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Abstract iv

Abstract

In this thesis we study several algebras which are related to the bubble algebra,

including the bubble algebra itself. We introduce a new class of multi-parameter

algebras, called the multi-colour partition algebra Pn,m(δ̆), which is a generalization

of both the partition algebra and the bubble algebra. We also define the bubble alge-

bra and the multi-colour symmetric groupoid algebra as sub-algebras of the algebra

Pn,m(δ̆).

We investigate the representation theory of the multi-colour symmetric groupoid

algebra FSn,m. We show that FSn,m is a cellular algebra and it is isomorphic to

the generalized symmetric group algebra FZm oSn when m is invertible and F is an

algebraically closed field. We then prove that the algebra Pn,m(δ̆) is also a cellular

algebra and define its cell modules. We are therefore able to classify all the irreducible

modules of the algebra Pn,m(δ̆). We also study the semi-simplicity of the algebra

Pn,m(δ̆) and the restriction rules of the cell modules to lower rank n over the complex

field.

The main objective of this thesis is to solve some open problems in the repre-

sentation theory of the bubble algebra Tn,m(δ̆). The algebra Tn,m(δ̆) is known to be

cellular. We use many results on the representation theory of the Temperley-Lieb

algebra to compute bases of the radicals of cell modules of the algebra Tn,m(δ̆) over

an arbitrary field. We then restrict our attention to study representations of Tn,m(δ̆)

over the complex field, and we determine the entire Loewy structure of cell modules

of the algebra Tn,m(δ̆). In particular, the main theorem is Theorem 5.41.
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Introduction

In 2003, Grimm and Martin [23] introduced a new algebra, called the bubble al-

gebra Tn,m(δ0, . . . , δm−1), this algebra defined entirely diagrammatically. They found

the generic representations of the bubble algebra and proved that it is semi-simple

when none of parameters δi is a root of unity. Later, Jegan [28] showed that the bub-

ble algebra is a cellular algebra over any field, and it is a tower of recollement when all

of the δi are non-zero. Also Jegan [28] showed how certain idempotent sub-algebras

of the bubble algebra correspond to tensor products of Temperley-Lieb algebras and

investigated the homomorphisms between the cell modules of the algebra Tn,m. The

problem of computing the Cartan matrix of the algebra is still open when some of

the parameters are roots of unity. This has been the starting point of the work we

present here.

In this thesis we deal with many algebras, all of them contained in the multi-

colour partition algebra, which is defined in Chapter 2. Although this algebra is

much bigger than the partition algebra, many techniques that are used to study the

partition algebra still work on the multi-colour partition algebra Pn,m(δ0, . . . , δm−1).

The partition algebra was defined by Martin [37, 38, 39] and independently by Jones

[29], and its representation theory has been investigated by many people, for example

Doran and Wales [14], Halverson [24], Halverson and Ram [25], Martin [39, 40],

Martin and Saleur [42], Martin and Woodcock [44] and Xi [55].

A key technique used in this thesis consists of reducing problems in the bubble

algebra to problems in the Temperley-Lieb algebra. The Temperley-Lieb algebra

was first introduced in [52] and its representation theory is well known, see Martin

[37], Ridout and Saint [48] and Westbury [54]. Not surprisingly we have found a

1



Introduction 2

number of features in common with of the Temperley-Lieb algebra, as both of them

are cellular algebras. The notion of a cellular algebra was first introduced by Graham

and Lehrer [20]. Many properties of the representation theory of a cellular algebra

can be determined from the cellular structure alone, see [32], [33], [53] and [56].

Chapter overview:

In the first chapter, we shall recall the preliminary results required to proceed with

the following chapters. This will mainly be a review of the Temperley-Lieb algebra

and the partition algebra and some results regarding their representation theories.

In chapter two we define our main algebras. We begin by defining the multi-colour

partition algebra Pn,m(δ0, . . . , δm−1), which is a generalization of the partition algebra

and the bubble algebra, and giving some of its properties such as its dimension.

Also we redefine it by using generators and relations. In Section 2.5, we define the

bubble algebra as a sub-algebra of the multi-colour partition algebra and determine

its dimension and a generating set for it. In the end of this chapter we discuss certain

special idempotent sub-algebras of the multi-colour algebra and show that they are

isomorphic to products of partition algebras.

In Chapter 3, we study the multi-colour symmetric groupoid Sn,m. It is the same as

the groupoid G (m,n) in Section 2 in [46]. In this chapter we show that for n and m

positive integers, we have

FSn,m
∼=

⊕
λ∈Γ(n,m)

(
F
(m−1∏
i=0

Sλi

)
⊗F Mnλ(F)

)
,

where nλ =

(
n

λ0, . . . , λm−1

)
. We use this to determine the complete set of non-

isomorphic simple FSn,m-modules. In Section 3.3 we show that the generalized sym-

metric group algebra is isomorphic to the algebra FSn,m when m is invertible in F

and F is algebraically closed.

The main objective of the fourth chapter is to study the representation theory of

the multi-colour partition algebra. We will analyse the irreducible representations of

the multi-colour partition algebra. We do this by showing that the algebra Pn,m is a
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cellular algebra and then study the cell modules of it and find some of its properties

such as the restriction rule. Xi [55] has proved that the partition algebra Pn(δ) is

a cellular algebra, by using the fact that the symmetric group algebra is a cellular

algebra. We will do the same, showing that Pn,m(δ̆) is a cellular by using the fact that

the tensor product of finitely many symmetric group algebras is cellular. The main

result of this chapter is that the algebra Pn,m(δ̆) is non-semisimple over the complex

field if and only if δj is a non-negative integer less than 2n− 1 for some j ∈ Zm.

In the final chapter we study the representation theory of the bubble algebra

Tn,m(δ0, . . . , δm−1). We have shown that we can use the cell modules of the algebra

TLn(δ) to construct the cell modules of the bubble algebra. We begin by defining

its cell modules and then study their properties such as the dimensions and their

radicals. The last part of this thesis deals with the Cartan matrix of the bubble

algebra over the complex field.



Chapter 1

Background

As mentioned in the introduction, we review some structures, known results and

technical details that we will be using through the thesis. We start in Section 1.1 with

fundamental facts about algebras. Next we define the groupoid and discuss some of

its properties. Our aim in this thesis is studying the bubble algebra and the multi-

colour partition algebras, relying on the results of the representation theory of both

the Temperley-Lieb algebra and the partition algebra. Thus it will be convenient to

recall the main results of the representation theory of the Temperley-Lieb algebra,

the partition algebra and the symmetric group. Furthermore, as all these algebras

are cellular algebras, we briefly summarise the basic facts about cellular algebra.

We denote the set of non-negative integers by N, all integers are denoted by Z

and the complex numbers by C.

1.1 Basics

Throughout the thesis, we assume that F is an arbitrary field of a charcteristic

p ≥ 0, A is a unital associative F-algebra of finite dimension. We take n,m ∈ N and

fix parameters δ, δ0, δ1, . . . , δm−1 in the field F. The symbol δ̆ is used to refer a tuple

(δ0, . . . , δm−1). All modules in this thesis will be left modules of finite dimension

unless explicitly stated otherwise.

4
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For any family of F-algebras An with an inclusion An−1 ↪→ An, we will use M ↓An−1

to denote the restriction of an left An-module M to the algebra An−1.

Let N be an An−1-module, then N ↑An := An⊗An−1N is an An-module, the induced

module, with action defined by a(b⊗ n) = (ab)⊗ n for all a, b ∈ An and n ∈ N .

Let A1 and A2 be finite dimensional algebras over F and A1 ↪→ A2, and M and

N are A1 and A2 modules respectively. Then we have

HomA2(M ↑A2 , N) ∼= HomA1(M,N ↓A1), (1.1)

which is known as Frobenius reciprocity, see for example Proposition 3.3.1 in [3].

Proposition 1.1. [e.g. 6, Section 6.2]. Let A1 and A2 be algebras over F. Sup-

pose that A1 is given by generators and relations: A1 = F〈X〉/(ri). Then algebra

homomorphisms are in bijection with maps f : X → A2 such that f(ri) = 0 for all i.

Two idempotents e, e′ ∈ A are conjugate if there exists an invertible element

u ∈ A such that ueu−1 = e′.

Lemma 1.2. [e.g. 1, Corollary 5.11]. The idempotent e is primitive if and only if

the eAe is a local ring.

Let A be an algebra over a field F and e be an idempotent in A, then eAe is also an

algebra and it is called an idempotent sub-algebra of A. There are additive F-linear

covariant functors between A-mod(the category of left A-modules) and eAe-mod

eAe-mod
G−→ A-mod

F−→ eAe-mod

where F (N) = eN and G(M) = Ae ⊗eAe M . The functors F and G are called

localisation and globalisation with respect to e, respectively. Note that FG(M) = M

and G is a full embedding. For more details see for example Section 5.3 in [37]. Note

that F takes simples to simples or zero.

Theorem 1.3. [21, Section 6.2]. Let e be an idempotent in A and {Sλ | λ ∈ Λ} be

a complete set of non-isomorphic simple left modules of A, and set Λe = {λ ∈ Λ |
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eSλ 6= 0}.Then {eSλ | λ ∈ Λe} is a complete set of inequivalent simple left modules

of eAe, and the remaining simple modules Sλ where λ ∈ Λ \ Λe are a complete set of

simple modules of A/AeA.

We will use the symbol
l⊕
A to denote the direct sum of l copies of a F-algebra

A, and Ml(F) to be the l × l matrix algebra over F.

1.2 Groupoids

In order to study the multi-colour symmetric groupoid, it will be useful to recall

some facts about groupoids and groupoid algebras. We follow Khalkhali [31].

Definition 1.4. [e.g. 31, Definition 2.1.1]. A groupoid G is a small category in which

every morphism is an isomorphism.

A small category is a category where its objects form a set. The set of objects

of G is denoted by G(0) and the set of morphisms of G by G(1). Every morphism

has a source, a target and an inverse. They define maps, denoted by s, t, and i,

respectively (s : G(1) −→ G(0), t : G(1) −→ G(0), −1 : G(1) −→ G(1)), there is also a

canonical map id : G(0) −→ G(1), which sends an object x to the unit morphism idx

from the object to itself. The composition ρ1 • ρ2 of morphisms ρ1 and ρ2 is only

defined if s(ρ1) = t(ρ2).

The groupoid algebra FG is the F-algebra that is generated by the set G(1) where

the multiplication ρ1ρ2 is defined to be ρ1 • ρ2 if the composition ρ1 • ρ2 is defined,

otherwise it will be zero, where ρ1, ρ2 ∈ G(1). Note that FG is unital algebra if and

only if the set G(0) is finite. The identity in this case is given by 1 =
∑

x∈G(0)
idx.

Any groupoid G can be canonically decomposed as a disjoint union of connected

groupoids (there is a morphism between any two objects), see Section 2.2 in [31].

From that we obtain

FG =
⊕
i

FGi,
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where Gi is a connected groupoid. Choose a point x0 ∈ G(0)
i and let

Gi := HomGi(x0, x0). (1.2)

The set Gi forms a group and it is called the isotropy group of x0. The isomorphism

class of Gi is independent of the choice of the base point x0.

Theorem 1.5. [13, Proposition 3.1]. Let G be connected groupoid and l = |G(0)|

finite. Let x0 ∈ G(0) and G be the isotropy group of x0. Then FG ∼= FG ⊗F Ml(F),

where Ml(F) is the l × l matrix algebra over F.

In particular, if a groupoid G has all connected components of G finite, then from

the previous theorem we obtain

FG ∼=
⊕
i

FGi ⊗F Mni(F), (1.3)

where ni is the cardinality of the connected component and Gi is the corresponding

isotropy group.

1.3 Generalized symmetric group

In this section we give a brief summary on results about the generalized symmetric

group and the symmetric group itself that will be useful later.

We will use the wreath product to define the generalized symmetric group. Let

Sn denotes the symmetric group on the set {1, . . . , n} and Zm be the cyclic group of

order m generated by 1 under addition modulo m.

Definition 1.6. [e.g. 27, Chapter 4]. Let G be a group and H a subgroup of Sn.

The wreath product of G by H, G oH, is the set Gn×H with the composition defined

by

(x; π)(y;σ) = (xyπ; πσ) ,
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where

yπ =(yπ−1(1), yπ−1(2), . . . , yπ−1(n)), (1.4)

and x, y ∈ Gn, π, σ ∈ H.

The set G oH forms a group with this composition. The identity of G oH is the

element ((e, . . . , e); id), where e is the identity of G and id is the identity of the group

Sn. Also, (x; π)−1 = (x−1π
−1

; π−1). If the group G is finite then the order of G oH is

|G|n|H|. For proofs and more details see chapter 4 in [27].

The group Zm o Sn is called the generalized symmetric group and it has been

investigated for some time, see for example [7], [47] and [51]. Since the group Zm has

m elements, so |Zm oSn| = mnn!. In the group Znm, define ei := (0, . . . , 1, . . . , 0) with

1 at the ith position, and

jei = ei + · · ·+ ei︸ ︷︷ ︸
j times

= (0, . . . , j, . . . , 0) ,

where j ∈ N. In the group Zm oSn, we will let ei = (ei; id), and sj = ((0, . . . , 0); sj)

where sj is the transposition (j j + 1) in the group Sn, 1 ≤ i ≤ n and 1 ≤ j ≤ n− 1.

Proposition 1.7. [12, Lemma 1]. The group Zm oSn is generated by the elements

e1, . . . , en, s1, . . . , sn−1 satisfying the following relations:

1. emi = 1 for all 1 ≤ i ≤ n.

2. eiej = ejei for all 1 ≤ i, j ≤ n.

3. sieisi = ei+1 for all 1 ≤ i ≤ n− 1.

4. sjeisj = ei for all i 6= j, j + 1 .

5. s2
i = 1 for all 1 ≤ i ≤ n− 1.

6. sisj = sjsi for all |i− j| > 1.

7. sisi+1si = si+1sisi+1 for all 1 ≤ i ≤ n− 2.
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1.3.1 Partitions and multi-partitions

Recall that a composition λ of a positive integer n, denoted by λ � n, is a sequence

of non-negative integers λ = (λ0, λ1, . . . , λt) such that n =
t∑
i=0

λi. Let t = m − 1 for

some m, we called the composition λ an m-composition of n, denoted by λ �m n.

Let Γ(n,m) denote the set of all m-compositions of n.

A partition is a composition λ = (λ0, λ1, . . . , λt) such that λ0 ≥ λ1 ≥ · · · ≥ λt > 0.

The sum of all parts of λ, denoted by |λ|, is the weight of λ. If |λ| = n we say λ is

a partition of n. We write λ ` n to denote that λ is a partition of n and Λ(n) is the

set of all possible partitions of n. For example, Λ(3) = {(3), (2, 1), (1, 1, 1)}. For more

details see for example Section 1.8 in [4] or Chapter 1 in [35].

Definition 1.8. [7, Definition 1.2]. Let λ = (λ0, . . . , λm−1) � n. A m-multi-partition

of n of type λ, µµµ = (µ(0), . . . , µ(m−1)), consists of m partitions µ(0), . . . , µ(m−1) such

that µ(i) = (µ
(i)
0 , . . . , µ

(i)
ti ) ` λi. We denote this by µµµ ` λ or µµµ `m n. Note, for any i,

if λi = 0, we still need to write µ(i) = 0.

We define Λ(n,m) to be the set of all possible m-multi-partitions of the non-negative

integer n.

1.3.2 Representation theory of the group Sn

Let Sµ be the Specht module of the symmetric group Sn associated to a partition

µ, as defined in [27] and [17]. Over fields of characteristic 0 or greater than n,

the Specht modules are simple, and form a complete set of non-isomorphic simple

modules of the symmetric group. Also in this case, the algebra FSn is semi-simple

by Maschke’s theorem, see for example Theorem 3.5 in [2] or Theorem 4.1.1 in [16].

A partition is called p-regular if it does not have p parts of the same (positive)

size. For p-regular partitions, Specht modules have a unique irreducible head, and

these irreducible quotient modules form a complete set of irreducible modules of the

group algebra of the symmetric group.
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Theorem 1.9. [26, Theorem 11.5]. Let F be a field of characteristic p ≥ 0, then

the non-isomorphic simple modules of the algebra FSn are parametrized by {λ ` n |

λ is a p-regular partition }.

1.4 Properties of some matrix operations

For any arbitrary matrices Ai where i = 1, . . . , t, the direct sum of these matrices,

is denoted by A1 ⊕ · · · ⊕ At and is defined to be the matrix


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · At

 .

If Ai = A for each i, we set
t⊕
A = A⊕ · · · ⊕ A︸ ︷︷ ︸

t copies

. Also, it is known that

rank(A1 ⊕ A2) = rank(A1) + rank(A2), (1.5)

see for example Proposition 2.11.13 in [5].

Let B = A1 ⊕ · · · ⊕ At, where each matrix Ai is a square matrix, then

detB =
t∏
i=1

det(Ai). (1.6)

For the proof see Proposition 2.8.1 in [5].

Let A be a s×smatrix and B a r×r matrix. The determinant of the Kronecker (or

tensor) product of A and B, denoted A⊗B, satisfies det(A⊗B) = det(A)r×det(B)s,

see for example Proposition 7.1.11 in [5]. Also,

rank(A⊗B) = rank(A) rank(B), (1.7)

see Proposition 7.4.23 in [5].
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Lemma 1.10. [28, Lemma 3.2.8]. Let B = A1⊗· · ·⊗At where Ai is ni×ni matrix,

then

detB =
( t∏
i=1

(detAi)
n−1
i

)∏t
i=1 ni

. (1.8)

1.4.1 Vandermonde matrix

Let F be an algebraically closed field and m a positive integer, then F contains all

mth roots of unity. Assume that ω is a primitive mth root of unity, so we can define

a special case of the Vandermonde matrix Fm to be:

Fm :=



1 1 1 · · · 1

1 ω ω2 · · · ωm−1

1 ω2 ω4 · · · ω2(m−1)

...
...

...
. . .

...

1 ωm−1 ω2(m−1) · · · ω(m−1)2


=
(
w(i−1)(j−1)

)
1≤i≤m
1≤j≤m

.

From the definition, it is evident that Fm is symmetric. Consider the matrix

F∗m :=
(
w−(i−1)(j−1)

)
1≤i≤m
1≤j≤m

. Note that FmF∗m = mIm, so Fm is invertible as long as

m is a unit in the field F. In other words, the matrix Fm is invertible if and only if

gcd(m,Char(F)) = 1. For more details see Chapter 4 in [17] or [36] .

Now, we define the matrix F
(n)
m :=

n⊗
Fm = Fm ⊗ · · · ⊗ Fm︸ ︷︷ ︸

n times

. From the definition

of F
(n)
m , it is clear that

F(n)
m =

(
wijF(n−1)

m

)
0≤i≤m−1
0≤j≤m−1

. (1.9)

By relation (1.8), if the matrix Fm is invertible, the matrix F
(n)
m will be also

invertible for all n.
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1.5 Cellular algebra

In this section, we recall the definition of a cellular algebra, which was introduced

by Graham and Lehrer [20], and some results about the representation theory of

cellular algebras. The original definition of the cellular algebra is over a ring, but we

use a field since all our work is over a field.

Definition 1.11. [20, Definition 1.1]. A cellular algebra over F is an associative

unital algebra A, together with a tuple (Λ, T,C, ∗) such that

1. The set Λ is finite and partially ordered.

2. For every λ ∈ Λ, there is a non-empty finite set T (λ) such that the map

C :
⋃
λ∈Λ

T (λ)× T (λ)→ A is injective, and its image forms a F -basis of A. The

images under this map are notated with an upper index λ ∈ Λ and two lower

indices s, t ∈ T (λ) so that the image is written as Cλ
st.

3. The map ∗ : A → A is F-linear involution (This means that ∗ is an anti-

automorphism with ∗2 = idA and ∗(Cλ
st) = Cλ

ts for all λ ∈ Λ, s, t ∈ T (λ)).

4. For λ ∈ Λ, s, t ∈ T (λ) and any a ∈ A we have

aCλ
st ≡

∑
u∈T (λ)

ra(u, s)C
λ
ut mod A<λ, (1.10)

where ra(u, s) ∈ F depends only on a, u and s. Here A<λ denotes the F-span of

all basis elements with upper index strictly less than λ.

Definition 1.12. [20, Definition 2.1]. The cell module ∆(λ), λ ∈ Λ, is an A-module

with F-basis {Cs | s ∈ T (λ)} and an action given by aCs =
∑

u∈T (λ) ra(s, u)Cu for

any a ∈ A, s ∈ T (λ) where ra(s, u) are the same coefficients as in equation (1.10) .

Definition 1.13. [e.g. 26, Section 1.5]. Let V be a finite-dimensional vector space

with an inner product 〈 , 〉. The Gram matrix of V , G, is defined with respect to

a basis v1, . . . , vk of V by letting the (i, j)th entry of G be 〈vi, vj〉. The radical of the

form 〈 , 〉 is the set {v ∈ V | 〈v, w〉 = 0 for all w ∈ V }.
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On each cell module ∆(λ), there is an contravariant, symmetric bilinear form

〈 , 〉λ : ∆(λ) ×∆(λ) → F defined by the relation (1.10). For a proof see Proposi-

tion 2.9 in [45] or Proposition 2.4 [20]. Let Gλ be the Gram matrix for ∆(λ) of this

bilinear form with respect to a basis {Cs | s ∈ T (λ)}. All Gram matrices of any cell

module that will be mentioned later are with respect to the cellular basis with the

bilinear form defined by (1.10).

If A is an algebra over a field, the module ∆(λ) is a simple module if and only if

detGλ 6= 0 as long as 〈 , 〉λ 6= 0, see for example Proposition 3.1 in [20] or Proposition

2.7e [21]. Let Λ0 be the subset {λ ∈ Λ | 〈 , 〉λ 6= 0}. The radical Rad〈 , 〉λ(∆(λ)) of

the form 〈 , 〉λ is an A-sub-module.

Theorem 1.14. [45, Chapter 2]. Let A be a cellular algebra over a field F. Then

1. A is semi-simple if and only if detGλ 6= 0 for each λ ∈ Λ.

2. The quotient module ∆(λ)/Rad〈 , 〉λ(∆(λ)) is either irreducible or zero. That

means that Rad〈 , 〉λ(∆(λ)) is the radical of the module ∆(λ) if 〈 , 〉λ 6= 0.

3. The set {L(λ) := ∆(λ)/Rad〈 , 〉λ(∆(λ)) | λ ∈ Λ0} consists of all non-isomorphic

irreducible A-modules.

4. Let L(µ) 6= 0 and M be a sub-module of ∆(λ), and suppose that θ : ∆(µ) →

∆(λ)/M is a non-zero A-module homomorphism, then λ ≥ µ.

5. Each cell module ∆(λ) of A has a composition series with sub-quotients iso-

morphic to L(µ), where µ ∈ Λ0. The multiplicity of L(µ) is the same in any

composition series of ∆(λ) and we write dλµ = [∆(λ) : L(µ)] for this multiplic-

ity.

6. The decomposition matrix D =
(
dλµ
)
λ∈Λ,µ∈Λ0 is upper uni-triangular, i.e. dλµ =

0 unless λ ≤ µ and dλλ = 1 for λ ∈ Λ0.

7. If Λ is a finite set and C is the Cartan matrix of A, then C = DtD.
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Now since A is a cellular algebra over a field F, then the rank of the matrix

Gλ equals dimL(λ) and the nullity of Gλ is equal to dim Rad〈 , 〉λ(∆(λ)) as long as

λ ∈ Λ0, see Chapter 2, exercise 6 in [45].

Theorem 1.15. [55, Theorem 3.3]. Let A be an algebra with an involution ∗. Sup-

pose there is a decomposition of A:

A =
m⊕
j=1

Vj ⊗F Vj ⊗F Bj

as direct sum of vector spaces, where Vj is a vector space and Bj is a cellular algebra

with respect to an involution σj and we have a cell chain J
(j)
1 ⊂ · · · ⊂ J

(j)
sj = Bj

for each j. Define Jt =
t⊕

j=1

Vj ⊗F Vj ⊗F Bj. Assume that the restriction of ∗ on

Vj ⊗F Vj ⊗FBj is given by w⊗ v⊗ b 7→ v⊗w⊗ σj(b). If for each j there is a bilinear

form φj : Vj ⊗F Vj → Bj such that σj(φj(w, v)) = φj(v, w) for all w, v ∈ Vj and that

the multiplication of two elements in Vj ⊗F Vj ⊗F Bj is governed by φj modulo Jj−1,

that is, for x, y, u, v ∈ Vj and b, c ∈ Bj, we have

(x⊗ y ⊗ b)(u⊗ v ⊗ c) = x⊗ v ⊗ bφj(y, u)c mod Jj−1,

and if Vj⊗Vj⊗J (j)
l +Jj−1 is an ideal in A for all l and j, then A is a cellular algebra.

Furthermore, Vj⊗vj⊗∆
(j)
t is a cell module of A for each j where ∆

(j)
t is a cell module

of Bj and vj is any non-zero vector in Vj.

Proposition 1.16. [22, Section 3]. The tensor product and direct sum of finitely

many cellular algebras is a cellular algebra.

Proposition 1.17. [56, Proposition 3.4]. Let A1 and A2 be two cellular algebras over

a perfect field. Then A1 ⊗ A2 is semi-simple if and only if A1, A2 are semi-simple.

1.6 Quasi-hereditary algebra

There is another class of algebras, called quasi-hereditary, related to a cellular

algebra. It was introduced for the first time in [8].
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Definition 1.18. [8, Section 3]. A two-sided ideal J of A is a heredity ideal if

1. J2 = J ,

2. J Rad(A)J = 0,

3. JA and AJ are projective A-modules.

Definition 1.19. [8, Section 3]. An algebra A is quasi-hereditary if there is a finite

chain of two-sided ideals

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jl = A

such that for all 1 ≤ i ≤ l, Ji/Ji−1 is a heredity ideal of A/Ji−1.

Remark 1.20. Let A be cellular algebra over a field, then A is quasi-hereditary if

and only if Λ = Λ0, see for example Corollary 2.23 in [45] and Corollary 4.2 in [32].

1.7 The partition algebra

Let PX to be the set of all partitions of a finite set X:

PX = { {X1, X2, . . . } | ∅ 6= Xi ⊂ X, ∪iXi = X,Xi ∩Xj = ∅ if i 6= j}.

The subsets X1, X2, . . . are called parts (or blocks).

The set PX is a lattice with a partial order: if α, β are two partitions in PX , we

say that α is smaller than or equal to β if and only if each part of α is a subset of a

part of β.

For n ∈ N, the symbol Pn denotes the set of all partitions of the set n∪n′, where

n = {1, 2, . . . , n} and n′ = {1′, 2′, . . . , n′}.

Each individual set partition can be represented by a graph: the graph is drawn

in a rectangle with n nodes on the top row representing the elements in the set n and
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with n nodes on the bottom row of the rectangle representing the elements in the

set n′, and the vertices that are in the same part at the partition are represented as

lines drawn inside the rectangle connecting these vertices. The diagram representing a

partition is not unique, since there are different ways to drawing the edges. Two such

diagramss are equivalent if they have the same connected components. A partition

diagram (or sometimes (n, n)-partition diagram) is the equivalence class of a graph.

Now the composition β ◦ α in Pn, where α, β ∈ Pn, is the partition obtained by

placing α above β, identifying the bottom vertices of α with the top vertices of β, and

ignoring any connected components that are isolated from boundaries. The product

on Pn is associative and well-defined up to equivalence, so Pn forms a monoid with

the identity
. . .

. The proof can be found in [38].

A (n,m)-partition diagram for any n,m ∈ N+ is a diagram representing a set

partition of the set n ∪m′ in the obvious way.

We can generalize the product on Pn to define a product of (n,m)-partition

diagrams when it is defined: Let α be (n1, n2)-diagram and β be (m1,m2)-diagram,

β ◦ α is defined if and only if n2 = m1 and it is (n1,m2)-diagram. For example, see

figure 1.1.

◦ = =

Figure 1.1: The composition of two partition diagrams.

Definition 1.21. [39, Definition 5]. The propagating number of a diagram, #(d), is

the number of parts which include elements from both the top and the bottom rows.

A string in a diagram which is connecting a point in the top row and a point

in the bottom row is called a propagating line. Martin in [38] has proved that the

propagating number satisfies the property

#(d1 ◦ d2) ≤ min(#(d1),#(d2)), (1.11)
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where d1, d2 ∈ Pn.

Definition 1.22. [39, Definition 4]. Let Pn(δ) = FPn be the F-vector space with

basis Pn, and product on Pn(δ) defined by αβ = δl(β ◦α), where β ◦α is the monoid

multiplication, the parameter δ ∈ F and l is the number of connected components

removed from the middle row when constructing the product β ◦ α.

The space Pn(δ), or simply Pn, is an associative F-algebra with identity and it is

known as the partition algebra. For more details, see [38] or [39].

A planar diagram in Pn is a partition diagram where there are no edges crossing

in the diagram.

Define the following subsets of the partition monoid Pn :

Sn = {d ∈ Pn | #(d) = n},

An = {d ∈ Pn | d is planar},

Qn = {d ∈ Pn | #(d) < n},

Bn = {d ∈ Pn | all blocks of d have size 2},

Tn = An ∩ Bn.


(1.12)

All of them are sub-monoids except the subset Qn. Therefore the following algebra

can be defined: the Temperley-Lieb algebra, TLn(δ), is the sub-algebra of Pn(δ) which

is generated by the set Tn. The Brauer algebra, Bn(δ), is the monoid algebra generated

by the set Bn.

Note that we used the same symbol in the last equation of the symmetric group,

since this set and the symmetric group are isomorphic. Hence the symmetric group

algebra FSn is embedded in Pn(δ). For more details see [24] and [29].

Each partition d ∈ Pn can be written as σ1tσ2, where σ1, σ2 ∈ Sn and t ∈ An,

see Relation 1.6 [25] or [15]. So

Pn = SnAnSn. (1.13)
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Let t, b ∈ An and π ∈ Sn, so there is d ∈ An and σ ∈ Sn such that

tπb = tdσ, (1.14)

for more details see the proof of Theorem 1.11 in [25].

Next, we define generators of Pn(δ) that are represented by diagrams as following:

si = . . .

i i + 1

. . . , qi = . . .

i i + 1

. . . , pj = . . .

j

. . . ,

where i ∈ n− 1 and j ∈ n. The monoid An is generated by the elements q1, . . . , qn−1

and p1, . . . , pn, and the monoid Bn is generated by the elements u1, . . . , un−1 and

s1, . . . , sn−1, where ui := qipipi+1qi, for more details see [25] and [24]. The element ui

is represented by the diagram

. . .

i i + 1

. . . ·

Martin [38] has proved that the previous elements generate the algebra Pn(δ),

and Halverson-Ram [25] have found a presentation for Pn(δ) using these elements.

Theorem 1.23. [25, Theorem 1.11]. The algebra Pn(δ) is generated by 1, s1, . . . , sn−1,

q1, . . . , qn−1, p1, . . . , pn and relations

s2
i = 1, for i = 1, . . . , n− 1. sisj = sjsi, if j 6= i± 1.

sisi+1si = si+1sisi+1, for i = 1, . . . , n− 2.

p2
i = δpi, for i = 1, . . . , n. q2

i = qi, for i = 1, . . . , n− 1.

siqi = qisi = qi, sipipi+1 = pipi+1si = pipi+1, for i = 1, . . . , n− 1.

pipj = pjpi, for all 1 ≤ i, j ≤ n. qiqj = qjqi, for all 1 ≤ i, j ≤ n− 1.

piqj = qjpi,if j 6= i, i+ 1. sipj = pjsi, if j 6= i, i+ 1.
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siqj = qjsi, if j 6= i− 1, i+ 1. sipisi = pi+1, for i = 1, . . . , n− 1.

sisi+1qisi+1si = qi+1, piqipi = pi = piqi−1pi, for i = 1, . . . , n− 2,

qipiqi = qi = qipi+1qi,, for i = 1, . . . , n− 1.

Later we will need a presentation of the Brauer algebra, so we give one here.

Theorem 1.24. [e.g. 50, Definition 2.1]. The Brauer algebra Bn(δ) is generated by

the elements 1, s1, . . . , sn−1, u1, . . . , un−1 subject to the relations

s2
i = 1, sisj = sjsi, sksk+1sk = sk+1sksk+1,

u2
i = δui, uiuj = ujui, ukuk+1uk = uk, uk+1ukuk+1 = uk+1,

siui = ui = uisi, siuj = ujsi, skuk+1uk = sk+1uk, sk+1ukuk+1 = skuk+1,

where 1 ≤ i, j ≤ n− 1, with j 6= i± 1, and 1 ≤ k ≤ n− 2.

1.7.1 Representation theory of the algebra Pn(δ)

As it was shown by Xi [55], the partition algebra is cellular. We will mention

some theorems that discuss when the partition algebra is semi-simple, an index set

for its simple modules and the generic restriction rule for its cell modules.

Theorem 1.25. [42, Corollary 10.3]. For each integer n ≥ 0, the algebra Pn(δ) is

semi-simple over C whenever δ is not an integer in the range [0, 2n− 1].

