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Abstract

The goal of this research is using computationalmodels of decisionmaking, in
particular two models, the Drift Diffusion Model (DDM; Ratcliff & McKoon,
2008) and Pais et al. (2013) model, to provide insights in cognition and adaptive
decision making.
In the first part of this dissertation, we applied the Drift Diffusion Model to

three domains: cognition in Autism Spectrum Disorder (ASD), Task-Irrelevant
Perceptual Learning (TIPL) and Semantic Congruity Effect Research. Regard-
ingASD research, we show that differences in reaction times and accuracy in two-
alternative forced-choice tasks betweenASD subjects and controls, previously in-
terpreted as enhancements or impairments, are instead due to different decision
criteria and longer time to execute the motor response for ASD subjects. This
result has important consequences for clinical research in which differences in re-
sponse conservativeness andmotor response have been interpreted as differences
in information processing. In the third chapter, by applying the DDM, we show
that TIPL, learning to better discriminate a stimulus that is irrelevant to a task,
does not monolithically affect the sensitivity to the stimulus, but also affects the
decision criterion of subjects. Our results show that an analysis only based on ac-
curacy - that is the standard in the literature - could be potentially misleading in
the interpretation of learning data, since learning affects different components
of decision making, which have different effects on accuracy or reaction times.
In the fourth chapter, we perform a DDM decomposition of the semantic con-
gruity effect, the result that subjects are (i) faster in judging the bigger of two big
stimuli or the smaller of two small stimuli - as opposed to the bigger of two small
stimuli or the smaller of two big stimuli (ii) faster in determiningwhether a target
stimulus is bigger or smaller than a standard stimulus when the size of the two
stimuli coincides. Our DDM decomposition allows us to test different verbal
theories that have been proposed for the explanation of this phenomenon and to
show that this phenomenon arises as an increase in the rate at which subjects ac-
cumulate evidence in case of congruency between themagnitude of the standard
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stimulus and the magnitude of the target stimulus. In sum, in the first part of
this dissertation, our work shows the benefits of isolating the different cognitive
processes that are involved in decision making and the benefits of testing theo-
ries and generating conclusions from data by applying computational models of
choice.
In the second part of this dissertation, inspired by a model that describes de-

cision making in honeybees (Pais et al., 2013), we investigate a feature of deci-
sion making that arises from this model and that cannot be accounted for by a
whole family of computational models of choice, DDM included. The DDM,
as many other models of choice, disregards the information regarding the overall
magnitude of the alternatives, since it only focuses on the differences between al-
ternatives. In the fifth chapter, we argue from an evolutionary perspective why
we should expect decision making to take under consideration the magnitude
of alternatives and why this poses a challenge to some decision making models,
which are instead insensitive to such information. In the sixth chapter, we pro-
vide evidence for different species (humans and monkeys) and different domains
(perceptual decisionmaking and reward-based decisionmaking) for the existence
of magnitude sensitivity in decision making. In sum, in the second part of this
dissertation, a mechanism of a computational model of decision making in hon-
eybees, has led us to generate hypotheses in adaptive decision making and to the
understanding of the limitations of some computational models of choice.
Collectively, our work show the benefits of computational models of choice

in the analysis of data and in the generation of hypotheses.
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1
Introduction

The central topic of this dissertation is decision making: the selection of an op-

tion from a set of alternatives. In particular, we are interested in the cognitive

processes underlying a decision. Some real life examples of the decisions wemake

everyday include deciding what to buy at the supermarket, or deciding whether

an ambiguous stimulus represents a threat or not. In these situations, the deci-
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sionmaker is assumed to accumulate evidence for each alternative until a decision

is made in favour of one option (Gold & Shadlen, 2001). For the sake of simplic-

ity, especially mathematical simplicity, we - as most of the researchers in the field

- focus on a particular type of decision: choosing one alternative from a set of two

alternatives.

In order to investigate the cognitive processes underlying decision making, re-

searchers can use computational models of decision making. Such models for-

malisemathematically the contributionof each single process underlying a choice.

In this dissertation, we show the benefits of applying computationalmodels: dif-

ferently from verbal theories, computational models do not rely on inference,

but allow a better clarity and completeness, and make quantitative and logically

valid predictions about theories by simulating the cognitive process itself, mainly

through a computer program (Fum et al., 2007). The benefits of this approach

are clear if we consider, for example, the case of categorisation research, in which

conclusions based on verbal reasoning (which have influenced the research com-

munity for years) havebeenproven invalid once the theories havebeen formalised

mathematically and tested (for details see Busemeyer & Diederich, 2010). A fur-

ther important feature of computational models is that of serendipity and emer-

gence (O’Reilly &Munakata, 2000), meaning that computational models allow

a new understanding of phenomena that are not accessible otherwise.

The goal of this first chapter is to provide an introduction to the background

of our work and introduce some key concepts needed to understand our work.

Amore specific literature review is then presented within each chapter. The uni-
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fying theme of the thesis is the use of computational models of decision making

thatwe have used in order to test or generate hypotheses, howeverwe analyse het-

erogeneous domains, from perceptual judgement in Autism SpectrumDisorder

to adaptive decisionmaking inspired by the behaviour of honeybees. As a conse-

quence of the heterogeneity of the work, an extensive literature review presented

in one single introductory chapter would be an odd assortment of concepts of

little value.

This dissertation - except for the introductory and concluding chapters - is

based on five manuscripts that are either under review, in press or already pub-

lished.

The chapters of this dissertation, unless otherwise stated, are based on the fol-

lowing original publications:

Chapter 2: Pirrone, A., Dickinson, A., Gomez, R., Stafford, T., & Milne, E. (in

press). Understanding perceptual judgement in autism using the drift diffusion

model. Neuropsychology.

Chapter 3: Pirrone, A., & Stafford, T. (under review). A Drift Diffusion Model

decomposition of task-irrelevant perceptual learning.

Chapter 4: Pirrone, A., Marshall, J.A., & Stafford, T. (in preparation). A Drift

DiffusionModel account of the semantic congruity effect.

Chapter 5: Pirrone, A., Stafford, T., & Marshall, J. A. (2014). When natural se-

lection should optimize speed-accuracy trade-offs. Frontiers in neuroscience, 8.

Chapter 6: Pirrone, A., Azab, H., Hayden, B., Stafford, T., &Marshall, J.A. (un-

der review). Evidence for the speed-value trade-off: human andmonkey decision
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making is value sensitive.

1.1 The Drift DiffusionModel (DDM)

Perceptual decision making research investigates the process by which percep-

tual information is combined and guides our behaviour. In a classical experi-

ment in decision making, subjects are presented with a cloud of moving dots,

and they have to decide whether there is a coherent motion in the stimulus, usu-

ally towards‘left’ or ‘right’ (Ball & Sekuler, 1982; Shadlen &Newsome, 2001; Ho

et al., 2009). This - only apparently - simple task, defined as a RandomDotKine-

matogram (RDK), allows the experimenter to investigate important features of

perceptual decisionmaking. For example, the experimenter can vary the percent-

age of dots moving coherently in one direction, and investigate how the perfor-

mance of subjects is affected when the difficulty (i.e., the percentage of dots mov-

ing coherently) varies. Furthermore, the experimenter can vary the instruction of

the experiment, for example by asking a group of subjects to be as fast as possible

in making a decision, while asking a second group to be as accurate as possible

in making a decision. In this way, the experimenter can investigate the effect of

different instructions on the performance of subjects. Computational models of

choice (e.g., Ratcliff & McKoon, 2008; Usher & McClelland, 2001; Wagenmak-

ers et al., 2007) have brought to the elucidation of the basic principles underlying

perceptual decision making.

One of the key concepts of our work is a computational model of decision

making, known as the Drift Diffusion Model (Ratcliff &McKoon, 2008). This
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computationalmodel of choice has a long history - it was firstly presented inRat-

cliff (1978) - and over the years has been refined and applied to a wide variety of

tasks and domains (Ratcliff &McKoon, 2008), such as (but not limited to) per-

ceptual judgement (Ratcliff, 2002; Thapar et al., 2003; Voss et al., 2004), memory

(Ratcliff, 1978; Ratcliff & McKoon, 1988), signal detection (Ratcliff & Rouder,

1998; Ratcliff et al., 1999, 2004b) and has also been applied to the description of

the integration of sensory signals towards a motion-discrimination decision in

monkeys (Gold & Shadlen, 2002; Shadlen &Newsome, 2001). In the DDM the

decisionmaker integrates difference in evidence supporting two alternatives until

a certain positive or negative threshold is crossed, and a decision ismade in favour

of that alternative.

In its simplest formulation, defined as ‘the reduced version’, the DDM is the

continuous case of a random walk process (Bogacz et al., 2006) and is described

by the following equation

dx = μdt+ θdW, x(0) = 0 (1.1)

where dx is the increment in evidence in a small time window dt, μ denotes

the mean increase in evidence per unit time and θdW denotes an independent

Wiener process with mean zero and variance θ2dt (Bogacz et al., 2006).

Interestingly, the DDM - in its reduced version - implements the Sequential

Probability Ratio Test (Wald, 1947;Wald&Wolfowitz, 1948), which is the proce-

dure that gives the shortest decision timegiven afixed error rate in a two-alternatives

forced-choice task (Bogacz et al., 2006). It is possible to demonstrate (Bogacz
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et al., 2006) that as discrete samples are takenmore frequently andone approaches

continuous-time sampling of a variable, the SPRT converges to Equation 1.1. In

this way, theDDM is statistically optimal for stationary distributions of evidence

in conditions in which the subject has to manage a speed-accuracy trade-off (Bo-

gacz et al., 2006). Given this feature of the model, the DDMnot only represents

a descriptive model of decision making, but has been proposed also as a a nor-

mative model (Basten et al., 2010) towards which, under the influence of natural

selection, the decision maker may be supposed to have evolved (but see Pirrone

et al., 2014).

It is useful for the purpose of the dissertation to restate that ‘optimal’, with

regards to the DDM, means that the DDM allows the fastest decision for a fixed

error rate. Of course, optimal does notmean that theDDMis optimal in general,

but only in the specific case in which speed and accuracy have to be optimised,

a scenario that describes many types of decisions - such as for example, making

a fast and accurate decision while driving and encountering an obstacle on the

road. A main theoretical and empirical point of this dissertation, that will be de-

veloped in detail in the future chapters, is that in many decision making settings

(e.g., choosing between sources of food), subjects should optimise different cri-

teria rather than the speed-accuracy trade-off.

A further reason for the popularity of the DDM is that, as shown by Bogacz

et al. (2006), other prominent models of choice, under specific parametrization

implement or approximate the DDM, with the exclusion of race models (Vick-

ers, 1970) - models with one accumulator for each alternative that accumulate
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Figure 1.1: Graphical representation of the DDM. [Image taken from Pirrone, Dickinson, Gomez,

Stafford andMilne (in press).]

evidence but do not inhibit each other.

Although there are numerous variants of the DDM, throughout this disserta-

tionwewill focus in particular on the extended version of theDDMas formalised

in Ratcliff &McKoon (2008), a more refined and psychologically plausible ver-

sion of the reduced DDM. From now on, unless stated otherwise, when we refer

to the DDM, we refer to the extended version.

ADDMprocess is determinedby sevenparameters (Ratcliff&McKoon, 2008;

Vandekerckhove & Tuerlinckx, 2007), as shown in Figure 1.1 and in Table 1.1.

The first, denoted by a, is the boundary separation and it captures the distance

between the two thresholds for a decision. When a is small the decision is faster

but less accurate since, given noisy fluctuations in the accumulation of evidence,

it is more likely to end up at the wrong boundary; when a is large the decision is

slower and more accurate. An interpretation for this parameter is therefore the
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symbol parameter interpretation
a boundary separation speed-accuracy trade-off
v drift rate stimulus discriminability
z starting point bias towards a response
ter non-decision time stimulus encoding and execution of motor response
eta inter-trial variability in v variability in stimulus discriminability or in attention
sz inter-trial variability in z variability in bias towards a response
st inter-trial variability in ter variability in non-decision time

Table 1.1: A list and interpretation of the seven parameters of the DDM.

trade-off between speed and accuracy for a decision. Second, is the starting point

of evidence accumulation, denoted by z. An interpretation for this parameter is

the bias for either response; if z is not equidistant from the boundaries but nearer

to the one of the two limits, the subject will be ‘biased’ to make the choice cor-

responding to the nearer boundary; when the accumulation of evidence starts at

a/2 the process is unbiased. In the case of a biased process, fast reaction times

(RTs) towards the nearer boundary and slow RTs towards the opposite bound-

ary are predicted, given that the distance from the decision boundary is small in

one case and large in the other. Third is the inter-trial variability of z, defined

as sz . Fourth is the drift rate, denoted as v, which represents the mean rate at

which information is accumulated over time. This parameter can be interpreted

as the quality of the stimulus and the amount of information carried by it for the

perceiver. Experimental conditions for which the correct decision is ‘easy’ will

have a higher drift rate compared to more difficult conditions. Also, a further

interpretation of this parameter is the sensitivity of a subject towards a stimulus.

The accumulation of information varies according to the drift rate and to a fifth

parameter, the inter-trial variability in drift rate, denoted by eta. This parame-
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ter can be interpreted as the variability in attention or motivation of the decision

maker or, in the case of changing stimuli, it can be thought of as the variability in

stimulus quality. The last two parameters of theDDMrefer to the non-decisions

time, since the decision maker has to encode the stimulus and execute the motor

response when making a decision. The non-decision component of a RT is de-

noted by ter and its inter-trial variability is defined as st.

It is interesting to note that the DDM can account for the full range of correct

and incorrect RTs and for the probability of correct andwrong answers, while for

example, other diffusionmodels that have been proposed, account only for accu-

racy and for RTs of correct choices (Link, 1975; Link & Heath, 1975). Addition-

ally, the DDM offers several advantages in terms of the relation between model

parameters, experimental design, andwider theoretical interpretation. Themain

parameters of the DDMhave clear interpretations in terms of psychological pro-

cessing (e.g., the speed-accuracy trade-off is reflected in the separation of the deci-

sion thresholds). Model fitting using the DDM tends to reveal single parameters

changing their values to track changes across experimental conditions (see Bo-

gacz et al., 2006; Ratcliff & McKoon, 2008; Krajbich et al., 2010). Inter-related

to both of these, the intuitive nature of some aspects of DDM function means

that changes to experimental design can often produce clear predictions in terms

of DDM parameter change.

10



1.2 Value-based decision making

Behavioural economics, as it is possible to understand from the definition of the

field itself, studies how social and psychological factors influence economic de-

cisions. The main difference with the classical economic approach is that, while

economists use a normative approach in describing how decisions should be made

to optimise a reward function - by assuming that subjects are rational decision

makers (Neumannet al., 1944;VonNeumann&Morgenstern, 2007) -, behavioural

economics describes how decisions are actually made by using experiments that

emulate real-life decisionproblems (Kahneman&Tversky, 2000;Todd&Gigeren-

zer, 2003). This field of research has lead to the understanding of the heuristics

that subjects use in different choice context (Holyoak &Morrison, 2005). How-

ever, these explanations only postulate disparate heuristics for different choice

settings and cannot describe the time course of a decision. In an attempt to over-

come such limitations, recently, sequential sampling models of choice widely

studied in the perceptual decision making field, have been used to explain the

time course of preference formation in value-based choice in which the subject

is no more integrating evidence over time, but value instead, as for example in

making a decision between different sources of food.

Tasks involving value-baseddecisions (Krajbich et al., 2010;Krajbich&Rangel,

2011; Milosavljevic et al., 2010; Krajbich et al., 2012) are different from the usual

paradigms used in perceptual decision making; while in a classical RDK experi-

ment stimuli are constantly changing and so the noise is intrinsic to the stimuli,
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in the experiments used to investigate value-based choices (Krajbich et al., 2010;

Krajbich &Rangel, 2011; Milosavljevic et al., 2010; Krajbich et al., 2012) the stim-

uli (e.g., images of snacks) are non-stochastic, in the sense that the image is non-

changing. However, the noisy signal about the value of the stimuli is hypothe-

sized to be generated internally. The process is then a classical diffusion process;

the difference in value of the two alternatives is integrated and when the differ-

ence crosses a threshold a decision is made. In this way, even though the nature

of the comparison is different from a classical perceptual decision making task, it

has been shown that the computational problem faced by the decision maker is

similar (Krajbich et al., 2010; Krajbich & Rangel, 2011; Milosavljevic et al., 2010;

Krajbich et al., 2012). Direct evidence that participants sample noisy values of a

choice over time is provided by studies that have focused on how value is repre-

sented and integrated (e.g., Towal et al., 2013; Hare et al., 2011; Philiastides et al.,

2010; Platt & Glimcher, 1999). For example, Hare et al. (2011) showed that activ-

ity in brain areas associated with value-based decision making (the dorsal medial

prefrontal cortex and the intraparietal sulcus), correlates with the predictions of

a DDM-like neural model.

An important study that has investigated value-based decisions is the one by

Krajbich et al. (2010). In this study, subjects had to choose among two stimuli

representing food; each stimulus was previously rated by subjects using a Lik-

ert scale. The authors created and tested a computational model of value-based

binary choice, which is an extension of the DDM in which visual fixation biases

the value integration process by a discount parameter on the non-fixated option’s
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value. This model can capture the relationship between fixation and the choice

made by subjects in the experiment. Furthermore, the model produced the same

fixation biases observed, which supports the hypothesis that fixations may play a

causal role in the integration and comparison of the value of the alternatives (cf.

Armel et al., 2008). In Krajbich & Rangel (2011), the results of Krajbich et al.

(2010) are generalised to trinary value-based choice. Finally, in Krajbich et al.

(2012) the same model presented in Krajbich & Rangel (2011) is tested and val-

idated in the case of simple purchase decisions.

The studies presented above, as well as other similar investigations (e.g., Louie,

2013), explicitly support the hypothesis that the DDM can be a unifying compu-

tational framework for describing both perceptual decision making and value-

based decision making.

1.3 Honeybee DecisionMaking

A study of selection of nest sites in honeybees (Seeley et al., 2012) has inspired a

model of decision making (Pais et al., 2013). This model is one of the prominent

aspects of the second part of this dissertation and will be briefly presented here,

and inmore detail in the future chapters. Before introducing themodel, it is use-

ful to describe very briefly the world of honeybees and the problem of nest-site

selection. We refer in general to honeybees, however the following studies and

observations are based on themost commonof species,Apismillifera. In an hon-

eybee swarm it is possible to divide the population according to three different

roles: the queen bee that has a reproductive role; male bees with the role of re-
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producing with queen bees from near nests; and a big portion of female worker

bees with the fundamental role of foraging, constructing the hive and finding

new suitable nest sites (Seeley, 2010). During spring, several workers leave the

hive with the queen to form a new colony. In Seeley (2010) there is a detailed

and accurate description of the organization and life of a colony of honeybees; of

interest for us is the problem of nest selection since it helps to reveal some mech-

anisms of decision making which, as we will see later, are not accounted for by a

whole family of sequential sampling models, including the DDM.

Following Pais et al. (2013), the mechanism of nest selection by honeybees can

be formally described by a system of stochastic ordinary differential equations.

Although in Pais et al. (2013) thismodel is described in terms of nest site-selection

by honeybees, it can represent any decision making system in which two imper-

fect accumulators compete to reach a threshold for a decision and are activated

and inhibit each other by the value of each of the integrators. Pais et al. (2013) in

their work, through approximations and stochastic simulations, have analysed

in detail the decisionmaking dynamics emerging from this system and we briefly

recall one of the very fundamental results.

Thedecisiondynamics of themodel dependon threeparameters; (i) the strength

of cross-inhibition between evidence accumulating populations (ii) the differ-

ence in value between the two alternatives and (iii) the mean value of the two

alternatives (Pais et al., 2013). This means that, assuming everything else con-

stant, if the mean value of the alternatives increases, the decision is faster. Sur-

prisingly, this is a feature of decision making that is at odds with models such
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as the DDM, which by accumulating difference in evidence, disregards the mean

value of the alternatives. In the DDM, two conditions that have the same dif-

ference in value, but different mean value, would be treated as equivalent. For

example, assume that a decision maker is presented with two alternatives, which

are poor in value and with a fixed difference. If the decision maker is then pre-

sented a condition that maintains the same perceived difference in value but has

a higher overall value, Pais et al. (2013) model predicts that in this second case

the decision maker would have faster RTs. The DDM instead considers the two

conditions of this example as being equivalent given that, working by integrat-

ing difference in value between the two alternatives, the information regarding

the magnitude of the alternatives is not taken into account. It is important to

restate that the DDM, works by integrating difference in evidence between the

two alternatives and that this feature of the DDM, magnitude insensitivity, has

been also addressed elsewhere (e.g., Teodorescu et al., 2015; Tajima et al., 2016).

