first introduced in [52] and its representation theory is well known, see Martin
[37], Ridout and Saint [48] and Westbury [54]. Not surprisingly we have found a

1



Introduction 2

number of features in common with of the Temperley-Lieb algebra, as both of them
are cellular algebras. The notion of a cellular algebra was first introduced by Graham
and Lehrer [20]. Many properties of the representation theory of a cellular algebra

can be determined from the cellular structure alone, see [32], [33], [53] and [56].
Chapter overview:

In the first chapter, we shall recall the preliminary results required to proceed with
the following chapters. This will mainly be a review of the Temperley-Lieb algebra

and the partition algebra and some results regarding their representation theories.

In chapter two we define our main algebras. We begin by defining the multi-colour
partition algebra P, ,,,(do, . . ., dm—1), which is a generalization of the partition algebra
and the bubble algebra, and giving some of its properties such as its dimension.
Also we redefine it by using generators and relations. In Section 2.5, we define the
bubble algebra as a sub-algebra of the multi-colour partition algebra and determine
its dimension and a generating set for it. In the end of this chapter we discuss certain
special idempotent sub-algebras of the multi-colour algebra and show that they are

isomorphic to products of partition algebras.

In Chapter 3, we study the multi-colour symmetric groupoid &,, ,,,. It is the same as
the groupoid ¢(m,n) in Section 2 in [46]. In this chapter we show that for n and m

positive integers, we have

/\eF(nﬂm =0

n

)\07 tt )\mfl
isomorphic simple F&,, ,,-modules. In Section 3.3 we show that the generalized sym-

where ny = ( ) We use this to determine the complete set of non-
metric group algebra is isomorphic to the algebra FS,, ,, when m is invertible in F

and [ is algebraically closed.

The main objective of the fourth chapter is to study the representation theory of
the multi-colour partition algebra. We will analyse the irreducible representations of

the multi-colour partition algebra. We do this by showing that the algebra P, ,, is a
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cellular algebra and then study the cell modules of it and find some of its properties
such as the restriction rule. Xi [55] has proved that the partition algebra P,(d) is
a cellular algebra, by using the fact that the symmetric group algebra is a cellular
algebra. We will do the same, showing that an(g) is a cellular by using the fact that
the tensor product of finitely many symmetric group algebras is cellular. The main

result of this chapter is that the algebra ]P’n,m(g) is non-semisimple over the complex

field if and only if J; is a non-negative integer less than 2n — 1 for some j € Z,,.

In the final chapter we study the representation theory of the bubble algebra
Thm(S0,---,0m—1). We have shown that we can use the cell modules of the algebra
TL, () to construct the cell modules of the bubble algebra. We begin by defining
its cell modules and then study their properties such as the dimensions and their
radicals. The last part of this thesis deals with the Cartan matrix of the bubble

algebra over the complex field.



Chapter 1

Background

As mentioned in the introduction, we review some structures, known results and
technical details that we will be using through the thesis. We start in Section 1.1 with
fundamental facts about algebras. Next we define the groupoid and discuss some of
its properties. Our aim in this thesis is studying the bubble algebra and the multi-
colour partition algebras, relying on the results of the representation theory of both
the Temperley-Lieb algebra and the partition algebra. Thus it will be convenient to
recall the main results of the representation theory of the Temperley-Lieb algebra,
the partition algebra and the symmetric group. Furthermore, as all these algebras

are cellular algebras, we briefly summarise the basic facts about cellular algebra.

We denote the set of non-negative integers by N, all integers are denoted by 7Z

and the complex numbers by C.

1.1 Basics

Throughout the thesis, we assume that F is an arbitrary field of a charcteristic
p > 0, A is a unital associative F-algebra of finite dimension. We take n,m € N and
fix parameters d, dg, 01, ..., 0,1 in the field F. The symbol 5 is used to refer a tuple
(09, - -y Om—1). All modules in this thesis will be left modules of finite dimension

unless explicitly stated otherwise.
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For any family of F-algebras A,, with an inclusion A,,_; — A,,, we willuse M |4, _,

to denote the restriction of an left A,-module M to the algebra A,,_;.

Let N be an A,,_;-module, then N t#m:= A, ®, N is an A,-module, the induced
module, with action defined by a(b® n) = (ab) ® n for all a,b € A,, and n € N.

Let Ay and A, be finite dimensional algebras over F and A; < A,, and M and

N are A; and Ay modules respectively. Then we have
Homy, (M 142, N) = Homy, (M, N |4,), (1.1)

which is known as Frobenius reciprocity, see for example Proposition 3.3.1 in [3].

Proposition 1.1. [e.g. 6, Section 6.2]. Let Ay and Ay be algebras over F. Sup-
pose that Ay is given by generators and relations: Ay = F(X)/(r;). Then algebra

homomorphisms are in bijection with maps f : X — Ag such that f(r;) =0 for all i.

Two idempotents e, ¢ € A are conjugate if there exists an invertible element

u € A such that ueu™! = ¢€'.

Lemma 1.2. [e.g. 1, Corollary 5.11]. The idempotent e is primitive if and only if

the eAe 1s a local ring.

Let A be an algebra over a field [F and e be an idempotent in A, then eAe is also an
algebra and it is called an idempotent sub-algebra of A. There are additive F-linear

covariant functors between A-mod(the category of left A-modules) and eAe-mod
e, F
eAe-mod — A-mod — eAe-mod

where F(N) = eN and G(M) = Ae ®cpe M. The functors F' and G are called
localisation and globalisation with respect to e, respectively. Note that FG(M) = M
and G is a full embedding. For more details see for example Section 5.3 in [37]. Note

that F' takes simples to simples or zero.

Theorem 1.3. [21, Section 6.2]. Let e be an idempotent in A and {Sy | A € A} be

a complete set of non-isomorphic simple left modules of A, and set A® = {\ € A |
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eSy # 0}.Then {eSy | A € A®} is a complete set of inequivalent simple left modules
of eAe, and the remaining simple modules Sy where A € A\ A® are a complete set of

simple modules of A/AeA.

!
We will use the symbol @ A to denote the direct sum of [ copies of a F-algebra
A, and M;(F) to be the | x [ matrix algebra over F.

1.2 Groupoids

In order to study the multi-colour symmetric groupoid, it will be useful to recall

some facts about groupoids and groupoid algebras. We follow Khalkhali [31].

Definition 1.4. [e.g. 31, Definition 2.1.1]. A groupoid G is a small category in which

every morphism is an isomorphism.

A small category is a category where its objects form a set. The set of objects
of G is denoted by G and the set of morphisms of G by G, Every morphism
has a source, a target and an inverse. They define maps, denoted by s,t¢, and ¢,
respectively (s : ¢l — g0 ¢.g0 — gO -1.g0 g(l)), there is also a
canonical map id : G — GO which sends an object  to the unit morphism id,

from the object to itself. The composition p; @ py of morphisms p; and ps is only

defined if s(p;) = t(p2).

The groupoid algebra FG is the F-algebra that is generated by the set G where
the multiplication pips is defined to be p; e py if the composition p; e py is defined,
otherwise it will be zero, where py, p» € GV, Note that FG is unital algebra if and

only if the set G is finite. The identity in this case is given by 1 = 3 id,.
z€G(0)

Any groupoid G can be canonically decomposed as a disjoint union of connected
groupoids (there is a morphism between any two objects), see Section 2.2 in [31].

From that we obtain

FG = D FG,,
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where G; is a connected groupoid. Choose a point xg € Qi(o) and let
G, := Homg, (z0, o). (1.2)
The set G; forms a group and it is called the isotropy group of xy. The isomorphism

class of G; is independent of the choice of the base point x;.

Theorem 1.5. [13, Proposition 3.1]. Let G be connected groupoid and I = |G|
finite. Let o € G and G be the isotropy group of xo. Then FG = FG @ M;(F),

where My(F) is the | x | matriz algebra over F.

In particular, if a groupoid G has all connected components of G finite, then from

the previous theorem we obtain
FG = (PFG; @5 M,,(F), (1.3)

where n; is the cardinality of the connected component and G; is the corresponding

isotropy group.

1.3 Generalized symmetric group

In this section we give a brief summary on results about the generalized symmetric

group and the symmetric group itself that will be useful later.

We will use the wreath product to define the generalized symmetric group. Let
S,, denotes the symmetric group on the set {1,...,n} and Z,, be the cyclic group of

order m generated by 1 under addition modulo m.

Definition 1.6. [e.g. 27, Chapter 4]. Let G be a group and H a subgroup of &,,.
The wreath product of G by H, GUH, is the set G" x H with the composition defined
by

(z;m)(y;0) = (zy";m0)
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where

yﬂ— :<y7r*1(1)7 Yr=1(2)5 - - - 7y7r*1(n))7 (14)
and x,y € G", m,0 € H.

The set G H forms a group with this composition. The identity of G H is the
element ((e, ..., e);id), where e is the identity of G and id is the identity of the group
S,. Also, (x;7)7! = (:c_lﬂ_l;ﬂ_l). If the group G is finite then the order of G H is
|G|"|H|. For proofs and more details see chapter 4 in [27].

The group Z,, 1 ©,, is called the generalized symmetric group and it has been
investigated for some time, see for example [7], [47] and [51]. Since the group Z,, has
m elements, so |Z, 1S, | = m"n!. In the group Z7,, define e; := (0,...,1,...,0) with

1 at the " position, and

'ei:ei+...+ei: O,_..,.7...,O 5
jei=geit - te=( j )

J times

where j € N. In the group Z,, 1 &,,, we will let &; = (e;;id), and 5; = ((0,...,0);s;)

where s; is the transposition (j j+ 1) in the group &,,, 1 <i<nand1<j<n-—1

Proposition 1.7. [12, Lemma 1]. The group Z, ! S, is generated by the elements

€1,...,Cn, S1,...,5,_1 satisfying the following relations:

1.e"=1 foralll <i<n.

2. eje; =¢€je; foralll <i,5 <n.

3. 565 =¢€41 foralll <i<n-—1.
4. 55, =¢€ foralli#j,j+1.

5. §§z1f0rall1§i§n—1.

7. §1§z+1§z = §i+1§i§i+1 fOT all 1 S 1 S n— 2.
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1.3.1 Partitions and multi-partitions

Recall that a composition X of a positive integer n, denoted by A E n, is a sequence
t
of non-negative integers A = (Ao, A1,..., A\¢) such that n = >~ \;. Let t =m — 1 for
i=0
some m, we called the composition A an m-composition of n, denoted by A F,, n.

Let I'(, m) denote the set of all m-compositions of n.

A partition is a composition A = (Ag, A1, ..., A;) such that A\g > Ay > --- > A\, > 0.
The sum of all parts of A, denoted by |\|, is the weight of A. If |A\| = n we say A is
a partition of n. We write A - n to denote that X is a partition of n and A, is the
set of all possible partitions of n. For example, A3 = {(3),(2,1),(1,1,1)}. For more
details see for example Section 1.8 in [4] or Chapter 1 in [35].

Definition 1.8. [7, Definition 1.2]. Let A = (Ao, ..., Apm—1) F n. A m-multi-partition

0)

of n of type A\, p = (@, ..., ™=V, consists of m partitions p©®, ... pm=b

such
that p® = (ug), e ,ug)) F A;. We denote this by p = X or g F,, n. Note, for any 1,
if \; = 0, we still need to write u¥ = 0.

We define A, m) to be the set of all possible m-multi-partitions of the non-negative

integer n.

1.3.2 Representation theory of the group G,

Let ., be the Specht module of the symmetric group &,, associated to a partition
i, as defined in [27] and [17]. Over fields of characteristic 0 or greater than n,
the Specht modules are simple, and form a complete set of non-isomorphic simple
modules of the symmetric group. Also in this case, the algebra FG,, is semi-simple

by Maschke’s theorem, see for example Theorem 3.5 in [2] or Theorem 4.1.1 in [16].

A partition is called p-regular if it does not have p parts of the same (positive)
size. For p-regular partitions, Specht modules have a unique irreducible head, and
these irreducible quotient modules form a complete set of irreducible modules of the

group algebra of the symmetric group.
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Theorem 1.9. [26, Theorem 11.5]. Let F be a field of characteristic p > 0, then
the non-isomorphic simple modules of the algebra FS,, are parametrized by {\ F n |

A is a p-regular partition }.

1.4 Properties of some matrix operations

For any arbitrary matrices A; where ¢ = 1,...,t, the direct sum of these matrices,

is denoted by A; & - - ® A; and is defined to be the matrix

(4, 0 -~ 0]
0 Ay --- 0
00 o Ay

t
If A; = A foreach i, weset PA=Ad--- B A. Also, it is known that
—_—

t copies

rank(A; & Ay) = rank(A;) + rank(A,), (1.5)

see for example Proposition 2.11.13 in [5].

Let B= A& ---® A, where each matrix A; is a square matrix, then
t
det B = | [ det(A)). (1.6)
i=1

For the proof see Proposition 2.8.1 in [5].

Let A be a sx s matrix and B a rxr matrix. The determinant of the Kronecker (or
tensor) product of A and B, denoted A® B, satisfies det(A® B) = det(A)" x det(B)?,

see for example Proposition 7.1.11 in [5]. Also,
rank(A ® B) = rank(A) rank(B), (1.7)

see Proposition 7.4.23 in [5].
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Lemma 1.10. /28, Lemma 3.2.8]. Let B= A1 ®---® A, where A; is n; X n; matriz,
then

det B = <H(det AZ-)"f)m‘lm. (1.8)

1.4.1 Vandermonde matrix

Let IF be an algebraically closed field and m a positive integer, then IF contains all

h

m™ roots of unity. Assume that w is a primitive m* root of unity, so we can define

a special case of the Vandermonde matrix F,, to be:

1 1 1 1
1w w? w™ !
Fm = |1 CLJ2 UJ4 .. W2(m_1) = <w(i_1)(]‘_1)> 1<i<m, *
1<j<m
1 wm! w2(m—1) w(m—1)2

From the definition, it is evident that F,, is symmetric. Consider the matrix
F = (w*(ifl)(ﬂ'*l)) L <i<m® Note that F,,F* = mlI,,, so F,, is invertible as long as
1Z5<m

m is a unit in the field F. In other words, the matrix F,, is invertible if and only if

ged(m, Char(F)) = 1. For more details see Chapter 4 in [17] or [36] .

Now, we define the matrix Fo .- QRF,, = F,® - ®@F,. From the definition

n ;Trnes
of F,(g), it is clear that
FW = [ FrY : (1.9)
0<i<m—1
0<j<m—1

By relation (1.8), if the matrix F,, is invertible, the matrix F will be also

invertible for all n.
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1.5 Cellular algebra

In this section, we recall the definition of a cellular algebra, which was introduced
by Graham and Lehrer [20], and some results about the representation theory of
cellular algebras. The original definition of the cellular algebra is over a ring, but we

use a field since all our work is over a field.

Definition 1.11. [20, Definition 1.1]. A cellular algebra over F is an associative

unital algebra A, together with a tuple (A, T, C, *) such that

1. The set A is finite and partially ordered.

2. For every A € A, there is a non-empty finite set 7(A\) such that the map

C: U T(\) xT(\) — A is injective, and its image forms a F -basis of A. The
AEA

images under this map are notated with an upper index A € A and two lower

indices s,t € T'()\) so that the image is written as C2.

3. The map * : A — A is F-linear involution (This means that * is an anti-

automorphism with *? = id, and *(C2,) = C}, for all A € A, s,t € T(\)).

4. For A € A,s,t € T()\) and any a € A we have

aC, = Z To(u,8)C2, mod A, (1.10)
u€T(N)
where 7,(u, s) € F depends only on a,u and s. Here A<* denotes the F-span of

all basis elements with upper index strictly less than .

Definition 1.12. [20, Definition 2.1]. The cell module A(X), A € A, is an A-module
with F-basis {C, | s € T(A\)} and an action given by aCs = >_ 1y Ta(s, u)Cy for

any a € A, s € T(\) where r,(s,u) are the same coefficients as in equation (1.10) .

Definition 1.13. [e.g. 26, Section 1.5]. Let V' be a finite-dimensional vector space
with an inner product ( , ). The Gram matriz of V', G, is defined with respect to
a basis vy, ..., v, of V by letting the (i, 7)™ entry of G be (v;,v;). The radical of the
form ( , )istheset {v eV | (v,w)=0forallwe V}.
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On each cell module A()), there is an contravariant, symmetric bilinear form
(, )a:AN) x A(X) — F defined by the relation (1.10). For a proof see Proposi-
tion 2.9 in [45] or Proposition 2.4 [20]. Let Gy be the Gram matrix for A(\) of this
bilinear form with respect to a basis {Cs | s € T'(A)}. All Gram matrices of any cell
module that will be mentioned later are with respect to the cellular basis with the

bilinear form defined by (1.10).

If A is an algebra over a field, the module A()\) is a simple module if and only if
det Gy # 0 aslong as (, ) # 0, see for example Proposition 3.1 in [20] or Proposition
2.7¢ [21]. Let A° be the subset {A € A | (, )x # 0}. The radical Rad, y,(A(N)) of

the form (, ), is an A-sub-module.

Theorem 1.14. [/5, Chapter 2]. Let A be a cellular algebra over a field F. Then

1. A is semi-simple if and only if det Gy # 0 for each A\ € A.

2. The quotient module A(X)/Rad y,(A(X)) is either irreducible or zero. That
means that Rad y, (A(X)) is the radical of the module A(X) if {, ) # 0.

3. The set {L(\) := A(X)/Rad( y,(A(N) | A € A°} consists of all non-isomorphic

1rreducible A-modules.

4. Let L(p) # 0 and M be a sub-module of A(N), and suppose that 6 : A(u) —

A(N)/M is a non-zero A-module homomorphism, then \ > .

5. Each cell module A(X) of A has a composition series with sub-quotients iso-
morphic to L(p), where yu € A°. The multiplicity of L(p) is the same in any
composition series of A(X) and we write dy, = [A(X) : L(p)] for this multiplic-
1ty.

6. The decomposition matrix D = (d’\/‘))\GA,,uGAO is upper uni-triangular, i.e. dy, =

0 unless X < p and dyy = 1 for A € A°.

7. If A is a finite set and € is the Cartan matriz of A, then ¢ = D'D.
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Now since A is a cellular algebra over a field I, then the rank of the matrix
Gy equals dim L(\) and the nullity of Gy is equal to dimRad ), (A())) as long as
A € A% see Chapter 2, exercise 6 in [45].

Theorem 1.15. [55, Theorem 3.3]. Let A be an algebra with an involution x. Sup-

pose there is a decomposition of A:
A=@V;erV;®r B;
=1

as direct sum of vector spaces, where V; is a vector space and B; is a cellular algebra
with respect to an involution o; and we have a cell chain Jl(j) C - C Jg) = B,
for each j. Define J, = é Vi @r V; @r B;. Assume that the restriction of x on
V; ®r V; ®@r B; is given by Jle) Vb= v@w®ao;(b). If for each j there is a bilinear
form ¢; : V; @p V; = Bj such that oj(¢;(w,v)) = ¢;(v,w) for all w,v € V; and that
the multiplication of two elements in V; Qr V; @ B; is governed by ¢; modulo J;_1,

that is, for x,y,u,v € V; and b,c € B;, we have
(z@y®b)(u®v®c) =1rQv®bp;(y,u)c mod J;_q,

and if V,;QV;® Jl(j) +J;_1 is an ideal in A for alll and j, then A is a cellular algebra.
Furthermore, V; ® v, ®A£j) is a cell module of A for each j where Agj)is a cell module

of B; and v; is any non-zero vector in V;.

Proposition 1.16. [22, Section 3]. The tensor product and direct sum of finitely

many cellular algebras is a cellular algebra.

Proposition 1.17. [56, Proposition 3.4]. Let Ay and Ay be two cellular algebras over
a perfect field. Then Ay ® Ay is semi-simple if and only if Ay, Ay are semi-simple.

1.6 Quasi-hereditary algebra

There is another class of algebras, called quasi-hereditary, related to a cellular

algebra. It was introduced for the first time in [8].
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Definition 1.18. [8, Section 3|. A two-sided ideal J of A is a heredity ideal if

1. J2 =,
2. JRad(A)J =0,
3. Jy and ,J are projective A-modules.

Definition 1.19. [8, Section 3]. An algebra A is quasi-hereditary if there is a finite

chain of two-sided ideals
0O=JycJyCc---CJ=A

such that for all 1 <i <1, J;/J;_1 is a heredity ideal of A/.J;_;.

Remark 1.20. Let A be cellular algebra over a field, then A is quasi-hereditary if
and only if A = A°, see for example Corollary 2.23 in [45] and Corollary 4.2 in [32].

1.7 The partition algebra

Let Px to be the set of all partitions of a finite set X:
Px ={{X1,Xs,...}|0#X, C X, UX, =X, X;NX; =0if i # j}.

The subsets X, Xy, ... are called parts (or blocks).

The set Py is a lattice with a partial order: if o, 8 are two partitions in Py, we
say that « is smaller than or equal to § if and only if each part of « is a subset of a

part of j3.

For n € N, the symbol P,, denotes the set of all partitions of the set nUn’, where
n={1,2...,n}and n/ ={1,2',...,n'}.

Each individual set partition can be represented by a graph: the graph is drawn

in a rectangle with n nodes on the top row representing the elements in the set n and
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with n nodes on the bottom row of the rectangle representing the elements in the
set n’, and the vertices that are in the same part at the partition are represented as
lines drawn inside the rectangle connecting these vertices. The diagram representing a
partition is not unique, since there are different ways to drawing the edges. Two such
diagramss are equivalent if they have the same connected components. A partition

diagram (or sometimes (n,n)-partition diagram) is the equivalence class of a graph.

Now the composition o « in P,,, where «, 8 € P, is the partition obtained by
placing ae above 3, identifying the bottom vertices of a with the top vertices of 3, and
ignoring any connected components that are isolated from boundaries. The product

on P, is associative and well-defined up to equivalence, so P, forms a monoid with

the identity L+4 4. The proof can be found in (38].

A (n,m)-partition diagram for any n,m € N% is a diagram representing a set

partition of the set n Um/ in the obvious way.

We can generalize the product on P, to define a product of (n,m)-partition
diagrams when it is defined: Let o be (ny, ng)-diagram and 5 be (m;, my)-diagram,
f o« is defined if and only if ny = my and it is (ny, my)-diagram. For example, see

figure 1.1.

RITH-

>

FI1GURE 1.1: The composition of two partition diagrams.

Definition 1.21. [39, Definition 5|. The propagating number of a diagram, #(d), is

the number of parts which include elements from both the top and the bottom rows.

A string in a diagram which is connecting a point in the top row and a point
in the bottom row is called a propagating line. Martin in [38] has proved that the

propagating number satisfies the property

#(dy o dy) < min(#(dy), #(ds)), (1.11)
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where dq,dy € P,.

Definition 1.22. [39, Definition 4]. Let P,(0) = FP, be the F-vector space with
basis P,,, and product on P,(d) defined by a3 = 6'(30 ), where 3o « is the monoid
multiplication, the parameter 6 € F and [ is the number of connected components

removed from the middle row when constructing the product 5o a.
The space P, (), or simply P, is an associative F-algebra with identity and it is
known as the partition algebra. For more details, see [38] or [39].

A planar diagram in P, is a partition diagram where there are no edges crossing

in the diagram.

Define the following subsets of the partition monoid P, :

S, ={deP,|#(d)=n},

A, ={deP,|dis planar},

Q, ={deP,|#(d) <n}, (1.12)
B, ={d e P,|all blocks of d have size 2},

T = A, NB,.

/

All of them are sub-monoids except the subset Q,,. Therefore the following algebra
can be defined: the Temperley-Lieb algebra, TL,(§), is the sub-algebra of P, (d) which
is generated by the set 7,,. The Brauer algebra, B, (), is the monoid algebra generated
by the set B,.

Note that we used the same symbol in the last equation of the symmetric group,
since this set and the symmetric group are isomorphic. Hence the symmetric group

algebra FG,, is embedded in P, (6). For more details see [24] and [29].

Each partition d € P, can be written as oitoo, where 01,00 € G, and t € A,

see Relation 1.6 [25] or [15]. So

P, =6,A,6,. (1.13)
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Let t,b € A, and 7 € G,,, so there is d € A,, and ¢ € &,, such that
tmh = tdo, (1.14)

for more details see the proof of Theorem 1.11 in [25].

Next, we define generators of IP,,(0) that are represented by diagrams as following:

ii41 ii41

S; = e :><: R q; R R P; R R )

where i € n — 1 and j € n. The monoid A,, is generated by the elements qq, .

-+ n—1
and pq,...,pn, and the monoid B, is generated by the elements uq,...,u,_; and
S1,-..,Sn_1, Where u; := q;p;pi+19;, for more details see [25] and [24]. The element u;

is represented by the diagram

it
Y
N

Martin [38] has proved that the previous elements generate the algebra P, (d),

and Halverson-Ram [25] have found a presentation for P, () using these elements.

Theorem 1.23. [25, Theorem 1.11]. The algebra P, () is generated by 1, sy,

ey Snt1,
q1,---59n—1,P1,- - -, Pn and relations
s=1,fori=1,...,n— 1. sis; =s;8i, if j #i+ 1.
SiSit1S;i = Si+1SiSit1, forit=1,....,n— 2.
p? = dp;, fori=1,...,n. Q@ =q fori=1,...,n—1.
Sid; = 4;S; = 4, SiPiPi+1 = PiPi+1S;i = PiPiv1, fori=1,... ,n— 1.
PiP; = P;jpi, for all 1 <i,j < n. q:9; = 9,9, for all 1 <4, <n —1.

Pid; = q;Pi,if J # 4,1+ 1. sip; = PjSi» if j # 1,0+ 1.
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siqj :qjsi, ij %Z— 1,Z+1 S;PiS; = pi-‘,—l; fori = 1,...,’[’L— 1.
SiSi+19iSi+15i = Qi+1, PidiP; = Pi = PiQi—1Pi, fori=1,...,n—2,

qiPi% = di = QiPi+1%,, fori=1,...,n — 1.

Later we will need a presentation of the Brauer algebra, so we give one here.

Theorem 1.24. [e.g. 50, Definition 2.1]. The Brauer algebra B, (0) is generated by

the elements 1,s1,...,S,_1,U1,...,U,_1 subject to the relations
2 _ _ _
s; =1, SiSj = S;Si, SkSk+1Sk = Sk+1SkSk+15
2 _ _ _ _
uj = ouy, uju; = uju;, UpUg1Uf = Ug, Upt1UgUpt1 = Upgr,
S;U; = U; = U;s;, S;u; = U;s;, SpUg+1Ug = Sk4+1Ug, Sk+1UgUgk4+1 = SkUg+1,

where 1 <i,7<n—1, withj#i+1, and1 <k <n-—2.

1.7.1 Representation theory of the algebra P, ()

As it was shown by Xi [55], the partition algebra is cellular. We will mention
some theorems that discuss when the partition algebra is semi-simple, an index set

for its simple modules and the generic restriction rule for its cell modules.

Theorem 1.25. [42, Corollary 10.3]. For each integer n > 0, the algebra P, (9) is

semi-simple over C whenever § is not an integer in the range [0,2n — 1].

Let 6 # 0 and E; = ﬁ #pj, A 4 and ey is the primitive idempotent corre-
sponding to the Specht g;ilule ) of the group &y-,,. As it is shown in Corollary
10.1 in [38], the element Fje, is a primitive idempotent modulo P, E; 1P, by P, we
mean the algebra P,,(4). The cell modules of the algebra P, as they are defined in

[40] and [38], are
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Let A be a partition. We write x> A to denote that p is a partition obtained from
the partition A by adding a box to A\ after regarding them as Young diagrams. Also
1<t A means that y is a partition obtained from A by removing a box, for more details
see Chapter 1 in [35]. Additionally, ;<>\ means that u is a partition obtained from

A by removing a box after adding a box.

We say something is generic if it holds on an (Zariski) open subset of parameter

space, as it is described in [9].