Let δ 6= 0 and Ei =
n∏

j=i+1

1
δn−i

pj, λ ` i and eλ is the primitive idempotent corre-

sponding to the Specht module Sλ of the group S∑
λi . As it is shown in Corollary

10.1 in [38], the element Eieλ is a primitive idempotent modulo PnEi−1Pn, by Pn we

mean the algebra Pn(δ). The cell modules of the algebra Pn, as they are defined in

[40] and [38], are

Vn(λ) := PnEieλ (mod PnEi−1Pn). (1.15)
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Let λ be a partition. We write µBλ to denote that µ is a partition obtained from

the partition λ by adding a box to λ after regarding them as Young diagrams. Also

µCλ means that µ is a partition obtained from λ by removing a box, for more details

see Chapter 1 in [35]. Additionally, µCBλ means that µ is a partition obtained from

λ by removing a box after adding a box.

We say something is generic if it holds on an (Zariski) open subset of parameter

space, as it is described in [9].

Proposition 1.26. [38, Proposition 13]. Let λ be a partition of a non-negative

integer is less than or equal to n. The generic restriction from the algebra Pn(δ) to

Pn−1(δ) is

Vn(λ) ↓Pn−1
∼=
(⊕
µBλ

Vn−1(µ)
)
⊕
( ⊕
µCBλ

Vn−1(µ)
)
⊕
(⊕
µCλ

Vn−1(µ)
)
.

1.8 A review of the Temperley-Lieb algebra

A key technique used in this thesis is to reduce problems in the bubble algebra to

problems in the Temperley-Lieb algebra. Therefore it will be helpful to give a brief

description of the Temperley-Lieb algebra and its representation theory.

Let n1, n2 ∈ N, with n1 + n2 is an even number. A (n1, n2)-Kauffman diagram is

a planar (n1, n2)-partition diagram such that all its blocks are of size two. Then the

set Tn is the set of all (n, n)-Kauffman diagrams. More details can be found in [30]

and [37].

There are many ways to prove that the dimension of the algebra TLn(δ) is the

nth Catalan number Cn = (2n)!
(n+1)!n!

, for example see Theorem 2.3 in [48].

The algebra TLn(δ) is generated by the set {1, u1, . . . , un−1} where

ui = . . .

i i + 1

. . . ·
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These diagrams satisfy the relations:

u2
i = δui , for all i = 1, . . . , n− 1,

uiuj = ujui , for |i− j| ≥ 2, uiujui = ui , for |i− j| = 1.

More details can be found in [38] and [48].

1.8.1 The dimension of the algebra TLn(δ)

In this subsection, we are going to show that there are dimTLn(δ) ways to connect

2n nodes in pairs without crossing, but these nodes need not be divided equally on the

top and the bottom of the diagram, as this fact will be used to compute the dimension

of bubble algebra. To prove this, we need to define the set of all non-crossing perfect

matchings.

A p-matching, or simply matching, of the set n is an unordered collection of

p-pairs of vertices and n − 2p single vertices all contained in n without repeating.

A matching is called crossing if it contains a pair {i, j} and a vertex k such that

i < k < j or if it contains pairs {i, j} and {k, l} such that i < k < j < l.

Definition 1.27. [19, Section 2.1]. A non-crossing perfect matching of 2n is a non-

crossing p-matching, where p = n. Denote by F2n the set of all non-crossing perfect

matchings of the set 2n.

The elements of F2n are represented as cups. (2n, n)-cups are diagrams with one

row of 2n dots and where edges connect pairs of dots with the restriction that edges

can not cross. For example,

.

There is a bijection between the set F2n and the diagrams of TLn, which means

|F2n| = dimTLn. Consider the top and the bottom rows of Tn-diagrams as bars, now

take the lower bar and move it by rotating the bar up and putting it next to the

other bar.
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Figure 1.2: Illustration of the bijection between the sets Tn and F2n.

This establishes a bijection between TLn-diagrams and the set F2n, more details can

be found in [19].

Now if we cut a (2n, n)-cup in a different position and do the same but in reverse

order, we obtain a Kauffman diagram. For example, see the following figure.

Let the cutting be after n1 points. We will have a bijection between (2n, n)-cup and

the (n1, 2n− n1)-Kauffman diagrams. Then

dimTLn = The number of (n1, 2n− n1)-Kauffman diagrams. (1.16)

This proves that dimTLn equals to the number of ways of connecting 2n vertices

without crossing whatever the distribution of these vertices on the frame was.

1.8.2 The cell modules of Temperley-Lieb algebra

We will briefly describe the cell modules of the algebra TLn(δ), which will be of

use to us in later chapters.

The link module Mn, as defined in Section 3 in [48], of TLn(δ) is the left module

that is spanned by all the half-diagrams that are obtained from all diagrams in TLn(δ)

by cutting horizontally in the middle only cutting propogating lines. The action of

TLn(δ) on Mn is defined by the concatenation of diagram with half-diagram then

proceeding as we would with two diagrams in the algebra TLn(δ).

A string in a half-diagram that connects two points is called an arc. If a half-

diagram has p arcs, then there will be n − 2p points which are not connected to
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anything, we will refer them as defects and a half-diagram with n points and p arcs

will be called an (n, p)-link state. For more details see [37] or [48]. For example, the

next half-diagram is a (7, 3)-link state

.

As the number of propagating lines can not be increased by the multiplication, we

could define left TLn -submodules Mn,p ⊆ Mn which are spanned by the (n, p′)-link

states with p′ ≥ p. Note that

0 ⊂ Mn,[n/2] ⊂ . . . ⊂ Mn,1 ⊂ Mn,0 = Mn.

The quotient modules will be denoted by

Vn,p :=
Mn,p

Mn,p+1

. (1.17)

The quotient sends any half-diagram with more than p arcs to zero. The Temperley-

Lieb algebra TLn(δ) is a cellular algebra, with the involution sending each diagram

d to its reflection d∗ in the horizontal plane and Λ = {0, 1, . . . , [n/2]}. The modules

Vn,p where p ∈ Λ are the cell modules of the algebra TLn(δ). The proof can be found

in Theorem 3.8 in [20].

The dimension of Vn,p is given by the formula

dimVn,p =

(
n

p

)
−
(

n

p− 1

)
:= dn,p. (1.18)

The proof of this can be found in Section 2 [48] or [37]. Note that
(
n
−1

)
= 0.

On each module Vn,p, we define a bilinear form 〈 , 〉 ≡ 〈 , 〉n,p,δ as follows. If

x and y are two (n, p)-link states, the scalar 〈x, y〉 is computed by reflecting x in a

horizontal axis and identifying its vertical border with that of y. The value 〈x, y〉 is

then non-zero only if every defect of x ends up being connected to one of y, and in

this case 〈x, y〉 = δl where l is the number of closed loops which is obtained from

connecting x and y. For more details see Section 9.5.2 in [37].
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The matrix Gn,p,δ is defined to be the Gram matrix for the module Vn,p that

represents the form 〈 , 〉n,p,δ with respect to a basis that contains all (n, p)-link

states. For example,

Gn,0,δ = (1), Gn,1,δ =



δ 1 0 0 0 · · · 0 0

1 δ 1 0 0 · · · 0 0

0 1 δ 1 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · 1 δ


.

Let Rn,p,δ be the radical of the previous bilinear form on the module Vn,p. Recall

that the radical Rn,p is a submodule of Vn,p.

Lemma 1.28. [e.g. 48, Section 3]. If TLn(δ) is an F-algebra, and 〈 , 〉 is not

identically zero on Vn,p, then Vn,p is cyclic and indecomposable. Moreover, Ln,p :=

Vn,p/Rn,p is irreducible.

1.8.3 Irreducibility of the cell modules

The cell modules Vn,p of the algebra TLn(δ) are irreducible except for particular

values of the scalar δ. Throughout this section, let δ = q + q−1 with q ∈ F.

Proposition 1.29. [37, Section 6.4, Theorem 1]. If q is not a root of unity, then

the algebra TLn(δ) is semi-simple, and the modules Vn,p, where 0 ≤ p ≤ [n/2], form

a complete set of non-isomorphic irreducible modules of TLn(δ).

For the values δ where TLn(δ) is not semi-simple, non-generic cases, many differ-

ent studies of this have been made. Assume that q is a primitive lth root of unity. If

n < l, in this case the algebra TLn(δ) will be semi-simple.

The module Vn,p (or the pair (n, p)) is called critical for a given q if q2(n−2p+1) = 1.
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Lemma 1.30. [e.g. 54, Section 9]. Let CharF = 0. For all n and l > p > 0, we

have

dim Hom(Vn,0,Vn,p) =

 1 if n− p+ 1 = 0 (mod l),

0 otherwise.

Theorem 1.31. [37, Section 7.3, Theorem 2]. If CharF = 0, 0 ≤ p1 − p2 < l and

n−p1−p2 +1 = 0 (mod l), then there is a non-trivial homomorphism θn,p1 : Vn,p2 →

Vn,p1. Otherwise, there is no non-trivial homomorphism from Vn,p2 to Vn,p1.

Theorem 1.32. [10, Theorem 5.3]. Let CharF = p. There is a non-trivial homo-

morphism θn,p1 : Vn,p2 → Vn,p1 if and only if n − p1 − p2 + 1 = 0 (mod lpj) with

0 ≤ p1 − p2 < lpj for some non-negative integer j.

Theorem 1.33. [e.g. 54, Section 9]. The kernels and co-kernels of the homomor-

phism θn,p1 are irreducible.

1.8.4 Further properties over the complex field

In this subsection, we give relations that are helpful to compute the dimension

of the head of each cell module and the dimension of the radical. Let q be a root of

unity and let l be the minimal positive integer satisfying q2l = 1.

Proposition 1.34. [48, Proposition 5.1]. The dimensions of the radical of Vn,p

satisfy the recursion relation

dimRn,p,δ =


0 if n− 2p+ 1 = 0 (mod l),

dimRn−1,p,δ + dimVn−1,p−1 if n− 2p+ 1 = l − 1 (mod l),

dimRn−1,p,δ + dimRn−1,p−1,δ otherwise.

Subject to initial conditions dimRn,0,δ = 0 and dimR2p−1,p,δ = 0.

Corollary 1.35. [48, Corollary 5.2]. The dimensions of the simple quotients Ln,p,δ =

Vn,p/Rn,p,δ satisfy the recursion relation

dim Ln,p,δ =


dimVn,p if n− 2p+ 1 = 0 (mod l),

dim Ln−1,p,δ if n− 2p+ 1 = l − 1 (mod l),

dim Ln−1,p,δ + dim Ln−1,p−1,δ otherwise.
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Subject to initial conditions dim Ln,0,δ = 1 and dim L2p−1,p,δ = 0.

Define r(n,p) to be the integer satisfying (see Section 5 in [48])

n− 2p+ 1 = kl + r(n,p),

where k ∈ N and r(n,p) ∈ {1, . . . , l}. The pair (n, p) is critical if r(n,p) = l when q is a

root of unity.

Proposition 1.36. [37, Section 7.3, Theorem 2]. Let q be a root of unity and (n, p)

be non-critical. Then

dimRn,p,δ =

 dim Ln, p+r(n,p)−l, δ if p+ r(n,p) − l ≥ 0,

0 otherwise.
(1.19)



Chapter 2

The Multi-Colour Partition

Algebra Pn,m(δ̆)

The purpose of this chapter is to introduce a new class of algebras, the multi-

colour partition algebra, a generalization of both the bubble algebra and the partition

algebra, and to define some of its sub-algebras. The algebra can be well studied by

using similar techniques used in the investigation of the partition algebra. We also

introduce some concepts required for the subsequent chapters. In Section 2.4, a

generating form of the multi-colour partition algebra is given. In Section 2.5, we

define the bubble algebra as a sub-algebra of the multi-colour partition algebra and

determine its dimension and a generating set of it. In the end of this chapter we

discuss certain special idempotent sub-algebras of the multi-colour algebra and show

that they are isomorphic to products of partition algebras.

2.1 Definitions and structure

The aim of this section is to define the multi-colour partition algebra and give

some of its properties such as its dimension. We begin by defining the two-colour

partition algebra.

27
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2.1.1 The two-colour partition algebra

In the definition of the partition algebra Pn(δ), the set n ∪ n′ is partitioned to

define basis elements of Pn(δ). For the two-colour partition algebra, we do that in

two steps, first break up the set n ∪ n′ into two different subsets and then partition

each subset alone. The new partition can be represented by a diagram in the same

way, since it is still a partition of the set n ∪ n′ .

Let A ⊆ n ∪ n′ be fixed (note that A can be an empty set) and the sets PA and

PAc be the sets of all partitions of A and Ac respectively, where Ac is the set n∪n′\A.

Define the set PA,Ac to be the set PA × PAc .

Consider an element (d0, d1) ∈ PA,Ac , so the set d0 ∪ d1 is a partition of n ∪ n′,

from that we can represent the element (d0, d1) by the same partition diagram of

d0 ∪ d1. In order to distinguish the partitions d0 and d1 in d0 ∪ d1, we will colour

them where red edges and red nodes are from the partition d0 and blue edges and

blue nodes are from the partition d1. Thus we can think of (d0, d1) as a coloured

image of the diagram d0 ∪ d1. From this definition, it is clear that if any two nodes

are connected then the nodes and the edge have the same colour.

Example 2.0.1. The element ({{1, 1′, 2′}, {3′}}, {{2, 3}}) can be represented by the

digram . Also the elements in the set P{1,1′,2′},{2} are represented by the following

diagrams:

, , , , .

A diagram representing an element (d0, d1) ∈ PA,Ac is not unique. We say two

diagrams are equivalent if they represent the same partition in the set PA,Ac for some

subset A. The term two-colour partition diagram will be used to mean the equivalence

class of diagrams that representing a two-colour partition. We are only interested

in the equivalence classes of two-colour partition diagrams, and whenever two-colour

diagram is mentioned we mean the equivalence class of it.
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For simplicity we may say diagram instead of two-colour diagram when the type

of the diagram is obvious.

Now we take all possibilities for the subset A and define the set:

Pn,2 :=
⋃

A⊆n∪n′
PA,Ac . (2.1)

The product of partition diagrams on the monoid Pn can be extended to define

a product on the set Pn,2. First we need to define the subset top(di) ⊆ n to be the

set of all nodes in the top row of di and similarly bot(di) ⊆ n′ denotes the set of all

nodes in the bottom row of di, where (d0, d1) ∈ Pn,2. Note that top(d1) = n \ top(d0)

and bot(d1) = n′ \ bot(d0).

Let α = (α0, α1), β = (β0, β1) be diagrams in Pn,2, we say that bot(αj) = top(βj)

when they satisfy i′ ∈ bot(αj) if and only if i ∈ top(βj) for any i ∈ n, where j = 0, 1.

The composition β ◦ α of elements α = (α0, α1), β = (β0, β1) in the set Pn,2 is

defined as follows (which is the same multiplication that was described in [23]):

1. Place α above β and identify the vertices in the bottom row of α with the

vertices in the top row of β regardless of the colour of dots.

2. If the colours match up, this means bot(α0) = top(β0), then the products β0◦α0

and β1 ◦ α1 are well-defined as partition diagrams, and then define β ◦ α to be

(β0 ◦ α0, β1 ◦ α1).

3. If the colours don’t match up, this means bot(α0) 6= top(β0) , then the product

of α in β will be undefined.

Definition 2.1. Let Pn,2(δ0, δ1) be the F-vector space with basis Pn,2. We define a

product on the algebra Pn,2(δ0, δ1) as follows.

αβ =

 δc00 δ
c1
1 (β0 ◦ α0, β1 ◦ α1) if bot(α0) = top(β0),

0 otherwise,
(2.2)
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where α, β ∈ Pn,2, ◦ is the composition of partition diagrams and the scalars δ0, δ1 ∈ F

and c0 (similarly c1) is the number of connected components removed from the middle

row when constructing the product α0 ◦ β0 (from α1 ◦ β1).

= 0 = δ0

Figure 2.1: The composition of some diagrams in P4,2(δ0, δ1).

Figure 2.1 is an example of the multiplication of some elements in the space

P4,2(δ0, δ1).

Theorem 2.2. The product that is defined in (2.2) is associative.

Proof. Let α = (α0, α1), β = (β0, β1) and ρ = (ρ0, ρ1) be partitions in the set Pn,2.

Note that top(α0◦β0) = top(β0) and bot(α0◦β0) = bot(α0) as long as α◦β is defined.

From the multiplication on Pn,2, the composition α ◦ (β ◦ ρ) is defined if and only if

top(α0) = bot(β0 ◦ ρ0), and β ◦ ρ is defined if and only if top(β0) = bot(ρ0). But if

β ◦ ρ is defined then bot(β0 ◦ ρ0) = bot(β0). Then α ◦ (β ◦ ρ) is defined if and only if

top(α0) = bot(β0) and top(β0) = bot(ρ0). Similarly, (α ◦ β) ◦ ρ is defined if and only

if top(α0) = bot(β0) and top(β0) = bot(ρ0). So the composition α ◦ (β ◦ ρ) is defined

if and only if (α ◦ β) ◦ ρ is defined, then the product in Pn,2(δ0, δ1) is an associative

when vanishes. Furthermore, if it does not vanish, we have

α ◦ (β ◦ ρ) =
(
α0 ◦ (β0 ◦ ρ0), α1 ◦ (β1 ◦ ρ1)

)
=
(
(α0 ◦ β0) ◦ ρ0, (α1 ◦ β1) ◦ ρ1

)
= (α ◦ β) ◦ ρ,

as the composition of partition diagrams is associative. Since the product on Pn,2(δ0, δ1)

will be a linear extension of the multiplication ◦, then the product is also an associa-

tive when it doesn’t vanish.

Theorem 2.3. The space Pn,2(δ0, δ1) is an associative F-algebra and its identity is

the element
∑
A⊆n

1(A,Ac), where 1(A,Ac) := (1A, 1Ac) and 1A is the diagram where each

node i ∈ A is only connected with the node i′(similarly, we define 1Ac).
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Proof. Since the product on Pn,2(δ0, δ1) is associative, so we only need to show that

the element
∑
A⊆n

1(A,Ac) is the identity. Let α = (α0, α1) ∈ Pn,2 then

(∑
A⊆n

1(A,Ac)

)
α =

∑
A⊆n

1(A,Ac)α,

but 1(A,Ac)α = 0 unless top(α0) = A, so

(∑
A⊆n

1(A,Ac)

)
α = (α0 ◦ 1top(α0), α1 ◦ 1top(α1)) = α.

Similarly, we have α
∑
A⊆n

1(A,Ac) = α. Thus
∑
A⊆n

1(A,Ac) is the identity.

We call the algebra Pn,2(δ0, δ1), or simply Pn,2, the two-colour partition algebra.

Remark 2.4. We can construct a category which consisting {(A,Ac) | A ⊆ n} as

objects and Pn,2 as the morphisms. A diagram d = (d0, d1) ∈ Pn,2 is an arrow from

(A,Ac) to (B,Bc) if top(d0) = A and bot(d0) = B. We define the top and the bottom

of the diagram d to be

top(d) = (A,Ac), bot(d) = (B,Bc).

Also the identity arrow for (A,Ac) is the diagram 1(A,Ac) since 1(A,Ac)d = d. When

n = 1, this category is represented by the graph in figure 2.2.

Figure 2.2: The set P1,2 as a category.
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The number of different partitions of a set with n elements is the Bell number

Bn, see for example Section 4.2 in [18]. From the definition of the set Pn,2, we have

dimPn,2 = |Pn,2| =
∑

A⊂n∪n′
|PA| × |PAc| =

∑
A⊂n∪n′
|A|=k

Bk × B2n−k .

The number of subsets with k elements of n ∪ n′ is
(

2n
k

)
, see for example Section 4.2

in [18], then

dimPn,2 =
2n∑
k=0

(
2n

k

)
Bk × B2n−k . (2.3)

We have another formula for the dimension of Pn,2. If we think of elements in the

set Pn,2 as coloured images of elements in Pn, where the only rule of the colouring

is that nodes and edges in the same block have the same colour. Let d ∈ Pn have l

parts, by colouring d we obtain 2l elements in Pn,2, then

dimPn,2 =
2n∑
l=1

2l
{

2n

l

}
, (2.4)

where
{
n
l

}
is Stirling number of the second kind and it is equal to the number of

partitions of a set of n elements with l parts, see for example Section 4.2 in [18].

2.1.2 The multi-colour partition algebra

For any positive integer m, let C0, . . . ,Cm−1 be different colours where none of

them is white, and δ0, . . . , δm−1 be scalars corresponding to these colours.

Define the set Φn,m to be

{(A0, . . . , Am−1) | Ai ⊆ n ∪ n′ ∀ i ∈ Zm,
m−1⋃
i=0

Ai = n ∪ n′, Ai ∩ Aj = ∅ ∀i 6= j}.

We construct basis elements of the multi-colour partition algebra in similar way

to the algebra Pn,2. Let (A0, . . . , Am−1) ∈ Φn,m (note that some of these subsets can
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be an empty set). Define the set PA0,...,Am−1 to be the set
m−1∏
i=0

PAi and

Pn,m :=
⋃

(A0,...,Am−1)∈Φn,m

PA0,...,Am−1 . (2.5)

The element d = (d0, . . . , dm−1) ∈ PA0,...,Am−1 is represented by the same diagram

as the partition
m−1⋃
i=0

di ∈ Pn after colouring it as follows. We use the colour Ci to

draw all the edges and the nodes in the partition di.

Similarly, a diagram representing an element in Pn,m is not unique. We say two

diagrams are equivalent if they represent the same tuple of partitions. The term

multi-colour partition diagram will be used to mean an equivalence class of diagrams

representing a multi-colour partition.

Let d = (d0, . . . , dm−1) ∈ PA0,...,Am−1 . We define the following sets:

top(di) = Ai ∩ n,

bot(di) = Ai ∩ n′,

top(d) = (top(d0), . . . , top(dm−1)),

bot(d) = (bot(d0), . . . , bot(dm−1)).


(2.6)

Definition 2.5. Let Pn,m(δ0, . . . , δm−1) be the F-vector space with the basis Pn,m
and with the composition:

(αi)(βi) =


m−1∏
i=0

δcii (βi ◦ αi) if bot(α) = top(β),

0 otherwise.

(2.7)

where δi ∈ F, α, β ∈ Pn,m, ci is the number of removed connected components from

the middle row when computing the product βi ◦ αi for each i = 0, . . . ,m− 1 and ◦

is the composition of partition diagrams.

The product on Pn,m(δ0, . . . , δm−1)-sometimes we use Pn,m or Pn,m(δ̆) to refer to

this space where δ̆ = (δ0, . . . , δm−1)- is associative and the proof is similar to the one
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of Theorem 2.2. Then it is an associative algebra with the identity:

1Pn,m =
∑

(A0,...,Am−1)∈Ξn,m

1(A0,...,Am−1) :=
∑

(A0,...,Am−1)∈Ξn,m

(1A0 , . . . , 1Am−1),

where Ξn,m = {(A0, . . . , Am−1) | ∪m−1
i=0 Ai = n,Ai∩Aj = ∅ ∀i 6= j}, 1Ai is the partition

of the set Ai tA′i where any node j is only connected with the node j′ for all j ∈ Ai
and A′i := {j′ | j ∈ Ai}, for all 0 ≤ i ≤ m − 1. The algebra Pn,m(δ̆) is called the

multi-colour partition algebra.

Remark 2.6. We can construct a category which consisting the set Ξn,m as objects

and Pn,m as morphisms, where d = (d0, . . . , dm−1) ∈ Pn,m is a morphism from the

object top(d) to bot(d).

The diagrams in Pn,m are constructed by colouring elements of Pn, so any partition

in Pn that has k parts can be used to define mk different diagrams in Pn,m. Hence

the dimension of the algebra Pn,m is

dimPn,m =
2n∑
k=1

mk

{
2n

k

}
, (2.8)

where
{
n
k

}
is Stirling number of the second kind. From this equation, we obtain the

table 2.1.

Table 2.1: The dimension of some low rank examples of the algebra Pn,m.

dimPn,m n = 0 1 2 3 4 n
m = 1 1 2 15 203 4140 B2n

2 1 6 94 2430 89918
2n∑
k=0

(
2n
k

)
Bk × B2n−k

3 1 12 309 12351 681870
2n∑
k=1

3k
{

2n
k

}
4 1 20 756 42356 3188340

2n∑
k=1

4k
{

2n
k

}
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2.2 Basic concepts of the algebra Pn,m(δ̆)

In this section, we generalise some concepts and definitions of subsets of the

monoid Pn such as the propagating number and the symmetric group, and then use

them to define ideals and sub-algebras of the algebra Pn,m, where we follow Grimm

and Martin’s approach [23].

Definition 2.7. [23, Section 2]. The propagating number of α ∈ Pn,m, #(α), is the

number of parts which contain nodes from both the top and the bottom rows in any

colour, i.e. #(α) =
m−1∑
i=0

#(αi) or simply #(α) = #
(m−1⋃
i=0

αi
)
.

Definition 2.8. [23, Section 2]. The Cj-propagating number of α = (α0, . . . , αm−1) ∈

Pn,m, #j(α), is the propagating number of αj.

The propagating number in the algebra Pn,m has a similar property to the prop-

agating number in the algebra Pn(δ).

Lemma 2.9. Let α = (α0, . . . , αm−1), β = (β0, . . . , βm−1) ∈ Pn,m with αβ 6= 0, then

#(αβ) ≤ min(#(α),#(β)) , (2.9)

#j(αβ) ≤ min(#j(α),#j(β)). (2.10)

Proof. Second part is clear, since #j(αβ) = #(βj◦αj). Finally, from the definition 2.7

we have

#(αβ) = #(β0 ◦ α0) + · · ·+ #(βm−1 ◦ αm−1)

≤ #(α0) + · · ·+ #(αm−1) = #(α), (from equation (1.11)).

Similarly, we have #(αβ) ≤ #(β). So we have #(αβ) ≤ min(#(α),#(β)).

A planar multi-colour partition in the set Pn,m is a multi-colour partition repre-

sented by a diagram that does not have edge crossings in the same colour. This is

the same definition that Grimm and Martin use in [23]. In other words, there can be

crossed edges but they don’t have the same colour. A planar multi-colour diagram,
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or simply planar diagram, is a diagram representing a planar multi-colour partition.

For example, is not a planar diagram, and is a planar diagram.

Remark 2.10. This definition of planar diagram is consistent with the definition of

a planar diagram in the algebra Pn(δ) provided that we consider all the diagrams in

Pn(δ) to have been coloured by using only one colour.

We define subsets of Pn,m corresponding to those subsets of Pn which are defined

in the equation (1.12) as following:

Sn,m = {d ∈ Pn,m | #(d) = n},

An,m = {d ∈ Pn,m | d is planar},

Qn,m = {d ∈ Pn,m | #(d) < n},

Bn,m = {d ∈ Pn,m | all blocks of d have size 2},

Tn,m = An,m ∩ Bn,m.


(2.11)

Examples of diagrams in the previous subsets of P7,2 are:

∈ S7,2,B7,2, ∈ A7,2,Q7,2,

∈ B7,2,Q7,2, ∈ T7,2,B7,2.

Remark 2.11. In the next chapter, it will be shown that Sn,m is a morphisms set

of a groupoid, and we call it the multi-colour symmetric groupoid. Furthermore, note

that all the sets defined in equation (2.11) except the set Qn,m form morphism sets of

categories so they can be used to define algebras. These will be denoted by FSn,m,

FAn,m, Bn,m(δ̆), and Tn,m(δ̆).

Diagrams representing multi-colour partitions in the sets Sn,m , Bn,m and Qn,m
can be obtained by colouring elements in the sets Sn, Bn and Qn respectively (as they

are defined by equation (1.12)). But this is not true for diagrams that representing

multi-colour partitions in sets An,m and Tn,m since some of non-planar diagrams in

Pn(δ) can be coloured to be planar diagrams in Pn,m.
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Definition 2.12. [23, Section 2]. A strictly planar multi-colour partition is a multi-

colour partition whose a digram can be formed from colouring an element in An.

This means inside a strictly planar diagram there is no edge crossing even between

different colours. Let A∗n,m be the set of all strictly planar multi-colour partitions

in Pn,m. A strictly planar diagram is a diagram representing a strictly planar multi-

colour partition.

Define the subsets Pn,m[λ0, . . . , λm−1] and Pn,m(λ0, . . . , λm−1) of Pn,m, where

(λ0, . . . , λm−1) ∈ Zm≥0 such that
m−1∑
j=0

λj ≤ n, to be

Pn,m[λ0, . . . , λm−1] ={d ∈ Pn,m | #j(d) = λj for all j ∈ Zm}, (2.12)

Pn,m(λ0, . . . , λm−1) =
⋃
lj≤λj

Pn,m[l0, . . . , lm−1]. (2.13)

Let Pn,m(δ̆;λ0, . . . , λm−1), or simply Pn,m(δ̆;λ) where λ = (λ0, . . . , λm−1), be the

ideal of the algebra Pn,m(δ̆) that is generated by the set Pn,m[λ].

Proposition 2.13. Let λ ∈ Zm≥0 such that
m−1∑
j=0

λj ≤ n. The ideal Pn,m(δ̆;λ) has the

set Pn,m(λ) as a basis.

Proof. Since Pn,m(δ̆;λ) is generated by Pn,m[λ0, . . . , λm−1], so it contains all elements

of the form αβ and βα where α ∈ Pn,m[λ] and β ∈ Pn,m. By using Lemma 2.9

#j(αβ) ≤ λj for all j ∈ Zm, so Pn,m(δ̆;λ) is a subset of the ideal that is generated

by Pn,m(λ). Now we need to show the converse, which is obvious since any element

α ∈ Pn,m(λ) can be written in the form βµρ (note that this factorization is not

unique) where β, ρ ∈ Pn,m, µ ∈ Pn,m[λ], top(α) = top(β) and bot(α) = bot(ρ).

The set of all ideals of the algebra Pn,m that are of the form Pn,m(δ̆;λ), for some

λ, is a lattice with a partial order: Pn,m(δ̆; i0, . . . , im−1) ≤ Pn,m(δ̆; j0, . . . , jm−1) if and

only if ik ≤ jk for each k ∈ Zm.
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Now we define for each 0 ≤ k ≤ n new subsets:

Pn,m[k] =
⋃

m−1∑
j=0

lj=k

Pn,m[l0, . . . , lm−1], (2.14)

Pn,m(k) =
⋃

0≤j≤k

Pn,m[j]. (2.15)

It is clear that Qn,m = Pn,m(n− 1) and Sn,m = Pn,m[n].

Let Pn,m(δ̆; k) be the ideal that is generated by the set Pn,m[k]. Note that

Pn,m(δ̆; k) contains all the diagrams whose propagating number is less than or equal

to k, so

Pn,m(δ̆) ⊃ Pn,m(δ̆;n− 1) ⊃ Pn,m(δ̆;n− 2) ⊃ . . . ⊃ Pn,m(δ̆; 0). (2.16)

Proposition 2.14. The set Pn,m(k) is the F-basis of the ideal Pn,m(δ̆; k).

The proof of the previous proposition depends on the propagating number prop-

erty, see (2.9).

2.3 The coloured images of Pn(δ)-generators

In order to find a generating form of the algebra Pn,m, we will use a presentation

of the algebra Pn(δ) and to do that we need first to define a coloured image of a

diagram. As all diagrams that represent multi-colour partitions are obtained from

colouring diagrams in the monoid Pn, such that all nodes in a part of a partition and

their edges which connect them have the same colour, so any set of generators for

Pn(δ) can be used to define generators for the algebra Pn,m(δ̆) with relations obtained

by modifying the relations of the algebra Pn(δ), with keeping in mind the effect of

the colours in the multiplication on the algebra Pn,m.
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Let x = (x1, . . . , xn) ∈ Znm, define the tuple

x̃ := (A0, . . . , Am−1), (2.17)

where Ai ⊆ n such that j ∈ Ai if and only if xj = i where 1 ≤ j ≤ n. In other

words, the colour Cj is represented by the element j ∈ Zm. Note that {Ai}0≤i≤m−1

is a partition of n, and x̃ = ỹ if and only if x = y.

Example 2.14.1. Consider x = (0, 1, 0, 0, 1) ∈ Z5
3 , so x̃ = ({1, 3, 4}, {2, 5}, ∅).

Let the node j ∈ n in the top row of a diagram D representing a multi-colour

partition have the colour Ci, define x := (xj) ∈ Znm where xj = i. From this definition,

it is evident that top(D) = x̃ .

Remark 2.15. Henceforth we will say a diagram in the set Pn,m instead of a diagram

representing a multi-colour partition in the set Pn,m, and we will write D1 ◦D2 = 0

to mean D1 ◦D2 is undefined as D2D1 = 0 in this case.

Definition 2.16. Let α = {X1, . . . , Xr} ∈ Pn and D = (D0, . . . , Dm−1) ∈ Pn,m
where Di ⊂ α for each i,

⋃
i

Di = α and Di ∩ Dj = ∅ if i 6= j. We say that D is a

coloured image of α or a diagram of the shape α.

In other words, D is a coloured image of α if we can get α from D by ignoring

the colours. We call α the uncoloured image of D.