The dynamics arising from Pais et al. (2013) model allowed us to generate in-

sights into adaptive decision making and show the existence of a specific feature

of decision making that cannot be accounted for by celebrated models of choice,

magnitude sensitivity.

1.4 Overview of the dissertation

In the first part of this dissertation, we show the benefit of applying a computa-

tional decomposition of data, with a particular focus on the DDM, to various

domains. Many cognitive processes underlie a decision (e.g., the trade-off be-
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tween speed and accuracy adopted by the subject, the sensitivity of subjects to

a specific stimulus etc) and a computational decomposition of a decision allows

to quantify the contribution of each single cognitive process. As we will show,

this approach provides crucial insights in some domains.

In the second chapter we apply the DDM to perceptual decision making in

Autism Spectrum Disorder (ASD). Research investigating perception and cog-

nition in ASD has focused on RTs and accuracy alone. However, this approach

does not allow to quantify the contribution of each specific underlying cognitive

process, for example the speed-accuracy trade-off, and can result in misleading

conclusions of differences in perceptual sensitivity between groupswhichmay be

instead due to differences in other processes (e.g., response criterion or the time

to execute themotor response). For the first time, we used theDDMto provide a

principled reconciliation of the speed and accuracy of perceptual decisionmaking

in individuals with and without ASD performing an orientation discrimination

task and we found that: (i) participants with ASD prioritise accuracy over speed,

(ii) participants with ASD have a longer non-decision time component and (iii)

discriminability does not vary between groups. This result has significant impli-

cations for previous studies that on the basis of slowerRTclaimed an impairment

for ASD subjects, or on the basis of greater accuracy claimed an enhancement for

ASD subjects in perceptual abilities.

In the third chapter, we perform a decomposition of task-irrelevant perceptual

learning, learning to better discriminate below-threshold stimuli to which sub-

jects are merely exposed but are irrelevant to the task. Our results show that task-
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irrelevant perceptual learning results in an increase in sensitivity for the trained

direction accompanied by a decrease in response criterion. We show that this pat-

tern could lead to the mistaken conclusion of no learning effect if only accuracy

scores are analysed, as a decrease in response criterion can mask a simultaneous

increase in sensitivity. Together with this variation, that is consistent across sub-

jects, other cognitive processes vary non-systematically between the pre-test and

the post-test session making an analysis only based on accuracy or reaction times

potentially misleading. Our analysis shows the benefits of isolating different cog-

nitive processes that together are responsible for the output of a decision.

In the fourth chapter we analyse a phenomenon known as semantic congruity

effect, which refers to the finding that (i) subjects are faster in judging the bigger

of two big items or the smaller of two small items, than judging the smaller of

two big items or the bigger of two small items and (ii) when the relative size of

a standard and a target stimulus coincides, the judgement is facilitated. For this

phenomenon, many verbal theories have been proposed. Two families of theo-

ries make different predictions regarding the explanation of this effect: one the-

ory states that this effect arises as a consequence of starting point variations while

a second theory states that this phenomenon arises as a consequence of variations

in drift rate. These two theories canbe easily testedwithin the framework of com-

putational models of choice. With our investigation, we show that the semantic

congruity effect results in an increase in rate at which evidence is accumulated

in case of congruency between the relative sizes of the standard and target stim-

uli. Again, we show the benefit of a computational decomposition of perceptual
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decision making.

In the second part of the dissertation, inspired by the model proposed by Pais

et al. (2013), we focus on an aspect of decision making that has important theo-

retical consequences for models of choice: magnitude sensitivity. Some compu-

tational models of choice work by integrating a function between the two alter-

natives (i.e., ratio or difference for example) and they disregard the overall mag-

nitude of alternatives. In the fifth chapter we focus on a theoretical exposition of

why we should expect decisionmaking to be sensitive to themagnitude of the al-

ternatives on the basis of evolutionary arguments, andwhy this poses a challenges

to all models that disregard the magnitude of alternatives, DDM included.

In the sixth chapter, we provide evidence for magnitude sensitivity in deci-

sion making for both humans and monkey decision making. Manipulating the

magnitude of alternatives can be tricky: if the magnitude of the alternatives is in-

creased while the same physical difference between alternatives is kept constant,

the two conditions are not psychologically comparable given the well established

result in psychophysics of Weber’s law (Householder & Young, 1940). On the

other hand, deciding a priori which physical quantities would result in the same

perceived difference is virtually impossible. Our solution was using the only con-

dition for which it is possible to be sure that even though the magnitude of alter-

natives is increased, the perceived difference remains the same: equal alternatives.

For this particular set of alternatives, both the physical and perceived difference

in evidence remains the same when the magnitude of alternatives is increased; in

fact, both the physical and perceived difference in evidence is null.
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In our investigation we found that increasing the magnitude of equal alterna-

tives results in a decrease in reaction times, both for humans performing a per-

ceptual decisionmaking task and formonkeys performing a value-based decision

making task. For such conditions, models that integrate a function between the

two alternatives predictmagnitude insensitivity and cannot explain this result. In

this chapter we discuss the importance of this result for adaptive decision mak-

ing and for the falsifiability of computational models of choice, in particular for

the DDM. Because of its widespread success in matching empirical data, align-

ment with statistically optimal evidence accumulation, and its centrality within

the family of models of decision making, understanding the features and limita-

tions of the DDM algorithm is of great importance.

Finally, in the last chapter, we provide a general conclusion and present future

research questions for each of the study presented in this dissertation.
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Part I

Decision modeling insights in

cognition
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2
Understanding perceptual judgement

in autism using the DDM

Abstract

In this study, we performed, for the first time, a DDM decomposition of per-

ceptual decision making in ASD. In ASD research involving 2AFC tasks, differ-
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ences in reaction times and accuracy alone have been interpreted as perceptual

impairments or enhancement in different domains, without taking into consid-

eration factors that underlie a decision such as the speed-accuracy trade-off or the

non-decision time necessary to encode the stimulus and execute the motor re-

sponse. In our investigation, an orientation discrimination task, we found that

(i) the drift rate, measure of sensitivity to a stimulus, was not statistically differ-

ent between ASD participants and controls, (ii) subjects with ASD had a higher

non-decision time component than controls, (iii) subjects with ASD had a more

conservative criterion for a response than controls. This result has fundamen-

tal consequences for research investigating perception in ASD, and we believe it

can lead to a re-consideration of the whole field. In particular, differences that

have been interpreted as perceptual differences, might instead be differences in

response criterion and motor response.

2.1 Introduction

Autism Spectrum Disorder (ASD) was firstly described by Kanner et al. (1943)

and 70 years of research have seen a tremendous interest of the scientific com-

munity in this neuropsychiatric disorder. ASD is characterised by anomalies in

social interaction and language (Kanner et al., 1943), reduced behavioural flexi-

bility (D’Cruz et al., 2013) and repetitive motor mannerisms (Turner, 1999; Watt

et al., 2008).

Numerous investigations in ASD have employed 2AFC tasks in order to in-

vestigate specific areas of cognition and surprisingly, both impairments and en-
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hancements have been reported, depending on the field. For example, Deruelle

et al. (2004) have reported an impairment in facial matching while O’Riordan

et al. (2001) have suggested enhanced visual search in ASD subjects. One field in

which conflicting results have been reported (including impairments, enhance-

ments or no difference compared to a control group) is motion discrimination

(Milne et al., 2005; Bertone et al., 2003;Milne et al., 2002; Dickinson et al., 2016).

On the basis of these results supporting impairments or enhancements, theories

regarding the neural substrates of ASD have been developed (Pellicano et al.,

2005; Pellicano & Burr, 2012; Deruelle et al., 2004; Dickinson et al., 2016; Sim-

mons et al., 2009).

One strong limitation of the studies reported above is that they have focused

on accuracy – as it is common in psychophysics - or RTs alone. On the basis of

differences between groups in RTs or accuracy, these studies have inferred cogni-

tive differences between groups in information processing, without performing

a computational decomposition of the data that requires combining both mea-

sures rather than focusing exclusively on accuracy or RTs. Not taking into ac-

count the different cognitive processes that underlie a decision may lead, and has

led indeed (examples below), to ambiguous interpretation of data. Let us take

an example of two groups that have the same sensitivity to a stimulus but have a

different speed-accuracy trade-off (Heitz, 2014; Pachella, 1973; Palmer et al., 2005;

Stone, 2014;Wickelgren, 1977). GroupA is faster, and so by necessity more likely

tomakemore errors, while group B is slower and hencemore accurate sincemore

time is used to make a decision. A researcher focusing only on accuracy, might

24



be tempted to conclude that group B is better at performing the task than group

A, given the higher accuracy. Conversely, a second researcher focusing on RTs,

might be tempted to conclude for an impairment of group B compared to group

A, given slower RTs. In this example, a difference in response criterion could be

misinterpreted as a difference in sensitivity to a stimulus. Together with the cri-

terion for a response and stimulus discriminability, other mechanisms underlie

perceptual judgement: the time to execute the motor response, the bias towards

a response, the trial by trial fluctuations in motivation etc (White et al., 2010).

These factors as well can confound conclusion as for example a difference in the

time to execute themotor response (e.g., pressing a button on a keyboard), result-

ing in a difference inRTs between two groups, can be interpreted inappropriately

as a difference in stimulus discriminability.

Although somemethods - other than the applicationof computationalmodels

- have been proposed to control for speed-accuracy trade-offs (e.g., the ‘efficiency’

score, Townsend & Ashby, 1983; which is defined as RT/ percentage correct),

such methods either make strong assumptions, for example that speed and accu-

racy are linearly related (Seli et al., 2013), or have been shown to be unable to de-

tect differences in speed-accuracy trade-offs under specific circumstances (Bruyer

& Brysbaert, 2011) .

A principled way of accounting for speed-accuracy trade-offs and the other

cognitive mechanisms underlying choices, is the application of computational

models of choice. Here we use the Drift DiffusionModel (Ratcliff, 1978; Ratcliff

&McKoon, 2008).
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In clinical research, thebenefits of applying theDDMhavebeenwidely shown.

DDMapplications toADHDresearchhave shown that this disorder is associated

with deficits in information processing (i.e., in the drift rate) rather than with a

non-conservative decision criterion setting (Karalunas et al., 2012; Metin et al.,

2013). Another application that highlights the benefits of the DDM applied to

clinical research, has shown that subjects with aphasia, who usually have slower

RTs in lexical decision tasks, have amore conservative criterion for a response and

longer non-decision time compared to control subjects (Ratcliff et al., 2004b)

when performing a lexical decision task. The result of slower RTs was previously

interpreted as a signature of an impairment in information processing, however

Ratcliff et al. (2004b) have shown that also in this case the difference between

the two groups is in the criterion for a response and in their non-decision time

component, rather than in information processing of lexical stimuli (e.g. word

vs. non-word) . A further example, commonly reported to show the benefits of

the DDM in clinical research, comes fromRatcliff et al. (2006), who have shown

that the general finding of increased RTs in older participants in a variety of per-

ceptual tasks is related to amore conservative criterion for a response and a longer

time to execute the motor response, invalidating in this way the previous expla-

nation of data according to which higher RTs were interpreted as a perceptual

impairment for older participants.

The aim of this investigation is to apply, for the first time, the DDM to per-

ceptual decisionmaking in individuals with ASD in order to investigate whether

cognitive processes not related to information processing of stimuli could pro-
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vide an explanation for the differences in RTs and accuracy between individuals

with and without ASD.

2.2 Method

2.2.1 Participants

Note: Participants were recruited by Abigail Dickinson and Rosanna Gomez,

under the supervision of Dr ElizabethMilne. Sixty participants without any his-

tory of epilepsy, migraine or seizure took part in this study voluntarily; twenty-

eight individuals with ASD (7 females) and thirty-two neurotypical (NT, 11 fe-

males). Participants were matched on age [age of the ASD group (M = 33.85, SD

= 14.24), age of the NT group (M = 34.40, SD = 14.66), p=.89], and non-verbal

IQ measures [Matrix Reasoning T-score of the Wechsler Abbreviated Scale of

Intelligence (Wechsler, 1999), ASD group (M =59.32, SD=7.02), NT group (M=

56.26, SD= 7.92), p=.14]. Participants in the ASD group had a diagnosis of ASD

from cliniciansworking in theNHSon the basis ofDiagnostic StatisticalManual

or International Classification ofDiseases (Fritz et al., 2000) criteria. Participants

in the NT group did not have a diagnosis of ASD and did not have first degree

relatives with a diagnosis of ASD. Five participants from theASD groupwere ex-

cluded from the analyses given that three did not finish the task and two subjects

were not collaborative, as shown by an inspection of their performance which

was at chance level throughout the experiment. ElevenASDparticipants and two

NT participants were taking medications at the time of the study. Their inclu-

sion in the analyses did not change the general pattern for both the behavioural
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andmodel fitting results. Seventeen ASD participants and nine NT participants

had previously taken part in studies on orientation discrimination. Participants

with ASD performed the fourth module of the Autism Diagnostic Observation

Schedule (ADOS; Lord et al., 1999) in order to elicit specific social and commu-

nicative behaviours - one participant did not perform the ADOS test. Four out

of twenty-four subjects did notmeet the clinical cut-off forASD inclusion on this

scale; however, they had scores above the clinical cut-off for The Social Respon-

siveness Scale (Constantino & Gruber, 2007) and the Autism Spectrum Quo-

tient (Baron-Cohen et al., 2001), together with a diagnosis of ASD, and theywere

included in the analyses. Both groups, except four individuals for each group,

performed the The Social Responsiveness Scale (Constantino & Gruber, 2007)

in order to assess social interaction and communication. Four subjects in theNT

group obtained a score above the clinical cut-off, and especially one subject had a

veryhigh score. Inclusionof this subject didnot affect the general results, both for

the behavioural analyses and for the parameters of theDDM, and this subjectwas

therefore included in the analyses. Ethical approval was obtained from the Ethics

Committee of TheDepartment of Psychology at TheUniversity of Sheffield and

informed consent was obtained from subjects involved in the study.

2.2.2 Task, Stimuli and Apparatus

Stimuli were generated usingMATLAB and Psychtoolbox (Brainard, 1997) and

were presented on a laptop with a linearised screen at a refresh rate of 60 Hz and

a resolution of 1366 x 768 pixels.
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Subjects performed a 2AFC task consisting in an orientation discrimination

task. They were presented a fixation cross for 500 ms, followed by the presenta-

tion of 2 Gabor patches (99% contrast Gaussian-windowed sinusoidal gratings;

2.5 cycles per degree) on each side of the fixation cross. The background had a

mean luminance of 80 cd/m2. For all subjects, the reference Gabor was the one

on the left and it was oriented at 45◦ for all trials. The rationale behind having

the reference stimulus only on the left was to keep the task as simple as possible

(compared to the situation inwhich the reference and target change position over

trials). However, this choice was a limitation of our study as it is discussed below.

Subjects had to decide by button press whether the target Gabor on the right was

tilted clockwise or anticlockwise compared to the reference stimulus. They were

instructed to use twofingers of their right hand and they couldmake a decision in

their own time as stimuli remained on screen until subjects made a response. No

feedback was provided to subjects. There were 2 levels of Rotation (clockwise,

anticlockwise) and 5 levels of Angle (3◦, 5◦, 7◦, 9◦, 11◦). Subjects performed 50 tri-

als per condition in random order and after 250 consecutive trials they could take

a break. Before starting the experiment subjects were familiarised with 2 trials per

condition.

2.3 Results

2.3.1 Observed variables

In line with the literature that suggests that RTs below 300ms can be considered

fast guesses (Ratcliff et al., 2006), and RTs above 3000 ms are less likely to be
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generated from aDDMprocess but can be considered attentional lapses (Ratcliff

et al., 2006), we removed 9% of the data from the analyses. A t-test showed that

therewas a significant difference between the number of remaining trials forASD

subjects (M = 87.3, SD = 11.01) compared to NT subjects (M = 93.59, SD = 8.88),

t(55)=-2.291, p =.01. Interestingly, this difference was due to the high number of

slow responses for ASD subjects. If only fast RTs were excluded, the two groups

did not differ in the number of remaining trials, t(55) = -1.36, p=.18; however, if

only slowRTswere excluded, the twogroupsdiffered in thenumber of remaining

trials, t(55) = -2.31, p=.03.

A first inspection of the data showed a clear difference in behavioural results

as a function of Rotation, with subjects being faster andmore accurate when the

target is oriented clockwise. For this reason, although our a priori interest was in

Group and Angle difference, we included Rotation in the analyses. All analyses

presented are linear regression models containing Angle, Rotation, Group and

all interactions. For all analyses we report B, the slope of the regression line, and

the associated t-test. As expected, Angle affected correct RTs (Figure 2.1), B =

0.032, t=3.996, p<0.001, and accuracy (Figure 2.2), B = 0.032, t=3.996, p<0.001.

For both groups, as the difference in angle between the reference and the target

increased, RTs decreased and accuracy increased. There was a Group by Angle

interaction on RTs, B=-0.366, t=-3.454, p<0.001, but not on accuracy, B=0.023,

t=0.612, p=0.541. The Group interaction effect on RTs suggests that subjects

in the ASD group were generally slower. Rotation affected accuracy, B=0.412,

t=4.754, p<0.001, with subjects being more accurate for clockwise discrimina-
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Figure 2.1: Mean response time (for correct responses only) for the two groups of participants (ASD

shown by dashed lines) across the different conditions. Anticlockwise rotations are indicated with - ;

clockwise rotations are indicated with +. Error bars represent standard error of themean.
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Figure 2.2: Mean accuracy for the two groups of participants (ASD shown by dashed lines) across the

different conditions. Anticlockwise rotations are indicated with - ; clockwise rotations are indicated

with +. Error bars represent standard error of themean.
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tions than for anticlockwise discriminations. There was an interaction effect be-

tween Rotation and Group, B=-0.137, t=-2.582, p=0.010, with ASD participants

being generally better for clockwise discriminations and generally worse for an-

ticlockwise discriminations. The effect of Rotation on RTs was not significant,

B=-0.293, t=-1.195, p=0.233, and also the interaction of Rotation and Group re-

sulted not significant, B=0.140, t=0.937, p=0.349.

2.3.2 Model Fitting

Estimating the parameters of the DDM requires recovering the full distribution

of correct and error responses (Ratcliff & Tuerlinckx, 2002) for each condition.

For datasets with few data points and in which the performance of subjects is at

ceiling level, meaning that the distribution of wrong responses cannot be esti-

mated, fitting the DDM is problematic (Vandekerckhove & Tuerlinckx, 2008).

This is the case of our study in which the mean number of wrong trials is 4 per

condition and decreases to 2.5 if +3 and -3 degrees conditions (i.e, the most diffi-

cult conditions) are excluded. To overcome the limits of applying the DDM to

datasets with few number of trials and/or errors,Wagenmakers et al. (2007) have

proposed amethod called the EZ-DDM.This methodmakes two very strong as-

sumptions about the diffusion process; the decision process is assumed to be un-

biased, and across trials variabilities are removed. Following concepts introduced

in the previous chapters, the decision process is an unbiased, reduced DDM. In

this way, Wagenmakers et al. (2007), break down the complexity of the fitting

procedure andderive analytically values of thedrift rate, boundary separation and
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non decision time, via three simple equations that take as input the mean correct

response time, the variance of correct response time and the response accuracy.

Another limit of this method is that it does not allow to constrain parameters

across conditions and it generates estimates of the three parameters (drift, bound-

ary and non-decision time) separately for each condition. A correction is needed

in EZ when accuracy is at ceiling in order to avoid infinite terms in the equations

that calculate the parameters; when the probability of a correct responsewas 1, we

replaced this value with 1− 1/n, where n is equal to the total number of trials for

each condition (i.e., 50 trials, if no trials were removed during the outlier cut-off

procedure).

Although we fitted each condition separately, we reasoned that since subjects

werepresentedwith conditionsofdifferentdifficulty in randomorder, they could

not adjust their criterion for a response before each trial was presented and for

this reason, for each participant, we computed an average boundary separation

based on the average across conditions. At the same time, for each participant,

we computed a mean non-decision time component based on the average across

conditions.

The drift rate, the parameter that reflects the sensitivity to the stimulus, was

averaged across all individuals in each group, and it is plotted against judgement

difficulty in Figure 2.3. For the parameters of theDDM,we used the same regres-

sion model used for the behavioural analyses.

As expected, Angle had an effect on drift rate , B=0.009, t=2.372, p=0.018, and

Rotation had an effect on drift rates, B=0.117, t=2.836, p<0.005. As the differ-
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Figure 2.3: Drift Rate for the two groups of participants (ASD shown by dashed lines) across the differ-

ent conditions. Anticlockwise rotations are indicated with - ; clockwise rotations are indicated with +.