Proposition 1.26. [38, Proposition 13]. Let A\ be a partition of a non-negative
integer is less than or equal to n. The generic restriction from the algebra P, (0) to

Pn—l (5) 18

A) b, 1g @mn 1( EB ( @ mn—l(u)) D (@%n—l(ﬂ)

Q> p<A>A ©<AN

1.8 A review of the Temperley-Lieb algebra

A key technique used in this thesis is to reduce problems in the bubble algebra to
problems in the Temperley-Lieb algebra. Therefore it will be helpful to give a brief

description of the Temperley-Lieb algebra and its representation theory.

Let ny,ny € N, with ny + ny is an even number. A (ny, no)-Kauffman diagram is
a planar (nq,ny)-partition diagram such that all its blocks are of size two. Then the
set T, is the set of all (n,n)-Kauffman diagrams. More details can be found in [30]

and [37].

There are many ways to prove that the dimension of the algebra TL,(J) is the

(2n)!
( +1)| 1

n'" Catalan number C,, = for example see Theorem 2.3 in [48].

The algebra TL,(0) is generated by the set {1,uy,...,u,_1} where

it+1
N\
YE
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These diagrams satisfy the relations:

u? =du;, foralli=1,...,n—1,

u;u; =u,u; , for |i—j|>2, uuju; = u; , for i — j| = 1.

More details can be found in [38] and [48].

1.8.1 The dimension of the algebra TL,(¢)

In this subsection, we are going to show that there are dim TL,,(d) ways to connect
2n nodes in pairs without crossing, but these nodes need not be divided equally on the
top and the bottom of the diagram, as this fact will be used to compute the dimension
of bubble algebra. To prove this, we need to define the set of all non-crossing perfect

matchings.

A p-matching, or simply matching, of the set n is an unordered collection of
p-pairs of vertices and n — 2p single vertices all contained in n without repeating.
A matching is called crossing if it contains a pair {i,j} and a vertex k such that

i < k < jorif it contains pairs {i,j} and {k,{} such that i < k < j <.

Definition 1.27. [19, Section 2.1]. A non-crossing perfect matching of 2n is a non-
crossing p-matching, where p = n. Denote by JF5, the set of all non-crossing perfect

matchings of the set 2n.

The elements of Fy, are represented as cups. (2n,n)-cups are diagrams with one
row of 2n dots and where edges connect pairs of dots with the restriction that edges

can not cross. For example,

QEILY;

There is a bijection between the set F5, and the diagrams of TL,, which means
|Fon| = dim TL,,. Consider the top and the bottom rows of 7,-diagrams as bars, now
take the lower bar and move it by rotating the bar up and putting it next to the

other bar.
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FI1GURE 1.2: Illustration of the bijection between the sets 7, and Fa,.

This establishes a bijection between TL,-diagrams and the set F3,, more details can

be found in [19].

Now if we cut a (2n,n)-cup in a different position and do the same but in reverse

order, we obtain a Kauffman diagram. For example, see the following figure.
- &

Let the cutting be after n; points. We will have a bijection between (2n,n)-cup and

the (n1,2n — ny)-Kauffman diagrams. Then
dim TL,, = The number of (n;,2n — n;)-Kauffman diagrams. (1.16)

This proves that dim TL, equals to the number of ways of connecting 2n vertices

without crossing whatever the distribution of these vertices on the frame was.

1.8.2 The cell modules of Temperley-Lieb algebra

We will briefly describe the cell modules of the algebra TL,,(d), which will be of

use to us in later chapters.

The link module M,,, as defined in Section 3 in [48], of TL,(d) is the left module
that is spanned by all the half-diagrams that are obtained from all diagrams in TL,,(d)
by cutting horizontally in the middle only cutting propogating lines. The action of
TL,(6) on M,, is defined by the concatenation of diagram with half-diagram then

proceeding as we would with two diagrams in the algebra TL,(d).

A string in a half-diagram that connects two points is called an arc. If a half-

diagram has p arcs, then there will be n — 2p points which are not connected to
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anything, we will refer them as defects and a half-diagram with n points and p arcs
will be called an (n, p)-link state. For more details see [37] or [48]. For example, the

next half-diagram is a (7, 3)-link state

As the number of propagating lines can not be increased by the multiplication, we
could define left TL,, -submodules M,,,, C M,, which are spanned by the (n,p’)-link
states with p’ > p. Note that

0cC Mm[n/ﬂ C...C Mn,l C Mn,O =M,,.

The quotient modules will be denoted by

Mn7p

V= .
P Mn’p_i_l

(1.17)

The quotient sends any half-diagram with more than p arcs to zero. The Temperley-
Lieb algebra TL,(d) is a cellular algebra, with the involution sending each diagram
d to its reflection d* in the horizontal plane and A = {0,1,...,["/2]}. The modules
V., where p € A are the cell modules of the algebra TL,(d). The proof can be found
in Theorem 3.8 in [20].

The dimension of V,, , is given by the formula

n n
dimV, , = — = dy . 1.1
1M Vo p (p) <p . 1) n,p ( 8)

The proof of this can be found in Section 2 [48] or [37]. Note that (") = 0.

On each module V,,,, we define a bilinear form (, ) = (, ),,s as follows. If
x and y are two (n,p)-link states, the scalar (x,y) is computed by reflecting x in a
horizontal axis and identifying its vertical border with that of y. The value (z,y) is
then non-zero only if every defect of x ends up being connected to one of y, and in
this case (z,y) = §' where [ is the number of closed loops which is obtained from

connecting x and y. For more details see Section 9.5.2 in [37].
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The matrix G, is defined to be the Gram matrix for the module V,,, that
represents the form ( , ),,s with respect to a basis that contains all (n,p)-link

states. For example,

5 1000 0 0
16100 0 0
Guos=(1), Guis=|0 146 1 0 00
00000 16

Let R, ;s be the radical of the previous bilinear form on the module V,, ,. Recall

that the radical R, is a submodule of V,, ,,.

Lemma 1.28. [e.g. 48, Section 3. If TL,(d) is an F-algebra, and { , ) is not
identically zero on V, ,, then V,,, is cyclic and indecomposable. Moreover, L, , =

Vip/ Ry is irreducible.

1.8.3 Irreducibility of the cell modules

The cell modules V,,, of the algebra TL,(J) are irreducible except for particular

values of the scalar §. Throughout this section, let § = ¢ + ¢! with ¢ € F.

Proposition 1.29. [37, Section 6.4, Theorem 1]. If q is not a root of unity, then
the algebra TL,(0) is semi-simple, and the modules V,, ,, where 0 < p < [*/o], form

a complete set of non-isomorphic irreducible modules of TL,(9).

For the values ¢ where TL,(0) is not semi-simple, non-generic cases, many differ-
ent studies of this have been made. Assume that g is a primitive I*" root of unity. If

n < [, in this case the algebra TL,(J) will be semi-simple.

The module V,,, (or the pair (n, p)) is called critical for a given q if ¢?"=2P+1) = 1.
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Lemma 1.30. [e.g. 54, Section 9]. Let CharF = 0. For alln and l > p > 0, we
have

1 ofn—p+1=0 (mod]I),
dim Hom(V,, 0,V p) = f P ( )

0 otherwise.
Theorem 1.31. /37, Section 7.3, Theorem 2]. If CharF =0, 0 < p; —ps <l and
n—pr—p2+1=0 (mod [), then there is a non-trivial homomorphism 0, ,, : Vp p, —

Vopi - Otherwise, there is no non-trivial homomorphism from V,, ,, to V.
Theorem 1.32. [10, Theorem 5.3]. Let CharF = p. There is a non-trivial homo-
morphism Op p, * Vap, — Vap, if and only if n —py — p2 + 1 = 0 (mod Ip?) with
0 < p1 —p2 <lp’ for some non-negative integer j.

Theorem 1.33. [e.g. 54, Section 9]. The kernels and co-kernels of the homomor-

phism 0, ,, are irreducible.

1.8.4  Further properties over the complex field

In this subsection, we give relations that are helpful to compute the dimension
of the head of each cell module and the dimension of the radical. Let ¢ be a root of

unity and let [ be the minimal positive integer satisfying ¢? = 1.

Proposition 1.34. [48, Proposition 5.1]. The dimensions of the radical of V,,

satisfy the recursion relation

0 ifn—2p+1=0 (modI),
dim Rn,p,é = dim Rn—l,p,5 + dim Vn—l,p—l an — 2p + 1=1-1 (mod l),

dimR,_1,s +dimR,_1,_15 otherwise.

Subject to initial conditions dimR,, 05 = 0 and dim Rgy_; 5 = 0.

Corollary 1.35. [48, Corollary 5.2]. The dimensions of the simple quotients L, , 5 =

Vop/Rups satisfy the recursion relation

dimV, , ifn—2p+1=0 (modI),
diml, s =4 dimL, 1,5 ifn—2p+1=1—1 (mod]I),

diml, 1,5 +dimbL,_1,-15 otherwise.



Chapter 1. Background 26

Subject to initial conditions dim L, 05 =1 and dim Ly, 5 = 0.
Define r(, ;) to be the integer satisfying (see Section 5 in [48])
n—2p+1==Fkl+7r@uy),
where k € N and 7(,,) € {1,...,l}. The pair (n,p) is critical if r,, = [ when ¢ is a

root of unity.

Proposition 1.36. [37, Section 7.3, Theorem 2/. Let q be a root of unity and (n,p)

be non-critical. Then

dim Ly pin, 15 D+ Tong —1 >0,
dimR,, 5 = b FPH o) (1.19)

0 otherwise.



Chapter 2

The Multi-Colour Partition

2

Algebra Py, ,,(6)

The purpose of this chapter is to introduce a new class of algebras, the multi-
colour partition algebra, a generalization of both the bubble algebra and the partition
algebra, and to define some of its sub-algebras. The algebra can be well studied by
using similar techniques used in the investigation of the partition algebra. We also
introduce some concepts required for the subsequent chapters. In Section 2.4, a
generating form of the multi-colour partition algebra is given. In Section 2.5, we
define the bubble algebra as a sub-algebra of the multi-colour partition algebra and
determine its dimension and a generating set of it. In the end of this chapter we
discuss certain special idempotent sub-algebras of the multi-colour algebra and show

that they are isomorphic to products of partition algebras.

2.1 Definitions and structure

The aim of this section is to define the multi-colour partition algebra and give
some of its properties such as its dimension. We begin by defining the two-colour

partition algebra.

27
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2.1.1 The two-colour partition algebra

In the definition of the partition algebra P, (d), the set n U n’ is partitioned to
define basis elements of P, (d). For the two-colour partition algebra, we do that in
two steps, first break up the set n U n’ into two different subsets and then partition
each subset alone. The new partition can be represented by a diagram in the same

way, since it is still a partition of the set nUn’ .

Let A C nUn' be fixed (note that A can be an empty set) and the sets P4 and
P e be the sets of all partitions of A and A° respectively, where A° is the set nUn’\ A.
Define the set P4 ac to be the set Pa x Pae.

Consider an element (dy,d1) € Pa, ac, so the set dy U d; is a partition of n U n/,
from that we can represent the element (dy,d;) by the same partition diagram of
dy U dy. In order to distinguish the partitions dy and d; in dy U dy, we will colour
them where red edges and red nodes are from the partition dy and blue edges and
blue nodes are from the partition d;. Thus we can think of (dy,d;) as a coloured
image of the diagram dy U d;. From this definition, it is clear that if any two nodes

are connected then the nodes and the edge have the same colour.

Example 2.0.1. The element ({{1,1",2'},{3'}},{{2,3}}) can be represented by the
A9y

digram

. Also the elements in the set Py 11211 (2} are represented by the following

diagrams:

A diagram representing an element (dy,d;) € Pa ac is not unique. We say two
diagrams are equivalent if they represent the same partition in the set P4 4c for some
subset A. The term two-colour partition diagram will be used to mean the equivalence
class of diagrams that representing a two-colour partition. We are only interested
in the equivalence classes of two-colour partition diagrams, and whenever two-colour

diagram is mentioned we mean the equivalence class of it.
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For simplicity we may say diagram instead of two-colour diagram when the type

of the diagram is obvious.

Now we take all possibilities for the subset A and define the set:

Proi= U Pa,ac. (2.1)

The product of partition diagrams on the monoid P, can be extended to define
a product on the set P, 5. First we need to define the subset top(d;) C n to be the
set of all nodes in the top row of d; and similarly bot(d;) C n’ denotes the set of all
nodes in the bottom row of d;, where (dy, d;) € P, 2. Note that top(d;) = n \ top(dp)
and bot(d;) = n' \ bot(dp).

Let a = (ag, 1), B = (Bo, £1) be diagrams in P, o, we say that bot(c;) = top(f;)

when they satisfy i’ € bot(a;) if and only if i € top(S;) for any ¢ € n, where j =0, 1.

The composition o a of elements o = (ag, 1), = (Bo, f1) in the set P, 5 is

defined as follows (which is the same multiplication that was described in [23]):

1. Place o above [ and identify the vertices in the bottom row of a with the

vertices in the top row of 3 regardless of the colour of dots.

2. If the colours match up, this means bot(ag) = top(f5p), then the products Syoaq

and (1 o a are well-defined as partition diagrams, and then define 5 o « to be

(50 o ap, 31 0 Oél)-

3. If the colours don’t match up, this means bot(ag) # top(fp) , then the product
of av in 8 will be undefined.

Definition 2.1. Let P, 2(dp, d1) be the F-vector space with basis P, 2. We define a

product on the algebra P, 5(dg, 01) as follows.

55065 (By 0 g, By © 1) if bot(ag) = top(fo),

0 otherwise,
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where o, B € P, 2, o is the composition of partition diagrams and the scalars dy, d; € F
and ¢o (similarly ¢;) is the number of connected components removed from the middle

row when constructing the product ag o By (from ay o ;).

A =0 PA7= do

FIGURE 2.1: The composition of some diagrams in Py 2(dg, 01).

Figure 2.1 is an example of the multiplication of some elements in the space

]P)4,2(507 61)

Theorem 2.2. The product that is defined in (2.2) is associative.

Proof. Let a = (g, 1), B = (Bo, f1) and p = (po, p1) be partitions in the set P, 5.
Note that top(ago5y) = top(fy) and bot(ago y) = bot(ay) as long as ao 3 is defined.
From the multiplication on P, 5, the composition a0 (f o p) is defined if and only if
top(ap) = bot(By o pg), and o p is defined if and only if top(5y) = bot(pg). But if
S o pis defined then bot(Sy o pg) = bot(Sy). Then avo (5o p) is defined if and only if
top(ap) = bot(5y) and top(fFy) = bot(pg). Similarly, (o ) o p is defined if and only
if top(ap) = bot(Sy) and top(Hy) = bot(pg). So the composition a o (5o p) is defined
if and only if (a0 §) o p is defined, then the product in P, 5(dg, d1) is an associative

when vanishes. Furthermore, if it does not vanish, we have

ao(fop) Z(Ozo o (Bo o po), 10 (B Opl))

:((ao © BO) © pPo, (041 © 61) S Pl) = (a o 6) op,

as the composition of partition diagrams is associative. Since the product on P, 5(do, d1)
will be a linear extension of the multiplication o, then the product is also an associa-

tive when it doesn’t vanish. O

Theorem 2.3. The space P, 5(09,01) is an associative F-algebra and its identity is

the element ) 1(a,ae), where 1(aae) := (14,14c) and 14 is the diagram where each
ACn

node i € A is only connected with the node i’ (similarly, we define 14 ).
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Proof. Since the product on P, 5(do, 1) is associative, so we only need to show that

the element ) 1(4 4c) is the identity. Let o = (g, 1) € Py 2 then
ACn

(Z 1(A,AC)>04 = Z 1(A,Ac)a,

ACn ACn

but 1(4,aeycx = 0 unless top(ag) = A, so

(Z 1(A,AC)>CK = (OCO o 1top(ao)7 Qg O 1top(a1)) = a.

ACn
Similarly, we have o ) 1(a,4¢) = . Thus ) 1(4, ac) is the identity. O
ACn ACn

We call the algebra P, 5(do, 61), or simply P, 5, the two-colour partition algebra.

Remark 2.4. We can construct a category which consisting {(A, A°) | A C n} as
objects and P, 2 as the morphisms. A diagram d = (do, d;) € P2 is an arrow from
(A, A°) to (B, B) if top(dy) = A and bot(dy) = B. We define the top and the bottom
of the diagram d to be

top(d) = (A, A°), bot(d) = (B, B°).

Also the identity arrow for (A, A°) is the diagram 14 4cy since 1(4 4cyd = d. When
n = 1, this category is represented by the graph in figure 2.2.

. ‘
Q({lhw.{mﬂ
7 ||

\\_—__—//’7

FIGURE 2.2: The set P12 as a category.
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The number of different partitions of a set with n elements is the Bell number

B.., see for example Section 4.2 in [18]. From the definition of the set P, 2, we have

dim]P’nQ = ‘Png’ = Z ‘PA‘ X |7DAc = Z Bk X BQn—k .

ACnUn/ ACnun/
|A|=k

2n

The number of subsets with k& elements of n Un’ is ( .

in [18], then

), see for example Section 4.2

2n
2
dimP,z =" ( :) By X Bon_s . (2.3)

k=0

We have another formula for the dimension of P, 5. If we think of elements in the
set Pp2 as coloured images of elements in P,, where the only rule of the colouring
is that nodes and edges in the same block have the same colour. Let d € P, have [

parts, by colouring d we obtain 2’ elements in P, 5, then
2n M,
dimP,, =Y 2! , 2.4
e =3 2{ 7} 2.4)

where {7} is Stirling number of the second kind and it is equal to the number of

partitions of a set of n elements with [ parts, see for example Section 4.2 in [18].

2.1.2 The multi-colour partition algebra

For any positive integer m, let €y,...,€,, 1 be different colours where none of

them is white, and &g, ..., d,,_1 be scalars corresponding to these colours.

Define the set ®™™ to be

m—1

{(Ao,. . Amo1) | A CnUN Vi € Zy, | JAi=nuUn, A0 A; =0 Vi # j}.

1=0

We construct basis elements of the multi-colour partition algebra in similar way

to the algebra P, 5. Let (Ao, ..., Am_1) € @™ (note that some of these subsets can
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7777

m—1
be an empty set). Define the set P4, 4, _, to be the set [[ Pa, and
i=0

Pom = U Pag,..Ap ;- (2.5)

The element d = (do, . ..,dm-1) € Pa,....a,_, is represented by the same diagram
m—1

as the partition |J d; € P, after colouring it as follows. We use the colour €; to
i=0

draw all the edges_and the nodes in the partition d;.

Similarly, a diagram representing an element in P, ,, is not unique. We say two
diagrams are equivalent if they represent the same tuple of partitions. The term
multi-colour partition diagram will be used to mean an equivalence class of diagrams

representing a multi-colour partition.

Let d = (do, ..., dm-1) € Pa,....a, ,- We define the following sets:

= (top(dyp), - - ., top(d,_1)),

(

(d:) =Ainn (2.6)
(d)

bot(d) = (bot(dp),...,bot(dn_1)).

Vs

Definition 2.5. Let P, ,,(do,...,0m—1) be the F-vector space with the basis P, .,

and with the composition:

m—1
(561 i O QY if b == 5
(0)(5) = oAb o (Proaa)if botla) = top(5) 21
0 otherwise.

where 0; € F, o, 8 € Py, ¢; is the number of removed connected components from
the middle row when computing the product S; o a; for each  =0,...,;m — 1 and o

is the composition of partition diagrams.

v

The product on Py, ,,,(dg, - . ., dp—1)-sometimes we use P, ,,, or P, ,,(0) to refer to

this space where o= (00, - .-, 0m_1)- is associative and the proof is similar to the one
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of Theorem 2.2. Then it is an associative algebra with the identity:

1[p>n’m = Z 1(A0 77777 Am—1) = Z (1AO7""]‘Am71)7

where 2™ = {(Ag, ..., Am_1) | U Ai = n, AiNA; = 0 Vi # j}, 14, is the partition
of the set A; U A} where any node j is only connected with the node j for all j € A,
and A, == {j/ | j € A;}, for all 0 < i < m — 1. The algebra P, ,(9) is called the

multi-colour partition algebra.

Remark 2.6. We can construct a category which consisting the set =™ as objects
and P, ,, as morphisms, where d = (dy,...,dpn—1) € Pnm is a morphism from the

object top(d) to bot(d).

The diagrams in P, ,, are constructed by colouring elements of P,,, so any partition
in P, that has k parts can be used to define m” different diagrams in Ppnm. Hence

the dimension of the algebra P, ., is

2n
2
dim P, =Y mk{ ]:} (2.8)
k=1

where {Z} is Stirling number of the second kind. From this equation, we obtain the

table 2.1.

TABLE 2.1: The dimension of some low rank examples of the algebra P, ,,.

dimP,,, | n=0 1 2 3 4 n
m=1 |1 2 15 203 4140 Ban
2n
2 1 6 94 2430 89918 S (3")Bi x Ban

kzino

3 1 12 309 12351 681870 Y 3¢{*"}
k=1
2n

2n

4 1 20 756 42356 3188340 k; Ak
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2.2 Basic concepts of the algebra Pnjm(g)

In this section, we generalise some concepts and definitions of subsets of the
monoid P, such as the propagating number and the symmetric group, and then use
them to define ideals and sub-algebras of the algebra P, ,,, where we follow Grimm

and Martin’s approach [23].

Definition 2.7. [23, Section 2]. The propagating number of a € P, ,,,, #(v), is the

number of parts which contain nodes from both the top and the bottom rows in any
m—1

colour, i.e. #(a) = mz_l #(c) or simply #(a) = #( U o).
i=0 j

=0
Definition 2.8. [23, Section 2. The €;-propagating number of o = (o, ..., Q1) €
Prm, #;(c), is the propagating number of «;.

The propagating number in the algebra P, ,,, has a similar property to the prop-
agating number in the algebra P, ().

Lemma 2.9. Let o = (ap, ..., m-1), 8= (Bo,- -, Bm-1) € Pnm with af # 0, then

#(af) < min(#(a), #(5)) , (2.9)
#i(af) < min(#;(a), #;(5)). (2.10)

Proof. Second part is clear, since #;(af) = #(58;0c;). Finally, from the definition 2.7

we have

#(af) = #(Booag) + -+ #(Bm-1 0 1)

< H(ag) + -+ H#(am1) = #(), (from equation (1.11)).
Similarly, we have #(af) < #(5). So we have #(af) < min(#(a), #(5)). ]

A planar multi-colour partition in the set P, ,, is a multi-colour partition repre-
sented by a diagram that does not have edge crossings in the same colour. This is
the same definition that Grimm and Martin use in [23]. In other words, there can be

crossed edges but they don’t have the same colour. A planar multi-colour diagram,



Chapter 2. The multi-colour partition algebras 36

or simply planar diagram, is a diagram representing a planar multi-colour partition.

. A
For example, .}( « is not a planar diagram, and [ «+d% ' is a planar diagram.

Remark 2.10. This definition of planar diagram is consistent with the definition of
a planar diagram in the algebra IP,,(0) provided that we consider all the diagrams in

P,,(0) to have been coloured by using only one colour.

We define subsets of P, ,, corresponding to those subsets of P, which are defined

in the equation (1.12) as following:

Snm ={d € Pom | #(d) =n},
Ay ={d € P | dis planar},
Qnm =1{d € P | #(d) <n}, (2.11)
Bm = {d € P, | all blocks of d have size 2},
Tnm = Anm N By .

Examples of diagrams in the previous subsets of Py 5 are:

KL /? ° AP
T s [TNT) et
...... ADN L.
D QA4 ACAAVAAN 54
T emen (U] e
L . FFaANBAN

Remark 2.11. In the next chapter, it will be shown that &,,,, is a morphisms set
of a groupoid, and we call it the multi-colour symmetric groupoid. Furthermore, note
that all the sets defined in equation (2.11) except the set Q,, ,, form morphism sets of
categories so they can be used to define algebras. These will be denoted by FG&,, ,,,

v 9

FA, m, Bym(0), and T, ,,,(0).

Diagrams representing multi-colour partitions in the sets &,,,,, , By, and Q,,
can be obtained by colouring elements in the sets &,,, B,, and Q,, respectively (as they
are defined by equation (1.12)). But this is not true for diagrams that representing
multi-colour partitions in sets A, ,, and 7, , since some of non-planar diagrams in

P,,(9) can be coloured to be planar diagrams in P, ,,.
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Definition 2.12. [23, Section 2|. A strictly planar multi-colour partition is a multi-
colour partition whose a digram can be formed from colouring an element in A,,.
This means inside a strictly planar diagram there is no edge crossing even between
different colours. Let A;  be the set of all strictly planar multi-colour partitions
in Py, . A strictly planar diagram is a diagram representing a strictly planar multi-

colour partition.

Define the subsets Py m[Ao, ..., Am—1] and Py (Ao, ..y Am—1) of Py, where
m—1
(Ao, .-+ 5 Am—1) € Z% such that ) A;j < n, to be

j=0

PrmlAos s Amo1] ={d € Pom | #,(d) = \; forall j € Z,,}, (2.12)

P (Ao Ame1) = | Pomllos - lma]. (2.13)
LA

Let Ppm(d: Aoy - - - s Am_1), or simply P, (03 A) where A = (Ao, ..., Am_1), be the

ideal of the algebra IP,, ,,,(9) that is generated by the set Py, [A].

m—1 o
Proposition 2.13. Let A € ZZ, such that > \; < n. The ideal P, ,,(0; \) has the
> =
set Pnm(X) as a basis.
Proof. Since anm(g ; A) is generated by Pym[Xos - - -y Am—1], S0 it contains all elements

of the form af and fa where a € P, [\ and f € P,,,. By using Lemma 2.9
#i(aB) < \j for all j € Z,,, so an(éu; A) is a subset of the ideal that is generated
by Pn.m(A). Now we need to show the converse, which is obvious since any element
a € Ppm(A) can be written in the form Sup (note that this factorization is not
unique) where 3, p € Py, ,, it € Ppm|A], top(a) = top(f) and bot(a) = bot(p). O

The set of all ideals of the algebra PP, ,, that are of the form ]P’n,m(g ; A), for some
A, is a lattice with a partial order: Pmm(g; 10y« ime1) < Pn,m(g;jo, ooy Jm—1) if and

only if i, < j, for each k € Z,,.
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Now we define for each 0 < k < n new subsets:

Pomlkl = | Pamllo.- - Ll (2.14)
Pom(k) = | Pumlil- (2.15)
0<5<k

It is clear that Q, ,, = Pnm(n — 1) and &,,,, = Ppm[n].

Let P,,.(0;k) be the ideal that is generated by the set P,n[k]. Note that
anm(g ; k) contains all the diagrams whose propagating number is less than or equal

to k, so
Pryn(0) D Ppn(8:n — 1) D Ppn(d5n —2) D ... D Ppp(6;0). (2.16)

Proposition 2.14. The set P, (k) is the F-basis of the ideal ]P’n,m(g; k).

The proof of the previous proposition depends on the propagating number prop-

erty, see (2.9).

2.3 The coloured images of P,(d)-generators

In order to find a generating form of the algebra P, ,,,, we will use a presentation
of the algebra P,(d) and to do that we need first to define a coloured image of a
diagram. As all diagrams that represent multi-colour partitions are obtained from
colouring diagrams in the monoid P,, such that all nodes in a part of a partition and
their edges which connect them have the same colour, so any set of generators for
P,,(5) can be used to define generators for the algebra P, ,,(¢) with relations obtained
by modifying the relations of the algebra P, (9), with keeping in mind the effect of

the colours in the multiplication on the algebra PP, ,,.
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Let © = (x1,...,2,) € Z7,, define the tuple
T = (A07...,Am_1), (217)

where A; C n such that j € A; if and only if ; = ¢ where 1 < j < n. In other
words, the colour €; is represented by the element j € Z,,. Note that {A4;}o<i<m—1

is a partition of n, and z = g if and only if z = y.

Example 2.14.1. Consider z = (0,1,0,0,1) € Z3 , so & = ({1,3,4},{2,5},0).

Let the node j € n in the top row of a diagram D representing a multi-colour
partition have the colour €;, define = := (x;) € Z};, where z; = ¢. From this definition,

it is evident that top(D) = & .