Lemma 2.17. Let D1, D2 be diagrams in Pn,m of shapes α1 and α2, respectively. If

the colours match up, i.e. D1D2 6= 0, then the diagram of D2 ◦ D1 has the shape

α2 ◦ α1.

Proof. This follows immediately from the definition of the product on Pn,m.

Let x, y ∈ Znm and α = {X1, . . . , Xr} ∈ Pn. We say that colouring α with top

and bottom equal to x̃ and ỹ respectively, is defined if they satisfy for each i, j ∈ n:

• xi = xj if there k such that i, j ∈ Xk.
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• yi = yj if there k such that i′, j′ ∈ Xk.

• xi = yj if there k such that i, j′ ∈ Xk.

Simply, this means that any nodes in the same part have the same colour.

From this way of colouring, we obtain the next lemma.

Lemma 2.18. Let x, y ∈ Znm and α ∈ Pn. If colouring α with top and bottom equal

to x̃ and ỹ respectively is defined, then there is a unique coloured image of α, denoted

by αxy , with top and bottom equal to x̃, ỹ respectively.

Let D1, D2 be diagrams in Pn,m, then D1 = αxy and D2 = βuv for some α, β ∈ Pn
and x, y, u, v ∈ Znm. By using Lemma 2.17 and Lemma 2.18, we have

D2 ◦D1 =

 0 if y 6= u,(
β ◦ α

)x
v

if y = u,
(2.18)

since top(D2 ◦D1) = top(D1) and bot(D2 ◦D1) = bot(D2).

A decomposition of a diagram α is a finite sequence of diagrams such that their

multiplication equals α.

Proposition 2.19. Let D = αxy for some α ∈ Pn and x, y ∈ Znm. Then every

decomposition of α in Pn can be used to define a decomposition for D in Pn,m. The

converse also holds.

Proof. Let α = tk ◦ tk−1 ◦ · · · ◦ t1 for some t1, . . . , tk ∈ Pn and k ∈ N. From equa-

tion (2.18), we have the following decomposition of D:

D = (tk ◦ tk−1 ◦ · · · ◦ t1)xy = (tk)
u(k−1)

y ◦ (tk−1)u
(k−2)

u(k−1) ◦ · · · ◦ (t2)u
(1)

u(2) ◦ (t1)xu(1) . (2.19)

All we need to do, is defining the tuples u(1), . . . , u(k−1) such that the colouring will

be defined, where u(l) ∈ Znm for each l. These tuples are defined as following:

• u(1)
j = xi when i, j′ are contained in a part of t1 for any 1 ≤ i, j ≤ n. So (t1)xu(1)

is defined.
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• u(k−1)
i = yj when i, j′ are contained in a part of tk for any 1 ≤ i, j ≤ n. So

(tk)
u(k)

y is defined.

• u(l)
j = u

(l−1)
i when i, j′ are contained in a part of tl for any 1 ≤ i, j ≤ n, where

2 ≤ l ≤ k − 1. So (tl)
u(l−1)

u(l) is also defined.

• There are maybe some points in the middle rows of the decomposition tk ◦

tk−1 ◦ · · · ◦ t1, which are not connected to the top row of t1 and the bottom

row of tk (non-propagating edges), then their colours may be chosen such that

two points of them have the same colour if they are connected by an edge. For

example, in figure 2.3 the colours of dashed and dotted edges and their nodes

may be chosen, such that the nodes that are connected with dashed (dotted)

edges have the same colour.

Conversely, when we have a decomposition of D and simply by ignoring the

colours we obtain a decomposition of α.

=

Figure 2.3: A decomposition of a digram in the algebra P6,3.

Colouring the elements si, qi, pj and ui where i ∈ n− 1 and j ∈ n, as they are

defined in Section 1.7, is described as follows. Let x = (x1, . . . , xn) ∈ Znm, we can

colour the element si such that the top equals x̃, this coloured image of si is denoted

by s(i,x). Note that bot(s(i,x)) = x̃si , where xπ = (xπ−1(i)) for all π ∈ Sn.

In general, colouring any element σ ∈ Sn with a top equals x̃ is defined, and the

bottom will be x̃σ−1 .

Example 2.19.1. If x = (0, 1, 1, 2, 0, 2) ∈ Z6
3 and the colours C0,C1 and C2 are red,

blue and green respectively, then s(3,x) = .
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We define the diagram 1x to be the coloured image of id ∈ Sn, where the node i

is only connected to i′ with an Cxi-edge. Hence, we have 1Pn,m =
∑
x∈Znm

1x.

To make colouring the element qi defined, we need to take in consideration that

the nodes i, i + 1, i′ and (i + 1)′ have the same colour. So we define an index set,

Γi ⊂ Znm, to preserve this condition:

Γi := {x ∈ Znm | xi = xi+1}, (2.20)

and define the diagram q(i,x), where x ∈ Γi, to be the coloured image of the diagram

qi such that top(q(i,x)) = x̃. From the graphical visualization of qi, it is clear that

top(q(i,x)) = bot(q(i,x)). Note that xsi = x for all x ∈ Γi.

To determine a coloured image of the diagram pj, an index set according to j

needed to define:

Ωj := {(x, y) ∈ Znm × Znm | xi = yi ∀ i 6= j}. (2.21)

The diagram p(j,x,y), where (x, y) ∈ Ωj, is the coloured image of the element pj such

that top(p(j,x,y)) = x̃ and bot(p(j,x,y)) = ỹ.

Define a set Ω
∗
i to be

Ω
∗

i := {(x, y) ∈ Γi × Γi | xj = yj ∀ j 6= i, i+ 1}, (2.22)

and u(i,x,y) to be the coloured image of the element ui such that top(u(i,x,y)) = x̃ and

bot(u(i,x,y)) = ỹ, where (x, y) ∈ Ω
∗
i .

Proposition 2.20. The groupoid Sn,m (we show that later in Chapter 3) is generated

by the diagrams s(i,x) for all x ∈ Znm, i = 1, . . . , n− 1. Also each element in A∗n,m can

be written as a sequence of the elements q(i,y) and p(j,u,v), where y ∈ Γi, (u, v) ∈ Ωj,

i ∈ n− 1 and j ∈ n.

Proof. Let D be a diagram in Sn,m of a shape σ ∈ Sn and top(D) = x̃ for some

x ∈ Znm. Since σ is a permutation in the group Sn, so it can be written as si1si2 · · · sir
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for some integers i1, . . . , ir. Now, colouring the edges to get the same diagram D

gives us the decomposition s(i1,x)s(i2,x
si1 ) · · · s(ir,x

si1
si2
···sir−1 )

of D (use (2.19)), so all the

diagrams of shapes si for some i generate the groupoid Sn,m. The proof for A∗n,m is

similar, since any strictly planar diagram is coloured image of a planar diagram in

the monoid Pn.

Example 2.20.1. A decomposition of the permutation (134) is s1s3s2s1 in S5, so

the corresponding factorization of the diagram is s(1,x)s(3,y)s(2,u)s(1,v) where

x = (1, 0, 2, 0, 1), y = (0, 1, 2, 0, 1), u = (0, 1, 0, 2, 1) and v = (0, 0, 1, 2, 1).

Example 2.20.2. Take α to be the diagram . One of decompositions of α

is p5q4p4q2p2q3p3q1, so

αxy = p(5,x,u)q(4,u)p(4,u,v)q(2,v)p(2,v,z)q(3,z)p(3,z,y)q(1,y),

where x = (0, 2, 2, 1, 0), y = (0, 0, 1, 2, 1), u = (0, 2, 2, 1, 1), v = (0, 2, 2, 2, 1) and

z = (0, 0, 2, 2, 1).

The next result shows that there is a natural factorization Pn,m = Sn,mA∗n,mSn,m,

which is the first step for finding a presentation for the algebra Pn,m.

Lemma 2.21. Let D ∈ Pn,m. Then D = π1tπ2 for some π1, π2 ∈ Sn,m and t ∈ A∗n,m.

Proof. Assume that D has the shape α ∈ Pn and top(D) = x̃, bot(D) = ỹ for some

x, y ∈ Znm. By using equation (1.13), we can write α as σdθ where σ, θ ∈ Sn and

d ∈ An, and we are done since the decomposition of D can be gotten by recolouring

the previous factorization of α, such that π1 is the coloured image of σ with top row

equal to x̃, π2 is the coloured image of θ with bottom row equal to ỹ and t is the

coloured image of d with top row equal to x̃σ−1 and the bottom row ỹθ. For example,

see figure 2.4.

Next step is showing that the coloured image t is defined, which follows immedi-

ately from Proposition 2.19.
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=

Figure 2.4: An example of the property Pn,m = Sn,mA∗n,mSn,m.

Definition 2.22. [23, Section 4]. The white multi-diagram of shape θ ∈ Pn is the

sum of all possible different coloured copies of θ in the algebra Pn,m.

Simply, we well say a white diagram instead of a white multi-diagram. For

instance, the identity of Pn,m is the white diagram of shape id ∈ Sn.

2.4 A generating set for the algebra Pn,m

In this section we aim to define the multi-colour partition algebra by generators

and relations.

Proposition 2.23. The elements s(i,x), 1x, q(i,w) and p(j,u,v), where x ∈ Znm, w ∈ Γi,

i ∈ n− 1, (u, v) ∈ Ωj and j ∈ n, satisfy the following relations:

1. For all y ∈ Znm, 1x1y =

 0 if y 6= x,

1x if y = x.

2. For all y ∈ Znm, 1xs(i,y) =

 0 if y 6= x,

s(i,y) if y = x.

 = s(i,y)1xsi .

3. 1xq(i,w) =

 0 if w 6= x,

q(i,w) if w = x.

 = q(i,w)1x.

4. 1xp(j,u,v) =

 0 if u 6= x,

p(j,u,v) if u = x.

5. p(j,u,v)1x =

 0 if v 6= x,

p(j,u,v) if v = x.
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6. For all l ∈ n− 1, s(i,x)s(l,y) =


0 if y 6= xsi ,

1x if y = xsi , i = l,

s(l,x)s(i,xsl ) if y = xsi , l 6= i± 1.

7. s(i,x)s(i+1,xsi )s(i,xsisi+1 ) = s(i+1,x)s(i,xsi+1 )s(i+1,xsi+1si ), for all i ∈ n− 2.

8. For all (z, y) ∈ Ωk, and k ∈ n,

p(k,z,y)p(j,u,v) =



0 if y 6= u,

δykp(k,z,v) if k = j, y = u,

p(j,z,w)p(k,w,v) if y = u,where wl = yl ∀ l 6= k, j,

wk = zk, wj = vj .

9. For all y ∈ Γl, q(i,w)q(l,y) =


0 if w 6= y,

q(l,w)q(i,y) if w = y,

q(i,w) if i = l, w = y.

10. p(j,u,v)q(i,w) =

 0 if v 6= w,

q(i,u)p(j,u,v) if v = w, j 6= i, i+ 1.

11. q(i,w)p(j,u,v) =

 0 if w 6= u,

p(j,u,v)q(i,v) if w = u, j 6= i, i+ 1.

12. s(i,x)p(j,u,v) =

 0 if u 6= xsi

p(j,x,vsi )s(i,vsi ) if u = xsi , j 6= i, i+ 1.

13. p(j,u,v)s(i,x) =

 0 if v 6= x,

s(i,u)p(j,usi ,x) if v = x, j 6= i, i+ 1.

14. s(i,x)p(i,xsi ,v)p(i+1,v,z) = p(i,x,w)p(i+1,w,z) = p(i,x,w′)p(i+1,w′,zsi )s(i,zsi ), for all (xsi , v) ∈

Ωi, (v, z) ∈ Ωi+1, where wj = xj = w′j for all j 6= i and wi = zi, w
′
j = zi+1.

15. s(i,x)p(i,xsi ,v)s(i,v) = p(i+1,x,vsi ), for all (xsi , v) ∈ Ωi.

16. s(i,x)q(l,w) =

 0 if w 6= xsi ,

q(l,x)s(i,x) if w = xsi , l 6= i± 1.
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17. q(l,w)s(i,x) =

 0 if w 6= x,

s(i,w)q(l,wsi ) if w = x, l 6= i± 1.

18. s(i,x)q(i,x) = q(i,x) = q(i,x)s(i,x), for all x ∈ Γi.

19. s(i,x)s(i+1,xsi )q(i,xsisi+1 )s(i+1,xsisi+1 )s(i,xsi ) = q(i+1,x), for all x ∈ Γi+1.

20. q(i,w)p(i,w,w)q(i,w) = q(i,w) = q(i,w)p(i+1,w,w)q(i,w).

21. p(i,u,v)q(i,v)p(i,v,z) = p(i,u,z), for all (u, v), (v, z) ∈ Ωi, v ∈ Γi.

22. p(i,u,v)q(i−1,v)p(i,v,z) = p(i,u,z), for all (u, v), (v, z) ∈ Ωi, v ∈ Γi−1.

Proof. Let D1, D2 ∈ Pn,m. The element D1D2 will be zero if bot(D1) 6= top(D2).

Since top(1x) = bot(1x) = x̃, top(s(i,x)) = x̃, bot(s(i,x)) = x̃si , top(q(i,w)) = w̃ =

bot(q(i,w)), top(p(j,u,v)) = ũ and bot(p(j,u,v)) = ṽ, so whenever the bottom of one of

the previous elements does not equal the top of another element, the product of the

first element and the second will be zero.

When the product does not vanish, all these relations can be verified by drawing

the diagram products that they refer to. To prove the relation 14, we will write xi

over the node i to say that the node has the colour Cxi . The proof of relation 14

equalities is given in figure 2.5.

x→

xsi →

v →

z →

. . .

. . .

. . .

xi xi+1

. . .

. . .

. . .

zi zi+1

=
. . .

. . .

. . .

. . .

xi xi+1

zi zi+1

← x

← w

← z

=

. . .

. . .

. . .

. . .

. . .

. . .

xi xi+1

zi zi+1

← x

← w′

← zsi

← z

Figure 2.5: s(i,x)p(i,xsi ,v)p(i+1,v,z) = p(i,x,w)p(i+1,w,z) = p(i,x,w′)p(i+1,w′,zsi )s(i,zsi ).

Corollary 2.24. The elements s(i,x), q(i,y) and p(j,u,v), where x ∈ Znm, i ∈ n− 1,

y ∈ Γi, (u, v) ∈ Ωj and j ∈ n, satisfy the following relations:

1. q(i,x)s(i−1,x)q(i,x) = q(i,x)q(i−1,x) for all x ∈ Γi ∩ Γi−1, 2 ≤ i ≤ n− 1.
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2. p(i,u,v)s(i,v)p(i,vsi ,w) = p(i+1,u,v′)p(i,v′,w) for all (u, v), (vsi , w) ∈ Ωi where vl = xl

for all l 6= i and vi = wi.

3. p(i,u,v)q(i,v)p(i+1,v,w) = p(i,u,wsi )s(i,wsi ) for all v ∈ Γi, (v, w) ∈ Ωi+1.

4. p(i+1,u,v)q(i,v)p(i,v,w) = s(i,u)p(i,usi ,w) for all (u, v) ∈ Ωi+1, v ∈ Γi, (v, w) ∈ Ωi.

Proof. This can be proved by using the relations in previous proposition. We are

going to show only the first part.

q(i,x)s(i−1,x)q(i,x) =
(
q(i,x)s(i,x)

)
s(i−1,x)q(i,x) (From the relation 18)

= q(i,x)s(i,x)s(i−1,x)q(i,x)

(
s(i−1,x)s(i,x)s(i,x)s(i−1,x)

)
(Note that x = xsi = xsi−1)

= q(i,x)

(
s(i,x)s(i−1,x)q(i,x)s(i−1,x)s(i,x)

)
s(i,x)s(i−1,x)

= q(i,x)q(i−1,x)s(i,x)s(i−1,x) (From the relation 19)

= q(i−1,x)q(i,x)s(i,x)s(i−1,x) (From the relation 9)

= q(i−1,x)q(i,x)s(i−1,x) (From the relation 18)

= q(i,x)q(i−1,x)s(i−1,x) (From the relation 9)

= q(i,x)q(i−1,x). (From the relation 18)

Remark 2.25. Every relation between the elements si, qi, pj in Pn(δ) corresponds

to a relation in Pn,m between the elements s(i,x), q(i,y), p(j,u,v) when the colours match

up with all possible choices of colours, where i = 1, . . . , n − 1 and j = 1, . . . , n. For

example, the relation s2
i = 1 is corresponding to the relation s(i,x)s(i,xsi ) = 1x. All the

corresponding relations to the relations in Theorem 1.23 exist by Proposition 2.23.

Since any other relation in Pn(δ) can be computed by these relations in Theorem

1.23, so from equations (2.18) and (2.19) and Lemma 2.18 the corresponding relation

in Pn,m(δ̆) can be computed by the relations in Propositions 2.23.
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Lemma 2.26. Let t, b ∈ A∗n,m and π ∈ Sn,m such that t◦π ◦ b is defined. Then there

is d ∈ A∗n,m and σ ∈ Sn,m such that

b ◦ π ◦ t = σ ◦ d ◦ t. (2.23)

Proof. Since any element in A∗n,m is a coloured image of an element in An, by ignoring

the colours and using equation (1.14), we obtain a non-coloured copy of our equation

and all what we need to do is recolour the diagrams. Since we use the relations

in Theorem 1.23 to compute the decomposition of non-coloured partitions, thus we

need to use the relations in Proposition 2.23 and Corollary 2.24 to compute the

corresponding decomposition of multi-colour partitions. For example, see figure 2.6.

=

Figure 2.6: An example of the relation (2.23)

Theorem 2.27. The algebra Pn,m(δ̆) is generated by the elements s(i,x), 1x, q(i,y) and

p(j,u,v), where x ∈ Znm, y ∈ Γi , i ∈ n− 1, (u, v) ∈ Ωj and j ∈ n, with all the relations

in Proposition 2.23.

Proof. It has been shown that these elements satisfy the relations and every partition

in Pn,m can written as sequence products of these generators in Proposition 2.23,

Proposition 2.20 and Lemma 2.21. Then we only need to show that any product in

Pn,m can be computed by using the relations in Proposition 2.23.

Let D1, D2 ∈ Pn,m. By using the decomposition Pn,m = Sn,mA∗n,mSn,m, we have

D1 = π1tπ2, D2 = σ1bσ2 for some t, b ∈ A∗n,m and π1, π2, σ1, σ2 ∈ Sn,m. Assume that

top(D1) = x̃, bot(D1) = ỹ, top(D2) = w̃ and bot(D2) = z̃, thus bot(π2) = ỹ and

top(σ1) = w̃ in the previous decompositions of D1 and D2. If y 6= w, the relations 1,

2 and 6 in Proposition 2.23 lead to D1D2 = 0. On the other hand, if y = w, by using
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the equation (2.19) we have

D2 ◦D1 =

(
σ′2 ◦ b′ ◦ σ′1 ◦ π′2 ◦ t′ ◦ π′1

)x
z

,

where π′1, π′2, t′, σ′1, σ′2 and b′ are diagrams in Pn obtained from π1, π2, t, σ1, σ2 and

b after ignoring the colours. Recall that D1D2 =
(m−1∏
i=0

δcii
)
D2 ◦ D1 where ci is the

number of removed connected components that have the colour Ci, so

π′1t
′π′2σ

′
1b
′σ′2 = δ

m−1∑
i=0

ci(
σ′2 ◦ b′ ◦ σ′1 ◦ π′2 ◦ t′ ◦ π′1

)
.

Now the relations in Theorem 1.23 can compute the element π′1t
′π′2σ

′
1b
′σ′2, and the

relations in Proposition 2.23 corresponding to the relations in Theorem 1.23, then

they are sufficient to compute D1D2.

2.5 The bubble algebra Tn,m(δ̆)

In this section we will define the bubble algebra, which is introduced in [23], as

a sub-algebra of the multi-colour partition algebra and determine its dimension and

find a generating set for it.

The diagrams in the bubble algebra in the case of two colours can be constructed

by drawing two Kauffman diagrams (or just one) with no internal loops, using dif-

ferent colours in the same frame with n nodes on the northern face and n nodes on

the southern face, such that if a node is contained in first Kauffman diagram, it will

not be contained in the second. This means that at these diagrams the nodes are

connected in pairs with different colours where an intersection is just allowed between

different colour edges.

There is another way to describe these diagrams, as Grimm and Martin[23] did,

as a sheet of bubble wrap (bubble wrap made from two sheets of polythene welded

together along certain lines to trap bubbles) where we are allowed to draw red lines

only on the back sheet and blue lines are only in the front sheet, see figure 2.7. In this
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realisation, edges are not allowed to cross on the same sheet, but they may deformed

isotopically as before.

Figure 2.7: Representing a diagram as bubble wrap.

The composite of two diagrams is defined if the two diagrams have the same

number of end points. In this case the composite is zero unless the colours match

up precisely. If they do match up the composite is a multi-colour partition which is

obtained by linking the diagrams together as for the Temperley-Lieb algebra replacing

any Cj loop appearing inside the diagram by the scalar δj times the rest of the

diagram.

The bubble algebra Tn,2(δ0, δ1) -it is denoted by T 2
n(δr, δb) in [23], or simply Tn,2-

is the F-linear extension of the set of these diagrams which are isotopy classes of

bubble diagrams and composition, with internal closed loop replacement. The loop

replacement scalar here depends on the colour. The identity of the bubble algebra

is the summation of all the diagrams which connect i only to i′ with any colour for

each 1 ≤ i ≤ n.

From the description of diagrams in the bubble algebra Tn,2, we can identify

bubble diagrams with multi-colour partitions, and hence it is a sub-algebra of the

algebra Pn,2.

Theorem 2.28. The bubble algebra Tn,2(δ0, δ1) is the sub-algebra of Pn,2(δ0, δ1) spanned

by the set Tn,2, which is defined in equation (2.11).

Proof. We are going to show that Tn,2 is a sub-category of Pn,2, see Remark 2.4, and

then the rest follows immediately from the algebra Pn,2 and from bubble diagrams

realisation. Since 1x ∈ Tn,2 for each x ∈ Znm, we only need to show that the set Tn,2 is
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closed under the composition when it is defined. Let D = (D0, D1) and B = (B0, B1)

be two-colour partition diagrams in Tn,2 such that D ◦B is defined, so from (2.7), we

have Di ◦ Bi also defined as partition diagrams. Now from the definition of Tn,2, all

the diagrams Di and Bi are Kauffman’s diagrams, but then Di◦Bi is also Kauffman’s

diagram for each i. Thus D ◦B ∈ Tn,2, and we are done.

Remark 2.29. The algebra Tn,m(δ0, . . . , δm−1), or Tn,m and Tn,m(δ̆) for simplicity,

which the bubble algebra with m colours, similarly can be defined to be a sub-algebra

of the algebra Pn,m(δ̆) generated by the subset Tn,m, which is defined in equation

(2.11).

2.5.1 The dimension of bubble algebra

Proposition 2.30. For each n ∈ N, the dimension of the algebra Tn,2(δ0, δ1) is given

by the formula

dimTn,2 = dimTLn dimTLn+1, (2.24)

where TLn is the Temperley-Lieb algebra.

Proof. In order to compute the dimension of Tn,2, we will compute the number of

diagrams with k red edges, where k = 0, 1, . . . , n.

Drawing diagram with k red edges needs 2k red nodes, there are
(

2n
2k

)
options to

choose 2k nodes from 2n without repetition and the order does not matter. Next,

connecting 2k red points in pairs without crossing gives us dimTLk probabilities, see

Section 1.8.1. On the other hand, there are dimTLn−k ways to connect 2(n− k) blue

nodes. Thus the total number of diagrams in this case is
(

2n
2k

)
dimTLk dimTLn−k.

By taking all the possibilities of k, we obtain the following formula:

dimTn,2 =
k=n∑
k=0

(
2n

2k

)
dimTLk dimTLn−k =

Cn
(n+ 1)

n∑
k=0

(
n+ 1

k

)(
n+ 1

n− k

)
,
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as dimTLn = Cn = 2n!
n!(n+1)!

, where Cn is Catalan number see Section 1.8. Next, we

use the formula
(
x+y
n

)
=

n∑
k=0

(
x
k

)(
y

n−k

)
, which is known as Vandermonde’s convolution

formula (see for example Theorem 4.2 in [34]), to finish our calculation:

dimTn,2 =
Cn

(n+ 1)

(
2n+ 2

n

)
= CnCn+1.

Proposition 2.31. For each n ∈ N, the dimension of the algebra Tn,m(δ̆) is given

by the formula

dimTn,m =
∑

m−1∑
j=0

kj=n

(2n)!
m−1∏
i=0

ki!(ki + 1)!

. (2.25)

Proof. In order to compute the dimension of Tn,m, we will compute the number of

diagrams with kj edges of the colour Cj, where j ∈ Zm and
m−1∑
j=0

kj = n.

Drawing diagram with k0 edges of the colour C0 needs 2k0 nodes, there are
(

2n
2k0

)
choices for these nodes. Next, drawing diagram with kj strings of the colour Cj needs

2kj nodes, there are
(2n−2

j−1∑
i=0

ki

2kj

)
choices for these nodes, where j = 1, . . . ,m− 2 (the

last colour takes the rest of nodes).

Next, connecting 2kj points in pairs without crossing gives us dimTLkj = Ckj

possibilities. Thus the total number of diagrams is

dimTn,m =
∑

∑
kj=n

(
2n

2k0

)
× · · · ×

(2(n−
m−3∑
i=0

ki)

2km−2

)m−1∏
i=0

Cki ,

=
∑

∑
kj=n

(2n)!

(2k0)!(2k1)! · · · (2km−1)!

m−1∏
i=0

Cki ,

=
∑

∑
kj=n

(2n)!

k0!(k0 + 1)!k1!(k1 + 1)! · · · km−1!(km−1 + 1)!
.

In table 2.2, it has been listed, up to rank n = 5, the dimension of the algebra

Tn,m where m = 1, 2, 3, 4.
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Table 2.2: Examples of dimensions of the bubble algebra.

n dimTLn dimTn,2 dimTn,3 dimTn,4
0 1 1 1 1
1 1 2 3 4
2 2 10 24 44
3 5 70 285 740
4 14 588 4242 16016
5 42 5544 73206 410928

2.5.2 A generating set of the bubble algebra Tn,m(δ̆)

We use a presentation of the Brauer algebra to derive a generating set for the

bubble algebra. As Grimm and Martin[23] mentioned, the diagram basis of the alge-

bra Tn,m is like the Brauer diagram basis of the Brauer algebra Bn(δ) after ignoring

the colours. Therefore, colouring a Brauer diagram (if it is possible, since if there are

m + 1 or more edges in the diagram such that each one cross the others, colouring

it will be undefined since there must be at least two crossing edges having the same

colour) gives a diagram representing a multi-colour partition in the set Tn,m.

We follow the same idea of defining a generating set of the algebra Pn,m to obtain

one of the algebra Tn,m, by rewriting the relations in Theorem 1.24 and colouring the

generators in the same theorem.

Theorem 2.32. The algebra Tn,m(δ̆) is generated by the diagrams 1x, s(i,y) and u(i,z,w)

where x ∈ Znm, y ∈ Υi = {y ∈ Znm | yi 6= yi+1}, (z, w) ∈ Ω∗i (see equation (2.22)) and

i ∈ n− 1, subject to the relations:

1. For all y ∈ Znm, 1x1y =

 0 if y 6= x,

1x if y = x.

2. For all y ∈ Znm, 1xs(i,y) =

 0 if y 6= x,

s(i,y) if y = x.

 = s(i,y)1xsi .

3. 1xu(i,z,w) =

 0 if z 6= x,

u(i,z,w) if z = x.
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4. u(i,z,w)1x =

 0 if w 6= x,

u(i,z,w) if w = x.

5. For all l ∈ n− 1, s(i,u)s(l,y) =


0 if y 6= usi ,

1u if y = usi , i = l,

s(l,u)s(i,usl ) if y = usi , l 6= i± 1.

6. s(k,y)s(k+1,ysk )s(k,ysksk+1 ) = s(k+1,y)s(k,ysk+1 )s(k+1,ysk+1sk ) for all k ∈ n− 2.

7. u(i,u,v)u(j,w,z) =


0 if w 6= v,

δviu(i,u,z) if i = j, w = v,

u(j,u,v)u(i,w,z) if w = v, j 6= i± 1.

8. u(k,u,v)u(k+1,v,z)u(k,z,w) = u(k,u,w).

9. u(k+1,u,v)u(k,v,z)u(k+1,z,w) = u(k+1,u,w).

10. s(i,y)u(l,w,z) =


0 if i = l,

0 if i 6= l, w 6= ysi ,

u(l,y,zsi )s(i,zsi ) if w = ysi , l 6= i, i± 1.

11. u(l,w,z)s(i,y) =


0 if i = l,

0 if i 6= l, z 6= y,

s(i,w)u(l,wsi ,zsi ) if z = y, l 6= i, i± 1.

12. s(k,y)u(k+1,ysk ,u)u(k,u,v) = s(k+1,y)u(k,ysk+1 ,v).

13. s(k+1,y)u(k,ysk+1 ,u)u(k+1,u,v) = s(k,y)u(k+1,ysk ,v).

Proof. We need first to check that these elements generate our algebra. As we said

before, if we ignore the colours in any diagram D in the set Tn,m we obtain a Brauer

diagram which can be written as word of the elements ui , sj, see Theorem 1.24. We

may recolour this factorization (Note that we may not recolour all the decomposi-

tions) as in (2.19) to obtain a decomposition of the diagram D in the elements u(i,u,v)

and s(j,x).

Let D ∈ Tn,m, then it can be written on the form σD′θ (see Lemma 2.21) where

D′ ∈ A∗n,m, σ is the unique diagram with n propagating lines and top(D) = top(σ)
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and bot(σ) is on the form
(
{1, . . . , l1}, {l1 +1, . . . , l2}, . . . , {lm−1 +1, . . . , n}) for some

non-negative integers l1, . . . , lm−1, and θ is the unique diagram with n propagat-

ing lines that rearrange the nodes in the bottom row to have a diagram whose top

equals
(
{1, . . . , l′1}, {l′1 + 1, . . . , l′2}, . . . , {l′m−1 + 1, . . . , n}) for some non-negative in-

tegers l′1, . . . , l
′
m−1 (note that both σ and θ are defined such that there are not any

crossing lines whose the same colour). For example, see the following figure.

=

Any decomposition of the uncoloured image of D′ in the elements ui (which is

existed since the uncoloured image is a Temperley-Lieb diagram) can be recoloured

to have a decomposition of D′. We still need to show that σ and θ can be written as

words in s(j,x), it is enough to show one of them.

Let θ be a diagram whose n propagating lines and top equals
(
{1, . . . , l1}, {l1 +

1, . . . , l2}, . . . , {lm−1+1, . . . , n}) for some non-negative integers l1, . . . , lm−1. To obtain

a decomposition of θ, we begin by checking the node that is connected to n′. If {n, n′}

is a part of θ, we go to the next node. Otherwise, If {h, n′} is a part of θ (note that

h will be one of the nodes l1, . . . , lm−1 since there is no crossed edges that have the

same colour) we move the node h step by step until we connect it to the node n′.

After that we check the node that is connected to (n−1)′ and do what we did with h.

Since we start by moving last node of each colour and then move the next node, there

will be no crossed edges that have the same colour. For example, see the following

figure. Hence we have a decomposition of θ in the elements s(j,x).

=
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The elements 1x, u(i,u,v) and s(i,y) clearly satisfy the previous relations, it can

be verified by drawing the diagram products that they refer to, see figure 2.8 for

example. Furthermore, any product of elements in Tn,m can be computed by using

these relations, since they contain in somewhat all the relations in Theorem 1.24,

which define the Brauer algebra Bn(δ) although it is not immediately obvious, for

example the relation u2
i = δui in Bn(δ) corresponds to the relation

u(i,u,v)u(i,w,z) =

 0 if w 6= v,

δviu(i,u,z) if w = v,

in the algebra Tn,m, and the relations in Theorem 1.24 are enough to compute any

product in the algebra Bn(δ), and we are done.

. . .

i i + 1

. . .

. . . . . .
= 0

Figure 2.8: The proof of s(i,y)u(i,w,z) = 0 since yi 6= yi+1.

2.6 Some useful idempotent sub-algebras

In this section we will discuss certain special idempotent elements in the algebras

Tn,m(δ̆), Pn,m(δ̆) and FSn,m.

The diagrams of shape id ∈ Sn are orthogonal idempotents, since

1x1y =

 0 if y 6= x,

1x if y = x,

for all x, y ∈ Znm. Thus we have a decomposition of the identity as a sum of orthogonal

idempotents since 1Pn,m = 1Tn,m = 1FSn,m =
∑
x∈Znm

1x.
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For each λ = (λ0, . . . , λm−1) ∈ Γ(n,m), Γ(n,m) is the set of all m-compositions of n

(see Section 1.3.1), we define λ ∈ Znm to be

λ = (0, . . . , 0︸ ︷︷ ︸
λ0−times

, 1, . . . , 1︸ ︷︷ ︸
λ1−times

, . . . ,m− 1, . . . ,m− 1︸ ︷︷ ︸
λm−1−times

). (2.26)

Theorem 2.33. Let #i(1y) = λi for each i where y ∈ Znm, then the elements 1y and

1λ are conjugate in the algebras Tn,m, FSn,m and Pn,m.