Error bars represent standard error of themean.

ence between the reference and the target stimulus increased, the drift increased

and the driftwas higher for clockwise conditions compared to anticlockwise con-

ditions.

However, our effect of interest was not significant, as the drift did not differ

significantly by group, B=0.002, t=-0.086, p=0.932. None of the interactions

between predictors was significant (p>0.145).

Group had a significant effect on both non-decision time (Figure 2.4), B = -

0.121, t=-5.377, p<0.001 and boundary (Figure 2.5), B = -0.019, t=-5.351, p<0.001,

with theASDgrouphaving in general amore conservative criterion for a response
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Figure 2.4: Non-decision Time for the two groups of participants (ASD shown by dashed lines) across

the different conditions. Anticlockwise rotations are indicated with - ; clockwise rotations are indicated

with +. Error bars represent standard error of themean.

and longer non-decision time (about 100 ms difference as shown by Figure 2.4).

To investigate whether the parameters that we recovered provided a good de-

scription of the data in absolute terms, we assessed the goodness of fit of the

model. We generated a DDM process with two values for the boundary and the

non-decision time based on the average across subjects for the two groups, while

the drift was averaged across individuals for each condition, separately for each

group. Using this model, in which variabilities across trials were set to zero and

the starting point of evidence was set at the same distance from the two bound-

aries (i.e., the assumptionswere the same to those of themodel onwhichwebased
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our analysis), we simulated 10000 trials per condition. Figure 2.6 shows compar-

isons of correct RTs and accuracy between the model and the observed data for

the two groups. For both groups, the model can be seen to fit the data well.

In order to investigate whether the process can be assumed as unbiased we

compared the difference betweenmean correct and error responses. In particular,

if the process is biased towards one alternative, fast RTs towards that alternative

and slow errors towards the opposite threshold are predicted. An inspection of

the plots showed no difference in the mean speed of correct and error RTs for

each condition. However, this result should be interpreted cautiously given that

the mean of wrong RTs is determined by few, potentially unreliable, data points

averaged across individuals.

In this study we were limited by the number of trials for each condition; in

particular, given that accuracy of subjects was at ceiling level formost conditions,

we could not estimate the error distribution and fit the DDM using more com-

pletemethods (Vandekerckhove&Tuerlinckx, 2008). Althoughwe showedwith

a simulation that the model on which our analysis is based can describe the data

well, the EZmethod is arguably the roughest method to fit the DDM, given that

it makes the assumption of the process being unbiased, it removes the across trial

variabilities and it does not allow to constrain parameters across conditions. To

overcome some of the limitations of EZ, Grasman et al. (2009) proposed a new

estimationmethod, EZ2. However, also this method is not suitable in our case as

it does not work when accuracy is at ceiling level and it has been shown to fit the

data poorly when drift rates are high and accuracy around ceiling. However, to
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Figure 2.6: Simulated data. A shows comparisons betweenmean response time (for correct responses

only) for the ASD group and for the simulated data. B shows comparisons betweenmean response

time (for correct responses only) for the TD group and for the simulated data. C shows comparisons

between percentage of trials correct for the ASD group and for the simulated data. D shows compar-

isons between percentage of trials correct for the TD group and for the simulated data. Anticlockwise

rotations are indicated with - ; clockwise rotations are indicated with +. Error bars represent standard

error of themean.
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reassure us that our results are consistent regardless of the fitting method, we de-

cided to fit the full DDM to the pooled dataset for each group. For both groups,

all trials from all participants were put together; in this way, from having about

50 trials per condition, we recovered about 1500 trials per condition, making it

possible to estimate the distribution of error responses.

To estimate the parameters of the DDM we used the Diffusion Model Anal-

ysis Toolbox (Vandekerckhove & Tuerlinckx, 2008) that works by maximising a

multinomial likelihood function of the data grouped into 5 quantiles for both

correct and error responses (the .1, .3,.5,.7 and .9 quantiles); in the fitting proce-

dure, the lower boundary represented the threshold for a response ‘anticlockwise’

while the upper boundary represented the threshold for the response ‘clockwise’.

Similarly to the EZ estimation, we did not constrain parameters across condi-

tions and we removed the across trials variabilities. However, in order to con-

trol for starting point effects we allowed the starting point to vary across con-

ditions. Estimated parameters replicated our results. Testing for differences in

mean drift, boundary and non-decision time, we found that: the drift rate did

not differ significantly between groups t(18) = .18, p = .87, ASD participants had

a more conservative criterion of response, t(18) = 3.03, p = .007, and longer non-

decision time, t(18) = 4.70, p =<.001. Pooling trials from both groups together

can lead to cases in which the pooled data differ greatly from the data averaged

across individuals; in our case this would mean that the parameters recovered

from theDMATfitting are not representative of the data onwhichwe based our

behavioural analyses. In order to account for this possible confound, we simu-

40



lated a DDM process with the parameters estimated from the DMAT fitting of

the pooled datasets, and we compared it with the behavioural data based on the

average across individuals for the two groups; the model in this case fits the data

remarkably well, meaning that considering the pooled datasets was a reasonable

choice. We also investigated whether the initial trials, during which subjects were

learning the task, could affect our results (Browne, 2000): we performed all anal-

yses using only the second half of the trials. For the sake of brevity we do not

report here the analysis, however no change in parameter estimates and goodness

of fit was observable by fitting the data.

2.4 Discussion

For the first time we have used the DDM to investigate perception in ASD. Sub-

jects performed an orientation discrimination task and our results show that (i)

the sensitivity to the stimuli did not differ between the two groups, (ii) subjects

with ASD had a more conservative criterion for a response and (iii) the non-

decision time component took longer in subjects with ASD.

There are interestingmechanistic interpretations to explain increasednon-decision

time and increaseddecision criterion inASD.The result of increasednon-decision

time can be linked to the wide literature reporting motor impairments in ASD

(e.g., Ming et al., 2007; Bhat et al., 2011). Regarding increased response caution,

it is possible that basal ganglia anomalies in ASD (Sears et al., 1999; Qiu et al.,

2010) - resulting in anomalies in action selection - prevent subjectswithASDfrom

performing faster and potentially inaccurate responses. Future neuro-imaging
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research is needed to address these questions directly. Furthermore, future re-

search should investigate whether, within the ASD family of disturbs, clinical

measures correlatewithDDMparameters. Understanding differenceswithin the

ASD family of disturbs could be an important step in the understanding of the

contrastive results in the ASD literature.

If we assume that this result can be generalised also to tasks other than orienta-

tion discrimination, this result has important consequences for studies that have

investigated perception and cognition in ASD and have proposed a difference in

sensitivity on the basis of differences in accuracy or reaction times alone. Accord-

ing to our finding, results that have been previously interpreted as differences in

information processing should be reconsidered and controlled for differences in

response caution and motor response.

Interestingly, the pattern encountered here is different from the one of indi-

viduals with ADHD, who show instead a significant difference in drift and not

in boundary separation or non-decision time compared to a control group. This

difference betweenASD andADHD individuals could lead to better understand

the differences and specificities of two clinical disorders which occurrence has

been shown to overlap (Polderman et al., 2014).

The difference between clockwise and anticlockwise judgements represents a

puzzling result. This response bias was probably given by the fact that the refer-

ence stimulus was always oriented clockwise and the target stimulus always ap-

peared on the right of the screen, generating a Simon effect: facilitation towards

answering ‘clockwise’. Stimulus rotation did not interact with any other factor
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in the experiment and the modelling results show that the interaction of Group

and Rotation was not significant for any of the parameters, suggesting that our

conclusions are not affected by this bias. Future investigations need to avoid a

potential bias of this kind, for example by presenting the reference stimulus on

top and the target on bottom, with the reference stimulus oriented at 0◦ rather

than 45◦.

Regarding the increase in boundary separation, this shouldbe accompaniedby

an increase in accuracy for the ASD subjects. In our study, the fact that subjects

were at ceiling level for most conditions might have masked a significant increase

in accuracy. However, although it did not reached significance, for conditions

+7◦, +5◦ and +3◦, ASD individuals seem to be more accurate than controls, as

shown in Figure 2.2. In future investigations, more difficult conditions should

be used (i.e., not conditions for which performance is at ceiling) and we believe

thiswould give rise to the observed effect of increased accuracy and increasedRTs.

At the moment, we have a new investigation ongoing that overcomes all the

above mentioned limitations (number of trials, Simon effect, difficulty of condi-

tions). Results are still preliminary, however promising, and seem to be in line

with what we have reported in this study. Regarding number of trials, it is to be

mentioned that one common difficulty of performing perceptual decision mak-

ing tasks with clinical populations is that participants often tolerate a relatively

small number of trials. However, here we have shown that, even for a limited

number of trials, formal modelling of the underlying processes is beneficial.

In sum,weprovide evidence for intact informationprocessing, increasedbound-
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ary and increased non-decision time component in subjects with ASD. Future

research should investigate whether our result is consistent across other domains

and whether the result is validated, this would have a strong impact on ASD re-

search. Hopefully, in the foreseeable future, inspired by this work, more labs will

apply a computational decomposition of perceptual decisionmaking in ASD re-

search to generate valid conclusions from data.
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3
ADDM decomposition of

task-irrelevant perceptual learning

Abstract

This study, similarly to the study presented in the previous chapter, addresses

whether a phenomenon know as task-irrelevant perceptual learning affects cog-
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nitive processes other than the discriminability to a stimulus (e.g., criterion of a

response and non-decision time). Even though we change domain, the conclu-

sions of this study resembles those of the previous chapter, in which conclusions

fromdata based only on analysis of accuracy or reaction times are potentiallymis-

leading. In this study, change in motion discrimination was assessed after seven

days training on a rapid serial visual presentation training task, which included

exposure to below-threshold coherent motion that was irrelevant to the task the

participant was involved in. Post-training, participants had improved sensitivity

for supra-threshold motion discrimination, which was specific to the direction

exposed during training. A Drift Diffusion Model decomposition of the effect

shows that the improvement is a combination of (i) an increase in rate at which

participants accumulate evidence for the direction to which they were exposed

and (ii) a decrease in their criterion for a response,meaning that they arewilling to

make faster but less accurate responses. Togetherwith these differences, which are

consistent across participants, other cognitive processes vary non-systematically

between the pre-test and the post-test session making an analysis only based on

accuracy or reaction times potentially misleading. Our analysis shows the bene-

fits of isolating the different cognitive processes that are involved in perceptual

decision making and are affected by perceptual learning.

3.1 Introduction

It is widely demonstrated that performance increases with practice, both in lab-

oratory and real-life settings. Regarding perception, this phenomenon has been
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studied from twoperspectives; practice research andperceptual learning research.

Although these two research lines have obvious commonalities, they have histor-

ically focused on two distinct aspects of learning. Practice research has focused

on reaction times (RTs) and has documented a decrease in RT related to practice

in perceptual tasks (Newell & Rosenbloom, 1981; Logan, 1992), while perceptual

learning research has focused on accuracy and has documented an increase in ac-

curacy related to practice in perceptual tasks (Fine & Jacobs, 2002). Recently, a

particular type of perceptual learning has captured the attention of researchers,

task-irrelevant perceptual learning (TIPL), in which participants learn to better

discriminate stimuli to which they are merely exposed but that are irrelevant to

the purpose of the experiment (Watanabe et al., 2001; Seitz &Watanabe, 2008).

The first example of TIPL comes fromWatanabe et al. (2001), in which authors,

after testing participants on a motion discrimination task, exposed participants

tomanydays of a rapid serial visual presentation (RSVP) task, on the background

of which was presented a random-field motion stimulus with a below threshold

coherence in a constant direction across all days of training. Watanabe et al. (2001)

found that participants showed an improvement in a post-test motion discrimi-

nation task, only for the supra-threshold coherence level in the direction towhich

they were exposed.

Focusing only on RT or accuracy for a perceptual task has some limitations.

Consider a classical perceptual learning task, motion discrimination, in which

participants are required to judge whether, within a field of randomly moving

dots, a small percentage of dots is moving coherently in one of two directions,

48



say ‘left’ or ‘right’. In this only apparently simple task, different components

contribute to those aspects of the decisionwhich can be easily measured, RT and

accuracy: (1) the decision criteria adopted by the participant can be more or less

conservative, meaning that the participant could focus more on the speed of a

decision, and hence be likely to make errors, or alternatively focus more on ac-

curacy, and hence be slower. This is the issue of the ‘speed-accuracy trade-off’,

which has received considerable attention previously (Wickelgren, 1977; Heitz,

2014), (2) the RT is a mixture of the decision time and a non-decision time com-

ponent, which includes time to encode the stimulus and to execute the motor

response, for example by pressing one of two buttons on a keyboard, which is

independent of any stimulus-characteristics, (3) the participant could be more

biased towards answering either left or right, hence having faster RTs and high

accuracy for the biased response and slower RTs and lower accuracy for the op-

posite response, (4) the difficulty of the decision would affect both accuracy and

RTwith participants having faster andmore accurate decisions for easy trials and

slower and less accurate decisions formore difficult trials, (5) all of the abovemen-

tionedmechanisms could vary across trials, either non-systematically, or by these

aforementioned decision parameters drifting over the course of an experiment.

If the participant is performing a task onmany different days, since the experi-

menter is interested in the effect of learning over different sessions, it is reasonable

to expect that all the above mechanisms could also vary across different days on

the basis of factors not related to the experiment (e.g., on one day the participant

could be more tired or less collaborative).
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Given the ensemble of components at hand in a perceptual task, focusing only

on RTs or only on accuracy is overly simplistic. Unsurprisingly, in some cases, an

approach focusing only on RTs or accuracy has even been misleading in generat-

ing theories fromdata. For example, research focusing only onRTshas founddif-

ferences between faster younger participants and slower older participants. On

the basis of this finding, a so called generalised-slowing hypothesis of ageing has

been proposed, according to which these data supports the idea of a general de-

terioration of all processes in the brain of older people (Salthouse, 1996). How-

ever, a multitude of studies have applied a computational decomposition of RTs

and accuracy in tasks comparing younger and older adults and have shown that,

with regards to the components described above, there is no difference in the rate

at which the two groups extract information from the stimuli, but older people

have a more conservative criterion for a response and in some cases a longer non-

decision time component (i.e., they are slower in the motor response of press-

ing a button to signal a decision). It is this, not generalised-slowing, which leads

to slower RTs (e.g., Thapar et al., 2003; Ratcliff et al., 2004b, 2000, 2006, 2010,

2006, 2007). Similarly, Pirrone et al. (2016) have shown that the difference inRTs

and accuracy between typically developing and autism spectrum disorder partic-

ipants can be due to differences in parameters such as the criterion for a response,

instead of due to differences in perceptual discrimination.

These two examples show the practical benefit of considering both accuracy

and RT for perceptual tasks. Arguments from first principles also exist, demon-

strating that both accuracy andRT contribute independent information about a
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decision, and hence combining them allows amore potent analysis (Palmer et al.,

2005; Stone, 2014).

To isolate the role of each cognitive process involved in a choice, researchers can

adopt computational models of decision making (Ratcliff, 1978; Ratcliff et al.,

1999; Usher & McClelland, 2001; Brown & Heathcote, 2008). Computational

models of decision making describe the time course of a decision and can isolate

the role of each of the cognitive processes involved. Moreover, they can simulate

a decision, meaning that the experimenter can use them to make quantitative

predictions about a decision making task. In this chapter, we will use the DDM

(Ratcliff, 1978; Ratcliff et al., 1999; Ratcliff &McKoon, 2008) as a tool to isolate

different components of the processes that contribute to a decision.

Despite widespread success in other domains, the DDM has not been consis-

tently applied in the domain of perceptual learning. In Petrov et al. (2011), the

authors performed a DDMdecomposition of a fine motion discrimination task.

In their study, authors found that perceptual learning was best explained by an

increase in drift rate, a decrease in boundary separation and a decrease in both the

non-decision time component and its inter-trial variability. In Liu &Watanabe

(2012), participants performed a three day perceptual learning coherent motion

direction task (i.e., is the RDK all noise or is there some signal?) and authors

found an improvement in drift rate but with boundary separation decreasing

across the days of training. In Dutilh et al. (2009), participants performed a 5

days lexical decision task and authors found that the learning led to an increase

in drift rate, a decrease in boundary separation, as well as a significant decrease in
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non-decision time.

As it is clear from these investigations, RTs and accuracy alone cannot give a

full description of the cognitive processes that are most likely to have generated

the data, while considering bothmeasures and their distribution can lead to a bet-

ter understanding of the cognitive processes involved in such tasks. In particular,

if perceptual learning is associated with a decrease in the boundary separation, as

other studies of task-relevant perceptual learning have found, then assessing per-

ceptual learning via measurement of accuracy will systematically underestimate

the true size of perceptual learning (since decreasedboundary separationwill tend

to decrease accuracy, all other things being equal).

Although task-relevant perceptual learning has been decomposed by using the

DDM, to our knowledge, no studies have focused on a DDM decomposition of

TIPL. In our study, we ran an experiment similar to that presented in Watan-

abe et al. (2001), and we performed a DDM decomposition of TIPL. Because

of the aforementioned multi-component nature of perceptual decision-making,

our expectation is that use of the DDMwill allow a more accurate assessment of

perceptual learning than attention to solely RT or accuracy. Further, the DDM

allows us to isolate the component of decision making that reflects a true change

to stimulus sensitivity - a change in the drift rate parameter. Because of the po-

tential for non-stimulus related parameters to alter across sessions due to non-

experimentally causes factors (such as fatigue ormotivation) andbecause, by their

nature, perceptual learning experiments involve testing participants on different

days or even weeks, we isolate perceptual learning as an increase in the drift rate
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for the exposed stimulus (for one participant also the drift of the not exposed di-

rection increased but the increase was greater for the exposed stimulus than for

the not exposed stimulus). In this way, we use each participant as their own con-

trol, testing them for changes in perceptual decision making for both exposed

and not exposed stimuli and thus accommodating non-training related changes

in decision parameters.

3.2 Material and methods

3.2.1 Participants

Four right-handed healthy university students (2males and 2 females, ages: 30, 21,

20, 22 years), with no history of neurological or psychiatric disorders, with nor-

mal vision and naïve to the purpose of the study participated voluntarily in the

experiment and received a compensation of £50 for their participation. The ex-

perimentwas approvedby theUniversity of Sheffield,DepartmentofPsychology

Ethics Sub-Committee, and carried out in accordance with the University and

British Psychological Society ethics guidelines. Participants gave their informed

consent.

3.2.2 Apparatus

The stimuliwere generatedonapersonal computerusingPsychoPy (Peirce, 2009).

During the whole experiment, participants had to put their head on a chin rest

at a viewing distance of 57 cm from a SONYMultiscan CPD-200ES 17” monitor

with a resolution of 1280 x 1024 pixels at a refresh rate of 60 Hz. The experi-
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ment was conducted under binocular viewing conditions and participants used

a keyboard to make a response.

3.2.3 Motion-Direction Stimuli

We used stimuli similar to those adopted by other studies on task-irrelevant per-

ceptual learning (Watanabe et al., 2001; Seitz &Watanabe, 2008): on a grey back-

ground, within a black annulus aperture of 1◦ - 10◦, white dots with a size of 2x2

pixels were moving with a speed of 6◦/s and a density of 16.7 dots/deg2/s on a

black background. Signal dots were randomly chosen in each frame, and on each

frame, noise dots had a random position. Dots had a limited lifetime of three

frames after which they were redrawn in random locations. If any of the signal

dots were tomove out of the annulus, they were replaced randomly in the stimu-

lus field. The stimuli were generated in real time and two non-cardinal directions

were employed in this study, 45◦ and 135◦.

3.2.4 Procedure

The experiment consisted of nine sessions; a pre-test to measure sensitivity for

various strengths of motion coherence in the two directions, then seven training

sessions consisting of aRSVP taskwith on the background a randomdotmotion,

and finally a post-test thatmeasured sensitivity for various coherence levels in the

two directions, that was equal to the pre-test. Participants came on different days

for each session, and could take amaximumof three-days break between sessions.

Due to a computer glitch, data from the first day of trainingwere irrecoverably
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corrupted for the first two participants who took part in the study. However,

participants had performed the whole session and this clearly did not affect the

performance in the conditions of interest, the pre-test and the post-test.

3.2.5 Pre/postMotion-Direction Sensitivity Tests

Participants were instructed to pay attention to the stimulus that would be pre-

sented for 500 ms and then report as quickly and accurately as possible if the

coherent motion was towards up-left (45◦ on the left with respect to an imagi-

nary vertical reference line) or up-right (45◦ on the right with respect to a imag-

inary vertical reference line) by button press. They were instructed to use their

right hand index finger to press left on the keyboard for ‘up-left’, and theirmiddle

finger to choose ‘up-right’. Participants were instructed that there was always a

correct response and were required to fixate the cross at the centre of the screen

during the whole task and minimise as much as possible eye movements.