Remark 2.15. Henceforth we will say a diagram in the set P, ,, instead of a diagram
representing a multi-colour partition in the set P, ,,, and we will write Dy o Dy = 0

to mean Dy o Dy is undefined as Dy D; = 0 in this case.

Definition 2.16. Let a = {Xy,...,X,} € P, and D = (Dy,...,Dy1) € Pum
where D; C « for each i, |JD; = @ and D; N D; = (0 if ¢ # j. We say that D is a

coloured image of o or a diagram of the shape a.

In other words, D is a coloured image of « if we can get o from D by ignoring

the colours. We call « the uncoloured image of D.

Lemma 2.17. Let Dy, Dy be diagrams in P, ,, of shapes oy and s, respectively. If
the colours match up, i.e. D1Dy # 0, then the diagram of Dy o Dy has the shape

Q9 O (7.
Proof. This follows immediately from the definition of the product on P, ,. n

Let z,y € Z? and o = {Xy,..., X, } € P,. We say that colouring o with top

and bottom equal to Z and g respectively, is defined if they satisfy for each 7, j € n:

e 1; = x; if there k such that 7, j € Xj.
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o y; = y; if there k such that ', ' € Xj.

o 1; =y, if there k such that i, j' € X.

Simply, this means that any nodes in the same part have the same colour.

From this way of colouring, we obtain the next lemma.

Lemma 2.18. Let x,y € Z}, and o € P,,. If colouring o with top and bottom equal
to T and 1 respectively is defined, then there is a unique coloured image of o, denoted

by ay, with top and bottom equal to T,y respectively. [

Let Dy, Dy be diagrams in P, ,,, then Dy = oy and Dy = ;) for some «, 5 € P,
and z,y,u,v € Z;,. By using Lemma 2.17 and Lemma 2.18, we have

0 ity u,
Dyo Dy = ty7u (2.18)

(Bo a): if y=u,
since top(Dy o Dq) = top(D;) and bot(Dy o Dy) = bot(Dy).

A decomposition of a diagram « is a finite sequence of diagrams such that their

multiplication equals a.

Proposition 2.19. Let D = « for some o € P, and z,y € Zy,. Then every
decomposition of o in P, can be used to define a decomposition for D in P, ,,. The

converse also holds.

Proof. Let a =t oty_10--- 0ty for some t1,...,t, € P, and k € N. From equa-

tion (2.18), we have the following decomposition of D:

-1 w(h—2) (1)

D — (tk (e} tk*l O-+++0 t1>y = <tk)y (e) (tkfl)u(k—l) O:++0 (t2)u(2) @) (tl)u(l) . (219)

All we need to do, is defining the tuples uM, ..., u*~1 such that the colouring will

be defined, where u") € Z" for each I. These tuples are defined as following;

° ugl) = x; when i, j' are contained in a part of ¢; for any 1 <4i,j <n. So (t1),«)

is defined.
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° ugkfl) = y; when 4, j' are contained in a part of ¢, for any 1 < 4,57 < n. So

(tk)Z<k) is defined.

° uy) = ugl_l) when ¢, j’ are contained in a part of ¢; for any 1 < ,j < n, where

1-1)
)

2<i<k-1.So (tl)zgl is also defined.

e There are maybe some points in the middle rows of the decomposition t; o
tx_1 o ---oty, which are not connected to the top row of ¢; and the bottom
row of ¢ (non-propagating edges), then their colours may be chosen such that
two points of them have the same colour if they are connected by an edge. For
example, in figure 2.3 the colours of dashed and dotted edges and their nodes
may be chosen, such that the nodes that are connected with dashed (dotted)

edges have the same colour.

Conversely, when we have a decomposition of D and simply by ignoring the

colours we obtain a decomposition of a. O
S anse
N e ~ & a
[ E;L ] j&* a
oWeawE

FIGURE 2.3: A decomposition of a digram in the algebra Pg 3.

Colouring the elements s;, q;, p; and u; where ¢ € n —1 and j € n, as they are

defined in Section 1.7, is described as follows. Let z = (xy,...,2,) € Z

m?

we can

colour the element s; such that the top equals Z, this coloured image of s; is denoted

by S(iz)- Note that bot(s; ) = 2%, where 2™ = (2,-1(;)) for all 7 € &,,.

In general, colouring any element o € &,, with a top equals 7 is defined, and the

bottom will be 2o ".

Example 2.19.1. Ifz = (0,1,1,2,0,2) € Z§ and the colours &y, €, and €, are red,

blue and green respectively, then s ) = &I]
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We define the diagram 1, to be the coloured image of id € &,,, where the node ¢

is only connected to i’ with an €, -edge. Hence, we have Ip,,. = > 1.
TELY,

To make colouring the element q; defined, we need to take in consideration that
the nodes 7,7 + 1,7 and (¢ + 1)’ have the same colour. So we define an index set,

I'; C Z},, to preserve this condition:
F'i = {iL‘ € Z?n | T; = xi+1}: (220)

and define the diagram q(; ), where x € I';, to be the coloured image of the diagram
q; such that top(q()) = . From the graphical visualization of g, it is clear that
top(q(i,z)) = bot(q ). Note that 2% = z for all x € T';.

To determine a coloured image of the diagram p;, an index set according to j
needed to define:
Q= {(w.y) € Z X 22, | w =y ¥i # ). (2.21)
The diagram p; . ), where (z,y) € €2;, is the coloured image of the element p; such
that top(p(jzy)) = T and bot(pgzy)) = 7.

Define a set Q; to be
O ={(z,y) €Ty x| zj=y; Vj#i,i+1}, (2.22)

and u(;zy) to be the coloured image of the element u; such that top(ug;q,y)) = 7 and

bot(ugi zy)) = ¥, where (z,y) € Q.

Proposition 2.20. The groupoid S,, , (we show that later in Chapter 3) is generated
by the diagrams s( ) for allx € Zy,,i =1,...,n—1. Also each element in A}, can
be written as a sequence of the elements g, and pgjuv), where y € Ty, (u,v) € Q;,

1€n—1andj €n.

Proof. Let D be a diagram in &,,,,, of a shape 0 € &,, and top(D) = & for some

x € Z! . Since o is a permutation in the group &, so it can be written as s;;s;, - - -s;

r



Chapter 2. The multi-colour partition algebras 43

for some integers iy,...,%,. Now, colouring the edges to get the same diagram D
gives us the decomposition s(;, 1)S¢;, ,51) - S5y 2%1%2 1) of D (use (2.19)), so all the
diagrams of shapes s; for some i generate the groupoid &,,,,. The proof for Aj,  is
similar, since any strictly planar diagram is coloured image of a planar diagram in

the monoid P,,. O

Example 2.20.1. A decomposition of the permutation (134) is s1S3Ses1 in S5, so

XK
the corresponding factorization of the diagram |« IS S(1,2)5(3,y)S(2,u)S(1,0) Where

z=(1,0,2,0,1), y = (0,1,2,0,1), u = (0,1,0,2,1) and v = (0,0,1,2,1).

Example 2.20.2. Take « to be the diagram jj.\:\ . One of decompositions of «

1S P54P4d2p293pP3dr, SO
Oé;j = p(5,r’u)q(4,u)p(47u,v)CI(2,v)p(2,v,z)q(3,z)p(3,2,y)q(17y)7

where x = (0,2,2,1,0), y = (0,0,1,2,1), v = (0,2,2,1,1), v = (0,2,2,2,1) and
2 =1(0,0,2,2,1).

The next result shows that there is a natural factorization P, ,, = Gn,mAfl,mGn,m,

which is the first step for finding a presentation for the algebra P, ,.

Lemma 2.21. Let D € Py ;. Then D = mitmy for some my, 75 € Gy and t € A;, .

Proof. Assume that D has the shape a € P,, and top(D) = Z, bot(D) = g for some
x,y € Z". By using equation (1.13), we can write a as odf where 0,0 € &,, and
d € A,, and we are done since the decomposition of D can be gotten by recolouring
the previous factorization of «, such that m; is the coloured image of o with top row
equal to Z, my is the coloured image of # with bottom row equal to y and t is the

coloured image of d with top row equal to 2" and the bottom row 3;9. For example,

see figure 2.4.

Next step is showing that the coloured image ¢ is defined, which follows immedi-

ately from Proposition 2.19. O]
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L

FIGURE 2.4: An example of the property Ppm = &y m Ay, 1, Gnm.-

Definition 2.22. [23, Section 4]. The white multi-diagram of shape 0 € P, is the

sum of all possible different coloured copies of ¢ in the algebra P, ,.

Simply, we well say a white diagram instead of a white multi-diagram. For

instance, the identity of IP,, ,, is the white diagram of shape id € &,,,.

2.4 A generating set for the algebra P, ,,

In this section we aim to define the multi-colour partition algebra by generators

and relations.

Proposition 2.23. The elements s(; 2), 1., A(iw) and p(juw), where v € Zy,, w € Ty,

ien—1, (u,v) € Q; and j € n, satisfy the following relations:

7 z,
1. Forally € Z7,, 1,1, = fv7
1, if y==x.
0 i x,
2. For all y € an, 1$S(i7y) = oy # = S(Ly)lxsi.

S(iy) if y=uw.

0 if w# x,
3. 1.Qgw) = , = q(i,w)la-
q(i,w) if w=uw.

0 if u#x,
4' 1rp(j,u,v) = _

P(j,u0) if u=ux.

0 if v#x,
5. p(j,u,v)lx =

P(j,uw) if v =
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0 if y # o,
6. Foralll en —1, S(i,2)S(Ly) = 1, if y=ua%1=1,

S(1,2)S(i,z%) if y=ax% 141+ 1.
7. S(i,2)S(i41,0%)S(5,2%%+1) = S(i41,2)S(i,a%+1)S(i41,2%+1%), for all i € n — 2.
8. For all (z,y) € Q, and k € n,

;

0 if y#u,
5yk Pk,zv) if k= ju Yy=u,
P(k,z,)Phuw) = _ .
PGzw)Pkaww)  f Yy =u, wherew; =y V1 #k,j,
L Wy = 2k, W; = Vj .
0 if w#vy,
9. For ally € I't, Q4w)dy) = § duw)liy o W =1,
qi,w) Zf 1= l? w=y.

10 if v#£w,
- PGuw)qiGw) =
A(i,u)P(uw) if U:w,j#i,i—l—l.

if u# %

12, S(i0)P () =
P(j,z,0%)S(4,0%) Zf u:«fsz,]?éZ,Z—i-l

i if w#u
- 9(,w)P (Jyu,v)
PGu,v)bdG,w wa:u,j?él,Z—i-l
13 0 if v#ux,
- PG,uw)SG,z) = ' ) o
S(i,u)p(j,usi,x) Zf vV=1x,] 7é 1,1+ 1.

14 S(i,2)P (4,25 ) P(i+1,0,2) = P(,z,w)P(i4+1,w,2) = P(i,2,w")P(i+1,w,25)5(i,2%) fOT CL”( 5 U) S

Qi, (v, 2) € Ly, where w; = x; = W for all j # i and w; = z;, W = 24,
15. S(4,2)P(i,2% v)S(iw) = P(i+1,z,0%) for all (:L‘Si,v) € ;.

0 if w# x%,

16. s(iz)dw) = .
A(1,2)S(i,z) if w=a%1#1+1.



Chapter 2. The multi-colour partition algebras 46

0 if w# o,

17, Qw)S(ix) = ' '
S(iw) 9 (1w if w=uwx,0#1+1.

18. S(i2)q(i,z) = A(ie) = (i,2)S(iye), Jor all v € Ty.

19. S(iw)S(i_i_l,a;si)q(i7x5i5i+1)S(i+17x5isi+1)5(i7$si) = q(i+1,x)7 fOT‘ all x - Fi—i—l-

20 4(iw)P(i,w,w) (i) = A(i,w) = A6,w)P(i+1,0,0)A(i,w) -

21. P,u,0)d(@0)PGw,2) = P,u,z); fOT all (U, U)? (U> Z) € Qi; (S Fz

22. P(i,u,v)d(i—1,0)P(,0,2) = P(iu,2), fOT all (U,’U), (U7 Z) S Qi} S Fi—l-
Proof. Let Dy,Dy € P, . The element Dy Dy will be zero if bot(Dy) # top(Ds).
Since top(1,) = bot(l,) = &, top(sex) = &, bot(sux) = 2%, top(quw) = @ =
bot(d(i,w)), toP(P(juw)) = @ and bot(p(juv)) = U, so whenever the bottom of one of

the previous elements does not equal the top of another element, the product of the

first element and the second will be zero.

When the product does not vanish, all these relations can be verified by drawing
the diagram products that they refer to. To prove the relation 14, we will write x;

over the node ¢ to say that the node has the colour €,,. The proof of relation 14

equalities is given in figure 2.5. [
T; Titl Ti Tit+l
T — <7 . —z
T; Titl
. —x
msi — 1 e oo <— wl
v — e . » — 2%
. —z
zi i1
z —r o é — 2z
z; Zit+1 zi Zit1l

FIGURE 2.5: S(;,0)P (5,25 ,0) P(i+1,v,2) = P(i@,w)P(i41,0,2) = Pli,zu/)Plit1,u!,25)5(i,2%)

Corollary 2.24. The elements s ), deiy) and p(juw), where v € Zy, i € n—1,

m?’

y el (u,v) € Q; and j € n, satisfy the following relations:

1. Q(i2)S(i-1,2)q(i,0) = A(ie)(i-1,2) Jor allz € I;NT;1,2 <1 <n—1.
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2. P(4,u,0)S3,0) P(i,v% w) = P(i+1,u,0")P(i0 w) fOT all (U,U), (U517w) € QZ where v =1
for all I # i and v; = w;.

3. P(4,u,0)A(i,0) Pli+1,0,0) = P(i,u,w%)S(i,w%) fOT’ all v € LI, (U7w) S Qi-f-l'

4 Plit1,u0)9(00) Plisv,w) = S(iu)Piusiw) Jor all (u,v) € Qipr,v € Ty, (v,w) € Q.

Proof. This can be proved by using the relations in previous proposition. We are

going to show only the first part.

Ai0)S-1.0)9.0) = (A6.2)50.2))S(i-1.0)d(0) (From the relation 18)
= Q(i.0)S(5.0) S~ 1.2) 9 (52) (S(—1.2)S(6.2)S(6.2)S(i— 1.))

= (i,z) (S(i,x)S(z’—1,x)Q(¢,x)S(i—1,x)S(i,x)) S(i,x)S(i—1,z)

= d(i,2)d(i—1,2)S(i,2)S(i—1,2) (From the relation 19)

= q(i—1,0)9(i,2)S(i,2)S(i—1,z) (From the relation 9)

= d(i—1,2)9(i,2)S(i—1,2) (From the relation 18)

= d(i,2)d(i—1,2)S(i—1,2) (From the relation 9)

= d(i,2)d(i—1,2)- (From the relation 18) O

Remark 2.25. Every relation between the elements s;,q;,p; in P,(d) corresponds
to a relation in P, ,, between the elements s ), (i), P(j,u,v) When the colours match
up with all possible choices of colours, where t =1,...,n—1and j =1,...,n. For
example, the relation s? = 1 is corresponding to the relation S(i,2)S(i,2%) = lg. All the
corresponding relations to the relations in Theorem 1.23 exist by Proposition 2.23.
Since any other relation in P,,(0) can be computed by these relations in Theorem
1.23, so from equations (2.18) and (2.19) and Lemma 2.18 the corresponding relation
in Pn,m(g) can be computed by the relations in Propositions 2.23.
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Lemma 2.26. Lett,bc A}, andm € &,,,, such that tomwob is defined. Then there

isd € A, ,, and o € &, ,, such that

bomot=0codot. (2.23)

Proof. Since any element in A, | is a coloured image of an element in A,,, by ignoring
the colours and using equation (1.14), we obtain a non-coloured copy of our equation
and all what we need to do is recolour the diagrams. Since we use the relations
in Theorem 1.23 to compute the decomposition of non-coloured partitions, thus we
need to use the relations in Proposition 2.23 and Corollary 2.24 to compute the
corresponding decomposition of multi-colour partitions. For example, see figure 2.6.

]

o oo

FIGURE 2.6: An example of the relation (2.23)

Theorem 2.27. The algebra ]P’njm(g) is generated by the elements s 2y, 12, qgiy) and
P(juv), wherex € 2, y €'y ;ien—1, (u,v) € Q; and j € n, with all the relations

in Proposition 2.23.

Proof. 1t has been shown that these elements satisfy the relations and every partition
in P, can written as sequence products of these generators in Proposition 2.23,
Proposition 2.20 and Lemma 2.21. Then we only need to show that any product in

P, can be computed by using the relations in Proposition 2.23.

Let Dy, Dy € Py . By using the decomposition P, ,, = Gn,mA;mGn,m, we have
Dy = mitmy, Dy = o1boy for some t,b € A;m and my, Ty, 01,02 € G,y . Assume that
top(D1) = &, bot(D;) = ¢, top(D3) = w and bot(Dy) = Z, thus bot(my) = g and
top(o1) = @ in the previous decompositions of D; and D,. If y # w, the relations 1,

2 and 6 in Proposition 2.23 lead to D1 Dy = 0. On the other hand, if y = w, by using
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the equation (2.19) we have

x
o / / / / / /
Dyo Dy = (chob ogyomy ot O7T1> ,

z

where 7}, 7, t', o}, o, and b' are diagrams in P,, obtained from 7y, mo, t, 01, 09 and
m—1

b after ignoring the colours. Recall that D1 Dy = ( II (5fi)D2 o D; where ¢; is the

=0

number of removed connected components that have the colour €;, so

m—1

> ¢
mt'mhob'oy =650 (oy0b ool omot o).

Now the relations in Theorem 1.23 can compute the element 7}t'7,ob'c), and the

relations in Proposition 2.23 corresponding to the relations in Theorem 1.23, then

they are sufficient to compute D;Ds. O

2.5 The bubble algebra Tnm(S)

In this section we will define the bubble algebra, which is introduced in [23], as
a sub-algebra of the multi-colour partition algebra and determine its dimension and

find a generating set for it.

The diagrams in the bubble algebra in the case of two colours can be constructed
by drawing two Kauffman diagrams (or just one) with no internal loops, using dif-
ferent colours in the same frame with n nodes on the northern face and n nodes on
the southern face, such that if a node is contained in first Kauffman diagram, it will
not be contained in the second. This means that at these diagrams the nodes are
connected in pairs with different colours where an intersection is just allowed between

different colour edges.

There is another way to describe these diagrams, as Grimm and Martin[23] did,
as a sheet of bubble wrap (bubble wrap made from two sheets of polythene welded
together along certain lines to trap bubbles) where we are allowed to draw red lines

only on the back sheet and blue lines are only in the front sheet, see figure 2.7. In this
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realisation, edges are not allowed to cross on the same sheet, but they may deformed

/
—
~

FIGURE 2.7: Representing a diagram as bubble wrap.

isotopically as before.

The composite of two diagrams is defined if the two diagrams have the same
number of end points. In this case the composite is zero unless the colours match
up precisely. If they do match up the composite is a multi-colour partition which is
obtained by linking the diagrams together as for the Temperley-Lieb algebra replacing
any €; loop appearing inside the diagram by the scalar ; times the rest of the

diagram.

The bubble algebra T, (g, 01) -it is denoted by T2(4,,dp) in [23], or simply T, o-
is the F-linear extension of the set of these diagrams which are isotopy classes of
bubble diagrams and composition, with internal closed loop replacement. The loop
replacement scalar here depends on the colour. The identity of the bubble algebra
is the summation of all the diagrams which connect i only to ¢ with any colour for

each 1 <34 <n.

From the description of diagrams in the bubble algebra T, s, we can identify
bubble diagrams with multi-colour partitions, and hence it is a sub-algebra of the

algebra P, 5.

Theorem 2.28. The bubble algebra T,, 2(dg, d1) is the sub-algebra of Py, 5(do, 61) spanned
by the set Tpo, which is defined in equation (2.11).

Proof. We are going to show that 7, 5 is a sub-category of P, 5, see Remark 2.4, and
then the rest follows immediately from the algebra P, s and from bubble diagrams

realisation. Since 1, € 7,2 for each x € Z},, we only need to show that the set 7, 5 is
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closed under the composition when it is defined. Let D = (Dy, D1) and B = (By, B1)
be two-colour partition diagrams in 7, » such that D o B is defined, so from (2.7), we
have D; o B; also defined as partition diagrams. Now from the definition of 7, o, all
the diagrams D; and B; are Kauffman’s diagrams, but then D, o B; is also Kauffman’s

diagram for each ¢. Thus Do B € 7,2, and we are done. O

v

Remark 2.29. The algebra T, ,,,(do, ..., dm—1), or Ty and T, ,,(0) for simplicity,
which the bubble algebra with m colours, similarly can be defined to be a sub-algebra

of the algebra P, ,,(0) generated by the subset 7T, ,,, which is defined in equation
(2.11).

2.5.1 The dimension of bubble algebra

Proposition 2.30. For each n € N, the dimension of the algebra T, (o, 1) is given
by the formula

dim T, » = dim TL,, dim TL,, (2.24)
where TL,, is the Temperley-Lieb algebra.

Proof. In order to compute the dimension of T, 5, we will compute the number of

diagrams with k£ red edges, where £k =0,1,...,n.

Drawing diagram with %k red edges needs 2k red nodes, there are (32) options to
choose 2k nodes from 2n without repetition and the order does not matter. Next,
connecting 2k red points in pairs without crossing gives us dim TL; probabilities, see
Section 1.8.1. On the other hand, there are dim TL,,_ ways to connect 2(n — k) blue

nodes. Thus the total number of diagrams in this case is (32) dim TL, dim TL,,_.

By taking all the possibilities of k, we obtain the following formula:
k=n

. 2ny\ . . Cn ~ (n+ 1\ (n+1
dm T,z =Y (%) dim TLe dim Ty = 7=t > ( L ) (n - k)

k=0 k=0
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as dimTL,, = C,

—+1)" where C,, is Catalan number see Section 1.8. Next, we

use the formula (*¥) = 3 (})(,,”,), which is known as Vandermonde’s convolution

formula (see for example Theorem 4.2 in [34]), to finish our calculation:

dim T, » = C, (2n +2

n

Proposition 2.31. For each n € N, the dimension of the algebra Tnm(éu) is given

by the formula

dimT,,= Y - (2n)! (2.25)

mzl Ky=n ]:[0 ki (k; —|—1)

Proof. In order to compute the dimension of T, ,,, we will compute the number of
m—1

diagrams with k; edges of the colour €;, where j € Z,, and > k; = n.
j=0

Drawing diagram with &y edges of the colour €y needs 2ky nodes, there are (22]:‘ )
choices for these nodes. Next drawing diagram with k; strings of the colour €; needs

2n—2 ki
2k; nodes, there are ( 21%0 ) choices for these nodes, where j =1,...,m — 2 (the
i

last colour takes the rest of nodes).

Next, connecting 2k; points in pairs without crossing gives us dim TLy, = Cy;

possibilities. Thus the total number of diagrams is

m—3
o — X ki)\ ™!
dm Ty = Y (225) X oo X < i=0 > I1 <.
0

S kj=n 2km—2 =0
(2n
ZZ R 1
She ko(ko—i-l)'kl(kl—i-l)!-“km1(/€m1+1).

In table 2.2, it has been listed, up to rank n = 5, the dimension of the algebra
T, where m = 1,2, 3,4.
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TABLE 2.2: Examples of dimensions of the bubble algebra.

n | dimTL, | dimT, 9 | dim T, 3 | dim T, 4
0 1 1 1 1

1 1

2 2 10 24 44

3 5 70 285 740

4 14 588 4242 16016
5 42 5544 73206 410928

2.5.2 A generating set of the bubble algebra Tn,m(g)

We use a presentation of the Brauer algebra to derive a generating set for the
bubble algebra. As Grimm and Martin[23] mentioned, the diagram basis of the alge-
bra T, is like the Brauer diagram basis of the Brauer algebra B,,(0) after ignoring
the colours. Therefore, colouring a Brauer diagram (if it is possible, since if there are
m + 1 or more edges in the diagram such that each one cross the others, colouring
it will be undefined since there must be at least two crossing edges having the same

colour) gives a diagram representing a multi-colour partition in the set Ty, ,,.

We follow the same idea of defining a generating set of the algebra PP, ,, to obtain
one of the algebra T,, ,,, by rewriting the relations in Theorem 1.24 and colouring the

generators in the same theorem.

Theorem 2.32. The algebra Tnm(g) is generated by the diagrams 1,53, and ug . )
where x € 2, y € T, ={y € Z | vi # yis1}, (z,w) € QF (see equation (2.22)) and

1 €n— 1, subject to the relations:

1 z,
1. Forally € Zy,, 1,1, = fv7
1, if y=ux.
0 7 x,
2. For all y € Z?m 1$S(i7y) = oy # = S(Ly)lxsi.
S(iy) if y=uw.
0 if 2 #
3. 1xu(i,z,w) = f %
U (i,2,w) if z=u.
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10.

11.

12.

15.

0 if w#
U(i,z,w)lx =
U(i,z,w) Zf w=x.
0 if y #u,
Foralll en—1, S(i,u)S(lLy) = 1, if y=ui=1,

S(1,u)S(i,ust) if y=u%1#i+1.

(o) (41,575 ) S(h y8%541) = S(he+1,9)S(kyh+1)S (k1 yh1%) for all k € n = 2.

0 if w# v,
UG uv)UGwz) = 6Uiu(i,u72) Zf 1=7J, w=0,
UGuUwz o w=v,jFi£]1

u(k7u7v) u(k+17v72) u(k7z7w) = u(k7u7w) :

U(k+1,u,0)U(k,v,2) U(k+1,2,0) = U(k+1,uw)-

"

0 if i=1,
SipUtwz) = 0 if i #Lw#y¥,
| UtyenSGey W w=ylF i+

(

0 if 1=1,
u(l,w,z)s(i,y) - O Zf fl # l, y4 # y,
[ SGw) Utuwsi,z) if z=y,l#4i,1+1.

S(ky)U(k+1,5% u)U(k,uw) = S(k+1,y)U(k,y*+1 0) -

S(k+1,9) Uk, +1 u)Y(k+1,u,0) = S(k,y)U(k+1,y% v) -

Proof. We need first to check that these elements generate our algebra. As we said

before, if we ignore the colours in any diagram D in the set 7, ,, we obtain a Brauer

diagram which can be written as word of the elements u; , s;, see Theorem 1.24. We

may recolour this factorization (Note that we may not recolour all the decomposi-

tions) as in (2.19) to obtain a decomposition of the diagram D in the elements u(; .

and s z).

Let D € Tpm, then it can be written on the form 0D’0 (see Lemma 2.21) where

D e A*

o is the unique diagram with n propagating lines and top(D) = top(o)

n,m)
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and bot(o) is on the form ({1,..., L}, {li+1,..., b}, ..., {lm—1+1,...,n}) for some
non-negative integers [lq,...,l,_1, and 6 is the unique diagram with n propagat-
ing lines that rearrange the nodes in the bottom row to have a diagram whose top
equals ({1,....00 {01 +1,..., 5}, ... {l,_, + 1,...,n}) for some non-negative in-

!
) 'm—1

tegers [, . .. (note that both ¢ and € are defined such that there are not any

crossing lines whose the same colour). For example, see the following figure.

[
=g

Any decomposition of the uncoloured image of D’ in the elements u; (which is

existed since the uncoloured image is a Temperley-Lieb diagram) can be recoloured
to have a decomposition of D’. We still need to show that o and € can be written as

words in s(; ), it is enough to show one of them.

Let 6 be a diagram whose n propagating lines and top equals ({1, coh b {h +
..} oo {ln1+1, ..., n}) for some non-negative integers Iy, . .., l,,_1. To obtain
a decomposition of §, we begin by checking the node that is connected to n’. If {n,n’}
is a part of 8, we go to the next node. Otherwise, If {h,n'} is a part of § (note that
h will be one of the nodes [y, ...,l,_1 since there is no crossed edges that have the
same colour) we move the node h step by step until we connect it to the node n'.
After that we check the node that is connected to (n—1)" and do what we did with h.
Since we start by moving last node of each colour and then move the next node, there
will be no crossed edges that have the same colour. For example, see the following

figure. Hence we have a decomposition of 6 in the elements s; ..