Proof. Note that #(1y) = n for any y ∈ Znm, so λ := (λ0, . . . , λm−1) ∈ Γ(n,m), which

means the tuple λ is defined.

First it will be shown in the algebra Tn,m. We need to define an invertible element

D ∈ Tn,m such that D−11yD = 1λ. We claim that the element

θy +
∑
u∈Znm,
u6=y

1u

satisfies the previous equation, where θy is the coloured image of a permutation θ with

top equals ỹ, and θ will be defined later to be a specific permutation that changes

the order of nodes to obtain λ from y (such that there are no crossing lines whose

the same colour in θy).

Let’s define the map θ ∈ Sn as follows: Assume that i ∈ n and yi = j ∈ Zm,

and define θ(i) to be νi,j +
∑
k<j

λk, where νi,j be the number of integers l ∈ n that are

strictly smaller than i and yl = j.

We are going to show that θ ∈ Sn, by proving that θ is an injective map. It is

obvious that θ is well-defined. Assume that i1, i2 ∈ n without loss of generality we can

say that i1 < i2. Now there are two possibilities: yi1 = yi2 = j or yi1 = j1 6= j2 = yi2 .

If yi1 = yi2 , then νi1,j < νi2,j so θ(i1) < θ(i2). On the other side yi1 6= yi2 , then if

j1 < j2, so θ(i1) = νi1,j1 +
∑
k<j1

λk ≤
∑

k<j1+1

λk < θ(i2). Similarly, if j2 < j1, thus

θ(i2) < θ(i1). Therefore θ is injective.

From the way that we define θ, it is evident that θy ∈ Tn,m since if yi = yj where

i < j, so θ(i) < θ(j) this implies that there is no crossing lines with the same colour
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(note there will be a crossing lines of the same colour if and only if there exist yi = yj

for some i < j and θ(i) > θ(j)). Similarly, the diagram
(
θ−1
)
y
, the coloured image

of θ−1 with bottom equals ỹ, is contained in Tn,m because by flipping the diagram(
θ−1
)
y

we obtain θy. Also note that bot(θy) = λ̃.

Finally, takeD = θy+
∑

u∈Znm,
u6=y

1u andD′ =
(
θ−1
)
y
+
∑

u∈Znm,
u6=λ

1u. Note thatD,D′ ∈ Tn,m,

DD′ = 1Tn,m = D′D and D1yD
′ = 1λ.

The element D is also contained in FSn,m and in Pn,m, so the elements 1y and 1λ

are conjugate in both of them.

The next theorem is proved in the same fashion which Jegan has followed in

Theorem 3.1.4 in [28], which says:

1λTn,m(δ0, . . . , δm−1)1λ ∼= TLλ0(δ0)⊗F · · · ⊗F TLλm−1(δm−1). (2.27)

Theorem 2.34. Let λ = (λ0, . . . , λm−1) ∈ Γ(n,m), then

1λPn,m(δ0, . . . , δm−1)1λ ∼= Pλ0(δ0)⊗F · · · ⊗F Pλm−1(δm−1), (2.28)

1λFSn,m1λ ∼= FSλ0 ⊗F · · · ⊗F FSλm−1 . (2.29)

Proof. We will prove the first part, and the proof of the second one is similar. Let

A = Pn,m(δ̆) and e = 1λ. For any diagram d ∈ eAe, top(d) and bot(d) are equal to(
{1, . . . , λ0}, {λ0 + 1, . . . , λ1 + λ0}, . . . , {

m−2∑
i=0

λi + 1, . . . , n}
)

= λ̃, because all of the

other elements of A will be killed by e.

Define a linear map ψ : eAe →
m−1⊗
i=0

Pλi(δi) as follows: let a ∈ A and eae 6= 0.

By ignoring all nodes and edges that do not have the colour Cj, we will obtain a

partition Dj of the set Xj ∪ X ′j, where Xj = {
j−1∑
h=0

λh + 1, . . . ,
j∑

h=0

λh}. By replacing

j−1∑
h=0

λh + k by k in the partition Dj, we obtain a partition of the set λj ∪ λj ′, say D′j,

where λj = {1, . . . , λj}. Thus we have D′j ∈ Pλj(δj) for each j ∈ Zm. Let’s define

ψ(eae) to be

ψ(eae) = D′0 ⊗D′1 ⊗ · · · ⊗D′m−1.
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We will show that ψ is an algebra homomorphism.

Let ea1e, ea2e ∈ eAe for some a1, a2 ∈ A. If eaie 6= 0 for i = 1, 2, we have

(ea1e)(ea2e) = ea1ea2e = ea1a2e, so

ψ(ea1e)ψ(ea2e) =(D′0 ⊗ · · · ⊗D′m−1)(B′0 ⊗ · · · ⊗B′m−1)

=D′0B
′
0 ⊗ · · · ⊗D′m−1B

′
m−1 = ψ(ea1a2e) = ψ((ea1e)(ea2e)).

Checking the other axioms of an algebra homomorphism is easy. This implies

that ψ is an algebra homomorphism. Also, ψ is injective and surjective by the way

it is defined. Therefore, ψ is an algebra isomorphism.



Chapter 3

The Multi-Colour Symmetric

Groupoid Algebra

In this chapter we find an isomorphism between the algebra FSn,m and a finite

direct sum of cellular algebras and we use this to determine the complete set of non-

isomorphic simple FSn,m-modules, which is the goal of this chapter. We will use this

to find an index set of all simple modules of the algebra Pn,m(δ̆). In Section 3.3,

we show that the generalized symmetric group algebra is isomorphic to the algebra

FSn,m when m is invertible and F is an algebraically closed field.

3.1 The multi-colour symmetric groupoid

In this section we show that the set Sn,m = {d ∈ Pn,m | #d = n} is a groupoid,

see section 1.2, and view its elements as m-tuples of permutations.

The set Sn,2 considered as morphisms is a groupoid with a set of objects {(A,Ac) |

A ⊆ n} and the maps:

s(d) = top(d), t(d) = bot(d) , id((A,Ac)) = 1(A,Ac),

(d)−1 = d∗, d1 • d2 = d1 ◦ d2,

60
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where ◦ is the multiplication on Pn,2 and d∗ corresponds to the reflecting of d in the

horizontal axis passing through the middle of the diagram d. Note that

d ◦ d∗ = 1bot(d), d∗ ◦ d = 1top(d).

For example, the diagram is a morphism from
(
{3, 4}, {1, 2}

)
to
(
{1, 4}, {2, 3}

)
,

and its inverse is .

In general, the set Sn,m is a subcategory of Pn,m, see Remark 2.6, and each

element in Sn,m is invertible, so Sn,m is a groupoid and it is called the multi-colour

symmetric groupoid.

Diagrams in the multi-colour symmetric groupoid Sn,m are constructed by colour-

ing the diagrams in the symmetric group Sn. Each permutation in Sn forms mn

diagrams in Sn,m since each element in Sn has n blocks, so |Sn,m| = mnn! where

n,m ∈ Z+.

A partition in the partition algebra Pn(δ) with n propagating lines can be viewed

as a permutation. Similarly, there is another way to describe the diagrams that

represent multi-colour partitions in Sn,2 as ordered pairs of bijective functions with

the union of their domains and the union of their codomains are equal to n. Also

the intersection of their domains and the intersection of their codomains are empty

sets. Let d = (d0, d1) ∈ Sn,2 where top(d0) = A1 and bot(d0) = A2. We can consider

the partitions d0, d1 as bijective maps d0 : A1 → A2 and d1 : Ac1 → Ac2. We construct

these maps as follows: For all i ∈ n which is connected to j′ ∈ n′ in the partition dk,

then dk(i) = j where k = 0, 1.

Example 3.0.1. Consider the diagram d = . The bijective functions

which are related to d are defined by

d0(2) = 6, d0(3) = 1, d0(6) = 5, d0(7) = 7,

d1(1) = 3, d1(4) = 2, d1(5) = 4.
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If the objects (A1, A
c
1) and (A2, A

c
2) are connected (there is a morphism between

them) in the groupoid Sn,2, then |A1| = |A2| since drawing a line from the top row

to the bottom row needs two nodes, one on the top and the other on the bottom,

so it’s evident that the number of red (blue) nodes on the top row is equal to the

number of red (blue) nodes on the bottom row.

Similarly, the groupoid Sn,m can be defined to be the set of all tuples (f0, . . . , fm−1)

where fi : Ai → Bi is a bijective map for all i = 0, . . . ,m−1 such that {Aj} and {Bj}

are partitions of the set n. Note that objects (A0, . . . , Am−1) and (B0, . . . , Bm−1) are

connected in Sn,m if and only if |Aj| = |Bj| for all 0 ≤ j ≤ m− 1.

We will use the same definition of the type of an element as that used in [46].

Definition 3.1. For a diagram d ∈ Sn,m the type of d is defined to be

type(d) := (#0(d),#1(d), . . . ,#m−1(d)) . (3.1)

As
m−1∑
j=0

#j(d) = n and #j(d) ≥ 0 for all j, so type(d) is an m-composition of n.

Actually, we can define the set Γ(n,m), the set of all m-compositions of n, to be the

set of all different types of Sn,m-diagrams.

Definition 3.2. Let λ ∈ Γ(n,m), the set Sλ,m is the sub-groupoid of Sn,m that

contains all diagrams of type λ.

The product of two diagrams in Sn,m will be zero if they have different types.

From this we obtain

FSn,m =
⊕

λ∈Γ(n,m)

FSλ,m. (3.2)

Note that the identity of the algebra FSλ,m is the sum of all the coloured images of

shape id ∈ Sn of type λ.
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3.2 The algebra FSn,m is a cellular algebra

In this section we study the structure of the algebra FSn,m, we show that the

algebra FSn,m decomposes as a finite direct sum of cellular algebras.

Theorem 3.3. Let n and m be positive integers and λ ∈ Γ(n,m), then

FSλ,m
∼= F

(m−1∏
i=0

Sλi

)
⊗F Mnλ(F), (3.3)

where nλ :=

(
n

λ0, . . . , λm−1

)
and we put S0 = S1.

Proof. To prove that, we will use Theorem 1.5 since Sλ,m is a connected groupoid.

First, we will show that G ∼=
m−1∏
i=0

Sλi , where G is defined by (1.2) and x0 is the

object λ̃, see equations (2.17) and (2.26). Since the multiplication on the groups G

and
m−1∏
i=0

Sλi have the same rules, all we need to do is define a bijection between them.

Let π ∈ G, from the previous section π can be viewed as a tuples (π0, . . . , πm−1) where

πi is a permutation on the set {
i−1∑
j=0

λj + 1, . . . ,
i∑

j=0

λj}. So πj ∈ Sλj for each i, thus

the isotropy group G is isomorphic to
m−1∏
i=0

Sλi .

Finally, we need to compute the cardinality of the object set of Sλ,m, say l, which is

equal to the number of ways we can partition the set n into m blocks {X0, . . . , Xm−1}

where |Xi| = λi for all i. We choose λ0 elements from n, so we have
(
n
λ0

)
choices.

Then, there are n− λ0 elements remaining and we need to choose λ1 of them, so we

have
(
n−λ0
λ1

)
. By iteration, we have

l =

(
n

λ0

)(
n− λ0

λ1

)
· · ·
(n− m−3∑

i=0

λi

λm−2

)
= nλ.

Substituting all previous details into the isomorphism in Theorem 1.5, we obtain

FSλ,m
∼= F

(m−1∏
i=0

Sλi

)
⊗F Mnλ(F).
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Corollary 3.4. Let that n and m be positive integers, then

FSn,m
∼=

⊕
λ∈Γ(n,m)

(
F
(m−1∏
i=0

Sλi

)
⊗F Mnλ(F)

)
, (3.4)

where nλ =

(
n

λ0, . . . , λm−1

)
.

Proof. It comes directly from the equation (3.2) and the previous theorem.

Define the sub-groupoid Ŝn,m to be

Ŝn,m := Sn,m ∩ An,m, (3.5)

where the set An,m is defined by (2.11). So crossing two edges having the same colour

is not allowed in Ŝn,m. Easily it can be shown that Ŝn,m is a groupoid.

Theorem 3.5. Let that n and m be positive integers. Then

FŜn,m
∼=

⊕
λ∈Γ(n,m)

Mnλ(F).

Proof. From (3.2), we have

FŜn,m =
⊕

λ∈Γ(n,m)

F(Sλ,m ∩ An,m).

Now Sλ,m ∩ An,m is a groupoid. Note that there is only one morphism from any

object to itself in Sλ,m ∩ An,m since the crossing is not allowed. The cardinality of

the set of objects is nλ, so we are done after substituting into Theorem 1.5.

As a consequence of the previous theorems and some properties of cellular alge-

bras, we have the following fact.

Corollary 3.6. The groupoid algebras FSn,m, FSλ,m and FŜn,m are all cellular

algebras, where λ ∈ Γ(n,m).
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Proof. All the summands in the decomposition of the algebra FSλ,m in Theorem 3.3

are cellular, so the algebra FSn,m is also a cellular algebra by Proposition 1.16 and

its cell modules have the form Sµµµ0 ⊗ · · · ⊗ Sµµµm−1 ⊗ Fnλ where µµµ = (µµµ0, . . . ,µµµm−1)

is a multi-partition of type λ and Sµµµi is the Specht module of the symmetric group

algebra FSλi corresponding to the partition µµµi, see Section 1.3.2. Similarly, the

algebras FSn,m and FŜn,m are cellular.

From the isomorphism (3.4), we obtain an index set of all cell modules of the

algebra FSn,m, which is

ΛSn,m := {(λ,µµµ) | λ ∈ Γ(n,m), µµµ is a multi-partition of λ}. (3.6)

3.3 The relations between the algebras FSn,m and

FZm oSn

The aim of this section is to show that the generalized symmetric group algebra

FZm o Sn is isomorphic to the algebra FSn,m when m is invertible in F and F is

algebraically closed.

Before proving the main theorem, we need to state some propositions and lemmas.

Proposition 3.7. Let Θ and Ω be white diagrams in FSn,m of shapes θ and ω,

respectively. Then ΘΩ is the white diagram of the shape θω ∈ Sn.

Proof. Recall that a white diagram of shape (a diagram) d is the sum of all possible

coloured images of this diagram d. Any coloured image of a permutation θ can be

identified by its top, where if the node i ∈ n is, for example, a red node on the top

row, then the edge which has the nodes i on the top row and θ(i) on the bottom row

as end-points, will also be red. Similarly, we can determine a coloured image of θ by

its bottom.

Let θA be the coloured image of θ and ωB be the coloured image of ω, where

top(θA) = A and top(ωB) = B. From the definition of the product on Sn,m, the
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term θAωB will be zero unless bot(θA) = B. If bot(θA) = B, then the nodes i, θ(i)

and ω(θ(i)) = θω(i) have the same colour and they all are connected. In other words,

i and θω(i) are connected in the diagram θAωB for all i ∈ n, hence θAωB has the

shape θω. Also top(θAωB) = A, so θAωB = (θω)A.

Now, both of Θ and Ω equal the sum all different coloured copies of θ and ω,

respectively. So

ΘΩ =
∑
A

θA ·
∑
B

ωB =
∑
A,B

θAωB ,

but θAωB = 0 unless bot(θA) = B, and when bot(θA) = B , θAωB = (θω)A, then

ΘΩ =
∑
A

(θω)A.

Note that on the right-hand side, it is the white diagram of shape θω, and we are

done.

From the previous proposition, we can see that the product of white diagrams

can be computed as products of permutations in the group Sn.

Definition 3.8. In the algebra FSn,m, the element Si is the white diagram which

has the same shape of the element si ∈ Sn where 1 ≤ i ≤ n− 1.

The elements S1, . . . , Sn−1 satisfy all the relations that the transpositions s1, . . . ,

sn−1 satisfy.

Lemma 3.9. The following properties are true:

1. S2
i = 1Sn,m for all 1 ≤ i < n.

2. SiSj = SjSi if |i− j| > 1.

3. SiSi+1Si = Si+1SiSi+1 for all 1 ≤ i ≤ n− 2.

Proof. This follows immediately from Proposition 3.7 and the fact that the elements

{si}i∈n−1 satisfy the relations s2
i = id for each 1 ≤ i < n, sisj = sjsi if |i− j| > 1 and

sisi+1si = si+1sisi+1 for all 1 ≤ i ≤ n− 2.



Chapter 3. The multi-colour symmetric groupoid algebra 67

We need to agree on a specific order of both bases of the algebra FZm oSn and

the algebra FSn,m.

Definition 3.10. [e.g. 4, Section 1.4]. The co-lexicographic order on the Cartesian

product
n∏
i

Ai of partially ordered sets is defined as

(a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if ai < bi

where i is the greatest number in {1, ..., n} for which ai 6= bi.

For instance, a co-lexicographic order of the set Znm is given by

0 < e1 < 2e1 < · · · < (m− 1)e1 < e2 < e1 + e2 < · · · < (m− 1)1 ,

where 0 = (0, . . . , 0), 1 = (1, . . . , 1), and ei = (0, . . . , 1, . . . , 0) with 1 at the ith

position. This order can be used to define an order of the basis {(x; π) | x ∈ Znm, π ∈

Sn} of the algebra FZm oSn: (x; π) ≤ (y; π) if and only if x ≤ y in the set Znm.

Recall that 1x is the coloured image of id ∈ Sn whose top equals x̃, where x ∈ Znm.

We say that 1x < 1y if and only if x < y.

Lemma 3.11. The elements 1x and Si satisfy the relation:

Si1xSi = 1xsi ,

where xsi = (xsi(1), . . . , xsi(n)). In particular, Si1ejSi = 1esi(j), Si10Si = 10 and

Si11Si = 11.

Proof. From the definition of Si we have Si =
∑
y∈Znm

s(i,y). Now we can show that by

using either the relations in Theorem 2.32 or the visualization of the product Si1xSi:

. . .

i i + 1

. . .

. . . . . .

. . .

i i + 1

. . .

= . . .

i i + 1

. . . ,
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we obtain that in the product Si1xSi all that happens is that the order of the edges

in the position i and i+ 1 changes, which is the same as 1xsi .

After proving the next theorem, we found that our next theorem is the same as

Theorem 16 in [46] but we proved it independently albeit in a similar fashion.

Theorem 3.12. The algebras FZm oSn and FSn,m are isomorphic if F is algebraically

closed and gcd(m,Char(F)) = 1.

Proof. Let ω be a primitive m th root of the unity (ω exists since F is an algebraically

closed field). From Proposition 1.7, the set X := {e1, . . . , en, s1, . . . , sn−1} generates

FZm oSn, where ei = (ei; id) and si = (0, si). Define the map f : X → FSn,m by

ei 7→
∑
x∈Znm

ωxi1x , (3.7)

si 7→Si .

To check that this defines an algebra homomorphism, we need to show that the

relations in Proposition 1.7 hold. We already proved the last three relations in Lemma

3.9, so we need just to prove the first four relations:

f(ei)
m =

( ∑
x∈Znm

ωxi1x

)m
=
∑
x∈Znm

ωxim1x ,

since 12
x = 1x and 1x1y = 0 for all x 6= y. But ωm = 1, so

f(ei)
m =

∑
x∈Znm

(ωm)xi1x =
∑
x∈Znm

1x = 1FSn,m .

So the first relation in Proposition 1.7 holds. Also, f(ei)f(ej) = f(ej)f(ei), since

1x1y = 1y1x and the scalar product is distributive.

Now, from Lemma 3.11, we have Si1xSi = 1xsi =: 1y, so

f(si)f(ei)f(si) =
∑
x∈Znm

ωxiSi1xSi =
∑
y∈Znm

ωxi1y ,
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and note that y(i+1) = xsi(i+1) = xi, thus

f(si)f(ei)f(si) =
∑
y∈Znm

ωy(i+1)1y = f(ei+1) .

Let i 6= j, j + 1, and by rewriting it we have j 6= i, i− 1, so

f(sj)f(ei)f(sj) =
∑
x∈Znm

ωxi1xsj .

Set y = xsj , so that yi = xsj(i) = xi, since j 6= i, i− 1, and thus

f(sj)f(ei)f(sj) =
∑
y∈Znm

ωyi1y = f(ei) .

Thus all the relations in Proposition 1.7 are satisfied. Hence, we have an algebra

homomorphism f : FZm oSn → FSn,m extending the map f .

Let θ = si1 · · · sim ∈ Sn, then from the properties of an algebra homomorphism

we have f((0; θ)) = Si1 · · ·Sim = Θ, where Θ is the white diagram of shape θ. So

f((x; θ)) = f((x; id))Θ for any x ∈ Znm. Also

f((x; id)) = f((
n∑
i=1

xiei; id)) = f(
n∏
i=1

(ei)
xi),

=
n∏
i=1

( ∑
y∈Znm

ωyi1y

)xi
, ( from equation (3.7))

=
∑
y∈Znm

ω

n∑
i=1

xiyi
1y, ( since 12

y = 1y, 1y1w = 0 for all y 6= w). (3.8)

Hence,

f((x; θ)) =
∑
y∈Znm

ω

n∑
i=1

xiyi
θy. (3.9)

LetM be the matrix of the homomorphism f with respect to the basis {(x; θ)}x∈Znm
θ∈Sn

and
(
f((x; id))

)
x∈Znm

be the submatrix of M that is obtained by writes f((x; id)) as

a column and ignores the zero rows, then
(
f((x; id))

)
x∈Znm

=
(
ω

n∑
i=1

xiyi
)
x,y∈Znm

(from
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equation (3.8)) which is a mn ×mn matrix. From equation (3.9) we have

M =
⊕
θ∈Sn

(
f((x; id))

)
x∈Znm

.

We are going to show that
(
f((x; id))

)
x∈Znm

= F
(n)
m , where F

(n)
m is a tensor product

of Vandermonde matrix as defined by equation (1.9) . Since F
(n)
m is invertible when

the field F is algebraically closed and gcd(m,Char(F)) = 1, and dimFZm o Sn =

dimFSn,m, so f is bijective, thus an isomorphism.

To prove that
(
f((x; id))

)
x∈Znm

= F
(n)
m , we will use induction on n: it is clear that

it is true when n = 1. We will assume that

(
f((x; id))

)
x∈Zn−1

m

= F(n−1)
m

and prove the next step. The term f((x; id)) can be written in the form:

f((x; id)) =
∑
y∈Znm

ω

n∑
i=1

xiyi
1y =

∑
y∈Znm
y<en

ω

n∑
i=1

xiyi
1y +

∑
y∈Znm

en≤y<2en

ω

n∑
i=1

xiyi
1y+

+
∑
y∈Znm

2en≤y<3en

ω

n∑
i=1

xiyi
1y + · · ·+

∑
y∈Znm

(m−1)en≤y

ω

n∑
i=1

xiyi
1y .

Now if ken ≤ y < (k + 1)en for some k then yn = k. By substitution into the last

equation, we have

f((x; id)) =
∑
y∈Znm
y<en

ω

n−1∑
i=1

xiyi
1y + ωxn

∑
y∈Znm

en≤y<2en

ω

n−1∑
i=1

xiyi
1y + ω2xn

∑
y∈Znm

2en≤y<3en

ω

n−1∑
i=1

xiyi
1y+

+ · · ·+ ω(m−1)xn
∑
y∈Znm

(m−1)en≤y

ω

n−1∑
i=1

xiyi
1y .
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Now if hen ≤ x < (h+ 1)en for some h then xn = h and

f((x; id)) =
∑
y∈Znm
y<en

ω

n−1∑
i=1

xiyi
1y + ωh

∑
y∈Znm

en≤y<2en

ω

n−1∑
i=1

xiyi
1y + ω2h

∑
y∈Znm

2en≤y<3en

ω

n−1∑
i=1

xiyi
1y+

+ · · ·+ ω(m−1)h
∑
y∈Znm

(m−1)en≤y

ω

n−1∑
i=1

xiyi
1y .

Furthermore, x = x′ + hen where x′ < en (so we consider x′ as an element in Zn−1
m

since x′n = 0), hence

f((x; id)) = f((x′; id))
(
f(ei)

)h
= f((x′; id))

( ∑
y∈Znm
y<en

1y + ωh
∑
y∈Znm

en≤y<2en

1y+

+ · · ·+ ω(m−1)h
∑
y∈Znm

(m−1)en≤y

1y
)

=
∑
y∈Znm
y<en

f((x′; id))1y+

+ ωh
∑
y∈Znm

en≤y<2en

f((x′; id))1y + · · ·+ ω(m−1)h
∑
x∈Znm

(m−1)en≤y

f((x′; id))1y

=
∑
y∈Znm
y<en

ω

n−1∑
i=1

x′iyi
1y + ωh

∑
y∈Znm

en≤y<2en

ω

n−1∑
i=1

x′iyi
1y + · · ·+ ω(m−1)h

∑
y∈Znm

(m−1)en≤y

ω

n−1∑
i=1

x′iyi
1y.

By comparing the last two equation, we have ω

n−1∑
i=1

xiyi
= ω

n−1∑
i=1

x′iyi
and ω

n−1∑
i=1

xiyi
=

ω

n−1∑
i=1

x′iy
′
i
, where y = y′ + ken for some k and y′ < en. Next we break the matrix(

f((x; id))
)
x∈Znm

into sections: take the section hen ≤ x < (h + 1)en and ken ≤ y <

(k + 1)en, so the sub-matrix corresponds this section (from the previous equations)

is (
ωhkω

n−1∑
i=1

xiyi)
hen≤x<(h+1)en
ken≤y<(k+1)en

= ωhk
(
ω

n−1∑
i=1

xiyi)
hen≤x<(h+1)en
ken≤y<(k+1)en

,

but

(
ω

n−1∑
i=1

xiyi)
hen≤x<(h+1)en
ken≤y<(k+1)en

=
(
ω

n−1∑
i=1

x′iy
′
i)
x′<en
y′<en

=
(
f((x; id))

)
x∈Zn−1

m

= F(n−1)
m .
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Hence,

(
f((x; id))

)
x∈Znm

=


F

(n−1)
m F

(n−1)
m · · · F

(n−1)
m

F
(n−1)
m ωF

(n−1)
m · · · ωm−1F

(n−1)
m

...
...

. . .
...

F
(n−1)
m ωm−1F

(n−1)
m · · · ω(m−1)2F

(n−1)
m

 ,

= F(n)
m .

The algebras FSn,m and FZm oSn are not isomorphic in general. For example, let

CharF = 2, by Corollary 3.4 the algebra FS1,2 is isomorphic to
2⊕
F, so it is semi-

simple. On the other hand, the algebra FZ2 o S1 is not semi-simple by Maschke’s

theorem, so these algebras are not isomorphic in this case.

3.4 Representation theory of the algebra FSn,m

Irreducible modules of the algebra FSn,m can be studied by determining the ones

of the algebra FZm oSn when they are isomorphic, see for example [7], [47] and [51].

But we will use the isomorphism in Corollary 3.4:

FSn,m
∼=

⊕
λ∈Γ(n,m)

(
F
(m−1∏
i=0

Sλi

)
⊗F Mnλ(F)

)
.

This leads to the next fact.

A field F is perfect if every irreducible polynomial over F has distinct roots, see

Section 3.4 in [49].

Corollary 3.13. Let F is a perfect field. Then the multi-colour symmetric groupoid

algebra FSn,m is semi-simple if and only if CharF is zero or strictly greater than n.

Proof. It follows from the facts that the algebras FSl and Ml(F) are cellular algebras

and the rest comes by using Proposition 1.17, Maschke’s theorem (see for example

Theorem 4.1.1 in [16]) and Corollary 3.4.
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Recall that a partition is called p-regular if it does not have p parts of the same

size, see Section 1.3.2. A multi-partition µµµ = (µµµ0, . . . ,µµµm−1) is called p-regular if µµµi

is p-regular for each i.

Let A1 and A2 be finite dimensional algebras over F. As it is proved in Section

3.10 in [16], any simple module of A1⊗A2 has the form M1⊗M2 where Mi is a simple

module of Ai, i = 1, 2. Also, Mk(F) ⊗Ml(F) ∼= Mkl(F) for any integers k, l > 0, see

for example Section 3.10 in [16]. Hence, the simple modules of FSn,m over any field

is completely determined by studying the representations for all symmetric group

algebras FSk where k ≤ n. Using the fact that the set of all p-regular partitions

index the set of all simple modules of the symmetric group, see Theorem 1.9, we have

the next theorem.

Theorem 3.14. Let F be a field of characteristic p, then the non-isomorphic simple

modules of the algebra FSn,m are parametrized by

Λ0
Sn,m := {(λ,µµµ) | λ ∈ Γ(n,m),µµµ is a p-regular multi-partition of type λ}.

Proof. This follows from Theorem 1.9 and the preceding description.

Example 3.14.1. Let CharF 6= 2, 3, then the group algebras FS2 and FS3 are

semi-simple by Maschke’s theorem and

FS2
∼= F⊕ F, FS3

∼= F⊕ F⊕M2(F).

From the isomorphism (3.4) and the previous decompositions, we obtain

FS2,2
∼= M2(F)⊕

2⊕
FS2

∼= M2(F)⊕
4⊕

F,

FS3,2
∼=

2⊕(
FS2 ⊗M3(F)⊕ FS3

) ∼= 4⊕
F⊕

2⊕
M2(F)⊕

4⊕
M3(F).

Example 3.14.2. Let CharF = 2, then the algebra FS2 is not semi-simple with

radical spanned by the element id + s1. From the isomorphism (3.4), we have

FS2,2
∼= M2(F)⊕

2⊕
FS2,
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so RadFS2,2
∼=

2⊕
RadFS2. Thus the algebra FS2,2 has three simple modules, two

of them are one dimensional and the dimension of third one is 2. From the definition

of the multiplication on FS2,2 we have

FS2,2 = F〈1(1,0), 1(0,1), s(1,(1,0)), s(1,(0,1))〉 ⊕ F〈1(0,0), s(1,(0,0))〉 ⊕ F〈1(1,1), s(1,(1,1))〉,

as an algebra. The first summand is isomorphic to M2(F). Also F〈1(i,i), s(1,(i,i))〉 ∼=

FS2 where i = 0, 1. Since the radical of FS2 is spanned by id + s1, so the radical of

F〈1(i,i), s(1,(i,i))〉 is spanned by 1(i,i) + s(1,(i,i)). Hence

FS2,2

〈1(0,0) + s(1,(0,0)), 1(1,1) + s(1,(1,1))〉
∼= M2(F)⊕ F⊕ F.



Chapter 4

Representation Theory Of The

Algebra Pn,m(δ̆)

4.1 Indexing set for the simple Pn,m-modules

The aim of this section is to show that Pn−1,m(δ̆) has an embedding into Pn,m(δ̆)

and describe an indexing set for the irreducible modules of the algebra Pn,m(δ̆) .

There is an inclusion between the algebras Pn−1,m(δ̆) and Pn,m(δ̆) defined by the

map I : Pn−1,m → Pn,m which is defined on the basis by

I(d) = I0(d) + · · ·+ Im−1(d), (4.1)

where d ∈ Pn−1,m and Ij(d) is defined to be the same diagram except with one more

extra non-crossing Cj-propagating line in the rightmost part. It is easy to check

that I is an algebra homomorphism as the map I just adds a white line to the

Pn−1,m-diagrams and this line does not have any effect in the product of elements in

I(Pn−1,m(δ̆)). The map I is called the natural inclusion.

Remark 4.1. The map I defines also an inclusion Tn−1,m(δ̆) into Tn,m(δ̆). Further-

more, FSn−1,m ↪→ FSn,m by the same map.

75
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Theorem 4.2. Let
(
m

m−1∏
j=0

δj
)
6= 0. Then e =

∑
(x,y)∈Ωn

1
mδyn

p(n,x,y), where Ωn is the

set defined by 2.21, is idempotent and there is an isomorphism of algebras

ePn,me ∼= Pn−1,m. (4.2)

Proof. As it is mentioned Pn−1,m ↪→ Pn,m by the inclusion I, so Pn−1,m
∼= im(I). The

element e is an idempotent since

e2 =
1

m2

∑
(x,y)∈Ωn

∑
(z,w)∈Ωn

1

δynδwn
p(n,x,y)p(n,z,w),

=
1

m2

∑
(x,y)∈Ωn

∑
(y,w)∈Ωn

1

δynδwn
δynp(n,x,w), (from relation 8 in Pro. 2.23)

=
1

m

∑
(x,w)∈Ωn

1

δwn
p(n,x,w) = e.

Also from the graphical visualization, it is evident that eI(d)e = eI(d) = I(d)e for

all d ∈ Pn−1,m.

Now, define the map f : Pn−1,m → ePn,me by sending an element d to eI(d).

The well-definedness of f is clear and also it is a bilinear map since I is a module

homomorphism and the multiplication in Pn,m is distributive, so we only need to

check the image of the multiplication of two diagrams. Let d1, d2 ∈ Pn−1,m, so

f(d1d2) = eI(d1d2) =
(
eI(d1)

)
I(d2) =

(
I(d1)e

)
I(d2)

=
(
I(d1)e2

)
I(d2) =

(
I(d1)e

)(
eI(d2)

)
= f(d1)f(d2).