In each trial, a fixation cross in the central circle was presented for 333 ms, fol-

lowed by the presentation of moving dots for 500 ms, followed by two arrows

showing the possible direction of the dots and the text ‘Answer:’ presented on

top of the screen until participants made a response.

Each test stage consisted of 10 blocks x 2 directions (45◦ and 135◦) x 10 motion

coherence levels (5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%) x 9 rep-

etitions for a total of 1800 trials and took about 1 hour to complete. Coherence

levels were chosen so that for each direction we would have accuracy levels that

range from floor to ceiling based on the results of previous pilot studies. During
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each block the order of presentation of trials was randomised and no accuracy

feedback was given to the participants.

After a block of 180 consecutive trials participants were required to take a self-

paced break to rest before continuing with this task.

3.2.6 Training sessions

In the training sessions, participants performed a RSVP character identification

task and were asked to report in order of presentation two white capital letters

(RGB [1,1,1], opacity on a 0 to 1 scale on Python:1, height .9◦) in a sequence of

10 capital letters presented in the central circle. Each letter was presented for 33

ms and was followed by a blank interval for 17 ms. Distractors consisted of eight

capital black letters (RGB [0,0,0], opacity on a 0 to 1 scale on Python:.3, height

.9◦). The first and second white letters were presented in one of the first five se-

rial positions and in one of the second five serial positions, respectively. They

were determined randomly in each trial. Within the annulus aperture of 1◦ - 10◦

participants were presented a motion stimulus in one of the two locations, con-

stant across all training sessions, at a coherence level 5% below their chance level

at pre-test, in order to ensure a level reasonably below threshold. For each par-

ticipant, we computed the motion strength at 50% accuracy by interpolating the

psychometric curve predicted by the model free estimation of the psychometric

curve described in Zchaluk & Foster (2009), and using MATLAB scripts made

available by those authors.

In each trial, a fixation cross in the central circle was presented for 333 ms fol-
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lowed by the presentation of the stimulus for 500 ms followed by a grey screen

and the text ‘Type in the two white letters’ presented on top of the screen until

participants responded.

Each test stage consisted of 10 blocks x 108 repetitions  for a total of 1080 trials

and took about 45 minutes to complete. No accuracy feedback was given to the

participants.

After a block of 108 consecutive trials, participants were required to take a self-

paced break to rest before continuing with this task.

3.3 Results

3.3.1 Behavioural analyses

Figure 3.1 shows the performance of participants in the RSVP over the seven days

of training. The performance of participants was mostly stable across the seven

days of training. We did not perform any analysis on the RSVP task as our in-

terest is in the TIPL, hence in the change in performance between pre-test and

post-test for the exposed and not exposed directions. It is to be mentioned that

accuracy during training is much lower than the one reported inWatanabe et al.

(2001) of around 60%. Previous pilot studies that we performed, suggest that

the performance of participants during training is determined by the contrast of

the target, the white capital letters - which in our study is different than that of

Watanabe et al. (2001). In our pilot studies, in which the contrast of the target

was even lower than the one reported here, this led to a performance even worse

of the one of Figure 3.1. However, no relation has been reported between per-
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Figure 3.1: Mean percentage correct on the (irrelevant) RSVP task for the four participants across the

exposure stage sessions. Error bars are standard errors of themeans.
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formance in the training and TIPL, meaning that performance during training is

irrelevant for the purpose of TIPL.

For all analyses, both behavioural analyses and model fitting, we removed, for

each participant, the 2.5% of slowest response, given that a first inspection of data

showed the presence of extremely slow outliers. In the following analyses, each

subject is analysed separately. Figures 3.2, 3.3, 3.4 and 3.5 show mean RTs and

accuracy for each participant for conditions for which they were exposed and for

which they were not exposed during the pre-test and the post-test. Participants 1

and 2were exposed to 45◦ while participants 3 and 4were exposed to 135◦. T-tests

were conducted to investigate overall differences for each participant between the

pre-test and the post-test in mean RT and accuracy levels for the exposed and

the not exposed directions. Bonferroni corrections were applied on the p-values;

this means that probabilities aremultiplied by two given that for each dependant

variable (e.g., RT and accuracy) we have two subgroups; the exposed and the not

exposed direction.

All subjects had a significant decrease inRTsbetween thepre-test andpost-test,

for the exposed and the not exposed direction (p < .001 in all cases). Participant

1 did not have a change in accuracy for the exposed direction between the pre-

test and post-test (t(9) = -0.34, p = 1) while all other participants had a significant

decrease (p<.001 in all cases). Regarding accuracy of the not exposed direction,

there was not a significant change between pre-test and post-test for any subject

(p>.07 in all cases).
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Figure 3.2: (top left) mean RT (± s.e.) for the direction for which participant 1 was exposed, (top right)

mean RT (± s.e.) for the direction for which participant 1 was not exposed, (bottom left) mean accu-

racy for the direction for which participant 1 was exposed and (bottom right) mean accuracy for the

direction for which participant 1 was not exposed.
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Figure 3.3: (top left) mean RT (± s.e.) for the direction for which participant 2 was exposed, (top right)

mean RT (± s.e.) for the direction for which participant 2 was not exposed, (bottom left) mean accu-

racy for the direction for which participant 2 was exposed and (bottom right) mean accuracy for the

direction for which participant 2 was not exposed.
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Figure 3.4: (top left) mean RT (± s.e.) for the direction for which participant 3 was exposed, (top right)

mean RT (± s.e.) for the direction for which participant 3 was not exposed, (bottom left) mean accu-

racy for the direction for which participant 3 was exposed and (bottom right) mean accuracy for the

direction for which participant 3 was not exposed.
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Figure 3.5: (top left) mean RT (± s.e.) for the direction for which participant 4 was exposed, (top right)

mean RT (± s.e.) for the direction for which participant 4 was not exposed, (bottom left) mean accu-

racy for the direction for which participant 4 was exposed and (bottom right) mean accuracy for the

direction for which participant 4 was not exposed.
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3.3.2 Model fitting

For fitting the diffusionmodel toRTdistributions andproportion of correct and

incorrect responses, we used the Diffusion Model Analysis Toolbox (Vandeker-

ckhove &Tuerlinckx, 2007, 2008) forMATLAB. Among the options provided,

we chose to estimate parameters by using as the objective function amultinomial

likelihood function, which expresses the likelihoodof observing a certain propor-

tion of responses in a given number of RT bins and is maximised in order to find

the parameter estimates. We decided to represent the reaction time distributions

of responses in terms of the classical .1,.3,.5,.7 and .9 quantiles that divide the RT

distribution.

For each participant we fitted a model in which the drift rates were free to

vary across all conditions while all other parameters were fixed across conditions

within the pre-test and the post-test but could vary between pre-test and post-

test. Since participants were presented with trials in random order they could

not adjust their boundary separation or their starting point of evidence accumu-

lation before the presentation of each trial, hence the assumption of constant

boundary and starting point parameters within each session is reasonable, to-

gether with stimulus-independent variability in starting point across trials. We

assumed a constant the non-decision time component (i.e., stimulus encoding

and motor response) between the two directions since it is unlikely that subject

would have higher non-decision time (e.g., pressing a button on the keyboard)

for one direction compared to the other.

In ourmodel, the lower boundary represents the threshold for answering ‘135◦’
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while the upper boundary represents the response ‘45◦’. This means that if the

accumulation of evidence reached the upper boundary, the response ‘45◦’ was se-

lected, while if the accumulation of evidence reached the lower boundary bound-

ary, the response ‘135◦’ was selected. For both the pre-test and the post-test, the

value of the starting point was divided by that of the boundary separation in or-

der to give a normalized estimate between 0 and 1, where 0 means complete bias

towards the lower boundary (‘135◦’), 1 means complete bias towards the upper

boundary (‘45◦’) and 0.5 represents the unbiased process being equidistant from

the two boundaries.

DMAT also allows to calculate estimates of the parameters’ standard errors.

For each participant, we performed Wald tests for the difference in parameters

between pre-test and post-test using the parameter estimates and their standard

errors.

TheWald statistic is calculated as follows:

Z =
θ̂post − θ̂pre

σpost

where θ̂post is a parameter estimate of the post-test, θ̂pre is a parameter esti-

mate of the pre-test and σpost is the standard error of the parameter of the post-

test. When Wald tests are used to test differences between parameters that are

constrained across conditions (i.e., for all conditions in our study except drift

rates), the corrected reference distribution proposed by Stram&Lee (1994)must

be adopted; in this case the Wald statistic Z2 has been shown to approximate

.5 · χ2
0 + .5 · χ2

1 rather than a χ2
1 distribution.
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Figure 3.6: DDMparameters for participant 1. In order top left to bottom right: boundary separation,

non decision time, across-trials variability in drift rate, starting point, across trials variability in starting

point, across trial variability in non-decision time and drift rates. Error bars are standard errors of

parameters’ estimates.

Also here, results are presented participant by participant. As shown in Fig-

ure 3.6, between pre-test and post-test, Participant 1 had a significant decrease

in boundary separation (Z = -7.38, p<.001), in non decision time (Z = -11.46,

p<.001) and in starting point (Z = -10.36, p<.001). Regarding drift rates, t-tests

showed an increase in drift for the exposed direction (t(9) = -2.75, p= .04), while

the drift of the not exposed direction did not vary between pre-test and post-test

(t(9) = -.42, p= 1). As shown in Figure 3.7, Participant 2 had a significant de-

crease in boundary separation (Z = -13.14, p<.001), non-decision time (Z = -6.64,

p<.001) and starting point (Z = -7.15, p<.001). This subject had an increase in
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Figure 3.7: DDMparameters for participant 2. In order top left to bottom right: boundary separation,

non decision time, across-trials variability in drift rate, starting point, across trials variability in starting

point, across trial variability in non-decision time and drift rates. Error bars are standard errors of

parameters’ estimates.
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Figure 3.8: DDMparameters for participant 3. In order top left to bottom right: boundary separation,

non decision time, across-trials variability in drift rate, starting point, across trials variability in starting

point, across trial variability in non-decision time and drift rates. Error bars are standard errors of

parameters’ estimates.

drift for the exposed direction (t(9) = -3.36, p= .02), while the drift of the not ex-

posed direction did not vary significantly between the pre-test and the post-test

(t(9) = -1.15, p= .56). As shown in Figure 3.8, Participant 3 had a significant de-

crease in boundary separation (Z = -9.18, p<.001), an increase in non-decision

time (Z = 1.98, p = .02) and a decrease in starting point (Z = -5.46, p<.001). Be-

tween the pre-test and the post-test, the drift of the exposed direction varied sig-

nificantly (t(9)= -4.83, p= .002)while thedriftof thenot exposeddirection stayed

the same (t(9) = -1.61, p= .28). As shown in Figure 3.9, Participant 4 had a signif-

icant decrease in boundary (Z = -5.81, p<.001), an increase in non decision time
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Figure 3.9: DDMparameters for participant 4. In order top left to bottom right: boundary separation,
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(Z = 2.33, p=.01) and a decrease in starting point. (Z = -1.37, p=.08). The drift of

the exposed direction increased significantly (t(9) = -6.25, p= <.001) as well as the

drift of the not exposed direction (t(9) = -3.85, p= .01). Although the drift rates

for both directions increased between pre-test and post-test, the relative change

between pre-test and post-test for the exposed direction was significantly higher

than the relative change between pre-test and post-test for the not exposed direc-

tion (t(9) = 3.72, p= .01).

To assess the goodness of fit of the best-fitting model for each participant, fits

of themodel to the data are represented by quantile probability plots. Figure 3.10

represents quantile probability plots of the data pooled across the four partici-

pants against a DDM process with parameters averaged across individuals. On

the x-axis of each figure is the probability of a response for the correct and the

incorrect boundary. This means that the probability for a correct response is

positioned on the right side of the graph (when the probability of response is

above chance) while the corresponding probability for an incorrect response is

positioned on the left side of the graph at 1− P(correct response). On the y-axis

of each plot are reported the conventional .1,.3 .5,.7 and .9 quantiles of the RTs

distributions for correct and incorrect responses. For a more detailed explana-

tion and interpretation of quantile probability plots refer to Ratcliff &McKoon

(2008). The quantile probability plots show that the model on which our anal-

yses are based fits the data well and without mismatches. Note that some of the

error responses for highly discriminable stimuli are affected by few extreme and

potentially unreliable measurements, which are less likely to be generated by a
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DDMprocess and to which little weight should be given when assessing the fit.
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Figure 3.10: Quantile probability plots for the data pooled across individuals and the predictions of the

model based on the parameters averaged across individuals. Each plot shows the ten coherence levels

for one direction during the pre-test or the post-test. (a) pre-test 45◦, (b) pre-test 135◦, (c) post-test

45◦, (d) post-test 45◦. The different colours reflect the different quantiles (.1, .3, .5, .7, .9) of the RT

distribution for each condition.

3.4 Discussion

Here, using theDDM(Ratcliff&McKoon, 2008), we havemodelled for the first

time the processes underlying task-irrelevant perceptual learning in healthy indi-
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viduals. Participants were exposed to a constant sub-threshold motion direction

while performing aRSVP task. Before and after theRSVP task, participants were

tested on a pre-test and a post-test motion direction discrimination task. The re-

sults indicate that: (i) TIPL affects the drift rate at which participants accumu-

late evidence for the exposed direction, (ii) TIPL affects the conservativeness of

participants’ response (iii) non-systematic variations in parameters between the

two sessions (e.g., variations in non-decision time, variations in starting point) do

not allow a direct comparison of the the decision process only based on accuracy

and/or RT.

These findings have important implications for the interpretation of percep-

tual learning data, both task-relevant and task irrelevant, and, we hope, for the

analysis of data collected on different days or for which learning is involved. First,

every decision is a mixture of different cognitive processes that can be isolated by

this analysis for a more principled interpretation of results. Interpreting learning

in terms of latent cognitive variables allows for a more precise investigation of its

effect and gives a propermeasure of ‘true’ perceptual learning - change in the drift

rate which is related to the quality of input information - while weighting for sys-

tematic or random variations in other parameters. In particular, caution should

be exercised when comparing data across different sessions. As in previous stud-

ies of perceptual learning, participants in our study showed evidence of a change

in their speed-accuracy trade-off. Not taking this factor into account can lead to

wrong conclusions from data.

In theory, decreased boundary should result in decreasing accuracy for the not
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exposed direction. In our investigation, participants had to view the stimuli for

500ms before giving their response; given this constraint, participants had a rela-

tively long timewindow tomake a decision and as a consequence this might have

obscured a decrease in accuracy between the pre-test and the post-test that should

results from a decreased boundary. For future investigation, we recommend us-

ing a shorter presentation of the stimuli (e.g., 200ms) that is more likely to reveal

stronger variations in accuracy andRTs of the not exposed direction between the

pre-test and the post-test.

Our results show the risk of directly comparing sessions performed on differ-

ent days without considering the role of each single parameter. Take for example

participant 1: by analysing Figure 3.2 and by testing for differences in accuracy, a

researcher may be tempted to conclude that this subject did not have any TIPL

since there is not a difference between the accuracy of the first and second ses-

sion both for the exposed and the not exposed direction. However, the model

fitting shows that this participant had higher drift rates for the exposed direc-

tion, which is likely to be the signature of TIPL, which is accompanied by a de-

crease in boundary and variations in the bias towards a response. An increase in

drift (faster and more accurate responses) accompanied by a decrease in bound-

ary (faster and less accurate responses) can have as output that accuracy levels stay

the same as the increase in drift is combined with a decrease in response conser-

vativeness.

Previous studies have shown that perceptual learning is associated with a de-

crease in boundary separation (Petrov et al., 2011; Liu &Watanabe, 2012; Dutilh
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et al., 2009) and we replicated this result also here for TIPL showing consistency

across four participants. It has been proposed (Liu & Watanabe, 2012) that this

decrease in boundary separation is due to the fact that participants are trying

to maximise their reward rate, operatlionalised as the proportion of correct re-

sponses divided by the average time between them (Bogacz et al., 2006). In other

words, if the quality of information increases (i.e., hence the task becomes ‘eas-

ier’) participants can decrease the time spent for each decision. To the best of our

knowledge, this is the first study to report a DDM decomposition of TIPL and

the first study to show the systematic parameter variations associated with TIPL.

Regarding other parameters there is not consistency in the literature regard-

ing the effects of learning, and also here we do not observe a clear pattern across

participants. For example, regarding the non-decision time component, in previ-

ous studies investigating perceptual learning, Petrov et al. (2011) andDutilh et al.

(2009) found a decrease associated with learning, while Liu & Watanabe (2012)

found that, although not significant overall, some participants showed an im-

provement. Here we did not find a consistently decreasing non-decision time

component between the two sessions, given that only two out of four partici-

pants have a decrease in non-decision time. Our only consistent result is that

of decreasing boundary related to learning and an effect on the drift; result that

shares some similaritieswith that byLiu&Watanabe (2012). However,webelieve

that future work, in which more participants are included, is needed in order to

make group inferences regarding non-decision time. Furthermore, it is possible

that our training regime was too short to appreciate a decrease in non-decision
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time for all participants.

Regarding the drift, we show that there is an increase in the drift of the ex-

posed direction, compared to the pre-test, and compared to the drift of the not

exposed direction of the post-test when the drift of the not exposed direction in-

creases as well in the post-test. Ideally, we would expect that the drift of the not

exposed direction would not differ significantly between pre and post-test. For

one participant however the drift of the not exposed direction varies as well; this

is unlikely to be an effect of TIPL but rather a random variation in participants’

performance that further highlights the importance of a DDM decomposition

of learning data.

Although the sample size (N = 4) is low, this is in line with similar studies that

haveperformed aDDMdecompositionof learningdata (e.g.,Dutilh et al., 2009),

and it is common practice in perceptual learning research (Lu & Dosher, 2004;

Yi et al., 2006; Sigman & Gilbert, 2000; Furmanski & Engel, 2000; Johnson &

Leibowitz, 1979; Liu &Weinshall, 2000). Furthermore the consistency in results

across participants reassures us about our conclusions.

It is to be mentioned that the training that our participants performed is rela-

tively ‘short’ if compared with the usual TIPL training of about 20 days, during

which TIPL reaches its asymptotic level (Watanabe et al., 2001). To our knowl-

edge, this is also the first study showing that TIPL can occur with only seven days

of training, about one third of the training usually performed in TIPL studies.

It is sensible to expect that if the days of training increase, the effect on bound-

ary and drift reported here would increase as well and have even stronger con-
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sequences on accuracy and RT. Future work, employing more participants and

longer training regimes is clearly warranted in order to quantify the rate at which

each component is affected by learning, and to quantify the distortion that fo-

cusing only on accuracy could lead to.

Overall, a consideration of the different components in decisionmaking shows

that the two componentswhich are found to vary systematically all have indepen-

dent effects on speed and/or accuracy. Whilst increased drift will tend to increase

speed and accuracy, decreased boundary separation will tend to decrease both.

For these reasons, a decomposition of decision making from these observed vari-

ables allows us not only to focus on the different effects of perceptual learning

individually, but allows us a more accurate assessment of the extent of increased

stimulus sensitivity in perceptual learning. Our study is the first to show this

increased sensitivity in task-irrelevant perceptual learning, and does so demon-

strating that the other components of decision making are affected in a similar

way to as in task-relevant perceptual learning.
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4
ADDM account of the semantic

congruity effect

Abstract

In this chapter, similarly to what done before, we bring a known psychological

phenomenon within the same framework as many other decision phenomena,
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andwe show how this allows a fresh perspective on previouslymore loosely spec-

ified theories. The semantic congruity effect is that judgements are facilitated (i)

when the direction of the comparison of two items coincides with the relative

position of the items along the dimension comparison or (ii) when the relative

size of a standard and a target stimulus coincides. For example, people are faster

in judging ‘which is bigger?’ for two large items, than judging ‘which is smaller?’

for two large items. Also, people are faster in judging a target stimulus as smaller

when compared to a small standard, than when compared to a large standard.

Here, we use the DDM to explain the time course of a semantic congruity effect.