A
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The elements 1,,u( ) and sg,) clearly satisfy the previous relations, it can
be verified by drawing the diagram products that they refer to, see figure 2.8 for
example. Furthermore, any product of elements in T, ,, can be computed by using
these relations, since they contain in somewhat all the relations in Theorem 1.24,
which define the Brauer algebra B, (0) although it is not immediately obvious, for

example the relation u? = ju; in B, (§) corresponds to the relation

0 if w#v,

U(i,uo)U(iw,z) = .
Ou;U(iu,2) if w=w,

in the algebra T, ,,, and the relations in Theorem 1.24 are enough to compute any

product in the algebra B, (), and we are done. O

FIGURE 2.8: The proof of s; ,yu(; w,-) = 0 since y; # yit1.

2.6 Some useful idempotent sub-algebras
In this section we will discuss certain special idempotent elements in the algebras
Ty (0), Ppm(d) and FS,, .

The diagrams of shape id € G,, are orthogonal idempotents, since

0 if y#x,
1, if y=u,

for all z,y € Z7,. Thus we have a decomposition of the identity as a sum of orthogonal

idempotents since 1p, . = 11, . = lps,,. = >, la
TELY,
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For each A = (Ao, ..., Am—1) € Dy Dmymy 1s the set of all m-compositions of n

(see Section 1.3.1), we define A € Z7, to be

A=(0,...,0,1,...,1,...om—1,...,m—1). (2.26)
= ———— N — ~ ”
Ao—times \;—times Am—1—times

Theorem 2.33. Let #,(1,) = \; for each i where y € Z},,, then the elements 1, and
12 are conjugate in the algebras T, ,,, FS,,,, and P, .

Proof. Note that #(1,) = n for any y € Z, so XA := (Ao, ..., Am—1) € I'(nm), which

m?

means the tuple A is defined.

First it will be shown in the algebra T, ,,,. We need to define an invertible element

D € T,,, such that D~'1,D = 1. We claim that the element

Y + Z 1,

u€Zyy,,
uFy

satisfies the previous equation, where 6Y is the coloured image of a permutation 6 with
top equals g, and 6 will be defined later to be a specific permutation that changes
the order of nodes to obtain A from y (such that there are no crossing lines whose

the same colour in 6Y).

Let’s define the map 6 € G,, as follows: Assume that ¢ € n and y; = j € Z,,
and define 6(7) to be v;; + > A, where v; ; be the number of integers [ € n that are
strictly smaller than ¢ and ];;j: 7.

We are going to show that # € G,,, by proving that # is an injective map. It is
obvious that 6 is well-defined. Assume that i1, € n without loss of generality we can
say that i1 < i3. Now there are two possibilities: y;, = y;, = J Or ¥;, = J1 # J2 = Yi,-
If y;, = iy, then v, ; < v, s0 6(i1) < 0(iz). On the other side y;, # y,,, then if
J1 < J2, 80 0(i1) = vy g, + >0 A < >0 Mg < 6(ip). Similarly, if j, < 71, thus

k<j1 k<ji+1
0(i2) < 0(i1). Therefore 0 is injective.
From the way that we define 0, it is evident that ¥ € T, ,, since if y; = y,; where

i < 7,s00(i) < 0(j) this implies that there is no crossing lines with the same colour
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(note there will be a crossing lines of the same colour if and only if there exist y; = y;
for some ¢ < j and 6(i) > 6(j)). Similarly, the diagram (Q_I)y, the coloured image
of =1 with bottom equals ¢, is contained in T, ,, because by flipping the diagram
(9_1)y we obtain Y. Also note that bot(6Y) = ;

Finally, take D = 0¥+ >  1,and D’ = (9*1)y—|— >~ 1,. Note that D, D' € T, ,,,

u€eLy,, UE€Lqy s
uFy uFA

DD’ =1g,, = D'D and D1,D’ = 1,.

The element D is also contained in FS&,, ,,, and in P, ,,,, so the elements 1, and 1

O s

are conjugate in both of them.

The next theorem is proved in the same fashion which Jegan has followed in

Theorem 3.1.4 in [28], which says:
3T (G0, -+ Gm1)1a 22 Tl (80) ® - -~ @5 Ty, (G- (2.27)

Theorem 2.34. Let A = (Ao, ..., A1) € L), then

I

L3P (605 - -+ 1) 13 2 Py (80) @ - -~ @5 Pa,,y (6n1), (2.28)
F

LFS,ml Gy Q- @rFG,, . (2.29)

Hy

Proof. We will prove the first part, and the proof of the second one is similar. Let
A=P,,,(0) and e = 1,. For any diagram d € eAe, top(d) and bot(d) are equal to
{1 xh o+ 1,00 M + )\0},...,{%2/\1- +1,...,n}) = ;, because all of the
other elements of A will be killed by e. =

m—1
Define a linear map v : eAe — ® P, (6;) as follows: let a € A and eae # 0.
By ignoring all nodes and edges that do not have the colour (’:], we will obtain a

partition D; of the set X; U X%, where X; = {Z A+ 1, Z An}. By replacing

i—1
Z An + k by k in the partition D;, we obtain a partition of the set )\ U )\ , say D7,

Where A; = {1,...,A;}. Thus we have D € P, (4;) for each j € Zy,. Let’s define
1 (eae) to be
Yleae) =Dy D) ®---® Dl |
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We will show that v is an algebra homomorphism.

Let eaie,ease € ele for some aj,as € A. If eq;e # 0 for i = 1,2, we have

(eaje)(ease) = eajease = eajase, so

(eare)y(ease) =(Dy @ -~ @ Dy, 1)(By® -+ ® By, )

=DyBy® ---® D! Bl | =1(eajase) = 1((ease)(eaze)).

Checking the other axioms of an algebra homomorphism is easy. This implies
that v is an algebra homomorphism. Also, 9 is injective and surjective by the way

it is defined. Therefore, ¢ is an algebra isomorphism. O]



Chapter 3

The Multi-Colour Symmetric
Groupoid Algebra

In this chapter we find an isomorphism between the algebra FS,,,, and a finite
direct sum of cellular algebras and we use this to determine the complete set of non-
isomorphic simple F&,, ,,-modules, which is the goal of this chapter. We will use this
to find an index set of all simple modules of the algebra P,,,(0). In Section 3.3,
we show that the generalized symmetric group algebra is isomorphic to the algebra

F&,,,m when m is invertible and IF is an algebraically closed field.

3.1 The multi-colour symmetric groupoid
In this section we show that the set &,,,, = {d € P, | #d = n} is a groupoid,
see section 1.2, and view its elements as m-tuples of permutations.

The set &,, 2 considered as morphisms is a groupoid with a set of objects {(A, A°) |
A C n} and the maps:

s(d) = top(d),  H(d)=bot(d),  id((A,AY) = L),
(d>_1 :d*, dl‘dg :dlodg,

60
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where o is the multiplication on P, » and d* corresponds to the reflecting of d in the

horizontal axis passing through the middle of the diagram d. Note that

dod" = lper(a)y,  d"od= ligp(a).-

For example, the diagram .}Xi is amorphism from ({3,4}, {1,2}) to ({1,4},{2,3}),

and its inverse is M

In general, the set G, ,, is a subcategory of P, ,,, see Remark 2.6, and each

element in &,, ,, is invertible, so &, ,,, is a groupoid and it is called the multi-colour

symmetric groupoid.

Diagrams in the multi-colour symmetric groupoid &,, ,,, are constructed by colour-
ing the diagrams in the symmetric group &,,. Each permutation in &,, forms m”"
diagrams in &, ,, since each element in &,, has n blocks, so |&,,,,| = m™n! where

n,m e Z".

A partition in the partition algebra IP,,(0) with n propagating lines can be viewed
as a permutation. Similarly, there is another way to describe the diagrams that
represent multi-colour partitions in &,, » as ordered pairs of bijective functions with
the union of their domains and the union of their codomains are equal to n. Also
the intersection of their domains and the intersection of their codomains are empty
sets. Let d = (do, d1) € 6,2 where top(dy) = A; and bot(dy) = Ay. We can consider
the partitions dy, d; as bijective maps dy : A; = Ay and d; : A — A5. We construct
these maps as follows: For all i € n which is connected to j* € n/ in the partition dy,

then dy (i) = j where k =0, 1.

Example 3.0.1. Consider the diagram d = M . The bijective functions

which are related to d are defined by

d0(2) = 67 dO(S) = 17 d0(6> = 57 d0(7) = 77
di(1) =3, di(4)=2, d(5)=4.
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If the objects (A1, AS) and (Ay, AS) are connected (there is a morphism between
them) in the groupoid &,, 5, then |A;| = |As| since drawing a line from the top row
to the bottom row needs two nodes, one on the top and the other on the bottom,
so it’s evident that the number of red (blue) nodes on the top row is equal to the

number of red (blue) nodes on the bottom row.

Similarly, the groupoid &,, ,, can be defined to be the set of all tuples (fo, ..., frm—1)
where f; : A; = B, is a bijective map for all i = 0,...,m—1 such that {A4;} and {B;}
are partitions of the set n. Note that objects (Ao, ..., A,_1) and (By,. .., By,_1) are

connected in &,, ,,, if and only if |A4;| = |B;| for all 0 < j <m — 1.
We will use the same definition of the type of an element as that used in [46].

Definition 3.1. For a diagram d € &,,,,, the type of d is defined to be

type(d) := (#o(d), #1(d), .. ., #m-1(d)) . (3.1)

m—1
As > #;(d) = n and #;(d) > 0 for all j, so type(d) is an m-composition of n.
3=0
Actually, we can define the set I'(, ), the set of all m-compositions of n, to be the

set of all different types of &, ,,,-diagrams.

Definition 3.2. Let A € I'(,,,), the set &,,, is the sub-groupoid of &, ,, that

contains all diagrams of type .

The product of two diagrams in &,,,, will be zero if they have different types.

From this we obtain

F&pm= O F&im. (3.2)

)\Gr(n’m)

Note that the identity of the algebra FG, ,, is the sum of all the coloured images of
shape id € G,, of type A.
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3.2 The algebra FS,,,, is a cellular algebra

In this section we study the structure of the algebra FG,, ,,, we show that the

algebra FG,, ,,, decomposes as a finite direct sum of cellular algebras.

Theorem 3.3. Let n and m be positive integers and X € I, 1), then

m—1

F&ym =F( [] ) @5 M, (F), (3.3)

=0

n

h =
where ny <)\07~--7)\m—1

) and we put Gy = G;.

Proof. To prove that, we will use Theorem 1.5 since &, ,, is a connected groupoid.

m—1
First, we will show that G = [] &,,, where G is defined by (1.2) and zg is the
i=0

object ;, see equations (2.17) and (2.26). Since the multiplication on the groups G

m—1

and [[ &,, have the same rules, all we need to do is define a bijection between them.
i=0

Let m € G, from the previous section 7 can be viewed as a tuples (o, . . ., 7T,,_1) where

i—1 {J
T; is a permutation on the set {d°A\; +1,..., > A\j}. So m; € &, for each 4, thus

7=0 7=0
m—1
the isotropy group G is isomorphic to [[ &,,.
i=0

Finally, we need to compute the cardinality of the object set of & ,,, say [, which is

equal to the number of ways we can partition the set n into m blocks { Xy, ..., X1}

n

/\0) choices.

where |X;| = X; for all i. We choose Ay elements from n, so we have (
Then, there are n — \g elements remaining and we need to choose \; of them, so we

have (”_’\0). By iteration, we have

A1
m—3
G2
l: L 1=0 :’n)\.
AO Al Am—Q

Substituting all previous details into the isomorphism in Theorem 1.5, we obtain

m—1

F&m =F([] &) ®F M, (F). O

1=0
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Corollary 3.4. Let that n and m be positive integers, then

F&.m= P (F(ﬂﬁ &y,) ®FMM<IF>), (3.4)

)\Gr(n’m) =0

h B n
where ny = Nover A1)

Proof. 1t comes directly from the equation (3.2) and the previous theorem. O]

Define the sub-groupoid (‘”Apnm to be
én,m = 6n,m N An,my (35>
where the set A, ,, is defined by (2.11). So crossing two edges having the same colour

is not allowed in én,m‘ Easily it can be shown that én,m is a groupoid.

Theorem 3.5. Let that n and m be positive integers. Then

F&m= P M, ().

Aer(nnn)

Proof. From (3.2), we have

F&pm= B F(GrmNAum).

Aer(n,m)
Now &y, N A, is a groupoid. Note that there is only one morphism from any
object to itself in &y, N A, since the crossing is not allowed. The cardinality of

the set of objects is ny, so we are done after substituting into Theorem 1.5. [
As a consequence of the previous theorems and some properties of cellular alge-
bras, we have the following fact.

Corollary 3.6. The groupoid algebras FGS,, ,,, FG,,, and F@nm are all cellular

algebras, where X € T'(, ).
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Proof. All the summands in the decomposition of the algebra F&, ,, in Theorem 3.3
are cellular, so the algebra IFG,, ., is also a cellular algebra by Proposition 1.16 and
its cell modules have the form .7, ® -+ ® S, , @ F™ where p = (po, ..., pm—1)
is a multi-partition of type A and .7, is the Specht module of the symmetric group
algebra FS,, corresponding to the partition p;, see Section 1.3.2. Similarly, the

algebras FG,, ,, and F@nm are cellular. O

From the isomorphism (3.4), we obtain an index set of all cell modules of the

algebra FS,, ,,,, which is

Ae,.,. ={(Apn) | A€ lpm), p is a multi-partition of A}. (3.6)

3.3 The relations between the algebras IS, ,,, and
FZ2,,16,

The aim of this section is to show that the generalized symmetric group algebra
FZ,, 1 &,, is isomorphic to the algebra FS,,,, when m is invertible in F and F is

algebraically closed.

Before proving the main theorem, we need to state some propositions and lemmas.

Proposition 3.7. Let © and Q be white diagrams in FS,, ,,, of shapes 0 and w,
respectively. Then O is the white diagram of the shape Ow € &,,.

Proof. Recall that a white diagram of shape (a diagram) d is the sum of all possible
coloured images of this diagram d. Any coloured image of a permutation 6 can be
identified by its top, where if the node 7 € n is, for example, a red node on the top
row, then the edge which has the nodes i on the top row and 6(i) on the bottom row
as end-points, will also be red. Similarly, we can determine a coloured image of 6 by

its bottom.

Let 64 be the coloured image of 6 and w? be the coloured image of w, where

top(6”) = A and top(w?) = B. From the definition of the product on &,,,, the
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term 64w? will be zero unless bot(64) = B. If bot(64) = B, then the nodes i, 6(i)
and w(#(i)) = Ow(i) have the same colour and they all are connected. In other words,
i and fw(i) are connected in the diagram 64w® for all i € n, hence #4w” has the

shape fw. Also top(04w?) = A, so 04w? = (w)4.

Now, both of © and €2 equal the sum all different coloured copies of # and w,

respectively. So

00 =>) 6 wh=> 6",
A B

AB

but #4w? = 0 unless bot(#4) = B, and when bot(64) = B , 04w? = (w)?, then
00 =) (fuw)™.
A

Note that on the right-hand side, it is the white diagram of shape 6w, and we are
done. O]

From the previous proposition, we can see that the product of white diagrams
can be computed as products of permutations in the group &,,.
Definition 3.8. In the algebra FGS,, ,,, the element S; is the white diagram which
has the same shape of the element s; € G,, where 1 <7< n — 1.

The elements S, ..., S, 1 satisfy all the relations that the transpositions s, ...,
Sn_1 satisfy.

Lemma 3.9. The following properties are true:

1. 8?7 =1s,,, foralll <i<n.
3. SZSZJrlSl = Si+ISiSi+1 fOT’ all 1 S 1 S n— 2.
Proof. This follows immediately from Proposition 3.7 and the fact that the elements

{si}icn_1 satisfy the relations s} = id for each 1 <1i < n, s;s5; =s;s; if |i — j| > 1 and

S;iSi+1Si = Si+1S:Si+1 for all 1 < 7 <n-— 2. ]
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We need to agree on a specific order of both bases of the algebra FZ,, ! G,, and
the algebra IFG,, .

Definition 3.10. [e.g. 4, Section 1.4]. The co-lexicographic order on the Cartesian
product [] A; of partially ordered sets is defined as

(ay,a9,...,a,) < (by,bg,...,b,) if and only if a; < b;
where i is the greatest number in {1,...,n} for which a; # b;.
For instance, a co-lexicographic order of the set Z is given by
0<e <2 <--<(m—1)er<ey<e+e<---<(m—1)1,

where 0 = (0,...,0), T = (1,...,1), and ¢; = (0,...,1,...,0) with 1 at the 4*}
position. This order can be used to define an order of the basis {(z;7) | x € Z", 7 €

S, } of the algebra FZ,, 1 &,,: (z;7) < (y;7) if and only if z < y in the set Z..

Recall that 1, is the coloured image of id € &,, whose top equals z, where x € Z',.

We say that 1, < 1, if and only if = < y.

Lemma 3.11. The elements 1, and S; satisfy the relation:
Szlxsz - 13351',

where ¥ = (Zs,1), .-, Ts;(m))- In particular, Sil.;S; = Le, ;> SilgSi = 15 and
SleSl == 1T'

Proof. From the definition of S; we have S; = ) s(;,). Now we can show that by
yeLY,
using either the relations in Theorem 2.32 or the visualization of the product S;1,.5;:

i i+ 1
¢ * Lo 4 *
[ - J— |
L = P
1><f PR S
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we obtain that in the product S5;1,.5; all that happens is that the order of the edges

in the position ¢ and ¢ + 1 changes, which is the same as 1,s;. O

After proving the next theorem, we found that our next theorem is the same as

Theorem 16 in [46] but we proved it independently albeit in a similar fashion.

Theorem 3.12. The algebras FZ,,1S,, and FS,, ,,, are isomorphic if F is algebraically
closed and ged(m, Char(F)) = 1.

Proof. Let w be a primitive m % root of the unity (w exists since F is an algebraically
closed field). From Proposition 1.7, the set X := {€y,...,€,,51,..., S,_1} generates

FZy, 1 S, where & = (e;;4d) and 5; = (0,s;). Define the map f: X — FG,,,, by

g Yy Wiy, (3.7)

TELY,

§ik+f%.

To check that this defines an algebra homomorphism, we need to show that the
relations in Proposition 1.7 hold. We already proved the last three relations in Lemma

3.9, so we need just to prove the first four relations:

fE = (3 W) = Y e,
zezn, w€zn,
since 12 =1, and 1,1, = 0 for all z # y. But w™ =1, so

FE)™ =D (W= > 1, =ls,,, -

TELY, TELY,

So the first relation in Proposition 1.7 holds. Also, f(€;)f(€;) = f(€;)f(€:), since

1,1, = 1,1, and the scalar product is distributive.

Now, from Lemma 3.11, we have 5;1,5; = 1,5 =: 1,, so

FE)fE)E) =) wSilSi =) w'l,,

zEL, yELy,
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and note that y41) = Zs,(i41) = T4, thus

FE)@E) () =D wienl, = f(@n) .
Y€Ly,
Let i # 7,7 + 1, and by rewriting it we have j # 7,7 — 1, so
FENfE)FE) = ) wilys.
TELy,
Set y = 2%, so that y; = xs,;) = 1y, since j # i,7 — 1, and thus
FEF@)I(S) =) wl, = f(@).
yELy,

Thus all the relations in Proposition 1.7 are satisfied. Hence, we have an algebra

homomorphism f : FZ,,1 &,, = FG,, ,, extending the map f.

Let 0 =s;, ---s;, € G, then from the properties of an algebra homomorphism

we have f((0;0)) = S;,--- S

im

f((z;0)) = f((;1d))© for any = € Z;,. Also

= O, where O is the white diagram of shape 6. So

f((xsid)) = f((Z zies;id)) = f(][@)™).

i=1

= H ( Z quy) %, ( from equation (3.7))
=1 yezp,

= wizlgciyily, (since 12 =1,, 1,1, =0forally #w). (3.8
yELY,

Hence,
2”: ZiY;
Fl(0) = 3w ey, (3.9)
yeLy,

Let M be the matrix of the homomorphism f with respect to the basis {(z;0) }zezn,

€S,
and (f((a:; z'd))) be the submatrix of M that is obtained by writes f((x;id)) as
TELY,
a column and ignores the zero rows, then ( f((z; 2d))> = (wizl ) (from
TELR, T, YyELY,
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equation (3.8)) which is a m™ x m™ matrix. From equation (3.9) we have

b6, <
We are going to show that (f((x, 2d))> = F, where F' is a tensor product
TELR

m

of Vandermonde matrix as defined by equation (1.9) . Since F" is invertible when

the field F is algebraically closed and ged(m, Char(F)) = 1, and dimFZ,, 1 &,, =

dimFG&,, ,,,, so f is bijective, thus an isomorphism.

To prove that (f((x, zd))) = F{, we will use induction on n: it is clear that
TEL,

it is true when n = 1. We will assume that

(FGsiap) . =FGD

TE€Lyy,

and prove the next step. The term f((z;4d)) can be written in the form:

flaid) = Y o= 1, = 3 ws ™, ¢ W

YyeLR, YyELY, ISV
y<en en<y<2len

n

n Z w; Iiyily NI Z uﬂ; $z'yi1y ‘

yeZr, yELy,
2en<y<3en (m—1)en<y

Now if ke, <y < (k + 1)e, for some k then y, = k. By substitution into the last

equation, we have

nil nil nil
. TiYi TiYi TiYi
f((z;4d)) = E wi=t 1, +w™ E wi=t 1, + W E wi=t 1,4
yezr, yeEL, yELy,
y<en en<y<len 2en,<y<3en
nz—:l
TilYi
e (m—1)zn =
+ +w wi=1 1, .

YE€Ly,
(m—1)en<y
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Now if he, <z < (h + 1)e, for some h then z, = h and

nf n—1

wzyz zyl > Ty
(x;14d)) E wi= g wl 1, + + w?h g wi=t 1,4+
yeZy, yeLY, yeZy,

y<en en<y<2ep 2en<y<3en

7L§:1

ZiYi
. (m—1)h e
+ +w wi 1, .
YELy,
(m—1)en<y

Furthermore, © = 2’ + he,, where 2’ < ¢,, (so we consider 2’ as an element in ZQ{I

: ;L
since z;, = 0), hence

Flyid)) = f((5id) (F@)" = fF((@3id) (3 1,+0h > 1,4+

YyELY, YyELR,
y<en en<y<2enp
+ ot Z 1y) - Z f((2"id))1,+
yELy, yELy,
(m—1)en<y y<en
> flalid)l, Wy T f(( i),
YELy, x€ZY,
en<y<2en (m—1)en<y
nil , nil , nil ,
iy ;Y _ xiYi
= Z wi=1 1y + wh Z wi=1 1y + .-+ w(m Dh Z wi=1 1y‘
yezn, yezn, yELy,
y<en en<y<2en (m—1)en<y
n—1 n—1 n—1
. . 2 Ty 2 T3y 2 Ty
By comparing the last two equation, we have wi=t = wi=! and wi=1 =

n—1
> @iy :
wi=1  where y = y' + ke, for some k and 3’ < e,. Next we break the matrix

<f((a:; id))) into sections: take the section he, < x < (h+ 1)e, and ke, <y <
TELY,

m

(k 4+ 1)e,, so the sub-matrix corresponds this section (from the previous equations)

is
nz—:l nX—:I
hk TiYi hk 2 TiYi
(w wi= )hen§x<(h+1)en =w (wl_l )hen§x<(h+l)ena
ken<y<(k+1l)en ken<y<(k+1l)en
but
n—1 n—1
> Ty E zy;

(Wi:l )hen§x<(h+1)en - (wi
ken<y<(k+1)en y'<en
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Hence,

Fn-) R . Fn-
Fgg—l) va(g—l) . wmlegg—l)
(Fliay) = ,
2Ly, : : :
F%L—l) wm—ngg—l) w(m—l)QF%L—l)
=F . O

The algebras FG,, ,,, and FZ,,1S,, are not isomorphic in general. For example, let

2
CharF = 2, by Corollary 3.4 the algebra F&; 5 is isomorphic to @ F, so it is semi-
simple. On the other hand, the algebra FZ, ! &; is not semi-simple by Maschke’s

theorem, so these algebras are not isomorphic in this case.

3.4 Representation theory of the algebra FG,,,,

Irreducible modules of the algebra FS,, ,, can be studied by determining the ones
of the algebra FZ,, 1 &,, when they are isomorphic, see for example [7], [47] and [51].

But we will use the isomorphism in Corollary 3.4:

This leads to the next fact.

A field F is perfect if every irreducible polynomial over F has distinct roots, see

Section 3.4 in [49].

Corollary 3.13. Let IF is a perfect field. Then the multi-colour symmetric groupoid

algebra FGS,, ,,, is semi-simple if and only if CharF is zero or strictly greater than n.

Proof. 1t follows from the facts that the algebras F&; and M;(FF) are cellular algebras
and the rest comes by using Proposition 1.17, Maschke’s theorem (see for example

Theorem 4.1.1 in [16]) and Corollary 3.4. O



Chapter 3. The multi-colour symmetric groupoid algebra 73

Recall that a partition is called p-regular if it does not have p parts of the same
size, see Section 1.3.2. A multi-partition g = (o, . .., m—1) is called p-regular if p;

is p-regular for each 1.

Let A; and A, be finite dimensional algebras over F. As it is proved in Section
3.10 in [16], any simple module of A; ® A, has the form M; ® M, where M; is a simple
module of A;, i = 1,2. Also, M(F) ® M;(F) = My,(F) for any integers k,l > 0, see
for example Section 3.10 in [16]. Hence, the simple modules of FS,, ,,, over any field
is completely determined by studying the representations for all symmetric group
algebras FG; where £ < n. Using the fact that the set of all p-regular partitions
index the set of all simple modules of the symmetric group, see Theorem 1.9, we have

the next theorem.

Theorem 3.14. Let IF be a field of characteristic p, then the non-isomorphic simple

modules of the algebra FS,, ,,, are parametrized by
A%n,m ={(\ ) | A€ Lpmy, e is a p-regular multi-partition of type \}.

Proof. This follows from Theorem 1.9 and the preceding description. O

Example 3.14.1. Let Char[F # 2,3, then the group algebras F&y and FS3 are

semi-stmple by Maschke’s theorem and
FGy,=FaT, FS; =F @ F @ My(F).
From the isomorphism (3.4) and the previous decompositions, we obtain

2 4
F&5 = My(F) & (P FS, = My(F) & (PF,

2

F&;, = P (F&, @ M3(F) @ FS;) =~ (PF & P Ma(F) & €D Ms(F).

Example 3.14.2. Let CharF = 2, then the algebra FGy is not semi-simple with

radical spanned by the element id + s;. From the isomorphism (3.4), we have

2
F&,, = My(F) & (DFS:,
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2
so RadF&y 9 = @ RadFS,. Thus the algebra FSq o has three simple modules, two
of them are one dimensional and the dimension of third one is 2. From the definition

of the multiplication on FSs o we have

F&22 = F(1(1,0), L(0,1), S(1,1,0))> S(1.0.1))) D F{1(0,0),5(1,00)) © F(L(1,1),51,(1,1)))

as an algebra. The first summand is isomorphic to My(F). Also F(1(4,501,6.))) =
FG&s where 1 = 0,1. Since the radical of FSy is spanned by id + sy, so the radical of

F<1(i,i), S(l,(i,i))) 18 spanned by 1(1'@') + S(1,(i,)) - Hence

F&,
(L(0,0) 51,000+ L1,1) +5(1,1,1)))

>~ My(F) o FaF.



Chapter 4

Representation Theory Of The

2

Algebra Py, ,,(6)

4.1 Indexing set for the simple P, ,-modules

The aim of this section is to show that ]P’n_l,m(g) has an embedding into an(g)

and describe an indexing set for the irreducible modules of the algebra IP’nm(S) .