Then f is an algebra homomorphism. Also f(d) 6= 0 unless d = 0, so f is injective.

Let d ∈ Pn,m. The element ede will be sum of m2 diagrams. At every diagram of

these, the nodes n and n′ are not connected to any other node, and the other blocks

it will be the same in all m2 diagrams. Note that those blocks form a partition in

Pn−1,m, say d′, and f(d′) = ede. Then f is an algebra isomorphism.

As a consequence of last theorem, the category of Pn−1,m-modules and left Pn,mePn,m-

modules are essentially isomorphic categories, and according to Green [21], there are
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two functors

Pn−1,m-mod
G−→ Pn,m-mod

F−→ Pn−1,m-mod

such that FG is the identity since Pn,m is an algebra over a field, for more details see

Section 1.1.

Proposition 4.3. For each n ∈ N, the following is an isomorphism of algebras:

Pn,m/Pn,mePn,m ∼= FSn,m, (4.3)

where e =
∑

(x,y)∈Ωn

1
mδyn

p(n,x,y) and
(
m

m−1∏
j=0

δj
)
6= 0.

Proof. The ideal Pn,mePn,m contains all diagrams having a propagating number less

than or equal to n − 1, this means Pn,mePn,m = Pn,m(δ̆;n − 1), see equation (2.15).

Therefore any diagram in Pn,m/Pn,mePn,m has exactly n propagating lines.

Let ΛSn,m be an index set for the cell modules of the algebra FSn,m, see (3.6).

From the last proposition and the last theorem, we obtain the following useful corol-

lary.

Corollary 4.4. Let ΛPn,m denote an index set for the cell modules of the algebra

Pn,m(δ̆). If
(
m

m−1∏
j=0

δj
)
6= 0, then ΛPn,m is the disjoint union

ΛPn,m = ΛPn−1,m

⊔
ΛSn,m =

n⊔
t=0

ΛSt,m ,

= {(t, λ,µµµ) | t ∈ Zn+1, λ ∈ Γ(t,m), µµµ is a multi-partition of λ}. (4.4)

Proof. It comes directly from Theorem 1.3 and equation (3.6).

4.2 The algebra Pn,m(δ̆) is a cellular algebra

In this section we shall prove our main result of this chapter, which is that the

multi-partition algebra Pn,m is cellular. We show that the algebra Pn,m satisfies the

conditions to be a cellular algebra by using Theorem 1.15.
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C. Xi [55] has proved that the partition algebra Pn(δ) is a cellular algebra, by

using the fact that the symmetric group algebra is a cellular algebra. We will do the

same, showing that Pn,m(δ̆) is cellular by using the fact that the tensor product of

finitely many symmetric group algebras is a cellular algebra.

Consider the order relation on the set n ∪ n′: 1 < . . . < n < 1′ < . . . < n′. Let

ρ ∈ PX for some X ⊂ n ∪ n′, the partition ρ is said to be written in standard form

if ρ is written as {M1, . . . ,Ml} where Mi = {a(i)
1 , . . . , a

(i)
ti } with a

(i)
1 < . . . < a

(i)
ti and

a
(1)
1 < . . . < a

(l)
1 . We say Mi < Mj if and only if a

(i)
1 < a

(j)
1 . There is only one

standard form for each partition ρ. Also, we define |ρ| to be l, the number of parts

of ρ.

We say that (d0, . . . , dm−1) ∈ Pn,m is written in standard form if and only if each

di is written in standard form.

Let λ = (λ0, . . . , λm−1) ∈
n⊔
l=0

Γ(l,m), where Γ(l,m) is the set of all m-compositions

of l (see Section 1.3.1). Define Vλ to be the vector space with basis:

Ωλ ={
(
(d0, D0), . . . , (dm−1, Dm−1)

)
| di ∈ PAi , for some Ai ⊆ n such

that
m−1⋃
i=0

di ∈ Pn, |di| ≥ λi and Di ⊆ di with |Di| = λi }.

For example,
(
({{1, 3}, {5}}, {{5}}), ({{2}, {4}}, {{2}})

)
is an element in Ω(1,1) where

n = 5.

For each M ⊆ n ∪ n′, we define the set M ′ to be the same elements of M after

adding primes to the elements that do not have a prime and removing the prime from

the elements that have a prime.

Let N ⊂ n∪ n′, M 6= N and ρ ∈ PM , we denote by ζN(ρ) the partition of M \N

obtained from ρ by deleting all elements in N from the parts of ρ, and by ξN(ρ) the

set of parts of ρ that do not contain any element in N .

Let x ∈ PM and y ∈ PN , then we define the partition x � y ∈ PM∪N to be the

smallest partition in PM∪N which contains x ∪ y( this means each part of x ∪ y is a
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subset of a part of x �y). For example {{1}, {2, 3}} �{{2, 4}} = {{1}, {2, 3, 4}}. From

the definition, it is clear that x � y = y � x.

For a diagram ρ ∈ PM , if we interchange the primed element j′ with the unprimed

element j, then we get a new partition of M ′. Let us denote this new partition by

∗(ρ) or simply ρ∗. In general, if ρ = (ρ0, . . . , ρm−1) ∈ Pn,m we define ∗(ρ) to be

(ρ∗0, . . . , ρ
∗
m−1) .

Example 4.4.1. Take ρ = {{2, 3′}, {4}, {6}} and N = {1, 2, 6}, so ζN(ρ) = {{3},

{4}}, ξN(ρ) = {{4}} and ρ∗ = {{2′, 3}, {4′}, {6′}} .

Lemma 4.5. The linear map ∗ is an anti-involution of the algebra Pn,m.

Proof. The map ∗ is defined on Pn,m, so ∗ extends to Pn,m by linearity. It is clear

that (α∗)∗ = α and (αβ)∗ = (β)∗(α)∗ holds true for all α, β ∈ Pn,m. This follows

immediately from the graphical realization of the map ∗ and the product in Pn,m.

Let Sn,λ be the algebra 1λFSn,m1λ, where λ ∈ Γ(n,m) and λ ∈ Znm is defined by

equation (2.26). From equation (2.29), we have

Sn,λ ∼= FSλ0 ⊗F · · · ⊗F FSλm−1 . (4.5)

Thus dim Sn,λ =
m−1∏
i=0

λi!, and the set

{(f0, . . . , fm−1) | fi ∈ Sλi for each i ∈ Zm}

can be regarded as a basis of the algebra Sn,λ. Let fi ∈ Sλi , where i ∈ Zm. Through-

out this chapter the element (f0, . . . , fm−1) is used to denote its image in Sn,λ, which

is simply the diagram in Sn,m formed by drawing f0 by the colour C0 followed by

drawing f1 by the colour C1 in the same frame and so on. By Proposition 1.16 and

since symmetric group algebras are cellular, we have that the algebra Sn,λ is cellular.

Lemma 4.6. Each element in Pn,m can be written uniquely as an element of Vλ ⊗F

Vλ ⊗F Sl,λ for some λ ∈ Γ(l,m) and l = 0, . . . , n.
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Proof. Consider a diagram ρ = (ρ0, . . . , ρm−1) ∈ Pn,m and xh := ζn′(ρh) and yh :=

ζn′(ρ
∗
h) for each h ∈ Zm. Note that xh ∈ Ptop(ρh) and yh ∈ Ptop(ρ∗h). Take λ =

(#(ρ0), . . . ,#(ρm−1)) and l = |λ| := #(ρ0) + · · ·+ #(ρm−1).

Let Sρh be the set of parts of ρh containing both primed and unprimed elements.

Then |Sρh | = #(ρh) = λh. Define Xh := ζn′(Sρh) and Yh = ζn′(S
∗
ρh

). It is clear

that both Xh and Yh contain λh parts, thus v = ((x0, X0), . . . , (xm−1, Xm−1)) and

w = ((y0, Y0), . . . , (ym−1, Ym−1)) are contained in the set Ωλ.

Now if we write Xh and Yh in standard form: {Xh
1 , . . . , X

h
λh
}, {Y h

1 , . . . , Y
h
λh
}. We

define b := (b0, . . . , bm−1) ∈ Sl,λ, where bh is a bijective map from Xh to Yh that

sends i to j if there is a part T ∈ Sρh containing both Xh
i and Y h

j . Since v, w and

(b0, . . . , bm−1) are uniquely determined by ρ in a standard form, we can associate with

the given ρ a unique element v ⊗ w ⊗ b.

Conversely, each element µ⊗ ν ⊗ b with µ, ν ∈ Ωλ and b ∈ Sl,λ corresponds to a

unique multi-colour partition ρ ∈ Pn,m.

Example 4.6.1. Take the diagram in P4,2. So we have x1 = {{1}, {4}}

= X1, x2 = {{2, 3}} = X2, y1 = {{1}, {2}} = Y1, y2 = {{3}, {4}}, Y2 = {{3}} and

(b1, b2) is the diagram . Hence the diagram corresponds to the element

((x1, X1), (x2, X2))⊗ ((y1, Y1), (y2, Y2))otimes(b1, b2).

There is a bilinear map φλ : Vλ ⊗F Vλ → Sl,λ, where l = |λ| =
∑m−1

j=0 λj, defined

as follows. Let v = ((x0, X0), . . . , (xm−1, Xm−1)) ∈ Ωλ be fixed and assume that

Xh = {Xh
1 , . . . , X

h
λh
} is written in standard form for each h. Take w ∈ Ωλ and assume

that w = ((y0, Y0), . . . , (ym−1, Ym−1)) where Yh = {Y h
1 , . . . , Y

h
λh
} is also written in

standard form for each h. From the definition of Ωλ, we can assume that xh ∈ PAh
and yh ∈ PBh where ∪mh=1Ah = n = ∪mh=1Bh. Then we define φλ(v ⊗ w) to be



m−1∏
h=0

δchh (b0, . . . , bm−1) if Ah = Bh, and each part of xh � yh

contains only one part of Xh and contains

only part of Yh for each h ∈ Zm,

0 otherwise,

(4.6)
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where ch = |ξXhtYh(xh � yh)|, and bh is defined as follows: since for each i there is a

unique part of xh �yh containing both Xh
i and Y h

j , we define bh to be the permutation

taking i to j. Thus bh ∈ Sλh and (b0, . . . , bm−1) ∈ Sl,λ. This element (b0, . . . , bm−1) is

denoted by Υλ(v;w).

If we extend φλ linearly to the whole space Vλ ⊗F Vλ, then we have the following

lemma.

Lemma 4.7. The map φλ : Vλ ⊗F Vλ → S∑
λj ,λ is a bilinear form.

Proof. This holds since any map on a basis of a vector space defines a unique linear

map on the vector space and Ωλ is a basis of Vλ.

Lemma 4.8. Let ρ, ω be partitions in Pn,m. If ρ = u⊗ x⊗ b and ω = y ⊗ v ⊗ d are

contained in Vλ ⊗F Vλ ⊗F Sl,λ, then

ρω =


(
u⊗ v ⊗ bφλ

(
x⊗ y

)
d
)

modulo Jλ< if top(ω) = bot(ρ),

0 otherwise,
(4.7)

where Jλ< :=
⊕

ξ∈
l⊔
t=0

Γ(t,m)

ξ 6=λ and ξj≤λj ∀j

Vξ ⊗F Vξ ⊗F S∑
ξj ,ξ.

Proof. Let x = ((x0, X0), . . . , (xm−1, Xm−1)) and y = ((y0, Y0), . . . , (ym−1, Ym−1)).

From the definitions of the multiplication in Pn,m and of the map ξXhtYh , we have

that |ξXhtYh(xh � yh)| equals the number of connected components removed from

the middle row when we construct the product ρhωh, where ρ = (ρ0, . . . , ρm−1) and

ω = (ω0, . . . , ωm−1). Hence, it is sufficient to show that the element u⊗v⊗bφλ
(
x⊗y

)
d

represents the element
m−1∏
h=0

δchh
(
ω◦ρ

)
in Pn,m modulo Jλ< , where |ξXhtYh(xh �yh)| = ch.

In the second case, if φλ
(
x ⊗ y

)
= 0, from the definition of φλ we obtain that

#(ρhωh) < λh for some h. This implies that ρω ∈ Jλ< . So the result holds when

φλ
(
x⊗ y

)
= 0.

Now assume that φλ
(
x ⊗ y

)
= (

m−1∏
h=0

δchh )s, where s = (s0, . . . , sm−1) is defined

as above, then we need to show that u ⊗ v ⊗ bsd represents the element ω ◦ ρ.
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From the definition of φλ, we can realize that ζn′
(
(ω ◦ ρ)h

)
= ζn′

(
ρh
)

= uh and

that ζn′
(
(ωh ◦ ρh)∗

)
= ζn′

(
ω∗h
)

= vh, where u = ((u0, U0), . . . , (um−1, Um−1)) and

v = ((v0, V0), . . . , (vm−1, Vm−1)).

Note that there are only λh distinct parts of xh � yh, say P h
1 , . . . , P

h
λh

, each one

containing a single Xh
j and a single Y h

sh(j). So there is a part ρhωh which contains

both Uh
b−1
h (j)

and Y h
sh(j), where b = (b0, . . . , bm−1). Since Y h

i and V h
dh(i) are contained

in the same part of yh � vh, where d = (d0, . . . , dm−1), then Uh
b−1
h (j)

and V h
shdh(j) are

contained in the same part of ρhωh. Hence ρω is represented by u⊗ v ⊗ bsd.

The following corollary is a consequence of the definitions and the previous lemma.

Corollary 4.9. Let α = x⊗y⊗ b with x, y ∈ Ωλ and b ∈ Sl,λ, then ∗(α) = y⊗x⊗ b∗.

Lemma 4.10. Let λ, µ ∈
n⊔
t=0

Γ(t,m) with λ 6= µ and λj ≤ µj for each j. Take

α = u ⊗ x ⊗ b ∈ Vµ ⊗ Vµ ⊗ S∑
µj ,µ where b is a basis element of S∑

µj ,µ and β =

y ⊗ v ⊗ s ∈ Vλ ⊗ Vλ ⊗ S∑
λj ,λ with s a basis element of S∑

λj ,λ. Let xi ∈ PAi and

yi ∈ PBi for some subsets Ai, Bi ⊆ n, where x = ((x0, X0), . . . , (xm−1, Xm−1)) and

y = ((y0, Y0), . . . , (ym−1, Ym−1)). Then

• Ai 6= Bi if and only if αβ = 0, where i = 0, . . . ,m− 1.

• If 0 6= αβ =
m−1∏
h=0

δ
|ξXhtYh (xh�yh)|
h w⊗z⊗d, where w = ((w0,W0), . . . , (wm−1,Wm−1))

and z = ((z0, Z0), . . . , (zm−1, Zm−1)), then

(1) if |Wh| = λh for each h, then z = v , d = d′s for some d′ ∈ S∑
λj ,λ, and w

and d′ do not depend on s (moreover, d′ = bΥλ(x; y));

(2) if |Wh| < λh for some h, then α
(
y ⊗ v ⊗ s′

)
∈ Jλ< for any s′ ∈ S∑

λj ,λ.

Proof. The first part is clear since bot(α) = (A0, . . . , Am−1) and top(β) = (B0, . . . ,

Bm−1). If |Wh| = λh for each h, then |Zh| = λh as αβ 6= 0. Since every Zh
i is always

obtained from V h
i , we have z = v. Hence d is also of the desired form. The other

assertions follow immediately from the definition of the multiplication of two basis

elements in the set Pn,m.
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Finally, the proof of last part is obvious since sh and s′h can be considered as

two bijections from Yh to Vh and |Wh| < λh for some h, so there is a part of xh � yh

containing more than one element of Yh, thus we always have α
(
y⊗ v⊗ s′

)
∈ Jλ< for

any s′ ∈ S∑
λj ,λ.

The next corollary is a result of the previous two lemmas.

Corollary 4.11. Jλ :=
⊕

µ∈
n⊔
l=0

Γ(l,m)

where µj≤λj ∀ j∈Zm

Vµ ⊗F Vµ ⊗F S∑
µj ,µ is an ideal of Pn,m.

Proof. From the definitions, it is obvious that Jλ contains all the diagrams in which

the number of Cj-propagating lines is less than or equal to λj for each j ∈ Zm, so

Jλ = Pn,m(δ̆;λ) (see Proposition 2.13).

Lemma 4.12. Let σ : Sl,λ → Sl,λ be the involution which is defined by b 7→ b∗ for all

b ∈
m−1∏
j=0

Sλj . Then σφλ(x⊗ y) = φλ(y ⊗ x) for all x, y ∈ Vλ.

Proof. Let x = ((x0, X0), . . . , (xm−1, Xm−1)) and y = ((y0, Y0), . . . , (ym−1, Ym−1)). If

we assume φλ(x⊗y) = 0, then it follows from the definition of φλ and xh �yh = yh �xh

that φλ(y ⊗ x) = 0. Now assume that φλ(x ⊗ y) 6= 0. In this case, if Xh
i and Y h

bh(i)

with b = Υλ(x; y) are contained in the same part of xh � yh, then Y h
i and Xh

b∗h(i) are

also contained in the same part of yh � xh. Thus Υλ(y;x) = b∗. This shows that

σφλ(x⊗ y) = φλ(y ⊗ x).

Now we are ready to prove the main result.

Theorem 4.13. The multi-colour partition algebra Pn,m(δ̆) is a cellular algebra.

Proof. Put J−1 = 0 , S0 = {1} and Bλ = Sl,λ, where l =
∑m−1

i=0 λi. Then the

multi-colour partition algebra has a decomposition

Pn,m =
⊕

λ∈
n⊔
l=0

Γ(l,m)

Vλ ⊗F Vλ ⊗ Sl,λ. (4.8)
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Note that Bλ is a cellular algebra with respect to the involution σ as defined in

Lemma 4.12, since it is isomorphic to the tensor product of finitely many cellular

algebras (see equation (2.29) and Proposition 1.16). By the lemmas in this section,

the above decomposition satisfies all conditions in Theorem 1.15, thus the algebra

Pn,m(δ̆) is a cellular algebra.

4.3 Cell modules of the algebra Pn,m(δ̆)

In this section, we describe a complete set of generically simple modules Vn(µµµ) of

the algebra Pn,m(δ̆), where µµµ is a m-multi-partition of an integer less than or equal

to n, see Subsection 1.3.1. These are simple modules of Pn,m except for finitely many

values of δ̆.

From the definition of the algebra S|λ|,λ, the set of all cell modules of the algebra

S|λ|,λ is {Sµµµ | µµµ ` λ}, where |λ| =
∑
λi and

Sµµµ := Sµµµ0 ⊗ · · · ⊗Sµµµm−1 , (4.9)

where Sµµµi is the Specht module of the symmetric group Sλi associated to a partition

µµµi with a bilinear form 〈 , 〉µµµi . We define a bilinear form on Sµµµ by 〈 , 〉µµµ :=
m−1∏
i=0

〈 , 〉µµµi ,

From Theorems 4.13 and 1.15, we have the following fact.

Corollary 4.14. The cell modules of Pn,m(δ̆) are Vn(µµµ) := Vλ ⊗ vλ ⊗ Sµµµ, where

λ ∈
n⊔
l=0

Γ(l,m) and µµµ ` λ, vλ is a fixed non-zero element of Vλ, and Sµµµ is the cell

module of the algebra S|λ|,λ, as it is defined in (4.9). If |λ| = 0, take λ = 0 = µµµ and

S0 = F, where 0 = ( 0, . . . , 0︸ ︷︷ ︸
m times

).(Note that µµµ determines λ.)

Let 〈 , 〉λ,µµµ be a bilinear form on the module Vn(µµµ) defined by (4.7) via its basis

of diagrams (we add λ just to make it different from the bilinear form on the module

Sµµµ). Let us write Gn(µµµ) for the Gram matrix of the inner product 〈 , 〉λ,µµµ on the

cell module Vn(µµµ). For (λ,µµµ) ∈ Λ0
Pn,m , the simple Pn,m-module Ln(µµµ) is the simple
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quotient of the module Vn(µµµ). Remember, the module Vn(µµµ) is simple if and only if

detGn(µµµ) 6= 0, for more details see Section 1.5.

Recall that a multi-partition µµµ = (µµµ0, . . . ,µµµm−1) is called p-regular if µµµi is regular

for each i, see Subsection 1.3.2. If p = 0, then all multi-partitions are p-regular. As

a corollary of Theorem 4.13, we classify the simple modules.

Corollary 4.15. Let Pn,m(δ̆) be the multi-partition algebra over a field F of charac-

teristic p. If
m−1∏
j=0

δj 6= 0 then the non-isomorphic simple modules are parametrized by

{(l,µµµ) | l ∈ Zn+1,µµµ is a p-regular m-multi-partition of l}.

Proof. It follows from Corollary 4.14 that all simple Pn,m(δ̆)-modules are parametrized

by {(l,µµµ) | 〈 , 〉λ,µµµ 6= 0}. Let A,B ∈ Vn(µµµ), from the definition of the module Vn(µµµ),

these elements can be written as

A = a⊗ vλ ⊗ α , B = b⊗ vλ ⊗ β,

where α = (α0, . . . , αm−1), β = (β0, . . . , βm−1) ∈ Sµµµ and a, b ∈ Vλ where µµµi ` λi for

each i. From Lemma 4.8, we have

AB =
(
a⊗ vλ ⊗ αφλ

(
vλ ⊗ b

)
β
)

modulo Jλ< ,

when top(B) = bot(A), otherwise it will be zero. Take b = vλ, where

vλ = ((v0, V0), . . . , (vm−1, Vm−1)) ∈ Vλ,

from the definition of the map φλ, it is obvious that

φλ
(
vλ ⊗ vλ

)
=

m−1∏
i=0

δ
|vi|−λi
i (id , . . . , id).

So when b = vλ, the multiplication AB is

AB =
m−1∏
i=0

δ
|vi|−λi
i

(
a⊗ vλ ⊗ αβ

)
modulo Jλ< .



Chapter 4. Representation theory of the algebra Pn,m 86

Thus 〈A,B〉λ,µµµ = 0 if and only if
(m−1∏

i=0

δ
|vi|−λi
i

)
〈α, β〉µµµ = 0 in the module Sµµµ (note

that 〈α, β〉µµµ =
m∏
i=1

〈αi, βi〉µµµi , where 〈αi, βi〉µµµi is computed in the module Sµµµi). Now,

we are going to check each term δ
|vi|−λi
i 〈 , 〉µµµi individually. If λi > 0, the partition vi

can be chosen such that |vi| = λi so we only need to check when 〈 , 〉µµµi equals zero.

From Theorem 1.9, 〈 , 〉µµµi 6= 0 if and only if µµµi is p-regular partition of λi. If λi = 0,

then δ
|vi|−λi
i 〈 , 〉µµµi = δ

|vi|
i which is non-zero when δi 6= 0. This shows that 〈 , 〉λ,µµµ 6= 0

if and only if µµµ is a p-regular multi-partition of λ and
m−1∏
j=0

δj 6= 0.

Next, we shall determine for which values of the parameters δi the algebra Pn,m
is quasi-hereditary.

Corollary 4.16. The algebra Pn,m is quasi-hereditary if and only if δi 6= 0 for all i

and the characteristic of F is either zero or strictly grater than n.

Proof. It comes directly from previous result and the fact that a cellular algebra is

quasi-hereditary when Λ = Λ0, see Remark 1.20.

4.4 Semi-simplicity of the algebra Pn,m over the

complex field

In this section we shall work towards proving the final results of this chapter. We

show that the algebra Pn,m(δ̆) is non-semisimple over the complex field if and only if

δj is a non-negative integer less than 2n− 1 for some j ∈ Zm. From here to the end

of this chapter we will assume that F = C.

Over the complex field we have

Rad(Pn,m(δ̆)) = Rad(Pn,m(δ̆;n− 1)),

and we can prove that as follows. Since Pn,m/Pn,m(δ̆;n−1) ∼= CSn,m and CSn,m is a

semi-simple algebra (see Corollary 3.13), so Rad(Pn,m) ⊆ Rad(Pn,m(δ̆;n − 1)) (view
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Pn,m(δ̆;n − 1) as an algebra without identity). Also Pn,m(δ̆;n − 1)/Rad(Pn,m) is an

ideal in Pn,m/Rad(Pn,m), so the quotient Pn,m(δ̆;n− 1)/Rad(Pn,m) is a semi-simple

algebra. This implies Rad(Pn,m(δ̆;n− 1)) ⊆ Rad(Pn,m).

Define idempotent elements

Ik,x :=
n∏

j=k+1

1

δxj
p(j,x,x), k = 0, . . . , n− 1, (4.10)

where x ∈ Znm and δxj 6= 0 for each j > k.

Lemma 4.17. The element I0,x is a primitive idempotent in the algebra Pn,m for

each x ∈ Znm. Furthermore, the left ideal Pn,mI0,x is an indecomposable module.

The proof is clear since I0,xPn,mI0,x = FI0,x. Also dim(Pn,mI0,x) =
n∑
l=1

ml
{
n
l

}
,

where
{
n
l

}
is the Stirling number of the second kind.

Let eµµµj be the primitive idempotent corresponding to the Specht module Sµµµi in

the group Sλi , then (eµµµ0 , . . . , eµµµm−1) ∈ S|λ|,λ so we can use the inclusion map I, see

(4.1), and define the element

eµµµ := In−|λ|((eµµµ0 , . . . , eµµµm−1)) ∈ FSn,m.

Let µµµ ` λ � l = |λ| for some l = 0, . . . , n and define x to be a tuple defined as

follows: xi = j when
j−1∑
k=0

λk + 1 ≤ j ≤
j∑

k=0

λk and xi for i >
m−1∑
k=0

λk takes any value

such that δxi 6= 0 and that to make Il,x is defined. Without losing the generality, we

can assume that δm−1 6= 0 and take x to be

(0, . . . , 0︸ ︷︷ ︸
λ0 times

, 1, . . . , 1︸ ︷︷ ︸
λ1 times

, . . . ,m− 2, . . . ,m− 2︸ ︷︷ ︸
λm−2 times

,m− 1, . . . ,m− 1︸ ︷︷ ︸
n−

∑m−2
i=0 λi times

).

Hence the element the element Il,xeµµµ represented by the element w⊗w⊗(eµµµ0 , . . . , eµµµm−1)

where w = ((w0,W0), (wm−1,Wm−1)), wi = Wi = {{
∑

j<i λj + 1}, . . . , {
∑

j≤i λj}}

when i < m−1, and wm−1 = {{
∑

j<m−1 λj+1}, . . . , {n}} andWm−1 = {{
∑

j<m−1 λj+

1}, . . . , {
∑

j≤m−1 λj}}. From the definition of cell modules of the algebra Sl,λ we have
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Sl,λ(eµµµ0 , . . . , eµµµm−1) = Sµµµ (see (4.9)). Since the element vλ in the definition of the

module Vn(µµµ) does not have any role, so we can take w = vλ and then by using

Lemma 4.6 we can show that

Vn(µµµ) ∼= Pn,mIl,xeµµµ (mod Pn,m(δ̆, l − 1)). (4.11)

As consequence of the previous paragraph, we have the following fact. Recall

that we write µB λ to denote that µ is a partition obtained from the partition λ by

adding a box to λ after regarding them as Young diagrams. Also µCλ means that µ

is a partition obtained from λ by removing a box. Additionally, µCBλ means that

µ is a partition obtained from λ by removing a box after adding a box.

Proposition 4.18. The generic restriction from Pn,m to Pn−1,m is

Vn(µµµ) ↓Pn−1,m
∼=

m−1⊕
h=0

(( ⊕
µµµ′hBµµµh

µµµ′i=µµµi∀i 6=h

Vn−1(µµµ′)
)⊕( ⊕

µµµ′hCBµµµh
µµµ′i=µµµi∀i 6=h

Vn−1(µµµ′)
)

⊕( ⊕
µµµ′hCµµµh

µµµ′i=µµµi∀i 6=h

Vn−1(µµµ′)
))
.

Proof. Any element in Vn(µµµ) can be written as m-tuples of partitions, see (4.11).

Each one is included in a module Vλi+ui(µµµi) (see (1.15)) of the partition algebra

Pλi+ui(δi) for some ui such that
∑
λi + ui = n by ignoring all the colours except the

one Ci. We finish the proof by using the inclusion Pn−1,m ↪→ Pn,m and Proposition

1.26.

By using the Frobenius reciprocity, see (1.1), and the previous fact we can compute

the induced modules of the cell modules of the algebra Pn,m.

Example 4.18.1. Let m = 2. By last proposition, for generic values δ0 and δ1 we

have

V2((1), (0)) ↓P1,2
∼=
( 3⊕

V1((1), (0))

)
⊕ V1((0), (0)). (see figure 4.1 ).
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We can show that as following: the module V2((1), (0)) can be taken to be the module

that is spanned by the elements

b1 = , b2 = , b3 = , b4 = , b5 = .

On the other hand the module V1((1), (0)) = F〈1(0)〉 and the module V1((0), (0))

has a basis containing the elements a1 = q(1,(0),(0)) and a2 = q(1,(1),(0)). Now if δ0 6= 0,

it is easy to show that the spaces X1 = F〈b1 − δ−1
0 b4〉, X2 = F〈b2〉 and X3 = F〈b3〉

are P1,2-modules and all of them isomorphic to the module V1((1), (0)). Similarly

X4 = F〈b4, b5〉 is P1,2-module and it is isomorphic to the module V1((0), (0)),we can

show that by using the map that sends a1 and a2 to b4 and b5 respectively. Note that

V2((1), (0)) =
4⊕
i=1

Xi, and we are done.

The generic Bratteli restriction diagram for the irreducible representations as-

sociated to the inclusion Pn,m ↪→ Pn−1,m is shown in figure 4.1. From that we can

compute the dimensions of the generic simple modules of Pn,m, see table 4.1.

n \µµµ ((0), (0)) ((1), (0)) ((0), (1)) ((1), (1)) ((12), (0)) ((2), (0))

0 1
1 2 1 1
2 6 5 5 2 1 1
3 22 25 25 18 9 9
4 94 133 133 134 67 67

n \µµµ ((0), (12)) ((0), (2)) ((12), (1)) ((2), (1)) ((1), (12)) ((1), (2))

2 1 1
3 9 9 3 3 3 3
4 67 67 42 42 42 42

n \µµµ ((3), (0)) ((2, 1), (0)) ((13), (0)) ((0), (3)) ((0), (2, 1)) . . .

3 1 2 1 1 2 . . .
4 14 26 14 14 26 . . .

Table 4.1: The dimensions of some cell modules of the algebra Pn,m.

It is easy to show that the module Vn(0) is isomorphic to Pn,mI0,x for any x ∈ Znm,

such that δxj 6= 0 for each j, since x doesn’t have any role here. In both of spaces,

the basis is in one-to-one correspondence with the elements of the set:

{(d0, . . . , dm−1) | di ∈ PDi , for some Di ⊆ n, such that
m−1⋃
i=0

di ∈ Pn}.
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Figure 4.1: The Bratteli diagram for a tower of multi-colour partition algebras.
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Let d = (d0, . . . , dm−1) and b = (b0, . . . , bm−1) be basis elements of Vn(0), where

di ∈ PDi and bi ∈ PBi for some subsets Di and Bi. From graphical visualization, we

have

〈d, b〉0,0 =


0 if Di 6= Bi for some i,
m−1∏
i=0

〈di, bi〉0,(0) otherwise,

where 〈di, bi〉0,(0) is computed in the algebra P|Di|(δi).

Let Mn,δ((0)) be the Gram matrix of Pn(δ) of the inner product corresponding to

the trivial partition of 0. From the last equation, it is obvious that Gn(0) is a direct

sum of tensor products of matrices Mni,δi((0)) such that
∑
ni = n. Furthermore, the

matrix Mni,δi((0)) is singular over complex field if and only if δi ∈ {0, 1, . . . , ni − 1},

for more details see [43]. By using the property 1.8, the matrix Gn(0) is singular over

the complex field if and only if one of the matrices Mni,δi((0)) is singular, this implies

Vn(0) is simple unless one of the scalars δi is a natural number less than n.

Theorem 4.19. The algebra Pn,m(δ0, . . . , δm−1) is semisimple over C for each inte-

gers n ≥ 0 and m ≥ 1 if and only if none of the parameters δi is a a natural number

less than 2n.

Proof. By using the induction/restriction rules and Frobenius reciprocity, then the

module V2n(0) as Pn,m-module contains all the modules Vn(µµµ) as sub-modules. Hence

detG2n(0) 6= 0 if and only if detGn(µµµ) 6= 0 for µµµ in level n. This implies that if V2n(0)

is simple, then all the modules Vn(µµµ) is simple for all δ̆ at level n, so the algebra Pn,m
is semi-simple. As it is shown in above V2n(0) is simple over the complex field unless

one of the scalars δi is a natural number less than 2n.