Formal modelling of semantic congruity allows the time course of the decision

process to be described, using an established model of decision making. More-

over, although there have been attempts to explain the semantic congruity effect

within evidence accumulation models, two possible accounts for the congruity

effect have been proposed but their specific predictions have not been compared

directly, using a model that could quantitatively account for both; a shift in the

starting point of evidence accumulation or a change in the rate at which evidence

is accumulated. With our computational investigation we provide evidence for

the latter, while controlling for other possible explanations such as a variation in

non-decision time or boundary separation, that have not been taken into account

in the explanation of this phenomenon.
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4.1 Introduction

When subjects are required to judge two stimuli that differ on a single contrastive

polar continuum (e.g., ‘big’ vs. ‘small’), subjects are faster to judge which of the

two stimuli is higher on that continuum, when the stimuli are high on that par-

ticular dimension, and they are faster to judge which of the two stimuli is lower

on that continuum, when the stimuli are low on that particular dimension. Fur-

thermore, when subjects are required to judge whether a target stimulus is big-

ger or smaller than a standard stimulus, subjects are faster when the relative size

of the standard and of the target coincides (see Dehaene, 1989). This result, re-

ferred to as the semantic congruity effect, has been replicated in perceptual and

symbolic judgements across different domains, including surface area (Moyer &

Bayer, 1976), line length (Petrusic et al., 1998), brightness (Wallis&Audley, 1964),

scalar adjectives of quality (Holyoak & Mah, 1982), the distance between two

cities (Holyoak &Mah, 1982) and Arabic numerals (Banks et al., 1976; Holyoak,

1978).

Many theories have been proposed to account for the semantic congruity ef-

fect. These theories vary greatly in the level of description of the phenomenon,

with some theories being able to account for semantic congruity effects only in

the case in which comparative instructions are presented to the subject, but not

when subjects have to decide whether a target is bigger or smaller than a standard

stimulus. For a detailed and exhaustive review of the models proposed for the

explanation of the semantic congruity effect, refer to Petrusic (1992) and Leth-
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Steensen & Marley (2000); here we present a brief description of some of the

theories that have been proposed for the explanation of this phenomenon.

According to the expectancy effect (Banks & Flora, 1977;Marschark & Paivio,

1979), the direction of the comparison (e.g., is the target stimulus bigger than the

standard?) prepares the subject for the range of stimuli that will be presented.

This results in a facilitation in case of congruency between the comparison and

the stimuli. However, even when the comparative is presented together or af-

ter the presentation of the stimuli, the semantic congruity effect can still be ob-

served (Holyoak & Mah, 1982), undermining a basic assumption of this model.

Alternatively, the semantic coding model (Banks et al., 1976, 1975) explains the

congruity effect by referring to linguistic codes; however, this struggles with the

finding that even non-human primates show a semantic congruity effect when

comparing magnitudes (Cantlon & Brannon, 2005). A further verbal theory,

the frequency explanation (Ryalls et al., 1998), explains the semantic congruity

effect by the fact that each comparative is associated with one unique dimension

during learning (i.e., subjects learn to use ‘bigger’ for high magnitude stimuli,

and ‘smaller’ for lowmagnitude stimuli); yet, this explanation struggles with the

result that the expectancy effect is found also when subjects are taught new com-

parisons with novel comparatives (Chen et al., 2014). A further class of models

are reference point models (Holyoak, 1978; Holyoak & Mah, 1982; Marks, 1972;

Dehaene, 1989; Chen et al., 2014), according to which, subjects, when making a

magnitude judgement, compare the numerical value of the stimulus with refer-

ence values stored inmemory. Under this view, the subject is assumed to establish
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a reference point near one of the extreme values encountered in a given context

and this results in a facilitation when the stimulus to discriminate is nearer to the

reference point. From this perspective, the use of reference points has been sug-

gested to affect the strength of evidence accumulation (see Dehaene, 1989; Chen

et al., 2014); meaning, for example, that when the magnitude of the standard

stimulus coincides with the magnitude of the target, this results in higher rates

of evidence accumulation, compared to when there is not congruency between

the relative sizes of the two stimuli. Other authors have explained the seman-

tic congruity effect adopting random walk models (Link & Heath, 1975; Link,

1990; Birnbaum & Jou, 1990; Poltrock, 1989); these studies explain the seman-

tic congruity effect as arising from a starting point adjustment dictated by the

instructions. However, as argued in Leth-Steensen &Marley (2000), in tasks in

which subjects are presentedwith symmetric differences (i.e., the samenumber of

bigger and smaller comparisons are presented), it is not clear why subjects should

adjust their starting point of evidence accumulation towards one of the two alter-

natives in selection paradigms. Finally, some evidence-accumulationmodels and

instructional pathway interference accounts have been proposed (Petrusic et al.,

2008; Petrusic, 1992; Leth-Steensen &Marley, 2000), according to which the se-

mantic congruity is due to a variation in the rate of evidence accumulation in case

of congruency/incongruency between the instructions and the relative size of the

stimulus pair.

Comparing such theories directly is out of the scope of this work, since some

of them are not framed within the evidence accumulation framework. Here, we
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bring the semantic congruity effect within the same framework asmany other de-

cision phenomena; we use theDDMand showhow it can account for the seman-

tic congruity effect, by fitting it to behavioural data from a magnitude compar-

ison experiment conducted with human subjects. Since the semantic congruity

effect manifests in changes in decision time, the use of the DDM, which explic-

itly considers the time course of decision-making, is natural. In contrast, some

of the heuristic proposals outlined above lack such formal description of how

decisions evolve over time, or when they specify how the decision evolves, they

do so by adopting ad-hoc models that only make predictions for the specific task

but cannot be generalised to other tasks or domains (e.g., themodels proposed in

Leth-Steensen&Marley, 2000 or in Petrusic et al., 2008), while a unifying frame-

work such as the DDM overcome the limitations of task-specific models. Fur-

thermore, with aDDMdecompositionwe can investigatewhich decision param-

eters account for the semantic congruity effect. Together with the explanations

proposed (i.e., drift rate or starting point) other parameters that have never been

taken into account, such as non-decision timeor boundary separation, could play

a role in the semantic congruity effect. For example, the non-decsion time, which

has never been taken into account in the previous literature, could as well con-

tribute to a semantic congruity effect given that the congruency/incongruency

between the magnitude of the stimuli (or between the instructions and the rela-

tive sizes of the target and standard stimulus) could affect the motor response of

the subjects.

Usually, in 2AFC tasks parameters such as the starting point of evidence accu-
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mulation or the thresholds are assumed to take time to change and are assumed

to be set before the stimulus appears (Bogacz et al., 2006); here, however, we as-

sume that the size of the standard, to which subjects pay attention at first during

the trial presentation, is apprehended quickly, and it affects the decision process.

When there is congruency between the magnitude of the standard and of the

target stimulus, this results in a facilitation, compared to when there is not con-

gruency between the relative sizes of the two stimuli. In the literature similar

mechanisms that affects the early stages of a decision are described; for example,

Provost &Heathcote (2015) provided a similar explanation for a mental rotation

task, and in their computational investigation they found that participant adjust

their boundary separation on the basis of a property of the stimulus, rotation

angle. Also, it is to be mentioned that typically in the kind of tasks in which

the DDM is used, subjects evaluate one single stimulus; in this case a change in

decision parameters cannot be contingent on the outcome of the decision. How-

ever, in our case we have that one feature of the stimulus, the size of the standard

stimulus, to which subjects pay attention at first, can affect the subsequent dis-

crimination of the target.

In our experiment subjects had to decidewhether a target stimuluswas smaller

or bigger than a standard array. A stimulus example is reported in Figure 4.1.

Our experiment presents some differences with some semantic congruity tasks

in which the direction of the comparison is explicitly given, but it is as well a

semantic congruity effect (Dehaene, 1989) and similar experimental paradigms

have been used before (e.g., Link, 1990; Dehaene, 1989).
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Figure 4.1: Stimulus example. In each trial subjects had to decide whether the array presented on

bottom (target) was smaller or bigger in numerosity than the array presented on top (standard). After

their response, subjects were presentedwith a fixation that over the course of 600mswas varying in

size, as a warning signal tomaintain fixation at the centre of the screen.

4.2 Experiment

4.2.1 Participants

Four right-handed subjects, one male, mean age = 20.5 years (SD = 3.2) with nor-

mal or corrected-to-normal vision participated voluntarily in the experiment in

exchange of credits for course requirements. Each participant was tested in four

sixty-minutes sessions on different days. The experiment was approved by the

University of Sheffield, Department of Psychology Ethics Sub-Committee, and

carried out in accordance with the University and British Psychological Society

ethics guidelines and subjects gave their informed consent before performing it.

85



4.2.2 Materials

The experiments were programmed inMatlab, using the Psychophysics Toolbox

extensions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). We used a modifica-

tion of an established perceptual decision task (Piazza et al., 2010; Revkin et al.,

2008b,a; Piazza et al., 2011; Gertner et al., 2012) and a type of ‘congruity’ task sim-

ilar to that used by Link (1990) andDehaene (1989) - similar since also in our case

subjects decided whether a target stimulus was bigger or smaller than a standard

stimulus, however Link (1990) and Dehaene (1989) used two-digit numbers in

their experiments. In our task, participants judged if a cluster of dots presented

on the bottom of a laptop screen was ‘smaller’ or ‘bigger’ in numerosity than one

presented on the top of the screen without counting and responding by button

press. On each trial, one array - the standard - contained a fixed numerosity (12

dots for one third of the trials, 24 dots for one third of the trials, 36 dots for the

other third), and the other array - the target - contained a varying numerosity that

was smaller or bigger than the fixed numerosity by one of seven possible ratios.

The ratio defined the difficulty of the judgement, with ratios closer to 1 being

harder. The seven ratios, in order of increasing difficulty, were 0.42, 0.50, 0.58,

0.66, 0.77, 0.83, 0.91. The absolute number of dots in each choice pair and a

description of conditions is shown in Table 4.1.

There were in total 42 conditions; seven increasing ratios (i.e., increasing diffi-

culty) for eachof three levels of standard stimulusmagnitude (small,mediumand

big) for each type of response ‘smaller’ or ‘bigger’ (i.e., half of the times the target

stimulus was bigger/smaller than the standard). For each trial, subjects had to



Condition N of Dots Ratio Magnitude of Standard Target (compared to standard) is
1 12 vs 5 0.42 small smaller
2 12 vs 6 0.5 small smaller
3 12 vs 7 0.58 small smaller
4 12 vs 8 0.66 small smaller
5 12 vs 9 0.75 small smaller
6 12 vs 10 0.83 small smaller
7 12 vs 11 0.91 small smaller
8 12 vs 19 0.42 small bigger
9 12 vs 18 0.5 small bigger
10 12 vs 17 0.58 small bigger
11 12 vs 16 0.66 small bigger
12 12 vs 15 0.75 small bigger
13 12 vs 14 0.83 small bigger
14 12 vs 13 0.91 small bigger
15 24 vs 10 0.42 medium smaller
16 24 vs 12 0.5 medium smaller
17 24 vs 14 0.58 medium smaller
18 24 vs 16 0.66 medium smaller
19 24 vs 18 0.75 medium smaller
20 24 vs 20 0.83 medium smaller
21 24 vs 22 0.91 medium smaller
22 24 vs 38 0.42 medium bigger
23 24 vs 36 0.5 medium bigger
24 24 vs 34 0.58 medium bigger
25 24 vs 32 0.66 medium bigger
26 24 vs 30 0.75 medium bigger
27 24 vs 28 0.83 medium bigger
28 24 vs 26 0.91 medium bigger
29 36 vs 15 0.42 big smaller
30 36 vs 18 0.5 big smaller
31 36 vs 21 0.58 big smaller
32 36 vs 24 0.66 big smaller
33 36 vs 27 0.75 big smaller
34 36 vs 30 0.83 big smaller
35 36 vs 33 0.91 big smaller
36 36 vs 57 0.42 big bigger
37 36 vs 54 0.5 big bigger
38 36 vs 51 0.58 big bigger
39 36 vs 48 0.66 big bigger
40 36 vs 45 0.75 big bigger
41 36 vs 41 0.83 big bigger
42 36 vs 39 0.91 big bigger

Table 4.1: Stimuli values for each condition.
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decide whether the target stimulus was smaller or bigger than the standard stim-

ulus by pressing ‘left’ or ‘right’ on the keyboard. Conditions were chosen so that

for each standard stimulus we would have accuracy levels that range from floor

to ceiling on the basis of the results of previous pilot studies.

To avoid participants relying upon continuous quantities associated with nu-

merosity (i.e., dot size and envelope area) in this experiment the dot arrays were

generated following the method and the MATLAB code provided by Gebuis &

Reynvoet (2012). This method was used to produce four sets of images with all

possible combinations of correlation (positive vs. negative) between the two fea-

tures of the stimuli (envelope area, dot size) and dot number.

4.2.3 Procedure

During the whole experiment, subjects had to put their head on a chin rest at

a viewing distance of 57 cm from the screen of a 14-inch laptop monitor (Dell

Latitude E5430) with a refresh rate of 60 Hz. Subjects were required to fixate a

red cross at the centre of the screen. The two dot arrays were presented simul-

taneously on the screen at±4.25 degrees of visual angle from the fixation cross,

and participants were asked to judge if the cluster presented on the bottom of

the screen was bigger or smaller than the one presented on top by pressing ‘left’

or ‘right’ on a keyboard. Each dot was randomly assigned an item size ranging

between 0.08 and 0.59 degrees of visual angle. If subjects answered below 300ms

or above 3000 ms the sentence ‘Too fast!’ or ‘Too slow!’ was displayed on the

screen. After giving a response, subjects were presented with a fixation cross that
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over the course of 600 ms was varying in size (i.e., small and then bigger for two

times), as a warning signal for subjects to pay attention to the centre of the screen,

and after subjects were presented with a new trial. Trials were presented in ran-

dom order across blocks and participants performed 50 trials per condition after

a training phase to familiarize them with the task which involved 1 trial per con-

dition. Subjects participated in 4 different sessions on 4 different days (within a

week from the first session) for a total of 200 trials per condition and 8400 trials

for the whole experiment.

4.3 Analyses

4.3.1 Behavioural results

Figure 4.2 shows the psychometric functions averaged across subjects. Figure 4.3

shows mean correct RTs as a function of the experimental condition when data

are averaged across participants and RTs lower than 0.3 s and bigger than 3 s are

eliminated (about 0.5% of the data). The second column of plots of Figure 4.3

showsmean accuracy averaged across participants. The two plots on the top row

showmeanRTs and accuracy for conditions for which the standard stimulus was

‘small’ (i.e., it had 12 dots), the two plots on the middle row showmean RTs and

accuracy for conditions for which the standard stimulus was ‘medium’ (i.e., 24

dots) and the two plots on the bottom row show mean RTs and accuracy for

conditions for which the standard stimulus was ‘big’ (i.e., 36 dots).

Figure 4.3 and Figure 4.2 clearly show the presence of a semantic congruity

effect, given that subjects, for conditions having the same ratio (e.g., 12 and 5 dots
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Figure 4.2: Psychometric functions. On the X axis is reported the number of dots of the target stimulus.

Error bars are standard errors of themean.
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Figure 4.3: Mean corerct RTs, and accuracy levels averaged across subjects for small standard condi-

tions (first row), medium standard conditions (second row) and big standard conditions (third row).

Error bars represents standard errors of themean. The legend showswhether the target stimulus was

smaller or bigger than the standard stimulus.

vs 12 and 19 dots), have different RTs and accuracy depending on the congruency

between size of the standard and of the target stimulus.

We entered correct RTs and accuracy levels in different mixed-effect regression

models for each magnitude level with Ratio as covariate and Correct Response

Category (CRC) as factor. In each regression, we included random effects for

subject-specific constants and slopes. For each mixed-effect regression, we report

the test of fixed effects, and the estimates of fixed effects. Regarding correct RTs,

when the standard was small there was an effect of CRC, F(1, 7.58) = 11.94, p =

.009, B = -.20 with RT decreasing when the CRC category was ‘smaller’. The
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effect of Ratio, F(1, 13.64) = 19.86, p = .001, B = .20 showed that RT increased as

ratio increased. When themagnitude of the standardwasmedium, there was not

an effect of CRC, F(1, 8.77) = .01, p = .92. The effect of Ratio was significant, F(1,

18.03) = 8.99, p = .008, B= .13. When the standardwas big, therewas not an effect

ofCRC,F(1,8.61)= 2.88, p= .13, B= .09 although therewas an increasing trend for

RTs when the CRC was ‘smaller’ (also shown in Figure 4.3). The effect of Ratio

was significant, F(1, 18.21) = 15.47, p=.001, B = .18. Regarding accuracy, when the

standard was small there was an effect of CRC, F(1, 7.80) = 12.45, p=.008, B =

.36, with accuracy increasing when the CRC category was ‘smaller’. The effect of

Ratio, F(1, 9.46) = 43.33, p < .001, B = -.49 showed that accuracy decreased as

ratio increased. When the magnitude of the standard was medium there was not

an effect of CRC, F(1, 7.38) = .10, p = .76. The effect of Ratio was significant, F(1,

14.63) = 118.82, p < .001, B = -.49. When the standard was big there was an effect

of CRC, F(1, 6.30) = 33.11, p=.001, B = -.18, with accuracy decreasing when the

CRC category was ‘smaller’; also in this case, the effect of Ratio was significant,

F(1, 30.61) = 287.36, p < .001, B = -.57.

4.3.2 Model fitting

As done for the previous study, for fitting the diffusion model to RT distribu-

tions and proportion of correct and incorrect responses, we used the Diffusion

Model Analysis Toolbox (Vandekerckhove & Tuerlinckx, 2007, 2008). Here,

among the options available, we chose to estimate parameters by using as ob-

jective function a chi-square function. We decided to represent the RT distribu-
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tions of responses in terms of six bins, defined by the boundaries of the .4, .55, .7,

1, 1.5 seconds bins dividing the RT distribution. In the Diffusion Model Analy-

sis Toolbox, the observed response frequencies are compared to the expected re-

sponse frequencies and a chi-square statistic is minimised to find the best fitting

parameters.

For each participant the drift and its variability could be (i) fixed across con-

ditions, or (ii) free to vary across conditions; the boundary separation could be

(i) fixed across conditions, or (ii) free to vary across conditions; the starting point

and its variability could be (i) fixed across conditions, or (ii) free to vary across

conditions; and finally the non-decision time and its between trials variability

could be (i) fixed across conditions, or (ii) free to vary across conditions.

All possible combinations of models were fitted to each individual resulting

in a total of 16 models per participant. To assess which model best satisfies the

trade-off between simplicity and goodness of fit, we used a statistical criterion for

model selection, the Bayesian Information Criterion (BIC; Raftery, 1995), calcu-

lated as−2 · log− likelihood(data|model)+k · logN, where k is the number of free

parameters in the model and N the total number of observations. The BIC is a

measure of goodness of fit to which a penalty for the introduction of parameters

is added. The best model is the model with the lowest BIC value and a difference

of ten in BIC scores between twomodels is considered a strong evidence towards

the model with the lowest BIC score. A difference of two BIC scores is the min-

imum difference to favour a model over another. For all participants, the model

in which only the drift rate and its variability were allowed to vary across condi-
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BIC
parameters free to vary df part 1 part 2 part 3 part 4
a 48 36576.14 38024.36 34810.49 35543.56
a eta v 130 36576.23 38260.49 34750.83 34687.46
a z sz 130 36513.37 38444.74 35176.21 34319.85
a eta z sz v 212 37143.49 38928.65 35774.99 34766.12
a ter st 130 37161.02 38628.05 35448.55 36114.33
a ter eta st v 212 37747.68 39298.48 36049.12 36568.87
a ter z sz st 212 37457.55 39141.2 35896.05 36097.81
a ter eta z sz st v 294 38121.66 39577.1 36548.9 36675.68
none 7 36593.38 38040.75 34937.22 35724.95
eta v 89 35754.26 37978.23 34506.52 33565.91
z sz 89 36196.63 38086.65 34610.56 34176.66
eta z sz v 171 36780.5 38604.23 35306.89 34332.28
ter st 89 37226.09 38675.38 35422.08 36123.94
ter eta st v 171 36918.82 38680.12 35062.75 35705.96
ter z sz st 171 36872.35 38844.15 35278.26 34732.73
ter eta z sz st v 253 37074.33 39214.92 35705.16 35427.37

Table 4.2: BIC values for eachmodels and each participant. The first column showswhich parameters

were allowed to vary in themodel (a = boundary, ter = non-decision time, eta = variability in drift, z =

starting point, sz = variability in starting point, st = variability in non-decision time, v = drift), the second

columns shows the degrees of freedom of eachmodel while the remaining four columns show, for each

participant (‘part’) the BIC value for eachmodel. The best model for each participant is reported in red.

tions, was selected by far as the best model, with differences in BIC scores being

always greater than 46 if the best model is compared to the second-best model,

showing a very strong preference for this model. BIC scores for each model and

participant are reported in Table 4.2.