There is an inclusion between the algebras P,,_1 ,, (5) and ]P’nm(g) defined by the

map Z : P,,_1,, — P, which is defined on the basis by
T(d) = Tofd) + - + Ty 1(d), (4.1)

where d € P,,_; ,, and Z;(d) is defined to be the same diagram except with one more
extra non-crossing €;-propagating line in the rightmost part. It is easy to check
that Z is an algebra homomorphism as the map Z just adds a white line to the
Pn—1m-diagrams and this line does not have any effect in the product of elements in

V]

Z(Py—1,,(0)). The map 7 is called the natural inclusion.

Remark 4.1. The map Z defines also an inclusion T,,_y ,(8) into T, ,,(8). Further-

more, F&,,_;,, — FG&, ,,, by the same map.

1)
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m—1

Theorem 4.2. Let (m I 5j) #0. Thene = >, ﬁp(nmy), where €, is the
]:0 ($7y)eQn "

set defined by 2.21, is idempotent and there is an isomorphism of algebras

erme = Pnfl,m- (42)

Proof. As it is mentioned P,,_; ,,, < P, ,,, by the inclusion Z, so P,,_1 ,, = im(Z). The

element e is an idempotent since

1
2 Z Z Wp(n,x,y)p(n,z,w),

(2,9)EQn (2,w)EQ, I Wn

1
Z 5—(5% P(nzw)» (from relation 8 in Pro. 2.23)

(z,y)E€Qn (y,w)EQn

e’ =

I
3|~ 3M|»— §|)_.
]

D
£
m
2
3
3

Also from the graphical visualization, it is evident that eZ(d)e = eZ(d) = Z(d)e for
all d € ,Pnfl,m-

Now, define the map f : P,_1,, — eP, e by sending an element d to eZ(d).
The well-definedness of f is clear and also it is a bilinear map since Z is a module
homomorphism and the multiplication in P, ,, is distributive, so we only need to

check the image of the multiplication of two diagrams. Let dy,ds € Pp—1,m, SO

f(dldg) = eZ(dldg) = (eZ(dl))I(dg) = (I(dl)e)l-(dg)
= (Z(dh)e})I(dy) = (T(dy)e) (eZ(da)) = f(dy)f(do).

Then f is an algebra homomorphism. Also f(d) # 0 unless d = 0, so f is injective.

Let d € P, m. The element ede will be sum of m? diagrams. At every diagram of
these, the nodes n and n’ are not connected to any other node, and the other blocks
it will be the same in all m? diagrams. Note that those blocks form a partition in

Pr—1.m, say d’, and f(d') = ede. Then f is an algebra isomorphism. O

As a consequence of last theorem, the category of P,,_; ,,-modules and left IP,, ,,,eP,, .-

modules are essentially isomorphic categories, and according to Green [21], there are
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two functors

G F
P,—1m-mod — P, ,,-mod — P,,_; ,,-mod

such that FG is the identity since PP, ,, is an algebra over a field, for more details see

Section 1.1.

Proposition 4.3. For each n € N, the following is an isomorphism of algebras:

]P)n,m/Pn,me]P)n,m = IFGTL,ma (43)
m—1
where e = > #p(n,x,y) and (m [I 53‘) # 0.
(z,9)€Qm o Jj=0

Proof. The ideal P, ,,eP, ,,, contains all diagrams having a propagating number less
than or equal to n — 1, this means P, ,,eP,, ., = ]P’n,m(g; n — 1), see equation (2.15).

Therefore any diagram in P, ,,, /Py, m€P, ,, has exactly n propagating lines. O

Let Ag,,, be an index set for the cell modules of the algebra F&,, ,,, see (3.6).
From the last proposition and the last theorem, we obtain the following useful corol-

lary.

Corollary 4.4. Let Ap,,, denote an index set for the cell modules of the algebra
o m—1
Pom(0). If (m TT 6;) #0, then Ap,,, is the disjoint union
j=0

n
A]Pn,m = APnfl,m |_|A6n,m = |_| A6t¢m7
t=0

={(t,\p) |t € Zpi1, A € Diymy, pb is a multi-partition of \}. (4.4)

Proof. It comes directly from Theorem 1.3 and equation (3.6). O

4.2 The algebra Pn,m(c\f) is a cellular algebra

In this section we shall prove our main result of this chapter, which is that the
multi-partition algebra P, ,, is cellular. We show that the algebra P, ,,, satisfies the

conditions to be a cellular algebra by using Theorem 1.15.
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C. Xi [55] has proved that the partition algebra P, (d) is a cellular algebra, by
using the fact that the symmetric group algebra is a cellular algebra. We will do the
same, showing that an(éu) is cellular by using the fact that the tensor product of

finitely many symmetric group algebras is a cellular algebra.

Consider the order relation on the set nUn’: 1 < ...<n <1 <...<n'. Let
p € Px for some X C nUn/, the partition p is said to be written in standard form
if p is written as {M, ..., M;} where M; = {agi), . ,ag)} with agi) <. . < agf) and

agl) < ... < a(ll). We say M; < M; if and only if agi) < a(lj).

There is only one
standard form for each partition p. Also, we define |p| to be [, the number of parts

of p.

We say that (do, ..., dmn-1) € Pnm is written in standard form if and only if each
d; is written in standard form.

Let A = (Ao, ..., Am—1) € | T@m), where I'(,y, is the set of all m-compositions
1=0
of I (see Section 1.3.1). Define V) to be the vector space with basis:

Q\ :{((do, Dy), ..., (dm,l,Dm,l)) | d; € Pa,, for some A; C n such
m—1
that | J d; € Py, |di| > A and D; C d; with |D;| = \; }.

=0

For example, (({{1,3},{5}}, {{5}}), ({{2}. {4}},{{2}})) is an element in Q( 1) where

n = 5.

For each M C nUn/, we define the set M’ to be the same elements of M after
adding primes to the elements that do not have a prime and removing the prime from

the elements that have a prime.

Let N CnUn/;, M # N and p € Py, we denote by (y(p) the partition of M \ N
obtained from p by deleting all elements in N from the parts of p, and by £x(p) the

set of parts of p that do not contain any element in N.

Let x € Py and y € Py, then we define the partition x .y € Pyun to be the

smallest partition in Py which contains x U y( this means each part of x Uy is a
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subset of a part of z.y). For example {{1},{2,3}}.{{2,4}} = {{1},{2,3,4}}. From
the definition, it is clear that x .y = y . x.

For a diagram p € Py, if we interchange the primed element j' with the unprimed
element 7, then we get a new partition of M’. Let us denote this new partition by

*(p) or simply p*. In general, if p = (po,...,Pm-1) € Pnm we define *(p) to be

(P55 Prma) -

Example 4.4.1. Take p = {{2,3'},{4},{6}} and N = {1,2,6}, so (y(p) = {{3},
{41}, Ev(p) = {{4}} and p* = {{2',3}, {4}, {6'}} .

Lemma 4.5. The linear map * is an anti-involution of the algebra P, ,,.

Proof. The map * is defined on P, ,,,, so * extends to P, ,, by linearity. It is clear
that (a*)* = a and (af)* = (6)*(a)* holds true for all o, 5 € P,,,,. This follows

immediately from the graphical realization of the map * and the product in P, ,,,. O

Let S, be the algebra 1,FS&,, 1, where A € I'g, ) and A € Zy, is defined by
equation (2.26). From equation (2.29), we have

Spr ZFG), ®r - QrFG,,, ,. (4.5)

m—1
Thus dim S, » = [] A!, and the set
=0

{(fo,.--, fm=1) | fi € &), for each i€ Z,,}

can be regarded as a basis of the algebra S, 5. Let f; € &,,, where ¢ € Z,,. Through-
out this chapter the element (fo, ..., fin—1) is used to denote its image in S,, x, which
is simply the diagram in &,,,, formed by drawing f, by the colour €, followed by
drawing f; by the colour €; in the same frame and so on. By Proposition 1.16 and

since symmetric group algebras are cellular, we have that the algebra S,, 5 is cellular.

Lemma 4.6. Each element in P, ,, can be written uniquely as an element of Vy\ Qp

Vi ®r Spp for some A € Ty and 1 =0,...,n.
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Proof. Consider a diagram p = (po, ..., pm-1) € Pnm and z, = (u(pn) and y, =
Cu(py) for each h € Z,,. Note that x;, € Pigp(,) and y, € Prop(py)- Take A =
(#(po), - - - #(pm—1)) and I = |A| := #(po) + - + #(pm-1).

Let S,, be the set of parts of p;, containing both primed and unprimed elements.
Then |S,,| = #(pn) = An. Define X, := (u(S,,) and Y, = (u(S},). It is clear
that both X and Y}, contain A, parts, thus v = ((zo, Xo),..., (Tm-1, Xm-1)) and

w = ((y0,Y0)s -, (Ym—1, Y;m_1)) are contained in the set Q2.

Now if we write X}, and Y, in standard form: {X7,..., X} }, {Y/, ..., Y"}. We
define b := (bg,...,bm—1) € S, where by, is a bijective map from X, to Y} that
sends i to j if there is a part T' € S,, containing both X and th. Since v, w and
(bo, - .., by_1) are uniquely determined by p in a standard form, we can associate with

the given p a unique element v ® w ® b.

Conversely, each element ¢ ® v ® b with p,v € Q) and b € S\ corresponds to a

unique multi-colour partition p € P,, ,,. O

Example 4.6.1. Take the diagram DZQ in Pya. So we have x; = {{1},{4}}
=Xy, 22 = {{2,3}} = Xo, w1 = {1}, {2}} = Y1, v = {{3}, {4}}, Yo = {{3}} and
(b1, by) is the diagram . Hence the diagram corresponds to the element

(1, X1), (22, X2)) @ ((y1, Y1), (Y2, Ya))otimes(by, by).

There is a bilinear map ¢, : Vi @ Vi — S;\, where [ = |\| = 27]7:01 A;, defined
as follows. Let v = ((zo, X0), .-+, (Tm-1,Xin—1)) € Q) be fixed and assume that
Xn ={X],..., X} }is written in standard form for each h. Take w € Q, and assume
that w = ((yo,Y0), -, Wm—1, Ym_1)) where Y}, = {Y", ...,Y/\};} is also written in
standard form for each h. From the definition of €2, we can assume that =), € Py,

and y, € Pp, where Uj" | Ay, =n = U, By. Then we define ¢, (v ® w) to be

(

m—1
IT 6 (bo,- - bm-1) if A, = By, and each part of xj, .y,
h=0

contains only one part of X, and contains (4.6)

only part of Y}, for each h € Z,,,

0 otherwise,
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where ¢, = [€x, Ly, (Th + Yn)|, and by, is defined as follows: since for each ¢ there is a
unique part of zj, .y, containing both X and th, we define by, to be the permutation
taking ¢ to j. Thus b, € &,, and (by, ..., byn—1) € S;x. This element (b, . .., by_1) is
denoted by Ty (v;w).

If we extend ¢, linearly to the whole space V) ®p V), then we have the following

lemma.

Lemma 4.7. The map ¢y : Vi ®r Vy — Sy, 0 15 a bilinear form.

Proof. This holds since any map on a basis of a vector space defines a unique linear
map on the vector space and 2, is a basis of V). O

Lemma 4.8. Let p,w be partitions in Ppy. If p=u@2r@b andw =yR@v&®d are
contained in Vy @p V) QF S5, then

(u @V ® bpy(z @ y) d> modulo Jy< if top(w) = bot(p),

0 otherwise,

pw = (4.7)

where Jy< 1= b Ve ®@r Ve ®r Sy e
el T
E£X and & <\; V)
Proof. Let x = ((z0, Xo0),- -, (@m_1,Xm-1)) and vy = ((y0,Y0),- -+, (Ym—-1, Ym_1))-
From the definitions of the multiplication in P, ,, and of the map {x, 1y, , we have
that |€x, Ly, (T + yn)| equals the number of connected components removed from
the middle row when we construct the product ppwy, where p = (po, ..., pm_1) and
w = (wo, .- .,wm—1). Hence, it is sufficient to show that the element u®v®bep, (m®y)d

m—1
represents the element [ 6" (wOp) in P, ,,, modulo Jy<, where |Ex, 1y, (Thayn)| = ch-

In the second case, if ¢, (:c ® y) = 0, from the definition of ¢, we obtain that

#(prwn) < Ap for some h. This implies that pw € Jy<. So the result holds when
Pr(z®y) =0.

m—1
Now assume that ¢\(z ® y) = ([] 6;")s, where s = (so,...,Sm_1) is defined

as above, then we need to show that u ® v ® bsd represents the element w o p.
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From the definition of ¢), we can realize that Cl/((w o p)h) = C@(Ph) = uy;, and
that Ci/((wh o ph)*) = Cl/(w;) = vy, where u = ((ug, Up), ..., (tm—1,Un—1)) and
v = (('007 %)7 SRR (Umfla Vm71>>-

Note that there are only A, distinct parts of x, . ys, say Pl ... ,P/{‘h, each one
containing a single X jh and a single YZ;L () So there is a part ppw, which contains

both U:—l(j) and Ys};(j), where b = (b, ..., b, 1). Since Y/* and Vh (i) are contained
h

in the same part of y, « v, where d = (do,...,d,_1), then U;‘_ 1G) and V;;d . are
contained in the same part of pjwy,. Hence pw is represented by u ® v ® bsd. O]

The following corollary is a consequence of the definitions and the previous lemma.
Corollary 4.9. Let a = 2 ®@y®b with x,y € Q) and b € S}, then x(a) = y@r®b*.

Lemma 4.10. Let \,pu € |_|th with X # p and \; < p; for each j. Take
a=ur®beV,®V, ®S2u u Where b is a basis element of Sy~ ., and 3 =
YyRuv®s € Vy®Vy®Syan with s a basis element of Sy-x; x. Let x; € Py, and
y; € P, for some subsets A;, B; C n, where x = ((z0, Xo), .., (®m-1, Xm-1)) and
v = (40, Y0), - Wm—1,Ym-1)). Then

o A; # B; if and only if af =0, wherei =0,...,m — 1.

o [f0#£af = H 5|§Xhuyh oeon)| w®zRd, where w = ((wo, Wo), ..., (Wm—1, Win—1))
and z = ((ZO,ZO)  (Zm1,Zm-1)), then
(1) if [Wi| = X for each h, then z = v , d = d's for some d' € Sy, and w
and d' do not depend on s (moreover, d = b \(z;vy));

(2) if |[Wh| < A for some h, then a(y@ v 8’) € Jx< for any s" € Sy, -

Proof. The first part is clear since bot(a) = (Ao, ..., A1) and top(8) = (B, - .-,
Bp_1). If [Wy,| = Ay for each h, then |Z,| = A\, as a8 # 0. Since every ZI' is always
obtained from V;*, we have z = v. Hence d is also of the desired form. The other
assertions follow immediately from the definition of the multiplication of two basis

elements in the set P, p,.



Chapter 4. Representation theory of the algebra P, ,, 83

Finally, the proof of last part is obvious since s, and s, can be considered as
two bijections from Y}, to Vj, and |W,| < A, for some h, so there is a part of xp « yy
containing more than one element of Y},, thus we always have a(y KU S ) € Jy< for

any s’ € Sy x;a- O

The next corollary is a result of the previous two lemmas.

Corollary 4.11. J, := &P Vi @F V, @F S5 ;0 18 an ideal of Py, .

n
MGZUOF(z,m)
where p; <\; V jE€Lm,

Proof. From the definitions, it is obvious that J) contains all the diagrams in which
the number of €;-propagating lines is less than or equal to A; for each j € Z,,, so

Jy = Pp.m(d; ) (see Proposition 2.13). O

Lemma 4.12. Let 0 : S;» — S;\ be the involution which is defined by b— b* for all
m—1

be [ &y, Then opr(z ®@y) = ¢a(y ® x) for all x,y € Vi.
3=0

Proof. Let x = ((0, X0); - -+, (Tm_1, Xm-1)) and y = (%0, Y0),- -, Wm—1, Ym_1)). If
we assume ¢ (z®y) = 0, then it follows from the definition of ¢ and xp .y, = yp.xp
that ¢(y ® ) = 0. Now assume that ¢y(x @ y) # 0. In this case, if X" and YE)}:L(i)
with b = Ty(x;%y) are contained in the same part of zy, « yp,, then Y* and XZ?Z(Z.) are

also contained in the same part of yj, . x5. Thus T)(y;z) = b*. This shows that

ooz ®@y) = oAy @ ). O

Now we are ready to prove the main result.

Theorem 4.13. The multi-colour partition algebra an(éu) 15 a cellular algebra.

Proof. Put J_1 = 0, &y = {1} and B, = S;,, where | = Z;ial)\i. Then the

multi-colour partition algebra has a decomposition

Pom= P Vi@rVa®S. (4.8)

A€ I_l F(lml)
=0
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Note that B, is a cellular algebra with respect to the involution ¢ as defined in
Lemma 4.12, since it is isomorphic to the tensor product of finitely many cellular
algebras (see equation (2.29) and Proposition 1.16). By the lemmas in this section,
the above decomposition satisfies all conditions in Theorem 1.15, thus the algebra

Pn,m(g) is a cellular algebra. O

4.3 Cell modules of the algebra an(S)

In this section, we describe a complete set of generically simple modules V,,(u) of
the algebra IP’nvm(S), where p is a m-multi-partition of an integer less than or equal
to n, see Subsection 1.3.1. These are simple modules of P, ,,, except for finitely many

values of 4.

From the definition of the algebra S,y x, the set of all cell modules of the algebra
Siaja is {4 | pF A}, where |A| =3 \; and

yu = yy«o R R yﬂmfl, (4.9)

where .7, is the Specht module of the symmetric group &), associated to a partition
m—1
p; with a bilinear form ( , ),,. We define a bilinear form on ., by (, ), = ] (, )u:>
i=0
From Theorems 4.13 and 1.15, we have the following fact.
Corollary 4.14. The cell modules of }P’nm(g) are Vo (p) == V\ ® vy ® .7, where

A€ UTum and p = X, vy is a fized non-zero element of Vi, and .7, is the cell
1=0
module of the algebra S)y, as it is defined in (4.9). If |\ =0, take A =0 = p and

S5 =T, where 0= (0,...,0).(Note that pu determines \.)
~——

m times

Let (, )au be a bilinear form on the module V,,(p) defined by (4.7) via its basis
of diagrams (we add A just to make it different from the bilinear form on the module
). Let us write G, (u) for the Gram matrix of the inner product (, ), on the
cell module V,, (). For (A, pu) € Ag , the simple P, ,,-module L, (u) is the simple
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quotient of the module V,,(p). Remember, the module V,,(g) is simple if and only if
det G, (p) # 0, for more details see Section 1.5.

Recall that a multi-partition g = (po, . . ., pm—1) is called p-regular if p, is regular
for each i, see Subsection 1.3.2. If p = 0, then all multi-partitions are p-regular. As

a corollary of Theorem 4.13, we classify the simple modules.

Corollary 4.15. Let an(g) be the multi-partition algebra over a field F of charac-
m—1

teristic p. If ] ; # 0 then the non-isomorphic simple modules are parametrized by
§=0

{(,p) |1 € Zpsr,p is a p-regular m-multi-partition of 1}.

v

Proof. 1t follows from Corollary 4.14 that all simple P,, ,,,(d)-modules are parametrized
by {(l,p) | {, )ap #0}. Let A, B € V,,(), from the definition of the module V, (),

these elements can be written as
A=a®®uy®a ,B=b®v,® 0,

where o = (ag, ..., @m-1), 8 = (Bo, ..., Bm-1) € S, and a,b € V) where p,; = \; for

each 7. From Lemma 4.8, we have
AB = (a R Uy ® oquA(vA ® b)ﬁ) modulo Jy<,
when top(B) = bot(A), otherwise it will be zero. Take b = vy, where

vxn = ((v0, Vo), - - - (Vm—1,Vin—1)) € Vi,

from the definition of the map ¢,, it is obvious that
m—1
¢)\(U)\ & U)\) = H 5?1‘7/\1‘(2'61, ceey Zd)
i=0

So when b = v, the multiplication AB is

m—1

AB = H (5?1"_’\1' <a R vy ® ocﬁ) modulo Jy<.
i=0
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m—1
Thus (A, B), = 0 if and only if ( I1 51‘41]"‘_%) (a, f) = 0 in the module .7, (note
i=0

m

that (o, B)u = [1(, Bi)u;» where (ai, i)y, is computed in the module .7,,). Now,
we are going tolglileck each term (51””7’\% . ) individually. If A; > 0, the partition v;
can be chosen such that |v;| = \; so we only need to check when (, ), equals zero.
From Theorem 1.9, (, ),, # 0 if and only if p; is p-regular partition of ;. If A; =0,
then (ﬁm*&( i = (ﬂw‘ which is non-zero when §; # 0. This shows that (, )y, # 0
if and only if g is a p-regular multi-partition of A and m]:[: d; # 0. O
e
Next, we shall determine for which values of the parameters ¢; the algebra P, ,

is quasi-hereditary.

Corollary 4.16. The algebra P, ., is quasi-hereditary if and only if 6; # 0 for all i

and the characteristic of F is either zero or strictly grater than n.

Proof. 1t comes directly from previous result and the fact that a cellular algebra is

quasi-hereditary when A = A°, see Remark 1.20. n

4.4 Semi-simplicity of the algebra P,,, over the

complex field

In this section we shall work towards proving the final results of this chapter. We
show that the algebra ]P’nm(g) is non-semisimple over the complex field if and only if
d; is a non-negative integer less than 2n — 1 for some j € Z,,. From here to the end

of this chapter we will assume that F = C.

Over the complex field we have
Rad(P,,,(0)) = Rad(P, ., (0;n — 1)),

and we can prove that as follows. Since Pnym/IPn’m(g; n—1)=C6,,, and CG,,,, is a

semi-simple algebra (see Corollary 3.13), so Rad(P,, ) C Rad(IP’mm(S; n—1)) (view
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P, (0:n — 1) as an algebra without identity). Also Pmm(g; n — 1)/ Rad(P,,) is an
ideal in P, ,,/ Rad(PP,,,,), so the quotient IP’n,m(S; n — 1)/ Rad(P,,,) is a semi-simple
algebra. This implies Rad(P,,(d;n — 1)) € Rad(P,,.).

Define idempotent elements

1
L.= ] ~Plaay  k=0....n—1, (4.10)

j=k+1 "I
where = € Zj, and d,, # 0 for each j > k.

Lemma 4.17. The element Iy, is a primitive idempotent in the algebra P, ,, for

each x € Z,. Furthermore, the left ideal P, ,, X0, is an indecomposable module.

The proof is clear since Iy ,P, mlo. = Flp,. Also dim(P, ,,Io.) = > ml{7},
=1

where {?} is the Stirling number of the second kind.

Let ey, be the primitive idempotent corresponding to the Specht module ., in
the group &,,, then (eg,,...,eu,_,) € Sjz,x 50 we can use the inclusion map Z, see

(4.1), and define the element

e/‘ = In_‘)\l((e/‘O? ctt 7eﬂm—1)) e FGnvm

Let p-AE Il = |)\| for some [ = 0,...,n and define = to be a tuple defined as

—1 m—1
follows: x; = j when Z M+1<5< Z Ax and z; for 7 > Z A, takes any value
such that d,, # 0 and that to make I; , 1s deﬁned Without losmg the generality, we

can assume that d,,_; # 0 and take x to be

0,...,0,1,...,1,...om—2,... m—2m—1,....m—1).
—— —— ~ ~ ~ ~
Ao times  Ap times Am—2 times ”72?;702 \; times
Hence the element the element I; ,e, represented by the element w®@w®(ey,, - - -, €pu,, )

where w = ((wo, Wo), (Wim—1, Win—1)), wi = Wi = {{>2, ;A + 1}, ..., {D 2, A}
when i <m—1, and wy,—1 = {{>_,,, 1 Aj+1}, .. {ntand W0 = ({37, 1 Aj+
1. {0 <m_1 A1} From the definition of cell modules of the algebra Sy \ we have
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Sia(€ugs -+ €um 1) = Su (see (4.9)). Since the element vy in the definition of the
module V,(¢) does not have any role, so we can take w = vy and then by using

Lemma 4.6 we can show that

Vo(p) 2Pyl (mod Py, (0,1 —1)). (4.11)

As consequence of the previous paragraph, we have the following fact. Recall
that we write p > A to denote that p is a partition obtained from the partition A by
adding a box to A after regarding them as Young diagrams. Also <1\ means that p
is a partition obtained from A by removing a box. Additionally, u </ >\ means that

1 is a partition obtained from A by removing a box after adding a box.

Proposition 4.18. The generic restriction from Py, ., to Pp_q i

V \LIP’n 1 mg ( @ anl(ll'/)) @ ( @ anl(/"l'/)

h=0 My D> pn By <>pp
wi=p;ViFh wi=p;ViFh
/
D D Vn—ﬂ#)))
1y, <p
pi=piVith

Proof. Any element in V,,(u) can be written as m-tuples of partitions, see (4.11).
Each one is included in a module Uy, ., (1;) (see (1.15)) of the partition algebra
Py, 14, (0;) for some u; such that > \; + u; = n by ignoring all the colours except the
one €;. We finish the proof by using the inclusion P,,_y,, < P, , and Proposition

1.26. [l

By using the Frobenius reciprocity, see (1.1), and the previous fact we can compute

the induced modules of the cell modules of the algebra P, ,,.

Example 4.18.1. Let m = 2. By last proposition, for generic values oy and 6, we

have

Val(1), (0)) by, (@wm, <o>>) S VL((0), (0)).  (see figure 4.1).
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We can show that as following: the module Vo((1),(0)) can be taken to be the module

that s spanned by the elements

D/ PR O R | O e A e A

On the other hand the module V1((1),(0)) = F(1() and the module V1((0), (0))
has a basis containing the elements a1 = q(1,(0),0)) and az = q1,(1),(0))- Now if dg # 0,
it is easy to show that the spaces X; = F(by — 65 bs), Xo = F(by) and X3 = F(bs)
are Py o-modules and all of them isomorphic to the module Vi((1),(0)). Similarly
X4 = F(by, bs) is Py o-module and it is isomorphic to the module V1((0), (0)),we can
show that by using the map that sends a, and as to by and bs respectively. Note that
Va((1),(0)) = éXi’ and we are done.

The generic Bratteli restriction diagram for the irreducible representations as-
sociated to the inclusion P, ,,, < P,,_1 ,, is shown in figure 4.1. From that we can

compute the dimensions of the generic simple modules of IP,, ,,, see table 4.1.

n\p | (0,0)  ((1),(0) ((0),(1) ((1),1) ((@%,0) ((2),(0)

0 |1

1|2 1 1

2 |6 5 5 2 1 1

3 |22 25 25 18 9 9

4 |94 133 133 134 67 67
n\p | ((0,0%) (0),2) (@%.(1) (2.0) (@.0%) (1).(2)

2 |1 1

3 19 9 3 3 3 3

4 |67 67 42 42 42 42
n\p | (3).00) (2.1).00) ((%).0) ((0).3) ((0),(21)

3 |1 2 1 1 2

4 |14 26 14 14 26

TABLE 4.1: The dimensions of some cell modules of the algebra Py, ,,.

It is easy to show that the module V,,(0) is isomorphic to P, ,,, 1o, for any = € Z7,,
such that d,; # 0 for each j, since x doesn’t have any role here. In both of spaces,
the basis is in one-to-one correspondence with the elements of the set:

m—1

{(do,...,dm-1)| d;i € Pp,, for some D; C n, such that U d; € P}

=0
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FIGURE 4.1: The Bratteli diagram for a tower of multi-colour partition algebras.
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Let d = (do,...,dn-1) and b = (by,...,bn_1) be basis elements of V,,(0), where
d; € Pp, and b; € Pp, for some subsets D; and B;. From graphical visualization, we

have
0 if D; # B; for some 1,
(d,b)og=1q m-1 '
T {(di,bi)o,0) otherwise,

1=0

where (d;, b;)o,(0) is computed in the algebra Pp,(d;).

Let M, 5((0)) be the Gram matrix of P,,(§) of the inner product corresponding to
the trivial partition of 0. From the last equation, it is obvious that G, (0) is a direct
sum of tensor products of matrices M, 5,((0)) such that } n; = n. Furthermore, the
matrix M, 5,((0)) is singular over complex field if and only if ¢; € {0,1,...,n; — 1},
for more details see [43]. By using the property 1.8, the matrix G, (0) is singular over
the complex field if and only if one of the matrices M, 5,((0)) is singular, this implies

V,.(0) is simple unless one of the scalars §; is a natural number less than n.