4.5 Some low rank calculations

We end this chapter by discussing the above properties on two examples to illus-

trate the main results in the previous sections over the complex field.
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Let us consider n = 1. The algebra Pn,2 is a 6-dimensional algebra. The vector

spaces Vλ are

V(1,0) = C〈
(
({1}, {1}), (∅, ∅)

)
〉 , V(0,1) = C〈

(
(∅, ∅), ({1}, {1})

)
〉

V(0,0) = C〈
(
({1}, ∅), (∅, ∅)

)
,
(
(∅, ∅), ({1}, ∅)

)
〉,

and also S1,(1,0)
∼= CS1 ×S0

∼= C, similarly S1,(0,1)
∼= C and S0,(0,0)

∼= C. It is easy to

see that

P1,2 = C〈1(1), p(1,(0),(1)), p(1,(1),(1))〉
⊕

C〈1(0), p(1,(0),(0)), p(1,(1),(0))〉,

as left modules.

To make notation easier, put a1 = 1(0), a2 = 1(1), a3 = p(1,(0),(1)), a4 = p(1,(1),(1)),

a5 = p(1,(0),(0)) and a6 = p(1,(1),(0)). The cell modules of P1,2 are

V1((1), (0)) = Ca1 , V1((0), (1)) = Ca2,

V1((0), (0)) = C〈a3, a4〉,

Both of V1((1), (0)) and V1((0), (1)) are simple, since their dimension is one. On the

other hand, V1((0), (0)) is a simple module unless δ0δ1 = 0, since the Gram matrix

of V1((0), (0)) is δ0 0

0 δ1

 .

Now the action of the algebra P1,2 on V1((0), (0)) is given by

( 6∑
i=1

αiai
)
a3 = (α1 + δ0α5)a3 + δ0α6a4,

( 6∑
i=1

αiai
)
a4 = δ1α3a3 + (α2 + δ1α4)a4.

In the case δ0 = 0 and δ1 6= 0, then V1((0), (0)) is an indecomposable module with

sub-module Ca3, and Ca3
∼= Ca1 as modules. Now, if δ0 = 0 and δ1 = 0 , then
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V1((0), (0)) is decomposable and it is isomorphic to V1((1), (0))⊕ V1((0), (1)).

For the second example, take n = 2. The algebra P2,2 is 94-dimensional. The

corresponding vector spaces Vλ are

V(2,0) =C〈
(

({{1}, {2}}, {{1}, {2}}), (∅, ∅)
)
〉,

V(0,2) =C〈
(

(∅, ∅), ({{1}, {2}}, {{1}, {2}})
)
〉,

V(1,0) =C〈
(

({1, 2}, {1, 2}), (∅, ∅)
)
,

(
({1}, {1}), ({2}, ∅)

)
,

(
({2}, {2}), ({1}, ∅)

)
,(

({{1}, {2}}, {1}), (∅, ∅)
)
,

(
({{1}, {2}}, {2}), (∅, ∅)

)
〉,

V(0,1) =C〈
(

(∅, ∅), ({1, 2}, {1, 2})
)
,

(
({2}, ∅), ({1}, {1})

)
,

(
({1}, ∅), ({2}, {2})

)
,(

(∅, ∅), ({{1}, {2}}, {1})
)
,

(
(∅, ∅), ({{1}, {2}}, {2})

)
〉,

V(1,1) =C〈
(

({1}, {1}), ({2}, {2})
)
,

(
({2}, {2}), ({1}, {1})

)
〉,

V(0,0) =C〈
(

(∅, ∅), ({1, 2}, ∅)
)
,

(
({1, 2}, ∅), (∅, ∅)

)
,

(
({1}, ∅), ({2}, ∅)

)
,(

({2}, ∅), ({1}, ∅)
)
,

(
({{1}, {2}}, ∅), (∅, ∅)

)
,

(
(∅, ∅), ({{1}, {2}}, ∅)

)
〉.

To compute the modules V2((2), (0)), V2((1, 1), (0)), we need to determine the simple

modules of CS2, which are only the trivial and sign modules, they are C〈id + s1〉 and

C〈id − s1〉 respectively. This implies that

V2((2), (0)) = C〈1(0,0) + s(1,(0,0))〉,

V2((1, 1), (0)) = C〈1(0,0) − s(1,(0,0))〉.

Similarly,

V2((0), (2)) = C〈1(1,1) + s(1,(1,1))〉,

V2((0), (1, 1)) = C〈1(0,0) − s(1,(1,1))〉,

V2((1), (1)) = C〈1(0,1), s(1,(1,0))〉.

All the previous cell modules are simple.
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Also, the module V2,((1), (0)) can be spanned by the elements:

, , , , .

The Gram matrix of this module with respect to the previous basis with the same

order is 

1 0 0 1 1

0 δ1 0 0 0

0 0 δ1 0 0

1 0 0 δ0 0

1 0 0 0 δ0


,

and its determinant is δ2
1δ0(δ0 − 2). Thus the module V2((1), (0)) is simple unless

δ1δ0(δ0− 2) = 0. When δ0 = 2 and δ1 6= 0, the module V2((1), (0)) is indecomposable

with radical spanned by 2q(1,(0,0))−p(1,(0,0),(0,0))q(1,(0,0))−p(2,(0,0),(0,0))q(1,(0,0)) . Similarly,

V2((0), (1)) is simple unless δ2
0δ1(δ1 − 2) = 0.

Finally, the module V2((0), (0)) can be spanned by

The Gram matrix of V2((0), (0)) with respect to the previous basis with the same

order is 

δ1 0 0 0 0 δ1

0 δ0 0 0 δ0 0

0 0 δ0δ1 0 0 0

0 0 0 δ0δ1 0 0

0 δ0 0 0 δ2
0 0

δ1 0 0 0 0 δ2
1


.

Thus V2((0), (0)) is simple unless δ4
0δ

4
1(δ0 − 1)(δ1 − 1) = 0. When δ0 = 1 = δ1, the

radical of this module is C〈a1 − a6, a2 − a5〉.



Chapter 5

Representation Theory Of The

Algebra Tn,m

The notion of the bubble algebra Tn,m(δ̆) has been introduced by Grimm and

Martin [23], and they proved various properties of the algebra as it is generically

semi-simple. Jegan [28] in Section 2.1 showed that the bubble algebra Tn,m(δ̆) is

always a cellular algebra, and it is a tower recollement when all of the parameters δi

are non-zero. The theory of towers of algebras has been introduced in [11]. In this

chapter we provide some further information on the structure of the bubble algebra,

for instance calculating its Cartan matrix over the complex field by investigating the

head and the radical of each cell module by using the ones of the Temperley-Lieb

algebra.

5.1 Introduction

This section introduces some of the basic modules for the algebra Tn,m(δ̆) that

are related to cell modules of Tn,m(δ̆) since it is cellular.

The number of propagating lines in any diagram d ∈ Tn,m, see (2.11), has the

form #(d) = n− 2v for some an integer v, where 0 ≤ v ≤ [n/2], since making an arc,

95
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an edge connects two nodes in the same row (top or bottom) of a diagram, needs to

two nodes on this row.

We follow Grimm and Martin [23] and define the subsets Tn,m[λ0, . . . , λm−1], or

simply Tn,m[λ], Tn,m[k] and Tn,m(k) of the set Tn,m to be

Tn,m[λ0, . . . , λm−1] = {d ∈ Tn,m | #j(d) = λj for all j ∈ Zm}, (5.1)

Tn,m[k] =
⋃

∑
j λj=k

Tn,m[λ0, . . . , λm−1], (5.2)

Tn,m(k) =
⋃
l≤k

Tn,m[l], (5.3)

where λi ∈ N and
m−1∑
j=0

λj, k ∈ {n, n− 2, . . . , n− 2[n/2]}, and #j(d) is the number of

propagating lines in a diagram d that have the colour Cj.

Definition 5.1. Let Tn,m(δ̆;λ0, . . . , λm−1), or simply Tn,m(δ̆;λ), and Tn,m(δ̆; k) be

the ideals of the algebra Tn,m(δ̆) that are generated by the sets Tn,m[λ] and Tn,m[k],

respectively.

Lemma 5.2. The ideal Tn,m(δ̆;λ) has the set
⋃

0≤lj≤[λj /2]

Tn,m[λ − 2l] as basis, where

λ− 2l = (λ0 − 2l0, . . . , λm−1 − 2lm−1).

Proof. The proof is similar to showing that the ideal Pn,m(δ̆;λ) has the set Pn,m(λ)

as basis (Proposition 2.13).

The set of all ideals of the algebra Tn,m that have the form Tn,m(δ̆;λ) is a lattice

with a partial order: Tn,m(δ̆;λ0, . . . , λm−1) ≤ Tn,m(δ̆; j0, . . . , jm−1) if and only if jk−λk
is an even non-negative number for each k.

Now we define a Tn,m(δ̆)-module to be the quotient

Tn,m[δ̆;λ0, . . . , λm−1] =
Tn,m(δ̆;λ0, . . . , λm−1)

Tn,m(δ̆;λ0, . . . , λm−1)
⋂
Tn,m(δ̆;

∑
λj − 2)

, (5.4)
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where λ ∈ Γ(n−2v,m) for some 0 ≤ v ≤ [n/2] (recall that Γ(l,m) is the set of all m-

compositions of l, see Section 1.3.1). Note that the ideal Tn,m(δ̆;
∑
λj − 2) will be

taken to be zero when
∑
λj < 2.

Lemma 5.3. The module Tn,m[δ̆;λ0, . . . , λm−1] has the set Tn,m[λ] as a basis, where

λ ∈ Γ(n−2v,m) for some 0 ≤ v ≤ [n/2].

Proof. It comes directly from Lemma 5.2, where the image of all the diagrams that

have propagating number lesser than
∑
λj will be zero.

The ideal Tn,m(δ̆; k), from the definition, contains all the diagrams with at most

k propagating lines. We may form a filtration of Tn,m by these ideals:

Tn,m(δ̆) ⊃ Tn,m(δ̆;n− 2) ⊃ Tn,m(δ̆;n− 4) ⊃ . . . ⊃ Tn,m
(
δ̆;n− 2[n/2]

)
⊃ 0. (5.5)

This filtration refines to one with section spanned by the set Tn,m[λ], where n−
∑
λj

is an even number.

A half-multi-colour-diagram is a diagram obtained by cutting horizontally a dia-

gram in the set Tn,m in the middle such that each propagating line is cut once, and

that is always possible. As for the Temperley-Lieb algebra, we can form a unique

bubble diagram from two half-multi-colour-diagrams providing that they have the

same number of propagating lines of each colour. Let T |〉n,m[λ] be the set of top

pieces obtained by cutting elements of the set Tn,m[λ], where λ ∈ Γ(n−2v,m) for some

0 ≤ v ≤ [n/2]. Similarly T 〈|n,m[λ] is the set of bottom pieces obtained by cutting

elements of Tn,m[λ]. Denote by |D〉 and 〈D| the top half-multi-colour-diagram and

the bottom half-multi-colour-diagram respectively obtained from cutting a diagram

D ∈ Tn,m[λ].

Note that we shall often refer to an element of T |〉n,m[λ] as half diagram or just

a diagram when it is clear, although we mean this to be taken as a top half-multi-

colour-diagram.
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A half-diagram is called a ((n0, p0), . . . , (nm−1, pm−1))-link state, if it contains both

nj nodes and pj arcs of the colour Cj for each j ∈ Zm where
m−1∑
j=0

nj = n. This means

that there are nj − 2pj unconnected nodes of the colour Cj for each j. We refer them

as defects as for the Temperley-Lieb algebra.

Denote by FMn(λ0, . . . , λm−1), or simply FMn(λ), the vector space with a basis

Mn(λ0, . . . , λm−1) which contains all the top halves of all diagrams that are contained

in Tn,m(δ̆;λ). In other words, Mn(λ) contains all link states that have number of

defects of the colour Cj on the form λj − 2tj for each j ∈ Zm where 0 ≤ tj ≤ [λj/2].

Note that there is no condition on the colours of arcs.

Lemma 5.4. Let λ ∈ Γ(n−2v,m) for some 0 ≤ v ≤ [n/2]. The vector space FMn(λ)

is a left Tn,m- module with the action defined by the concatenation of a diagram with

a half-diagram then proceeding as we would with two diagrams in Tn,m (remove each

loop and replace it by the parameter corresponding to the loop’s colour), and finally

omit any new bottom arcs.

Proof. Let x ∈ Tn,m and d be a half-diagram in Mn(λ). We only need to show that

xd ∈ FMn(λ). Without loss of generality, we can assume xd 6= 0. Multiplying x with

d cannot create any additional propagating lines of any colour. Thus the number of

Cj-defects in xd is of the form λj − 2tj where 0 ≤ tj ≤ [λj/2], because making an

extra Cj-arc needs two Cj-nodes.

Define a subset M
<

n (λ) of Mn(λ) to be

M
<

n (λ0, . . . , λm−1) =
m−1⋃
j=0

Mn(λ0, . . . , λj − 2, . . . , λm−1). (5.6)

Note that Mn(λ0, . . . , λj − 2, . . . , λm−1) is taken to be the empty-set when λj < 2.

Let FM<

n (λ) be the module that generated by M
<

n (λ), thus FM<

n (λ) is a sub-module

of FMn(λ).

Lemma 5.5. Let ∆n(λ0, . . . , λm−1), or simply ∆n(λ), be the module FMn(λ)/FM<
n (λ)

of Tn,m, where
∑
λi = n − 2v for some 0 ≤ v ≤ [n/2]. Then the module ∆n(λ) has

the set T |〉n,m[λ] as a basis.
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Proof. In the quotient FMn(λ)/FM<
n (λ), the image of any link state with less than

λj defects of the colour Cj for each j is zero. Thus the left multiplication by any

diagram in the set Tn,m will be either zero or a half-diagram with exactly λj defects

of the colour Cj for each j multiplied by a scalar.

Example 5.5.1. The module ∆3(1, 0) for the algebra T3,2(δ̆) is spanned by the half-

diagrams in figure 5.1.

Figure 5.1: A basis of the module ∆3(1, 0).

The module Tn,m[δ̆;λ], defined in (5.4), has Tn,m[λ] as basis (see Lemma 5.3).

Since any two half-diagrams connect in unique way, we obtain a bijection

Tn,m[λ0, . . . , λm−1]↔ T |〉n,m[λ0, . . . , λm−1]× T 〈|n,m[λ0, . . . , λm−1].

Thus each module Tn,m[δ̆;λ] breaks up as a sum of isomorphic left modules each

with basis of the form { |a〉〈b| | a ∈ Tn,m[λ]} where b ∈ Tn,m[λ] is fixed. Also the

half-diagram 〈b| in the definition of basis elements has no role, so each summand is

isomorphic to the module ∆n(λ).

5.2 Cellularity of the bubble algebra Tn,m(δ̆)

In the next few sections, we shall begin studying the representation theory of the

algebra Tn,m(δ̆).

Proposition 5.6. [28, Proposition 1.3.2]. The algebra Tn,m(δ̆) is a cellular algebra

over any field F, with the involution sending each diagram d to its reflection d∗ in the

horizontal plane. Also the indexing set is the set

ΛTn,m :=

[n/2]⋃
v=0

Γ(n−2v,m), (5.7)
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where Γ(l,m) is the set of all m-compositions of l, see Section 1.3.1. The order on the

set ΛTn,m is defined by

(λ0, . . . , λm−1) ≥ (λ′0, . . . , λ
′
m−1) if and only if λj ≤ λ′j for each j. (5.8)

The modules ∆n(λ) where λ ∈ ΛTn,m are cell modules of the algebra Tn,m.

Each cell module ∆n(λ) comes with a bilinear form via its basis of top half-

diagrams (and the dual basis of bottom half-diagrams). Let d, d′ ∈ Tn,m[λ], x = 〈d|

and y = |d′〉, so

dd′ = |d〉〈d| |d′〉〈d′| = 〈d||d′〉 |d〉〈d′| =: 〈d||d′〉d′′,

so

〈x, y〉 =

 〈d||d′〉 if d′′ ∈ Tn,m[λ],

0 otherwise.
(5.9)

This form is contravariant, see Proposition 2.4 in [20].

Let Gn(λ) to be the Gram matrix of the inner product defined in (5.9) on the

cell module ∆n(λ) with respect to half-diagrams basis. Since we work over a field,

we can check when the module ∆n(λ) is simple or not by computing detGn(λ), since

∆n(λ) is simple if and only if detGn(λ) 6= 0 whenever 〈 , 〉 6= 0 (see Section 1.5). For

example, the Gram matrix of ∆3(1, 0) with respect to the basis in figure 5.1 is

G3(1, 0) =



δ0 1 0 0 0

1 δ0 0 0 0

0 0 δ1 0 0

0 0 0 δ1 0

0 0 0 0 δ1


.

Note that |G3(1, 0)| = δ3
1(δ2

0 − 1), so the module ∆3(1, 0) is simple if and only if

δ0 6= ±1 and δ1 6= 0.
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Theorem 5.7. [23, Theorem 1]. The cell modules ∆n(λ0, λ1) for the algebra Tn,2
are generically simple.

Let Λ0
Tn,m be subset of ΛTn,m that contains all λ ∈ ΛTn,m such that 〈 , 〉 6= 0. Note

that if δj 6= 0 for some 0 ≤ j ≤ m− 1, then we have

Λ0
Tn,m = ΛTn,m ,

as we can take a half diagram with all the arcs of the colours corresponding to non-

zero scalars. Even if δj = 0 for all j, then for each cell module ∆n(λ) such that
m−1∑
j=0

λj 6= 0, the inner product 〈 , 〉 6= 0 because we can still find diagrams such their

product is equal to one. For example, see figure 5.2. Thus Λ0
Tn,m = ΛTn,m unless n

is an even integer and δi = 0 for each i ∈ Zm. In the case n is an even integer and

δi = 0 for each i ∈ Zm, then

Λ0
Tn,m = ΛTn,m \ {(0, . . . , 0)}.

Figure 5.2: A non-zero product of two half-diagrams when
∑
λi 6= 0.

Proposition 5.8. The bubble algebra Tn,m(δ̆) is a quasi-hereditary if and only if

δj 6= 0 for some 0 ≤ j < m or n is an odd integer.

Proof. It is enough to show that Λ0
Tn,m = ΛTn,m as we did in the last paragraph, by

applying Remark 1.20.

5.3 Examples

The following couple of examples illustrate the simplest cases of semi-simple and

non-semi-simple bubble algebras.
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Let {Eij}i,j∈n be the standard basis of the matrix algebraMn(F), and the diagrams

1x, s(i,x) and u(i,u,v) are defined as in Section 2.3 for some i ∈ n− 1, x ∈ Znm and

(u, v) ∈ Ω
∗
i , see (2.22).

Example 5.8.1. From the definition of the multiplication on the algebra T2,2, we

have

T2,2(δ0, δ1) = F〈1x, 1y, s(1,x), s(1,y)〉 ⊕ F〈1u, 1v, u(1,u,u), u(1,v,v), u(1,u,v), u(1,v,u)〉,

as an algebra, where x = (1, 0), y = (0, 1), u = (0, 0), v = (1, 1). Also it is easy to

show that

F〈1x, 1y, s(1,x), s(1,y)〉 ∼= M2(F),

for any pair (δ0, δ1) and any field F. Then the algebra F〈1x, 1y, s(1,x), s(1,y)〉 is always

semi-simple. Hence the semisimplicity of the algebra T2,2 depends only on the algebra

A = F〈1u, 1v, u(1,u,u), u(1,v,v), u(1,u,v), u(1,v,u)〉.

Next we are going to determine when the algebra A is semi-simple and compute

the Jacobson radical of A when it is not semi-simple.

Let A1 be the algebra


a 0 0 0

0 b 0 0

0 0 c d

0 0 e f

 | a, b, c, d, e, f ∈ F


.

Consider the map f : A1 → A which is defined by

f(E11) = 1u − δ−1
0 u(1,u,u), f(E22) = 1v − δ−1

1 u(1,v,v),

f(E33) = δ−1
0 u(1,u,u), f(E44) = δ−1

1 u(1,v,v),

f(E34) = δ−1
0 u(1,u,v), f(E43) = δ−1

1 u(1,v,u),

where δ0 and δ1 are invertible in F. Showing that f is a homomorphism is easy

by checking all the relations of A1. One of these relations is E2
ii = Eii for each
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i = 1, . . . , 4 and we have also f(Eii)
2 = f(Eii) for each i, for example

f(E11)2 =
(
1u − δ−1

0 u(1,u,u)

)2
= 1u − 2δ−1

0 u(1,u,u) + δ−2
0 u2

(1,u,u) = f(E11).

Moreover, the determinant of the corresponding matrix of f with respect to the stan-

dard basis is δ−2
0 δ−2

1 , so it is an isomorphism if and only if δ0δ1 6= 0. Therefore the

algebra T2,2 is semi-simple when δ0δ1 6= 0, and in this case T2,2(δ̆) ∼=
2⊕
F⊕

2⊕
M2(F).

In the case when δ0 = 0 and δ1 6= 0, it can be shown that A ∼= A2 and so A is not

semi-simple, where

A2 =





a d e 0 0

0 b f 0 0

0 0 a 0 0

0 0 0 a 0

0 0 0 0 c


| a, b, c, d, e, f ∈ F


.

To prove that we use the map which is defined by

1u 7→ E11 + E33 + E44, 1v 7→ E22 + E55,

u(1,u,u) 7→ E13, u(1,v,v) 7→ δ1E22,

u(1,u,v) 7→ E12, u(1,v,u) 7→ δ1E23.

This map satisfies all the relations that defined the algebra A, so it defines a homo-

morphism. The corresponding matrix to this homomorphism with respect to the basis

{E11 + E33 + E44, E22, E12, E13, E23, E55} is

1 0 0 0 0 0

0 1 0 δ1 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 δ1

0 1 0 0 0 0


,

which is invertible when δ1 6= 0, so A ∼= A2. Note that the Jacobson radical of the

algebra A2 is the ideal I = F〈E12, E13, E23〉 since I is a nilpotent ideal and A2/I ∼=
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3⊕
F (see for example Corollary 1.4 in [2]). Hence, the Jacobson radical of the algebra

T2,2 is J = F〈u(1,u,v), u(1,u,u), u(1,v,u)〉, and T2,2(δ̆)/J ∼=
3⊕
F⊕M2(F).

Similarly, when δ1 = 0 and δ0 6= 0 the algebra T2,2 is not semi-simple and its

radical is the ideal F〈u(1,u,v), u(1,v,v), u(1,v,u)〉.

Finally, let δ0 = 0 = δ1. We are going to show that the algebra

A3 =




a d 0 e

0 a 0 0

0 c b f

0 0 0 b

 | a, b, c, d, e, f ∈ F


is isomorphic to A, so A is not semi-simple. This can be shown by using the following

map, which is an isomorphism:

1u 7→ E11 + E22, 1v 7→ E33 + E44, u(1,u,v) 7→ E14,

u(1,u,u) 7→ E12, u(1,v,v) 7→ E34, u(1,v,u) 7→ E32.

Now the algebra A3 has Jacobson radical I ′ = 〈E12, E14, E32, E34〉, as I ′ is a nilpotent

ideal and A3/I
′ is semi-simple. Thus the algebra T2,2 is not semi-simple with a

quotient isomorphic to
2⊕
F⊕M2(F).

For a general field F, we have the following fact as a generalization of the previous

example.

Proposition 5.9. Let F be an arbitrary field. Then the algebra T2,m(δ̆) is semi-simple

over F provided that δj is invertible in F for each j = 0, . . . ,m− 1.

Proof. We are going to show that

T2,m(δ̆) ∼=
m(m−1)/2⊕

M2(F)⊕
m⊕

F⊕Mm(F),



Chapter 5. Representation theory of the algebra Tn,m 105

when δj is invertible in F for each j. Let Φ be the set {(i, j)|i, j ∈ Zm, i < j}. From

the definition of the multiplication on T2,m, we have

T2,m(δ̆) ∼=
⊕

(i,j)∈Φ

F〈1(i,j), 1(j,i), s(1,(i,j)), s(1,(j,i))〉 ⊕ A,

where A = F〈1(i,i), u(1,(i,i),(j,j)) : i, j ∈ Zm〉.

It is obvious that F〈1(i,j), 1(j,i), s(1,(i,j)), s(1,(j,i))〉 ∼= M2(F) for each (i, j) ∈ Φ. Also

we can show that the cardinality of the set Φ is m(m−1)
2

.

Let B be the algebra that contains all matrices of the form



a1 0 . . . 0 0 . . . 0

0 a2 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . am 0 . . . 0

0 0 . . . 0 b11 . . . b1m
...

...
. . .

...
...

. . .
...

0 0 . . . 0 bm1 . . . bmm


,

where ai, bij ∈ F for each i, j ∈ {1, . . . ,m}. Define the map f : B → A that sends

Ei+1 i+1 7→ 1(i,i) − δ−1
i u(1,(i,i),(i,i)), if i = 0, . . . ,m− 1,

Ei+1 j+1 7→ δ−1
i−mu(1,(i−m,i−m),(j−m,j−m)), if i, j = m, . . . , 2m− 1.

It is easy to check that the map f defines a homomorphism and the determinant of

the corresponding matrix of this homomorphism is
m−1∏
j=0

δ−mj , so it is an isomorphism if

and only if
m−1∏
j=0

δj 6= 0, which is satisfied when δj is invertible in F for each j ∈ Zm.

The algebra T3,2 can be written as direct sum of two algebras A1 and A2, where

A1 (similarly A2) is the algebra that spanned by all the diagrams in the set T3,2 with

blue (red) propagating number is equal to 3 or 1. The proof of that follows from the

fact that A1 ∩ A2 = {0} and the product of two elements of Ai is also contained in
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Ai for each i and xy = 0 = yx for each x ∈ A1 and each y ∈ A2. Then each simple

module of T3,2 will be a simple module either of A1 or A2.

The algebra A1 is 35-dimensional algebra and it is generated by the following

diagrams:

Note that if we change red to blue and blue to red in the previous diagrams, we will

obtain a generator set for the algebra A2.

In order to study the semi-simplicity of the algebra A1, we define a homomorphism

f : A1 → B where B is the sub-algebra of the matrix algebra M9(F) that contains

all matrices of the form:

a11 · · · a15 0 0 0 0
...

. . .
...

...
...

...
...

a51 · · · a55 0 0 0 0

0 · · · 0 a66 a67 a68 0

0 · · · 0 a76 a77 a78 0

0 · · · 0 a86 a87 a88 0

0 · · · 0 0 0 0 a99


,

and f is the map that sends

D1 7→ E11 + E22 + E99, D2 7→ E43 + E76, D3 7→ E34 + E67,

D4 7→ E45 + E78, D5 7→ E54 + E87, D6 7→ δ0E15,

D7 7→ δ1E51 + E52, D8 7→ δ0E23, D9 7→ E31 + δ1E32.

It is easy to check that f can be extended to define an algebra homomorphism, by

checking all the relations that connected them, see Theorem 2.32. For example, we

have D2
i = 0 for each i 6= 1, and on the other hand we also have f(Di)

2 = 0 for each

i 6= 1. Furthermore, the determinant of the matrix that corresponding to this linear
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transform is δ15
0 (δ2

1 − 1)5. Hence, the algebra A1 is semi-simple when δ0(δ2
1 − 1) 6= 0.

It is similar for the algebra A2 replacing δ0, δ1 by δ1, δ0 respectively. Then we have

the next lemma.

Lemma 5.10. If δ2
0 6= 1 6= δ2

1 and δ0δ1 6= 0, then the algebra T3,2 is semi-simple and

T3,2(δ0, δ1) ∼=
2⊕

(F ⊕M3(F)⊕M5(F)) .

In the case δ0(δ2
1 − 1) = 0, the algebra A1 is not semi-simple, since A1 has a

non-zero nilpotent ideal J , thus from Corollary 1.4 in [2] the ideal J is contained in

the Jacobson radical of the algebra A1. For example, when δ0 = 0, take J to be the

two-sided ideal that is generated by the diagram u(2,x,x) where x = (1, 0, 0). Note that

J has a basis that contains 9 diagrams that have a red arc on both top and bottom

faces and one blue propagating line, so J2 = 0. Also when δ2
1 = 1, we can take J to

be the two-sided ideal that is generated by the element u(2,y,y) − u(1,y,y)u(2,y,y) where

y = (1, 1, 1), which is 5-dimensional vector space and J2 = 0.

Similarly, when δ1(δ2
0 − 1) = 0, the algebra A2 is not semi-simple. Thus the

algebra T3,2 is not semi-simple when δ0δ1(δ2
0 − 1)(δ2

1 − 1) = 0.

Let T+
n,2(δ̆) be the subspace of Tn,2(δ̆) that is spanned by all the diagrams in

Tn,2 which have an even number of blue-nodes on the top face. Since making an arc

needs two nodes on the same face, thus the number of blue-nodes on the bottom

face of the diagrams in T+
n,2(δ̆) will be also an even number. The composition of two

diagrams in Tn,2(δ̆) does not change the number of blue-nodes on top face of the first

diagram, then T+
n,2(δ̆) is an algebra with an identity equal to the sum of all coloured

images of id ∈ Sn that have an even number of blue-propagating lines. Similarly,

define T−n,2(δ̆) to be the subspace of Tn,2(δ̆) that is spanned by all the diagrams in

Tn,2 which have an odd number of blue-nodes on the top face. Also, T−n,2(δ̆) is an

algebra with identity equal to the sum of all coloured images of id ∈ Sn that have

an odd number of blue-propagating lines.
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Lemma 5.11. For any n ≥ 1, we have

Tn,2(δ̆) = T+
n,2(δ̆)⊕ T−n,2(δ̆), (5.10)

as an algebra.

Proof. This come from the fact any diagram in Tn,2 will have an even number or an

odd number of blue-nodes on the top face, a diagram which have an even number of

blue-nodes will be contained in T+
n,2(δ̆) and the diagrams that have an odd number

of blue-nodes are in T−n,2(δ̆), so Tn,2(δ̆) = T+
n,2(δ̆) + T−n,2(δ̆). Furthermore, it is clear

that T+
n,2(δ̆) ∩ T−n,2(δ̆) is zero and the product of any two diagrams from T+

n,2(δ̆) and

T−n,2(δ̆) respectively will be zero.

It is obvious that the algebra T+
n,2(δ̆) is a cellular with the same cell modules

∆n(λ0, λ1) of the algebra Tn,2(δ̆) such that λ1 is an even number. Similarly, the

algebra T−n,2(δ̆) is cellular with cell modules ∆n(λ0, λ1) such that λ1 is an odd number.

As consequence of the last lemma, to study the representations of the algebra

Tn,2(δ̆), it is enough to study the representations of the algebras T+
n,2(δ̆) and T−n,2(δ̆).

5.4 Further properties of cell modules of Tn,m

As for the Temperley-Lieb algebra, a basis of ∆n(λ) is the set that contains

all ((λ0 + 2p0, p0), . . . , (λm−1 + 2pm−1, pm−1))-link states where p0, . . . , pm−1 are non-

negative integers such that
∑
j∈Zm

(λj + 2pj) = n.

Definition 5.12. Let a = |D〉 ∈ ∆n(λ) for some D ∈ Tn,m[λ]. The distribution of

the colours of a is the set top(D). This set will be denoted by top(a).

Let a be a
(
(λj + 2pj, pj)

)
j∈Zm

-link state and b be a
(
(λj + 2p′j, p

′
j)
)
j∈Zm

-link state

where
∑
j∈Zm

pj =
∑
j∈Zm

p′j. It is evident that 〈a, b〉 = 0 unless pj = p′j for each j and

the distributions of the colours of a and b are same.
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Each ((n0, p0), . . . , (nm−1, pm−1))-link state determines a collection of (nj, pj)-link

states as they are defined in Section 1.8.2, where each j represents the colour Cj, by

omitting all the parts that have colour not Cj.

Example 5.12.1. Take α to be the following ((3, 1), (2, 0), (4, 1))-link state:

,

so α can be considered as a collection of the following link states:

, , .

Let a and b be
(
(nj, pj)

)
j∈Zm

-link states with the same distribution of colours,

and aj be the (nj, pj)-link state which is obtained from a by omitting all the parts

that have colour not Cj. Similarly, we define bj. From the graphical visualization of

the product on the algebra Tn,m, we obtain

〈a, b〉 = 〈a0, b0〉n0,p0,δ0 × · · · × 〈am−1, bm−1〉nm−1,pm−1,δm−1 , (5.11)

where 〈aj, bj〉nj ,pj ,δj denotes the standard bilinear form on Vnj ,pj as TLnj(δj)-module,

see Section 1.8.2.

Note that distribution of colours, if it matches up, does not play any rule. In

other words, if a, b, c and d be
(
(nj, pj)

)
j∈Zm

-link states such that aj = cj and bj = dj,

then 〈a, b〉 = 〈c, d〉 if top(a) = top(b) and top(c) = top(d). Note that a and c may

have different distributions of colours. Actually, if they have the same distribution,

then a = c. For example,

= δ1 = .

The next step is the computation of dim ∆n(λ) for all λ ∈ ΛTn,m .

Proposition 5.13. 1. If
∑
j∈Zm

λj = n, then dim ∆n(λ) = nλ :=
(

n
λ0,...,λm−1

)
.
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2. If
∑
j∈Zm

λj = n− 2v for some v ∈ {1, . . . , [n/2]}, then dim ∆n(λ) is given by the

formula

n!
∏
j∈Zm

(λj + 1)

(n+m)!