As it is clear from plotting the drift rate and its across-trials variability recov-

ered from the fitting for each participant - Figure 4.4, Figure 4.5, Figure 4.6 and

Figure 4.7 -, the drift rate was (i) a function of the ratio between the standard

and the target stimulus (i.e., the difficulty) and (ii) a function of the congruity
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between the magnitude of the standard and the magnitude of the target stimu-

lus, meaning that in case of congruity between the relative sizes of the standard

and of the target, drift rates for ‘difficult’ conditions are higher in absolute terms

compared to when there is not congruity between the relative size of the two

stimuli. In each Figure, when drift values are positive, it means that they drifted

towards the threshold for the answer ‘bigger’, while when drift values are nega-

tive, it means that the process was directed towards the boundary ‘smaller’. Fig-

ure 4.7 shows that participant 4, was biased towards answering ‘smaller’ when

the standard stimulus was smaller; even for highly discriminable stimuli.

For each participant, we run separate linear regressions on drift estimates with

Ratio as Covariate andMagnitude and CRC as Factors. Our results showed that

for all participants the interaction effect of Magnitude and CRC was significant

(all p <.03). Post-hoc tests with Bonferroni corrections showed that all partici-

pants had higher drift rates when the magnitude of the standard was small and

the correct response category was ‘smaller’ compared to when it was ‘bigger’ (all

p<.001) and had higher drift rates when the magnitude of the standard was big

and the correct response was ‘bigger’ compared to when it was ‘smaller’ (all p

<.017).

Eta did not vary consistently across conditions; this was also confirmed by the

fact that no linear or quadratic fitting for eta resulted significant (all p>.087).

The remaining parameters, for each participant, are shown in Table 4.3.

Fits of themodel to the data are represented by quantile probability plots, Fig-

ure 4.8, showing that the model in which drift and variabilities are free to vary
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Figure 4.4: Graphical representation of (top) drift rate, (bottom) variability in drift rate across condi-

tions for the first subject. For drift rate we report the best quadratic fitting as a function of the target

stimulus. The horizontal line for the drift represents the level at which the drift is 0. Error bars are

standard errors of parameters’ estimates.

a ter z sz st
participant 1 .145 .290 .073 .001 <.001
participant 2 .176 .274 .091 <.001 .084
participant 3 .141 .496 .073 <.001 .446
participant 4 .165 .272 .076 <.001 .039

Table 4.3: Values of a, ter, z, sz and st for each participant.
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Figure 4.5: Graphical representation of (tom) drift rate, (bottom) variability in drift rate across con-

ditions for the second subject. For drift rate we report the best quadratic fitting as a function of the

target stimulus. The horizontal line for the drift represents the level at which the drift is 0. Error bars

are standard errors of parameters’ estimates.
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Figure 4.6: Graphical representation of (top) drift rate, (bottom) variability in drift rate across condi-

tions for the third subject. For drift rate we report the best quadratic fitting as a function of the target

stimulus. The horizontal line for the drift represents the level at which the drift is 0. Error bars are

standard errors of parameters’ estimates.
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Figure 4.7: Graphical representation of (top) drift rate, (bottom) variability in drift rate across condi-

tions for the fourth subject. For drift rate we report the best quadratic fitting as a function of the target

stimulus. The horizontal line for the drift represents the level at which the drift is 0. Error bars are

standard errors of parameters’ estimates.
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across conditions provides a good description of the data. Similarly to the previ-

ous chapter, here we compare the predictions of the model based on the parame-

ters averaged across individuals, and the observed data pooled across individuals.

Figure 4.8 has 6 plots; the two plots on top show conditions for which the stan-

dard was small, the plots on the middle show conditions for which the standard

was medium and the plots on the bottom show conditions for which the stan-

dard was big. The plots on the left of Figure 4.8 show conditions for which the

correct response category was ‘smaller’, while the plots on the right show con-

ditions for which the correct response category was ‘bigger’. Note that, as the

behavioural analyses show, for conditions with a high ratio (i.e., high difficulty),

the overall performance of subjects dropped below chance in some cases. As a

consequence, for these conditions, the probability of a correct choice lays on the

left of the graph, and the probability of an incorrect choice is on the right side

of the graph, mostly near to chance level. In general, for conditions with highly

discriminable stimuli (i.e., conditions with low ratio) little weight should be ac-

corded to the quantiles for error responses since these are mainly influenced by a

very limited and potentially unreliable number of measurements given that sub-

jects made very few errors in these extreme conditions. Furthermore, DMAT

ignores conditions that have less than eleven errors, hence these conditions are

not reported.

The quantile probability plots show that the model obtained from our fitting

can capture the averaged data fairly well, especially considering that the data are

averaged across four experimental sessionswith clear repercussions on thewithin-
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Figure 4.8: Quantile probability plots showing predictions of themodel (recovered from the parame-

ters averaged across individuals) and the data (averaged across individuals).
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subject variability, and considering the high number of conditions present in this

study.

4.4 Discussion

As we have discussed above, several verbal descriptive theories have been pro-

posed for the explanation of the semantic congruity effect (Banks & Flora, 1977;

Marschark & Paivio, 1979; Holyoak &Mah, 1982; Banks et al., 1976, 1975; Ryalls

et al., 1998). Here, we have adopted a computational framework, the drift dif-

fusion model (DDM) that is psychologically plausible, mathematically rigorous

and that has been shown to fit data in various psychological tasks (Ratcliff, 2002;

Thapar et al., 2003; Voss et al., 2004; Ratcliff, 1978; Ratcliff & McKoon, 1988;

Ratcliff & Rouder, 1998; Ratcliff et al., 1999, 2004b). Our results show that the

DDM (Ratcliff, 1978; Ratcliff et al., 1999; Ratcliff&McKoon, 2008) can account

for the data in an experiment in which we have elicited a semantic congruity ef-

fect.

We found that the changes in decision time and accuracy associated with the

introduction of our manipulation, can be best explained by a change in the drift

rate. The drift rate is associated with the discriminability of the experimental

condition, as it is commonly assumed in the DDM, but it is also affected by the

congruity between the magnitude of the standard stimulus and the magnitude

of the target. This effect seems to suggest that subjects were first assessing the

numerosity of the standard and then they were assessing the numerosity of the

target to decide if it was smaller or bigger compared to the standard; when there
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was congruency between the relative sizes of the standard and of the target, this

resulted in higher drift rates. Specifically, in this study subjects may have learnt

to use the two extreme standard magnitudes as reference points for the values

‘small’ and ‘big’, since over the four experimental session the numerosity of the

standard only consisted of three possible values. This strategy would result in

the pattern observed in the data with subjects being faster and more accurate in

judging which of the two stimuli is bigger/smaller when there was congruency

between the magnitude of the target and of the standard. In our study, subjects

had to asses the size of the standard stimulus. Afterwards, subjects had to assess

whether the target stimulus was bigger or smaller than the standard and in case

of congruency between the sizes two stimuli, the response was faster and more

accurate (i.e., drift rates were higher).

The main result of this study is in line with reference point models (see De-

haene, 1989) and with theories in which the congruency between magnitude of

the stimulus and the response category affects the strength of the evidence signal

(Petrusic et al., 2008; Leth-Steensen & Marley, 2000), while we invalidate the-

ories which interpret the semantic congruity effect as a modification in starting

point of evidence accumulation (Link & Heath, 1975; Link, 1990; Birnbaum &

Jou, 1990; Poltrock, 1989). However, a key point of themodels proposed byLeth-

Steensen &Marley (2000) and by Petrusic et al. (2008) is that the semantic con-

gruity effect arises when there is congruency between the comparison instruction

and the relative size of the stimuli, while in our case the semantic congruity arises

as congruency between the size of the standard and the size of the target stimu-
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lus. Further theoretical work - in which such theories are framed within a DDM

framework - and experimental work - in which the direction of the comparison

is explicitly given - is needed to test Leth-Steensen &Marley (2000) and Petrusic

et al. (2008) explanations, given that the experimental paradigm presented here

and the conceptual explanation that we provided vary greatly from their concep-

tualisation of the same phenomenon. Furthermore, for these theories, it has been

proposed (Leth-Steensen et al., 2014) that it is the relative size of the stimulus pair

that ‘primes’ the corresponding congruent form of the instruction, resulting in a

facilitation in case of congruency. However, it is not clear why an assessment of

the relative size of the stimulus pair is evennecessarywhennot explicitly required,

as in our case. Also, the result that semantic congruity effects arise even when the

standard stimulus and the target stimulus are presented sequentially (Link, 1990;

Dehaene, 1989), seems to undermine the role of the size of the stimulus pair in

the explanation of semantic congruity effect.

Theotherprincipal theories that havebeenproposed for the explanationof the

semantic congruity effect - the expectancy effect (Banks& Flora, 1977;Marschark

& Paivio, 1979), the semantic coding model (Banks et al., 1976, 1975) and the

frequency explanation (Ryalls et al., 1998) - seem to be already partially falsified

by the contrastive results presented in the introduction. Furthermore, the ex-

pectancy theory and the semantic codingmodel do not apply in our study, given

that they are dependent on the direction of the comparative instruction that is

not used in the current task.

The choice of previous authors (Link&Heath, 1975; Link, 1990; Birnbaum&
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Jou, 1990; Poltrock, 1989) of allowing variations in parameters such as the start-

ing point of evidence accumulation, while neglecting the role of other possible

mechanisms (i.e., variations in boundary separation), is unclear. Here, we show

directly - with the model selection procedure - that neglected mechanisms, such

as boundary separation or non-decision time variations, do not play a role in the

semantic congruity effect.

Our application of the DDM further highlights the heuristic power of the

DDM, and shows that different phenomena that have been previously explained

by descriptive and or task-specific theories can be accounted for by sequential

sampling models of evidence accumulation and decision making, when the fo-

cus is shifted to the computational level of analysis. Our formal account of this

phenomenon is parsimonious, as it uses a unifying model of choice rather than

proposing an ad-hoc model for the explanation of the phenomenon, and rigor-

ous, as we account for the full distributions of correct and error responses, by

taking into consideration all the cognitive processes that underlie a decision.
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Part II

Decision modeling insights in

adaptive decision making
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5
When natural selection should

optimize speed-accuracy trade-offs.

Abstract

This chapter is from the paper Pirrone, A., Stafford, T., &Marshall, J. A. (2014).

When natural selection should optimize speed-accuracy trade-offs. Frontiers in
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neuroscience, 8, 73. Herewe argue that although decisionmaking is usually stud-

ied from the speed-accuracy trade-off perspective, many decisions are instead de-

scribed by a different trade-off, that we define as speed-value trade-off and that

cannot be accounted for by computational models of choice that integrate differ-

ence in evidence supporting two alternatives.

5.1 Introduction

In the previous three chapters we have used the DDM to generate insight into

three different domains; here, and in the following chapter we focus instead on

which are the limits of the DDM and under which circumstances the DDM

ceases to be optimal.

In psychology and neuroscience, and in other disciplines studying decision-

making mechanisms, it is often assumed that optimal decision-making means

statistical optimality. This is attractive because statistically optimal decision pro-

cedures are known, can be simply implemented in biologically-plausible mod-

els, and because such models have been shown to give good fits to behavioural

as well as neural data. Here we question when statistical optimality is the kind

of optimality we should expect natural selection to aim towards, by considering

what kinds of loss function should be optimised under different behavioural sce-

narios. In laboratory settings subjects are often rewarded only on making a cor-

rect choice, so optimisation of a zero-one loss function is appropriate, and this

is achieved by implementing a statistically-optimal decision procedure that gives

the best compromise between speed and accuracy of decision-making. Many nat-
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uralistic decisions may also be described by such a loss function; however others,

such as selecting food items of potentially different value, appear to be differ-

ent since the animal is rewarded by the value of the item it chooses regardless of

whether it was the best available. We argue that most naturalistic decisions are

value-based. Mechanisms that optimise speed-accuracy trade-offs need to be pa-

rameterised, using information about the decision problem, in order to deal with

value-based decision-making. Mechanisms for value-sensitive decision-making

havebeendescribed, however,which adaptively changebetweendecision-making

strategies without the need for continual re-parameterisation.

5.2 Speed-Accuracy Trade-Offs

It is usually assumed that decision-makers have to decide to be either fast or accu-

rate. When speed is important mistakes are more frequent, while when accuracy

is needed decisions are slower. This obvious problem is defined as the speed-

accuracy trade-off and is a distinctive feature of many types of decision making

(Wickelgren, 1977).

The speed-accuracy trade-off can be explained within the theoretical frame-

work of sequential sampling models of decision making that have been shown

to fit behavioural and neural data from human and animal choice tasks (Ratcliff

et al., 2004a; Ratcliff & Rouder, 2000; Ratcliff & Smith, 2004; Ratcliff et al.,

2003; Busemeyer et al., 2013). In particular, the Drift Diffusion Model (DDM;

Ratcliff, 1978) describes choice between two alternatives (see Bogacz et al., 2006;

Smith & Ratcliff, 2004; Basten et al., 2010) and recently has been shown also to
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be quantitatively accurate in describing trinary choices (Krajbich&Rangel, 2011)

and value-based choices (Krajbich et al., 2010; Krajbich&Rangel, 2011; Milosavl-

jevic et al., 2010; Krajbich et al., 2012), suggesting that the DDM can be thought

of as a unifying computational framework for describing decision making (Bas-

ten et al., 2010). Moreover, Bogacz et al. (2006) have demonstrated that several

connectionist decision-making models can approximate the DDM under spe-

cific conditions. The DDM is a special case of the statistically-optimal Sequen-

tial Probability Ratio Test (SPRT; Wald, 1947; Wald &Wolfowitz, 1948). In the

DDM noisy sensory evidence supporting the alternatives is integrated over time

until the net evidence in favour of one alternative exceeds a certainpositive or neg-

ative threshold value, precipitating a decision for the corresponding alternative.

These thresholds can be varied to compromise optimally between the average

speed and accuracy of decisions.

5.3 Speed-Value Trade-Offs

In situations where decisions are rewarded according to whether they are correct

or not, optimising the speed-accuracy trade-off is sensible. When decisions are

rewarded according to the value of the option chosen, however, a different cri-

terion needs to be optimised. This can be illustrated with the simplest case of

choosing between two equal value options; here there is no decision accuracy,

since choosing either option is ‘correct’. Similarly, there is no difference in av-

erage evidence for which of the two options is more valuable, meaning that the

SPRT/DDM will only reach a decision by integrating sufficient noise to cross a
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decision threshold. Thus in this scenario there is no speed-accuracy trade-off to

manage; the optimal decision is to choose anything as quickly as possible. The

fundamental insight is that for certain decisions, speed-value trade-offs are more

appropriate to optimise, rather than speed-accuracy trade-offs.

The SPRT/DDMcan be optimised to take account of the value of the alterna-

tives but, aswe discuss here, doing so requires knowledge of the decision problem

faced. The thresholds for an optimal decision depend on the goals of the decision

maker and are task specific. By way of example, one route to accounting for the

values associated with different decision outcomes is to minimise an extended

version of the Bayes Risk (BR). BR is a linear combination of expected decision

delay and expected terminal decision loss, first proposed byWald andWolfowitz

(Wald & Wolfowitz, 1948), and assumes that decision makers seek to minimise

a cost function that is the weighted sum of decision times (DTs) and error rate

(ERs). This was subsequently extended by Edwards to also account for non-zero

rewards for incorrect decisions (Edwards, 1965; Bogacz et al., 2006). Formally Ed-

wards’ extension of BR, which implements Wald and Wolfowitz’s version as a

special case, can be defined as

BRE = c1DT+ c2

 ER

1− ER

 (5.1)

where c1 is the cost of observing the stimulus per unit time, while c2 is a row-

vector specifying the payoffs from incorrect and correct choices (Bogacz et al.,

2006). If c2 = (k 0), where k > 0 is a constant, then Wald and Wolfowitz’s
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original BR is recovered. Several studies demonstrate that, under specific cir-

cumstances, subjects choose decision thresholds close to those thatminimiseBRE

(Busemeyer & Rapoport, 1988; Mozer et al., 2001). Bayes risk is not the only cri-

terion proposed to date that decision-makers might optimise. Bogacz et al. sur-

vey alternatives, such as reward-rate, however these alternatives are all calculated

basedondecision-accuracy,which requires explicit parameterisationbasedon the

values of correct and incorrect choices (Bogacz et al., 2006). We therefore concen-

trate our analysis on Bayes risk. Bayes risk can be used to optimise value-sensitive

decision-making; for example in a decision between two equal alternatives, each

having value v if chosen, wewould set the vector c2 = (v v) (e.g. dashed green line

in Figure 5.1), thus simplifying equation 1 above to

BRE = c1DT+ v. (5.2)

Equation 2 shows us that, intuitively, an optimal decision-maker in our equal-

alternatives scenario should minimise decision-time DT, since doing so incurs

no penalty as the error rate ER no longer features. However, using Bayes risk

in this way requires the values of the alternatives to be known on a case by case

basis, as shown in Figure 5.1. Subjects might learn the values of incorrect and

correct choices over time, for example when trials are blocked in psychophys-

ical experiments (see Bogacz et al., 2006). However in the following we argue

that inmost naturalistic decision scenarios decision-makers will not have this op-

portunity, and will therefore use other mechanisms that directly optimise speed-

value trade-offs, rather than optimising decisions indirectly via optimisation of
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Figure 5.1: The accuracy-based component of Bayes Risk (BRE as defined by equation 1) can be used to
approximate a value-based reward scheme. In value-based decisions individuals are rewarded accord-

ing to the value |v| + Δv of the option they choose (solid lines), where |v| is the average value of the
alternatives under consideration, andΔv is the deviation from this average of the value of the option

chosen by the subject. With knowledge of the values of the alternatives,BRE can be used to optimise
value sensitive decision-making as described in themain text; for example the dashed lines show pay-

offs used inBRE for: options having values of 0.5 and 1.5 units (black), options having equal values of
2.5 and 2.5 units (green) and options having values of 3.5 and 4.5 units (red). Intersections between

payoffs selected forBRE (dashed lines) with value-based reward (solid lines of matching colours)
correspond to choice scenarios between different-valued options for whichBRE implements reward-
by-value of the selected option; these intersections represent choice scenarios involving ‘poor’ (hollow

circles) and ‘good’ (filled circles) options having particular values. However, the cost parameters for

BRE need to be recalculated according to the values of the options under consideration; for example,
although the difference in the values of the alternatives does not change from the low-value (black) to

the high-value (red) scenarios, since their absolute values change theBRE payoffs need to be recalcu-
lated in each case. As described in the text, value-sensitive decision-mechanisms have been described

that are able adaptively to deal with a variety of such decision scenarios, without re-parameterisation.
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the speed-accuracy trade-off with an appropriate payoff matrix c2.

5.4 Naturalistic Decisions are Usually Value-Based

We argue that most naturalistic decisions faced by animals, including humans,

are value-based, in that the animal is rewarded according to the value of the op-

tion it chooses. Such a view on decision-making is not new to behavioural ecolo-

gists, where a long tradition exists of studying behaviours such asmate choice and

foraging (Davies et al., 2012) or nest-site selection (Stroeymeyt et al., 2014). Re-

cently many studies have focused on how value and reward are represented and

integrated during the decision process (Platt & Glimcher, 1999; Sugrue et al.,

2004; Padoa-Schioppa & Assad, 2006; Rangel et al., 2008; Kable & Glimcher,

2009; Krajbich et al., 2010; Philiastides et al., 2010; Hare et al., 2011; Krajbich &

Rangel, 2011; Louie&Glimcher, 2012;Tsetsos et al., 2012;Cassey et al., 2013;Towal

et al., 2013); however, in psychology and neuroscience, experiments are usually

designed such that there is always a correct choice, and only correct choices are

rewarded (see Gold & Shadlen, 2003; Bogacz et al., 2006). While studying be-

haviour in psychophysical tasks is beneficial in that it gives a well-controlled deci-

sion environment, our point is that only rewarding subjects when theymake cor-

rect choicesmay not correspond to the kind of decisions animals, and their neural

circuitry, have typically evolved to deal with. Even in the value-based decision ex-

periments cited above, which are analysed using the DDM, it is typical to only

present subjects with a choice between options known to have different values.

Moreover, even though some studies have looked at how reward information is
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integrated (Rorie et al., 2010; Gao et al., 2011), much of this work has not yet

focused on the trade-off between value and speed. While usually in the decision-

making literature the optimal behaviour is to optimise speed-accuracy trade-offs,

and subjects can apparently do this (Busemeyer & Rapoport, 1988; Bogacz et al.,

2006), we argue that these scenarios are not representative of many naturalistic

settings, and that there is great value in considering how subjects make value-

sensitive decisions and how these should be optimised. In the following section

we discuss theory that may be useful for this.