Theorem 4.19. The algebra Py, (0o, - . ., dm—1) is semisimple over C for each inte-
gersn >0 and m > 1 if and only if none of the parameters 6; is a a natural number

less than 2n.

Proof. By using the induction/restriction rules and Frobenius reciprocity, then the
module Vy,(0) as P, ,,-module contains all the modules V,, (1) as sub-modules. Hence
det Gy, (0) # 0 if and only if det G,,(p) # 0 for g in level n. This implies that if Vy,(0)
is simple, then all the modules V,, () is simple for all § at level n, so the algebra P, ,,

is semi-simple. As it is shown in above Vs, (0) is simple over the complex field unless

one of the scalars ¢; is a natural number less than 2n. O

4.5 Some low rank calculations

We end this chapter by discussing the above properties on two examples to illus-

trate the main results in the previous sections over the complex field.
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Let us consider n = 1. The algebra P, » is a 6-dimensional algebra. The vector

spaces V) are
Vivey = C{(({1}{1}), (0,0))) , Vioy = C(((®,0), {1}, {1}))

Vioo) = C{(({1},0), (8,0)), ((0.9), ({1}, 9))),

and also Sy (1,9) = C&; x G = C, similarly Sy 1) = C and Sy 0,0) = C. It is easy to
see that

P12 = C{1ay, P(1.(0).1): P.(1).0)) ED ClL), P(1.(0).0)): P(1.(1).(0));

as left modules.

To make notation easier, put a; = 1), az = 1), az = P(1,(0),(1)), @4 = P(1,(1),(1))

as = P(1,(0),(0)) and ag = p(1,(1),0))- The cell modules of P, ; are
Vi((1),(0)) = Cay , Vi((0), (1)) = Cay,

V1((0), (0)) = Cas, a4),

Both of V;((1),(0)) and V;((0), (1)) are simple, since their dimension is one. On the
other hand, V;((0), (0)) is a simple module unless dpd; = 0, since the Gram matrix

of V1((0), (0)) is
(50 0

0 &

Now the action of the algebra Py 5 on V;((0), (0)) is given by

Z oczaZ (o + dpavs)as + dpgau,

(Z aiai) ay = (510&3@3 + (@2 + 51044)(14

i=1
In the case dp = 0 and §; # 0, then V((0),(0)) is an indecomposable module with

sub-module Cas, and Caz = Ca; as modules. Now, if o = 0 and 6; = 0 , then
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V1((0), (0)) is decomposable and it is isomorphic to V;((1), (0)) & V1((0), (1)).

For the second example, take n = 2. The algebra P;5 is 94-dimensional. The

corresponding vector spaces V) are

View =C(( (111 (210, (11 21, 0.0) ),

Vo =€(( 0.0, (113, £ (1), 21 ),

Vi =C((((1,20,11.20,0.0)). (00,0 (210) ), (@23 20, (0.0,
((Can 20.00.0.0). (0} 20.20.00)),

Vo =Ct(@.0), (0125 .20 ). (€210, (ak (ap)). (000,002, 21,
(@021 0p). (0.0, 2. e2h)),

Vi =€(((1 0D (020,200 ), (623 20, (00, ) ),

v(om=@<(<®,@>,<{1,2},@>),(({1,2}@ ©0.0). (€10.(21.0)
((.0.0.0), (€. 210,00, (00,00, 210))

To compute the modules V5((2), (0)), Vo((1,1), (0)), we need to determine the simple
modules of CS,, which are only the trivial and sign modules, they are C(id +s;) and
C(id — s1) respectively. This implies that

V2((2),(0)) = C(110,0) + 51,00,0)))>
VQ((:[? 1)’ (O>) = C<1(0v0) - S(lv(oro))>'

Similarly,
V2((0),(2)) = C{L1,1) + 5,1,
V5 ((0), (1,1)) = C{L0,0) — s(1,1.1)))>
Vo ((1), (1)) = C{110.1), S1.1.0))) -

All the previous cell modules are simple.



Chapter 4. Representation theory of the algebra P, ,, 94

Also, the module V; ((1), (0)) can be spanned by the elements:

The Gram matrix of this module with respect to the previous basis with the same

order is
10 0 1 1
06 0 0 O
0 0 &6 0 01,
1 0 0 9 O
1 0 0 0 4

and its determinant is §70y(dp — 2). Thus the module Vy((1), (0)) is simple unless
9100(60 —2) = 0. When 6y = 2 and 0; # 0, the module V5((1), (0)) is indecomposable

with radical spanned by 24(1,(0,0)) —P(1,(0,0),(0,0))9(1,(0,0)) — P(2,(0,0),(0,0))d(1,(0,0)) - Similarly,
V2((0), (1)) is simple unless 62d,(d; — 2) = 0.

Finally, the module V5((0), (0)) can be spanned by

b 7 S g o e
] = v Qg = ' g = 1 g4 = P Qg = r g = .
: a o - a o

q

o

*
-

The Gram matrix of V5((0), (0)) with respect to the previous basis with the same

order is

5§ 0 0 0 0 &
06 0O 0 & O
0 0 686 0 0 0
0 0 0 & 0 0
06 0 0 6 0
56 0 0 0 0 &

Thus Vy((0), (0)) is simple unless d307(dp — 1)(6; — 1) = 0. When &y = 1 = 4, the

radical of this module is C(a; — ag, as — as).



Chapter 5

Representation Theory Of The
Algebra T, »,

v

The notion of the bubble algebra T, ,,(d) has been introduced by Grimm and
Martin [23], and they proved various properties of the algebra as it is generically
semi-simple. Jegan [28] in Section 2.1 showed that the bubble algebra T, ,(d) is
always a cellular algebra, and it is a tower recollement when all of the parameters 9;
are non-zero. The theory of towers of algebras has been introduced in [11]. In this
chapter we provide some further information on the structure of the bubble algebra,
for instance calculating its Cartan matrix over the complex field by investigating the
head and the radical of each cell module by using the ones of the Temperley-Lieb
algebra.

5.1 Introduction

This section introduces some of the basic modules for the algebra Tnm(g) that

are related to cell modules of Tnm(g) since it is cellular.

The number of propagating lines in any diagram d € T, ,, see (2.11), has the

form #(d) = n — 2v for some an integer v, where 0 < v < ["/5], since making an arc,

95
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an edge connects two nodes in the same row (top or bottom) of a diagram, needs to

two nodes on this row.

We follow Grimm and Martin [23] and define the subsets Ty m[Ao, - - -, Am—1], OF
simply Tn.m[A], Tnm[k] and Tpm (k) of the set 7y, to be

7:L,m[)\07 RN >\m—1] = {d S 7:1,m | #J<d) = >\j for all] c Zm}, (51)
Tomlkl = | Tomlor- s Amcil, (5.2)
>, A=k
Tom(k) = Tomll], (5.3)
1<k
m—1
where \; € Nand > A\, k€ {n,n—2,...,n—2["/s]}, and #;(d) is the number of
j=0

propagating lines in a diagram d that have the colour €;.

Definition 5.1. Let ']I'mm(g; A0y -+ -y Am—1), or simply Tn,m(g; A), and Tnm(g k) be
the ideals of the algebra T, () that are generated by the sets T [\ and Tym[k],
respectively.

Lemma 5.2. The ideal Ty (0; A) has the set  |J  Tnm[X — 21] as basis, where

0<1;<[Y /2]

)\ - 2[ - ()\0 - 2[0, e 7)\m—1 - 2lm—1)~

Proof. The proof is similar to showing that the ideal P, ,,(5; A) has the set Py, ,(\)
as basis (Proposition 2.13). O

The set of all ideals of the algebra T, ,,, that have the form ’]Tn,m(g; A) is a lattice
with a partial order: ']Tnym(g; Aoy -y Ame1) < ']I‘n’m(g; Jos -+ Jm—1) if and only if jr— A

is an even non-negative number for each k.

Now we define a T, (d)-module to be the quotient

Tn,m(g; >‘07 R )‘m—l)
T (0 X0s -+ s A1) VT (0; S50 — 2)

Trm[0; Aoy - s Ami] = (5.4)
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where A € I'(,_9,m) for some 0 < v < [*/y] (recall that I',y,) is the set of all m-
compositions of [, see Section 1.3.1). Note that the ideal T,,,(0; 52 A; — 2) will be
taken to be zero when > \; < 2.

Lemma 5.3. The module ’]I‘n,m[s; Aos - -+ s Am—1] has the set T, [\ as a basis, where

A € Dn—oum) for some 0 < v < [7/s].

Proof. 1t comes directly from Lemma 5.2, where the image of all the diagrams that

have propagating number lesser than ) A; will be zero. O]

The ideal ']I‘nm(g ; k), from the definition, contains all the diagrams with at most
k propagating lines. We may form a filtration of T, ,, by these ideals:

T (0) D T (6;7 = 2) D Ty (050 —4) D ... D Ty (6;n — 2["/5]) 0. (5.5)

This filtration refines to one with section spanned by the set 7y, ,,[\], where n — > \;

is an even number.

A half-multi-colour-diagram is a diagram obtained by cutting horizontally a dia-
gram in the set 7, ,, in the middle such that each propagating line is cut once, and
that is always possible. As for the Temperley-Lieb algebra, we can form a unique
bubble diagram from two half-multi-colour-diagrams providing that they have the
same number of propagating lines of each colour. Let 7;L|>m[)\] be the set of top
pieces obtained by cutting elements of the set T, ., [A], where A € I'(,_2, ) for some
0 <wv < ["/y]. Similarly 771<7|m[)\] is the set of bottom pieces obtained by cutting
elements of 7,,,[\]. Denote by |D) and (D] the top half-multi-colour-diagram and
the bottom half-multi-colour-diagram respectively obtained from cutting a diagram

D € Tom[A.

Note that we shall often refer to an element of 771|>m[)\] as half diagram or just
a diagram when it is clear, although we mean this to be taken as a top half-multi-

colour-diagram.
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A half-diagram is called a ((ng, po), - - - » (Mm—1, Pm—1))-link state, if it contains both
m—1

n; nodes and p; arcs of the colour €; for each j € Z,, where ) n; = n. This means
j=0

that there are n; — 2p; unconnected nodes of the colour €; for each j. We refer them

as defects as for the Temperley-Lieb algebra.

Denote by FM,, (Ao, ..., Apm_1), or simply FM,, (), the vector space with a basis
M..(Xo, - - -, Amu—1) which contains all the top halves of all diagrams that are contained
in ']I'mm(g; A). In other words, M, (\) contains all link states that have number of
defects of the colour €; on the form \; — 2¢; for each j € Z,, where 0 < t; < [ /3].

Note that there is no condition on the colours of arcs.

Lemma 5.4. Let A € I'(_9,m) for some 0 < v < ["/5]. The vector space FM,, ()
is a left Ty, ,,,- module with the action defined by the concatenation of a diagram with
a half-diagram then proceeding as we would with two diagrams in T, ., (remove each
loop and replace it by the parameter corresponding to the loop’s colour), and finally

omit any new bottom arcs.

Proof. Let « € Tpm and d be a half-diagram in M,,(A). We only need to show that
xd € FM,,(\). Without loss of generality, we can assume xd # 0. Multiplying = with
d cannot create any additional propagating lines of any colour. Thus the number of
€;-defects in xd is of the form \; — 2¢; where 0 < t; < [% /5], because making an

extra €;-arc needs two €;-nodes. O

Define a subset M (\) of M,,(\) to be

M~ Aoy .-, A U 2o N =2, A1), (5.6)

7=0
Note that M, (Ao, ..., Aj —2,..., Ap_1) is taken to be the empty-set when \; < 2.
Let FM; ()\) be the module that generated by M~ (\), thus FM;, ()) is a sub-module
of FM,,(\).

Lemma 5.5. Let A, (Xo, ..., Am—1), or simply A, (N), be the module FM,,(X)/FM: ()
of Ty, where > N = n — 2v for some 0 < v < [*/y]. Then the module A,(\) has

the set 7?J>m[)\] as a basis.
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Proof. In the quotient FM,,(\)/FM=()\), the image of any link state with less than
Aj defects of the colour €; for each j is zero. Thus the left multiplication by any
diagram in the set 7T, ,, will be either zero or a half-diagram with exactly A; defects

of the colour €; for each j multiplied by a scalar. O]

Example 5.5.1. The module As(1,0) for the algebra Tso(0) is spanned by the half-

diagrams in figure 5.1.

T YT VY

FIGURE 5.1: A basis of the module A3(1,0).

The module T, ,,[0; A], defined in (5.4), has Ty, [\ as basis (see Lemma 5.3).

Since any two half-diagrams connect in unique way, we obtain a bijection
E,mP\Ou e ’)\m—l] < 7;L|,>m[/\0’ ey >\m—1] X 771<,|m[)‘07 cey /\m—l]-

Thus each module Tnﬁm[g; A] breaks up as a sum of isomorphic left modules each
with basis of the form { |a)(b| | a € Ty m[\} where b € T, ,,[A] is fixed. Also the
half-diagram (b| in the definition of basis elements has no role, so each summand is

isomorphic to the module A, ().

5.2  Cellularity of the bubble algebra Tn,m(g)

In the next few sections, we shall begin studying the representation theory of the

9]

algebra T, ,,,(0).

Proposition 5.6. [28, Proposition 1.3.2]. The algebra ']I‘nm(g) is a cellular algebra
over any field F, with the involution sending each diagram d to its reflection d* in the
horizontal plane. Also the indexing set is the set

["/2]
A'JI‘n,m = U F(n—2v,m)7 (57)
v=0
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where Iy ) 4s the set of all m-compositions of [, see Section 1.3.1. The order on the

set A, . is defined by

(Aos s Ame1) = (Ngs ooy Ay) if and only if Nj < N) for each j. (5.8)
The modules A, (\) where X € Ar, . are cell modules of the algebra Ty, . O]

Each cell module A, (\) comes with a bilinear form via its basis of top half-
diagrams (and the dual basis of bottom half-diagrams). Let d,d’ € T, .[A], z = (d|

and y = |d'), so

dd’ = |d)(d] |d'){d'| = {d||d") |d)(d'| =: (d]|d')d",

SO

! 1f 1! o ,
o) Wldy  if d” € TN 59

0 otherwise.

This form is contravariant, see Proposition 2.4 in [20].

Let G,(A) to be the Gram matrix of the inner product defined in (5.9) on the
cell module A, (\) with respect to half-diagrams basis. Since we work over a field,
we can check when the module A,,()\) is simple or not by computing det G, (), since
A, (A) is simple if and only if det G,,(\) # 0 whenever ( , ) # 0 (see Section 1.5). For

example, the Gram matrix of Az(1,0) with respect to the basis in figure 5.1 is

&b 1 0 0 0
1 &% 0 0 0
G3(1,0)=1]0 0 6 0 0O
0 0 0 46 0
00 0 0 &

Note that |G3(1,0)| = 63(62 — 1), so the module Az(1,0) is simple if and only if
50 7é +1 and (51 7é 0.



Chapter 5. Representation theory of the algebra T, ,, 101

Theorem 5.7. [23, Theorem 1]. The cell modules A,(Xo, A1) for the algebra T, o

are generically simple.

Let A} besubset of Ar,, that contains all A € Ar, ,, such that (, ) # 0. Note
that if §; # 0 for some 0 < 7 <m — 1, then we have

0 —
AT - ATn,m’

n,m

as we can take a half diagram with all the arcs of the colours corresponding to non-
zero scalars. Even if §; = 0 for all j, then for each cell module A, ()) such that

m—1

> Aj # 0, the inner product ( , ) # 0 because we can still find diagrams such their
=0

product is equal to one. For example, see figure 5.2. Thus A%nm = Ar,,, unless n
is an even integer and §; = 0 for each i € Z,,. In the case n is an even integer and

0; = 0 for each i € Z,,, then

Ar, . =Ar, \{(0,...,0)}.

FIGURE 5.2: A non-zero product of two half-diagrams when > \; # 0.

Proposition 5.8. The bubble algebra Tnm(g) is a quasi-hereditary if and only if

0; # 0 for some 0 < j <m orn is an odd integer.

Proof. 1t is enough to show that A%n’m = Ar,,, as we did in the last paragraph, by
applying Remark 1.20. O

5.3 Examples

The following couple of examples illustrate the simplest cases of semi-simple and

non-semi-simple bubble algebras.
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Let {E;; }i jen be the standard basis of the matrix algebra M, (F), and the diagrams
1o, S(ie) and ug ) are defined as in Section 2.3 for some i € n—1, v € Z;, and

(u,v) € €, see (2.22).

Example 5.8.1. From the definition of the multiplication on the algebra Ts o, we

have

T2,2<507 51) = F<1337 1y7 S(1,z)» S(l7y)> S F<1U7 11}7 U(1,u,u)» U(1,0,0) U(1,u,0)s u(l,v,u)>7

as an algebra, where v = (1,0), y = (0,1), u = (0,0), v = (1,1). Also it is easy to
show that
IF<1SC7 1y> S(l,a:)a S(l,y)> = MZ(F)a

for any pair (80,01) and any field F. Then the algebra F(1,, 1,51 .2),S1,)) s always
semi-simple. Hence the semisimplicity of the algebra Ty o depends only on the algebra

A= F<1ua 11}7 u(l,u,u)a U(l,v,v); U(l,u,v)y u(l,v,u))-

Next we are going to determine when the algebra A is semi-simple and compute

the Jacobson radical of A when it is not semi-simple.

Let Ay be the algebra

( 3\

| a,b,c,d,e,f €T

e

@) @) [an}

) ) > O
o

~ /. O O

\

Consider the map f: Ay — A which is defined by

f(Ell) - 1u - 5()_1u(1,u,u)7 f(E22) — 11; - 61_1U(1,v,v)7
[(Es3) = 561U(1,u,u), [(Ew) = 5f1U(1,u,v)7
f(E34) = 50_1u(1,u,v)7 f(E43) = 51_1u(1,v,u)>

where 0y and 6, are invertible in F. Showing that f is a homomorphism is easy

by checking all the relations of A;. One of these relations is E% = Ey for each
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i=1,...,4 and we have also f(Ey)* = f(Ey) for each i, for example

_ 2 _ _
FE)? = (L = 05 u ) = Lu = 205 Uy + 05 U0 = F(En).

Moreover, the determinant of the corresponding matriz of f with respect to the stan-
dard basis is 652612, so it is an isomorphism if and only if 6001 # 0. Therefore the

y 2 2
algebra To 5 is semi-simple when g0y # 0, and in this case T22(0) = P FHEP Mo (F).

In the case when dg = 0 and 6, # 0, it can be shown that A = Ay and so A is not

semi-stmple, where

( \
a d e 0 0
0b f 00
A2: 00 a 0 O |a,b,c,d,e,f€F
00 0 a O
00 0 0 ¢
\ Vs

To prove that we use the map which is defined by

Ly = B+ Es3 + Eyg, L, = B9+ Ess,
U(1,u,u) = E137 U(1,v,0) = 51E227
U(1,u,) = E127 U(1,0,u) = 51E23-

This map satisfies all the relations that defined the algebra A, so it defines a homo-
morphism. The corresponding matriz to this homomorphism with respect to the basis

{E11 + Es3 + Eyy, Eog, Erg, Evs, Egs, Ess} is

10000 0
0104 00
000010
00100 0]
0000 0 &
01000 0

which 1s invertible when 61 # 0, so A = Ay. Note that the Jacobson radical of the
algebra Ay is the ideal I = F(E\o, E13, Ea3) since I is a nilpotent ideal and Ay/1 =
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3

PF (see for example Corollary 1.4 in [2]). Hence, the Jacobson radical of the algebra
y 3

T272 is J = F<U(1,uyv), U(1,u,u); u(l,v,u)>7 and TZQ((S)/J = @F D MQ(F)

Similarly, when 61 = 0 and o6y # 0 the algebra Too is not semi-simple and its

radical is the ideal F{U uv), Uave), U1ou))-

Finally, let 69 = 0 = 61. We are going to show that the algebra

( 3\
a d 0 e
0 a
As = |a,b,c,d,e, fEF
0 ¢ b
0 00 b
\ /

1s tsomorphic to A, so A is not semi-simple. This can be shown by using the following

map, which is an isomorphism:

1, — E11 4+ Eoo, 1, = B33 + Eyg, Utuw) By,

U(t,uu) = B2, U(1,0,0) F L34, U(1,0,u) = Eo.

Now the algebra Az has Jacobson radical I' = (E1a, Evyg, Ese, Es4), as I' is a nilpotent
ideal and Az/1" is semi-simple. Thus the algebra Tqy is not semi-simple with a

2
quotient isomorphic to @ F & My (F).

For a general field F, we have the following fact as a generalization of the previous

example.

Proposition 5.9. Let [F be an arbitrary field. Then the algebra ']I‘Qm(g) 18 semi-simple

over IF provided that ¢; is invertible in F for each j =0,...,m — 1.

Proof. We are going to show that

m(m—1)/2 m
Tom(0) = € Mo(F) & PF & M, (F),
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when ¢; is invertible in F for each j. Let ® be the set {(7,7)]i,7 € Zp,7 < j}. From

the definition of the multiplication on Ty ,,, we have
TZm 5 @ IF 7~] 1(] 7‘ ( 7( 7j))’ s(L(]ﬂ))) @ A7

where A = F(l(i’i), U(1,(,4),(5.,9)) i,j c Zm>.

It is obvious that F(1( jy, 1), S(1,6.5))s S(1,G4))) = Ma(FF) for each (i,7) € ®. Also

m(m—1) .

we can show that the cardinality of the set ® is —=

Let B be the algebra that contains all matrices of the form

ap 0 0 0 0

0 aq 0 0 0

0 0 (07%9% 0 0 )
0 O 0 b1 bim

where a;,b;; € F for each i, j € {1,...,m}. Define the map f : B — A that sends

Eirivr = 1gg — 6‘_1u(1,(i,i),(i,i))7 it 1=0,...,m—1,

)

Eii1j41 5i__1mu(l,(i—m,i—m),(j—m,j—m))7 it ,7=m,...,2m—1

It is easy to check that the map f defines a homomorphism and the determinant of
m—1
the corresponding matrix of this homomorphism is ] d; ™, so it is an isomorphism if
j=0
m—1
and only if [] d; # 0, which is satisfied when §; is invertible in FF for each j € Z,,. O
j=0
The algebra Tj 9 can be written as direct sum of two algebras A; and Ay, where
A, (similarly A,) is the algebra that spanned by all the diagrams in the set 735 with
blue (red) propagating number is equal to 3 or 1. The proof of that follows from the

fact that A; N Ay = {0} and the product of two elements of A; is also contained in
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A; for each i and zy = 0 = yz for each x € A; and each y € Ay. Then each simple

module of T; 5 will be a simple module either of A; or A,.

The algebra A; is 35-dimensional algebra and it is generated by the following

diagrams:

o ~{[[[). 2+X [ 2+ LX) 2]

D6: U "D?: U

2]

, Dg= 5\

Dgz

'

G|

Note that if we change red to blue and blue to red in the previous diagrams, we will

obtain a generator set for the algebra As.

In order to study the semi-simplicity of the algebra A, we define a homomorphism
f : Ay — B where B is the sub-algebra of the matrix algebra My(FF) that contains

all matrices of the form:

a1 - a5 0 0 0 0
asy -+ ass 0 0 0 0
0 0 ags agr ags O s
0 0 arw a7 arg O
0 0 ags agy ass O
0 0 0 0 0 age

and f is the map that sends

Dy — FEyq + Eag + Eyg, Dy — Eaz + Exs, D3 — Esy + L,
Dy — Ey5 + Erg, Ds — Esq + Egr, Dg — 00 F1s5,
D7 — 61 E51 + Eso, Dg = 00 Fas, Dy — Es31 + 01 Ess.

It is easy to check that f can be extended to define an algebra homomorphism, by
checking all the relations that connected them, see Theorem 2.32. For example, we
have D? = 0 for each i # 1, and on the other hand we also have f(D;)?> = 0 for each

1 # 1. Furthermore, the determinant of the matrix that corresponding to this linear
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transform is §3°(67 — 1)°. Hence, the algebra A; is semi-simple when dy(d7 — 1) # 0.
It is similar for the algebra A, replacing dg, 01 by d1, 09 respectively. Then we have

the next lemma.

Lemma 5.10. If 62 # 1 # 6% and 6001 # 0, then the algebra Tso is semi-simple and

2

Ts.(60,61) = @D (F @ M (F) & M;5(F)).

In the case §(67 — 1) = 0, the algebra A, is not semi-simple, since A; has a
non-zero nilpotent ideal J, thus from Corollary 1.4 in [2] the ideal J is contained in
the Jacobson radical of the algebra A;. For example, when dy = 0, take J to be the
two-sided ideal that is generated by the diagram u(s ; ») where x = (1,0, 0). Note that
J has a basis that contains 9 diagrams that have a red arc on both top and bottom
faces and one blue propagating line, so J* = 0. Also when 67 = 1, we can take J to
be the two-sided ideal that is generated by the element uy ) — U@ yy)U(2,y,) Where

y = (1,1,1), which is 5-dimensional vector space and J? = 0.

Similarly, when §;(63 — 1) = 0, the algebra A, is not semi-simple. Thus the
algebra T35 is not semi-simple when dyd; (05 — 1)(67 — 1) = 0.

Let TIQ(S) be the subspace of T, 2(8) that is spanned by all the diagrams in
7,2 which have an even number of blue-nodes on the top face. Since making an arc
needs two nodes on the same face, thus the number of blue-nodes on the bottom
face of the diagrams in T:{Q(S) will be also an even number. The composition of two
diagrams in T}, »(#) does not change the number of blue-nodes on top face of the first
diagram, then T;’Q(S) is an algebra with an identity equal to the sum of all coloured
images of id € &,, that have an even number of blue-propagating lines. Similarly,
define ’]I‘;Q(S) to be the subspace of T, ,(8) that is spanned by all the diagrams in
T2 which have an odd number of blue-nodes on the top face. Also, T;}Q(S) is an

algebra with identity equal to the sum of all coloured images of id € &,, that have

an odd number of blue-propagating lines.
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Lemma 5.11. For any n > 1, we have

V]

To2(0) = Ty 5(8) ® T, 5(9), (5.10)
as an algebra.

Proof. This come from the fact any diagram in 7, o will have an even number or an
odd number of blue-nodes on the top face, a diagram which have an even number of
blue-nodes will be contained in ']T:h(S) and the diagrams that have an odd number
of blue-nodes are in T;Q(S), 50 Tpo(8) = T;Q(S) + T;Q(S). Furthermore, it is clear
that T}/ ,() N T, 5(0) is zero and the product of any two diagrams from T ,(9) and

19

T, »(0) respectively will be zero. O

It is obvious that the algebra T:{Z(év) is a cellular with the same cell modules
A, (Ao, A1) of the algebra Tn,g(g) such that A; is an even number. Similarly, the

19

algebra T, ,(0) is cellular with cell modules A, (Ao, A1) such that A; is an odd number.

As consequence of the last lemma, to study the representations of the algebra

T,.2(), it is enough to study the representations of the algebras TZQ(S) and ’]T;z(éu).

5.4 Further properties of cell modules of T, ,,

As for the Temperley-Lieb algebra, a basis of A,(\) is the set that contains
all (Mo + 2po, o), - -+, (Am—1 + 2Pm—1, Pm—1))-link states where po, ..., p,_1 are non-

negative integers such that ) (\; +2p;) = n.
J€Lm

Definition 5.12. Let a = |D) € A, ()) for some D € T, ,[A]. The distribution of
the colours of a is the set top(D). This set will be denoted by top(a).

Let a be a ((\; +2pj,pj))jezm—link state and b be a ((\; + 2p9,p}))jezm—link state
where > p; = > p). It is evident that (a,b) = 0 unless p; = p} for each j and
J€Lm JE€Lm,
the distributions of the colours of a and b are same.
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Each ((no,po), - - -, (Mm—1, Pm—1))-link state determines a collection of (n;, p;)-link
states as they are defined in Section 1.8.2, where each j represents the colour €;, by

omitting all the parts that have colour not ;.