∑
u∈Γ(v,m)

(
n+m

u0, λ0 + u0 + 1, . . . , um−1, λm−1 + um−1 + 1

)
.

Proof. The first statement can be proved by using the fact that the dimension of

∆n(λ) is just the number of different permutations of n objects where there are λj

objects that have the colour Cj for all j, which is equal to the multinomial coefficient

nλ, see for example Theorem 4.3 in [34].

When
∑
j∈Zm

λj = n− 2v, the basis elements of ∆n(λ) are
(
(λj + 2uj, uj)

)
j∈Zm

- link

states where
∑
uj = v. We compute dim ∆n(λ) in three steps. First choose natural

numbers u0, . . . , um−1 such that
∑
uj = v, then distribute λj + 2uj nodes of the

colour Cj for all j on a line. There are nλ+2u different distributions of these nodes.

Each distribution makes
∏
j∈Zm

dλj+2uj ,uj different
(
(λj+2uj, uj)

)
j∈Zm

- link states, since

each
(
(λj + 2uj, uj)

)
j∈Zm

- link state can be considered as a collection that contains

a (λj + 2uj, uj)- link state for each j and the number of different (λj + 2uj, uj)- link

states is dimVλJ+2uj ,uj = dλj+2uj ,uj , see equation (1.18). So

dim ∆n(λ) =
∑

u∈Γ(v,m)

nλ+2u

∏
j∈Zm

dλj+2uj ,uj . (5.12)

From the definition of dλj+2uj ,uj , we obtain the dimension of ∆n(λ) is equal to

∑
u∈Γ(v,m)

n!∏m−1
j=0 (λj + 2uj)!

∏
j∈Zm

(λj + 2uj)!(λj + 1)

uj!(λj + uj + 1)!
=

n!
∏
j∈Zm

(λj + 1)

(n+m)!

∑
u∈Γ(v,m)

(
n+m

u0, λ0 + u0 + 1, . . . , um−1, λm−1 + um−1 + 1

)
.

Corollary 5.14. Let m = 2, then

dim ∆n(λ0, λ1) =
n!(λ0 + 1)(λ1 + 1)

(λ0 + v + 1)!(λ1 + v + 1)!

(
n+ 2

v

)
,

where λ0 + λ1 = n− 2v for some v. Therefore, dim ∆n(λ0, λ1) = dim ∆n(λ1, λ0).



Chapter 5. Representation theory of the algebra Tn,m 111

Proof. From the previous proposition, the dimension of ∆n(λ0, λ1) equals

n!(λ0 + 1)(λ1 + 1)
v∑

u0=0

1

u0!(λ0 + u0 + 1)!(v − u0)!(λ1 + v − u0 + 1)!
=

n!(λ0 + 1)(λ1 + 1)

(λ0 + v + 1)!(λ1 + v + 1)!

v∑
u0=0

(
λ0 + v + 1

v − u0

)(
λ1 + v + 1

u0

)
,

by using Chu-Vandermonde identity
(
x+a
v

)
=

v∑
k=0

(
x
k

)(
a

v−k

)
, see for example Theorem

4.2 in [34], we obtain

dim ∆n(λ0, λ1) =
n!(λ0 + 1)(λ1 + 1)

(λ0 + v + 1)!(λ1 + v + 1)!

(
n+ 2

v

)
.

5.5 Idempotent localization

In this section we compute the radical and Gram matrix of each cell module

∆n(λ) where λ ∈ ΛTn,m .

Lemma 5.15. [28, Lemma 3.1.6]. Let λ ∈ ΛTn,m and µ ∈ Γ(n,m), then

1µ∆n(λ) ∼=



m−1⊗
j=0

Vµj ,tj if µj − λj = 2tj for each j

for some tj ∈ N,

0 otherwise,

(5.13)

as 1µTn,m1µ-module, where µ is defined by the relation 2.26 and the modules Vµj ,tj

are the cell modules of TLµj(δj), see (1.17).

Remark 5.16. As it is mentioned before in the end of Chapter 2, for any µ ∈ Γ(n,m)

the algebras
m−1⊗
i=0

TLµi(δi) and 1µTn,m(δ̆)1µ are isomorphic with a map sending any

tuple of diagrams in
m−1⊗
i=0

TLµi(δi) to the diagram in 1µTn,m(δ̆)1µ formed by drawing

these diagrams in one frame one by one using different colours such that the diagram

from TLµi(δi) is drawn in the colour Ci. Similarly, if Vµ0,p0 , . . . ,Vµm−1,pm−1 are cell

modules for the algebras TLµ0(δ0), . . . ,TLµm−1(δm−1) respectively, then elements of

the module
m−1⊗
i=0

Vµi,pi can be represented by
(
(µi, pi)

)
i∈Zm

- link states by using the
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same map which it is the same isomorphism that was used in the previous lemma.

For example, see figure 5.3.

Important convention : whenever we write
m−1⊗
i=0

Vµi,pi or
m−1⊗
i=0

Mi where Mi is a

sub-module or quotient module of Vµi,pi , we mean their image in 1µ∆n(λ) under the

isomorphism in Remark 5.16.

Figure 5.3: Illustration of a map from V3,1 ⊗ V2,1 to 1(0,0,0,1,1)∆5(1, 0)

The conclusion of the next theorem is the same as Jegan [28] made in Lemma

3.2.10 and our proofs are closely related.

Theorem 5.17. Let Gn(λ) denote the Gram matrix of the module ∆n(λ) of the

inner product that defined by (5.9) and with respect to the half-diagrams basis. If∑
j∈Zm

λj = n− 2v for some v, then

Gn(λ) =
⊕

u∈Γ(v,m)

nλ+2u⊕
Gλ0+2u0,u0,δ0 ⊗ · · · ⊗ Gλm−1+2um−1,um−1,δm−1 ,

where Gλj+2uj ,uj ,δj is the Gram matrix of the cell TLλj+2uj(δj)-module Vλj+2uj ,uj with

a specific bilinear form and half-diagrams basis.

Proof. To compute the Gram matrix of the module ∆n(λ), note that the inner prod-

uct will be zero if the two link states have a different distribution or a different

number of coloured points. Also the value of the inner product does not depend on

the distribution of colour as long the two links states have the same distribution, so

Gn(λ) =
⊕

u∈Γ(v,m)

nλ+2u⊕
Au0,...,um−1 ,
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where Au0,...,um−1 a matrix computed by using all the
(
(λj + 2uj, uj)

)
j∈Zm

-link states

that have the following distribution of colour:

( 0, . . . , 0︸ ︷︷ ︸
λ0+2u0 times

, 1, . . . , 1︸ ︷︷ ︸
λ1+2u+1 times

, . . . ,m− 1, . . . ,m− 1︸ ︷︷ ︸
λm−1+2um−1 times

).

From equation (5.11), we have Au0,...,um−1 = Gλ0+2u0,u0,δ0⊗· · ·⊗Gλm−1+2um−1,um−1,δm−1 .

Example 5.17.1. Let n = 7, m = 3 and λ = (1, 0, 2). From the previous theorem,

we obtain

G7(1, 0, 2) =

( 21⊕
G5,2,δ0

)
⊕
( 105⊕

G4,2,δ1

)
⊕
( 210⊕

δ1G3,1,δ0

)
⊕( 7⊕

G6,2,δ2

)
⊕
( 35⊕

G3,1,δ0 ⊗ G4,1,δ2

)
⊕
( 105⊕

δ1G4,1,δ2

)
.

Example 5.17.2. Let
∑
j

λj = n. From the last theorem we have Gn(λ) =
⊕nλ(1) =

Inλ×nλ, where Inλ×nλ is the identity matrix, so the module ∆n(λ) is simple whenever∑
j

λj = n. Also when
∑
j

λj = n− 2, then

Gn(λ) =
m−1⊕
i=0

n(λ0,...,λi−1,λi+2,λi+1,...,λm−1
)⊕
Gλi+2,1,δi .

The following corollaries are immediate consequences.

Corollary 5.18. [28, Lemma 3.2.12]. The determinant of Gram matrix is

detGn(λ) =
∏

u∈Γ(v,m)

(
m−1∏
j=0

(detGλj+2uj ,uj ,δj)
d−1
λj+2uj,uj

)(
∏m−1
j=0 dλj+2uj,uj

)·nλ+2u

,

for each λ ∈ Γ(n−2v,m), where dλj+2uj ,uj is defined by (1.18) and nµ :=
(

n
µ0,...,µm−1

)
for

each µ ∈ Γ(n,m).

Proof. By using relations (1.6), (1.8) and Theorem 5.17, we obtain this formula.



Chapter 5. Representation theory of the algebra Tn,m 114

The previous result shows that detGn(λ) 6= 0 if and only if detGλj+2uj ,uj ,δj 6= 0

for all j ∈ Zm and all u ∈ Γ(v,m), then the following fact is straightforward, which is

a generalization of Proposition 6 in [23].

Corollary 5.19. Let δj = qj + q−1
j 6= 0 for all j ∈ Zm. If qj is not a root of unity

for any j, then the algebra Tn,m(δ̆) is semi-simple algebra and the modules ∆n(λ),

where λ ∈ ΛTn,m =
[n/2]⋃
v=0

Γ(n−2v,m), form a complete set of non-isomorphic irreducible

modules of Tn,m, and the algebra Tn,m(δ̆) decomposes as

Tn,m(δ̆) ∼=
⊕

λ∈ΛTn,m

dim ∆n(λ)⊕
∆n(λ),

as a left module.

Proof. The proof comes directly from Corollary 5.18, Theorems 1.29 and 1.14 since

the algebra Tn,m is a cellular algebra. The last statement appears as consequence of

Wedderburn’s theorem (see for example Theorem 1.3.5 in [3]).

Proposition 5.20. The head of the module ∆n(λ) where λ ∈ Γ(n−2v,m) for some v

such that λ ∈ Λ0
Tn,m, denoted by Ln(λ), satisfies the relation

dim Ln(λ) =
∑

u∈Γ(v,m)

nλ+2u

m−1∏
i=0

dim Lλi+2ui,ui,δi , (5.14)

where Lλi+2ui,ui,δi is the head of the TLλi+2ui(δi)-module Vλi+2ui,ui.

Proof. This follows from the fact that dim Ln(λ) = rank(Gn(λ)) as the algebra is over

a field and λ ∈ Λ0
Tn,m , see Section 1.5. From Theorem 5.17 and the relations (1.5)

and (1.7), we obtain

rank(Gn(λ)) =
∑

u∈Γ(v,m)

nλ+2u

m−1∏
i=0

rank(Gλi+2ui,ui,δi).
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On the other hand, we also have rank(Gλi+2ui,ui,δi) = dim Lλi+2ui,ui,δi for each i, thus

dim Ln(λ) =
∑

u∈Γ(v,m)

nλ+2u

m−1∏
i=0

dim Lλi+2ui,ui,δi .

Corollary 5.21. The module Ln(λ) decomposes as

⊕
u∈Γ(v,m)

nλ+2u⊕
Lλ0+2u0,u0,δ0 ⊗ · · · ⊗ Lλm−1+2um−1,um−1,δm−1 ,

as a vector space, where λ ∈ Γ(n−2v,m) for some v such that λ ∈ Λ0
Tn,m.

Proof. It comes directly from the fact that any two vector spaces which have the

same dimension are isomorphic, and by the last proposition they have the same

dimension.

Lemma 5.22. Let (λ0, λ1) ∈ Λ0
Tn,2. The dimensions of Rad(∆n(λ0, λ1)) is

∑
u∈Γ(v,2)

nλ+2u

(
dimRλ0+2u0,u0,δ0 dimVλ1+2u1,u1 + dimVλ0+2u0,u0 dimRλ1+2u1,u1,δ1

− dimRλ0+2u0,u0,δ0 dimRλ1+2u1,u1,δ1

)
,

where λ ∈ Γ(n−2v,2) and Rλi+2ui,ui,δi is the radical of the TLλi+2ui(δi)-module Vλi+2ui,ui.

Proof. Since dim Rad(∆n(λ)) = dim ∆n(λ) − dim Ln(λ), from equations (5.12) and

(5.14) we obtain that dim Rad(∆n(λ)) equals

∑
u∈Γ(v,2)

nλ+2u dimVλ0+2u0,u0 dimVλ1+2u1,u1 −
∑

u∈Γ(v,2)

nλ+2u

1∏
i=0

dim Lλi+2ui,ui,δi .

But dim Ln,p,δ = dimVn,p − dimRn,p,δ, so dim Rad(∆n(λ)) is

∑
u∈Γ(v,2)

nλ+2u

(
dimRλ0+2u0,u0,δ0 dimVλ1+2u1,u1 + dimVλ0+2u0,u0 dimRλ1+2u1,u1,δ1

− dimRλ0+2u0,u0,δ0 dimRλ1+2u1,u1,δ1

)
.
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Theorem 5.23. Let λ ∈ Γ(n−2v,2) for some v such that λ ∈ Λ0
Tn,2. Then the radical

Rad(∆n(λ0, λ1)) decomposes as

⊕
u∈Γ(v,2)

nλ+2u⊕ (
Rλ0+2u0,u0,δ0 ⊗ Vλ1+2u1,u1 + Vλ0+2u0,u0 ⊗ Rλ1+2u1,u1,δ1

)
,

as a vector space, and it is equal to

∑
u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Rλ0+2u0,u0,δ0 ⊗ Vλ1+2u1,u1 + Vλ0+2u0,u0 ⊗ Rλ1+2u1,u1,δ1

)
.

For the definition of Ŝn,2 see equation (3.5). Remember by Rλ0+2u0,u0,δ0 ⊗ Vλ1+2u1,u1

and Vλ0+2u0,u0 ⊗ Rλ1+2u1,u1,δ1 we mean their images in 1λ+2u∆n(λ), see Remark 5.16.

Proof. First part comes directly from the last lemma, since they have the same dimen-

sion, note that (Rλ0+2u0,u0,δ0⊗Vλ1+2u1,u1)∩ (Vλ0+2u0,u0⊗Rλ1+2u1,u1,δ1) = Rλ0+2u0,u0,δ0⊗

Rλ1+2u1,u1,δ1 .

Now we are going to prove the second part. Note that a basis elements of ∆n(λ)

are ((λ0 + 2u0, u0), (λ1 + 2u1, u1))-link states where u ∈ Γ(v,2). For fixed u ∈ Γ(v,2), all

link states that have the first λ0 + 2u0 nodes red and the following ones blue can be

obtained from Vλ0+2u0,u0⊗Vλ1+2u1,u1 , and any other ((λ0 +2u0, u0), (λ1 +2u1, u1))-link

state b with different colour distribution can be written in the form σa where a is

the link state with the same components as b and its top is ({1, . . . , λ0 + 2u0}, {1 +

λ0 + 2u0, . . . , n}), and σ ∈ Ŝn,2 is the coloured permutation that changing the colour

order of a to get the same colour distribution of b, then

∆n(λ) =
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Vλ0+2u0,u0 ⊗ Vλ1+2u1,u1

)
.

Let y be a ((λ0 +2u′0, u
′
0), (λ1 +2u′1, u

′
1))-link state for some u′ ∈ Γ(v,2), so from the

last equation we can assume that y = π(y0 ⊗ y1) for some π ∈ Ŝn,2 and yi is a (λi +

2u′i, u
′
i)-link state for each i. Let x be an element in σ

(
Rλ0+2u0,u0,δ0⊗Vλ1+2u1,u1

)
or in

σ
(
Vλ0+2u0,u0⊗Rλ1+2u1,u1,δ1

)
for some u ∈ Γ(v,2) and some σ ∈ Ŝn,2, so we can assume

that x = σ(x0⊗ x1) where x0 ∈ Rλ0+2u0,u0,δ0 or x1 ∈ Rλ1+2u1,u1,δ1 . If u 6= u′ or σ 6= π,
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this means the colour distributions of x and y are different, so from the definition

of the multiplication on Tn,m we have 〈y, x〉 = 0. On the other hand, if u = u′ and

σ = π, from equation (5.11) we have 〈y, x〉 = 〈y0, x0〉λ0+2u0,u0,δ0〈y1, x1〉λ1+2u1,u1,δ1 .

But xi ∈ Rλi+2ui,ui,δi for some i, so 〈yi, xi〉λi+2ui,ui,δi = 0 for some i. Hence 〈y, x〉 = 0

for each y ∈ ∆n(λ), so x ∈ Rad(∆n(λ)). Thus

∑
u

∑
σ

σ(Rλ0+2u0,u0,δ0 ⊗ Vλ1+2u1,u1 + Vλ0+2u0,u0 ⊗ Rλ1+2u1,u1,δ1 ) ⊆ Rad(∆n(λ)),

but both of them have the same dimension thus they are identical.

Example 5.23.1. Take F = C, n = 3 and λ = (1, 0), so there are two choices of u

which are (1, 0) and (0, 1). From equation (5.14), we obtain

dim L3(1, 0) = dim L3,1,δ0 + 3 dim L2,1,δ1 .

Let δ0 = −1 and δ1 = 0. From Corollary 1.35, we have dim L3,1,δ0 = 1 and

dim L2,1,δ1 = 0, thus dim L3(1, 0) = 1. Hence, dim Rad(∆3(1, 0)) = 5− 1 = 4. Also by

computing R3,1,δ0 and R2,1,δ1 and using the last theorem, we obtain that Rad(∆3(1, 0))

is spanned by the following elements:

Theorem 5.24. Let λ ∈ Γ(n−2v,m) for some v such that λ ∈ Λ0
Tn,m. Then

Rad(∆n(λ)) =
∑

u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
(
Rλ0+2u0,u0,δ0 ⊗ Vλ1+2u1,u1 ⊗ · · · ⊗ Vλm−1+2um−1,um−1

+ Vλ0+2u0,u0 ⊗ Rλ1+2u1,u1,δ1 ⊗ Vλ2+2u2,u2 ⊗ · · · ⊗ Vλm−1+2um−1,um−1+

· · ·+ Vλ0+2u0,u0 ⊗ · · · ⊗ Vλm−2+2um−2,um−2 ⊗ Rλm−1+2um−1,um−1,δm−1

)
.

For the definition of Ŝn,m see equation (3.5). Remember by the tensor product of the

modules in the last equation we mean their images in 1λ+2u∆n(λ), see Remark 5.16.

Proof. We can show that by using induction on m and Theorem 5.23.
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Corollary 5.25. Let λ ∈ Γ(n−2v,m) such that λ ∈ Λ0
Tn,m, then

Ln(λ) =
∑

u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
(
Lλ0+2u0,u0,δ0 ⊗ · · · ⊗ Lλm−1+2um−1,um−1,δm−1

)
.

By
m−1⊗
i=0

Lλi+2ui,ui,δi we mean its images in the module 1λ+2u∆n(λ) under the isomor-

phism in Remark 5.16.

Proof. As it is mentioned in Theorem 5.23, we have

∆n(λ) =
∑

u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
(
Vλ0+2u0,u0 ⊗ · · · ⊗ Vλm−1+2um−1,um−1

)
,

thus

Ln(λ) =

∑
u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
(
Vλ0+2u0,u0 ⊗ · · · ⊗ Vλm−1+2um−1,um−1

)
Rad(∆n(λ))

.

From the last theorem, we obtain Ln(λ) equals

∑
u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
( V0 ⊗ · · · ⊗ Vm−1

R0 ⊗ V1 ⊗ · · · ⊗ Vm−1 + · · ·+ V0 ⊗ · · · ⊗ Vm−2 ⊗ Rm−1

)
,

where we put Ri := Rλi+2ui,ui,δi and Vi := Vλi+2ui,ui for simplicity.

Let xi ∈ Lλi+2ui,ui,δi := Li for each i, so xi = ai + Ri for some ai ∈ Vi and from that

we have

m−1⊗
i=0

xi =
m−1⊗
i=0

ai + R0 ⊗ V1 ⊗ · · · ⊗ Vm−1 + · · ·+ V0 ⊗ · · · ⊗ Vm−2 ⊗ Rm−1,

it follows that

V0 ⊗ · · · ⊗ Vm−1

R0 ⊗ V1 ⊗ · · · ⊗ Vm−1 + · · ·+ V0 ⊗ · · · ⊗ Vm−2 ⊗ Rm−1

= L0 ⊗ · · · ⊗ Lm−1,

for each u ∈ Γ(v,m), and we are done.
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Example 5.25.1. Let δ2
0 = 1, δ2

1 = 2 and m = 2. For the dimension of some low

rank examples of the modules ∆n(λ) and their radicals over the complex field see table

5.1.

n \ λ (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1)

1 1 1
0 0

2 2 1 2 1
0 0 0 0

3 5 5 1 3
1 0 0 0

4 10 9 16 9
1 0 4 1

5 35 35 14 35
14 6 0 0

6 70 84 140 84
20 0 70 35

n \ λ (1, 2) (0, 3) (4, 0) (3, 1) (2, 2) (1, 3) (0, 4) (5, 0)

3 3 1
0 0

4 1 4 6 4 1
0 0 0 0 0

5 35 14 1
15 0 0

6 20 64 90 64 20
2 0 15 20 0

Table 5.1: The dimensions of some low rank examples of the modules ∆n(λ0, λ1)
and their radicals over the complex field when δ2

0 = 1 and δ2
1 = 2.

5.6 Homomorphisms between cell Tn,m-modules

It was shown in Theorem 5.19 that the algebra Tn,m(δ̆) is a semi-simple algebra

when qj is not root of unity and 0 6= qj + q−1
j = δj for each j ∈ Zm. Therefore in

what follows, it will be assumed that qj is a root of unity for some j, and let lj be

the minimal positive integer satisfying q
2lj
j = 1.

The first part of the next proposition is Lemma 4.1.1 in [28].
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Proposition 5.26. Let λ, µ ∈ ΛTn,m and θ : ∆n(λ) → ∆n(µ) be a homomorphism

defined by

θ(a) =
∑
i

αibi, (5.15)

where αi ∈ F, a ∈ T |〉n,m[λ] and bi ∈ T |〉n,m[µ] for each i. Then the following hold:

1. top(a) = top(bi) for each i.

2. µj = λj − 2tj, for some tj ∈ {0, . . . , [λj/2]}.

3. If δj is invertible and a contains an Cj-arc, then bi contains an Cj-arc in the

same position. This means that θ preserves arcs when δj 6= 0 for each j ∈ Zm.

Proof. Assume that λ ≤ µ where ≤ is the order from (5.8), which means λj ≥ µj

for all j ∈ Zm. Otherwise, the homomorphism θ will be zero, by Theorem 1.14 since

Tn,m is a cellular algebra.

As θ(xa) = xθ(a) for all x ∈ Tn,m, so we obtain

top(a) = top(bi),

for each bi in equation (5.15). We can show that by taking x = 1top(a).

From the previous relation, we have the number of Cj-nodes in a and bi are fixed for

each j and each i. Let a be a
(
(λj +2pj, pj)

)
j∈Zm

- link state where
m−1∑
j=0

(λj +2pj) = n,

then from previous explanation bi is a
(
(λj + 2pj, p

′
j)
)
j∈Zm

- link state. Since λj ≥ µj

for all j, so the number of arcs in bi is greater than or equals the number of arcs a of

each colour, so µj = λj + 2pj − 2p′j = λj − 2(p′j − pj), this means

µj = λj − 2tj,

for some tj ∈ {0, . . . , [λj/2]}.

Assume that a contains h arcs of the colour Cj and δj 6= 0. Take x ∈ Tn,m to

be the diagram defined as follows: top(x) = bot(x) = top(a) and if any two nodes
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k, l ∈ n are connected in a by a Cj-arc, then these nodes will also be connected in x

by a Cj-arc and k′, l′ will be connected by the same colour, otherwise the nodes will

be connected to their projection in the bottom row. Note that xa = δhj a, so

θ(a) = δ−hj
∑
i

αixbi =
∑
i

αibi.

The Cj-arcs on the top row will not be affected by the product, so they will be in xbi

in the same positions of a for each i.

Proposition 5.27. If δj is invertible for each j, then for each n and λ ∈ ΛTn,m

EndTn,m
(
∆n(λ)

) ∼= F. (5.16)

Proof. Let θ ∈ EndTn,m
(
∆n(λ)

)
and a ∈ T |〉n,m[λ] where θ(a) =

∑
l

αibi for some

bi ∈ T |〉n,m[λ]. Since δi is invertible for each i, by Proposition 5.26 the homomorphism

θ preserves each arc in a at the same position, then the unique choice for bi is a itself.

This implies to θ is diagonal. Take x be a diagram in Tn,m[λ] where |x〉 = b and

〈x| = a, so

θ(xa) = xθ(a) = x(αa) = α〈a, a〉b.

Since 〈a, a〉 6= 0, this implies to θ(b) = αb since xa = 〈a, a〉b, so all the entries of θ

are equal. In other words, θ corresponds to a scalar α ∈ F.

This implies that each module ∆n(λ) is indecomposable when δj 6= 0 for each j,

and if the algebra Tn,m(δ̆) is semi-simple then each module ∆n(λ) is simple.

Lemma 5.28. Let θ : ∆n(λ)→ ∆n(λ′) be a homomorphism where λ, λ′ ∈ ΛTn,m, then

θ is completely defined by the values θ(a) where a ∈ Xn(λ) :=
⊕

µ∈Γ(n,m)

1µT |〉n,m[λ], note

that Xn(λ) is the subset of T |〉n,m[λ] such that an element will be in Xn(λ) if its top

equals top(1µ) for some µ ∈ Γ(n,m). Furthermore, if
∑
i

λi = n, then θ is determined

by the image of |1λ〉.

Proof. Let b ∈ T |〉n,m[λ] and b 6∈ Xn(λ). There is an element x ∈ S∗n,m, the set of all

strictly planar diagrams whose propagating number equals n, such that xb ∈ Xn(λ),
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the diagram x is the map which reorders the nodes. Then θ(b) = x∗θ(xb) where x∗

is the reflection of x.

Defining a non-zero homomorphism between ∆n(λ) and ∆n(µ) depends on finding

scalars {αi} in equation (5.15), that satisfy the axiom

θ(xa) = xθ(a), (5.17)

for all x ∈ Tn,m and a ∈ Xn(λ), see Lemma 5.28.

5.6.1 The trivial case: only one parameter is a root of unity

In this subsection, it will be assumed that there is a unique element j ∈ Zm such

that q
2lj
j = 1 for some lj and the other parameters are generic. Without losing the

generality we can assume that j = 0.

Theorem 4.1.10 in [28] is the same as the next theorem when m = 2 but it has

been proved in different fashion.

Theorem 5.29. Let
∑
j

λj = n where λ0 ≥ 2, λ′ = (λ0 − 2, λ1, . . . , λm−1) and q0 is

the unique parameter that is a root of unity, then

HomTn,m(∆n(λ),∆n(λ′)) 6= 0

if and only if detGλ0,1,δ0 = 0.

Proof. Assume that θ : ∆n(λ)→ ∆n(λ′) be a homomorphism, so it could be defined

by θ(a) =
∑
i

αibi, where a ∈ T |〉n,m[λ] and bi ∈ T |〉n,m[λ′] for each i. From Proposition

5.26, bi is formed from a by connecting two C0-defects and top(a) = top(bi) for each

i.

Now, we need to find scalars αi that satisfy equation (5.17) for all x ∈ Tn,m.

If bot(x) 6= top(a), then xa = 0 and xbi = 0 for each i as top(a) = top(bi). So

the equation (5.17) is verified when bot(x) 6= top(a). Assume bot(x) = top(a)
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and #(x) ≤ n − 4, this implies to xa = 0 = xbi because of #(xa) ≤ #(x) and

#(xbi) < #(x). So the equation (5.17) holds for all scalars in this case.

There are only two possibilities to check #(x) = n or #(x) = n−2 with bot(x) =

top(a). Firstly, if #(x) = n, from the graphical visualization we have xa = |x〉. In

the other side, we have xbi obtained from |x〉 by connecting two C0-defects, which

the same definition of the terms in θ(|x〉). So the equation (5.17) also holds for all

scalars in this case.

Finally, if #(x) = n− 2 with bot(x) = top(a), then xa = 0 and xbi = 〈x||bi〉|x〉 ∈

∆n(λ′). Let bi,k be the link state obtained from bi by omitting all the parts that have

colour not Ck. Let y := |x〉. Thus bi,k and yk are (λk, 0)-link states when k 6= 0

and they are (λ0, 1)-link state when k = 0. Then 〈x||bi〉 = 〈y0, bi,0〉λ0,1,δ0 from (5.11).

Hence 0 =
∑
i

αi〈y0, bi,0〉λ0,1,δ0|x〉 since θ(xa) = 0, so
∑
i

αi〈y0, bi,0〉λ0,1,δ0 = 0. Thus

Gλ0,1,δ0


α1

...

αλ0

 =


0
...

0

 .

If detGλ0,1,δ0 = 0, so there is non-trivial solution for previous equation, this means

that there is a non-zero homomorphism between ∆n(λ) and ∆n(λ′). Otherwise, θ

will be zero.

Let λ′ = (λ0 − 2t, λ1, . . . , λm−1) and θ : ∆n(λ) → ∆n(λ′) be a homomorphism

defined by equation (5.15), where
m−1∑
j=0

λj = n−2v and δj is invertible for each j. From

Proposition 5.26, θ
(
1µ∆n(λ)

)
⊆ 1µ∆n(λ′) for each µ ∈ Γ(n,m). Also from Lemma 5.15,

if 1µ∆n(λ) 6= 0 we have

1µ∆n(λ) ∼= Vµ0,p0 ⊗ · · · ⊗ Vµm−1,pm−1 , ( as 1µTn,m1µ − modules)
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where pj =
µj−λj

2
and Vµj ,pj is the cell module of TLµj(δj), defined by (1.17). In this

case, the homomorphism θ can be restricted to define a homomorphism

θµ : Vµ0,p0 ⊗ · · · ⊗ Vµm−1,pm−1 → Vµ0,p0+t ⊗ Vµ1,p1 ⊗ · · · ⊗ Vµm−1,pm−1 (5.18)

as
m−1⊗
i=0

TLµi(δi)-modules. Since δj is invertible for each j, the map θµ defines a homo-

morphism

fµ : Vµ0,p0 → Vµ0,p0+t (5.19)

that sends a0 to
∑
i

αibi,0, where a0 is the (µ0, p0)-link state which is obtained from

a ∈ 1µT |〉n,m[λ] by omitting all the parts that have colour not C0. Similarly, we define

bi,0.

The proof fµ is a homomorphism is not difficult, since the action of x ∈ TLµ0(δ0)

on a0 ∈ Vµ0,p0+t is the same action of the diagram Iµm−1

m−1 ◦ · · · ◦ I
µ1
1 (x) on a, where

Iµjj (w) is defined to be w except with more µj defects in the rightmost part of the

colour Cj, and considering that x has the colour C0. One part of the next theorem is

contained in Theorem 6.2.2 in [28].

Theorem 5.30. Let δj be invertible for each j, λ′ = (λ0 − 2t, λ1, . . . , λm−1) where
m−1∑
j=0

λj = n, λ0 > 2t and CharF = 0, then

dim HomTn,m(∆n(λ),∆n(λ′)) =


1 if l0 > t > 0 and

λ0 − t+ 1 = 0 (mod l0),

0 otherwise.

(5.20)

Proof. We are going to show that

dim HomTn,m(∆n(λ),∆n(λ′)) = dim HomTLλ0 (δ0)(Vλ0,0,Vλ0,t),

by finding a bijection between them and then the rest follows from Lemma 1.30. Let

τ : HomTn,m(∆n(λ),∆n(λ′))→ HomTLλ0 (δ0)(Vλ0,0,Vλ0,t)
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and

σ : HomTLλ0 (δ0)(Vλ0,0,Vλ0,t)→ HomTn,m(∆n(λ),∆n(λ′))

be maps, τ(θ) and σ(f) defined as follows, where f ∈ Hom(Vλ0,0,Vλ0,t) and θ ∈

Hom(∆n(λ),∆n(λ′)).

From Lemma 5.28, the map θ can be determined by the value θ(|1λ〉) :=
∑
i

αibi.

But from what we showed in the paragraph before this theorem, θ defines a homo-

morphism fλ : Vλ0,0 → Vλ0,t which defined by

|1TLλ0
〉 7→

∑
i

αibi,0.

Take τ(θ) = fλ. It is clear that θ = 0 if and only if αi = 0 for each i and this happens

if and only if fλ = 0. Thus the map τ is injective.

Now let f : Vλ0,0 → Vλ0,t be a homomorphism defined by f(|1TLλ0
〉) =

∑
i

αivi

where vi is (λ0, t)-link state for each i. This homomorphism can be used to define a

homomorphism σ(f) (or simply σf ) from ∆n(λ) to ∆n(λ′) which defined by

σf (|1λ〉) =
∑
i

αiIλm−1

m−1 ◦ · · · ◦ Iλ11 (vC0,i),

where vC0,i is the diagram of shape vi with all its nodes have the colour C0, and Iλjj (w)

is defined to be the same diagram except with more λj defects in the rightmost part

of the colour Cj.