At least one important class of naturalistic decisions does require optimisation

of speed-accuracy trade-offs; these are life-or-death decisions. If we analyse for ex-

ample the case of an animal attempting to foragewhile avoiding predators (Trim-

mer et al., 2008), a slow-but-accurate decision would mean being killed by the

predator, a maximal loss. On the other hand if the decision is fast-but-inaccurate

the animalwould escape evenwhen the stimulus is not a predator, and thiswould

mean losing food. The best strategy for the animal is thus that which optimises

the speed-accuracy trade-off, taking into account the payoffs arising from the dif-

ferent decision outcomes; hence Trimmer et al.’s hypothetical animal is modelled

with a single-threshold DDM, with evidence sufficient to cross that single deci-

sion threshold leading to the animal taking anti-predator action such as running

away.
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5.5 Mechanisms for Value-Sensitive Decision-Making

Recent modelling work inspired by studying another value-sensitive decision-

making system, collective nest-site selection by honeybees (Seeley et al., 2012), has

described a very simplemechanism able to adaptively account for the value of dif-

ferent decision outcomes, withminimal parameter tuning (Pais et al., 2013). This

simple model implements a variety of sophisticated decision-making strategies;

for example,when equal but low-value alternatives are presented, a decisiondead-

lock is maintained that can be broken should a third, higher-value alternative,

be made available. However if equal-but-high-value alternatives are presented,

or sufficient time passes, deadlock is spontaneously and randomly broken (Pais

et al., 2013). This is the rationale behind the speed-value trade-off: as the over-

all value of the alternatives increases, reaction times decreases. Conversely, as the

overall value of the alternatives decreases, reaction times increases.

This is particularly interesting, since the classicDDM is insensitive to the abso-

lute value of the alternatives under consideration, and only integrates the differ-

ence in their values. When differences between alternative values are sufficient,

the value-sensitive mechanism of Pais et al. becomes closer to a classic DDM, al-

lowing speed-accuracy trade-offs tobemanaged, althoughnotoptimised, through

modification of decision thresholds. All of the different behavioural regimes of

the model arise without direct parameterisation regarding alternatives’ values,

simply through the dependence of the model’s dynamics on the mean values of

inputs to its integrator populations; this allows the model to adaptively respond
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to different decision scenarios on a trial-by-trial basis, which cannot be achieved

in pure DDM models without the decision-maker having access to explicit in-

formation on the decision-task at hand. Modifications to DDM-type models

have been proposed to deal with trial-by-trial variability such as online estima-

tion of task parameters (Deneve, 2012) or the use of time-dependent change in

parameters such as decision-thresholds, urgency signals or asymmetry of inhibi-

tion (Ditterich, 2006; Hanks et al., 2011; Drugowitsch et al., 2012; Thura et al.,

2012); fundamentally however these modifications are still interpreted under the

assumption that decision speed vs accuracy is the trade-off to be maximised, un-

like themodel of Pais et al. (2013) in which the dynamics are naturally interpreted

in terms of value vs time trade-offs. Pais et al.’s mechanism also exhibits other

characteristics of natural value-discrimination systems, such as Weber’s law of

just-noticeable difference; interestinglyWeber’s law arises from the deterministic

dynamics of the mechanism rather than from noise processes (Pais et al., 2013)

(cf. Deco & Rolls, 2006; Deco et al., 2007). However, as it will be discussed

in more detail in the following chapter, many other sequential sampling mod-

els (e.g., Usher & McClelland, 2001; Teodorescu et al., 2015; Drugowitsch et al.,

2012; Kacelnik et al., 2011) can account formagnitude sensitivity togetherwith the

models presented in Pais et al. (2013).

5.6 Conclusion

The study of speed-accuracy trade-offs has been tremendously fruitful for psy-

chology, neuroscience and animal behaviour, and will doubtless prove fruitful
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for many years to come. Yet as we have argued here most naturalistic decisions,

which animals’ brains should have evolved to optimise, are value-based rather

than accuracy-based. This leads us to argue that the drift-diffusionmodel, which

optimises speed-accuracy trade-offs, is not an ideal computational framework to

describe value-based decision-making; although it has had some success in de-

scribing particular experiments on value-based decision-making, discussed in the

section ‘Speed-Accuracy Trade-Offs’, as we have shown here the DDM requires

special case-by-caseparameterisation to implement true value-baseddecision-making.

We suggest that this limits the generality of theDDMas a unifying framework for

all ecologically-relevant decision-making problems. However recent theory has

presented mechanisms that can manage value-sensitive decision problems with-

out the additional informational requirements of the DDM. At the same time,

experimental and theoretical psychologists and neuroscientists have started to

tackle problems of value-based decision-making. We have presented our argu-

ments for value in terms of animal decision-making, but unicellular organisms

and individual cells also make decisions (e.g. Perkins & Swain, 2009; Latty &

Beekman, 2011), and value is likely to be similarly important for these. We be-

lieve that the evolutionary perspective we have presented here should motivate

further research into value-sensitivity and decision-making.
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6
Evidence for the speed-value trade-off

Abstract

In this chapter we test a prediction of the theoretical arguments presented in the

previous chapter, magnitude sensitivity.

Complex natural systems from brains to bee swarms have evolved to make

adaptivemultifactorial decisions. Recent theoretical and empirical work suggests
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thatmany evolved systemsmay take advantage of commonmotifs acrossmultiple

domains. We are particularly interested in value sensitivity as a mechanism to re-

solve deadlocks adaptively. Thismechanism favours long-term rewardmaximiza-

tion over accuracy in a simple manner, because it avoids costly delays associated

with ambivalence between similar options; speed-value trade-offs have been pro-

posed to be evolutionarily advantageous for many kinds of decision. A key pre-

diction of the value-sensitivity hypothesis is that choices between equally-valued

options will proceed faster when the options have a high value than when they

have a low value. However, value-sensitivity is not part of idealised choice mod-

els such as the DDM. Here we examine two different choice behaviours in two

different species, perceptual decisions in humans and economic choices in rhesus

monkeys, to test this hypothesis. We observe the same value sensitivity in both

humanperceptual decisions andmonkey value-based decisions. These results en-

dorse the idea that neural decision systemsmake use of the same basic principle of

value-sensitivity in order to resolve costly deadlocks and thus improve long-term

reward intake.

6.1 Introduction

Adaptive decision-making is a hallmark of intelligent complex systems at all levels

of biological complexity. Such systems can monitor inputs and then calculate

effective responses to themwith impressive efficiency andflexibility. Amajor goal

is the elucidation of the basic computational principles underlying mechanisms

for decision making, from perceptual decision making, to value-based decision
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making to social decisions (Krajbich et al., 2015).

Decisionmechanisms are often studied fromtheperspective of the speed-accuracy

trade-off. That is, the decision-maker is assumed to optimize choices based on

twocompeting cost functions, the cost of inaccurate choices and the cost of delays

imposedby longer deliberations. This trade-off functionhas been a central aspect

ofmodels of decision-making in psychology, neuroscience, and behavioural ecol-

ogy (e.g. Bogacz et al., 2006; Chittka et al., 2009). However for many decisions,

such as food choice, decision-makers should optimize value, not accuracy, and

decision-making processes should take this fact into account (Pirrone et al., 2014;

Teodorescu et al., 2015). Both the cost of a decision - in time taken and risk of error

- and benefit of a decision - in reward -may frequently depend on the value of op-

tions. When referring to ‘overall value’wemean themagnitude or intensity of the

stimuli or reward under consideration; in this case value can have a relation with

hedonistic concepts as ‘reward’ or be related to the physical dimension of stimuli.

For example, by comparing two lights, we would say that the brighter one has a

higher value. At the same time, of two sources of the same foodwewould say that

the bigger has an higher value. It seems reasonable to assume a positive correla-

tion in many ecological scenarios between stimulus magnitude (or salience) and

fitness value; for example, a brighter fruit may be riper and thus more nutrition-

ally beneficial (Schaefer et al., 2008), or a high intensity cue may indicate a more

dangerous situation (Teodorescu et al., 2015). Prominent computational mod-

els of choice work by integrating difference (Ratcliff & McKoon, 2008) or ratio

(Brown &Heathcote, 2008) in evidence between alternatives, thus disregarding
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information related to the absolute value of the alternatives under consideration

(Teodorescu et al., 2015; Pirrone et al., 2014). Such systems may also exhibit de-

cision deadlock between equal alternatives, which can be solved by adding ur-

gency signals, asymmetry of inhibition or collapsing thresholds (Ditterich, 2006;

Thura et al., 2012), however, these additions are motivated by avoiding long re-

action times in low evidence trials, without explicit reference to implementing

ecologically-relevant option magnitude sensitivity.

Consider, for example, a forager who encounters two food items. Laboratory

formalism treats this choice as independent of other events (Bogacz et al., 2010),

but if in the subject’s natural environment food item availabilities and qualities

are drawn from typical environmental distributions, then an optimal agent will

bemorewilling to reject both items if they arematched and relatively low in value

and instead search for a larger food item. However, if both items arematched and

high in value, there is no sense in waiting, nor is there any benefit in deliberation

between them. This decision-maker will thus be faster to respond to high-value

stimuli than to low-value ones, even if their ratio or difference is identical.

A nonlinear model of decision-making, inspired by observations of house-

hunting honeybees (Seeley et al., 2012), has been proposed that implements pre-

cisely this value-sensitive deadlock-breaking behaviour (Pais et al., 2013). The

dynamics of the model are such that decisions between equal options below a

value threshold result in deadlock, but deadlock is spontaneously broken for op-

tions above this value threshold; the value threshold is determined by a single

biologically-relevant parameter, strength of cross-inhibition between evidence
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accumulating populations (Pais et al., 2013). An adaptive strategy is to progres-

sively increase this parameter so that equal low-value alternatives that result in

decision deadlock will eventually result in deadlock breaking (Pais et al., 2013);

under this schedule high-value equal alternatives will result in deadlock break-

ing before low-value equal alternatives, and hence exhibit shorter reaction times

in the former case. As the decision-maker moves from maintaining to breaking

decision deadlock, change in the stochastic dynamics around the deadlock point

corresponds to a sign change in the Ornstein-Uhlenbeck (O-U) process

ẋ = Bx+ ση (6.1)

from stable (B < 0) to unstable (B > 0) (Pais et al., 2013). In equation 6.1 x rep-

resents state of the decision process, with 0 corresponding to decision deadlock

and a decision being reached when x crosses a positive or negative threshold, η is

a Wiener process, or Brownian motion, and σ is its standard deviation

Additionally, when differences between options are large enough the decision-

mechanism approximates the classical drift-diffusion model of decision-making

(Pais et al., 2013)

ẋ = A+ ση, (6.2)

where x represents integrated evidence with 0 corresponding to equal evidence,

andA is the strength of drift, which is a function of the difference betweenmean

evidence strengths (Ratcliff, 1978). If there is no such difference thenA = 0 and

the decision variable will only cross a decision threshold through integrating suf-
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ficient noise; importantly, if decision thresholds have been set high (indicating a

prioritisation of decision accuracy) and do not change, then this will take a corre-

spondingly long time. While Pais et al. present a model of collective behaviour,

corresponding non-linear neural models with qualitatively similar properties can

be found (Bose et al., 2016).

A first demonstration of value sensitivity in human decision making comes

fromTeodorescu et al. (2015), and somepreliminary results aboutmagnitude sen-

sitivity are also present in Teodorescu&Usher (2013). In Teodorescu et al. (2015)

subjects were required to choose the brighter of two grey patches presented on

the screen. Compared to a baseline condition, the authors increased the over-

all value of the alternatives while holding the ratio or the difference between the

mean luminances of the two grey patches constant. Their results demonstrate

that subjects show a sensitivity to the overall value of the alternatives both in the

condition where the difference and the condition where the ratio are maintained

constant but the overall value is increased. However, to the best of our knowl-

edge, no study to date has investigated value sensitivity as a mechanism to break

decision deadlocks for equal alternatives. We hypothesized that value sensitivity,

exhibited by a model of decision-making in honeybee swarms (Pais et al., 2013),

will also be observed in neural decision systems. We therefore measured the ef-

fects of value onmatched-value decisions in twodifferent contexts, perceptual de-

cisions in humans and reward-based decisions in rhesus monkeys. In both cases,

decisions of interest (i.e., equal alternatives) were embedded in a larger set of deci-

sions between options of unequal value. In both cases, we observed a significant
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decrease in reaction time with increasing value for matched-value options. These

findings are readily predicted by a value-sensitive model, but are not predicted

bymany classical models, except under implementations or assumptions that we

discuss in our final remarks.

6.2 Methods

6.2.1 Human Perceptual Decision Task

For the Human Perceptual Decision Task, all procedures were approved by the

University of Sheffield,DepartmentofPsychologyEthics Sub-Committee (DESC),

and carried out in accordance with theUniversity and British Psychological Soci-

ety (BPS) ethics guidelines. Subjects gave their informed consent before partici-

pation. We examined the behaviour of 9 human subjects (1 male, mean age = 18.8

years, SD= 1.64). All subjects had normal or corrected-to-normal vision and par-

ticipated voluntarily in the experiment in exchange for course credit. Each subject

was tested in a single sixty minute session.

Stimuli were programmed inMatlab, using the Psychophysics Toolbox exten-

sions (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007), and were presented on a

Mitsubishi Diamond Pro 2070sb 22” CRT monitor. Materials and procedure

were similar to those used by Teodorescu et al. (2015), with the only exception

being the addition of the equal-alternatives conditions.

As done by Teodorescu et al. (2015), we defined as ‘multiplicative’ the condi-

tion that held the same ratio between the two alternatives as in a baseline condi-

tion while increasing the overall value, and we defined as ‘additive’ the condition
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Figure 6.1: Top (a) Time course of an experimental trial; the stimulus remained on screen until subjects

responded and 1 second after that subjects were presented a new trial. Middle (b) Luminance value dis-

tributions for the target (red) and non-target (black) alternatives. In the baseline condition alternatives

had amean of 0.4 and 0.3 respectively, hence a difference of 0.1 and a ratio of 4/3. In the additive con-

dition, alternatives had amean of 0.6 and 0.5 respectively, hencemaintaining the same difference of

0.1 as in the baseline condition but giving a ratio of 6/5. In themultiplicative condition alternatives had

amean of 0.6 and 0.45 respectively, hence a difference of 0.15 but same ratio of 4/3 as in the baseline

condition. Bottom (c) Equal alternative conditions of increasing value, respectively 0.3, 0.4, 0.5, 0.6.



in which the difference between the two alternatives was kept constant as in a

baseline condition while the overall value of the alternatives was increased.

Stimuli consisted of two homogeneous, round, grey patches on a black back-

ground. The width of each patch was 1.2 cm; the distance between the centres of

the two grey patcheswas 6.2 cm. Afixation crosswas positioned between the two

patches. The baseline array consisted of grey levels normally distributed around

means of 0.4 and 0.3 (scale: 0 to 1.0), the multiplicative condition aroundmeans

of 0.6 and 0.45, the additive condition of 0.6 and 0.5 and the four equal alterna-

tives conditions were distributed respectively around means of 0.3, 0.4, 0.5 and

0.6; all conditions had a standard deviation of 0.1. On each frame, a Gaussian

random variable with mean 0 and standard deviation of 0.01 was added to the

mean grey level of each patch. If the final computed grey level was below 0.1, it

was rounded to 0.1. The screen had a refresh rate of 60 Hz and subjects were

positioned at 57 cm with their head on a chin rest. Order presentation of the

two grey patches was counter-balanced for each subject. In the remainder wewill

refer to the four equal-alternatives conditions of increasing value with regards

to their intensity (i.e., condition 0.3, condition 0.4, condition 0.5 and condition

0.6). Typical stimuli and value luminance distributions for the two alternatives

are represented in Figure 6.1.

6.2.2 Procedure

The two grey patches were presented simultaneously on the screen and subjects

were asked to decide which of the two was brighter by pressing ‘left’ or ‘right’
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on a keyboard using their left and right index fingers. One second after giving

a response they were presented with a new trial. Subjects were not informed

about the presence of equal-alternatives conditions or about the presence of a

multiplicative and additive condition. Subjects performed 1400 trials of which

320 (22.9 %) were baseline trials and 180 (12.9 %) for each of the remaining con-

ditions. After each block of 60 trials, subjects were asked to take a break and

were presented on the screenwith their accuracy and reaction times for the block.

Accuracy was only computed for non-equal alternatives trials. Subjects were in-

structed to be as fast and accurate as possible and to maintain their fixation on

the cross at the centre of the screen throughout each block. Before the experi-

ment they were presented with 14 training trials (2 trials for each condition) to

familiarise them with the task. No feedback was provided after each trial. No

additional conditions or measures were collected.

6.3 Results of Human Study

No fast data were excluded from the following analyses, given that fast responses

are particularly relevant for this study. However,we excluded slow responses over

3 seconds excluding in this way about 1 % of the data. To assess the effect of our

manipulation on RTs and accuracy levels for the baseline, the additive and the

multiplicative conditions, we show for each participant mean RTs, Figure 6.7a,

and mean accuracy, Figure 6.7b with bars representing 95% confidence intervals

of themean. In interpreting a graph that shows 95% confidence intervals, when a

confidence interval doesnotoverlapwith a specific value, it is possible to conclude
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Figure 6.2: Top (a)Mean RTs for the baseline (b.), multiplicative (m.) and additive (a.) conditions for each

subject. Bars represents 95% confidence intervals. Bottom (b)Mean accuracy levels for the baseline,

multiplicative and additive conditions for each subject.
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estimate t stat. p value
ppt 1 intercept 1.05 18.94 <.001

slope -0.02 -1.17 0.242

ppt 2 intercept 0.57 19.39 <.001
slope -0.03 -2.49 0.013

ppt 3 intercept 1.25 23.08 <.001
slope -0.09 -4.35 <.001

ppt 4 intercept 0.74 20.68 <.001
slope -0.04 -3.09 0.002

ppt 5 intercept 0.66 22.55 <.001
slope -0.02 -2.29 0.022

ppt 6 intercept 0.71 30.48 <.001
slope -0.02 -2.42 0.016

ppt 7 intercept 0.51 49.54 <.001
slope -0.01 -1.86 0.063

ppt 8 intercept 0.55 48.10 <.001
slope -0.01 -2.54 0.011

ppt 9 intercept 0.91 21.95 <.001
slope -0.05 -3.02 0.003

Table 6.1: Estimate of slope and intercept, t statistic, and p value for the linear effect of value on RTs for

the equal alternatives conditions (human participants).
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that there is a statistical difference between the estimates of the values of interest

at a false negative rate equal or lower than .05. For example, for the first partic-

ipant, for mean RTs the graphs show that for the additive condition the subject

was significantly slower than for the baseline or themultiplicative condition. For

the multiplicative conditions the first participant did not differ from the base-

line inmeanRT.Regarding accuracy levels, the trend is consistent across subjects

with subjects being generally less accurate for the additive condition compared to

the baseline or the multiplicative, while the multiplicative condition remains the

same as the baseline. Generally the accuracy of subjects is high especially for the

baseline and themultiplicative condition with participant 1 and 3 being at ceiling

level for all conditions. Regarding RTs however, there is no consistent pattern in

how decision time varies across the three unequal conditions. In our experiment

the display screenwas not linearised with respect to brightness. Interestingly, the

pattern reported coincides with what would be predicted given Weber fractions

(Ross & Brodie, 1987) for the multiplicative condition compared to the baseline;

by maintaining the same physical ratio between the two alternatives, compared

to the baseline condition, the multiplicative condition results in similar accuracy

andRTs. At the same time, the fact that the same physical difference between the

two alternatives is maintained in the additive condition, leads to a smaller per-

ceived difference of the additive condition compared to the baseline, resulting in

slower and less accurate responses.

Recall that our interest is on the equal alternatives. To assess whether the effect

of value on equal alternativeswas consistent across subjects (Figure 6.3)we ran for
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Figure 6.3: Top (a)Mean RTs for the equal alternatives conditions of increasingmagnitude for each

subject. Bars represents 95% confidence intervals. The red line represents the linear regression line on

mean RTs.
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each of the nine subjects a linear regression onmean RTs with value as predictor.

For eight out of nine participants the regression slope was significantly non-zero

or had a non-zero trend. Estimates of the slope, intercept, and significance levels

are reported in Table 6.1.
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6.4 Experiment onMonkeys

This experiment was performed by Habiba Azab at Rochester University, un-

der the supervision of Benjamin Hayden. However, I have participated in the

development of the experimental protocol. The section ‘Basic Procedures’, and

the section ‘Monkey Behavioural Task’ have been written by Habiba Azab and

Benjamin Hayden and are taken from the paper currently under review. I have

performed the analyses on the monkey data.