Example 5.12.1. Take « to be the following ((3,1),(2,0), (4, 1))-link state:

TH=1T,
so « can be considered as a collection of the following link states:

1 YT

Let a and b be ((nj, pj))jEZ -link states with the same distribution of colours,
and a; be the (n;, p;)-link state which is obtained from a by omitting all the parts
that have colour not €;. Similarly, we define b;. From the graphical visualization of

the product on the algebra T, ,,,, we obtain

(a,b) = (ao, b0>no7po,5o X X <am—17bm—1>nm—17pm—1,6m—1 ) (5.11)

where (a;, bj)n; p;.s; denotes the standard bilinear form on V,,, ;- as TL,,(d;)-module,

see Section 1.8.2.

Note that distribution of colours, if it matches up, does not play any rule. In

other words, if a, b, c and d be ((nj,pj)) -link states such that a; = ¢; and b; = d;

jez
then (a,b) = (¢, d) if top(a) = top(b) and top(c) = top(d). Note that a and ¢ may
have different distributions of colours. Actually, if they have the same distribution,

then a = c¢. For example,

The next step is the computation of dim A, (A) for all A € A, ..

Proposition 5.13. 1. If Y X\ =n, then dimA,(A) =ny:=(, " ).

jEZ AQseees Am—1
m
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2. If > N\j=n—2v for somev € {1,...,["/s]}, then dim A, () is given by the
jeZm
formula

JE€ELm Z n—+m
(n +m)! Ug, Ao + o+ 1, .. U1, A1 + U1 + 1)

uel“(vym)

Proof. The first statement can be proved by using the fact that the dimension of
A, (A) is just the number of different permutations of n objects where there are ),
objects that have the colour €; for all j, which is equal to the multinomial coefficient
ny, see for example Theorem 4.3 in [34].

When jEZZ:m Aj = n—2v, the basis elements of A, ()) are ((A; + 2u;, uf))jezm' link
states where > u; = v. We compute dim A, () in three steps. First choose natural
numbers g, ..., Uy,_1 such that ) u; = v, then distribute A\; + 2u; nodes of the
colour €; for all j on a line. There are ny;q, different distributions of these nodes.
Each distribution makes jel_Z[ dy, +2u;,u; different ((/\j+2uj, uj>)jEZm_ link states, since
each (()\j + 2uy, ui))jezm' limnk state can be considered as a collection that contains

a (\; + 2u;, uj)- link state for each j and the number of different (A; + 2u;, u;)- link

states is dim Vi, y2u;,u; = da;42u;,;, S€€ equation (1.18). So

dmA,(A) = Y g [ dis2ua- (5.12)

uEF@’m) JE€ELm

From the definition of dy,24;,.;, we obtain the dimension of A, ()) is equal to

Z n! H (Aj +2u;)l(A; +1)

m—1
T ) Hj:() ()\j + 2uj)! et uj!()\j + u; + 1)!

JELm n—+m
.
(n—l—m)' uEFZ(: : (Uo,)\0+U0+1,...7um_1,>\m_1+um_1+1)

Corollary 5.14. Let m = 2, then

|
dim A, (Mg, A1) = nl(Ado+ (A +1) (n ¥ 2))

MN+ov+DIM+o+DI\ v

where A\g + A\ = n — 2v for some v. Therefore, dim A, (Ag, A1) = dim A, (A1, Ag)-
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Proof. From the previous proposition, the dimension of A, (A, A1) equals

v

=0
n'(/\0+1 )Y(A1+1) Z t+v+1\ (A +ov+1
(Mo +v+ 1Y )\1+v+1' v — U Uo ’

by using Chu-Vandermonde identity (‘”“) => (’”) (Ufk), see for example Theorem
4.2 in [34], we obtain

1
Uug- (/\0+U0+1) (U—Uo) ()\1+U—UO+1)

dim A, (Ao, Ay) = nl(Ao+ 1)(Ar + 1) (n+2).

(M +o+ DA +o+ DI\ v

5.5 Idempotent localization

In this section we compute the radical and Gram matrix of each cell module

Ay (X) where A € Ar,

Lemma 5.15. /28, Lemma 3.1.6]. Let X € Ar, . and j1 € L', then

m—1
& Vit if i — \j = 2t; for each j
=0

1

1, An(A)

for some t; € N, (5.13)

0 otherwise,

as 1, Ty m1,-module, where p us defined by the relation 2.26 and the modules V
are the cell modules of TL,,(d;), see (1.17).

Kyt

Remark 5.16. As it is mentioned before in the end of Chapter 2, for any p € I'(;, )
m—1 o
the algebras ® TL,,(6;) and 1 ']I‘W,L(é)lH are isomorphic with a map sending any

tuple of diagrams in ® TL,,(d;) to the diagram in 1 Tnm(g)l formed by drawing
these diagrams in one frame one by one using different colours such that the diagram

from TL,,(d;) is drawn in the colour &;. Similarly, if V, ,,...,V are cell

Hm—1,Pm—1

modules for the algebras TL,,(dy),..., TL,,, ,(dm_1) respectively, then elements of
m—1

the module @ V,,,, can be represented by ((us, pi)), <, - link states by using the
i=0 "
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same map which it is the same isomorphism that was used in the previous lemma.

For example, see figure 5.3.

m—1 m—1
Important convention : whenever we write @ V,,, or @ M, where M; is a
i=0 i=0

sub-module or quotient module of V

ui,pi» We mean their image in 1,A,(\) under the

isomorphism in Remark 5.16.

FIGURE 5.3: Illustration of a map from V31 ® Va1 to 1(0,0,0,1,1)25(1,0)

(|U+U|)®_U_,_>|UU+U|U

The conclusion of the next theorem is the same as Jegan [28] made in Lemma

3.2.10 and our proofs are closely related.

Theorem 5.17. Let G, (\) denote the Gram matriz of the module A,(\) of the
inner product that defined by (5.9) and with respect to the half-diagrams basis. If

> Aj =n—2v for some v, then
JE€Lm

Nx+2u

Gn()\) = @ @ G)\0+2u07u0760 ® T ® G>\m—1+2um—17um—175m—17

ueF(U,m)

where Gy, you; 4,5, 5 the Gram matriz of the cell TLy, 124,(6;)-module Vi, 42y, u; with

a specific bilinear form and half-diagrams basis.

Proof. To compute the Gram matrix of the module A,,(\), note that the inner prod-
uct will be zero if the two link states have a different distribution or a different
number of coloured points. Also the value of the inner product does not depend on

the distribution of colour as long the two links states have the same distribution, so

NX+2u

GN= P D Auins:

UEF(U’m)
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where Ay, 4, , a matrix computed by using all the (()\j + 2uy, uj))jeZ -link states

that have the following distribution of colour:

(0,...,0, 1,....,1 ,...om—1,...,m—1).
—— —— N ~ v
Ao+2up times A1+2u+1 times Am—1+2Up, 1 times

From equation (5'11)7 we have AU0,~~~,um—1 = G)\0+2U0>U0750 Q- - '®G)\m—1+2um—1,um—1,5m—1'

]

Example 5.17.1. Let n =7, m = 3 and A = (1,0,2). From the previous theorem,

we obtain

105 210
1 O 2 <@G5250> D (@G4,2,61) S¥ <@51G3,1,50>@
7 35 105
<@G6,2,62> S (@Gs,mo ® G4,1,52) S (@51(54,1,52) .

Example 5.17.2. Let Y \; = n. From the last theorem we have G,(\) = @™ (1) =
J
Ly, xny, where I, «p, is the identity matriz, so the module A, (\) is simple whenever

YA =n. Also when Y \; =n — 2, then
J J

Gn()‘) - @ N @ GA1+271,52"

The following corollaries are immediate consequences.
Corollary 5.18. /28, Lemma 3.2.12]. The determinant of Gram matriz is

m—1 (1750 da 420, u;) at2u
detG,(\) = ] ( ] (det Gy sou iy, )“A 2uju ) ’

uer(v,m) j=0

for each X € T'(_ay 1y, where dy, 104, 4, is defined by (1.18) and n,, := ( n ) for

MOy sHm—1
each j1 € T m).

Proof. By using relations (1.6), (1.8) and Theorem 5.17, we obtain this formula. [
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The previous result shows that det G,()\) # 0 if and only if det Gx;12u;,u;,5, 7 0
for all j € Z,, and all u € I'(, ), then the following fact is straightforward, which is

a generalization of Proposition 6 in [23].

Corollary 5.19. Let ; = q; + qj_l # 0 for all j € Zy,. If q; is not a root of unity
for any j, then the algebra Tnm(g) is semi-simple algebra and the modules A, (N),
(/2]

where X € Ar, . = U Tm-20m), form a complete set of non-isomorphic irreducible
v=0

modules of Ty, ., and the algebra ']I'mm(g) decomposes as

as a left module.

Proof. The proof comes directly from Corollary 5.18, Theorems 1.29 and 1.14 since
the algebra T, ,, is a cellular algebra. The last statement appears as consequence of

Wedderburn’s theorem (see for example Theorem 1.3.5 in [3]). O

Proposition 5.20. The head of the module A, (\) where A € I'(,_0ym) for some v
such that A € Ay, denoted by L,()), satisfies the relation

m—1
dimL,(\) = > nagaw [ [ dim Ly sou, (5.14)
=0

uEF(v’m>

where Ly, you, u;,0, 1S the head of the TLy, 104, (0;)-module V124, 4, -

Proof. This follows from the fact that dim L,,(\) = rank(G, (1)) as the algebra is over
a field and A € A3, see Section 1.5. From Theorem 5.17 and the relations (1.5)
and (1.7), we obtain

m—1

rank(G,(\)) = Z Na+2u H rank(Gx,+2u;,u;6,)-

UET (4 ) i=0
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On the other hand, we also have rank(Gy,+2u; u;,6,) = dim Ly, 424, 4,6, for each 4, thus

m—1
dim Ln()\) = Z Nx+2u H dim L)\i+2ui:ui75i' =
=0

UGF(U’m)

Corollary 5.21. The module L, ()\) decomposes as

Nx+2u

@ @ L)\0+2U07u0750 Q- L/\m—1+2um—17um—1,5m—1a

uGF(v’m>

as a vector space, where X\ € I'(,_oym) for some v such that X € A%n’m.

Proof. 1t comes directly from the fact that any two vector spaces which have the
same dimension are isomorphic, and by the last proposition they have the same

dimension. O

Lemma 5.22. Let (Ao, \1) € Aq, . The dimensions of Rad(A, (Ao, A1) is

E NA+2u ( dim R>\o+21L0,u0750 dim V>\1+2u1,u1 + dim V>\0+2u07u0 dim R)\1+2U1,u1751
UEF(U,Q)

—dim R/\0+2u0,u0,50 dim R)\1+2uhu1,51)7
where X € T'(;,_4.2) and Ry, 1ou, 4,5, 15 the radical of the TLy, oy, (6;)-module V4o, u; -

Proof. Since dim Rad(A,()\)) = dim A, (A) — dimL,()), from equations (5.12) and
(5.14) we obtain that dim Rad(A,()\)) equals

1

E n)\+2u dlm V/\0+2u0,uo dlm V)\1+2u1,u1 - E n/\+2u H dlm L)\i+2ui,ui,(5i .

uer(v,Q) UEF(vyg) 1=0

But dimlL, ,s =dimV, , —dimR, s, so dimRad(A,())) is

E NA+2u < dim R>\0+QUO,UO,50 dim V>\1+2u1,u1 + dim V/\o+2uo,u0 dim R)\1+21L1,u1,51
ueF(vg)

— dim R)\0+2u0,u0750 dim R)\1+QU17u1,51 ) O
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Theorem 5.23. Let A\ € I'(;,_2,2) for some v such that \ € A%M. Then the radical
Rad(A, (Ao, A1) decomposes as
Nx+2u

@ @ (R)\0+2U07u0760 ® VA1+2U1,U1 + Vao+2u0,u0 @ R/\1+2u1,u1,51)a

UEF(UQ)

as a vector space, and it 1s equal to

E E U( R)\0+2u0,u0,60 ® V)\1+2u1,u1 _'_ V)\0+2u0,u0 ® R)\1+2u1,u1,61 )

u€l(w2) 0€Bp 2

For the definition of émg see equation (3.5). Remember by Ryy+2upu0.60 @ Vag+2ur ur

and Vg+2upuo @ Ry 420y 01,86, we mean their images in 1y19,A,(N), see Remark 5.16.

Proof. First part comes directly from the last lemma, since they have the same dimen-
sion, note that (Ry,+2u,u0,60 @ Var+2u1,u1) N (Vag+2u0,u0 © Ri2u u1,61) = R +2u0,u0,60 @

R)q +2u1,u1,01 *

Now we are going to prove the second part. Note that a basis elements of A, ()
are ((Ao+ 2uo, uo), (A +2uq, up))-link states where u € I'(, ). For fixed u € I'(, 9y, all
link states that have the first \g + 2uy nodes red and the following ones blue can be
obtained from V;12ug 1o @V, +2u; 4y » a0d any other ((Ao+2ug, ug), (A1 +2uq, uy))-link
state b with different colour distribution can be written in the form oa where a is
the link state with the same components as b and its top is ({1,..., Ao + 2ug}, {1 +
Ao+ 2ug,...,n}), and o € én,g is the coloured permutation that changing the colour

order of a to get the same colour distribution of b, then

AH(A) = Z Z O'(V/\0+2uo,uo ® V>\1+2u17u1 )

UEL(1,2) 0€&,

Let y be a ((Ao+2ug, ug), (A1 +2u, u}))-link state for some v’ € I'(, 2), so from the
last equation we can assume that y = 7(yg ® y;) for some 7 € émg and y; is a (A\; +
2u}, u})-link state for each i. Let « be an element in 0( R +2u0,1u0,00 @ Vs +2u1 us ) or in
a( Vao+2u0,u0 @ Ray+2u1 1,61 ) for some u € I'(, 2) and some o € én’z, SO we can assume

that © = o(xg ® x1) where xo € Ry;12u0.u0.60 OF 1 € Ry 420y, - 0 # W or o # ,
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this means the colour distributions of x and y are different, so from the definition
of the multiplication on T, ,, we have (y,x) = 0. On the other hand, if u = «’ and
o = m, from equation (5.11) we have (y,z) = (Yo, T0)ro-+2u0.u0.00 (Y15 T1) \y+2u1 1161 -
But x; € Ry, 42u;.u;,6, for some 7, S0 (Y;, T;) x;+2u;,u;,0; = 0 for some i. Hence (y,z) =0

for each y € A, (N), so z € Rad(A,(A)). Thus
Z Z U( R>\o+2uo,uo750 ® V>\1+2u1,u1 + V/\o+2uo,w) ® R>\1+2uhu1,51 ) - Rad(An()‘))7

but both of them have the same dimension thus they are identical. O]

Example 5.23.1. Take F = C, n = 3 and A = (1,0), so there are two choices of u
which are (1,0) and (0,1). From equation (5.14), we obtain

dimL3(1,0) =dimls; s, +3dimlygg,.

Let 00 = —1 and 6, = 0. From Corollary 1.35, we have dimls,5, = 1 and
dimly; s =0, thus dimL3(1,0) = 1. Hence, dim Rad(A3(1,0)) =5—1=4. Also by
computing Rs1 5, and R 5, and using the last theorem, we obtain that Rad(A3(1,0))

1s spanned by the following elements:

Theorem 5.24. Let A\ € I'(,,_9ym) for some v such that X € A%nm. Then

R‘ad(An()\)) = Z Z O‘( R)\0+2u0,u0,50 X V/\1+2u1,u1 K- ® V)\m_1+2um_1,um_1

uEl (,m) 6€8p.m
+ V)\0+2u0,u0 ® R)\1+2u1,u1,61 ® V)\2+2’u,27uz ® e ® V/\m_1+2um_1,um_1+

ey V>\0+2u0,UO - V>\m72+2um727um72 & RAm71+2um71,um—175m71 )

For the definition of (/‘%n,m see equation (3.5). Remember by the tensor product of the

modules in the last equation we mean their images in 110, (N), see Remark 5.16.

Proof. We can show that by using induction on m and Theorem 5.23. [
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Corollary 5.25. Let X € I'(;,_a,n) such that \ € A%n’m, then

Ln(/\) = Z Z U( L>\0+2UO,U0750 Q- L>\m71+2um717um7176m71 )

uGT(U’m) Uegn,m

m—1

By @ L, 420,85, we mean its images in the module 1y, () under the isomor-
i=0 =

phism in Remark 5.16.

Proof. As it is mentioned in Theorem 5.23, we have

An()‘> - Z Z O-(V)\O+2UO,UO - V>\m71+2um717um71 )7

UEF(U’m) Ueén,m

thus
Z Z U(VAO-I—QUO,UO K- V/\m71+2um71,um—1 )

€l (w,m) 0€&n,m

Ln(>‘) =

Rad(A, (V)

From the last theorem, we obtain L, (\) equals

> Y o 8 Bn )
RiOVI® - @V +- +Vo® - @V 2 @Ry /7

uer(”vm) UEén,m
where we put R; := Ry, 400, 4.6, and V; 1= V), 49,, 4, for simplicity.

Let x; € Ly, 4205, := Li for each ¢, so z; = a; + R; for some a; € V; and from that

we have
m—1 m—1
®CL’Z‘:®(IZ’+RQ®V1®"'®Vm_1+"'+V0®"'®Vm—2®Rm—l7
=0 =0

it follows that

V0®...®Vm_1

=L ®...®|_m_’
RIOVIi® - @Vm1+ - 4+Vo®@ @V o @Ry !

for each u € I'(, ), and we are done. O
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Example 5.25.1. Let 63 = 1, 62 = 2 and m = 2. For the dimension of some low
rank examples of the modules A, (\) and their radicals over the complex field see table

5.1.

n\A|(0,0) (1,0) (0,1) (2,0) (1,1) (0,2) (3,0) (2,1)

1 1 1
0 0
2 |2 1 2 1
0 0 0 0
3 5 1 3
1 0 0 0
4 110 9 16
1 0 4 1
5 35 35 14 35
14 6 0 0
6 |70 84 140 84
20 0 70 35
n\A|(1,2) (0,3) (400 (3,1) (2,2) (1,3) (0,4) (5,0
3 13 1
0 0
4 1 4 6 4 1
0 0 0 0
5 135 14 1
15 0 0
6 20 64 90 64 20
2 0 15 20 0

TABLE 5.1: The dimensions of some low rank examples of the modules A, (Ao, A1)
and their radicals over the complex field when 62 = 1 and 67 = 2.

5.6 Homomorphisms between cell T, ,,-modules

It was shown in Theorem 5.19 that the algebra Tnm(S) is a semi-simple algebra
when ¢; is not root of unity and 0 # ¢; + qj_l = ¢; for each j € Z,,. Therefore in
what follows, it will be assumed that g; is a root of unity for some j, and let 1; be

the minimal positive integer satisfying qf-lj =1.

The first part of the next proposition is Lemma 4.1.1 in [28].
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Proposition 5.26. Let A, € Ar,,, and 0 : Ay(X) = An(u) be a homomorphism
defined by

0(a) = Z a;b;, (5.15)

where a; €F, a € 77L‘>m[)\] and b; € T (1] for each i. Then the following hold:

1. top(a) = top(b;) for each i.
2. ;=N\ — 2t;, for some t; € {0,...,[% /s]}.
3. If 0; 1s invertible and a contains an &€;-arc, then b; contains an €;-arc in the

same position. This means that 6 preserves arcs when 0; # 0 for each j € Zy,.

Proof. Assume that A\ < p where < is the order from (5.8), which means \; > py;
for all j € Z,,. Otherwise, the homomorphism # will be zero, by Theorem 1.14 since

T, is a cellular algebra.

As f(za) = 26(a) for all x € T, ,,, so we obtain

top(a) = top(bi),

for each b; in equation (5.15). We can show that by taking z = lop(a)-

From the previous relation, we have the number of €;-nodes in a and b; are fixed for
m—1
each j and each i. Let a be a ((); +2pj,pj))jezm- link state where Zo (\;+2p;) = n,
j:
then from previous explanation b; is a (()\j + ij,p;))jezm— link state. Since \; > p;
for all 7, so the number of arcs in b; is greater than or equals the number of arcs a of

each colour, so pi; = Aj + 2p; — 2p; = A\; — 2(p); — p;), this means
fj = Aj = 2,

for some ¢; € {0,...,[% /2]}.

Assume that a contains h arcs of the colour €; and J; # 0. Take x € T, ,, to

be the diagram defined as follows: top(z) = bot(z) = top(a) and if any two nodes
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k,l € n are connected in a by a €;-arc, then these nodes will also be connected in x
by a €;-arc and £’,!’ will be connected by the same colour, otherwise the nodes will

be connected to their projection in the bottom row. Note that xa = 6?@, SO

6(&) = (SJh Z Oéiﬂlbl' = Z Oélbz

The €;-arcs on the top row will not be affected by the product, so they will be in xb;

in the same positions of a for each 1. O

Proposition 5.27. If §; is invertible for each j, then for each n and X € Az,

1%

Endr, ,, (An(N)) 2 F. (5.16)

Proof. Let § € Endr,,, (An()\)) and a € 771‘>m[)\] where 6(a) = > a;b; for some
I

b; € 771‘>m[)\] Since 9; is invertible for each i, by Proposition 5.26 the homomorphism
0 preserves each arc in a at the same position, then the unique choice for b; is a itself.
This implies to 6 is diagonal. Take = be a diagram in 7, ,,[\] where |z) = b and
(x| = a, so

O(za) = 26(a) = z(aa) = ala, a)b.

Since (a,a) # 0, this implies to 6(b) = ab since za = (a, a)b, so all the entries of ¢

are equal. In other words, # corresponds to a scalar o € F. O

This implies that each module A, () is indecomposable when §; # 0 for each j,

9

and if the algebra T, ,,(d) is semi-simple then each module A, ()) is simple.

Lemma 5.28. Let 0 : A, (X)) = An(X) be a homomorphism where \, X € Ar, ., then
0 is completely defined by the values 0(a) where a € X,(\) == P 1H7;L‘,>m[)\], note

:U'EF(n,m) B
that X,,(\) is the subset of 'ﬁpm[/\] such that an element will be in X, () if its top

equals top(1,) for some p € Ty my. Furthermore, if 3 N\; = n, then 0 is determined
by the image of [1,).

Proof. Let b € ’7;|>m[)\] and b € X, (A). There is an element = € &}, . the set of all

n,m?

strictly planar diagrams whose propagating number equals n, such that b € X,,()),
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the diagram x is the map which reorders the nodes. Then 6(b) = z*0(zb) where z*

is the reflection of z. O

Defining a non-zero homomorphism between A, () and A, (x) depends on finding

scalars {«;} in equation (5.15), that satisfy the axiom
0(za) = z6(a), (5.17)

for all z € Ty, and a € X, (\), see Lemma 5.28.

5.6.1 The trivial case: only one parameter is a root of unity

In this subsection, it will be assumed that there is a unique element j € Z,, such
that q?lj = 1 for some 1; and the other parameters are generic. Without losing the

generality we can assume that 7 = 0.

Theorem 4.1.10 in [28] is the same as the next theorem when m = 2 but it has

been proved in different fashion.

Theorem 5.29. Let Y \; = n where \g > 2, N = (Ao — 2, A1,..., A1) and qo s

J
the unique parameter that is a root of unity, then
Homr, ,, (An(A), An(X)) # 0
if and only if det Gy, 15, = 0.

Proof. Assume that 0 : A, (A\) = A,()) be a homomorphism, so it could be defined
by 6(a) = S a;b;, where a € Tlm[A] and b; € Tihu[N] for each i. From Proposition
5.26, b; is formed from a by connecting two €y-defects and top(a) = top(b;) for each

i.

Now, we need to find scalars «; that satisfy equation (5.17) for all x € T, .
If bot(x) # top(a), then xa = 0 and xb; = 0 for each i as top(a) = top(b;). So
the equation (5.17) is verified when bot(x) # top(a). Assume bot(z) = top(a)
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and #(x) < n — 4, this implies to xza = 0 = xb; because of #(zxa) < #(x) and
#(xb;) < #(z). So the equation (5.17) holds for all scalars in this case.

There are only two possibilities to check #(z) = n or #(x) = n—2 with bot(z) =
top(a). Firstly, if #(z) = n, from the graphical visualization we have za = |z). In
the other side, we have zb; obtained from |z) by connecting two €y-defects, which
the same definition of the terms in 6(|x)). So the equation (5.17) also holds for all

scalars in this case.

Finally, if #(x) = n — 2 with bot(x) = top(a), then za = 0 and zb; = (z||b;)|z) €
A, (N). Let b; ; be the link state obtained from b; by omitting all the parts that have
colour not €. Let y := |z). Thus b;; and y; are (), 0)-link states when k& # 0
and they are (Ao, 1)-link state when k& = 0. Then (z||b;) = (Yo, bi0)r.1.6, from (5.11).
Hence 0 =} ai(yo, bi,0)x0,1,60 ) since B(za) = 0, so 3~ ai(yo, bi0)xe,1,6 = 0. Thus

(2 2

Gyis | 5 | =

5% 0

If det Gy,1,6, = 0, so there is non-trivial solution for previous equation, this means
that there is a non-zero homomorphism between A, () and A,(\'). Otherwise, 6

will be zero. ]

Let N = (Ao — 26, A1,..., A1) and 0 : Ap(N) — A, (V) be a homomorphism
m—1

defined by equation (5.15), where ) \; = n—2v and ¢, is invertible for each j. From
=0

Proposition 5.26, «9(1ﬁAn()\)) C 1,4, (N) for each p1 € T ). Also from Lemma 5.15,

if 1,A,()) # 0 we have

LA (A) = Vo @ @V 4 pny, (a8 1,T, 1, — modules)
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Y Y
where p; = =5~ and V.

is the cell module of TL, (d;), defined by (1.17). In this

case, the homomorphism 6 can be restricted to define a homomorphism
9# : Vuo,po Q- ® Vum_l,pm_1 - Vuo,po-s-t ® Vm,pl K- VMm—lypm—l (5-18)

m—1
as @) TL,,(0;)-modules. Since 9, is invertible for each j, the map 6, defines a homo-

morphism

Jut Viopo = Viopott (5.19)

that sends ag to Y a;b;, where aq is the (o, po)-link state which is obtained from

a € lﬁ’];‘?m[)\] by omitting all the parts that have colour not €y. Similarly, we define
b@o.

The proof f, is a homomorphism is not difficult, since the action of x € TL,,(do)
on ag € Vypo+t 18 the same action of the diagram Z;" ' o--- o Z}" (z) on a, where
T} (w) is defined to be w except with more y; defects in the rightmost part of the
colour €;, and considering that x has the colour €j. One part of the next theorem is

contained in Theorem 6.2.2 in [28].

Theorem 5.30. Let §; be invertible for each j, N = (Ao — 2t, A1, ..., A\p_1) where
m—1
Y. Aj=mn, Ao > 2t and CharF = 0, then

7=0

1 if Iy >t >0 and
dim Homr, . (A,(A), A, (X)) = M—t+1=0 (modl), (5.20)

0 otherwise.

Proof. We are going to show that
dim Homr, ,, (A, (A), Ay (X)) = dim Homi,  (50) (V0,05 Vag,t)s
by finding a bijection between them and then the rest follows from Lemma 1.30. Let

7 Homr, ,, (An(A), An(N)) — Homri, (50) (V.00 Vag,t)
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and

o HomTL)\O((SO)(V)\O,O? V/\Oﬂf) — HOan‘m (An(A), An<>\/))

be maps, 7(0) and o(f) defined as follows, where f € Hom(Vy o, V), ) and 6 €
Hom(A,(N), A,(N)).

From Lemma 5.28, the map ¢ can be determined by the value 0(|1,)) := > a;b;.
But from what we showed in the paragraph before this theorem, 6 defines a homo-

morphism fy : Vi, 0 — V), Which defined by

TrL,,) = Y aibio.

Take 7(0) = fi. It is clear that @ = 0 if and only if a;; = 0 for each i and this happens

if and only if f\, = 0. Thus the map 7 is injective.