We need only to prove that σf is well-defined, i.e. if y|1λ〉 = 0 where y ∈ Tn,m,

then also yσf (|1λ〉) = 0. Let y|1λ〉 = 0 for some y. If bot(y) 6= λ̃(see equations (2.17)

and (2.26)) or #j(y) 6= λj for some j 6= 0 or #0(y) < λ0 − 2t, it is clear that the

product will be zero in both of them. Assume that bot(y) = λ̃, #j(y) = λj for all

j 6= 0 and λ0 > #0(xy) ≥ λ0 − 2t(note that y|1λ〉 still equals zero), since top(y) and

arcs in the top half of y don’t have any effect on the product, without losing the

generality we can assume that y = Iλm−1

m−1 ◦ · · · ◦ Iλ11 (d) for some d ∈ Tλ0,m where all
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the bottom nodes in d have the colour C0. Assume that that yσf (|1λ〉) 6= 0. So

yσf (|1λ〉) =
∑
i

αi〈d, vi〉λ0,t,δ0I
λm−1

m−1 ◦ · · · ◦ Iλ11 (dvC0,i).

Now in both sides of last equation, there are λj propagating lines of the colour Cj for

each j 6= 0, by omitting all of them and then ignoring the colours, we obtain

df(|1TLλ0
〉) =

∑
i

αi〈d, vi〉λ0,t,δ0dvi 6= 0,

But this a contradiction with the fact f is a homomorphism. Thus σf is well-defined.

Finally from the previous details, it is clear that τ(σf ) = f , we are done.

Corollary 5.31. Let δj is invertible for each j, λ′ = (λ0 − 2t, λ1, . . . , λm−1) where
m−1∑
j=0

λj = n − 2v for some v, λ0 > 2t and CharF = 0, then there is a non-trivial

homomorphism

θ : ∆n(λ) −→ ∆n(λ′)

if and only if λ0 − t+ 1 = 0 (mod l0) with l0 > t > 0.

Proof. Since the algebra Tn,m is a tower of recollement (Jegan [28] showed that in

Chapter 2), we have

dim Hom(∆n(λ),∆n(λ′)) = dim Hom(∆n−2v(λ),∆n−2v(λ
′)),

see Theorem 2.1.27 in [28], and the rest follows directly from the previous theorem.

The next theorem is a positive characteristic version of the previous ones.

Theorem 5.32. Let δj is invertible for each j, λ′ = (λ0 − 2t, λ1, . . . , λm−1) where
m−1∑
j=0

λj = n− 2v and CharF = p, then there is a non-trivial homomorphism

θ : ∆n(λ) −→ ∆n(λ′)
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if and only if λ0 − t+ 1 = 0 (mod l0p
j) for some non-negative integer j with l0p

j >

t ≥ 0.

Proof. The proof is the same proof as that of Theorem 5.30 and the previous corollary

replacing Lemma 1.30 by Theorem 1.32 .

5.6.2 The general case: several parameters are roots of unity

Let λ ∈ Γ(n−2v,m) for some v, and θ : ∆n(λ) → ∆n(λ− 2t) be a homomorphism,

where λ− 2t = (λ0 − 2t0, . . . , λm−1 − 2tm−1). The homomorphism θ will be non-zero

if and only if there is µ ∈ Γ(n,m) of the form µ = λ + 2p for some p ∈ Γ(v,m) such

that θ(1µ∆n(λ)) 6= {0}, see Lemma 5.28. From Lemma 5.15, we have 1µ∆n(λ) ∼=
m−1⊗
i=0

Vλi+2pi,pi . Thus we can restrict θ to define a non-trivial homomorphism

θµ :
m−1⊗
i=0

Vµi,pi −→
m−1⊗
i=0

Vµi,pi+ti .

Note that if δi 6= 0 for each i, so p does not have any important role since it is

corresponding to number of arcs which are actually preserved, see Proposition 5.26.

Furthermore, if we have a homomorphism from
m−1⊗
i=0

Vλi+2pi,pi to
m−1⊗
i=0

Vλi+2pi,pi+ti , we

can extend it to get a homomorphism from ∆n(λ) to ∆n(λ− 2t). Thus

HomTn,m(∆n(λ),∆n(λ− 2t)) = {0}

if and only if

Homm−1⊗
i=0

TLµi (δi)
(
m−1⊗
i=0

Vµi,pi ,
m−1⊗
i=0

Vµi,pi+ti) = {0}

for each p ∈ Γ(v,m).

Now, if there is a non-zero homomorphism fi ∈ HomTLµi (δi)
(Vµi,pi ,Vµi,pi+ti) for

each i, then ⊗fi ∈ Homm−1⊗
i=0

TLµi (δi)
(
m−1⊗
i=0

Vµi,pi ,
m−1⊗
i=0

Vµi,pi+ti) is also non-zero. From the

previous details we have the following propositions.
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Proposition 5.33. [28, Theorem 6.2.2]. Let δj is invertible for each j, λ′ = λ− 2t

where
m−1∑
j=0

λj = n − 2v for some v. Suppose there exist non-zero homomorphisms

from Vλi,0 to Vλi,ti as TLλi(δi)-modules for each i. Then there exists a non-trivial

homomorphism from ∆n(λ) to ∆n(λ′).

5.7 The ordinary representation theory of the al-

gebra Tn,m at roots of unity

Throughout this section we assume that F = C, δi = qi + q−1
i ∈ C for each i,

λ ∈ Λ0
Tn,m and at least one of the parameters is a root of unity other than ±1 (this

means δi 6= 0 for some i). We aim to compute the decomposition matrix of the

algebra Tn,m, then by using Theorem 1.14 the Cartan matrix for Tn,m can be found.

Proposition 5.34. Let λ ∈ Γ(n−2v,m) for some 0 ≤ v ≤ [n/2]. The module ∆n(λ) is

simple if and only if λi + 1 = 0 (mod li) whenever qi is a root of unity where i ∈ Zm.

Proof. If qi is not a root of unity for some i ∈ Zm, Proposition 1.29 implies to

Lλi+2ui,ui,δi = Vλi+2ui,ui for any u ∈ Γ(v,m). On the other hand, if qi is a root of unity

for some, recall that dim Lni,ui,δi = dimVni,ui whenever ni− 2ui + 1 = 0 (mod li), see

Corollary 1.35. Since (λi + 2ui) − 2ui + 1 = 0 (mod li), so Lλi+2ui,ui,δi = Vλi+2ui,ui .

Now, by substituting in equation (5.14) and then from equation (5.12), we obtain

dim Ln(λ) = dim ∆n(λ), we are done.

Lemma 5.35. Let
∑
λi = n− 2v, λ0 + t+ 1 = 0 (mod l0) where 0 < t < l0 and for

each i 6= 0 we have qi is not a root of unity or λi + 1 = 0 (mod li) when qi is a root

of unity, then

dim Rad(∆n(λ)) = dim Ln(λ0 + 2t, λ1, . . . , λm−1). (5.21)

If
m−1∑
i=0

λi + 2t > n, then dim Rad(∆n(λ)) = 0.
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Proof. When qi is not a root of unity or λi + 1 = 0 (mod li) when qi is a root of

unity, we have

Lλi+2ui,ui,δi = Vλi+2ui,ui

for any ui, see Proposition 1.29 and Corollary 1.35, thus dimRλi+2ui,ui,δi = 0 for i 6= 0.

Hence the dimension of Rad(∆n(λ)), from Theorem 5.24, is

∑
u∈Γ(v,m)

nλ+2u dimRλ0+2u0,u0,δ0

m−1∏
i=1

dim Lλi+2ui,ui,δi . (5.22)

Since λ0 + t+ 1 = 0 (mod l0), then we can assume that λ0 + t = kl0 + l0− 1 for some

k ∈ N. Hence

(λ0 + 2u0)− 2(u0) + 1 = kl0 + l0 − t,

so r(λ0+2u0,u0) = l0 − t since 0 < t < l0, see Proposition 1.36, for any u0. Thus from

the same proposition we obtain

dimRλ0+2u0,u0,δ0 =

 dim Lλ0+2u0,u0−t,δ0 if u0 − t ≥ 0,

0 otherwise.

Now if
m−1∑
i=0

λi + 2t > n, this happens when v < t, so u0 − t < 0. Thus from

the previous relation we have dimRλ0+2u0,u0,δ0 = 0 for any u0, from (5.22) we obtain

dim Rad(∆n(λ)) = 0. On the other hand, if
m−1∑
i=0

λi+2t ≤ n, thus dimRλ0+2u0,u0,δ0 6= 0

when t ≤ u0 ≤ v. By substituting in equation (5.22), we obtain

dim Rad(∆n(λ)) =
∑

u∈Γ(v,m),
t≤u0≤v

nλ+2u dim Lλ0+2u0,u0−t,δ0

m−1∏
i=1

dim Lλi+2ui,ui,δi ,

=
∑

x∈Γ(v−t,m)

nλ′+2x dim Lλ0+2t+2x0,x0,δ0

m−1∏
i=1

dim Lλi+2xi,xi,δi ,

= dim Ln(λ′),

from equation (5.14), where λ′ = (λ0 + 2t, λ1, . . . , λm−1).

Remark 5.36. The same happens when we change the colour in the previous lemma.

Let
∑
λi = n − 2v, λj + t + 1 = 0 (mod lj) where 0 < t < lj and for each i 6= j we
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have qi is not a root of unity or λi + 1 = 0 (mod li) when qi is a root of unity, then

dim Rad(∆n(λ)) = dim Ln(λ0, . . . , λj−1, λj + 2t, λj+1, . . . , λm−1),

If
∑
λi + 2t > n, then dim Rad(∆n(λ)) = 0.

Proposition 5.37. Let
∑
λi = n − 2v, λ0 + t + 1 = 0 (mod l0) where 0 < t < l0

and for each i 6= 0 we have qi is not a root of unity or λi + 1 = 0 (mod li) when qi

is a root of unity, then

Rad(∆n(λ)) ∼= Ln(λ0 + 2t, λ1, . . . , λm−1),

where
∑
λi + 2t ≤ n.

Proof. Let λ′ = (λ0 + 2t, λ1, . . . , λm−1). From Theorem 5.30, we have

Hom(∆n(λ′),∆n(λ)) 6= {0}.

Let Ψ : ∆n(λ′) → ∆n(λ) be a non-zero homomorphism. Its kernel is a proper sub-

module of ∆n(λ′) and since the radical of a cell module is a maximal sub-module, so

Ker Ψ ⊆ Rad(∆n(λ′)). Similarly, im Ψ ⊆ Rad(∆n(λ)). It follows that

dim Rad(∆n(λ)) ≥ dim im Ψ = dim ∆n(λ′)− dim Ker Ψ,

≥ dim ∆n(λ′)− dim Rad(∆n(λ′)),

= dim Ln(λ′). (5.23)

But dim Rad(∆n(λ)) = dim Ln(λ′) by Lemma 5.35, so dim im Ψ = dim Rad(∆n(λ))

and dim Ker Ψ = dim ∆n(λ′)−dim im Ψ = dim ∆n(λ′)−dim Ln(λ′) = dim Rad(∆n(λ′)).

Thus Ker Ψ = Rad(∆n(λ′)) and im Ψ = Rad(∆n(λ)), and by using the first isomor-

phism theorem(see for example Corollary 3.7.1 in [1]), the proof is concluded.

Similarly, we have Rad(∆n(λ)) ∼= Ln(λ′) whenever λj + t+ 1 = 0 (mod lj) and qi

is not a root of unity or λi + 1 = 0 (mod li) when qi is a root of unity for each i 6= j,

where 0 < t < lj,
∑
λi + 2t ≤ n and λ′ = (λ0, . . . , λj−1, λj + 2t, λj+1, . . . , λm−1).
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Lemma 5.38. Let λ0 + λ1 = n − 2v, λi + ti + 1 = 0 (mod li) where 0 < ti < li,

i = 0, 1, then dim Rad(∆n(λ0, λ1)) equals

dim Ln(λ0 + 2t0, λ1) + dim Ln(λ0, λ1 + 2t1)− dim Ln(λ+ 2t), (5.24)

where t = (t0, t1). Whenever x0 + x1 > n, we put dim Ln(x0, x1) = 0 for any x0, x1 ∈

N.

Proof. From Corollary 5.22, we have

dim Rad(∆n(λ)) = I1 + I2 − I3, (5.25)

where

I1 =
∑

u∈Γ(v,2)

nλ+2u dimRλ0+2u0,u0,δ0 · dimVλ1+2u1,u1 ,

I2 =
∑

u∈Γ(v,2)

nλ+2u dimVλ0+2u0,u0 · dimRλ1+2u1,u1,δ1 ,

and

I3 =
∑

u∈Γ(v,2)

nλ+2u dimRλ0+2u0,u0,δ0 · dimRλ1+2u1,u1,δ1 .

First, it will be shown that

I1 =



0 if
∑
i=0,1

λi + 2t0 > n,

dim Ln(λ0 + 2t0, λ1) if
∑
i=0,1

λi + 2t0 ≤ n

and
∑
i=0,1

(λi + 2ti) > n,

dim Ln(λ0 + 2t0, λ1) + dim Ln(λ+ 2t) if
∑
i=0,1

(λi + 2ti) ≤ n.

(5.26)

Now, since λi + ti + 1 = 0 (mod li), so we can assume that λi + ti = kili + li − 1 for

some ki ∈ N, so (λi + 2ui)− 2(ui) + 1 = kili + li− ti. From Proposition 1.36, for any
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ui we have

dimRλi+2ui,ui,δi =

 dim Lλi+2ui,ui−ti,δi if ui − ti ≥ 0,

0 otherwise.
(5.27)

Thus

I1 =
v∑

u0=t0

nλ+2u dim Lλ0+2u0,u0−t0,δ0 · dimVλ1+2u1,u1 ,

=
∑

x∈Γ(v−t0,2)

n(λ+2t0,λ1)+2x dim Lλ0+2t0+2x0,x0,δ0 · dimVλ1+2x1,x1 .

Now if λ0 + 2t0 + λ1 > n, clearly this happens when v − t0 < 0, so I1 = 0. On the

other hand, when λ0 + 2t0 + λ1 ≤ n, we have

I1 =
∑

x∈Γ(v−t0,2)

n(λ+2t0,λ1)+2x dim Lλ0+2t0+2x0,x0,δ0 ·
(

dim Lλ1+2x1,x1,δ1+

dimRλ1+2x1,x1,δ1

)
,

since dimVn,p = dim Ln,p,δ + dimRn,p,δ for any n, p and δ. Hence

I1 = dim Ln(λ′) +
∑

x∈Γ(v−t0,2)

nλ′+2x dim Lλ0+2t0+2x0,x0,δ0 dimRλ1+2x1,x1,δ1 ,

where λ′ = (λ0 + 2t0, λ1). From equation (5.27), we have

I1 = dim Ln(λ′) +

v−t0∑
x1=t1

nλ′+2x dim Lλ0+2t0+2x0,x0,δ0 dim Lλ1+2x1,x1−t1,δ1 ,

= dim Ln(λ′) +
∑

w∈Γ(v−t0−t1,2)

nλ+2t+2w dim Lλ0+2t0+2w0,w0,δ0 dim Lλ1+2t1+2w1,w1,δ1 .

If
∑

(λi + 2ti) > n, thus v − t0 − t1 < 0 and this implies to I1 = dim Ln(λ′). If∑
(λi + 2ti) ≤ n, so v − t0 − t1 ≥ 0, then I1 = dim Ln(λ′) + dim Ln(λ + 2t) by

Proposition 5.20.
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Similarly, we can prove that

I2 =



0 if
∑
i=0,1

λi + 2t1 > n,

dim Ln(λ0, λ1 + 2t1) if
∑
i=0,1

λi + 2t1 ≤ n

and
∑

(λi + 2ti) > n,

dim Ln(λ0, λ1 + 2t1) + dim Ln(λ+ 2t) if
∑
i=0,1

(λi + 2ti) ≤ n.

(5.28)

Finally, because of equation (5.27) we obtain

I3 =

v−t1∑
u0=t0

nλ+2u dim Lλ0+2u0,u0−t0,δ0 · dim Lλ1+2u1,u1−t1,δ1 .

Now, if
∑
i=0,1

(λi + 2ti) > n, this implies I3 = 0. If
∑
i=0,1

(λi + 2ti) ≤ n, we have

I3 =
∑

x∈Γ(v−t0−t1,2)

nλ+2t+2x dim Lλ0+2t0+2x0,x0,δ0 · dim Lλ1+2t1+2x1,x1,δ1 .

Hence

I3 =


dim Ln(λ+ 2t) if

∑
i=0,1

(λi + 2ti) ≤ n,

0 otherwise.

(5.29)

By substituting I1, I2 and I3 into (5.25), we obtain the formula (5.24).

Lemma 5.39. Let λ ∈ Γ(n−2v,m), 0 ≤ s < m, qi is not a root of unity or λi + 1 = 0

(mod li) when qi is a root of unity for each i > s, and λj + tj + 1 = 0 (mod lj) and

0 < tj < lj for each j ≤ s. Then

dim Rad(∆n(λ)) =
∑
λ′∈Ξ

dim Ln(λ′),

where Ξ = {λ′|λ′i = λi for each i > s and λ′j = λj or λ′j = λj + 2tj for each j ≤ s}.

We put Ln(λ′) = {0} whenever
∑
λ′i > n.
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Proof. When qi is not a root of unity or λi + 1 = 0 (mod li) when qi is a root of

unity, we have Lλi+2ui,ui,δi = Vλ1+2ui,ui for any ui, see Proposition 1.29 and Corollary

1.35, thus dimRλi+2ui,ui,δi = 0. Hence the dimension of Rad(∆n(λ)), from Theorem

5.24, is

∑
u∈Γ(v,m)

nλ+2u dim

(
R0 ⊗ V1 ⊗ · · · ⊗ Vs + V0 ⊗ R1 ⊗ V2 ⊗ · · · ⊗ Vs+

· · ·+ V0 ⊗ · · · ⊗ Vs−1 ⊗ Rs

) m−1∏
i=s+1

dim Li, (5.30)

where we put Vi = Vλi+2ui,ui , Ri = Rλi+2ui,ui,δi and Li = Lλi+2ui,ui,δi for simplicity

and nλ+2u comes from the different colour distributions that can be obtained from

V0 ⊗ · · · ⊗ Vi ⊗ Ri+1 ⊗ Vi+2 · · · ⊗ Vs. From Theorem 4.1 in [18], we have

dim
(
R0 ⊗ V1 ⊗ · · · ⊗ Vs + · · ·+ V0 ⊗ · · · ⊗ Vs−1 ⊗ Rs

)
=

s∑
i=0

(−1)iIi+1,

where

I1 =
s∑
i=0

dimRi
∏
j 6=i

dimVj,

I2 =
∑

0≤i,j≤s,i 6=j

dimRi dimRj
∏
k 6=i,j

dimVk,

...

Is =
s∏
i=0

dimRi.

Now, since dimVi = dimRi + dim Li, we obtain
s∑
i=0

(−1)iIi+1 =
s∑
i=0

I ′i+1, where

I ′1 =
s∑
i=0

dimRi
∏
j 6=i

dim Lj,
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I ′2 =
∑

0≤i,j≤s,i 6=j

dimRi dimRj
∏
k 6=i,j

dim Lk,

...

I ′s =
s∏
i=0

dimRi.

Since λi + ti + 1 = 0 (mod li) for each i ≤ s, then we can assume that λi + ti =

kili + li − 1 for some ki ∈ N. Hence form Proposition 1.36, for any ui we have

dimRλi+2ui,ui,δi =

 dim Lλi+2ui,ui−ti,δi if ui − ti ≥ 0,

0 otherwise.

By substituting by that in I ′j for each j and then in equation (5.30), we obtain the

formula dim Rad(∆n(λ)) =
∑
λ′∈Ξ

Ln(λ′). We are done.

As a consequence of Theorem 5.33 and Lemma 5.39, we can determine all the

simple modules that are included in the Loewy structure (see for example Section 5.1

in [2]) of any module ∆n(λ), where λ ∈ ΛTn,m , and the number of copies of each one

occurring in the Loewy structure. Next we are going to compute the Loewy length

and Loewy layers for each module.

Theorem 5.40. Let Tn,2(δ0, δ1) be the bubble algebra over the complex field and

λ0 + λ1 = n− 2v, λi + ti + 1 = 0 (mod li) where i = 0, 1 and 0 < ti < li, then

Ln(λ+ 2t) ↪→ Rad(∆n(λ))� Ln(λ0 + 2t0, λ1)⊕ Ln(λ0, λ1 + 2t1),

is an exact sequence, where t = (t0, t1). Whenever x0 + x1 > n, we put Ln(x0, x1) =

{0} for any x0, x1 ∈ N.

Proof. From Theorem 5.23, we know

Rad(∆n(λ)) =
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Vu1 + Vu0 ⊗ Ru1,1

)
,
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where Rui,i := Rλi+2ui,ui,δi and Vui := Vλi+2ui,ui . Define W1,W2 and W1,2 to be

W1 :=
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Vu1

)
, W2 :=

∑
u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Vu0 ⊗ Ru1,1

)
,

W1,2 :=
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Ru1,1

)
.

Note that Rad(∆n(λ)) = W1 + W2 and W1,2 = W1 ∩W2. To prove our theorem we

are going to show that Ln(λ + 2t) ∼= W1,2 and (W1 + W2)/W1,2
∼= Ln(λ0 + 2t0, λ1) ⊕

Ln(λ0, λ1 + 2t1).

First, we need to show thatW1 andW2 are sub-modules of the module Rad(∆n(λ)).

This implies to W1,2 is also sub-module. Let x = σ(a0 ⊗ a1) ∈ W1 where σ ∈ Ŝn,2,

a0 ∈ Ru0,0 and a1 is a link state in Vu1 for some u, and let D = (D0, D1) ∈ Tn,2. Since

Rad(∆n(λ)) = W1 + W2, so x and Dx is also contained in Rad(∆n(λ)). Without

losing the generality, we can assume Dx 6= 0, then from the graphical visualization

we have Dx = ζ
(
(D′0a0)⊗ (D′1a1)

)
for some ζ ∈ Ŝn,2 and D′i is the diagram Di after

ignoring the colour, for example see the next example. Note that there exists D1

such that D′1a1 will be not contained Ru′1,1 for some u′1 since δ1 6= 0(as Vu′1 6= Ru′1,1),

thus D′0a0 ∈ Ru′0,0 for some u′ ∈ Γ(v,2) since we can fix D′0 and change D′1, from this

we have Dx ∈ W1, this implies to W1 is a sub-module. Similarly, W2 is a sub-module

of Rad(∆n(λ)).

From Theorems 1.31 and 1.33, there is an TLλi+2ui(δi)-isomorphism

fui,i : Lλi+2ui,ui+ti,δi → Rui,i

since λi + ti + 1 = 0 (mod li) and 0 < ti < li for each u ∈ Γ(v,2). By using one

of these isomorphisms we can define a non-zero homomorphism from Ln(λ + 2t) to

W1,2 as follows: Fix u ∈ Γ(v,2) and fu0,0 and fu1,1. By using fu0,0 and fu1,1 we obtain

an TLλ0+2u0(δ0)⊗TLλ1+2u1(δ1)-module isomorphism fu0,0⊗ fu1,1 from Lu0,0⊗ Lu1,1 to

Ru0,0⊗Ru1,1, where Lui,i := Lλi+2ui,ui,δi . Hence we can define the map Ψ : Ln(λ+2t)→
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W1,2 to be the extension of fu0,0 ⊗ fu1,1 since Ln(λ + 2t) =
∑

w∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Lw0,0 ⊗

Lw1,1

)
. To prove that Ψ is a non-zero Tn,2-homomorphism, it is enough to show

that Ψ is well-defined, i.e. if D(a0 ⊗ a1) = 0 where D ∈ Tn,2 and ai ∈ Lui,i for

each i, then D(fu0,0(a0) ⊗ fu1,1(a1)) = 0. From the definitions of Ru0,0 ⊗ Ru1,1 and

Lu0,0 ⊗ Lu1,1, we have a0 ⊗ a1 and fu0,0(a0) ⊗ fu1,1(a1) have the same top which is

λ̃+ 2u. As the set top(D) and the arcs in top half of D don’t have any effect on

the product, so without losing the generality we can assume that D = D0 ⊗ D1

where Di ∈ TLλi+2ui . Hence the well-definedness of Ψ comes directly from the fact

fu0,0 ⊗ fu1,1 is an TLλ0+2u0(δ0)⊗ TLλ1+2u1(δ1)- module isomorphism, also Ψ is a non-

zero homomorphism since fui,i 6= 0 for each i.

Now as Ln(λ+ 2t) is a simple module and the fact that Ln(λ+ 2t) and W1,2 have the

same dimension, see Corollary 5.25 and Proposition 1.36, finally by using the first

isomorphism theorem we obtain that they are isomorphic.

Now since Rad(∆n(λ)) = W1 +W2 and W1,2 = W1 ∩W2 so it is clear that

W1 +W2

W1,2

∼=
W1

W1,2

⊕ W2

W1,2

.

Also

W1

W1,2

=

∑
u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Vu1

)
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Ru1,1

) ,
∼=

∑
u∈Γ(v,2)

∑
σ∈Ŝn,2

σ
(
Ru0,0 ⊗ Lu1,1

)
.

Now as we did to prove the isomorphism between W1,2 and Ln(λ+ 2t), we can show

that
∑

u∈Γ(v,2)

∑
σ∈Ŝn,2

σ Ru0,0 ⊗ Lui,i
∼= Ln(λ0 + 2t0, λ1). Similarly,

W2

W1,2

∼= Ln(λ0, λ1 + 2t1).

Example 5.40.1. Let δ0 = δ1 = 1. It is easy to show that (|u1〉− |u2〉) is an element

in the radical R3,1,δ0, so the element
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−

is contained in the radical Rad(∆6(1, 1)), since it is an element in σ
(
R3,1,δ0 ⊗ V3,1

)
for some σ ∈ Ŝ6,2. Also

(
−

)
=

(
−)

,

note that the element
−

is an element in R5,2,δ0.

Example 5.40.2. Let δ̆ = (0,
√

2), then l0 = 2 and l1 = 4 and the critical lines are

λ0 = 1, 3, 5, . . . and λ1 = 3, 7, . . . which are represented by coloured lines in figure

5.4. Also the arrows in the figure represent non-zero homomorphisms between the cell

modules that are indexed by the nodes in the figure. Two nodes will be in the same

block if and only if there is an arrow between them. Then decomposition matrix of

the algebra T6,2(0,
√

2) is



1 1 1 0 0

0 1 0 1 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1


⊕1 1

0 1

⊕


1 1 1 0 1

0 1 0 1 1

0 0 1 0 1

0 0 0 1 0

0 0 0 0 1


⊕ 4⊕

(1),

we order the basis as following {(0, 0), (2, 0), (0, 6), (4, 0), (6, 0), (1, 1), (1, 5), (0, 2), (2, 2),

(0, 4), (4, 2), (2, 4), (3, 1), (1, 3), (5, 1), (3, 3)}. Then by Theorem 1.14 the Cartan ma-

trix of T6,2(δ̆) is



1 1 1 0 0

1 2 1 1 0

1 1 2 0 0

0 1 0 2 1

0 0 0 1 2


⊕1 1

1 2

⊕


1 1 1 0 1

1 2 1 1 2

1 1 2 0 2

0 1 0 2 1

1 2 2 1 4


⊕ 4⊕

(1).
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Figure 5.4: The Bratteli diagram of the algebra T6,2(δ̆) when l0 = 2 and l1 = 4.

Next theorem is a generalization of last theorem in the case m > 2 with several

parameters roots of unity.

Theorem 5.41. Let Tn,m(δ̆) be the bubble algebra over the complex field and λ ∈

Γ(n−2v,m), 0 ≤ s < m. For each i > s, suppose either qi is not a root of unity or

λi+1 = 0 (mod li) when qi is a root of unity, and for each j ≤ s we have λj+tj+1 = 0

(mod lj) and 0 < tj < lj. Then the length of the radical series of ∆n(λ) is less than

or equal to s+ 1, and the radical layers are

Radk(∆n(λ))/Radk+1(∆n(λ)) ∼=
⊕
λ′∈Ξk

Ln(λ′),

where Ξk = {λ′| there are exactly k values of j where 0 ≤ j ≤ s such that λ′j = λj +

2tj and for the other values we have λ′i = λi} and 0 ≤ k ≤ s + 1. We put Ln(λ′) =

{0} whenever
∑
λ′i > n.

Proof. From Theorem 5.24, we have

Rad(∆n(λ)) =
∑

u∈Γ(v,m)

∑
σ∈Ŝn,m

s∑
i=0

σ
(
V0 ⊗ · · · ⊗ Vi−1 ⊗ Ri ⊗ Vi+1 ⊗ · · · ⊗ Vm−1

)
,

where Ri := Rλi+2ui,ui,δi and Vi := Vλi+2ui,ui , since Ri = {0} for each i > s, see

Proposition 1.34.
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Define Wi, where 0 ≤ i ≤ s, to be

Wi =
∑

u∈Γ(v,m)

∑
σ∈Ŝn,m

σ
(
V0 ⊗ · · · ⊗ Vi−1 ⊗ Ri ⊗ Vi+1 ⊗ · · · ⊗ Vm−1

)
.

Note that Wi is a sub-module of Rad(∆n(λ)) for each i, the proof is similar to the

one in Theorem 5.40. Also define the modules Wi1,...,ik and W k, where 0 ≤ ih ≤ s for

each h and ih 6= ih′ for each h 6= h′ where k = 1, . . . , s+ 1, to be

Wi1,...,ik =
k⋂

h=1

Wih ,

W k =
∑

(i1,...,ik)

Wi1,...,ik .

Since Wi1,...,ik is an intersection of sub-modules, so Wi1,...,ik is also a sub-module and

from their definitions it is clear that
∑
ik

Wi1,...,ik ⊆ Wi1,...,ik−1
, thus W k ⊆ W k−1.

We are going to prove that Radk(∆n(λ)) = W k, by using induction where it is

clear that Rad(∆n(λ)) = W 1 and W k+1 ⊆ W k, we only need to show W k/W k+1 ∼=⊕
λ′∈Ξk

Ln(λ′):

W k

W k+1
=

∑
(i1,...,ik)

Wi1,...,ik∑
(j1,...,jk+1)

Wj1,...,jk+1

,

∼=
⊕

(i1,...,ik)

Wi1,...,ik∑
ik+1

Wi1,...,ik,ik+1

.

Without loss generality, we will just compute W0,...,k−1/(
s∑
i=k

W0,...,k−1,i) which equals

∑
u

∑
σ

σ
( k−1⊗
j=0

Rj ⊗
m−1⊗
h=k

Vh
)

s∑
i=k

∑
u

∑
σ

σ
( k−1⊗
j=0

Rj ⊗ Vk ⊗ · · · ⊗ Vi−1 ⊗ Ri ⊗ Vi+1 ⊗ · · · ⊗ Vm−1

) ,
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it is clear that it is isomorphic to

Z =
∑
u

∑
σ

σ
( k−1⊗

j=0

Rj ⊗
s⊗
l=k

Lh ⊗
m−1⊗
l=s+1

Vl
)
,

where Li := Lλi+2ui,ui,δi . Since Vl ∼= Ll for each l > s, see Corollary 1.35, and from

Theorems 1.31 and 1.33 there is a non-zero homomorphism from Lλi+2ti+2ui,ui,δi to

Rλi+2ui,ui,δi for each i > k. Hence we can define a non-zero homomorphism from

Ln(λ′) to Z, also we can show that they have the same dimension and Ln(λ′) is

simple, so they are isomorphic by using the first isomorphism theorem, where λ′ =

(λ0 + 2t0, . . . , λk−1 + 2tk−1, λk, . . . , λm−1). It is clear that λ′ ∈ Ξk and by taking all

the possibilities of the tuple (i1, . . . , ik) we will obtain all the elements in the set Ξk,

we are done.

Although it is not covered here, the work in thesis can be continued further by

attempting to compute the Cartan matrix of the algebra Tn,m(δ0, . . . , δm−1) over a

field with a positive characteristic.



Chapter 6

Conclusion

In this short final chapter, we summarise what has been achieved so far, and also

give some suggestions for further exploration of this topic.

We have determined the generic representation theory of the the multi-colour

partition algebra Pn,m over the complex field. In order to understand the represen-

tation theory of the algebra Pn,m over C, we have to study the representation theory

of the partition algebras. Also, it has been showed that the multi-colour symmetric

groupoid algebra is isomorphic to a generalized symmetric group algebra over C.

It was worth studying the representation theory of the Temperley-Lieb algebra

as it is closely tied to the representation theory of the bubble algebra. In Chapter 5,

we have studied the connection between the cell modules of both the algebra TLn(δ)

and the bubble algebra. Although the main results are over the complex field, but

many of them are still true over any field.

The relation between the representation theory of the algebras A and eAe, where

e is an idempotent, has been used a lot for example see [21], [41], [1] and [39]. Future

work lies on generalizing the technique that was used to study both the multi-colour

partition algebra and the bubble algebra. It should be possible to apply the same

technique if A is a cellular algebra with an orthogonal decomposition of the identity

providing that this decomposition satisfies the same conditions that exist in [53].
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