6.4.1 Basic Procedures

The basic procedures used in this studywere based on existing protocols used for

other experiments (Blanchard et al., 2013). All procedures were approved by the

University of Rochester Institutional Animal Care andUse Committee andwere

designed and conducted in compliance with the Public Health Service’s Guide

for the Care and Use of Animals. Four male rhesus monkeys (Macaca mulatta)

served as subjects. Each animal was outfitted with a small prosthesis using a stan-

dard technique (Hayden et al., 2008). Animals received analgesics and antibiotics

after all surgeries. Animals were slowly habituated to laboratory conditions and

trained to perform oculomotor tasks for liquid reward. Standard reinforcement

training was used with only positive rewards; punishment was never used, nor

was aversive conditioning.

In each session, the animal was transported from the colony at the University

of Rochester to the testing room, about 100 feet away in the same building. The

testing room was built specifically for primate studies and houses a computer

135



200ms 300ms min. 1000-2000ms
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Figure 6.4: Time course of an experimental trial and reward values for the two alternatives for the

monkey experiment. RGB values for stimuli were as follows: - red: [255 0 0] - off-white: [255 218 185] -

orange: [255 102 0] - indigo: [78 90 200] - yellow: [255 255 0] - blue: [0 0 255] - lime green: [0 255 0] -

pink: [250 128 114] - purple: [160 32 240] - cyan: [0 255 255] - white (fixation dot): [255 255 255].

screen and floor plate for firm mounting of the ergonomically designed primate

chair (Crist). Animalsmade all task-relevant decisions using gaze shifts to selected

targets. Horizontal and vertical eye positions were sampled at 1000 Hz by an in-

frared eye-monitoring camera system (SR Research). Stimuli were controlled by

a computer running Matlab (MathWorks) with Psychtoolbox (Brainard, 1997)

and Eyelink Toolbox (Cornelissen et al., 2002).

A standard solenoid valve controlled the duration of water delivery (Parker).

We estimated the precision of fluid volume delivered by the solenoid across the

range of open time commands used in this study. All reward volumes were mea-

sured and confirmed. Fluid access was controlled outside of experimental ses-

sions.

136



6.4.2 Monkey Behavioural Task

A two-alternative forced choice task was used to study the effect of overall mag-

nitude of the decision variable on reaction time in macaques. The task is a com-

puterized implementation of a simple economic choice task, of the type we and

others have longused. This taskuses the samebasic structure as several other tasks

in the lab, including those used to study risk (Blanchard et al., 2014), intertem-

poral choice and foraging (Blanchard &Hayden, 2015), and curiosity (Blanchard

et al., 2015). The key novel elements of this task were the use of simultaneous

option presentation with speeded responses. We used a computerized presenta-

tion, with a standard LCD monitor placed 144.8 cm (57 inches) inches in front

of the monkey in a darkened room. Screen resolution was 1024x768. All tri-

als were identical aside from the specific values and colours used. On each trial,

monkeys first fixated on a small white central spot (50 px diameter, 200 ms du-

ration) to indicate their willingness to initiate the trial. Successful fixation led to

the immediate presentation of two choice options; monkeys were allowed to se-

lect the choice option (by shifting gaze to it) immediately; no minimum initial

fixation was required, nor were monkeys required to look at both options be-

fore making a choice. The computer selected two options independently and at

random, with a uniform distribution. It then presented them 300 pixels to the

left and right of the central spot. Both stimuli were squares (200 pixels wide) in

one of 10 colours. The colors we used were red, off-white, orange, indigo, yel-

low, blue, lime green, pink, purple and cyan. These colours indicated the size of

the reward offered by this option, according to the following scheme: red: 50μL,
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off-white: 60μL, orange: 66μL, indigo: 100μL, yellow: 110μL, blue: 132μL, lime

green: 200μL, pink: 220μL„ purple: 240μL , and cyan: 264μL. We chose these

particular reward values carefully to allow us to have several ratios with different

magnitudes. Thus, while subjects saw trials in all possible combinations of the

above 10 stimuli, we were particularly interested in subsets of trials that form the

focus of our analyses. Subjects had extensive experience with the reward-colour

mappings ofmost colours in this hierarchy of rewards fromprevious experiments

(specifically: red, orange, yellow, blue, lime green, purple and cyan; Blanchard&

Hayden, 2015; Strait et al., 2016). To ensure that this familiarity did not introduce

any special bias, we extensively familiarized our subjects with the rewards offered

by new colours in several training sessions prior to testing. Following presenta-

tion, the subject then selected an option by shifting their gaze toward it. Subjects

were required tomaintain fixation on their choice for 300ms. Failure tomaintain

fixation led to deselection of the option and returned the monkey to the choice

state. Thus, monkeys were allowed to inspect the options without committing

to them if they wanted. Once the subject successfully completed fixation, the re-

ward was given and an inter-trial interval of 1 s, 1.5 s, or 2 s began. The particular

ITI on a given trial was selected at random from a uniform distribution. Options

remained on the screen during reward delivery and throughout the inter-trial in-

terval. Typical stimuli and reward values for the two alternatives are represented

in Figure 6.4. No additional measures or conditions were collected.
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Figure 6.5: Mean RTs for conditions with constant ratio of increasingmagnitude for each subject. Bars

represents 95% confidence intervals. The red line represents the linear regression line onmean RTs.

Top (a) ratio =1 (equal alternatives). Middle (b) ratio =1.1. Bottom (c) ratio =1.2.



6.5 Results ofMonkey Study

All subjects initially performed over 9000 trials of this task (subject B: 9132 tri-

als, subject H: 11652 trials, subject J: 11150 trials, subject K: 10230 trials). The exact

number of trials performed by each subject was constrained by the subject’s will-

ingness to work on any given day, and the need to start them on different tasks.

Subjects were highly accurate in their choices (overall accuracy: 85.41%; subject B:

87.64%; subject H: 87.69%; subject J: 88.93%; subject K: 77.01%). These values

are all significantly greater than chance (two-sided binomial test, all p< 0.0001).

No fast datawere excluded from the following analyses butwe removed the slow-

est 0.5 % of trials per subject, which represents unreasonably slow RTs. Given

the variability across subjects in mean RT, we could not use a single common

value for an upper cutoff as done for the human data. To assess the effect of

our manipulation on correct RTs we show for each participant mean RTs with

bars representing 95% confidence intervals for all those ratio conditions forwhich

more than three magnitude levels were present, separately for each participant;

Figure 6.5, Figure 6.6 and Figure 6.7.
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Figure 6.6: Mean RTs for conditions with constant ratio of increasingmagnitude for each subject. Bars

represents 95% confidence intervals. The red line represents the linear regression line onmean RTs.

Top (a) ratio =1.32. Bottom (b) ratio =1.67.
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estimate t stat. p value
subject B intercept 4.06 4.85 0.001

slope -0.01 -3.13 0.014

subject H intercept 0.52 8.13 <.001
slope 0.00 -3.82 0.005

subject J intercept 1.19 6.05 <.001
slope 0.00 -2.46 0.039

subject K intercept 1.43 3.69 0.006
slope 0.00 -2.06 0.073

Table 6.2: Estimate of slope and intercept, t statistic, and p value for the linear effect of value on RTs for

the equal alternatives conditions (monkey participants).

Our condition of interest is the condition forwhich the ratio is 1, meaning that

the two alternatives that the subject were presented with were equal in value. For

these conditions, as done for the human experiment, we ran for each of the four

subjects a linear regression on RTs with value as predictor. For three participants

the regression slope was significantly non-zero while for one participant it had a

non-zero trend. Estimates of the slope, intercept, and significance levels are re-

ported in Table 6.2.

6.6 Discussion

Influenced by a model of value-sensitive decision-making (Pais et al., 2013) and

by evolutionary and ecological arguments (Pirrone et al., 2014; Teodorescu et al.,

2015) we have investigated the effect of the overall value of the alternatives on de-

cisionmaking, in humans and inmonkeys. In line with these arguments, our ini-
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Figure 6.7: Mean RTs for conditions with constant ratio of increasingmagnitude for each subject. Bars

represents 95% confidence intervals. The red line represents the linear regression line onmean RTs.

Top (a) ratio =2. Middle (b) ratio =2.2. Bottom (c) ratio =4.



tial prediction was that an effect of the overall value of the alternatives should be

present also for ‘equal’ alternatives: fast decision times when the overall value of

the alternatives is high and slow decisions when the overall value is low. Both the

perceptual decision-making experiment on humans and the economic decision-

making experiment onmonkeys provide evidence that the overall value of the al-

ternatives affects response times. These effects are not predicted by classical mod-

els of choice which integrate only differences between or ratios of alternatives.

Value sensitivity might seem to be counter-intuitive if considered from a speed-

accuracy trade off perspective. From a speed-accuracy point of view, choices in-

volving more valuable options may be more costly to make mistakes on, so we

might expect decision making to shift towards a low error regime and, hence, be

slower. Instead, we observe the opposite sincewhen the overall value is increased,

subjects are faster and could open themselves tomakingmore errors. This result,

for the value-based task is in line with a ‘satisficing’ perspective where a ‘good

enough’ choice is preferred rather than the ‘best’, and as a consequence accuracy

in decisions over small differences is sacrificed in favour of quick responses (Pir-

rone et al., 2014; Kacelnik et al., 2011).

Unfortunately, due to a programming error, in our experiment the display

screen was not linearised (gamma corrected) with respect to brightness. This

means that our results hold for physical rather than perceived multiplicative and

additive shifts with respect to the baseline. As a consequence, our results on non-

equal alternative conditions are not directly comparable to those of Teodorescu

et al. (2015). For example, they found a difference in performance between the

144



baseline and multiplicative conditions which we did not, probably due to our

stimuli being shifted by a smaller physical amount. However, the equal alterna-

tive conditions, which are the focus of our work, do not suffer from issues related

to normalisation. The consistency across subjects for these conditions, as shown

in Figure 6.3, represents a simple but effective test of value-sensitivity in human

perceptual decision-making for deadlock breaking.

Relevant to our monkey experiment, regarding the unequal conditions (i.e.,

the ratiobetween the twoalternatives is not 1), no analyseswereperformed. These

conditions were presented to allow subjects to focus on the task; clearly an exper-

iment consisting only of equal alternatives would be unreasonable as for all trials

each choice would be random by necessity. Moreover, these unequal conditions

do not allow to test for value sensitivity given that when the ratio between two

alternatives is kept constant but the overall value is increased, also the discrim-

inability between the two alternatives increases -assuming constant noise- result-

ing in decreasing RTs. This means that although for unequal alternatives RTs

generally decrease as magnitude increases, it is not possible to dissociate the ef-

fect of magnitude from the effect of increased disriminability between the two

alternatives. However, also for the monkey data the presence of equal alterna-

tives conditions (e.g., ratio=1) allows us to test and confirm value sensitivity in

monkey reward-based decision making.

A strength of presenting both sets of data using different species and domains

is that this finding seem to suggest that value guides decision making, regardless

of the specific domain. We believe that this supports the idea of a single common
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mechanismunderlying decisionmaking that given evolutionary pressures is value

sensitive for perceptual stimuli and for rewards (Pirrone et al., 2014; Teodorescu

et al., 2015).

Our point, argued in the previous chapter, is that most naturalistic decisions

are value-based rather than accuracy-based, in the sense that decision-makers are

rewarded by the value of the alternative chosen, regardless of whether it was the

best available. Althoughdecision-making is traditionally studiedwithin the speed-

accuracy tradeoff perspective, this alternative viewpoint suggests that a speed-

value tradeoff (Pirrone et al., 2014) could be the most relevant decision tradeoff

tomanage in various naturalistic settings (Bateson&Kacelnik, 1998). We believe

that the value-sensitivity shown in simple tasks such as those presented in this

paper is a signature of this evolutionarily-plausible strategy.

These findings stand in contrast to celebrated models of choice. For exam-

ple, the DriftDiffusionModel (Ratcliff&McKoon, 2008) assumes that the sub-

ject integrates difference in evidence supporting two alternatives until a decision

boundary is crossed and a decision is made in favour of that alternative. This

reliance on evidence difference rather than evidence value entails predictions of

equal RTs for choices between two options of equal difference regardless if they

are two high value options or two low value options.

Theoretically, value sensitivity of the kind we have demonstrated here can be

explained by a number of models in addition to the one we took as our starting

point (Pais et al., 2013). Teodorescu et al. (2015) show that under the neurally

plausible assumption that processing noise increases with stimulus value, then a
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difference-based diffusion model becomes value sensitive and can make similar

predictions. Other computational models of choice such as the Leaky Compet-

ing Accumulator (Usher & McClelland, 2001, LCA) can also give rise to similar

patterns. The LCA at the early stages of accumulation shows a sensitivity to the

overall value of the alternatives and at the later stages approximates a DDM (Bo-

gacz et al., 2006), hence it is a value sensitive model. At the same time, models in

which the cost of accumulating evidence increases over time (Drugowitsch et al.,

2012) or sequential choice ‘race’ models (as compared to models in which the de-

cision maker explicitly compares options) in which agents choose an option that

exceeds a fixed threshold of acceptability (Kacelnik et al., 2011) are in line with

the value sensitive reaction time results presented here. Further theoretical effort

should be made to determine which empirical data on value-sensitivity can be

explained by which models, and attempt to discriminate between them on this

basis. As noted in earlier work, the nonlinear dynamics of models that explic-

itly implement value-sensitive decision-making give rise to a further prediction,

of decision hysteresis (Pais et al., 2013), whichmaymotivate further experimental

investigation.

Our results were inspired by a model of choice that involves explicit mutual

inhibition in economic and perceptual decisions. Neural activity in several re-

ward regions in the brain shows evidence of mutual inhibition during economic

decisions. These regions include the ventromedial prefrontal cortex (Strait et al.,

2014), ventral striatum (Strait et al., 2015), orbitofrontal cortex (Padoa-Schioppa,

2011), dorsal premotor area (Pastor-Bernier et al., 2012), and parietal cortex (Louie
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et al., 2011). Human neuroimaging results also support this (Hunt et al., 2015;

Jocham et al., 2012; Hunt et al., 2012). While a direct link between this literature

and the present study remains speculative, the similarity is nonetheless striking.

Future workwill be required to determinewhether these neural processes instan-

tiate the mechanism that our investigation was motivated by.

In conclusion, we hypothesise that far from being an artefact of imperfect im-

plementation, longer RTswith low-value alternatives and shorter RTswith high-

value alternatives are diagnostic of an adaptive decision strategy for the uncertain

environments faced by decision making systems, at different level of biological

complexity, and in various domains.
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7
Conclusion

7.1 Overview of the studies and main findings

Our research has focused on computational models of choice. Computational

models of choice are a useful, powerful and necessary tool for research in cogni-

tion. The computational approach has offered us a way to investigate hypothe-

ses in in various domains. Furthermore, it has allowed us to investigate new fea-
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tures of decision making. In the first part of this dissertation we have focused

on the Drift Diffusion Model (Ratcliff & McKoon, 2008) and we have applied

it to three domains: orientation discrimination in Autism Spectrum Disorder,

task-irrelevant perceptual learning and magnitude comparison research. Apply-

ing the DDM to these fields has allowed us to provide important insights into

such phenomena.

Regarding perception in ASD, we have shown that with regards to our task,

subjectswithASDdidnotdiffer in sensitivity compared to control subjects, while

theirmaindifferencewas in their criterion for a response and in their non-decision

time component. This finding has fundamental implications for the investiga-

tion of perception in ASD in which, surprisingly enough, conclusions based on

RTs or accuracy data have never taken into account speed-accuracy trade-offs or

non-decision time effects.

Regarding TIPL, we have shown as well how this phenomenon is not mono-

lithically affecting only one of the decisionmechanisms underlying a decision but

has instead a diffuse effect on other mechanisms, such as the criterion for a re-

sponse. Not taking into account such effects can lead to ambiguous estimates of

learning and interpretation of data.

Regardingmagnitude research, we have shown that competing theories for the

explanation of the semantic congruity effect can be reconciled within the DDM

framework and their predictions tested.

In the second part of this dissertation, we have instead focused on another

model of choice, the model presented in Pais et al. (2013). This model has a par-
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ticular feature that has never been taken into consideration in decision making

research so far, magnitude sensitivity.

Firstly, in chapter 5, we have argued from a theoretical perspective why we

should expect decision making to have evolved towards magnitude sensitivity

and why for many types of decision, a particular type of trade-off, that we have

defined as the speed-value trade-off, should bemaximised instead of the ‘classical’

speed-accuracy trade-off.

Finally, in chapter 6, we have provided evidence for the existence of the speed-

value trade-off across species and domains.

The results of the second part of this work have important consequences for

decision making, both theoretically and computationally. First, these results are

important for the falsifiability of computational models of choice (Heathcote

et al., 2014). One problem with computational models of choice is that formost

tasks they tend to make common predictions; for example, say that a researcher

performs a RDK experiment in which the difficulty of the task and the instruc-

tions regarding whether to be fast or accurate are manipulated. Most likely, re-

gardless of the computational model of choice used, the researcher would find

that the difficulty of the task affects the parameter associated with the discrim-

inability (e.g., the drift rate in theDDMor in the LCA)while the speed/accuracy

instructions would instead affect the parameter related to the boundary separa-

tion. This means that models generally tend to make common predictions and

similar accounts for the decisionmaking data they are applied to. Very few are the

predictions in decision making that are only met by some models of choice and
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cannot be accounted by others: magnitude sensitivity is one of these predictions.

The investigation of magnitude sensitivity allowed us to compare the qualitative

predictions of decision making models. In particular, relative models of choice

predict magnitude insensitivity for equal alternatives of increasing magnitude,

while absolutemodels of choice predict a decrease in the decision timewhen equal

alternatives have an increase in magnitude. By showing magnitude sensitivity in

decisionmaking we suggest that relativemodels of choice are not able to describe

a phenomenon that could have an important role in making a decision.

7.2 Future research

Together with some interesting results, I believe that the most exciting aspect of

our work is represented by the hypotheses that it has generated for future re-

search, in particular for two fields: ASD research and research on the falsifiability

of computational models of choice.

RegardingASD research, previous research has reported results that have been

interpreted as enhancementor impairments in specific areas ofperception (Bertone

et al., 2003;Milne et al., 2002;Deruelle et al., 2004;Bertone et al., 2003;O’Riordan

et al., 2001; Dickinson et al., 2016). This confusion affects even specific fields such

as motion discrimination, for which both impairments and enhancements have

been reported (Bertone et al., 2003; Milne et al., 2002). An interesting question

for future research is investigating whether such contrastive results can be recon-

ciled by a computational approach and in particular by accounting for the speed-

accuracy trade-off and by taking into account differences in non-decision time
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and boundary separation. Also, future research should investigate what are the

causes for the increased boundary separation in subjects with ASD. We believe

that subjects with ASD give a higher weight to reward prediction errors (i.e., er-

rors have a stronger impact) compared to control subjects, and as a consequence

they use a more conservative criterion for a response that open themselves to less

errors.

With regards to magnitude sensitivity research, future investigations are war-

ranted to explore whichmechanism gives rise tomagnitude sensitivity; for exam-

ple it could be dependent on the lateral inhibition between the accumulators, or

it could be dependent on the noise that rather than being constant is insteadmag-

nitude dependent. Future research should quantify the predictions of different

models that in principle could account for magnitude sensitivity and compare

them. On the other side, for models that cannot account for magnitude sensitiv-

ity, an interesting question is whether such models should be modified in order

to account for magnitude sensitivity. Also, future research is needed to quan-

tify the loss in explanation in various domains whenmagnitude sensitivity is not

taken into account. It could be for example, that perceptual decision making is

only minimally affected by magnitude sensitivity while reward decision making

in ecological settings is instead maximally affected by magnitude sensitivity.

Regarding TIPL and perceptual learning research in general, we believe that

studies that have documented an absence of learning based on analysis of accu-

racy data should be reconsidered, aswe have shown that variation in the cognitive

processes underlying a decision canmask a variation in accuracy. For example, as
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discussed in Liu & Watanabe (2012), claims that external feedback does not af-

fect learning (e.g., Ball & Sekuler, 1982; Watanabe et al., 2001) are based on the

analysis of accuracy data alone. An inclusion of RTs and a computational de-

composition of the effect could nevertheless show that a null effect is instead due

to the combined effect of a decrease in boundary separation accompanied by an

increase in discriminability. Furthermore, other parameters that might be associ-

ated with learning such as the non-decision time component, have an effect that

only manifest in RTs and cannot be revealed by an inspection of accuracy data

alone.

Finally, regardingmagnitude comparison research, further experiments should

adopt a procedure in which the direction of the comparison is explicitly given

(e.g., choose the smaller/bigger) and in which a computational investigation of

the results is performed in order to corroborate our findings. More importantly,

we strongly discourage using ad-hoc theories, but instead believe that psycholog-

ical phenomena, if possible, should be studied within the framework of unifying

computational models, as for example the DDM.
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