Now let f : Vy,0 = Vi, be a homomorphism defined by f([1v, ) = > aiv;
where v; is (Ao, t)-link state for each . This homomorphism can be used to define a

homomorphism o(f) (or simply o) from A, (X) to A, (\") which defined by
or(113) =Y Ly o 0 T (vey ).

where vg, ; is the diagram of shape v; with all its nodes have the colour &, and I;\j (w)
is defined to be the same diagram except with more A; defects in the rightmost part

of the colour €;.

We need only to prove that o is well-defined, i.e. if y|1 é> = 0 where y € T, m,
then also yo(|1,)) = 0. Let y[1,) = 0 for some y. If bot(y) # é(see equations (2.17)
and (2.26)) or #;(y) # A; for some j # 0 or #¢(y) < Ao — 2t, it is clear that the
product will be zero in both of them. Assume that bot(y) = é, #i(y) = A, for all
J # 0and Ao > #o(zy) > Ao — 2t(note that y|1,) still equals zero), since top(y) and
arcs in the top half of y don’t have any effect on the product, without losing the

generality we can assume that y = Z)"™" o --- o Z}'(d) for some d € Tro,m Where all
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the bottom nodes in d have the colour €. Assume that that yo¢(]1,)) # 0. So

y0—f(|1§>) = Z ai<d7 Ui>>\0,t7501.¢);\17n;_11 0:+-0 -'Zl)\1 (dvﬁo,i)'

Now in both sides of last equation, there are \; propagating lines of the colour €; for

each j # 0, by omitting all of them and then ignoring the colours, we obtain
df(‘lTLA())) - Z ;i (d, Vi) rg 1.60d0; # 0,

But this a contradiction with the fact f is a homomorphism. Thus oy is well-defined.
Finally from the previous details, it is clear that 7(of) = f, we are done. ]

Corollary 5.31. Let 0, is invertible for each j, N = (Ao — 2t, A1, ..., A1) where
m—1

Yo Aj =n—2v for some v, \g > 2t and CharF = 0, then there is a non-trivial
§=0

homomorphism

0:A,(\) — A,(N)
if and only if \o —t+1 =0 (mod ly) with 1y >t > 0.

Proof. Since the algebra T, ,,, is a tower of recollement (Jegan [28] showed that in

Chapter 2), we have
dim Hom(A,,(A\), A, (X)) = dim Hom(A,,_2,(\), A2, (X)),

see Theorem 2.1.27 in [28], and the rest follows directly from the previous theorem.

[]

The next theorem is a positive characteristic version of the previous ones.

Theorem 5.32. Let 0; is invertible for each j, N = (Ao — 2t, A1, ..., Ap—1) where

m—1
. Aj =n—2v and CharF = p, then there is a non-trivial homomorphism
j=0

0 An(\) — A, (N)
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if and only if \g —t +1 =0 (mod lyp’) for some non-negative integer j with lop’ >
t>0.

Proof. The proof is the same proof as that of Theorem 5.30 and the previous corollary

replacing Lemma 1.30 by Theorem 1.32 . O

5.6.2 The general case: several parameters are roots of unity

Let A € I'(n—20,m) for some v, and 6 : A, (A) = A, (A — 2t) be a homomorphism,
where A — 2t = (\g — 2to, ..., Am—1 — 2t;,—1). The homomorphism € will be non-zero
if and only if there is u € I'(,,,) of the form p = X + 2p for some p € I'(,,,) such
that 0(1,A,(\)) # {0}, see Lemma 5.28. From Lemma 5.15, we have 1,4,()\) =

m—1
Q@ Va,+2p;p;- Thus we can restrict 6 to define a non-trivial homomorphism
i=0

—_

m—1

0“ : VN@ »Di ® VH@ Ditti-

i

3

Il
=)

Note that if §; # 0 for each i, so p does not have any important role since it is
corresponding to number of arcs which are actually preserved, see Proposition 5.26.
m—1 m—1

Furthermore, if we have a homomorphism from @ Vy,12p.0; 10 & Vi, 42p; pitts, We
NS <

=0 1=
can extend it to get a homomorphism from A, (\) to A, (A — 2t). Thus
Home, . (An(A), An(A = 2t)) = {0}

if and only if
g @Yo @V =0
=0

for each p € I'(y ).

Now, if there is a non-zero homomorphism f; € Homu, (5,)(Vy; pis Vi pite;) for
m—1 m—1
each i, then ® f; € Hom,, (Q Vup, @ Vypite,) is also non-zero. From the
® Thu; (%) =0 i=

previous details we have the following propositions.
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Proposition 5.33. [28, Theorem 6.2.2]. Let §; is invertible for each j, N = X\ — 2t
m—1

where Y \; = n — 2v for some v. Suppose there exist non-zero homomorphisms
7=0

from Vy, 0 to Vi, as TLy,(6;)-modules for each i. Then there exists a non-trivial

homomorphism from A, (X) to A, (X).

5.7 The ordinary representation theory of the al-

gebra T, ,, at roots of unity

Throughout this section we assume that F = C, §; = ¢ + ¢; * € C for each i,
A€ A} and at least one of the parameters is a root of unity other than %1 (this
means 0; # 0 for some 7). We aim to compute the decomposition matrix of the

algebra T, ,,,, then by using Theorem 1.14 the Cartan matrix for T, ,, can be found.

Proposition 5.34. Let X\ € I'(,_oym) for some 0 < v < ["/5]. The module A, (X) is

simple if and only if \; +1 =0 (mod 1;) whenever g; is a root of unity where i € Zy,.

Proof. 1t q; is not a root of unity for some ¢ € Z,,, Proposition 1.29 implies to
Lai+2uiuis; = Vait2uiu; for any u € ', ). On the other hand, if ¢; is a root of unity
for some, recall that dimL,, ,, 5, = dim V,,, ,,, whenever n; —2u; +1 = 0 (mod 1,), see
Corollary 1.35. Since (A; + 2u;) — 2u; +1 = 0 (mod L), s0 L, 420, ui60 = Vait2usu;-
Now, by substituting in equation (5.14) and then from equation (5.12), we obtain
dimL,(A\) = dim A, (X)), we are done. O

Lemma 5.35. Let Y A\ =n—2v, \g+t+1=0 (mod ly) where 0 <t <1y and for
each i # 0 we have g; is not a root of unity or A\; +1 =0 (mod 1;) when g; is a root

of unity, then

dim Rad(A, (M) = dim L, (Ao + 26, M-+ o, Am_i)- (5.21)

m—1

If 3> Xi+2t>n, then dim Rad(A, (X)) = 0.
i=0
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Proof. When ¢; is not a root of unity or A\; + 1 = 0 (mod 1;) when ¢; is a root of
unity, we have

L)\i+2'u,2‘ RVEN = V/\7,'+2'Ufi,ui

for any u;, see Proposition 1.29 and Corollary 1.35, thus dim Ry, 24, 4,5, = 0 for ¢ # 0.
Hence the dimension of Rad(A,,())), from Theorem 5.24, is

m—1
E Nat2y dim R)\0+2uO,U0750 H dim L)\i‘i’zuiyui,éi' (5'22>
U,EF(,U’m) =1

Since A\g+t+1 =0 (mod ly), then we can assume that Ao+t = kly+ 1y — 1 for some
k € N. Hence
()\0 + 2U0) — 2(’&0) +1=kly+1;— t,

SO T'(\g+2u0,up) = lo — ¢ since 0 < ¢ < 1y, see Proposition 1.36, for any ug. Thus from

the same proposition we obtain

. dlm L>\O+2U07u0_ta50 lf Ug — t Z 0,
dim Rxg42u0,u0,60 = .
0 otherwise.

m—1

Now if >> \; + 2t > n, this happens when v < ¢, so ug —t < 0. Thus from
i=0

the previous relation we have dim Ry, 19y 106, = 0 for any ug, from (5.22) we obtain

m—1

dim Rad(A,(A\)) = 0. On the other hand, if Y  \;+2t < n, thus dim Ry,42u4.u0.560 7 0
i=0

when ¢ < uy < v. By substituting in equation (5.22), we obtain

m—1
dim Rad(An(/\)) = § NA+2u dim L)\0+2U01u0_t760 H dim L)\i+2uiaui75i7
’LLGF(%m), i=1
t<ug<v
m—1
= E N2, dim L/\o+2t+2xo,xo,5o H dim L)\i+2$i7xi75i’
xEF@,t’m) =1
— dim L,(\),
from equation (5.14), where X' = (Ag + 2, A1, ..., Ad_1)- ]

Remark 5.36. The same happens when we change the colour in the previous lemma.

Let A\ =n—2v, \; +t+1 =0 (mod 1;) where 0 < t < 1; and for each ¢ # j we
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have ¢; is not a root of unity or A\; +1 =0 (mod 1;) when ¢; is a root of unity, then

dim Rad(An(/\)) = dim Ln()\(), ceey )\j—la )‘j + Qt, /\j+1a N /\m—l)a

If >\ + 2t > n, then dim Rad(A,(\)) = 0.

Proposition 5.37. Let Y A\, =n —2v, Ag+t+1 =0 (mod ly) where 0 <t <1
and for each i # 0 we have ¢; is not a root of unity or \; + 1 =0 (mod 1;) when g;

s a root of unity, then

Rad(A,(A) = Ly(Xo + 26, A, -3 Anei),

where >\ + 2t < n.

Proof. Let ' = (Ao + 2t, A1, ..., Au_1). From Theorem 5.30, we have

Hom (A, (\), An(N)) # {0}.

Let W : A,(N) = A,(N) be a non-zero homomorphism. Its kernel is a proper sub-
module of A, ()\') and since the radical of a cell module is a maximal sub-module, so

Ker U C Rad(A,()\)). Similarly, im W C Rad(A,(A)). It follows that

dimRad(A,(A\)) > dimim ¥ = dim A, ()\) — dim Ker ¥,
> dim A, (\) — dim Rad(A,,(\)),
= dimL,()\). (5.23)

But dim Rad(A,(\)) = dimL,(\) by Lemma 5.35, so dimim ¥ = dim Rad(A,()\))
and dim Ker ¥ = dim A, (V) —dimim ¥ = dim A, (\)—dim L, (\') = dim Rad(A,(X)).
Thus Ker ¥ = Rad(A,())) and im ¥ = Rad(A,())), and by using the first isomor-

phism theorem(see for example Corollary 3.7.1 in [1]), the proof is concluded. O

Similarly, we have Rad(A,(\)) = L,(\') whenever \; +t+1 =0 (mod 1;) and ¢;
is not a root of unity or \; +1 =0 (mod 1;) when ¢; is a root of unity for each i # j,

where 0 <t <1;, > N+ 2t <mand X = (Ao, ..., A\jo1, Aj + 28, Ajpa, oo, Adet).
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Lemma 5.38. Let \g + A\ =n—2v, \; +t;,+1 =0 (mod 1;) where 0 < t; < 1,
i =0,1, then dim Rad(A, (Ao, A\1)) equals

dim L, (Ao + 2to, A1) + dim L, (Ao, Ay + 2¢1) — dim L, (A + 2¢), (5.24)

where t = (tg,t1). Whenever xo + x1 > n, we put dim L, (xg,z1) = 0 for any zo, 1 €

N.

Proof. From Corollary 5.22, we have

dim Rad(A,(N)) = I + I — I3, (5.25)
where
I = Z Nx+2u dim R/\0+2uO7U07(50 - dim V)\1+2u17u1;
UEF(U.Q)
I, = E M 2u DM Vg 1200 00 - AIM RY 120y 0 615
UEF(UJ)
and
[3 - Z Nx+2u dim R)\o+2u0,uo,5o - dim R)\1+2u1,u1,61'
UEF(,L)Q)

First, it will be shown that

¢

i=0,1
I, = i=0,1 (5.26)
and > (A +2t;) > n,
i=0,1
i=0,1

\

Now, since \; +t; + 1 =0 (mod 1;), so we can assume that \; +¢; = k;1; +1; — 1 for
some k; € N, so (\; + 2u;) — 2(u;) + 1 = k;1; +1; — t;. From Proposition 1.36, for any
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u; we have

dim Ly, 120, 0,5, fu; —t; >0,
dim R>\i+2uiaui76i = TRt l Z (527)
0 otherwise.

Thus

v

[1 - Z TA+2u dim L)‘0+2u07u0*t0750 -dim V/\1+2u1,U17
up=to

= § n()\+2t0,)\1)+2x dim L/\o+2to+2x0,xo,(5o -dim V)\1+21‘1,x1 .
$€F(U7t0’2)

Now if \g + 2ty + A1 > n, clearly this happens when v — ty < 0, so I; = 0. On the
other hand, when A\ + 2t5 + Ay < n, we have

-[1 - E n()\+2t0,/\1)+21‘ dlm L/\0+2t0+21‘0,1‘o,50 : ( dlm I—)\1+21‘1,3}1,51+
IGF(U—tO,Q)

dim R>\1+2r1,r1,51)7

since dimV,,, = dimL,, ;s + dimR, , s for any n,p and 4. Hence

. / . .
I = dim Ln()‘ ) + E , nx 21 dim L>\o+2t0+210,ro,50 dim R>\1+2$1,931,517
JCEF(U_tO’Q)

where N = (Ao + 2tp, A\1). From equation (5.27), we have

v—to
. / . .
I} = dim Ln()‘ ) + E Ny 42, dim L)\0+2t0+2930,x0,50 dim L)\1+2I17I1—t1,51>
xr1=t1
. / . .
=dim L, (\) + E Mt 2tt20 A Ly 1210 +200,w0,60 A Ly 426y 4205 w161 -

WEL (41 —11,2)

If >>(\i +2t;) > n, thus v — tg — ¢; < 0 and this implies to I; = dimL,(\). If
YN +2t;) < n,sov—tg—t; > 0, then I; = dimL,(\) + dimL,(\ + 2t) by
Proposition 5.20.
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Similarly, we can prove that

(

0 if Z A + 2t > n,
1=0,1
I = i=0,1 (5.28)

and > (N + 2t;) > n,

\ 1=0,1

Finally, because of equation (5.27) we obtain

v—t1

]3 = E n/\+2u dlm L)\0+2u0,u0—t0,50 : dlm I—)\1+2u1,u1—t1,51 .
uo=to

Now, if > (\; 4+ 2t;) > n, this implies I3 = 0. If > (\; + 2t;) < n, we have
i=0,1 i=0,1

[3 - Z Toa+2t+22 dim L>‘0+2t0+2$07$0»50 -dim L>\1+2t1+211,11,51 .
€l (v—tg—11,2)

Hence
dimL,(A+2t) if > (\+2t) <n,
Iy = =01 (5.29)
0 otherwise.
By substituting Iy, I and I3 into (5.25), we obtain the formula (5.24). O

Lemma 5.39. Let A € I'(,—2pm), 0 < s <m, q; is not a root of unity or \; +1 =10
(mod 1;) when g; is a root of unity for each i > s, and \; +t; +1 =10 (mod 1) and
0<t; <l for each j < s. Then

dimRad(A,(A) = Y dimL,(\),

where = = {N'|\] = \; for eachi > s and \; = \j or \; = \j + 2t; for each j < s}.
We put L,(N') = {0} whenever Y\, > n.
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Proof. When ¢; is not a root of unity or A\; + 1 = 0 (mod 1;) when ¢; is a root of
unity, we have Ly, 20, u;.6, = Va,+2u;,u; fOr any u;, see Proposition 1.29 and Corollary
1.35, thus dim Ry, 24, 4,6, = 0. Hence the dimension of Rad(A,(\)), from Theorem
5.24, is

Z n,\+2udim (R0®V1®®V5+V0®R1®V2®®VS+

UEF(UA’m)

m—1

i=s+1
where we put V; = V1900, Ri = Ryq2uu,5, and L; = L, oy, 4,6, for simplicity
and ny 9, comes from the different colour distributions that can be obtained from
Vo ®V; ® Ry ® Viyo--- ® Vs, From Theorem 4.1 in [18], we have

s

dim(Ry®Vi® - @Vt +Vo® @V, 1 @R) =Y (—1)'Tiy1,

=0

where

I, = idim R [ [ dimV;,
i=0

J#i
L= > dimR;dimR; [] dimV;,

0<i,j<s,i#j k#i,j

S

I, = H dimR;.

1=0
s

Now, since dimV; = dimR; + dim L;, we obtain > (—1)"I;1; = Y_ I, where
=0 1=0

I = idim R [ [ dimL;,
=0

J#
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= > dimR;dimR; ] dimLy,

0<i,j<s,i#] k#i,j

1=0

Since A\; +t; +1 = 0 (mod 1;) for each i < s, then we can assume that \; + ¢; =
kil; +1; — 1 for some k; € N. Hence form Proposition 1.36, for any u; we have

dim Ly, 100 w,—t,5. i u; —t; >0,

dim R)\Z+2u17uz761 — AZ+2 1y t’L76Z

0 otherwise.
By substituting by that in I for each j and then in equation (5.30), we obtain the
formula dim Rad(A, (X)) = > L,(X). We are done. O

Ne=
As a consequence of Theorem 5.33 and Lemma 5.39, we can determine all the

simple modules that are included in the Loewy structure (see for example Section 5.1
in [2]) of any module A, (\), where A € A, ,,, and the number of copies of each one
occurring in the Loewy structure. Next we are going to compute the Loewy length

and Loewy layers for each module.

Theorem 5.40. Let T, 2(do,61) be the bubble algebra over the complex field and
M+A=n—2v, \;+t;+1=0 (mod 1;) where i =0,1 and 0 < t; <1;, then

Ln(>\ + Qt) — Rad(An(/\)) —» Ln()\o + Qto, )\1) D Ln(>\0, )\1 + 2t1),

is an exact sequence, where t = (to,t1). Whenever xo + x1 > n, we put L,(xg, 1) =

{0} for any x¢,x1 € N.

Proof. From Theorem 5.23, we know

Rad(An(/\)) = Z Z U( Ruo,O 0%y Vu1 + Vuo X Rul,l )7

uel(v,9) ged,, 2
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where Ry, i := Ry 420,06, and Vo, := V), 424, 4,- Define Wi, Wy and Wi 5 to be

W1 = Z Z J(RWO@VM), W2 = Z Z U(Vuo®Ru1,l)a

u€l(v2) g6, 4 u€l(v,2) 0,0

Wia = Z Z U( Ruo.0 ® Ry 1 )

uwel(v2) 06, ,
Note that Rad(A,(A\)) = Wy + Wy and Wi 5 = Wi N W,. To prove our theorem we
are going to show that L, (A + 2t) = W; 5 and (W + Wa)/Wia = Ly(Ao + 20, A1) @
L.(Ao, A1 + 2t1).

First, we need to show that W; and W; are sub-modules of the module Rad(A,,(\)).
This implies to Wi 5 is also sub-module. Let x = o(ag ® a;) € W) where o € é\ng,
ap € Ry, 0 and @, is a link state in V,,, for some u, and let D = (Dy, Dy) € T, 2. Since
Rad(A,(N\) = Wi + Wy, so x and Dz is also contained in Rad(A,(X)). Without
losing the generality, we can assume Dz # 0, then from the graphical visualization
we have Dz = (((Dfao) ® (D}aq)) for some ¢ € ng\g and D} is the diagram D; after
ignoring the colour, for example see the next example. Note that there exists D
such that Dja; will be not contained Ry, ; for some u) since d; # O(as Vi, # Ry 1),
thus Dyag € Ry o for some u' € T, 9y since we can fix Dy and change Dy, from this

we have Dx € Wi, this implies to W is a sub-module. Similarly, W5 is a sub-module

of Rad(A,(N)).

From Theorems 1.31 and 1.33, there is an TLj,2,,(9;)-isomorphism

fumi : L>\i+2uivui+ti76i - Rum

since \j +t; +1 = 0 (mod I;) and 0 < t; < 1; for each u € I'(,2). By using one
of these isomorphisms we can define a non-zero homomorphism from L, (A + 2t) to
Wi as follows: Fix u € I'(,9) and fy,0 and f,, 1. By using f,,0 and f,, 1 we obtain
an TLy,12u0(00) @ TLy, 124, (61)-module isomorphism f,, 0 ® fu, 1 from L, o ® Ly, 1 to
Rup.0 ® Ry, 1, where Ly, ; := Ly, 424, u,.6,- Hence we can define the map U : L,,(A42t) —
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Wi to be the extension of f, 0 ® fu,1 since L,(A+2t) = > > 0( Luo®
wEF@’Q) 0’6(‘5/7:2
Lo 1 ) To prove that ¥ is a non-zero T, s-homomorphism, it is enough to show

that U is well-defined, i.e. if D(ag ® a1) = 0 where D € T, and a; € L,,; for
each i, then D(fu,0(a0) ® fu,1(a1)) = 0. From the definitions of R,, 0 ® Ry, 1 and

Lugo ® Ly, 1, we have ap ® a1 and fy,0(a0) ® fu,1(a1) have the same top which is

A+ 2u. As the set top(D) and the arcs in top half of D don’t have any effect on

the product, so without losing the generality we can assume that D = Dy ® D,
where D; € TLy,19,,. Hence the well-definedness of ¥ comes directly from the fact
Juo.0 ® fuy1 s an TLy 424, (60) ® TLy, 424, (d1)- module isomorphism, also ¥ is a non-

zero homomorphism since f,, ; # 0 for each 1.

Now as L, (A + 2t) is a simple module and the fact that L, (X + 2t) and W; » have the
same dimension, see Corollary 5.25 and Proposition 1.36, finally by using the first

isomorphism theorem we obtain that they are isomorphic.
Now since Rad(A,(N)) = Wy + Wy and Wy 5 = Wi N W so it is clear that

Y

Wi+ Ws ~ Wy N Wy
Wi B Wi o W1,2'

Also

Z Z U(RUO,O ®Vu1)

Wi u€lw,2) 5e&, 2

Wis > > U( Ruo,0 ® Rul,l) ,

u€lv2) oe&, .,

= > ) o(Ruo®Lua).

u€l(v,2) 0,0

Now as we did to prove the isomorphism between W 5 and L,,(A + 2t), we can show
that Z z g Ruo,O (%9 L’u,i,i = Ln()\O + 2t07 )\1) Slmllarly,

u€l'(y,2) 066/;:2

Wy
Wi o

>~ (Ao, A+ 2ty). [

Example 5.40.1. Let &g = 6; = 1. It is easy to show that (Juy) — |ug)) is an element

in the radical Ry 1,, so the element
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TWT - Tt

is contained in the radical Rad(Ag(1,1)), since it is an element in o(Rs16, @ V31)

for some o € Ggo. Also

pZAEGA AR T ) N Gt

note that the element B is an element in Rs o 5,.

Example 5.40.2. Let 5= (0, \/5), then 1y = 2 and 1; = 4 and the critical lines are
Ao = 1,3,5,... and \; = 3,7,... which are represented by coloured lines in figure
5.4. Also the arrows in the figure represent non-zero homomorphisms between the cell
modules that are indexed by the nodes in the figure. Two nodes will be in the same

block if and only if there is an arrow between them. Then decomposition matriz of

the algebra Tgo(0,v/2) is

11100 11101
01010 01011 \
00100@é1@00101@@(1),
00011 00010
00001 00001

we order the basis as following {(0,0), (2,0), (0,6), (4,0), (6,0), (1,1),(1,5), (0,2),(2,2),
(0,4),(4,2),(2,4),(3,1),(1,3),(5,1),(3,3)}. Then by Theorem 1.14 the Cartan ma-
triz of Tgo(0) is

11100 11101
12110 12112 \
11200@11@11202@@(1).
01021 e 01021
00012 122 1 4




Chapter 5. Representation theory of the algebra T, ,, 139

eape (O, Dj""-.

(2, 0) """-u,,. 1)
....... » .['aq 0) "'--.*3{13 {2 2]
60 ey @2 eI ke as oo

FIGURE 5.4: The Bratteli diagram of the algebra Tg2(d) when lg = 2 and 1; = 4.

Next theorem is a generalization of last theorem in the case m > 2 with several

parameters roots of unity.

Theorem 5.41. Let ’]l“nm(g) be the bubble algebra over the complex field and A\ €
Lin—20m), 0 < s < m. For each i > s, suppose either q; is not a root of unity or
Ai+1 =0 (mod 1;) when g; is a root of unity, and for each j < s we have \j+t;+1 =0
(mod 1;) and 0 < t; < 1;. Then the length of the radical series of A, (X) is less than

or equal to s+ 1, and the radical layers are

Rad"(A,(A)/ Rad""!(A,(V) = €D L.(X),

NEEL

where =y, = {XN'| there are exactly k values of j where 0 < j < 's such that ) = \; +
2t; and for the other values we have X; = N\;} and 0 < k < s+ 1. We put L,,(\) =
{0} whenever > N, > n.

Proof. From Theorem 5.24, we have

Rad(A,(\) = Y ZZ (Vo® @Vii @R ®Vit1 @+ @ V1),

€l ym) €8, =0

where R; := Ry ou .6 and V; := V) o4, 4, since R; = {0} for each i > s, see

Proposition 1.34.
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Define W;, where 0 <17 < s, to be
Wi= 3 3 o(Ve@ @Vii @R @Vip1 @+ ® V).
UEF(U’,m) 0_66/’”7”

Note that W; is a sub-module of Rad(A,())) for each i, the proof is similar to the

77777

Since W, is also a sub-module and

thus Wk C Whk-1,

is an intersection of sub-modules, so W,

in © Wi

7777 i sk

from their definitions it is clear that > W;,

i

Tyeeobk—17

.....

We are going to prove that Rad®(A,(\)) = W*, by using induction where it is
clear that Rad(A,(\)) = W' and W*t C W*, we only need to show W /WhH! =~
P L.(\):

PSS
Y W
W5 inein)
k+1 0
W A Z le ~~~~~ Jk+1
(J15esdr1)
~ @ Wil ::::: 1k
(il k:) E IA/Yil 7777 ikvik+1
..... it

..........

s k—1 ’
ZZ ZCT( Rj®Vk®"'®Vi_1®Ri®vi+1®"‘®vm—1)
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it is clear that it is isomorphic to

k-1 s m—1
Z=Y Y o(QRRrR QLo X V),
u o j=0 =k l=s+1

where L; := Ly, you; u;0,- Since V; = L, for each | > s, see Corollary 1.35, and from
Theorems 1.31 and 1.33 there is a non-zero homomorphism from Ly, o1, 120, u;.6, tO
R, +2uiu,0, for each ¢ > k. Hence we can define a non-zero homomorphism from
L.(\) to Z, also we can show that they have the same dimension and L,(\') is
simple, so they are isomorphic by using the first isomorphism theorem, where \' =
(Ao + 2to, o, A1 + 2tk 1, Aky - o, Am—1). Tt is clear that X € Z and by taking all
the possibilities of the tuple (i1, ...,4x) we will obtain all the elements in the set =,

we are done. N

Although it is not covered here, the work in thesis can be continued further by
attempting to compute the Cartan matrix of the algebra T, ,,,(do, ..., d,—1) Over a

field with a positive characteristic.



Chapter 6

Conclusion

In this short final chapter, we summarise what has been achieved so far, and also

give some suggestions for further exploration of this topic.

We have determined the generic representation theory of the the multi-colour
partition algebra P, ,,, over the complex field. In order to understand the represen-
tation theory of the algebra PP, ,,, over C, we have to study the representation theory
of the partition algebras. Also, it has been showed that the multi-colour symmetric

groupoid algebra is isomorphic to a generalized symmetric group algebra over C.

It was worth studying the representation theory of the Temperley-Lieb algebra
as it is closely tied to the representation theory of the bubble algebra. In Chapter 5,
we have studied the connection between the cell modules of both the algebra TL,,(d)
and the bubble algebra. Although the main results are over the complex field, but

many of them are still true over any field.

The relation between the representation theory of the algebras A and eAe, where
e is an idempotent, has been used a lot for example see [21], [41], [1] and [39]. Future
work lies on generalizing the technique that was used to study both the multi-colour
partition algebra and the bubble algebra. It should be possible to apply the same
technique if A is a cellular algebra with an orthogonal decomposition of the identity

providing that this decomposition satisfies the same conditions that exist in [53].
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